Sample records for interplanetary shock wave

  1. The influence of the energy emitted by solar flare soft X-ray bursts on the propagation of their associated interplanetary shock waves

    NASA Technical Reports Server (NTRS)

    Pinter, S.; Dryer, M.

    1985-01-01

    The relationship between the thermal energy released from 29 solar flares and the propagation features of their associated interplanetary shock waves that were detected at 1 AU is investigated. The 29 interplanetary shock waves were identified unambiguously and their tracking from each solar flare was deduced by tracking their associated interplanetary type-II radio emission. The thermal energy released in the solar flares was estimated from the time-intensity profiles of 1-8 A soft X-ray bursts from each flare. A good relationship is found between the flares' thermal energy with the IP shock-waves' transient velocity and arrival time at the earth - that is, the largest flare energy released is associated with the faster shock waves. Finally, a possible scenario of formation of a shock wave during the early phase of the flare and its propagation features is discussed.

  2. Plasma wave phenomena at interplanetary shocks observed by the Ulysses URAP experiment. [Unified Radio and Plasma Waves

    NASA Technical Reports Server (NTRS)

    Lengyel-Frey, D.; Macdowall, R. J.; Stone, R. G.; Hoang, S.; Pantellini, F.; Harvey, C.; Mangeney, A.; Kellogg, P.; Thiessen, J.; Canu, P.

    1992-01-01

    We present Ulysses URAP observations of plasma waves at seven interplanetary shocks detected between approximately 1 and 3 AU. The URAP data allows ready correlation of wave phenomena from .1 Hz to 1 MHz. Wave phenomena observed in the shock vicinity include abrupt changes in the quasi-thermal noise continuum, Langmuir wave activity, ion acoustic noise, whistler waves and low frequency electrostatic waves. We focus on the forward/reverse shock pair of May 27, 1991 to demonstrate the characteristics of the URAP data.

  3. Atypical Particle Heating at a Supercritical Interplanetary Shock

    NASA Technical Reports Server (NTRS)

    Wilson, Lynn B., III

    2010-01-01

    We present the first observations at an interplanetary shock of large amplitude (> 100 mV/m pk-pk) solitary waves and large amplitude (approx.30 mV/m pk-pk) waves exhibiting characteristics consistent with electron Bernstein waves. The Bernstein-like waves show enhanced power at integer and half-integer harmonics of the cyclotron frequency with a broadened power spectrum at higher frequencies, consistent with the electron cyclotron drift instability. The Bernstein-like waves are obliquely polarized with respect to the magnetic field but parallel to the shock normal direction. Strong particle heating is observed in both the electrons and ions. The observed heating and waveforms are likely due to instabilities driven by the free energy provided by reflected ions at this supercritical interplanetary shock. These results offer new insights into collisionless shock dissipation and wave-particle interactions in the solar wind.

  4. Large-Amplitude Electrostatic Waves Observed at a Supercritical Interplanetary Shock

    NASA Technical Reports Server (NTRS)

    Wilson, L. B., III; Cattell, C. A.; Kellogg, P. J.; Goetz, K.; Kersten, K.; Kasper, J. C.; Szabo, A.; Wilber, M.

    2010-01-01

    We present the first observations at an interplanetary shock of large-amplitude (> 100 mV/m pk-pk) solitary waves and large-amplitude (approx.30 mV/m pk-pk) waves exhibiting characteristics consistent with electron Bernstein waves. The Bernstein-like waves show enhanced power at integer and half-integer harmonics of the cyclotron frequency with a broadened power spectrum at higher frequencies, consistent with the electron cyclotron drift instability. The Bernstein-like waves are obliquely polarized with respect to the magnetic field but parallel to the shock normal direction. Strong particle heating is observed in both the electrons and ions. The observed heating and waveforms are likely due to instabilities driven by the free energy provided by reflected ions at this supercritical interplanetary shock. These results offer new insights into collisionless shock dissipation and wave-particle interactions in the solar wind.

  5. Multipoint study of interplanetary shocks

    NASA Astrophysics Data System (ADS)

    Blanco-Cano, Xochitl; Kajdic, Primoz; Russell, Christopher T.; Aguilar-Rodriguez, Ernesto; Jian, Lan K.; Luhmann, Janet G.

    2016-04-01

    Interplanetary (IP) shocks are driven in the heliosphere by Interplanetary Coronal Mass Ejections (ICMEs) and Stream Interaction Regions (SIRs). These shocks perturb the solar wind plasma, and play an active role in the acceleration of ions to suprathermal energies. Shock fronts evolve as they move from the Sun. Their surfaces can be far from uniform and be modulated by changes in the ambient solar wind (magnetic field orientation, flow velocity), shocks rippling, and perturbations upstream and downstream from the shocks, i.e., electromagnetic waves. In this work we use multipoint observations from STEREO, WIND, and MESSENGER missions to study shock characteristics at different helio-longitudes and determine the properties of the waves near them. We also determine shock longitudinal extensions and foreshock sizes. The variations of geometry along the shock surface can result in different extensions of the wave and ion foreshocks ahead of the shocks, and in different wave modes upstream and downtream of the shocks. We find that the ion foreshock can extend up to 0.2 AU ahead of the shock, and that the upstream region with modified solar wind/waves can be very asymmetric.

  6. "Driverless" Shocks in the Interplanetary Medium

    NASA Technical Reports Server (NTRS)

    Gopalswamy, N.; Kaiser, M. L.; Lara, A.

    1999-01-01

    Many interplanetary shocks have been detected without an obvious driver behind them. These shocks have been thought to be either blast waves from solar flares or shocks due to sudden increase in solar wind speed caused by interactions between large scale open and closed field lines of the Sun. We investigated this problem using a set of interplanetary shock detected {\\it in situ} by the Wind space craft and tracing their solar origins using low frequency radio data obtained by the Wind/WAVES experiment. For each of these "driverless shocks" we could find a unique coronal mass ejections (CME) event observed by the SOHO (Solar and Heliospheric Observatory) coronagraphs. We also found that these CMEs were ejected at large angles from the Sun-Earth line. It appears that the "driverless shocks" are actually driver shocks, but the drivers were not intercepted by the spacecraft. We conclude that the interplanetary shocks are much more extended than the driving CMEs.

  7. Upstream electron oscillations and ion overshoot at an interplanetary shock wave

    NASA Technical Reports Server (NTRS)

    Potter, D. W.; Parks, G. K.

    1983-01-01

    During the passage of a large interplanetary shock on Oct. 13, 1981, the ISEE-1 and -2 spacecraft were in the solar wind outside of the upstream region of the bow shock. The high time resolution data of the University of California particle instruments allow pinpointing the expected electron spike as occurring just before the magnetic ramp. In addition, two features that occur at this shock have not been observed before: electron oscillations associated with low frequency waves upstream of the shock and sharp 'overshoot' (about 1 sec) in the ion fluxes that occur right after the magnetic ramp. This interplanetary shock exhibits many of the same characteristics that are observed at the earth's bow shock.

  8. The Role of Hydromagnetic Waves in the Magnetosphere and the Ionosphere

    DTIC Science & Technology

    1991-01-31

    of right-hand-polarized waves in instabilities, we follow the examples discussed by Wong interplanetary shocks and in the terrestrial foreshock and... foreshock , (Received January 14, 1988;J. Geophys. Res., 90, 1429, 1985. Spangler, S.R., and J.P. Sheerin, Alfv6.n wave revised April 15, 1988;collapse...bow shocks,2 and in the interplanetary shocks and the a four-wave parametric coupling process is a.alyzed for the terrestrial foreshock .3 .4 Moreover

  9. Energetic electrons response to ULF waves induced by interplanetary shocks in the outer radiation belt

    NASA Astrophysics Data System (ADS)

    Zong, Qiugang

    Strong interplanetary shocks interaction with the Earth's magnetosphere would have great impacts on the Earth's magnetosphere. Cluster and Double Star constellation provides an ex-cellent opportunity to study the inner magnetospheric response to a powerful interplanetary solar wind forcing. An interplanetary shock on Nov.7 2004 with the solar wind dynamic pres-sure ˜ 70 nPa (Maximum) induced a large bipolar electric field in the plasmasphere boundary layer as observed by Cluster fleet, the peak-to-peak ∆Ey is more than 60 mV/m. Energetic elec-trons in the outer radiation belt are accelerated almost simultaneously when the interplanetary shock impinges upon the Earth's magnetosphere. Energetic electron bursts are coincident with the induced large electric field, energetic electrons (30 to 500 keV) with 900 pitch angles are accelerated first whereas those electrons are decelerated when the shock-induced electric field turns to positive value. Both toroidal and poloidal mode waves are found to be important but interacting with energetic electron at a different L-shell and a different period. At the Cluster's position (L = 4.4,), poloidal is predominant wave mode whereas at the geosynchronous orbits (L = 6.6), the ULF waves observed by the GOES -10 and -12 satellites are mostly toroidal. For comparison, a rather weak interplanetary shock on Aug. 30, 2001 (dynamic pressure ˜ 2.7 nPa) is also investigated in this paper. It is found that interplanetary shocks or solar wind pressure pulses with even small dynamic pressure change would have non-ignorable role in the radiation belt dynamic. Further, in this paper, our results also reveal the excitation of ULF waves re-sponses on the passing interplanetary shock, especially the importance of difference ULF wave modes when interacting with the energetic electrons in the radiation belt. The damping of the shock induced ULF waves could be separated into two terms: one term corresponds to the generalized Landau damping, the damping rate is large and the damping is fast; the other term corresponds to the damping through ionosphere due to its finite electric conductivity, the damping rate of this item is small and the damping is slow. The fast damping rate at (˜ 10-3 ) is significant larger than the slow damping rate (˜ 10-4 ) suggesting a rapid ULF wave energy lost is via drift resonance with energetic electrons in the radiation belt.

  10. Upstream waves and particles /Tutorial Lecture/. [from shocks in interplanetary space

    NASA Technical Reports Server (NTRS)

    Russell, C. T.; Hoppe, M. M.

    1983-01-01

    The plasma waves, MHD waves, energetic electrons and ions associated with the proximity of the region upstream from terrestrial, planetary and interplanetary shocks are discussed in view of observations and current theories concerning their origin. These waves cannot be separated from the study of shock structure. Since the shocks are supersonic, they continually overtake any ULF waves created in the plasma in front of the shock. The upstream particles and waves are also of intrinsic interest because they provide a plasma laboratory for the study of wave-particle interactions in a plasma which, at least at the earth, is accessible to sophisticated probing. Insight may be gained into interstellar medium cosmic ray acceleration through the study of these phenomena.

  11. Wind Observations of Wave Heating and/or Particle Energization at Supercritical Interplanetary Shocks

    NASA Technical Reports Server (NTRS)

    Wilson, Lynn Bruce, III; Szabo, Adam; Koval, Andriy; Cattell, Cynthia A.; Kellogg, Paul J.; Goetz, Keith; Breneman, Aaron; Kersten, Kris; Kasper, Justin C.; Pulupa, Marc

    2011-01-01

    We present the first observations at supercritical interplanetary shocks of large amplitude (> 100 mV/m pk-pk) solitary waves, approx.30 mV/m pk-pk waves exhibiting characteristics consistent with electron Bernstein waves, and > 20 nT pk-pk electromagnetic lower hybrid-like waves, with simultaneous evidence for wave heating and particle energization. The solitary waves and the Bernstein-like waves were likely due to instabilities driven by the free energy provided by reflected ions [Wilson III et al., 2010]. They were associated with strong particle heating in both the electrons and ions. We also show a case example of parallel electron energization and perpendicular ion heating due to a electromagnetic lower hybrid-like wave. Both studies provide the first experimental evidence of wave heating and/or particle energization at interplanetary shocks. Our experimental results, together with the results of recent Vlasov [Petkaki and Freeman, 2008] and PIC [Matsukyo and Scholer, 2006] simulations using realistic mass ratios provide new evidence to suggest that the importance of wave-particle dissipation at shocks may be greater than previously thought.

  12. Langmuir waveforms at interplanetary shocks: STEREO statistical analysis

    NASA Astrophysics Data System (ADS)

    Briand, C.

    2016-12-01

    Wave-particle interactions and particle acceleration are the two main processes allowing energy dissipation at non collisional shocks. Ion acceleration has been deeply studied for many years, also for their central role in the shock front reformation. Electron dynamics is also important in the shock dynamics through the instabilities they can generate which may impact the ion dynamics.Particle measurements can be efficiently completed by wave measurements to determine the characteristics of the electron beams and study the turbulence of the medium. Electric waveforms obtained from the S/WAVES instrument of the STEREO mission between 2007 to 2014 are analyzed. Thus, clear signature of Langmuir waves are observed on 41 interplanetary shocks. These data enable a statistical analysis and to deduce some characteristics of the electron dynamics on different shocks sources (SIR or ICME) and types (quasi-perpendicular or quasi-parallel). The conversion process between electrostatic to electromagnetic waves has also been tested in several cases.

  13. CAWSES November 7-8, 2004, Superstorm: Complex Solar and Interplanetary Features in the Post-Solar Maximum Phase

    NASA Technical Reports Server (NTRS)

    Tsurutani, Bruce T.; Echer, Ezequiel; Guarnieri, Fernando L.; Kozyra, J. U.

    2008-01-01

    The complex interplanetary structures during 7 to 8 Nov 2004 are analyzed to identify their properties as well as resultant geomagnetic effects and the solar origins. Three fast forward shocks, three directional discontinuities and two reverse waves were detected and analyzed in detail. The three fast forward shocks 'pump' up the interplanetary magnetic field from a value of approx.4 nT to 44 nT. However, the fields after the shocks were northward, and magnetic storms did not result. The three ram pressure increases were associated with major sudden impulses (SI + s) at Earth. A magnetic cloud followed the third forward shock and the southward Bz associated with the latter was responsible for the superstorm. Two reverse waves were detected, one at the edge and one near the center of the magnetic cloud (MC). It is suspected that these 'waves' were once reverse shocks which were becoming evanescent when they propagated into the low plasma beta MC. The second reverse wave caused a decrease in the southward component of the IMF and initiated the storm recovery phase. It is determined that flares located at large longitudinal distances from the subsolar point were the most likely causes of the first two shocks without associated magnetic clouds. It is thus unlikely that the shocks were 'blast waves' or that magnetic reconnection eroded away the two associated MCs. This interplanetary/solar event is an example of the extremely complex magnetic storms which can occur in the post-solar maximum phase.

  14. Kinetic Alfvén waves and particle response associated with a shock-induced, global ULF perturbation of the terrestrial magnetosphere

    DOE PAGES

    Malaspina, David M.; Claudepierre, Seth G.; Takahashi, Kazue; ...

    2015-11-14

    On 2 October 2013, the arrival of an interplanetary shock compressed the Earth's magnetosphere and triggered a global ULF (ultra low frequency) oscillation. Furthermore, the Van Allen Probe B spacecraft observed this large-amplitude ULF wave in situ with both magnetic and electric field data. Broadband waves up to approximately 100 Hz were observed in conjunction with, and modulated by, this ULF wave. Detailed analysis of fields and particle data reveals that these broadband waves are Doppler-shifted kinetic Alfvén waves. This event then suggests that magnetospheric compression by interplanetary shocks can induce abrupt generation of kinetic Alfvén waves over large portionsmore » of the inner magnetosphere, potentially driving previously unconsidered wave-particle interactions throughout the inner magnetosphere during the initial response of the magnetosphere to shock impacts.« less

  15. Electromagnetic Whistler Precursors at Supercritical Interplanetary Shocks

    NASA Technical Reports Server (NTRS)

    Wilson, L. B., III

    2012-01-01

    We present observations of electromagnetic precursor waves, identified as whistler mode waves, at supercritical interplanetary shocks using the Wind search coil magnetometer. The precursors propagate obliquely with respect to the local magnetic field, shock normal vector, solar wind velocity, and they are not phase standing structures. All are right-hand polarized with respect to the magnetic field (spacecraft frame), and all but one are right-hand polarized with respect to the shock normal vector in the normal incidence frame. Particle distributions show signatures of specularly reflected gyrating ions, which may be a source of free energy for the observed modes. In one event, we simultaneously observe perpendicular ion heating and parallel electron acceleration, consistent with wave heating/acceleration due to these waves.

  16. Plasma and energetic particle structure upstream of a quasi-parallel interplanetary shock

    NASA Technical Reports Server (NTRS)

    Kennel, C. F.; Scarf, F. L.; Coroniti, F. V.; Russell, C. T.; Wenzel, K.-P.; Sanderson, T. R.; Van Nes, P.; Smith, E. J.; Tsurutani, B. T.; Scudder, J. D.

    1984-01-01

    ISEE 1, 2 and 3 data from 1978 on interplanetary magnetic fields, shock waves and particle energetics are examined to characterize a quasi-parallel shock. The intense shock studied exhibited a 640 km/sec velocity. The data covered 1-147 keV protons and electrons and ions with energies exceeding 30 keV in regions both upstream and downstream of the shock, and also the magnitudes of ion-acoustic and MHD waves. The energetic particles and MHD waves began being detected 5 hr before the shock. Intense halo electron fluxes appeared ahead of the shock. A closed magnetic field structure was produced with a front end 700 earth radii from the shock. The energetic protons were cut off from the interior of the magnetic bubble, which contained a markedly increased density of 2-6 keV protons as well as the shock itself.

  17. Search Coil vs. Fluxgate Magnetometer Measurements at Interplanetary Shocks

    NASA Technical Reports Server (NTRS)

    Wilson, L.B., III

    2012-01-01

    We present magnetic field observations at interplanetary shocks comparing two different sample rates showing significantly different results. Fluxgate magnetometer measurements show relatively laminar supercritical shock transitions at roughly 11 samples/s. Search coil magnetometer measurements at 1875 samples/s, however, show large amplitude (dB/B as large as 2) fluctuations that are not resolved by the fluxgate magnetometer. We show that these fluctuations, identified as whistler mode waves, would produce a significant perturbation to the shock transition region changing the interpretation from laminar to turbulent. Thus, previous observations of supercritical interplanetary shocks classified as laminar may have been under sampled.

  18. Plasma and energetic particle structure of a collisionless quasi-parallel shock

    NASA Technical Reports Server (NTRS)

    Kennel, C. F.; Scarf, F. L.; Coroniti, F. V.; Russell, C. T.; Smith, E. J.; Wenzel, K. P.; Reinhard, R.; Sanderson, T. R.; Feldman, W. C.; Parks, G. K.

    1983-01-01

    The quasi-parallel interplanetary shock of November 11-12, 1978 from both the collisionless shock and energetic particle points of view were studied using measurements of the interplanetary magnetic and electric fields, solar wind electrons, plasma and MHD waves, and intermediate and high energy ions obtained on ISEE-1, -2, and -3. The interplanetary environment through which the shock was propagating when it encountered the three spacecraft was characterized; the observations of this shock are documented and current theories of quasi-parallel shock structure and particle acceleration are tested. These observations tend to confirm present self consistent theories of first order Fermi acceleration by shocks and of collisionless shock dissipation involving firehouse instability.

  19. Interplanetary particles and fields, November 22 - December 6, 1977: Helios, Voyager, and IMP observations between 0.6 AU and 1.6 AU

    NASA Technical Reports Server (NTRS)

    Burlaga, L. F.; Lepping, R. P.; Weber, R.; Armstrong, T.; Goodrich, C.; Sullivan, J.; Gurnett, D.; Kellogg, P.; Keppler, E.; Mariani, F.

    1979-01-01

    The principal interplanetary events observed are described and analyzed. Three flow systems were observed: (1) a corotating stream and a stream interface associated with a coronal hole; (2) a shock wave and an energetic particle event associated with a 2-B flare; and (3) an isolated shock wave of uncertain origin. Data from 28 experiments and 6 spacecraft provide measurements of solar wind plasma, magnetic fields, plasma waves, radio waves, energetic electrons, and low energy protons.

  20. The acceleration of charged particles in interplanetary shock waves

    NASA Technical Reports Server (NTRS)

    Pesses, M. E.; Decker, R. B.; Armstrong, T. P.

    1982-01-01

    Consideration of the theoretical and observational literature on energetic ion acceleration in interplanetary shock waves is the basis for the present discussion of the shock acceleration of the solar wind plasma and particle transport effects. It is suggested that ISEE data be used to construct data sets for shock events that extend continuously from solar wind to galactic cosmic ray energies, including data for electrons, protons, alphas and ions with Z values greater than 2.0, and that the temporal and spatial evolution of two- and three-dimensional particle distribution functions be studied by means of two or more spacecraft.

  1. The Characteristic Response of Whistler Mode Waves to Interplanetary Shocks

    DOE PAGES

    Yue, Chao; Chen, Lunjin; Bortnik, Jacob; ...

    2017-09-29

    Magnetospheric whistler mode waves play a key role in regulating the dynamics of the electron radiation belts. Recent satellite observations indicate a significant influence of interplanetary (IP) shocks on whistler mode wave power in the inner magnetosphere. In this study, we statistically investigate the response of whistler mode chorus and plasmaspheric hiss to IP shocks based on Van Allen Probes and THEMIS satellite observations. Immediately after the IP shock arrival, chorus wave power is usually intensified, often at postmidnight to prenoon sector, while plasmaspheric hiss wave power predominantly decreases near the dayside but intensifies near the nightside. We conclude thatmore » chorus wave intensification outside the plasmasphere is probably associated with the suprathermal electron flux enhancement caused by the IP shock. Through a simple ray tracing modeling assuming the scenario that plasmaspheric hiss is originated from chorus, we find that the solar wind dynamic pressure increase changes the magnetic field configuration to favor ray penetration in the nightside and promote ray refraction away from the dayside, potentially explaining the magnetic local time–dependent responses of plasmaspheric hiss waves following IP shock arrivals.« less

  2. The Characteristic Response of Whistler Mode Waves to Interplanetary Shocks

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yue, Chao; Chen, Lunjin; Bortnik, Jacob

    Magnetospheric whistler mode waves play a key role in regulating the dynamics of the electron radiation belts. Recent satellite observations indicate a significant influence of interplanetary (IP) shocks on whistler mode wave power in the inner magnetosphere. In this study, we statistically investigate the response of whistler mode chorus and plasmaspheric hiss to IP shocks based on Van Allen Probes and THEMIS satellite observations. Immediately after the IP shock arrival, chorus wave power is usually intensified, often at postmidnight to prenoon sector, while plasmaspheric hiss wave power predominantly decreases near the dayside but intensifies near the nightside. We conclude thatmore » chorus wave intensification outside the plasmasphere is probably associated with the suprathermal electron flux enhancement caused by the IP shock. Through a simple ray tracing modeling assuming the scenario that plasmaspheric hiss is originated from chorus, we find that the solar wind dynamic pressure increase changes the magnetic field configuration to favor ray penetration in the nightside and promote ray refraction away from the dayside, potentially explaining the magnetic local time–dependent responses of plasmaspheric hiss waves following IP shock arrivals.« less

  3. Evidence for confinement of low-energy cosmic rays ahead of interplanetary shock waves.

    NASA Technical Reports Server (NTRS)

    Palmeira, R. A. R.; Allum, F. R.

    1973-01-01

    Short-lived (about 15 min), low-energy proton increases associated with the passage of interplanetary shock waves have been previously reported. In the present paper, we have examined in a fine time scale (about 1 min) the concurrent particle and magnetic field data, taken by detectors on Explorer 34, for four of these events. Our results further support the view that these impulsive events are due to confinement of the solar cosmic-ray particles in the region just ahead (about 1,000,000 km) of the advancing shock front.

  4. Modeling of ion acceleration through drift and diffusion at interplanetary shocks

    NASA Technical Reports Server (NTRS)

    Decker, R. B.; Vlahos, L.

    1986-01-01

    A test particle simulation designed to model ion acceleration through drift and diffusion at interplanetary shocks is described. The technique consists of integrating along exact particle orbits in a system where the angle between the shock normal and mean upstream magnetic field, the level of magnetic fluctuations, and the energy of injected particles can assume a range of values. The technique makes it possible to study time-dependent shock acceleration under conditions not amenable to analytical techniques. To illustrate the capability of the numerical model, proton acceleration was considered under conditions appropriate for interplanetary shocks at 1 AU, including large-amplitude transverse magnetic fluctuations derived from power spectra of both ambient and shock-associated MHD waves.

  5. Global Effects of Transmitted Shock Wave Propagation Through the Earth's Inner Magnetosphere: First Results from 3-D Hybrid Kinetic Modeling

    NASA Technical Reports Server (NTRS)

    Lipatov, A. S.; Sibeck, D. G.

    2016-01-01

    We use a new hybrid kinetic model to simulate the response of ring current, outer radiation belt, and plasmaspheric particle populations to impulsive interplanetary shocks. Since particle distributions attending the interplanetary shock waves and in the ring current and radiation belts are non-Maxwellian, waveparticle interactions play a crucial role in energy transport within the inner magnetosphere. Finite gyroradius effects become important in mass loading the shock waves with the background plasma in the presence of higher energy ring current and radiation belt ions and electrons. Initial results show that shocks cause strong deformations in the global structure of the ring current, radiation belt, and plasmasphere. The ion velocity distribution functions at the shock front, in the ring current, and in the radiation belt help us determine energy transport through the Earth's inner magnetosphere.

  6. Interplanetary double-shock ensembles with anomalous electrical conductivity

    NASA Technical Reports Server (NTRS)

    Dryer, M.

    1972-01-01

    Similarity theory is applied to the case of constant velocity, piston-driven, shock waves. This family of solutions, incorporating the interplanetary magnetic field for the case of infinite electric conductivity, represents one class of experimentally observed, flare-generated shock waves. This paper discusses the theoretical extension to flows with finite conductivity (presumably caused by unspecified modes of wave-particle interactions). Solutions, including reverse shocks, are found for a wide range of magnetic Reynolds numbers from one to infinity. Consideration of a zero and nonzero ambient flowing solar wind (together with removal of magnetic considerations) enables the recovery of earlier similarity solutions as well as numerical simulations. A limited comparison with observations suggests that flare energetics can be reasonably estimated once the shock velocity, ambient solar wind velocity and density, and ambient azimuthal Alfven Mach number are known.

  7. Global Magnetospheric Response to an Interplanetary Shock: THEMIS Observations

    NASA Technical Reports Server (NTRS)

    Zhang, Hui; Sibeck, David G.; Zong, Q.-G.; McFadden, James P.; Larson, Davin; Glassmeier, K.-H.; Angelopoulos, V.

    2011-01-01

    We investigate the global response of geospace plasma environment to an interplanetary shock at approx. 0224 UT on May 28, 2008 from multiple THEMIS spacecraft observations in the magnetosheath (THEMIS B and C) and the mid-afternoon (THEMIS A) and dusk magnetosphere (THEMIS D and E). The interaction of the transmitted interplanetary shock with the magnetosphere has global effects. Consequently, it can affect geospace plasma significantly. After interacting with the bow shock, the interplanetary shock transmitted a fast shock and a discontinuity which propagated through the magnetosheath toward the Earth at speeds of 300 km/s and 137 km/s respectively. THEMIS A observations indicate that the plasmaspheric plume changed significantly by the interplanetary shock impact. The plasmaspheric plume density increased rapidly from 10 to 100/ cubic cm in 4 min and the ion distribution changed from isotropic to strongly anisotropic distribution. Electromagnetic ion cyclotron (EMIC) waves observed by THEMIS A are most likely excited by the anisotropic ion distributions caused by the interplanetary shock impact. To our best knowledge, this is the first direct observation of the plasmaspheric plume response to an interplanetary shock's impact. THEMIS A, but not D or E, observed a plasmaspheric plume in the dayside magnetosphere. Multiple spacecraft observations indicate that the dawn-side edge of the plasmaspheric plume was located between THEMIS A and D (or E).

  8. Acceleration of low-energy protons and alpha particles at interplanetary shock waves

    NASA Technical Reports Server (NTRS)

    Scholer, M.; Hovestadt, D.; Ipavich, F. M.; Gloeckler, G.

    1983-01-01

    The low-energy protons and alpha particles in the energy range 30 keV/charge to 150 keV/charge associated with three different interplanetary shock waves in the immediate preshock and postshock region are studied using data obtained by the ISEE 3. The spatial distributions in the preshock and postshock medium are presented, and the dependence of the phase space density at different energies on the distance from the shock and on the form of the distribution function of both species immediately at the shock is examined. It is found that in the preshock region the particles are flowing in the solar wind frame of reference away from the shock and in the postshock medium the distribution is more or less isotropic in this frame of reference. The distribution function in the postshock region can be represented by a power law in energy which has the same spectral exponent for both protons and alpha particles. It is concluded that the first-order Fermi acceleration process can consistently explain the data, although the spectra of diffuse bow shock associated particles are different from the spectra of the interplanetary shock-associated particles in the immediate vicinity of the shock. In addition, the mean free path of the low energy ions in the preshock medium is found to be considerably smaller than the mean free path determined by the turbulence of the background interplanetary medium.

  9. Contributions to the Fourth Solar Wind Conference. [interplanetary magnetic fields and medium

    NASA Technical Reports Server (NTRS)

    Acuna, M. H.; Behannon, K. W.; Burlaga, L. F.; Lepping, R.; Ness, N.; Ogilvie, K.; Pizzo, J.

    1979-01-01

    Recent results in interplanetary physics are examined. These include observations of shock waves and post-shock magnetic fields made by Voyager 1, 2; observations of the electron temperature as a function of distance between 1.36 AU and 2.25 AU; and observations of the structure of sector boundaries observed by Helios 1. A theory of electron energy transport in the collisionless solar wind is presented, and compared with observations. Alfven waves and Alvenic fluctuations in the solar wind are also discussed.

  10. Interplanetary magnetic field control of the Mars bow shock: Evidence for Venuslike interaction

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhang, T.L.; Schwingenschuh, K.; Lichtenegger, H.

    1991-07-01

    The Mars bow shock location and shape have been determined by examining the PHOBOS spacecraft magnetometer data. Observations show that the position of the terminator bow shock varies with interplanetary magnetic field orientation in the same way as at Venus. The shock is farthest from Mars in the direction of the interplanetary electric field, consistent with the idea that mass loading plays an important role in the solar wind interaction with Mars. The authors also find that the shock cross section at the terminator plane is asymmetric and is controlled by the interplanetary magnetic field as expected from the asymmetricmore » propagation velocity of the fast magnetosonic wave. Comparing with earlier mission data, they show that the Mars shock location varies with solar activity. The shock is farther from Mars during solar maximum. Thus the solar wind interaction with Mars appears to be Venuslike, with a magnetic moment too small to affect significantly the solar wind interaction.« less

  11. Kinetic Properties of an Interplanetary Shock Propagating inside a Coronal Mass Ejection

    NASA Astrophysics Data System (ADS)

    Liu, Mingzhe; Liu, Ying D.; Yang, Zhongwei; Wilson, L. B., III; Hu, Huidong

    2018-05-01

    We investigate the kinetic properties of a typical fast-mode shock inside an interplanetary coronal mass ejection (ICME) observed on 1998 August 6 at 1 au, including particle distributions and wave analysis with the in situ measurements from Wind. Key results are obtained concerning the shock and the shock–ICME interaction at kinetic scales: (1) gyrating ions, which may provide energy dissipation at the shock in addition to wave-particle interactions, are observed around the shock ramp; (2) despite the enhanced proton temperature anisotropy of the shocked plasma, the low plasma β inside the ICME constrains the shocked plasma under the thresholds of the ion cyclotron and mirror-mode instabilities; (3) whistler heat flux instabilities, which can pitch-angle scatter halo electrons through a cyclotron resonance, are observed around the shock, and can explain the disappearance of bi-directional electrons (BDEs) inside the ICME together with normal betatron acceleration; (4) whistler waves near the shock are likely associated with the whistler heat flux instabilities excited at the shock ramp, which is consistent with the result that the waves may originate from the shock ramp; (5) the whistlers share a similar characteristic with the shocklet whistlers observed by Wilson et al., providing possible evidence that the shock is decaying because of the strong magnetic field inside the ICME.

  12. Observations of Electromagnetic Whistler Precursors at Supercritical Interplanetary Shocks

    NASA Technical Reports Server (NTRS)

    Wilson, L. B., III; Koval, A.; Szabo, Adam; Breneman, A.; Cattell, C. A.; Goetz, K.; Kellogg, P. J.; Kersten, K.; Kasper, J. C.; Maruca, B. A.; hide

    2012-01-01

    We present observations of electromagnetic precursor waves, identified as whistler mode waves, at supercritical interplanetary shocks using the Wind search coil magnetometer. The precursors propagate obliquely with respect to the local magnetic field, shock normal vector, solar wind velocity, and they are not phase standing structures. All are right-hand polarized with respect to the magnetic field (spacecraft frame), and all but one are right-hand polarized with respect to the shock normal vector in the normal incidence frame. They have rest frame frequencies f(sub ci) < f much < f(sub ce) and wave numbers 0.02 approx < k rho (sub ce) approx <. 5.0. Particle distributions show signatures of specularly reflected gyrating ions, which may be a source of free energy for the observed modes. In one event, we simultaneously observe perpendicular ion heating and parallel electron acceleration, consistent with wave heating/acceleration due to these waves. Al though the precursors can have delta B/B(sub o) as large as 2, fluxgate magnetometer measurements show relatively laminar shock transitions in three of the four events.

  13. Outer Radiation Belt Dropout Dynamics Following the Arrival of Two Interplanetary Coronal Mass Ejections

    NASA Technical Reports Server (NTRS)

    Alves, L. R.; Da Silva, L. A.; Souza, V. M.; Sibeck, D. G.; Jauer, P. R.; Vieira, L. E. A.; Walsh, B. M.; Silveira, M. V. D.; Marchezi, J. P.; Rockenbach, M.; hide

    2016-01-01

    Magnetopause shadowing and wave-particle interactions are recognized as the two primary mechanisms for losses of electrons from the outer radiation belt. We investigate these mechanisms, sing satellite observations both in interplanetary space and within the magnetosphere and particle drift modeling. Two interplanetary shocks sheaths impinged upon the magnetopause causing a relativistic electron flux dropout. The magnetic cloud (C) and interplanetary structure sunward of the MC had primarily northward magnetic field, perhaps leading to a concomitant lack of substorm activity and a 10 day long quiescent period. The arrival of two shocks caused an unusual electron flux dropout. Test-particle simulations have shown 2 to 5 MeV energy, equatorially mirroring electrons with initial values of L 5.5can be lost to the magnetosheath via magnetopause shadowing alone. For electron losses at lower L-shells, coherent chorus wave-driven pitch angle scattering and ULF wave-driven radial transport have been shownto be viable mechanisms.

  14. Semi-transparent shock model for major solar energetic particle events

    NASA Astrophysics Data System (ADS)

    Kocharov, Leon

    2014-05-01

    Production of solar energetic particles in major events typically comprises two stages: (i) the initial stage associated with shocks and magnetic reconnection in solar corona and (ii) the main stage associated with the CME-bow shock in solar wind. The coronal emission of energetic particles from behind the interplanetary shock wave continues for about one hour , being not shielded by the CME shock in solar wind and having the prompt access to particle detectors at 1 AU. On occasion of two well-separated solar eruptions from the same active region, the newly accelerated solar particles may be emitted well behind the previous CME, and those solar particles may penetrate through the interplanetary shock of the previous CME to arrive at the Earth's orbit without significant delay, which is another evidence that high-energy particles from the solar corona can penetrate through travelling interplanetary shocks. Diffusive shock acceleration is fast only if the particle mean free path near the shock is small. The small mean free path (high turbulence level), however, implies that energetic particles from coronal sources could not penetrate through the interplanetary shock, and even the particles accelerated by the interplanetary shock itself could not escape to its far upstream region. If so, they could not be promptly observed at 1 AU. However, high-energy particles in major solar events are detected well before the shock arrival at 1 AU. The theoretical difficulty can be obviated in the framework of the proposed model of a "semitransparent" shock. As in situ plasma observations indicate, the turbulence energy levels in neighboring magnetic tubes of solar wind may differ from each other by more than one order of magnitude. Such an intermittence of coronal and solar wind plasmas can affect energetic particle acceleration in coronal and interplanetary shocks. The new modeling incorporates particle acceleration in the shock front and the particle transport both in parallel to the magnetic field and in perpendicular to the magnetic field directions. The modeling suggests that the perpendicular diffusion is always essential for the energetic particle production, because particles can be accelerated in tubes with a high turbulence level and then escape to far upstream of the shock via neighboring, less turbulent tubes. We have modeled both the transmission of high-energy (>50 MeV) protons from coronal sources through the interplanetary shock wave and the interplanetary shock acceleration of ~1-10 MeV protons with subsequent transport to far upstream of the shock. The modeling results imply that presence of the fast transport channels penetrating the shock and the cross-field transport of accelerated particles to those channels may play a key role in the high-energy particle emission from distant shocks and can explain the prompt onset of major solar energetic particle events observed near the Earth's orbit.

  15. Bi-directional streaming of solar wind electrons greater than 80 eV - ISEE evidence for a closed-field structure within the driver gas of an interplanetary shock

    NASA Technical Reports Server (NTRS)

    Bame, S. J.; Asbridge, J. R.; Feldman, W. C.; Gosling, J. T.; Zwickl, R. D.

    1981-01-01

    In near time coincidence with the arrival of helium enriched plasma driving the shock wave disturbance of November 12-13, 1978, strong bi-directional streaming of solar wind electrons greater than about 80 eV was observed with Los Alamos instrumentation on ISEE 3. The streaming persisted for many hours simultaneously parallel and anti-parallel to the interplanetary magnetic field which was directed roughly perpendicular to the sun-satellite line. This example of bidirectional streaming cannot be explained by field line connection to the earth's bow shock or the outward propagating interplanetary shock which passed ISEE 3 approximately 16 hours earlier. The event is explained if the local interplanetary field was a part of a magnetic bottle rooted at the sun or a disconnected loop propagating outward.

  16. RELATIONSHIPs among Geomagnetic storms, interplanetary shocks, magnetic clouds, and SUNSPOT NUMBER during 1995-2012

    NASA Astrophysics Data System (ADS)

    Berdichevsky, D. B.; Lepping, R. P.; Wu, C. C.

    2015-12-01

    During 1995-2012 Wind recorded 168 magnetic clouds (MCs), 197 magnetic cloud-like structures (MCLs), and 358 interplanetary (IP) shocks. Ninety four MCs and 56 MCLs had upstream shock waves. The following features are found: (i) Averages of solar wind speed, interplanetary magnetic field (IMF), duration (<Δt>), strength of Bzmin, and intensity of the associated geomagnetic storm/activity (Dstmin) for MCs with upstream shock waves (MCSHOCK) are higher (or stronger) than those averages for the MCs without upstream shock waves (MCNO-SHOCK). (ii) The <Δt> of MCSHOCK events (≈19.6 hr) is 9% longer than that for MCNO-SHOCK events (≈17.9 hr). (iii) For the MCSHOCK events, the average duration of the sheath (<ΔtSHEATH>) is 12.1 hrs. These findings could be very useful for space weather predictions, i.e. IP shocks driven by MCs are expected to arrive at Wind (or at 1 AU) about ~12 hours ahead of the front of the MCs on average. (iv) The occurrence frequency of IP shocks is well associated with sunspot number (SSN). The average intensity of geomagnetic storms measured by for MCSHOCK and MCNOSHOCK events is -102 and -31 nT, respectively. The is -78, -70, and -35 nT for the 358 IP shocks, 168 MCs, and 197 MCLs, respectively. These results imply that IP shocks, when they occur with MCs/MCLs, must play an important role in the strength of geomagnetic storms. We speculate as to why this is so. Yearly occurrence frequencies of MCSHOCK and IP shocks are well correlated with solar activity (e.g., SSN). Choosing the right Dstmin estimating formula for predicting the intensity of MC-associated geomagnetic storms is crucial for space weather predictions.

  17. Whistler Waves Associated with Weak Interplanetary Shocks

    NASA Technical Reports Server (NTRS)

    Velez, J. C. Ramirez; Blanco-Cano, X.; Aguilar-Rodriguez, E.; Russell, C. T.; Kajdic, P.; Jian,, L. K.; Luhmann, J. G.

    2012-01-01

    We analyze the properties of 98 weak interplanetary shocks measured by the dual STEREO spacecraft over approximately 3 years during the past solar minimum. We study the occurrence of whistler waves associated with these shocks, which on average are high beta shocks (0.2 < Beta < 10). We have compared the waves properties upstream and downstream of the shocks. In the upstream region the waves are mainly circularly polarized, and in most of the cases (approx. 75%) they propagate almost parallel to the ambient magnetic field (<30 deg.). In contrast, the propagation angle with respect to the shock normal varies in a broad range of values (20 deg. to 90 deg.), suggesting that they are not phase standing. We find that the whistler waves can extend up to 100,000 km in the upstream region but in most cases (88%) are contained in a distance within 30,000 km from the shock. This corresponds to a larger region with upstream whistlers associated with IP shocks than previously reported in the literature. The maximum amplitudes of the waves are observed next to the shock interface, and they decrease as the distance to the shock increases. In most cases the wave propagation direction becomes more aligned with the magnetic field as the distance to the shock increases. These two facts suggest that most of the waves in the upstream region are Landau damping as they move away from the shock. From the analysis we also conclude that it is likely that the generation mechanism of the upstream whistler waves is taking place at the shock interface. In the downstream region, the waves are irregularly polarized, and the fluctuations are very compressive; that is, the compressive component of the wave clearly dominates over the transverse one. The majority of waves in the downstream region (95%) propagate at oblique angles with respect to the ambient magnetic field (>60 deg.). The wave propagation with respect to the shock-normal direction has no preferred direction and varies similarly to the upstream case. It is possible that downstream fluctuations are generated by ion relaxation as suggested in previous hybrid simulation shocks.

  18. A cosmic-ray-mediated shock in the solar system

    NASA Technical Reports Server (NTRS)

    Eichler, D.

    1981-01-01

    It is pointed out that the flare-induced blast wave of Aug. 4, 1972, the most violent disturbance in the solar wind on record, produced cosmic rays with an efficiency of about 50%. Such a high efficiency is predicted by the self-regulating production model of cosmic-ray origin in shocks. Most interplanetary shocks, according to simple theoretical analysis, are not strong enough to produce cosmic rays efficiently. However, if shock strength is the key parameter governing efficiency, as present interplanetary data suggest, then shocks from supernova blasts, quasar outbursts, and other violent astrophysical phenomena should be extremely efficient sources of cosmic rays.

  19. Landau damping and steepening of interplanetary nonlinear hydromagnetic waves

    NASA Technical Reports Server (NTRS)

    Barnes, A.; Chao, J. K.

    1977-01-01

    According to collisionless shock theories, the thickness of a shock front should be of the order of the characteristic lengths of the plasmas (the Debye length, the proton and Larmor radii, etc.). Chao and Lepping (1974), found, however, that 30% of the observed interplanetary shocks at 1 AU have thicknesses much larger than these characteristic lengths. It is the objective of the present paper to investigate whether the competition between nonlinear steepening and Landau damping can result in a wave of finite width that does not steepen into a shock. A heuristic model of such a wave is developed and tested by the examples of two structures that are qualitatively shocklike, but thicker than expected from theory. It is found that both events are in the process of steepening and their limiting thicknesses due to Landau damping are greater than the corresponding proton Larmor radius for both structures as observed at Mariner 5 (nearer the sun than 1 AU) but are comparable to the proton Larmor radius for Explorer (near 1 AU) observations.

  20. A test of Lee's quasi-linear theory of ion acceleration by interplanetary traveling shocks

    NASA Technical Reports Server (NTRS)

    Kennel, C. F.; Coroniti, F. V.; Scarf, F. L.; Livesey, W. A.; Russell, C. T.; Smith, E. J.

    1986-01-01

    Lee's (1983) quasi-linear theory of ion acceleration is tested using ISEE-3 measurements of the November 12, 1978 quasi-parallel interplanetary shock. His theory accounts with varying degrees of precision for the energetic proton spatial profiles; the dependence of the spectral index of the power law proton velocity distribution upon the shock compression ratio; the power law dependence of the upstream proton scalelength upon energy; the absolute magnitude of the upstream proton scale length; the behavior of the energetic proton anisotropy upstream and downstream of the shock; the behavior of the alpha-particle proton ratio upstream; the equality of the spatial scale lengths at the shock of the upstream waves and of the protons that resonate with them; and the dependence of the integrated wave energy density upon the proton energy density at the shock. However, the trace magnetic field frequency spectra disagree with his theory in two ways. The part of the spectrum that can resonate with the observed protons via first-order cyclotron resonance is flat, whereas Lee's theory predicts an f exp - 7/4 frequency dependence for the November 12 shock. Higher frequency waves, which could not resonate with the observed upstream protons, increased in amplitude as the shock approached, suggesting that they too were generated by the shock.

  1. Interplanetary shocks, Plasma waves and turbulence, Kinetic waves and instabilities, STEREO spacecraft

    NASA Astrophysics Data System (ADS)

    Cohen, Z.; Breneman, A. W.; Cattell, C. A.; Davis, L.; Grul, P.; Kersten, K.; Wilson, L. B., III

    2017-12-01

    Determining the role of plasma waves in providing energy dissipation at shock waves is of long-standing interest. Interplanetary (IP) shocks serve as a large database of low Mach number shocks. We examine electric field waveforms captured by the Time Domain Sampler (TDS) on the STEREO spacecraft during the ramps of IP shocks, with emphasis on captures lasting 2.1 seconds. Previous work has used captures of shorter duration (66 and 131 ms on STEREO, and 17 ms on WIND), which allowed for observation of waves with maximum (minimum) frequencies of 125 kHz (15 Hz), 62.5 kHz (8 Hz), and 60 kHz (59 Hz), respectively. The maximum frequencies are comparable to 2-8 times the plasma frequency in the solar wind, enabling observation of Langmuir waves, ion acoustic, and some whistler-mode waves. The 2 second captures resolve lower frequencies ( few Hz), which allows us to analyze packet structure of the whistler-mode waves and some ion acoustic waves. The longer capture time also improves the resolvability of simultaneous wave modes and of waves with frequencies on the order of 10s of Hz. Langmuir waves, however, cannot be identified at this sampling rate, since the plasma frequency is usually higher than 3.9 kHz. IP shocks are identified from multiple databases (Helsinki heliospheric shock database at http://ipshocks.fi, and the STEREO level 3 shock database at ftp://stereoftp.nascom.nasa.gov/pub/ins_data/impact/level3/). Our analysis focuses on TDS captures in shock ramp regions, with ramp durations determined from magnetic field data taken at 8 Hz. Software is used to identify multiple wave modes in any given capture and classify waves as Langmuir, ion acoustic, whistler, lower hybrid, electron cyclotron drift instability, or electrostatic solitary waves. Relevant frequencies are determined from density and magnetic field data collected in situ. Preliminary results suggest that large amplitude (∼ 5 mV/m) ion acoustic waves are most prevalent in the ramp, in agreement with Wilson, et al. Other modes are also observed. Statistical results will be presented and compared with previous studies and theoretical predictions.

  2. STEREO Observations of Waves in the Ramp Regions of Interplanetary Shocks

    NASA Astrophysics Data System (ADS)

    Cohen, Z.; Breneman, A. W.; Cattell, C. A.; Davis, L.; Grul, P.; Kersten, K.; Wilson, L. B., III

    2017-12-01

    Determining the role of plasma waves in providing energy dissipation at shock waves is of long-standing interest. Interplanetary (IP) shocks serve as a large database of low Mach number shocks. We examine electric field waveforms captured by the Time Domain Sampler (TDS) on the STEREO spacecraft during the ramps of IP shocks, with emphasis on captures lasting 2.1 seconds. Previous work has used captures of shorter duration (66 and 131 ms on STEREO, and 17 ms on WIND), which allowed for observation of waves with maximum (minimum) frequencies of 125 kHz (15 Hz), 62.5 kHz (8 Hz), and 60 kHz (59 Hz), respectively. The maximum frequencies are comparable to 2-8 times the plasma frequency in the solar wind, enabling observation of Langmuir waves, ion acoustic, and some whistler-mode waves. The 2 second captures resolve lower frequencies ( few Hz), which allows us to analyze packet structure of the whistler-mode waves and some ion acoustic waves. The longer capture time also improves the resolvability of simultaneous wave modes and of waves with frequencies on the order of 10s of Hz. Langmuir waves, however, cannot be identified at this sampling rate, since the plasma frequency is usually higher than 3.9 kHz. IP shocks are identified from multiple databases (Helsinki heliospheric shock database at http://ipshocks.fi, and the STEREO level 3 shock database at ftp://stereoftp.nascom.nasa.gov/pub/ins_data/impact/level3/). Our analysis focuses on TDS captures in shock ramp regions, with ramp durations determined from magnetic field data taken at 8 Hz. Software is used to identify multiple wave modes in any given capture and classify waves as Langmuir, ion acoustic, whistler, lower hybrid, electron cyclotron drift instability, or electrostatic solitary waves. Relevant frequencies are determined from density and magnetic field data collected in situ. Preliminary results suggest that large amplitude (≥ 5 mV/m) ion acoustic waves are most prevalent in the ramp, in agreement with Wilson, et al. Other modes are also observed. Statistical results will be presented and compared with previous studies and theoretical predictions.

  3. Different Types of Ion Populations Upstream of the 2013 October 8 Interplanetary Shock

    NASA Astrophysics Data System (ADS)

    Kajdič, Primož; Hietala, Heli; Blanco-Cano, Xóchitl

    2017-11-01

    We show for the first time that different types of suprathermal ion distributions may exist upstream of a single interplanetary shock. ACE and the two ARTEMIS satellites observed a shock on 2013 October 8. The ARTEMIS P1 and P2 spacecraft first observed field-aligned ions (P1) and gyrating ions (P2) arriving from the shock. These were followed by intermediate ions and later by a diffuse population. At the location of the P2 the shock exhibited an Alfvénic Mach number of M A = 5.7 and was marginally quasi-perpendicular ({θ }{Bn}=47^\\circ ). At P1 spacecraft the shock was weaker (M A = 4.9) and more perpendicular ({θ }{Bn}=61^\\circ ). Consequently, the observed suprathermal ion and ultra-low-frequency wave properties were somewhat different. At P2 the ultra-low-frequency waves are more intense and extend farther upstream from the shock. The energies of field-aligned and gyrating ions in the shock rest-frame were ˜20 keV, which is much more than in the case of the stronger (M A = 6-7) Earth’s bow shock, where they are less than 10 keV.

  4. Interplanetary fast shock diagnosis with the radio receiver on Ulysses

    NASA Technical Reports Server (NTRS)

    Hoang, S.; Pantellini, F.; Harvey, C. C.; Lacombe, C.; Mangeney, A.; Meuer-Vernet, N.; Perche, C.; Steinberg, J.-L.; Lengyel-Frey, D.; Macdowall, R. J.

    1992-01-01

    The radio receiver on Ulysses records the quasi-thermal noise which allows a determination of the density and temperature of the cold (core) electrons of the solar wind. Seven interplanetary fast forward or reverse shocks are identified from the density and temperature profiles, together with the magnetic field profile from the Magnetometer experiment. Upstream of the three strongest shocks, bursts of nonthermal waves are observed at the electron plasma frequency f(peu). The more perpendicular the shock, the longer the time interval during which these upstream bursts are observed. For one of the strongest shocks we also observe two kinds of upstream electromagnetic radiation: radiation at 2 f(peu), and radiation at the downstream electron plasma frequency, which propagates into the less dense upstream regions.

  5. Subcritical and supercritical interplanetary shocks - Magnetic field and energetic particle observations

    NASA Technical Reports Server (NTRS)

    Bavassano-Cattaneo, M. B.; Tsurutani, B. T.; Smith, E. J.; Lin, R. P.

    1986-01-01

    A study of 34 forward interplanetary shocks observed by ISEE 3 during 1978 and 1979 has been conducted. Magnetic field and high-energy particle data have been used, and for each shock the first critical Mach number has been determined. The first surprising result is that the majority of the observed shocks appear to be supercritical, and consistent with their supercritical character, many shocks have a foot and/or an overshoot in the magnetic field structure. Large-amplitude low-frequency waves (period of about 20 s in the spacecraft frame) are commonly observed upstream of all supercritical shocks (except for a few quasi-perpendicular shocks) and also upstream of the few subcritical shocks. Intense particle events are frequently observed at many shocks: spikes at quasi-perpendicular shocks and energetic storm particle events associated with quasi-parallel shocks can be comparably intense. The correlation of the high-energy particle peak flux with various shock parameters is in agreement with the acceleration mechanisms proposed by previous studies.

  6. STEREO observations of insitu waves in the vicinity of interplanetary shocks

    NASA Astrophysics Data System (ADS)

    Golla, T.; MacDowall, R. J.

    2017-12-01

    We present the high time resolution observations of the in situ waves obtained by the time domain sampler (TDS) of the WAVES experiment on the STEREO spacecraft in the vicinity of typical quasi-perpendicular super-critical interplanetary shocks. We show that often Langmuir waves occur as coherent one dimensional magnetic field aligned wave packets in the upstream regions and persist over large distances. The characteristics of these wave packets are consistent with those of Langmuir solitons formed as a result of oscillatting two stream instability (OTSI). Very intense high frequency waves which are completely different from Langmuir waves occur in the transition regions. These waves occur as very incoherent emissions and exhibit broad fundamental and second harmonic spectral peaks. We identify these waves as electron acoustic waves excited by the electron beams in the transition regions. We also show that very intense low frequency ion sound waves occur in the downstream regions. We discuss the implications of these observations on the theories of (1) strong Langmuir turbulence, (2) beam stabilization, (3) emission mechanisms of solar type II radio bursts, (4) wave-particle interactions responsible for collisionless dissipation, and (5) heating of the downstream plasmas.

  7. Acceleration and propagation of energetic charged particles in the inner heliosphere.

    NASA Astrophysics Data System (ADS)

    Kallenrode, M. B.

    1995-02-01

    Both particle propagation and acceleration are intimately related to the strength of scattering. The author reviews some developments in our understanding of interplanetary propagation, in particular the dawn of a solution of the well-known discrepancy problem between mean free paths derived from quasi-linear theory and from fits to observational data. With this much improved understanding of particle scattering one can re-evaluate the understanding of particle acceleration at interplanetary shocks. Special attention is paid to the model of coupled hydrodynamic wave excitation and ion acceleration at shocks.

  8. Well-defined EUV wave associated with a CME-driven shock

    NASA Astrophysics Data System (ADS)

    Cunha-Silva, R. D.; Selhorst, C. L.; Fernandes, F. C. R.; Oliveira e Silva, A. J.

    2018-05-01

    Aims: We report on a well-defined EUV wave observed by the Extreme Ultraviolet Imager (EUVI) on board the Solar Terrestrial Relations Observatory (STEREO) and the Atmospheric Imaging Assembly (AIA) on board the Solar Dynamics Observatory (SDO). The event was accompanied by a shock wave driven by a halo CME observed by the Large Angle and Spectrometric Coronagraph (LASCO-C2/C3) on board the Solar and Heliospheric Observatory (SOHO), as evidenced by the occurrence of type II bursts in the metric and dekameter-hectometric wavelength ranges. We investigated the kinematics of the EUV wave front and the radio source with the purpose of verifying the association between the EUV wave and the shock wave. Methods: The EUV wave fronts were determined from the SDO/AIA images by means of two appropriate directions (slices). The heights (radial propagation) of the EUV wave observed by STEREO/EUVI and of the radio source associated with the shock wave were compared considering the whole bandwidth of the harmonic lane of the radio emission, whereas the speed of the shock was estimated using the lowest frequencies of the harmonic lane associated with the undisturbed corona, using an appropriate multiple of the Newkirk (1961, ApJ, 133, 983) density model and taking into account the H/F frequency ratio fH/fF = 2. The speed of the radio source associated with the interplanetary shock was determined using the Mann et al. (1999, A&A, 348, 614) density model. Results: The EUV wave fronts determined from the SDO/AIA images revealed the coexistence of two types of EUV waves, a fast one with a speed of 560 km s-1, and a slower one with a speed of 250 km s-1, which corresponds approximately to one-third of the average speed of the radio source ( 680 km s-1). The radio signature of the interplanetary shock revealed an almost constant speed of 930 km s-1, consistent with the linear speed of the halo CME (950 km s-1) and with the values found for the accelerating coronal shock ( 535-823 km s-1), taking into account the gap between the radio emissions.

  9. REVIEWS OF TOPICAL PROBLEMS: Acceleration of cosmic rays by shock waves

    NASA Astrophysics Data System (ADS)

    Berezhko, E. G.; Krymskiĭ, G. F.

    1988-01-01

    Theoretical work on various processes by which shock waves accelerate cosmic rays is reviewed. The most efficient of these processes, Fermi acceleration, is singled out for special attention. A linear theory for this process is presented. The results found on the basis of nonlinear models of Fermi acceleration, which incorporate the modification of the structure caused by the accelerated particles, are reported. There is a discussion of various possibilities for explaining the generation of high-energy particles observed in interplanetary and interstellar space on the basis of a Fermi acceleration mechanism. The acceleration by shock waves from supernova explosions is discussed as a possible source of galactic cosmic rays. The most important unresolved questions in the theory of acceleration of charged particles by shock waves are pointed out.

  10. Observation and Numerical Simulation of Cavity Mode Oscillations Excited by an Interplanetary Shock

    NASA Astrophysics Data System (ADS)

    Takahashi, Kazue; Lysak, Robert; Vellante, Massimo; Kletzing, Craig A.; Hartinger, Michael D.; Smith, Charles W.

    2018-03-01

    Cavity mode oscillations (CMOs) are basic magnetohydrodynamic eigenmodes in the magnetosphere predicted by theory and are expected to occur following the arrival of an interplanetary shock. However, observational studies of shock-induced CMOs have been sparse. We present a case study of a dayside ultralow-frequency wave event that exhibited CMO properties. The event occurred immediately following the arrival of an interplanetary shock at 0829 UT on 15 August 2015. The shock was observed in the solar wind by the Time History of Events and Macroscale Interactions during Substorms-B and -C spacecraft, and magnetospheric ultralow-frequency waves were observed by multiple spacecraft including the Van Allen Probe-A and Van Allen Probe-B spacecraft, which were located in the dayside plasmasphere at L ˜1.4 and L ˜ 2.4, respectively. Both Van Allen Probes spacecraft detected compressional poloidal mode oscillations at ˜13 mHz (fundamental) and ˜26 mHz (second harmonic). At both frequencies, the azimuthal component of the electric field (Eϕ) lagged behind the compressional component of the magnetic field (Bμ) by ˜90°. The frequencies and the Eϕ-Bμ relative phase are in good agreement with the CMOs generated in a dipole magnetohydrodynamic simulation that incorporates a realistic plasma mass density distribution and ionospheric boundary condition. The oscillations were also detected on the ground by the European quasi-Meridional Magnetometer Array, which was located near the magnetic field footprints of the Van Allen Probes spacecraft.

  11. Acceleration and Transport of Solar Energetic Particles in 'Semi-transparent' Shocks

    NASA Astrophysics Data System (ADS)

    Kocharov, L. G.

    2013-12-01

    Production of solar energetic particles in major events typically comprises two stages: (i) an initial stage associated with shocks and magnetic reconnection in solar corona and (ii) the main stage associated with the CME-bow shock in solar wind (e.g., Figure 1 of Kocharov et al., 2012, ApJ, 753, 87). As far as the second stage production is ascribed to interplanetary shocks, the first stage production should be attributed to coronal sources. Coronal emission of energetic particles from behind the interplanetary shock wave continues for about one hour (Figures 4-6 of Kocharov et al, 2010, ApJ, 725, 2262). The coronal particles are not shielded by the CME-bow shock in solar wind and have a prompt access to particle detectors at 1 AU. On non-exceptional occasion of two successive solar eruptions from the same active region, the newly accelerated solar particles may be emitted well behind the previous CME, and those solar particles may penetrate through the interplanetary shock of the previous CME to arrive at the Earth's orbit without significant delay (Al-Sawad et al., 2009, Astron. & Astrophys., 497, L1), which is another evidence that high-energy particles from the solar corona can penetrate through travelling interplanetary shocks. Diffusive shock acceleration is fast only if the particle mean free path in the shock is small. A small mean free path (high turbulence level), however, implies that energetic particles from the solar corona could not penetrate through the interplanetary shock and could not escape to its far upstream region. If so, they could not produce a prompt event at 1 AU. However, solar high-energy particle events are observed very far from the shocks. The theoretical difficulty can be obviated in the framework of the new model of a "semi-transparent" shock. As in situ plasma observations indicate, the turbulence energy levels in neighboring magnetic tubes of solar wind may differ from each other by more than one order of magnitude. Such an intermittence of coronal and solar wind plasmas can affect energetic particle acceleration in coronal and interplanetary shocks. The new modeling incorporates particle acceleration in the shock front and the particle transport both in parallel to the magnetic field and in perpendicular to the magnetic field directions. The modeling suggests that the perpendicular diffusion is always essential for the energetic particle production, because particles can be accelerated in tubes with a high turbulence level and then escape to far upstream of the shock via neighboring, less turbulent tubes. Considered are both the penetration of the high-energy (>50 MeV) solar protons through the interplanetary shock and the interplanetary shock acceleration to lower energies (~1-10 MeV). The modeling results are compared with data of spaceborne particle instruments (SOHO. STEREO) and data of neutron monitors.

  12. Nonthermal Radiation Processes in Interplanetary Plasmas

    NASA Astrophysics Data System (ADS)

    Chian, A. C. L.

    1990-11-01

    RESUMEN. En la interacci6n de haces de electrones energeticos con plasmas interplanetarios, se excitan ondas intensas de Langmuir debido a inestabilidad del haz de plasma. Las ondas Langmuir a su vez interaccio nan con fluctuaciones de densidad de baja frecuencia para producir radiaciones. Si la longitud de las ondas de Langmujr exceden las condicio nes del umbral, se puede efectuar la conversi5n de modo no lineal a on- das electromagneticas a traves de inestabilidades parametricas. As se puede excitar en un plasma inestabilidades parametricas electromagneticas impulsadas por ondas intensas de Langmuir: (1) inestabilidades de decaimiento/fusi5n electromagnetica impulsadas por una bomba de Lang- muir que viaja; (2) inestabilidades dobles electromagneticas de decai- miento/fusi5n impulsadas por dos bombas de Langrnuir directamente opues- tas; y (3) inestabilidades de dos corrientes oscilatorias electromagne- ticas impulsadas por dos bombas de Langmuir de corrientes contrarias. Se concluye que las inestabilidades parametricas electromagneticas in- ducidas por las ondas de Langmuir son las fuentes posibles de radiacio- nes no termicas en plasmas interplanetarios. ABSTRACT: Nonthermal radio emissions near the local electron plasma frequency have been detected in various regions of interplanetary plasmas: solar wind, upstream of planetary bow shock, and heliopause. Energetic electron beams accelerated by solar flares, planetary bow shocks, and the terminal shock of heliosphere provide the energy source for these radio emissions. Thus, it is expected that similar nonthermal radiation processes may be responsible for the generation of these radio emissions. As energetic electron beams interact with interplanetary plasmas, intense Langmuir waves are excited due to a beam-plasma instability. The Langmuir waves then interact with low-frequency density fluctuations to produce radiations near the local electron plasma frequency. If Langmuir waves are of sufficiently large amplitude to exceed the thresfiold conditions, nonlinear mode conversion electromagnetic waves can be effected through parametric instabilities. A number of electromagnetic parametric instabilities driven by intense Langmuir waves can be excited in a plasma: (1) electromagnetic decay/fusion instabilities driven by a traveling Langmuir pump; (2) double electromagnetic decay/fusion instabilities driven by two oppositely directed Langmuir pumps; and (3) electromagnetic oscillating two-stream instabilities driven by two counterstreaming Langmuir pumps. It is concluded that the electromagnetic parametric instabilities induced by Langmuir waves are likely sources of nonthermal radiations in interplanetary plasmas. Keq ( : INTERPLANETARY MEDIUM - PLASMAS

  13. Prediction system of the 1-AU arrival times of CME-associated interplanetary shocks using three-dimensional simulations

    NASA Astrophysics Data System (ADS)

    den, Mitsue; Amo, Hiroyoshi; Sugihara, Kohta; Takei, Toshifumi; Ogawa, Tomoya; Tanaka, Takashi; Watari, Shinichi

    We describe prediction system of the 1-AU arrival times of interplanetary shock waves associated with coromal mass ejections (CMEs). The system is based on modeling of the shock propagation using a three-dimensional adaptive mesh refinement (AMR) code. Once a CME is observed by LASCO/SOHO, firstly ambient solar wind is obtained by numerical simulation, which reproduces the solar wind parameters at that time observed by ACE spacecraft. Then we input the expansion speed and occurrence position data of that CME as initial condtions for an CME model, and 3D simulation of the CME and the shock propagation is perfomed until the shock wave passes the 1-AU. Input the parameters, execution of simulation and output of the result are available on Web, so a person who is not familiar with operation of computer or simulations or is not a researcher can use this system to predict the shock passage time. Simulated CME and shock evolution is visuallized at the same time with simulation and snap shots appear on the web automatically, so that user can follow the propagation. This system is expected to be useful for forecasters of space weather. We will describe the system and simulation model in detail.

  14. Interplanetary energetic particle observations of the March 1989 events

    NASA Technical Reports Server (NTRS)

    Sarris, E. T.; Krimigis, S. M.

    1989-01-01

    The IMP-8 spacecraft placed in an elongated orbit of approximately R(sub E) x R(sub E) orbit around the Earth was the only monitor of the energetic particle environment of the near interplanetary space during the period of the solar particle events associated with the Active Region 5395 in March 1989. Measurements of energetic ion and electron intensities were obtained in a series of channels within the energy range: 0.3 to 440 MeV for photons, 0.6 to 52 MeV/nuc for alpha particles, 0.7 to 3.3 MeV/nuc for nuclei with Z greater than or equal to 3, 3 to 9 MeV/nuc with Z greater than or equal to 20, and 0.2 to 2.5 MeV for electrons. The responses of selected energy channels during the period 5 to 23 March 1989 are displayed. It is clearly noted that the most prominent energetic ion intensity enhancements in that time interval were associated with the interplanetary shock wave of March 13 (07:42 UT) as well as that of March 8 (17:56 UT), which have distinct particle acceleration signatures. These shock waves play a major role in determining the near Earth energetic ion intensities during the above period by accelerating and modulating the ambient solar energetic particle population, which was already present in high intensities in the interplanetary medium due to the superposition of a series of solar flare particle events originating in AR 5395. The differential ion intensities at the lowest energy channel of the CPME experiment, which were associated with the March 13 shock wave, reached the highest level in the life of the IMP-8 spacecraft at this energy. At high energies, the shock associated intensity peak was smaller by less than a factor of 3 than the maxima of solar flare particle intensities from some other major flares, in particular from those with sites well connected to the Earth's magnetic flux tubes.

  15. Testing model for prediction system of 1-AU arrival times of CME-associated interplanetary shocks

    NASA Astrophysics Data System (ADS)

    Ogawa, Tomoya; den, Mitsue; Tanaka, Takashi; Sugihara, Kohta; Takei, Toshifumi; Amo, Hiroyoshi; Watari, Shinichi

    We test a model to predict arrival times of interplanetary shock waves associated with coronal mass ejections (CMEs) using a three-dimensional adaptive mesh refinement (AMR) code. The model is used for the prediction system we develop, which has a Web-based user interface and aims at people who is not familiar with operation of computers and numerical simulations or is not researcher. We apply the model to interplanetary CME events. We first choose coronal parameters so that property of background solar wind observed by ACE space craft is reproduced. Then we input CME parameters observed by SOHO/LASCO. Finally we compare the predicted arrival times with observed ones. We describe results of the test and discuss tendency of the model.

  16. Statistical analysis of mirror mode waves in sheath regions driven by interplanetary coronal mass ejection

    NASA Astrophysics Data System (ADS)

    Ala-Lahti, Matti M.; Kilpua, Emilia K. J.; Dimmock, Andrew P.; Osmane, Adnane; Pulkkinen, Tuija; Souček, Jan

    2018-05-01

    We present a comprehensive statistical analysis of mirror mode waves and the properties of their plasma surroundings in sheath regions driven by interplanetary coronal mass ejection (ICME). We have constructed a semi-automated method to identify mirror modes from the magnetic field data. We analyze 91 ICME sheath regions from January 1997 to April 2015 using data from the Wind spacecraft. The results imply that similarly to planetary magnetosheaths, mirror modes are also common structures in ICME sheaths. However, they occur almost exclusively as dip-like structures and in mirror stable plasma. We observe mirror modes throughout the sheath, from the bow shock to the ICME leading edge, but their amplitudes are largest closest to the shock. We also find that the shock strength (measured by Alfvén Mach number) is the most important parameter in controlling the occurrence of mirror modes. Our findings suggest that in ICME sheaths the dominant source of free energy for mirror mode generation is the shock compression. We also suggest that mirror modes that are found deeper in the sheath are remnants from earlier times of the sheath evolution, generated also in the vicinity of the shock.

  17. Characteristics of coronal shock waves and solar type 2 radio bursts

    NASA Technical Reports Server (NTRS)

    Mann, G.; Classen, H.-T.

    1995-01-01

    In the solar corona shock waves generated by flares and/or coronal mass ejections can be observed by radio astronomical methods in terms of solar type 2 radio bursts. In dynamic radio spectra they appear as emission stripes slowly drifting from high to low frequencies. A sample of 25 solar type 2 radio bursts observed in the range of 40 - 170 MHz with a time resolution of 0.1 s by the new radiospectrograph of the Astrophvsikalisches Institut Potsdam in Tremsdorf is statistically investigated concerning their spectral features, i.e, drift rate, instantaneous bandwidth, and fundamental harmonic ratio. In-situ plasma wave measurements at interplanetary shocks provide the assumption that type 2 radio radiation is emitted in the vicinity of the transition region of shock waves. Thus, the instantaneous bandwidth of a solar type 2 radio burst would reflect the density jump across the associated shock wave. Comparing the inspection of the Rankine-Hugoniot relations of shock waves under coronal circumstances with those obtained from the observational study, solar type 2 radio bursts should be regarded to be generated by weak supercritical, quasi-parallel, fast magnetosonic shock waves in the corona.

  18. DENSITY FLUCTUATIONS UPSTREAM AND DOWNSTREAM OF INTERPLANETARY SHOCKS

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Pitňa, A.; Šafránková, J.; Němeček, Z.

    2016-03-01

    Interplanetary (IP) shocks as typical large-scale disturbances arising from processes such as stream–stream interactions or Interplanetary Coronal Mass Ejection (ICME) launching play a significant role in the energy redistribution, dissipation, particle heating, acceleration, etc. They can change the properties of the turbulent cascade on shorter scales. We focus on changes of the level and spectral properties of ion flux fluctuations upstream and downstream of fast forward oblique shocks. Although the fluctuation level increases by an order of magnitude across the shock, the spectral slope in the magnetohydrodynamic range is conserved. The frequency spectra upstream of IP shocks are the same as those inmore » the solar wind (if not spoiled by foreshock waves). The spectral slopes downstream are roughly proportional to the corresponding slopes upstream, suggesting that the properties of the turbulent cascade are conserved across the shock; thus, the shock does not destroy the shape of the spectrum as turbulence passes through it. Frequency spectra downstream of IP shocks often exhibit “an exponential decay” in the ion kinetic range that was earlier reported at electron scales in the solar wind or at ion scales in the interstellar medium. We suggest that the exponential shape of ion flux spectra in this range is caused by stronger damping of the fluctuations in the downstream region.« less

  19. Wave-Particle Interactions and Particle Acceleration in Turbulent Plasmas: Hybrid Simulations

    NASA Astrophysics Data System (ADS)

    Kucharek, Harald; Pogorelov, Nikolai; Mueller, Hans; Gamayunov, Konstantin; Farrugia, Charles

    2015-04-01

    Wave-particle interactions and acceleration processes are present in all key regions inside and outside of the heliosphere. Spacecraft observations measure ion distributions and accelerated ion populations, which are the result of one or several processes. For instance STEREO measures energetic particles associated with interplanetary discontinuities and in the solar wind. Voyager and IBEX provide unique data of energetic particles from the termination shock and the inner and outer heliopause. The range of plasma conditions covered by observations is enormous. However, the physical processes causing particle acceleration and wave-particle interaction and determining the particle distributions are still unknown. Currently two mechanisms, the so-called pumping mechanism (Fisk and Gloeckler, 2010) and merging/contracting island (Fermo, Drake & Swisdak, 2010) are discussed as promising models. In order to determine these individual processes, numerical models or theoretical considerations are needed. Hybrid simulations, which include all kinetic processes self-consistently on the ion level, are a very proven, powerful tool to investigate wave-particle interaction, turbulence, and phase-space evolution of pickup and solar wind ions. In the framework of this study we performed 3D multi-species hybrid simulations for an ion/ion beam instability to study the temporal evolution of ion distributions, their stability, and the influence of self-generated waves. We investigated the energization of ions downstream of interplanetary discontinuities and shocks and downstream of the termination shock, the turbulence, and growth rate of instabilities and compared the results with theoretical predictions. The simulations show that ions can be accelerated downstream of collisionless shocks by trapping of charged particles in coherent wave fronts.

  20. Diffuse Interplanetary Radio Emission (DIRE) Accompanying Type II Radio Bursts

    NASA Astrophysics Data System (ADS)

    Teklu, T. B.; Gopalswamy, N.; Makela, P. A.; Yashiro, S.; Akiyama, S.; Xie, H.

    2015-12-01

    We report on an unusual drifting feature in the radio dynamic spectra at frequencies below 14 MHz observed by the Radio and Plasma Wave (WAVES) experiment on board the Wind spacecraft. We call this feature as "Diffuse Interplanetary Radio Emission (DIRE)". The DIRE events are generally associated with intense interplanetary type II radio bursts produced by shocks driven by coronal mass ejections (CMEs). DIREs drift like type II bursts in the dynamic spectra, but the drifting feature consist of a series of short-duration spikes (similar to a type I chain). DIREs occur at higher frequencies than the associated type II bursts, with no harmonic relationship with the type II burst. The onset of DIREs is delayed by several hours from the onset of the eruption. Comparing the radio dynamic spectra with white-light observations from the Solar and Heliospheric Observatory (SOHO) mission, we find that the CMEs are generally very energetic (fast and mostly halos). We suggest that the DIRE source is typically located at the flanks of the CME-driven shock that is still at lower heliocentric distances.

  1. SOLAR INTERACTING PROTONS VERSUS INTERPLANETARY PROTONS IN THE CORE PLUS HALO MODEL OF DIFFUSIVE SHOCK ACCELERATION AND STOCHASTIC RE-ACCELERATION

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kocharov, L.; Laitinen, T.; Vainio, R.

    2015-06-10

    With the first observations of solar γ-rays from the decay of pions, the relationship of protons producing ground level enhancements (GLEs) on the Earth to those of similar energies producing the γ-rays on the Sun has been debated. These two populations may be either independent and simply coincident in large flares, or they may be, in fact, the same population stemming from a single accelerating agent and jointly distributed at the Sun and also in space. Assuming the latter, we model a scenario in which particles are accelerated near the Sun in a shock wave with a fraction transported backmore » to the solar surface to radiate, while the remainder is detected at Earth in the form of a GLE. Interplanetary ions versus ions interacting at the Sun are studied for a spherical shock wave propagating in a radial magnetic field through a highly turbulent radial ray (the acceleration core) and surrounding weakly turbulent sector in which the accelerated particles can propagate toward or away from the Sun. The model presented here accounts for both the first-order Fermi acceleration at the shock front and the second-order, stochastic re-acceleration by the turbulence enhanced behind the shock. We find that the re-acceleration is important in generating the γ-radiation and we also find that up to 10% of the particle population can find its way to the Sun as compared to particles escaping to the interplanetary space.« less

  2. On the source of flare-ejecta responsible for geomagnetic storms

    NASA Technical Reports Server (NTRS)

    Sakurai, K.

    1974-01-01

    It is shown that magnetic bottles as the sources of moving metric type 4 bursts are not responsible for the development of geomagnetic storms, despite the fact that shock waves producing type 2 bursts are the sources of the interplanetary shock waves, which produce SSC's on the geomagnetic field. These magnetic bottles, in general, tend to move in the solar envelope with the speed of several hundred Km/sec at most, which is much slower than that of the motion of type 2 radio sources.

  3. Foreshock ULF wave boundary at Venus

    NASA Astrophysics Data System (ADS)

    Shan, L.; Mazelle, C. X.; Meziane, K.; Romanelli, N. J.; Ge, Y.; Du, A.; Zhang, T.

    2017-12-01

    Foreshock ULF waves are a significant physical phenomenon on the plasma environment for terrestrial planets. The occurrence of ULF waves, associated with backstreaming ions and accelerated at shocks, implies the conditions and properties of the shock and its foreshock. The location of ultra-low frequency (ULF) quasi-monochromatic wave onset upstream of Venus bow shock is explored using Venus Express magnetic field data. We report the existence of a spatial foreshock boundary behind which ULF waves are present. We have found that the ULF wave boundary is sensitive to the interplanetary magnetic field (IMF) direction and appears well defined for a cone angle larger than 30o. In the Venusian foreshock, the slope of the wave boundary with respect to the Sun-Venus direction increase with IMF cone angle. We also found that for the IMF nominal direction at Venus' orbit, the boundary makes an inclination of 70o. Moreover, we have found that the inferred velocity of an ion traveling along the ULF boundary is in a qualitative agreement with a quasi-adiabatic reflection of a portion of the solar wind at the bow shock.

  4. Hybrid simulation of the shock wave trailing the Moon

    NASA Astrophysics Data System (ADS)

    Israelevich, P.; Ofman, L.

    2012-04-01

    Standing shock wave behind the Moon was predicted be Michel (1967) but never observed nor simulated. We use 1D hybrid code in order to simulate the collapse of the plasma-free cavity behind the Moon and for the first time to model the formation of this shock. Starting immediately downstream of the obstacle we consider the evolution of plasma expansion into the cavity in the frame of reference moving along with the solar wind. Well-known effects as electric charging of the cavity affecting the plasma flow and counter streaming ion beams in the wake are reproduced. Near the apex of the inner Mach cone where the plasma flows from the opposite sides of the obstacle meet, a shock wave arises. The shock is produced by the interaction of oppositely directed proton beams in the plane containing solar wind velocity and interplanetary magnetic field vectors. In the direction across the magnetic field and the solar wind velocity, the shock results from the interaction of the plasma flow with the region of the enhanced magnetic field inside the cavity that plays the role of magnetic barrier. The appearance of the standing shock wave is expected at the distance of ~ 7RM downstream of the Moon.

  5. Coronal mass ejections and their sheath regions in interplanetary space

    NASA Astrophysics Data System (ADS)

    Kilpua, Emilia; Koskinen, Hannu E. J.; Pulkkinen, Tuija I.

    2017-11-01

    Interplanetary coronal mass ejections (ICMEs) are large-scale heliospheric transients that originate from the Sun. When an ICME is sufficiently faster than the preceding solar wind, a shock wave develops ahead of the ICME. The turbulent region between the shock and the ICME is called the sheath region. ICMEs and their sheaths and shocks are all interesting structures from the fundamental plasma physics viewpoint. They are also key drivers of space weather disturbances in the heliosphere and planetary environments. ICME-driven shock waves can accelerate charged particles to high energies. Sheaths and ICMEs drive practically all intense geospace storms at the Earth, and they can also affect dramatically the planetary radiation environments and atmospheres. This review focuses on the current understanding of observational signatures and properties of ICMEs and the associated sheath regions based on five decades of studies. In addition, we discuss modelling of ICMEs and many fundamental outstanding questions on their origin, evolution and effects, largely due to the limitations of single spacecraft observations of these macro-scale structures. We also present current understanding of space weather consequences of these large-scale solar wind structures, including effects at the other Solar System planets and exoplanets. We specially emphasize the different origin, properties and consequences of the sheaths and ICMEs.

  6. Research in space physics at the University of Iowa. [energetic particles and electric, magnetic, and electromagnetic fields

    NASA Technical Reports Server (NTRS)

    Vanallen, J. A.

    1978-01-01

    Specific fields of current investigation by satellite observation and ground-based radio-astronomical and optical techniques are discussed. Topics include: aspects of energetic particles trapped in the earth's magnetic field and transiently present in the outer magnetosphere and the solar, interplanetary, and terrestrial phenomena associated with them; plasma flows in the magnetosphere and the ionospheric effects of particle precipitation, with corresponding studies of the magnetosphere of Jupiter, Saturn, and possibly Uranus; the origin and propagation of very low frequency radio waves in the earth's magnetosphere and ionosphere; solar particle emissions and their interplanetary propagation and acceleration; solar modulation and the heliocentric radial dependence of the intensity of galactic cosmic rays; radio frequency emissions from the quintescent and flaring sun; shock waves in the interplanetary medium; radio emissions from Jupiter; and radio astronomy of pulsars, flare stars, and other stellar sources.

  7. Electron plasma oscillations in the Venus foreshock

    NASA Technical Reports Server (NTRS)

    Crawford, G. K.; Strangeway, R. J.; Russell, C. T.

    1990-01-01

    Plasma waves are observed in the solar wind upstream of the Venus bow shock by the Pioneer Venus Orbiter. These wave signatures occur during periods when the interplanetary magnetic field through the spacecraft position intersects the bow shock, thereby placing the spacecraft in the foreshock region. The electron foreshock boundary is clearly evident in the data as a sharp onset in wave activity and a peak in intensity. Wave intensity is seen to drop rapidly with increasing penetration into the foreshock. The peak wave electric field strength at the electron foreshock boundary is found to be similar to terrestrial observations. A normalized wave spectrum was constructed using measurements of the electron plasma frequency and the spectrum was found to be centered about this value. These results, along with polarization studies showing the wave electric field to be field aligned, are consistent with the interpretation of the waves as electron plasma oscillations.

  8. Treatment of Viscosity in the Shock Waves Observed After Two Consecutive Coronal Mass Ejection Activities CME08/03/2012 and CME15/03/2012

    NASA Astrophysics Data System (ADS)

    Cavus, Huseyin

    2016-11-01

    A coronal mass ejection (CME) is one of the most the powerful activities of the Sun. There is a possibility to produce shocks in the interplanetary medium after CMEs. Shock waves can be observed when the solar wind changes its velocity from being supersonic nature to being subsonic nature. The investigations of such activities have a central place in space weather purposes, since; the interaction of shocks with viscosity is one of the most important problems in the supersonic and compressible gas flow regime (Blazek in Computational fluid dynamics: principles and applications. Elsevier, Amsterdam 2001). The main aim of present work is to achieve a search for the viscosity effects in the shocks occurred after two consecutive coronal mass ejection activities in 2012 (i.e. CME08/03/2012 and CME15/03/2012).

  9. Spectral properties of Langmuir and beam-mode waves observed inside terrestrial foreshock by Cluster spacecraf

    NASA Astrophysics Data System (ADS)

    Pisa, D.; Soucek, J.; Santolik, O.

    2016-12-01

    Electrostatic plasma waves are commonly observed in the upstream regions of planetary shocks. Solar wind electrons accelerated at the shock front are reflected back into the solar wind and form electron beams. The electron distribution becomes unstable and electrostatic waves are generated inside the foreshock region. The processes of generation and evolution of electrostatic waves significantly depend on the solar wind plasma conditions and generally exhibit complex behavior. Langmuir waves can be identified as intense narrowband emission at the local plasma frequency and weaker broadband beam-mode waves below and above the plasma frequency deeper in the downstream region. We present a long-term survey of Langmuir and beam-mode waves in the vicinity of the plasma frequency observed upstream of the terrestrial bow shock by the Cluster spacecraft. Using solar wind data and bow shock positions from OMNI, as well as in-situ measurements of interplanetary magnetic field, we have mapped all available spacecraft positions into foreshock coordinates. For a study of plasma waves, we have used spectra and local plasma frequencies obtained from a passive and active mode of the WHISPER instrument. We show a spatial distribution of wave frequencies and spectral widths as a function of foreshock positions and solar wind conditions.

  10. Accelerated ions and self-excited Alfvén waves at the Earth's bow shock

    NASA Astrophysics Data System (ADS)

    Berezhko, E. G.; Taneev, S. N.; Trattner, K. J.

    2011-07-01

    The diffuse energetic ion event and related Alfvén waves upstream of the Earth's bow shock, measured by AMPTE/IRM satellite on 29 September 1984, 06:42-07:22 UT, was studied using a self-consistent quasi-linear theory of ion diffusive shock acceleration and associated Alfvén wave generation. The wave energy density satisfies a wave kinetic equation, and the ion distribution function satisfies the diffusive transport equation. These coupled equations are solved numerically, and calculated ion and wave spectra are compared with observations. It is shown that calculated steady state ion and Alfvén wave spectra are established during the time period of about 1000 s. Alfvén waves excited by accelerated ions are confined within the frequency range (10-2 to 1) Hz, and their spectral peak with the wave amplitude δB ≈ B comparable to the interplanetary magnetic field value B corresponds to the frequency 2 × 10-2 Hz. The high-frequency part of the wave spectrum undergoes absorption by thermal protons. It is shown that the observed ion spectra and the associated Alfvén wave spectra are consistent with the theoretical prediction.

  11. Direct observations of a flare related coronal and solar wind disturbance

    NASA Technical Reports Server (NTRS)

    Gosling, J. T.; Hildner, E.; Macqueen, R. M.; Munro, R. H.; Poland, A. I.; Ross, C. L.

    1975-01-01

    Numerous mass ejections from the sun have been detected with orbiting coronagraphs. Here for the first time we document and discuss the direct association of a coronagraph observed mass ejection, which followed a 2B flare, with a large interplanetary shock wave disturbance observed at 1 AU. Estimates of the mass and energy content of the coronal disturbance are in reasonably good agreement with estimates of the mass and energy content of the solar wind disturbance at 1 AU. The energy estimates as well as the transit time of the disturbance are also in good agreement with numerical models of shock wave propagation in the solar wind.

  12. Variations in plasma wave intensity with distance along the electron foreshock boundary at Venus

    NASA Technical Reports Server (NTRS)

    Crawford, G. K.; Strangeway, R. J.; Russell, C. T.

    1991-01-01

    Plasma waves are observed in the solar wind upstream of the Venus bow shock by the Pioneer Venus Orbiter. These wave signatures occur during periods when the interplanetary magnetic field through the spacecraft position intersects the bow shock, thereby placing the spacecraft in the foreshock region. Wave intensity is analyzed as a function of distance along the electron foreshock boundary. It is found that the peak wave intensity may increase along the foreshock boundary from the tangent point to a maximum value at several Venus radii, then decrease in intensity with subsequent increase in distance. These observations could be associated with the instability process: the instability of the distribution function increasing with distance from the tangent point to saturation at the peak. Thermalization of the beam for distances beyond this point could reduce the distribution function instability resulting in weaker wave signatures.

  13. Asymmetry of nonlinear interactions of solar MHD discontinuities with the bow shock

    NASA Astrophysics Data System (ADS)

    Grib, S. A.; Pushkar, E. A.

    2006-07-01

    Oblique interaction between the solar fast shock wave, which is a typical nonstationary strong discontinuity in the interplanetary space, and the bow shock front upstream of an Earth-type planetary magnetosphere is studied. Attention has been paid to the qualitative and quantitative (with respect to the proton density distribution) dawn-dusk (or morning-evening) asymmetry of the discontinuities refracted into the magnetosheath, which originates in the ecliptic plane on different sides of the Sun-Earth line. The results under discussion have been corroborated experimentally by the gas-kinetic pattern of the bow-shock front and the WIND and ISEE 3 spacecraft measurements of the plasma density.

  14. Hybrid Simulation of the Shock Wave Trailing the Moon

    NASA Technical Reports Server (NTRS)

    Israelevich, P.; Ofman, Leon

    2012-01-01

    A standing shock wave behind the Moon was predicted by Michel (1967) but never observed nor simulated. We use 1D hybrid code in order to simulate the collapse of the plasma-free cavity behind the Moon and for the first time to model the formation of this shock. Starting immediately downstream of the obstacle we consider the evolution of plasma expansion into the cavity in the frame of reference moving along with the solar wind. Well-known effects as electric charging of the cavity affecting the plasma flow and counterstreaming ion beams in the wake are reproduced. Near the apex of the inner Mach cone where the plasma flows from the opposite sides of the obstacle meet, a shock wave arises. We expect the shock to be produced at periods of high electron temperature solar wind streams (T(sub i) much less than T(sub e) approximately 100 eV). The shock is produced by the interaction of oppositely directed proton beams in the plane containing solar wind velocity and interplanetary magnetic field vectors. In the direction across the magnetic field and the solar wind velocity, the shock results from the interaction of the plasma flow with the region of the enhanced magnetic field inside the cavity that plays the role of the magnetic barrier. The appearance of the standing shock wave is expected at the distance of approximately 7R(sub M) downstream of the Moon.

  15. Hybrid simulation of the shock wave trailing the Moon

    NASA Astrophysics Data System (ADS)

    Israelevich, P.; Ofman, L.

    2012-08-01

    A standing shock wave behind the Moon was predicted by Michel (1967) but never observed nor simulated. We use 1D hybrid code in order to simulate the collapse of the plasma-free cavity behind the Moon and for the first time to model the formation of this shock. Starting immediately downstream of the obstacle we consider the evolution of plasma expansion into the cavity in the frame of reference moving along with the solar wind. Well-known effects as electric charging of the cavity affecting the plasma flow and counterstreaming ion beams in the wake are reproduced. Near the apex of the inner Mach cone where the plasma flows from the opposite sides of the obstacle meet, a shock wave arises. We expect the shock to be produced at periods of high electron temperature solar wind streams (Ti ≪ Te ˜ 100 eV). The shock is produced by the interaction of oppositely directed proton beams in the plane containing solar wind velocity and interplanetary magnetic field vectors. In the direction across the magnetic field and the solar wind velocity, the shock results from the interaction of the plasma flow with the region of the enhanced magnetic field inside the cavity that plays the role of the magnetic barrier. The appearance of the standing shock wave is expected at the distance of ˜7RM downstream of the Moon.

  16. Waves associated to COMPLEX EVENTS observed by STEREO

    NASA Astrophysics Data System (ADS)

    Siu Tapia, A. L.; Blanco-Cano, X.; Kajdic, P.; Aguilar-Rodriguez, E.; Russell, C. T.; Jian, L. K.; Luhmann, J. G.

    2012-12-01

    Complex Events are formed by two or more large-scale solar wind structures which interact in space. Typical cases are interactions of: (i) a Magnetic Cloud/Interplanetary Coronal Mass Ejection (MC/ICME) with another MC/ICME transient; and (ii) an ICME followed by a Stream Interaction Region (SIR). Complex Events are of importance for space weather studies and studying them can enhance our understanding of collisionless plasma physics. Some of these structures can produce or enhance southward magnetic fields, a key factor in geomagnetic storm generation. Using data from the STEREO mission during the years 2006-2011, we found 17 Complex Events preceded by a shock wave. We use magnetic field and plasma data to study the micro-scale structure of the shocks, and the waves associated to these shocks and within Complex Events structures. To determine wave characteristics we perform Power Spectra and Minimum Variance Analysis. We also use PLASTIC WAP protons data to study foreshock extensions and the relationship between Complex Regions and particle acceleration to suprathermal energies.

  17. Are supernova remnants quasi-parallel or quasi-perpendicular accelerators

    NASA Technical Reports Server (NTRS)

    Spangler, S. R.; Leckband, J. A.; Cairns, I. H.

    1989-01-01

    Observations of shock waves in the solar system which show a pronounced difference in the plasma wave and particle environment depending on whether the shock is propagating along or perpendicular to the interplanetary magnetic field are discussed. Theories for particle acceleration developed for quasi-parallel and quasi-perpendicular shocks, when extended to the interstellar medium suggest that the relativistic electrons in radio supernova remnants are accelerated by either the Q parallel or Q perpendicular mechanisms. A model for the galactic magnetic field and published maps of supernova remnants were used to search for a dependence of structure on the angle Phi. Results show no tendency for the remnants as a whole to favor the relationship expected for either mechanism, although individual sources resemble model remnants of one or the other acceleration process.

  18. The Structure of Shocks in the Very Local Interstellar Medium

    NASA Astrophysics Data System (ADS)

    Mostafavi, P.; Zank, G. P.

    2018-02-01

    The Voyager 1 magnetometer has detected several shock waves in the very local interstellar medium (VLISM). Interplanetary shock waves can be transmitted across the heliopause (HP) into the VLISM. The first in situ shock observed by Voyager 1 inside the VLISM was remarkably broad and had properties different than those of shocks inside the heliosphere. We present a model of the 2012 VLISM shock, which was observed to be a weak, quasi-perpendicular, low magnetosonic Mach number, low beta, and subcritical shock. Although the heliosphere is a collisionless environment, we show that the VLISM is collisional with respect to the thermal plasma, and that the thermal collisions introduce dissipative terms such as heat conduction and viscosity. The structure of the VLISM shock is determined by thermal proton–proton collisions. VLISM pickup ions (PUIs) do not introduce a significant pressure or dissipation through the shock transition, meaning that the VLISM shock is not mediated by PUIs but only by the thermal gas and magnetic field. Therefore, VLISM shocks are controlled by particle collisions and not by wave–particle interactions. We find that the weak VLISM shock is very broad with a thickness of about 0.12 au, corresponding to the characteristic thermal heat conduction scale length.

  19. Structure of a quasi-parallel, quasi-laminar bow shock

    NASA Technical Reports Server (NTRS)

    Greenstadt, E. W.; Russell, C. T.; Formisano, V.; Hedgecock, P. C.; Scarf, F. L.; Neugebauer, M.; Holzer, R. E.

    1976-01-01

    A thick, quasi-parallel bow shock structure was observed with field and particle detectors of both HEOS 1 and OGO 5. The typical magnetic pulsation structure was at least 1 to 2 earth radii thick radially and was accompanied by irregular but distinct plasma distributions characteristic of neither the solar wind nor the magnetosheath. Waves constituting the large pulsations were polarized principally in the plane of the nominal shock, therefore also in the plane perpendicular to the average interplanetary field. A separate interpulsation regime detected between bursts of large amplitude oscillations was similar to the upstream wave region magnetically, but was characterized by disturbed plasma flux and enhanced noise around the ion plasma frequency. The shock structure appeared to be largely of an oblique, whistler type, probably complicated by counterstreaming high energy protons. Evidence for firehose instability-based structure was weak at best and probably negative.

  20. Wave Phenomena Associated with Interplanetary Shocks

    NASA Astrophysics Data System (ADS)

    Golla, T.; MacDowall, R. J.

    2016-12-01

    Although laboratory and space-based experiments were used for the last several decades to study the collisionless shocks, several questions remain less than fully understood. These include: (1) what type of wave-particle energy dissipation is responsible for the shock formation, (2) what type of in-situ waves occur in the upstream, transition and downstream regions, and (3) which physical processes are responsible for the excitation of the fundamental and second harmonic solar type II radio emissions. In this study, we will address these issues using (1) the in situ and radio wave data obtained by the WAVES experiments of the STEREO A and B, and WIND spacecraft, especially the high time resolution data from the time domain samplers (TDS) of these WAVES experiments and (2) the Fourier, wavelet and higher order spectral analysis techniques. Using the in situ wave data, especially the high time resolution data observed during the local type II bursts, we will identify the nonlinear processes associated with these solar radio emissions. Comparing the estimated radio intensities by the known emission mechanisms for the observed peak Langmuir wave intensities with the observed peak radio intensities of type II bursts, we will identify the emission mechanisms.

  1. Ion distributions in the Earth's foreshock upstream from the bow shock

    NASA Technical Reports Server (NTRS)

    Fuselier, S. A.

    1995-01-01

    A variety of suprathermal and energetic ion distributions are found upstream from shocks. Some distributions, such as field-aligned beams, are generated directly at the shock either through reflection processes or through leakage from the hotter downstream region. Other distributions, such as intermediate distributions, evolve from these parent distributions through wave-particle interactions. This paper reviews our current understanding of the creation and evolution of suprathermal distributions at shocks. Examples of suprathermal ion distributions are taken from observations at the Earth's bow shock. Particular emphasis is placed on the creation of field-aligned beams and specularly reflected ion distributions and on the evolution of these distributions in the Earth's ion foreshock. However, the results from this heavily studied region are applicable to interplanetary shocks, bow shocks at other planets, and comets.

  2. Interplanetary Coronal Mass Ejections During 1996 - 2007

    NASA Technical Reports Server (NTRS)

    Richardson, I. G.; Cane, H. V.

    2007-01-01

    Interplanetary coronal mass ejections, the interplanetary counterparts of coronal mass ejections at the Sun, are the major drivers of interplanetary shocks in the heliosphere, and are associated with modulations of the galactic cosmic ray intensity, both short term (Forbush decreases caused by the passage of the shock, post-shock sheath, and ICME), and possibly with longer term modulation. Using several in-situ signatures of ICMEs, including plasma temperature, and composition, magnetic fields, and cosmic ray modulations, made by near-Earth spacecraft, we have compiled a "comprehensive" list of ICMEs passing the Earth since 1996, encompassing solar cycle 23. We summarize the properties of these ICMEs, such as their occurrence rate, speeds and other parameters, the fraction of ICMEs that are classic magnetic clouds, and their association with solar energetic particle events, halo CMEs, interplanetary shocks, geomagnetic storms, shocks and cosmic ray decreases.

  3. On Interplanetary Shocks Driven by Coronal Mass Ejections

    NASA Technical Reports Server (NTRS)

    Gopalswarmy, Nat

    2011-01-01

    Traveling interplanetary (IP) shocks were first detected in the early 1960s, but their solar origin has been controversial. Early research focused on solar flares as the source of the shocks, but when CMEs were discovered, it became clear that fast CMEs are the shock drivers. Type radio II bursts are excellent signatures of shocks near the Sun (Type II radio bursts were known long before the detection of shocks and CMEs). The excellent correspondence between type II bursts and solar energetic particle (SEP) events made it clear that the same shock accelerates ions and electrons. Shocks near the Sun are also seen occasionally in white-light coronagraphic images. In the solar wind, shocks are observed as discontinuities in plasma parameters such as density and speed. Energetic storm particle events and sudden commencement of geomagnetic storm are also indicators of shocks arriving at Earth. After an overview on these shock signatures, I will summarize the results of a recent investigation of a large number of IP shocks. The study revealed that about 35% of IP shocks do not produce type II bursts (radio quiet - RQ) or SEPs. Comparing the RQ shocks with the radio loud (RL) ones revealed some interesting results: (1) There is no evidence for blast wave shocks. (2) A small fraction (20%) of RQ shocks is associated with ion enhancements at the shock when the shock passes the spacecraft. (3) The primary difference between the RQ and RL shocks can be traced to the different kinematic properties of the associated CMEs. On the other hand the shock properties measured at 1 AU are not too different for the RQ and RL cases. This can be attributed to the interaction with the IP medium, which seems to erase the difference between the shocks.

  4. Impact of Shock Front Rippling and Self-reformation on the Electron Dynamics at Low-Mach-number Shocks

    NASA Astrophysics Data System (ADS)

    Yang, Zhongwei; Lu, Quanming; Liu, Ying D.; Wang, Rui

    2018-04-01

    Electron dynamics at low-Mach-number collisionless shocks are investigated by using two-dimensional electromagnetic particle-in-cell simulations with various shock normal angles. We found: (1) The reflected ions and incident electrons at the shock front provide an effective mechanism for the quasi-electrostatic wave generation due to the charge-separation. A fraction of incident electrons can be effectively trapped and accelerated at the leading edge of the shock foot. (2) At quasi-perpendicular shocks, the electron trapping and reflection is nonuniform due to the shock rippling along the shock surface and is more likely to take place at some locations accompanied by intense reflected ion-beams. The electron trapping process has a periodical evolution over time due to the shock front self-reformation, which is controlled by ion dynamics. Thus, this is a cross-scale coupling phenomenon. (3) At quasi-parallel shocks, reflected ions can travel far back upstream. Consequently, quasi-electrostatic waves can be excited in the shock transition and the foreshock region. The electron trajectory analysis shows these waves can trap electrons at the foot region and reflect a fraction of them far back upstream. Simulation runs in this paper indicate that the micro-turbulence at the shock foot can provide a possible scenario for producing the reflected electron beam, which is a basic condition for the type II radio burst emission at low-Mach-number interplanetary shocks driven by Coronal Mass Ejections (CMEs).

  5. Shock and statistical acceleration of energetic particles in the interplanetary medium

    NASA Technical Reports Server (NTRS)

    Valdes-Galicia, J. F.; Moussas, X.; Quenby, J. J.; Neubauer, F. M.; Schwenn, R.

    1985-01-01

    Definite evidence for particle acceleration in the solar wind came around a decade ago. Two likely sources are known to exist: particles may be accelerated by the turbulence resulting from the superposition of Alfven and Magnetosonic waves (Statistical Acceleration) or they may be accelerated directly at shock fronts formed by the interaction of fast and slow solar wind (CIR's) or by traveling shocks due to sporadic coronal mass ejections. Naurally both mechanisms may be operative. In this work the acceleration problem was tackled numerically using Helios 1 and 2 data to create a realistic representation of the Heliospheric plasma. Two 24 hour samples were used: one where there are only wave like fluctuations of the field (Day 90 Helios 1) and another with a shock present in it (Day 92 of Helios 2) both in 1976 during the STIP 2 interval. Transport coefficients in energy space have been calculated for particles injected in each sample and the effect of the shock studied in detail.

  6. Interplanetary particles and fields, November 22 to December 6, 1977 - Helios, Voyager and Imp observations between 0.6 and 1.6 AU

    NASA Technical Reports Server (NTRS)

    Burlaga, L.; Lepping, R.; Weber, R.; Armstrong, T.; Goodrich, C.; Sullivan, J.; Gurnett, D.; Kellogg, P.; Keppler, E.; Mariani, F.

    1980-01-01

    The paper presents a wealth of data obtained at approximately 0.6, 1, and 1.6 AU by Helios 1 and 2, Voyager 1 and 2, and Imp 7 and 8, describing the evolution and interactions of particles, flows, and fields in the period 22 November to 6 December 1977. Three flow systems were observed in the period under consideration: (1) a corotating stream and a stream interface associated with a coronal hole; (2) a shock wave and an energetic particle event associated with a 2B flare; and (3) an isolated shock wave of uncertain origin. These phenomena are discussed in some detail.

  7. Comparison of CME/Shock Propagation Models with Heliospheric Imaging and In Situ Observations

    NASA Astrophysics Data System (ADS)

    Zhao, Xinhua; Liu, Ying D.; Inhester, Bernd; Feng, Xueshang; Wiegelmann, Thomas; Lu, Lei

    2016-10-01

    The prediction of the arrival time for fast coronal mass ejections (CMEs) and their associated shocks is highly desirable in space weather studies. In this paper, we use two shock propagation models, I.e., Data Guided Shock Time Of Arrival (DGSTOA) and Data Guided Shock Propagation Model (DGSPM), to predict the kinematical evolution of interplanetary shocks associated with fast CMEs. DGSTOA is based on the similarity theory of shock waves in the solar wind reference frame, and DGSPM is based on the non-similarity theory in the stationary reference frame. The inputs are the kinematics of the CME front at the maximum speed moment obtained from the geometric triangulation method applied to STEREO imaging observations together with the Harmonic Mean approximation. The outputs provide the subsequent propagation of the associated shock. We apply these models to the CMEs on 2012 January 19, January 23, and March 7. We find that the shock models predict reasonably well the shock’s propagation after the impulsive acceleration. The shock’s arrival time and local propagation speed at Earth predicted by these models are consistent with in situ measurements of WIND. We also employ the Drag-Based Model (DBM) as a comparison, and find that it predicts a steeper deceleration than the shock models after the rapid deceleration phase. The predictions of DBM at 1 au agree with the following ICME or sheath structure, not the preceding shock. These results demonstrate the applicability of the shock models used here for future arrival time prediction of interplanetary shocks associated with fast CMEs.

  8. A theoretical perspective on particle acceleration by interplanetary shocks and the Solar Energetic Particle problem

    NASA Astrophysics Data System (ADS)

    Verkhoglyadova, Olga P.; Zank, Gary P.; Li, Gang

    2015-02-01

    Understanding the physics of Solar Energetic Particle (SEP) events is of importance to the general question of particle energization throughout the cosmos as well as playing a role in the technologically critical impact of space weather on society. The largest, and often most damaging, events are the so-called gradual SEP events, generally associated with shock waves driven by coronal mass ejections (CMEs). We review the current state of knowledge about particle acceleration at evolving interplanetary shocks with application to SEP events that occur in the inner heliosphere. Starting with a brief outline of recent theoretical progress in the field, we focus on current observational evidence that challenges conventional models of SEP events, including complex particle energy spectra, the blurring of the distinction between gradual and impulsive events, and the difference inherent in particle acceleration at quasi-parallel and quasi-perpendicular shocks. We also review the important problem of the seed particle population and its injection into particle acceleration at a shock. We begin by discussing the properties and characteristics of non-relativistic interplanetary shocks, from their formation close to the Sun to subsequent evolution through the inner heliosphere. The association of gradual SEP events with shocks is discussed. Several approaches to the energization of particles have been proposed, including shock drift acceleration, diffusive shock acceleration (DSA), acceleration by large-scale compression regions, acceleration by random velocity fluctuations (sometimes known as the "pump mechanism"), and others. We review these various mechanisms briefly and focus on the DSA mechanism. Much of our emphasis will be on our current understanding of the parallel and perpendicular diffusion coefficients for energetic particles and models of plasma turbulence in the vicinity of the shock. Because of its importance both to the DSA mechanism itself and to the particle composition of SEP events, we address in some detail the injection problem. Although steady-state models can improve our understanding of the diffusive shock acceleration mechanism, SEP events are inherently time-dependent. We therefore review the time-dependent theory of DSA in some detail, including estimating possible maximum particle energies and particle escape from the shock complex. We also discuss generalizations of the diffusive transport approach to modeling particle acceleration by considering a more general description based on the focused transport equation. The escape of accelerated particles from the shock requires that their subsequent transport in the interplanetary medium be modeled and the consequence of interplanetary transport can lead to the complex spectra and compositional profiles that are observed frequently. The different approaches to particle transport in the inner heliosphere are reviewed. The various numerical models that have been developed to solve the gradual SEP problem are reviewed. Explicit comparisons of modeling results with observations of large SEP events are discussed. A summary of current progress and the outlook on the SEP problem and remaining open questions conclude the review.

  9. The Bactericidal Effect of Shock Waves

    NASA Astrophysics Data System (ADS)

    Leighs, James; Appleby-Thomas, Gareth; Wood, David; Goff, Michael; Hameed, Amer; Hazell, Paul

    2013-06-01

    There are a variety of theories relating to the origins of life on our home planet, some of which discuss the possibility that life may have been spread via inter-planetary impacts. There have been a number of investigations into the ability of life to withstand the likely conditions generated by asteroid impact (both contained in the impactor and buried beneath the planet surface). Previously published data regarding the ability of bacteria to survive such applied shock waves has produced conflicting conclusions. The work presented here used an established technique, in combination with a single stage gas gun to shock load and subsequently recover Escherichia coli populations suspended in a phosphate buffered saline solution. Peak pressure across the sample region was calculated via numerical modelling, validated via Heterodyne velocimetry measurements. Survival data against peak sample pressure for recovered samples is presented alongside control tests.

  10. MESSENGER Magnetic Field Observations of Upstream Ultra-Low Frequency Waves at Mercury

    NASA Technical Reports Server (NTRS)

    Le, G.; Chi, P. J.; Boardsen, S.; Blanco-Cano, X.; Anderosn, B. J.; Korth, H.

    2012-01-01

    The region upstream from a planetary bow shock is a natural plasma laboratory containing a variety of wave particle phenomena. The study of foreshocks other than the Earth's is important for extending our understanding of collisionless shocks and foreshock physics since the bow shock strength varies with heliocentric distance from the Sun, and the sizes of the bow shocks are different at different planets. The Mercury's bow shock is unique in our solar system as it is produced by low Mach number solar wind blowing over a small magnetized body with a predominately radial interplanetary magnetic field. Previous observations of Mercury upstream ultra-low frequency (ULF) waves came exclusively from two Mercury flybys of Mariner 10. The MESSENGER orbiter data enable us to study of upstream waves in the Mercury's foreshock in depth. This paper reports an overview of upstream ULF waves in the Mercury's foreshock using high-time resolution magnetic field data, 20 samples per second, from the MESSENGER spacecraft. The most common foreshock waves have frequencies near 2 Hz, with properties similar to the I-Hz waves in the Earth's foreshock. They are present in both the flyby data and in every orbit of the orbital data we have surveyed. The most common wave phenomenon in the Earth's foreshock is the large-amplitude 30-s waves, but similar waves at Mercury have frequencies at near 0.1 Hz and occur only sporadically with short durations (a few wave cycles). Superposed on the "30-s" waves, there are spectral peaks at near 0.6 Hz, not reported previously in Mariner 10 data. We will discuss wave properties and their occurrence characteristics in this paper.

  11. MESSENGER Observations of ULF Waves in Mercury's Foreshock Region

    NASA Technical Reports Server (NTRS)

    Le, Guan; Chi, Peter J.; Bardsen, Scott; Blanco-Cano, Xochitl; Slavin, James A.; Korth, Haje

    2012-01-01

    The region upstream from a planetary bow shock is a natural plasma laboratory containing a variety of wave particle phenomena. The study of foreshocks other than the Earth s is important for extending our understanding of collisionless shocks and foreshock physics since the bow shock strength varies with heliocentric distance from the Sun, and the sizes of the bow shocks are different at different planets. The Mercury s bow shock is unique in our solar system as it is produced by low Mach number solar wind blowing over a small magnetized body with a predominately radial interplanetary magnetic field. Previous observations of Mercury upstream ultra-low frequency (ULF) waves came exclusively from two Mercury flybys of Mariner 10. The MESSENGER orbiter data enable us to study of upstream waves in the Mercury s foreshock in depth. This paper reports an overview of upstream ULF waves in the Mercury s foreshock using high-time resolution magnetic field data, 20 samples per second, from the MESSENGER spacecraft. The most common foreshock waves have frequencies near 2 Hz, with properties similar to the 1-Hz waves in the Earth s foreshock. They are present in both the flyby data and in every orbit of the orbital data we have surveyed. The most common wave phenomenon in the Earth s foreshock is the large-amplitude 30-s waves, but similar waves at Mercury have frequencies at 0.1 Hz and occur only sporadically with short durations (a few wave cycles). Superposed on the "30-s" waves, there are spectral peaks at 0.6 Hz, not reported previously in Mariner 10 data. We will discuss wave properties and their occurrence characteristics in this paper.

  12. The interaction of turbulence with parallel and perpendicular shocks

    NASA Astrophysics Data System (ADS)

    Adhikari, L.; Zank, G. P.; Hunana, P.; Hu, Q.

    2016-11-01

    Interplanetary shocks exist in most astrophysical flows, and modify the properties of the background flow. We apply the Zank et al 2012 six coupled turbulence transport model equations to study the interaction of turbulence with parallel and perpendicular shock waves in the solar wind. We model the 1D structure of a stationary perpendicular or parallel shock wave using a hyperbolic tangent function and the Rankine-Hugoniot conditions. A reduced turbulence transport model (the 4-equation model) is applied to parallel and perpendicular shock waves, and solved using a 4th- order Runge Kutta method. We compare the model results with ACE spacecraft observations. We identify one quasi-parallel and one quasi-perpendicular event in the ACE spacecraft data sets, and compute various turbulent observed values such as the fluctuating magnetic and kinetic energy, the energy in forward and backward propagating modes, the total turbulent energy in the upstream and downstream of the shock. We also calculate the error associated with each turbulent observed value, and fit the observed values by a least square method and use a Fourier series fitting function. We find that the theoretical results are in reasonable agreement with observations. The energy in turbulent fluctuations is enhanced and the correlation length is approximately constant at the shock. Similarly, the normalized cross helicity increases across a perpendicular shock, and decreases across a parallel shock.

  13. Plasma Waves Associated with Mass-Loaded Comets

    NASA Technical Reports Server (NTRS)

    Tsurutani, Bruce; Glassmeier, Karl-Heinz

    2015-01-01

    Plasma waves and instabilities are integrally involved with the plasma "pickup" process and the mass loading of the solar wind (thus the formation of ion tails and the magnetic tails). Anisotropic plasmas generated by solar wind-comet interactions (the bow shock, magnetic field pileup) cause the generation of plasma waves which in turn "smooth out" these discontinuities. The plasma waves evolve and form plasma turbulence. Comets are perhaps the best "laboratories" to study waves and turbulence because over time (and distance) one can identify the waves and their evolution. We will argue that comets in some ways are better laboratories than magnetospheres, interplanetary space and fusion devices to study nonlinear waves and their evolution.

  14. Properties of ultra low frequency upstream waves at Venus and Saturn: A comparison

    NASA Technical Reports Server (NTRS)

    Orlowski, D. S.; Russell, C. T.; Krauss-Varban, D.; Omidi, N.

    1995-01-01

    The upstream regions of all planets, except Pluto, have been investigated, using in situ spacecraft measurements and a variety of analysis techniques. The detailed studies at Earth indicate that these waves are generated locally in the magnetically connected solar wind by the interaction with ions backstreaming from the shock. However, since the properties of the solar wind vary with heliocentric distance and since properties of planetary shocks depend on plasma beta, interplanetary magnetic field (IMF) spiral angle and Mach number, the amount of heating, acceleration efficiencies, etc. significantly change with heliocentric distance. In turn the waves seen at each planet propagate not in the same but different (physical) propagation modes. In this paper we compare the ULF wave observations at an outer and an inner planet. We use the results of the ratio, quantites easily derivable with sufficient accuracy at each planet. We use the full electromagnetic dispersion relation for comparison with theoretical predictions.

  15. ICE/ISEE plasma wave data analysis

    NASA Technical Reports Server (NTRS)

    Greenstadt, E. W.; Moses, S. L.

    1993-01-01

    This report is one of the final processing of ICE plasma wave (pw) data and analysis of late ISEE 3, ICE cometary, and ICE cruise trajectory data, where coronal mass ejections (CME's) were the first locus of attention. Interest in CME's inspired an effort to represent our pw data in a condensed spectrogram format that facilitated rapid digestion of interplanetary phenomena on long (greater than 1 day) time scales. The format serendipitously allowed us to also examine earth-orbiting data from a new perspective, invigorating older areas of investigation in Earth's immediate environment. We, therefore, continued to examine with great interest the last year of ISEE 3's precomet phase, when it spent considerable time far downwind from Earth, recording for days on end conditions upstream, downstream, and across the very weak, distant flank bow shock. Among other motivations has been the apparent similarity of some shock and post shock structures to the signatures of the bow wave surrounding comet Giacobini-Zinner, whose ICE-phase data we revisited.

  16. Solar Terrestrial Physics: Present and Future

    NASA Technical Reports Server (NTRS)

    Butler, D. M. (Editor); Papadopoulos, K. (Editor)

    1984-01-01

    The following topics relating to solar-terrestrial interactions are considered: (1) reconnection of magnetic fields; (2) particle acceleration; (3) solar magnetic flux; (4) magnetohydrodynamic waves and turbulence in the Sun and interplanetary medium; (5) coupling of the solar wind to the magnetosphere; (6) coronal transients; (7) the connection between the magnetosphere and ionosphere; (8) substorms in the magnetosphere; (9) solar flares and the solar terrestrial environment; (10) shock waves in the solar terrestrial environment; (11) plasma transport and convection at high latitudes; and (12) high latitude ionospheric structure.

  17. Interplanetary Circumstances of Quasi-Perpendicular Interplanetary Shocks in 1996-2005

    NASA Technical Reports Server (NTRS)

    Richardson, I. G.; Cane, H. V.

    2010-01-01

    The angle (theta(sub Bn)) between the normal to an interplanetary shock front and the upstream magnetic field direction, though often thought of as a property "of the shock," is also determined by the configuration of the magnetic field immediately upstream of the shock. We investigate the interplanetary circumstances of 105 near-Earth quasi-perpendicular shocks during 1996-2005 identified by theta(sub Bn) greater than or equal to 80 degrees and/or by evidence of shock drift particle acceleration. Around 87% of these shocks were driven by interplanetary coronal mass ejections (ICMEs); the remainder were probably the forward shocks of corotating interaction regions. For around half of the shocks, the upstream field was approximately perpendicular to the radial direction, either east-west or west-east or highly inclined to the ecliptic. Such field directions will give quasi-perpendicular configurations for radially propagating shocks. Around 30% of the shocks were propagating through, or closely followed, ICMEs at the time of observation. Another quarter were propagating through the heliospheric plasma sheet (HPS), and a further quarter occurred in slow solar wind that did not have characteristics of the HPS. Around 11% were observed in high-speed streams, and 7% in the sheaths following other shocks. The fraction of shocks found in high-speed streams is around a third of that expected based on the fraction of the time when such streams were observed at Earth. Quasi-perpendicular shocks are found traveling through ICMEs around 2-3 times more frequently than expected. In addition, shocks propagating through ICMEs are more likely to have larger values of theta(sub Bn) than shocks outside ICMEs.

  18. Suprathermal protons in the interplanetary solar wind

    NASA Technical Reports Server (NTRS)

    Goodrich, C. C.; Lazarus, A. J.

    1976-01-01

    Using the Mariner 5 solar wind plasma and magnetic field data, we present observations of field-aligned suprathermal proton velocity distributions having pronounced high-energy shoulders. These observations, similar to the interpenetrating stream observations of Feldman et al. (1974), are clear evidence that such proton distributions are interplanetary rather than bow shock associated phenomena. Large Alfven speed is found to be a requirement for the occurrence of suprathermal proton distribution; further, we find the proportion of particles in the shoulder to be limited by the magnitude of the Alfven speed. It is suggested that this last result could indicate that the proton thermal anisotropy is limited at times by wave-particle interactions

  19. Hybrid simulation of the shock wave formation behind the Moon

    NASA Astrophysics Data System (ADS)

    Israelevich, P.; Ofman, L.

    2012-09-01

    A standing shock wave behind the Moon was predicted by Michel (1967) but never observed nor simulated. We use 1D hybrid code in order to simulate the collapse of the plasma-free cavity behind the Moon and for the first time to model the formation of this shock. Starting immediately downstream of the obstacle we consider the evolution of plasma expansion into the cavity in the frame of reference moving along with the solar wind. Wellknown effects as electric charging of the cavity affecting the plasma flow and counter streaming ion beams in the wake are reproduced. Near the apex of the inner Mach cone where the plasma flows from the opposite sides of the obstacle meet, a shock wave arises. The shock is produced by the interaction of oppositely directed proton beams in the plane containing solar wind velocity and interplanetary magnetic field vectors. In the direction across the magnetic field and the solar wind velocity, the shock results from the interaction of the plasma flow with the region of the enhanced magnetic field inside the cavity that plays the role of the magnetic barrier. Simulations with lower electron temperatures (Te~20eV) show weakened shock formation behind the moon at much greater distances. The shock disappears for typical solar wind conditions (Ti ~ Te) Therefore, in order to observe the trailing shock, a satellite should have a trajectory passing very close to the wake axis during the period of hot solar wind streams. We expect the shock to be produced at periods of high electron temperature solar wind streams (Ti<

  20. Velocity profiles of interplanetary shocks

    NASA Technical Reports Server (NTRS)

    Cane, H. V.

    1983-01-01

    The type 2 radio burst was identified as a shock propagating through solar corona. Radio emission from shocks travelling through the interplanetary (IP) medium was observed. Using the drift rates of IP type II bursts the velocity characteristics of eleven shocks were investigated. It is indicated that shocks in the IP medium undergo acceleration before decelerating and that the slower shocks take longer to attain their maximum velocity.

  1. Acceleration of Ions and Electrons by Coronal Shocks

    NASA Astrophysics Data System (ADS)

    Sandroos, A.

    2013-12-01

    Diffusive shock acceleration (DSA) of particles at collisionless shock waves driven by coronal mass ejections (CMEs) is the best developed theory for the genesis of gradual solar energetic particle (SEP) events. According to DSA, particles scatter from fluctuations present in the ambient magnetic field, which causes some particles to encounter the shock front repeatedly and to gain energy during each crossing. DSA operating in solar corona is a complex process whose outcome depends on multiple parameters such as shock speed and strength, magnetic geometry, and composition of seed particles. Currently, STEREO and other near-Earth spacecraft are providing valuable multi-point information on how SEP properties, such as composition and energy spectra, vary in longitude. Initial results have shown that longitude distributions of large CME-associated SEP events are much wider than previously thought. These findings have many important consequences on SEP modeling. For example, it is important to extend the present models into two or three spatial coordinates to properly account for the effects of coronal and interplanetary magnetic geometry and the evolution of the CME-driven shock wave on the acceleration and transport of SEPs. We present a new model for the shock acceleration of ions and electrons in the solar corona and discuss implications for particle properties (energy spectra, longitudinal distribution, composition) in the resulting gradual SEP events. We also discuss the possible emission of type II radio waves by the accelerated coronal electrons. In the new model, the ion pitch angle scattering rate is calculated from modeled Alfvén wave power spectra using quasilinear theory. The energy gained by ions in scatterings are self-consistently removed from waves so that total energy (ions+waves) is conserved. New model has been implemented on massively parallel simulation platform Corsair.

  2. Presentation of the project "An investigation of the early stages of solar eruptions - from remote observations to energetic particles"

    NASA Astrophysics Data System (ADS)

    Kozarev, Kamen; Veronig, Astrid; Duchlev, Peter; Koleva, Kostadinka; Dechev, Momchil; Miteva, Rositsa; Temmer, Manuela; Dissauer, Karin

    2017-11-01

    Coronal mass ejections (CMEs), one of the most energetic manifestations of solar activity, are complex events, which combine multiple related phenomena occurring on the solar surface, in the extended solar atmosphere (corona), as well as in interplanetary space. We present here an outline of a new collaborative project between scientists from the Bulgarian Academy of Sciences (BAS), Bulgaria and the University of Graz, Austria. The goal of the this research project is to answer the following questions: 1) What are the properties of erupting filaments, CMEs, and CME-driven shock waves near the Sun, and of associated solar energetic particle (SEP) fluxes in interplanetary space? 2) How are these properties related to the coronal acceleration of SEPs? To achieve the scientific goals of this project, we will use remote solar observations with high spatial and temporal resolution to characterize the early stages of coronal eruption events in a systematic way - studying the pre-eruptive behavior of filaments and flares during energy build-up, the kinematics and morphology of CMEs and compressive shock waves, and the signatures of high energy non-thermal particles in both remote and in situ observations.

  3. Type II Radio Bursts as Indicators of Space Weather Drivers

    NASA Astrophysics Data System (ADS)

    Gopalswamy, N.

    2015-12-01

    Interplanetary type II radio bursts are important indicators of shock-driving coronal mass ejections (CMEs). CME-driven shocks are responsible for large solar energetic particle (SEP) events and sudden commencement/sudden impulse events recorded by ground magnetometers. The excellent overlap of the spatial domains probed by SOHO/STEREO coronagraphs with the spectral domains of Wind/WAVES and STEREO/WAVES has contributed enormously in understanding CMEs and shocks as space weather drivers. This paper is concerned with type II bursts of solar cycle 23 and 24 that had emission components down to kilometric wavelengths. CMEs associated with these bursts seem to be the best indicators of large SEP events, better than the halo CMEs. However, there are some differences between the type II bursts of the two cycles, which are explained based on the different states of the heliosphere in the two cycles. Finally, the type II burst characteristics of some recent extreme events are discussed.

  4. Solar Wind - Magnetosheath - Magnetopause Interactions in Global Hybrid-Vlasov Simulations

    NASA Astrophysics Data System (ADS)

    Hoilijoki, S.; Pfau-Kempf, Y.; Ganse, U.; Hietala, H.; Cassak, P.; Walsh, B.; Juusola, L.; Jarvinen, R.; von Alfthan, S.; Palmroth, M.

    2017-12-01

    We present results of interactions of solar wind and Earth's magnetosphere in global hybrid-Vlasov simulations carried out using the Vlasiator model. Vlasiator propagates ions as velocity distribution functions by solving the Vlasov equation and electrons are treated as charge-neutralizing massless fluid. Vlasiator simulations show a strong coupling between the ion scale and global scale physics. Global scale phenomena affect the local physics and the local phenomena impact the global system. Our results have shown that mirror mode waves growing in the quasi-perpendicular magnetosheath have an impact on the local reconnection rates at the dayside magnetopause. Furthermore, multiple X-line reconnection at the dayside magnetopause leads to the formation of magnetic islands (2D flux transfer events), which launch bow waves upstream propagating through the magnetosheath. These steep bow waves have the ability to accelerate ions in the magnetosheath. When the bow waves reach the bow shock they are able to bulge the shock locally. The bulge in the shock decreases the angle between the interplanetary magnetic field and the shock normal and allows ions to be reflected back to the solar wind along the magnetic field lines. Consequently, Vlasiator simulations show that magnetosheath fluctuations affect magnetopause reconnection and reconnection may influence particle acceleration and reflection in the magnetosheath and solar wind.

  5. An investigation of the magnetic field of Transient Disturbances (TD) at the Earth's orbit, and a determination of solar sources of TD from their characteristics at R = 1 AU

    NASA Technical Reports Server (NTRS)

    Fainshtein, V. .G.; Kaigorodov, A. P.

    1995-01-01

    We have investigated and intercompared the typical features of the magnetic field of two types of solar wind transient disturbances with shock waves: the shock wave is accompanied by a magnetic cloud (MC), and the shock wave is followed by a region with bidirectional solar wind electron heat flux (BEHF), with no MC present. In this case, a separate study was made of the field features in two typical TD structures: in the region of impact-compressed solar wind between the shock wave and MC or BEHF, as well as in MC and BEHF. The study has provided new results on the influence of the ambient SW upon the TD magnetic field and the relationship between fields in various TD structures. A new test for the existence of interplanetary magnetic field draping around MC and BEHF is proposed and verified. It is concluded that the magnetic field configuration around MC is more adequately consistent with the concept of magnetic line draping than is the case around BEHF Two methods are proposed to infer the location of solar sources of TD from their characteristics at R = 1 AU.

  6. The Quasi-monochromatic ULF Wave Boundary in the Venusian Foreshock: Venus Express Observations

    NASA Astrophysics Data System (ADS)

    Shan, Lican; Mazelle, Christian; Meziane, Karim; Romanelli, Norberto; Ge, Yasong S.; Du, Aimin; Lu, Quanming; Zhang, Tielong

    2018-01-01

    The location of ultralow-frequency (ULF) quasi-monochromatic wave onset upstream of Venus bow shock is explored using Venus Express magnetic field data. We report the existence of a spatial foreshock boundary behind which ULF waves are present. We have found that the ULF wave boundary at Venus is sensitive to the interplanetary magnetic field (IMF) direction like the terrestrial one and appears well defined for a cone angle larger than 30°. In the Venusian foreshock, the inclination angle of the wave boundary with respect to the Sun-Venus direction increases with the IMF cone angle. We also found that for the IMF nominal direction (θBX = 36°) at Venus' orbit, the value of this inclination angle is 70°. Moreover, we have found that the inferred velocity of an ion traveling along the ULF boundary is in a qualitative agreement with a quasi-adiabatic reflection of a portion of the solar wind at the bow shock. For an IMF nominal direction at Venus, the inferred bulk speed of ions traveling along this boundary is 1.07 VSW, sufficiently enough to overcome the solar wind convection. This strongly suggests that the backstreaming ions upstream of the Venusian bow shock provide the main energy source for the ULF waves.

  7. SUPRATHERMAL ELECTRON STRAHL WIDTHS IN THE PRESENCE OF NARROW-BAND WHISTLER WAVES IN THE SOLAR WIND

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kajdič, P.; Alexandrova, O.; Maksimovic, M.

    2016-12-20

    We perform the first statistical study of the effects of the interaction of suprathermal electrons with narrow-band whistler mode waves in the solar wind (SW). We show that this interaction does occur and that it is associated with enhanced widths of the so-called strahl component. The latter is directed along the interplanetary magnetic field away from the Sun. We do the study by comparing the strahl pitch angle widths in the SW at 1 AU in the absence of large scale discontinuities and transient structures, such as interplanetary shocks, interplanetary coronal mass ejections, stream interaction regions, etc. during times whenmore » the whistler mode waves were present and when they were absent. This is done by using the data from two Cluster instruments: Spatio Temporal Analysis of Field Fluctuations experiment (STAFF) data in the frequency range between ∼0.1 and ∼200 Hz were used for determining the wave properties and Plasma Electron And Current Experiment (PEACE) data sets at 12 central energies between ∼57 eV (equivalent to ∼10 typical electron thermal energies in the SW, E{sub T}) and ∼676 eV (∼113 E{sub T}) for pitch angle measurements. Statistical analysis shows that, during the intervals with the whistler waves, the strahl component on average exhibits pitch angle widths between 2° and 12° larger than during the intervals when these waves are not present. The largest difference is obtained for the electron central energy of ∼344 eV (∼57 ET).« less

  8. First Satellite Measurement of the ULF Wave Growth Rate in the Ion Foreshock

    NASA Astrophysics Data System (ADS)

    Dorfman, Seth

    2017-10-01

    Waves generated by accelerated particles are important throughout our heliosphere. These particles often gain their energy at shocks via Fermi acceleration. At the Earth's bow shock, this mechanism accelerates ion beams back into the solar wind; the beams can then generate ultra low frequency (ULF) waves via an ion-ion right hand resonant instability. These waves influence the shock structure and particle acceleration, lead to coherent structures in the magnetosheath, and are ideal for non-linear interaction studies relevant to turbulence. We report the first satellite measurement of the ultralow frequency (ULF) wave growth rate in the upstream region of the Earth's bow shock. This is made possible by employing the two ARTEMIS spacecraft orbiting the moon at 60 Earth radii from Earth to characterize crescent-shaped reflected ion beams and relatively monochromatic ULF waves. The event to be presented features spacecraft separation of 2.5 Earth radii (0.9 +/- 0.1 wavelengths) in the solar wind flow direction along a nearly radial interplanetary magnetic field. By contrast, most prior ULF wave observations use spacecraft with insufficient separation to see wave growth and are so close to Earth (within 30 Earth radii) that waves convected from different events interfere. Using ARTEMIS data, the ULF wave growth rate is estimated and found to fall within dispersion solver predictions during the initial growth time. Observed frequencies and wave numbers are within the predicted range. Other ULF wave properties such as the phase speed, obliquity, and polarization are consistent with expectations from resonant beam instability theory and prior satellite measurements. These results not only advance our understanding of the foreshock, but will also inform future nonlinear studies related to turbulence and dissipation in the heliosphere. Supported by NASA, NASA Eddy Postdoctoral Fellowship.

  9. Coronal Shock Waves and Solar Energetic Particle Events

    NASA Astrophysics Data System (ADS)

    Cliver, Edward

    Recent evidence supports the view first expressed by Wild, Smerd, and Weiss in 1963 that large solar energetic particle (SEP) events are a consequence of shock waves manifested by radio type II bursts. Following Tylka et al. (ApJ 625, 474, 2005), our picture of SEP acceleration at shocks now includes the effects of variable seed particle population and shock geometry. By taking these factors into account, Tylka and Lee (ApJ 646, 1319, 2006; see also Sandroos Vainio, ApJ 662, L127, 2007; AA 507, L21, 2009) were able to account for the charge-to-mass variability in high-Z ions first reported by Breneman and Stone in 1985. Recent studies of electron-to-proton ratios, both in interplanetary space (Cliver Ling, ApJ 658, 1349, 2007; Dietrich et al., in preparation, 2010) and in gamma-ray-line events (Shih et al., ApJ 698, L152, 2009), also support the view that large SEP events originate in coronal shocks and not in solar flares. Concurrent with the above developments, there is growing evidence that coronal shocks are driven by coronal mass ejections rather than by flare pressure pulses.

  10. Fast shocks at the edges of hot diamagnetic cavities upstream from the earth's bow shock

    NASA Technical Reports Server (NTRS)

    Fuselier, S. A.; Thomsen, M. F.; Gosling, J. T.; Bame, S. J.; Russell, C. T.

    1987-01-01

    Recently, several events described as hot expanding diamagnetic cavities have been observed upstream from the earth's bow shock using the ISEE 1 and 2 spacecraft. It has been suggested that fast shocks may form at the edges of some of these events because of the rapid expansion of the cavities. Here, plasma density, temperature, velocity, and total field changes across the edges of several events were examined, and these changes were found to be consistent with the presence of shocks there. The presence of flat-topped electron distributions and occasional electron beams at and down-stream from the edges provides additional evidence for shocks. Plasma wave observations also show shocklike electrostatic noise at the edges of several events. It is concluded that the edges of diamagnetic cavity events are often shocks, with a range of shock strengths similar to that observed in the interplanetary medium. The range of shock strengths may be the result of different convection and/or expansion speeds of the cavities.

  11. Relationship of Interplanetary Shock Micro and Macro Characteristics: A Wind Study

    NASA Technical Reports Server (NTRS)

    Szabo, Adam; Koval, A

    2008-01-01

    The non-linear least squared MHD fitting technique of Szabo 11 9941 has been recently further refined to provide realistic confidence regions for interplanetary shock normal directions and speeds. Analyzing Wind observed interplanetary shocks from 1995 to 200 1, macro characteristics such as shock strength, Theta Bn and Mach numbers can be compared to the details of shock micro or kinetic structures. The now commonly available very high time resolution (1 1 or 22 vectors/sec) Wind magnetic field data allows the precise characterization of shock kinetic structures, such as the size of the foot, ramp, overshoot and the duration of damped oscillations on either side of the shock. Detailed comparison of the shock micro and macro characteristics will be given. This enables the elucidation of shock kinetic features, relevant for particle energization processes, for observations where high time resolution data is not available. Moreover, establishing a quantitative relationship between the shock micro and macro structures will improve the confidence level of shock fitting techniques during disturbed solar wind conditions.

  12. Ion Ramp Structure of Bow shocks and Interplanetary Shocks: Differences and Similarities

    NASA Astrophysics Data System (ADS)

    Goncharov, O.; Safrankova, J.; Nemecek, Z.; Koval, A.; Szabo, A.; Prech, L.; Zastenker, G. N.; Riazantseva, M.

    2017-12-01

    Collisionless shocks play a significant role in the solar wind interaction with the Earth. Fast forward shocks driven by coronal mass ejections or by interaction of fast and slow solar wind streams can be encountered in the interplanetary space, whereas the bow shock is a standing fast reverse shock formed by an interaction of the supersonic solar wind with the Earth magnetic field. Both types of shocks are responsible for a transformation of a part of the energy of the directed solar wind motion to plasma heating and to acceleration of reflected particles to high energies. These processes are closely related to the shock front structure. In present paper, we compares the analysis of low-Mach number fast forward interplanetary shocks registered in the solar wind by the DSCOVR, WIND, and ACE with observations of bow shock crossings observed by the Cluster, THEMIS, MMS, and Spektr-R spacecraft. An application of the high-time resolution data facilitates further discussion on formation mechanisms of both types of shocks.

  13. Ion Acceleration by Flux Transfer Events in the Terrestrial Magnetosheath

    NASA Astrophysics Data System (ADS)

    Jarvinen, R.; Vainio, R.; Palmroth, M.; Juusola, L.; Hoilijoki, S.; Pfau-Kempf, Y.; Ganse, U.; Turc, L.; von Alfthan, S.

    2018-02-01

    We report ion acceleration by flux transfer events in the terrestrial magnetosheath in a global two-dimensional hybrid-Vlasov polar plane simulation of Earth's solar wind interaction. In the model we find that propagating flux transfer events created in magnetic reconnection at the dayside magnetopause drive fast-mode bow waves in the magnetosheath, which accelerate ions in the shocked solar wind flow. The acceleration at the bow waves is caused by a shock drift-like acceleration process under stationary solar wind and interplanetary magnetic field upstream conditions. Thus, the energization is not externally driven but results from plasma dynamics within the magnetosheath. Energetic proton populations reach the energy of 30 keV, and their velocity distributions resemble time-energy dispersive ion injections observed by the Cluster spacecraft in the magnetosheath.

  14. A shock surface geometry - The February 15-16, 1967, event. [solar flare associated interplanetary shock

    NASA Technical Reports Server (NTRS)

    Lepping, R. P.; Chao, J. K.

    1976-01-01

    An estimated shape is presented for the surface of the flare-associated interplanetary shock of February 15-16, 1967, as seen in the ecliptic-plane cross section. The estimate is based on observations by Explorer 33 and Pioneers 6 and 7. The estimated shock normal at the Explorer 33 position is obtained by a least-squares shock parameter-fitting procedure for that satellite's data; the shock normal at the Pioneer 7 position is found by using the magnetic coplanarity theorem and magnetic-field data. The average shock speed from the sun to each spacecraft is determined along with the local speed at Explorer 33 and the relations between these speeds and the position of the initiating solar flare. The Explorer 33 shock normal is found to be severely inclined and not typical of interplanetary shocks. It is shown that the curvature of the shock surface in the ecliptic plane near the earth-Pioneer 7 region is consistent with a radius of not more than 0.4 AU.

  15. Electron dropout echoes induced by interplanetary shock: A statistical study

    NASA Astrophysics Data System (ADS)

    Liu, Z. Y.; Zong, Q.-G.; Hao, Y. X.; Zhou, X.-Z.; Ma, X. H.; Liu, Y.

    2017-08-01

    "Electron dropout echo" as indicated by repeated moderate dropout and recovery signatures of the flux of energetic electron in the outer radiation belt region has been investigated systematically. The electron moderate dropout and its echoes are usually found for higher-energy (>300 keV) channel fluxes, whereas the flux enhancements are obvious for lower energy electrons simultaneously after the interplanetary shock arrives at the Earth's geosynchronous orbit. The electron dropout echo events are found to be usually associated with the interplanetary shocks arrival. The 104 dropout echo events have been found from 215 interplanetary shock events from 1998 to 2007 based on the Los Alamos National Laboratory satellite data. In analogy to substorm injections, these 104 events could be naturally divided into two categories: dispersionless (49 events) or dispersive (55 events) according to the energy dispersion of the initial dropout. It is found that locations of dispersionless events are distributed mainly in the duskside magnetosphere. Further, the obtained locations derived from dispersive events with the time-of-flight technique of the initial dropout regions are mainly located at the duskside as well. Statistical studies have shown that the effect of shock normal, interplanetary magnetic field Bz and solar wind dynamic pressure may be insignificant to these electron dropout events. We suggest that the ˜1 min electric field impulse induced by the interplanetary shock produces a more pronounced inward migration of electrons at the duskside, resulting in the observed duskside moderate dropout of electron flux and its consequent echoes.

  16. Ion acoustic waves in the solar wind

    NASA Technical Reports Server (NTRS)

    Gurnett, D. A.; Frank, L. A.

    1978-01-01

    Plasma wave measurements on the Helios 1 and 2 spacecraft have revealed the occurrence of electric field turbulence in the solar wind at frequencies between the electron and ion plasma frequencies. Wavelength measurements with the Imp 6 spacecraft now provide strong evidence that these waves are shortwavelength ion acoustic waves which are Doppler-shifted upward in frequency by the motion of the solar wind. Comparison of the Helios results with measurements from the earth-orbiting Imp 6 and 8 spacecraft shows that the ion acoustic wave turbulence detected in interplanetary space has characteristics essentially identical to those of bursts of electrostatic turbulence generated by protons streaming into the solar wind from the earth's bow shock. In a few cases, enhanced ion acoustic wave intensities have been observed in direct association with abrupt increases in the anisotropy of the solar wind electron distribution. This relationship strongly suggests that the ion acoustic waves detected by Helios far from the earth are produced by an electron heat flux instability, as was suggested by Forslund. Possible related mechanisms which could explain the generation of ion acoustic waves by protons streaming into the solar wind from the earth's bow shock are also considered.

  17. Diffusive Electron Acceleration at Interplanetary CME Shocks: Comparison between events on 21 Feb 1994 and 15 July 2000

    NASA Astrophysics Data System (ADS)

    Terasawa, T.; Shimada, N.; Takei, Y.; Kawada, S.; Oka, M.; Den, M.; Mukai, T.; Saito, Y.

    2001-12-01

    While the diffusive shock acceleration (DSA) process of electrons has significant astrophysical importance, reports of in situ observations of such process accompanying with interplanetary CME shocks at 1 AU have been limited to several big events, such as those on 21 Feb 1994 and 15 July 2000 [Shimada et al., ASS, 1999; Terasawa et al., ICRC, 2001]. In this presentation, we will present the results of comparative studies of these important events based on the GEOTAIL measurements. Common features of these events are, (1) high average propagation speeds from the sun to 1AU ( ~1300 km/s and ~1500 km/s), (2) high local propagation speeds at 1 AU ( ~920 km/s and ~1100 km/s), (3) exponential upstream time profiles of nonthermal electrons (up to 40 keV), and (4) nearly power-law energy spectrum. Despite these similarities, one noticeable difference among them was the relative flux increases of accelerated electrons: In the energy range of several keV to 20 keV nearly two-order of magnitude flux increases were observed at the former shock, while the corresponding increase at the latter shock was only a factor of ~3. We are now trying to identify the origin of this difference: One possibility is the different shock angles ( ~68 deg for the former, and ~48 deg for the latter). Further search for the difference in scattering agents of these electrons is also under way (For the former shock, intensification of whistler waves of several Hz was identified.)

  18. A Statistical Study of Interplanetary Type II Bursts: STEREO Observations

    NASA Astrophysics Data System (ADS)

    Krupar, V.; Eastwood, J. P.; Magdalenic, J.; Gopalswamy, N.; Kruparova, O.; Szabo, A.

    2017-12-01

    Coronal mass ejections (CMEs) are the primary cause of the most severe and disruptive space weather events such as solar energetic particle (SEP) events and geomagnetic storms at Earth. Interplanetary type II bursts are generated via the plasma emission mechanism by energetic electrons accelerated at CME-driven shock waves and hence identify CMEs that potentially cause space weather impact. As CMEs propagate outward from the Sun, radio emissions are generated at progressively at lower frequencies corresponding to a decreasing ambient solar wind plasma density. We have performed a statistical study of 153 interplanetary type II bursts observed by the two STEREO spacecraft between March 2008 and August 2014. These events have been correlated with manually-identified CMEs contained in the Heliospheric Cataloguing, Analysis and Techniques Service (HELCATS) catalogue. Our results confirm that faster CMEs are more likely to produce interplanetary type II radio bursts. We have compared observed frequency drifts with white-light observations to estimate angular deviations of type II burst propagation directions from radial. We have found that interplanetary type II bursts preferably arise from CME flanks. Finally, we discuss a visibility of radio emissions in relation to the CME propagation direction.

  19. Formation of multiple energy dispersion of H+, He+, and O+ ions in the inner magnetosphere in response to interplanetary shock

    NASA Astrophysics Data System (ADS)

    Tsuji, H.; Ebihara, Y.; Tanaka, T.

    2017-04-01

    An interplanetary (IP) shock has a large impact on magnetospheric ions. Satellite observations have shown that soon after arrival of the IP shock, overall intensity of the ions rapidly increases and multiple energy dispersion appears in an energy-time spectrogram of the ions. In order to understand the response of the magnetospheric ions to IP shock, we have performed test particle simulation under the electric and magnetic fields provided by the global magnetohydrodynamic simulation. We reconstructed the differential flux of H+, He+, and O+ ions at (7, 0, 0) Re in GSM coordinates by means of the semi-Lagrangian (phase space mapping) method. Simulation results show that the ions respond to the IP shock in two different ways. First, overall intensity of the flux gradually increases at all pitch angles. As the compressional wave propagates tailward, the magnetic field increases, which accelerates the ions due to the gyrobetatron. Second, multiple energy-time dispersion appears in the reconstructed spectrograms of the ion flux. The energy-time dispersion is caused by the ion moving toward mirror point together with tailward propagating compressional wave at off-equator. The ions are primarily accelerated by the drift betatron under the strong electric field looking dawnward. The dispersion is absent in the spectrogram of equatorially mirroring ions. The dispersion appears at higher energy for heavier ions. These features are consistent with the satellite observations. Because the acceleration depends on bounce phase, the bounce-averaged approximation is probably invalid for the ions during the interval of geomagnetic sudden commencement.Plain Language SummarySolar storm can cause a significant compression of the magnetosphere on the dayside. The compression starts at the subsolar point and propagates toward the nightside in the magnetosphere. Some ions bouncing between the Northern Hemisphere and the Southern Hemisphere are found to be accelerated selectively when the ions move together with the propagation of the compressional wave. As a consequence, striped structures appear in the energy versus time spectrum of the ion.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2009AnGeo..27..357C','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2009AnGeo..27..357C"><span>First simultaneous measurements of waves generated at the bow shock in the solar wind, the magnetosphere and on the ground</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Clausen, L. B. N.; Yeoman, T. K.; Fear, R. C.; Behlke, R.; Lucek, E. A.; Engebretson, M. J.</p> <p>2009-01-01</p> <p>On 5 September 2002 the Geotail satellite observed the cone angle of the Interplanetary Magnetic Field (IMF) change to values below 30° during a 56 min interval between 18:14 and 19:10 UT. This triggered the generation of upstream waves at the bow shock, 13 RE downstream of the position of Geotail. Upstream generated waves were subsequently observed by Geotail between 18:30 and 18:48 UT, during times the IMF cone angle dropped below values of 10°. At 18:24 UT all four Cluster satellites simultaneously observed a sudden increase in wave power in all three magnetic field components, independent of their position in the dayside magnetosphere. We show that the 10 min delay between the change in IMF direction as observed by Geotail and the increase in wave power observed by Cluster is consistent with the propagation of the IMF change from the Geotail position to the bow shock and the propagation of the generated waves through the bow shock, magnetosheath and magnetosphere towards the position of the Cluster satellites. We go on to show that the wave power recorded by the Cluster satellites in the component containing the poloidal and compressional pulsations was broadband and unstructured; the power in the component containing toroidal oscillations was structured and shows the existence of multi-harmonic Alfvénic continuum waves on field lines. Model predictions of these frequencies fit well with the observations. An increase in wave power associated with the change in IMF direction was also registered by ground based magnetometers which were magnetically conjunct with the Cluster satellites during the event. To the best of our knowledge we present the first simultaneous observations of waves created by backstreaming ions at the bow shock in the solar wind, the dayside magnetosphere and on the ground.</p> </li> </ol> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_4");'>4</a></li> <li><a href="#" onclick='return showDiv("page_5");'>5</a></li> <li class="active"><span>6</span></li> <li><a href="#" onclick='return showDiv("page_7");'>7</a></li> <li><a href="#" onclick='return showDiv("page_8");'>8</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div><!-- col-sm-12 --> </div><!-- row --> </div><!-- page_6 --> <div id="page_7" class="hiddenDiv"> <div class="row"> <div class="col-sm-12"> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_5");'>5</a></li> <li><a href="#" onclick='return showDiv("page_6");'>6</a></li> <li class="active"><span>7</span></li> <li><a href="#" onclick='return showDiv("page_8");'>8</a></li> <li><a href="#" onclick='return showDiv("page_9");'>9</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div> </div> <div class="row"> <div class="col-sm-12"> <ol class="result-class" start="121"> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/17784092','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/17784092"><span>Magnetic field studies of the solar wind interaction with venus from the galileo flyby.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Kivelson, M G; Kennel, C F; McPherron, R L; Russell, C T; Southwood, D J; Walker, R J; Hammond, C M; Khurana, K K; Strangeway, R J; Coleman, P J</p> <p>1991-09-27</p> <p>During the 10 February 1990 flyby of Venus, the Galileo spacecraft skimmed the downstream flank of the planetary bow shock. This provided an opportunity to examine both the global and the local structure of the shock in an interval during which conditions in the solar wind plasma were quite steady. The data show that the cross section of the shock in planes transverse to the flow is smaller in directions aligned with the projection of the interplanetary magnetic field than in directions not so aligned. Ultralow-frequency waves were present in the unshocked solar wind, and their amplitude peaked when the spacecraft was downstream of the foreshock. At large distances down the tail, the Mach number of the flow normal to the shock is low, thus providing the opportunity to study repeated crossings of the collisionless shock in an interesting parameter regime. Some of the shock crossings reveal structure that comes close to the theoretically predicted form of intermediate shocks, whose existence in collisionless plasmas has not been confirmed.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://ntrs.nasa.gov/search.jsp?R=19910069530&hterms=transverse+study&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D70%26Ntt%3Dtransverse%2Bstudy','NASA-TRS'); return false;" href="https://ntrs.nasa.gov/search.jsp?R=19910069530&hterms=transverse+study&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D70%26Ntt%3Dtransverse%2Bstudy"><span>Magnetic field studies of the solar wind interaction with Venus from the Galileo flyby</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Kivelson, M. G.; Kennel, C. F.; Mcpherron, R. L.; Russell, C. T.; Southwood, D. J.; Walker, R. J.; Hammond, C. M.; Khurana, K. K.; Strangeway, R. J.; Coleman, P. J.</p> <p>1991-01-01</p> <p>During the February 10, 1990 flyby of Venus, the Galileo spacecraft skimmed the downnstream flank of the planetary bow shock. This provided an opportunity to examine both the global and the local structure of the shock in an interval during which conditions in the solar wind plasma were quite steady. The data show that the cross section of the shock in planes transverse to the flow is smaller in directions aligned with the projection of the interplanetary magnetic field than in directions not so aligned. Ultralow-frequency waves were present in the unshocked solar wind, and their amplitude peaked when the spacecraft was downstream of the foreshock. At large distances down the tail, the Mach number of the flow normal to the shock is low, thus providing the opportunity to study repeated crossings of the collisionless shock in an interesting parameter regime. Some of the shock crossings reveal structure that comes close to the theoretically predicted form of intermediate shocks, whose existence in collisionless plasmas has not been confirmed.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://ntrs.nasa.gov/search.jsp?R=19840034524&hterms=debye+length&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D50%26Ntt%3Ddebye%2Blength','NASA-TRS'); return false;" href="https://ntrs.nasa.gov/search.jsp?R=19840034524&hterms=debye+length&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D50%26Ntt%3Ddebye%2Blength"><span>Short wavelength ion waves upstream of the earth's bow shock</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Fuselier, S. A.; Gurnett, D. A.</p> <p>1984-01-01</p> <p>The identification and explanation of short wavelength antenna interference effects observed in spacecraft plasma wave data have provided an important new method of determining limits on the wavelength, direction of propagation, and Doppler shift of short wavelength electrostatic waves. Using the ISEE-1 wideband electric field data, antenna interference effects have been identified in the ion waves upstream of the earth's bow shock. This identification implies that wavelengths of the upstream ion waves are shorter than the antenna length. The interference effects also provide new measurements of the direction of propagation of the ion waves. The new measurements show that the wave vectors of the ion waves are not parallel to the interplanetary magnetic field (IMF) as previously reported. The direction of propagation does not appear to be controlled by the IMF. In addition, analysis of the Doppler shift of the short wavelength ion waves has provided a measurement of the dispersion relation. The upper limit of the rest frame frequency was found to be on the order of the ion plasma frequency. At this frequency, the wavelength is on the order of a few times the Debye length. The results of this study now provide strong evidence that the ion waves in the upstream region are Doppler-shifted ion acoustic waves. Previously announced in STAR as N83-36328</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://hdl.handle.net/2060/20140006635','NASA-TRS'); return false;" href="http://hdl.handle.net/2060/20140006635"><span>Coronal Mass Ejection-driven Shocks and the Associated Sudden Commencements-sudden Impulses</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Veenadhari, B.; Selvakumaran, R.; Singh, Rajesh; Maurya, Ajeet K.; Gopalswamy, N.; Kumar, Sushil; Kikuchi, T.</p> <p>2012-01-01</p> <p>Interplanetary (IP) shocks are mainly responsible for the sudden compression of the magnetosphere, causing storm sudden commencement (SC) and sudden impulses (SIs) which are detected by ground-based magnetometers. On the basis of the list of 222 IP shocks compiled by Gopalswamy et al., we have investigated the dependence of SC/SIs amplitudes on the speed of the coronal mass ejections (CMEs) that drive the shocks near the Sun as well as in the interplanetary medium. We find that about 91% of the IP shocks were associated with SC/SIs. The average speed of the SC/SI-associated CMEs is 1015 km/s, which is almost a factor of 2 higher than the general CME speed. When the shocks were grouped according to their ability to produce type II radio burst in the interplanetary medium, we find that the radio-loud (RL) shocks produce a much larger SC/SI amplitude (average approx. 32 nT) compared to the radio-quiet (RQ) shocks (average approx. 19 nT). Clearly, RL shocks are more effective in producing SC/SIs than the RQ shocks. We also divided the IP shocks according to the type of IP counterpart of interplanetary CMEs (ICMEs): magnetic clouds (MCs) and nonmagnetic clouds. We find that the MC-associated shock speeds are better correlated with SC/SI amplitudes than those associated with non-MC ejecta. The SC/SI amplitudes are also higher for MCs than ejecta. Our results show that RL and RQ type of shocks are important parameters in producing the SC/SI amplitude.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2002AGUSMSH51B..02F','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2002AGUSMSH51B..02F"><span>Operational, Real-Time, Sun-to-Earth Interplanetary Shock Predictions During Solar Cycle 23</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Fry, C. D.; Dryer, M.; Sun, W.; Deehr, C. S.; Smith, Z.; Akasofu, S.</p> <p>2002-05-01</p> <p>We report on our progress in predicting interplanetary shock arrival time (SAT) in real-time, using three forecast models: the Hakamada-Akasofu-Fry (HAF) modified kinematic model, the Interplanetary Shock Propagation Model (ISPM) and the Shock Time of Arrival (STOA) model. These models are run concurrently to provide real-time predictions of the arrival time at Earth of interplanetary shocks caused by solar events. These "fearless forecasts" are the first, and presently only, publicly distributed predictions of SAT and are undergoing quantitative evaluation for operational utility and scientific benchmarking. All three models predict SAT, but the HAF model also provides a global view of the propagation of interplanetary shocks through the pre-existing, non-uniform heliospheric structure. This allows the forecaster to track the propagation of the shock and to differentiate between shocks caused by solar events and those associated with co-rotating interaction regions (CIRs). This study includes 173 events during the period February, 1997 to October, 2000. Shock predictions were compared with spacecraft observations at the L1 location to determine how well the models perform. Sixty-eight shocks were observed at L1 within 120 hours of an event. We concluded that 6 of these observed shocks were caused by CIRs, and the remainder were caused by solar events. The forecast skill of the models are presented in terms of RMS errors, contingency tables and skill scores commonly used by the weather forecasting community. The false alarm rate for HAF was higher than for ISPM or STOA but much lower than for predictions based upon empirical studies or climatology. Of the parameters used to characterize a shock source at the Sun, the initial speed of the coronal shock, as represented by the observed metric type II speed, has the largest influence on the predicted SAT. We also found that HAF model predictions based upon type II speed are generally better for shocks originating from sites near central meridian, and worse for limb events. This tendency suggests that the observed type II speed is more representative of the interplanetary shock speed for events occurring near central meridian. In particular, the type II speed appears to underestimate the actual Earth-directed IP shock speed when the source of the event is near the limb. Several of the most interesting events (Bastille Day epoch (2000), April Fools Day epoch (2001))will be discussed in more detail with the use of real-time animations.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://ntrs.nasa.gov/search.jsp?R=19960021485&hterms=geofisica&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D30%26Ntt%3Dgeofisica','NASA-TRS'); return false;" href="https://ntrs.nasa.gov/search.jsp?R=19960021485&hterms=geofisica&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D30%26Ntt%3Dgeofisica"><span>Characteristics of the interplanetary shocks formed by a sudden increase in the velocity of the solar wind from a coronal hole</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Bravo, S.</p> <p>1995-01-01</p> <p>Coronal holes are the sources of the solar wind and, according to recent YOKOH observations, may undergo rapid changes which are associated with manifestations of explosive solar activity. Rapid changes in a hole's structure will produce rapid changes in the characteristics of the wind emerging from it and, in the particular c se of a sudden increase in wind velocity, this may lead to the formation of an interplanetary shock. We discuss the characteristics of shocks formed in such a way and compare them with interplanetary observations.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.osti.gov/biblio/22518577-simulation-energetic-particle-transport-acceleration-shock-waves-focused-transport-model-implications-mixed-solar-particle-events','SCIGOV-STC'); return false;" href="https://www.osti.gov/biblio/22518577-simulation-energetic-particle-transport-acceleration-shock-waves-focused-transport-model-implications-mixed-solar-particle-events"><span>SIMULATION OF ENERGETIC PARTICLE TRANSPORT AND ACCELERATION AT SHOCK WAVES IN A FOCUSED TRANSPORT MODEL: IMPLICATIONS FOR MIXED SOLAR PARTICLE EVENTS</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.osti.gov/search">DOE Office of Scientific and Technical Information (OSTI.GOV)</a></p> <p>Kartavykh, Y. Y.; Dröge, W.; Gedalin, M.</p> <p>2016-03-20</p> <p>We use numerical solutions of the focused transport equation obtained by an implicit stochastic differential equation scheme to study the evolution of the pitch-angle dependent distribution function of protons in the vicinity of shock waves. For a planar stationary parallel shock, the effects of anisotropic distribution functions, pitch-angle dependent spatial diffusion, and first-order Fermi acceleration at the shock are examined, including the timescales on which the energy spectrum approaches the predictions of diffusive shock acceleration theory. We then consider the case that a flare-accelerated population of ions is released close to the Sun simultaneously with a traveling interplanetary shock formore » which we assume a simplified geometry. We investigate the consequences of adiabatic focusing in the diverging magnetic field on the particle transport at the shock, and of the competing effects of acceleration at the shock and adiabatic energy losses in the expanding solar wind. We analyze the resulting intensities, anisotropies, and energy spectra as a function of time and find that our simulations can naturally reproduce the morphologies of so-called mixed particle events in which sometimes the prompt and sometimes the shock component is more prominent, by assuming parameter values which are typically observed for scattering mean free paths of ions in the inner heliosphere and energy spectra of the flare particles which are injected simultaneously with the release of the shock.« less</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2016AGUFMSH21A2502H','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2016AGUFMSH21A2502H"><span>Electron Surfing Acceleration in High Mach Number Shocks</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Hoshino, M.; Amano, T.; Matsumoto, Y.</p> <p>2016-12-01</p> <p>Many energetic events associated with shock waves have been argued in this context of the diffusive shock acceleration (DSA), and the origin of high-energy particles observed in astrophysical shocks are believed to be attributed to DSA. However, electron nonthermal acceleration still remains an unresolved issue of considerable interest. While cosmic rays of supernova remnant shocks with power-law spectra are believed to be produced by DSA, energetic electrons with a power-law energy spectrum are rarely ever observed at interplanetary shocks and at planetary bow shocks (e.g., Lario et al. 2003), and the diffusive-type acceleration seems to be necessarily malfunctioning in the heliosphere. The malfunctioning reason is thought to be a lack of pre-acceleration mechanism of supra-thermal electrons.In this presentation, we propose that the supra-thermal electrons can be generated by the mechanism of shock surfing acceleration (SSA) in a high Mach number magnetosonic shock. In the surfing mechanism, a series of large-amplitude electrostatic waves are excited by Buneman instability in the foot region under the interaction between the reflected ions and the incoming electrons, and it is argued that the electrons trapped in the electrostatic waves can be accelerated up to a relativistic energy (Hoshino and Shimada, 2002). Since the electron SSA has been studied based on one- or two-dimensional PIC simulations so far, SSA in three-dimensional system is questionable and remains an open question. We discuss based on our theoretical model and three-dimensional PIC simulation with a high-performance computing that the efficiency of SSA in three-dimensional system remains amazingly strong and plays an important role on the electron pre-acceleration/injection problem.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2016EGUGA..18.9283S','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2016EGUGA..18.9283S"><span>ULF waves in the Martian foreshock: MAVEN observations</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Shan, Lican; Mazelle, Christian; Meziane, Karim; Ruhunusiri, Suranga; Espley, Jared; Halekas, Jasper; Connerney, Jack; McFadden, Jim; Mitchell, Dave; Larson, Davin; Brain, Dave; Jakosky, Bruce; Ge, Yasong; Du, Aimin</p> <p>2016-04-01</p> <p>Foreshock ULF waves constitute a significant physical phenomenon of the plasma environment for terrestrial planets. The occurrence of these ULF waves, associated with backstreaming ions reflected and accelerated at the bow shock, implies specific conditions and properties of the shock and its foreshock. Using measurements from MAVEN, we report clear observations of this type of ULF waves in the Martian foreshock. We show from different case studies that the peak frequency of the wave case in spacecraft frame is too far from the local ion cyclotron frequency to be associated with local pickup ions taking into account the Doppler shifted frequency from a cyclotron resonance, the obliquity of the mode, resonance broadening and experimental uncertainties. On the opposite their properties fit very well with foreshock waves driven unstable by backtreaming field-aligned ion beams. The propagation angle is usually less than 30 degrees from ambient magnetic field. The waves also display elliptical and left-hand polarizations with respect to interplanetary magnetic field in the spacecraft frame. It is clear for these cases that foreshock ions are simultaneous present for the ULF wave interval. Such observation is important in order to discriminate with the already well-reported pickup ion (protons) waves associated with exospheric hydrogen in order to quantitatively use the later to study seasonal variations of the hydrogen corona.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2018JGRA..123.2458T','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2018JGRA..123.2458T"><span>A Review of Alfvénic Turbulence in High-Speed Solar Wind Streams: Hints From Cometary Plasma Turbulence</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Tsurutani, Bruce T.; Lakhina, Gurbax S.; Sen, Abhijit; Hellinger, Petr; Glassmeier, Karl-Heinz; Mannucci, Anthony J.</p> <p>2018-04-01</p> <p>Solar wind turbulence within high-speed streams is reviewed from the point of view of embedded single nonlinear Alfvén wave cycles, discontinuities, magnetic decreases (MDs), and shocks. For comparison and guidance, cometary plasma turbulence is also briefly reviewed. It is demonstrated that cometary nonlinear magnetosonic waves phase-steepen, with a right-hand circular polarized foreshortened front and an elongated, compressive trailing edge. The former part is a form of "wave breaking" and the latter that of "period doubling." Interplanetary nonlinear Alfvén waves, which are arc polarized, have a 180° foreshortened front and with an elongated trailing edge. Alfvén waves have polarizations different from those of cometary magnetosonic waves, indicating that helicity is a durable feature of plasma turbulence. Interplanetary Alfvén waves are noted to be spherical waves, suggesting the possibility of additional local generation. They kinetically dissipate, forming MDs, indicating that the solar wind is partially "compressive" and static. The 2 MeV protons can nonresonantly interact with MDs leading to rapid cross-field ( 5.5% Bohm) diffusion. The possibility of local ( 1 AU) generation of Alfvén waves may make it difficult to forecast High-Intensity, Long-Duration AE Activity and relativistic magnetospheric electrons with great accuracy. The future Solar Orbiter and Solar Probe Plus missions should be able to not only test these ideas but to also extend our knowledge of plasma turbulence evolution.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017AGUFMSM11B2302H','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017AGUFMSM11B2302H"><span>Relativistic electron dynamics produced by azimuthally localized poloidal mode ULF waves: Boomerang-shaped pitch angle evolutions</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Hao, Y.; Zong, Q.; Zhou, X.; Rankin, R.; Chen, X.; Liu, Y.; Fu, S.; Spence, H. E.; Blake, J. B.; Reeves, G. D.</p> <p>2017-12-01</p> <p>We present an analysis of "boomerang-shaped" pitch angle evolutions of outer radiation belt relativistic electrons observed by the Van Allen Probes after the passage of an interplanetary shock on June 7th, 2014. The flux at different pitch angles is modulated by Pc5 waves, with equatorially mirroring electrons reaching the satellite first. For 90º pitch angle electrons, the phase change of the flux modulations across energy exceeds 180º, and increasingly tilts with time. Using estimates of the arrival time of particles of different pitch angles at the spacecraft location, a scenario is investigated in which shock-induced ULF waves interact with electrons through the drift resonance mechanism in a localized region westward of the spacecraft. Numerical calculations on particle energy gain with the modified ULF wave field reproduce the observed boomerang stripes and modulations in the electron energy spectrogram. The study of boomerang stripes and their relationship to drift-resonance taking place at a location different from the observation point adds new understanding of the processes controlling the dynamics of the outer radiation belt.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.osti.gov/biblio/22518504-multi-viewpoint-observations-widely-distributed-solar-energetic-particle-event-role-euv-waves-white-light-shock-signatures','SCIGOV-STC'); return false;" href="https://www.osti.gov/biblio/22518504-multi-viewpoint-observations-widely-distributed-solar-energetic-particle-event-role-euv-waves-white-light-shock-signatures"><span>MULTI-VIEWPOINT OBSERVATIONS OF A WIDELY DISTRIBUTED SOLAR ENERGETIC PARTICLE EVENT: THE ROLE OF EUV WAVES AND WHITE-LIGHT SHOCK SIGNATURES</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.osti.gov/search">DOE Office of Scientific and Technical Information (OSTI.GOV)</a></p> <p>Kouloumvakos, A.; Patsourakos, S.; Nindos, A.</p> <p>2016-04-10</p> <p>On 2012 March 7, two large eruptive events occurred in the same active region within 1 hr from each other. Each consisted of an X-class flare, a coronal mass ejection (CME), an extreme-ultraviolet (EUV) wave, and a shock wave. The eruptions gave rise to a major solar energetic particle (SEP) event observed at widely separated (∼120°) points in the heliosphere. From multi-viewpoint energetic proton recordings we determine the proton release times at STEREO B and A (STB, STA) and the first Lagrange point (L1) of the Sun–Earth system. Using EUV and white-light data, we determine the evolution of the EUVmore » waves in the low corona and reconstruct the global structure and kinematics of the first CME’s shock, respectively. We compare the energetic proton release time at each spacecraft with the EUV waves’ arrival times at the magnetically connected regions and the timing and location of the CME shock. We find that the first flare/CME is responsible for the SEP event at all three locations. The proton release at STB is consistent with arrival of the EUV wave and CME shock at the STB footpoint. The proton release time at L1 was significantly delayed compared to STB. Three-dimensional modeling of the CME shock shows that the particle release at L1 is consistent with the timing and location of the shock’s western flank. This indicates that at L1 the proton release did not occur in low corona but farther away from the Sun. However, the extent of the CME shock fails to explain the SEP event observed at STA. A transport process or a significantly distorted interplanetary magnetic field may be responsible.« less</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://hdl.handle.net/2060/19980028486','NASA-TRS'); return false;" href="http://hdl.handle.net/2060/19980028486"><span>The Ambient and Perturbed Solar Wind: From the Sun to 1 AU</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Steinolfson, R. S.</p> <p>1997-01-01</p> <p>The overall objective of the proposed research was to use numerical solutions of the magnetohydrodynamic (MHD) equations along with comparisons of the computed results with observations to study the following topics: (1) ambient solar wind solutions that extend from the solar surface to 1 astronomical unit (AU), contain closed magnetic structures near the Sun, and are consistent with observed values; (2) magnetic and plasma structures in coronal mass ejections (CMES) as they propagate to the interplanetary medium; (3) relation of MHD shocks to CMEs in the interplanetary medium; (4) interaction of MHD shocks with structures (such as other shocks, corotating interaction regions, current sheets) in the interplanetary plasma; and (5) simulations of observed interplanetary structures. A planned close collaboration with data analysts served to make the model more relevant to the data. The outcome of this research program is an improved understanding of the physical processes occurring in solar-generated disturbances in the interplanetary medium between the Sun and 1 AU.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017AGUFMSM13F..08Z','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017AGUFMSM13F..08Z"><span>Energetic Particle Sounding of the Magnetopause Deformed by Hot Flow Anomaly</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Zhao, L.; Zong, Q.; Zhang, H.</p> <p>2017-12-01</p> <p>Hot flow anomalies (HFAs), which are frequently observed near Earth's bow shock, are phenomena resulting from the interaction between interplanetary discontinuities and Earth's bow shock. Such transient phenomena upstream the bow shock can cause significant deformation of the bow shock and the magnetosphere, generating traveling convection vortices, field-aligned currents, and ULF waves in the Earth's magnetosphere. A large HFA was observed by MMS on November 19, 2015, lasting about 16 minutes. In this study, energetic particle sounding method with high time resolution (150 ms) Fast Plasma Investigation (FPI) data is used to determine the deformed magnetopause distances, orientations, and structures in the interval when MMS pass through the deformed magnetopause. The energetic particle sounding result from single MMS satellite for every moment in the interval when the distance from the magnetopause to the satellite is less than two proton gyro radii shows the profile of the deformed magnetopause.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2018P%26SS..151...78P','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2018P%26SS..151...78P"><span>Troitskaya-Bolshakova effect as a manifestation of the solar wind wave turbulence</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Potapov, A. S.; Polyushkina, T. N.; Guglielmi, A. V.</p> <p>2018-02-01</p> <p>The impact of changes in the direction of the interplanetary magnetic field (IMF) on the amplitude of geomagnetic Pc3 pulsations (the Troitskaya-Bolshakova effect) is demonstrated using observations of several pulsation events. We show that the source of changes in the IMF cone angle is sometimes Alfvén waves propagating in the solar wind. For the analysis, measurements of geomagnetic pulsations at the mid-latitude Uzur magneto-telluric observatory and on three spacecraft outside the bow shock wave were used. The results show that the influence is exerted only by waves with a period of more than 40-60 min in a coordinate system fixed relative to the Earth. The Alfvén turbulence of a higher frequency is incoherent; the oscillations are of a chaotic nature, not coordinated in amplitude and phase either between satellites or with variations in the amplitude of Pc3. In some cases, the modulation of the pulsation amplitude is associated with the passage of the IMF sector boundary. An evaluation of the direction of propagation of Alfvén waves showed that they predominantly propagate from the Sun, but the normal of the wave fronts can deviate from the Sun-Earth line. This is quite consistent with earlier published results. The statistics of the basic properties of the oscillatory structures in the interplanetary medium, which we observed during the observation period, are given.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2000JGR...10525143R','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2000JGR...10525143R"><span>The interplanetary shock of September 24, 1998: Arrival at Earth</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Russell, C. T.; Wang, Y. L.; Raeder, J.; Tokar, R. L.; Smith, C. W.; Ogilvie, K. W.; Lazarus, A. J.; Lepping, R. P.; Szabo, A.; Kawano, H.; Mukai, T.; Savin, S.; Yermolaev, Y. I.; Zhou, X.-Y.; Tsurutani, B. T.</p> <p>2000-11-01</p> <p>At close to 2345 UT on September 24, 1998, the magnetosphere was suddenly compressed by the passage of an interplanetary shock. In order to properly interpret the magnetospheric events triggered by the arrival of this shock, we calculate the orientation of the shock, its velocity, and its estimated time of arrival at the nose of the magnetosphere. Our best fit shock normal has an orientation of (-0.981 -0.157 -0.112) in solar ecliptic coordinates, a speed of 769 km/s, and an arrival time of 2344:19 at the magnetopause at 10 RE. Since measurements of the solar wind and interplanetary magnetic field are available from multiple spacecraft, we can compare several different techniques of shock-normal determination. Of the single spacecraft techniques the magnetic coplanarity solution is most accurate and the mixed mode solution is of lesser accuracy. Uncertainty in the timing and location of the IMP 8 spacecraft limits the accuracy of solutions using the time of arrival at the position of IMP 8.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.osti.gov/biblio/22390552-effect-electronic-excitation-high-temperature-flows-behind-strong-shock-waves','SCIGOV-STC'); return false;" href="https://www.osti.gov/biblio/22390552-effect-electronic-excitation-high-temperature-flows-behind-strong-shock-waves"><span>Effect of electronic excitation on high-temperature flows behind strong shock waves</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.osti.gov/search">DOE Office of Scientific and Technical Information (OSTI.GOV)</a></p> <p>Istomin, V. A.; Kustova, E. V.</p> <p>2014-12-09</p> <p>In the present paper, a strongly non-equilibrium one-dimensional steady-state flow behind the plane shock wave is studied. We consider a high-temperature chemically reacting five-component ionized mixture of nitrogen species (N{sub 2}/N{sub 2}{sup 2}/N/N{sup +}/e{sup −}) taking into account electronic degrees of freedom in N and N{sup +} (170 and 625 electronic energy levels respectively), and electronic-rotational-vibrational modes in N{sub 2} and N{sub 2}{sup +} (5 and 7 electronic terms). Non-equilibrium reactions of ionization, dissociation, recombination and charge-transfer are included to the kinetic scheme. The system of governing equations is written under the assumption that translation and internal energy relaxation ismore » fast whereas chemical reactions and ionization proceed on the macroscopic gas-dynamics time-scale. The developed model is applied to simulate the flow behind a plane shock wave under initial conditions characteristic for the spacecraft re-entry from an interplanetary flight (Hermes and Fire II experiments). Fluid-dynamic parameters behind the shock wave as well as transport coefficients and the heat flux are calculated for the (N{sub 2}/N{sub 2}{sup +}/N/N{sup +}/e{sup −}) mixture. The effect of electronic excitation on kinetics, dynamics and heat transfer is analyzed. Whereas the contribution of electronic degrees of freedom to the flow macroparameters is negligible, their influence on the heat flux is found to be important under conditions of Hermes re-entry.« less</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017AGUFMSM11B2304S','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017AGUFMSM11B2304S"><span>Relativistic electron dropout echoes induced by interplanetary shocks</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Schiller, Q.; Kanekal, S. G.; Boyd, A. J.; Baker, D. N.; Blake, J. B.; Spence, H. E.</p> <p>2017-12-01</p> <p>Interplanetary shocks that impact Earth's magnetosphere can produce immediate and dramatic responses in the trapped relativistic electron population. One well-studied response is a prompt injection capable of transporting relativistic electrons deep into the magnetosphere and accelerating them to multi-MeV energies. The converse effect, electron dropout echoes, are observations of a sudden dropout of electron fluxes observed after the interplanetary shock arrival. Like the injection echo signatures, dropout echoes can also show clear energy dispersion signals. They are of particular interest because they have only recently been observed and their causal mechanism is not well understood. In the analysis presented here, we show observations of electron drift echo signatures from the Relativistic Electron-Proton Telescope (REPT) and Magnetic Electron and Ion Sensors (MagEIS) onboard NASA's Van Allen Probes mission, which show simultaneous prompt enhancements and dropouts within minutes of the associated with shock impact. We show that the observations associated with both enhancements and dropouts are explained by the inward motion caused by the electric field impulse induced by the interplanetary shock, and either energization to cause the enhancement, or lack of a seed population to cause the dropout.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://hdl.handle.net/2060/20070002802','NASA-TRS'); return false;" href="http://hdl.handle.net/2060/20070002802"><span>Observations of Shock Diffusion and Interactions in Supersonic Freestreams with Counterflowing Jets</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Daso, Endwell O.; Pritchett, Victor E.; Wang, Ten-See; Blankson, Isiah M.; Auslender, Aaron H.</p> <p>2006-01-01</p> <p>One of the technical challenges in long-duration space exploration and interplanetary missions is controlled entry and re-entry into planetary and Earth atmospheres, which requires the dissipation of considerable kinetic energy as the spacecraft decelerates and penetrates the atmosphere. Efficient heat load management of stagnation points and acreage heating remains a technological challenge and poses significant risk, particularly for human missions. An innovative approach using active flow control concept is proposed to significantly modify the external flow field about the spacecraft in planetary atmospheric entry and re-entry in order to mitigate the harsh aerothermal environments, and significantly weaken and disperse the shock-wave system to reduce aerothermal loads and wave drag, as well as improving aerodynamic performance. To explore the potential benefits of this approach, we conducted fundamental experiments in a trisonic blow down wind tunnel to investigate the effects of counterflowing sonic and supersonic jets against supersonic freestreams to gain a better understanding of the flow physics of the interactions of the opposing flows and the resulting shock structure.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.osti.gov/biblio/22521778-short-acceleration-times-from-superdiffusive-shock-acceleration-heliosphere','SCIGOV-STC'); return false;" href="https://www.osti.gov/biblio/22521778-short-acceleration-times-from-superdiffusive-shock-acceleration-heliosphere"><span>SHORT ACCELERATION TIMES FROM SUPERDIFFUSIVE SHOCK ACCELERATION IN THE HELIOSPHERE</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.osti.gov/search">DOE Office of Scientific and Technical Information (OSTI.GOV)</a></p> <p>Perri, S.; Zimbardo, G., E-mail: silvia.perri@fis.unical.it</p> <p>2015-12-10</p> <p>The analysis of time profiles of particles accelerated at interplanetary shocks allows particle transport properties to be inferred. The frequently observed power-law decay upstream, indeed, implies a superdiffusive particle transport when the level of magnetic field variance does not change as the time interval from the shock front increases. In this context, a superdiffusive shock acceleration (SSA) theory has been developed, allowing us to make predictions of the acceleration times. In this work we estimate for a number of interplanetary shocks, including the solar wind termination shock, the acceleration times for energetic protons in the framework of SSA and wemore » compare the results with the acceleration times predicted by standard diffusive shock acceleration. The acceleration times due to SSA are found to be much shorter than in the classical model, and also shorter than the interplanetary shock lifetimes. This decrease of the acceleration times is due to the scale-free nature of the particle displacements in the framework of superdiffusion. Indeed, very long displacements are possible, increasing the probability for particles far from the front of the shock to return, and short displacements have a high probability of occurrence, increasing the chances for particles close to the front to cross the shock many times.« less</p> </li> </ol> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_5");'>5</a></li> <li><a href="#" onclick='return showDiv("page_6");'>6</a></li> <li class="active"><span>7</span></li> <li><a href="#" onclick='return showDiv("page_8");'>8</a></li> <li><a href="#" onclick='return showDiv("page_9");'>9</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div><!-- col-sm-12 --> </div><!-- row --> </div><!-- page_7 --> <div id="page_8" class="hiddenDiv"> <div class="row"> <div class="col-sm-12"> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_6");'>6</a></li> <li><a href="#" onclick='return showDiv("page_7");'>7</a></li> <li class="active"><span>8</span></li> <li><a href="#" onclick='return showDiv("page_9");'>9</a></li> <li><a href="#" onclick='return showDiv("page_10");'>10</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div> </div> <div class="row"> <div class="col-sm-12"> <ol class="result-class" start="141"> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://hdl.handle.net/2060/19840005036','NASA-TRS'); return false;" href="http://hdl.handle.net/2060/19840005036"><span>Solar wind disturbances in th outer heliosphere caused by successive solar flares from the same active region</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Akasofu, S. I.; Hakamada, K.</p> <p>1983-01-01</p> <p>Solar wind disturbances caused by successive flares from the same active region are traced to about 20 AU, using the modeling method developed by Hakamada and Akasofu (1982). It is shown that the flare-generated shock waves coalesce with the co-rotating interaction region of the interplanetary magnetic field, resulting in a large-scale magnetic field structure in the outer heliosphere. Such a structure may have considerable effects on the propagation of galactic cosmic rays.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://ntrs.nasa.gov/search.jsp?R=19960021344&hterms=geofisica&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D30%26Ntt%3Dgeofisica','NASA-TRS'); return false;" href="https://ntrs.nasa.gov/search.jsp?R=19960021344&hterms=geofisica&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D30%26Ntt%3Dgeofisica"><span>The emergence of different polarity photospheric flux as the cause of CMEs and interplanetary shocks</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Bravo, S.</p> <p>1995-01-01</p> <p>Here we discuss the effect that the emergence of flux with a polarity opposed to that previously established in a certain photospheric region. can have on the magnetic structure of the solar atmosphere. We show that such a flux emergence may lead to the ejection of coronal material into the interplanetary medium (a CME) and also to a rapid change in the velocity of the solar wind from the region, which may eventually lead to the formation of an interplanetary shock.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2008APS..DPPUP6013G','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2008APS..DPPUP6013G"><span>Particle acceleration by quasi-parallel shocks in the solar wind</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Galinsky, V. L.; Shevchenko, V. I.</p> <p>2008-11-01</p> <p>The theoretical study of proton acceleration at a quasi-parallel shock due to interaction with Alfven waves self-consistently excited in both upstream and downstream regions was conducted using a scale-separation model [1]. The model uses conservation laws and resonance conditions to find where waves will be generated or dumped and hence particles will be pitch--angle scattered as well as the change of the wave energy due to instability or damping. It includes in consideration the total distribution function (the bulk plasma and high energy tail), so no any assumptions (e.g. seed populations, or some ad-hoc escape rate of accelerated particles) are required. The dynamics of ion acceleration by the November 11-12, 1978 interplanetary traveling shock was investigated and compared with the observations [2] as well as with solution obtained using the so-called convection-diffusion equation for distribution function of accelerated particles [3]. [1] Galinsky, V.L., and V.I. Shevchenko, Astrophys. J., 669, L109, 2007. [2] Kennel, C.F., F.W. Coroniti, F.L. Scarf, W.A. Livesey, C.T. Russell, E.J. Smith, K.P. Wenzel, and M. Scholer, J. Geophys. Res. 91, 11,917, 1986. [3] Gordon B.E., M.A. Lee, E. Mobius, and K.J. Trattner, J. Geophys. Res., 104, 28,263, 1990.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.osti.gov/pages/biblio/1402595-electron-dropout-echoes-induced-interplanetary-shock-van-allen-probes-observations','SCIGOV-DOEP'); return false;" href="https://www.osti.gov/pages/biblio/1402595-electron-dropout-echoes-induced-interplanetary-shock-van-allen-probes-observations"><span>Electron dropout echoes induced by interplanetary shock: Van Allen Probes observations</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.osti.gov/pages">DOE PAGES</a></p> <p>Hao, Y. X.; Zong, Q. -G.; Zhou, X. -Z.; ...</p> <p>2016-06-07</p> <p>On 23 November 2012, a sudden dropout of the relativistic electron flux was observed after an interplanetary shock arrival. The dropout peaks at ~1 MeV and more than 80% of the electrons disappeared from the drift shell. Van Allen twin Probes observed a sharp electron flux dropout with clear energy dispersion signals. The repeating flux dropout and recovery signatures, or “dropout echoes”, constitute a new phenomenon referred to as a “drifting electron dropout” with a limited initial spatial range. The azimuthal range of the dropout is estimated to be on the duskside, from ~1300 to 0100 LT. We then concludemore » that the shock-induced electron dropout is not caused by the magnetopause shadowing. Furthermore, the dropout and consequent echoes suggest that the radial migration of relativistic electrons is induced by the strong dusk-dawn asymmetric interplanetary shock compression on the magnetosphere.« less</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.osti.gov/biblio/1402655-relativistic-electron-dynamics-produced-azimuthally-localized-poloidal-mode-ulf-waves-boomerang-shaped-pitch-angle-evolutions','SCIGOV-STC'); return false;" href="https://www.osti.gov/biblio/1402655-relativistic-electron-dynamics-produced-azimuthally-localized-poloidal-mode-ulf-waves-boomerang-shaped-pitch-angle-evolutions"><span>Relativistic electron dynamics produced by azimuthally localized poloidal mode ULF waves: Boomerang-shaped pitch angle evolutions</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.osti.gov/search">DOE Office of Scientific and Technical Information (OSTI.GOV)</a></p> <p>Hao, Y. X.; Zong, Q. -G.; Zhou, X. -Z.</p> <p></p> <p>Here, we present an analysis of “boomerang-shaped” pitch angle evolutions of outer radiation belt relativistic electrons observed by the Van Allen Probes after the passage of an interplanetary shock on 7 June 2014. The flux at different pitch angles is modulated by Pc5 waves, with equatorially mirroring electrons reaching the satellite first. For 90° pitch angle electrons, the phase change of the flux modulations across energy exceeds 180° and increasingly tilts with time. Using estimates of the arrival time of particles of different pitch angles at the spacecraft location, a scenario is investigated in which shock-induced ULF waves interact withmore » electrons through the drift resonance mechanism in a localized region westward of the spacecraft. Numerical calculations on particle energy gain with the modified ULF wavefield reproduce the observed boomerang stripes and modulations in the electron energy spectrogram. The study of boomerang stripes and their relationship to drift resonance taking place at a location different from the observation point adds new understanding of the processes controlling the dynamics of the outer radiation belt.« less</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017GeoRL..44.7618H','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017GeoRL..44.7618H"><span>Relativistic electron dynamics produced by azimuthally localized poloidal mode ULF waves: Boomerang-shaped pitch angle evolutions</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Hao, Y. X.; Zong, Q.-G.; Zhou, X.-Z.; Rankin, R.; Chen, X. R.; Liu, Y.; Fu, S. Y.; Spence, H. E.; Blake, J. B.; Reeves, G. D.</p> <p>2017-08-01</p> <p>We present an analysis of "boomerang-shaped" pitch angle evolutions of outer radiation belt relativistic electrons observed by the Van Allen Probes after the passage of an interplanetary shock on 7 June 2014. The flux at different pitch angles is modulated by Pc5 waves, with equatorially mirroring electrons reaching the satellite first. For 90° pitch angle electrons, the phase change of the flux modulations across energy exceeds 180° and increasingly tilts with time. Using estimates of the arrival time of particles of different pitch angles at the spacecraft location, a scenario is investigated in which shock-induced ULF waves interact with electrons through the drift resonance mechanism in a localized region westward of the spacecraft. Numerical calculations on particle energy gain with the modified ULF wavefield reproduce the observed boomerang stripes and modulations in the electron energy spectrogram. The study of boomerang stripes and their relationship to drift resonance taking place at a location different from the observation point adds new understanding of the processes controlling the dynamics of the outer radiation belt.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.osti.gov/pages/biblio/1402655-relativistic-electron-dynamics-produced-azimuthally-localized-poloidal-mode-ulf-waves-boomerang-shaped-pitch-angle-evolutions','SCIGOV-DOEP'); return false;" href="https://www.osti.gov/pages/biblio/1402655-relativistic-electron-dynamics-produced-azimuthally-localized-poloidal-mode-ulf-waves-boomerang-shaped-pitch-angle-evolutions"><span>Relativistic electron dynamics produced by azimuthally localized poloidal mode ULF waves: Boomerang-shaped pitch angle evolutions</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.osti.gov/pages">DOE PAGES</a></p> <p>Hao, Y. X.; Zong, Q. -G.; Zhou, X. -Z.; ...</p> <p>2017-07-10</p> <p>Here, we present an analysis of “boomerang-shaped” pitch angle evolutions of outer radiation belt relativistic electrons observed by the Van Allen Probes after the passage of an interplanetary shock on 7 June 2014. The flux at different pitch angles is modulated by Pc5 waves, with equatorially mirroring electrons reaching the satellite first. For 90° pitch angle electrons, the phase change of the flux modulations across energy exceeds 180° and increasingly tilts with time. Using estimates of the arrival time of particles of different pitch angles at the spacecraft location, a scenario is investigated in which shock-induced ULF waves interact withmore » electrons through the drift resonance mechanism in a localized region westward of the spacecraft. Numerical calculations on particle energy gain with the modified ULF wavefield reproduce the observed boomerang stripes and modulations in the electron energy spectrogram. The study of boomerang stripes and their relationship to drift resonance taking place at a location different from the observation point adds new understanding of the processes controlling the dynamics of the outer radiation belt.« less</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2005JGRA..110.9S14R','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2005JGRA..110.9S14R"><span>Coronal mass ejection kinematics deduced from white light (Solar Mass Ejection Imager) and radio (Wind/WAVES) observations</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Reiner, M. J.; Jackson, B. V.; Webb, D. F.; Mizuno, D. R.; Kaiser, M. L.; Bougeret, J.-L.</p> <p>2005-09-01</p> <p>White-light and radio observations are combined to deduce the coronal and interplanetary kinematics of a fast coronal mass ejection (CME) that was ejected from the Sun at about 1700 UT on 2 November 2003. The CME, which was associated with an X8.3 solar flare from W56°, was observed by the Mauna Loa and Solar and Heliospheric Observatory (SOHO) Large-Angle Spectrometric Coronograph (LASCO) coronagraphs to 14 R⊙. The measured plane-of-sky speed of the LASCO CME was 2600 km s-1. To deduce the kinematics of this CME, we use the plane-of-sky white light observations from both the Solar Mass Ejection Imager (SMEI) all-sky camera on board the Coriolis spacecraft and the SOHO/LASCO coronagraph, as well as the frequency drift rate of the low-frequency radio data and the results of the radio direction-finding analysis from the WAVES experiment on the Wind spacecraft. In agreement with the in situ observations for this event, we find that both the white light and radio observations indicate that the CME must have decelerated significantly beginning near the Sun and continuing well into the interplanetary medium. More specifically, by requiring self-consistency of all the available remote and in situ data, together with a simple, but not unreasonable, assumption about the general characteristic of the CME deceleration, we were able to deduce the radial speed and distance time profiles for this CME as it propagated from the Sun to 1 AU. The technique presented here, which is applicable to mutual SMEI/WAVES CME events, is expected to provide a more complete description and better quantitative understanding of how CMEs propagate through interplanetary space, as well as how the radio emissions, generated by propagating CME/shocks, relate to the shock and CME. This understanding can potentially lead to more accurate predictions for the onset times of space weather events, such as those that were observed during this unique period of intense solar activity.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017JGRA..12210036H','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017JGRA..12210036H"><span>Simulated Prompt Acceleration of Multi-MeV Electrons by the 17 March 2015 Interplanetary Shock</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Hudson, Mary; Jaynes, Allison; Kress, Brian; Li, Zhao; Patel, Maulik; Shen, Xiao-Chen; Thaller, Scott; Wiltberger, Michael; Wygant, John</p> <p>2017-10-01</p> <p>Prompt enhancement of relativistic electron flux at L = 3-5 has been reported from Van Allen Probes Relativistic Electron Proton Telescope (REPT) measurements associated with the 17 March 2015 interplanetary shock compression of the dayside magnetosphere. Acceleration by ˜1 MeV is inferred on less than a drift timescale as seen in prior shock compression events, which launch a magnetosonic azimuthal electric field impulse tailward. This impulse propagates from the dayside around the flanks accelerating electrons in drift resonance at the dusk flank. Such longitudinally localized acceleration events produce a drift echo signature which was seen at >1 MeV energy on both Van Allen Probe spacecraft, with sustained observations by Probe B outbound at L = 5 at 2100 MLT at the time of impulse arrival, measured by the Electric Fields and Waves instrument. MHD test particle simulations are presented which reproduce drift echo features observed in the REPT measurements at Probe B, including the energy and pitch angle dependence of drift echoes observed. While the flux enhancement was short lived for this event due to subsequent inward motion of the magnetopause, stronger events with larger electric field impulses, as observed in March 1991 and the Halloween 2003 storm, produce enhancements which can be quantified by the inward radial transport and energization determined by the induction electric field resulting from dayside compression.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2015AGUFMSM31C2534H','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2015AGUFMSM31C2534H"><span>Fine Spectral Properties of Langmuir Waves Observed Upstream of the Saturn's Bowshock by the Cassini Wideband Receiver</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Hospodarsky, G. B.; Pisa, D.; Santolik, O.; Kurth, W. S.; Soucek, J.; Basovnik, M.; Gurnett, D. A.; Arridge, C. S.</p> <p>2015-12-01</p> <p>Langmuir waves are commonly observed in the upstream regions of planetary and interplanetary shock. Solar wind electrons accelerated at the shock front are reflected back into the solar wind and can form electron beams. In regions with beams, the electron distribution becomes unstable and electrostatic waves can be generated. The process of generation and the evolution of electrostatic waves strongly depends on the solar wind electron distribution and generally exhibits complex behavior. Langmuir waves can be identified as intense narrowband emission at a frequency very close to the local plasma frequency and weaker broadband waves below and above the plasma frequency deeper in the downstream region. We present a detailed study of Langmuir waves detected upstream of the Saturnian bowshock by the Cassini spacecraft. Using data from the Radio and Plasma Wave Science (RPWS), Magnetometer (MAG) and Cassini Plasma Spectrometer (CAPS) instruments we have analyzed several periods containing the extended waveform captures by the Wideband Receiver. Langmuir waves are a bursty emission highly controlled by variations in solar wind conditions. Unfortunately due to a combination of instrumental field of view and sampling period, it is often difficult to identify the electron distribution function that is unstable and able to generate Langmuir waves. We used an electrostatic version of particle-in-cell simulation of the Langmuir wave generation process to reproduce some of the more subtle observed spectral features and help understand the late stages of the instability and interactions in the solar wind plasma.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2014JPhCS.500r2026L','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2014JPhCS.500r2026L"><span>The bactericidal effect of shock waves</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Leighs, J. A.; Appleby-Thomas, G. J.; Wood, D. C.; Goff, M. J.; Hameed, A.; Hazell, P. J.</p> <p>2014-05-01</p> <p>There are a variety of theories relating to the origins of life on our home planet, some of which discuss the possibility that life may have been spread via inter-planetary bodies. There have been a number of investigations into the ability of life to withstand the likely conditions generated by asteroid impact (both contained in the impactor and buried beneath the planet surface). Previously published data regarding the ability of bacteria to survive such applied shockwaves has produced conflicting conclusions. The work presented here used an established and published technique in combination with a single stage gas gun, to shock and subsequently recover Escherichia coli populations suspended in a phosphate buffered saline solution. Peak pressure across the sample region was calculated via numerical modelling. Survival data against peak sample pressure for recovered samples is presented alongside control tests. SEM micrographs of shocked samples are presented alongside control sets to highlight key differences between cells in each case.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/17791372','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/17791372"><span>Magnetic Field Observations near Venus: Preliminary Results from Mariner 10.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Ness, N F; Behannon, K W; Lepping, R P; Whang, Y C; Schatten, K H</p> <p>1974-03-29</p> <p>The NASA-GSFC magnetic field experiment on Mariner 10 is the first flight of a dual magnetometer system conceived to permit accurate measurements of weak magnetic fields in space in the presence of a significant and variable spacecraft magnetic field. Results from a preliminary analysis of a limted data set are summarized in this report, which is restricted primarily to Venus encounter. A detached bow shock wave that develops as the super Alfvénic solar wind interacts with the Venusian atmosphere has been observed. However, the unique coincidence of trajectory position and interplanetary field orientation at the time of bow shock crossing led to a very disturbed shock profile with considerably enhanced upstream magnetic fluctuations. At present it is not possible to ascertain the nature and characteristics of the obstacle responsible for deflecting the solar wind flow. Far downstream disturbances associated with the solar wind wake have been observed.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2008JGRA..113.9101L','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2008JGRA..113.9101L"><span>On improvement to the Shock Propagation Model (SPM) applied to interplanetary shock transit time forecasting</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Li, H. J.; Wei, F. S.; Feng, X. S.; Xie, Y. Q.</p> <p>2008-09-01</p> <p>This paper investigates methods to improve the predictions of Shock Arrival Time (SAT) of the original Shock Propagation Model (SPM). According to the classical blast wave theory adopted in the SPM, the shock propagating speed is determined by the total energy of the original explosion together with the background solar wind speed. Noting that there exists an intrinsic limit to the transit times computed by the SPM predictions for a specified ambient solar wind, we present a statistical analysis on the forecasting capability of the SPM using this intrinsic property. Two facts about SPM are found: (1) the error in shock energy estimation is not the only cause of the prediction errors and we should not expect that the accuracy of SPM to be improved drastically by an exact shock energy input; and (2) there are systematic differences in prediction results both for the strong shocks propagating into a slow ambient solar wind and for the weak shocks into a fast medium. Statistical analyses indicate the physical details of shock propagation and thus clearly point out directions of the future improvement of the SPM. A simple modification is presented here, which shows that there is room for improvement of SPM and thus that the original SPM is worthy of further development.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2018ApJ...859...39M','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2018ApJ...859...39M"><span>An Analysis of Processes in the Solar Wind in a Thin Layer Adjacent to the Front of the Shock Wave</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Molotkov, I. A.; Atamaniuk, B.</p> <p>2018-05-01</p> <p>A two-dimensional stationary system of nonlinear magnetohydrodynamics (MHD) equations in a thin layer adjoining the front of the interplanetary shock wave has been solved. Previously, any available publications relied on linear transport equations. But the presence of high-energy particles in the solar wind (SW) requires taking into account the processes of self-interaction. Our analysis examines the nonlinear terms in the MHD equations. A solution has been constructed for three cases: (1) in the absence of magnetic reconnections; (2) for magnetic reconnections; and (3) with the simultaneous action of reconnections and junction of magnetic islands. In all three cases, expressions were found for the main parameters of the SW. The results obtained on the basis of the solution of the MHD equations are consistent with the conclusions based on the investigation of the particle velocity distribution functions. This makes it possible to confirm the previously established fraction of particles excited to energies above 1 MeV.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017AGUFMSM11B2303L','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017AGUFMSM11B2303L"><span>Electron Dropout Echoes Induced by Interplanetary Shock: A Statistical Study</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Liu, Z.; Zong, Q.; Hao, Y.; Zhou, X.; Ma, X.; Liu, Y.</p> <p>2017-12-01</p> <p>"Electron dropout echo" as indicated by repeated moderate dropout and recovery signatures of the flux of energetic electron in the out radiation belt region has been investigated systematically. The electron dropout and its echoes are usually found for higher energy (> 300 keV) channels fluxes, whereas the flux enhancements are obvious for lower energy electrons simultaneously after the interplanetary shock arrives at the Earth's geosynchronous orbit. 104 dropout echo events have been found from 215 interplanetary shock events from 1998 to 2007 based on LANL satellite data. In analogy to substorm injections, these 104 events could be naturally divided into two categories: dispersionless (49 events) or dispersive (55 events) according to the energy dispersion of the initial dropout. It is found that locations of dispersionless events are distributed mainly in the duskside magnetosphere. Further, the obtained locations derived from dispersive events with the time-of-flight technique of the initial dropout regions are mainly located at the duskside as well. Statistical studies have shown that the effect of shock normal, interplanetary magnetic field Bz and solar wind dynamic pressure may be insignificant to these electron dropout events. We suggest that the electric field impulse induced by the IP shock produces a more pronounced inward migration of electrons at the dusk side, resulting in the observed dusk-side moderate dropout of electron flux and its consequent echoes.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017AGUFMSM13F..07W','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017AGUFMSM13F..07W"><span>The Inner Magnetosphere Plasma Response to Interplanetary Shocks: Van Allen Probes HOPE Observations</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Winter, L. M.; Denton, M.; Ferradas, C.; Henderson, M. G.; Larsen, B.; Reeves, G.; Skoug, R. M.; Thomsen, M. F.</p> <p>2017-12-01</p> <p>The Van Allen Probes' Helium, Oxygen, Proton, and Electron (HOPE) sensors measure ion and electron populations in the plasmasphere, plasma sheet, and lower-energy ring current, providing unique observations at low energies (0.001-50 keV) and low L-shell (down to 1.5 RE). We use the capabilities of these two spacecraft to probe changes in the low energy particles in response to interplanetary (IP) shocks. We focus on changes in the plasma energies, composition, and pitch angle distributions following IP shocks and storm sudden commencements from 2012-2017 through a comparison of HOPE observations preceding and post shock.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2008AGUSMSH41A..17V','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2008AGUSMSH41A..17V"><span>Automated Detection and Analysis of Interplanetary Shocks Running Real-Time on the Web</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Vorotnikov, V.; Smith, C. W.; Hu, Q.; Szabo, A.; Skoug, R. M.; Cohen, C. M.; Davis, A. J.</p> <p>2008-05-01</p> <p>The ACE real-time data stream provides web-based now-casting capabilities for solar wind conditions upstream of Earth. We have built a fully automated code that finds and analyzes interplanetary shocks as they occur and posts their solutions on the Web for possible real-time application to space weather nowcasting. Shock analysis algorithms based on the Rankine-Hugoniot jump conditions exist and are in wide-spread use today for the interactive analysis of interplanetary shocks yielding parameters such as shock speed and propagation direction and shock strength in the form of compression ratios. At a previous meeting we reported on efforts to develop a fully automated code that used ACE Level-2 (science quality) data to prove the applicability and correctness of the code and the associated shock-finder. We have since adapted the code to run ACE RTSW data provided by NOAA. This data lacks the full 3-dimensional velocity vector for the solar wind and contains only a single component wind speed. We show that by assuming the wind velocity to be radial strong shock solutions remain essentially unchanged and the analysis performs as well as it would if 3-D velocity components were available. This is due, at least in part, to the fact that strong shocks tend to have nearly radial shock normals and it is the strong shocks that are most effective in space weather applications. Strong shocks are the only shocks that concern us in this application. The code is now running on the Web and the results are available to all.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://ntrs.nasa.gov/search.jsp?R=19880044594&hterms=plasma+focus&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D70%26Ntt%3Dplasma%2Bfocus','NASA-TRS'); return false;" href="https://ntrs.nasa.gov/search.jsp?R=19880044594&hterms=plasma+focus&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D70%26Ntt%3Dplasma%2Bfocus"><span>Shock analysis - Three useful new relations. [collisionless hydromagnetic shocks in space plasmas</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Smith, Edward J.; Burton, Marcia E.</p> <p>1988-01-01</p> <p>The behavior of collisionless hydromagnetic shocks in interplanetary space is considered analytically, with a focus on relations, implicit in the governing Rankine-Hugoniot equations, involving the magnetic field (B) and the plasma velocity (V). A moving reference frame aligned with the shock is employed, and expressions are derived which make it possible (1) to determine the speed of a shock of arbitrary orientation from upstream and downstream measurements of B and V; (2) to characterize the change in flow direction as the plasma crosses the shock in terms of the plasma beta, the Mach number, and the angle between the upstream field and the shock normal; and (3) to infer the third component of the upstream-downstream velocity jump from B and two-dimensional V measurements. These expressions are applied to ISEE-3 data on an interplanetary shock on April 5, 1979, and the results are presented in tables.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://ntrs.nasa.gov/search.jsp?R=20110013494&hterms=Butterfly&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D30%26Ntt%3DButterfly','NASA-TRS'); return false;" href="https://ntrs.nasa.gov/search.jsp?R=20110013494&hterms=Butterfly&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D30%26Ntt%3DButterfly"><span>Interplanetary Shocks Lacking Type 2 Radio Bursts</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Gopalswamy, N.; Xie, H.; Maekela, P.; Akiyama, S.; Yashiro, S.; Kaiser, M. L.; Howard, R. A.; Bougeret, J.-L.</p> <p>2010-01-01</p> <p>We report on the radio-emission characteristics of 222 interplanetary (IP) shocks detected by spacecraft at Sun-Earth L1 during solar cycle 23 (1996 to 2006, inclusive). A surprisingly large fraction of the IP shocks (approximately 34%) was radio quiet (RQ; i.e., the shocks lacked type II radio bursts). We examined the properties of coronal mass ejections (CMEs) and soft X-ray flares associated with such RQ shocks and compared them with those of the radio-loud (RL) shocks. The CMEs associated with the RQ shocks were generally slow (average speed approximately 535 km/s) and only approximately 40% of the CMEs were halos. The corresponding numbers for CMEs associated with RL shocks were 1237 km/s and 72%, respectively. Thus, the CME kinetic energy seems to be the deciding factor in the radio-emission properties of shocks. The lower kinetic energy of CMEs associated with RQ shocks is also suggested by the lower peak soft X-ray flux of the associated flares (C3.4 versus M4.7 for RL shocks). CMEs associated with RQ CMEs were generally accelerating within the coronagraph field of view (average acceleration approximately +6.8 m/s (exp 2)), while those associated with RL shocks were decelerating (average acceleration approximately 3.5 m/s (exp 2)). This suggests that many of the RQ shocks formed at large distances from the Sun, typically beyond 10 Rs, consistent with the absence of metric and decameter-hectometric (DH) type II radio bursts. A small fraction of RL shocks had type II radio emission solely in the kilometric (km) wavelength domain. Interestingly, the kinematics of the CMEs associated with the km type II bursts is similar to those of RQ shocks, except that the former are slightly more energetic. Comparison of the shock Mach numbers at 1 AU shows that the RQ shocks are mostly subcritical, suggesting that they were not efficient in accelerating electrons. The Mach number values also indicate that most of these are quasi-perpendicular shocks. The radio-quietness is predominant in the rise phase and decreases through the maximum and declining phases of solar cycle 23. About 18% of the IP shocks do not have discernible ejecta behind them. These shocks are due to CMEs moving at large angles from the Sun-Earth line and hence are not blast waves. The solar sources of the shock-driving CMEs follow the sunspot butterfly diagram, consistent with the higher-energy requirement for driving shocks.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017AGUFMSH41B2778G','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017AGUFMSH41B2778G"><span>The Acceleration of Thermal Protons and Minor Ions at a Quasi-Parallel Interplanetary Shock</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Giacalone, J.; Lario, D.; Lepri, S. T.</p> <p>2017-12-01</p> <p>We compare the results from self-consistent hybrid simulations (kinetic ions, massless fluid electrons) and spacecraft observations of a strong, quasi-parallel interplanetary shock that crossed the Advanced Composition Explorer (ACE) on DOY 94, 2001. In our simulations, the un-shocked plasma-frame ion distributions are Maxwellian. Our simulations include protons and minor ions (alphas, 3He++, and C5+). The interplanetary shock crossed both the ACE and the Wind spacecraft, and was associated with significant increases in the flux of > 50 keV/nuc ions. Our simulation uses parameters (ion densities, magnetic field strength, Mach number, etc.) consistent with those observed. Acceleration of the ions by the shock, in a manner similar to that expected from diffusive shock acceleration theory, leads to a high-energy tail in the distribution of the post-shock plasma for all ions we considered. The simulated distributions are directly compared to those observed by ACE/SWICS, EPAM, and ULEIS, and Wind/STICS and 3DP, covering the energy range from below the thermal peak to the suprathermal tail. We conclude from our study that the solar wind is the most significant source of the high-energy ions for this event. Our results have important implications for the physics of the so-called `injection problem', which will be discussed.</p> </li> </ol> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_6");'>6</a></li> <li><a href="#" onclick='return showDiv("page_7");'>7</a></li> <li class="active"><span>8</span></li> <li><a href="#" onclick='return showDiv("page_9");'>9</a></li> <li><a href="#" onclick='return showDiv("page_10");'>10</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div><!-- col-sm-12 --> </div><!-- row --> </div><!-- page_8 --> <div id="page_9" class="hiddenDiv"> <div class="row"> <div class="col-sm-12"> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_7");'>7</a></li> <li><a href="#" onclick='return showDiv("page_8");'>8</a></li> <li class="active"><span>9</span></li> <li><a href="#" onclick='return showDiv("page_10");'>10</a></li> <li><a href="#" onclick='return showDiv("page_11");'>11</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div> </div> <div class="row"> <div class="col-sm-12"> <ol class="result-class" start="161"> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://hdl.handle.net/2060/19890008966','NASA-TRS'); return false;" href="http://hdl.handle.net/2060/19890008966"><span>Earth rocks on Mars: Must planetary quarantine be rethought</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Melosh, H. J.</p> <p>1988-01-01</p> <p>Recent geochemical, isotopic, and rare gas studies suggest that eight SNC meteorites originated on the planet Mars. Since Martian rocks are found on Earth, consideration is being given to finding Earth rocks on Mars. Detailed consideration of the mechanism by which these meteorites were lofted into space strongly suggest that the process of stress-wave spallation near a large impact with, perhaps, an assist from vapor plume expansion, is the fundamental process by which lightly-shocked rock debris is ejected into interplanetary space. The theory of spall ejection was used to examine the mass and velocity of material ejected from the near vicinity of an impact. It seems likely that the half-dozen largest impact events on Earth would have ejected considerable masses of near surface rocks into interplanetary space. No computations were performed to indicate how long Earth ejecta would take to reach Mars.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://ntrs.nasa.gov/search.jsp?R=19900023755&hterms=seeds&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D80%26Ntt%3Dseeds','NASA-TRS'); return false;" href="https://ntrs.nasa.gov/search.jsp?R=19900023755&hterms=seeds&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D80%26Ntt%3Dseeds"><span>Seed population for about 1 MeV per nucleon heavy ions accelerated by interplanetary shocks</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Tan, L. C.; Mason, G. M.; Klecker, B.; Hovestadt, D.</p> <p>1989-01-01</p> <p>Data obtained between 1977 and 1982 by the ISEE 1 and ISEE 3 satellites on the composition of heavy ions of about 1 MeV per nucleon, accelerated in interplanetary shock events which followed solar flare events, are examined. It was found that the average relative abundances for C, O, and Fe in the shock events were very close to those found for energetic ions in the solar flares, suggesting that, at these energies, the shock accelerated particles have the solar energetic particles as their seed population. This hypothesis is supported by the fact that the Fe/O ratio in the solar particle events is very strongly correlated with the Fe/O ratio in associated diffusive shock events.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.osti.gov/biblio/22521951-energetic-particle-pressure-interplanetary-shocks-stereo-observations','SCIGOV-STC'); return false;" href="https://www.osti.gov/biblio/22521951-energetic-particle-pressure-interplanetary-shocks-stereo-observations"><span>ENERGETIC PARTICLE PRESSURE AT INTERPLANETARY SHOCKS: STEREO-A OBSERVATIONS</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.osti.gov/search">DOE Office of Scientific and Technical Information (OSTI.GOV)</a></p> <p>Lario, D.; Decker, R. B.; Roelof, E. C.</p> <p>2015-11-10</p> <p>We study periods of elevated energetic particle intensities observed by STEREO-A when the partial pressure exerted by energetic (≥83 keV) protons (P{sub EP}) is larger than the pressure exerted by the interplanetary magnetic field (P{sub B}). In the majority of cases, these periods are associated with the passage of interplanetary shocks. Periods when P{sub EP} exceeds P{sub B} by more than one order of magnitude are observed in the upstream region of fast interplanetary shocks where depressed magnetic field regions coincide with increases of energetic particle intensities. When solar wind parameters are available, P{sub EP} also exceeds the pressure exertedmore » by the solar wind thermal population (P{sub TH}). Prolonged periods (>12 hr) with both P{sub EP} > P{sub B} and P{sub EP} > P{sub TH} may also occur when energetic particles accelerated by an approaching shock encounter a region well upstream of the shock characterized by low magnetic field magnitude and tenuous solar wind density. Quasi-exponential increases of the sum P{sub SUM} = P{sub B} + P{sub TH} + P{sub EP} are observed in the immediate upstream region of the shocks regardless of individual changes in P{sub EP}, P{sub B}, and P{sub TH}, indicating a coupling between P{sub EP} and the pressure of the background medium characterized by P{sub B} and P{sub TH}. The quasi-exponential increase of P{sub SUM} implies a radial gradient ∂P{sub SUM}/∂r > 0 that is quasi-stationary in the shock frame and results in an outward force applied to the plasma upstream of the shock. This force can be maintained by the mobile energetic particles streaming upstream of the shocks that, in the most intense events, drive electric currents able to generate diamagnetic cavities and depressed solar wind density regions.« less</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2016AGUFMSH41D..07B','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2016AGUFMSH41D..07B"><span>Association of Impulsive Solar Energetic Particle Events With Large-Scale Coronal Waves</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Bucik, R.; Innes, D.; Mason, G. M.; Wiedenbeck, M. E.</p> <p>2016-12-01</p> <p>Impulsive or 3He-rich solar energetic particle (SEP) events have been commonly associated with EUV jets and narrow CMEs which are believed to be the signatures of magnetic reconnection involving field lines open to interplanetary space. The elemental and isotopic fractionation in these events are thought to be caused by processes confined to the flare sites. In addition to their anomalous abundances, 3He-rich SEPs show puzzling energy spectral shapes varying from rounded forms to power laws where the later are characteristics of shock acceleration. In this study we identify 32 impulsive SEP events observed by the ACE near the Earth during the solar minimum period 2007-2010 and examine their solar sources with the high resolution STEREO EUV images. Leading the Earth, STEREO-A provided for the first time a direct view on impulsive SEP event sources, which are generally located on the Sun's western hemisphere. Surprisingly, we find that about half of the impulsive SEP events in this survey are associated with large-scale EUV coronal waves. An examination of the wave front propagation and the coronal magnetic field connections suggests that the EUV waves may affect the injection of 3He-rich SEPs into interplanetary space. We found the events with jets tend to be associated with rounded spectra and the events with coronal waves with power laws. This suggests that coronal waves may be related to the unknown second stage mechanism commonly used to interpret spectral forms of 3He-rich SEPs. R. Bucik is supported by the Deutsche Forschungsgemeinschaft under grant BU 3115/2-1.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2013AGUSMSH53B..01S','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2013AGUSMSH53B..01S"><span>CORSAIR Solar Energetic Particle Model</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Sandroos, A.</p> <p>2013-05-01</p> <p>Acceleration of particles in coronal mass ejection (CME) driven shock waves is the most commonly accepted and best developed theory of the genesis of gradual solar energetic particle (SEP) events. The underlying acceleration mechanism is the diffusive shock acceleration (DSA). According to DSA, particles scatter from fluctuations present in the ambient magnetic field, which causes some particles to encounter the shock front repeatedly and to gain energy during each crossing. Currently STEREO and near-Earth spacecraft are providing valuable multi-point information on how SEP properties, such as composition and energy spectra, vary in longitude. Initial results have shown that longitude distributions of large CME-associated SEP events are much wider than reported in earlier studies. These findings have important consequences on SEP modeling. It is important to extend the present models into two or three spatial coordinates to properly take into account the effects of coronal and interplanetary (IP) magnetic geometry, and evolution of the CME and the associated shock, on the acceleration and transport of SEPs. We give a status update on CORSAIR project, which is an effort to develop a new self-consistent (total energy conserving) DSA acceleration model that is capable of modeling energetic particle acceleration and transport in IP space in two or three spatial dimensions. In the new model particles are propagated using guiding center approximation. Waves are modeled as (Lagrangian) wave packets propagating (anti)parallel to ambient magnetic field. Diffusion coefficients related to scattering from the waves are calculated using quasilinear theory. State of ambient plasma is obtained from an MHD simulation or by using idealized analytic models. CORSAIR is an extension to our earlier efforts to model the effects of magnetic geometry on SEP acceleration (Sandroos & Vainio, 2007,2009).</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://hdl.handle.net/2060/20140010128','NASA-TRS'); return false;" href="http://hdl.handle.net/2060/20140010128"><span>The Radiation, Interplanetary Shocks, and Coronal Sources (RISCS) Toolset</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Zank, G. P.; Spann, James F.</p> <p>2014-01-01</p> <p>The goal of this project is to serve the needs of space system designers and operators by developing an interplanetary radiation environment model within 10 AU:Radiation, Interplanetary Shocks, and Coronal Sources (RISCS) toolset: (1) The RISCS toolset will provide specific reference environments for space system designers and nowcasting and forecasting capabilities for space system operators; (2) We envision the RISCS toolset providing the spatial and temporal radiation environment external to the Earth's (and other planets') magnetosphere, as well as possessing the modularity to integrate separate applications (apps) that can map to specific magnetosphere locations and/or perform the subsequent radiation transport and dosimetry for a specific target.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2007PhyU...50..141B','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2007PhyU...50..141B"><span>REVIEWS OF TOPICAL PROBLEMS: Instabilities of a multicomponent plasma with accelerated particles and magnetic field generation in astrophysical objects</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Bykov, Andrei M.; Toptygin, Igor'N.</p> <p>2007-02-01</p> <p>A system of MHD equations for the description of a magnetized nonequilibrium astrophysical plasma with neutral atoms and suprathermal (in particular, relativistic) particles is formulated. The instabilities of such a plasma, which arise from the presence of neutral and relativistic components, are considered. It is shown that the presence of nonthermal particles interacting with the thermal plasma component via regular and fluctuating electromagnetic fields is responsible for the emergence of specific mechanisms of MHD wave generation. The main generation mechanisms of static and turbulent magnetic fields near shock wave fronts in the Galaxy and interplanetary space are analyzed. We discuss the application of the generation effects of long-wave magnetic fluctuations to the problems of magnetic field origin and relativistic particle acceleration in astrophysical objects of various natures.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://ntrs.nasa.gov/search.jsp?R=19840051069&hterms=media+influence&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D30%26Ntt%3Dmedia%2Binfluence','NASA-TRS'); return false;" href="https://ntrs.nasa.gov/search.jsp?R=19840051069&hterms=media+influence&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D30%26Ntt%3Dmedia%2Binfluence"><span>Hydromagnetic waves, turbulence, and collisionless processes in the interplanetary medium</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Barnes, A.</p> <p>1983-01-01</p> <p>An extended discussion is conducted concerning the origin and evolution of interplanetary hydromagnetic waves and turbulence, and their influence on the large scale dynamics of the solar wind. The solar wind is at present the preeminent medium for the study of hydromagnetic waves and turbulence, providing an opportunity for advancement of understanding of the most fundamental processes of the astrophysical plasmas. All interplanetary fluctuations whose time scale is observed to be greater than 1 sec can be regarded as hydromagnetic fluctuations. It has been found to be simplest, and generally very satisfactory, to model interplanetary variations as fluctuations in an MHD fluid. Attention is given to the classification of wave modes, geometrical hydromagnetics, Alfven wave pressure, rugged invariants, and the kinetic theory of collisionless processes.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2018AdSpR..61....1O','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2018AdSpR..61....1O"><span>Geoeffectiveness of interplanetary shocks controlled by impact angles: A review</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Oliveira, D. M.; Samsonov, A. A.</p> <p>2018-01-01</p> <p>The high variability of the Sun's magnetic field is responsible for the generation of perturbations that propagate throughout the heliosphere. Such disturbances often drive interplanetary shocks in front of their leading regions. Strong shocks transfer momentum and energy into the solar wind ahead of them which in turn enhance the solar wind interaction with magnetic fields in its way. Shocks then eventually strike the Earth's magnetosphere and trigger a myriad of geomagnetic effects observed not only by spacecraft in space, but also by magnetometers on the ground. Recently, it has been revealed that shocks can show different geoeffectiveness depending closely on the angle of impact. Generally, frontal shocks are more geoeffective than inclined shocks, even if the former are comparatively weaker than the latter. This review is focused on results obtained from modeling and experimental efforts in the last 15 years. Some theoretical and observational background are also provided.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://ntrs.nasa.gov/search.jsp?R=19890030002&hterms=jump&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D60%26Ntt%3Djump','NASA-TRS'); return false;" href="https://ntrs.nasa.gov/search.jsp?R=19890030002&hterms=jump&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D60%26Ntt%3Djump"><span>Electron heating and the potential jump across fast mode shocks. [in interplanetary space</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Schwartz, Steven J.; Thomsen, Michelle F.; Bame, S. J.; Stansberry, John</p> <p>1988-01-01</p> <p>Two different methods were applied to determine the cross-shock potential jump in the de Hoffmann-Teller reference frame, using a data set that represented 66 crossings of the terrestrial bow shock and 14 interplanetary shocks observed by various ISEE spacecraft, and one crossing each of the Jovian bow shock and the Uranian bow shock made by the Voyager spacecraft. Results for estimates of the electrostatic potential based on an estimate of the jump in electron enthalpy correlated well with estimates based on Liouville's theorem, although the Liouville-determined values were systematically the higher of the two, suggesting that significant irreversible processes contribute to the shape of the downstream distribution. The potential jump corresponds to approximately 12-15 percent of the incident ion ram kinetic energy, and was found not to be controlled by the Mach number, plasma beta, shock geometry, or electron to ion temperature ratios.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2003ICRC....6.3623T','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2003ICRC....6.3623T"><span>Dynamics of Solar Energetic Particles in the Presence of a Shock Wave</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Timofeev, V. E.; Petukhov, Ivan; Petukhov, Stanislav; Starodubtsev, Sergei</p> <p>2003-07-01</p> <p>From the analysis of problem solutions on the solar energetic particle propagation in the presence of a plane shock wave described by the diffusion convective transport equation, the condition and manifestations for the influence of a shock wave on the SEP propagation in the solar wind have been determined. Solar energetic particles (SEP) in gradual events are generated by shock waves (see, for example, [1] and references there). The SEP generation region is limited, on the whole, by the solar corona. Proton fluxes of 470 MeV to 21 GeV energies, a maximum of which occur at a time when the shock in the atmosphere of the Sun reaches heights equal to 5 10 solar radii [2] indicate to it. It is also confirmed by the significant advancing of the occurrence time of maximum in the SEP intensity with kinetic energies more than 10 MeV relative to the shock front arrival moment to Earth's orbit. model calculations for the particles acceleration by the diffusive mechanism in conditions, typical for the solar corona, show that the time taken to pass the solar atmosphere by the shock is quite sufficient to form the particle spectrum corresponding to the SEP characteristics observed [3,4]. Lee and Ryan [5] investigated the problem of SEP gradual event generation, propagation and confirmed the close association between the diffusive acceleration mechanism and SEP events. The absence of depending of particle diffusion coefficients on the energy is a lack of this model. As an extension of preceding investigations, in this work the temporal dynamics of the particle spectrum in the presence of a plane shock for diffusion coefficients depending on the particle energy and also their change in time is studied. The SEP event from a moment of arising of a shock to a moment of it's arrival on the Earth's orbit can be divided on two stages: the first stage (duration is ˜ 1 hour) is a generation of SEP in the solar corona, the second stage (duration is ˜ 1 day) is a propagation in interplanetary space in the presence of a shock. Here we consider the second stage only which as believed to be began with the injection of the particle spectrum formed during the first stage.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://ntrs.nasa.gov/search.jsp?R=19810030288&hterms=lazarus&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAuthor-Name%26N%3D0%26No%3D90%26Ntt%3Dlazarus','NASA-TRS'); return false;" href="https://ntrs.nasa.gov/search.jsp?R=19810030288&hterms=lazarus&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAuthor-Name%26N%3D0%26No%3D90%26Ntt%3Dlazarus"><span>Deceleration of the solar wind in the earth's foreshock region - Isee 2 and Imp 8 observations</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Bonifazi, C.; Moreno, G.; Lazarus, A. J.; Sullivan, J. D.</p> <p>1980-01-01</p> <p>The deceleration of the solar wind in the region of the interplanetary space filled by ions backstreaming from the earth's bow shock and associated waves is studied using a two-spacecraft technique. This deceleration depends on the solar wind bulk velocity; at low velocities (below 300 km/s) the velocity decrease is about 5 km/s, while at higher velocities (above 400 km/s) the decrease may be as large as 30 km/s. The energy balance shows that the kinetic energy loss far exceeds the thermal energy which is possibly gained by the solar wind; therefore at least part of this energy must go into waves and/or into the backstreaming ions.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2006AGUFMSH43B1514V','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2006AGUFMSH43B1514V"><span>Automated Detection and Analysis of Interplanetary Shocks with Real-Time Application</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Vorotnikov, V.; Smith, C. W.; Hu, Q.; Szabo, A.; Skoug, R. M.; Cohen, C. M.</p> <p>2006-12-01</p> <p>The ACE real-time data stream provides web-based now-casting capabilities for solar wind conditions upstream of Earth. Our goal is to provide an automated code that finds and analyzes interplanetary shocks as they occur for possible real-time application to space weather nowcasting. Shock analysis algorithms based on the Rankine-Hugoniot jump conditions exist and are in wide-spread use today for the interactive analysis of interplanetary shocks yielding parameters such as shock speed and propagation direction and shock strength in the form of compression ratios. Although these codes can be automated in a reasonable manner to yield solutions not far from those obtained by user-directed interactive analysis, event detection presents an added obstacle and the first step in a fully automated analysis. We present a fully automated Rankine-Hugoniot analysis code that can scan the ACE science data, find shock candidates, analyze the events, obtain solutions in good agreement with those derived from interactive applications, and dismiss false positive shock candidates on the basis of the conservation equations. The intent is to make this code available to NOAA for use in real-time space weather applications. The code has the added advantage of being able to scan spacecraft data sets to provide shock solutions for use outside real-time applications and can easily be applied to science-quality data sets from other missions. Use of the code for this purpose will also be explored.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.osti.gov/biblio/22663329-presence-turbulent-ordered-local-structure-within-icme-shock-sheath-its-contribution-forbush-decrease','SCIGOV-STC'); return false;" href="https://www.osti.gov/biblio/22663329-presence-turbulent-ordered-local-structure-within-icme-shock-sheath-its-contribution-forbush-decrease"><span>The Presence of Turbulent and Ordered Local Structure within the ICME Shock-sheath and Its Contribution to Forbush Decrease</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.osti.gov/search">DOE Office of Scientific and Technical Information (OSTI.GOV)</a></p> <p>Shaikh, Zubair; Bhaskar, Ankush; Raghav, Anil, E-mail: raghavanil1984@gmail.com</p> <p></p> <p>The transient interplanetary disturbances evoke short-time cosmic-ray flux decrease, which is known as Forbush decrease. The traditional model and understanding of Forbush decrease suggest that the sub-structure of an interplanetary counterpart of coronal mass ejection (ICME) independently contributes to cosmic-ray flux decrease. These sub-structures, shock-sheath, and magnetic cloud (MC) manifest as classical two-step Forbush decrease. The recent work by Raghav et al. has shown multi-step decreases and recoveries within the shock-sheath. However, this cannot be explained by the ideal shock-sheath barrier model. Furthermore, they suggested that local structures within the ICME’s sub-structure (MC and shock-sheath) could explain this deviation ofmore » the FD profile from the classical FD. Therefore, the present study attempts to investigate the cause of multi-step cosmic-ray flux decrease and respective recovery within the shock-sheath in detail. A 3D-hodogram method is utilized to obtain more details regarding the local structures within the shock-sheath. This method unambiguously suggests the formation of small-scale local structures within the ICME (shock-sheath and even in MC). Moreover, the method could differentiate the turbulent and ordered interplanetary magnetic field (IMF) regions within the sub-structures of ICME. The study explicitly suggests that the turbulent and ordered IMF regions within the shock-sheath do influence cosmic-ray variations differently.« less</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://ntrs.nasa.gov/search.jsp?R=19890056285&hterms=quasi+particle&qs=N%3D0%26Ntk%3DAll%26Ntx%3Dmode%2Bmatchall%26Ntt%3Dquasi%2Bparticle','NASA-TRS'); return false;" href="https://ntrs.nasa.gov/search.jsp?R=19890056285&hterms=quasi+particle&qs=N%3D0%26Ntk%3DAll%26Ntx%3Dmode%2Bmatchall%26Ntt%3Dquasi%2Bparticle"><span>Energetic particle diffusion coefficients upstream of quasi-parallel interplanetary shocks</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Tan, L. C.; Mason, G. M.; Gloeckler, G.; Ipavich, F. M.</p> <p>1989-01-01</p> <p>The properties of about 30 to 130-keV/e protons and alpha particles upstream of six quasi-parallel interplanetary shocks that passed by the ISEE 3 spacecraft during 1978-1979 were analyzed, and the values for the upstream energegic particle diffusion coefficient, kappa, in these six events were deduced for a number of energies and upstream positions. These observations were compared with predictions of Lee's (1983) theory of shock acceleration. It was found that the observations verified the prediction of the A/Q dependence (where A and Q are the particle atomic mass and ionization state, respectively) of kappa for alpha and proton particles upstream of the quasi-parallel shocks.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://ntrs.nasa.gov/search.jsp?R=20100021371&hterms=media+influence&qs=N%3D0%26Ntk%3DAll%26Ntx%3Dmode%2Bmatchall%26Ntt%3Dmedia%2Binfluence','NASA-TRS'); return false;" href="https://ntrs.nasa.gov/search.jsp?R=20100021371&hterms=media+influence&qs=N%3D0%26Ntk%3DAll%26Ntx%3Dmode%2Bmatchall%26Ntt%3Dmedia%2Binfluence"><span>Influences of the Driver and Ambient Medium Characteristics on the Formation of Shocks in the Solar Atmosphere</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Nat, Gopalswamy; Hong, Xie; Seiji, Yashiro; Pertti, Makela; Sachiko, Akiyama</p> <p>2010-01-01</p> <p>Traveling interplanetary (IP) shocks were discovered in the early 1960s, but their solar origin has been controversial. Early research focused on solar flares as the source of the shocks, but when coronal mass ejections (CMEs) were discovered, it became clear that fast CMEs clearly can drive the shocks. Type II radio bursts are excellent signatures of shocks near the Sun. The close correspondence between type II radio bursts and solar energetic particles (SEPs) makes it clear that the same shock accelerates ions and electrons. A recent investigation involving a large number of IP shocks revealed that about 35% of IP shocks do not produce type II bursts or SEPs. Comparing these radio quiet (RQ) shocks with the radio loud (RL) ones revealed some interesting results: (1) there is no evidence for blast waves, in that all IP shocks can be attributed to CMEs, (2) a small fraction (20%) of RQ shocks is associated with ion enhancements at the shocks when they move past the observing spacecraft, (3) the primary difference between the RQ and RL shocks can be traced to the different kinematic properties of the associated CMEs and the variation of the characteristic speeds of the ambient medium, and (4) the shock properties measured at 1 AU are not too different for the RQ and RL cases due to the interaction of the shock driver with the IP medium that seems to erase the difference.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017AGUFMSH41B2777P','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017AGUFMSH41B2777P"><span>The acceleration of particles at propagating interplanetary shocks</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Prinsloo, P. L.; Strauss, R. D. T.</p> <p>2017-12-01</p> <p>Enhancements of charged energetic particles are often observed at Earth following the eruption of coronal mass ejections (CMEs) on the Sun. These enhancements are thought to arise from the acceleration of those particles at interplanetary shocks forming ahead of CMEs, propagating into the heliosphere. In this study, we model the acceleration of these energetic particles by solving a set of stochastic differential equations formulated to describe their transport and including the effects of diffusive shock acceleration. The study focuses on how acceleration at halo-CME-driven shocks alter the energy spectra of non-thermal particles, while illustrating how this acceleration process depends on various shock and transport parameters. We finally attempt to establish the relative contributions of different seed populations of energetic particles in the inner heliosphere to observed intensities during selected acceleration events.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://ntrs.nasa.gov/search.jsp?R=19840060501&hterms=white+cane&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D20%26Ntt%3Dwhite%2Bcane','NASA-TRS'); return false;" href="https://ntrs.nasa.gov/search.jsp?R=19840060501&hterms=white+cane&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D20%26Ntt%3Dwhite%2Bcane"><span>Type II solar radio bursts, interplanetary shocks, and energetic particle events</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Cane, H. V.; Stone, R. G.</p> <p>1984-01-01</p> <p>Using the ISEE-3 radio astronomy experiment data 37 interplanetary (IP) type II bursts have been identified in the period September 1978 to December 1981. These events and the associated phenomena are listed. The events are preceded by intense, soft X ray events with long decay times (LDEs) and type II and/or type IV bursts at meter wavelengths. The meter wavelength type II bursts are usually intense and exhibit herringbone structure. The extension of the herringbone structure into the kilometer wavelength range results in the occurrence of a shock accelerated (SA) event. The majority of the interplanetary type II bursts are associated with energetic particle events. These results support other studies awhich indicate that energetic solar particles detected at 1 A.U. are generated by shock acceleration. From a preliminary analysis of the available data there appears to be a high correlation with white light coronal transients.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://hdl.handle.net/2060/19830009164','NASA-TRS'); return false;" href="http://hdl.handle.net/2060/19830009164"><span>Type 2 radio bursts, interplanetary shocks and energetic particle events</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Cane, H. V.; Stone, R. G.</p> <p>1982-01-01</p> <p>Using the ISEE-3 radio astronomy experiment data 37 interplanetary (IP) type II bursts have been identified in the period September 1978 to December 1981. These events and the associated phenomena are listed. The events are preceded by intense, soft X ray events with long decay times (LDEs) and type II and/or type IV bursts at meter wavelengths. The meter wavelength type II bursts are usually intense and exhibit herringbone structure. The extension of the herringbone structure into the kilometer wavelength range results in the occurrence of a shock accelerated (SA) event. The majority of the interplanetary type II bursts are associated with energetic particle events. These results support other studies which indicate that energetic solar particles detected at 1 A.U. are generated by shock acceleration. From a preliminary analysis of the available data there appears to be a high correlation with white light coronal transients.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.osti.gov/biblio/22679709-observation-magnetic-waves-excited-newborn-interstellar-pickup-he+-observed-voyager-spacecraft-au','SCIGOV-STC'); return false;" href="https://www.osti.gov/biblio/22679709-observation-magnetic-waves-excited-newborn-interstellar-pickup-he+-observed-voyager-spacecraft-au"><span>Observation of Magnetic Waves Excited by Newborn Interstellar Pickup He+ Observed by the Voyager 2 Spacecraft at 30 au</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.osti.gov/search">DOE Office of Scientific and Technical Information (OSTI.GOV)</a></p> <p>Argall, Matthew R.; Hollick, Sophia J.; Pine, Zackary B., E-mail: Matthew.Argall@unh.edu, E-mail: sjhollick@hotmail.com, E-mail: zbpine@gmail.com</p> <p></p> <p>We report two observations of magnetic waves due to He{sup +} pickup ions observed by the Voyager 2 spacecraft in mid-1989 to demonstrate that such waves occur as far out as ∼30 au from the Sun. The observations are sufficiently far from planets, interplanetary shocks, and other possible sources of energetic particles to make newborn interstellar He{sup +} the only likely explanation for the source of the waves. Additionally, the low-frequency waves that might be expected for a variety of cometary pickup species are not seen. The events studied here were picked from a preliminary list of ∼300 events thatmore » were discovered based on polarization signatures in daily spectrograms of the magnetic field between 1977 and 1990. Analysis of those observations is ongoing. We present an analysis of these two observations using the same techniques we have employed for recently reported observations closer to the Sun.« less</p> </li> </ol> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_7");'>7</a></li> <li><a href="#" onclick='return showDiv("page_8");'>8</a></li> <li class="active"><span>9</span></li> <li><a href="#" onclick='return showDiv("page_10");'>10</a></li> <li><a href="#" onclick='return showDiv("page_11");'>11</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div><!-- col-sm-12 --> </div><!-- row --> </div><!-- page_9 --> <div id="page_10" class="hiddenDiv"> <div class="row"> <div class="col-sm-12"> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_8");'>8</a></li> <li><a href="#" onclick='return showDiv("page_9");'>9</a></li> <li class="active"><span>10</span></li> <li><a href="#" onclick='return showDiv("page_11");'>11</a></li> <li><a href="#" onclick='return showDiv("page_12");'>12</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div> </div> <div class="row"> <div class="col-sm-12"> <ol class="result-class" start="181"> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017CosRe..55..403E','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017CosRe..55..403E"><span>Effect of reflected ions on the formation of the structure of interplanetary quasi-perpendicular shocks for Mach numbers lower than the first critical mach number</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Eselevich, V. G.; Borodkova, N. L.; Sapunova, O. V.; Zastenker, G. N.; Yermolaev, Yu. I.</p> <p>2017-11-01</p> <p>Based on the data of the BMSW instrument installed on the of SPEKTR-R spacecraft, as well as according to the data of instruments of the WIND spacecraft, etc., using two examples, the paper has studied the role of ions reflected from the front and associated structural features of quasi-perpendicular interplanetary shocks (IS) with the Alfvén Mach number M A lower than the first critical Mach number M c1 . It has been shown that BSs with the finite parameter 0.1 < β1 < 1 contain a small fraction of reflected protons, which play a significant role in forming the front structure (β1 is the ratio of gas-to-magnetic pressure before the shock front). In particular, in the case of a perpendicular shock recorded on August 24, 2013 (the angle between the magnetic field direction and the normal to the front θBn ≈ 85°), an IS with a small Mach number ( M A ≈ 1.4) and small β1 ≈ 0.2 is shown that the interactions of reflected ions with inflowing solar wind may result in the collisionless heating of ions in front of and behind it. The case of the oblique (θBn = 63°) IS on April 19, 2014 with a small Mach number ( M A ≈ 1.2) and small β1 ≈ 0.5 has been investigated. It has been found that, before the front, there is a sequence of trains of magnetosonic waves, the amplitude of which decreases to zero upon increasing their distance from the front. The mechanism of their formation is associated with the development of instability caused by the ions reflected from the front.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://hdl.handle.net/2060/19830025541','NASA-TRS'); return false;" href="http://hdl.handle.net/2060/19830025541"><span>Electron heating at interplanetary shocks</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Feldman, W. C.; Asbridge, J. R.; Bame, S. J.; Gosling, J. T.; Zwickl, R. D.</p> <p>1982-01-01</p> <p>Data for 41 forward interplanetary shocks show that the ratio of downstream to upstream electron temperatures, T/sub e/(d/u) is variable in the range between 1.0 (isothermal) and 3.0. On average, (T/sub e/(d/u) = 1.5 with a standard deviation, sigma e = 0.5. This ratio is less than the average ratio of proton temperatures across the same shocks, (T/sub p/(d/u)) = 3.3 with sigma p = 2.5 as well as the average ratio of electron temperatures across the Earth's bow shock. Individual samples of T/sub e/(d/u) and T/sub p/(d/u) appear to be weakly correlated with the number density ratio. However the amounts of electron and proton heating are well correlated with each other as well as with the bulk velocity difference across each shock. The stronger shocks appear to heat the protons relatively more efficiently than they heat the electrons.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://ntrs.nasa.gov/search.jsp?R=20000094839&hterms=monographs&qs=N%3D0%26Ntk%3DAll%26Ntx%3Dmode%2Bmatchall%26Ntt%3Dmonographs','NASA-TRS'); return false;" href="https://ntrs.nasa.gov/search.jsp?R=20000094839&hterms=monographs&qs=N%3D0%26Ntk%3DAll%26Ntx%3Dmode%2Bmatchall%26Ntt%3Dmonographs"><span>Theory of Type 3 and Type 2 Solar Radio Emissions</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Robinson, P. A.; Cairns, I. H.</p> <p>2000-01-01</p> <p>The main features of some current theories of type III and type II bursts are outlined. Among the most common solar radio bursts, type III bursts are produced at frequencies of 10 kHz to a few GHz when electron beams are ejected from solar active regions, entering the corona and solar wind at typical speeds of 0.1c. These beams provide energy to generate Langmuir waves via a streaming instability. In the current stochastic-growth theory, Langmuir waves grow in clumps associated with random low-frequency density fluctuations, leading to the observed spiky waves. Nonlinear wave-wave interactions then lead to secondary emission of observable radio waves near the fundamental and harmonic of the plasma frequency. Subsequent scattering processes modify the dynamic radio spectra, while back-reaction of Langmuir waves on the beam causes it to fluctuate about a state of marginal stability. Theories based on these ideas can account for the observed properties of type III bursts, including the in situ waves and the dynamic spectra of the radiation. Type 11 bursts are associated with shock waves propagating through the corona and interplanetary space and radiating from roughly 30 kHz to 1 GHz. Their basic emission mechanisms are believed to be similar to those of type III events and radiation from Earth's foreshock. However, several sub-classes of type II bursts may exist with different source regions and detailed characteristics. Theoretical models for type II bursts are briefly reviewed, focusing on a model with emission from a foreshock region upstream of the shock for which observational evidence has just been reported.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017AGUFMSH53A2546J','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017AGUFMSH53A2546J"><span>Lessons Learned from 10 Years of STEREO Solar Wind Observations</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Jian, L. K.; Russell, C. T.; Luhmann, J. G.; Galvin, A. B.</p> <p>2017-12-01</p> <p>We have conducted long-term observations of large-scale solar wind structures since the launch of STEREO spacecraft, specifically interplanetary CMEs (ICMEs), slow-to-fast stream interaction regions (SIRs), and interplanetary shocks. In combination with our previous observations of the same solar wind structures in 1995-2009 using Wind/ACE data and the same identification criteria, we have first studied the solar cycle variations of these structures, especially for the same phases of solar cycles 23 and 24. Attributing the shocks to the interplanetary drivers, we have statistically compared the shocks driven by ICMEs and SIRs, and explained the shocks without a clear local driver. In addition, using the longitudinal and latitudinal separations between the twin spacecraft, we have investigated the recurrence and variability of ICMEs and SIRs, and gained the critical implications for the proposed L5 mission. At last, we have associated the heliospheric current sheet (HCS) crossings with the ICMEs and SIRs, and compared the properties of SIRs with and without HCS crossings, which correspond to the helmet streamers and pseudostreamers, respectively. The findings are important constraints on the theories of slow wind origin.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2016cosp...41E.787H','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2016cosp...41E.787H"><span>Observations of a solar storm from the stratosphere: The BARREL Mission</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Halford, Alexa</p> <p>2016-07-01</p> <p>During the Balloon Array for Radiation belt Relativistic Electron Losses (BARREL) second campaign, BARREL observed with a single primary instrument, a 3"x3" NaI spectrometer measuring 20 keV - 10 MeV X-rays [Woodger et al 2015 JGR], portions of an entire solar storm. This very small event, in terms of geomagnetic activity, or one of the largest of the current solar cycle, in terms of solar energetic particle events, has given us a very clear set of observations of the response of the day side magnetosphere to the arrival of an interplanetary coronal mass ejection shock. The BARREL mission of opportunity working in tandem with the Van Allen Probes was designed to study the loss of radiation belt electrons to the ionosphere and upper atmosphere. However BARREL is able to see X-rays from a multitude of sources. During the second campaign, the Sun produced, and BARREL observed, an X-class flare [McGregor et al in prep.]. This was followed by BARREL observations of X-rays, gamma-rays, and directly injected protons from the solar energetic particle (SEP) event associated with the eruption from the Sun while simultaneously the Van Allen Probes observed the SEP protons in the inner magnetosphere [Halford et al 2016 submitted JGR]. Two days later the shock generated by the interplanetary coronal mass ejection (ICME-shock) hit the Earth while BARREL was in conjunction with the Van Allen Probes and GOES [Halford et al 2015 JGR]. Although this was a Mars directed CME and the Earth only received a glancing blow [Möstl et al 2015 Nat. Commun., Mays et al 2015 ApJ], the modest compression led to the formation of ultra low frequency (ULF) waves, electromagnetic ion cyclotron (EMIC) waves, and very low frequency (VLF) whistler mode waves [Halford and Mann 2016 submitted to JGR]. The combination of these waves and the enhancement of the local particle population led to precipitation of electrons remotely observed by BARREL. This was not a Halloween, Bastille Day, or one of the now many St. Patricks Day storms. In fact it's unlikely that it will ever get it's own Holliday nickname. But unlike those larger geomagnetic events, the 7 - 10 January 2014 event was less complicated allowing us to directly test the relative importance of multiple loss mechanisms, see how waves are generated, and by and large gain a more complete understanding of how the system interacts as well as how quiet times can affect radiation belt dynamics.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://ntrs.nasa.gov/search.jsp?R=20170005233&hterms=probe&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D20%26Ntt%3Dprobe','NASA-TRS'); return false;" href="https://ntrs.nasa.gov/search.jsp?R=20170005233&hterms=probe&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D20%26Ntt%3Dprobe"><span>Prompt Injections of Highly Relativistic Electrons Induced by Interplanetary Shocks: A Statistical Study of Van Allen Probes Observations</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Schiller, Q.; Kanekal, S. G.; Jian, L. K,; Li, X.; Jones, A.; Baker, D. N.; Jaynes, A.; Spence, H. E.</p> <p>2016-01-01</p> <p>We conduct a statistical study on the sudden response of outer radiation belt electrons due to interplanetary (IP) shocks during the Van Allen Probes era, i.e., 2012 to 2015. Data from the Relativistic Electron-Proton Telescope instrument on board Van Allen Probes are used to investigate the highly relativistic electron response (E greater than 1.8 MeV) within the first few minutes after shock impact. We investigate the relationship of IP shock parameters, such as Mach number, with the highly relativistic electron response, including spectral properties and radial location of the shock-induced injection. We find that the driving solar wind structure of the shock does not affect occurrence for enhancement events, 25% of IP shocks are associated with prompt energization, and 14% are associated with MeV electron depletion. Parameters that represent IP shock strength are found to correlate best with highest levels of energization, suggesting that shock strength may play a key role in the severity of the enhancements. However, not every shock results in an enhancement, indicating that magnetospheric preconditioning may be required.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2013SSRv..175...53R','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2013SSRv..175...53R"><span>The Two Sources of Solar Energetic Particles</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Reames, Donald V.</p> <p>2013-06-01</p> <p>Evidence for two different physical mechanisms for acceleration of solar energetic particles (SEPs) arose 50 years ago with radio observations of type III bursts, produced by outward streaming electrons, and type II bursts from coronal and interplanetary shock waves. Since that time we have found that the former are related to "impulsive" SEP events from impulsive flares or jets. Here, resonant stochastic acceleration, related to magnetic reconnection involving open field lines, produces not only electrons but 1000-fold enhancements of 3He/4He and of ( Z>50)/O. Alternatively, in "gradual" SEP events, shock waves, driven out from the Sun by coronal mass ejections (CMEs), more democratically sample ion abundances that are even used to measure the coronal abundances of the elements. Gradual events produce by far the highest SEP intensities near Earth. Sometimes residual impulsive suprathermal ions contribute to the seed population for shock acceleration, complicating the abundance picture, but this process has now been modeled theoretically. Initially, impulsive events define a point source on the Sun, selectively filling few magnetic flux tubes, while gradual events show extensive acceleration that can fill half of the inner heliosphere, beginning when the shock reaches ˜2 solar radii. Shock acceleration occurs as ions are scattered back and forth across the shock by resonant Alfvén waves amplified by the accelerated protons themselves as they stream away. These waves also can produce a streaming-limited maximum SEP intensity and plateau region upstream of the shock. Behind the shock lies the large expanse of the "reservoir", a spatially extensive trapped volume of uniform SEP intensities with invariant energy-spectral shapes where overall intensities decrease with time as the enclosing "magnetic bottle" expands adiabatically. These reservoirs now explain the slow intensity decrease that defines gradual events and was once erroneously attributed solely to slow outward diffusion of the particles. At times the reservoir from one event can contribute its abundances and even its spectra as a seed population for acceleration by a second CME-driven shock wave. Confinement of particles to magnetic flux tubes that thread their source early in events is balanced at late times by slow velocity-dependent migration through a tangled network produced by field-line random walk that is probed by SEPs from both impulsive and gradual events and even by anomalous cosmic rays from the outer heliosphere. As a practical consequence, high-energy protons from gradual SEP events can be a significant radiation hazard to astronauts and equipment in space and to the passengers of high-altitude aircraft flying polar routes.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://ntrs.nasa.gov/search.jsp?R=19740053971&hterms=solar+geometry&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D10%26Ntt%3Dsolar%2Bgeometry','NASA-TRS'); return false;" href="https://ntrs.nasa.gov/search.jsp?R=19740053971&hterms=solar+geometry&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D10%26Ntt%3Dsolar%2Bgeometry"><span>Dense solar wind cloud geometries deduced from comparisons of radio signal delay and in situ plasma measurements</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Landt, J. A.</p> <p>1974-01-01</p> <p>The geometries of dense solar wind clouds are estimated by comparing single-location measurements of the solar wind plasma with the average of the electron density obtained by radio signal delay measurements along a radio path between earth and interplanetary spacecraft. Several of these geometries agree with the current theoretical spatial models of flare-induced shock waves. A new class of spatially limited structures that contain regions with densities greater than any observed in the broad clouds is identified. The extent of a cloud was found to be approximately inversely proportional to its density.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017AGUFMSM21A2549H','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017AGUFMSM21A2549H"><span>Rapid acceleration of outer radiation belt electrons associated with solar wind pressure pulse: Simulation study with Arase and Van Allen Probe observations</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Hayashi, M.; Yoshizumi, M.; Saito, S.; Matsumoto, Y.; Kurita, S.; Teramoto, M.; Hori, T.; Matsuda, S.; Shoji, M.; Machida, S.; Amano, T.; Seki, K.; Higashio, N.; Mitani, T.; Takashima, T.; Kasahara, Y.; Kasaba, Y.; Yagitani, S.; Ishisaka, K.; Tsuchiya, F.; Kumamoto, A.; Matsuoka, A.; Shinohara, I.; Blake, J. B.; Fennell, J. F.; Claudepierre, S. G.</p> <p>2017-12-01</p> <p>Relativistic electron fluxes of the outer radiation belt rapidly change in response to solar wind variations. One of the shortest acceleration processes of electrons in the outer radiation belt is wave-particle interactions between drifting electrons and fast-mode waves induced by compression of the dayside magnetopause caused by interplanetary shocks. In order to investigate this process by a solar wind pressure pulse, we perform a code-coupling simulation using the GEMSIS-RB test particle simulation (Saito et al., 2010) and the GEMSIS-GM global MHD magnetosphere simulation (Matsumoto et al., 2010). As a case study, an interplanetary pressure pulse with the enhancement of 5 nPa is used as the up-stream condition. In the magnetosphere, the fast mode waves with the azimuthal electric field ( negative 𝐸𝜙 : |𝐸&;#120601;| 10 mV/m, azimuthal mode number : m ≤ 2) propagates from the dayside to nightside, interacting with electrons. From the simulation results, we derived effective acceleration model and condition : The electrons whose drift velocities vd ≥ (π/2)Vfast are accelerated efficiently. On December 20, 2016, the Arase (ERG) satellite was launched , allowing more accurate multi-point simultaneous observation with other satellites. We will compare our simulation results with observations from Arase and Van Allen Probes, and investigate the acceleration condition of relativistic electrons associated with storm sudden commencement (SSC).</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017GeoRL..44.8712C','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017GeoRL..44.8712C"><span>Dayside response of the magnetosphere to a small shock compression: Van Allen Probes, Magnetospheric MultiScale, and GOES-13</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Cattell, C.; Breneman, A.; Colpitts, C.; Dombeck, J.; Thaller, S.; Tian, S.; Wygant, J.; Fennell, J.; Hudson, M. K.; Ergun, Robert; Russell, C. T.; Torbert, Roy; Lindqvist, Per-Arne; Burch, J.</p> <p>2017-09-01</p> <p>Observations from Magnetospheric MultiScale ( 8 <fi>Re</fi>) and Van Allen Probes ( 5 and 4 <fi>Re</fi>) show that the initial dayside response to a small interplanetary shock is a double-peaked dawnward electric field, which is distinctly different from the usual bipolar (dawnward and then duskward) signature reported for large shocks. The associated <fi>E</fi> × <fi>B</fi> flow is radially inward. The shock compressed the magnetopause to inside 8 <fi>Re</fi>, as observed by Magnetospheric MultiScale (MMS), with a speed that is comparable to the <fi>E</fi> × <fi>B</fi> flow. The magnetopause speed and the <fi>E</fi> × <fi>B</fi> speeds were significantly less than the propagation speed of the pulse from MMS to the Van Allen Probes and GOES-13, which is consistent with the MHD fast mode. There were increased fluxes of energetic electrons up to several MeV. Signatures of drift echoes and response to ULF waves also were seen. These observations demonstrate that even very weak shocks can have significant impact on the radiation belts.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://ntrs.nasa.gov/search.jsp?R=20060035047&hterms=plasma+focus&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D60%26Ntt%3Dplasma%2Bfocus','NASA-TRS'); return false;" href="https://ntrs.nasa.gov/search.jsp?R=20060035047&hterms=plasma+focus&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D60%26Ntt%3Dplasma%2Bfocus"><span>Nonlinear Electromagnetic Waves and Spherical Arc-Polarized Waves in Space Plasmas</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Tsurutani, B.; Ho, Christian M.; Arballo, John K.; Lakhina, Gurbax S.; Glassmeier, Karl-Heinz; Neubauer, Fritz M.</p> <p>1997-01-01</p> <p>We review observations of nonlinear plasma waves detected by interplanetary spacecraft. For this paper we will focus primarily on the phase-steepened properties of such waves. Plasma waves at comet Giacobini-Zinner measured by the International Cometary Explorer (ICE), at comets Halley and Grigg-Skjellerup measured by Giotto, and interplanetary Alfven waves measured by Ulysses, will be discussed and intercompared.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017AGUFMSH31B2733L','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017AGUFMSH31B2733L"><span>Properties of Coronal Shocks at the Origin of SEP events Observed by Only One Single Spacecraft</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Lario, D.; Kwon, R.</p> <p>2017-12-01</p> <p>The simultaneous observation of solar energetic particle (SEP) events by multiple spacecraft distributed in the interplanetary medium depends not only on the spatial separation among the different spacecraft, but also on the properties of the particle sources and the characteristics of the SEP transport in interplanetary space. Among the SEP events observed by STEREO-A, STEREO-B and/or near-Earth spacecraft during solar cycle 24, we select SEP events observed by a single spacecraft (specifically, the SEP events observed only by near-Earth spacecraft on 2012 April 5, 2011 September 4, and 2013 August 17). We analyze whether the properties of the coronal shock associated with the origin of the events (as seen in extreme-ultraviolet and white-light coronal images) differ from those associated with SEP events observed by two or three spacecraft. For the selected events we find that the associated CMEs are, in general, narrower than those associated with SEP events observed by two or three spacecraft. The confined extension of the parent coronal shock and the absence of magnetic connection between distant spacecraft and the regions of the expanding coronal shock able to efficiently accelerate SEPs seem to be the conditions leading to intense SEP events observed only over narrow regions of interplanetary space by spacecraft magnetically connected to regions close to the parent eruption site. Weak and gradual intensity increases observed in extended regions of space might involve transport processes and/or later connections established with interplanetary shocks. Systematic analyses of a larger number of events are required before drawing firm conclusions.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://hdl.handle.net/2060/20170005296','NASA-TRS'); return false;" href="http://hdl.handle.net/2060/20170005296"><span>Observations of Deep Ionospheric F-Region Density Depletions with FPMU Instrumentation and their Relationship with the Global Dynamics of the June 22-23, 2015 Geomagnetic Storm</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Coffey, Victoria; Sazykin, Stan; Chandler, Michael O.; Hairston, Marc; Minow, Joseph I.; Anderson, Brian J.</p> <p>2017-01-01</p> <p>The magnetic storm that commenced on June 22-23, 2015 was one of the largest storms in our current solar cycle, resulting from an active region on the Sun that produced numerous coronal mass ejections (CMEs) and associated interplanetary shock waves. On June 22 at 18:36 UT the magnetosphere was impacted by the shock wave on the magnetosphere. Observations from several spacecraft observed the dynamic response of the magnetosphere and ionosphere. MMS observatories in the near earth tail These low altitude measurements are correlated in the magnetosphere with particle flux dropouts measured by MMS We follow the timing of this storm in the ionosphere with the density depletions throughout the ISS orbits, DMSP drift velocities, and enhanced AMPERE Birkland currents. Together these observations and simulation results will be assembled to provide each region's context to the global dynamics and time evolution of the storm. The models during these event support and flesh out the puzzle of the global dynamics.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/17792150','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/17792150"><span>International cometary explorer encounter with giacobini-zinner: magnetic field observations.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Smith, E J; Tsurutani, B T; Slvain, J A; Jones, D E; Siscoe, G L; Mendis, D A</p> <p>1986-04-18</p> <p>The vector helium magnetometer on the International Cometary Explorer observed the magnetic fields induced by the interaction of comet Giacobini-Zinner with the solar wind. A magnetic tail was penetrated approximately 7800 kilometers downstream from the comet and was found to be 10(4) kilometers wide. It consisted of two lobes, containing oppositely directed fields with strengths up to 60 nanoteslas, separated by a plasma sheet approximately 10(3)kilometers thick containing a thin current sheet. The magnetotail was enclosed in an extended ionosheath characterized by intense hydromagnetic turbulene and interplanetary fields draped around the comet. A distant bow wave, which may or may not have been a bow shock, was observed at both edges of the ionosheath. Weak turbulence was observed well upstream of the bow wave.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2000JGR...10527289B','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2000JGR...10527289B"><span>Interplanetary fast shocks and associated drivers observed through the 23rd solar minimum by Wind over its first 2.5 years</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Berdichevsky, Daniel B.; Szabo, Adam; Lepping, Ronald P.; Viñas, Adolfo F.; Mariani, Franco</p> <p>2000-12-01</p> <p>A list of the interplanetary shocks observed by Wind from its launch (in Nov 1994) to May 1997 is presented. The magnetohydrodynamic nature of the shocks is investigated, and the associated shock parameters and their uncertainties are accurately computed using two techniques. These are: 1) a combination of the ``preaveraged'' magnetic-coplanarity, velocity-coplanarity, and the Abraham-Schrauner-mixed methods, and 2) the Viñas and Scudder [1986] technique for solving the nonlinear least squares Rankine-Hugoniot equations. Within acceptable limits these two techniques generally gave the same results, with some exceptions. The reasons for the exceptions are discussed. The mean strength and rate of occurrence of the shocks appear to correlate with the solar cycle. Both showed a decrease in 1996 coincident with the time of the lowest ultraviolet solar radiance, indicative of solar minimum and the beginning of solar cycle 23. Eighteen shocks appeared to be associated with corotating interaction regions (CIRs). The shock normal distribution showed a mean direction peaking in the ecliptic plane and with a longitude of ~200° (GSE coordinates). Another 16 shocks were determined to be driven by solar transients, including magnetic clouds. These had a broader distribution of normal directions than those of the CIR cases with a mean direction close to the Sun-Earth line. Eight shocks of unknown origin had normal orientations far off the ecliptic plane. No shock propagated with longitude φn>=220+/-10°, i.e. against the average Parker spiral direction. Examination of the obliquity angle θBn (i.e., between the shock normal and the upstream interplanetary magnetic field) for the full set of shocks revealed that about 58% were quasi-perpendicular, and about 32% of the shocks oblique, and the rest quasi-parallel. Small uncertainty in the estimated angle θBn was obtained for about 10 shocks with magnetosonic Mach numbers between 1 and 2.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2008AnGeo..26.2937C','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2008AnGeo..26.2937C"><span>The effects of an interplanetary shock on the high-latitude ionospheric convection during an IMF By-dominated period</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Coco, I.; Amata, E.; Marcucci, M. F.; Ambrosino, D.; Villain, J.-P.; Hanuise, C.</p> <p>2008-09-01</p> <p>On 6 January 1998 an interplanetary shock hit the magnetosphere around 14:15 UT and caused a reconfiguration of the northern high-latitude ionospheric convection. We use SuperDARN, spacecraft and ground magnetometer data to study such reconfiguration. We find that the shock front was tilted towards the morning flank of the magnetosphere, while the Interplanetary Magnetic Field (IMF) was By-dominated, with By<0, IMF Bz>0 and |By|>>Bz. As expected, the magnetospheric compression started at the first impact point of the shock on the magnetopause causing an increase of the Chapman-Ferraro current from dawn to dusk and yielding an increase of the geomagnetic field at the geostationary orbit and on the ground. Moreover, the high-latitude magnetometer data show vortical structures clearly related to the interaction of the shock with the magnetosphere-ionosphere system. In this context, the SuperDARN convection maps show that at very high latitudes above the northern Cusp and in the morning sector, intense sunward convection fluxes appear, well correlated in time with the SI arrival, having a signature typical for Bz>0 dominated lobe reconnection. We suggest that in this case the dynamic pressure increase associated to the shock plays a role in favouring the setting up of a new lobe merging line albeit |By|>>Bz≥0.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://ntrs.nasa.gov/search.jsp?R=20050180332&hterms=erickson&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D50%26Ntt%3Derickson','NASA-TRS'); return false;" href="https://ntrs.nasa.gov/search.jsp?R=20050180332&hterms=erickson&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D50%26Ntt%3Derickson"><span>Solar Type II Radio Bursts and IP Type II Events</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Cane, H. V.; Erickson, W. C.</p> <p>2005-01-01</p> <p>We have examined radio data from the WAVES experiment on the Wind spacecraft in conjunction with ground-based data in order to investigate the relationship between the shocks responsible for metric type II radio bursts and the shocks in front of coronal mass ejections (CMEs). The bow shocks of fast, large CMEs are strong interplanetary (IP) shocks, and the associated radio emissions often consist of single broad bands starting below approx. 4 MHz; such emissions were previously called IP type II events. In contrast, metric type II bursts are usually narrowbanded and display two harmonically related bands. In addition to displaying complete dynamic spectra for a number of events, we also analyze the 135 WAVES 1 - 14 MHz slow-drift time periods in 2001-2003. We find that most of the periods contain multiple phenomena, which we divide into three groups: metric type II extensions, IP type II events, and blobs and bands. About half of the WAVES listings include probable extensions of metric type II radio bursts, but in more than half of these events, there were also other slow-drift features. In the 3 yr study period, there were 31 IP type II events; these were associated with the very fastest CMEs. The most common form of activity in the WAVES events, blobs and bands in the frequency range between 1 and 8 MHz, fall below an envelope consistent with the early signatures of an IP type II event. However, most of this activity lasts only a few tens of minutes, whereas IP type II events last for many hours. In this study we find many examples in the radio data of two shock-like phenomena with different characteristics that occur simultaneously in the metric and decametric/hectometric bands, and no clear example of a metric type II burst that extends continuously down in frequency to become an IP type II event. The simplest interpretation is that metric type II bursts, unlike IP type II events, are not caused by shocks driven in front of CMEs.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://hdl.handle.net/2060/19850026461','NASA-TRS'); return false;" href="http://hdl.handle.net/2060/19850026461"><span>Particle acceleration due to shocks in the interplanetary field: High time resolution data and simulation results</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Kessel, R. L.; Armstrong, T. P.; Nuber, R.; Bandle, J.</p> <p>1985-01-01</p> <p>Data were examined from two experiments aboard the Explorer 50 (IMP 8) spacecraft. The Johns Hopkins University/Applied Lab Charged Particle Measurement Experiment (CPME) provides 10.12 second resolution ion and electron count rates as well as 5.5 minute or longer averages of the same, with data sampled in the ecliptic plane. The high time resolution of the data allows for an explicit, point by point, merging of the magnetic field and particle data and thus a close examination of the pre- and post-shock conditions and particle fluxes associated with large angle oblique shocks in the interplanetary field. A computer simulation has been developed wherein sample particle trajectories, taken from observed fluxes, are allowed to interact with a planar shock either forward or backward in time. One event, the 1974 Day 312 shock, is examined in detail.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2002ESASP.477..355K','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2002ESASP.477..355K"><span>Comparative study of predicted and experimentally detected interplanetary shocks</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Kartalev, M. D.; Grigorov, K. G.; Smith, Z.; Dryer, M.; Fry, C. D.; Sun, Wei; Deehr, C. S.</p> <p>2002-03-01</p> <p>We compare the real time space weather prediction shock arrival times at 1 AU made by the USAF/NOAA Shock Time of Arrival (STOA) and Interplanetary Shock Propagation Model (ISPM) models, and the Exploration Physics International/University of Alaska Hakamada-Akasofu-Fry Solar Wind Model (HAF-v2) to a real time analysis analysis of plasma and field ACE data. The comparison is made using an algorithm that was developed on the basis of wavelet data analysis and MHD identification procedure. The shock parameters are estimated for selected "candidate events". An appropriate automatically performing Web-based interface periodically utilizes solar wind observations made by the ACE at L1. Near real time results as well an archive of the registered interesting events are available on a specially developed web site. A number of events are considered. These studies are essential for the validation of real time space weather forecasts made from solar data.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://hdl.handle.net/2060/20170005295','NASA-TRS'); return false;" href="http://hdl.handle.net/2060/20170005295"><span>Observations of Deep Ionospheric F-Region Density Depletions with FPMU Instrumentation and their Relationship with the Global Dynamics of the June 22-23, 2015 Geomagnetic Storm</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Coffey, Victoria; Sazykin, Stan; Chandler, Michael; Hairston, Marc; Minow, Joseph; Anderson, Brian</p> <p>2017-01-01</p> <p>The magnetic storm that commenced on June 22, 2015 was one of the largest storms in the current solar cycle, resulting from an active region on the Sun that produced numerous coronal mass ejections (CMEs) and associated interplanetary shock waves. On June 22 at 18:36 UT the magnetosphere was impacted by the leading-edge shock wave and a sheath carrying a large and highly variable interplanetary magnetic field (IMF) Bz with values ranging from +25 to -40 nT. During the subsequent interval from 0000 to 0800 UT, there was a second intensification of the geomagnetic storm resulting from the impact of the CME. We present dramatic responses of simultaneous particle measurements from the high-altitude Magnetospheric Multiscale Mission (MMS) at high altitudes in the magnetosphere (approx. 9-12 Re) and from the low-altitude (F-region) Floating Potential Measurement Unit (FPMU) on board the International Space Station (ISS). We analyze potential causes of these dramatic particle flux dropouts by putting them in the context of storm-time electrodynamics, and support our results with numerical simulations of the global magnetosphere and ionosphere. During the sheath phase of the storm, the MMS spacecraft in the near-earth equatorial plane observed a rapid reconfiguration of the magnetic field near 1923 UT. Initially in the warm plasmasheet, particle flux dropouts were observed as they tracked the plasma-sheet to lobe transitions with the stretching and thinning of the plasmasheet. Anti-sunward flowing O+ ions of ionospheric origin were also measured during this period, confirming that the MMS spacecraft temporarily was in a lobe.</p> </li> </ol> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_8");'>8</a></li> <li><a href="#" onclick='return showDiv("page_9");'>9</a></li> <li class="active"><span>10</span></li> <li><a href="#" onclick='return showDiv("page_11");'>11</a></li> <li><a href="#" onclick='return showDiv("page_12");'>12</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div><!-- col-sm-12 --> </div><!-- row --> </div><!-- page_10 --> <div id="page_11" class="hiddenDiv"> <div class="row"> <div class="col-sm-12"> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_9");'>9</a></li> <li><a href="#" onclick='return showDiv("page_10");'>10</a></li> <li class="active"><span>11</span></li> <li><a href="#" onclick='return showDiv("page_12");'>12</a></li> <li><a href="#" onclick='return showDiv("page_13");'>13</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div> </div> <div class="row"> <div class="col-sm-12"> <ol class="result-class" start="201"> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://hdl.handle.net/2060/20170008042','NASA-TRS'); return false;" href="http://hdl.handle.net/2060/20170008042"><span>Observations of Deep Ionospheric F-Region Density Depletions with FPMU Instrumentation and Their Relationship with the Global Dynamics of the June 22-23, 2015 Geomagnetic Storm</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Coffey, Victoria; Sazykin, Stan; Chandler, Michael; Hairston, Marc; Minow, Joseph; Anderson, Brian</p> <p>2017-01-01</p> <p>The magnetic storm that commenced on June 22, 2015 was one of the largest storms in the current solar cycle, resulting from an active region on the Sun that produced numerous coronal mass ejections (CMEs) and associated interplanetary shock waves. On June 22 at 18:36 UT the magnetosphere was impacted by the leading-edge shock wave and a sheath carrying a large and highly variable interplanetary magnetic field (IMF) Bz with values ranging from +25 to -40 nT. During the subsequent interval from 0000 to 0800 UT, there was a second intensification of the geomagnetic storm resulting from the impact of the CME. We present dramatic responses of simultaneous particle measurements from the high-altitude Magnetospheric Multiscale Mission (MMS) at high altitudes in the magnetosphere (approx. 9-12 Re) and from the low-altitude (F-region) Floating Potential Measurement Unit (FPMU) on board the International Space Station (ISS). We analyze potential causes of these dramatic particle flux dropouts by putting them in the context of storm-time electrodynamics, and support our results with numerical simulations of the global magnetosphere and ionosphere. During the sheath phase of the storm, the MMS spacecraft in the near-earth equatorial plane observed a rapid reconfiguration of the magnetic field near 1923 UT. Initially in the warm plasma sheet, particle flux dropouts were observed as they tracked the plasma-sheet to lobe transitions with the stretching and thinning of the plasma sheet. Anti-sunward flowing O+ ions of ionospheric origin were also measured during this period, confirming that the MMS spacecraft temporarily was in a lobe.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://ntrs.nasa.gov/search.jsp?R=19950058985&hterms=pragmatics&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D40%26Ntt%3Dpragmatics','NASA-TRS'); return false;" href="https://ntrs.nasa.gov/search.jsp?R=19950058985&hterms=pragmatics&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D40%26Ntt%3Dpragmatics"><span>The solar flare myth</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Gosling, J. T.</p> <p>1993-01-01</p> <p>Many years of research have demonstrated that large, nonrecurrent geomagnetic storms, shock wave disturbances in the solar wind, and energetic particle events in interplanetary space often occur in close association with large solar flares. This result has led to a pradigm of cause and effect - that large solar flares are the fundamental cause of these events in the near-Earth space environmemt. This paradigm, which I call 'the solar flare myth,' dominates the popular perception of the relationship between solar activity and interplanetary and geomagnetic events and has provided much of the pragmatic rationale for the study of the solar flare phenomenon. Yet there is good evidence that this paradigm is wrong and that flares do not generally play a central role in producing major transient disturbances in the near-Earth space environment. In this paper I outline a different paradigm of cause and effect that removes solar flares from their central position in the chain of events leading from the Sun to near-Earth space. Instead, this central role is given to events known as coronal mass ejections.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://ntrs.nasa.gov/search.jsp?R=20170003548&hterms=storms&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D30%26Ntt%3Dstorms','NASA-TRS'); return false;" href="https://ntrs.nasa.gov/search.jsp?R=20170003548&hterms=storms&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D30%26Ntt%3Dstorms"><span>A Telescopic and Microscopic Examination of Acceleration in the June 2015 Geomagnetic Storm: Magnetospheric Multiscale and Van Allen Probes Study of Substorm Particle Injection</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Baker, D. N.; Jaynes, A. N.; Turner, D. L.; Nakamura, R.; Schmid, D.; Mauk, B. H.; Cohen, I. J.; Fennell, J. F.; Blake, J. B.; Strangeway, R. J.; <a style="text-decoration: none; " href="javascript:void(0); " onClick="displayelement('author_20170003548'); toggleEditAbsImage('author_20170003548_show'); toggleEditAbsImage('author_20170003548_hide'); "> <img style="display:inline; width:12px; height:12px; " src="images/arrow-up.gif" width="12" height="12" border="0" alt="hide" id="author_20170003548_show"> <img style="width:12px; height:12px; display:none; " src="images/arrow-down.gif" width="12" height="12" border="0" alt="hide" id="author_20170003548_hide"></p> <p>2016-01-01</p> <p>An active storm period in June 2015 showed that particle injection events seen sequentially by the four (MagnetosphericMultiscale) MMS spacecraft subsequently fed the enhancement of the outer radiation belt observed by Van Allen Probes mission sensors. Several episodes of significant southward interplanetary magnetic field along with a period of high solar wind speed (Vsw 500kms) on 22 June occurred following strong interplanetary shock wave impacts on the magnetosphere. Key events on 22 June 2015 show that the magnetosphere progressed through a sequence of energy-loading and stress-developing states until the entire system suddenly reconfigured at 19:32 UT. Energetic electrons, plasma, and magnetic fields measured by the four MMS spacecraft revealed clear dipolarization front characteristics. It was seen that magnetospheric substorm activity provided a seed electron population as observed by MMS particle sensors as multiple injections and related enhancements in electron flux.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.osti.gov/biblio/22590911-demonstration-viable-quantitative-theory-interplanetary-type-ii-radio-bursts','SCIGOV-STC'); return false;" href="https://www.osti.gov/biblio/22590911-demonstration-viable-quantitative-theory-interplanetary-type-ii-radio-bursts"><span>Demonstration of a viable quantitative theory for interplanetary type II radio bursts</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.osti.gov/search">DOE Office of Scientific and Technical Information (OSTI.GOV)</a></p> <p>Schmidt, J. M., E-mail: jschmidt@physics.usyd.edu.au; Cairns, Iver H.</p> <p></p> <p>Between 29 November and 1 December 2013 the two widely separated spacecraft STEREO A and B observed a long lasting, intermittent, type II radio burst for the extended frequency range ≈ 4 MHz to 30 kHz, including an intensification when the shock wave of the associated coronal mass ejection (CME) reached STEREO A. We demonstrate for the first time our ability to quantitatively and accurately simulate the fundamental (F) and harmonic (H) emission of type II bursts from the higher corona (near 11 solar radii) to 1 AU. Our modeling requires the combination of data-driven three-dimensional magnetohydrodynamic simulations for the CME andmore » plasma background, carried out with the BATS-R-US code, with an analytic quantitative kinetic model for both F and H radio emission, including the electron reflection at the shock, growth of Langmuir waves and radio waves, and the radiations propagation to an arbitrary observer. The intensities and frequencies of the observed radio emissions vary hugely by factors ≈ 10{sup 6} and ≈ 10{sup 3}, respectively; the theoretical predictions are impressively accurate, being typically in error by less than a factor of 10 and 20 %, for both STEREO A and B. We also obtain accurate predictions for the timing and characteristics of the shock and local radio onsets at STEREO A, the lack of such onsets at STEREO B, and the z-component of the magnetic field at STEREO A ahead of the shock, and in the sheath. Very strong support is provided by these multiple agreements for the theory, the efficacy of the BATS-R-US code, and the vision of using type IIs and associated data-theory iterations to predict whether a CME will impact Earth’s magnetosphere and drive space weather events.« less</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2016AIPC.1720d0014S','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2016AIPC.1720d0014S"><span>Demonstration of a viable quantitative theory for interplanetary type II radio bursts</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Schmidt, J. M.; Cairns, Iver H.</p> <p>2016-03-01</p> <p>Between 29 November and 1 December 2013 the two widely separated spacecraft STEREO A and B observed a long lasting, intermittent, type II radio burst for the extended frequency range ≈ 4 MHz to 30 kHz, including an intensification when the shock wave of the associated coronal mass ejection (CME) reached STEREO A. We demonstrate for the first time our ability to quantitatively and accurately simulate the fundamental (F) and harmonic (H) emission of type II bursts from the higher corona (near 11 solar radii) to 1 AU. Our modeling requires the combination of data-driven three-dimensional magnetohydrodynamic simulations for the CME and plasma background, carried out with the BATS-R-US code, with an analytic quantitative kinetic model for both F and H radio emission, including the electron reflection at the shock, growth of Langmuir waves and radio waves, and the radiations propagation to an arbitrary observer. The intensities and frequencies of the observed radio emissions vary hugely by factors ≈ 106 and ≈ 103, respectively; the theoretical predictions are impressively accurate, being typically in error by less than a factor of 10 and 20 %, for both STEREO A and B. We also obtain accurate predictions for the timing and characteristics of the shock and local radio onsets at STEREO A, the lack of such onsets at STEREO B, and the z-component of the magnetic field at STEREO A ahead of the shock, and in the sheath. Very strong support is provided by these multiple agreements for the theory, the efficacy of the BATS-R-US code, and the vision of using type IIs and associated data-theory iterations to predict whether a CME will impact Earth's magnetosphere and drive space weather events.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://ntrs.nasa.gov/search.jsp?R=19860056273&hterms=Wind+Pump&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D10%26Ntt%3DWind%2BPump','NASA-TRS'); return false;" href="https://ntrs.nasa.gov/search.jsp?R=19860056273&hterms=Wind+Pump&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D10%26Ntt%3DWind%2BPump"><span>Parametric instabilities of the circularly polarized Alfven waves including dispersion. [for solar wind</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Wong, H. K.; Goldstein, M. L.</p> <p>1986-01-01</p> <p>A class of parametric instabilities of large-amplitude, circularly polarized Alfven waves is considered in which finite frequency (dispersive) effects are included. The dispersion equation governing the instabilities is a sixth-order polynomial which is solved numerically. As a function of K identically equal to k/k-sub-0 (where k-sub-0 and k are the wave number of the 'pump' wave and unstable sound wave, respectively), there are three regionals of instability: a modulation instability at K less than 1, a decay instability at K greater than 1, and a relatively weak and narrow instability at K close to squared divided by v-sub-A squared (where c-sub-s and v-sub-A are the sound and Alfven speeds respectively), the modulational instability occurs when beta is less than 1 (more than 1) for left-hand (right-hand) pump waves, in agreement with the previous results of Sakai and Sonnerup (1983). The growth rate of the decay instability of left-hand waves is greater than the modulational instability at all values of beta. Applications to large-amplitude wave observed in the solar wind, in computer simulations, and in the vicinity of planetary and interplanetary collisionless shocks are discussed.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://ntrs.nasa.gov/search.jsp?R=19720046058&hterms=Wave+Energy&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D90%26Ntt%3DWave%2BEnergy','NASA-TRS'); return false;" href="https://ntrs.nasa.gov/search.jsp?R=19720046058&hterms=Wave+Energy&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D90%26Ntt%3DWave%2BEnergy"><span>Low-energy proton increases associated with interplanetary shock waves.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Palmeira, R. A. R.; Allum, F. R.; Rao, U. R.</p> <p>1971-01-01</p> <p>Impulsive increases in the low energy proton flux observed by the Explorer 34 satellite, in very close time association with geomagnetic storm sudden commencements are described. It is shown that these events are of short duration (20-30 min) and occur only during the decay phase of a solar cosmic-ray flare event. The differential energy spectrum and the angular distribution of the direction of arrival of the particles are discussed. Two similar increases observed far away from the earth by the Pioneer 7 and 8 deep-space probes are also presented. These impulsive increases are compared with Energetic Storm Particle events and their similarities and differences are discussed. A model is suggested to explain these increases, based on the sweeping and trapping of low energy cosmic rays of solar origin by the advancing shock front responsible for the sudden commencement detected on the earth.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2007JGRA..112.2101S','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2007JGRA..112.2101S"><span>Effects of interplanetary magnetic clouds, interaction regions, and high-speed streams on the transient modulation of galactic cosmic rays</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Singh, Y. P.; Badruddin</p> <p>2007-02-01</p> <p>Interplanetary manifestations of coronal mass ejections (CMEs) with specific plasma and field properties, called ``interplanetary magnetic clouds,'' have been observed in the heliosphere since the mid-1960s. Depending on their associated features, a set of observed magnetic clouds identified at 1 AU were grouped in four different classes using data over 4 decades: (1) interplanetary magnetic clouds moving with the ambient solar wind (MC structure), (2) magnetic clouds moving faster than the ambient solar wind and forming a shock/sheath structure of compressed plasma and field ahead of it (SMC structure), (3) magnetic clouds ``pushed'' by the high-speed streams from behind, forming an interaction region between the two (MIH structure), and (4) shock-associated magnetic clouds followed by high-speed streams (SMH structure). This classification into different groups led us to study the role, effect, and the relative importance of (1) closed field magnetic cloud structure with low field variance, (2) interplanetary shock and magnetically turbulent sheath region, (3) interaction region with large field variance, and (4) the high-speed solar wind stream coming from the open field regions, in modulating the galactic cosmic rays (GCRs). MC structures are responsible for transient decrease with fast recovery. SMC structures are responsible for fast decrease and slow recovery, MIH structures produce depression with slow decrease and slow recovery, and SMH structures are responsible for fast decrease with very slow recovery. Simultaneous variations of GCR intensity, solar plasma velocity, interplanetary magnetic field strength, and its variance led us to study the relative effectiveness of different structures as well as interplanetary plasma/field parameters. Possible role of the magnetic field, its topology, field turbulence, and the high-speed streams in influencing the amplitude and time profile of resulting decreases in GCR intensity have also been discussed.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://ntrs.nasa.gov/search.jsp?R=19890036898&hterms=Property+Types&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D40%26Ntt%3DProperty%2BTypes','NASA-TRS'); return false;" href="https://ntrs.nasa.gov/search.jsp?R=19890036898&hterms=Property+Types&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D40%26Ntt%3DProperty%2BTypes"><span>Characteristics of interplanetary type II radio emission and the relationship to shock and plasma properties</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Lengyel-Frey, D.; Stone, R. G.</p> <p>1989-01-01</p> <p>A large sample of type II events is the basis of the present study of the properties of interplanetary type II bursts' radio-emission properties. Type II spectra seem to be composed of fundamental and harmonic components of plasma emission, where the intensity of the fundamental component increases relative to the harmonic as the burst evolves with heliocentric distance; burst average flux density increases as a power of the associated shock's average velocity. Solar wind density structures may have a significant influence on type II bandwidths.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://hdl.handle.net/2060/19840007841','NASA-TRS'); return false;" href="http://hdl.handle.net/2060/19840007841"><span>On the relationship between collisionless shock structure and energetic particle acceleration</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Kennel, C. F.</p> <p>1983-01-01</p> <p>Recent experimental research on bow shock structure and theoretical studies of quasi-parallel shock structure and shock acceleration of energetic particles were reviewed, to point out the relationship between structure and particle acceleration. The phenomenological distinction between quasi-parallel and quasi-perpendicular shocks that has emerged from bow shock research; present efforts to extend this work to interplanetary shocks; theories of particle acceleration by shocks; and particle acceleration to shock structures using multiple fluid models were discussed.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://ntrs.nasa.gov/search.jsp?R=19850014001&hterms=Scholarships&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D30%26Ntt%3DScholarships','NASA-TRS'); return false;" href="https://ntrs.nasa.gov/search.jsp?R=19850014001&hterms=Scholarships&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D30%26Ntt%3DScholarships"><span>Arguments for fundamental emission by the parametric process L yields T + S in interplanetary type III bursts. [langmuir, electromagnetic, ion acoustic waves (L, T, S)</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Cairns, I. H.</p> <p>1984-01-01</p> <p>Observations of low frequency ion acoustic-like waves associated with Langmuir waves present during interplanetary Type 3 bursts are used to study plasma emission mechanisms and wave processes involving ion acoustic waves. It is shown that the observed wave frequency characteristics are consistent with the processes L yields T + S (where L = Langmuir waves, T = electromagnetic waves, S = ion acoustic waves) and L yields L' + S proceeding. The usual incoherent (random phase) version of the process L yields T + S cannot explain the observed wave production time scale. The clumpy nature of the observed Langmuir waves is vital to the theory of IP Type 3 bursts. The incoherent process L yields T + S may encounter difficulties explaining the observed Type 3 brightness temperatures when Langmuir wave clumps are incorporated into the theory. The parametric process L yields T + S may be the important emission process for the fundamental radiation of interplanetary Type 3 bursts.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2006AdSpR..38..263R','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2006AdSpR..38..263R"><span>The magnetospheric and ionospheric response to a very strong interplanetary shock and coronal mass ejection</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Ridley, A. J.; De Zeeuw, D. L.; Manchester, W. B.; Hansen, K. C.</p> <p>2006-01-01</p> <p>We present results from a coupled magnetospheric and ionospheric simulation of a very strong solar wind shock and coronal mass ejection (CME). The solar wind drivers that are used for this simulation were output from the Sun-to-Earth MHD simulation of the Carrington-like CME reported in Manchester et al. [Manchester IV, W., Ridley, A., Gombosi, T., De Zeeuw, D. Modeling the Sun-Earth propagation of a very fast cme. Adv. Space Res. 38 (this issue), 2006]. We use the University of Michigan's BATS-R-US MHD code to model the global magnetosphere and coupled height integrated ionosphere. As the interplanetary shock swept over the magnetosphere, a wave is observed to propagate through the system. This is evident both in the magnetosphere and ionosphere. On the dayside, the magnetospheric bowshock is shown to bifurcate. The inner shock is pushed close to the inner boundary, where it "bounces" and propagates back outwards to meet the outer bowshock, which is propagating inwards. The inward and outward motion of the bowshocks can be observed propagating down the flanks of the magnetosphere. In the ionosphere, the wave is manifested as two pairs of field-aligned currents moving antisunward. The first pair is opposite of the normal region-1 current system, while the second pair is in the same sense as the normal region-1 system. The ionospheric potential shows a behavior consistent with the field-aligned current pattern, given the strong gradient in the conductance from the dayside to the nightside. As the magnetic cloud flows over the system, the entire magnetopause boundary is observed to move inside of geosynchronous orbit (6.6 Re). At the time of the most extreme solar wind conditions, the magnetopause boundary encounters the inner edge of the magnetospheric simulation domain. During the magnetic cloud, the ionospheric cross-polar cap potential is shown to match the Siscoe et al. [Siscoe, G.L., Erickson, G., Sonnerup, B., Maynard, N., Schoendorf, J., Siebert, K., Weimer, D., White, W., Wilson, G. Hill model of transpolar potential saturation: comparisons with MHD simulations. J. Geophys. Res. 107, 1321, doi:10.1029/2001JA009176, 2002] formulation relating the ionospheric potential to the solar wind and IMF conditions. It is shown that by using this formulation, the extremely large potentials observed in the MHD results are most likely saturated.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://ntrs.nasa.gov/search.jsp?R=19900024450&hterms=Wind+Pump&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D10%26Ntt%3DWind%2BPump','NASA-TRS'); return false;" href="https://ntrs.nasa.gov/search.jsp?R=19900024450&hterms=Wind+Pump&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D10%26Ntt%3DWind%2BPump"><span>Filamentation instability of magnetosonic waves in the solar wind environment</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Kuo, S. P.; Lee, M. C.</p> <p>1989-01-01</p> <p>Intense magnetosonic waves, originally propagating at the right angle with the interplanetary magnetic field, can excite a purely growing mode along the interplanetary magnetic field together with two symmetric magnetosonic sidebands propagating obliquely across the magnetic field. This instability process leads to the filamentation of the magnetosonic pump waves. These two excited magnetosonic sideband modes propagate together perpendicularly across the magnetic field and, meanwhile, form a standing wave pattern along the magnetic field. The thresholds of this filamentation instability can be exceeded in the solar wind environment. It is predicted that the density fluctuations produced by the filamentation instability along the interplanetary magnetic field have wavelengths greater than, at least, a few earth radii. The polarization of the obliquely propagating magnetosonic waves excited by the filamentation instability is determined by the characteristics of the magnetosonic pump waves and the environmental plasmas.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://hdl.handle.net/2060/20150008409','NASA-TRS'); return false;" href="http://hdl.handle.net/2060/20150008409"><span>Magnetosheath Filamentary Structures Formed by Ion Acceleration at the Quasi-Parallel Bow Shock</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Omidi, N.; Sibeck, D.; Gutynska, O.; Trattner, K. J.</p> <p>2014-01-01</p> <p>Results from 2.5-D electromagnetic hybrid simulations show the formation of field-aligned, filamentary plasma structures in the magnetosheath. They begin at the quasi-parallel bow shock and extend far into the magnetosheath. These structures exhibit anticorrelated, spatial oscillations in plasma density and ion temperature. Closer to the bow shock, magnetic field variations associated with density and temperature oscillations may also be present. Magnetosheath filamentary structures (MFS) form primarily in the quasi-parallel sheath; however, they may extend to the quasi-perpendicular magnetosheath. They occur over a wide range of solar wind Alfvénic Mach numbers and interplanetary magnetic field directions. At lower Mach numbers with lower levels of magnetosheath turbulence, MFS remain highly coherent over large distances. At higher Mach numbers, magnetosheath turbulence decreases the level of coherence. Magnetosheath filamentary structures result from localized ion acceleration at the quasi-parallel bow shock and the injection of energetic ions into the magnetosheath. The localized nature of ion acceleration is tied to the generation of fast magnetosonic waves at and upstream of the quasi-parallel shock. The increased pressure in flux tubes containing the shock accelerated ions results in the depletion of the thermal plasma in these flux tubes and the enhancement of density in flux tubes void of energetic ions. This results in the observed anticorrelation between ion temperature and plasma density.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.osti.gov/biblio/22663895-measure-propagation-halo-cme-its-driven-shock-observations-from-single-perspective-earth','SCIGOV-STC'); return false;" href="https://www.osti.gov/biblio/22663895-measure-propagation-halo-cme-its-driven-shock-observations-from-single-perspective-earth"><span></span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.osti.gov/search">DOE Office of Scientific and Technical Information (OSTI.GOV)</a></p> <p>Lu, Lei; Feng, Li; Liu, Siming</p> <p></p> <p>We present a detailed study of an Earth-directed coronal mass ejection (full-halo CME) event that happened on 2011 February 15, making use of white-light observations by three coronagraphs and radio observations by Wind /WAVES. We applied three different methods to reconstruct the propagation direction and traveling distance of the CME and its driven shock. We measured the kinematics of the CME leading edge from white-light images observed by Solar Terrestrial Relations Observatory ( STEREO ) A and B , tracked the CME-driven shock using the frequency drift observed by Wind /WAVES together with an interplanetary density model, and obtained themore » equivalent scattering centers of the CME by the polarization ratio (PR) method. For the first time, we applied the PR method to different features distinguished from LASCO/C2 polarimetric observations and calculated their projections onto white-light images observed by STEREO-A and STEREO-B . By combining the graduated cylindrical shell (GCS) forward modeling with the PR method, we proposed a new GCS-PR method to derive 3D parameters of a CME observed from a single perspective at Earth. Comparisons between different methods show a good degree of consistence in the derived 3D results.« less</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017AdSpR..59.1425S','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017AdSpR..59.1425S"><span>The role of interplanetary shock orientation on SC/SI rise time and geoeffectiveness</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Selvakumaran, R.; Veenadhari, B.; Ebihara, Y.; Kumar, Sandeep; Prasad, D. S. V. V. D.</p> <p>2017-03-01</p> <p>Interplanetary (IP) shocks interact with the Earth's magnetosphere, resulting in compression of the magnetosphere which in turn increases the Earth's magnetic field termed as Sudden commencement/Sudden impulse (SC/SI). Apart from IP shock speed and solar wind dynamic pressure, IP shock orientation angle also plays a major role in deciding the SC rise time. In the present study, the IP shock orientation angle and SC/SI rise time for 179 IP shocks are estimated which occurred during solar cycle 23. More than 50% of the Shock orientations are in the range of 140°-160°. The SC/SI rise time decreases with the increase in the orientation angle and IP shock speed. In this work, the type of IP shocks i.e., Radio loud (RL) and Radio quiet (RQ) are examined in connection with SC/SI rise time. The RL associated IP shock speeds show a better correlation than RQ shocks with SC/SI rise time irrespective of the orientation angle. Magnetic Cloud (MC) associated shocks dominate in producing less rise time when compared to Ejecta (EJ) shocks. Magneto hydrodynamic (MHD) simulations are used for three different IP shock orientation categories to see the importance of orientation angle in determining the geoeffectiveness. Simulations results reveal that shocks hitting parallel to the magnetosphere are more geoeffective as compared to oblique shocks by means of change in magnetic field, pressure and Field Aligned Current (FAC).</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://hdl.handle.net/2060/19750021905','NASA-TRS'); return false;" href="http://hdl.handle.net/2060/19750021905"><span>Development of solar wind shock models with tensor plasma pressure for data analysis</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Abraham-Shrauner, B.</p> <p>1975-01-01</p> <p>The development of solar wind shock models with tensor plasma pressure and the comparison of some of the shock models with the satellite data from Pioneer 6 through Pioneer 9 are reported. Theoretically, difficulties were found in non-turbulent fluid shock models for tensor pressure plasmas. For microscopic shock theories nonlinear growth caused by plasma instabilities was frequently not clearly demonstrated to lead to the formation of a shock. As a result no clear choice for a shock model for the bow shock or interplanetary tensor pressure shocks emerged.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://hdl.handle.net/2060/20120002841','NASA-TRS'); return false;" href="http://hdl.handle.net/2060/20120002841"><span>Analysis of Voyager Observed High-Energy Electron Fluxes in the Heliosheath Using MHD Simulations</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Washimi, Haruichi; Webber, W. R.; Zank, Gary P.; Hu, Qiang; Florinski, Vladimir; Adams, James; Kubo, Yuki</p> <p>2011-01-01</p> <p>The Voyager spacecraft (V1 and V2) observed electrons of 6-14 MeV in the heliosheath which showed several incidences of flux variation relative to a background of gradually increasing flux with distance from the Sun. The increasing flux of background electrons is thought to result from inward radial diffusion. We compare the temporal electron flux variation with dynamical phenomena in the heliosheath that are obtained from our MHD simulations. Because our simulation is based on V2 observed plasma data before V2 crossed the termination shock, this analysis is effective up to late 2008, i.e., about a year after the V2-crossing, during which disturbances, driven prior to the crossing time, survived in the heliosheath. Several electron flux variations correspond to times directly associated with interplanetary shock events. One noteworthy example corresponds to various times associated with the March 2006 interplanetary shock, these being the collision with the termination shock, the passage past the V1 spacecraft, and the collision with the region near the heliopause, as identified by W.R. Webber et al. for proton/helium of 7-200 MeV. Our simulations indicate that all other electron flux variations, except one, correspond well to the times when a shock-driven magneto-sonic pulse and its reflection in the heliosheath either passed across V1/V2, or collided with the termination shock or with the plasma sheet near the heliopause. This result suggests that variation in the electron flux should be due to either direct or indirect effects of magnetosonic pulses in the heliosheath driven by interplanetary shocks</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017AGUFMSH33B2786S','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017AGUFMSH33B2786S"><span>Full PIC simulations of solar radio emission</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Sgattoni, A.; Henri, P.; Briand, C.; Amiranoff, F.; Riconda, C.</p> <p>2017-12-01</p> <p>Solar radio emissions are electromagnetic (EM) waves emitted in the solar wind plasma as a consequence of electron beams accelerated during solar flares or interplanetary shocks such as ICMEs. To describe their origin, a multi-stage model has been proposed in the 60s which considers a succession of non-linear three-wave interaction processes. A good understanding of the process would allow to infer the kinetic energy transfered from the electron beam to EM waves, so that the radio waves recorded by spacecraft can be used as a diagnostic for the electron beam.Even if the electrostatic problem has been extensively studied, full electromagnetic simulations were attempted only recently. Our large scale 2D-3V electromagnetic PIC simulations allow to identify the generation of both electrostatic and EM waves originated by the succession of plasma instabilities. We tested several configurations varying the electron beam density and velocity considering a background plasma of uniform density. For all the tested configurations approximately 105 of the electron-beam kinetic energy is transfered into EM waves emitted in all direction nearly isotropically. With this work we aim to design experiments of laboratory astrophysics to reproduce the electromagnetic emission process and test its efficiency.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017AGUFMSM13B2390F','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017AGUFMSM13B2390F"><span>MMS Observations of Reconnection at Dayside Magnetopause Crossings During Transitions of the Solar Wind to Sub-Alfvenic Flow</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Farrugia, C. J.; Lugaz, N.; Alm, L.; Vasquez, B. J.; Argall, M. R.; Kucharek, H.; Matsui, H.; Torbert, R. B.; Lavraud, B.; Le Contel, O.; Shuster, J. R.; Burch, J. L.; Khotyaintsev, Y. V.; Giles, B. L.; Fuselier, S. A.; Gershman, D. J.; Ergun, R.; Eastwood, J. P.; Cohen, I. J.; Dorelli, J.; Lindqvist, P. A.; Strangeway, R. J.; Russell, C. T.; Marklund, G. T.; Paulson, K.; Petrinec, S.; Phan, T.; Pollock, C.</p> <p>2017-12-01</p> <p>We present MMS) observations during two dayside magnetopause crossingsunder hitherto unexamined conditions: (i) when the bow shock is weakening and the solar wind transitioning to sub-Alfvenic flow, and (ii) when it is reforming. Interplanetary conditions consist of a magnetic cloud with (i) a strong B ( 20 nT) pointing south, and (ii) a density profile with episodic decreases to values of 0.3 /cc followed by moderate recovery. During the crossings he magnetosheath magnetic field is stronger than the magnetosphere field by a factor of 2.2. As a result, during the outbound crossing through the ion diffusion region, MMS observed an inversion of relative positions of the X and stagnation (S) lines from that typically the case: the S line was closer to the magnetosheath side. The S-line appears in the form of a slow expansion fan near which most of the energy dissipation is taking place. While in the magnetosphere between the crossings, MMS observed strong field and flow perturbations, which we argue to be due kinetic Alfvén waves.During the reconnection interval, whistler mode waves generated by an electron temperature anisotropy (Tperp>Tpar) were observed. Another aim of the paper isto distinguish bow shock-induced field and flow perturbations from reconnection-related signatures.The high resolution MMS data together with 2D hybrid simulations of bow shock dynamics helped us to distinguish between the two sources. We show examples of bow shock-related effects (such as heating) and reconnection effects such as accelerated flows satisfying the Walen relation.</p> </li> </ol> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_9");'>9</a></li> <li><a href="#" onclick='return showDiv("page_10");'>10</a></li> <li class="active"><span>11</span></li> <li><a href="#" onclick='return showDiv("page_12");'>12</a></li> <li><a href="#" onclick='return showDiv("page_13");'>13</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div><!-- col-sm-12 --> </div><!-- row --> </div><!-- page_11 --> <div id="page_12" class="hiddenDiv"> <div class="row"> <div class="col-sm-12"> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_10");'>10</a></li> <li><a href="#" onclick='return showDiv("page_11");'>11</a></li> <li class="active"><span>12</span></li> <li><a href="#" onclick='return showDiv("page_13");'>13</a></li> <li><a href="#" onclick='return showDiv("page_14");'>14</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div> </div> <div class="row"> <div class="col-sm-12"> <ol class="result-class" start="221"> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017AGUFMSM52A..07K','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017AGUFMSM52A..07K"><span>Radiation Belt response to the July 2017 Coronal Mass Ejection and the Interplanetary Shock</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Kanekal, S. G.; Baker, D. N.; Jones, A. D.; Schiller, Q. A.; Sibeck, D. G.; Elkington, S. R.; Hoxie, V. C.; Jaynes, A. N.; Li, X.; Zhao, H.; Blake, J. B.; Claudepierre, S. G.; Fennell, J. F.; Turner, D. L.</p> <p>2017-12-01</p> <p>A coronal mass ejection that erupted on July 14, 2017 impacted the radiation belts on July 16, 2017 and resulted in a moderate geomagnetic storm. The immediate response of the energetic electrons to the interplanetary shock ahead of the CME, showed hock-induced energization as well as drift echoes in the L range of 4 to 5 . Increased electron fluxes were seen to energies up to 5 MeV as observed by the Relativistic Electron and Proton Telescope and the Magnetic Electron and Ion Sensors on board NASA's Van Allen Probes. We report on these observations, both immediately after the IP shock passage and the more gradual response to the CME. we discuss the observation in the context of electron dynamics in the terrestrial radiation belts.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://ntrs.nasa.gov/search.jsp?R=19880059402&hterms=quasi+particle&qs=N%3D0%26Ntk%3DAll%26Ntx%3Dmode%2Bmatchall%26Ntt%3Dquasi%2Bparticle','NASA-TRS'); return false;" href="https://ntrs.nasa.gov/search.jsp?R=19880059402&hterms=quasi+particle&qs=N%3D0%26Ntk%3DAll%26Ntx%3Dmode%2Bmatchall%26Ntt%3Dquasi%2Bparticle"><span>Downstream energetic proton and alpha particles during quasi-parallel interplanetary shock events</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Tan, L. C.; Mason, G. M.; Gloeckler, G.; Ipavich, F. M.</p> <p>1988-01-01</p> <p>This paper considers the energetic particle populations in the downstream region of three quasi-parallel interplanetary shock events, which was explored using the ISEE 3 Ultra Low Energy Charge Analyzer sensor, which unambiguously identifies protons and alpha particles using the electrostatic deflection versus residual energy technique. The downstream particles were found to exhibit anisotropies due largely to convection in the solar wind. The spectral indices of the proton and the alpha-particle distribution functions were found to be remarkably constant during the downstream period, being generally insensitive to changes in particle flux levels, magnetic field direction, and solar wind densities. In two of the three events, the proton and the alpha spectra were the same throughout the entire downstream period, supporting the prediction of diffusive shock acceleration theory.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2009SoPh..256..475S','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2009SoPh..256..475S"><span>STEREO SECCHI and S/WAVES Observations of Spacecraft Debris Caused by Micron-Size Interplanetary Dust Impacts</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>St. Cyr, O. C.; Kaiser, M. L.; Meyer-Vernet, N.; Howard, R. A.; Harrison, R. A.; Bale, S. D.; Thompson, W. T.; Goetz, K.; Maksimovic, M.; Bougeret, J.-L.; Wang, D.; Crothers, S.</p> <p>2009-05-01</p> <p>Early in the STEREO mission observers noted that the white-light instruments of the SECCHI suite were detecting significantly more spacecraft-related “debris” than any previously flown coronagraphic instruments. Comparison of SECCHI “debris storms” with S/WAVES indicates that almost all are coincident with the most intense transient emissions observed by the radio and plasma waves instrument. We believe the debris is endogenous ( i.e., from the spacecraft thermal blanketing), and the storms appear to be caused by impacts of large interplanetary dust grains that are detected by S/WAVES. Here we report the observations, compare them to interplanetary dust distributions, and document a reminder for future spacebased coronagraphic instrument builders.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2011AGUFMSH23A1944B','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2011AGUFMSH23A1944B"><span>3-D model of ICME in the interplanetary medium</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Borgazzi, A.; Lara, A.; Niembro, T.</p> <p>2011-12-01</p> <p>We developed a method that describes with simply geometry the coordinates of intersection between the leading edge of an ICME and the position of an arbitrary satellite. When a fast CME is ejected from the Sun to the interplanetary space in most of the cases drives a shock. As the CME moves in the corona and later in the interplanetary space more material is stacking in the front and edges of the ejecta. In a first approximation, it is possible to assume the shape of these structures, the CME and the stacked material as a cone of revolution, (the ice-cream model [Schwenn et al., (2005)]). The interface may change due to the interaction of the structure and the non-shocked material in front of the ICME but the original shape of a cone of revolution is preserved. We assume, in a three dimensional geometry, an ice-cream cone shape for the ICME and apply an analytical model for its transport in the interplanetary medium. The goal of the present method is to give the time and the intersection coordinates between the leading edge of the ICME and any satellite that may be in the path of the ICME. With this information we can modelate the travel of the ICME in the interplanetary space using STEREO data.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2016EGUGA..1810049M','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2016EGUGA..1810049M"><span>Radio triangulation - mapping the 3D position of the solar radio emission</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Magdalenic, Jasmina</p> <p>2016-04-01</p> <p>Understanding the relative position of the sources of the radio emission and the associated solar eruptive phenomena (CME and the associated shock wave) has always been a challenge. While ground-based radio interferometer observations provide us with the 2D position information for the radio emission originating from the low corona (up to 2.5 Ro), this is not the case for the radio emission originating at larger heights. The radio triangulation measurements (also referred to as direction-finding or goniopolarimetric measurements) from two or more widely separated spacecraft can provide information on the 3D positions of the sources of the radio emission. This type of interplanetary radio observations are currently performed by STEREO WAVES and WIND WAVES instruments, providing a unique possibility for up to three simultaneous radio triangulations (using up to three different pairs of spacecraft). The recent results of the radio triangulation studies bring new insight into the causal relationship of the solar radio emission and CMEs. In this presentation I will discuss some of the most intriguing results on the source positions of: a) type III radio bursts indicating propagation of the fast electrons accelerated along the open field lines, b) type II radio bursts indicating interaction of the CME-driven shocks and other coronal structures e.g. streamers and c) type IV-like radio bursts possibly associated with CME-CME interaction.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://hdl.handle.net/2060/19730017140','NASA-TRS'); return false;" href="http://hdl.handle.net/2060/19730017140"><span>Alfven wave refraction by interplanetary inhomogeneities</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Daily, W. D.</p> <p>1973-01-01</p> <p>Pioneer 6 magnetic data reveals that the propagation direction of Alfven waves in the interplanetary medium is strongly oriented along the ambient field. Magnetic fluctuations of frequencies up to 1/30 sec in the spacecraft frame are shown to satisfy a necessary condition for Alfven wave normal. It appears from this analysis that geometrical hydromagnetics may satisfactorily describe deviation of the wave normal from the background field. The rotational discontinuity is likely also to propagate along the field lines.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://hdl.handle.net/2060/19850026459','NASA-TRS'); return false;" href="http://hdl.handle.net/2060/19850026459"><span>Energetic ion acceleration at collisionless shocks</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Decker, R. B.; Vlahos, L.</p> <p>1985-01-01</p> <p>An example is presented from a test particle simulation designed to study ion acceleration at oblique turbulent shocks. For conditions appropriate at interplanetary shocks near 1 AU, it is found that a shock with theta sub B n = 60 deg is capable of producing an energy spectrum extending from 10 keV to approx. 1 MeV in approx 1 hour. In this case total energy gains result primarily from several separate episodes of shock drift acceleration, each of which occurs when particles are scattered back to the shock by magnetic fluctuations in the shock vicinity.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://hdl.handle.net/2060/20110006436','NASA-TRS'); return false;" href="http://hdl.handle.net/2060/20110006436"><span>Radio-Loud Coronal Mass Ejections Without Shocks Near Earth</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Gopalswamy, N.; SaintCyr, O. C.; MacDowall, R. J.; Kaiser, M. L.; Xie, H.; Makela, P.; Akiyama, S.</p> <p>2010-01-01</p> <p>Type II radio bursts are produced by low energy electrons accelerated in shocks driven by corona) mass ejections (CMEs). One can infer shocks near the Sun, in the Interplanetary medium, and near Earth depending on the wavelength range in which the type II bursts are produced. In fact, type II bursts are good indicators of CMEs that produce solar energetic particles. If the type 11 burst occurs from a source on the Earth-facing side of the solar disk, it is highly likely that a shock arrives at Earth in 2-3 days and hence can be used to predict shock arrival at Earth. However, a significant fraction of CMEs producing type II bursts were not associated shocks at Earth, even though the CMEs originated close to the disk center. There are several reasons for the lack of shock at 1 AU. CMEs originating at large central meridian distances (CMDs) may be driving a shock, but the shock may not be extended sufficiently to reach to the Sun-Earth line. Another possibility is CME cannibalism because of which shocks merge and one observes a single shock at Earth. Finally, the CME-driven shock may become weak and dissipate before reaching 1 AU. We examined a set of 30 type II bursts observed by the Wind/WAVES experiment that had the solar sources very close to the disk center (within a CMD of 15 degrees), but did not have shock at Earth. We find that the near-Sun speeds of the associated CMEs average to approx.600 km/s, only slightly higher than the average speed of CMEs associated with radio-quiet shocks. However, the fraction of halo CMEs is only approx.28%, compared to 40% for radio-quiet shocks and 72% for all radio-loud shocks. We conclude that the disk-center radio loud CMEs with no shocks at 1 AU are generally of lower energy and they drive shocks only close to the Sun.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017SoPh..292..180P','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017SoPh..292..180P"><span>Effective Acceleration Model for the Arrival Time of Interplanetary Shocks driven by Coronal Mass Ejections</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Paouris, Evangelos; Mavromichalaki, Helen</p> <p>2017-12-01</p> <p>In a previous work (Paouris and Mavromichalaki in Solar Phys. 292, 30, 2017), we presented a total of 266 interplanetary coronal mass ejections (ICMEs) with as much information as possible. We developed a new empirical model for estimating the acceleration of these events in the interplanetary medium from this analysis. In this work, we present a new approach on the effective acceleration model (EAM) for predicting the arrival time of the shock that preceds a CME, using data of a total of 214 ICMEs. For the first time, the projection effects of the linear speed of CMEs are taken into account in this empirical model, which significantly improves the prediction of the arrival time of the shock. In particular, the mean value of the time difference between the observed time of the shock and the predicted time was equal to +3.03 hours with a mean absolute error (MAE) of 18.58 hours and a root mean squared error (RMSE) of 22.47 hours. After the improvement of this model, the mean value of the time difference is decreased to -0.28 hours with an MAE of 17.65 hours and an RMSE of 21.55 hours. This improved version was applied to a set of three recent Earth-directed CMEs reported in May, June, and July of 2017, and we compare our results with the values predicted by other related models.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017AGUFMSA23A2545M','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017AGUFMSA23A2545M"><span>Solar Wind drivers affecting GIC magnitude in New Zealand.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Mac Manus, D. H.; Rodger, C. J.; Dalzell, M.; Petersen, T.; Clilverd, M. A.</p> <p>2017-12-01</p> <p>Interplanetary shocks arriving at the Earth drive magnetosphere and ionosphere current systems. Ground based magnetometers detect the time derivation of the horizontal magnetic field (dBH/dt) which can indicate the strength of these ionospheric currents. The strong dBH/dt spikes have been observed to cause large Geomagnetically Induced Currents (GIC) in New Zealand. Such could, potentially lead to large scale damage to technological infrastructure such as power network transformers; one transformer was written off in New Zealand after a sudden commencement on 6 November 2001. The strength of the incoming interplanetary shocks are monitored by satellite measurements undertaken at the L1 point. Such measurements could give power network operators a 20-60 minute warning before potentially damaging GIC occurs. In this presentation we examine solar wind measurements from the Advanced Composition Explorer (ACE), Wind, and the Solar and Heliospheric Observatory (SOHO). We contrast those solar wind observations with GIC measured in New Zealand's South Island from 2001 to 2016. We are searching for a consistent relationship between the incoming interplanetary shock and the GIC magnitude. Such a relationship would allow Transpower New Zealand Limited a small time window to implement mitigation plans in order to restrict any GIC-caused damage.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://hdl.handle.net/2060/19840005055','NASA-TRS'); return false;" href="http://hdl.handle.net/2060/19840005055"><span>Plasma properties of driver gas following interplanetary shocks observed by ISEE-3</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Zwickl, R. D.; Asbridge, J. R.; Bame, S. J.; Feldman, W. C.; Gosling, J. T.; Smith, E. J.</p> <p>1983-01-01</p> <p>Plasma fluid parameters calculated from solar wind and magnetic field data to determine the characteristic properties of driver gas following a select subset of interplanetary shocks were studied. Of 54 shocks observed from August 1978 to February 1980, 9 contained a well defined driver gas that was clearly identifiable by a discontinuous decrease in the average proton temperature. While helium enhancements were present downstream of the shock in all 9 of these events, only about half of them contained simultaneous changes in the two quantities. Simultaneous with the drop in proton temperature the helium and electron temperature decreased abruptly. In some cases the proton temperature depression was accompanied by a moderate increase in magnetic field magnitude with an unusually low variance, by a small decrease in the variance of the bulk velocity, and by an increase in the ratio of parallel to perpendicular temperature. The cold driver gas usually displayed a bidirectional flow of suprathermal solar wind electrons at higher energies.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2012AGUFMSH32B..08L','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2012AGUFMSH32B..08L"><span>Particle acceleration and transport at a 2D CME-driven shock using the HAFv3 and PATH Code</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Li, G.; Ao, X.; Fry, C. D.; Verkhoglyadova, O. P.; Zank, G. P.</p> <p>2012-12-01</p> <p>We study particle acceleration at a 2D CME-driven shock and the subsequent transport in the inner heliosphere (up to 2 AU) by coupling the kinematic Hakamada-Akasofu-Fry version 3 (HAFv3) solar wind model (Hakamada and Akasofu, 1982, Fry et al. 2003) with the Particle Acceleration and Transport in the Heliosphere (PATH) model (Zank et al., 2000, Li et al., 2003, 2005, Verkhoglyadova et al. 2009). The HAFv3 provides the evolution of a two-dimensional shock geometry and other plasma parameters, which are fed into the PATH model to investigate the effect of a varying shock geometry on particle acceleration and transport. The transport module of the PATH model is parallelized and utilizes the state-of-the-art GPU computation technique to achieve a rapid physics-based numerical description of the interplanetary energetic particles. Together with a fast execution of the HAFv3 model, the coupled code gives us a possibility to nowcast/forecast the interplanetary radiation environment.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2016EGUGA..18.3590Z','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2016EGUGA..18.3590Z"><span>Particle Energization throughout the Heliosphere: Opportunities with IMAP</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Zank, Gary</p> <p>2016-04-01</p> <p>Understanding the radiation environment at the Earth and beyond is one of the critical elements in our developing Space Weather capabilities and strategy. Furthermore, the energization of charged particles in a collisionless plasma remains one of the compelling unsolved yet universal problems in space physics and astrophysics. The proposed instrumentation of IMAP enables two critical goals: 1) real-time monitoring of the radiation and plasma environment as part of a Space Weather capability, and 2) making coordinated simultaneous measurements of all the basic plasma parameters needed to develop a comprehensive and detailed understanding of fundamental particle energization processes. Since the session addresses the "Physics of particle acceleration", we will survey briefly the critical open problems associated with particle acceleration during quiet and active solar wind periods. At least three elements will be discussed. 1) Dissipative processes in the quiet solar wind and at shock waves. For the former, we discuss emerging ideas about the dissipation of turbulence via structures such as flux ropes and their role in possibly energizing charged particles during quiet times, especially in the vicinity of the heliospheric current sheet. In the latter, reflected ions play an essential role in dissipative processes at both quasi-perpendicular and quasi-parallel shocks. This in turn has consequences for the energization of particles, the generation of turbulence upstream and downstream of the shock, and the importance of a pre-existing suprathermal ion population. 2) What is the role of pre-existing energetic particles versus injection from a background thermal population of charged particles in the context of diffusive shock acceleration? Does the pre-existing suprathermal particle population play a fundamental role in the dissipation processes governing heliospheric shock, as suggested by the case of the heliospheric termination shock and pickup ions? 3) What is the primary acceleration mechanism for electrons in the solar wind during both quiet and active solar wind periods? Apparently stable energetic electron power law distributions are observed for quiet periods. Does the observed kappa distribution function for electrons and the electron heat flux play an important role in generating energetic particle distributions during quiet times? The observed characteristics of energetic electrons in the vicinity of interplanetary shocks are frequently quite different from those predicted from classical diffusive shock acceleration. Is another mechanism at work? IMAPs ability to simultaneously measure energetic particles from energies as low as ~2 keV, pickup ions, the interplanetary magnetic field, and thermal plasma distributions will provide important constraints on theory and modeling of particle energization throughout the heliosphere.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://ntrs.nasa.gov/search.jsp?R=19750032577&hterms=Wave+Energy&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D80%26Ntt%3DWave%2BEnergy','NASA-TRS'); return false;" href="https://ntrs.nasa.gov/search.jsp?R=19750032577&hterms=Wave+Energy&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D80%26Ntt%3DWave%2BEnergy"><span>Energy densities of Alfven waves between 0.7 and 1.6 AU. [in interplanetary medium</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Belcher, J. W.; Burchsted, R.</p> <p>1974-01-01</p> <p>Plasma and field data from Mariner 4 and 5 between 0.7 and 1.6 AU are used to study the radial dependence of the levels of microscale fluctuation associated with interplanetary Alfven waves. The observed decrease of these levels with increasing distance from the sun is consistent with little or no local generation or damping of the ambient Alfven waves over this range of radial distance.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://hdl.handle.net/2060/19990100646','NASA-TRS'); return false;" href="http://hdl.handle.net/2060/19990100646"><span>Interplanetary Fast Shocks and Associated Drivers Observed through the Twenty-Third Solar Minimum by WIND Over its First 2.5 Years</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Mariani, F.; Berdichevsky, D.; Szabo, A.; Lepping, R. P.; Vinas, A. F.</p> <p>1999-01-01</p> <p>A list of the interplanetary (IP) shocks observed by WIND from its launch (in November 1994) to May 1997 is presented. Forty two shocks were identified. The magnetohydrodynamic nature of the shocks is investigated, and the associated shock parameters and their uncertainties are accurately computed using a practical scheme which combines two techniques. These techniques are a combination of the "pre-averaged" magnetic-coplanarity, velocity-coplanarity, and the Abraham-Schrauner-mixed methods, on the one hand, and the Vinas and Scudder [1986] technique for solving the non-linear least-squares Rankine-Hugoniot shock equations, on the other. Within acceptable limits these two techniques generally gave the same results, with some exceptions. The reasons for the exceptions are discussed. It is found that the mean strength and rate of occurrence of the shocks appears to correlated with the solar cycle. Both showed a decrease in 1996 coincident with the time of the lowest ultraviolet solar radiance, indicative of solar minimum and start of solar cycle 23, which began around June 1996. Eighteen shocks appeared to be associated with corotating interaction regions (CIRs). The distribution of their shock normals showed a mean direction peaking in the ecliptic plane and with a longitude (phi(sub n)) in that plane between perpendicular to the Parker spiral and radial from the Sun. When grouped according to the sense of the direction of propagation of the shocks the mean azimuthal (longitude) angle in GSE coordinates was approximately 194 deg for the fast-forward and approximately 20 deg for the fast-reverse shocks. Another 16 shocks were determined to be driven by solar transients, including magnetic clouds. These shocks had a broader distribution of normal directions than those of the CIR cases with a mean direction close to the Sun-Earth line. Eight shocks of unknown origin had normal orientation well off the ecliptic plane. No shock propagated with longitude phi(sub n) >= 220 +/- 10 deg, this would suggest strong hindrance to the propagation of shocks contra a rather tightly winding Parker spiral. Examination of the obliquity angle theta(sub Bn) (that between the shock normal and the upstream interplanetary magnetic field) for the full set of shocks revealed that about 58% was quasi-perpendicular, and some were very nearly perpendicular. About 32% of the shocks were oblique, and the rest (only 10%) were quasi-parallel, with one on Dec. 9, 1996 that showed field pulsations. Small uncertainty in the estimated angle theta(sub Bn) was obtained for about 10 shocks with magnetosonic Mach numbers between 1 and 2, hopefully significantly contributing to studies researching particle acceleration mechanisms at IP shocks, and to investigations where accurate values of theta(sub Bn) are crucial.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2016AGUFMSH21C2552W','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2016AGUFMSH21C2552W"><span>The Microphysics Explorer (MPEX) Mission: A Small Explorer Mission to Investigate the Role of Small Scale Non-Linear Time Domain Structures (TDS) and Waves in the Energization of Electrons and Energy Flow in Space Plasmas.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Wygant, J. R.</p> <p>2016-12-01</p> <p>Evidence has accumulated that most energy conversion structures in space plasmas are characterized by intense small-scale size electric fields with strong parallel components, which are prime suspects in the rapid and efficient bulk acceleration of electrons. The proposed MPEX mission will provide, for the first time, 1 ms measurements of electrons capable of resolving the acceleration process due to these small-scale structures. These structures include Time Domain Structures (TDS) which are often organized into wave trains of hundreds of discrete structures propagating along magnetic fields lines. Recent measurements in the near Earth tail on auroral field lines indicate these wave trains are associated with electron acceleration in layers of strong energy flow in the form of particle energy flux and Poynting flux. Also coincident are kinetic Alfven waves which may be capable of driving the time domain structures or directly accelerating electrons. Other waves that may be important include lower hybrid wave packets, electron cyclotron waves, and large amplitude whistler waves. High time resolution field measurements show that such structures occur within dayside and tail reconnection regions, at the bow shock, at interplanetary shocks, and at other structures in the solar wind. The MPEX mission will be a multiphase mission with apogee boosts, which will explore all these regions. An array of electron ESAs will provide a 1 millisecond measurement of electron flux variations with nearly complete pitch angle coverage over a programmable array of selected energy channels. The electric field detector will provide measurement a fully 3-D measurement of the electric field with the benefit of an extremely large ratio of boom length to spacecraft radius and an improved sensor design. 2-D ion distribution functions will be provided by ion mass spectrometer and energetic electrons will be measured by a solid-state telescope.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://ntrs.nasa.gov/search.jsp?R=19920054186&hterms=quasi+particle&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D60%26Ntt%3Dquasi%2Bparticle','NASA-TRS'); return false;" href="https://ntrs.nasa.gov/search.jsp?R=19920054186&hterms=quasi+particle&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D60%26Ntt%3Dquasi%2Bparticle"><span>Focused interplanetary transport of solar energetic particles through self-generated Alfven waves</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Ng, C. K.; Reames, D. V.</p> <p>1991-01-01</p> <p>The coupled evolution of solar-flare protons and interplanetary Alfven waves based on the quasi-linear theory implies an order of magnitude amplification (damping) in the outward (inward) propagating left helical resonant Alfven waves at less than 0.4-AU helioradius, if the proton intensity at 1 AU exceeds 300 particles/(sq cm s sr MeV) at 1 MeV, and the initial wave intensities give mean free paths of more than 0.5 AU. The wave growth significantly retards solar-particle transport, and has implications on the nature of solar-wind turbulence.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2016AGUFMSH41D..05Y','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2016AGUFMSH41D..05Y"><span>Superthermal (0.5- 100 keV) Electrons near the ICME-driven shocks</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Yang, L.; Wang, L.; Li, G.; Tao, J.; He, J.; Tu, C.</p> <p>2016-12-01</p> <p>We present a survey of the 0.5 - 100 keV electrons associated with ICME-driven shocks at 1 AU, using the WIND/3DP electron measurements from 1995 to 2014. We select 66 good ICME-driven shocks, and use the "Rankine-Hugoniot" shock fitting technique to obtain the shock normal, shock velocity Vs, shock compression ratio r and magnetosonic Mach number Ms. We average the electron data in the 1-hour interval immediately after the shock front to obtain the sheath electron fluxes and in the 4-hour quiet-time interval before the shock to obtain the pre-event electron fluxes. Then we subtract the pre-event electron fluxes from the sheath electron fluxes to obtain the enhanced electron fluxes at the shock. We find that the enhanced electron fluxes are positively correlated with Vs and Ms, and generally fit well to a double power-law spectrum, J E-β. At 0.5 - 2 keV, the fitted spectral index β1 ranges from 2.1 to 5.9, negatively correlated with r and Ms. At 2 - 100 keV, the fitted index β2 is smaller than β1, with values ( 1.9 to 3.4) similar to the spectral indexes of quiet-time superhalo electrons in the solar wind. β2 shows no obvious correlation with r and Ms. Neither of β1 or β2 is in agreement with the diffusive shock theoretical predication. These results suggest that electron acceleration by interplanetary shocks may be more significant at a few keVs and the interplanetary shock acceleration can contribute to the production of solar wind superhalo electrons. However, a revision of the diffusive shock acceleration theory would be needed for the electron acceleration.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://ntrs.nasa.gov/search.jsp?R=19960021482&hterms=Streaming+Media&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D30%26Ntt%3DStreaming%2BMedia','NASA-TRS'); return false;" href="https://ntrs.nasa.gov/search.jsp?R=19960021482&hterms=Streaming+Media&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D30%26Ntt%3DStreaming%2BMedia"><span>Bi-directional streaming of halo electrons in interplanetary plasma clouds observed between 0.3 and 1 AU</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Ivory, K.; Schwenn, R.</p> <p>1995-01-01</p> <p>The solar wind data obtained from the two Helios solar probes in the years 1974 to 1986 were systematically searched for the occurrence of bi-directional electron events. Most often these events are found in conjunction with shock associated magnetic clouds. The implications of these observations for the topology of interplanetary plasma clouds are discussed.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/1992shwa.conf.....T','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/1992shwa.conf.....T"><span>Shock waves; Proceedings of the 18th International Symposium, Sendai, Japan, July 21-26, 1991. Vols. 1 & 2</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Takayama, Kazuyoshi</p> <p></p> <p>Various papers on shock waves are presented. The general topics addressed include: shock wave structure, propagation, and interaction; shock wave reflection, diffraction, refraction, and focusing; shock waves in condensed matter; shock waves in dusty gases and multiphase media; hypersonic flows and shock waves; chemical processes and related combustion phenomena; explosions, blast waves, and laser initiation of shock waves; shock tube technology and instrumentation; CFD of shock wave phenomena; medical applications and biological effects; industrial applications.</p> </li> </ol> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_10");'>10</a></li> <li><a href="#" onclick='return showDiv("page_11");'>11</a></li> <li class="active"><span>12</span></li> <li><a href="#" onclick='return showDiv("page_13");'>13</a></li> <li><a href="#" onclick='return showDiv("page_14");'>14</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div><!-- col-sm-12 --> </div><!-- row --> </div><!-- page_12 --> <div id="page_13" class="hiddenDiv"> <div class="row"> <div class="col-sm-12"> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_11");'>11</a></li> <li><a href="#" onclick='return showDiv("page_12");'>12</a></li> <li class="active"><span>13</span></li> <li><a href="#" onclick='return showDiv("page_14");'>14</a></li> <li><a href="#" onclick='return showDiv("page_15");'>15</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div> </div> <div class="row"> <div class="col-sm-12"> <ol class="result-class" start="241"> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://hdl.handle.net/2060/19830009727','NASA-TRS'); return false;" href="http://hdl.handle.net/2060/19830009727"><span>Data reduction and analysis of ISEE magnetometer experiment</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Russell, C. T.</p> <p>1982-01-01</p> <p>The ISEE-1 and -2 magnetometer data was reduced. The up and downstream turbulence associated with interplanetary shocks were studied, including methods of determining shock normals, and the similarities and differences in laminar and quasi-laminar shock structure. The associated up and downstream turbulence was emphasized. The distributions of flux transfer events, field aligned currents in the near tail, and substorm dynamics in the magnetotail were also investigated.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2016ApJ...817...14P','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2016ApJ...817...14P"><span>The Major Geoeffective Solar Eruptions of 2012 March 7: Comprehensive Sun-to-Earth Analysis</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Patsourakos, S.; Georgoulis, M. K.; Vourlidas, A.; Nindos, A.; Sarris, T.; Anagnostopoulos, G.; Anastasiadis, A.; Chintzoglou, G.; Daglis, I. A.; Gontikakis, C.; Hatzigeorgiu, N.; Iliopoulos, A. C.; Katsavrias, C.; Kouloumvakos, A.; Moraitis, K.; Nieves-Chinchilla, T.; Pavlos, G.; Sarafopoulos, D.; Syntelis, P.; Tsironis, C.; Tziotziou, K.; Vogiatzis, I. I.; Balasis, G.; Georgiou, M.; Karakatsanis, L. P.; Malandraki, O. E.; Papadimitriou, C.; Odstrčil, D.; Pavlos, E. G.; Podlachikova, O.; Sandberg, I.; Turner, D. L.; Xenakis, M. N.; Sarris, E.; Tsinganos, K.; Vlahos, L.</p> <p>2016-01-01</p> <p>During the interval 2012 March 7-11 the geospace experienced a barrage of intense space weather phenomena including the second largest geomagnetic storm of solar cycle 24 so far. Significant ultra-low-frequency wave enhancements and relativistic-electron dropouts in the radiation belts, as well as strong energetic-electron injection events in the magnetosphere were observed. These phenomena were ultimately associated with two ultra-fast (>2000 km s-1) coronal mass ejections (CMEs), linked to two X-class flares launched on early 2012 March 7. Given that both powerful events originated from solar active region NOAA 11429 and their onsets were separated by less than an hour, the analysis of the two events and the determination of solar causes and geospace effects are rather challenging. Using satellite data from a flotilla of solar, heliospheric and magnetospheric missions a synergistic Sun-to-Earth study of diverse observational solar, interplanetary and magnetospheric data sets was performed. It was found that only the second CME was Earth-directed. Using a novel method, we estimated its near-Sun magnetic field at 13 R⊙ to be in the range [0.01, 0.16] G. Steep radial fall-offs of the near-Sun CME magnetic field are required to match the magnetic fields of the corresponding interplanetary CME (ICME) at 1 AU. Perturbed upstream solar-wind conditions, as resulting from the shock associated with the Earth-directed CME, offer a decent description of its kinematics. The magnetospheric compression caused by the arrival at 1 AU of the shock associated with the ICME was a key factor for radiation-belt dynamics.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017AGUFMSH51A2470O','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017AGUFMSH51A2470O"><span>Effect of upstream ULF waves on the energetic ion diffusion at the earth's foreshock: Theory, Simulation, and Observations</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Otsuka, F.; Matsukiyo, S.; Kis, A.; Hada, T.</p> <p>2017-12-01</p> <p>Spatial diffusion of energetic particles is an important problem not only from a fundamental physics point of view but also for its application to particle acceleration processes at astrophysical shocks. Quasi-linear theory can provide the spatial diffusion coefficient as a function of the wave turbulence spectrum. By assuming a simple power-law spectrum for the turbulence, the theory has been successfully applied to diffusion and acceleration of cosmic rays in the interplanetary and interstellar medium. Near the earth's foreshock, however, the wave spectrum often has an intense peak, presumably corresponding to the upstream ULF waves generated by the field-aligned beam (FAB). In this presentation, we numerically and theoretically discuss how the intense ULF peak in the wave spectrum modifies the spatial parallel diffusion of energetic ions. The turbulence is given as a superposition of non-propagating transverse MHD waves in the solar wind rest frame, and its spectrum is composed of a piecewise power-law spectrum with different power-law indices. The diffusion coefficients are then estimated by using the quasi-linear theory and test particle simulations. We find that the presence of the ULF peak produces a concave shape of the diffusion coefficient when it is plotted versus the ion energy. The results above are used to discuss the Cluster observations of the diffuse ions at the Earth's foreshock. Using the density gradients of the energetic ions detected by the Cluster spacecraft, we determine the e-folding distances, equivalently, the spatial diffusion coefficients, of ions with their energies from 10 to 32 keV. The observed e-folding distances are significantly smaller than those estimated in the past statistical studies. This suggests that the particle acceleration at the foreshock can be more efficient than considered before. Our test particle simulation explains well the small estimate of the e-folding distances, by using the observed wave turbulence spectrum near the shock.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2007JGRA..11211103X','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2007JGRA..11211103X"><span>Magnetohydrodynamic simulation of the interaction between two interplanetary magnetic clouds and its consequent geoeffectiveness</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Xiong, Ming; Zheng, Huinan; Wu, S. T.; Wang, Yuming; Wang, Shui</p> <p>2007-11-01</p> <p>Numerical studies of the interplanetary "multiple magnetic clouds (Multi-MC)" are performed by a 2.5-dimensional ideal magnetohydrodynamic (MHD) model in the heliospheric meridional plane. Both slow MC1 and fast MC2 are initially emerged along the heliospheric equator, one after another with different time intervals. The coupling of two MCs could be considered as the comprehensive interaction between two systems, each comprising of an MC body and its driven shock. The MC2-driven shock and MC2 body are successively involved into interaction with MC1 body. The momentum is transferred from MC2 to MC1. After the passage of MC2-driven shock front, magnetic field lines in MC1 medium previously compressed by MC2-driven shock are prevented from being restored by the MC2 body pushing. MC1 body undergoes the most violent compression from the ambient solar wind ahead, continuous penetration of MC2-driven shock through MC1 body, and persistent pushing of MC2 body at MC1 tail boundary. As the evolution proceeds, the MC1 body suffers from larger and larger compression, and its original vulnerable magnetic elasticity becomes stiffer and stiffer. So there exists a maximum compressibility of Multi-MC when the accumulated elasticity can balance the external compression. This cutoff limit of compressibility mainly decides the maximally available geoeffectiveness of Multi-MC because the geoeffectiveness enhancement of MCs interacting is ascribed to the compression. Particularly, the greatest geoeffectiveness is excited among all combinations of each MC helicity, if magnetic field lines in the interacting region of Multi-MC are all southward. Multi-MC completes its final evolutionary stage when the MC2-driven shock is merged with MC1-driven shock into a stronger compound shock. With respect to Multi-MC geoeffectiveness, the evolution stage is a dominant factor, whereas the collision intensity is a subordinate one. The magnetic elasticity, magnetic helicity of each MC, and compression between each other are the key physical factors for the formation, propagation, evolution, and resulting geoeffectiveness of interplanetary Multi-MC.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://hdl.handle.net/2060/20140006613','NASA-TRS'); return false;" href="http://hdl.handle.net/2060/20140006613"><span>Deep Solar Activity Minimum 2007-2009: Solar Wind Properties and Major Effects on the Terrestrial Magnetosphere</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Farrugia, C. J.; Harris, B.; Leitner, M.; Moestl, C.; Galvin, A. B.; Simunac, K. D. C.; Torbert, R. B.; Temmer, M. B.; Veronig, A. M.; Erkaev, N. V.; <a style="text-decoration: none; " href="javascript:void(0); " onClick="displayelement('author_20140006613'); toggleEditAbsImage('author_20140006613_show'); toggleEditAbsImage('author_20140006613_hide'); "> <img style="display:inline; width:12px; height:12px; " src="images/arrow-up.gif" width="12" height="12" border="0" alt="hide" id="author_20140006613_show"> <img style="width:12px; height:12px; display:none; " src="images/arrow-down.gif" width="12" height="12" border="0" alt="hide" id="author_20140006613_hide"></p> <p>2012-01-01</p> <p>We discuss the temporal variations and frequency distributions of solar wind and interplanetary magnetic field parameters during the solar minimum of 2007 - 2009 from measurements returned by the IMPACT and PLASTIC instruments on STEREO-A.We find that the density and total field strength were significantly weaker than in the previous minimum. The Alfven Mach number was higher than typical. This reflects the weakness of magnetohydrodynamic (MHD) forces, and has a direct effect on the solar wind-magnetosphere interactions.We then discuss two major aspects that this weak solar activity had on the magnetosphere, using data from Wind and ground-based observations: i) the dayside contribution to the cross-polar cap potential (CPCP), and ii) the shapes of the magnetopause and bow shock. For i) we find a low interplanetary electric field of 1.3+/-0.9 mV/m and a CPCP of 37.3+/-20.2 kV. The auroral activity is closely correlated to the prevalent stream-stream interactions. We suggest that the Alfven wave trains in the fast streams and Kelvin-Helmholtz instability were the predominant agents mediating the transfer of solar wind momentum and energy to the magnetosphere during this three-year period. For ii) we determine 328 magnetopause and 271 bow shock crossings made by Geotail, Cluster 1, and the THEMIS B and C spacecraft during a three-month interval when the daily averages of the magnetic and kinetic energy densities attained their lowest value during the three years under survey.We use the same numerical approach as in Fairfield's empirical model and compare our findings with three magnetopause models. The stand-off distance of the subsolar magnetopause and bow shock were 11.8 R(sub E) and 14.35 R(sub E), respectively. When comparing with Fairfield's classic result, we find that the subsolar magnetosheath is thinner by approx. 1 R(sub E). This is mainly due to the low dynamic pressure which results in a sunward shift of the magnetopause. The magnetopause is more flared than in Fairfield's model. By contrast the bow shock is less flared, and the latter is the result of weaker MHD forces.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://hdl.handle.net/2060/20070018209','NASA-TRS'); return false;" href="http://hdl.handle.net/2060/20070018209"><span>The Roles of Flares and Shocks in determining SEP Abundances</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Cane, H. V.; Mewaldt, R. A.; Cohen, C. M. S.; vonRosenvinge, T. T.</p> <p>2007-01-01</p> <p>We examine solar energetic particle (SEP) event-averaged abundances of Fe relative to O and intensity versus time profiles at energies above 25 MeV/nucleon using the SIS instrument on ACE. These data are compared with solar wind conditions during each event and with estimates of the strength of the associated shock based on average travel times to 1 AU. We find that the majority of events with an Fe to 0 abundance ratio greater than two times the average 5-12 MeV/nuc value for large SEP events (0.134) occur in the western hemisphere. Furthermore, in most of these Fe-rich events the profiles peak within 12 hours of the associated flare, suggesting that some of the observed interplanetary particles are accelerated in these flares. The vast majority of events with Fe/O below 0.134 are influenced by interplanetary shock acceleration. We suggest that variations in elemental composition in SEP events mainly arise from the combination of flare particles and shock acceleration of these particles and/or the ambient medium.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017ApJ...837L..17T','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017ApJ...837L..17T"><span>Sheath-accumulating Propagation of Interplanetary Coronal Mass Ejection</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Takahashi, Takuya; Shibata, Kazunari</p> <p>2017-03-01</p> <p>Fast interplanetary coronal mass ejections (ICMEs) are the drivers of strong space weather storms such as solar energetic particle events and geomagnetic storms. The connection between the space-weather-impacting solar wind disturbances associated with fast ICMEs at Earth and the characteristics of causative energetic CMEs observed near the Sun is a key question in the study of space weather storms, as well as in the development of practical space weather prediction. Such shock-driving fast ICMEs usually expand at supersonic speeds during the propagation, resulting in the continuous accumulation of shocked sheath plasma ahead. In this paper, we propose a “sheath-accumulating propagation” (SAP) model that describes the coevolution of the interplanetary sheath and decelerating ICME ejecta by taking into account the process of upstream solar wind plasma accumulation within the sheath region. Based on the SAP model, we discuss (1) ICME deceleration characteristics; (2) the fundamental condition for fast ICMEs at Earth; (3) the thickness of interplanetary sheaths; (4) arrival time prediction; and (5) the super-intense geomagnetic storms associated with huge solar flares. We quantitatively show that not only the speed but also the mass of the CME are crucial for discussing the above five points. The similarities and differences between the SAP model, the drag-based model, and the“snow-plow” model proposed by Tappin are also discussed.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/18791028','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/18791028"><span>Role of DNA protection and repair in resistance of Bacillus subtilis spores to ultrahigh shock pressures simulating hypervelocity impacts.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Moeller, Ralf; Horneck, Gerda; Rabbow, Elke; Reitz, Günther; Meyer, Cornelia; Hornemann, Ulrich; Stöffler, Dieter</p> <p>2008-11-01</p> <p>Impact-induced ejections of rocks from planetary surfaces are frequent events in the early history of the terrestrial planets and have been considered as a possible first step in the potential interplanetary transfer of microorganisms. Spores of Bacillus subtilis were used as a model system to study the effects of a simulated impact-caused ejection on rock-colonizing microorganisms using a high-explosive plane wave setup. Embedded in different types of rock material, spores were subjected to extremely high shock pressures (5 to 50 GPa) lasting for fractions of microseconds to seconds. Nearly exponential pressure response curves were obtained for spore survival and linear dependency for the induction of sporulation-defective mutants. Spores of strains defective in major small, acid-soluble spore proteins (SASP) (alpha/beta-type SASP) that largely protect the spore DNA and spores of strains deficient in nonhomologous-end-joining DNA repair were significantly more sensitive to the applied shock pressure than were wild-type spores. These results indicate that DNA may be the sensitive target of spores exposed to ultrahigh shock pressures. To assess the nature of the critical physical parameter responsible for spore inactivation by ultrahigh shock pressures, the resulting peak temperature was varied by lowering the preshock temperature, changing the rock composition and porosity, or increasing the water content of the samples. Increased peak temperatures led to increased spore inactivation and reduced mutation rates. The data suggested that besides the potential mechanical stress exerted by the shock pressure, the accompanying high peak temperatures were a critical stress parameter that spores had to cope with.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2015ApJ...814..137Z','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2015ApJ...814..137Z"><span>Diffusive Shock Acceleration and Reconnection Acceleration Processes</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Zank, G. P.; Hunana, P.; Mostafavi, P.; Le Roux, J. A.; Li, Gang; Webb, G. M.; Khabarova, O.; Cummings, A.; Stone, E.; Decker, R.</p> <p>2015-12-01</p> <p>Shock waves, as shown by simulations and observations, can generate high levels of downstream vortical turbulence, including magnetic islands. We consider a combination of diffusive shock acceleration (DSA) and downstream magnetic-island-reconnection-related processes as an energization mechanism for charged particles. Observations of electron and ion distributions downstream of interplanetary shocks and the heliospheric termination shock (HTS) are frequently inconsistent with the predictions of classical DSA. We utilize a recently developed transport theory for charged particles propagating diffusively in a turbulent region filled with contracting and reconnecting plasmoids and small-scale current sheets. Particle energization associated with the anti-reconnection electric field, a consequence of magnetic island merging, and magnetic island contraction, are considered. For the former only, we find that (i) the spectrum is a hard power law in particle speed, and (ii) the downstream solution is constant. For downstream plasmoid contraction only, (i) the accelerated spectrum is a hard power law in particle speed; (ii) the particle intensity for a given energy peaks downstream of the shock, and the distance to the peak location increases with increasing particle energy, and (iii) the particle intensity amplification for a particular particle energy, f(x,c/{c}0)/f(0,c/{c}0), is not 1, as predicted by DSA, but increases with increasing particle energy. The general solution combines both the reconnection-induced electric field and plasmoid contraction. The observed energetic particle intensity profile observed by Voyager 2 downstream of the HTS appears to support a particle acceleration mechanism that combines both DSA and magnetic-island-reconnection-related processes.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2018ApJ...856..148J','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2018ApJ...856..148J"><span>Plasma Heating and Alfvénic Turbulence Enhancement During Two Steps of Energy Conversion in Magnetic Reconnection Exhaust Region of Solar Wind</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Jiansen, He; Xingyu, Zhu; Yajie, Chen; Chadi, Salem; Michael, Stevens; Hui, Li; Wenzhi, Ruan; Lei, Zhang; Chuanyi, Tu</p> <p>2018-04-01</p> <p>The magnetic reconnection exhaust is a pivotal region with enormous magnetic energy being continuously released and converted. The physical processes of energy conversion involved are so complicated that an all-round understanding based on in situ measurements is still lacking. We present the evidence of plasma heating by illustrating the broadening of proton and electron velocity distributions, which are extended mainly along the magnetic field, in an exhaust of interchange reconnection between two interplanetary magnetic flux tubes of the same polarity on the Sun. The exhaust is asymmetric across an interface, with both sides being bounded by a pair of compound discontinuities consisting of rotational discontinuity and slow shock. The energized plasmas are found to be firehose unstable, and responsible for the emanation of Alfvén waves during the second step of energy conversion. It is realized that the energy conversion in the exhaust can be a two-step process involving both plasma energization and wave emission.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2016JGRA..121.8300Z','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2016JGRA..121.8300Z"><span>Physical mechanism causing rapid changes in ultrarelativistic electron pitch angle distributions right after a shock arrival: Evaluation of an electron dropout event</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Zhang, X.-J.; Li, W.; Thorne, R. M.; Angelopoulos, V.; Ma, Q.; Li, J.; Bortnik, J.; Nishimura, Y.; Chen, L.; Baker, D. N.; Reeves, G. D.; Spence, H. E.; Kletzing, C. A.; Kurth, W. S.; Hospodarsky, G. B.; Blake, J. B.; Fennell, J. F.</p> <p>2016-09-01</p> <p>Three mechanisms have been proposed to explain relativistic electron flux depletions (dropouts) in the Earth's outer radiation belt during storm times: adiabatic expansion of electron drift shells due to a decrease in magnetic field strength, magnetopause shadowing and subsequent outward radial diffusion, and precipitation into the atmosphere (driven by EMIC wave scattering). Which mechanism predominates in causing electron dropouts commonly observed in the outer radiation belt is still debatable. In the present study, we evaluate the physical mechanism that may be primarily responsible for causing the sudden change in relativistic electron pitch angle distributions during a dropout event observed by Van Allen Probes during the main phase of the 27 February 2014 storm. During this event, the phase space density of ultrarelativistic (>1 MeV) electrons was depleted by more than 1 order of magnitude over the entire radial extent of the outer radiation belt (3 < L* < 5) in less than 6 h after the passage of an interplanetary shock. We model the electron pitch angle distribution under a compressed magnetic field topology based on actual solar wind conditions. Although these ultrarelativistic electrons exhibit highly anisotropic (peaked in 90°), energy-dependent pitch angle distributions, which appear to be associated with the typical EMIC wave scattering, comparison of the modeled electron distribution to electron measurements indicates that drift shell splitting is responsible for this rapid change in electron pitch angle distributions. This further indicates that magnetopause loss is the predominant cause of the electron dropout right after the shock arrival.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://ntrs.nasa.gov/search.jsp?R=19720048291&hterms=apollo+missions&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D30%26Ntt%3Dapollo%2Bmissions','NASA-TRS'); return false;" href="https://ntrs.nasa.gov/search.jsp?R=19720048291&hterms=apollo+missions&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D30%26Ntt%3Dapollo%2Bmissions"><span>Suprathermal ion detector results from Apollo missions.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Freeman, J. W., Jr.</p> <p>1972-01-01</p> <p>This paper reviews briefly the knowledge of the ion environment of the moon as obtained from the Apollo Lunar Surface Experiments Package, Suprathermal Ion Detector Experiment. Topics to be discussed include: an interplanetary shock as seen from the lunar surface; bow shock and magnetosheath ions; magnetotail plasma seen during a magnetic disturbance; suprathermal ions seen during passage of the sunset and sunrise terminators; and ions associated with neutral gas clouds in the vicinity of the moon, and in particular the low energy mono-energetic spectrum of these ions. It is believed that these low energy spectra and some terminator ions can be explained by ion acceleration by the interplanetary electric field. This paper serves as catalog to references to these and other related phenomena.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2015SoPh..290..919T','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2015SoPh..290..919T"><span>Interplanetary Propagation Behavior of the Fast Coronal Mass Ejection on 23 July 2012</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Temmer, M.; Nitta, N. V.</p> <p>2015-03-01</p> <p>The fast coronal mass ejection (CME) on 23 July 2012 caused attention because of its extremely short transit time from the Sun to 1 AU, which was shorter than 21 h. In situ data from STEREO-A revealed the arrival of a fast forward shock with a speed of more than 2200 km s-1 followed by a magnetic structure moving with almost 1900 km s-1. We investigate the propagation behavior of the CME shock and magnetic structure with the aim to reproduce the short transit time and high impact speed as derived from in situ data. We carefully measured the 3D kinematics of the CME using the graduated cylindrical shell model and obtained a maximum speed of 2580±280 km s-1 for the CME shock and 2270±420 km s-1 for its magnetic structure. Based on the 3D kinematics, the drag-based model (DBM) reproduces the observational data reasonably well. To successfully simulate the CME shock, the ambient flow speed needs to have an average value close to the slow solar wind speed (450 km s-1), and the initial shock speed at a distance of 30 R ⊙ should not exceed ≈ 2300 km s-1, otherwise it would arrive much too early at STEREO-A. The model results indicate that an extremely small aerodynamic drag force is exerted on the shock, smaller by one order of magnitude than average. As a consequence, the CME hardly decelerates in interplanetary space and maintains its high initial speed. The low aerodynamic drag can only be reproduced when the density of the ambient solar wind flow, in which the fast CME propagates, is decreased to ρ sw=1 - 2 cm-3 at the distance of 1 AU. This result is consistent with the preconditioning of interplanetary space by a previous CME.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.osti.gov/biblio/22364677-possible-role-coronal-streamers-magnetically-closed-structures-shock-induced-energetic-electrons-metric-type-ii-radio-bursts','SCIGOV-STC'); return false;" href="https://www.osti.gov/biblio/22364677-possible-role-coronal-streamers-magnetically-closed-structures-shock-induced-energetic-electrons-metric-type-ii-radio-bursts"><span>THE POSSIBLE ROLE OF CORONAL STREAMERS AS MAGNETICALLY CLOSED STRUCTURES IN SHOCK-INDUCED ENERGETIC ELECTRONS AND METRIC TYPE II RADIO BURSTS</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.osti.gov/search">DOE Office of Scientific and Technical Information (OSTI.GOV)</a></p> <p>Kong, Xiangliang; Chen, Yao; Feng, Shiwei</p> <p>2015-01-10</p> <p>Two solar type II radio bursts, separated by ∼24 hr in time, are examined together. Both events are associated with coronal mass ejections (CMEs) erupting from the same active region (NOAA 11176) beneath a well-observed helmet streamer. We find that the type II emissions in both events ended once the CME/shock fronts passed the white-light streamer tip, which is presumably the magnetic cusp of the streamer. This leads us to conjecture that the closed magnetic arcades of the streamer may play a role in electron acceleration and type II excitation at coronal shocks. To examine such a conjecture, we conduct a test-particle simulationmore » for electron dynamics within a large-scale partially closed streamer magnetic configuration swept by a coronal shock. We find that the closed field lines play the role of an electron trap via which the electrons are sent back to the shock front multiple times and therefore accelerated to high energies by the shock. Electrons with an initial energy of 300 eV can be accelerated to tens of keV concentrating at the loop apex close to the shock front with a counter-streaming distribution at most locations. These electrons are energetic enough to excite Langmuir waves and radio bursts. Considering the fact that most solar eruptions originate from closed field regions, we suggest that the scenario may be important for the generation of more metric type IIs. This study also provides an explanation of the general ending frequencies of metric type IIs at or above 20-30 MHz and the disconnection issue between metric and interplanetary type IIs.« less</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://hdl.handle.net/2060/19720007626','NASA-TRS'); return false;" href="http://hdl.handle.net/2060/19720007626"><span>Influence of thermal anisotropy on best-fit estimates of shock normals</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Lepping, R. P.</p> <p>1971-01-01</p> <p>The influence of thermal anisotropy on the estimates of interplanetary shock parameters and the associated normals is discussed. A practical theorem is presented for quantitatively correcting for anisotropic effects by weighting the before and after magnetic fields by the same anisotropy parameter h. The quantity h depends only on the thermal anisotropies before and after the shock and on the angles between the magnetic fields and the shock normal. The theorem can be applied to most slow shocks, but in those cases h usually should be lower, and sometimes markedly lower, than unity. For the extreme values of h, little change results in the shock parameters or in the shock normal.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://hdl.handle.net/2060/19730002079','NASA-TRS'); return false;" href="http://hdl.handle.net/2060/19730002079"><span>Spacecraft observations of the solar wind composition</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Bame, S. J.</p> <p>1972-01-01</p> <p>Solar wind composition studies by means of plasma analyzers carried on various spacecraft are reviewed. The average ratio of helium to hydrogen over the solar cycle is close to 0.045; values as low as 0.0025 and as high as 0.25 have been observed. High values have been observed following solar flares and interplanetary shock waves when the flare gas driving the shock arrives at the spacecraft. Ions of He-3(+2), O-16(+6), and O-16(+7) have been observed with Vela 3 electrostatic analyzers. Further measurements with Vela 5 analyzers have shown the presence of N-14(+6), Si-28(+7) to Si-28(+9) and Fe-56(+7) to Fe-56(+12) ions. The relative abundance of oxygen, silicon, and iron in the solar wind of July 6, 1969, was 1.00, 0.21, and 0.17, which is very similar to reported values for the corona. The ratio of helium to oxygen is variable; the average value of He/O is close to 100, but values between 30 and 400 have been observed.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/1982stw..proc.....T','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/1982stw..proc.....T"><span>Shock tubes and waves; Proceedings of the Thirteenth International Symposium, Niagara Falls, NY, July 6-9, 1981</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Treanor, C. E.; Hall, J. G.</p> <p>1982-10-01</p> <p>The present conference on shock tubes and waves considers shock tube drivers, luminous shock tubes, shock tube temperature and pressure measurement, shock front distortion in real gases, nonlinear standing waves, transonic flow shock wave turbulent boundary interactions, wall roughness effects on reflected shock bifurcation, argon thermal conductivity, pattern generation in gaseous detonations, cylindrical resonators, shock tunnel-produced high gain lasers, fluid dynamic aspects of laser-metal interaction, and the ionization of argon gas behind reflected shock waves. Also discussed are the ionization relaxation of shock-heated plasmas and gases, discharge flow/shock tube studies of singlet oxygen, rotational and vibrational relaxation, chemiluminescence thermal and shock wave decomposition of hydrogen cyanide and hydrogen azide, shock wave structure in gas-particle mixtures at low Mach numbers, binary nucleation in a Ludwieg tube, shock liquefaction experiments, pipeline explosions, the shock wave ignition of pulverized coal, and shock-initiated methane combustion.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://hdl.handle.net/2060/19830025554','NASA-TRS'); return false;" href="http://hdl.handle.net/2060/19830025554"><span>Plasma properties of driver gas following interplanetary shocks observed by ISEE-3</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Zwickl, R. D.; Ashbridge, J. R.; Bame, S. J.; Feldman, W. C.; Gosling, J. T.; Smith, E. J.</p> <p>1982-01-01</p> <p>Plasma fluid parameters calculated from solar wind and magnetic field data obtained on ISEE 3 were studied. The characteristic properties of driver gas following interplanetary shocks was determined. Of 54 shocks observed from August 1978 to February 1980, nine contained a well defined driver gas that was clearly identifiable by a discontinuous decrease in the average proton temperature across a tangential discontinuity. While helium enhancements were present in all of nine of these events, only about half of them contained simultaneous changes in the two quantities. Often the He/H ratio changed over a period of minutes. Simultaneous with the drop in proton temperature the helium and electron temperature decreased abruptly. In some cases the proton temperature depression was accompanied by a moderate increase in magnetic field magnitude with an unusually low variance and by an increase in the ratio of parallel to perpendicular temperature. The drive gas usually displayed a bidirectional flow of suprathermal solar wind electrons at higher energies.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/19095269','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/19095269"><span>Assessment of renal injury with a clinical dual head lithotriptor delivering 240 shock waves per minute.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Handa, Rajash K; McAteer, James A; Evan, Andrew P; Connors, Bret A; Pishchalnikov, Yuri A; Gao, Sujuan</p> <p>2009-02-01</p> <p>Lithotriptors with 2 treatment heads deliver shock waves along separate paths. Firing 1 head and then the other in alternating mode has been suggested as a strategy to treat stones twice as rapidly as with conventional shock wave lithotripsy. Because the shock wave rate is known to have a role in shock wave lithotripsy induced injury, and given that treatment using 2 separate shock wave sources exposes more renal tissue to shock wave energy than treatment with a conventional lithotriptor, we assessed renal trauma in pigs following treatment at rapid rate (240 shock waves per minute and 120 shock waves per minute per head) using a Duet lithotriptor (Direx Medical Systems, Petach Tikva, Israel) fired in alternating mode. Eight adult female pigs (Hardin Farms, Danville, Indiana) each were treated with sham shock wave lithotripsy or 2,400 shock waves delivered in alternating mode (1,200 shock waves per head, 120 shock waves per minute per head and 240 shock waves per minute overall at a power level of 10) to the lower renal pole. Renal functional parameters, including glomerular filtration rate and effective renal plasma flow, were determined before and 1 hour after shock wave lithotripsy. The kidneys were perfusion fixed in situ and the hemorrhagic lesion was quantified as a percent of functional renal volume. Shock wave treatment resulted in no significant change in renal function and the response was similar to the functional response seen in sham shock wave treated animals. In 6 pigs treated with alternating mode the renal lesion was small at a mean +/- SEM of 0.22% +/- 0.09% of functional renal volume. Kidney tissue and function were minimally affected by a clinical dose of shock waves delivered in alternating mode (120 shock waves per minute per head and 240 shock waves per minute overall) with a Duet lithotriptor. These observations decrease concern that dual head lithotripsy at a rapid rate is inherently dangerous.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017EGUGA..19.6286E','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017EGUGA..19.6286E"><span>Turbulence Heating ObserveR - THOR: mission overview and payload summary</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Escoubet, C.-Philippe; Voirin, Thomas; Wielders, Arno; Vaivads, Andris; Retino, Alessandro; Khotyaintsev, Yuri; Soucek, Jan; Valentini, Francesco; Chen, Chris; Fazakerley, Andrew; Lavraud, Benoit; Marcucci, Federica; Narita, Yasuhito; Vainio, Rami; Romstedt, Jens; Boudin, Nathalie; Junge, Axel; Osuna, Pedro; Walsh, Andrew</p> <p>2017-04-01</p> <p>The Turbulence Heating ObserveR (THOR) mission was selected as one of the three candidates, following the Call for Medium Class Missions M4 by the European Space Agency, with a launch planned in 2026. THOR is the first mission ever flown in space dedicated to plasma turbulence. THOR will lead to an understanding of the basic plasma heating and particle energization processes, of their effect on different plasma species and of their relative importance in different turbulent regimes. The THOR mission features one single spinning spacecraft, with the spin axis pointing toward the Sun, and 10 state-of-the-art scientific instruments, measuring electromagnetic fields and waves and electrons and ions at the highest spatial and temporal resolution ever achieved. THOR focuses on particular regions: pristine solar wind, Earth's bow shock and interplanetary shocks, and compressed solar wind regions downstream of shocks, that will be observed with three different orbits of 6 x 15 RE, 6 x 25 RE and 6 x 45 RE. These regions are selected because of their differing turbulent fluctuation characteristics, and reflect similar astrophysical environments. The THOR mission, the conceptual design of the spacecraft and a summary of the payload will be presented. Furthermore, driving requirements and their implications for the spacecraft like Electromagnetic Compatibility and cleanliness will be discussed.</p> </li> </ol> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_11");'>11</a></li> <li><a href="#" onclick='return showDiv("page_12");'>12</a></li> <li class="active"><span>13</span></li> <li><a href="#" onclick='return showDiv("page_14");'>14</a></li> <li><a href="#" onclick='return showDiv("page_15");'>15</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div><!-- col-sm-12 --> </div><!-- row --> </div><!-- page_13 --> <div id="page_14" class="hiddenDiv"> <div class="row"> <div class="col-sm-12"> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_12");'>12</a></li> <li><a href="#" onclick='return showDiv("page_13");'>13</a></li> <li class="active"><span>14</span></li> <li><a href="#" onclick='return showDiv("page_15");'>15</a></li> <li><a href="#" onclick='return showDiv("page_16");'>16</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div> </div> <div class="row"> <div class="col-sm-12"> <ol class="result-class" start="261"> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=5562409','PMC'); return false;" href="https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=5562409"><span>Thermospheric Nitric Oxide Response to Shock-led Storms</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pmc">PubMed Central</a></p> <p>Knipp, D. J.; Pette, D. V.; Kilcommons, L. M.; Isaacs, T. L.; Cruz, A. A.; Mlynczak, M. G.; Hunt, L. A.; Lin, C. Y.</p> <p>2017-01-01</p> <p>We present a multi-year superposed epoch study of the Sounding of the Atmosphere using Broadband Emission Radiometry nitric oxide (NO) emission data. NO is a trace constituent in the thermosphere that acts as cooling agent via infrared (IR) emissions. The NO cooling competes with storm time thermospheric heating resulting in a thermostat effect. Our study of nearly 200 events reveals that shock-led interplanetary coronal mass ejections (ICMEs) are prone to early and excessive thermospheric NO production and IR emissions. Excess NO emissions can arrest thermospheric expansion by cooling the thermosphere during intense storms. The strongest events curtail the interval of neutral density increase and produce a phenomenon known as thermospheric ‘overcooling’. We use Defense Meteorological Satellite Program particle precipitation data to show that interplanetary shocks and their ICME drivers can more than double the fluxes of precipitating particles that are known to trigger the production of thermospheric NO. Coincident increases in Joule heating likely amplify the effect. In turn, NO emissions more than double. We discuss the roles and features of shock/sheath structures that allow the thermosphere to temper the effects of extreme storm time energy input and explore the implication these structures may have on mesospheric NO. Shock-driven thermospheric NO IR cooling likely plays an important role in satellite drag forecasting challenges during extreme events. PMID:28824340</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/28824340','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/28824340"><span>Thermospheric Nitric Oxide Response to Shock-led Storms.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Knipp, D J; Pette, D V; Kilcommons, L M; Isaacs, T L; Cruz, A A; Mlynczak, M G; Hunt, L A; Lin, C Y</p> <p>2017-02-01</p> <p>We present a multi-year superposed epoch study of the Sounding of the Atmosphere using Broadband Emission Radiometry nitric oxide (NO) emission data. NO is a trace constituent in the thermosphere that acts as cooling agent via infrared (IR) emissions. The NO cooling competes with storm time thermospheric heating resulting in a thermostat effect. Our study of nearly 200 events reveals that shock-led interplanetary coronal mass ejections (ICMEs) are prone to early and excessive thermospheric NO production and IR emissions. Excess NO emissions can arrest thermospheric expansion by cooling the thermosphere during intense storms. The strongest events curtail the interval of neutral density increase and produce a phenomenon known as thermospheric 'overcooling'. We use Defense Meteorological Satellite Program particle precipitation data to show that interplanetary shocks and their ICME drivers can more than double the fluxes of precipitating particles that are known to trigger the production of thermospheric NO. Coincident increases in Joule heating likely amplify the effect. In turn, NO emissions more than double. We discuss the roles and features of shock/sheath structures that allow the thermosphere to temper the effects of extreme storm time energy input and explore the implication these structures may have on mesospheric NO. Shock-driven thermospheric NO IR cooling likely plays an important role in satellite drag forecasting challenges during extreme events.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/1988stw..proc.....G','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/1988stw..proc.....G"><span>Shock tubes and waves; Proceedings of the Sixteenth International Symposium, Rheinisch-Westfaelische Technische Hochschule, Aachen, Federal Republic of Germany, July 26-31, 1987</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Groenig, Hans</p> <p></p> <p>Topics discussed in this volume include shock wave structure, propagation, and interaction; shocks in condensed matter, dusty gases, and multiphase media; chemical processes and related combustion and detonation phenomena; shock wave reflection, diffraction, and focusing; computational fluid dynamic code development and shock wave application; blast and detonation waves; advanced shock tube technology and measuring technique; and shock wave applications. Papers are presented on dust explosions, the dynamics of shock waves in certain dense gases, studies of condensation kinetics behind incident shock waves, the autoignition mechanism of n-butane behind a reflected shock wave, and a numerical simulation of the focusing process of reflected shock waves. Attention is also given to the equilibrium shock tube flow of real gases, blast waves generated by planar detonations, modern diagnostic methods for high-speed flows, and interaction between induced waves and electric discharge in a very high repetition rate excimer laser.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.osti.gov/biblio/22667229-multi-spacecraft-analysis-energetic-heavy-ion-interplanetary-shock-properties-energetic-storm-particle-events-near-au','SCIGOV-STC'); return false;" href="https://www.osti.gov/biblio/22667229-multi-spacecraft-analysis-energetic-heavy-ion-interplanetary-shock-properties-energetic-storm-particle-events-near-au"><span>MULTI-SPACECRAFT ANALYSIS OF ENERGETIC HEAVY ION AND INTERPLANETARY SHOCK PROPERTIES IN ENERGETIC STORM PARTICLE EVENTS NEAR 1 au</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.osti.gov/search">DOE Office of Scientific and Technical Information (OSTI.GOV)</a></p> <p>Ebert, R. W.; Dayeh, M. A.; Desai, M. I.</p> <p>2016-11-10</p> <p>We examine the longitude distribution of and relationship between interplanetary (IP) shock properties and ∼0.1–20 MeV nucleon{sup -1} O and Fe ions during seven multi-spacecraft energetic storm particle (ESP) events at 1 au. These ESP events were observed at two spacecraft and were primarily associated with low Mach number, quasi-perpendicular shocks. Key observations include the following: (i) the Alfvén Mach number increased from east to west of the coronal mass ejection source longitude, while the shock speed, compression ratios, and obliquity showed no clear dependence; (ii) the O and Fe time intensity profiles and peak intensities varied significantly between longitudinallymore » separated spacecraft observing the same event, the peak intensities being larger near the nose and smaller along the flank of the IP shock; (iii) the O and Fe peak intensities had weak to no correlations with the shock parameters; (iv) the Fe/O time profiles showed intra-event variations upstream of the shock that disappeared downstream of the shock, where values plateaued to those comparable to the mean Fe/O of solar cycle 23; (v) the O and Fe spectral index ranged from ∼1.0 to 3.4, the Fe spectra being softer in most events; and (vi) the observed spectral index was softer than the value predicted from the shock compression ratio in most events. We conclude that while the variations in IP shock properties may account for some variations in O and Fe properties within these multi-spacecraft events, detailed examination of the upstream seed population and IP turbulence, along with modeling, are required to fully characterize these observations.« less</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/1987SoPh..114..407D','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/1987SoPh..114..407D"><span>Study of Travelling Interplanetary Phenomena Report</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Dryer, Murray</p> <p>1987-09-01</p> <p>Scientific progress on the topic of energy, mass, and momentum transport from the Sun into the heliosphere is contingent upon interdisciplinary and international cooperative efforts on the part of many workers. Summarized here is a report of some highlights of research carried out during the SMY/SMA by the STIP (Study of Travelling Interplanetary Phenomena) Project that included solar and interplanetary scientists around the world. These highlights are concerned with coronal mass ejections from solar flares or erupting prominences (sometimes together); their large-scale consequences in interplanetary space (such as shocks and magnetic 'bubbles'); and energetic particles and their relationship to these large-scale structures. It is concluded that future progress is contingent upon similar international programs assisted by real-time (or near-real-time) warnings of solar activity by cooperating agencies along the lines experienced during the SMY/SMA.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://hdl.handle.net/2060/19850026475','NASA-TRS'); return false;" href="http://hdl.handle.net/2060/19850026475"><span>Variations in elemental composition of several MEV/nucleon ions observed in interplanetary space</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Mcguire, R. E.; Vonrosenvinge, T. T.; Reames, D. V.</p> <p>1985-01-01</p> <p>Six years of accumulated ISEE-3 and IMP-8 data to study variations in elemental relative abundances among the different populations of energetic ions seen in interplanetary space are surveyed. Evidence suggesting that heavy ion enrichments may be organized by a rigidity scaling factor A/Z over the range H to Fe is presented. Data to support the hypothesis that shock-associated particles are probably accelerated from ambient energetic fluxes are shown.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.osti.gov/biblio/22654525-sheath-accumulating-propagation-interplanetary-coronal-mass-ejection','SCIGOV-STC'); return false;" href="https://www.osti.gov/biblio/22654525-sheath-accumulating-propagation-interplanetary-coronal-mass-ejection"><span>Sheath-accumulating Propagation of Interplanetary Coronal Mass Ejection</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.osti.gov/search">DOE Office of Scientific and Technical Information (OSTI.GOV)</a></p> <p>Takahashi, Takuya; Shibata, Kazunari, E-mail: takahasi@kusastro.kyoto-u.ac.jp</p> <p></p> <p>Fast interplanetary coronal mass ejections (ICMEs) are the drivers of strong space weather storms such as solar energetic particle events and geomagnetic storms. The connection between the space-weather-impacting solar wind disturbances associated with fast ICMEs at Earth and the characteristics of causative energetic CMEs observed near the Sun is a key question in the study of space weather storms, as well as in the development of practical space weather prediction. Such shock-driving fast ICMEs usually expand at supersonic speeds during the propagation, resulting in the continuous accumulation of shocked sheath plasma ahead. In this paper, we propose a “sheath-accumulating propagation”more » (SAP) model that describes the coevolution of the interplanetary sheath and decelerating ICME ejecta by taking into account the process of upstream solar wind plasma accumulation within the sheath region. Based on the SAP model, we discuss (1) ICME deceleration characteristics; (2) the fundamental condition for fast ICMEs at Earth; (3) the thickness of interplanetary sheaths; (4) arrival time prediction; and (5) the super-intense geomagnetic storms associated with huge solar flares. We quantitatively show that not only the speed but also the mass of the CME are crucial for discussing the above five points. The similarities and differences between the SAP model, the drag-based model, and the“snow-plow” model proposed by Tappin are also discussed.« less</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2010cosp...38.3050M','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2010cosp...38.3050M"><span>Mach number dependence of electron heating at high Mach number interplanetary shocks in the inner heliospere</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Matsukiyo, Shuichi</p> <p></p> <p>In the inner heliosphere a variety of interplanetary shocks with different Mach numbers are expected to be present. A possible maximum Mach number at 0.3AU from the sun is esti-mated to be about 40. Efficiency of electron heating in such high Mach number shocks is one of the outstanding issues of space plasma physics as well as astrophysics. Here, from this aspect, electron heating rate through microinstabilities generated in the transition region of a quasi-perpendicular shock for wide range of Mach numbers is investigated. Saturation levels of effective electron temperature as a result of modified two-stream instability (MTSI) are es-timated by using a semianalytic approach which we call an extended quasilinear analysis here. The results are compared with one-dimensional full particle-in-cell simulations. It is revealed that Mach number dependence of the effective electron temperature is weak when a Mach num-ber is below a certain critical value. Above the critical value, electron temperature increases being proportional to an upstream flow energy because of that a dominant microinstability in the foot changes from the MTSI to Buneman instability. The critical Mach number is roughly estimated to be a few tens.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2018MS%26E..339a2013N','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2018MS%26E..339a2013N"><span>The statistical analysis of the Geomagnetically Induced Current events occurred in Guangdong, China during the declining phase of solar cycle 23 (2003–2006)</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Ni, Y. Y.</p> <p>2018-03-01</p> <p>We study the interplanetary causes of intense geomagnetic storms (Dst ≤ -100 nT) and the corresponding Geomagnetically Induced Current (GIC) events occurred in Ling’ao nuclear power station, Guangdong during the declining phase of solar cycle 23 (2003–2006). The result shows that sMC (a magnetic cloud with a shock), SH (sheath) and SH+MC (a sheath followed by a magnetic cloud) are the three most common interplanetary structures responsible for the storms which will cause GIC events in this period. As an interplanetary structure, CIR (corotating interaction regions) also plays an important role, however, the CIR-driven storms have a relatively minor effect to the GIC. Among the interplanetary parameters, the solar wind velocity and the southward component of the IMF (interplanetary magnetic field) are more important than solar wind density and the temperature to a geomagnetic storm and GIC.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.osti.gov/biblio/22521685-major-geoeffective-solar-eruptions-march-comprehensive-sun-earth-analysis','SCIGOV-STC'); return false;" href="https://www.osti.gov/biblio/22521685-major-geoeffective-solar-eruptions-march-comprehensive-sun-earth-analysis"><span>THE MAJOR GEOEFFECTIVE SOLAR ERUPTIONS OF 2012 MARCH 7: COMPREHENSIVE SUN-TO-EARTH ANALYSIS</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.osti.gov/search">DOE Office of Scientific and Technical Information (OSTI.GOV)</a></p> <p>Patsourakos, S.; Nindos, A.; Kouloumvakos, A.</p> <p></p> <p>During the interval 2012 March 7–11 the geospace experienced a barrage of intense space weather phenomena including the second largest geomagnetic storm of solar cycle 24 so far. Significant ultra-low-frequency wave enhancements and relativistic-electron dropouts in the radiation belts, as well as strong energetic-electron injection events in the magnetosphere were observed. These phenomena were ultimately associated with two ultra-fast (>2000 km s{sup −1}) coronal mass ejections (CMEs), linked to two X-class flares launched on early 2012 March 7. Given that both powerful events originated from solar active region NOAA 11429 and their onsets were separated by less than an hour,more » the analysis of the two events and the determination of solar causes and geospace effects are rather challenging. Using satellite data from a flotilla of solar, heliospheric and magnetospheric missions a synergistic Sun-to-Earth study of diverse observational solar, interplanetary and magnetospheric data sets was performed. It was found that only the second CME was Earth-directed. Using a novel method, we estimated its near-Sun magnetic field at 13 R{sub ⊙} to be in the range [0.01, 0.16] G. Steep radial fall-offs of the near-Sun CME magnetic field are required to match the magnetic fields of the corresponding interplanetary CME (ICME) at 1 AU. Perturbed upstream solar-wind conditions, as resulting from the shock associated with the Earth-directed CME, offer a decent description of its kinematics. The magnetospheric compression caused by the arrival at 1 AU of the shock associated with the ICME was a key factor for radiation-belt dynamics.« less</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://ntrs.nasa.gov/search.jsp?R=19730045181&hterms=Nonuniformity&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D20%26Ntt%3DNonuniformity','NASA-TRS'); return false;" href="https://ntrs.nasa.gov/search.jsp?R=19730045181&hterms=Nonuniformity&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D20%26Ntt%3DNonuniformity"><span>Statistics of bow shock nonuniformity.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Greenstadt, E. W.</p> <p>1973-01-01</p> <p>The statistical occurrence of pulsation or oblique structure about the earth's generally nonuniform bow shock is estimated at selected points by combining a three-dimensional distribution of interplanetary field directions obtained for a six-day solar wind sector with an index of local pulsation geometry. The result, obtained with a pulsation index of 1.6, is a set of distribution patterns showing the dependence of the pulsation index on the field orientation at the selected shock loci for this value of the index.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://www.dtic.mil/docs/citations/ADA570034','DTIC-ST'); return false;" href="http://www.dtic.mil/docs/citations/ADA570034"><span>Deflections of Fast Coronal Mass Ejections and the Properties of Associated Solar Energetic Particle Events (POSTPRINT)</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.dtic.mil/">DTIC Science & Technology</a></p> <p></p> <p>2012-09-20</p> <p>coronal mass ejection (CME) source regions can deflect fast CMEs from their expected trajectories in space, explaining the appearance of driverless shocks...the appearance of driverless shocks at 1 AU from CMEs ejected near solar central meridian (CM). This suggests that SEP events originating in CME-driven...interplanetary CME (ICME) drivers. Most such driverless shocks occur only from CMEs near the solar limbs, but these disk-center CMEs were located adjacent to CHs</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://ntrs.nasa.gov/search.jsp?R=19930055986&hterms=quasi+particle&qs=N%3D0%26Ntk%3DAll%26Ntx%3Dmode%2Bmatchall%26Ntt%3Dquasi%2Bparticle','NASA-TRS'); return false;" href="https://ntrs.nasa.gov/search.jsp?R=19930055986&hterms=quasi+particle&qs=N%3D0%26Ntk%3DAll%26Ntx%3Dmode%2Bmatchall%26Ntt%3Dquasi%2Bparticle"><span>Quasi-linear theory and transport theory. [particle acceleration in interplanetary medium</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Smith, Charles W.</p> <p>1992-01-01</p> <p>The theory of energetic particle scattering by magnetostatic fluctuations is reviewed in so far as it fails to produce the rigidity-independent mean-free-paths observed. Basic aspects of interplanetary magnetic field fluctuations are reviewed with emphasis placed on the existence of dissipation range spectra at high wavenumbers. These spectra are then incorporated into existing theories for resonant magnetostatic scattering and are shown to yield infinite mean-free-paths. Nonresonant scattering in the form of magnetic mirroring is examined and offered as a partial solution to the magnetostatic problem. In the process, mean-free-paths are obtained in good agreement with observations in the interplanetary medium at 1 AU and upstream of planetary bow shocks.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/15933416','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/15933416"><span>Shock wave treatment in medicine.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Shrivastava, S K; Kailash</p> <p>2005-03-01</p> <p>Extracorporeal shock wave therapy in orthopedics and traumatology is still a young therapy method. Since the last few years the development of shock wave therapy has progressed rapidly. Shock waves have changed the treatment of urolithiasis substantially. Today shock waves are the first choice to treat kidney and urethral stones. Urology has long been the only medical field for shock waves in medicine. Meanwhile shock waves have been used in orthopedics and traumatology to treat insertion tendinitis, avascular necrosis of the head of femur and other necrotic bone alterations. Another field of shock wave application is the treatment of tendons, ligaments and bones on horses in veterinary medicine. In the present paper we discuss the basic theory and application of shock waves and its history in medicine. The idea behind using shock wave therapy for orthopedic diseases is the stimulation of healing in tendons, surrounding tissue and bones.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/17499770','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/17499770"><span>Enhanced kidney stone fragmentation by short delay tandem conventional and modified lithotriptor shock waves: a numerical analysis.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Tham, Leung-Mun; Lee, Heow Pueh; Lu, Chun</p> <p>2007-07-01</p> <p>We evaluated the effectiveness of modified lithotriptor shock waves using computer models. Finite element models were used to simulate the propagation of lithotriptor shock waves in human renal calculi in vivo. Kidney stones were assumed to be spherical, homogeneous, isotropic and linearly elastic, and immersed in a continuum fluid. Single and tandem shock wave pulses modified to intensify the collapse of cavitation bubbles near the stone surface to increase fragmentation efficiency and suppress the expansion of intraluminal bubbles for decreased vascular injury were analyzed. The effectiveness of the modified shock waves was assessed by comparing the states of loading in the renal calculi induced by these shock waves to those produced by conventional shock waves. Our numerical simulations revealed that modified shock waves produced marginally lower stresses in spherical renal calculi than those produced by conventional shock waves. Tandem pulses of conventional or modified shock waves produced peak stresses in the front and back halves of the renal calculi. However, the single shock wave pulses generated significant peak stresses in only the back halves of the renal calculi. Our numerical simulations suggest that for direct stress wave induced fragmentation modified shock waves should be as effective as conventional shock waves for fragmenting kidney stones. Also, with a small interval of 20 microseconds between the pulses tandem pulse lithotripsy using modified or conventional shock waves could be considerably more effective than single pulse lithotripsy for fragmenting kidney stones.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.osti.gov/servlets/purl/1402610','SCIGOV-STC'); return false;" href="https://www.osti.gov/servlets/purl/1402610"><span>Physical mechanism causing rapid changes in ultrarelativistic electron pitch angle distributions right after a shock arrival: Evaluation of an electron dropout event: Drift Shell Splitting on the Dayside</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.osti.gov/search">DOE Office of Scientific and Technical Information (OSTI.GOV)</a></p> <p>Zhang, X. -J.; Li, W.; Thorne, R. M.</p> <p></p> <p>Three mechanisms have been proposed to explain relativistic electron flux depletions (dropouts) in the Earth's outer radiation belt during storm times: adiabatic expansion of electron drift shells due to a decrease in magnetic field strength, magnetopause shadowing and subsequent outward radial diffusion, and precipitation into the atmosphere (driven by EMIC wave scattering). Which mechanism predominates in causing electron dropouts commonly observed in the outer radiation belt is still debatable. In the present study, we evaluate the physical mechanism that may be primarily responsible for causing the sudden change in relativistic electron pitch angle distributions during a dropout event observed bymore » Van Allen Probes during the main phase of the 27 February 2014 storm. During this event, the phase space density of ultrarelativistic (>1MeV) electrons was depleted by more than 1 order of magnitude over the entire radial extent of the outer radiation belt (3 < L* < 5) in less than 6 h after the passage of an interplanetary shock. We model the electron pitch angle distribution under a compressed magnetic field topology based on actual solar wind conditions. Although these ultrarelativistic electrons exhibit highly anisotropic (peaked in 90°), energy-dependent pitch angle distributions, which appear to be associated with the typical EMIC wave scattering, comparison of the modeled electron distribution to electron measurements indicates that drift shell splitting is responsible for this rapid change in electron pitch angle distributions. This further indicates that magnetopause loss is the predominant cause of the electron dropout right after the shock arrival.« less</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.osti.gov/pages/biblio/1402610-physical-mechanism-causing-rapid-changes-ultrarelativistic-electron-pitch-angle-distributions-right-after-shock-arrival-evaluation-electron-dropout-event-drift-shell-splitting-dayside','SCIGOV-DOEP'); return false;" href="https://www.osti.gov/pages/biblio/1402610-physical-mechanism-causing-rapid-changes-ultrarelativistic-electron-pitch-angle-distributions-right-after-shock-arrival-evaluation-electron-dropout-event-drift-shell-splitting-dayside"><span>Physical mechanism causing rapid changes in ultrarelativistic electron pitch angle distributions right after a shock arrival: Evaluation of an electron dropout event: Drift Shell Splitting on the Dayside</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.osti.gov/pages">DOE PAGES</a></p> <p>Zhang, X. -J.; Li, W.; Thorne, R. M.; ...</p> <p>2016-08-13</p> <p>Three mechanisms have been proposed to explain relativistic electron flux depletions (dropouts) in the Earth's outer radiation belt during storm times: adiabatic expansion of electron drift shells due to a decrease in magnetic field strength, magnetopause shadowing and subsequent outward radial diffusion, and precipitation into the atmosphere (driven by EMIC wave scattering). Which mechanism predominates in causing electron dropouts commonly observed in the outer radiation belt is still debatable. In the present study, we evaluate the physical mechanism that may be primarily responsible for causing the sudden change in relativistic electron pitch angle distributions during a dropout event observed bymore » Van Allen Probes during the main phase of the 27 February 2014 storm. During this event, the phase space density of ultrarelativistic (>1MeV) electrons was depleted by more than 1 order of magnitude over the entire radial extent of the outer radiation belt (3 < L* < 5) in less than 6 h after the passage of an interplanetary shock. We model the electron pitch angle distribution under a compressed magnetic field topology based on actual solar wind conditions. Although these ultrarelativistic electrons exhibit highly anisotropic (peaked in 90°), energy-dependent pitch angle distributions, which appear to be associated with the typical EMIC wave scattering, comparison of the modeled electron distribution to electron measurements indicates that drift shell splitting is responsible for this rapid change in electron pitch angle distributions. This further indicates that magnetopause loss is the predominant cause of the electron dropout right after the shock arrival.« less</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.osti.gov/biblio/22518478-double-power-laws-event-integrated-solar-energetic-particle-spectrum','SCIGOV-STC'); return false;" href="https://www.osti.gov/biblio/22518478-double-power-laws-event-integrated-solar-energetic-particle-spectrum"><span>DOUBLE POWER LAWS IN THE EVENT-INTEGRATED SOLAR ENERGETIC PARTICLE SPECTRUM</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.osti.gov/search">DOE Office of Scientific and Technical Information (OSTI.GOV)</a></p> <p>Zhao, Lulu; Zhang, Ming; Rassoul, Hamid K., E-mail: lzhao@fit.edu</p> <p>2016-04-10</p> <p>A double power law or a power law with exponential rollover at a few to tens of MeV nucleon{sup −1} of the event-integrated differential spectra has been reported in many solar energetic particle (SEP) events. The rollover energies per nucleon of different elements correlate with a particle's charge-to-mass ratio (Q/A). The probable causes are suggested as residing in shock finite lifetimes, shock finite sizes, shock geometry, and an adiabatic cooling effect. In this work, we conduct a numerical simulation to investigate a particle's transport process in the inner heliosphere. We solve the focused transport equation using a time-backward Markov stochasticmore » approach. The convection, magnetic focusing, adiabatic cooling effect, and pitch-angle scattering are included. The effects that the interplanetary turbulence imposes on the shape of the resulting SEP spectra are examined. By assuming a pure power-law differential spectrum at the Sun, a perfect double-power-law feature with a break energy ranging from 10 to 120 MeV nucleon{sup −1} is obtained at 1 au. We found that the double power law of the differential energy spectrum is a robust result of SEP interplanetary propagation. It works for many assumptions of interplanetary turbulence spectra that give various forms of momentum dependence of a particle's mean free path. The different spectral shapes in low-energy and high-energy ends are not just a transition from the convection-dominated propagation to diffusion-dominated propagation.« less</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2004AGUFMSA43B..03D','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2004AGUFMSA43B..03D"><span>Operational warning of interplanetary shock arrivals using energetic particle data from ACE: Real-time Upstream Monitoring System</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Donegan, M.; Vandegriff, J.; Ho, G. C.; Julia, S. J.</p> <p>2004-12-01</p> <p>We report on an operational system which provides advance warning and predictions of arrival times at Earth of interplanetary (IP) shocks that originate at the Sun. The data stream used in our prediction algorithm is real-time and comes from the Electron, Proton, and Alpha Monitor (EPAM) instrument on NASA's Advanced Composition Explorer (ACE) spacecraft. Since locally accelerated energetic storm particle (ESP) events accompany most IP shocks, their arrival can be predicted using ESP event signatures. We have previously reported on the development and implementation of an algorithm which recognizes the upstream particle signature of approaching IP shocks and provides estimated countdown predictions. A web-based system (see (http://sd-www.jhuapl.edu/UPOS/RISP/index.html) combines this prediction capability with real-time ACE/EPAM data provided by the NOAA Space Environment Center. The most recent ACE data is continually processed and predictions of shock arrival time are updated every five minutes when an event is impending. An operational display is provided to indicate advisories and countdowns for the event. Running the algorithm on a test set of historical events, we obtain a median error of about 10 hours for predictions made 24-36 hours before actual shock arrival and about 6 hours when the shock is 6-12 hours away. This system can provide critical information to mission planners, satellite operations controllers, and scientists by providing significant lead-time for approaching events. Recently, we have made improvements to the triggering mechanism as well as re-training the neural network, and here we report prediction results from the latest system.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2014SoPh..289.3159Z','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2014SoPh..289.3159Z"><span>Evaluation of a Revised Interplanetary Shock Prediction Model: 1D CESE-HD-2 Solar-Wind Model</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Zhang, Y.; Du, A. M.; Du, D.; Sun, W.</p> <p>2014-08-01</p> <p>We modified the one-dimensional conservation element and solution element (CESE) hydrodynamic (HD) model into a new version [ 1D CESE-HD-2], by considering the direction of the shock propagation. The real-time performance of the 1D CESE-HD-2 model during Solar Cycle 23 (February 1997 - December 2006) is investigated and compared with those of the Shock Time of Arrival Model ( STOA), the Interplanetary-Shock-Propagation Model ( ISPM), and the Hakamada-Akasofu-Fry version 2 ( HAFv.2). Of the total of 584 flare events, 173 occurred during the rising phase, 166 events during the maximum phase, and 245 events during the declining phase. The statistical results show that the success rates of the predictions by the 1D CESE-HD-2 model for the rising, maximum, declining, and composite periods are 64 %, 62 %, 57 %, and 61 %, respectively, with a hit window of ± 24 hours. The results demonstrate that the 1D CESE-HD-2 model shows the highest success rates when the background solar-wind speed is relatively fast. Thus, when the background solar-wind speed at the time of shock initiation is enhanced, the forecasts will provide potential values to the customers. A high value (27.08) of χ 2 and low p-value (< 0.0001) for the 1D CESE-HD-2 model give considerable confidence for real-time forecasts by using this new model. Furthermore, the effects of various shock characteristics (initial speed, shock duration, background solar wind, longitude, etc.) and background solar wind on the forecast are also investigated statistically.</p> </li> </ol> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_12");'>12</a></li> <li><a href="#" onclick='return showDiv("page_13");'>13</a></li> <li class="active"><span>14</span></li> <li><a href="#" onclick='return showDiv("page_15");'>15</a></li> <li><a href="#" onclick='return showDiv("page_16");'>16</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div><!-- col-sm-12 --> </div><!-- row --> </div><!-- page_14 --> <div id="page_15" class="hiddenDiv"> <div class="row"> <div class="col-sm-12"> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_13");'>13</a></li> <li><a href="#" onclick='return showDiv("page_14");'>14</a></li> <li class="active"><span>15</span></li> <li><a href="#" onclick='return showDiv("page_16");'>16</a></li> <li><a href="#" onclick='return showDiv("page_17");'>17</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div> </div> <div class="row"> <div class="col-sm-12"> <ol class="result-class" start="281"> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2013AGUFMSM33A2155A','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2013AGUFMSM33A2155A"><span>Using ACE Observations of Interplanetary Particles and Magnetic Fields as Possible Contributors to Variations Observed at Van Allen Probes during Major events in 2013</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Armstrong, T. P.; Manweiler, J. W.; Gerrard, A. J.; Gkioulidou, M.; Lanzerotti, L. J.; Patterson, J. D.</p> <p>2013-12-01</p> <p>Observations from ACE EPAM including energy spectra of protons, helium, and oxygen will be prepared for coordinated use in estimating the direct and indirect access of energetic particles to inner and outer geomagnetic trapping zones. Complete temporal coverage from ACE at 12 seconds, 5 minutes, 17 minutes, hourly and daily cadences will be used to catalog interplanetary events arriving at Earth including interplanetary magnetic field sector boundaries, interplanetary shocks, and interplanetary coronal mass ejections, ICMEs. The first 6 months of 2013 have included both highly disturbed times, March 17 and May 22, and extended quiet periods of little or no variations. Among the specific questions that ACE and Van Allen Probes coordinated observations may aid in resolving are: 1. How much, if any, direct capture of interplanetary energetic particles occurs and what conditions account for it? 2. How much influence do interplanetary field and particle variations have on energization and/or loss of geomagnetically trapped populations? The poster will also present important links and describe methods and important details of access to numerically expressed ACE EPAM and Van Allen Probes RBSPICE observations that can be flexibly and easily accessed via the internet for student and senior researcher use.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://ntrs.nasa.gov/search.jsp?R=19990069933&hterms=Theory+constraints&qs=N%3D0%26Ntk%3DAll%26Ntx%3Dmode%2Bmatchall%26Ntt%3DTheory%2Bconstraints','NASA-TRS'); return false;" href="https://ntrs.nasa.gov/search.jsp?R=19990069933&hterms=Theory+constraints&qs=N%3D0%26Ntk%3DAll%26Ntx%3Dmode%2Bmatchall%26Ntt%3DTheory%2Bconstraints"><span>Constraints on Nonlinear and Stochastic Growth Theories for Type 3 Solar Radio Bursts from the Corona to 1 AU</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Cairns, Iver H.; Robinson, P. A.</p> <p>1998-01-01</p> <p>Existing, competing theories for coronal and interplanetary type III solar radio bursts appeal to one or more of modulational instability, electrostatic (ES) decay processes, or stochastic growth physics to preserve the electron beam, limit the levels of Langmuir-like waves driven by the beam, and produce wave spectra capable of coupling nonlinearly to generate the observed radio emission. Theoretical constraints exist on the wavenumbers and relative sizes of the wave bandwidth and nonlinear growth rate for which Langmuir waves are subject to modulational instability and the parametric and random phase versions of ES decay. A constraint also exists on whether stochastic growth theory (SGT) is appropriate. These constraints are evaluated here using the beam, plasma, and wave properties (1) observed in specific interplanetary type III sources, (2) predicted nominally for the corona, and (3) predicted at heliocentric distances greater than a few solar radii by power-law models based on interplanetary observations. It is found that the Langmuir waves driven directly by the beam have wavenumbers that are almost always too large for modulational instability but are appropriate to ES decay. Even for waves scattered to lower wavenumbers (by ES decay, for instance), the wave bandwidths are predicted to be too large and the nonlinear growth rates too small for modulational instability to occur for the specific interplanetary events studied or the great majority of Langmuir wave packets in type III sources at arbitrary heliocentric distances. Possible exceptions are for very rare, unusually intense, narrowband wave packets, predominantly close to the Sun, and for the front portion of very fast beams traveling through unusually dilute, cold solar wind plasmas. Similar arguments demonstrate that the ES decay should proceed almost always as a random phase process rather than a parametric process, with similar exceptions. These results imply that it is extremely rare for modulational instability or parametric decay to proceed in type III sources at any heliocentric distance: theories for type III bursts based on modulational instability or parametric decay are therefore not viable in general. In contrast, the constraint on SGT can be satisfied and random phase ES decay can proceed at all heliocentric distances under almost all circumstances. (The contrary circumstances involve unusually slow, broad beams moving through unusually hot regions of the Corona.) The analyses presented here strongly justify extending the existing SGT-based model for interplanetary type III bursts (which includes SGT physics, random phase ES decay, and specific electromagnetic emission mechanisms) into a general theory for type III bursts from the corona to beyond 1 AU. This extended theory enjoys strong theoretical support, explains the characteristics of specific interplanetary type III bursts very well, and can account for the detailed dynamic spectra of type III bursts from the lower corona and solar wind.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://ntrs.nasa.gov/search.jsp?R=19950046214&hterms=wind+monitor&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D40%26Ntt%3Dwind%2Bmonitor','NASA-TRS'); return false;" href="https://ntrs.nasa.gov/search.jsp?R=19950046214&hterms=wind+monitor&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D40%26Ntt%3Dwind%2Bmonitor"><span>Cosmic ray decreases and solar wind disturbances during late October 1989</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Cane, H. V.; Richardson, I. G.</p> <p>1995-01-01</p> <p>We describe the interplanetary phenomena (energetic particles, solar wind plasma, and magnetic field) seen at Interplanetary Monitoring Platform 8 (IMP 8) and at International Cometary Explorer (ICE), located 65 deg west of IMP 8, during the period October 19-31, 1989, when neutron monitors observed three ground level events originating in one active region when it was in the longitude range E09 deg to W57 deg. At least four shocks, associated with energetic particle enhancements, which can be attributed to a sequence of coronal mass ejections from the same active region, were seen at both spacecraft. An additional shock was observed only at ICE late in this period when the active region was behind the west limb. Considering all the data (which unfortunately suffer from large gaps), it appears that the ejecta associated with the shocks were detected only when the spacecraft and solar source longitude were separated by less than 50 deg. The shocks extended over a greater range of longitudes. The cosmic ray record at Earth is consistent with this picture such that only the first two shock-associated cosmic ray decreases had the signature expected for intercepting ejecta material. This same time period was also examined by Bavassano et al. (1994). However, we do not agree with their conclusion that 'magnetic clouds' extending at least 75 deg from the source longitude were present.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://hdl.handle.net/2060/20030025725','NASA-TRS'); return false;" href="http://hdl.handle.net/2060/20030025725"><span>Two Components in Major Solar Particle Events</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>White, Nicholas E. (Technical Monitor); Cane, H. V.; vonRosenvinge, T. T.; Cohen, C. M. S.; Mewaldt, R. A.</p> <p>2003-01-01</p> <p>A study has been made of 29 intense, solar particle events observed in the energy range 25-100 MeV/nuc near Earth in the years 1997 through 2001. It is found that the majority of the events (19/29) had Fe to O ratios which were reasonably constant with time and energy, and with values above coronal. These all originated on the Sun s western hemisphere and most had intensities that rose rapidly at the time of an associated flare, and coronal mass ejection (CME), and then decayed more gradually. Few interplanetary shocks were observed during these increases. The spectra were mainly power laws. The remaining 10 events had different intensity-time profiles and Fe to O ratios that varied with time and energy with values at or below coronal. Most of these originated near central meridian and 6 had strong interplanetary shocks that were observed near Earth. In general the spectra were not power laws but steepened at high energies, particularly for Fe. There were four events with two peaks in the intensity-time profiles, the first near the time of the associated flare and the other at shock passage. The results, considered in the light of other recent work, suggest that the high energy particles that occur shortly after flares are indeed flare particles. At the highest rigidities considered here shock-accelerated particles are uncommon and are observed only in association with unusually fast shocks.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.osti.gov/pages/biblio/1291234-rapid-enhancement-low-energy-lt-ev-ion-flux-response-interplanetary-shocks-based-two-van-allen-probes-case-studies-implications-source-regions-heating-mechanisms','SCIGOV-DOEP'); return false;" href="https://www.osti.gov/pages/biblio/1291234-rapid-enhancement-low-energy-lt-ev-ion-flux-response-interplanetary-shocks-based-two-van-allen-probes-case-studies-implications-source-regions-heating-mechanisms"><span>Rapid enhancement of low energy (<100 eV) ion flux in response to interplanetary shocks based on two Van Allen Probes case studies: Implications for source regions and heating mechanisms</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.osti.gov/pages">DOE PAGES</a></p> <p>Yue, Chao; Li, Wen; Reeves, Geoffrey D.; ...</p> <p>2016-07-01</p> <p>Interactions between interplanetary (IP) shocks and the Earth's magnetosphere manifest many important space physics phenomena including low-energy ion flux enhancements and particle acceleration. In order to investigate the mechanisms driving shock-induced enhancement of low-energy ion flux, we have examined two IP shock events that occurred when the Van Allen Probes were located near the equator while ionospheric and ground observations were available around the spacecraft footprints. We have found that, associated with the shock arrival, electromagnetic fields intensified, and low-energy ion fluxes, including H +, He +, and O +, were enhanced dramatically in both the parallel and perpendicular directions.more » During the 2 October 2013 shock event, both parallel and perpendicular flux enhancements lasted more than 20 min with larger fluxes observed in the perpendicular direction. In contrast, for the 15 March 2013 shock event, the low-energy perpendicular ion fluxes increased only in the first 5 min during an impulse of electric field, while the parallel flux enhancement lasted more than 30 min. In addition, ionospheric outflows were observed after shock arrivals. From a simple particle motion calculation, we found that the rapid response of low-energy ions is due to drifts of plasmaspheric population by the enhanced electric field. Furthermore, the fast acceleration in the perpendicular direction cannot solely be explained by E × B drift but betatron acceleration also plays a role. Adiabatic acceleration may also explain the fast response of the enhanced parallel ion fluxes, while ion outflows may contribute to the enhanced parallel fluxes that last longer than the perpendicular fluxes.« less</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.osti.gov/servlets/purl/1291234','SCIGOV-STC'); return false;" href="https://www.osti.gov/servlets/purl/1291234"><span>Rapid enhancement of low energy (<100 eV) ion flux in response to interplanetary shocks based on two Van Allen Probes case studies: Implications for source regions and heating mechanisms</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.osti.gov/search">DOE Office of Scientific and Technical Information (OSTI.GOV)</a></p> <p>Yue, Chao; Li, Wen; Reeves, Geoffrey D.</p> <p></p> <p>Interactions between interplanetary (IP) shocks and the Earth's magnetosphere manifest many important space physics phenomena including low-energy ion flux enhancements and particle acceleration. In order to investigate the mechanisms driving shock-induced enhancement of low-energy ion flux, we have examined two IP shock events that occurred when the Van Allen Probes were located near the equator while ionospheric and ground observations were available around the spacecraft footprints. We have found that, associated with the shock arrival, electromagnetic fields intensified, and low-energy ion fluxes, including H +, He +, and O +, were enhanced dramatically in both the parallel and perpendicular directions.more » During the 2 October 2013 shock event, both parallel and perpendicular flux enhancements lasted more than 20 min with larger fluxes observed in the perpendicular direction. In contrast, for the 15 March 2013 shock event, the low-energy perpendicular ion fluxes increased only in the first 5 min during an impulse of electric field, while the parallel flux enhancement lasted more than 30 min. In addition, ionospheric outflows were observed after shock arrivals. From a simple particle motion calculation, we found that the rapid response of low-energy ions is due to drifts of plasmaspheric population by the enhanced electric field. Furthermore, the fast acceleration in the perpendicular direction cannot solely be explained by E × B drift but betatron acceleration also plays a role. Adiabatic acceleration may also explain the fast response of the enhanced parallel ion fluxes, while ion outflows may contribute to the enhanced parallel fluxes that last longer than the perpendicular fluxes.« less</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://ntrs.nasa.gov/search.jsp?R=20130008807&hterms=neutral+really+neutral&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D30%26Ntt%3Dneutral%2Breally%2Bneutral','NASA-TRS'); return false;" href="https://ntrs.nasa.gov/search.jsp?R=20130008807&hterms=neutral+really+neutral&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D30%26Ntt%3Dneutral%2Breally%2Bneutral"><span>The Influence of Pickup Protons, from Interstellar Neutral Hydrogen, on the Propagation of Interplanetary Shocks from the Halloween 2003 Solar Events to ACE and Ulysses: A 3-D MHD Modeling Study</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Detman, T. R.; Intriligator, D. S.; Dryer, M.; Sun, W.; Deehr, C. S.; Intriligator, J.</p> <p>2012-01-01</p> <p>We describe our 3-D, time ]dependent, MHD solar wind model that we recently modified to include the physics of pickup protons from interstellar neutral hydrogen. The model has a time-dependent lower boundary condition, at 0.1 AU, that is driven by source surface map files through an empirical interface module. We describe the empirical interface and its parameter tuning to maximize model agreement with background (quiet) solar wind observations at ACE. We then give results of a simulation study of the famous Halloween 2003 series of solar events. We began with shock inputs from the Fearless Forecast real ]time shock arrival prediction study, and then we iteratively adjusted input shock speeds to obtain agreement between observed and simulated shock arrival times at ACE. We then extended the model grid to 5.5 AU and compared those simulation results with Ulysses observations at 5.2 AU. Next we undertook the more difficult tuning of shock speeds and locations to get matching shock arrival times at both ACE and Ulysses. Then we ran this last case again with neutral hydrogen density set to zero, to identify the effect of pickup ions. We show that the speed of interplanetary shocks propagating from the Sun to Ulysses is reduced by the effects of pickup protons. We plan to make further improvements to the model as we continue our benchmarking process to 10 AU, comparing our results with Cassini observations, and eventually on to 100 AU, comparing our results with Voyager 1 and 2 observations.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://hdl.handle.net/2060/19760003889','NASA-TRS'); return false;" href="http://hdl.handle.net/2060/19760003889"><span>Gravitational-wave bursts from the nuclei of distant galaxies and quasars: Proposal for detection using Doppler tracking of interplanetary spacecraft</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Thorne, K. S.; Braginsky, V. B.</p> <p>1974-01-01</p> <p>Supermassive black holes which exist in the nuclei of many quasars and galaxies are examined along with the collapse which forms these holes and subsequent collisions between them which produce strong, broad-band bursts of gravitational waves. Such bursts might arrive at earth as often as 50 times per year--or as rarely as once each 300 years. The detection of such bursts with dual-frequency Doppler tracking of interplanetary spacecraft is considered.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.gpo.gov/fdsys/pkg/CFR-2014-title21-vol8/pdf/CFR-2014-title21-vol8-sec876-5990.pdf','CFR2014'); return false;" href="https://www.gpo.gov/fdsys/pkg/CFR-2014-title21-vol8/pdf/CFR-2014-title21-vol8-sec876-5990.pdf"><span>21 CFR 876.5990 - Extracorporeal shock wave lithotripter.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.gpo.gov/fdsys/browse/collectionCfr.action?selectedYearFrom=2014&page.go=Go">Code of Federal Regulations, 2014 CFR</a></p> <p></p> <p>2014-04-01</p> <p>... 21 Food and Drugs 8 2014-04-01 2014-04-01 false Extracorporeal shock wave lithotripter. 876.5990... shock wave lithotripter. (a) Identification. An extracorporeal shock wave lithotripter is a device that focuses ultrasonic shock waves into the body to noninvasively fragment urinary calculi within the kidney...</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.gpo.gov/fdsys/pkg/CFR-2013-title21-vol8/pdf/CFR-2013-title21-vol8-sec876-5990.pdf','CFR2013'); return false;" href="https://www.gpo.gov/fdsys/pkg/CFR-2013-title21-vol8/pdf/CFR-2013-title21-vol8-sec876-5990.pdf"><span>21 CFR 876.5990 - Extracorporeal shock wave lithotripter.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.gpo.gov/fdsys/browse/collectionCfr.action?selectedYearFrom=2013&page.go=Go">Code of Federal Regulations, 2013 CFR</a></p> <p></p> <p>2013-04-01</p> <p>... 21 Food and Drugs 8 2013-04-01 2013-04-01 false Extracorporeal shock wave lithotripter. 876.5990... shock wave lithotripter. (a) Identification. An extracorporeal shock wave lithotripter is a device that focuses ultrasonic shock waves into the body to noninvasively fragment urinary calculi within the kidney...</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.gpo.gov/fdsys/pkg/CFR-2012-title21-vol8/pdf/CFR-2012-title21-vol8-sec876-5990.pdf','CFR2012'); return false;" href="https://www.gpo.gov/fdsys/pkg/CFR-2012-title21-vol8/pdf/CFR-2012-title21-vol8-sec876-5990.pdf"><span>21 CFR 876.5990 - Extracorporeal shock wave lithotripter.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.gpo.gov/fdsys/browse/collectionCfr.action?selectedYearFrom=2012&page.go=Go">Code of Federal Regulations, 2012 CFR</a></p> <p></p> <p>2012-04-01</p> <p>... 21 Food and Drugs 8 2012-04-01 2012-04-01 false Extracorporeal shock wave lithotripter. 876.5990... shock wave lithotripter. (a) Identification. An extracorporeal shock wave lithotripter is a device that focuses ultrasonic shock waves into the body to noninvasively fragment urinary calculi within the kidney...</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://hdl.handle.net/2060/19740011311','NASA-TRS'); return false;" href="http://hdl.handle.net/2060/19740011311"><span>A discussion of interplanetary post-shock flows with two examples. [with plasma and magnetometer observations</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Ogilvie, K. W.; Burlaga, L. F.</p> <p>1974-01-01</p> <p>Plasma and magnetometer observations are described for two flare-associated shock flows and the comparison of them with models. One represents a class of flows where the shock is followed by a stream and separated from it by a region in which density temperature and speed decrease monotonically. The other is characterized by a complex region between the shock and the following stream, which has many discontinuities and fluctuations, but in which there is no increase in helium concentration. These two types of flow can be distinguished using ground magnetograms, since the former shows no sudden impulses following the shock, whereas the latter shows many.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://hdl.handle.net/2060/20110007250','NASA-TRS'); return false;" href="http://hdl.handle.net/2060/20110007250"><span>Relation Between Type II Bursts and CMEs Inferred from STEREO Observations</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Gopalswamy, N.; Thompson, W.; Davila, J.; Kaiser, M. L.; Yashiro, S.; Maekelae, P.; Michalek, G.; Bougeret, J.-L.; Hoawrd, R. A.</p> <p>2010-01-01</p> <p>The inner coronagraph (COR1) of the Solar Terrestrial Relations Observatory (STEREO) mission has made it possible to observe coronal mass ejections (CMEs) a in the spatial domain overlapping with that of the metric type II radio bursts. The type II bursts were associated with generally weak flares (mostly B and C class soft X-ray flares), but the CMEs were quite energetic. Using CME data for a set of type II bursts during the declining phase of solar cycle 23, we determine the CME height when the type II bursts start, thus giving an estimate of the heliocentric distance at which CME-driven shocks form. This distance has been determined to be approximately 1.5Rs (solar radii), which coincides with the distance at which the Alfv?n speed profile has a minimum value. We also use type II radio observations from STEREO/WAVES and Wind/WAVES observations to show that CMEs with moderate speed drive either weak shocks or no shock at all when they attain a height where the Alfv?n speed peaks (?3Rs ? 4Rs). Thus the shocks seem to be most efficient in accelerating electrons in the heliocentric distance range of 1.5Rs to 4Rs. By combining the radial variation of the CME speed in the inner corona (CME speed increase) and interplanetary medium (speed decrease) we were able to correctly account for the deviations from the universal drift-rate spectrum of type II bursts, thus confirming the close physical connection between type II bursts and CMEs. The average height (approximately 1.5 Rs) of STEREO CMEs at the time of type II bursts is smaller than that (2.2 Rs) obtained for SOHO (Solar and Heliospheric Observatory) CMEs. We suggest that this may indicate, at least partly, the density reduction in the corona between the maximum and declining phases, so a given plasma level occurs closer to the Sun in the latter phase. In two cases, there was a diffuse shock-like feature ahead of the main body of the CME, indicating a standoff distance of 1Rs - 2Rs by the time the CME left the LASCO field of view.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://hdl.handle.net/2060/20140006631','NASA-TRS'); return false;" href="http://hdl.handle.net/2060/20140006631"><span>Relation Between Type II Bursts and CMEs Inferred from STEREO Observations</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Gopalswamy, N.; Thompson, W.; Davila, J.; Kaiser, M.; Yashiro, S.; Maelekae, P.; Michalek, G.; Bougret, J.-L.; Howard, R. A.</p> <p>2009-01-01</p> <p>The inner coronagraph (COR1) of the Solar Terrestrial Relations Observatory (STEREO) mission has made it possible to observe CMEs in the spatial domain overlapping with that of the metric type II radio bursts. The type II bursts were associated with generally weak flares (mostly B and C class soft X-ray flares), but the CMEs were quite energetic. Using CME data for a set of type II bursts during the declining phase of solar cycle 23, we determine the CME height when the type II bursts start, thus giving an estimate of the heliocentric distance at which CME-driven shocks form. This distance has been determined to be approx. 1.5Rs (solar radii), which coincides with the distance at which the Alfven speed profile has a minimum value.We also use type II radio observations from STEREO/WAVES and Wind/WAVES observations to show that CMEs with moderate speed drive either weak shocks or no shock at all when they attain a height where the Alfven speed peaks (approx. 3Rs - 4Rs). Thus the shocks seem to be most efficient in accelerating electrons in the heliocentric distance range of 1.5Rs to 4Rs. By combining the radial variation of the CME speed in the inner corona (CME speed increase) and interplanetary medium (speed decrease) we were able to correctly account for the deviations from the universal drift-rate spectrum of type II bursts, thus confirming the close physical connection between type II bursts and CMEs. The average height (approx 1.5Rs) of STEREO CMEs at the time of type II bursts is smaller than that (2.2Rs) obtained for SOHO (Solar and Heliospheric Observatory) CMEs. We suggest that this may indicate, at least partly, the density reduction in the corona between the maximum and declining phases, so a given plasma level occurs closer to the Sun in the latter phase. In two cases, there was a diffuse shock-like feature ahead of the main body of the CME, indicating a standoff distance of 1Rs - 2Rs by the time the CME left the LASCO field of view.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2000JGR...10521129S','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2000JGR...10521129S"><span>Cusp field-aligned currents and ion outflows</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Strangeway, R. J.; Russell, C. T.; Carlson, C. W.; McFadden, J. P.; Ergun, R. E.; Temerin, M.; Klumpar, D. M.; Peterson, W. K.; Moore, T. E.</p> <p>2000-09-01</p> <p>On September 24 and 25, 1998, the Polar spacecraft observed intense outflows of terrestrial ions in association with the passage of an interplanetary shock and coronal mass ejection. The orbit of the Fast Auroral Snapshot (FAST) Explorer was in the noon-midnight meridian during this ion outflow event, and FAST passed through the day side cusp region at ˜4000 km altitude every 2.2 hours. FAST was therefore able to monitor the ion outflows subsequently observed by Polar. We show that while the outflows were more intense after the shock passage, the overall particle and field signatures within the cusp region were qualitatively similar both before and after the shock passage. FAST observations show that the cusp particle precipitation marks the lower latitude leg of a pair of field-aligned currents and further, that both field-aligned current sheets appear to be on open field lines. Moreover, the polarity of the cusp currents is controlled by the polarity of the interplanetary magnetic field (IMF) y-component, such that the magnetic field perturbation associated with the pair of cusp currents is in the same direction as the IMF By. This is a consequence of the reconnection of cusp-region field lines at the magnetopause, with the flux transport resulting in electromagnetic energy being transmitted along field lines to the ionosphere as Poynting flux. We show that this Poynting flux can be as high as 120 mW m-2 (120 ergs cm-2 s-1) at FAST altitudes (˜500 mW m-2 at ionospheric altitudes), presumably because of the strong IMF By (˜40 nT), and is the dominant energy input to the cusp-region ionosphere. Furthermore, we find that the peak ion outflow flux is correlated with the peak downward Poynting flux, although only a few passes through the cusp centered around the time of the shock passage were used to determine this correlation. The energy carried by Poynting flux is dissipated as heat within the ionosphere, through Joule dissipation. The heating will tend to increase the ionospheric scale height, allowing greater access of ionospheric ions to the altitudes where transverse ion heating via ELF waves can occur. Thus electromagnetic energy supplied by the transport of reconnected magnetic flux is the essential first step in a multistep process that enhances the outflow of ionospheric plasma in the dayside cusp.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://hdl.handle.net/2060/19850021593','NASA-TRS'); return false;" href="http://hdl.handle.net/2060/19850021593"><span>Shocks in the solar wind between 1 and 8.5 AU: Voyager 1 observations</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Gazis, P. R.</p> <p>1984-01-01</p> <p>A survey was made of all interplanetary shocks detected by the plasma science experiment aboard the Voyager 1 spacecraft between 1.2 and 8.5 AU. Shock normals and shock velocities are determined. The variation of shock frequency and various shock parameters with heliocentric distance is discussed. The results indicate that beyond 1.2 AU, the vast majority of shocks were associated with interaction regions between high and low speed streams; of 95 events, only 1 was clearly associated with a transient event. Forward shocks were more numerous and seemed to form closer to the sun than reverse shocks. Forward shocks were stronger than reverse shocks. The energy balance of three shocks is examined. A close agreement is found between the measured and the predicted pressure ratios across these shocks. The contribution of shocks to the global energy balance is discussed. Shocks are found to have a significant effect in heating the solar wind.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2016AGUFMSM13B2209C','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2016AGUFMSM13B2209C"><span>The role of distinct parameters of interplanetary shocks in their propagation into and within the Earth's dayside magnetosphere, and their impact on magnetospheric particle populations</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Colpitts, C. A.; Cattell, C. A.</p> <p>2016-12-01</p> <p>Interplanetary (IP) shocks are abrupt changes in the solar wind velocity and/or magnetic field. When an IP shock impacts the Earth's magnetosphere, it can trigger a number of responses including geomagnetic storms and substorms that affect radiation to satellites and aircraft, and ground currents that disrupt the power grid. There are a wide variety of IP shocks, and they interact with the magnetosphere in different ways depending on their orientation, speed and other factors. The distinct individual characteristics of IP shocks can have a dramatic effect on their impact on the near-earth environment. While some research has been done on the impact of shock parameters on their geo-effectiveness, these studies primarily utilized ground magnetometer derived indices such as Dst, AE and SME or signals at geosynchronous satellites. The current unprecedented satellite coverage of the magnetosphere, particularly on the dayside, presents an opportunity to directly measure how different shocks propagate into and within the magnetosphere, and how they affect the various particle populations therein. Initial case studies reveal that smaller shocks can have unexpected impacts in the dayside magnetosphere, including unusual particle and electric field signatures, depending on shock parameters. We have recently compiled a database of sudden impulses from 2012-2016, and the location of satellites in the dayside magnetosphere at the impulse times. We are currently combining and comparing this with existing databases compiled at UNH, Harvard and others, as well as solar wind data from ACE, Wind and other solar wind monitors, to generate a complete and accurate list of IP shocks, cataloguing parameters such as the type of shock (CME, CIR etc.), strength (Mach number, solar wind velocity etc.) and shock normal angle. We are investigating the magnetospheric response to these shocks using GOES, ARTEMIS and Cluster data, augmented with RBSP and MMS data where available, to determine what effect the various shock parameters have on their propagation through and impact on the magnetosphere. We will present several case studies from our database that show how different parameters affect how shocks propagate in the dayside and how they affect the particles therein.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://hdl.handle.net/2060/19730013938','NASA-TRS'); return false;" href="http://hdl.handle.net/2060/19730013938"><span>Alfven waves in spiral interplanetary field</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Whang, Y. C.</p> <p>1973-01-01</p> <p>A theoretical study is presented of the Alfven waves in the spiral interplanetary magnetic field. The Alfven waves under consideration are arbitrary, large amplitude, non-monochromatic, microscale waves of any polarization. They superpose on a mesoscale background flow of thermally anisotropic plasma. Using WKB approximation, an analytical solution for the amplitude vectors is obtained as a function of the background flow properties: density, velocity, Alfven speed, thermal anisotropy, and the spiral angel. The necessary condition for the validity of the WKB solution is discussed. The intensity of fluctuations is calculated as a function of heliocentric distance. Relative intensity of fluctuations as compared with the magnitude of the background field has its maximum in the region near l au. Thus outside of this region, the solar wind is less turbulent.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://hdl.handle.net/2060/19850026500','NASA-TRS'); return false;" href="http://hdl.handle.net/2060/19850026500"><span>Low energy proton bidirectional anisotropies and their relation to transient interplanetary magnetic structures: ISEE-3 observations</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Marsden, R. G.; Sanderson, T. R.; Wenzel, K. P.; Smith, E. J.</p> <p>1985-01-01</p> <p>It is known that the interplanetary medium in the period approaching solar maximum is characterized by an enhancement in the occurrence of transient solar wind streams and shocks and that such systems are often associated with looplike magnetic structures or clouds. There is observational evidence that bidirectional, field aligned flows of low energy particles could be a signature of such looplike structures, although detailed models for the magnetic field configuration and injection mechanisms do not exist at the current time. Preliminary results of a survey of low energy proton bidirectional anisotropies measured on ISEE-3 in the interplanetary medium between August 1978 and May 1982, together with magnetic field data from the same spacecraft are presented.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://ntrs.nasa.gov/search.jsp?R=19960021340&hterms=solar+two&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D30%26Ntt%3Dsolar%2Btwo','NASA-TRS'); return false;" href="https://ntrs.nasa.gov/search.jsp?R=19960021340&hterms=solar+two&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D30%26Ntt%3Dsolar%2Btwo"><span>The solar origins of two high-latitude interplanetary disturbances</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Hudson, H. S.; Acton, L. W.; Alexander, D.; Harvey, K. L.; Kurokawa, H.; Kahler, S.; Lemen, J. R.</p> <p>1995-01-01</p> <p>Two extremely similar interplanetary forward/reverse shock events, with bidirectional electron streaming were detected by Ulysses in 1994. Ground-based and Yohkoh/SXT observations show two strikingly different solar events that could be associated with them: an LDE flare on 20 Feb. 1994, and a extremely large-scale eruptive event on 14 April 1994. Both events resulted in geomagnetic storms and presumably were associated with coronal mass ejections. The sharply contrasting nature of these solar events argues against an energetic causal relationship between them and the bidirectional streaming events observed by Ulysses during its S polar passage. We suggest instead that for each pair of events. a common solar trigger may have caused independent instabilities leading to the solar and interplanetary phenomena.</p> </li> </ol> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_13");'>13</a></li> <li><a href="#" onclick='return showDiv("page_14");'>14</a></li> <li class="active"><span>15</span></li> <li><a href="#" onclick='return showDiv("page_16");'>16</a></li> <li><a href="#" onclick='return showDiv("page_17");'>17</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div><!-- col-sm-12 --> </div><!-- row --> </div><!-- page_15 --> <div id="page_16" class="hiddenDiv"> <div class="row"> <div class="col-sm-12"> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_14");'>14</a></li> <li><a href="#" onclick='return showDiv("page_15");'>15</a></li> <li class="active"><span>16</span></li> <li><a href="#" onclick='return showDiv("page_17");'>17</a></li> <li><a href="#" onclick='return showDiv("page_18");'>18</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div> </div> <div class="row"> <div class="col-sm-12"> <ol class="result-class" start="301"> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017JGRA..12211128M','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017JGRA..12211128M"><span>Ion-Scale Wave Properties and Enhanced Ion Heating Across the Low-Latitude Boundary Layer During Kelvin-Helmholtz Instability</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Moore, T. W.; Nykyri, K.; Dimmock, A. P.</p> <p>2017-11-01</p> <p>In the Earth's magnetosphere, the magnetotail plasma sheet ions are much hotter than in the shocked solar wind. On the dawn sector, the cold-component ions are more abundant and hotter by 30-40% when compared to the dusk sector. Recent statistical studies of the flank magnetopause and magnetosheath have shown that the level of temperature asymmetry of the magnetosheath is unable to account for this, so additional physical mechanisms must be at play, either at the magnetopause or plasma sheet that contributes to this asymmetry. In this study, we perform a statistical analysis on the ion-scale wave properties in the three main plasma regimes common to flank magnetopause boundary crossings when the boundary is unstable to Kelvin-Helmholtz instability (KHI): hot and tenuous magnetospheric, cold and dense magnetosheath, and mixed (Hasegawa et al., 2004). These statistics of ion-scale wave properties are compared to observations of fast magnetosonic wave modes that have recently been linked to Kelvin-Helmholtz (KH) vortex centered ion heating (Moore et al., 2016). The statistical analysis shows that during KH events there is enhanced nonadiabatic heating calculated during ion scale wave intervals when compared to non-KH events. This suggests that during KH events there is more free energy for ion-scale wave generation, which in turn can heat ions more effectively when compared to cases when KH waves are absent. This may contribute to the dawn favored temperature asymmetry of the plasma sheet; recent studies suggest KH waves favor the dawn flank during Parker-Spiral interplanetary magnetic field.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2018PhFl...30c5105T','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2018PhFl...30c5105T"><span>Amplification and attenuation of shock wave strength caused by homogeneous isotropic turbulence</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Tanaka, K.; Watanabe, T.; Nagata, K.; Sasoh, A.; Sakai, Y.; Hayase, T.</p> <p>2018-03-01</p> <p>We study the pressure increase across a planar shock wave with shock Mach numbers Ms of 1.1, 1.3, and 1.5 propagating through homogeneous isotropic turbulence at a low turbulent Mach number (Mt ˜ 10-4) based on direct numerical simulations (DNSs). Fluctuation in the pressure increase, Δp', on a given shock ray is induced by turbulence around the ray. A local amplification of the shock wave strength, measured with the pressure increase, is caused by the velocity fluctuation opposed to the shock wave propagating direction with a time delay, while the velocity in the opposite direction attenuates the shock wave strength. The turbulence effects on the shock wave are explained based on shock wave deformation due to turbulent shearing motions. The spatial distribution of Δp' on the shock wave has a characteristic length of the order of the integral scale of turbulence. The influence of turbulent velocity fluctuation at a given location on Δp' becomes most significant after the shock wave propagates from the location for a distance close to the integral length scale for all shock Mach numbers, demonstrating that the shock wave properties possess strong memory even during the propagation in turbulence. A lower shock Mach number Ms results in a smaller rms value of Δp', stronger influences on Δp' by turbulence far away from the shock ray, and a larger length scale in the spatial profile of Δp' on the shock wave. Relative intensity of Δp' increases with [Mt/(Ms-1 ) ] α, where DNS and experimental results yield α ≈ 0.73.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2012AGUFMSH41B2104S','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2012AGUFMSH41B2104S"><span>Forbush Decrease events in Lunar Radiation Environment observed by the LRO/CRaTER</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Sohn, J.; Oh, S.; Yi, Y.; Kim, E.; Lee, J.; Spence, H. E.</p> <p>2012-12-01</p> <p>The Lunar Reconnaissance Orbiter (LRO) launched on June 16, 2009 has six experiments including of the Cosmic Ray Telescope for the Effects of Radiation (CRaTER) onboard. The CRaTER instrument characterizes the radiation environment to be experienced by humans during future lunar missions. The CRaTER instrument measures the effects of ionizing energy loss in matter specifically in silicon solid-state detectors due to penetrating solar energetic protons (SEP) and galactic cosmic rays (GCR) after interactions with tissue-equivalent plastic (TEP), a synthetic analog of human tissue. The CRaTER instrument houses a compact and highly precise microdosimeter. It measures dose rates below one micro-Rad/sec in lunar radiation environment. Forbush decrease (FD) event is the sudden decrease of galactic cosmic ray (GCR) flux. The FD event is considered to be caused by exclusion of GCR due to intense interplanetary magnetic field (IMF) structures of interplanetary shock (IP) sheath region and/or the interplanetary coronal mass ejection (CME) following the IP shocks as a shock driver. We use the data of cosmic ray flux and dose rates observed by the CRaTER instrument. We also use the CME list of STEREO SECCHI inner, outer coronagraph and the IMF (Interplanetary CME) data of the ACE/MAG instrument. We examine the origins and the characteristics of the FD-like events in lunar radiation environment. We also compare these events with the FD events on the Earth. We find that whenever the FD events are recorded at ground Neutron Monitor stations, the FD-like events also occur on the lunar environments. The flux variation amplitude of FD-like events on the Moon is approximately two times larger than that of FD events on the Earth. We compare time profiles of GCR flux with of the dose rate of FD-like events in the lunar environment. We figure out that the distinct FD-like events correspond to dose rate events in the CRaTER on lunar environment during the event period.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2014AGUFMSH23B4157D','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2014AGUFMSH23B4157D"><span>Suprathermal and Solar Energetic Particles - Key questions for the Interstellar Mapping and Acceleration Probe (IMAP)</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Desai, M. I.; McComas, D. J.; Christian, E. R.; Mewaldt, R. A.; Schwadron, N.</p> <p>2014-12-01</p> <p>Solar energetic particles or SEPs from suprathermal (few keV) up to relativistic (~few GeV) speeds are accelerated near the Sun in at least two ways, namely, (1) by magnetic reconnection-driven processes during solar flares resulting in impulsive SEPs and (2) at fast coronal-mass-ejection-driven shock waves that produce large gradual SEP events. Large gradual SEP events are of particular interest because the accompanying high-energy (>10s MeV) protons pose serious radiation threats to human explorers living and working outside low-Earth orbit and to technological assets such as communications and scientific satellites in space. However, a complete understanding of SEP events has eluded us primarily because their properties, as observed near Earth orbit, are smeared due to mixing and contributions from many important physical effects. Thus, despite being studied for decades, several key questions regarding SEP events remain unanswered. These include (1) What are the contributions of co-temporal flares, jets, and CME shocks to impulsive and gradual SEP events?; (2) Do flares contribute to large SEP events directly by providing high-energy particles and/or by providing the suprathermal seed population?; (3) What are the roles of ambient turbulence/waves and self-generated waves?; (4) What are the origins of the source populations and how do their temporal and spatial variations affect SEP properties?; and (5) How do diffusion and scattering during acceleration and propagation through the interplanetary medium affect SEP properties observed out in the heliosphere? This talk describes how during the next decade, inner heliospheric measurements from the Solar Probe Plus and Solar Orbiter in conjunction with high sensitivity measurements from the Interstellar Mapping and Acceleration Probe will provide the ground-truth for various models of particle acceleration and transport and address these questions.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/1986STIN...8717006B','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/1986STIN...8717006B"><span>Proceedings of the 15th International Symposium on Shock Waves and Shock Tubes</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Bershader, Daniel; Hanson, Ronald</p> <p>1986-09-01</p> <p>One hundred ten papers were presented in 32 sessions. Topics included: The application of Hook-method spectroscopy to the diagnosis of shock-heated gases. The nonintrusive destruction of kidney stones by underwater focused shock waves. Several of the papers reflect the recent and continuing interest in shock wave phenomena in dusty gases and other multiphase and heterogeneous systems, including chemically reactive configurations. The major subject areas were: shock propagation and interactions; shock-general chemical kinetics; shock computation, modeling, and stability problems; shock wave aerodynamics; experimental methods; shocks in multiphase and heterogeneous media; high energy gas excitation and wave phenomena; and technical applications and shocks in condensed matter.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2011JGRA..116.8101M','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2011JGRA..116.8101M"><span>Energetic storm particle events in coronal mass ejection-driven shocks</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Mäkelä, P.; Gopalswamy, N.; Akiyama, S.; Xie, H.; Yashiro, S.</p> <p>2011-08-01</p> <p>We investigate the variability in the occurrence of energetic storm particle (ESP) events associated with shocks driven by coronal mass ejections (CMEs). The interplanetary shocks were detected during the period from 1996 to 2006. First, we analyze the CME properties near the Sun. The CMEs with an ESP-producing shock are faster ($\\langle$VCME$\\rangle$ = 1088 km/s) than those driving shocks without an ESP event ($\\langle$VCME$\\rangle$ = 771 km/s) and have a larger fraction of halo CMEs (67% versus 38%). The Alfvénic Mach numbers of shocks with an ESP event are on average 1.6 times higher than those of shocks without. We also contrast the ESP event properties and frequency in shocks with and without a type II radio burst by dividing the shocks into radio-loud (RL) and radio-quiet (RQ) shocks, respectively. The shocks seem to be organized into a decreasing sequence by the energy content of the CMEs: RL shocks with an ESP event are driven by the most energetic CMEs, followed by RL shocks without an ESP event, then RQ shocks with and without an ESP event. The ESP events occur more often in RL shocks than in RQ shocks: 52% of RL shocks and only ˜33% of RQ shocks produced an ESP event at proton energies above 1.8 MeV; in the keV energy range the ESP frequencies are 80% and 65%, respectively. Electron ESP events were detected in 19% of RQ shocks and 39% of RL shocks. In addition, we find that (1) ESP events in RQ shocks are less intense than those in RL shocks; (2) RQ shocks with ESP events are predominately quasi-perpendicular shocks; (3) their solar sources are located slightly to the east of the central meridian; and (4) ESP event sizes show a modest positive correlation with the CME and shock speeds. The observation that RL shocks tend to produce more frequently ESP events with larger particle flux increases than RQ shocks emphasizes the importance of type II bursts in identifying solar events prone to producing high particle fluxes in the near-Earth space. However, the trend is not definitive. If there is no type II emission, an ESP event is less likely but not absent. The variability in the probability and size of ESP events most likely reflects differences in the shock formation in the low corona and changes in the properties of the shocks as they propagate through interplanetary space and the escape efficiency of accelerated particles from the shock front.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/28697536','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/28697536"><span>Potential applications of low-energy shock waves in functional urology.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Wang, Hung-Jen; Cheng, Jai-Hong; Chuang, Yao-Chi</p> <p>2017-08-01</p> <p>A shock wave, which carries energy and can propagate through a medium, is a type of continuous transmitted sonic wave with a frequency of 16 Hz-20 MHz. It is accompanied by processes involving rapid energy transformations. The energy associated with shock waves has been harnessed and used for various applications in medical science. High-energy extracorporeal shock wave therapy is the most successful application of shock waves, and has been used to disintegrate urolithiasis for 30 years. At lower energy levels, however, shock waves have enhanced expression of vascular endothelial growth factor, endothelial nitric oxide synthase, proliferating cell nuclear antigen, chemoattractant factors and recruitment of progenitor cells; shock waves have also improved tissue regeneration. Low-energy shock wave therapy has been used clinically with musculoskeletal disorders, ischemic cardiovascular disorders and erectile dysfunction, through the mechanisms of neovascularization, anti-inflammation and tissue regeneration. Furthermore, low-energy shock waves have been proposed to temporarily increase tissue permeability and facilitate intravesical drug delivery. The present review article provides information on the basics of shock wave physics, mechanisms of action on the biological system and potential applications in functional urology. © 2017 The Japanese Urological Association.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2006ShWav..16....1B','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2006ShWav..16....1B"><span>Shock wave attenuation by grids and orifice plates</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Britan, A.; Igra, O.; Ben-Dor, G.; Shapiro, H.</p> <p>2006-11-01</p> <p>The interaction of weak shock waves with porous barriers of different geometries and porosities is examined. Installing a barrier inside the shock tube test section will cause the development of the following wave pattern upon a head-on collision between the incident shock wave and the barrier: a reflected shock from the barrier and a transmitted shock propagating towards the shock tube end wall. Once the transmitted shock wave reaches the end wall it is reflected back towards the barrier. This is the beginning of multiple reflections between the barrier and the end wall. This full cycle of shock reflections/interactions resulting from the incident shock wave collision with the barrier can be studied in a single shock tube test. A one-dimensional (1D), inviscid flow model was proposed for simulating the flow resulting from the initial collision of the incident shock wave with the barrier. Fairly good agreement is found between experimental findings and simulations based on a 1D flow model. Based on obtained numerical and experimental findings an optimal design procedure for shock wave attenuator is suggested. The suggested attenuator may ensure the safety of the shelter’s ventilation systems.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://ntrs.nasa.gov/search.jsp?R=20040030510&hterms=Et&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D90%26Ntt%3DEt','NASA-TRS'); return false;" href="https://ntrs.nasa.gov/search.jsp?R=20040030510&hterms=Et&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D90%26Ntt%3DEt"><span>Reply to Gopalswamy et al.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Cane, H. V.; Richardson, I. G.</p> <p>2003-01-01</p> <p>The comment of Gopalswamy et al. (thereafter GMY) relates to a letter discussing coronal mass ejections (CMEs), interplanetary ejecta and geomagnetic storms. GMY contend that Cane et al. incorrectly identified ejecta (interplanetary CMEs) and hypothesize that this is because Cane et al. fail to understand how to separate ejecta from "shock sheaths" when interpreting solar wind and energetic particle data sets. They (GMY) are wrong be cause the relevant section of the paper was concerned with the propagation time to 1 AU of any potentially geoeffective structures caused by CMEs, i.e. upstream compression regions with or without shocks, or ejecta. In other words, the travel times used by Cane et al. were purposefully and deliberately distinct from ejecta travel times (except for those slow ejecta, approx. 30% of their events, which generated no upstream features), and no error in identification was involved. The confusion of GMY stems from the description did not characterize the observations sufficiently clearly.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017PhFl...29l6105Z','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017PhFl...29l6105Z"><span>Jet formation of SF6 bubble induced by incident and reflected shock waves</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Zhu, Yuejin; Yu, Lei; Pan, Jianfeng; Pan, Zhenhua; Zhang, Penggang</p> <p>2017-12-01</p> <p>The computational results of two different cases on the evolution of the shock-SF6 heavy bubble interaction are presented. The shock focusing processes and jet formation mechanisms are analyzed by using the high resolution of computation schemes, and the influence of reflected shock waves is also investigated. It is concluded that there are two steps in the shock focusing process behind the incident shock wave, and the density and pressure values increase distinctly when the shock focusing process is completed. The local high pressure and vorticities in the vicinity of the downstream pole can propel the formation of the jet behind the incident shock wave. In addition, the gas is with the rightward velocity before the reflected shock wave impinges on the bubble; therefore, the evolutions of the waves and the bubble are more complicated when the reflected shock wave impinges on the SF6 bubble. Furthermore, the different end wall distances would affect the deformation degree of the bubble before the interaction of the reflected shock wave; therefore, the different left jet formation processes are found after the impingement of reflected shock waves when L = 27 mm. The local high pressure zones in the vicinity of the left bubble interface and the impingement of different shock waves can induce the local gas to shift the rightward velocity to the leftward velocity, which can further promote the formation of jets.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2014EGUGA..1615711G','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2014EGUGA..1615711G"><span>Reconciling CME Kinematics using Radio and White-light Observations from STEREO and SOHO</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Gopalswamy, Nat; Yashiro, Seiji; Xie, Hong; Makela, Pertti; Akiyama, Sachiko; Reiner, Michael; MacDowall, Robert</p> <p>2014-05-01</p> <p>We study the characteristics of nonthermal radio emission associated with coronal mass ejections (CMEs) observed by STEREO, SOHO, and Wind spacecraft. In particular, we examine three backside CMEs associated with type II radio bursts at frequencies below 16 MHz. These bursts are known to be excellent indicators of solar energetic particle events. We use the universal drift rate spectrum of type II radio bursts and the inferred density scale heights in the corona and interplanetary medium o estimate the speed of the shock waves that produce the type II radio bursts. We find that the radio bursts can provide an accurate estimate of the CME speeds. We consider three backside events and a cannibalism event to show the usefulness of radio dynamic spectrum in inferring CME kinematics. We use radio direction finding technique to show that CME-CME interaction results in enhanced nonthermal radio emission. The radio data also provide constraints on the particle acceleration mechanisms and the reason for the energetic particles observed at wide-ranging longitudes. Finally we infer the shape and extent of the shock associated with one of the biggest solar energetic particle events in the space era.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2015AGUFMSH51A2434W','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2015AGUFMSH51A2434W"><span>Development of a CME-associated geomagnetic storm intensity prediction tool</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Wu, C. C.; DeHart, J. M.</p> <p>2015-12-01</p> <p>From 1995 to 2012, the Wind spacecraft recorded 168 magnetic cloud (MC) events. Among those events, 79 were found to have upstream shock waves and their source locations on the Sun were identified. Using a recipe of interplanetary magnetic field (IMF) Bz initial turning direction after shock (Wu et al., 1996, GRL), it is found that the north-south polarity of 66 (83.5%) out of the 79 events were accurately predicted. These events were tested and further analyzed, reaffirming that the Bz intial turning direction was accurate. The results also indicate that 37 of the 79 MCs originate from the north (of the Sun) averaged a Dst_min of -119 nT, whereas 42 of the MCs originating from the south (of the Sun) averaged -89 nT. In an effort to provide this research to others, a website was built that incorporated various tools and pictures to predict the intensity of the geomagnetic storms. The tool is capable of predicting geomagnetic storms with different ranges of Dst_min (from no-storm to gigantic storms). This work was supported by Naval Research Lab HBCU/MI Internship program and Chief of Naval Research.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.osti.gov/biblio/22521470-longitudinal-properties-widespread-solar-energetic-particle-event-february-evolution-associated-cme-shock','SCIGOV-STC'); return false;" href="https://www.osti.gov/biblio/22521470-longitudinal-properties-widespread-solar-energetic-particle-event-february-evolution-associated-cme-shock"><span>LONGITUDINAL PROPERTIES OF A WIDESPREAD SOLAR ENERGETIC PARTICLE EVENT ON 2014 FEBRUARY 25: EVOLUTION OF THE ASSOCIATED CME SHOCK</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.osti.gov/search">DOE Office of Scientific and Technical Information (OSTI.GOV)</a></p> <p>Lario, D.; Kwon, R.-Y.; Vourlidas, A.</p> <p>2016-03-01</p> <p>We investigate the solar phenomena associated with the origin of the solar energetic particle (SEP) event observed on 2014 February 25 by a number of spacecraft distributed in the inner heliosphere over a broad range of heliolongitudes. These include spacecraft located near Earth; the twin Solar TErrestrial RElations Observatory spacecraft, STEREO-A and STEREO-B, located at ∼1 au from the Sun 153° west and 160° east of Earth, respectively; the MErcury Surface Space ENvironment GEochemistry and Ranging mission (at 0.40 au and 31° west of Earth); and the Juno spacecraft (at 2.11 au and 48° east of Earth). Although the footpointsmore » of the field lines nominally connecting the Sun with STEREO-A, STEREO-B and near-Earth spacecraft were quite distant from each other, an intense high-energy SEP event with Fe-rich prompt components was observed at these three locations. The extent of the extreme-ultraviolet wave associated with the solar eruption generating the SEP event was very limited in longitude. However, the white-light shock accompanying the associated coronal mass ejection extended over a broad range of longitudes. As the shock propagated into interplanetary space it extended over at least ∼190° in longitude. The release of the SEPs observed at different longitudes occurred when the portion of the shock magnetically connected to each spacecraft was already at relatively high altitudes (≳2 R{sub ⊙} above the solar surface). The expansion of the shock in the extended corona, as opposite to near the solar surface, determined the SEP injection and SEP intensity-time profiles at different longitudes.« less</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017AGUFMSA41B2633L','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017AGUFMSA41B2633L"><span>Optical and SuperDARN Observations of the Shock Aurora</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Liu, J.; Hu, H.; Desheng, H.</p> <p>2017-12-01</p> <p>Using ground-based high temporal and spatial optical aurora observations, we investigated aurora signature to illustrate the direct responses of the fine structure auroral emission to interplanetary shock. During the shock impact to the magnetosphere, the Chinese Arctic Yellow River Station (YRS) equipped with all-sky imagers (ASIs) was situated at the magnetic local noon region ( 1210 MLT) in the Northern Hemisphere, while the SuperDARN CUTLASS Finland HF radar covering the field of view (FOV) of the ASIs at YRS had fine ionospheric plasma convection measurement. We observed that an intensified red aurora manifesting as a discrete emission band at a higher latitude responds to the shock impact gradually, which results in a distinct broadening of the dayside auroral oval due to the equatorward shifting of its lower latitude boundary after the shock arrival. In contrast, the green diffuse aurora, manifesting as a relatively uniform luminosity structure, reacts immediately to the shock compression, displaying prompt appearance in the southern edge of the FOV and subsequent poleward propagation of its higher latitude boundary. Simultaneously, the CUTLASS Finland radar monitored enhanced backscatter echo power and increased echo number, which coincided with intensified discrete aurora in approximately the same latitudinal region. Doppler velocity measurement showed moving ionospheric irregularities with generally enhanced line-of-sight (LOS) speed, but with prominent sunward flow in the polar cap and antisunward flow in both the eastern and western regions. The SuperDARN global ionospheric convection pattern clearly presented a large-scale plasma flow divided in four circulation cells, with two reversed flow cells nested in the noon sector of the polar cap. These direct observations strongly suggest that the prompt shock compression intensified the wave-particle interaction in the inner magnetosphere and enhanced the lobe magnetic reconnection rate at agnetospheric high latitude. On the other hand, ASI measurements in Antarctic Zhongshan station in postnoon sector showed first decreased auroral intensity with reversed plasma flow before its subsequent obvious emission brightening.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://hdl.handle.net/2060/19740027122','NASA-TRS'); return false;" href="http://hdl.handle.net/2060/19740027122"><span>Study of the relation between Pc 3 micropulsations and magnetosheath fluctuations and for the multisatellite multimeasurement investigation of earths bow shock</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Greenstadt, E. W.</p> <p>1974-01-01</p> <p>Hourly averages of HEOS A interplanetary field and plasma parameters are compared with micropulsation spectrograms taken by auroral zone stations. Visual evaluation of tungsten induction coil records and a statistical summary indicate a class of pulsations sometimes in the Pc 3, sometimes in the Pc 4 range, whose appearance correlates with solar wind field flow alignment. It is concluded that there is a pulsation phenomenon of variable period strongly associated with certain interplanetary field directions.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/1984STIN...8532077I','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/1984STIN...8532077I"><span>Some properties of flare-not-associated Forbush decreases</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Iucci, N.; Parisi, M.; Signorini, C.; Storini, M.; Villoresi, G.</p> <p>1984-07-01</p> <p>All non flare-associated Forbush decreases (N Ass Fds) over the period 1957 to 1979 are investigated. The connection between N Ass Fds occurrence and the central meridian passage of strong active regions producing great flare associated Fds shows the flare origin of the N Ass Fds. The interplanetary perturbations at the eastern and western boundaries of the modulated region are found to be long living corotating structures. These structures mark the boundaries of the region in which the (1 to 4 Mev) protons accelerated by interplanetary flare generated shocks are confined.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://hdl.handle.net/2060/20110007248','NASA-TRS'); return false;" href="http://hdl.handle.net/2060/20110007248"><span>CME Interaction with Coronal Holes and Their Interplanetary Consequences</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Gopalswamy, N.; Makela, P.; Xie, H.; Akiyama, S.; Yashiro, S.</p> <p>2008-01-01</p> <p>A significant number of interplanetary (IP) shocks (-17%) during cycle 23 were not followed by drivers. The number of such "driverless" shocks steadily increased with the solar cycle with 15%, 33%, and 52% occurring in the rise, maximum, and declining phase of the solar cycle. The solar sources of 15% of the driverless shocks were very close the central meridian of the Sun (within approx.15deg), which is quite unexpected. More interestingly, all the driverless shocks with their solar sources near the solar disk center occurred during the declining phase of solar cycle 23. When we investigated the coronal environment of the source regions of driverless shocks, we found that in each case there was at least one coronal hole nearby suggesting that the coronal holes might have deflected the associated coronal mass ejections (CMEs) away from the Sun-Earth line. The presence of abundant low-latitude coronal holes during the declining phase further explains why CMEs originating close to the disk center mimic the limb CMEs, which normally lead to driverless shocks due to purely geometrical reasons. We also examined the solar source regions of shocks with drivers. For these, the coronal holes were located such that they either had no influence on the CME trajectories. or they deflected the CMEs towards the Sun-Earth line. We also obtained the open magnetic field distribution on the Sun by performing a potential field source surface extrapolation to the corona. It was found that the CMEs generally move away from the open magnetic field regions. The CME-coronal hole interaction must be widespread in the declining phase, and may have a significant impact on the geoeffectiveness of CMEs.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://ntrs.nasa.gov/search.jsp?R=20160014480&hterms=energy&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D50%26Ntt%3Denergy','NASA-TRS'); return false;" href="https://ntrs.nasa.gov/search.jsp?R=20160014480&hterms=energy&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D50%26Ntt%3Denergy"><span>Prompt Acceleration of Magnetospheric Electrons to Ultrarelativistic Energies by the 17 March 2015 Interplanetary Shock</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Kanekal, S. G.; Baker, D. N.; Fennell, J. F.; Jones, A.; Schiller, Q.; Richardson, I.G.; Li, X.; Turner, D. L.; Califf, S.; Claudepierre, S. G.; <a style="text-decoration: none; " href="javascript:void(0); " onClick="displayelement('author_20160014480'); toggleEditAbsImage('author_20160014480_show'); toggleEditAbsImage('author_20160014480_hide'); "> <img style="display:inline; width:12px; height:12px; " src="images/arrow-up.gif" width="12" height="12" border="0" alt="hide" id="author_20160014480_show"> <img style="width:12px; height:12px; display:none; " src="images/arrow-down.gif" width="12" height="12" border="0" alt="hide" id="author_20160014480_hide"></p> <p>2016-01-01</p> <p>Trapped electrons in Earth's outer Van Allen radiation belt are influenced profoundly by solar phenomena such as high-speed solar wind streams, coronal mass ejections (CME), and interplanetary (IP) shocks. In particular, strong IP shocks compress the magnetosphere suddenly and result in rapid energization of electrons within minutes. It is believed that the electric fields induced by the rapid change in the geomagnetic field are responsible for the energization. During the latter part of March 2015, a CME impact led to the most powerful geomagnetic storm (minimum Dst = -223 nT at 17 March, 23 UT) observed not only during the Van Allen Probe era but also the entire preceding decade. Magnetospheric response in the outer radiation belt eventually resulted in elevated levels of energized electrons. The CME itself was preceded by a strong IP shock whose immediate effects vis-a-vis electron energization were observed by sensors on board the Van Allen Probes. The comprehensive and high-quality data from the Van Allen Probes enable the determination of the location of the electron injection, timescales, and spectral aspects of the energized electrons. The observations clearly show that ultrarelativistic electrons with energies E greater than 6 MeV were injected deep into the magnetosphere at L approximately equals 3 within about 2 min of the shock impact. However, electrons in the energy range of approximately equals 250 keV to approximately equals 900 keV showed no immediate response to the IP shock. Electric and magnetic fields resulting from the shock-driven compression complete the comprehensive set of observations that provide a full description of the near-instantaneous electron energization.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2004cosp...35.3654H','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2004cosp...35.3654H"><span>Real-time Upstream Monitoring System (RUMS): Forecasting arrival times of interplanetary shocks using energetic particle data from ACE</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Ho, G.; Donegan, M.; Vandegriff, J.; Wagstaff, K.</p> <p></p> <p>We have created a system for predicting the arrival times at Earth of interplanetary (IP) shocks that originate at the Sun. This system is currently available on the web (http://sd-www.jhuapl.edu/UPOS/RISP/index.html) and runs in real-time. Input data to our prediction algorithm is energetic particle data from the Electron, Proton, and Alpha Monitor (EPAM) instrument on NASA's Advanced Composition Explorer (ACE) spacecraft. Real-time EPAM data is obtained from the National Oceanic and Atmospheric Administration (NOAA) Space Environment Center (SEC). Our algorithm operates in two stages. First it watches for a velocity dispersion signature (energetic ions show flux enhancement followed by subsequent enhancements in lower energies), which is commonly seen upstream of a large IP shock. Once a precursor signature has been detected, a pattern recognition algorithm is used to analyze the time series profile of the particle data and generate an estimate for the shock arrival time. Tests on the algorithm show an average error of roughly 9 hours for predictions made 24 hours before the shock arrival and roughly 5 hours when the shock is 12 hours away. This can provide significant lead-time and deliver critical information to mission planners, satellite operations controllers, and scientists. As of February 4, 2004, the ACE real-time stream has been switched to include data from another detector on EPAM. We are now processing the new real-time data stream and have made improvements to our algorithm based on this data. In this paper, we report prediction results from the updated algorithm.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=5014318','PMC'); return false;" href="https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=5014318"><span>Tailoring the Blast Exposure Conditions in the Shock Tube for Generating Pure, Primary Shock Waves: The End Plate Facilitates Elimination of Secondary Loading of the Specimen</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pmc">PubMed Central</a></p> <p>Misistia, Anthony; Kahali, Sudeepto; Sundaramurthy, Aravind; Chandra, Namas</p> <p>2016-01-01</p> <p>The end plate mounted at the mouth of the shock tube is a versatile and effective implement to control and mitigate the end effects. We have performed a series of measurements of incident shock wave velocities and overpressures followed by quantification of impulse values (integral of pressure in time domain) for four different end plate configurations (0.625, 2, 4 inches, and an open end). Shock wave characteristics were monitored by high response rate pressure sensors allocated in six positions along the length of 6 meters long 229 mm square cross section shock tube. Tests were performed at three shock wave intensities, which was controlled by varying the Mylar membrane thickness (0.02, 0.04 and 0.06 inch). The end reflector plate installed at the exit of the shock tube allows precise control over the intensity of reflected waves penetrating into the shock tube. At the optimized distance of the tube to end plate gap the secondary waves were entirely eliminated from the test section, which was confirmed by pressure sensor at T4 location. This is pronounced finding for implementation of pure primary blast wave animal model. These data also suggest only deep in the shock tube experimental conditions allow exposure to a single shock wave free of artifacts. Our results provide detailed insight into spatiotemporal dynamics of shock waves with Friedlander waveform generated using helium as a driver gas and propagating in the air inside medium sized tube. Diffusion of driver gas (helium) inside the shock tube was responsible for velocity increase of reflected shock waves. Numerical simulations combined with experimental data suggest the shock wave attenuation mechanism is simply the expansion of the internal pressure. In the absence of any other postulated shock wave decay mechanisms, which were not implemented in the model the agreement between theory and experimental data is excellent. PMID:27603017</p> </li> </ol> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_14");'>14</a></li> <li><a href="#" onclick='return showDiv("page_15");'>15</a></li> <li class="active"><span>16</span></li> <li><a href="#" onclick='return showDiv("page_17");'>17</a></li> <li><a href="#" onclick='return showDiv("page_18");'>18</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div><!-- col-sm-12 --> </div><!-- row --> </div><!-- page_16 --> <div id="page_17" class="hiddenDiv"> <div class="row"> <div class="col-sm-12"> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_15");'>15</a></li> <li><a href="#" onclick='return showDiv("page_16");'>16</a></li> <li class="active"><span>17</span></li> <li><a href="#" onclick='return showDiv("page_18");'>18</a></li> <li><a href="#" onclick='return showDiv("page_19");'>19</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div> </div> <div class="row"> <div class="col-sm-12"> <ol class="result-class" start="321"> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/27603017','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/27603017"><span>Tailoring the Blast Exposure Conditions in the Shock Tube for Generating Pure, Primary Shock Waves: The End Plate Facilitates Elimination of Secondary Loading of the Specimen.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Kuriakose, Matthew; Skotak, Maciej; Misistia, Anthony; Kahali, Sudeepto; Sundaramurthy, Aravind; Chandra, Namas</p> <p>2016-01-01</p> <p>The end plate mounted at the mouth of the shock tube is a versatile and effective implement to control and mitigate the end effects. We have performed a series of measurements of incident shock wave velocities and overpressures followed by quantification of impulse values (integral of pressure in time domain) for four different end plate configurations (0.625, 2, 4 inches, and an open end). Shock wave characteristics were monitored by high response rate pressure sensors allocated in six positions along the length of 6 meters long 229 mm square cross section shock tube. Tests were performed at three shock wave intensities, which was controlled by varying the Mylar membrane thickness (0.02, 0.04 and 0.06 inch). The end reflector plate installed at the exit of the shock tube allows precise control over the intensity of reflected waves penetrating into the shock tube. At the optimized distance of the tube to end plate gap the secondary waves were entirely eliminated from the test section, which was confirmed by pressure sensor at T4 location. This is pronounced finding for implementation of pure primary blast wave animal model. These data also suggest only deep in the shock tube experimental conditions allow exposure to a single shock wave free of artifacts. Our results provide detailed insight into spatiotemporal dynamics of shock waves with Friedlander waveform generated using helium as a driver gas and propagating in the air inside medium sized tube. Diffusion of driver gas (helium) inside the shock tube was responsible for velocity increase of reflected shock waves. Numerical simulations combined with experimental data suggest the shock wave attenuation mechanism is simply the expansion of the internal pressure. In the absence of any other postulated shock wave decay mechanisms, which were not implemented in the model the agreement between theory and experimental data is excellent.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://hdl.handle.net/2060/19940019692','NASA-TRS'); return false;" href="http://hdl.handle.net/2060/19940019692"><span>Effects of shock strength on shock turbulence interaction</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Lee, Sangsan</p> <p>1993-01-01</p> <p>Direct numerical simulation (DNS) and linear analysis (LIA) of isotropic turbulence interacting with a shock wave are performed for several upstream shock normal Mach numbers (M(sub 1)). Turbulence kinetic energy (TKE) is amplified across the shock wave, but this amplification tends to saturate beyond M(sub 1) = 3.0. TKE amplification and Reynolds stress anisotropy obtained in DNS are consistent with LIA predictions. Rapid evolution of TKE immediate downstream of the shock wave persists for all shock strengths and is attributed to the transfer between kinetic and potential modes of turbulence energy through acoustic fluctuations. Changes in energy spectra and various length scales across the shock wave are predicted by LIA, which is consistent with DNS results. Most turbulence length scales decrease across the shock. Dissipation length scale (rho-bar q(exp 3) / epsilon), however, increases slightly for shock waves with M(sub 1) less than 1.65. Fluctuations in thermodynamic variables behind the shock wave stay nearly isentropic for M(sub 1) less than 1.2 and deviate significantly from isentropy for the stronger shock waves due to large entropy fluctuation generated through the interaction.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/1990ctsw.proc.....K','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/1990ctsw.proc.....K"><span>Current topics in shock waves; Proceedings of the International Symposium on Shock Waves and Shock Tubes, 17th, Lehigh University, Bethlehem, PA, July 17-21, 1989</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Kim, Yong W.</p> <p></p> <p>Various papers on shock waves are presented. The general topics addressed include: shock formation, focusing, and implosion; shock reflection and diffraction; turbulence; laser-produced plasmas and waves; ionization and shock-plasma interaction; chemical kinetics, pyrolysis, and soot formation; experimental facilities, techniques, and applications; ignition of detonation and combustion; particle entrainment and shock propagation through particle suspension; boundary layers and blast simulation; computational methods and numerical simulation.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2018PhPl...25e3502L','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2018PhPl...25e3502L"><span>Underwater electrical wire explosion: Shock wave from melting being overtaken by shock wave from vaporization</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Li, Liuxia; Qian, Dun; Zou, Xiaobing; Wang, Xinxin</p> <p>2018-05-01</p> <p>The shock waves generated by an underwater electrical wire explosion were investigated. A microsecond time-scale pulsed current source was used to trigger the electrical explosion of copper wires with a length of 5 cm and a diameter of 200 μm. The energy-storage capacitor was charged to a relatively low energy so that the energy deposited onto the wire was not large enough to fully vaporize the whole wire. Two shock waves were recorded with a piezoelectric gauge that was located at a position of 100 mm from the exploding wire. The first and weak shock wave was confirmed to be the contribution from wire melting, while the second and stronger shock wave was the contribution from wire vaporization. The phenomenon whereby the first shock wave generated by melting being overtaken by the shock wave due to vaporization was observed.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://hdl.handle.net/2060/19840013379','NASA-TRS'); return false;" href="http://hdl.handle.net/2060/19840013379"><span>Research in space physics at the University of Iowa, 1982</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Vanallen, J. A.; Frank, L. A.; Gurnett, D. A.; Shawhan, S. D.; Robison, E. D.; Robertson, T. D.</p> <p>1983-01-01</p> <p>The energetic particles and the electric, magnetic, and electromagnetic fields associated with the Earth, the Sun, the Moon, the planets, comets, and the interplanetary medium are examined. Matters under current investigation are following: energetic particles trapped in the Earth's magnetic field, origin and propagation of very low frequency radio waves and electrostatic, the magnetospheres of Jupiter, Saturn and prospectively Uranus and Neptune, diffusion of energetic particles in Saturn's magnetosphere, radio emissions from Jupiter and Saturn, solar modulation and the heliocentric radial dependence of the intensity of galactic cosmic rays, interplanetary propagation and acceleration of energetic particles, the theory of wave phenomena in turbulent plasmas, and basic wave-particle-chemical processes in the ionospheric plasma.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://hdl.handle.net/2060/19950021487','NASA-TRS'); return false;" href="http://hdl.handle.net/2060/19950021487"><span>A numerical study of fundamental shock noise mechanisms. Ph.D. Thesis - Cornell Univ.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Meadows, Kristine R.</p> <p>1995-01-01</p> <p>The results of this thesis demonstrate that direct numerical simulation can predict sound generation in unsteady aerodynamic flows containing shock waves. Shock waves can be significant sources of sound in high speed jet flows, on helicopter blades, and in supersonic combustion inlets. Direct computation of sound permits the prediction of noise levels in the preliminary design stage and can be used as a tool to focus experimental studies, thereby reducing cost and increasing the probability of a successfully quiet product in less time. This thesis reveals and investigates two mechanisms fundamental to sound generation by shocked flows: shock motion and shock deformation. Shock motion is modeled by the interaction of a sound wave with a shock. During the interaction, the shock wave begins to move and the sound pressure is amplified as the wave passes through the shock. The numerical approach presented in this thesis is validated by the comparison of results obtained in a quasi-one dimensional simulation with linear theory. Analysis of the perturbation energy demonstrated for the first time that acoustic energy is generated by the interaction. Shock deformation is investigated by the numerical simulation of a ring vortex interacting with a shock. This interaction models the passage of turbulent structures through the shock wave. The simulation demonstrates that both acoustic waves and contact surfaces are generated downstream during the interaction. Analysis demonstrates that the acoustic wave spreads cylindrically, that the sound intensity is highly directional, and that the sound pressure level increases significantly with increasing shock strength. The effect of shock strength on sound pressure level is consistent with experimental observations of shock noise, indicating that the interaction of a ring vortex with a shock wave correctly models a dominant mechanism of shock noise generation.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017AGUFMSH23D2679L','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017AGUFMSH23D2679L"><span>The Heavy Ion Sensor (HIS) Onboard Solar Orbiter (SOLO): Calibration Results and Science Outlook</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Livi, S. A.; Lepri, S. T.; Raines, J. M.; Galvin, A.; Kistler, L. M.; Allegrini, F.; Ogasawara, K.; Collier, M. R.</p> <p>2017-12-01</p> <p>The HIS sensor has been designed and optimized to study heavy ions in the solar wind, suprathermal particles, and pickup ions in the range 0.5 to 75keV/e. This instrument will allow for unprecedented data collection of particle characteristics near the Sun at various heliolatitudes during both the quiet and active phases of the solar cycle. The close proximity and the quasi-corotation will allow for determination of the source regions on the sun for the observed events. As a result of the measurements HIS will take, we will be able to: link events on the surface of the Sun with structures in the interplanetary medium; determine the extent of gravitational settling in the expansion region of the solar wind; identify interplanetary shocks and characterize their spatial and temporal evolution; characterize the power spectra of density and velocity uctuations upstream and downstream of shocks; study the heating and dissipation mechanisms at shocks at various radial distances and latitudes; and identify the mechanisms that heat thermal solar wind ions near shocks and determine the energy partition at shocks. During the course of 2016 and 2017 HIS has been calibrated at the facility of SwRI and University of Bern, using a large energy range (0.1-450 keV), multiple masses (H-Fe), as well as charge states (1-6). The results show that HIS will meet or exceed all necessary requirements to fullfill its ambitious scientific goals.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/18006678','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/18006678"><span>High-energy extracorporeal shock wave therapy as a treatment for chronic noninsertional Achilles tendinopathy.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Furia, John P</p> <p>2008-03-01</p> <p>High-energy extracorporeal shock wave therapy has been shown to be an effective treatment for chronic insertional Achilles tendinopathy. The results of high-energy shock wave therapy for chronic noninsertional Achilles tendinopathy have not been determined. Shock wave therapy is an effective treatment for noninsertional Achilles tendinopathy. Case control study; Level of evidence, 3. Thirty-four patients with chronic noninsertional Achilles tendinopathy were treated with a single dose of high-energy shock wave therapy (shock wave therapy group; 3000 shocks; 0.21 mJ/mm(2); total energy flux density, 604 mJ/mm(2)). Thirty-four patients with chronic noninsertional Achilles tendinopathy were treated not with shock wave therapy but with additional forms of nonoperative therapy (control group). All shock wave therapy procedures were performed using regional anesthesia. Evaluation was by change in visual analog score and by Roles and Maudsley score. One month, 3 months, and 12 months after treatment, the mean visual analog scores for the control and shock wave therapy groups were 8.4 and 4.4 (P < .001), 6.5 and 2.9 (P < .001), and 5.6 and 2.2 (P < .001), respectively. At final follow-up, the number of excellent, good, fair, and poor results for the shock wave therapy and control groups were 12 and 0 (P < .001), 17 and 9 (P < .001), 5 and 17 (P < .001), and 0 and 8 (P < .001), respectively. A chi(2) analysis revealed that the percentage of patients with excellent ("1") or good ("2") Roles and Maudsley scores, that is, successful results, 12 months after treatment was statistically greater in the shock wave therapy group than in the control group (P < .001). Shock wave therapy is an effective treatment for chronic noninsertional Achilles tendinopathy.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://pubs.er.usgs.gov/publication/70017326','USGSPUBS'); return false;" href="https://pubs.er.usgs.gov/publication/70017326"><span>Seismic excitation by space shuttles</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://pubs.er.usgs.gov/pubs/index.jsp?view=adv">USGS Publications Warehouse</a></p> <p>Kanamori, H.; Mori, J.; Sturtevant, B.; Anderson, D.L.; Heaton, T.</p> <p>1992-01-01</p> <p>Shock waves generated by the space shuttles Columbia (August 13, 1989), Atlantis (April 11, 1991) and Discovery (September 18, 1991) on their return to Edwards Air Force Base, California, were recorded by TERRAscope (Caltech's broadband seismic network), the Caltech-U.S.G.S Southern California Seismic Network (SCSN), and the University of Southern California (USC) Los Angeles Basin Seismic Network. The spatial pattern of the arrival times exhibits hyperbolic shock fronts from which the path, velocity and altitude of the space shuttle could be determined. The shock wave was acoustically coupled to the ground, converted to a seismic wave, and recorded clearly at the broadband TERRAscope stations. The acoustic coupling occurred very differently depending on the conditions of the Earth's surface surrounding the station. For a seismic station located on hard bedrock, the shock wave (N wave) was clearly recorded with little distortion. Aside from the N wave, very little acoustic coupling of the shock wave energy to the ground occurred at these sites. The observed N wave record was used to estimate the overpressure of the shock wave accurately; a pressure change of 0.5 to 2.2 mbars was obtained. For a seismic station located close to the ocean or soft sedimentary basins, a significant amount of shock wave energy was transferred to the ground through acoustic coupling of the shock wave and the oceanic Rayleigh wave. A distinct topography such as a mountain range was found effective to couple the shock wave energy to the ground. Shock wave energy was also coupled to the ground very effectively through large man made structures such as high rise buildings and offshore oil drilling platforms. For the space shuttle Columbia, in particular, a distinct pulse having a period of about 2 to 3 seconds was observed, 12.5 s before the shock wave, with a broadband seismograph in Pasadena. This pulse was probably excited by the high rise buildings in downtown Los Angeles which were simultaneously hit by the space shuttle shock waves. The proximity of the natural periods of the high rise buildings and the modal periods of the Los Angeles basin enabled efficient energy transfer from shock wave to seismic wave. ?? 1992 Springer-Verlag.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2003AGUFMSH42A0479D','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2003AGUFMSH42A0479D"><span>Real-time Upstream Monitoring System: Using ACE Data to Predict the Arrival of Interplanetary Shocks</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Donegan, M. M.; Wagstaff, K. L.; Ho, G. C.; Vandegriff, J.</p> <p>2003-12-01</p> <p>We have developed an algorithm to predict Earth arrival times for interplanetary (IP) shock events originating at the Sun. Our predictions are generated from real-time data collected by the Electron, Proton, and Alpha Monitor (EPAM) instrument on NASA's Advanced Composition Explorer (ACE) spacecraft. The high intensities of energetic ions that occur prior to and during an IP shock pose a radiation hazard to astronauts as well as to electronics in Earth orbit. The potential to predict such events is based on characteristic signatures in the Energetic Storm Particle (ESP) event ion intensities which are often associated with IP shocks. We have previously reported on the development and implementation of an algorithm to forecast the arrival of ESP events. Historical ion data from ACE/EPAM was used to train an artificial neural network which uses the signature of an approaching event to predict the time remaining until the shock arrives. Tests on the trained network have been encouraging, with an average error of 9.4 hours for predictions made 24 hours in advance, and an reduced average error of 4.9 hours when the shock is 12 hours away. The prediction engine has been integrated into a web-based system that uses real-time ACE/EPAM data provided by the NOAA Space Environment Center (http://sd-www.jhuapl.edu/UPOS/RISP/ index.html.) This system continually processes the latest ACE data, reports whether or not there is an impending shock, and predicts the time remaining until the shock arrival. Our predictions are updated every five minutes and provide significant lead-time, thereby supplying critical information that can be used by mission planners, satellite operations controllers, and scientists. We have continued to refine the prediction capabilities of this system; in addition to forecasting arrival times for shocks, we now provide confidence estimates for those predictions.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://ntrs.nasa.gov/search.jsp?R=19810040177&hterms=WIND+STORMS&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D40%26Ntt%3DWIND%2BSTORMS','NASA-TRS'); return false;" href="https://ntrs.nasa.gov/search.jsp?R=19810040177&hterms=WIND+STORMS&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D40%26Ntt%3DWIND%2BSTORMS"><span>Interplanetary ions during an energetic storm particle event - The distribution function from solar wind thermal energies to 1.6 MeV</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Gosling, J. T.; Asbridge, J. R.; Bame, S. J.; Feldman, W. C.; Zwickl, R. D.; Paschmann, G.; Sckopke, N.; Hynds, R. J.</p> <p>1981-01-01</p> <p>An ion velocity distribution function of the postshock phase of an energetic storm particle (ESP) event is obtained from data from the ISEE 2 and ISEE 3 experiments. The distribution function is roughly isotropic in the solar wind frame from solar wind thermal energies to 1.6 MeV. The ESP event studied (8/27/78) is superposed upon a more energetic particle event which was predominantly field-aligned and which was probably of solar origin. The observations suggest that the ESP population is accelerated directly out of the solar wind thermal population or its quiescent suprathermal tail by a stochastic process associated with shock wave disturbance. The acceleration mechanism is sufficiently efficient so that approximately 1% of the solar wind population is accelerated to suprathermal energies. These suprathermal particles have an energy density of approximately 290 eV cubic centimeters.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017AGUFMSM51A2412N','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017AGUFMSM51A2412N"><span>Plasma sheet density dependence on Interplanetary Magnetic Field and Solar Wind properties: statistical study using 9+ year of THEMIS data</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Nykyri, K.; Chu, C.; Dimmock, A. P.</p> <p>2017-12-01</p> <p>Previous studies have shown that plasma sheet in tenuous and hot during southward IMF, whereas northward IMF conditions are associated with cold, dense plasma. The cold, dense plasma sheet (CDPS) has strong influence on magnetospheric dynamics. Closer to Earth, the CDPS could be formed via double high-latitude reconnection, while at increasing tailward distance reconnection, diffusion and kinetic Alfven waves in association with Kelvin-Helmholtz Instability are suggested as dominant source for cold-dense plasma sheet formation. In this paper we present statistical correlation study between Solar Wind, Magnetosheath and Plasma sheet properties using 9+ years of THEMIS data in aberrated GSM frame, and in a normalized coordinate system that takes into account the changes of the magnetopause and bow shock location with respect to changing solar wind conditions. We present statistical results of the plasma sheet density dependence on IMF orientation and other solar wind properties.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://ntrs.nasa.gov/search.jsp?R=19800069378&hterms=Fast+radio+burst&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D20%26Ntt%3DFast%2Bradio%2Bburst','NASA-TRS'); return false;" href="https://ntrs.nasa.gov/search.jsp?R=19800069378&hterms=Fast+radio+burst&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D20%26Ntt%3DFast%2Bradio%2Bburst"><span>Radio and white-light observations of coronal transients</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Dulk, G. A.</p> <p>1980-01-01</p> <p>Optical, radio and X-ray evidence of violent mass motions in the corona has existed for some years but only recently have the form, nature, frequency and implication of the transients become obvious. In this paper the observed properties of coronal transients are reviewed, with concentration on the white-light and radio manifestations. The classification according to speeds seems to be meaningful, with the slow transients having thermal emissions at radio wavelengths and the fast ones nonthermal. The possible mechanisms involved in the radio bursts are then discussed and estimates of various forms of energy are reviewed. It appears that the magnetic energy transported from the sun by the transient exceeds that of any other form, and that magnetic forces dominate in the dynamics of the motions. The conversion of magnetic energy into mechanical energy, by expansion of the field, provides a possible driving force for the coronal and interplanetary shock waves.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://hdl.handle.net/2060/20150007929','NASA-TRS'); return false;" href="http://hdl.handle.net/2060/20150007929"><span>Interplanetary and Interstellar Dust Observed by the Wind/WAVES Electric Field Instrument</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Malaspina, David; Horanyi, M.; Zaslavsky, A.; Goetz, K.; Wilson, L. B., III; Kersten, K.</p> <p>2014-01-01</p> <p>Observations of hypervelocity dust particles impacting the Wind spacecraft are reported here for the first time using data from the WindWAVES electric field instrument. A unique combination of rotating spacecraft, amplitude-triggered high-cadence waveform collection, and electric field antenna configuration allow the first direct determination of dust impact direction by any spacecraft using electric field data. Dust flux and impact direction data indicate that the observed dust is approximately micron-sized with both interplanetary and interstellar populations. Nanometer radius dust is not detected by Wind during times when nanometer dust is observed on the STEREO spacecraft and both spacecraft are in close proximity. Determined impact directions suggest that interplanetary dust detected by electric field instruments at 1 AU is dominated by particles on bound trajectories crossing Earths orbit, rather than dust with hyperbolic orbits.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://ntrs.nasa.gov/search.jsp?R=19740042009&hterms=947&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D70%26Ntt%3D%2526%2523947','NASA-TRS'); return false;" href="https://ntrs.nasa.gov/search.jsp?R=19740042009&hterms=947&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D70%26Ntt%3D%2526%2523947"><span>On the local time dependence of the bow shock wave structure</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Olson, J. V.; Holzer, R. E.</p> <p>1974-01-01</p> <p>In the first 6 months after its launch, Ogo 3 crossed the earth's bow shock over 500 times. From this group, a set of 494 shock crossings were chosen for analysis. These crossings, as they were recorded by the UCLA/JPL search coil magnetometer, were scanned and classified according to the nature of the plasma waves detected near the shock. More than 85% of the shocks detected fell into a single category showing the predominance of two independent wave trains near the shock, the higher frequency appearing upstream and the lower downstream. The other 15%, which constitute an upper limit, appear to be composed of shocks dominated by a single wave pattern and of chaotic shocks showing no orderly progression of wave frequencies as the shock was penetrated. This division of wave pattern was found to occur at all local times, that is, in all regions where the satellite penetrated the shock.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.osti.gov/biblio/22356933-electromagnetic-waves-near-proton-cyclotron-frequency-stereo-observations','SCIGOV-STC'); return false;" href="https://www.osti.gov/biblio/22356933-electromagnetic-waves-near-proton-cyclotron-frequency-stereo-observations"><span></span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.osti.gov/search">DOE Office of Scientific and Technical Information (OSTI.GOV)</a></p> <p>Jian, L. K.; Wei, H. Y.; Russell, C. T.</p> <p></p> <p>Transverse, near-circularly polarized, parallel-propagating electromagnetic waves around the proton cyclotron frequency were found sporadically in the solar wind throughout the inner heliosphere. They could play an important role in heating and accelerating the solar wind. These low-frequency waves (LFWs) are intermittent but often occur in prolonged bursts lasting over 10 minutes, named 'LFW storms'. Through a comprehensive survey of them from Solar Terrestrial Relations Observatory A using dynamic spectral wave analysis, we have identified 241 LFW storms in 2008, present 0.9% of the time. They are left-hand (LH) or right-hand (RH) polarized in the spacecraft frame with similar characteristics, probablymore » due to Doppler shift of the same type of waves or waves of intrinsically different polarities. In rare cases, the opposite polarities are observed closely in time or even simultaneously. Having ruled out interplanetary coronal mass ejections, shocks, energetic particles, comets, planets, and interstellar ions as LFW sources, we discuss the remaining generation scenarios: LH ion cyclotron instability driven by greater perpendicular temperature than parallel temperature or by ring-beam distribution, and RH ion fire hose instability driven by inverse temperature anisotropy or by cool ion beams. The investigation of solar wind conditions is compromised by the bias of the one-dimensional Maxwellian fit used for plasma data calibration. However, the LFW storms are preferentially detected in rarefaction regions following fast winds and when the magnetic field is radial. This preference may be related to the ion cyclotron anisotropy instability in fast wind and the minimum in damping along the radial field.« less</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://ntrs.nasa.gov/search.jsp?R=20080025046&hterms=electric+transport&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D60%26Ntt%3Delectric%2Btransport','NASA-TRS'); return false;" href="https://ntrs.nasa.gov/search.jsp?R=20080025046&hterms=electric+transport&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D60%26Ntt%3Delectric%2Btransport"><span>Global Dayside Ionospheric Uplift and Enhancement Associated with Interplanetary Electric Fields</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Tsurutani, Bruce; Mannucci, Anthony; Iijima, Byron; Abdu, Mangalathayil Ali; Sobral, Jose Humberto A.; Gonzalez, Walter; Guarnieri, Fernando; Tsuda, Toshitaka; Saito, Akinori; Yumoto, Kiyohumi; <a style="text-decoration: none; " href="javascript:void(0); " onClick="displayelement('author_20080025046'); toggleEditAbsImage('author_20080025046_show'); toggleEditAbsImage('author_20080025046_hide'); "> <img style="display:inline; width:12px; height:12px; " src="images/arrow-up.gif" width="12" height="12" border="0" alt="hide" id="author_20080025046_show"> <img style="width:12px; height:12px; display:none; " src="images/arrow-down.gif" width="12" height="12" border="0" alt="hide" id="author_20080025046_hide"></p> <p>2004-01-01</p> <p>The interplanetary shock/electric field event of 5-6 November 2001 is analyzed using ACE interplanetary data. The consequential ionospheric effects are studied using GPS receiver data from the CHAMP and SAC-C satellites and altimeter data from the TOPEX/ Poseidon satellite. Data from 100 ground-based GPS receivers as well as Brazilian Digisonde and Pacific sector magnetometer data are also used. The dawn-to-dusk interplanetary electric field was initially 33 mV/m just after the forward shock (IMF BZ = -48 nT) and later reached a peak value of 54 mV/m 1 hour and 40 min later (BZ = -78 nT). The electric field was 45 mV/m (BZ = -65 nT) 2 hours after the shock. This electric field generated a magnetic storm of intensity DST = -275 nT. The dayside satellite GPS receiver data plus ground-based GPS data indicate that the entire equatorial and midlatitude (up to +/-50(deg) magnetic latitude (MLAT)) dayside ionosphere was uplifted, significantly increasing the electron content (and densities) at altitudes greater than 430 km (CHAMP orbital altitude). This uplift peaked 2 1/2 hours after the shock passage. The effect of the uplift on the ionospheric total electron content (TEC) lasted for 4 to 5 hours. Our hypothesis is that the interplanetary electric field ''promptly penetrated'' to the ionosphere, and the dayside plasma was convected (by E x B) to higher altitudes. Plasma upward transport/convergence led to a 55-60% increase in equatorial ionospheric TEC to values above 430 km (at 1930 LT). This transport/convergence plus photoionization of atmospheric neutrals at lower altitudes caused a 21% TEC increase in equatorial ionospheric TEC at 1400 LT (from ground-based measurements). During the intense electric field interval, there was a sharp plasma ''shoulder'' detected at midlatitudes by the GPS receiver and altimeter satellites. This shoulder moves equatorward from -54(deg) to -37(deg) MLAT during the development of the main phase of the magnetic storm. We presume this to be an ionospheric signature of the plasmapause and its motion. The total TEC increase of this shoulder is 80%. Part of this increase may be due to a "superfountain effect." The dayside ionospheric TEC above 430 km decreased to values 45% lower than quiet day values 7 to 9 hours after the beginning of the electric field event. The total equatorial ionospheric TEC decrease was 16%. This decrease occurred both at midlatitudes and at the equator. We presume that thermospheric winds and neutral composition changes produced by the storm-time Joule heating, disturbance dynamo electric fields, and electric fields at auroral and subauroral latitudes are responsible for these decreases.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/17906941','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/17906941"><span>The interplanetary exchange of photosynthesis.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Cockell, Charles S</p> <p>2008-02-01</p> <p>Panspermia, the transfer of organisms from one planet to another, either through interplanetary or interstellar space, remains speculation. However, its potential can be experimentally tested. Conceptually, it is island biogeography on an interplanetary or interstellar scale. Of special interest is the possibility of the transfer of oxygenic photosynthesis between one planet and another, as it can initiate large scale biospheric productivity. Photosynthetic organisms, which must live near the surface of rocks, can be shown experimentally to be subject to destruction during atmospheric transit. Many of them grow as vegetative cells, which are shown experimentally to be susceptible to destruction by shock during impact ejection, although the effectiveness of this dispersal filter can be shown to be mitigated by the characteristics of the cells and their local environment. Collectively these, and other, experiments reveal the particular barriers to the cross-inoculation of photosynthesis. If oxygen biosignatures are eventually found in the atmospheres of extrasolar planets, understanding the potential for the interplanetary exchange of photosynthesis will aid in their interpretation.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2009AGUFMSH41A1626N','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2009AGUFMSH41A1626N"><span>PROPAGATION AND EVOLUTION OF THE JUNE 1st 2008 CME IN THE INTERPLANETARY MEDIUM</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Nieves-Chinchilla, T.; Lamb, D. A.; Davila, J. M.; Vinas, A. F.; Moestl, C.; Hidalgo, M. A.; Farrugia, C. J.; Malandraki, O.; Dresing, N.; Gómez-Herrero, R.</p> <p>2009-12-01</p> <p>In this work we present a study of the coronal mass ejection (CME) of June 1st of 2008 in the interplanetary medium. This event has been extensively studied by others because of its favorable geometry and the possible consequences of its peculiar initiation for space weather forecasting. We show an analysis of the evolution of the CME in the interplanetary medium in order to shed some light on the propagation mechanism of the ICME. We have determined the typical shock associated characteristics of the ICME in order to understand the propagation properties. Using two different non force-free models of the magnetic cloud allows us to incorporate expansion of the cloud. We use in-situ measurements from STEREO B/IMPACT to characterize the ICME. In addition, we use images from STEREO A/SECCHI-HI to analyze the propagation and visual evolution of the associated flux rope in the interplanetary medium. We compare and contrast these observations with the results of the analytical models.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/24313530','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/24313530"><span>Shock waves in weakly compressed granular media.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>van den Wildenberg, Siet; van Loo, Rogier; van Hecke, Martin</p> <p>2013-11-22</p> <p>We experimentally probe nonlinear wave propagation in weakly compressed granular media and observe a crossover from quasilinear sound waves at low impact to shock waves at high impact. We show that this crossover impact grows with the confining pressure P0, whereas the shock wave speed is independent of P0-two hallmarks of granular shocks predicted recently. The shocks exhibit surprising power law attenuation, which we model with a logarithmic law implying that shock dissipation is weak and qualitatively different from other granular dissipation mechanisms. We show that elastic and potential energy balance in the leading part of the shocks.</p> </li> </ol> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_15");'>15</a></li> <li><a href="#" onclick='return showDiv("page_16");'>16</a></li> <li class="active"><span>17</span></li> <li><a href="#" onclick='return showDiv("page_18");'>18</a></li> <li><a href="#" onclick='return showDiv("page_19");'>19</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div><!-- col-sm-12 --> </div><!-- row --> </div><!-- page_17 --> <div id="page_18" class="hiddenDiv"> <div class="row"> <div class="col-sm-12"> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_16");'>16</a></li> <li><a href="#" onclick='return showDiv("page_17");'>17</a></li> <li class="active"><span>18</span></li> <li><a href="#" onclick='return showDiv("page_19");'>19</a></li> <li><a href="#" onclick='return showDiv("page_20");'>20</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div> </div> <div class="row"> <div class="col-sm-12"> <ol class="result-class" start="341"> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2006APS..DPPGM1001M','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2006APS..DPPGM1001M"><span>Solar Energetic Particles -- A Radiation Hazard to Humans and Hardware in Space</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Mewaldt, R. A.</p> <p>2006-10-01</p> <p>During large solar energetic particle (SEP) events the intensity of >30 MeV protons in nearby interplanetary space can increase by a million times over the steady intensity of galactic cosmic rays, creating a radiation hazard to both humans and hardware in space. With NASA now committed to sending astronauts to the Moon and possibly on to Mars, outside the protective cover of the Earth's magnetosphere, interest in understanding and forecasting large SEP events has taken on a new sense of urgency. The past solar maximum included four of the top ten SEP events of the space era. Fortunately, the array of spacecraft now in interplanetary space has provided greatly improved measurements of the composition and energy spectra of accelerated ions, leading to fresh insights into the nature of these events. The largest SEP events are accelerated by coronal and interplanetary shocks driven by coronal mass ejections (CMEs) traveling at >2000 km/sec. Although shock acceleration is ubiquitous in nature, its efficiency is highly variable, making it difficult to forecast the onset and evolution of large SEP events. This talk will describe the radiation hazards associated with the largest SEP events, discuss their frequency of occurrence, consider a worst-case SEP event, and describe how the radiation risks can be mitigated.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2010ApJ...715.1239F','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2010ApJ...715.1239F"><span>Precursors of the Forbush Decrease on 2006 December 14 Observed with the Global Muon Detector Network (GMDN)</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Fushishita, A.; Kuwabara, T.; Kato, C.; Yasue, S.; Bieber, J. W.; Evenson, P.; Da Silva, M. R.; Dal Lago, A.; Schuch, N. J.; Tokumaru, M.; Duldig, M. L.; Humble, J. E.; Sabbah, I.; Jassar, H. K. Al; Sharma, M. M.; Munakata, K.</p> <p>2010-06-01</p> <p>We analyze the precursor of a Forbush decrease (FD) observed with the Global Muon Detector Network on 2006 December 14. An intense geomagnetic storm is also recorded during this FD with the peak Kp index of 8+. By using the "two-dimensional map" of the cosmic ray intensity produced after removing the contribution from the diurnal anisotropy, we succeed in extracting clear signatures of the precursor. A striking feature of this event is that a weak loss-cone (LC) signature is first recorded more than a day prior to the storm sudden commencement (SSC) onset. This suggests that the LC precursor appeared only 7 hr after the coronal mass ejection eruption from the Sun, when the interplanetary (IP) shock driven by the interplanetary coronal mass ejection was located at 0.4 AU from the Sun. We find the precursor being successively observed with multiple detectors in the network according to the Earth's spin and confirmed that the precursor continuously exists in space. The long lead time (15.6 hr) of this precursor which is almost twice the typical value indicates that the interplanetary magnetic field (IMF) was more quiet in this event than a typical power spectrum assumed for the IMF turbulence. The amplitude (-6.45%) of the LC anisotropy at the SSC onset is more than twice the FD size, indicating that the maximum intensity depression behind the IP shock is much larger than the FD size recorded at the Earth in this event. We also find the excess intensity from the sunward IMF direction clearly observed during ~10 hr preceding the SSC onset. It is shown that this excess intensity is consistent with the measurement of the particles accelerated by the head-on collisions with the approaching shock. This is the first detailed observation of the precursor due to the shock reflected particles with muon detectors.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2018PhFl...30c6101R','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2018PhFl...30c6101R"><span>Numerical analysis on interactions of vortex, shock wave, and exothermal reaction in a supersonic planar shear layer laden with droplets</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Ren, Zhaoxin; Wang, Bing; Zheng, Longxi</p> <p>2018-03-01</p> <p>The analysis on the interactions of a large-scale shearing vortex, an incident oblique shock wave, and a chemical reaction in a planar shear layer is performed by numerical simulations. The reacting flows are obtained by directly solving the multi-species Navier-Stokes equations in the Eulerian frame, and the motions of individual point-mass fuel droplets are tracked in the Lagrangian frame considering the two-way coupling. The influences of shock strength and spray equivalence ratio on the shock-vortex interaction and the induced combustion are further studied. Under the present conditions, the incident shock is distorted by the vortex evolution to form the complicated waves including an incident shock wave, a multi-refracted wave, a reflected wave, and a transmitted wave. The local pressure and temperature are elevated by the shock impingement on the shearing vortex, which carries flammable mixtures. The chemical reaction is mostly accelerated by the refracted shock across the vortex. Two different exothermal reaction modes could be distinguished during the shock-vortex interaction as a thermal mode, due to the additional energy from the incident shock, and a local quasi detonation mode, due to the coupling of the refracted wave with reaction. The former mode detaches the flame and shock wave, whereas the latter mode tends to occur when the incident shock strength is higher and local equivalence ratio is higher approaching to the stoichiometric value. The numerical results illustrate that those two modes by shock-vortex interaction depend on the structure of the post-shock flame kernel, which may be located either in the vortex-braids of post-shock flows or in the shock-vortex interaction regime.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017Ap%26SS.362...91M','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017Ap%26SS.362...91M"><span>On the interplay between cosmological shock waves and their environment</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Martin-Alvarez, Sergio; Planelles, Susana; Quilis, Vicent</p> <p>2017-05-01</p> <p>Cosmological shock waves are tracers of the thermal history of the structures in the Universe. They play a crucial role in redistributing the energy within the cosmic structures and are also amongst the main ingredients of galaxy and galaxy cluster formation. Understanding this important function requires a proper description of the interplay between shocks and the different environments where they can be found. In this paper, an Adaptive Mesh Refinement (AMR) Eulerian cosmological simulation is analysed by means of a shock-finding algorithm that allows to generate shock wave maps. Based on the population of dark matter halos and on the distribution of density contrast in the simulation, we classify the shocks in five different environments. These range from galaxy clusters to voids. The shock distribution function and the shocks power spectrum are studied for these environments dynamics. We find that shock waves on different environments undergo different formation and evolution processes, showing as well different characteristics. We identify three different phases of formation, evolution and dissipation of these shock waves, and an intricate migration between distinct environments and scales. Shock waves initially form at external, low density regions and are merged and amplified through the collapse of structures. Shock waves and cosmic structures follow a parallel evolution. Later on, shocks start to detach from them and dissipate. We also find that most of the power that shock waves dissipate is found at scales of k ˜0.5 Mpc^{-1}, with a secondary peak at k ˜8 Mpc^{-1}. The evolution of the shocks power spectrum confirms that shock waves evolution is coupled and conditioned by their environment.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2018PhFl...30d6104Z','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2018PhFl...30d6104Z"><span>Interaction of rippled shock wave with flat fast-slow interface</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Zhai, Zhigang; Liang, Yu; Liu, Lili; Ding, Juchun; Luo, Xisheng; Zou, Liyong</p> <p>2018-04-01</p> <p>The evolution of a flat air/sulfur-hexafluoride interface subjected to a rippled shock wave is investigated. Experimentally, the rippled shock wave is produced by diffracting a planar shock wave around solid cylinder(s), and the effects of the cylinder number and the spacing between cylinders on the interface evolution are considered. The flat interface is created by a soap film technique. The postshock flow and the evolution of the shocked interface are captured by a schlieren technique combined with a high-speed video camera. Numerical simulations are performed to provide more details of flows. The wave patterns of a planar shock wave diffracting around one cylinder or two cylinders are studied. The shock stability problem is analytically discussed, and the effects of the spacing between cylinders on shock stability are highlighted. The relationship between the amplitudes of the rippled shock wave and the shocked interface is determined in the single cylinder case. Subsequently, the interface morphologies and growth rates under different cases are obtained. The results show that the shock-shock interactions caused by multiple cylinders have significant influence on the interface evolution. Finally, a modified impulsive theory is proposed to predict the perturbation growth when multiple solid cylinders are present.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=3319085','PMC'); return false;" href="https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=3319085"><span>Shock Wave Technology and Application: An Update☆</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pmc">PubMed Central</a></p> <p>Rassweiler, Jens J.; Knoll, Thomas; Köhrmann, Kai-Uwe; McAteer, James A.; Lingeman, James E.; Cleveland, Robin O.; Bailey, Michael R.; Chaussy, Christian</p> <p>2012-01-01</p> <p>Context The introduction of new lithotripters has increased problems associated with shock wave application. Recent studies concerning mechanisms of stone disintegration, shock wave focusing, coupling, and application have appeared that may address some of these problems. Objective To present a consensus with respect to the physics and techniques used by urologists, physicists, and representatives of European lithotripter companies. Evidence acquisition We reviewed recent literature (PubMed, Embase, Medline) that focused on the physics of shock waves, theories of stone disintegration, and studies on optimising shock wave application. In addition, we used relevant information from a consensus meeting of the German Society of Shock Wave Lithotripsy. Evidence synthesis Besides established mechanisms describing initial fragmentation (tear and shear forces, spallation, cavitation, quasi-static squeezing), the model of dynamic squeezing offers new insight in stone comminution. Manufacturers have modified sources to either enlarge the focal zone or offer different focal sizes. The efficacy of extracorporeal shock wave lithotripsy (ESWL) can be increased by lowering the pulse rate to 60–80 shock waves/min and by ramping the shock wave energy. With the water cushion, the quality of coupling has become a critical factor that depends on the amount, viscosity, and temperature of the gel. Fluoroscopy time can be reduced by automated localisation or the use of optical and acoustic tracking systems. There is a trend towards larger focal zones and lower shock wave pressures. Conclusions New theories for stone disintegration favour the use of shock wave sources with larger focal zones. Use of slower pulse rates, ramping strategies, and adequate coupling of the shock wave head can significantly increase the efficacy and safety of ESWL. PMID:21354696</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/28827478','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/28827478"><span>Increased Risk of New-Onset Hypertension After Shock Wave Lithotripsy in Urolithiasis: A Nationwide Cohort Study.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Huang, Shi-Wei; Tsai, Chung-You; Wang, Jui; Pu, Yeong-Shiau; Chen, Pei-Chun; Huang, Chao-Yuan; Chien, Kuo-Liong</p> <p>2017-10-01</p> <p>Although shock wave lithotripsy is minimally invasive, earlier studies argued that it may increase patients' subsequent risk of hypertension and diabetes mellitus. This study evaluated the association between shock wave lithotripsy and new-onset hypertension or diabetes mellitus. The Taiwanese National Health Insurance Research Database was used to identify 20 219 patients aged 18 to 65 years who underwent the first stone surgical treatment (shock wave lithotripsy or ureterorenoscopic lithotripsy) between January 1999 and December 2011. A Cox proportional model was applied to evaluate associations. Time-varying Cox models were applied to evaluate the association between the number of shock wave lithotripsy sessions and the incidence of hypertension or diabetes mellitus. After a median follow-up of 74.9 and 82.6 months, 2028 and 688 patients developed hypertension in the shock wave lithotripsy and ureterorenoscopic lithotripsy groups, respectively. Patients who underwent shock wave lithotripsy had a higher probability of developing hypertension than patients who underwent ureterorenoscopic lithotripsy, with a hazard ratio of 1.20 (95% confidence interval, 1.10-1.31) after adjusting for covariates. The risk increased as the number of shock wave lithotripsy sessions increased. However, the diabetes mellitus risk was similar in the shock wave lithotripsy and ureterorenoscopic lithotripsy groups. Furthermore, the hazard ratio did not increase as the number of shock wave lithotripsy sessions increased. Shock wave lithotripsy consistently increased the incidence of hypertension on long-term follow-up. Therefore, alternatives to urolithiasis treatment (eg, endoscopic surgery or medical expulsion therapy) could avoid the hypertension risk. Furthermore, avoiding multiple sessions of shock wave lithotripsy could also evade the hypertension risk. © 2017 American Heart Association, Inc.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/17885225','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/17885225"><span>Extracorporeal shock wave therapy in treatment of delayed bone-tendon healing.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Wang, Lin; Qin, Ling; Lu, Hong-bin; Cheung, Wing-hoi; Yang, Hu; Wong, Wan-nar; Chan, Kai-ming; Leung, Kwok-sui</p> <p>2008-02-01</p> <p>Extracorporeal shock wave therapy is indicated for treatment of chronic injuries of soft tissues and delayed fracture healing and nonunion. No investigation has been conducted to study the effect of shock wave on delayed healing at the bone-tendon junction. Shock wave promotes osteogenesis, regeneration of fibrocartilage zone, and remodeling of healing tissue in delayed healing of bone-tendon junction surgical repair. Controlled laboratory study. Twenty-eight mature rabbits were used for establishing a delayed healing model at the patella-patellar tendon complex after partial patellectomy and then divided into control and shock wave groups. In the shock wave group, a single shock wave treatment was given at week 6 postoperatively to the patella-patellar tendon healing complex. Seven samples were harvested at week 8 and 7 samples at week 12 for radiologic, densitometric, histologic, and mechanical evaluations. Radiographic measurements showed 293.4% and 185.8% more new bone formation at the patella-patellar tendon healing junction in the shock wave group at weeks 8 and 12, respectively. Significantly better bone mineral status was found in the week 12 shock wave group. Histologically, the shock wave group showed more advanced remodeling in terms of better alignment of collagen fibers and thicker and more mature regenerated fibrocartilage zone at both weeks 8 and 12. Mechanical testing showed 167.7% and 145.1% higher tensile load and strength in the shock wave group at week 8 and week 12, respectively, compared with controls. Extracorporeal shock wave promotes osteogenesis, regeneration of fibrocartilage zone, and remodeling in the delayed bone-to-tendon healing junction in rabbits. These results provide a foundation for future clinical studies toward establishment of clinical indication for treatment of delayed bone-to-tendon junction healing.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2014TePhL..40.1003B','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2014TePhL..40.1003B"><span>An electromagnetic railgun accelerator: a generator of strong shock waves in channels</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Bobashev, S. V.; Zhukov, B. G.; Kurakin, R. O.; Ponyaev, S. A.; Reznikov, B. I.</p> <p>2014-11-01</p> <p>Processes that accompany the generation of strong shock waves during the acceleration of a free plasma piston (PP) in the electromagnetic railgun channel have been experimentally studied. The formation of shock waves in the railgun channel and the motion of a shock-wave-compressed layer proceed (in contrast to the case of a classical shock tube) in a rather strong electric field (up to 300 V/cm). The experiments were performed at the initial gas pressures in the channel ranging from 25 to 500 Torr. At 25 Torr, the shock-wave Mach numbers reached 32 in argon and 16 in helium. At high concentrations of charged particles behind the shock wave, the electric field causes the passage of a part of the discharge current through the volume of the shock-wave-compressed layer, which induces intense glow comparable with that of the PP glow.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2013EPSC....8..402S','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2013EPSC....8..402S"><span>MESSENGER Observations of Extreme Space Weather in Mercury's Magnetosphere</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Slavin, J. A.</p> <p>2013-09-01</p> <p>Increasing activity on the Sun is allowing MESSENGER to make its first observations of Mercury's magnetosphere under extreme solar wind conditions. At Earth interplanetary shock waves and coronal mass ejections produce severe "space weather" in the form of large geomagnetic storms that affect telecommunications, space systems, and ground-based power grids. In the case of Mercury the primary effect of extreme space weather in on the degree to which this it's weak global magnetic field can shield the planet from the solar wind. Direct impact of the solar wind on the surface of airless bodies like Mercury results in space weathering of the regolith and the sputtering of atomic species like sodium and calcium to high altitudes where they contribute to a tenuous, but highly dynamic exosphere. MESSENGER observations indicate that during extreme interplanetary conditions the solar wind plasma gains access to the surface of Mercury through three main regions: 1. The magnetospheric cusps, which fill with energized solar wind and planetary ions; 2. The subsolar magnetopause, which is compressed and eroded by reconnection to very low altitudes where the natural gyro-motion of solar wind protons may result in their impact on the surface; 3. The magnetotail where hot plasma sheet ions rapidly convect sunward to impact the surface on the nightside of Mercury. The possible implications of these new MESSENGER observations for our ability to predict space weather at Earth and other planets will be described.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2016BAAA...58..249C','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2016BAAA...58..249C"><span>Morfología de eyecciones coronales de masa: avances e interrogantes pendientes</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Cremades, H.</p> <p>2016-08-01</p> <p>Coronal mass ejections (CMEs) originate in the solar atmosphere and inject large amounts of plasma and magnetic fields in the heliosphere. Moreover, they can generate geomagnetic storms and shock waves, which in turn may accelerate energetic particles. The growing interest in studying CMEs stems not only from practical reasons, given their capacity to interact with Earth's atmosphere involving undesirable technological effects for modern society, but also from scientific reasons, because CMEs are part of the solar wind and thus play a key role in coronal and interplanetary dynamics. Space missions devoted to solar monitoring such as SOHO (Solar and Heliospheric Observatory), STEREO (Solar-Terrestrial Relations Observatory), and SDO (Solar Dynamics Observatory) have meant a great step toward the understanding of CME structure and evolution. However, given the nature of the instruments used for CME observation it is still difficult to deduce aspects of their three-dimensional configuration. In this report we visit the most relevant and latest advances regarding the three-dimensional characterization of their morphology, based both on theoretical models and observations. Their relationship with aspects of their source regions at photospheric, chromospheric, and low coronal levels, as well as with their interplanetary counterparts detected in situ are additionally addressed. These correspondences are vital not only for deepening the physical understanding of CMEs, but also to constrain geometrical and propagation models of CMEs towards improving current space weather forecasts.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/27176524','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/27176524"><span>Observation of Dispersive Shock Waves, Solitons, and Their Interactions in Viscous Fluid Conduits.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Maiden, Michelle D; Lowman, Nicholas K; Anderson, Dalton V; Schubert, Marika E; Hoefer, Mark A</p> <p>2016-04-29</p> <p>Dispersive shock waves and solitons are fundamental nonlinear excitations in dispersive media, but dispersive shock wave studies to date have been severely constrained. Here, we report on a novel dispersive hydrodynamic test bed: the effectively frictionless dynamics of interfacial waves between two high viscosity contrast, miscible, low Reynolds number Stokes fluids. This scenario is realized by injecting from below a lighter, viscous fluid into a column filled with high viscosity fluid. The injected fluid forms a deformable pipe whose diameter is proportional to the injection rate, enabling precise control over the generation of symmetric interfacial waves. Buoyancy drives nonlinear interfacial self-steepening, while normal stresses give rise to the dispersion of interfacial waves. Extremely slow mass diffusion and mass conservation imply that the interfacial waves are effectively dissipationless. This enables high fidelity observations of large amplitude dispersive shock waves in this spatially extended system, found to agree quantitatively with a nonlinear wave averaging theory. Furthermore, several highly coherent phenomena are investigated including dispersive shock wave backflow, the refraction or absorption of solitons by dispersive shock waves, and the multiphase merging of two dispersive shock waves. The complex, coherent, nonlinear mixing of dispersive shock waves and solitons observed here are universal features of dissipationless, dispersive hydrodynamic flows.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://hdl.handle.net/2060/19980217101','NASA-TRS'); return false;" href="http://hdl.handle.net/2060/19980217101"><span>Solar-Planetary Relationships: Magnetospheric Physics</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Barnes, Aaron</p> <p>1979-01-01</p> <p>The quadrennium 1975-1978 was a period of great advance for solar-wind studies, a period that combined exploration of new regions with increased maturity in established fields of study. The Helios, Pioneer, and Voyager spacecraft have been exploring the inner and outer regions of the solar wind. There has been a rebirth of the study of possible relations between solar variability and Earth's climate and weather, stimulated largely by Eddy's investigation of the Maunder Minimum; the solar wind may well prove to be a significant link in solar-terrestrial relations. Unique coronal data from the SKYLAB 1973-1974 mission, in combination with satellite and ground-based observations, provided the basis for identification of coronal holes as the main source of highspeed solar wind. The interplanetary medium has continued to serve as a laboratory for the study of plasma processes that cannot yet be studied in terrestrial laboratories, providing insights of potential importance both for controlled fusion research and for astrophysics. It is ironic that such a productive period, the legacy of many past space missions, was also a time of severely limited opportunity for new space investigations; the outlook for the future is equally austere. Especially regrettable is the dearth of career opportunities for young scientists in this field; comparison of the bibliography of this report with that of its predecessor 4 years ago shows few new names. Despite such problems, research has continued with enthusiasm and much has been learned. The present report will survey selected topics related to the origin, expansion, and acceleration of the solar wind and the plasma physics of the interplanetary medium. Companion reports deal with a number of closely related topics, including the heliocentric distance and latitude variation of the solar wind and its fluctuations topology of the interplanetary magnetic field morphology of solar-wind streams and shocks, sunweather studies, and interplanetary manifestations of type-3 bursts. Of the subjects that fall within the scope of this report, the study of the relationship between coronal holes and solar-wind streams, and the associated revision of our ideas about solar wind acceleration and heating, have had the most impact; hence I review these topics in considerable detail. In addition, I discuss the topics of hydromagnetic waves and turbulence, and interplanetary electrons, as items of particular importance during the past quadrennium.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017PhFl...29l6104U','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017PhFl...29l6104U"><span>Suspended liquid particle disturbance on laser-induced blast wave and low density distribution</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Ukai, Takahiro; Zare-Behtash, Hossein; Kontis, Konstantinos</p> <p>2017-12-01</p> <p>The impurity effect of suspended liquid particles on the laser-induced gas breakdown was experimentally investigated in quiescent gas. The focus of this study is the investigation of the influence of the impurities on the shock wave structure as well as the low density distribution. A 532 nm Nd:YAG laser beam with an 188 mJ/pulse was focused on the chamber filled with suspended liquid particles 0.9 ± 0.63 μm in diameter. Several shock waves are generated by multiple gas breakdowns along the beam path in the breakdown with particles. Four types of shock wave structures can be observed: (1) the dual blast waves with a similar shock radius, (2) the dual blast waves with a large shock radius at the lower breakdown, (3) the dual blast waves with a large shock radius at the upper breakdown, and (4) the triple blast waves. The independent blast waves interact with each other and enhance the shock strength behind the shock front in the lateral direction. The triple blast waves lead to the strongest shock wave in all cases. The shock wave front that propagates toward the opposite laser focal spot impinges on one another, and thereafter a transmitted shock wave (TSW) appears. The TSW interacts with the low density core called a kernel; the kernel then longitudinally expands quickly due to a Richtmyer-Meshkov-like instability. The laser-particle interaction causes an increase in the kernel volume which is approximately five times as large as that in the gas breakdown without particles. In addition, the laser-particle interaction can improve the laser energy efficiency.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://ntrs.nasa.gov/search.jsp?R=19950053659&hterms=quasi+particle&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D40%26Ntt%3Dquasi%2Bparticle','NASA-TRS'); return false;" href="https://ntrs.nasa.gov/search.jsp?R=19950053659&hterms=quasi+particle&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D40%26Ntt%3Dquasi%2Bparticle"><span>Monte Carlo simulations of particle acceleration at oblique shocks: Including cross-field diffusion</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Baring, M. G.; Ellison, D. C.; Jones, F. C.</p> <p>1995-01-01</p> <p>The Monte Carlo technique of simulating diffusive particle acceleration at shocks has made spectral predictions that compare extremely well with particle distributions observed at the quasi-parallel region of the earth's bow shock. The current extension of this work to compare simulation predictions with particle spectra at oblique interplanetary shocks has required the inclusion of significant cross-field diffusion (strong scattering) in the simulation technique, since oblique shocks are intrinsically inefficient in the limit of weak scattering. In this paper, we present results from the method we have developed for the inclusion of cross-field diffusion in our simulations, namely model predictions of particle spectra downstream of oblique subluminal shocks. While the high-energy spectral index is independent of the shock obliquity and the strength of the scattering, the latter is observed to profoundly influence the efficiency of injection of cosmic rays into the acceleration process.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://hdl.handle.net/2060/19980214919','NASA-TRS'); return false;" href="http://hdl.handle.net/2060/19980214919"><span>Transonic Shock-Wave/Boundary-Layer Interactions on an Oscillating Airfoil</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Davis, Sanford S.; Malcolm, Gerald N.</p> <p>1980-01-01</p> <p>Unsteady aerodynamic loads were measured on an oscillating NACA 64A010 airfoil In the NASA Ames 11 by 11 ft Transonic Wind Tunnel. Data are presented to show the effect of the unsteady shock-wave/boundary-layer interaction on the fundamental frequency lift, moment, and pressure distributions. The data show that weak shock waves induce an unsteady pressure distribution that can be predicted quite well, while stronger shock waves cause complex frequency-dependent distributions due to flow separation. An experimental test of the principles of linearity and superposition showed that they hold for weak shock waves while flows with stronger shock waves cannot be superimposed.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017EGUGA..1910358K','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017EGUGA..1910358K"><span>Atypical energetic particle events observed prior energetic particle enhancements associated with corotating interaction regions</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Khabarova, Olga; Malandraki, Olga; Zank, Gary; Jackson, Bernard; Bisi, Mario; Desai, Mihir; Li, Gang; le Roux, Jakobus; Yu, Hsiu-Shan</p> <p>2017-04-01</p> <p>Recent studies of mechanisms of particle acceleration in the heliosphere have revealed the importance of the comprehensive analysis of stream-stream interactions as well as the heliospheric current sheet (HCS) - stream interactions that often occur in the solar wind, producing huge magnetic cavities bounded by strong current sheets. Such cavities are usually filled with small-scale magnetic islands that trap and re-accelerate energetic particles (Zank et al. ApJ, 2014, 2015; le Roux et al. ApJ, 2015, 2016; Khabarova et al. ApJ, 2015, 2016). Crossings of these regions are associated with unusual variations in the energetic particle flux up to several MeV/nuc near the Earth's orbit. These energetic particle flux enhancements called "atypical energetic particle events" (AEPEs) are not associated with standard mechanisms of particle acceleration. The analysis of multi-spacecraft measurements of energetic particle flux, plasma and the interplanetary magnetic field shows that AEPEs have a local origin as they are observed by different spacecraft with a time delay corresponding to the solar wind propagation from one spacecraft to another, which is a signature of local particle acceleration in the region embedded in expanding and rotating background solar wind. AEPEs are often observed before the arrival of corotating interaction regions (CIRs) or stream interaction regions (SIRs) to the Earth's orbit. When fast solar wind streams catch up with slow solar wind, SIRs of compressed heated plasma or more regular CIRs are created at the leading edge of the high-speed stream. Since coronal holes are often long-lived structures, the same CIR re-appears often for several consecutive solar rotations. At low heliographic latitudes, such CIRs are typically bounded by forward and reverse waves on their leading and trailing edges, respectively, that steepen into shocks at heliocentric distances beyond 1 AU. Energetic ion increases have been frequently observed in association with CIR's shocks, and these shocks to be believed to accelerate ions up to several MeV per nucleon. In this paradigm particle acceleration is commonly believed to occur mainly at the well-formed reverse shock at 2-3 AU with particles streaming back from the shocks from the outer heliosphere to 1 AU (Malandraki et al., 2007). However, AEPEs observed for many hours before the crossing of the forward shock (or even before the leading edge of a CIR without well-formed forward shock) cannot be explained within the framework of this paradigm. We have recently found that the effect of pre-CIR AEPEs occurs mainly as a result of the formation of a region filled with magnetic islands compressed between the high-density leading edge of a CIR and the HCS (Khabarova et al. ApJ, 2016). We show here that any kind of complicated stream-CIR interactions may lead to the same effect due to the formation of magnetic cavities in front of CIRs. The analysis of in situ multi-spacecraft measurements often suggests very complicated ways of propagation of streams and current sheets that form magnetic cavities. In the case of multiple stream-stream interaction, comparisons of data from distant spacecraft may be puzzling and even useless for understanding the large-scale topology of the region of particle acceleration, because even several point measurements cannot reconstruct approximate forms of the magnetic cavities and shed light on the pre-history of their origin and evolution. We employ interplanetary scintillation tomographic data for reconstructions of the solar wind speed, density and interplanetary magnetic field profiles to understand a 3-D picture of stream interactions responsible for pre-CIR AEPEs. This project has received funding from the European Union's Horizon 2020 research and innovation programme under grant agreement No 637324</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/1995ApOpt..34.6465C','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/1995ApOpt..34.6465C"><span>Optical distortion in the field of a lithotripter shock wave</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Carnell, M. T.; Emmony, D. C.</p> <p>1995-10-01</p> <p>The schlieren observation of cavitation phenomena produced in the tail of a lithotripter shock wave has indicated the presence of some interesting features. The images produced appear to indicate that cavitation transients in the field of a shock wave propagate nonsymmetrically; this is not the case. The apparent lack of symmetry exhibited by the primary cavitation transients is due to a complex optical lensing effect, which is brought about by the change in refractive index associated with the pressure profile of the shock wave. Objects seen through or immersed in the shock-wave field of an electromagnetic acoustic transducer, such as cavitation, appear highly distorted because of the strong positive and negative lensing effects of the compression and rarefaction cycles of the shock wave. A modification of the schlieren technique called the scale method has been used to model the distortion introduced by the shock wave and consequently explain the cavitation distortion. The technique has also been used to quantitatively analyze and partially reconstruct the lithotripter shock wave. The combination of schlieren and scale imaging gives more information about the refractive index field and therefore the shock-wave structure itself.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.osti.gov/servlets/purl/1402659','SCIGOV-STC'); return false;" href="https://www.osti.gov/servlets/purl/1402659"><span>Effects of ULF waves on local and global energetic particles: Particle energy and species dependences</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.osti.gov/search">DOE Office of Scientific and Technical Information (OSTI.GOV)</a></p> <p>Li, L. Y.; Yu, J.; Cao, J. B.</p> <p></p> <p>After 06:13 UT on 24 August 2005, an interplanetary shock triggers large-amplitude ultralow-frequency (ULF) waves (|δB| ≥ 15 nT) in the Pc4–Pc5 wave band (1.6–9 mHz) near the noon geosynchronous orbit (6.6 RE). The local and global effects of ULF waves on energetic particles are observed by five Los Alamos National Laboratory satellites at different magnetic local times. The large-amplitude ULF waves cause the synchronous oscillations of energetic electrons and protons (≥75 keV) at the noon geosynchronous orbit. When the energetic particles have a negative phase space density radial gradient, they undergo rapid outward radial diffusion and loss in themore » wave activity region. In the particle drift paths without strong ULF waves, only the rapidly drifting energetic electrons (≥225 keV) display energy-dispersive oscillations and flux decays, whereas the slowly drifting electrons (<225 keV) and protons (75–400 keV) have no ULF oscillation and loss feature. When the dayside magnetopause is compressed to the geosynchronous orbit, most of energetic electrons and protons are rapidly lost because of open drift trajectories. Furthermore, the global and multicomposition particle measurements demonstrate that the effect of ULF waves on nonlocal particle flux depends on the particle energy and species, whereas magnetopause shadowing effect is independent of the energetic particle species. For the rapidly drifting outer radiation belt particles (≥225 keV), nonlocal particle loss/acceleration processes could also change their fluxes in the entire drift trajectory in the absence of “ Dst effect” and substorm injection.« less</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.osti.gov/pages/biblio/1402659-effects-ulf-waves-local-global-energetic-particles-particle-energy-species-dependences','SCIGOV-DOEP'); return false;" href="https://www.osti.gov/pages/biblio/1402659-effects-ulf-waves-local-global-energetic-particles-particle-energy-species-dependences"><span>Effects of ULF waves on local and global energetic particles: Particle energy and species dependences</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.osti.gov/pages">DOE PAGES</a></p> <p>Li, L. Y.; Yu, J.; Cao, J. B.; ...</p> <p>2016-11-05</p> <p>After 06:13 UT on 24 August 2005, an interplanetary shock triggers large-amplitude ultralow-frequency (ULF) waves (|δB| ≥ 15 nT) in the Pc4–Pc5 wave band (1.6–9 mHz) near the noon geosynchronous orbit (6.6 RE). The local and global effects of ULF waves on energetic particles are observed by five Los Alamos National Laboratory satellites at different magnetic local times. The large-amplitude ULF waves cause the synchronous oscillations of energetic electrons and protons (≥75 keV) at the noon geosynchronous orbit. When the energetic particles have a negative phase space density radial gradient, they undergo rapid outward radial diffusion and loss in themore » wave activity region. In the particle drift paths without strong ULF waves, only the rapidly drifting energetic electrons (≥225 keV) display energy-dispersive oscillations and flux decays, whereas the slowly drifting electrons (<225 keV) and protons (75–400 keV) have no ULF oscillation and loss feature. When the dayside magnetopause is compressed to the geosynchronous orbit, most of energetic electrons and protons are rapidly lost because of open drift trajectories. Furthermore, the global and multicomposition particle measurements demonstrate that the effect of ULF waves on nonlocal particle flux depends on the particle energy and species, whereas magnetopause shadowing effect is independent of the energetic particle species. For the rapidly drifting outer radiation belt particles (≥225 keV), nonlocal particle loss/acceleration processes could also change their fluxes in the entire drift trajectory in the absence of “ Dst effect” and substorm injection.« less</p> </li> </ol> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_16");'>16</a></li> <li><a href="#" onclick='return showDiv("page_17");'>17</a></li> <li class="active"><span>18</span></li> <li><a href="#" onclick='return showDiv("page_19");'>19</a></li> <li><a href="#" onclick='return showDiv("page_20");'>20</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div><!-- col-sm-12 --> </div><!-- row --> </div><!-- page_18 --> <div id="page_19" class="hiddenDiv"> <div class="row"> <div class="col-sm-12"> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_17");'>17</a></li> <li><a href="#" onclick='return showDiv("page_18");'>18</a></li> <li class="active"><span>19</span></li> <li><a href="#" onclick='return showDiv("page_20");'>20</a></li> <li><a href="#" onclick='return showDiv("page_21");'>21</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div> </div> <div class="row"> <div class="col-sm-12"> <ol class="result-class" start="361"> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://ntrs.nasa.gov/search.jsp?R=19920037420&hterms=carl+sagan&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D10%26Ntt%3Dcarl%2Bsagan','NASA-TRS'); return false;" href="https://ntrs.nasa.gov/search.jsp?R=19920037420&hterms=carl+sagan&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D10%26Ntt%3Dcarl%2Bsagan"><span>Endogenous production, exogenous delivery and impact-shock synthesis of organic molecules - An inventory for the origins of life</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Chyba, Christopher; Sagan, Carl</p> <p>1992-01-01</p> <p>The contribution of organic-rich comets, carbonaceous asteroids, and interplanetary dust particles and of impact shock-synthesized organics in the atmosphere to the origin of life on earth is studied and quantitatively compared with the principal non-heavy-bombardment sources of prebiotic organics. The results suggest that heavy bombardment before 3.5 Gyr ago either produced or delivered quantities of organics comparable to those produced by other energy sources.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017AGUFMSH33C..02L','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017AGUFMSH33C..02L"><span>Using ENLIL and SEPMOD to Evaluate Shock Connectivity Influences on Gradual SEP Events Observed with STEREO and ACE</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Luhmann, J. G.; Mays, M. L.; Li, Y.; Bain, H. M.; Lee, C. O.; Odstrcil, D.; Mewaldt, R. A.; Cohen, C.; Leske, R. A.</p> <p>2017-12-01</p> <p>An observer's magnetic field connection to a SEP-producing interplanetary shock (or compression) source often appears to provide a good indicator of whether or not a SEP event occurs. As a result, some tools for SEP event modeling make use of this finding. However, a key assumption of these approaches is that the interplanetary magnetic field and heliospheric shock geometries are known throughout the event(s). We consider examples of SEP time profile calculations obtained with combined ENLIL and SEPMOD modeling where the results compare well with observations at multiple inner heliosphere sites, and compare them to cases where such comparisons show a relative lack of agreement. ENLIL does not include the shock inside 21 Rs or CME/ICME ejecta magnetic fields, but for the agreeable cases this does not seem to make a big difference. The number, size, speed and directions of related CMEs/ICMEs, and ENLIL field line geometry appear to play the most critical roles. This includes the inclusion of prior and parallel events that affect both the ICME propagation and magnetic field geometry and strength along the observer field line. It seems clear that if a SEP forecasting system is desired, we must continue to have instrumentation that allows us to specify global CME/ICME initiation geometry (coronagraphs, XUV/EUV imagers) and background solar wind structure (magnetographs).</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://ntrs.nasa.gov/search.jsp?R=19920041696&hterms=medicina&qs=N%3D0%26Ntk%3DAll%26Ntx%3Dmode%2Bmatchall%26Ntt%3Dmedicina','NASA-TRS'); return false;" href="https://ntrs.nasa.gov/search.jsp?R=19920041696&hterms=medicina&qs=N%3D0%26Ntk%3DAll%26Ntx%3Dmode%2Bmatchall%26Ntt%3Dmedicina"><span>The gravitational wave experiment</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Bertotti, B.; Ambrosini, R.; Asmar, S. W.; Brenkle, J. P.; Comoretto, G.; Giampieri, G.; Less, L.; Messeri, A.; Wahlquist, H. D.</p> <p>1992-01-01</p> <p>Since the optimum size of a gravitational wave detector is the wave length, interplanetary dimensions are needed for the mHz band of interest. Doppler tracking of Ulysses will provide the most sensitive attempt to date at the detection of gravitational waves in the low frequency band. The driving noise source is the fluctuations in the refractive index of interplanetary plasma. This dictates the timing of the experiment to be near solar opposition and sets the target accuracy for the fractional frequency change at 3.0 x 10 exp -14 for integration times of the order of 1000 sec. The instrumentation utilized by the experiment is distributed between the radio systems on the spacecraft and the seven participating ground stations of the Deep Space Network and Medicina. Preliminary analysis is available of the measurements taken during the Ulysses first opposition test.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://ntrs.nasa.gov/search.jsp?R=19950053646&hterms=quasi+particle&qs=N%3D0%26Ntk%3DAll%26Ntx%3Dmode%2Bmatchall%26Ntt%3Dquasi%2Bparticle','NASA-TRS'); return false;" href="https://ntrs.nasa.gov/search.jsp?R=19950053646&hterms=quasi+particle&qs=N%3D0%26Ntk%3DAll%26Ntx%3Dmode%2Bmatchall%26Ntt%3Dquasi%2Bparticle"><span>Wave and particle evolution downstream of quasi-perpendicular shocks</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Mckean, M. E.; Omidi, N.; Krauss-Varban, D.; Karimabadi, H.</p> <p>1995-01-01</p> <p>Distributions of ions heated in quasi-perpendicular bow shocks have large perpendicular temperature anisotropies that provide free energy for the growth of Alfven ion cyclotron (AIC) and mirror waves. These modes are often obsreved in the Earth's magnetosheath. Using two-dimensional hybrid simulations, we show that these waves are produced near the shock front and convected downstream rather than being produced locally downstream. The wave activity reduces the proton anisotropy to magnetosheath levels within a few tens of gyroradii of the shock but takes significantly longer to reduce the anisotropy of He(++) ions. The waves are primarily driven by proton anisotropy and the dynamics of the helium ions is controlled by the proton waves. Downstream of high Mach number shocks, mirror waves compete effectively with AIC waves. Downstream of low Mach number shocks, AIC waves dominate.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://ntrs.nasa.gov/search.jsp?R=19910040947&hterms=Magnetic+Flux&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D80%26Ntt%3DMagnetic%2BFlux','NASA-TRS'); return false;" href="https://ntrs.nasa.gov/search.jsp?R=19910040947&hterms=Magnetic+Flux&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D80%26Ntt%3DMagnetic%2BFlux"><span>Evolution of magnetic flux ropes associated with flux transfer events and interplanetary magnetic clouds</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Wei, C. Q.; Lee, L. C.; Wang, S.; Akasofu, S.-I.</p> <p>1991-01-01</p> <p>Spacecraft observations suggest that flux transfer events and interplanetary magnetic clouds may be associated with magnetic flux ropes which are magnetic flux tubes containing helical magnetic field lines. In the magnetic flux ropes, the azimuthal magnetic field is superposed on the axial field. The time evolution of a localized magnetic flux rope is studied. A two-dimensional compressible MHD simulation code with a cylindrical symmetry is developed to study the wave modes associated with the evolution of flux ropes. It is found that in the initial phase both the fast magnetosonic wave and the Alfven wave are developed in the flux rope. After this initial phase, the Alfven wave becomes the dominant wave mode for the evolution of the magnetic flux rope and the radial expansion velocity of the flux rope is found to be negligible. Numerical results further show that even for a large initial azimuthal component of the magnetic field, the propagation velocity along the axial direction of the flux rope remains the Alfven velocity. It is also found that the localized magnetic flux rope tends to evolve into two separate magnetic ropes propagating in opposite directions. The simulation results are used to study the evolution of magnetic flux ropes associated with flux transfer events observed at the earth's dayside magnetopause and magnetic clouds in the interplanetary space.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://files.eric.ed.gov/fulltext/EJ1118882.pdf','ERIC'); return false;" href="http://files.eric.ed.gov/fulltext/EJ1118882.pdf"><span>Numerical Simulations of Shock Wave Refraction at Inclined Gas Contact Discontinuity</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.eric.ed.gov/ERICWebPortal/search/extended.jsp?_pageLabel=advanced">ERIC Educational Resources Information Center</a></p> <p>Bulat, Pavel V.; Volkov, Konstantin N.</p> <p>2016-01-01</p> <p>When a shock wave interacts with a contact discontinuity, there may appear a reflected rarefaction wave, a deflected contact discontinuity and a refracted supersonic shock. The numerical simulation of shock wave refraction at a plane contact discontinuity separating gases with different densities is performed. Euler equations describing inviscid…</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.osti.gov/biblio/22661344-propagation-characteristics-two-coronal-mass-ejections-from-sun-far-interplanetary-space','SCIGOV-STC'); return false;" href="https://www.osti.gov/biblio/22661344-propagation-characteristics-two-coronal-mass-ejections-from-sun-far-interplanetary-space"><span>Propagation Characteristics of Two Coronal Mass Ejections from the Sun Far into Interplanetary Space</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.osti.gov/search">DOE Office of Scientific and Technical Information (OSTI.GOV)</a></p> <p>Zhao, Xiaowei; Liu, Ying D.; Hu, Huidong</p> <p></p> <p>Propagation of coronal mass ejections (CMEs) from the Sun far into interplanetary space is not well understood, due to limited observations. In this study we examine the propagation characteristics of two geo-effective CMEs, which occurred on 2005 May 6 and 13, respectively. Significant heliospheric consequences associated with the two CMEs are observed, including interplanetary CMEs (ICMEs) at the Earth and Ulysses , interplanetary shocks, a long-duration type II radio burst, and intense geomagnetic storms. We use coronagraph observations from SOHO /LASCO, frequency drift of the long-duration type II burst, in situ measurements at the Earth and Ulysses , and magnetohydrodynamicmore » propagation of the observed solar wind disturbances at 1 au to track the CMEs from the Sun far into interplanetary space. We find that both of the CMEs underwent a major deceleration within 1 au and thereafter a gradual deceleration when they propagated from the Earth to deep interplanetary space, due to interactions with the ambient solar wind. The results also reveal that the two CMEs interacted with each other in the distant interplanetary space even though their launch times on the Sun were well separated. The intense geomagnetic storm for each case was caused by the southward magnetic fields ahead of the CME, stressing the critical role of the sheath region in geomagnetic storm generation, although for the first case there is a corotating interaction region involved.« less</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017AGUFMED11D0150S','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017AGUFMED11D0150S"><span>An Investigation of Interplanetary Structures for Solar Cycles 23 and 24 and their Space Weather Consequences.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Sultan, M. S.; Jules, A.; Marchese, P.; Damas, M. C.</p> <p>2017-12-01</p> <p>It is crucial to study space weather because severe interplanetary conditions can cause geomagnetic storms that may damage both space- and ground-based technological systems such as satellites, communication systems, and power grids. Interplanetary coronal mass ejections (ICMEs) and corotating interaction regions (CIRs) are the primary drivers of geomagnetic storms. As they travel through interplanetary space and reach geospace, their spatial structures change which can result in various geomagnetic effects. Therefore, studying these drivers and their structures is essential in order to better understand and mitigate their impact on technological systems, as well as to forecast geomagnetic storms. In this study, over 150 storms were cross-checked for both solar cycles (SC) 23 and 24. This data has revealed the most common interplanetary structures, i.e., sheath (Sh); magnetic cloud following a shock front (sMC); sheath region and magnetic cloud (Sh/MC); and corotating interaction regions (CIRs). Furthermore, plasma parameters as well as variation in the intensity and duration of storms resulting from different interplanetary structures are studied for their effect on geomagnetically induced currents (GICs), as well as for their effect on power grids. Although preliminary results for SC 23 indicate that storm intensity may play a dominant role for GICs, duration might also be a factor, albeit smaller. Results from both SC 23 and 24 are analyzed and compared, and should lead to an enhanced understanding of space weather consequences of interplanetary structures and their possible forecasting.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://ntrs.nasa.gov/search.jsp?R=19880026249&hterms=Magnetic+energy&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D70%26Ntt%3DMagnetic%2Benergy','NASA-TRS'); return false;" href="https://ntrs.nasa.gov/search.jsp?R=19880026249&hterms=Magnetic+energy&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D70%26Ntt%3DMagnetic%2Benergy"><span>ISEE 3 observations of low-energy proton bidirectional events and their relation to isolated interplanetary magnetic structures</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Marsden, R. G.; Sanderson, T. R.; Tranquille, C.; Wenzel, K.-P.; Smith, E. J.</p> <p>1987-01-01</p> <p>The paper represents the results of a comprehensive survey of low-energy proton bidirectional anisotropies and associated transient magnetic structures as observed in the 35-1600 keV energy range on ISEE-3 during the last solar maximum. The majority of observed bidirectional flow (BDF) events (more than 70 percent) are associated with isolated magnetic structures which are postulated to be an interplanetary manifestation of coronal mass ejection (CME) events. The observed BDF events can be qualitatively grouped into five classes depending on the field signature of the related magnetic structure and the association (or lack of association) with an interplanetary shock. Concerning the topology of the CME-related magnetic structures, the observations are interpreted as being consistent with a detached bubble, comprising closed loops or tightly wound helices.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://hdl.handle.net/2060/20120015887','NASA-TRS'); return false;" href="http://hdl.handle.net/2060/20120015887"><span>Coronal Mass Ejections Near the Sun and in the Interplanetary Medium</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Gopalswamy, Nat</p> <p>2012-01-01</p> <p>Coronal mass ejections (CMEs) are the most energetic phenomenon in the heliosphere. During solar eruptions, the released energy flows out from the Sun in the form of magnetized plasma and electromagnetic radiation. The electromagnetic radiation suddenly increases the ionization content of the ionosphere, thus impacting communication and navigation systems. The plasma clouds can drive shocks that accelerate charged particles to very high energies in the interplanetary space, which pose radiation hazard to astronauts and space systems. The plasma clouds also arrive at Earth in about two days and impact Earth's magnetosphere, producing geomagnetic storms. The magnetic storms result in a number of effects including induced currents that can disrupt power grids, railroads, and underground pipelines. This lecture presents an overview of the origin, propagation, and geospace consequences of CMEs and their interplanetary counterparts.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2018PhRvP...9a4011G','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2018PhRvP...9a4011G"><span>Focusing of Shear Shock Waves</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Giammarinaro, Bruno; Espíndola, David; Coulouvrat, François; Pinton, Gianmarco</p> <p>2018-01-01</p> <p>Focusing is a ubiquitous way to transform waves. Recently, a new type of shock wave has been observed experimentally with high-frame-rate ultrasound: shear shock waves in soft solids. These strongly nonlinear waves are characterized by a high Mach number, because the shear wave velocity is much slower, by 3 orders of magnitude, than the longitudinal wave velocity. Furthermore, these waves have a unique cubic nonlinearity which generates only odd harmonics. Unlike longitudinal waves for which only compressional shocks are possible, shear waves exhibit cubic nonlinearities which can generate positive and negative shocks. Here we present the experimental observation of shear shock wave focusing, generated by the vertical motion of a solid cylinder section embedded in a soft gelatin-graphite phantom to induce linearly vertically polarized motion. Raw ultrasound data from high-frame-rate (7692 images per second) acquisitions in combination with algorithms that are tuned to detect small displacements (approximately 1 μ m ) are used to generate quantitative movies of gel motion. The features of shear shock wave focusing are analyzed by comparing experimental observations with numerical simulations of a retarded-time elastodynamic equation with cubic nonlinearities and empirical attenuation laws for soft solids.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2014cosp...40E.254B','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2014cosp...40E.254B"><span>Dynamics of nanoparticules detected at 1 AU by S/WAVES onboard STEREO spacecraft</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Belheouane, Soraya; Issautier, Karine; Meyer-Vernet, Nicole; Le Chat, Gaétan; Czechowski, Andrzej; Zaslavsky, Arnaud; Zouganelis, Yannis; Mann, Ingrid</p> <p></p> <p>In order to interpret in detail the S/WAVES data on the interplanetary nanodust discovered by STEREO at 1 AU [Meyer-Vernet et al., 2009], we study the dynamics of nanoparticles in the inner interplanetary medium as well as the distribution of their velocities and directions of arrival, with a model based on [Czechowski and Mann, 2012]. We deduce the charges released by their impacts on the STEREO spacecraft at 1 AU and their dependence on the position of the spacecraft on their orbits. The model studies nanoparticles of size equal or smaller than about 70 nm, assumed to be created via collisional fragmentation of dust grains of larger size moving on keplerian orbits, and sublimation of dust, meteoroids and comets. The nanoparticles are released near the Sun with initial velocities close to keplerian, and mainly subjected to the Lorentz force calculated with a simple solar wind model. A part of the nanoparticles is accelerated to high speeds of the order of 300 km/s, thereby providing impact charges between 10(-14) and 10(-11) Cb [Belheouane, 2014] which enable them to be detected by S/WAVES, whereas another part is trapped within about 0.2 AU from the Sun. We discuss how the fluxes and direction of arrival at 1 AU are expected to change in function of the solar cycle. These results enable us to interpret in detail the STEREO/WAVES observations [Zaslavsky et al., 2012]; [Pantellini et al., 2013]; [Le Chat et al., 2013]. Belheouane, S. (2014). Nanoparticules dans le vent solaire, observations spatiales et theorie. PhD thesis, Pierre and Marie Curie University UPMC. Czechowski, A. and Mann, I. (2012). Nanodust Dynamics in Interplanetary Space, chapter Nanodust Dynamics in Interplanetary Space. Springer Berlin Heidelberg. Le Chat, G., Zaslavsky, A., Meyer-Vernet, N., Issautier, K., Belheouane, S., Pantellini, F., Maksimovic, M., Zouganelis, I., Bale, S., and Kasper, J. (2013). Interplanetary Nanodust Detection by the Solar Terrestrial Relations Observatory/WAVES Low Frequency Receiver. Solar Physics, 286(2):549-559. Meyer-Vernet, N., Maksimovic, M., Czechowski, A., Mann, I., Zouganelis, I., Goetz, K., Kaiser, M., Cyr, O. S., Bougeret, J.-L., and Bale, S. (2009). Dust Detection by the Wave Instrument on STEREO : Nanoparticles Picked up by the Solar Wind? Solar Phys, 256:463-474. Pantellini, F., Le Chat, G., Belheouane, S., Meyer-Vernet, N., and Zaslavsky, A. (2013). On the detection of nano dust using spacecraft based boom antennas. Solar Wind 13: Proceedings of the Thirteenth International Solar Wind Conference, 1539:414-417. Zaslavsky, A., Meyer-Vernet, N., Mann, I., Czechowski, A., Issautier, K., Le Chat, G., Pantellini, F., Goetz, K., Maksimovic, M., Bale, S. D., and Kasper, J. K. (2012). Interplanetary dust detection by radio antennas: Mass calibration and fluxes measured by STEREO/WAVES. J. Geophys. Res., 117.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://hdl.handle.net/2060/20150002546','NASA-TRS'); return false;" href="http://hdl.handle.net/2060/20150002546"><span>Development and Transition of the Radiation, Interplanetary Shocks, and Coronal Sources (RISCS) Toolset</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Spann, James F.; Zank, G.</p> <p>2014-01-01</p> <p>We outline a plan to develop and transition a physics based predictive toolset called The Radiation, Interplanetary Shocks, and Coronal Sources (RISCS) to describe the interplanetary energetic particle and radiation environment throughout the inner heliosphere, including at the Earth. To forecast and "nowcast" the radiation environment requires the fusing of three components: 1) the ability to provide probabilities for incipient solar activity; 2) the use of these probabilities and daily coronal and solar wind observations to model the 3D spatial and temporal heliosphere, including magnetic field structure and transients, within 10 Astronomical Units; and 3) the ability to model the acceleration and transport of energetic particles based on current and anticipated coronal and heliospheric conditions. We describe how to address 1) - 3) based on our existing, well developed, and validated codes and models. The goal of RISCS toolset is to provide an operational forecast and "nowcast" capability that will a) predict solar energetic particle (SEP) intensities; b) spectra for protons and heavy ions; c) predict maximum energies and their duration; d) SEP composition; e) cosmic ray intensities, and f) plasma parameters, including shock arrival times, strength and obliquity at any given heliospheric location and time. The toolset would have a 72 hour predicative capability, with associated probabilistic bounds, that would be updated hourly thereafter to improve the predicted event(s) and reduce the associated probability bounds. The RISCS toolset would be highly adaptable and portable, capable of running on a variety of platforms to accommodate various operational needs and requirements. The described transition plan is based on a well established approach developed in the Earth Science discipline that ensures that the customer has a tool that meets their needs</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.osti.gov/biblio/22489307-photoacoustic-shock-wave-emission-cavitation-from-structured-optical-fiber-tips','SCIGOV-STC'); return false;" href="https://www.osti.gov/biblio/22489307-photoacoustic-shock-wave-emission-cavitation-from-structured-optical-fiber-tips"><span>Photoacoustic shock wave emission and cavitation from structured optical fiber tips</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.osti.gov/search">DOE Office of Scientific and Technical Information (OSTI.GOV)</a></p> <p>Mohammadzadeh, M.; Gonzalez-Avila, S. R.; Ohl, C. D., E-mail: cdohl@ntu.edu.sg</p> <p></p> <p>Photoacoustic waves generated at the tip of an optical fiber consist of a compressive shock wave followed by tensile diffraction waves. These tensile waves overlap along the fiber axis and form a cloud of cavitation bubbles. We demonstrate that shaping the fiber tip through micromachining alters the number and direction of the emitted waves and cavitation clouds. Shock wave emission and cavitation patterns from five distinctively shaped fiber tips have been studied experimentally and compared to a linear wave propagation model. In particular, multiple shock wave emission and generation of strong tension away from the fiber axis have been realizedmore » using modified fiber tips. These altered waveforms may be applied for novel microsurgery protocols, such as fiber-based histotripsy, by utilizing bubble-shock wave interaction.« less</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/12777907','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/12777907"><span>Extracorporeal shock waves in the treatment of nonunions.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Biedermann, Rainer; Martin, Arho; Handle, Gerhart; Auckenthaler, Thomas; Bach, Christian; Krismer, Martin</p> <p>2003-05-01</p> <p>Nonunion remains a major complication after skeletal trauma. In the last decade, extracorporeal shock wave therapy has become a common tool for the treatment of nonunions. To date, no prospective, randomized trial has been conducted to show the efficacy of this form of treatment. This study was performed to determine the value of extracorporeal shock wave therapy for nonunions. Previous published results in the literature and our own clinical results were analyzed and related to the natural history of bony union. No study has proven that extracorporeal shock wave therapy improves bone healing. Clinical studies reporting the acceleration of union after application of shock waves instead seem to misinterpret the natural history of bony union. No evidence supports the treatment of pseudarthroses with extracorporeal shock waves. A randomized, prospective, clinical trial with a control group has to be performed before a final decision can be made regarding this indication for extracorporeal shock wave therapy.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2018ApJ...859..127B','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2018ApJ...859..127B"><span>New Insights into the Nature of Turbulence in the Earth's Magnetosheath Using Magnetospheric MultiScale Mission Data</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Breuillard, H.; Matteini, L.; Argall, M. R.; Sahraoui, F.; Andriopoulou, M.; Le Contel, O.; Retinò, A.; Mirioni, L.; Huang, S. Y.; Gershman, D. J.; Ergun, R. E.; Wilder, F. D.; Goodrich, K. A.; Ahmadi, N.; Yordanova, E.; Vaivads, A.; Turner, D. L.; Khotyaintsev, Yu. V.; Graham, D. B.; Lindqvist, P.-A.; Chasapis, A.; Burch, J. L.; Torbert, R. B.; Russell, C. T.; Magnes, W.; Strangeway, R. J.; Plaschke, F.; Moore, T. E.; Giles, B. L.; Paterson, W. R.; Pollock, C. J.; Lavraud, B.; Fuselier, S. A.; Cohen, I. J.</p> <p>2018-06-01</p> <p>The Earth’s magnetosheath, which is characterized by highly turbulent fluctuations, is usually divided into two regions of different properties as a function of the angle between the interplanetary magnetic field and the shock normal. In this study, we make use of high-time resolution instruments on board the Magnetospheric MultiScale spacecraft to determine and compare the properties of subsolar magnetosheath turbulence in both regions, i.e., downstream of the quasi-parallel and quasi-perpendicular bow shocks. In particular, we take advantage of the unprecedented temporal resolution of the Fast Plasma Investigation instrument to show the density fluctuations down to sub-ion scales for the first time. We show that the nature of turbulence is highly compressible down to electron scales, particularly in the quasi-parallel magnetosheath. In this region, the magnetic turbulence also shows an inertial (Kolmogorov-like) range, indicating that the fluctuations are not formed locally, in contrast with the quasi-perpendicular magnetosheath. We also show that the electromagnetic turbulence is dominated by electric fluctuations at sub-ion scales (f > 1 Hz) and that magnetic and electric spectra steepen at the largest-electron scale. The latter indicates a change in the nature of turbulence at electron scales. Finally, we show that the electric fluctuations around the electron gyrofrequency are mostly parallel in the quasi-perpendicular magnetosheath, where intense whistlers are observed. This result suggests that energy dissipation, plasma heating, and acceleration might be driven by intense electrostatic parallel structures/waves, which can be linked to whistler waves.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/24827366','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/24827366"><span>Modeling multiscale evolution of numerous voids in shocked brittle material.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Yu, Yin; Wang, Wenqiang; He, Hongliang; Lu, Tiecheng</p> <p>2014-04-01</p> <p>The influence of the evolution of numerous voids on macroscopic properties of materials is a multiscale problem that challenges computational research. A shock-wave compression model for brittle material, which can obtain both microscopic evolution and macroscopic shock properties, was developed using discrete element methods (lattice model). Using a model interaction-parameter-mapping procedure, qualitative features, as well as trends in the calculated shock-wave profiles, are shown to agree with experimental results. The shock wave splits into an elastic wave and a deformation wave in porous brittle materials, indicating significant shock plasticity. Void collapses in the deformation wave were the natural reason for volume shrinkage and deformation. However, media slippage and rotation deformations indicated by complex vortex patterns composed of relative velocity vectors were also confirmed as an important source of shock plasticity. With increasing pressure, the contribution from slippage deformation to the final plastic strain increased. Porosity was found to determine the amplitude of the elastic wave; porosity and shock stress together determine propagation speed of the deformation wave, as well as stress and strain on the final equilibrium state. Thus, shock behaviors of porous brittle material can be systematically designed for specific applications.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/9330454','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/9330454"><span>In vitro study of the mechanical effects of shock-wave lithotripsy.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Howard, D; Sturtevant, B</p> <p>1997-01-01</p> <p>Impulsive stress in repeated shock waves administered during extracorporeal shock-wave lithotripsy (ESWL) causes injury to kidney tissue. In a study of the mechanical input of ESWL, the effects of focused shock waves on thin planar polymeric membranes immersed in a variety of tissue-mimicking fluids have been examined. A direct mechanism of failure by shock compression and an indirect mechanism by bubble collapse have been observed. Thin membranes are easily damaged by bubble collapse. After propagating through cavitation-free acoustically heterogeneous media (liquids mixed with hollow glass spheres, and tissue) shock waves cause membranes to fail in fatigue by a shearing mechanism. As is characteristic of dynamic fatigue, the failure stress increases with strain rate, determined by the amplitude and rise time of the attenuated shock wave. Shocks with large amplitude and short rise time (i.e., in uniform media) cause no damage. Thus the inhomogeneity of tissue is likely to contribute to injury in ESWL. A definition of dose is proposed which yields a criterion for damage based on measurable shock wave properties.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/23896623','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/23896623"><span>Myocardial effects of local shock wave therapy in a Langendorff model.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Becker, M; Goetzenich, A; Roehl, A B; Huebel, C; de la Fuente, M; Dietz-Laursonn, K; Radermacher, K; Rossaint, R; Hein, M</p> <p>2014-01-01</p> <p>Applying shock waves to the heart has been reported to stimulate the heart and alter cardiac function. We hypothesized that shock waves could be used to diagnose regional viability. We used a Langendorff model to investigate the acute effects of shock waves at different energy levels and times related to systole, cycle duration and myocardial function. We found only a small time window to use shock waves. Myocardial fibrillation or extrasystolic beats will occur if the shock wave is placed more than 15 ms before or 30 ms after the onset of systole. Increased contractility and augmented relaxation were observed after the second beat, and these effects decreased after prolonging the shock wave delay from 15 ms before to 30 ms after the onset of systole. An energy dependency could be found only after short delays (-15 ms). The involved processes might include post-extrasystolic potentiation and simultaneous pacing. In summary, we found that low-energy shock waves can be a useful tool to stimulate the myocardium at a distance and influence function. Copyright © 2013 Elsevier B.V. All rights reserved.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/27550074','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/27550074"><span>Shock Wave-Induced Damage and Poration in Eukaryotic Cell Membranes.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>López-Marín, Luz M; Millán-Chiu, Blanca E; Castaño-González, Karen; Aceves, Carmen; Fernández, Francisco; Varela-Echavarría, Alfredo; Loske, Achim M</p> <p>2017-02-01</p> <p>Shock waves are known to permeabilize eukaryotic cell membranes, which may be a powerful tool for a variety of drug delivery applications. However, the mechanisms involved in shock wave-mediated membrane permeabilization are still poorly understood. In this study, the effects on both the permeability and the ultrastructural features of two human cell lineages were investigated after the application of underwater shock waves in vitro. Scanning Electron Microscopy of cells derived from a human embryo kidney (HEK)-293 and Michigan Cancer Foundation (MCF)-7 cells, an immortalized culture derived from human breast adenocarcinoma, showed a small amount of microvilli (as compared to control cells), the presence of hole-like structures, and a decrease in cell size after shock wave exposure. Interestingly, these effects were accompanied by the permeabilization of acid and macromolecular dyes and gene transfection. Trypan blue exclusion assays indicated that cell membranes were porated during shock wave treatment but resealed after a few seconds. Deformations of the cell membrane lasted for at least 5 min, allowing their observation in fixed cells. For each cell line, different shock wave parameters were needed to achieve cell membrane poration. This difference was correlated to successful gene transfection by shock waves. Our results demonstrate, for the first time, that shock waves induce transient micro- and submicrosized deformations at the cell membrane, leading to cell transfection and cell survival. They also indicate that ultrastructural analyses of cell surfaces may constitute a useful way to match the use of shock waves to different cells and settings.</p> </li> </ol> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_17");'>17</a></li> <li><a href="#" onclick='return showDiv("page_18");'>18</a></li> <li class="active"><span>19</span></li> <li><a href="#" onclick='return showDiv("page_20");'>20</a></li> <li><a href="#" onclick='return showDiv("page_21");'>21</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div><!-- col-sm-12 --> </div><!-- row --> </div><!-- page_19 --> <div id="page_20" class="hiddenDiv"> <div class="row"> <div class="col-sm-12"> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_18");'>18</a></li> <li><a href="#" onclick='return showDiv("page_19");'>19</a></li> <li class="active"><span>20</span></li> <li><a href="#" onclick='return showDiv("page_21");'>21</a></li> <li><a href="#" onclick='return showDiv("page_22");'>22</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div> </div> <div class="row"> <div class="col-sm-12"> <ol class="result-class" start="381"> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=1301074','PMC'); return false;" href="https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=1301074"><span>Cytoplasmic molecular delivery with shock waves: importance of impulse.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pmc">PubMed Central</a></p> <p>Kodama, T; Hamblin, M R; Doukas, A G</p> <p>2000-01-01</p> <p>Cell permeabilization using shock waves may be a way of introducing macromolecules and small polar molecules into the cytoplasm, and may have applications in gene therapy and anticancer drug delivery. The pressure profile of a shock wave indicates its energy content, and shock-wave propagation in tissue is associated with cellular displacement, leading to the development of cell deformation. In the present study, three different shock-wave sources were investigated; argon fluoride excimer laser, ruby laser, and shock tube. The duration of the pressure pulse of the shock tube was 100 times longer than the lasers. The uptake of two fluorophores, calcein (molecular weight: 622) and fluorescein isothiocyanate-dextran (molecular weight: 71,600), into HL-60 human promyelocytic leukemia cells was investigated. The intracellular fluorescence was measured by a spectrofluorometer, and the cells were examined by confocal fluorescence microscopy. A single shock wave generated by the shock tube delivered both fluorophores into approximately 50% of the cells (p < 0.01), whereas shock waves from the lasers did not. The cell survival fraction was >0.95. Confocal microscopy showed that, in the case of calcein, there was a uniform fluorescence throughout the cell, whereas, in the case of FITC-dextran, the fluorescence was sometimes in the nucleus and at other times not. We conclude that the impulse of the shock wave (i.e., the pressure integrated over time), rather than the peak pressure, was a dominant factor for causing fluorophore uptake into living cells, and that shock waves might have changed the permeability of the nuclear membrane and transferred molecules directly into the nucleus. PMID:11023888</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2018JEMat.tmp.2729S','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2018JEMat.tmp.2729S"><span>Effect of Shock Waves on Dielectric Properties of KDP Crystal</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Sivakumar, A.; Suresh, S.; Pradeep, J. Anto; Balachandar, S.; Martin Britto Dhas, S. A.</p> <p>2018-05-01</p> <p>An alternative non-destructive approach is proposed and demonstrated for modifying electrical properties of crystal using shock-waves. The method alters dielectric properties of a potassium dihydrogen phosphate (KDP) crystal by loading shock-waves generated by a table-top shock tube. The experiment involves launching the shock-waves perpendicular to the (100) plane of the crystal using a pressure driven table-top shock tube with Mach number 1.9. Electrical properties of dielectric constant, dielectric loss, permittivity, impedance, AC conductivity, DC conductivity and capacitance as a function of spectrum of frequency from 1 Hz to 1 MHz are reported for both pre- and post-shock wave loaded conditions of the KDP crystal. The experimental results reveal that dielectric constant of KDP crystal is sensitive to the shock waves such that the value decreases for the shock-loaded KDP sample from 158 to 147. The advantage of the proposed approach is that it is an alternative to the conventional doping process for tailoring dielectric properties of this type of crystal.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/19778276','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/19778276"><span>Bacterial spores in granite survive hypervelocity launch by spallation: implications for lithopanspermia.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Fajardo-Cavazos, Patricia; Langenhorst, Falko; Melosh, H Jay; Nicholson, Wayne L</p> <p>2009-09-01</p> <p>Bacterial spores are considered good candidates for endolithic life-forms that could survive interplanetary transport by natural impact processes, i.e., lithopanspermia. Organisms within rock can only embark on an interplanetary journey if they survive ejection from the surface of the donor planet and the associated extremes of compressional shock, heating, and acceleration. Previous simulation experiments have measured each of these three stresses more or less in isolation of one another, and results to date indicate that spores of the model organism Bacillus subtilis can survive each stress applied singly. Few simulations, however, have combined all three stresses simultaneously. Because considerable experimental and theoretical evidence supports a spallation mechanism for launch, we devised an experimental simulation of launch by spallation using the Ames Vertical Gun Range (AVGR). B. subtilis spores were applied to the surface of a granite target that was impacted from above by an aluminum projectile fired at 5.4 km/s. Granite spall fragments were captured in a foam recovery fixture and then recovered and assayed for shock damage by transmission electron microscopy and for spore survival by viability assays. Peak shock pressure at the impact site was calculated to be 57.1 GPa, though recovered spall fragments were only very lightly shocked at pressures of 5-7 GPa. Spore survival was calculated to be on the order of 10(-5), which is in agreement with results of previous static compressional shock experiments. These results demonstrate that endolithic spores can survive launch by spallation from a hypervelocity impact, which lends further evidence in favor of lithopanspermia theory.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://ntrs.nasa.gov/search.jsp?R=20160005853&hterms=thakur&qs=N%3D0%26Ntk%3DAll%26Ntx%3Dmode%2Bmatchall%26Ntt%3Dthakur','NASA-TRS'); return false;" href="https://ntrs.nasa.gov/search.jsp?R=20160005853&hterms=thakur&qs=N%3D0%26Ntk%3DAll%26Ntx%3Dmode%2Bmatchall%26Ntt%3Dthakur"><span>Large Solar Energetic Particle Events Associated With Filament Eruptions Outside Active Regions</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Gopalswamy, N.; Makela, P.; Akiyama, S.; Yashiro, S.; Xie, H.; Thakur, N.; Kahler, S. W.</p> <p>2015-01-01</p> <p>We report on four large filament eruptions (FEs) from solar cycles 23 and 24 that were associated with large solar energetic particle (SEP) events and interplanetary type II radio bursts. The post-eruption arcades corresponded mostly to C-class soft X-ray enhancements, but an M1.0 flare was associated with one event. However, the associated coronal mass ejections (CMEs) were fast (speeds approx. 1000 km/s) and appeared as halo CMEs in the coronagraph field of view. The interplanetary type II radio bursts occurred over a wide wavelength range, indicating the existence of strong shocks throughout the inner heliosphere. No metric type II bursts were present in three events, indicating that the shocks formed beyond 2-3 Rs. In one case, there was a metric type II burst with low starting frequency, indicating a shock formation height of approx.2 Rs. The FE-associated SEP events did have softer spectra (spectral index >4) in the 10-100 MeV range, but there were other low-intensity SEP events with spectral indices ?4. Some of these events are likely FE-SEP events, but were not classified as such in the literature because they occurred close to active regions. Some were definitely associated with large active region flares, but the shock formation height was large. We definitely find a diminished role for flares and complex type III burst durations in these large SEP events. Fast CMEs and shock formation at larger distances from the Sun seem to be the primary characteristics of the FE-associated SEP events.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017sf2a.conf..181B','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017sf2a.conf..181B"><span>Statistical Analysis of Solar Events Associated with Storm Sudden Commencements over One Year of Solar Maximum during Cycle 23: Propagation and Effects from the Sun to the Earth.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Bocchialini, K.; Grison, B.; Menvielle, M.; Chambodut, A.; Cornilleau-Wehrlin, N.; Fontaine, D.; Marchaudon, A.; Pick, M.; Pitout, F.; Schmieder, B.; Régnier, S.; Zouganelis, I.</p> <p>2017-12-01</p> <p>From the list of 32 SSCs over the year 2002, we performed a multi-criteria analysis based on propagation time, velocity comparison, sense of the magnetic field rotation, radio waves to associate them with solar sources, identify their causes in the interplanetary medium and then look at the response of the terrestrial ionized and neutral environment to them. The complex interactions between two (or more) CMEs and the modification in their trajectory have been examined using joint white light and multiple-wavelength radio observations. The structures at L_1 after the 32 SSCs are regarded as Magnetic Clouds (MCs), ICMEs without a MC structure, Miscellaneous structures, CIRs/SIRs, and shock-only events. In terms of geoeffectivity, generally CMEs with velocities at the Sun larger than 1000 km.s-1 have larger probabilities to trigger moderate or intense storms. The most geoeffective events are MCs, since 92% of them trigger moderate or intense storms. The geoeffective events trigger an increased and combined AKR and NTC wave activity in the magnetosphere, an enhanced convection in the ionosphere and a stronger response in the thermosphere.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://hdl.handle.net/2060/20020094346','NASA-TRS'); return false;" href="http://hdl.handle.net/2060/20020094346"><span>Propagation of Interplanetary Disturbances in the Outer Heliosphere</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Wang, Chi</p> <p>2002-01-01</p> <p>Work finished during 2002 included: (1) Finished a multi-fluid solar wind model; (2) Determined the solar wind slowdown and interstellar neutral density; (3) Studied shock propagation and evolution in the outer heliosphere; (4) Investigated statistical properties of the solar wind in the outer heliosphere.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2016ApJ...826...15F','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2016ApJ...826...15F"><span>Observations of an Interplanetary Intermediate Shock Associated with a Magnetic Reconnection Exhaust</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Feng, H. Q.; Li, Q. H.; Wang, J. M.; Zhao, G. Q.</p> <p>2016-07-01</p> <p>Two intermediate shocks (ISs) in interplanetary space have been identified via one spacecraft observation. However, Feng et al. suggested that the analysis using a single spacecraft observation based only on the Rankine-Hugoniot (R-H) relations could misinterpret a tangential discontinuity (TD) as an IS. The misinterpretation can be fixed if two spacecraft observations are available. In this paper, we report an IS-like discontinuity associated with a magnetic reconnection exhaust, which was observed by Wind on 2000 August 9 at 1 au. We investigated this discontinuity by fitting the R-H relations and referring to the Advanced Composition Explorer (ACE) observations. As a result, we found that the observed magnetic field and plasma data satisfy the R-H relations well, and the discontinuity satisfies all the requirements of the 2\\to 3 type IS. Although the discontinuity cannot be identified strictly by using two spacecraft observations, in light of the ACE observations we consider that the discontinuity should be an IS rather than a TD.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2018ApJ...858..123H','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2018ApJ...858..123H"><span>Interplanetary Shocks Inducing Magnetospheric Supersubstorms (SML < ‑2500 nT): Unusual Auroral Morphologies and Energy Flow</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Hajra, Rajkumar; Tsurutani, Bruce T.</p> <p>2018-05-01</p> <p>We present case studies of two interplanetary shock-induced supersubstorms (SSSs) with extremely high intensities (peak SML ‑4418 and ‑2668 nT) and long durations (∼1.7 and ∼3.1 hr). The events occurred on 2005 January 21 and 2010 April 5, respectively. It is shown that these SSSs have a different auroral evolution than a nominal Akasofu-type substorm. The auroras associated with the SSSs did not have the standard midnight onset and following expansion. Instead, at the time of the SML index peak, the midnight sector was generally devoid of intense auroras, while the most intense auroras were located in the premidnight and postmidnight magnetic local times. Precursor energy input through magnetic reconnection was insufficient to balance the large ionospheric energy dissipation during the SSSs. It is argued that besides the release of stored magnetotail energy during the SSSs, these were powered by additional direct driving through both dayside magnetic reconnection and solar wind ram energy.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2018SCPMA..61f4711L','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2018SCPMA..61f4711L"><span>Interaction of strong converging shock wave with SF6 gas bubble</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Liang, Yu; Zhai, ZhiGang; Luo, XiSheng</p> <p>2018-06-01</p> <p>Interaction of a strong converging shock wave with an SF6 gas bubble is studied, focusing on the effects of shock intensity and shock shape on interface evolution. Experimentally, the converging shock wave is generated by shock dynamics theory and the gas bubble is created by soap film technique. The post-shock flow field is captured by a schlieren photography combined with a high-speed video camera. Besides, a three-dimensional program is adopted to provide more details of flow field. After the strong converging shock wave impact, a wide and pronged outward jet, which differs from that in planar shock or weak converging shock condition, is derived from the downstream interface pole. This specific phenomenon is considered to be closely associated with shock intensity and shock curvature. Disturbed by the gas bubble, the converging shocks approaching the convergence center have polygonal shapes, and the relationship between shock intensity and shock radius verifies the applicability of polygonal converging shock theory. Subsequently, the motion of upstream point is discussed, and a modified nonlinear theory considering rarefaction wave and high amplitude effects is proposed. In addition, the effects of shock shape on interface morphology and interface scales are elucidated. These results indicate that the shape as well as shock strength plays an important role in interface evolution.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/1992ShWav...2..121B','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/1992ShWav...2..121B"><span>A numerical study of shock wave reflections on low density foam</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Baer, M. R.</p> <p>1992-06-01</p> <p>A continuum mixture theory is used to describe shock wave reflections on low density open-cell polyurethane foam. Numerical simulations are compared to the shock tube experiments of Skews (1991) and detailed wave fields are shown of a shock wave interacting with a layer of foam adjacent to a rigid wall boundary. These comparisons demonstrate that a continuum mixture theory describes well the shock interactions with low density foam.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2009AGUFMSH42A..06S','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2009AGUFMSH42A..06S"><span>Modeling Spectral Turnovers in Interplanetary Shocks Observed by ULYSSES</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Summerlin, E. J.; Baring, M. G.</p> <p>2009-12-01</p> <p>Interplanetary shocks in the heliosphere provide excellent test cases for the simulation and theory of particle acceleration at shocks thanks to the presence of in-situ measurements and a relatively well understood initial particle distribution. The Monte-Carlo test particle simulation employed in this work has been previously used to study injection and acceleration from thermal energies into the high energy power-law tail at co-rotating interaction regions (CIRs) in the heliosphere presuming a steady state planar shock (Summerlin & Baring, 2006, Baring and Summerlin, 2008). These simulated power-spectra compare favorably with in-situ measurements from the ULYSSES spacecraft below 60 keV. However, to effectively model the high energy exponential cutoff at energies above 60 keV observed in these distributions, simulations must apply spatial or temporal constraints to the acceleration process. This work studies the effects of a variety of temporal and spatial co! nstraints (including spatial constraints on the turbulent region around the shock as determined by magnetometer data, spatial constraints related to the scale size of the shock and constraints on the acceleration time based on the known limits for the shock's lifetime) on the high energy cut-off and compares simulated particle spectra to those observed by the ULYSSES HI-SCALE instrument in an effort to determine which constraint is creating the cut-off and using that constraining parameter to determine additional information about the shock that can not, normally, be determined by a single data point, such as the spatial extent of the shock or how long the shock has been propagating through the heliosphere before it encounters the spacecraft. Shocks observed by multiple spacecraft will be of particular interest as their parameters will be better constrained than shocks observed by only one spacecraft. To achieve these goals, the simulation will be modified to include the re! trodictive approach of Jones (1978) to accurately track time spent dow nstream while maintaining, to large degree, the large dynamic range and short run times that make this type of simulation so attractive. This work is inspired by examinations of acceleration cutoffs in SEP events performed by various authors (see Li et al., 2009, and references therein), and it is hoped that this work will pave the way for a multi-species analysis similar to theirs that should greatly enhance the information one can derive about shocks based on individual observations.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://hdl.handle.net/2060/20110014927','NASA-TRS'); return false;" href="http://hdl.handle.net/2060/20110014927"><span>Shock Waves in a Bose-Einstein Condensate</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Kulikov, Igor; Zak, Michail</p> <p>2005-01-01</p> <p>A paper presents a theoretical study of shock waves in a trapped Bose-Einstein condensate (BEC). The mathematical model of the BEC in this study is a nonlinear Schroedinger equation (NLSE) in which (1) the role of the wave function of a single particle in the traditional Schroedinger equation is played by a space- and time-dependent complex order parameter (x,t) proportional to the square root of the density of atoms and (2) the atoms engage in a repulsive interaction characterized by a potential proportional to | (x,t)|2. Equations that describe macroscopic perturbations of the BEC at zero temperature are derived from the NLSE and simplifying assumptions are made, leading to equations for the propagation of sound waves and the transformation of sound waves into shock waves. Equations for the speeds of shock waves and the relationships between jumps of velocity and density across shock fronts are derived. Similarities and differences between this theory and the classical theory of sound waves and shocks in ordinary gases are noted. The present theory is illustrated by solving the equations for the example of a shock wave propagating in a cigar-shaped BEC.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2016AGUFMSH21A2516B','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2016AGUFMSH21A2516B"><span>Multispacecraft study of shock-flux rope interaction</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Blanco-Cano, X.; Burgess, D.; Sundberg, T.; Kajdic, P.</p> <p>2016-12-01</p> <p>Interplanetary (IP) shocks can be driven in the solar wind by fast coronal mass ejections. These shocks play an active role in particle acceleration near the Sun and through the heliosphere, being associated to solar energetic particle (SEP) and energetic storm particle (ESP) events. IP shocks can interact with structures in the solar wind, and with planetary magnetospheres. In this work we study how the properties of an IP shock change when it interacts with a medium scale flux rope (FR). We use measurements from CLUSTER, WIND and ACE. These three spacecraft observed the shock-FR interaction at different stages of its evolution. We find that the shock-FR interaction locally changes the shock geometry, affecting ion injection processes, and the upstream and downstream regions. While WIND and ACE observed a quasi-perpendicular shock, CLUSTER crossed a quasi-parallel shock and a foreshock with a variety of ion distributions. The complexity of the ion foreshock can be explained by the dynamics of the shock transitioning from quasi-perpendicular to quasi-parallel, and the geometry of the magnetic field around the flux rope.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://pubs.er.usgs.gov/publication/70016945','USGSPUBS'); return false;" href="https://pubs.er.usgs.gov/publication/70016945"><span>Seismic excitation by the space shuttle Columbia</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://pubs.er.usgs.gov/pubs/index.jsp?view=adv">USGS Publications Warehouse</a></p> <p>Kanamori, H.; Mori, J.; Anderson, D.L.; Heaton, T.H.</p> <p>1991-01-01</p> <p>SEISMIC stations in southern California recorded the atmospheric shock waves generated by the space shuttle Columbia on its return to the Edwards Air Force base on 13 August 1989 (Fig. 1). In addition to the shock wave, the broad-band IRIS-TERRAscope station at Pasadena recorded a distinct pulse with a period of ???2-3 seconds, which arrived 12.5 seconds before the shock wave (Fig. 2). This pulse was also recorded at the University of Southern California, near downtown Los Angeles, where it arrived 3 seconds after the shock wave. The origin of this pulse could not be readily identified. We show here that it was a seismic P wave excited by the motion of high-rise buildings in downtown Los Angeles, which were hit by the shock wave. The proximity of the natural period of the high-rise buildings to that of the Los Angeles basin enabled efficient energy transfer from shock wave to seismic wave.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2018JGRA..123.1915W','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2018JGRA..123.1915W"><span>The Influence of IMF By on the Bow Shock: Observation Result</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Wang, M.; Lu, J. Y.; Kabin, K.; Yuan, H. Z.; Liu, Z.-Q.; Zhao, J. S.; Li, G.</p> <p>2018-03-01</p> <p>In this study we use the bow shock crossings contained in the Space Physics Data Facility database, collected by four spacecraft (IMP 8, Geotail, Magion-4, and Cluster1) to analyze the effect of the interplanetary magnetic field (IMF) By component on the bow shock position and shape. Although the IMF Bz component is usually considered much more geoeffective than By, we find that the dayside bow shock is more responsive to the eastward component of the IMF than the north-south one. We believe that the explanation lies in the changes that the Bz component induces on the magnetopause location and shape, which largely compensate the corresponding changes in the dayside bow shock location. In the tail, we find that the bow shock cross section is elongated roughly in the direction perpendicular to the IMF direction, which agrees with earlier modeling studies.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2006AGUFMSH53A1483C','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2006AGUFMSH53A1483C"><span>Transit Time and Normal Orientation of ICME-driven Shocks</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Case, A. W.; Spence, H.; Owens, M.; Riley, P.; Linker, J.; Odstrcil, D.</p> <p>2006-12-01</p> <p>Interplanetary Coronal Mass Ejections (ICMEs) can drive shocks that accelerate particles to great energies. It is important to understand the acceleration, transport, and spectra of these particles in order to quantify this fundamental physical process operating throughout the cosmos. This understanding also helps to better protect astronauts and spacecraft in upcoming missions. We show that the ambient solar wind is crucial in determining characteristics of ICME-driven shocks, which in turn affect energetic particle production. We use a coupled 3-D MHD code of the corona and heliosphere to simulate ICME propagation from 30 solar radii to 1AU. ICMEs of different velocities are injected into a realistic solar wind to determine how the initial speed affects the shape and deceleration of the ICME-driven shock. We use shock transit time and shock normal orientation to quantify these dependencies. We also inject identical ICMEs into different ambient solar winds to quantify the effective drag force on an ICME.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/1993MsT.........19M','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/1993MsT.........19M"><span>Shock wave interaction with L-shaped structures</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Miller, Richard C.</p> <p>1993-12-01</p> <p>This study investigated the interaction of shock waves with L-shaped structures using the CTH hydrodynamics code developed by Sandia National Laboratories. Computer models of shock waves traveling through air were developed using techniques similar to shock tube experiments. Models of L-shaped buildings were used to determine overpressures achieved by the reflecting shock versus angle of incidence of the shock front. An L-shaped building model rotated 45 degrees to the planar shock front produced the highest reflected overpressure of 9.73 atmospheres in the corner joining the two wings, a value 9.5 times the incident overpressure of 1.02 atmospheres. The same L-shaped building was modeled with the two wings separated by 4.24 meters to simulate an open courtyard. This open area provided a relief path for the incident shock wave, creating a peak overpressure of only 4.86 atmospheres on the building's wall surfaces from the same 1.02 atmosphere overpressure incident shock wave.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://ntrs.nasa.gov/search.jsp?R=19850039082&hterms=shock+elastic&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D20%26Ntt%3Dshock%2Belastic','NASA-TRS'); return false;" href="https://ntrs.nasa.gov/search.jsp?R=19850039082&hterms=shock+elastic&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D20%26Ntt%3Dshock%2Belastic"><span>Monte Carlo shock-like solutions to the Boltzmann equation with collective scattering</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Ellison, D. C.; Eichler, D.</p> <p>1984-01-01</p> <p>The results of Monte Carlo simulations of steady state shocks generated by a collision operator that isotropizes the particles by means of elastic scattering in some locally defined frame of reference are presented. The simulations include both the back reaction of accelerated particles on the inflowing plasma and the free escape of high-energy particles from finite shocks. Energetic particles are found to be naturally extracted out of the background plasma by the shock process with an efficiency in good quantitative agreement with an earlier analytic approximation (Eichler, 1983 and 1984) and observations (Gosling et al., 1981) of the entire particle spectrum at a quasi-parallel interplanetary shock. The analytic approximation, which allows a self-consistent determination of the effective adiabatic index of the shocked gas, is used to calculate the overall acceleration efficiency and particle spectrum for cases where ultrarelativistic energies are obtained. It is found that shocks of the strength necessary to produce galactic cosmic rays put approximately 15 percent of the shock energy into relativistic particles.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2018ShWav..28..299P','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2018ShWav..28..299P"><span>Bifurcation parameters of a reflected shock wave in cylindrical channels of different roughnesses</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Penyazkov, O.; Skilandz, A.</p> <p>2018-03-01</p> <p>To investigate the effect of bifurcation on the induction time in cylindrical shock tubes used for chemical kinetic experiments, one should know the parameters of the bifurcation structure of a reflected shock wave. The dynamics and parameters of the shock wave bifurcation, which are caused by reflected shock wave-boundary layer interactions, are studied experimentally in argon, in air, and in a hydrogen-nitrogen mixture for Mach numbers M = 1.3-3.5 in a 76-mm-diameter shock tube without any ramp. Measurements were taken at a constant gas density behind the reflected shock wave. Over a wide range of experimental conditions, we studied the axial projection of the oblique shock wave and the pressure distribution in the vicinity of the triple Mach configuration at 50, 150, and 250 mm from the endwall, using side-wall schlieren and pressure measurements. Experiments on a polished shock tube and a shock tube with a surface roughness of 20 {μ }m Ra were carried out. The surface roughness was used for initiating small-scale turbulence in the boundary layer behind the incident shock wave. The effect of small-scale turbulence on the homogenization of the transition zone from the laminar to turbulent boundary layer along the shock tube perimeter was assessed, assuming its influence on a subsequent stabilization of the bifurcation structure size versus incident shock wave Mach number, as well as local flow parameters behind the reflected shock wave. The influence of surface roughness on the bifurcation development and pressure fluctuations near the wall, as well as on the Mach number, at which the bifurcation first develops, was analyzed. It was found that even small additional surface roughness can lead to an overshoot in pressure growth by a factor of two, but it can stabilize the bifurcation structure along the shock tube perimeter.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://hdl.handle.net/2060/19800008577','NASA-TRS'); return false;" href="http://hdl.handle.net/2060/19800008577"><span>Second sound shock waves and critical velocities in liquid helium 2. Ph.D. Thesis</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Turner, T. N.</p> <p>1979-01-01</p> <p>Large amplitude second-sound shock waves were generated and the experimental results compared to the theory of nonlinear second-sound. The structure and thickness of second-sound shock fronts are calculated and compared to experimental data. Theoretically it is shown that at T = 1.88 K, where the nonlinear wave steepening vanishes, the thickness of a very weak shock must diverge. In a region near this temperature, a finite-amplitude shock pulse evolves into an unusual double-shock configuration consisting of a front steepened, temperature raising shock followed by a temperature lowering shock. Double-shocks are experimentally verified. It is experimentally shown that very large second-sound shock waves initiate a breakdown in the superfluidity of helium 2, which is dramatically displayed as a limit to the maximum attainable shock strength. The value of the maximum shock-induced relative velocity represents a significant lower bound to the intrinsic critical velocity of helium 2.</p> </li> </ol> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_18");'>18</a></li> <li><a href="#" onclick='return showDiv("page_19");'>19</a></li> <li class="active"><span>20</span></li> <li><a href="#" onclick='return showDiv("page_21");'>21</a></li> <li><a href="#" onclick='return showDiv("page_22");'>22</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div><!-- col-sm-12 --> </div><!-- row --> </div><!-- page_20 --> <div id="page_21" class="hiddenDiv"> <div class="row"> <div class="col-sm-12"> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_19");'>19</a></li> <li><a href="#" onclick='return showDiv("page_20");'>20</a></li> <li class="active"><span>21</span></li> <li><a href="#" onclick='return showDiv("page_22");'>22</a></li> <li><a href="#" onclick='return showDiv("page_23");'>23</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div> </div> <div class="row"> <div class="col-sm-12"> <ol class="result-class" start="401"> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017AcAau.135..114S','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017AcAau.135..114S"><span>Detonation onset following shock wave focusing</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Smirnov, N. N.; Penyazkov, O. G.; Sevrouk, K. L.; Nikitin, V. F.; Stamov, L. I.; Tyurenkova, V. V.</p> <p>2017-06-01</p> <p>The aim of the present paper is to study detonation initiation due to focusing of a shock wave reflected inside a cone. Both numerical and experimental investigations were conducted. Comparison of results made it possible to validate the developed 3-d transient mathematical model of chemically reacting gas mixture flows incorporating hydrogen - air mixtures. The results of theoretical and numerical experiments made it possible improving kinetic schemes and turbulence models. Several different flow scenarios were detected in reflection of shock waves all being dependent on incident shock wave intensity: reflecting of shock wave with lagging behind combustion zone, formation of detonation wave in reflection and focusing, and intermediate transient regimes.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2018ShWav.tmp...43G','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2018ShWav.tmp...43G"><span>Shock wave attenuation in a micro-channel</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Giordano, J.; Perrier, P.; Meister, L.; Brouillette, M.</p> <p>2018-05-01</p> <p>This work presents optical measurements of shock wave attenuation in a glass micro-channel. This transparent facility, with a cross section ranging from 1 mm× 150 μm to 1 mm× 500 μm, allowed for the use of high-speed schlieren videography to visualize the propagation of a shock wave within the entire micro-channel and to quantify velocity attenuation of the wave due to wall effects. In this paper, we present the experimental technique and the relevant data treatment we have used to increase the sensitivity of shock wave detection. Then, we compared our experimental results for different channel widths, lengths, and shock wave velocities with the analytical model for shock attenuation proposed by Russell (J Fluid Mech 27(2):305-314, 1967), which assumes laminar flow, and by Mirels (Attenuation in a shock tube due to unsteady-boundary-layer action, NACA Report 1333, 1957) for turbulent flow. We found that these models are inadequate to predict the observed data, owing to the presence of fully developed flow which violates the basic assumption of these models. The data are also compared with the empirical shock attenuation models proposed by Zeitoun (Phys Fluids 27(1):011701, 2015) and Deshpande and Puranik (Shock Waves 26(4):465-475, 2016), where better agreement is observed. Finally, we presented experimental data for the flow field behind the shock wave from measurements of the Mach wave angle which shows globally decreasing flow Mach numbers due to viscous wall effects.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://ntrs.nasa.gov/search.jsp?R=19950047147&hterms=quasi+particle&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D30%26Ntt%3Dquasi%2Bparticle','NASA-TRS'); return false;" href="https://ntrs.nasa.gov/search.jsp?R=19950047147&hterms=quasi+particle&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D30%26Ntt%3Dquasi%2Bparticle"><span>Wave and ion evolution downstream of quasi-perpendicular bow shocks</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Mckean, M. E.; Omidi, N.; Krauss-Varban, D.</p> <p>1995-01-01</p> <p>Distribution functions of ions heated in quasi-perpendicular bow shocks have a large perpendicular temperature anisotropy that provides free energy for the growth of Alfven ion cyclotron (AIC) waves and mirror waves. Both types of waves have been observed in the Earth's magnetosheath downstream of quasi-perpendicular shocks. We use a two-dimensional hybrid simulations to give a self-consistent description of the evolution of the wave spectra downstream of quasi-perpendicular shocks. Both mirror and AIC waves are identified in the simulated magnetosheath. They are generated at or near the shock front and convected away from it by the sheath plasma. Near the shock, the waves have a broad spectrum, but downstream of the shock, shorter-wavelength modes are heavily damped and only longer-wavelength modes persist. The characteristics of these surviving modes can be predicted with reasonable accuracy by linear kinetic theory appropriate for downstream conditions. We also follow the evolution of the ion distribution function. The shocked ions that provide the free energy for wave growth have a two-component distribution function. The halo is initially gyrophase-bunched and extremely anisotropic. Within a relatively short distance downstream of the shock (of the order of 10 ion inertial lengths), wave-particle interactions remove these features from the halo and reduce the anisotropy of the distribution to near-threshold levels for the mirror and AIC instabilities. A similar evolution has been observed for ions at the Earth's bow shock.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2000APS..DPPJP1051C','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2000APS..DPPJP1051C"><span>Numerical Simulations of Laser-Driven Microflyer Plates</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Colvin, Jeffrey D.; Frank, Alan M.; Lee, Ronald S.; Remington, Bruce A.</p> <p>2000-10-01</p> <p>Experiments conducted in the US and France have accelerated few-micron-thick foils of aluminum to velocities of 3 - 5 km/s using 25 - 50 J/cm^2 of 1-μm laser light (1,2). These microflyer plates are not too dissimilar in size and velocity from interplanetary dust particles (3). We are performing numerical simulations of these experiments with the 2-D radiation-hydrodynamics code LASNEX (4), incorporating a model for low-fluence electromagnetic wave reflection and absorption in metals, with the objective of determining the physical processes important to optimizing the flyer design. We will discuss our preliminary findings, including the efficacy of a thermal insulation layer and the role played by the substrate on which the flyer is mounted. (1) W.M. Trott, R.E. Setchell, and A.V. Farnsworth, Jr., in Shock Compression of Condensed Matter-1999, ed. M.D. Furnish, L.C. Chhabildas, and R.S. Hixson, AIP, 2000, pp. 1203-06. (2) J. L. Labaste, M. Doucet, and P. Joubert, in Shock Compression of Condensed Matter-1995, ed. S.C. Schmidt and W.C. Tao, AIP, 1996, pp. 1221-24. (3) W.W. Anderson and T.J. Ahrens, J. Geophys. Res. 99, 2063 (1994). (4) G. B. Zimmerman and W. L. Kruer, Comments Plasma Phys. Controlled Fusion 2, 51 (1975).</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://hdl.handle.net/2060/20140009185','NASA-TRS'); return false;" href="http://hdl.handle.net/2060/20140009185"><span>Size and Shape of the Distant Magnetotail</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Sibeck, D.G.; Lin, R.-Q.</p> <p>2014-01-01</p> <p>We employ a global magnetohydrodynamic model to study the effects of the interplanetary magnetic field (IMF) strength and direction upon the cross-section of the magnetotail at lunar distances. The anisotropic pressure of draped magnetosheath magnetic field lines and the inclusion of a reconnection-generated standing slow mode wave fan bounded by a rotational discontinuity within the definition of the magnetotail result in cross-sections elongated in the direction parallel to the component of the IMF in the plane perpendicular to the Sun-Earth line. Tilted cross-tail plasma sheets separate the northern and southern lobes within these cross-sections. Greater fast mode speeds perpendicular than parallel to the draped magnetos heath magnetic field lines result in greater distances to the bow shock in the direction perpendicular than parallel to the component of the IMF in the plane transverse to the Sun-Earth line. The magnetotail cross-section responds rapidly to reconnected magnetic field lines requires no more than the magnetosheath convection time to appear at any distance downstream, and further adjustments of the cross-section in response to the anisotropic pressures of the draped magnetic field lines require no more than 10-20 minutes. Consequently for typical ecliptic IMF orientations and strengths, the magnetotail cross-section is oblate while the bow shock is prolate.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2005shwa.book.1235A','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2005shwa.book.1235A"><span>A new shock wave assisted sandalwood oil extraction technique</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Arunkumar, A. N.; Srinivasa, Y. B.; Ravikumar, G.; Shankaranarayana, K. H.; Rao, K. S.; Jagadeesh, G.</p> <p></p> <p>A new shock wave assisted oil extraction technique from sandalwood has been developed in the Shock Waves Lab, IISc, Bangalore. The fragrant oil extracted from sandalwood finds variety of applications in medicine and perfumery industries. In the present method sandal wood specimens (2.5mm diameter and 25mm in length)are subjected to shock wave loading (over pressure 15 bar)in a constant area shock tube, before extracting the sandal oil using non-destructive oil extraction technique. The results from the study indicates that both the rate of extraction as well as the quantity of oil obtained from sandal wood samples exposed to shock waves are higher (15-40 percent) compared to non-destructive oil extraction technique. The compressive squeezing of the interior oil pockets in the sandalwood specimen due to shock wave loading appears to be the main reason for enhancement in the oil extraction rate. This is confirmed by the presence of warty structures in the cross-section and micro-fissures in the radial direction of the wood samples exposed to shock waves in the scanning electron microscopic investigation. In addition the gas chromatographic studies do not show any change in the q uality of sandal oil extracted from samples exposed to shock waves.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://ntrs.nasa.gov/search.jsp?R=19870025302&hterms=shock+tube+proceedings&qs=N%3D0%26Ntk%3DAll%26Ntx%3Dmode%2Bmatchall%26Ntt%3Dshock%2Btube%2Bproceedings','NASA-TRS'); return false;" href="https://ntrs.nasa.gov/search.jsp?R=19870025302&hterms=shock+tube+proceedings&qs=N%3D0%26Ntk%3DAll%26Ntx%3Dmode%2Bmatchall%26Ntt%3Dshock%2Btube%2Bproceedings"><span>Shock waves and shock tubes; Proceedings of the Fifteenth International Symposium, Berkeley, CA, July 28-August 2, 1985</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Bershader, D. (Editor); Hanson, R. (Editor)</p> <p>1986-01-01</p> <p>A detailed survey is presented of shock tube experiments, theoretical developments, and applications being carried out worldwide. The discussions explore shock tube physics and the related chemical, physical and biological science and technology. Extensive attention is devoted to shock wave phenomena in dusty gases and other multiphase and heterogeneous systems, including chemically reactive mixtures. Consideration is given to techniques for measuring, visualizing and theoretically modeling flowfield, shock wave and rarefaction wave characteristics. Numerical modeling is explored in terms of the application of computational fluid dynamics techniques to describing flowfields in shock tubes. Shock interactions and propagation, in both solids, fluids, gases and mixed media are investigated, along with the behavior of shocks in condensed matter. Finally, chemical reactions that are initiated as the result of passage of a shock wave are discussed, together with methods of controlling the evolution of laminar separated flows at concave corners on advanced reentry vehicles.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/1986swst.proc.....B','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/1986swst.proc.....B"><span>Shock waves and shock tubes; Proceedings of the Fifteenth International Symposium, Berkeley, CA, July 28-August 2, 1985</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Bershader, D.; Hanson, R.</p> <p></p> <p>A detailed survey is presented of shock tube experiments, theoretical developments, and applications being carried out worldwide. The discussions explore shock tube physics and the related chemical, physical and biological science and technology. Extensive attention is devoted to shock wave phenomena in dusty gases and other multiphase and heterogeneous systems, including chemically reactive mixtures. Consideration is given to techniques for measuring, visualizing and theoretically modeling flowfield, shock wave and rarefaction wave characteristics. Numerical modeling is explored in terms of the application of computational fluid dynamics techniques to describing flowfields in shock tubes. Shock interactions and propagation, in both solids, fluids, gases and mixed media are investigated, along with the behavior of shocks in condensed matter. Finally, chemical reactions that are initiated as the result of passage of a shock wave are discussed, together with methods of controlling the evolution of laminar separated flows at concave corners on advanced reentry vehicles.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/18596804','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/18596804"><span>Intense plasma waves at and near the solar wind termination shock.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Gurnett, D A; Kurth, W S</p> <p>2008-07-03</p> <p>Plasma waves are a characteristic feature of shocks in plasmas, and are produced by non-thermal particle distributions that develop in the shock transition layer. The electric fields of these waves have a key role in dissipating energy in the shock and driving the particle distributions back towards thermal equilibrium. Here we report the detection of intense plasma-wave electric fields at the solar wind termination shock. The observations were obtained from the plasma-wave instrument on the Voyager 2 spacecraft. The first evidence of the approach to the shock was the detection of upstream electron plasma oscillations on 1 August 2007 at a heliocentric radial distance of 83.4 au (1 au is the Earth-Sun distance). These narrowband oscillations continued intermittently for about a month until, starting on 31 August 2007 and ending on 1 September 2007, a series of intense bursts of broadband electrostatic waves signalled a series of crossings of the termination shock at a heliocentric radial distance of 83.7 au. The spectrum of these waves is quantitatively similar to those observed at bow shocks upstream of Jupiter, Saturn, Uranus and Neptune.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://ntrs.nasa.gov/search.jsp?R=19770063928&hterms=jump&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D70%26Ntt%3Djump','NASA-TRS'); return false;" href="https://ntrs.nasa.gov/search.jsp?R=19770063928&hterms=jump&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D70%26Ntt%3Djump"><span>Application of the wavenumber jump condition to the normal and oblique interaction of a plane acoustic wave and a plane shock</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Kleinstein, G. G.; Gunzburger, M. D.</p> <p>1977-01-01</p> <p>The kinematics of normal and oblique interactions between a plane acoustic wave and a plane shock wave are investigated separately using an approach whereby the shock is considered as a sharp discontinuity surface separating two half-spaces, so that the dispersion relation on either side of the shock and the wavenumber jump condition across a discontinuity surface completely specify the kinematics of the problem in the whole space independently of the acoustic-field dynamics. The normal interaction is analyzed for a stationary shock, and the spectral change of the incident wave is investigated. The normal interaction is then examined for the case of a shock wave traveling into an ambient region where an acoustic disturbance is propagating in the opposite direction. Detailed attention is given to the consequences of the existence of a critical shock speed above which the frequency of the transmitted wave becomes negative. Finally, the oblique interaction with a fixed shock is considered, and the existence and nature of the transmitted wave is investigated, particularly as a function of the angle of incidence.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://hdl.handle.net/2060/20000053492','NASA-TRS'); return false;" href="http://hdl.handle.net/2060/20000053492"><span>The Observational Consequences of Proton-Generated Waves at Shocks</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Reames, Donald V.</p> <p>2000-01-01</p> <p>In the largest solar energetic particle (SEP) events, acceleration takes place at shock waves driven out from the Sun by fast coronal mass ejections. Protons streaming away from strong shocks generate Alfven waves that trap particles in the acceleration region, limiting outflowing intensities but increasing the efficiency of acceleration to higher energies. Early in the events, with the shock still near the Sun, intensities at 1 AU are bounded and spectra are flattened at low energies. Elements with different charge-to-mass ratios, Q/A, differentially probe the wave spectra near shocks, producing abundance ratios that vary in space and time. An initial rise in He/H, while Fe/O declines, is a typical symptom of the non-Kolmogorov wave spectra in the largest events. Strong wave generation can cause cross-field scattering near the shock and unusually rapid reduction in anisotropies even far from the shock. At the highest energies, shock spectra steepen to form a "knee." For protons, this spectral knee can vary from approx. 10 MeV to approx. 1 GeV depending on shock conditions for wave growth. In one case, the location of the knee scales approximately as Q/A in the energy/nucleon spectra of other species.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://hdl.handle.net/2060/19720018617','NASA-TRS'); return false;" href="http://hdl.handle.net/2060/19720018617"><span>Study on multi-satellite, multi-measurement of the structure of the earth's bow shock</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p></p> <p>1972-01-01</p> <p>The pulsation model of the earth's bow shock proposed a nonuniform shock having both perpendicular (abrupt, monotonic) and oblique (oscillatory, multigradient) properties simultaneously, depending on local orientation of the shock surface to the interplanetary field B sub sw in parallel planes defined by B sub sw and solar wind velocity. Multiple, concurrent, satellite observations of the shock and solar wind conditions were used. Twenty-six potentially useful intervals of concurrent Explorer 33 and 35 data acquisition were examined, of which six were selected for closer study. In addition, two years of OGO-5 and HEOS 1 magnetometer data were examined for possible conjunctions to these spacecraft having applicable data. One case of clear nonuniformity and several of field-dependent structure were documented. A computational aid, called pulsation index, was developed.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/1995QuEle..25..153W','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/1995QuEle..25..153W"><span>EFFECTS OF LASER RADIATION ON MATTER. LASER PLASMA: Measurements of laser-induced shock waves in aluminium</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Werdiger, M.; Arad, B.; Moshe, E.; Eliezer, S.</p> <p>1995-02-01</p> <p>A simple optical method for measurements of high-irradiance (3×1013 W cm-2) laser-induced shock waves is described. The shock wave velocity (~13 km s-1) was measured with an error not exceeding 5%. The laser-induced one-to-two-dimensional (1D-to-2D) shock wave transition was studied.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2005ASAJ..117.2369H','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2005ASAJ..117.2369H"><span>Extracorporeal shock wave therapy in orthopedics, basic research, and clinical implications</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Hausdorf, Joerg; Jansson, Volkmar; Maier, Markus; Delius, Michael</p> <p>2005-04-01</p> <p>The molecular events following shock wave treatment of bone are widely unknown. Nevertheless patients with osteonecrosis and non unions are already treated partly successful with shock waves. Concerning the first indication, the question of the permeation of the shock wave into the bone was addressed. Therefore shockwaves were applied to porcine femoral heads and the intraosseous pressure was measured. A linear correlation of the pressure to the intraosseous distance was found. Approximately 50% of the pressure are still measurable 10 mm inside the femoral head. These findings should encourage continued shock wave research on this indication. Concerning the second indication (non union), osteoblasts were subjected to 250 or 500 shock waves at 25 kV. After 24, 48, and 72 h the levels of the bone and vascular growth factors bFGF, TGFbeta1, and VEGF were examined. After 24 h there was a significant increase in bFGF levels (p<0.05) with significant correlation (p<0.05) to the number of impulses. TGFbeta1, and VEGF showed no significant changes. This may be one piece in the cascade of new bone formation following shock wave treatment and may lead to a more specific application of shock waves in orthopedic surgery.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2003ASAJ..114Q2452C','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2003ASAJ..114Q2452C"><span>Overview of shock waves in medicine</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Cleveland, Robin O.</p> <p>2003-10-01</p> <p>A brief overview of three applications of shock waves is presented. Shock wave lithotripsy (SWL) has been in clinical use for more than 20 years. In the United States it is used to treat more than 80% of kidney stone cases and has wide acceptance with patients because it is a noninvasive procedure. Despite SWLs enormous success there is no agreement on how shock waves comminute stones. There is also a general acceptance that shock waves lead to trauma to the soft tissue of the kidney. Yet there has been little forward progress in developing lithotripters which provide comminution with less side-effects, indeed the original machine is still considered the gold standard. The last decade has seen the advent of new shock wave devices for treating principally musculoskeletal indications, such as plantar fasciitis, tennis elbow, and bone fractures that do not heal. This is referred to as shock wave therapy (SWT). The mechanisms by which SWT works are even less well understood than SWL and the consequences of bioeffects have also not been studied in detail. Shock waves have also been shown to be effective at enhancing drug delivery into cells and assisting with gene transfection. [Work partially supported by NIH.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2018ShWav.tmp...47W','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2018ShWav.tmp...47W"><span>Shock wave and flame front induced detonation in a rapid compression machine</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Wang, Y.; Qi, Y.; Xiang, S.; Mével, R.; Wang, Z.</p> <p>2018-05-01</p> <p>The present study focuses on one mode of detonation initiation observed in a rapid compression machine (RCM). This mode is referred to as shock wave and flame front-induced detonation (SWFID). Experimental high-speed imaging and two-dimensional numerical simulations with skeletal chemistry are combined to unravel the dominant steps of detonation initiation under SWFID conditions. It is shown that the interaction between the shock wave generated by the end-gas auto-ignition and the spherical flame creates a region of high pressure and temperature which enables the acceleration of the flame front and the detonation onset. The experimental observation lacks adequate spatial and temporal resolution despite good reproducibility of the detonation onset. Based on the numerical results, phenomenological interpretation of the event within the framework of shock wave refraction indicates that the formation of a free-precursor shock wave at the transition between regular and irregular refraction may be responsible for detonation onset. The present results along with previous findings on shock wave reflection-induced detonation in the RCM indicate that super-knock occurs after the interaction of the shock wave generated by end-gas auto-ignition with the RCM walls, preignition flame, or another shock wave.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/11497895','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/11497895"><span>Focusing of noncircular self-similar shock waves.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Betelu, S I; Aronson, D G</p> <p>2001-08-13</p> <p>We study the focusing of noncircular shock waves in a perfect gas. We construct an explicit self-similar solution by combining three convergent plane waves with regular shock reflections between them. We then show, with a numerical Riemann solver, that there are initial conditions with smooth shocks whose intermediate asymptotic stage is described by the exact solution. Unlike the focusing of circular shocks, our self-similar shocks have bounded energy density.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2016PhRvF...1c3601M','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2016PhRvF...1c3601M"><span>Oscillations of a standing shock wave generated by the Richtmyer-Meshkov instability</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Mikaelian, Karnig O.</p> <p>2016-07-01</p> <p>In a typical Richtmyer-Meshkov experiment a fast moving flat shock strikes a stationary perturbed interface between fluids A and B creating a transmitted and a reflected shock, both of which are perturbed. We propose shock tube experiments in which the reflected shock is stationary in the laboratory. Such a standing perturbed shock undergoes well-known damped oscillations. We present the conditions required for producing such a standing shock wave, which greatly facilitates the measurement of the oscillations and their rate of damping. We define a critical density ratio Rcritical, in terms of the adiabatic indices of the two fluids, and a critical Mach number Mscritical of the incident shock wave, which produces a standing reflected wave. If the initial density ratio R of the two fluids is less than Rcritical then a standing shock wave is possible at Ms=Mscritical . Otherwise a standing shock is not possible and the reflected wave always moves in the direction opposite the incident shock. Examples are given for present-day operating shock tubes with sinusoidal or inclined interfaces. We consider the effect of viscosity, which affects the damping rate of the oscillations. We point out that nonlinear bubble and spike amplitudes depend relatively weakly on the viscosity of the fluids and that the interface area is a better diagnostic.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://ntrs.nasa.gov/search.jsp?R=19960021490&hterms=english+varieties&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D20%26Ntt%3Denglish%2Bvarieties','NASA-TRS'); return false;" href="https://ntrs.nasa.gov/search.jsp?R=19960021490&hterms=english+varieties&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D20%26Ntt%3Denglish%2Bvarieties"><span>The variety of MHD shock waves interactions in the solar wind flow</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Grib, S. A.</p> <p>1995-01-01</p> <p>Different types of nonlinear shock wave interactions in some regions of the solar wind flow are considered. It is shown, that the solar flare or nonflare CME fast shock wave may disappear as the result of the collision with the rotational discontinuity. By the way the appearance of the slow shock waves as the consequence of the collision with other directional discontinuity namely tangential is indicated. Thus the nonlinear oblique and normal MHD shock waves interactions with different solar wind discontinuities (tangential, rotational, contact, shock and plasmoidal) both in the free flow and close to the gradient regions like the terrestrial magnetopause and the heliopause are described. The change of the plasma pressure across the solar wind fast shock waves is also evaluated. The sketch of the classification of the MHD discontinuities interactions, connected with the solar wind evolution is given.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/17500690','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/17500690"><span>Dry and wet granular shock waves.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Zaburdaev, V Yu; Herminghaus, S</p> <p>2007-03-01</p> <p>The formation of a shock wave in one-dimensional granular gases is considered, for both the dry and the wet cases, and the results are compared with the analytical shock wave solution in a sticky gas. Numerical simulations show that the behavior of the shock wave in both cases tends asymptotically to the sticky limit. In the inelastic gas (dry case) there is a very close correspondence to the sticky gas, with one big cluster growing in the center of the shock wave, and a step-like stationary velocity profile. In the wet case, the shock wave has a nonzero width which is marked by two symmetric heavy clusters performing breathing oscillations with slowly increasing amplitude. All three models have the same asymptotic energy dissipation law, which is important in the context of the free cooling scenario. For the early stage of the shock formation and asymptotic oscillations we provide analytical results as well.</p> </li> </ol> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_19");'>19</a></li> <li><a href="#" onclick='return showDiv("page_20");'>20</a></li> <li class="active"><span>21</span></li> <li><a href="#" onclick='return showDiv("page_22");'>22</a></li> <li><a href="#" onclick='return showDiv("page_23");'>23</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div><!-- col-sm-12 --> </div><!-- row --> </div><!-- page_21 --> <div id="page_22" class="hiddenDiv"> <div class="row"> <div class="col-sm-12"> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_20");'>20</a></li> <li><a href="#" onclick='return showDiv("page_21");'>21</a></li> <li class="active"><span>22</span></li> <li><a href="#" onclick='return showDiv("page_23");'>23</a></li> <li><a href="#" onclick='return showDiv("page_24");'>24</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div> </div> <div class="row"> <div class="col-sm-12"> <ol class="result-class" start="421"> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/8445694','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/8445694"><span>Endoscopically-controlled electrohydraulic intracorporeal shock wave lithotripsy (EISL) of salivary stones.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Königsberger, R; Feyh, J; Goetz, A; Kastenbauer, E</p> <p>1993-02-01</p> <p>Twenty-nine patients with salivary stones were treated with the endoscopically-controlled electrohydraulic shock wave lithotripsy (EISL). This new minimally invasive treatment of sialolithiasis is performed under local anesthesia on an outpatient basis with little inconvenience to the patient. For endoscopy, a flexible fibroscope with an additional probe to generate shock waves is placed into the submandibular duct and advanced until the stone is identified. For shock wave-induced stone disintegration, the probe electrode must be placed 1 mm in front of the concrement. The shock waves are generated by a sparkover at the tip of the probe. By means of the endoscopically-controlled shock wave lithotripsy it was possible to achieve complete stone fragmentation in 20 out of 29 patients without serious side effects. In three patients, only partial stone fragmentation could be achieved due to the stone quality. Endoscopically-controlled electrohydraulic intracorporeal shock wave lithotripsy represents a novel minimally invasive therapy for endoscopically accessible salivary gland stones. The advantage in comparison to the endoscopically-controlled laser lithotripsy will be discussed.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://hdl.handle.net/2060/20000032919','NASA-TRS'); return false;" href="http://hdl.handle.net/2060/20000032919"><span>Accuracy Study of the Space-Time CE/SE Method for Computational Aeroacoustics Problems Involving Shock Waves</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Wang, Xiao Yen; Chang, Sin-Chung; Jorgenson, Philip C. E.</p> <p>1999-01-01</p> <p>The space-time conservation element and solution element(CE/SE) method is used to study the sound-shock interaction problem. The order of accuracy of numerical schemes is investigated. The linear model problem.govemed by the 1-D scalar convection equation, sound-shock interaction problem governed by the 1-D Euler equations, and the 1-D shock-tube problem which involves moving shock waves and contact surfaces are solved to investigate the order of accuracy of numerical schemes. It is concluded that the accuracy of the CE/SE numerical scheme with designed 2nd-order accuracy becomes 1st order when a moving shock wave exists. However, the absolute error in the CE/SE solution downstream of the shock wave is on the same order as that obtained using a fourth-order accurate essentially nonoscillatory (ENO) scheme. No special techniques are used for either high-frequency low-amplitude waves or shock waves.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/1991PhRvD..44.3164N','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/1991PhRvD..44.3164N"><span>Spherical shock waves in general relativity</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Nutku, Y.</p> <p>1991-11-01</p> <p>We present the metric appropriate to a spherical shock wave in the framework of general relativity. This is a Petrov type-N vacuum solution of the Einstein field equations where the metric is continuous across the shock and the Riemann tensor suffers a step-function discontinuity. Spherical gravitational waves are described by type-N Robinson-Trautman metrics. However, for shock waves the Robinson-Trautman solutions are unacceptable because the metric becomes discontinuous in the Robinson-Trautman coordinate system. Other coordinate systems that have so far been introduced for describing Robinson-Trautman solutions also suffer from the same defect. We shall present the C0-form of the metric appropriate to spherical shock waves using Penrose's approach of identification with warp. Further extensions of Penrose's method yield accelerating, as well as coupled electromagnetic-gravitational shock-wave solutions.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.osti.gov/biblio/22600224-observation-dust-acoustic-shock-wave-strongly-coupled-dusty-plasma','SCIGOV-STC'); return false;" href="https://www.osti.gov/biblio/22600224-observation-dust-acoustic-shock-wave-strongly-coupled-dusty-plasma"><span>Observation of dust acoustic shock wave in a strongly coupled dusty plasma</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.osti.gov/search">DOE Office of Scientific and Technical Information (OSTI.GOV)</a></p> <p>Sharma, Sumita K., E-mail: sumita-sharma82@yahoo.com; Boruah, A.; Nakamura, Y.</p> <p>2016-05-15</p> <p>Dust acoustic shock wave is observed in a strongly coupled laboratory dusty plasma. A supersonic flow of charged microparticles is allowed to perturb a stationary dust fluid to excite dust acoustic shock wave. The evolution process beginning with steepening of initial wave front and then formation of a stable shock structure is similar to the numerical results of the Korteweg-de Vries-Burgers equation. The measured Mach number of the observed shock wave agrees with the theoretical results. Reduction of shock amplitude at large distances is also observed due to the dust neutral collision and viscosity effects. The dispersion relation and themore » spatial damping of a linear dust acoustic wave are also measured and compared with the relevant theory.« less</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2018AIPC.1959f0001A','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2018AIPC.1959f0001A"><span>Various continuum approaches for studying shock wave structure in carbon dioxide</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Alekseev, I. V.; Kosareva, A. A.; Kustova, E. V.; Nagnibeda, E. A.</p> <p>2018-05-01</p> <p>Shock wave structure in carbon dioxide is studied using different continuum models within the framework of one-temperature thermal equilibrium flow description. Navier-Stokes and Euler equations as well as commonly used Rankine-Hugoniot equations with different specific heat ratios are used to find the gas-dynamic parameters behind the shock wave. The accuracy of the Rankine-Hugoniot relations in polyatomic gases is assessed, and it is shown that they give a considerable error in the predicted values of fluid-dynamic variables. The effect of bulk viscosity on the shock wave structure in CO2 is evaluated. Taking into account bulk viscosity yields a significant increase in the shock wave width; for the complete model, the shock wave thickness varies non-monotonically with the Mach number.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.osti.gov/biblio/22218356-double-shock-front-formation-cylindrical-radiative-blast-waves-produced-laser-irradiation-krypton-gas','SCIGOV-STC'); return false;" href="https://www.osti.gov/biblio/22218356-double-shock-front-formation-cylindrical-radiative-blast-waves-produced-laser-irradiation-krypton-gas"><span>Double shock front formation in cylindrical radiative blast waves produced by laser irradiation of krypton gas</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.osti.gov/search">DOE Office of Scientific and Technical Information (OSTI.GOV)</a></p> <p>Kim, I.; Quevedo, H. J.; Feldman, S.</p> <p>2013-12-15</p> <p>Radiative blast waves were created by irradiating a krypton cluster source from a supersonic jet with a high intensity femtosecond laser pulse. It was found that the radiation from the shock surface is absorbed in the optically thick upstream medium creating a radiative heat wave that travels supersonically ahead of the main shock. As the blast wave propagates into the heated medium, it slows and loses energy, and the radiative heat wave also slows down. When the radiative heat wave slows down to the transonic regime, a secondary shock in the ionization precursor is produced. This paper presents experimental datamore » characterizing both the initial and secondary shocks and numerical simulations to analyze the double-shock dynamics.« less</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2002AIPC..620...11F','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2002AIPC..620...11F"><span>The History of the APS Topical Group on Shock Compression of Condensed Matter</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Forbes, Jerry W.</p> <p>2002-07-01</p> <p>In order to provide broader scientific recognition and to advance the science of shock compressed condensed matter, a group of American Physical Society (APS) members worked within the Society to make this field an active part of the APS. Individual papers were presented at APS meetings starting in the 1940's and shock wave sessions were organized starting with the 1967 Pasadena meeting. Shock wave topical conferences began in 1979 in Pullman, WA. Signatures were obtained on a petition in 1984 from a balanced cross-section of the shock wave community to form an APS Topical Group (TG). The APS Council officially accepted the formation of the Shock Compression of Condensed Matter (SCCM) TG at its October 1984 meeting. This action firmly aligned the shock wave field with a major physical science organization. Most early topical conferences were sanctioned by the APS while those held after 1992 were official APS meetings. The topical group organizes a shock wave topical conference in odd numbered years while participating in shock wave/high pressure sessions at APS general meetings in even numbered years.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/23683207','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/23683207"><span>Symmetry of spherically converging shock waves through reflection, relating to the shock ignition fusion energy scheme.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Davie, C J; Evans, R G</p> <p>2013-05-03</p> <p>We examine the properties of perturbed spherically imploding shock waves in an ideal fluid through the collapse, bounce, and development into an outgoing shock wave. We find broad conservation of the size and shape of ingoing and outgoing perturbations when viewed at the same radius. The outgoing shock recovers the velocity of the unperturbed shock outside the strongly distorted core. The results are presented in the context of the robustness of the shock ignition approach to inertial fusion energy.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://hdl.handle.net/2060/20080039626','NASA-TRS'); return false;" href="http://hdl.handle.net/2060/20080039626"><span>Turbulence Evolution and Shock Acceleration of Solar Energetic Particles</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Chee, Ng K.</p> <p>2007-01-01</p> <p>We model the effects of self-excitation/damping and shock transmission of Alfven waves on solar-energetic-particle (SEP) acceleration at a coronal-mass-ejection (CME) driven parallel shock. SEP-excited outward upstream waves speedily bootstrap acceleration. Shock transmission further raises the SEP-excited wave intensities at high wavenumbers but lowers them at low wavenumbers through wavenumber shift. Downstream, SEP excitation of inward waves and damping of outward waves tend to slow acceleration. Nevertheless, > 2000 km/s parallel shocks at approx. 3.5 solar radii can accelerate SEPs to 100 MeV in < 5 minutes.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://ntrs.nasa.gov/search.jsp?R=19790031194&hterms=shock+tube+proceedings&qs=N%3D0%26Ntk%3DAll%26Ntx%3Dmode%2Bmatchall%26Ntt%3Dshock%2Btube%2Bproceedings','NASA-TRS'); return false;" href="https://ntrs.nasa.gov/search.jsp?R=19790031194&hterms=shock+tube+proceedings&qs=N%3D0%26Ntk%3DAll%26Ntx%3Dmode%2Bmatchall%26Ntt%3Dshock%2Btube%2Bproceedings"><span>Shock tube and shock wave research; Proceedings of the Eleventh International Symposium, University of Washington, Seattle, Wash., July 11-14, 1977</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Ahlborn, B. (Editor); Hertzberg, A.; Russell, D.</p> <p>1978-01-01</p> <p>Papers are presented on the applications of shock-wave technology to the study of hydrodynamics, the use of the pressure-wave machine for charging diesel engines, and measurements of the heat-transfer rate in gas-turbine components. Consideration is given to shock propagation along 90-degree bends, the explosive dissemination of liquids, and rotational and vibrational relaxation behind weak shock waves in water vapor. Shock phenomena associated with expansion flows are described and stratospheric-related research using the shock tube is outlined. Attention is given to shock-wave ignition of magnesium powders, Mach reflection and boundary layers, and transition in the shock-induced unsteady boundary layer on a flat plate. Shock-tube measurements of induction and post-induction rates for low-Btu gas mixtures are presented and shock-initiated ignition in COS-N2O-Ar mixtures is described. Cluster growth rates in supersaturated lead vapor are presented and a study of laser-induced plasma motion in a solenoidal magnetic field is reviewed.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2016SPIE10155E..1VD','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2016SPIE10155E..1VD"><span>Experimental investigation on aero-optical aberration of shock wave/boundary layer interactions</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Ding, Haolin; Yi, Shihe; Fu, Jia; He, Lin</p> <p>2016-10-01</p> <p>After streaming through the flow field which including the expansion, shock wave, boundary, etc., the optical wave would be distorted by fluctuations in the density field. Interactions between laminar/turbulent boundary layer and shock wave contain large number complex flow structures, which offer a condition for studying the influences that different flow structures of the complex flow field have on the aero-optical aberrations. Interactions between laminar/turbulent boundary layer and shock wave are investigated in a Mach 3.0 supersonic wind tunnel, based on nanoparticle-tracer planar laser scattering (NPLS) system. Boundary layer separation/attachment, induced suppression waves, induced shock wave, expansion fan and boundary layer are presented by NPLS images. Its spatial resolution is 44.15 μm/pixel. Time resolution is 6ns. Based on the NPLS images, the density fields with high spatial-temporal resolution are obtained by the flow image calibration, and then the optical path difference (OPD) fluctuations of the original 532nm planar wavefront are calculated using Ray-tracing theory. According to the different flow structures in the flow field, four parts are selected, (1) Y=692 600pixel; (2) Y=600 400pixel; (3) Y=400 268pixel; (4) Y=268 0pixel. The aerooptical effects of different flow structures are quantitatively analyzed, the results indicate that: the compressive waves such as incident shock wave, induced shock wave, etc. rise the density, and then uplift the OPD curve, but this kind of shock are fixed in space position and intensity, the aero-optics induced by it can be regarded as constant; The induced shock waves are induced by the coherent structure of large size vortex in the interaction between turbulent boundary layer, its unsteady characteristic decides the induced waves unsteady characteristic; The space position and intensity of the induced shock wave are fixed in the interaction between turbulent boundary layer; The boundary layer aero-optics are induced by the coherent structure of large size vortex, which result in the fluctuation of OPD.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://ntrs.nasa.gov/search.jsp?R=19960021483&hterms=attention+deficit&qs=N%3D0%26Ntk%3DAll%26Ntx%3Dmode%2Bmatchall%26Ntt%3Dattention%2Bdeficit','NASA-TRS'); return false;" href="https://ntrs.nasa.gov/search.jsp?R=19960021483&hterms=attention+deficit&qs=N%3D0%26Ntk%3DAll%26Ntx%3Dmode%2Bmatchall%26Ntt%3Dattention%2Bdeficit"><span>On the deficit problem of mass and energy of solar coronal mass ejections connected with interplanetary shocks</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Ivanchuk, V. I.; Pishkalo, N. I.</p> <p>1995-01-01</p> <p>Mean values of a number of parameters of the most powerful coronal mass ejections (CMEs) and interplanetary shocks generated by these ejections are estimated using an analysis of data obtained by the cosmic coronagraphs and spacecrafts, and geomagnetic storm measurements. It was payed attention that the shock mass and mechanical energy, averaging 5 x 10(exp 16) grm and 2 x 10(exp 32) erg respectively, are nearly 10 times larger than corresponding parameters of the ejections. So, the CME energy deficit problem seems to exist really. To solve this problem one can make an assumption that the process of the mass and energy growth of CMEs during their propagation out of the Sun observed in the solar corona is continued in supercorona too up to distances of 10-30 solar radii. This assumption is confirmed by the data analysis of five events observed using zodiacal light photometers of the HELIOS- I and HELIOS-2 spacecrafts. The mass growth rate is estimated to be equal to (1-7) x 10(exp 11) grm/sec. It is concluded that the CME contribution to mass and energy flows in the solar winds probably, is larger enough than the value of 3-5% adopted usually.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2011P%26SS...59.1039W','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2011P%26SS...59.1039W"><span>Comparative study of ion cyclotron waves at Mars, Venus and Earth</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Wei, H. Y.; Russell, C. T.; Zhang, T. L.; Blanco-Cano, X.</p> <p>2011-08-01</p> <p>Ion cyclotron waves are generated in the solar wind when it picks up freshly ionized planetary exospheric ions. These waves grow from the free energy of the highly anisotropic distribution of fresh pickup ions, and are observed in the spacecraft frame with left-handed polarization and a wave frequency near the ion's gyrofrequency. At Mars and Venus and in the Earth's polar cusp, the solar wind directly interacts with the planetary exospheres. Ion cyclotron waves with many similar properties are observed in these diverse plasma environments. The ion cyclotron waves at Mars indicate its hydrogen exosphere to be extensive and asymmetric in the direction of the interplanetary electric field. The production of fast neutrals plays an important role in forming an extended exosphere in the shape and size observed. At Venus, the region of exospheric proton cyclotron wave production may be restricted to the magnetosheath. The waves observed in the solar wind at Venus appear to be largely produced by the solar-wind-Venus interaction, with some waves at higher frequencies formed near the Sun and carried outward by the solar wind to Venus. These waves have some similarity to the expected properties of exospherically produced proton pickup waves but are characterized by magnetic connection to the bow shock or by a lack of correlation with local solar wind properties respectively. Any confusion of solar derived waves with exospherically derived ion pickup waves is not an issue at Mars because the solar-produced waves are generally at much higher frequencies than the local pickup waves and the solar waves should be mostly absorbed when convected to Mars distance as the proton cyclotron frequency in the plasma frame approaches the frequency of the solar-produced waves. In the Earth's polar cusp, the wave properties of ion cyclotron waves are quite variable. Spatial gradients in the magnetic field may cause this variation as the background field changes between the regions in which the fast neutrals are produced and where they are re-ionized and picked up. While these waves were discovered early in the magnetospheric exploration, their generation was not understood until after we had observed similar waves in the exospheres of Mars and Venus.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://hdl.handle.net/2060/19780014388','NASA-TRS'); return false;" href="http://hdl.handle.net/2060/19780014388"><span>Wake-shock interaction at a Mach number of 6</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Walsh, M. J.</p> <p>1978-01-01</p> <p>Measurements of mean pitot pressure, static pressure, and total temperature were made in the two dimensional turbulent mixing region of a wake downstream of an interaction with a shock-expansion wave system. The results indicated that: (1) the shock increased the mixing, and (2) the expansion field that followed the shock decreased the turbulent mixing. The overall effect of the shock-expansion wave interaction was dependent on the orientation of the expansion wave with respect to the intersecting shock wave. These data could be used to validate nonequilibrium turbulence modeling and numerical solution of the time averaged Navier-Stokes equations.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.gpo.gov/fdsys/pkg/CFR-2011-title21-vol8/pdf/CFR-2011-title21-vol8-sec876-5990.pdf','CFR2011'); return false;" href="https://www.gpo.gov/fdsys/pkg/CFR-2011-title21-vol8/pdf/CFR-2011-title21-vol8-sec876-5990.pdf"><span>21 CFR 876.5990 - Extracorporeal shock wave lithotripter.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.gpo.gov/fdsys/browse/collectionCfr.action?selectedYearFrom=2011&page.go=Go">Code of Federal Regulations, 2011 CFR</a></p> <p></p> <p>2011-04-01</p> <p>... focuses ultrasonic shock waves into the body to noninvasively fragment urinary calculi within the kidney... Notifications (510(k)'s) for Extracorporeal Shock Wave Lithotripters Indicated for the Fragmentation of Kidney...</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.gpo.gov/fdsys/pkg/CFR-2010-title21-vol8/pdf/CFR-2010-title21-vol8-sec876-5990.pdf','CFR'); return false;" href="https://www.gpo.gov/fdsys/pkg/CFR-2010-title21-vol8/pdf/CFR-2010-title21-vol8-sec876-5990.pdf"><span>21 CFR 876.5990 - Extracorporeal shock wave lithotripter.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.gpo.gov/fdsys/browse/collectionCfr.action?selectedYearFrom=2010&page.go=Go">Code of Federal Regulations, 2010 CFR</a></p> <p></p> <p>2010-04-01</p> <p>... focuses ultrasonic shock waves into the body to noninvasively fragment urinary calculi within the kidney... Notifications (510(k)'s) for Extracorporeal Shock Wave Lithotripters Indicated for the Fragmentation of Kidney...</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017EGUGA..1917921B','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017EGUGA..1917921B"><span>Multispacecraft study of shock-flux rope interaction</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Blanco-Cano, Xochitl; Burgess, David; Sundberg, Torbjorn; Kajdic, Primoz</p> <p>2017-04-01</p> <p>Interplanetary (IP) shocks can be driven in the solar wind by fast coronal mass ejections. These shocks can accelerate particles near the Sun and through the heliosphere, being associated to solar energetic particle (SEP) and energetic storm particle (ESP) events. IP shocks can interact with structures in the solar wind, and with planetary magnetospheres. In this study we show how the properties of an IP shock change when it interacts with a medium scale flux rope (FR) like structure. We use data measurements from CLUSTER, WIND and ACE. These three spacecraft observed the shock-FR interaction at different stages of its evolution. We find that the shock-FR interaction locally changes the shock geometry, affecting ion injection processes, and the upstream and downstream regions. While WIND and ACE observed a quasi-perpendicular shock, CLUSTER crossed a quasi-parallel shock and a foreshock with a variety of ion distributions. The complexity of the ion foreshock can be explained by the dynamics of the shock transitioning from quasi-perpendicular to quasi-parallel, and the geometry of the magnetic field around the flux rope. Interactions such as the one we discuss can occur often along the extended IP shock fronts, and hence their importance towards a better understanding of shock acceleration.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2014ApJ...787L..21K','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2014ApJ...787L..21K"><span>Transmission and Emission of Solar Energetic Particles in Semi-transparent Shocks</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Kocharov, Leon; Laitinen, Timo; Usoskin, Ilya; Vainio, Rami</p> <p>2014-06-01</p> <p>While major solar energetic particle (SEP) events are associated with coronal mass ejection (CME)-driven shocks in solar wind, accurate SEP measurements reveal that more than one component of energetic ions exist in the beginning of the events. Solar electromagnetic emissions, including nuclear gamma-rays, suggest that high-energy ions could also be accelerated by coronal shocks, and some of those particles could contribute to SEPs in interplanetary space. However, the CME-driven shock in solar wind is thought to shield any particle source beneath the shock because of the strong scattering required for the diffusive shock acceleration. In this Letter, we consider a shock model that allows energetic particles from the possible behind-shock source to appear in front of the shock simultaneously with SEPs accelerated by the shock itself. We model the energetic particle transport in directions parallel and perpendicular to the magnetic field in a spherical shock expanding through the highly turbulent magnetic sector with an embedded quiet magnetic tube, which makes the shock semi-transparent for energetic particles. The model energy spectra and time profiles of energetic ions escaping far upstream of the shock are similar to the profiles observed during the first hour of some gradual SEP events.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.osti.gov/biblio/22525491-scatter-dominated-interplanetary-transport-solar-energetic-particles-large-gradual-events-formation-double-power-law-differential-fluence-spectra-ground-level-events-during-solar-cycle','SCIGOV-STC'); return false;" href="https://www.osti.gov/biblio/22525491-scatter-dominated-interplanetary-transport-solar-energetic-particles-large-gradual-events-formation-double-power-law-differential-fluence-spectra-ground-level-events-during-solar-cycle"><span></span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.osti.gov/search">DOE Office of Scientific and Technical Information (OSTI.GOV)</a></p> <p>Li, Gen; Lee, Martin A., E-mail: gjk44@wildcats.unh.edu</p> <p></p> <p>The effects of scatter-dominated interplanetary transport on the spectral properties of the differential fluence of large gradual solar energetic particle (SEP) events are investigated analytically. The model assumes for simplicity radial constant solar wind and radial magnetic field. The radial diffusion coefficient is calculated with quasilinear theory by assuming a spectrum of Alfvén waves propagating parallel to the magnetic field. Cross-field transport is neglected. The model takes into consideration several essential features of gradual event transport: nearly isotropic ion distributions, adiabatic deceleration in a divergent solar wind, and particle radial scattering mean free paths increasing with energy. Assuming an impulsivemore » and spherically symmetric injection of SEPs with a power-law spectrum near the Sun, the predicted differential fluence spectrum exhibits at 1 AU three distinctive power laws for different energy domains. The model naturally reproduces the spectral features of the double power-law proton differential fluence spectra that tend to be observed in extremely large SEP events. We select nine western ground-level events (GLEs) out of the 16 GLEs during Solar Cycle 23 and fit the observed double power-law spectra to the analytical predictions. The compression ratio of the accelerating shock wave, the power-law index of the ambient wave intensity, and the proton radial scattering mean free path are determined for the nine GLEs. The derived parameters are generally in agreement with the characteristic values expected for large gradual SEP events.« less</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://hdl.handle.net/2060/20060008933','NASA-TRS'); return false;" href="http://hdl.handle.net/2060/20060008933"><span>Computer Aided Design of Ka-Band Waveguide Power Combining Architectures for Interplanetary Spacecraft</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Vaden, Karl R.</p> <p>2006-01-01</p> <p>Communication systems for future NASA interplanetary spacecraft require transmitter power ranging from several hundred watts to kilowatts. Several hybrid junctions are considered as elements within a corporate combining architecture for high power Ka-band space traveling-wave tube amplifiers (TWTAs). This report presents the simulated transmission characteristics of several hybrid junctions designed for a low loss, high power waveguide based power combiner.</p> </li> </ol> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_20");'>20</a></li> <li><a href="#" onclick='return showDiv("page_21");'>21</a></li> <li class="active"><span>22</span></li> <li><a href="#" onclick='return showDiv("page_23");'>23</a></li> <li><a href="#" onclick='return showDiv("page_24");'>24</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div><!-- col-sm-12 --> </div><!-- row --> </div><!-- page_22 --> <div id="page_23" class="hiddenDiv"> <div class="row"> <div class="col-sm-12"> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_21");'>21</a></li> <li><a href="#" onclick='return showDiv("page_22");'>22</a></li> <li class="active"><span>23</span></li> <li><a href="#" onclick='return showDiv("page_24");'>24</a></li> <li><a href="#" onclick='return showDiv("page_25");'>25</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div> </div> <div class="row"> <div class="col-sm-12"> <ol class="result-class" start="441"> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/27994511','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/27994511"><span>Autophagy activation protects shock wave induced renal tubular epithelial cell apoptosis may through modulation of Akt/ GSK-3β pathway.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Long, Qingzhi; Li, Xiang; He, Hui; He, Dalin</p> <p>2016-01-01</p> <p>Extracorporeal shock wave lithotripsy (ESWL) is well documented to exert destructive effect to renal cells and its mechanism is not clear. Autophagy is one of cell basic response for stressful conditions and it is important to determine cell's fate. The aim of this study is to elucidate the role of autophagy in the process of shock wave-induced renal cells injury. NRK-52E cell, a rat renal tubular epithelial cell, was exposed to shock wave at the voltage of 14KV. GFP-LC3 puncta was used to monitor Autophagy flux in the process of shock wave injury. Autophagic relative proteins, such as light chain 3 (LC3), beclin-1 and p62, were also examined. Cell variability and apoptosis were detected when inhibition autophagy with 3-methyladenine (3MA) or stimulating its activity with rapamycin during the process of shock wave injury. The role of Akt/ GSK-3β and its connection with autophagy in the process of shock wave injury were also investigated. Shock wave was confirmed to activate autophagy in renal cells, which was manifested in LC3-II turnover, beclin-1 induction and degradation of p62. Inhibition autophagy enhanced cell damage or apoptosis, whereas its stimulating was able to exert protection from shock wave injury. Akt/ GSK-3β, a cell-survival signaling pathway, can also be activated during the process. And its activation could be suppressed by blockade autophagy. Autophagy is a self-protective response for renal cells from shock wave injury. The cyto-protection of autophagy may be connected with modulation Akt/ GSK-3β pathway.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=4175346','PMC'); return false;" href="https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=4175346"><span>Shock Wave Treatment Enhances Cell Proliferation and Improves Wound Healing by ATP Release-coupled Extracellular Signal-regulated Kinase (ERK) Activation*</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pmc">PubMed Central</a></p> <p>Weihs, Anna M.; Fuchs, Christiane; Teuschl, Andreas H.; Hartinger, Joachim; Slezak, Paul; Mittermayr, Rainer; Redl, Heinz; Junger, Wolfgang G.; Sitte, Harald H.; Rünzler, Dominik</p> <p>2014-01-01</p> <p>Shock wave treatment accelerates impaired wound healing in diverse clinical situations. However, the mechanisms underlying the beneficial effects of shock waves have not yet been fully revealed. Because cell proliferation is a major requirement in the wound healing cascade, we used in vitro studies and an in vivo wound healing model to study whether shock wave treatment influences proliferation by altering major extracellular factors and signaling pathways involved in cell proliferation. We identified extracellular ATP, released in an energy- and pulse number-dependent manner, as a trigger of the biological effects of shock wave treatment. Shock wave treatment induced ATP release, increased Erk1/2 and p38 MAPK activation, and enhanced proliferation in three different cell types (C3H10T1/2 murine mesenchymal progenitor cells, primary human adipose tissue-derived stem cells, and a human Jurkat T cell line) in vitro. Purinergic signaling-induced Erk1/2 activation was found to be essential for this proliferative effect, which was further confirmed by in vivo studies in a rat wound healing model where shock wave treatment induced proliferation and increased wound healing in an Erk1/2-dependent fashion. In summary, this report demonstrates that shock wave treatment triggers release of cellular ATP, which subsequently activates purinergic receptors and finally enhances proliferation in vitro and in vivo via downstream Erk1/2 signaling. In conclusion, our findings shed further light on the molecular mechanisms by which shock wave treatment exerts its beneficial effects. These findings could help to improve the clinical use of shock wave treatment for wound healing. PMID:25118288</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/25118288','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/25118288"><span>Shock wave treatment enhances cell proliferation and improves wound healing by ATP release-coupled extracellular signal-regulated kinase (ERK) activation.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Weihs, Anna M; Fuchs, Christiane; Teuschl, Andreas H; Hartinger, Joachim; Slezak, Paul; Mittermayr, Rainer; Redl, Heinz; Junger, Wolfgang G; Sitte, Harald H; Rünzler, Dominik</p> <p>2014-09-26</p> <p>Shock wave treatment accelerates impaired wound healing in diverse clinical situations. However, the mechanisms underlying the beneficial effects of shock waves have not yet been fully revealed. Because cell proliferation is a major requirement in the wound healing cascade, we used in vitro studies and an in vivo wound healing model to study whether shock wave treatment influences proliferation by altering major extracellular factors and signaling pathways involved in cell proliferation. We identified extracellular ATP, released in an energy- and pulse number-dependent manner, as a trigger of the biological effects of shock wave treatment. Shock wave treatment induced ATP release, increased Erk1/2 and p38 MAPK activation, and enhanced proliferation in three different cell types (C3H10T1/2 murine mesenchymal progenitor cells, primary human adipose tissue-derived stem cells, and a human Jurkat T cell line) in vitro. Purinergic signaling-induced Erk1/2 activation was found to be essential for this proliferative effect, which was further confirmed by in vivo studies in a rat wound healing model where shock wave treatment induced proliferation and increased wound healing in an Erk1/2-dependent fashion. In summary, this report demonstrates that shock wave treatment triggers release of cellular ATP, which subsequently activates purinergic receptors and finally enhances proliferation in vitro and in vivo via downstream Erk1/2 signaling. In conclusion, our findings shed further light on the molecular mechanisms by which shock wave treatment exerts its beneficial effects. These findings could help to improve the clinical use of shock wave treatment for wound healing. © 2014 by The American Society for Biochemistry and Molecular Biology, Inc.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2015AGUFMSH51A2440W','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2015AGUFMSH51A2440W"><span>A Comparative Study of Shock Structures for the Halloween 2003 and the 23 July 2012 CME Events</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Wu, C. C.; Liou, K.</p> <p>2015-12-01</p> <p>Interplanetary (IP) shocks driven by coronal mass ejections (CMEs) play an important role in space weather. For example, solar energetic particles are accelerated at the shock and storm sudden commencements are produced by the impingement of the Earth by the shocks. Here, we study shocks associated with two major CME events - the Halloween 2003 and the 23 July 2012 CME events, using a three-dimensional (3D) magnetohydrodynamics model (H3DMHD). The H3DMHD (Wu et al. 2007, JGR) combines the kinematic solar wind model (HAF) for regions near the solar surface (2.5-18 Rs) and a 3D magnetohydrodynamics model (Han et al. 1988), which takes output from HAF at 18 Rs and propagates outward up to 1.7 AU. The H3DMHD code has been fully tested and is capable of simulating disturbances propagating in the solar wind. We will focus on the temporal and spatial structure of the CME-driven shocks, including the shock type and strength.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://ntrs.nasa.gov/search.jsp?R=20010114496&hterms=lazarus&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAuthor-Name%26N%3D0%26No%3D10%26Ntt%3Dlazarus','NASA-TRS'); return false;" href="https://ntrs.nasa.gov/search.jsp?R=20010114496&hterms=lazarus&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAuthor-Name%26N%3D0%26No%3D10%26Ntt%3Dlazarus"><span>The Bastille Day Magnetic Clouds and Upstream Shocks: Near Earth Interplanetary Observations</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Lepping, R. P.; Berdichevsky, D. B.; Burlaga, L. F.; Lazarus, A. J.; Kasper, J.; Desch, M. D.; Wu, C.-C.; Reames, D. V.; Singer, H. J.; Singer, H. J.; <a style="text-decoration: none; " href="javascript:void(0); " onClick="displayelement('author_20010114496'); toggleEditAbsImage('author_20010114496_show'); toggleEditAbsImage('author_20010114496_hide'); "> <img style="display:inline; width:12px; height:12px; " src="images/arrow-up.gif" width="12" height="12" border="0" alt="hide" id="author_20010114496_show"> <img style="width:12px; height:12px; display:none; " src="images/arrow-down.gif" width="12" height="12" border="0" alt="hide" id="author_20010114496_hide"></p> <p>2001-01-01</p> <p>The energetic charged particle, interplanetary magnetic field, and plasma characteristics of the 'Bastille Day' shock and ejecta/magnetic cloud events at 1 AU occurring over the days 14-16 July 2000 are described. Profiles of MeV (WIND/LEMT) energetic ions help to organize the overall sequence of events from the solar source to 1 AU. Stressed are analyses of an outstanding magnetic cloud (MC2) starting late on 15 July and its upstream shock about 4 hours earlier in WIND magnetic field and plasma data. Also analyzed is a less certain, but likely, magnetic cloud (MC1) occurring early on 15 July; this was separated from MC2 by its upstream shock and many heliospheric current sheet (HCS) crossings. Other HCS crossings occurred throughout the 3-day period. Overall this dramatic series of interplanetary events caused a large multi-phase magnetic storm with min Dst lower than -300 nT. The very fast solar wind speed (greater than or equal to 1100 km/s) in and around the front of MC2 (for near average densities) was responsible for a very high solar wind ram pressure driving in the front of the magnetosphere to geocentric distances estimated to be as low as approx. 5 R(sub E), much lower than the geosynchronous orbit radius. This was consistent with magnetic field observations from two GOES satellites which indicated they were in the magnetosheath for extended times. A static force free field model is used to fit the two magnetic cloud profiles providing estimates of the clouds' physical and geometrical properties. MC2 was much larger than MCI, but their axes were nearly antiparallel, and their magnetic fields had the same left-handed helicity. MC2's axis and its upstream shock normal were very close to being perpendicular to each other, as might be expected if the cloud were driving the shock at the time of observation. The estimated axial magnetic flux carried by MC2 was 52 x 10(exp 20) Mx, which is about 5 times the typical magnetic flux estimated for other magnetic clouds in the WIND data over its first 4 years and is 17 times the flux of MC1. This large flux is due to both the strong axially-directed field of MC2 (46.8 nT on the axis) and the large radius (R(sub 0) = 0.189 AU) of the flux tube. MC2's average speed is consistent with the expected transit time from a halo-CME to which it is apparently related.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/1895352','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/1895352"><span>Biomechanics of stair walking and jumping.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Loy, D J; Voloshin, A S</p> <p>1991-01-01</p> <p>Physical activities such as stair walking and jumping result in increased dynamic loading on the human musculoskeletal system. Use of light weight, externally attached accelerometers allows for in-vivo monitoring of the shock waves invading the human musculoskeletal system during those activities. Shock waves were measured in four subjects performing stair walking up and down, jumping in place and jumping off a fixed elevation. The results obtained show that walking down a staircase induced shock waves with amplitude of 130% of that observed in walking up stairs and 250% of the shock waves experienced in level gait. The jumping test revealed levels of the shock waves nearly eight times higher than that in level walking. It was also shown that the shock waves invading the human musculoskeletal system may be generated not only by the heel strike, but also by the metatarsal strike. To moderate the risk of degenerative joint disorders four types of viscoelastic insoles were utilized to reduce the impact generated shock waves. The insoles investigated were able to reduce the amplitude of the shock wave by between 9% and 41% depending on the insole type and particular physical activity. The insoles were more effective in the reduction of the heel strike impacts than in the reduction of the metatarsal strike impacts. In all instances, the shock attenuation capacities of the insoles tested were greater in the jumping trials than in the stair walking studies. The insoles were ranked in three groups on the basis of their shock absorbing capacity.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.osti.gov/biblio/6104673-spherical-shock-waves-general-relativity','SCIGOV-STC'); return false;" href="https://www.osti.gov/biblio/6104673-spherical-shock-waves-general-relativity"><span>Spherical shock waves in general relativity</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.osti.gov/search">DOE Office of Scientific and Technical Information (OSTI.GOV)</a></p> <p>Nutku, Y.</p> <p>1991-11-15</p> <p>We present the metric appropriate to a spherical shock wave in the framework of general relativity. This is a Petrov type-{ital N} vacuum solution of the Einstein field equations where the metric is continuous across the shock and the Riemann tensor suffers a step-function discontinuity. Spherical gravitational waves are described by type-{ital N} Robinson-Trautman metrics. However, for shock waves the Robinson-Trautman solutions are unacceptable because the metric becomes discontinuous in the Robinson-Trautman coordinate system. Other coordinate systems that have so far been introduced for describing Robinson-Trautman solutions also suffer from the same defect. We shall present the {ital C}{sup 0}-formmore » of the metric appropriate to spherical shock waves using Penrose's approach of identification with warp. Further extensions of Penrose's method yield accelerating, as well as coupled electromagnetic-gravitational shock-wave solutions.« less</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/23505053','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/23505053"><span>Shock wave treatment improves nerve regeneration in the rat.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Mense, Siegfried; Hoheisel, Ulrich</p> <p>2013-05-01</p> <p>The aims of the experiments were to: (1) determine whether low-energy shock wave treatment accelerates the recovery of muscle sensitivity and functionality after a nerve lesion; and (2) assess the effect of shock waves on the regeneration of injured nerve fibers. After compression of a muscle nerve in rats the effects of shock wave treatment on the sequelae of the lesion were tested. In non-anesthetized animals, pressure pain thresholds and exploratory activity were determined. The influence of the treatment on the distance of nerve regeneration was studied in immunohistochemical experiments. Both behavioral and immunohistochemical data show that shock wave treatment accelerates the recovery of muscle sensitivity and functionality and promotes regeneration of injured nerve fibers. Treatment with focused shock waves induces an improvement of nerve regeneration in a rodent model of nerve compression. Copyright © 2012 Wiley Periodicals, Inc.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.osti.gov/pages/biblio/1297656-oscillations-standing-shock-wave-generated-richtmyer-meshkov-instability','SCIGOV-DOEP'); return false;" href="https://www.osti.gov/pages/biblio/1297656-oscillations-standing-shock-wave-generated-richtmyer-meshkov-instability"><span>Oscillations of a standing shock wave generated by the Richtmyer-Meshkov instability</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.osti.gov/pages">DOE PAGES</a></p> <p>Mikaelian, Karnig O.</p> <p>2016-07-13</p> <p>In a typical Richtmyer-Meshkov experiment a fast moving flat shock strikes a stationary perturbed interface between fluids A and B creating a transmitted and a reflected shock, both of which are perturbed. We propose shock tube experiments in which the reflected shock is stationary in the laboratory. Such a standing perturbed shock undergoes well-known damped oscillations. We present the conditions required for producing such a standing shock wave, which greatly facilitates the measurement of the oscillations and their rate of damping. We define a critical density ratio R critical, in terms of the adiabatic indices of the two fluids, andmore » a critical Mach number M critical s of the incident shock wave, which produces a standing reflected wave. If the initial density ratio R of the two fluids is less than R critical then a standing shock wave is possible at M s=M critical s. Otherwise a standing shock is not possible and the reflected wave always moves in the direction opposite the incident shock. Examples are given for present-day operating shock tubes with sinusoidal or inclined interfaces. We consider the effect of viscosity, which affects the damping rate of the oscillations. Furthermore, we point out that nonlinear bubble and spike amplitudes depend relatively weakly on the viscosity of the fluids and that the interface area is a better diagnostic.« less</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2016RSPSA.47260141E','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2016RSPSA.47260141E"><span>Expansion shock waves in regularized shallow-water theory</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>El, Gennady A.; Hoefer, Mark A.; Shearer, Michael</p> <p>2016-05-01</p> <p>We identify a new type of shock wave by constructing a stationary expansion shock solution of a class of regularized shallow-water equations that include the Benjamin-Bona-Mahony and Boussinesq equations. An expansion shock exhibits divergent characteristics, thereby contravening the classical Lax entropy condition. The persistence of the expansion shock in initial value problems is analysed and justified using matched asymptotic expansions and numerical simulations. The expansion shock's existence is traced to the presence of a non-local dispersive term in the governing equation. We establish the algebraic decay of the shock as it is gradually eroded by a simple wave on either side. More generally, we observe a robustness of the expansion shock in the presence of weak dissipation and in simulations of asymmetric initial conditions where a train of solitary waves is shed from one side of the shock.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/10550528','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/10550528"><span>Reduction of high-energy shock-wave-induced renal tubular injury by selenium.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Strohmaier, W L; Lahme, S; Weidenbach, P M; Bichler, K H</p> <p>1999-10-01</p> <p>In shock-wave-induced renal injury cavitation-generated free radicals play an important role. Using an in vitro model with Madin-Darby canine kidney (MDCK) cells, we investigated the influence of selenium, a free radical scavenger, in shock-wave-induced tubular cell injury. Suspensions of MDCK cells (33 x 10(6) cells/ml) were placed in small containers (volume 1.1 ml) for shock wave exposure. Two groups of 12 containers each were examined: (1) control (no medication), (2) selenium (0.4 microg/ml nutrient medium). Six containers in each group were exposed to shock waves (impulse rate 256, frequency 60 Hz, generator voltage 18 kV), while the other six containers in each group served as a control. After shock wave exposure, the concentration of cellular enzymes such as lactate dehydrogenase (LDH), N-acetyl-beta-glucosaminidase (NAG), glutamate oxaloacetate transaminase (GOT) and glutamate lactate dehydrogenase (GLDH) in the nutrient medium was examined. Following shock wave exposure there was a significant rise in LDH, NAG, GOT and GLDH concentrations. Selenium reduced this enzyme leakage significantly. Thus we conclude that selenium protects renal tubular cells against shock-wave-induced injury. Since selenium is an essential part of glutathione peroxidase, this effect seems to be mediated by a reduction in reactive oxygen species.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://hdl.handle.net/2060/19870017721','NASA-TRS'); return false;" href="http://hdl.handle.net/2060/19870017721"><span>Experimental Study of Shock Wave Interference Heating on a Cylindrical Leading Edge. Ph.D. Thesis</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Wieting, Allan R.</p> <p>1987-01-01</p> <p>An experimental study of shock wave interference heating on a cylindrical leading edge representative of the cowl of a rectangular hypersonic engine inlet at Mach numbers of 6.3, 6.5, and 8.0 is presented. Stream Reynolds numbers ranged from 0.5 x 106 to 4.9 x 106 per ft. and stream total temperature ranged from 2100 to 3400 R. The model consisted of a 3" dia. cylinder and a shock generation wedge articulated to angles of 10, 12.5, and 15 deg. A fundamental understanding was obtained of the fluid mechanics of shock wave interference induced flow impingement on a cylindrical leading edge and the attendant surface pressure and heat flux distributions. The first detailed heat transfer rate and pressure distributions for two dimensional shock wave interference on a cylinder was provided along with insight into the effects of specific heat variation with temperature on the phenomena. Results show that the flow around a body in hypersonic flow is altered significantly by the shock wave interference pattern that is created by an oblique shock wave from an external source intersecting the bow shock wave produced in front of the body.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2007APS..DFD.AC008K','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2007APS..DFD.AC008K"><span>Microgravity Experiment: The Fate of Confined Shock Waves</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Kobel, P.; Obreschkow, D.; Dorsaz, N.; de Bosset, A.; Farhat, M.</p> <p>2007-11-01</p> <p>Shockwave induced cavitation is a form of hydrodynamic cavitation generated by the interaction of shock waves with vapor nuclei and microscopic impurities. Both the shock waves and the induced cavitation are known as sources of erosion damage in hydraulic industrial systems and hence represent an important research topic in fluid dynamics. Here we present the first investigation of shock wave induced cavitation inside closed and isolated liquid volumes, which confine the shock wave by reflections and thereby promise a particularly strong coupling with cavitation. A microgravity platform (ESA, 42^nd parabolic flight campaign) was used to produce stable water drops with centimetric diameters. Inside these drops, a fast electrical discharge was generated to release a strong shock wave. This setting results in an amplified form of shockwave induced cavitation, visible in high-speed images as a transient haze of sub-millimetric bubbles synchronized with the shockwave radiation. A comparison between high-speed visualizations and 3D simulations of a shock front inside a liquid sphere reveals that focus zones within the drop lead to a significantly increased density of induced cavitation. Considering shock wave crossing and focusing may hence prove crucially useful to understand the important process of cavitation erosion.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://hdl.handle.net/2060/19940011005','NASA-TRS'); return false;" href="http://hdl.handle.net/2060/19940011005"><span>On the interaction between the shock wave attached to a wedge and freestream disturbances</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Duck, Peter W.; Lasseigne, D. Glenn; Hussaini, M. Y.</p> <p>1993-01-01</p> <p>A study of the interaction of small amplitude, unsteady, freestream disturbances with a shock wave induced by a wedge in supersonic flow is presented. These disturbances may be acoustic waves, vorticity waves, or entropy waves (or indeed a combination of all three). Their interactions then generate behind the shock disturbances of all three classes, an aspect that is investigated in some detail, our motivation being to investigate possible mechanisms for boundary-layer receptivity, caused through the amplification and modification of freestream turbulence through the shock-body coupling. Also, the possibility of enhanced mixing owing to additional vorticity produced by the shock-body coupling is investigated.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/21806412','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/21806412"><span>Role of helmet in the mechanics of shock wave propagation under blast loading conditions.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Ganpule, S; Gu, L; Alai, A; Chandra, N</p> <p>2012-01-01</p> <p>The effectiveness of helmets in extenuating the primary shock waves generated by the explosions of improvised explosive devices is not clearly understood. In this work, the role of helmet on the overpressurisation and impulse experienced by the head were examined. The shock wave-head interactions were studied under three different cases: (i) unprotected head, (ii) head with helmet but with varying head-helmet gaps and (iii) head covered with helmet and tightly fitting foam pads. The intensification effect was discussed by examining the shock wave flow pattern and verified with experiments. A helmet with a better protection against shock wave is suggested.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/23411473','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/23411473"><span>Biodamage via shock waves initiated by irradiation with ions.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Surdutovich, Eugene; Yakubovich, Alexander V; Solov'yov, Andrey V</p> <p>2013-01-01</p> <p>Radiation damage following the ionising radiation of tissue has different scenarios and mechanisms depending on the projectiles or radiation modality. We investigate the radiation damage effects due to shock waves produced by ions. We analyse the strength of the shock wave capable of directly producing DNA strand breaks and, depending on the ion's linear energy transfer, estimate the radius from the ion's path, within which DNA damage by the shock wave mechanism is dominant. At much smaller values of linear energy transfer, the shock waves turn out to be instrumental in propagating reactive species formed close to the ion's path to large distances, successfully competing with diffusion.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.osti.gov/biblio/22036386-optical-observation-shock-waves-cavitation-bubbles-high-intensity-laser-induced-shock-processes','SCIGOV-STC'); return false;" href="https://www.osti.gov/biblio/22036386-optical-observation-shock-waves-cavitation-bubbles-high-intensity-laser-induced-shock-processes"><span>Optical observation of shock waves and cavitation bubbles in high intensity laser-induced shock processes</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.osti.gov/search">DOE Office of Scientific and Technical Information (OSTI.GOV)</a></p> <p>Marti-Lopez, L.; Ocana, R.; Porro, J. A.</p> <p>2009-07-01</p> <p>We report an experimental study of the temporal and spatial dynamics of shock waves, cavitation bubbles, and sound waves generated in water during laser shock processing by single Nd:YAG laser pulses of nanosecond duration. A fast ICCD camera (2 ns gate time) was employed to record false schlieren photographs, schlieren photographs, and Mach-Zehnder interferograms of the zone surrounding the laser spot site on the target, an aluminum alloy sample. We recorded hemispherical shock fronts, cylindrical shock fronts, plane shock fronts, cavitation bubbles, and phase disturbance tracks.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.osti.gov/biblio/22666106-average-spatial-distribution-cosmic-rays-behind-interplanetary-shockglobal-muon-detector-network-observations','SCIGOV-STC'); return false;" href="https://www.osti.gov/biblio/22666106-average-spatial-distribution-cosmic-rays-behind-interplanetary-shockglobal-muon-detector-network-observations"><span>AVERAGE SPATIAL DISTRIBUTION OF COSMIC RAYS BEHIND THE INTERPLANETARY SHOCK—GLOBAL MUON DETECTOR NETWORK OBSERVATIONS</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.osti.gov/search">DOE Office of Scientific and Technical Information (OSTI.GOV)</a></p> <p>Kozai, M.; Munakata, K.; Kato, C.</p> <p>2016-07-10</p> <p>We analyze the galactic cosmic ray (GCR) density and its spatial gradient in Forbush Decreases (FDs) observed with the Global Muon Detector Network (GMDN) and neutron monitors (NMs). By superposing the GCR density and density gradient observed in FDs following 45 interplanetary shocks (IP-shocks), each associated with an identified eruption on the Sun, we infer the average spatial distribution of GCRs behind IP-shocks. We find two distinct modulations of GCR density in FDs, one in the magnetic sheath and the other in the coronal mass ejection (CME) behind the sheath. The density modulation in the sheath is dominant in themore » western flank of the shock, while the modulation in the CME ejecta stands out in the eastern flank. This east–west asymmetry is more prominent in GMDN data responding to ∼60 GV GCRs than in NM data responding to ∼10 GV GCRs, because of the softer rigidity spectrum of the modulation in the CME ejecta than in the sheath. The geocentric solar ecliptic- y component of the density gradient, G {sub y}, shows a negative (positive) enhancement in FDs caused by the eastern (western) eruptions, while G {sub z} shows a negative (positive) enhancement in FDs caused by the northern (southern) eruptions. This implies that the GCR density minimum is located behind the central flank of IP-shocks and propagating radially outward from the location of the solar eruption. We also confirmed that the average G {sub z} changes its sign above and below the heliospheric current sheet, in accord with the prediction of the drift model for the large-scale GCR transport in the heliosphere.« less</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.osti.gov/biblio/22522348-large-solar-energetic-particle-events-associated-filament-eruptions-outside-active-regions','SCIGOV-STC'); return false;" href="https://www.osti.gov/biblio/22522348-large-solar-energetic-particle-events-associated-filament-eruptions-outside-active-regions"><span>LARGE SOLAR ENERGETIC PARTICLE EVENTS ASSOCIATED WITH FILAMENT ERUPTIONS OUTSIDE ACTIVE REGIONS</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.osti.gov/search">DOE Office of Scientific and Technical Information (OSTI.GOV)</a></p> <p>Gopalswamy, N.; Mäkelä, P.; Akiyama, S.</p> <p>2015-06-10</p> <p>We report on four large filament eruptions (FEs) from solar cycles 23 and 24 that were associated with large solar energetic particle (SEP) events and interplanetary type II radio bursts. The post-eruption arcades corresponded mostly to C-class soft X-ray enhancements, but an M1.0 flare was associated with one event. However, the associated coronal mass ejections (CMEs) were fast (speeds ∼ 1000 km s{sup −1}) and appeared as halo CMEs in the coronagraph field of view. The interplanetary type II radio bursts occurred over a wide wavelength range, indicating the existence of strong shocks throughout the inner heliosphere. No metric typemore » II bursts were present in three events, indicating that the shocks formed beyond 2–3 Rs. In one case, there was a metric type II burst with low starting frequency, indicating a shock formation height of ∼2 Rs. The FE-associated SEP events did have softer spectra (spectral index >4) in the 10–100 MeV range, but there were other low-intensity SEP events with spectral indices ≥4. Some of these events are likely FE-SEP events, but were not classified as such in the literature because they occurred close to active regions. Some were definitely associated with large active region flares, but the shock formation height was large. We definitely find a diminished role for flares and complex type III burst durations in these large SEP events. Fast CMEs and shock formation at larger distances from the Sun seem to be the primary characteristics of the FE-associated SEP events.« less</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/17552901','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/17552901"><span>Biological effects of two successive shock waves focused on liver tissues and melanoma cells.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Benes, J; Sunka, P; Králová, J; Kaspar, J; Poucková, P</p> <p>2007-01-01</p> <p>A new generator of two successive shock waves focused to a common focal point has been developed. Cylindrical pressure waves created by multichannel electrical discharges on two cylindrical composite anodes are focused by a metallic parabolic reflector - cathode, and near the focus they are transformed to strong shock waves. Schlieren photos of the focal region have demonstrated that mutual interaction of the two waves results in generation of a large number of secondary short-wavelength shocks. Interaction of the focused shockwaves with liver tissues and cancer cell suspensions was investigated. Localized injury of rabbit liver induced by the shock waves was demonstrated by magnetic resonance imaging. Histological analysis of liver samples taken from the injured region revealed that the transition between the injured and the healthy tissues is sharp. Suspension of melanoma B16 cells was exposed and the number of the surviving cells rapidly decreased with increasing number of shocks and only 8 % of cells survived 350 shocks. Photographs of cells demonstrate that even small number of shocks results in perforation of cell membranes.</p> </li> </ol> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_21");'>21</a></li> <li><a href="#" onclick='return showDiv("page_22");'>22</a></li> <li class="active"><span>23</span></li> <li><a href="#" onclick='return showDiv("page_24");'>24</a></li> <li><a href="#" onclick='return showDiv("page_25");'>25</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div><!-- col-sm-12 --> </div><!-- row --> </div><!-- page_23 --> <div id="page_24" class="hiddenDiv"> <div class="row"> <div class="col-sm-12"> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_21");'>21</a></li> <li><a href="#" onclick='return showDiv("page_22");'>22</a></li> <li><a href="#" onclick='return showDiv("page_23");'>23</a></li> <li class="active"><span>24</span></li> <li><a href="#" onclick='return showDiv("page_25");'>25</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div> </div> <div class="row"> <div class="col-sm-12"> <ol class="result-class" start="461"> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=4841653','PMC'); return false;" href="https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=4841653"><span>On the formation of Friedlander waves in a compressed-gas-driven shock tube</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pmc">PubMed Central</a></p> <p>Tasissa, Abiy F.; Hautefeuille, Martin; Fitek, John H.; Radovitzky, Raúl A.</p> <p>2016-01-01</p> <p>Compressed-gas-driven shock tubes have become popular as a laboratory-scale replacement for field blast tests. The well-known initial structure of the Riemann problem eventually evolves into a shock structure thought to resemble a Friedlander wave, although this remains to be demonstrated theoretically. In this paper, we develop a semi-analytical model to predict the key characteristics of pseudo blast waves forming in a shock tube: location where the wave first forms, peak over-pressure, decay time and impulse. The approach is based on combining the solutions of the two different types of wave interactions that arise in the shock tube after the family of rarefaction waves in the Riemann solution interacts with the closed end of the tube. The results of the analytical model are verified against numerical simulations obtained with a finite volume method. The model furnishes a rational approach to relate shock tube parameters to desired blast wave characteristics, and thus constitutes a useful tool for the design of shock tubes for blast testing. PMID:27118888</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2006AIPC..838..291F','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2006AIPC..838..291F"><span>25 Years of ESWL — From the Past to the Future</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Forssmann, Bernd</p> <p>2006-05-01</p> <p>It was a revolution in the treatment of urolithiasis 25 years ago, when the first extracorporeal shock wave lithotripsy (ESWL) was carried out on the prototype HM1 equipped with an electrohydraulic shock wave source. Further developments led to the HM3, the legendary bath tub that is used with high success to this day. The history of investigations to disintegrate urinary stone with one shock wave pulse by means of high power is described. Break trough for clinical application was achieved when the shock waves were applied in a sequence of pulses with low energy. In the late eighties the effectiveness of second generation lithotripters wase only judged by means of peak pressure and focal extension so that effectiveness was often misinterpreted. Despite standardization of shock wave parameters the assessment of lithotripters remains unsatisfactory. The concept of effective energy considers the whole temporal and spatial field of the shock wave and allows to determine the energy dose of stone disintegration. Thus, clinical energy dose is expected to reveal additional information to evaluate the success of shock wave lithotripsy in terms of fragmentation and side effects.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://hdl.handle.net/2060/19960050025','NASA-TRS'); return false;" href="http://hdl.handle.net/2060/19960050025"><span>Computation of Thermally Perfect Properties of Oblique Shock Waves</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Tatum, Kenneth E.</p> <p>1996-01-01</p> <p>A set of compressible flow relations describing flow properties across oblique shock waves, derived for a thermally perfect, calorically imperfect gas, is applied within the existing thermally perfect gas (TPG) computer code. The relations are based upon a value of cp expressed as a polynomial function of temperature. The updated code produces tables of compressible flow properties of oblique shock waves, as well as the original properties of normal shock waves and basic isentropic flow, in a format similar to the tables for normal shock waves found in NACA Rep. 1135. The code results are validated in both the calorically perfect and the calorically imperfect, thermally perfect temperature regimes through comparisons with the theoretical methods of NACA Rep. 1135, and with a state-of-the-art computational fluid dynamics code. The advantages of the TPG code for oblique shock wave calculations, as well as for the properties of isentropic flow and normal shock waves, are its ease of use, and its applicability to any type of gas (monatomic, diatomic, triatomic, polyatomic, or any specified mixture thereof).</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.osti.gov/biblio/22303668-head-collision-dust-acoustic-shock-waves-strongly-coupled-dusty-plasmas','SCIGOV-STC'); return false;" href="https://www.osti.gov/biblio/22303668-head-collision-dust-acoustic-shock-waves-strongly-coupled-dusty-plasmas"><span></span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.osti.gov/search">DOE Office of Scientific and Technical Information (OSTI.GOV)</a></p> <p>EL-Shamy, E. F., E-mail: emadel-shamy@hotmail.com; Department of Physics, College of Science, King Khalid University, P.O. 9004, Abha; Al-Asbali, A. M., E-mail: aliaa-ma@hotmail.com</p> <p></p> <p>A theoretical investigation is carried out to study the propagation and the head-on collision of dust-acoustic (DA) shock waves in a strongly coupled dusty plasma consisting of negative dust fluid, Maxwellian distributed electrons and ions. Applying the extended Poincaré–Lighthill–Kuo method, a couple of Korteweg–deVries–Burgers equations for describing DA shock waves are derived. This study is a first attempt to deduce the analytical phase shifts of DA shock waves after collision. The impacts of physical parameters such as the kinematic viscosity, the unperturbed electron-to-dust density ratio, parameter determining the effect of polarization force, the ion-to-electron temperature ratio, and the effective dustmore » temperature-to-ion temperature ratio on the structure and the collision of DA shock waves are examined. In addition, the results reveal the increase of the strength and the steepness of DA shock waves as the above mentioned parameters increase, which in turn leads to the increase of the phase shifts of DA shock waves after collision. The present model may be useful to describe the structure and the collision of DA shock waves in space and laboratory dusty plasmas.« less</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=2923385','PMC'); return false;" href="https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=2923385"><span>Shock wave lithotripsy: advances in technology and technique</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pmc">PubMed Central</a></p> <p>Lingeman, James E.; McAteer, James A.; Gnessin, Ehud; Evan, Andrew P.</p> <p>2010-01-01</p> <p>Shock wave lithotripsy (SWL) is the only noninvasive method for stone removal. Once considered as a primary option for the treatment of virtually all stones, SWL is now recognized to have important limitations that restrict its use. In particular, the effectiveness of SWL is severely limited by stone burden, and treatment with shock waves carries the risk of acute injury with the potential for long-term adverse effects. Research aiming to characterize the renal response to shock waves and to determine the mechanisms of shock wave action in stone breakage and renal injury has begun to suggest new treatment strategies to improve success rates and safety. Urologists can achieve better outcomes by treating at slower shock wave rate using a step-wise protocol. The aim is to achieve stone comminution using as few shock waves and at as low a power level as possible. Important challenges remain, including the need to improve acoustic coupling, enhance stone targeting, better determine when stone breakage is complete, and minimize the occurrence of residual stone fragments. New technologies have begun to address many of these issues, and hold considerable promise for the future. PMID:19956196</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017AcAau.140..284W','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017AcAau.140..284W"><span>Research on shock wave characteristics in the isolator of central strut rocket-based combined cycle engine under Ma5.5</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Wei, Xianggeng; Xue, Rui; Qin, Fei; Hu, Chunbo; He, Guoqiang</p> <p>2017-11-01</p> <p>A numerical calculation of shock wave characteristics in the isolator of central strut rocket-based combined cycle (RBCC) engine fueled by kerosene was carried out in this paper. A 3D numerical model was established by the DES method. The kerosene chemical kinetic model used the 9-component and 12-step simplified mechanism model. Effects of fuel equivalence ratio, inflow total temperature and central strut rocket on-off on shock wave characteristics were studied under Ma5.5. Results demonstrated that with the increase of equivalence ratio, the leading shock wave moves toward upstream, accompanied with higher possibility of the inlet unstart. However, the leading shock wave moves toward downstream as the inflow total temperature rises. After the central strut rocket is closed, the leading shock wave moves toward downstream, which can reduce risks of the inlet unstart. State of the shear layer formed by the strut rocket jet flow and inflow can influence the shock train structure significantly.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://hdl.handle.net/2060/19740017687','NASA-TRS'); return false;" href="http://hdl.handle.net/2060/19740017687"><span>Time-resolved spectroscopic measurements behind incident and reflected shock waves in air and xenon</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Yoshinaga, T.</p> <p>1973-01-01</p> <p>Time-resolved spectra have been obtained behind incident and reflected shock waves in air and xenon at initial pressures of 0.1 and 1.0 torr using a rotating drum spectrograph and the OSU (The Ohio State University) arc-driven shock tube. These spectra were used to determine the qualitative nature of the flow as well as for making estimates of the available test time. The (n+1,n) and (n,n) band spectra of N2(+) (1st negative) were observed in the test gas behind incident shock waves in air at p1=1.0 torr and Us=9-10 km/sec. Behind reflected shock waves in air, the continuum of spectra appeared to cover almost the entire wavelength of 2,500-7,000 A for the shock-heated test gas. For xenon, the spectra for the incident shock wave cases for p1=0.1 torr show an interesting structure in which two intensely bright regions are witnessed in the time direction. The spectra obtained behind reflected shock waves in xenon were also dominated by continuum radiation but included strong absorption spectra due to FeI and FeII from the moment the reflected shock passed and on.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017ShWav..27..109H','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017ShWav..27..109H"><span>Shock wave interactions between slender bodies. Some aspects of three-dimensional shock wave diffraction</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Hooseria, S. J.; Skews, B. W.</p> <p>2017-01-01</p> <p>A complex interference flowfield consisting of multiple shocks and expansion waves is produced when high-speed slender bodies are placed in close proximity. The disturbances originating from a generator body impinge onto the adjacent receiver body, modifying the local flow conditions over the receiver. This paper aims to uncover the basic gas dynamics produced by two closely spaced slender bodies in a supersonic freestream. Experiments and numerical simulations were used to interpret the flowfield, where good agreement between the predictions and measurements was observed. The numerical data were then used to characterise the attenuation associated with shock wave diffraction, which was found to be interdependent with the bow shock contact perimeter over the receiver bodies. Shock-induced boundary layer separation was observed over the conical and hemispherical receiver bodies. These strong viscous-shock interactions result in double-reflected, as well as double-diffracted shock wave geometries in the interference region, and the diffracting waves progress over the conical and hemispherical receivers' surfaces in "lambda" type configurations. This gives evidence that viscous effects can have a substantial influence on the local bow shock structure surrounding high-speed slender bodies in close proximity.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2011PhFl...23k3301C','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2011PhFl...23k3301C"><span>Experimental investigation of the propagation of a planar shock wave through a two-phase gas-liquid medium</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Chauvin, A.; Jourdan, G.; Daniel, E.; Houas, L.; Tosello, R.</p> <p>2011-11-01</p> <p>We conducted a series of shock tube experiments to study the influence of a cloud of water droplets on the propagation of a planar shock wave. In a vertically oriented shock tube, the cloud of droplets was released downwards into the air at atmospheric pressure while the shock wave propagated upwards. Two shock wave Mach numbers, 1.3 and 1.5, and three different heights of clouds, 150 mm, 400 mm, and 700 mm, were tested with an air-water volume fraction and a droplet diameter fixed at 1.2% and 500 μm, respectively. From high-speed visualization and pressure measurements, we analyzed the effect of water clouds on the propagation of the shock wave. It was shown that the pressure histories recorded in the two-phase gas-liquid mixture are different from those previously obtained in the gas-solid case. This different behavior is attributed to the process of atomization of the droplets, which is absent in the gas-solid medium. Finally, it was observed that the shock wave attenuation was dependent on the exchange surface crossed by the shock combined with the breakup criterion.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/28002459','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/28002459"><span>Targeting Taxanes to Castration-Resistant Prostate Cancer Cells by Nanobubbles and Extracorporeal Shock Waves.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Marano, Francesca; Rinella, Letizia; Argenziano, Monica; Cavalli, Roberta; Sassi, Francesca; D'Amelio, Patrizia; Battaglia, Antonino; Gontero, Paolo; Bosco, Ornella; Peluso, Rossella; Fortunati, Nicoletta; Frairia, Roberto; Catalano, Maria Graziella</p> <p>2016-01-01</p> <p>To target taxanes to castration-resistant prostate cancer cells, glycol-chitosan nanobubbles loaded with paclitaxel and docetaxel were constructed. The loaded nanobubbles were then combined with Extracorporeal Shock Waves, acoustic waves widely used in urology and orthopedics, with no side effects. Nanobubbles, with an average diameter of 353.3 ± 15.5 nm, entered two different castration-resistant prostate cancer cells (PC3 and DU145) as demonstrated by flow cytometry and immunofluorescence. The shock waves applied increased the amount of intracellular nanobubbles. Loading nanobubbles with paclitaxel and docetaxel and combining them with shock waves generated the highest cytotoxic effects, resulting in a paclitaxel GI50 reduction of about 55% and in a docetaxel GI50 reduction of about 45% respectively. Combined treatment also affected cell migration. Paclitaxel-loaded nanobubbles and shock waves reduced cell migration by more than 85% with respect to paclitaxel alone; whereas docetaxel-loaded nanobubbles and shock waves reduced cell migration by more than 82% with respect to docetaxel alone. The present data suggest that nanobubbles can act as a stable taxane reservoir in castration-resistant prostate cancer cells and shock waves can further increase drug release from nanobubbles leading to higher cytotoxic and anti-migration effect.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2018PhFl...30e6104I','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2018PhFl...30e6104I"><span>Numerical investigation of the interaction between a planar shock wave with square and triangular bubbles containing different gases</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Igra, Dan; Igra, Ozer</p> <p>2018-05-01</p> <p>The interaction between a planar shock wave and square and triangular bubbles containing either SF6, He, Ar, or CO2 is studied numerically. It is shown that, due to the existing large differences in the molecular weight, the specific heat ratio, and the acoustic impedance between these gases, different wave patterns and pressure distribution inside the bubbles are developed during the interaction process. In the case of heavy gases, the velocity of the shock wave propagating along the bubble inner surface is always less than that of the incident shock wave and higher than that of the transmitted shock wave. However, in the case of the light gas (He), the fastest one is the transmitted shock wave and the slowest one is the incident shock wave. The largest pressure jump is witnessed in the SF6 case, while the smallest pressure jump is seen in the helium case. There are also pronounced differences in the deformation of the investigated bubbles; while triangular bubbles filled with either Ar, CO2, or SF6 were deformed to a crescent shape, the helium bubble is deformed to a trapezoidal shape with three pairs of vortices emanating from its surface.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://ntrs.nasa.gov/search.jsp?R=19820046924&hterms=energy+solar&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D50%26Ntt%3Denergy%2Bsolar','NASA-TRS'); return false;" href="https://ntrs.nasa.gov/search.jsp?R=19820046924&hterms=energy+solar&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D50%26Ntt%3Denergy%2Bsolar"><span>Amplitudes of solar modulation of low energy cosmic rays</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Von Rosenvinge, T. T.; Paizis, C.</p> <p>1982-01-01</p> <p>There have been differences of opinion regarding the origin and behavior of the solar modulation of galactic cosmic rays. It has been shown that the return to solar maximum intensity levels beginning in early 1978 was dominated by Forbush decreases. These Forbush decreases were caused by radially moving interplanetary shocks resulting from large solar flares. The present investigation is concerned with solar modulation effects which were observed during the previous solar minimum. The effects were associated with high-speed streams in the solar wind. These streams caused the formation of corotating interaction regions with both forward and reverse shocks. The modulation effects seen near earth are intimately connected with these shocks.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2012RScI...83d5111C','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2012RScI...83d5111C"><span>Oxy-acetylene driven laboratory scale shock tubes for studying blast wave effects</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Courtney, Amy C.; Andrusiv, Lubov P.; Courtney, Michael W.</p> <p>2012-04-01</p> <p>This paper describes the development and characterization of modular, oxy-acetylene driven laboratory scale shock tubes. Such tools are needed to produce realistic blast waves in a laboratory setting. The pressure-time profiles measured at 1 MHz using high-speed piezoelectric pressure sensors have relevant durations and show a true shock front and exponential decay characteristic of free-field blast waves. Descriptions are included for shock tube diameters of 27-79 mm. A range of peak pressures from 204 kPa to 1187 kPa (with 0.5-5.6% standard error of the mean) were produced by selection of the driver section diameter and distance from the shock tube opening. The peak pressures varied predictably with distance from the shock tube opening while maintaining both a true blast wave profile and relevant pulse duration for distances up to about one diameter from the shock tube opening. This shock tube design provides a more realistic blast profile than current compression-driven shock tubes, and it does not have a large jet effect. In addition, operation does not require specialized personnel or facilities like most blast-driven shock tubes, which reduces operating costs and effort and permits greater throughput and accessibility. It is expected to be useful in assessing the response of various sensors to shock wave loading; assessing the reflection, transmission, and absorption properties of candidate armor materials; assessing material properties at high rates of loading; assessing the response of biological materials to shock wave exposure; and providing a means to validate numerical models of the interaction of shock waves with structures. All of these activities have been difficult to pursue in a laboratory setting due in part to lack of appropriate means to produce a realistic blast loading profile.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017ShWav..27..879T','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017ShWav..27..879T"><span>Piecewise parabolic method for simulating one-dimensional shear shock wave propagation in tissue-mimicking phantoms</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Tripathi, B. B.; Espíndola, D.; Pinton, G. F.</p> <p>2017-11-01</p> <p>The recent discovery of shear shock wave generation and propagation in the porcine brain suggests that this new shock phenomenology may be responsible for a broad range of traumatic injuries. Blast-induced head movement can indirectly lead to shear wave generation in the brain, which could be a primary mechanism for injury. Shear shock waves amplify the local acceleration deep in the brain by up to a factor of 8.5, which may tear and damage neurons. Currently, there are numerical methods that can model compressional shock waves, such as comparatively well-studied blast waves, but there are no numerical full-wave solvers that can simulate nonlinear shear shock waves in soft solids. Unlike simplified representations, e.g., retarded time, full-wave representations describe fundamental physical behavior such as reflection and heterogeneities. Here we present a piecewise parabolic method-based solver for one-dimensional linearly polarized nonlinear shear wave in a homogeneous medium and with empirical frequency-dependent attenuation. This method has the advantage of being higher order and more directly extendable to multiple dimensions and heterogeneous media. The proposed numerical scheme is validated analytically and experimentally and compared to other shock capturing methods. A Riemann step-shock problem is used to characterize the numerical dissipation. This dissipation is then tuned to be negligible with respect to the physical attenuation by choosing an appropriate grid spacing. The numerical results are compared to ultrasound-based experiments that measure planar polarized shear shock wave propagation in a tissue-mimicking gelatin phantom. Good agreement is found between numerical results and experiment across a 40 mm propagation distance. We anticipate that the proposed method will be a starting point for the development of a two- and three-dimensional full-wave code for the propagation of nonlinear shear waves in heterogeneous media.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2007APS..DFD.BJ001H','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2007APS..DFD.BJ001H"><span>A midsummer-night's shock wave</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Hargather, Michael; Liebner, Thomas; Settles, Gary</p> <p>2007-11-01</p> <p>The aerial pyrotechnic shells used in professional display fireworks explode a bursting charge at altitude in order to disperse the ``stars'' of the display. The shock wave from the bursting charge is heard on the ground as a loud report, though it has by then typically decayed to a mere sound wave. However, viewers seated near the standard safety borders can still be subjected to weak shock waves. These have been visualized using a large, portable, retro-reflective ``Edgerton'' shadowgraph technique and a high-speed digital video camera. Images recorded at 10,000 frames per second show essentially-planar shock waves from 10- and 15-cm firework shells impinging on viewers during the 2007 Central Pennsylvania July 4th Festival. The shock speed is not measurably above Mach 1, but we nonetheless conclude that, if one can sense a shock-like overpressure, then the wave motion is strong enough to be observed by density-sensitive optics.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.osti.gov/biblio/1418915-propagation-dispersion-shock-waves-magnetoelastic-materials','SCIGOV-STC'); return false;" href="https://www.osti.gov/biblio/1418915-propagation-dispersion-shock-waves-magnetoelastic-materials"><span>Propagation and dispersion of shock waves in magnetoelastic materials</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.osti.gov/search">DOE Office of Scientific and Technical Information (OSTI.GOV)</a></p> <p>Crum, R. S.; Domann, J. P.; Carman, G. P.</p> <p></p> <p>Previous studies examining the response of magnetoelastic materials to shock waves have predominantly focused on applications involving pulsed power generation, with limited attention given to the actual wave propagation characteristics. This study provides detailed magnetic and mechanical measurements of magnetoelastic shock wave propagation and dispersion. Laser generated rarefacted shock waves exceeding 3 GPa with rise times of 10 ns were introduced to samples of the magnetoelastic material Galfenol. The resulting mechanical measurements reveal the evolution of the shock into a compressive acoustic front with lateral release waves. Importantly, the wave continues to disperse even after it has decayed into anmore » acoustic wave, due in large part to magnetoelastic coupling. The magnetic data reveal predominantly shear wave mediated magnetoelastic coupling, and were also used to noninvasively measure the wave speed. The external magnetic field controlled a 30% increase in wave propagation speed, attributed to a 70% increase in average stiffness. Lastly, magnetic signals propagating along the sample over 20× faster than the mechanical wave were measured, indicating these materials can act as passive antennas that transmit information in response to mechanical stimuli.« less</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017SMaS...26l5027C','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017SMaS...26l5027C"><span>Propagation and dispersion of shock waves in magnetoelastic materials</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Crum, R. S.; Domann, J. P.; Carman, G. P.; Gupta, V.</p> <p>2017-12-01</p> <p>Previous studies examining the response of magnetoelastic materials to shock waves have predominantly focused on applications involving pulsed power generation, with limited attention given to the actual wave propagation characteristics. This study provides detailed magnetic and mechanical measurements of magnetoelastic shock wave propagation and dispersion. Laser generated rarefacted shock waves exceeding 3 GPa with rise times of 10 ns were introduced to samples of the magnetoelastic material Galfenol. The resulting mechanical measurements reveal the evolution of the shock into a compressive acoustic front with lateral release waves. Importantly, the wave continues to disperse even after it has decayed into an acoustic wave, due in large part to magnetoelastic coupling. The magnetic data reveal predominantly shear wave mediated magnetoelastic coupling, and were also used to noninvasively measure the wave speed. The external magnetic field controlled a 30% increase in wave propagation speed, attributed to a 70% increase in average stiffness. Finally, magnetic signals propagating along the sample over 20× faster than the mechanical wave were measured, indicating these materials can act as passive antennas that transmit information in response to mechanical stimuli.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.osti.gov/pages/biblio/1418915-propagation-dispersion-shock-waves-magnetoelastic-materials','SCIGOV-DOEP'); return false;" href="https://www.osti.gov/pages/biblio/1418915-propagation-dispersion-shock-waves-magnetoelastic-materials"><span>Propagation and dispersion of shock waves in magnetoelastic materials</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.osti.gov/pages">DOE PAGES</a></p> <p>Crum, R. S.; Domann, J. P.; Carman, G. P.; ...</p> <p>2017-11-15</p> <p>Previous studies examining the response of magnetoelastic materials to shock waves have predominantly focused on applications involving pulsed power generation, with limited attention given to the actual wave propagation characteristics. This study provides detailed magnetic and mechanical measurements of magnetoelastic shock wave propagation and dispersion. Laser generated rarefacted shock waves exceeding 3 GPa with rise times of 10 ns were introduced to samples of the magnetoelastic material Galfenol. The resulting mechanical measurements reveal the evolution of the shock into a compressive acoustic front with lateral release waves. Importantly, the wave continues to disperse even after it has decayed into anmore » acoustic wave, due in large part to magnetoelastic coupling. The magnetic data reveal predominantly shear wave mediated magnetoelastic coupling, and were also used to noninvasively measure the wave speed. The external magnetic field controlled a 30% increase in wave propagation speed, attributed to a 70% increase in average stiffness. Lastly, magnetic signals propagating along the sample over 20× faster than the mechanical wave were measured, indicating these materials can act as passive antennas that transmit information in response to mechanical stimuli.« less</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/26465270','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/26465270"><span>Finite element modelling of radial shock wave therapy for chronic plantar fasciitis.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Alkhamaali, Zaied K; Crocombe, Andrew D; Solan, Matthew C; Cirovic, Srdjan</p> <p>2016-01-01</p> <p>Therapeutic use of high-amplitude pressure waves, or shock wave therapy (SWT), is emerging as a popular method for treating musculoskeletal disorders. However, the mechanism(s) through which this technique promotes healing are unclear. Finite element models of a shock wave source and the foot were constructed to gain a better understanding of the mechanical stimuli that SWT produces in the context of plantar fasciitis treatment. The model of the shock wave source was based on the geometry of an actual radial shock wave device, in which pressure waves are generated through the collision of two metallic objects: a projectile and an applicator. The foot model was based on the geometry reconstructed from magnetic resonance images of a volunteer and it comprised bones, cartilage, soft tissue, plantar fascia, and Achilles tendon. Dynamic simulations were conducted of a single and of two successive shock wave pulses administered to the foot. The collision between the projectile and the applicator resulted in a stress wave in the applicator. This wave was transmitted into the soft tissue in the form of compression-rarefaction pressure waves with an amplitude of the order of several MPa. The negative pressure at the plantar fascia reached values of over 1.5 MPa, which could be sufficient to generate cavitation in the tissue. The results also show that multiple shock wave pulses may have a cumulative effect in terms of strain energy accumulation in the foot.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.osti.gov/biblio/22663597-shock-dynamics-stellar-outbursts-shock-formation','SCIGOV-STC'); return false;" href="https://www.osti.gov/biblio/22663597-shock-dynamics-stellar-outbursts-shock-formation"><span></span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.osti.gov/search">DOE Office of Scientific and Technical Information (OSTI.GOV)</a></p> <p>Ro, Stephen; Matzner, Christopher D., E-mail: ro@astro.utoronto.ca</p> <p></p> <p>Wave-driven outflows and non-disruptive explosions have been implicated in pre-supernova outbursts, supernova impostors, luminous blue variable eruptions, and some narrow-line and superluminous supernovae. To model these events, we investigate the dynamics of stars set in motion by strong acoustic pulses and wave trains, focusing on nonlinear wave propagation, shock formation, and an early phase of the development of a weak shock. We identify the shock formation radius, showing that a heuristic estimate based on crossing characteristics matches an exact expansion around the wave front and verifying both with numerical experiments. Our general analytical condition for shock formation applies to one-dimensionalmore » motions within any static environment, including both eruptions and implosions. We also consider the early phase of shock energy dissipation. We find that waves of super-Eddington acoustic luminosity always create shocks, rather than damping by radiative diffusion. Therefore, shock formation is integral to super-Eddington outbursts.« less</p> </li> </ol> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_21");'>21</a></li> <li><a href="#" onclick='return showDiv("page_22");'>22</a></li> <li><a href="#" onclick='return showDiv("page_23");'>23</a></li> <li class="active"><span>24</span></li> <li><a href="#" onclick='return showDiv("page_25");'>25</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div><!-- col-sm-12 --> </div><!-- row --> </div><!-- page_24 --> <div id="page_25" class="hiddenDiv"> <div class="row"> <div class="col-sm-12"> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_21");'>21</a></li> <li><a href="#" onclick='return showDiv("page_22");'>22</a></li> <li><a href="#" onclick='return showDiv("page_23");'>23</a></li> <li><a href="#" onclick='return showDiv("page_24");'>24</a></li> <li class="active"><span>25</span></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div> </div> <div class="row"> <div class="col-sm-12"> <ol class="result-class" start="481"> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2014cosp...40E1986M','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2014cosp...40E1986M"><span>Dusty Plasma Effects in the Interplanetary Medium?</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Mann, Ingrid; Issautier, Karine; Meyer-Vernet, Nicole; Le Chat, Gaétan; Czechowski, Andrzej; Zaslavsky, Arnaud; Zouganelis, Yannis; Belheouane, Soraya</p> <p></p> <p>Cosmic dust particles exist in a variety of compositions and sizes in the interplanetary medium. There is little direct information on the composition, but those interplanetary dust particles that are collected in the upper Earth’s atmosphere and can be studied in the laboratory typically have an irregular, sometimes porous structure on scales <100 nm. They contain magnesium-rich silicates and silicon carbide, iron-nickel and iron-sulfur compounds, calcium- and aluminum oxides, and chemical compounds that contain a large mass fraction of carbon (e.g. carbonaceous species). A fraction of the dust originates from comets, but because of their bulk material temperature of about 280 K near 1 AU, most icy compounds have disappeared. The dust particles are embedded in the solar wind, a hot plasma with at 1 AU kinetic temperatures around 100 000 K and flow direction nearly radial outward from the Sun at supersonic bulk velocities around 400 km/s. Since the dust particles carry an electric surface charge they are subject to electromagnetic forces and the nanodust particles are efficiently accelerated to velocities of order of solar wind speed. The acceleration of the nanodust is similar, but not identical to the formation of pick-up ions. The S/WAVES radio wave instrument on STEREO measured a flux of nanodust at 1 AU [1]. The nanodust probably forms in the region inward of 1 AU and is accelerated by the solar wind as discussed. We also discuss the different paths of dust - plasma interactions in the interplanetary medium and their observations with space experiments. Comparing these interactions we show that the interplanetary medium near 1 AU can in many cases be described as “dust in plasma" rather than "dusty plasma”. [1] S. Belheouane, N. Meyer-Vernet, K. Issautier, G. Le Chat, A. Zaslavsky, Y. Zouganelis, I. Mann, A. Czechowski: Dynamics of nanoparticles detected at 1 AU by S/WAVES onboard STEREO spacecraft, in this session.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.osti.gov/biblio/22598932-magnetosonic-shock-wave-collisional-pair-ion-plasma','SCIGOV-STC'); return false;" href="https://www.osti.gov/biblio/22598932-magnetosonic-shock-wave-collisional-pair-ion-plasma"><span>Magnetosonic shock wave in collisional pair-ion plasma</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.osti.gov/search">DOE Office of Scientific and Technical Information (OSTI.GOV)</a></p> <p>Adak, Ashish, E-mail: ashish-adak@yahoo.com; Khan, Manoranjan, E-mail: mkhan.ju@gmail.com; Sikdar, Arnab, E-mail: arnabs.ju@gmail.com</p> <p>2016-06-15</p> <p>Nonlinear propagation of magnetosonic shock wave has been studied in collisional magnetized pair-ion plasma. The masses of both ions are same but the temperatures are slightly different. Two fluid model has been taken to describe the model. Two different modes of the magnetosonic wave have been obtained. The dynamics of the nonlinear magnetosonic wave is governed by the Korteweg-de Vries Burgers' equation. It has been shown that the ion-ion collision is the source of dissipation that causes the Burgers' term which is responsible for the shock structures in equal mass pair-ion plasma. The numerical investigations reveal that the magnetosonic wavemore » exhibits both oscillatory and monotonic shock structures depending on the strength of the dissipation. The nonlinear wave exhibited the oscillatory shock wave for strong magnetic field (weak dissipation) and monotonic shock wave for weak magnetic field (strong dissipation). The results have been discussed in the context of the fullerene pair-ion plasma experiments.« less</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/26211244','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/26211244"><span>[Research on Energy Distribution During Osteoarthritis Treatment Using Shock Wave Lithotripsy].</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Zhang, Shinian; Wang, Xiaofeng; Zhang, Dong</p> <p>2015-04-01</p> <p>Extracorporeal shock wave treatment is capable of providing a non-surgical and effective treatment modality for patients suffering from osteoarthritis. The major objective of current works is to investigate how the shock wave (SW) field would change if a bony structure exists in the path of the acoustic wave. Firstly, a model of finite element method (FEM) was developed based on Comsol software in the present study. Then, high-speed photography experiments were performed to record cavitation bubbles with the presence of mimic bone. On the basis of comparing experimental with simulated results, the effectiveness of FEM model could be verified. Finally, the energy distribution during extracorporeal shock wave treatment was predicted. The results showed that the shock wave field was deflected with the presence of bony structure and varying deflection angles could be observed as the bone shifted up in the z-direction relative to shock wave geometric focus. Combining MRI/CT scans to FEM modeling is helpful for better standardizing the treatment dosage and optimizing treatment protocols in the clinic.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2018AdSpR..61..749Y','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2018AdSpR..61..749Y"><span>Science objectives of the magnetic field experiment onboard Aditya-L1 spacecraft</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Yadav, Vipin K.; Srivastava, Nandita; Ghosh, S. S.; Srikar, P. T.; Subhalakshmi, Krishnamoorthy</p> <p>2018-01-01</p> <p>The Aditya-L1 is first Indian solar mission scheduled to be placed in a halo orbit around the first Lagrangian point (L1) of Sun-Earth system in the year 2018-19. The approved scientific payloads onboard Aditya-L1 spacecraft includes a Fluxgate Digital Magnetometer (FGM) to measure the local magnetic field which is necessary to supplement the outcome of other scientific experiments onboard. The in-situ vector magnetic field data at L1 is essential for better understanding of the data provided by the particle and plasma analysis experiments, onboard Aditya-L1 mission. Also, the dynamics of Coronal Mass Ejections (CMEs) can be better understood with the help of in-situ magnetic field data at the L1 point region. This data will also serve as crucial input for the short lead-time space weather forecasting models. The proposed FGM is a dual range magnetic sensor on a 6 m long boom mounted on the Sun viewing panel deck and configured to deploy along the negative roll direction of the spacecraft. Two sets of sensors (tri-axial each) are proposed to be mounted, one at the tip of boom (6 m from the spacecraft) and other, midway (3 m from the spacecraft). The main science objective of this experiment is to measure the magnitude and nature of the interplanetary magnetic field (IMF) locally and to study the disturbed magnetic conditions and extreme solar events by detecting the CME from Sun as a transient event. The proposed secondary science objectives are to study the impact of interplanetary structures and shock solar wind interaction on geo-space environment and to detect low frequency plasma waves emanating from the solar corona at L1 point. This will provide a better understanding on how the Sun affects interplanetary space. In this paper, we shall give the main scientific objectives of the magnetic field experiment and brief technical details of the FGM onboard Aditya-1 spacecraft.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017EGUGA..19.3689C','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017EGUGA..19.3689C"><span>Statistical analysis of solar events associated with SSC over one year of solar maximum during cycle 23: propagation and effects from the Sun to the Earth</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Cornilleau-Wehrlin, Nicole; Bocchialini, Karine; Menvielle, Michel; Chambodut, Aude; Fontaine, Dominique; Grison, Benjamin; Marchaudon, Aurélie; Pick, Monique; Pitout, Frédéric; Schmieder, Brigitte; Régnier, Stéphane; Zouganelis, Yannis</p> <p>2017-04-01</p> <p>Taking the 32 sudden storm commencements (SSC) listed by the observatory de l'Ebre / ISGI over the year 2002 (maximal solar activity) as a starting point, we performed a statistical analysis of the related solar sources, solar wind signatures, and terrestrial responses. For each event, we characterized and identified, as far as possible, (i) the sources on the Sun (Coronal Mass Ejections -CME-), with the help of a series of criteria (velocities, drag coefficient, radio waves, helicity), as well as (ii) the structure and properties in the interplanetary medium, at L1, of the event associated to the SSC: magnetic clouds -MC-, non-MC interplanetary coronal mass ejections -ICME-, co-rotating/stream interaction regions -SIR/CIR-, shocks only and unclear events that we call "miscellaneous" events. The observed Sun-to-Earth travel times are compared to those estimated using existing simple models of propagation in the interplanetary medium. This comparison is used to statistically assess performances of various models. The geoeffectiveness of the events, classified by category at L1, is analysed by their signatures in the Earth ionized (magnetosphere and ionosphere) and neutral (thermosphere) environments, using a broad set of in situ, remote and ground based instrumentation. The role of the presence of a unique or of a multiple source at the Sun, of its nature, halo or non halo CME, is also discussed. The set of observations is statistically analyzed so as to evaluate and compare the geoeffectiveness of the events. The results obtained for this set of geomagnetic storms started by SSCs is compared to the overall statistics of year 2002, relying on already published catalogues of events, allowing assessing the relevance of our approach (for instance the all 12 well identified Magnetic Clouds of 2002 give rise to SSCs).</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=4893191','PMC'); return false;" href="https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=4893191"><span>Expansion shock waves in regularized shallow-water theory</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pmc">PubMed Central</a></p> <p>El, Gennady A.; Shearer, Michael</p> <p>2016-01-01</p> <p>We identify a new type of shock wave by constructing a stationary expansion shock solution of a class of regularized shallow-water equations that include the Benjamin–Bona–Mahony and Boussinesq equations. An expansion shock exhibits divergent characteristics, thereby contravening the classical Lax entropy condition. The persistence of the expansion shock in initial value problems is analysed and justified using matched asymptotic expansions and numerical simulations. The expansion shock's existence is traced to the presence of a non-local dispersive term in the governing equation. We establish the algebraic decay of the shock as it is gradually eroded by a simple wave on either side. More generally, we observe a robustness of the expansion shock in the presence of weak dissipation and in simulations of asymmetric initial conditions where a train of solitary waves is shed from one side of the shock. PMID:27279780</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://hdl.handle.net/2060/19960003341','NASA-TRS'); return false;" href="http://hdl.handle.net/2060/19960003341"><span>Shock waves data for minerals</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Ahrens, Thomas J.; Johnson, Mary L.</p> <p>1994-01-01</p> <p>Shock compression of the materials of planetary interiors yields data which upon comparison with density-pressure and density-sound velocity profiles constrain internal composition and temperature. Other important applications of shock wave data and related properties are found in the impact mechanics of terrestrial planets and solid satellites. Shock wave equation of state, shock-induced dynamic yielding and phase transitions, and shock temperature are discussed. In regions where a substantial phase change in the material does not occur, the relationship between the particle velocity, U(sub p), and the shock velocity, U(sub s), is given by U(sub s) = C(sub 0) + S U(sub p), where C(sub 0) is the shock velocity at infinitesimally small particle velocity, or the ambient pressure bulk sound velocity. Numerical values for the shock wave equation of state for minerals and related materials of the solar system are provided.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2018ShWav.tmp....3B','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2018ShWav.tmp....3B"><span>Evolution of scalar and velocity dynamics in planar shock-turbulence interaction</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Boukharfane, R.; Bouali, Z.; Mura, A.</p> <p>2018-01-01</p> <p>Due to the short residence time of air in supersonic combustors, achieving efficient mixing in compressible turbulent reactive flows is crucial for the design of supersonic ramjet (Scramjet) engines. In this respect, improving the understanding of shock-scalar mixing interactions is of fundamental importance for such supersonic combustion applications. In these compressible flows, the interaction between the turbulence and the shock wave is reciprocal, and the coupling between them is very strong. A basic understanding of the physics of such complex interactions has already been obtained through the analysis of relevant simplified flow configurations, including propagation of the shock wave in density-stratified media, shock-wave-mixing-layer interaction, and shock-wave-vortex interaction. Amplification of velocity fluctuations and substantial changes in turbulence characteristic length scales are the most well-known outcomes of shock-turbulence interaction, which may also deeply influence scalar mixing between fuel and oxidizer. The effects of the shock wave on the turbulence have been widely characterized through the use of so-called amplification factors, and similar quantities are introduced herein to characterize the influence of the shock wave on scalar mixing. One of the primary goals of the present study is indeed to extend previous analyses to the case of shock-scalar mixing interaction, which is directly relevant to supersonic combustion applications. It is expected that the shock wave will affect the scalar dissipation rate (SDR) dynamics. Special emphasis is placed on the modification of the so-called turbulence-scalar interaction as a leading-order contribution to the production of mean SDR, i.e., a quantity that defines the mixing rate and efficiency. To the best of the authors' knowledge, this issue has never been addressed in detail in the literature, and the objective of the present study is to scrutinize this influence. The turbulent mixing of a passive (i.e., chemically inert) scalar in the presence of a shock wave is thus investigated using high-resolution numerical simulations. The starting point of the analysis relies on the transport equations of the variance of the mixture fraction, i.e., a fuel inlet tracer that quantifies the mixing between fuel and oxidizer. The influence of the shock wave is investigated for three distinct values of the shock Mach number M, and the obtained results are compared to reference solutions featuring no shock wave. The computed solutions show that the shock wave significantly modifies the scalar field topology. The larger the value of M, the stronger is the amplification of the alignment of the scalar gradient with the most compressive principal direction of the strain-rate tensor, which signifies the enhancement of scalar mixing with the shock Mach number.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.osti.gov/pages/biblio/1221156-long-lived-relativistic-electron-storage-ring-embedded-earth-outer-van-allen-belt','SCIGOV-DOEP'); return false;" href="https://www.osti.gov/pages/biblio/1221156-long-lived-relativistic-electron-storage-ring-embedded-earth-outer-van-allen-belt"><span>A long-lived relativistic electron storage ring embedded in Earth's Outer Van Allen belt</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.osti.gov/pages">DOE PAGES</a></p> <p>Baker, D. N.; Kanekal, S. G.; Hoxie, V. C.; ...</p> <p>2013-02-28</p> <p>Since their discovery over 50 years ago, the Earth’s Van Allen radiation belts are thought to consist of two distinct zones of trapped, highly energetic charged particles. The outer zone is comprised predominantly of mega-electron volt (MeV) electrons that wax and wane in intensity on time scales ranging from hours to days depending primarily on external forcing by the solar wind. Thus, the spatially separated inner zone is comprised of commingled high-energy electrons and very energetic positive ions (mostly protons), the latter being stable in intensity levels over years to decades. In situ energy-specific and temporally resolved spacecraft observations revealmore » an isolated third ring, or torus, of high-energy (E > 2 MeV) electrons that formed on 2 September 2012 and persisted largely unchanged in the geocentric radial range of 3.0 to ~3.5 Earth radii for over four weeks before being disrupted (and virtually annihilated) by a powerful interplanetary shock wave passage.« less</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017AGUFMSH41B2780N','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017AGUFMSH41B2780N"><span>Searching for a Link Between Suprathermal Ions and Solar Wind Parameters During Quiet Times.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Nickell, J.; Desai, M. I.; Dayeh, M. A.</p> <p>2017-12-01</p> <p>The acceleration processes that suprathermal particles undergo are largely ambiguous. The two prevailing acceleration processes are: 1) Continuous acceleration in the IP space due to i) Bulk velocity fluctuations (e.g., Fahr et al. 2012), ii) magnetic compressions (e.g., Fisk and Gloeckler 2012), iii) magnetic field waves and turbulence (e.g., Zhang and Lee 2013), and iv) reconnection between magnetic islands (e.g., Drake et al. 2014) . 2) Discrete acceleration that occurs in discrete solar events such as CIRs, CME-driven shocks, and flares (e.g., Reames 1999, Desai et al. 2008). Using data from ACE/ULEIS during solar cycles 23 and 24 (1997-present), we examine the solar wind and magnetic field parameters during quiet-times (e.g., Dayeh et al. 2017) in an attempt to gain insights into the acceleration processes of the suprathermal particle population. In particular, we look for compression regions by performing comparative studies between solar wind and magnetic field parameters during quiet-times in the interplanetary space.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2008JGRA..11310102Q','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2008JGRA..11310102Q"><span>Local and nonlocal geometry of interplanetary coronal mass ejections: Galactic cosmic ray (GCR) short-period variations and magnetic field modeling</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Quenby, J. J.; Mulligan, T.; Blake, J. B.; Mazur, J. E.; Shaul, D.</p> <p>2008-10-01</p> <p>Energetic galactic cosmic ray (GCR) particles, arriving within the solar system, are modulated by the overall interplanetary field carried in the solar wind. Localized disturbances related to solar activity cause further reduction in intensity, the largest being Forbush decreases in which fluxes can fall ˜20% over a few days. Understanding Forbush decreases leads to a better understanding of the magnetic field structure related to shock waves and fast streams originating at the Sun since the propagation characteristics of the GCR probe much larger regions of space than do individual spacecraft instruments. We examined the temporal history of the integral GCR fluence (≥100 MeV) measured by the high-sensitivity telescope (HIST) aboard the Polar spacecraft, along with the solar wind magnetic field and plasma data from the ACE spacecraft during a 40-day period encompassing the 25 September 1998 Forbush decrease. We also examined the Forbush and (energetic storm particles) ESP event on 28 October 2003. It is the use of HIST in a high-counting-rate integral mode that allows previously poorly seen, short-scale depressions in the GCR fluxes to be observed, adding crucial information on the origin of GCR modulation. Variability on time scales within the frequency range 0.001-1.0 mHz is detected. This paper concentrates on investigating four simple models for explaining short-term reductions in the GCR intensity of both small and large amplitude. Specifically, these models are a local increase in magnetic scattering power, the passage of a shock discontinuity, and the passage of a tangential discontinuity or magnetic rope in the solar wind plasma. Analysis of the short-scale GCR depressions during a test period in September through October 1998 shows that they are not correlated with changes in magnetic scattering power or fluctuations in solar wind speed or plasma density. However, magnetic field and plasma data during the test period of Forbush decrease strongly suggest the presence of an interplanetary coronal mass ejection (ICME). Use of a non-force-free magnetic rope model in conjunction with the energetic particle data allows modeling of the geometry of the ICME in terms of a magnetic cloud topology. It is only this cloud configuration that allows a satisfactory explanation of the magnitude of the Forbush event of 25 September 1998. Calculations made during the test period point to short-scale GCR depressions being caused by either small-scale magnetic flux rope structures or possibly tangential discontinuities in the solar wind.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/15181804','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/15181804"><span>Shock-wave propagation and cavitation bubble oscillation by Nd:YAG laser ablation of a metal in water.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Chen, Xiao; Xu, Rong-Qing; Chen, Jian-Ping; Shen, Zhong-Hua; Jian, Lu; Ni, Xiao-Wu</p> <p>2004-06-01</p> <p>A highly sensitive fiber-optic sensor based on optical beam deflection is applied for investigating the propagation of a laser-induced plasma shock wave, the oscillation of a cavitation bubble diameter, and the development of a bubble-collapse-induced shock wave when a Nd:YAG laser pulse is focused upon an aluminum surface in water. By the sequence of experimental waveforms detected at different distances, the attenuation properties of the plasma shock wave and of the bubble-collapse-induced shock wave are obtained. Besides, based on characteristic signals, both the maximum and the minimum bubble radii at each oscillation cycle are determined, as are the corresponding oscillating periods.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2018AAS...23221101G','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2018AAS...23221101G"><span>Overview of Solar Radio Bursts and their Sources</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Golla, Thejappa; MacDowall, Robert J.</p> <p>2018-06-01</p> <p>Properties of radio bursts emitted by the Sun at frequencies below tens of MHz are reviewed. In this frequency range, the most prominent radio emissions are those of solar type II, complex type III and solar type IV radio bursts, excited probably by the energetic electron populations accelerated in completely different environments: (1) type II bursts are due to non-relativistic electrons accelerated by the CME driven interplanetary shocks, (2) complex type III bursts are due to near-relativistic electrons accelerated either by the solar flare reconnection process or by the SEP shocks, and (3) type IV bursts are due to relativistic electrons, trapped in the post-eruption arcades behind CMEs; these relativistic electrons probably are accelerated by the continued reconnection processes occurring beneath the CME. These radio bursts, which can serve as the natural plasma probes traversing the heliosphere by providing information about various crucial space plasma parameters, are also an ideal instrument for investigating acceleration mechanisms responsible for the high energy particles. The rich collection of valuable high quality radio and high time resolution in situ wave data from the WAVES experiments of the STEREO A, STEREO B and WIND spacecraft has provided an unique opportunity to study these different radio phenomena and understand the complex physics behind their excitation. We have developed Monte Carlo simulation techniques to estimate the propagation effects on the observed characteristics of these low frequency radio bursts. We will present some of the new results and describe how one can use these radio burst observations for space weather studies. We will also describe some of the non-linear plasma processes detected in the source regions of both solar type III and type II radio bursts. The analysis and simulation techniques used in these studies will be of immense use for future space based radio observations.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://ntrs.nasa.gov/search.jsp?R=20090007485&hterms=data+sets&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D30%26Ntt%3Ddata%2Bsets','NASA-TRS'); return false;" href="https://ntrs.nasa.gov/search.jsp?R=20090007485&hterms=data+sets&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D30%26Ntt%3Ddata%2Bsets"><span>Radiation Transport of Heliospheric Lyman-alpha from Combined Cassini and Voyager Data Sets</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Pryor, W.; Gangopadhyay, P.; Sandel, B.; Forrester, T.; Quemerais, E.; Moebius, E.; Esposito, L.; Stewart, I.; McClintock, W.; Jouchoux, A.; <a style="text-decoration: none; " href="javascript:void(0); " onClick="displayelement('author_20090007485'); toggleEditAbsImage('author_20090007485_show'); toggleEditAbsImage('author_20090007485_hide'); "> <img style="display:inline; width:12px; height:12px; " src="images/arrow-up.gif" width="12" height="12" border="0" alt="hide" id="author_20090007485_show"> <img style="width:12px; height:12px; display:none; " src="images/arrow-down.gif" width="12" height="12" border="0" alt="hide" id="author_20090007485_hide"></p> <p>2008-01-01</p> <p>Heliospheric neutral hydrogen scatters solar Lyman-alpha radiation from the Sun with '27-day' intensity modulations observed near Earth due to the Sun's rotation combined with Earth's orbital motion. These modulations are increasingly damped in amplitude at larger distances from the Sun due to multiple scattering in the heliosphere, providing a diagnostic of the interplanetary neutral hydrogen density independent of instrument calibration. This paper presents Cassini data from 2003-2004 obtained downwind near Saturn at approximately 10 AU that at times show undamped '27-day' waves in good agreement with the single-scattering models of Pryor et al., 1992. Simultaneous Voyager 1 data from 2003- 2004 obtained upwind at a distance of 88.8-92.6 AU from the Sun show waves damped by a factor of -0.21. The observed degree of damping is interpreted in terms of Monte Carlo multiple-scattering calculations (e.g., Keller et al., 1981) applied to two heliospheric hydrogen two-shock density distributions (discussed in Gangopadhyay et al., 2006) calculated in the frame of the Baranov-Malama model of the solar wind interaction with the two-component (neutral hydrogen and plasma) interstellar wind (Baranov and Malama 1993, Izmodenov et al., 2001, Baranov and Izmodenov, 2006). We conclude that multiple scattering is definitely occurring in the outer heliosphere. Both models compare favorably to the data, using heliospheric neutral H densities at the termination shock of 0.085 cm(exp -3) and 0.095 cm(exp -3). This work generally agrees with earlier discussions of Voyager data in Quemerais et al., 1996 showing the importance of multiple scattering but is based on Voyager data obtained at larger distances from the Sun (with larger damping) simultaneously with Cassini data obtained closer to the Sun.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2013SoSyR..47..520G','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2013SoSyR..47..520G"><span>On the boundary conditions on a shock wave for hypersonic flow around a descent vehicle</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Golomazov, M. M.; Ivankov, A. A.</p> <p>2013-12-01</p> <p>Stationary hypersonic flow around a descent vehicle is examined by considering equilibrium and nonequilibrium reactions. We study how physical-chemical processes and shock wave conditions for gas species influence the shock-layer structure. It is shown that conservation conditions of species on the shock wave cause high-temperature and concentration gradients in the shock layer when we calculate spacecraft deceleration trajectory in the atmosphere at 75 km altitude.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2016PrAeS..82...36G','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2016PrAeS..82...36G"><span>Pseudo-shock waves and their interactions in high-speed intakes</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Gnani, F.; Zare-Behtash, H.; Kontis, K.</p> <p>2016-04-01</p> <p>In an air-breathing engine the flow deceleration from supersonic to subsonic conditions takes places inside the isolator through a gradual compression consisting of a series of shock waves. The wave system, referred to as a pseudo-shock wave or shock train, establishes the combustion chamber entrance conditions, and therefore influences the performance of the entire propulsion system. The characteristics of the pseudo-shock depend on a number of variables which make this flow phenomenon particularly challenging to be analysed. Difficulties in experimentally obtaining accurate flow quantities at high speeds and discrepancies of numerical approaches with measured data have been readily reported. Understanding the flow physics in the presence of the interaction of numerous shock waves with the boundary layer in internal flows is essential to developing methods and control strategies. To counteract the negative effects of shock wave/boundary layer interactions, which are responsible for the engine unstart process, multiple flow control methodologies have been proposed. Improved analytical models, advanced experimental methodologies and numerical simulations have allowed a more in-depth analysis of the flow physics. The present paper aims to bring together the main results, on the shock train structure and its associated phenomena inside isolators, studied using the aforementioned tools. Several promising flow control techniques that have more recently been applied to manipulate the shock wave/boundary layer interaction are also examined in this review.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/28356649','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/28356649"><span>The effects of extracorporeal shock wave therapy on the pain and function of patients with degenerative knee arthritis.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Lee, Ji-Hyun; Lee, Sangyong; Choi, SeokJoo; Choi, Yoon-Hee; Lee, Kwansub</p> <p>2017-03-01</p> <p>[Purpose] The purpose of this study was to identify the effects of extracorporeal shock wave therapy on the pain and function of patients with degenerative knee arthritis. [Subjects and Methods] Twenty patients with degenerative knee arthritis were divided into a conservative physical therapy group (n=10) and an extracorporeal shock wave therapy group (n=10). Both groups received general conservative physical therapy, and the extracorporeal shock wave therapy was additionally treated with extracorporeal shock wave therapy after receiving conservative physical therapy. Both groups were treated three times a week over a four-week period. The visual analogue scale was used to evaluate pain in the knee joints of the subjects, and the Korean Western Ontario and McMaster Universities Osteoarthritis Index was used to evaluate the function of the subjects. [Results] The comparison of the visual analogue scale and Korean Western Ontario and McMaster Universities Osteoarthritis Index scores within each group before and after the treatment showed statistically significant declines in scores in both the conservative physical therapy group and extracorporeal shock wave therapy group. A group comparison after the treatment showed statistically significant differences in these scores in the extracorporeal shock wave therapy group and the conservative physical therapy group. [Conclusion] extracorporeal shock wave therapy may be a useful nonsurgical intervention for reducing the pain of patients with degenerative knee arthritis and improving these patients' function.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/23915523','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/23915523"><span>Extracorporeal shock wave stimulates expression of the angiogenic genes via mechanosensory complex in endothelial cells: mimetic effect of fluid shear stress in endothelial cells.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Ha, Chang Hoon; Kim, Sunghyen; Chung, Jihwa; An, Shung Hyen; Kwon, Kihwan</p> <p>2013-10-09</p> <p>Extracorporeal shock wave has been used in the noninvasive treatment of various diseases including musculoskeletal disorders. In particular, shock wave with low energy level showed anti-inflammatory effect and increased angiogenesis in ischemic tissues. However, the detailed cellular pathway in endothelial signaling is not fully understood. We investigate the role of shock wave with low energy level in angiogenic gene expression and underlying molecular mechanism by comparing the laminar and oscillatory fluid shear stresses in endothelial cells. We show that shock wave with low energy level (0.012-0.045 mJ/mm(2)) stimulated phosphorylation of Akt, eNOS and Erk 1/2 in a time-dependent manner which is similar to the effect of laminar fluid shear stress. The transfection of endothelial cells with siRNA encoding VEGFR2, VE-cadherin and PECAM-1 inhibited shock wave-induced phosphorylation of Akt, eNOS and Erk 1/2 and angiogenic gene expressions, including Akt, eNOS, KLF2/4, and Nur77. Moreover, mechanical stimulation through extracorporeal shock wave induced endothelial cell migration and tube formation. Our results demonstrate that shock wave-induced Akt/eNOS phosphorylation and angiogenic gene expression were mediated through the mechanosensory complex formation involving VEGFR-2, VE-cadherin and PECAM-1 which was similar to the effect of laminar shear stress. © 2013.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.osti.gov/biblio/20875740-explosively-driven-shock-induced-damage-ofhc-copper','SCIGOV-STC'); return false;" href="https://www.osti.gov/biblio/20875740-explosively-driven-shock-induced-damage-ofhc-copper"><span>Explosively Driven Shock Induced Damage in OFHC Copper</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.osti.gov/search">DOE Office of Scientific and Technical Information (OSTI.GOV)</a></p> <p>Koller, D. D.; Hixson, R. S.; Gray, G. T. III</p> <p></p> <p>OFHC Cu samples were subjected to shock loading using plane wave HE lenses to produce a uniaxial Taylor wave profile (shock followed by immediate release). Upon arrival of the shock wave at the free surface of the sample, the wave is reflected and propagates back into the sample as a release wave. It is the interaction of initial and reflected release waves that place the material in a localized state of tension which can ultimately result in damage and possibly complete failure of the material. The peak tensile stress and its location in the material are determined by the wavemore » shape. Damage evolution processes and localized behavior are discussed based on results from time-resolved free surface velocity (VISAR) interferometry and post shock metallurgical analysis of the soft recovered samples.« less</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/1993ExFl...15..183L','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/1993ExFl...15..183L"><span>Head-on collision of normal shock waves with rigid porous materials</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Levy, A.; Ben-Dor, G.; Skews, B. W.; Sorek, S.</p> <p>1993-08-01</p> <p>The head-on collision of a planar shock wave with a rigid porous material has been investigated experimentally in a 75 mm × 75 mm shock tube. The experimental study indicated that unlike the reflection from a flexible porous material (e.g., polyurethane foam) where the transmitted compression waves do not converge to a sharp shock wave, in the case of a rigid porous material (e.g., alumina) the transmitted compression waves do converge to a sharp shock wave, which decays as it propagates along the porous material. In addition to this major difference, many other differences were observed. They are outlined in the following sections. Based on these observations a suggestion modifying the phenomenology of the reflection/interaction process in the case a porous material with large permeability is proposed.</p> </li> </ol> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_21");'>21</a></li> <li><a href="#" onclick='return showDiv("page_22");'>22</a></li> <li><a href="#" onclick='return showDiv("page_23");'>23</a></li> <li><a href="#" onclick='return showDiv("page_24");'>24</a></li> <li class="active"><span>25</span></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div><!-- col-sm-12 --> </div><!-- row --> </div><!-- page_25 --> <div class="footer-extlink text-muted" style="margin-bottom:1rem; text-align:center;">Some links on this page may take you to non-federal websites. Their policies may differ from this site.</div> </div><!-- container --> <a id="backToTop" href="#top"> Top </a> <footer> <nav> <ul class="links"> <li><a href="/sitemap.html">Site Map</a></li> <li><a href="/website-policies.html">Website Policies</a></li> <li><a href="https://www.energy.gov/vulnerability-disclosure-policy" target="_blank">Vulnerability Disclosure Program</a></li> <li><a href="/contact.html">Contact Us</a></li> </ul> </nav> </footer> <script type="text/javascript"><!-- // var lastDiv = ""; function showDiv(divName) { // hide last div if (lastDiv) { document.getElementById(lastDiv).className = "hiddenDiv"; } //if value of the box is not nothing and an object with that name exists, then change the class if (divName && document.getElementById(divName)) { document.getElementById(divName).className = "visibleDiv"; lastDiv = divName; } } //--> </script> <script> /** * Function that tracks a click on an outbound link in Google Analytics. * This function takes a valid URL string as an argument, and uses that URL string * as the event label. */ var trackOutboundLink = function(url,collectionCode) { try { h = window.open(url); setTimeout(function() { ga('send', 'event', 'topic-page-click-through', collectionCode, url); }, 1000); } catch(err){} }; </script> <!-- Google Analytics --> <script> (function(i,s,o,g,r,a,m){i['GoogleAnalyticsObject']=r;i[r]=i[r]||function(){ (i[r].q=i[r].q||[]).push(arguments)},i[r].l=1*new Date();a=s.createElement(o), m=s.getElementsByTagName(o)[0];a.async=1;a.src=g;m.parentNode.insertBefore(a,m) })(window,document,'script','//www.google-analytics.com/analytics.js','ga'); ga('create', 'UA-1122789-34', 'auto'); ga('send', 'pageview'); </script> <!-- End Google Analytics --> <script> showDiv('page_1') </script> </body> </html>