NASA Technical Reports Server (NTRS)
Beckley, L. E.
1977-01-01
Progress in various space flight research programs is reported. Emphasis is placed on X-ray astronomy and interplanetary plasma physics. Topics covered include: infrared astronomy, long base line interferometry, geological spectroscopy, space life science experiments, atmospheric physics, and space based materials and structures research. Analysis of galactic and extra-galactic X-ray data from the Small Astronomy Satellite (SAS-3) and HEAO-A and interplanetary plasma data for Mariner 10, Explorers 47 and 50, and Solrad is discussed.
NASA Technical Reports Server (NTRS)
Fisk, L. A. (Editor); Axford, W. I. (Editor)
1976-01-01
A series of papers are presented from a symposium attended by over 200 European and American scientists to examine the importance of exploring the interplanetary medium and the sun by out-of-the-ecliptic space missions. The likely scientific returns of these missions in the areas of solar, interplanetary, and cosmic ray physics is examined. Theoretical models of the solar wind and its interaction with interplanetary magnetic fields are given.
Propagation Characteristics of Two Coronal Mass Ejections from the Sun Far into Interplanetary Space
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zhao, Xiaowei; Liu, Ying D.; Hu, Huidong
Propagation of coronal mass ejections (CMEs) from the Sun far into interplanetary space is not well understood, due to limited observations. In this study we examine the propagation characteristics of two geo-effective CMEs, which occurred on 2005 May 6 and 13, respectively. Significant heliospheric consequences associated with the two CMEs are observed, including interplanetary CMEs (ICMEs) at the Earth and Ulysses , interplanetary shocks, a long-duration type II radio burst, and intense geomagnetic storms. We use coronagraph observations from SOHO /LASCO, frequency drift of the long-duration type II burst, in situ measurements at the Earth and Ulysses , and magnetohydrodynamicmore » propagation of the observed solar wind disturbances at 1 au to track the CMEs from the Sun far into interplanetary space. We find that both of the CMEs underwent a major deceleration within 1 au and thereafter a gradual deceleration when they propagated from the Earth to deep interplanetary space, due to interactions with the ambient solar wind. The results also reveal that the two CMEs interacted with each other in the distant interplanetary space even though their launch times on the Sun were well separated. The intense geomagnetic storm for each case was caused by the southward magnetic fields ahead of the CME, stressing the critical role of the sheath region in geomagnetic storm generation, although for the first case there is a corotating interaction region involved.« less
NASA Astrophysics Data System (ADS)
Sultan, M. S.; Jules, A.; Marchese, P.; Damas, M. C.
2017-12-01
It is crucial to study space weather because severe interplanetary conditions can cause geomagnetic storms that may damage both space- and ground-based technological systems such as satellites, communication systems, and power grids. Interplanetary coronal mass ejections (ICMEs) and corotating interaction regions (CIRs) are the primary drivers of geomagnetic storms. As they travel through interplanetary space and reach geospace, their spatial structures change which can result in various geomagnetic effects. Therefore, studying these drivers and their structures is essential in order to better understand and mitigate their impact on technological systems, as well as to forecast geomagnetic storms. In this study, over 150 storms were cross-checked for both solar cycles (SC) 23 and 24. This data has revealed the most common interplanetary structures, i.e., sheath (Sh); magnetic cloud following a shock front (sMC); sheath region and magnetic cloud (Sh/MC); and corotating interaction regions (CIRs). Furthermore, plasma parameters as well as variation in the intensity and duration of storms resulting from different interplanetary structures are studied for their effect on geomagnetically induced currents (GICs), as well as for their effect on power grids. Although preliminary results for SC 23 indicate that storm intensity may play a dominant role for GICs, duration might also be a factor, albeit smaller. Results from both SC 23 and 24 are analyzed and compared, and should lead to an enhanced understanding of space weather consequences of interplanetary structures and their possible forecasting.
NASA Technical Reports Server (NTRS)
Clements, E. B.; Carlton, A. K.; Joyce, C. J.; Schwadron, N. A.; Spence, H. E.; Sun, X.; Cahoy, K.
2016-01-01
Space weather is a major concern for radiation-sensitive space systems, particularly for interplanetary missions, which operate outside of the protection of Earth's magnetic field. We examine and quantify the effects of space weather on silicon avalanche photodiodes (SiAPDs), which are used for interplanetary laser altimeters and communications systems and can be sensitive to even low levels of radiation (less than 50 cGy). While ground-based radiation testing has been performed on avalanche photodiode (APDs) for space missions, in-space measurements of SiAPD response to interplanetary space weather have not been previously reported. We compare noise data from the Lunar Reconnaissance Orbiter (LRO) Lunar Orbiter Laser Altimeter (LOLA) SiAPDs with radiation measurements from the onboard Cosmic Ray Telescope for the Effects of Radiation (CRaTER) instrument. We did not find any evidence to support radiation as the cause of changes in detector threshold voltage during radiation storms, both for transient detector noise and long-term average detector noise, suggesting that the approximately 1.3 cm thick shielding (a combination of titanium and beryllium) of the LOLA detectors is sufficient for SiAPDs on interplanetary missions with radiation environments similar to what the LRO experienced (559 cGy of radiation over 4 years).
Interplanetary Program to Optimize Simulated Trajectories (IPOST). Volume 3: Programmer's manual
NASA Technical Reports Server (NTRS)
Hong, P. E.; Kent, P. D.; Olson, D. W.; Vallado, C. A.
1992-01-01
The Interplanetary Program to Optimize Space Trajectories (IPOST) is intended to support many analysis phases, from early interplanetary feasibility studies through spacecraft development and operations. Here, information is given on the IPOST code.
Research in space physics at the University of Iowa
NASA Technical Reports Server (NTRS)
Vanallen, J. A.
1976-01-01
Energetic particles in outer space and their relationship to electric, magnetic, and electromagnetic fields associated with the earth, sun, moon, and planets, and the interplanetary medium are investigated. Special attention was given to observations of earth and moon satellites and interplanetary spacecraft; phenomenological analysis and interpretation were emphasized. Data also cover ground based on radio astronomical and optical techniques and theoretical problems in plasma physics as revelant to solar planetary and interplanetary phenomena.
Interplanetary Physics Laboratory (IPL): A concept for an interplanetary mission in the mid-eighties
NASA Technical Reports Server (NTRS)
Burlaga, L. F.; Ogilvie, K. W.; Feldman, W.
1977-01-01
A concept for a near-earth interplanetary mission in the mid-eighties is described. The proposed objectives would be to determine the composition of the interplanetary constituents and its dependence on source-conditions and to investigate energy and momentum transfer processes in the interplanetary medium. Such a mission would accomplish three secondary objectives: (1) provide a baseline for deep space missions, (2) investigate variations of the solar wind with solar activity, and (3) provide input functions for magnetospheric studies.
SpaceNet: Modeling and Simulating Space Logistics
NASA Technical Reports Server (NTRS)
Lee, Gene; Jordan, Elizabeth; Shishko, Robert; de Weck, Olivier; Armar, Nii; Siddiqi, Afreen
2008-01-01
This paper summarizes the current state of the art in interplanetary supply chain modeling and discusses SpaceNet as one particular method and tool to address space logistics modeling and simulation challenges. Fundamental upgrades to the interplanetary supply chain framework such as process groups, nested elements, and cargo sharing, enabled SpaceNet to model an integrated set of missions as a campaign. The capabilities and uses of SpaceNet are demonstrated by a step-by-step modeling and simulation of a lunar campaign.
The Radiation, Interplanetary Shocks, and Coronal Sources (RISCS) Toolset
NASA Technical Reports Server (NTRS)
Zank, G. P.; Spann, James F.
2014-01-01
The goal of this project is to serve the needs of space system designers and operators by developing an interplanetary radiation environment model within 10 AU:Radiation, Interplanetary Shocks, and Coronal Sources (RISCS) toolset: (1) The RISCS toolset will provide specific reference environments for space system designers and nowcasting and forecasting capabilities for space system operators; (2) We envision the RISCS toolset providing the spatial and temporal radiation environment external to the Earth's (and other planets') magnetosphere, as well as possessing the modularity to integrate separate applications (apps) that can map to specific magnetosphere locations and/or perform the subsequent radiation transport and dosimetry for a specific target.
Flux rope evolution in interplanetary coronal mass ejections: the 13 May 2005 event
NASA Astrophysics Data System (ADS)
Manchester, W. B., IV; van der Holst, B.; Lavraud, B.
2014-06-01
Coronal mass ejections (CMEs) are a dramatic manifestation of solar activity that release vast amounts of plasma into the heliosphere, and have many effects on the interplanetary medium and on planetary atmospheres, and are the major driver of space weather. CMEs occur with the formation and expulsion of large-scale magnetic flux ropes from the solar corona, which are routinely observed in interplanetary space. Simulating and predicting the structure and dynamics of these interplanetary CME magnetic fields are essential to the progress of heliospheric science and space weather prediction. We discuss the simulation of the 13 May 2005 CME event in which we follow the propagation of a flux rope from the solar corona to beyond Earth orbit. In simulating this event, we find that the magnetic flux rope reconnects with the interplanetary magnetic field, to evolve to an open configuration and later reconnects to reform a twisted structure sunward of the original rope. Observations of the 13 May 2005 CME magnetic field near Earth suggest that such a rearrangement of magnetic flux by reconnection may have occurred.
Correlation of interplanetary-space B sub z field fluctuations and trapped-particle redistribution.
NASA Technical Reports Server (NTRS)
Parks, G. K.; Pellat, R.
1972-01-01
Observations of interplanetary magnetic field fluctuations in correlation with trapped particle fluctuations are discussed. From observations of particle-redistribution effects, properties of the magnetospheric electric field are derived. The obtained results suggest that the interplanetary B(sub z) field fluctuations might represent a strong driving source for particle diffusion.
Geometry of the diffusive propagation region in the August 14, 1982 solar electron event
NASA Technical Reports Server (NTRS)
Evenson, P. A.
1985-01-01
On August 14, 1982, relativistic electrons arrived promptly after an impulsive gamma ray flare, indicating that very little scattering was taking place in interplanetary space. By ignoring anisotropy data the time profile of the event is well described by interplanetary diffusion except for the derived particle injection time. This discrepancy provides independent evidence that the particles are diffusing in a volume close to the Sun rather than in interplanetary space. The flux at maximum method of determining the number of particles produced is still a good approximation when appropriately applied.
NASA Technical Reports Server (NTRS)
1975-01-01
Pioneer 10's encounter with Jupiter is discussed along with the interplanetary space beyond the orbit of Mars. Other topics discussed include the size of Jupiter, the Galilean satellites, the magnetic field of Jupiter, radiation belts, Jupiter's weather and interior, and future exploration possibilities. Educational projects are also included.
Geomagnetic response of interplanetary coronal mass ejections in the Earth's magnetosphere
NASA Astrophysics Data System (ADS)
Badruddin; Mustajab, F.; Derouich, M.
2018-05-01
A coronal mass ejections (CME) is the huge mass of plasma with embedded magnetic field ejected abruptly from the Sun. These CMEs propagate into interplanetary space with different speed. Some of them hit the Earth's magnetosphere and create many types of disturbances; one of them is the disturbance in the geomagnetic field. Individual geomagnetic disturbances differ not only in their magnitudes, but the nature of disturbance is also different. It is, therefore, desirable to understand these differences not only to understand the physics of geomagnetic disturbances but also to understand the properties of solar/interplanetary structures producing these disturbances of different magnitude and nature. In this work, we use the spacecraft measurements of CMEs with distinct magnetic properties propagating in the interplanetary space and generating disturbances of different levels and nature. We utilize their distinct plasma and field properties to search for the interplanetary parameter(s) playing important role in influencing the geomagnetic response of different coronal mass ejections.
Space Weather: The Solar Perspective
NASA Astrophysics Data System (ADS)
Schwenn, Rainer
2006-08-01
The term space weather refers to conditions on the Sun and in the solar wind, magnetosphere, ionosphere, and thermosphere that can influence the performance and reliability of space-borne and ground-based technological systems and that can affect human life and health. Our modern hi-tech society has become increasingly vulnerable to disturbances from outside the Earth system, in particular to those initiated by explosive events on the Sun: Flares release flashes of radiation that can heat up the terrestrial atmosphere such that satellites are slowed down and drop into lower orbits, solar energetic particles accelerated to near-relativistic energies may endanger astronauts traveling through interplanetary space, and coronal mass ejections are gigantic clouds of ionized gas ejected into interplanetary space that after a few hours or days may hit the Earth and cause geomagnetic storms. In this review, I describe the several chains of actions originating in our parent star, the Sun, that affect Earth, with particular attention to the solar phenomena and the subsequent effects in interplanetary space.
The source of the electric field in the nightside magnetosphere
NASA Technical Reports Server (NTRS)
Stern, D. P.
1975-01-01
In the open magnetosphere model magnetic field lines from the polar caps connect to the interplanetary magnetic field and conduct an electric field from interplanetary space to the polar ionosphere. By examining the magnetic flux involved it is concluded that only slightly more than half of the magnetic flux in the polar caps belongs to open field lines and that such field lines enter or leave the magnetosphere through narrow elongated windows stretching the tail. These window regions are identified with the tail's boundary region and shift their position with changes in the interplanetary magnetic field, in particular when a change of interplanetary magnetic sector occurs. The circuit providing electric current in the magnetopause and the plasma sheet is extended across those windows; thus energy is drained from the interplanetary electric field and an electric potential drop is produced across the plasma sheet. The polar cap receives its electric field from interplanetary space on the day side from open magnetic field lines and on the night side from closed field lines leading to the plasma sheet. The theory described provides improved understanding of magnetic flux bookkeeping, of the origin of Birkeland currents, and of the boundary layer of the geomagnetic tail.
Advanced planning activity. [for interplanetary flight and space exploration
NASA Technical Reports Server (NTRS)
1974-01-01
Selected mission concepts for interplanetary exploration through 1985 were examined, including: (1) Jupiter orbiter performance characteristics; (2) solar electric propulsion missions to Mercury, Venus, Neptune, and Uranus; (3) space shuttle planetary missions; (4) Pioneer entry probes to Saturn and Uranus; (5) rendezvous with Comet Kohoutek and Comet Encke; (6) space tug capabilities; and (7) a Pioneer mission to Mars in 1979. Mission options, limitations, and performance predictions are assessed, along with probable configurational, boost, and propulsion requirements.
3-D model of ICME in the interplanetary medium
NASA Astrophysics Data System (ADS)
Borgazzi, A.; Lara, A.; Niembro, T.
2011-12-01
We developed a method that describes with simply geometry the coordinates of intersection between the leading edge of an ICME and the position of an arbitrary satellite. When a fast CME is ejected from the Sun to the interplanetary space in most of the cases drives a shock. As the CME moves in the corona and later in the interplanetary space more material is stacking in the front and edges of the ejecta. In a first approximation, it is possible to assume the shape of these structures, the CME and the stacked material as a cone of revolution, (the ice-cream model [Schwenn et al., (2005)]). The interface may change due to the interaction of the structure and the non-shocked material in front of the ICME but the original shape of a cone of revolution is preserved. We assume, in a three dimensional geometry, an ice-cream cone shape for the ICME and apply an analytical model for its transport in the interplanetary medium. The goal of the present method is to give the time and the intersection coordinates between the leading edge of the ICME and any satellite that may be in the path of the ICME. With this information we can modelate the travel of the ICME in the interplanetary space using STEREO data.
Simulating Autonomous Telecommunication Networks for Space Exploration
NASA Technical Reports Server (NTRS)
Segui, John S.; Jennings, Esther H.
2008-01-01
Currently, most interplanetary telecommunication systems require human intervention for command and control. However, considering the range from near Earth to deep space missions, combined with the increase in the number of nodes and advancements in processing capabilities, the benefits from communication autonomy will be immense. Likewise, greater mission science autonomy brings the need for unscheduled, unpredictable communication and network routing. While the terrestrial Internet protocols are highly developed their suitability for space exploration has been questioned. JPL has developed the Multi-mission Advanced Communications Hybrid Environment for Test and Evaluation (MACHETE) tool to help characterize network designs and protocols. The results will allow future mission planners to better understand the trade offs of communication protocols. This paper discusses various issues with interplanetary network and simulation results of interplanetary networking protocols.
NASA Technical Reports Server (NTRS)
Englander, Jacob
2016-01-01
This set of tutorial slides is an introduction to the Evolutionary Mission Trajectory Generator (EMTG), NASA Goddard Space Flight Center's autonomous tool for preliminary design of interplanetary missions. This slide set covers the basics of creating and post-processing simple interplanetary missions in EMTG using both high-thrust chemical and low-thrust electric propulsion along with a variety of operational constraints.
Time-dependent radiation dose estimations during interplanetary space flights
NASA Astrophysics Data System (ADS)
Dobynde, M. I.; Shprits, Y.; Drozdov, A.
2015-12-01
Time-dependent radiation dose estimations during interplanetary space flights 1,2Dobynde M.I., 2,3Drozdov A.Y., 2,4Shprits Y.Y.1Skolkovo institute of science and technology, Moscow, Russia 2University of California Los Angeles, Los Angeles, USA 3Lomonosov Moscow State University Skobeltsyn Institute of Nuclear Physics, Moscow, Russia4Massachusetts Institute of Technology, Cambridge, USASpace radiation is the main restriction for long-term interplanetary space missions. It induces degradation of external components and propagates inside providing damage to internal environment. Space radiation particles and induced secondary particle showers can lead to variety of damage to astronauts in short- and long- term perspective. Contribution of two main sources of space radiation- Sun and out-of-heliosphere space varies in time in opposite phase due to the solar activity state. Currently the only habituated mission is the international interplanetary station that flights on the low Earth orbit. Besides station shell astronauts are protected with the Earth magnetosphere- a natural shield that prevents significant damage for all humanity. Current progress in space exploration tends to lead humanity out of magnetosphere bounds. With the current study we make estimations of spacecraft parameters and astronauts damage for long-term interplanetary flights. Applying time dependent model of GCR spectra and data on SEP spectra we show the time dependence of the radiation in a human phantom inside the shielding capsule. We pay attention to the shielding capsule design, looking for an optimal geometry parameters and materials. Different types of particles affect differently on the human providing more or less harm to the tissues. Incident particles provide a large amount of secondary particles while propagating through the shielding capsule. We make an attempt to find an optimal combination of shielding capsule parameters, namely material and thickness, that will effectively decrease the incident particle energy, at the same time minimizing flow of secondary induced particles and minimizing most harmful particle types flows.
Preconditioning of Interplanetary Space Due to Transient CME Disturbances
DOE Office of Scientific and Technical Information (OSTI.GOV)
Temmer, M.; Reiss, M. A.; Hofmeister, S. J.
Interplanetary space is characteristically structured mainly by high-speed solar wind streams emanating from coronal holes and transient disturbances such as coronal mass ejections (CMEs). While high-speed solar wind streams pose a continuous outflow, CMEs abruptly disrupt the rather steady structure, causing large deviations from the quiet solar wind conditions. For the first time, we give a quantification of the duration of disturbed conditions (preconditioning) for interplanetary space caused by CMEs. To this aim, we investigate the plasma speed component of the solar wind and the impact of in situ detected interplanetary CMEs (ICMEs), compared to different background solar wind modelsmore » (ESWF, WSA, persistence model) for the time range 2011–2015. We quantify in terms of standard error measures the deviations between modeled background solar wind speed and observed solar wind speed. Using the mean absolute error, we obtain an average deviation for quiet solar activity within a range of 75.1–83.1 km s{sup −1}. Compared to this baseline level, periods within the ICME interval showed an increase of 18%–32% above the expected background, and the period of two days after the ICME displayed an increase of 9%–24%. We obtain a total duration of enhanced deviations over about three and up to six days after the ICME start, which is much longer than the average duration of an ICME disturbance itself (∼1.3 days), concluding that interplanetary space needs ∼2–5 days to recover from the impact of ICMEs. The obtained results have strong implications for studying CME propagation behavior and also for space weather forecasting.« less
Models of Solar Wind Structures and Their Interaction with the Earth's Space Environment
NASA Astrophysics Data System (ADS)
Watermann, J.; Wintoft, P.; Sanahuja, B.; Saiz, E.; Poedts, S.; Palmroth, M.; Milillo, A.; Metallinou, F.-A.; Jacobs, C.; Ganushkina, N. Y.; Daglis, I. A.; Cid, C.; Cerrato, Y.; Balasis, G.; Aylward, A. D.; Aran, A.
2009-11-01
The discipline of “Space Weather” is built on the scientific foundation of solar-terrestrial physics but with a strong orientation toward applied research. Models describing the solar-terrestrial environment are therefore at the heart of this discipline, for both physical understanding of the processes involved and establishing predictive capabilities of the consequences of these processes. Depending on the requirements, purely physical models, semi-empirical or empirical models are considered to be the most appropriate. This review focuses on the interaction of solar wind disturbances with geospace. We cover interplanetary space, the Earth’s magnetosphere (with the exception of radiation belt physics), the ionosphere (with the exception of radio science), the neutral atmosphere and the ground (via electromagnetic induction fields). Space weather relevant state-of-the-art physical and semi-empirical models of the various regions are reviewed. They include models for interplanetary space, its quiet state and the evolution of recurrent and transient solar perturbations (corotating interaction regions, coronal mass ejections, their interplanetary remnants, and solar energetic particle fluxes). Models of coupled large-scale solar wind-magnetosphere-ionosphere processes (global magnetohydrodynamic descriptions) and of inner magnetosphere processes (ring current dynamics) are discussed. Achievements in modeling the coupling between magnetospheric processes and the neutral and ionized upper and middle atmospheres are described. Finally we mention efforts to compile comprehensive and flexible models from selections of existing modules applicable to particular regions and conditions in interplanetary space and geospace.
Sheath-accumulating Propagation of Interplanetary Coronal Mass Ejection
NASA Astrophysics Data System (ADS)
Takahashi, Takuya; Shibata, Kazunari
2017-03-01
Fast interplanetary coronal mass ejections (ICMEs) are the drivers of strong space weather storms such as solar energetic particle events and geomagnetic storms. The connection between the space-weather-impacting solar wind disturbances associated with fast ICMEs at Earth and the characteristics of causative energetic CMEs observed near the Sun is a key question in the study of space weather storms, as well as in the development of practical space weather prediction. Such shock-driving fast ICMEs usually expand at supersonic speeds during the propagation, resulting in the continuous accumulation of shocked sheath plasma ahead. In this paper, we propose a “sheath-accumulating propagation” (SAP) model that describes the coevolution of the interplanetary sheath and decelerating ICME ejecta by taking into account the process of upstream solar wind plasma accumulation within the sheath region. Based on the SAP model, we discuss (1) ICME deceleration characteristics; (2) the fundamental condition for fast ICMEs at Earth; (3) the thickness of interplanetary sheaths; (4) arrival time prediction; and (5) the super-intense geomagnetic storms associated with huge solar flares. We quantitatively show that not only the speed but also the mass of the CME are crucial for discussing the above five points. The similarities and differences between the SAP model, the drag-based model, and the“snow-plow” model proposed by Tappin are also discussed.
NASA Technical Reports Server (NTRS)
1973-01-01
The astronomy and space physics investigations conducted in the Skylab program include over 20 experiments in four categories to explore space phenomena that cannot be observed from earth. The categories of space research are as follows: (1) phenomena within the solar system, such as the effect of solar energy on Earth's atmosphere, the composition of interplanetary space, the possibility of an inner planet, and the X-ray radiation from Jupiter, (2) analysis of energetic particles such as cosmic rays and neutrons in the near-earth space, (3) stellar and galactic astronomy, and (4) self-induced environment surrounding the Skylab spacecraft.
Transfers from Earth to LEO and LEO to interplanetary space using lasers
NASA Astrophysics Data System (ADS)
Phipps, Claude R.; Bonnal, Christophe; Masson, Fréderic; Boustie, Michel; Berthe, Laurent; Schneider, Matthieu; Baton, Sophie; Brambrink, Erik; Chevalier, Jean-Marc; Videau, Laurent; Boyer, Séverine A. E.
2018-05-01
New data on some materials at 80ps pulse duration and 1057 nm wavelength give us the option of proportionally combining them to obtain arbitrary values between 35 (aluminum) and 800 N/MW (POM, polyoxymethylene) for momentum coupling coefficient Cm. Laser ablation physics lets us transfer to LEO from Earth, or to interplanetary space using repetitively pulsed lasers and Cm values appropriate for each mission. We discuss practical results for lifting small payloads from Earth to LEO, and space missions such as a cis-Mars orbit with associated laser system parameters.
Cultural ethology as a new approach of interplanetary crew's behavior
NASA Astrophysics Data System (ADS)
Tafforin, Carole; Giner Abati, Francisco
2017-10-01
From an evolutionary perspective, during short-term and medium-term orbital flights, human beings developed new spatial and motor behaviors to compensate for the lack of terrestrial gravity. Past space ethological studies have shown adaptive strategies to the tri-dimensional environment, with the goal of optimizing relationships between the astronaut and unusual sensorial-motor conditions. During a long-term interplanetary journey, crewmembers will have to develop new individual and social behaviors to adapt, far from earth, to isolation and confinement and as a result to extreme conditions of living and working together. Recent space psychological studies pointed out that heterogeneity is a feature of interplanetary crews, based on personality, gender mixing, internationality and diversity of backgrounds. Intercultural issues could arise between space voyagers. As a new approach we propose to emphasize the behavioral strategies of human groups' adaptation to this new multicultural dimension of the environment.
A Statistical Study of Interplanetary Type II Bursts: STEREO Observations
NASA Astrophysics Data System (ADS)
Krupar, V.; Eastwood, J. P.; Magdalenic, J.; Gopalswamy, N.; Kruparova, O.; Szabo, A.
2017-12-01
Coronal mass ejections (CMEs) are the primary cause of the most severe and disruptive space weather events such as solar energetic particle (SEP) events and geomagnetic storms at Earth. Interplanetary type II bursts are generated via the plasma emission mechanism by energetic electrons accelerated at CME-driven shock waves and hence identify CMEs that potentially cause space weather impact. As CMEs propagate outward from the Sun, radio emissions are generated at progressively at lower frequencies corresponding to a decreasing ambient solar wind plasma density. We have performed a statistical study of 153 interplanetary type II bursts observed by the two STEREO spacecraft between March 2008 and August 2014. These events have been correlated with manually-identified CMEs contained in the Heliospheric Cataloguing, Analysis and Techniques Service (HELCATS) catalogue. Our results confirm that faster CMEs are more likely to produce interplanetary type II radio bursts. We have compared observed frequency drifts with white-light observations to estimate angular deviations of type II burst propagation directions from radial. We have found that interplanetary type II bursts preferably arise from CME flanks. Finally, we discuss a visibility of radio emissions in relation to the CME propagation direction.
NASA Technical Reports Server (NTRS)
Koontz, Steven L.; Rojdev, Kristina; Valle, Gerard D.; Zipay, John J.; Atwell, William S.
2013-01-01
Space radiation effects mitigation has been identified as one of the highest priority technology development areas for human space flight in the NASA Strategic Space Technology Investment Plan (Dec. 2012). In this paper we review the special features of space radiation that lead to severe constraints on long-term (more than 180 days) human flight operations outside Earth's magnetosphere. We then quantify the impacts of human space radiation dose limits on spacecraft engineering design and development, flight program architecture, as well as flight program schedule and cost. A new Deep Space Habitat (DSH) concept, the hybrid inflatable habitat, is presented and shown to enable a flexible, affordable approach to long term manned interplanetary flight today.
Extended mission life support systems
NASA Technical Reports Server (NTRS)
Quattrone, P. D.
1985-01-01
Extended manned space missions which include interplanetary missions require regenerative life support systems. Manned mission life support considerations are placed in perspective and previous manned space life support system technology, activities and accomplishments in current supporting research and technology (SR&T) programs are reviewed. The life support subsystem/system technologies required for an enhanced duration orbiter (EDO) and a space operations center (SOC), regenerative life support functions and technology required for manned interplanetary flight vehicles, and future development requirements are outlined. The Space Shuttle Orbiters (space transportation system) is space cabin atmosphere is maintained at Earth ambient pressure of 14.7 psia (20% O2 and 80% N2). The early Shuttle flights will be seven-day flights, and the life support system flight hardware will still utilize expendables.
The geocentric particulate distribution: Cometary, asteroidal, or space debris?
NASA Technical Reports Server (NTRS)
Mcdonnell, J. A. M.; Ratcliff, P. R.
1992-01-01
Definition of the Low Earth Orbit (LEO) particulate environment has been refined considerably with the analysis of data from NASA's Long Duration Exposure Facility (LDEF). Measurements of the impact rates from particulates ranging from sub-micron to millimetres in dimension and, especially, information on their directionality has permitted new scrunity of the sources of the particulates. Modelling of the dynamics of both bound (Earth orbital) and unbound (hyperbolic interplanetary) particulates intercepting LDEF's faces leads to the conclusion that the source is dominantly interplanetary for particle dimensions of greater than some 5 microns diameter; however the anisotropy below this dimension demands lower velocities and is compatible with an orbital component. Characteristics of the LDEF interplanetary component are compatible with familiar meteoroid sources and deep space measurements. Understanding of the orbital component which exceeds the interplanetary flux by a factor of 4 is less clear; although the very small particulates in orbit have been associated with space debris (Lawrance and Brownlee, 1986) this data conflicts with other measurements (McDonnell, Carey and Dixon, 1984) at the same epoch. By analysis of trajectories approaching the Earth and its atmosphere, we have shown that a significant contribution could be captured by aerocapture, i.e., atmospheric drag, from either asteroidal or cometary sources; such enhancement is unlikely however to provide the temporal and spatial fluctuations observed by the LDEF Interplanetary Dust Experiment (Mullholland et al. 1992). A further new mechanism is also examined, that of aerofragmentation capture, where an atmospheric grazing trajectory, which would not normally lead to capture, leads to fragmentation by thermal or mechanical shock; the microparticulates thus created can be injected in large numbers, but only into short-lifetime orbits. The concentration in one particular orbit plane, could explain the temporal fluctuations seen on LDEF; space debris could also explain the phenomenon.
Variations in elemental composition of several MEV/nucleon ions observed in interplanetary space
NASA Technical Reports Server (NTRS)
Mcguire, R. E.; Vonrosenvinge, T. T.; Reames, D. V.
1985-01-01
Six years of accumulated ISEE-3 and IMP-8 data to study variations in elemental relative abundances among the different populations of energetic ions seen in interplanetary space are surveyed. Evidence suggesting that heavy ion enrichments may be organized by a rigidity scaling factor A/Z over the range H to Fe is presented. Data to support the hypothesis that shock-associated particles are probably accelerated from ambient energetic fluxes are shown.
Sheath-accumulating Propagation of Interplanetary Coronal Mass Ejection
DOE Office of Scientific and Technical Information (OSTI.GOV)
Takahashi, Takuya; Shibata, Kazunari, E-mail: takahasi@kusastro.kyoto-u.ac.jp
Fast interplanetary coronal mass ejections (ICMEs) are the drivers of strong space weather storms such as solar energetic particle events and geomagnetic storms. The connection between the space-weather-impacting solar wind disturbances associated with fast ICMEs at Earth and the characteristics of causative energetic CMEs observed near the Sun is a key question in the study of space weather storms, as well as in the development of practical space weather prediction. Such shock-driving fast ICMEs usually expand at supersonic speeds during the propagation, resulting in the continuous accumulation of shocked sheath plasma ahead. In this paper, we propose a “sheath-accumulating propagation”more » (SAP) model that describes the coevolution of the interplanetary sheath and decelerating ICME ejecta by taking into account the process of upstream solar wind plasma accumulation within the sheath region. Based on the SAP model, we discuss (1) ICME deceleration characteristics; (2) the fundamental condition for fast ICMEs at Earth; (3) the thickness of interplanetary sheaths; (4) arrival time prediction; and (5) the super-intense geomagnetic storms associated with huge solar flares. We quantitatively show that not only the speed but also the mass of the CME are crucial for discussing the above five points. The similarities and differences between the SAP model, the drag-based model, and the“snow-plow” model proposed by Tappin are also discussed.« less
Distributed Interplanetary Delay/Disruption Tolerant Network (DTN) Monitor and Control System
NASA Technical Reports Server (NTRS)
Wang, Shin-Ywan
2012-01-01
The main purpose of Distributed interplanetary Delay Tolerant Network Monitor and Control System as a DTN system network management implementation in JPL is defined to provide methods and tools that can monitor the DTN operation status, detect and resolve DTN operation failures in some automated style while either space network or some heterogeneous network is infused with DTN capability. In this paper, "DTN Monitor and Control system in Deep Space Network (DSN)" exemplifies a case how DTN Monitor and Control system can be adapted into a space network as it is DTN enabled.
NASA Technical Reports Server (NTRS)
Vanallen, J. A.
1974-01-01
Various research projects in space physics are summarized. Emphasis is placed on: (1) the study of energetic particles in outer space and their relationships to electric, magnetic, and electromagnetic fields associated with the earth, the sun, the moon, the planets, and interplanetary medium; (2) observational work on satellites of the earth and the moon, and planetary and interplanetary spacecraft; (3) phenomenological analysis and interpretation; (4) observational work by ground based radio-astronomical and optical techniques; and (5) theoretical problems in plasma physics. Specific fields of current investigations are summarized.
The Interplanetary Internet: A Communications Infrastructure for Mars Exploration
NASA Astrophysics Data System (ADS)
Burleigh, S.; Cerf, V.; Durst, R.; Fall, K.; Hooke, A.; Scott, K.; Weiss, H.
2002-01-01
A successful program of Mars Exploration will depend heavily on a robust and dependable space communications infrastructure that is well integrated with the terrestrial Internet. In the same way that the underpinnings of the Internet are the standardized "TCP/IP" suite of protocols, an "Interplanetary Internet" will need a similar set of capabilities that can support reliable communications across vast distances and highly stressed communications environments. For the past twenty years, the Consultative Committee for Space Data Systems (CCSDS) has been developing standardized long- haul space link communications techniques that are now in use by over two hundred missions within the international space community. New CCSDS developments, shortly to be infused into Mars missions, include a proximity link standard and a store-and- forward file transfer protocol. As part of its `Next Generation Internet' initiative, the U.S. Defense Advanced Projects Agency (DARPA) recently supported an architectural study of a future "InterPlaNetary Internet" (IPN). The IPN architecture assumes that in short-delay environments - such as on and around Mars - standard Internet technologies will be adapted to the locally harsh environment and deployed within surface vehicles and orbiting relays. A long-haul interplanetary backbone network that includes Deep Space Network (DSN) gateways into the terrestrial Internet will interconnect these distributed internets that are scattered across the Solar System. Just as TCP/IP unites the Earth's "network of networks" to become the Internet, a new suite of protocols known as "Bundling" will enable the IPN to become a "network of internets" to support true interplanetary dialog. An InterPlaNetary Internet Research Group has been established within the Internet community to coordinate this research and NASA has begun to support the further development of the IPN architecture and the Bundling protocols. A strategy is being developed whereby the current set of standard CCSDS data communications protocols can be incrementally evolved so that true InterPlaNetary Internet operations are feasible by the end of the decade. The strategy - which is already in progress via the deployment of Mars relay links - needs individual missions to each contribute increments of capability so that a standard communications infrastructure can rapidly accrete. This paper will describe the IPN architectural concepts, discuss the current set of standard data communications capabilities that exist to support Mars exploration and review the proposed new developments. We will also postulate that the concept is scalable and can grow to support future scenarios where human intelligence is widely distributed across the Solar System and day-to-day communications dialog among planets is routine. 1 2 3 4 5
NASA Technical Reports Server (NTRS)
Koontz, Steven L.; Rojdev, Kristina; Valle, Gerard D.; Zipay, John J.; Atwell, William S.
2013-01-01
The Hybrid Inflatable DSH combined with electric propulsion and high power solar-electric power systems offer a near TRL-now solution to the space radiation crew dose problem that is an inevitable aspect of long term manned interplanetary flight. Spreading program development and launch costs over several years can lead to a spending plan that fits with NASA's current and future budgetary limitations, enabling early manned interplanetary operations with space radiation dose control, in the near future while biomedical research, nuclear electric propulsion and active shielding research and development proceed in parallel. Furthermore, future work should encompass laboratory validation of HZETRN calculations, as previous laboratory investigations have not considered large shielding thicknesses and the calculations presented at these thicknesses are currently performed via extrapolation.
A multinational Mars mission for the International Space University
NASA Technical Reports Server (NTRS)
Mendell, Wendell W.
1992-01-01
The International Space University's 1991 design project activity has yielded a report on the organization and implementation of a multinational program for manned exploration of Mars; the organization encompasses a political as well as a technical component. This International Manned Mission employs an artificial-gravity spacecraft with nuclear-electric propulsion for interplanetary transfer. An unmanned cargo mission precedes the piloted flights to increase the mass deliverable to Mars, as well as to serve as a testbed for interplanetary vehicle design.
Helium-3 Mining Aerostats in the Atmospheres of the Outer Planets
NASA Technical Reports Server (NTRS)
VanCleve, Jeffrey E.; Grillmair, Carl; Hanna, Mark; Reinert, Rich
2005-01-01
Imagine an interplanetary future where: a) d-He3 fusion produces most of Earth s energy needs without radioactivity or carbon emissions; b) Space transportation has been revolutionized by an efficient fusion propulsion system with exhaust velocity up to 0.088 c; c) Space commerce is stimulated by the existence of an interplanetary cargo worth $3-M a kilogram; and d) Unmanned probes travel to the nearest star systems with flight times less than a human lifetime.
NASA Astrophysics Data System (ADS)
Silin, D. V.
Manned interstellar spaceflight is facing multiple challenges of great magnitude; among them are extremely large distances and the lack of known habitable planets other than Earth. Many of these challenges are applicable to manned space exploration within the Solar System to the same or lesser degree. If these issues are resolved on an interplanetary scale, better position to pursue interstellar exploration can be reached. However, very little progress (if any) was achieved in manned space exploration since the end of Space Race. There is no lack of proposed missions, but all of them require considerable technological and financial efforts to implement while yielding no tangible benefits that would justify their costs. To overcome this obstacle highest priority in future space exploration plans should be assigned to the creation of added value in outer space. This goal can be reached if reductions in space transportation, construction and maintenance of space-based structures costs are achieved. In order to achieve these requirements several key technologies have to be mastered, such as near-Earth object mining, space- based manufacturing, agriculture and structure assembly. To keep cost and difficulty under control next exploration steps can be limited to nearby destinations such as geostationary orbit, low lunar orbit, Moon surface and Sun-Earth L1 vicinity. Completion of such a program will create a solid foundation for further exploration and colonization of the Solar System, solve common challenges of interplanetary and interstellar spaceflight and create useful results for the majority of human population. Another important result is that perception of suitable destinations for interstellar missions will change significantly. If it becomes possible to create habitable and self-sufficient artificial environments in the nearby interplanetary space, Earth-like habitable planets will be no longer required to expand beyond our Solar System. Large fraction of the stars in the observable Universe will become valid targets for interstellar missions.
The interplanetary pioneers. Volume 1: Summary
NASA Technical Reports Server (NTRS)
Corliss, W. R.
1972-01-01
The Pioneer Space Probe Project is explained to document the events which occurred during the project. The subjects discussed are: (1) origin and history of interplanetary Pioneer program, (2) Pioneer system development and design, (3) Pioneer flight operations, and (4) Pioneer scientific results. Line drawings, circuit diagrams, illustrations, and photographs are included to augment the written material.
Towards an interplanetary internet: a proposed strategy for standardization
NASA Technical Reports Server (NTRS)
Hooke, A. J.
2002-01-01
This paper reviews the current set of standard data communications capabilities that exist to support advanced missions, discusses the architectural concepts for the future Interplanetary Internet, and suggests how a standardized set of space communications protocols that can grow to support future scenarios where human intelligence is widely distributed across the Solar System.
Forecasting Space Weather Hazards for Astronauts in Deep Space
NASA Astrophysics Data System (ADS)
Martens, P. C.
2018-02-01
Deep Space Gateway provides a unique platform to develop, calibrate, and test a space weather forecasting system for interplanetary travel in a real life setting. We will discuss requirements and design of such a system.
Research in space physics at the University of Iowa
NASA Technical Reports Server (NTRS)
Vanallen, J. A.
1979-01-01
Current investigations relating to energetic particles and the electric, magnetic, and electromagnetic fields associated with the earth, the sun, the moon, the planets, comets, and the interplanetary medium are reported. Primary emphasis is on observational work using a wide diversity of intruments on satellites of the earth and the moon and on planetary and interplanetary spacecraft, and on phenomenological analysis and interpretation. Secondary emphasis is given to closely related observational work by ground based radio-astronomical and optical techniques, and to theoretical problems in plasma physics as relevant to solar, planetary, and interplanetary phenomena.
Mission and vehicle sizing sensitivities
NASA Technical Reports Server (NTRS)
Young, Archie C.
1986-01-01
Representative interplanetary space vehicle systems are sized to compare and show sensitivity of the initial mass required in low Earth orbit to one mission mode and mission opportunity. Data are presented to show the requirements for Earth-Mars opposition and conjunction class roundtrip flyby and stopover mission opportunities available during the time period from year 1997 to year 2045. The interplanetary space vehicle consists of a spacecraft and a space vehicle acceleration system. Propellant boil-off for the various mission phases is given for the Lox/LH (Liquid Oxygen/Liquid Hydrogen) propulsion systems. Mission abort information is presented for the 1999 Venus outbound swingby trajectory, transfer profile.
Preliminary performance analysis of an interplanetary navigation system using asteroid based beacons
NASA Technical Reports Server (NTRS)
Jee, J. Rodney; Khatib, Ahmad R.; Muellerschoen, Ronald J.; Williams, Bobby G.; Vincent, Mark A.
1988-01-01
A futuristic interplanetary navigation system using transmitters placed on selected asteroids is introduced. This network of space beacons is seen as a needed alternative to the overly burdened Deep Space Network. Covariance analyses on the potential performance of these space beacons located on a candidate constellation of eight real asteroids are initiated. Simplified analytic calculations are performed to determine limiting accuracies attainable with the network for geometric positioning. More sophisticated computer simulations are also performed to determine potential accuracies using long arcs of range and Doppler data from the beacons. The results from these computations show promise for this navigation system.
NASA Astrophysics Data System (ADS)
Nichols, J. D.; Badman, S. V.; Bagenal, F.; Bolton, S. J.; Bonfond, B.; Bunce, E. J.; Clarke, J. T.; Connerney, J. E. P.; Cowley, S. W. H.; Ebert, R. W.; Fujimoto, M.; Gérard, J.-C.; Gladstone, G. R.; Grodent, D.; Kimura, T.; Kurth, W. S.; Mauk, B. H.; Murakami, G.; McComas, D. J.; Orton, G. S.; Radioti, A.; Stallard, T. S.; Tao, C.; Valek, P. W.; Wilson, R. J.; Yamazaki, A.; Yoshikawa, I.
2017-08-01
We present the first comparison of Jupiter's auroral morphology with an extended, continuous, and complete set of near-Jupiter interplanetary data, revealing the response of Jupiter's auroras to the interplanetary conditions. We show that for ˜1-3 days following compression region onset, the planet's main emission brightened. A duskside poleward region also brightened during compressions, as well as during shallow rarefaction conditions at the start of the program. The power emitted from the noon active region did not exhibit dependence on any interplanetary parameter, though the morphology typically differed between rarefactions and compressions. The auroras equatorward of the main emission brightened over ˜10 days following an interval of increased volcanic activity on Io. These results show that the dependence of Jupiter's magnetosphere and auroras on the interplanetary conditions are more diverse than previously thought.
NASA Technical Reports Server (NTRS)
Divine, N.
1975-01-01
The design of space vehicles for operation in interplanetary space is given, based on descriptions of solar wind, solar particle events, and galactic cosmic rays. A state-of-the-art review is presented and design criteria are developed from experiment findings aboard interplanetary and high-altitude earth-orbiting spacecraft. Solar cells were found to be particularly sensitive. Solar protons may also impact the reliability of electric propulsion systems and spacecraft surfaces, as well as causing interference, detector saturation, and spurious signals. Galactic cosmic-ray impact can lead to similar electronic failure and interference and may register in photographic films and other emulsions. It was concluded that solar wind electron measurements might result from differential charging when shadowed portions of the spacecraft acquired a negative charge from electron impact.
Earth orbital operations supporting manned interplanetary missions
NASA Astrophysics Data System (ADS)
Sherwood, Brent; Buddington, Patricia A.; Whittaker, William L.
The orbital operations required to accumulate, assemble, test, verify, maintain, and launch complex manned space systems on interplanetary missions from earth orbit are as vital as the flight hardware itself. Vast numbers of orbital crew are neither necessary nor desirable for accomplishing the required tasks. A suite of robotic techniques under human supervisory control, relying on sensors, software and manipulators either currently emergent or already applied in terrestrial settings, can make the job tractable. The mission vehicle becomes largely self-assembling, using its own rigid aerobrake as a work platform. The Space Station, having been used as a laboratory testbed and to house an assembly crew of four, is not dominated by the process. A feasible development schedule, if begun soon, could emplace orbital support technologies for exploration missions in time for a 2004 first interplanetary launch.
Coronal Mass Ejections Near the Sun and in the Interplanetary Medium
NASA Technical Reports Server (NTRS)
Gopalswamy, Nat
2012-01-01
Coronal mass ejections (CMEs) are the most energetic phenomenon in the heliosphere. During solar eruptions, the released energy flows out from the Sun in the form of magnetized plasma and electromagnetic radiation. The electromagnetic radiation suddenly increases the ionization content of the ionosphere, thus impacting communication and navigation systems. The plasma clouds can drive shocks that accelerate charged particles to very high energies in the interplanetary space, which pose radiation hazard to astronauts and space systems. The plasma clouds also arrive at Earth in about two days and impact Earth's magnetosphere, producing geomagnetic storms. The magnetic storms result in a number of effects including induced currents that can disrupt power grids, railroads, and underground pipelines. This lecture presents an overview of the origin, propagation, and geospace consequences of CMEs and their interplanetary counterparts.
NASA Technical Reports Server (NTRS)
Ootsubo, T.; Onaka, T.; Yamamura, I.; Ishihara, D.; Tanabe, T.; Roellig, T. L.
2003-01-01
Within a few astronomical units of the Sun the solar system is filled with interplanetary dust, which is believed to be dust of cometary and asteroidal origin. Spectroscopic observations of the zodiacal emission with moderate resolution provide key information on the composition and size distribution of the dust in the interplanetary space. They can be compared directly to laboratory measurements of candidate materials, meteorites, and dust particles collected in the stratosphere. Recently mid-infrared spectroscopic observations of the zodiacal emission have been made by two instruments on board the Infrared Space Observatory; the camera (ISOCAM) and the spectrophotometer (ISOPHOT-S). A broad excess emission feature in the 9-11 micron range is reported in the ISOCAM spectrum, whereas the ISOPHOT-S spectra in 6-12 microns can be well fitted by a blackbody radiation without spectral features.
Earth orbital operations supporting manned interplanetary missions
NASA Technical Reports Server (NTRS)
Sherwood, Brent; Buddington, Patricia A.; Whittaker, William L.
1989-01-01
The orbital operations required to accumulate, assemble, test, verify, maintain, and launch complex manned space systems on interplanetary missions from earth orbit are as vital as the flight hardware itself. Vast numbers of orbital crew are neither necessary nor desirable for accomplishing the required tasks. A suite of robotic techniques under human supervisory control, relying on sensors, software and manipulators either currently emergent or already applied in terrestrial settings, can make the job tractable. The mission vehicle becomes largely self-assembling, using its own rigid aerobrake as a work platform. The Space Station, having been used as a laboratory testbed and to house an assembly crew of four, is not dominated by the process. A feasible development schedule, if begun soon, could emplace orbital support technologies for exploration missions in time for a 2004 first interplanetary launch.
Interplanetary laser ranging - an emerging technology for planetary science missions
NASA Astrophysics Data System (ADS)
Dirkx, D.; Vermeersen, L. L. A.
2012-09-01
Interplanetary laser ranging (ILR) is an emerging technology for very high accuracy distance determination between Earth-based stations and spacecraft or landers at interplanetary distances. It has evolved from laser ranging to Earth-orbiting satellites, modified with active laser transceiver systems at both ends of the link instead of the passive space-based retroreflectors. It has been estimated that this technology can be used for mm- to cm-level accuracy range determination at interplanetary distances [2, 7]. Work is being performed in the ESPaCE project [6] to evaluate in detail the potential and limitations of this technology by means of bottom-up laser link simulation, allowing for a reliable performance estimate from mission architecture and hardware characteristics.
Curation of Microscopic Astromaterials by NASA: "Gathering Dust Since 1981"
NASA Technical Reports Server (NTRS)
Frank, D. R.; Bastien, R. K.; Rodriguez, M.; Gonzalez, C.; Zolensky, M. E.
2013-01-01
Employing the philosophy that "Small is Beautiful", NASA has been collecting and curating microscopic astromaterials since 1981. These active collections now include interplanetary dust collected in Earth's stratosphere by U-2, ER-2 and WB-57F aircraft (the Cosmic Dust Program - our motto is "Gathering dust since 1981"), comet Wild-2 coma dust (the Stardust Mission), modern interstellar dust (also the Stardust Mission), asteroid Itokawa regolith dust (the Hayabusa Mission - joint curation with JAXA-ISAS), and interplanetary dust impact features on recovered portions of the following spacecraft: Skylab, the Solar Maximum Satellite, the Palapa Satellite, the Long Duration Exposure Facility (LDEF), the MIR Space Station, the International Space Station, and the Hubble Space Telescope (all in the Space Exposed Hardware Laboratory).
The energy spectrum of Jovian electrons in interplanetary space
NASA Technical Reports Server (NTRS)
Christon, S. P.; Cummings, A. C.; Stone, E. C.; Webber, W. R.
1985-01-01
The energy spectrum of electrons with energies approximately 10 to approximately 180 MeV measured with the electron telescope on the Voyager 1 and 2 spacecraft in interplanetary space from 1978 to 1983 is reported. The kinetic energy of electrons is determined by double dE/dx measurements from the first two detectors (D1,D2) of a stack of eight solid state detectors and by the range of particle penetration into the remaining six detectors (D3 to D8) which are interleaved with tungsten absorbers.
Interplanetary monitoring platform engineering history and achievements
NASA Technical Reports Server (NTRS)
Butler, P. M.
1980-01-01
In the fall of 1979, last of ten Interplanetary Monitoring Platform Satellite (IMP) missions ended a ten year series of flights dedicated to obtaining new knowledge of the radiation effects in outer space and of solar phenomena during a period of maximum solar flare activity. The technological achievements and scientific accomplishments from the IMP program are described.
NASA Astrophysics Data System (ADS)
Novikova, Nataliya; Gusev, Oleg; Sugimoto, Manabu; Deshevaya, Elena; Levinskikh, Margarita; Sychev, Vladimir; Okuda, Takashi; Orlov, Oleg; Alekseev, Victor; Poddubko, Svetlana; Polikarpov, Nikolay
The planetary quarantine is one of the key problems of deep space exploration. Risks of the possible transfer of biological objects across interplanetary space should be necessarily assessed during space exploration. The risks associated with a possible transfer of biological objects and primarily microorganisms in interplanetary space is a priority for space studies We can assume, that on the exterior side of both unmanned and manned space stations there can be millions of microbial cells, many of which are in spore forms, the stability of which towards the unfavorable factors is extremely high. However, direct evidence to support this assumption, obtained only in recent years. “Biorisk” is an apparatus designed for conduction of space experiments focused on long-term exposition of latent stages of different forms of organism on the outer side of Russian Segment of International Space Station was developed and used in SSC RF - Institute for Biomedical Problems RAS. The purpose of this experiment is to determine the principle capability of preservation of life capacity in test-cultures of microorganisms during long-term exposure (comparable with the term of interplanetary flight) in space. The first experiment was performed using spores of bacteria (Bacillus) and fungi (Penicillium, Aspergillus and Cladosporium) housed in 3 boxes that were exposed to outer space for 7, 12 or 18 months. It was for the first time demonstrated that bacterial and fungal spores could survive an exposure to outer space during the time period comparable with the duration of a return mission to Mars. Moreover, the microbial strains proved viable and highly active. The second experiment was expanded by flying, in addition to the above spores, dormant forms of higher plants, insects, lower crustaceans and vertebrates. The 31-month experiment showed that, in spite of harsher than in the first study temperatures, some specimens remained viable and capable of further multiplication. In summary, our experiments provided evidence that not only bacterial and fungal spores but also dormant forms of organisms that reached higher levels of evolutionary development had the capability to survive a long-term exposure to outer space. This observation suggests that they can be transferred on outer walls of space platforms during interplanetary missions. Our findings are of scientific interest as well as of importance for the development of planetary quarantine concepts related to future space flight.
Observations of a Small Interplanetary Magnetic Flux Rope Opening by Interchange Reconnection
NASA Astrophysics Data System (ADS)
Wang, J. M.; Feng, H. Q.; Zhao, G. Q.
2018-01-01
Interchange reconnection, specifically magnetic reconnection between open magnetic fields and closed magnetic flux ropes, plays a major role in the heliospheric magnetic flux budget. It is generally accepted that closed magnetic field lines of interplanetary magnetic flux ropes (IMFRs) can gradually open through reconnection between one of its legs and other open field lines until no closed field lines are left to contribute flux to the heliosphere. In this paper, we report an IMFR associated with a magnetic reconnection exhaust, whereby its closed field lines were opening by a magnetic reconnection event near 1 au. The reconnection exhaust and the following IMFR were observed on 2002 February 2 by both the Wind and ACE spacecraft. Observations on counterstreaming suprathermal electrons revealed that most magnetic field lines of the IMFR were closed, especially those after the front boundary of the IMFR, with both ends connected to the Sun. The unidirectional suprathermal electron strahls before the exhaust manifested the magnetic field lines observed before the exhaust was open. These observations provide direct evidence that closed field lines of IMFRs can be opened by interchange reconnection in interplanetary space. This is the first report of the closed field lines of IMFRs being opened by interchange reconnection in interplanetary space. This type of interplanetary interchange reconnection may pose important implications for balancing the heliospheric flux budget.
GEO Debris and Interplanetary Dust: Fluxes and Charging Behavior
NASA Astrophysics Data System (ADS)
Graps, A. L.; Green, S. F.; McBride, N. M.; McDonnell, J. A. M.; Drolshagen, G.; Svedhem, H.; Bunte, K. D.
2005-08-01
A population of cosmic dust mixed with a population of man-made debris exists within the Earth's magnetosphere. Measurements of these provide the data samples for studies of the interplanetary dust particles that travel through our magnetosphere from the outside and for studies of the local byproducts of our space endeavours. Even though instruments to detect natural meteoroids and space debris particles have been flown in Low Earth Orbits (LEO) and on interplanetary missions, very little information on the particle environment for Earth orbits above about 600 km altitude have been available. In particular, knowledge about particles smaller than 1 m in the geostationary (GEO) region was largely unknown before GORID. In September 1996, a dust/debris detector: GORID was launched into GEO as a piggyback instrument on the Russian Express-2 telecommunications spacecraft. The instrument began its normal operation in April 1997 and ended its mission in July 2002. The goal of this work was to use GORID's particle data to identify and separate the space debris from the interplanetary dust particles (IDPs) in GEO, to more finely determine the instrument's measurement characteristics and to derive impact fluxes. Here we present some results of that study. We give GORID flux distributions for debris and IDPs and then present intriguing debris clustering features that might be the result of electrostatic fragmentation of the rocket slag particles.
Solar Energetic Particles -- A Radiation Hazard to Humans and Hardware in Space
NASA Astrophysics Data System (ADS)
Mewaldt, R. A.
2006-10-01
During large solar energetic particle (SEP) events the intensity of >30 MeV protons in nearby interplanetary space can increase by a million times over the steady intensity of galactic cosmic rays, creating a radiation hazard to both humans and hardware in space. With NASA now committed to sending astronauts to the Moon and possibly on to Mars, outside the protective cover of the Earth's magnetosphere, interest in understanding and forecasting large SEP events has taken on a new sense of urgency. The past solar maximum included four of the top ten SEP events of the space era. Fortunately, the array of spacecraft now in interplanetary space has provided greatly improved measurements of the composition and energy spectra of accelerated ions, leading to fresh insights into the nature of these events. The largest SEP events are accelerated by coronal and interplanetary shocks driven by coronal mass ejections (CMEs) traveling at >2000 km/sec. Although shock acceleration is ubiquitous in nature, its efficiency is highly variable, making it difficult to forecast the onset and evolution of large SEP events. This talk will describe the radiation hazards associated with the largest SEP events, discuss their frequency of occurrence, consider a worst-case SEP event, and describe how the radiation risks can be mitigated.
The use of x-ray pulsar-based navigation method for interplanetary flight
NASA Astrophysics Data System (ADS)
Yang, Bo; Guo, Xingcan; Yang, Yong
2009-07-01
As interplanetary missions are increasingly complex, the existing unique mature interplanetary navigation method mainly based on radiometric tracking techniques of Deep Space Network can not meet the rising demands of autonomous real-time navigation. This paper studied the applications for interplanetary flights of a new navigation technology under rapid development-the X-ray pulsar-based navigation for spacecraft (XPNAV), and valued its performance with a computer simulation. The XPNAV is an excellent autonomous real-time navigation method, and can provide comprehensive navigation information, including position, velocity, attitude, attitude rate and time. In the paper the fundamental principles and time transformation of the XPNAV were analyzed, and then the Delta-correction XPNAV blending the vehicles' trajectory dynamics with the pulse time-of-arrival differences at nominal and estimated spacecraft locations within an Unscented Kalman Filter (UKF) was discussed with a background mission of Mars Pathfinder during the heliocentric transferring orbit. The XPNAV has an intractable problem of integer pulse phase cycle ambiguities similar to the GPS carrier phase navigation. This article innovatively proposed the non-ambiguity assumption approach based on an analysis of the search space array method to resolve pulse phase cycle ambiguities between the nominal position and estimated position of the spacecraft. The simulation results show that the search space array method are computationally intensive and require long processing time when the position errors are large, and the non-ambiguity assumption method can solve ambiguity problem quickly and reliably. It is deemed that autonomous real-time integrated navigation system of the XPNAV blending with DSN, celestial navigation, inertial navigation and so on will be the development direction of interplanetary flight navigation system in the future.
Smirnova, Olga A; Cucinotta, Francis A
2018-02-01
A recently developed biologically motivated dynamical model of the assessment of the excess relative risk (ERR) for radiogenic leukemia among acutely/continuously irradiated humans (Smirnova, 2015, 2017) is applied to estimate the ERR for radiogenic leukemia among astronauts engaged in long-term interplanetary space missions. Numerous scenarios of space radiation exposure during space missions are used in the modeling studies. The dependence of the ERR for leukemia among astronauts on several mission parameters including the dose equivalent rates of galactic cosmic rays (GCR) and large solar particle events (SPEs), the number of large SPEs, the time interval between SPEs, mission duration, the degree of astronaut's additional shielding during SPEs, the degree of their additional 12-hour's daily shielding, as well as the total mission dose equivalent, is examined. The results of the estimation of ERR for radiogenic leukemia among astronauts, which are obtained in the framework of the developed dynamical model for various scenarios of space radiation exposure, are compared with the corresponding results, computed by the commonly used linear model. It is revealed that the developed dynamical model along with the linear model can be applied to estimate ERR for radiogenic leukemia among astronauts engaged in long-term interplanetary space missions in the range of applicability of the latter. In turn, the developed dynamical model is capable of predicting the ERR for leukemia among astronauts for the irradiation regimes beyond the applicability range of the linear model in emergency cases. As a supplement to the estimations of cancer incidence and death (REIC and REID) (Cucinotta et al., 2013, 2017), the developed dynamical model for the assessment of the ERR for leukemia can be employed on the pre-mission design phase for, e.g., the optimization of the regimes of astronaut's additional shielding in the course of interplanetary space missions. The developed model can also be used on the phase of the real-time responses during the space mission to make the decisions on the operational application of appropriate countermeasures to minimize the risks of occurrences of leukemia, especially, for emergency cases. Copyright © 2017 The Committee on Space Research (COSPAR). Published by Elsevier Ltd. All rights reserved.
Nonlinear Electromagnetic Waves and Spherical Arc-Polarized Waves in Space Plasmas
NASA Technical Reports Server (NTRS)
Tsurutani, B.; Ho, Christian M.; Arballo, John K.; Lakhina, Gurbax S.; Glassmeier, Karl-Heinz; Neubauer, Fritz M.
1997-01-01
We review observations of nonlinear plasma waves detected by interplanetary spacecraft. For this paper we will focus primarily on the phase-steepened properties of such waves. Plasma waves at comet Giacobini-Zinner measured by the International Cometary Explorer (ICE), at comets Halley and Grigg-Skjellerup measured by Giotto, and interplanetary Alfven waves measured by Ulysses, will be discussed and intercompared.
Space power technology into the 21st century
NASA Technical Reports Server (NTRS)
Faymon, K. A.; Fordyce, J. S.
1984-01-01
This paper discusses the space power systems of the early 21st century. The focus is on those capabilities which are anticipated to evolve from today's state-of-the-art and the technology development programs presently in place or planned for the remainder of the century. The power system technologies considered include solar thermal, nuclear, radioisotope, photovoltaic, thermionic, thermoelectric, and dynamic conversion systems such as the Brayton and Stirling cycles. Energy storage technologies considered include nickel hydrogen biopolar batteries, advanced high energy rechargeable batteries, regenerative fuel cells, and advanced primary batteries. The present state-of-the-art of these space power and energy technologies is discussed along with their projections, trends and goals. A speculative future mission model is postulated which includes manned orbiting space stations, manned lunar bases, unmanned earth orbital and interplanetary spacecraft, manned interplanetary missions, military applications, and earth to space and space to space transportation systems. The various space power/energy system technologies anticipated to be operational by the early 21st century are matched to these missions.
Space power technology into the 21st Century
NASA Technical Reports Server (NTRS)
Faymon, K. A.; Fordyce, J. S.
1983-01-01
The space power systems of the early 21st century are discussed. The capabilities which are anticipated to evolve from today's state of the art and the technology development programs presently in place or planned for the remainder of the century are emphasized. The power system technologies considered include: solar thermal, nuclear, radioisotope, photovoltaic, thermionic, thermoelectric, and dynamic conversion systems such as the Brayton and Stirling cycles. Energy storage technologies considered include: nickel hydrogen biopolar batteries, advanced high energy rechargeable batteries, regenerative fuel cells, and advanced primary batteries. The present state of the art of these space power and energy technologies is discussed along with their projections, trends and goals. A speculative future mission model is postulated which includes manned orbiting space stations, manned lunar bases, unmanned Earth orbital and interplanetary spacecraft, manned interplanetary missions, military applications, and Earth to space and space to space transportation systems. The various space power/energy system technologies which are anticipated to be operational by the early 21st century are matched to these missions.
NASA Technical Reports Server (NTRS)
Goldstein, M. L.
1977-01-01
In a study of cosmic ray propagation in interstellar and interplanetary space, a perturbed orbit resonant scattering theory for pitch angle diffusion in a slab model of magnetostatic turbulence is slightly generalized and used to compute the diffusion coefficient for spatial propagation parallel to the mean magnetic field. This diffusion coefficient has been useful for describing the solar modulation of the galactic cosmic rays, and for explaining the diffusive phase in solar flares in which the initial anisotropy of the particle distribution decays to isotropy.
Study of Travelling Interplanetary Phenomena Report
NASA Astrophysics Data System (ADS)
Dryer, Murray
1987-09-01
Scientific progress on the topic of energy, mass, and momentum transport from the Sun into the heliosphere is contingent upon interdisciplinary and international cooperative efforts on the part of many workers. Summarized here is a report of some highlights of research carried out during the SMY/SMA by the STIP (Study of Travelling Interplanetary Phenomena) Project that included solar and interplanetary scientists around the world. These highlights are concerned with coronal mass ejections from solar flares or erupting prominences (sometimes together); their large-scale consequences in interplanetary space (such as shocks and magnetic 'bubbles'); and energetic particles and their relationship to these large-scale structures. It is concluded that future progress is contingent upon similar international programs assisted by real-time (or near-real-time) warnings of solar activity by cooperating agencies along the lines experienced during the SMY/SMA.
NASA Technical Reports Server (NTRS)
Simpson, John A.; Garcia-Munoz, Moises
1995-01-01
Research was continued on the origins, acceleration mechanisms, and the propagation modes of the hierarchy of energetic charged particles found in a wide range of astrophysical settings, extending from the cosmic rays arriving from the depth of the galaxy to the energetic particles in the heliosphere and in the near earth environment. In particular this grant has been a vital support in the investigation of the particle radiations in the earth's magnetosphere. The ONR-604 instrument was launched in July 1990 aboard the CRRES spacecraft. The CRRES mission has been a joint program of NASA and the U.S. Air Force Space Test Program which has provided launch support and telemetry coverage. The spacecraft was placed into a low-inclination eccentric orbit with a period of approximately 10 hours, and thus measured charged particle fluxes in both interplanetary space and in the earth's trapped radiation. ONR-604 performed extremely well, both in interplanetary space and in the intense radiation belt environment. We were able to make detailed measurements of interplanetary fluxes and composition into L=4, or for more than 50% of the orbital period. Thus the experiment produced two valuable datasets, one set outside of L=4 for interplanetary studies, and one set inside of L=4 for radiation belt studies. The data returned by the University of Chicago ONR-604 instrument has been the base for 10 papers on magnetospheric and galactic energetic-particle research.
Sources of Ionizing Radiation in Interplanetary Space
2013-05-30
This illustration depicts the two main types of radiation that NASA Radiation Assessment Detector RAD onboard Curiosity monitors, and how the magnetic field around Earth affects the radiation in space near Earth.
NASA Technical Reports Server (NTRS)
Vaden, Karl R.
2006-01-01
Communication systems for future NASA interplanetary spacecraft require transmitter power ranging from several hundred watts to kilowatts. Several hybrid junctions are considered as elements within a corporate combining architecture for high power Ka-band space traveling-wave tube amplifiers (TWTAs). This report presents the simulated transmission characteristics of several hybrid junctions designed for a low loss, high power waveguide based power combiner.
From Earth to Mars, Radiation Intensities in Interplanetary Space
NASA Astrophysics Data System (ADS)
O'Brien, Keran
2007-10-01
The radiation field in interplanetary space between Earth and Mars is rather intense. Using a modified version of the ATROPOS Monte Carlo code combined with a modified version of the deterministic code, PLOTINUS, the effective dose rate to crew members in space craft hull shielded with a shell of 2 g/cm^2 of aluminum and 20 g/cm^2 of polyethylene was calculated to be 51 rem/y. The total dose during the solar-particle event of September 29, 1989, GLE 42, was calculated to be 50 rem. The dose in a ``storm cellar'' of 100 g/cm^2 of polyethylene equivalent during this time was calculated to be 5 rem. The calculations were for conditions corresponding to a recent solar minimum.
Dependence of the High Latitude Middle Atmosphere Ionization on Structures in Interplanetary Space
NASA Technical Reports Server (NTRS)
Bremer, J.; Lauter, E. A.
1984-01-01
The precipitation of high energetic electrons during and after strong geomagnetic storms into heights below 100 km in middle and subauroral latitudes is markedly modulated by the structure of the interplanetary magnetic field (IMF). Under relative quiet conditions the D-region ionization caused by high energetic particle precipitation (energies greater than 20 to 50 keV) depends on changes of the interplanetary magnetic field and also on the velocity of the solar wind. To test this assumption, the influence of the IMF-sector boundary crossings on ionospheric absorption data of high and middle latitudes by the superposed-epoch method was investigated.
Global Optimization of Interplanetary Trajectories in the Presence of Realistic Mission Contraints
NASA Technical Reports Server (NTRS)
Hinckley, David, Jr.; Englander, Jacob; Hitt, Darren
2015-01-01
Interplanetary missions are often subject to difficult constraints, like solar phase angle upon arrival at the destination, velocity at arrival, and altitudes for flybys. Preliminary design of such missions is often conducted by solving the unconstrained problem and then filtering away solutions which do not naturally satisfy the constraints. However this can bias the search into non-advantageous regions of the solution space, so it can be better to conduct preliminary design with the full set of constraints imposed. In this work two stochastic global search methods are developed which are well suited to the constrained global interplanetary trajectory optimization problem.
NASA Technical Reports Server (NTRS)
1977-01-01
The facilities, programming system, and monitor and control system for the deep space network are described. Ongoing planetary and interplanetary flight projects are reviewed, along with tracking and ground-based navigation, communications, and network and facility engineering.
Earth Orbital Science, Space in the Seventies.
ERIC Educational Resources Information Center
Corliss, William R.
This publication is part of the "Space in the Seventies" series and reviews the National Aeronautics and Space Administration's (NASA) earth orbital scientific research programs in progress and those to be pursued in the coming decade. Research in space physics is described in Part One in these areas: interplanetary monitoring platforms, small…
Deep Space Network Antenna Monitoring Using Adaptive Time Series Methods and Hidden Markov Models
NASA Technical Reports Server (NTRS)
Smyth, Padhraic; Mellstrom, Jeff
1993-01-01
The Deep Space Network (DSN)(designed and operated by the Jet Propulsion Laboratory for the National Aeronautics and Space Administration (NASA) provides end-to-end telecommunication capabilities between earth and various interplanetary spacecraft throughout the solar system.
Kawaguchi, Yuko; Yokobori, Shin-Ichi; Hashimoto, Hirofumi; Yano, Hajime; Tabata, Makoto; Kawai, Hideyuki; Yamagishi, Akihiko
2016-05-01
The Tanpopo mission will address fundamental questions on the origin of terrestrial life. The main goal is to test the panspermia hypothesis. Panspermia is a long-standing hypothesis suggesting the interplanetary transport of microbes. Another goal is to test the possible origin of organic compounds carried from space by micrometeorites before the terrestrial origin of life. To investigate the panspermia hypothesis and the possible space origin of organic compounds, we performed space experiments at the Exposed Facility (EF) of the Japanese Experiment Module (JEM) of the International Space Station (ISS). The mission was named Tanpopo, which in Japanese means dandelion. We capture any orbiting microparticles, such as micrometeorites, space debris, and terrestrial particles carrying microbes as bioaerosols, by using blocks of silica aerogel. We also test the survival of microbial species and organic compounds in the space environment for up to 3 years. The goal of this review is to introduce an overview of the Tanpopo mission with particular emphasis on the investigation of the interplanetary transfer of microbes. The Exposed Experiment Handrail Attachment Mechanism with aluminum Capture Panels (CPs) and Exposure Panels (EPs) was exposed on the EF-JEM on May 26, 2015. The first CPs and EPs will be returned to the ground in mid-2016. Possible escape of terrestrial microbes from Earth to space will be evaluated by investigating the upper limit of terrestrial microbes by the capture experiment. Possible mechanisms for transfer of microbes over the stratosphere and an investigation of the effect of the microbial cell-aggregate size on survivability in space will also be discussed. Panspermia-Astrobiology-Low-Earth orbit. Astrobiology 16, 363-376.
Cruise Stage Testing for Mars Science Laboratory
2010-09-02
Testing of the cruise stage for NASA Mars Science Laboratory in August 2010 included a session in a facility that simulates the environment found in interplanetary space. Spacecraft technicians at JPL prepare a space-simulation test.
NASA Astrophysics Data System (ADS)
Hu, H.; Liu, Y. D.; Wang, R.; Zhao, X.; Zhu, B.; Yang, Z.
2017-12-01
We investigate the coronal and interplanetary evolution of a coronal mass ejection (CME) launched on 2010 September 4 from a source region linking two active regions (ARs), 11101 and 11103, using extreme ultraviolet imaging, magnetogram, white-light, and in situ observations from SDO, STEREO, SOHO, VEX, and Wind. A potential-field source-surface model is employed to examine the configuration of the coronal magnetic field surrounding the source region. The graduated cylindrical shell model and a triangulation method are applied to determine the kinematics of the CME in the corona and interplanetary space. From the remote sensing and in situ observations, we obtain some key results: (1) the CME was deflected in both the eastward and southward directions in the low corona by the magnetic pressure from the two ARs, and possibly interacted with another ejection, which caused that the CME arrived at VEX that was longitudinally distant from the source region; (2) although VEX was closer to the Sun, the observed and derived CME arrival times at VEX are not earlier than those at Wind, which suggests the importance of determining both the frontal shape and propagation direction of the CME in interplanetary space; and (3) the ICME was compressed in the radial direction while the longitudinal transverse size was extended.
NASA Technical Reports Server (NTRS)
Evans, L. C.
1972-01-01
The access of 1.2 to 40 MeV protons and 0.4 to 1.0 MeV electrons from interplanetary space to the polar cap regions was investigated with an experiment on board a low altitude, polar-orbiting satellite (0G0 4). A total of 333 quiet time observations of the electron polar cap boundary give a mapping of the boundary between open and closed geomagnetic field lines. Observations of events associated with co-rotating regions of enhanced proton flux in interplanetary space were used to establish the characteristics of the 1.2 to 40 MeV proton access windows. The results were compared to particle access predictions of the distant geomagnetic tail configurations. The role played by interplanetary anisotropies in the observation of persistent polar cap features is discussed. Special emphasis is given to the problem of nonadiabatic particle entry through regions where the magnetic field is changing direction.
NASA Technical Reports Server (NTRS)
Gloeckler, G.
1977-01-01
An instrument is described for measuring the mass and charge state composition as well as the energy spectra and angular distributions of 0.5 to 350 kev/charge ions in interplanetary space and in magnetospheres of planets such as Jupiter and earth. Electrostatic deflection combined with a time-of-flight and energy measurement allows three-parameter analysis of output signals from which the mass, charge states, and energy are determined. Post-acceleration by 30 kV extends the energy range of the detector system into the solar wind and magnetosphere plasma regime. Isotopes of H and He are easily resolved as are individual elements up to Ne and the dominant elements up to and including Fe. This instrument has an extremely large dynamic range in intensity and is sensitive to rare elements even in the presence of high intensity radiation, and is adapted for interplanetary, deep-space, and out-of-the-ecliptic missions, as well as for flights on spacecraft orbiting Jupiter and earth.
NASA Technical Reports Server (NTRS)
Fechtig, H.
1973-01-01
A description of techniques used in recent experiments to detect and analyze cosmic dust and micrometeorites is given and the results both from the study of lunar crater statistics and from in situ measurements are reviewed. The results from lunar crater statistics show an agreement with the results obtained from in situ measurements in interplanetary space and derived from zodiacal light measurements. The near earth results show an enhancement in the flux numbers. This can be caused either by secondary lunar debris or by disintegration of low density fireballs in the outer atmosphere.
NASA Technical Reports Server (NTRS)
Alexander, W. M.; Tanner, W. G.; Anz, P. D.; Chen, A. L.
1986-01-01
Particulate matter possessing lunar escape velocity sufficient to enhance the cislunar meteroid flux was investigated. While the interplanetary flux was extensively studied, lunar ejecta created by the impact of this material on the lunar surface is only now being studied. Two recently reported flux models are employed to calculate the total mass impacting the lunar surface due to sporadic meteor flux. There is ample evidence to support the contention that the sporadic interplanetary meteoroid flux enhances the meteroid flux of cislunar space through the creation of micron and submicron lunar ejecta with lunar escape velocity.
A New View of the Origin of the Solar Wind
NASA Technical Reports Server (NTRS)
Woo, Richard; Habbal, Shadia Rifai
1999-01-01
This paper uses white-light measurements made by the SOHO LASCO coronagraph and HAO Mauna Loa Mk III K-coronameter to illustrate the new view of solar wind structure deduced originally from radio occultation measurements. It is shown that the density profile closest to the Sun at 1.15 Ro, representing the imprint of the Sun, is carried essentially radially into interplanetary space by small-scale raylike structures that permeate the solar corona and which have only been observed by radio occultation measurements. The only exception is the small volume of interplanetary space occupied by the heliospheric plasma sheet that evolves from coronal streamers within a few solar radii of the Sun. The radial preservation of the density profile also implies that a significant fraction of field lines which extend into interplanetary space originate from the quiet Sun, and are indistinguishable in character from those emanating from polar coronal holes. The white-light measurements dispel the long-held belief that the boundaries of polar coronal holes diverge significantly, and further support the view originally proposed that the fast solar wind originates from the quiet Sun as well as polar coronal holes.
Using Pre-melted Phase Change Material to Keep Payload Warm without Power for Hours in Space
NASA Technical Reports Server (NTRS)
Choi, Michael K.
2012-01-01
During a payload transition from the transport vehicle to its worksite on the International Space Station (ISS), the payload is unpowered for up to 6 hours. Its radiator(s) will continue to radiate heat to space. It is necessary to make up the heat loss to maintain the payload temperature above the cold survival limit. Typically an interplanetary Probe has no power generation system. It relies on its battery to provide limited power for the Communication and Data Handling (C&DH) subsystem during cruise, and heater power is unavailable. It is necessary to maintain the C&DH temperature above the minimum operating limit. This paper presents a novel thermal design concept that utilizes phase change material (PCM) to store thermal energy by melting it before the payload or interplanetary Probe is unpowered. For the ISS, the PCM is melted by heaters just prior to the payload transition from the transport vehicle to its worksite. For an interplanetary Probe, the PCM is melted by heaters just prior to separation from the orbiter. The PCM releases thermal energy to keep the payload warm for several hours after power is cut off.
A Flight Demonstration of Plasma Rocket Propulsion
NASA Technical Reports Server (NTRS)
Petro, Andrew; Chang-Diaz, Franklin; Schwenterly, WIlliam; Hitt, Michael; Lepore, Joseph
2000-01-01
The Advanced Space Propulsion Laboratory at the NASA Johnson Space Center has been engaged in the development of a variable specific impulse magnetoplasma rocket (V ASIMR) for several years. This type of rocket could be used in the future to propel interplanetary spacecraft and has the potential to open the entire solar system to human exploration. One feature of this propulsion technology is the ability to vary its specific impulse so that it can be operated in a mode that maximizes propellant efficiency or a mode that maximizes thrust. Variation of specific impulse and thrust enhances the ability to optimize interplanetary trajectories and results in shorter trip times and lower propellant requirements than with a fixed specific impulse. In its ultimate application for interplanetary travel, the VASIMR would be a multi-megawatt device. A much lower power system is being designed for demonstration in the 2004 timeframe. This first space demonstration would employ a lO-kilowatt thruster aboard a solar powered spacecraft in Earth orbit. The 1O-kilowatt V ASIMR demonstration unit would operate for a period of several months with hydrogen or deuterium propellant with a specific impulse of 10,000 seconds.
Liu, Ying D; Luhmann, Janet G; Kajdič, Primož; Kilpua, Emilia K J; Lugaz, Noé; Nitta, Nariaki V; Möstl, Christian; Lavraud, Benoit; Bale, Stuart D; Farrugia, Charles J; Galvin, Antoinette B
2014-03-18
Space weather refers to dynamic conditions on the Sun and in the space environment of the Earth, which are often driven by solar eruptions and their subsequent interplanetary disturbances. It has been unclear how an extreme space weather storm forms and how severe it can be. Here we report and investigate an extreme event with multi-point remote-sensing and in situ observations. The formation of the extreme storm showed striking novel features. We suggest that the in-transit interaction between two closely launched coronal mass ejections resulted in the extreme enhancement of the ejecta magnetic field observed near 1 AU at STEREO A. The fast transit to STEREO A (in only 18.6 h), or the unusually weak deceleration of the event, was caused by the preconditioning of the upstream solar wind by an earlier solar eruption. These results provide a new view crucial to solar physics and space weather as to how an extreme space weather event can arise from a combination of solar eruptions.
"Driverless" Shocks in the Interplanetary Medium
NASA Technical Reports Server (NTRS)
Gopalswamy, N.; Kaiser, M. L.; Lara, A.
1999-01-01
Many interplanetary shocks have been detected without an obvious driver behind them. These shocks have been thought to be either blast waves from solar flares or shocks due to sudden increase in solar wind speed caused by interactions between large scale open and closed field lines of the Sun. We investigated this problem using a set of interplanetary shock detected {\\it in situ} by the Wind space craft and tracing their solar origins using low frequency radio data obtained by the Wind/WAVES experiment. For each of these "driverless shocks" we could find a unique coronal mass ejections (CME) event observed by the SOHO (Solar and Heliospheric Observatory) coronagraphs. We also found that these CMEs were ejected at large angles from the Sun-Earth line. It appears that the "driverless shocks" are actually driver shocks, but the drivers were not intercepted by the spacecraft. We conclude that the interplanetary shocks are much more extended than the driving CMEs.
NASA Technical Reports Server (NTRS)
Ng, C. K.
1986-01-01
The purpose is to provide an overview of the contributions presented in sessions SH3, SH1.5, SH4.6 and SH4.7 of the 19th International Cosmic Ray Conference. These contributed papers indicate that steady progress continues to be made in both the observational and the theoretical aspects of the transport and acceleration of energetic charged particles in the heliosphere. Studies of solar and interplanetary particles have placed emphasis on particle directional distributions in relation to pitch-angle scattering and magnetic focusing, on the rigidity and spatial dependence of the mean free path, and on new propagation regimes in the inner and outer heliosphere. Coronal propagation appears in need of correlative multi-spacecraft studies in association with detailed observation of the flare process and coronal magnetic structures. Interplanetary acceleration has now gone into a consolidation phase, with theories being worked out in detail and checked against observation.
Solar Eruptions, CMEs and Space Weather
NASA Technical Reports Server (NTRS)
Gopalswamy, Nat
2011-01-01
Coronal mass ejections (CMEs) are large-scale magnetized plasma structures ejected from the Sun and propagate far into the interplanetary medium. CMEs represent energy output from the Sun in the form of magnetized plasma and electromagnetic radiation. The electromagnetic radiation suddenly increases the ionization content of the ionosphere, thus impacting communication and navigation systems. The plasma clouds can drive shocks that accelerate charged particles to very high energies in the interplanetary space, which pose radiation hazard to astronauts and space systems. The plasma clouds also arrive at Earth in about two days and impact Earth's magnetosphere, producing geomagnetic storms. The magnetic storms result in a number of effects including induced currents that can disrupt power grids, railroads, and underground pipelines. This lecture presents an overview of the origin, propagation, and geospace consequences of solar storms.
A new technique for in situ measurement of the composition of neutral gas in interplanetary space
NASA Technical Reports Server (NTRS)
Gruntman, Michael A.
1993-01-01
Neutral atoms in interplanetary space play an important role in many processes relevant to the formation and evolution of the Solar System. An experimental approach is proposed for in situ atom detection based on the conversion of neutral atoms to negative ions at a specially prepared sensitive surface. Negative ions are subsequently analyzed and detected in an essentially noise-free mode. The use of the technique for in situ study of the composition of neutral interstellar atoms is considered. It is shown that interstellar H, D, and O atoms and possibly H2 molecules can be measured by the proposed technique. The experiment can be performed from a high-apogee Earth-orbiting satellite or from a deep space probe. Possible applications of the technique are discussed.
Navigation and Guidance for Low-Thrust Trajectories, LOTNAV
NASA Astrophysics Data System (ADS)
Cano, J. L.; Bello, M.; Rodriguez-Canabal, J.
A number of interplanetary low-thrust missions have already been flown by many space agencies. Examples of already flown missions based on the use of electric propulsion are Deep Space 1, Hayabusa and SMART-1. Many others are already in the assessment phase or in the development phase itself. In such perspective, it is required by the space agencies the procurement and utilisation of assessment tools for fast prototyping in the areas of mission design and navigation. The Low-Thrust Interplanetary Navigation Tool, which is the subject of this paper, allows the mission analyst performing such type of quick assessment studies for the early phases in the development of low-thrust missions. A number of test cases on low-thrust missions are also presented along with the utilities composing the LOTNAV tool.
Skylab's Astronomy and Space Sciences
NASA Technical Reports Server (NTRS)
Lundquist, C. A. (Editor)
1979-01-01
The capabilities of Skylab for multidisciplinary investigations are reviewed. Experiments and results are discussed for observations of stars and galaxies, energetic particles, interplanetary dust, Comet Kohoutek, the earth's atmosphere, and the nature and effects of space environments on man.
Properties of Coronal Shocks at the Origin of SEP events Observed by Only One Single Spacecraft
NASA Astrophysics Data System (ADS)
Lario, D.; Kwon, R.
2017-12-01
The simultaneous observation of solar energetic particle (SEP) events by multiple spacecraft distributed in the interplanetary medium depends not only on the spatial separation among the different spacecraft, but also on the properties of the particle sources and the characteristics of the SEP transport in interplanetary space. Among the SEP events observed by STEREO-A, STEREO-B and/or near-Earth spacecraft during solar cycle 24, we select SEP events observed by a single spacecraft (specifically, the SEP events observed only by near-Earth spacecraft on 2012 April 5, 2011 September 4, and 2013 August 17). We analyze whether the properties of the coronal shock associated with the origin of the events (as seen in extreme-ultraviolet and white-light coronal images) differ from those associated with SEP events observed by two or three spacecraft. For the selected events we find that the associated CMEs are, in general, narrower than those associated with SEP events observed by two or three spacecraft. The confined extension of the parent coronal shock and the absence of magnetic connection between distant spacecraft and the regions of the expanding coronal shock able to efficiently accelerate SEPs seem to be the conditions leading to intense SEP events observed only over narrow regions of interplanetary space by spacecraft magnetically connected to regions close to the parent eruption site. Weak and gradual intensity increases observed in extended regions of space might involve transport processes and/or later connections established with interplanetary shocks. Systematic analyses of a larger number of events are required before drawing firm conclusions.
Using The Global Positioning System For Earth Orbiter and Deep Space Network
NASA Technical Reports Server (NTRS)
Lichten, Stephen M.; Haines, Bruce J.; Young, Lawrence E.; Dunn, Charles; Srinivasan, Jeff; Sweeney, Dennis; Nandi, Sumita; Spitzmesser, Don
1994-01-01
The Global Positioning System (GPS) can play a major role in supporting orbit and trajectory determination for spacecraft in a wide range of applications, including low-Earth, high-earth, and even deep space (interplanetary) tracking.
NASA Technical Reports Server (NTRS)
Kessler, D. J. (Editor); Zarnecki, J. C. (Editor); Matson, D. L. (Editor)
1991-01-01
The present conference on space dust and debris encompasses orbital debris, in situ measurements and laboratory analysis of space-dust particles, comparative studies of comets, asteroids, and dust, the protection and maneuvering of spacecraft in space-debris environments, and the out-of-elliptic distribution of interplanetary dust derived from near-earth flux. Specific issues addressed include asteroid taxonomy, the optical properties of dust from cometary and interplanetary grains, light scattering by rough surfaces on asteroidal/lunar regoliths, and the first results of particulate impacts and foil perforations on the Long Duration Exposure Facility. Also addressed are collision probability and spacecraft disposition in the geostationary orbit, a flash on the moon caused by orbital debris, the limits of population growth in low earth orbit due to collisional cascading, and the simulation of cosmic man-made dust effects on space-vehicle elements in rocket and laboratory experiments.
NASA Astrophysics Data System (ADS)
Crawford, Ian A.
In his 1948 lecture to the British Interplanetary Society Stapledon considered the ultimate purpose of colonising other worlds. Having examined the possible motivations arising from improved scientific knowledge and access to extraterrestrial raw materials, he concludes that the ultimate benefits of space colonisation will be the increased opportunities for developing human (and post-human) diversity, intellectual and aesthetic potential and, especially, `spirituality'. By the latter concept he meant a striving for ``sensitive and intelligent awareness of things in the universe (including persons), and of the universe as a whole.'' A key insight articulated by Stapledon in this lecture was that this should be the aspiration of all human development anyway, with or without space colonisation, but that the latter would greatly increase the scope for such developments. Another key aspect of his vision was the development of a diverse, but connected, `Commonwealth of Worlds' extending throughout the Solar System, and eventually beyond, within which human potential would be maximised. In this paper I analyse Stapledon's vision of space colonisation, and will conclude that his overall conclusions remain sound. However, I will also argue that he was overly utopian in believing that human social and political unity are prerequisites for space exploration (while agreeing that they are desirable objectives in their own right), and that he unnecessarily downplayed the more prosaic scientific and economic motivations which are likely to be key drivers for space exploration (if not colonisation) in the shorter term. Finally, I draw attention to some recent developments in international space policy which, although probably not influenced by Stapledon's work, are nevertheless congruent with his overarching philosophy as outlined in `Interplanetary Man?'.
NASA Technical Reports Server (NTRS)
Ratcliff, K. F.; Misconi, N. Y.; Paddack, S. J.
1980-01-01
Irregular interplanetary dust particles may acquire a considerable spin rate due to two non-statistical dynamical mechanisms induced by solar radiation. These arise from variations in surface albedo discussed by Radzievskii (1954) and from irregularities in surface geometry discussed by Paddack (1969). An experiment is reported which will lead to an evaluation in space of the effectiveness of these two spin mechanisms. The technique of optical levitation in an argon laser beam provides a stable trap for particles 10-60 microns in diameter. The objective is to design an optical trap for dielectric particles in vacuum to study these rotation mechanisms in the gravity-free environment of a Spacelab experiment.
The Interplanetary Internet: a communications infrastructure for Mars exploration.
Burleigh, Scott; Cerf, Vinton; Durst, Robert; Fall, Kevin; Hooke, Adrian; Scott, Keith; Weiss, Howard
2003-01-01
A strategy is being developed whereby the current set of internationally standardized space data communications protocols can be incrementally evolved so that a first version of an operational "Interplanetary Internet" is feasible by the end of the decade. This paper describes its architectural concepts, discusses the current set of standard space data communications capabilities that exist to support Mars exploration and reviews proposed new developments. We also speculate that these current capabilities can grow to support future scenarios where human intelligence is widely distributed across the Solar System and day-to-day communications dialog between planets is routine. c2003 American Institute of Aeronautics and Astronautics. Published by Elsevier Science Ltd. All rights reserved.
The Interplanetary Internet: a communications infrastructure for Mars exploration
NASA Technical Reports Server (NTRS)
Burleigh, Scott; Cerf, Vinton; Durst, Robert; Fall, Kevin; Hooke, Adrian; Scott, Keith; Weiss, Howard
2003-01-01
A strategy is being developed whereby the current set of internationally standardized space data communications protocols can be incrementally evolved so that a first version of an operational "Interplanetary Internet" is feasible by the end of the decade. This paper describes its architectural concepts, discusses the current set of standard space data communications capabilities that exist to support Mars exploration and reviews proposed new developments. We also speculate that these current capabilities can grow to support future scenarios where human intelligence is widely distributed across the Solar System and day-to-day communications dialog between planets is routine. c2003 American Institute of Aeronautics and Astronautics. Published by Elsevier Science Ltd. All rights reserved.
Unmanned planetary spacecraft chemical rocket propulsion.
NASA Technical Reports Server (NTRS)
Burlage, H., Jr.; Gin, W.; Riebling, R. W.
1972-01-01
Review of some chemical propulsion technology advances suitable for future unmanned spacecraft applications. Discussed system varieties include liquid space-storable propulsion systems, advanced liquid monopropellant systems, liquid systems for rendezvous and landing applications, and low-thrust high-performance solid-propellant systems, as well as hybrid space-storable systems. To optimize the performance and operational characteristics of an unmanned interplanetary spacecraft for a particular mission, and to achieve high cost effectiveness of the entire system, it is shown to be essential that the type of spacecraft propulsion system to be used matches, as closely as possible the various requirements and constraints. The systems discussed are deemed to be the most promising candidates for some of the anticipated interplanetary missions.
NASA Technical Reports Server (NTRS)
1986-01-01
Activities of the Goddard Space Flight Center are described in the areas of planets and interplanetary media, comets, astronomy and high-energy physics, solar physics, atmospheres, terrestrial physics, ocean science, sensors and space technology, techniques, user space data systems, space communications and navigation, and system and software engineering. Flight projects and mission definition studies are presented, and institutional technology is described.
Nuclear electric propulsion mission engineering study. Volume 2: Final report
NASA Technical Reports Server (NTRS)
1973-01-01
Results of a mission engineering analysis of nuclear-thermionic electric propulsion spacecraft for unmanned interplanetary and geocentric missions are summarized. Critical technologies associated with the development of nuclear electric propulsion (NEP) are assessed, along with the impact of its availability on future space programs. Outer planet and comet rendezvous mission analysis, NEP stage design for geocentric and interplanetary missions, NEP system development cost and unit costs, and technology requirements for NEP stage development are studied.
Spatial Correlation of Solar-Wind Turbulence from Two-Point Measurements
NASA Technical Reports Server (NTRS)
Matthaeus, W. H.; Milano, L. J.; Dasso, S.; Weygand, J. M.; Smith, C. W.; Kivelson, M. G.
2005-01-01
Interplanetary turbulence, the best studied case of low frequency plasma turbulence, is the only directly quantified instance of astrophysical turbulence. Here, magnetic field correlation analysis, using for the first time only proper two-point, single time measurements, provides a key step in unraveling the space-time structure of interplanetary turbulence. Simultaneous magnetic field data from the Wind, ACE, and Cluster spacecraft are analyzed to determine the correlation (outer) scale, and the Taylor microscale near Earth's orbit.
Division F Commission 22: Meteors, Meteorites, and Interplanetary Dust
NASA Astrophysics Data System (ADS)
Jenniskens, Peter; Borovička, Jiří; Watanabe, Jun-Ichi; Jopek, Tadeusz; Abe, Shinsuke; Consolmagno, Guy J.; Ishiguro, Masateru; Janches, Diego; Ryabova, Galina O.; Vaubaillon, Jérémie; Zhu, Jin
2016-04-01
Commission 22 (Meteors, Meteorites and Interplanetary Dust) was established at the first IAU General Assembly held in Rome in 1922, with William Frederick Denning as its first President. Denning was an accountant by profession, but as an amateur astronomer he contributed extensively to meteor science. Commission 22 thus established a pattern that has continued to this day that non-professional astronomers were welcomed and valued and could play a significant role in its affairs. The field of meteors, meteorites and interplanetary dust has played a disproportional role in the astronomical perception of the general public through the majestic displays of our annual meteor showers. Those in the field deployed many techniques uncommon in other fields of astronomy, studying the ``vermin of space'', the small solid bodies that pervade interplanetary space and impact Earth's atmosphere, the surface of the Moon, and that of our satellites in orbit. Over time, the field has tackled a wide array of problems, from predicting the encounter with meteoroid streams, to the origin of our meteorites and the nature of the zodiacal cloud. Commission 22 has played an important role in organizing the field through dedicated meetings, a data centre, and working groups that developed professional-amateur relationships and that organized the nomenclature of meteor showers. The contribution of Commission 22 to the field is perhaps most readily seen in the work of the presidents that followed in the footsteps of Denning.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hu, Huidong; Liu, Ying D.; Wang, Rui
We investigate the coronal and interplanetary evolution of a coronal mass ejection (CME) launched on 2010 September 4 from a source region linking two active regions (ARs), 11101 and 11103, using extreme ultraviolet imaging, magnetogram, white-light, and in situ observations from SDO , STEREO , SOHO , VEX , and Wind . A potential-field source-surface model is employed to examine the configuration of the coronal magnetic field surrounding the source region. The graduated cylindrical shell model and a triangulation method are applied to determine the kinematics of the CME in the corona and interplanetary space. From the remote sensing andmore » in situ observations, we obtain some key results: (1) the CME was deflected in both the eastward and southward directions in the low corona by the magnetic pressure from the two ARs, and possibly interacted with another ejection, which caused that the CME arrived at VEX that was longitudinally distant from the source region; (2) although VEX was closer to the Sun, the observed and derived CME arrival times at VEX are not earlier than those at Wind , which suggests the importance of determining both the frontal shape and propagation direction of the CME in interplanetary space; and (3) the ICME was compressed in the radial direction while the longitudinal transverse size was extended.« less
Mexican Space Weather Service (SCiESMEX)
NASA Astrophysics Data System (ADS)
Gonzalez-Esparza, J. A.; De la Luz, V.; Corona-Romero, P.; Mejia-Ambriz, J. C.; Gonzalez, L. X.; Sergeeva, M. A.; Romero-Hernandez, E.; Aguilar-Rodriguez, E.
2017-01-01
Legislative modifications of the General Civil Protection Law in Mexico in 2014 included specific references to space hazards and space weather phenomena. The legislation is consistent with United Nations promotion of international engagement and cooperation on space weather awareness, studies, and monitoring. These internal and external conditions motivated the creation of a space weather service in Mexico. The Mexican Space Weather Service (SCiESMEX in Spanish) (www.sciesmex.unam.mx) was initiated in October 2014 and is operated by the Institute of Geophysics at the Universidad Nacional Autonoma de Mexico (UNAM). SCiESMEX became a Regional Warning Center of the International Space Environment Services (ISES) in June 2015. We present the characteristics of the service, some products, and the initial actions for developing a space weather strategy in Mexico. The service operates a computing infrastructure including a web application, data repository, and a high-performance computing server to run numerical models. SCiESMEX uses data of the ground-based instrumental network of the National Space Weather Laboratory (LANCE), covering solar radio burst emissions, solar wind and interplanetary disturbances (by interplanetary scintillation observations), geomagnetic measurements, and analysis of the total electron content (TEC) of the ionosphere (by employing data from local networks of GPS receiver stations).
Cosmic-ray streaming and anisotropies
NASA Technical Reports Server (NTRS)
Forman, M. A.; Gleeson, L. J.
1975-01-01
The paper is concerned with the differential current densities and anisotropies that exist in the interplanetary cosmic-ray gas, and in particular with a correct formulation and simple interpretation of the momentum equation that describes these on a local basis. Two examples of the use of this equation in the interpretation of previous data are given. It is demonstrated that in interplanetary space, the electric-field drifts and convective flow parallel to the magnetic field of cosmic-ray particles combine as a simple convective flow with the solar wind, and that there exist diffusive currents and transverse gradient drift currents. Thus direct reference to the interplanetary electric-field drifts is eliminated, and the study of steady-state and transient cosmic-ray anisotropies is both more systematic and simpler.
Study of Travelling Interplanetary Phenomena (STIP) workshop travel
NASA Technical Reports Server (NTRS)
Wu, S. T.
1986-01-01
Thirty six abstracts are provided from the SCOSTEP/STIP Symposium on Retrospective Analyses and Future Coordinated Intervals held in Switzerland on June 10 to 12, 1985. Six American scientists participated in the symposium and their abstracts are also included. The titles of their papers are: (1) An analysis of near surface and coronal activity during STIP interval 12, by T. E. Gergely; (2) Helios images of STIP intervals 6, B. V. Jackson; (3) Results from the analysis of solar and interplanetary observations during STIP interval 7, S. R. Kane; (4) STIP interval 19, E. Cliver; (5) Hydrodynamic buoyancy force in the solar atmosphere, T. Yeh; and (6) A combined MHD modes for the energy and momentum transport from solar surface to interplanetary space, S. T. Wu.
A model of the open magnetosphere. [with field configuration based on Chapman-Ferraro theory
NASA Technical Reports Server (NTRS)
Kan, J. R.; Akasofu, S.-I.
1974-01-01
The Chapman-Ferraro image method is extended to construct an idealized model of the open magnetosphere that responds to a change of the interplanetary field direction as well as to a change of the field magnitude or of the solar wind momentum flux. The magnetopause of the present model is an infinite plane surface having a normal field component distribution that is consistent with the merging theory. An upper limit on the inward displacement of the magnetopause following a southward turning of the interplanetary field is obtained. The results are in fair agreement with a single event reported by Aubry et al. (1971). The model determines the field configuration and the total magnetic flux connecting the magnetosphere to interplanetary space.
Autonomous interplanetary constellation design
NASA Astrophysics Data System (ADS)
Chow, Cornelius Channing, II
According to NASA's integrated space technology roadmaps, space-based infrastructures are envisioned as necessary ingredients to a sustained effort in continuing space exploration. Whether it be for extra-terrestrial habitats, roving/cargo vehicles, or space tourism, autonomous space networks will provide a vital communications lifeline for both future robotic and human missions alike. Projecting that the Moon will be a bustling hub of activity within a few decades, a near-term opportunity for in-situ infrastructure development is within reach. This dissertation addresses the anticipated need for in-space infrastructure by investigating a general design methodology for autonomous interplanetary constellations; to illustrate the theory, this manuscript presents results from an application to the Earth-Moon neighborhood. The constellation design methodology is formulated as an optimization problem, involving a trajectory design step followed by a spacecraft placement sequence. Modeling the dynamics as a restricted 3-body problem, the investigated design space consists of families of periodic orbits which play host to the constellations, punctuated by arrangements of spacecraft autonomously guided by a navigation strategy called LiAISON (Linked Autonomous Interplanetary Satellite Orbit Navigation). Instead of more traditional exhaustive search methods, a numerical continuation approach is implemented to map the admissible configuration space. In particular, Keller's pseudo-arclength technique is used to follow folding/bifurcating solution manifolds, which are otherwise inaccessible with other parameter continuation schemes. A succinct characterization of the underlying structure of the local, as well as global, extrema is thus achievable with little a priori intuition of the solution space. Furthermore, the proposed design methodology offers benefits in computation speed plus the ability to handle mildly stochastic systems. An application of the constellation design methodology to the restricted Earth-Moon system, reveals optimal pairwise configurations for various L1, L2, and L5 (halo, axial, and vertical) periodic orbit families. Navigation accuracies, ranging from O (10+/-1) meters in position space, are obtained for the optimal Earth-Moon constellations, given measurement noise on the order of 1 meter.
NASA Astrophysics Data System (ADS)
Galluzzi, M. C.
2018-02-01
Three goals can be achieved by 2030: 1. NASA will have the capability for remote on-demand 3d printing of critical hardware using regolith material as feedstock, 2. Logistics footprint reduced by 35%, 3. Deep Space Gateway will become 75% self-sustaining.
Interplanetary Supply Chain Risk Management
NASA Technical Reports Server (NTRS)
Galluzzi, Michael C.
2018-01-01
Emphasis on KSC ground processing operations, reduced spares up-mass lift requirements and campaign-level flexible path perspective for space systems support as Regolith-based ISM is achieved by; Network modeling for sequencing space logistics and in-space logistics nodal positioning to include feedstock. Economic modeling to assess ISM 3D printing adaption and supply chain risk.
Optimizing interplanetary trajectories with deep space maneuvers. M.S. Thesis
NASA Technical Reports Server (NTRS)
Navagh, John
1993-01-01
Analysis of interplanetary trajectories is a crucial area for both manned and unmanned missions of the Space Exploration Initiative. A deep space maneuver (DSM) can improve a trajectory in much the same way as a planetary swingby. However, instead of using a gravitational field to alter the trajectory, the on-board propulsion system of the spacecraft is used when the vehicle is not near a planet. The purpose is to develop an algorithm to determine where and when to use deep space maneuvers to reduce the cost of a trajectory. The approach taken to solve this problem uses primer vector theory in combination with a non-linear optimizing program to minimize Delta(V). A set of necessary conditions on the primer vector is shown to indicate whether a deep space maneuver will be beneficial. Deep space maneuvers are applied to a round trip mission to Mars to determine their effect on the launch opportunities. Other studies which were performed include cycler trajectories and Mars mission abort scenarios. It was found that the software developed was able to locate quickly DSM's which lower the total Delta(V) on these trajectories.
Optimizing interplanetary trajectories with deep space maneuvers
NASA Astrophysics Data System (ADS)
Navagh, John
1993-09-01
Analysis of interplanetary trajectories is a crucial area for both manned and unmanned missions of the Space Exploration Initiative. A deep space maneuver (DSM) can improve a trajectory in much the same way as a planetary swingby. However, instead of using a gravitational field to alter the trajectory, the on-board propulsion system of the spacecraft is used when the vehicle is not near a planet. The purpose is to develop an algorithm to determine where and when to use deep space maneuvers to reduce the cost of a trajectory. The approach taken to solve this problem uses primer vector theory in combination with a non-linear optimizing program to minimize Delta(V). A set of necessary conditions on the primer vector is shown to indicate whether a deep space maneuver will be beneficial. Deep space maneuvers are applied to a round trip mission to Mars to determine their effect on the launch opportunities. Other studies which were performed include cycler trajectories and Mars mission abort scenarios. It was found that the software developed was able to locate quickly DSM's which lower the total Delta(V) on these trajectories.
Predicting ICME properties at 1AU
NASA Astrophysics Data System (ADS)
Lago, A.; Braga, C. R.; Mesquita, A. L.; De Mendonça, R. R. S.
2017-12-01
Coronal mass ejections (CMEs) are among the main origins of geomagnetic disturbances. They change the properties of the near-earth interplanetary medium, enhancing some key parameters, such as the southward interplanetary magnetic field and the solar wind speed. Both quantities are known to be related to the energy transfer from the solar wind to the Earth's magnetosphere via the magnetic reconnection process. Many attempts have been made to predict the magnetic filed and the solar wind speed from coronagraph observations. However, we still have much to learn about the dynamic evolution of ICMEs as they propagate through the interplanetary space. Increased observation capability is probably needed. Among the several attempts to establish correlations between CME and ICME properties, it was found that the average CME propagation speed to 1AU is highly correlated to the ICME peak speed (Dal Lago et al, 2004). In this work, we present an extended study of such correlation, which confirms the results found in our previous study. Some suggestions on how to use this kind of results for space weather estimates are explored.
NASA Astrophysics Data System (ADS)
Johnson, Michael
2015-04-01
iCubeSat, the Interplanetary CubeSat Workshop, is an annual technical workshop for researchers working on an exciting new standardised platform and opportunity for planetary and space scientists. The first workshop was held in 2012 at MIT, 2013 at Cornell, 2014 at Caltech with the 2015 workshop scheduled to take place on the 26-27th May 2015 at Imperial College London. Mission concepts and flight projects presented since 2012 have included orbiters and landers targeting asteroids, the moon, Mars, Venus, Saturn and their satellites to perform science traditionally reserved for flagship missions at a fraction of their cost. Some of the first missions proposed are currently being readied for flight in Europe, taking advantage of multiple ride share launch opportunities and technology providers. A review of these and other interplanetary CubeSat projects will be presented, covering details of their science objectives, instrument capabilities, technology, team composition, budget, funding sources, and the other programattic elements required to implement this potentially revolutionary new class of mission.
Cosmic ray transport in astrophysical plasmas
DOE Office of Scientific and Technical Information (OSTI.GOV)
Schlickeiser, R.
2015-09-15
Since the development of satellite space technology about 50 years ago the solar heliosphere is explored almost routinely by several spacecrafts carrying detectors for measuring the properties of the interplanetary medium including energetic charged particles (cosmic rays), solar wind particle densities, and electromagnetic fields. In 2012, the Voyager 1 spacecraft has even left what could be described as the heliospheric modulation region, as indicated by the sudden disappearance of low energy heliospheric cosmic ray particles. With the available in-situ measurements of interplanetary turbulent electromagnetic fields and of the momentum spectra of different cosmic ray species in different interplanetary environments, themore » heliosphere is the best cosmic laboratory to test our understanding of the transport and acceleration of cosmic rays in space plasmas. I review both the historical development and the current state of various cosmic ray transport equations. Similarities and differences to transport theories for terrestrial fusion plasmas are highlighted. Any progress in cosmic ray transport requires a detailed understanding of the electromagnetic turbulence that is responsible for the scattering and acceleration of these particles.« less
Comparison of Meteoroid Flux Models for Near Earth Space
NASA Technical Reports Server (NTRS)
Drolshagen, G.; Liou, J.-C.; Dikarev, V.; Landgraf, M.; Krag, H.; Kuiper, W.
2007-01-01
Over the last decade several new models for the sporadic interplanetary meteoroid flux have been developed. These include the Meteoroid Engineering Model (MEM), the Divine-Staubach model and the Interplanetary Meteoroid Engineering Model (IMEM). They typically cover mass ranges from 10-12 g (or lower) to 1 g and are applicable for model specific sun distance ranges between 0.2 A.U. and 10 A.U. Near 1 A.U. averaged fluxes (over direction and velocities) for all these models are tuned to the well established interplanetary model by Gr?n et. al. However, in many respects these models differ considerably. Examples are the velocity and directional distributions and the assumed meteoroid sources. In this paper flux predictions by the various models to Earth orbiting spacecraft are compared. Main differences are presented and analysed. The persisting differences even for near Earth space can be seen as surprising in view of the numerous ground based (optical, radar) and in-situ (captured IDPs, in-situ detectors and analysis of retrieved hardware) measurements and simulations. Remaining uncertainties and potential additional studies to overcome the existing model discrepancies are discussed.
NASA Astrophysics Data System (ADS)
Souza, V. M. C. E. S.; Jauer, P. R.; Alves, L. R.; Padilha, A. L.; Padua, M. B.; Vitorello, I.; Alves, M. V.; Da Silva, L. A.
2017-12-01
Interplanetary structures such as Coronal Mass Ejections (CME), Shocks, Corotating Interaction Regions (CIR) and Magnetic Clouds (MC) interfere directly on Space Weather conditions and can cause severe and intense disturbances in the Earth's magnetic field as measured in space and on the ground. During magnetically disturbed periods characterized by world-wide, abrupt variations of the geomagnetic field, large and intense current systems can be induced and amplified within the Earth even at low latitudes. Such current systems are known as geomagnetically induced currents (GIC) and can cause damage to power transmission lines, transformers and the degradation of pipelines. As part of an effort to estimate GIC intensities throughout the low to equatorial latitudes of the Brazilian territory, we used the 3-D MHD SWMF/BATSRUS code to estimate spatial variations of the geomagnetic field during periods when the magnetosphere is under the influence of CME and MC structures. Specifically, we used the CalcDeltaB tool (Rastatter et al., Space Weather, 2014) to provide a proxy for the spatial variations of the geomagnetic field, with a 1 minute cadence, at 31 virtual magnetometer stations located in the proposed study region. The stations are spatially arranged in a two-dimensional network with each station being 5 degrees apart in latitude and longitude. In a preliminary analysis, we found that prior to the arrival of each interplanetary structure, there is no appreciable variation in the components of the geomagnetic field between the virtual stations. However, when the interplanetary structures reach the magnetosphere, each station perceives the magnetic field variation differently, so that it is not possible to use a single station to represent the magnetic field perturbation throughout the Brazilian region. We discuss the minimum number and spacing between stations to adequately detail the geomagnetic field variations in this region.
NASA Astrophysics Data System (ADS)
Wang, Y.; Shen, C.; Liu, R.; Zhou, Z.
2014-12-01
Magnetic clouds (MCs) are the interplanetary counterparts of coronal mass ejections (CMEs). Due to the very low value of Can't connect to bucket.int.confex.com:4201 (Connection refused) LWP::Protocol::http::Socket: connect: Connection refused at /usr/local/lib/perl5/site_perl/5.8.8/LWP/Protocol/http.pm line 51. in MCs, they are believed to be in a nearly force-free state and therefore are able to be modeled by a cylindrical force-free flux rope. However, the force-free state only describes the magnetic field topology but not the plasma motion of a MC. For a MC propagating in interplanetary space, the global plasma motion has three possible components: linear propagating motion of a MC away from the Sun, expanding motion and circular motion with respect to the axis of the MC. By assuming the quasi-steady evolution and self-similar expansion, we introduced the three-component motion into the cylindrical force-free flux rope model, and developed a velocity-modified model. Then we applied the model to 73 MCs observed by Wind spacecraft to investigate the properties of the plasma motion of MCs. It is found that (1) some MCs did not propagate along the Sun-Earth line, suggesting the direct evidence of the CME's deflected propagation and/or rotation in interplanetary space, (2) the expansion speed is correlated with the radial propagation speed and 62%/17% of MCs underwent a under/over-expansion at 1 AU, and (3) the circular motion does exists though it is only on the order of 10 km s-1. These findings advance our understanding of the MC's properties at 1 AU as well as the dynamic evolution of CMEs from the Sun to interplanetary space.
NASA Technical Reports Server (NTRS)
Alves, L. R.; Da Silva, L. A.; Souza, V. M.; Sibeck, D. G.; Jauer, P. R.; Vieira, L. E. A.; Walsh, B. M.; Silveira, M. V. D.; Marchezi, J. P.; Rockenbach, M.;
2016-01-01
Magnetopause shadowing and wave-particle interactions are recognized as the two primary mechanisms for losses of electrons from the outer radiation belt. We investigate these mechanisms, sing satellite observations both in interplanetary space and within the magnetosphere and particle drift modeling. Two interplanetary shocks sheaths impinged upon the magnetopause causing a relativistic electron flux dropout. The magnetic cloud (C) and interplanetary structure sunward of the MC had primarily northward magnetic field, perhaps leading to a concomitant lack of substorm activity and a 10 day long quiescent period. The arrival of two shocks caused an unusual electron flux dropout. Test-particle simulations have shown 2 to 5 MeV energy, equatorially mirroring electrons with initial values of L 5.5can be lost to the magnetosheath via magnetopause shadowing alone. For electron losses at lower L-shells, coherent chorus wave-driven pitch angle scattering and ULF wave-driven radial transport have been shownto be viable mechanisms.
The interplanetary exchange of photosynthesis.
Cockell, Charles S
2008-02-01
Panspermia, the transfer of organisms from one planet to another, either through interplanetary or interstellar space, remains speculation. However, its potential can be experimentally tested. Conceptually, it is island biogeography on an interplanetary or interstellar scale. Of special interest is the possibility of the transfer of oxygenic photosynthesis between one planet and another, as it can initiate large scale biospheric productivity. Photosynthetic organisms, which must live near the surface of rocks, can be shown experimentally to be subject to destruction during atmospheric transit. Many of them grow as vegetative cells, which are shown experimentally to be susceptible to destruction by shock during impact ejection, although the effectiveness of this dispersal filter can be shown to be mitigated by the characteristics of the cells and their local environment. Collectively these, and other, experiments reveal the particular barriers to the cross-inoculation of photosynthesis. If oxygen biosignatures are eventually found in the atmospheres of extrasolar planets, understanding the potential for the interplanetary exchange of photosynthesis will aid in their interpretation.
Interplanetary Electric Propulsion Uranus Mission Trades Supporting the Decadal Survey
NASA Technical Reports Server (NTRS)
Dankanich, John W.; McAdams, James
2011-01-01
The Decadal Survey Committee was tasked to develop a comprehensive science and mission strategy for planetary science that updates and extends the National Academies Space Studies Board s current solar system exploration decadal survey. A Uranus orbiter mission has been evaluated as a part of this 2013-2022 Planetary Science Decadal Survey. A comprehensive Uranus orbiter mission design was completed, including a broad search of interplanetary electric propulsion transfer options. The scope of interplanetary trades was limited to electric propulsion concepts, both solar and radioisotope powered. Solar electric propulsion offers significant payloads to Uranus. Inserted mass into the initial science orbit due is highly sensitive to transfer time due to arrival velocities. The recommended baseline trajectory is a 13 year transfer with an Atlas 551, a 1+1 NEXT stage with 15 kW of power using an EEJU trajectory and a 1,000km EGA flyby altitude constraint. This baseline delivers over 2,000kg into the initial science orbit. Interplanetary trajectory trades and sensitivity analyses are presented herein.
PROPAGATION AND EVOLUTION OF THE JUNE 1st 2008 CME IN THE INTERPLANETARY MEDIUM
NASA Astrophysics Data System (ADS)
Nieves-Chinchilla, T.; Lamb, D. A.; Davila, J. M.; Vinas, A. F.; Moestl, C.; Hidalgo, M. A.; Farrugia, C. J.; Malandraki, O.; Dresing, N.; Gómez-Herrero, R.
2009-12-01
In this work we present a study of the coronal mass ejection (CME) of June 1st of 2008 in the interplanetary medium. This event has been extensively studied by others because of its favorable geometry and the possible consequences of its peculiar initiation for space weather forecasting. We show an analysis of the evolution of the CME in the interplanetary medium in order to shed some light on the propagation mechanism of the ICME. We have determined the typical shock associated characteristics of the ICME in order to understand the propagation properties. Using two different non force-free models of the magnetic cloud allows us to incorporate expansion of the cloud. We use in-situ measurements from STEREO B/IMPACT to characterize the ICME. In addition, we use images from STEREO A/SECCHI-HI to analyze the propagation and visual evolution of the associated flux rope in the interplanetary medium. We compare and contrast these observations with the results of the analytical models.
Intrigue and potential of space exploration
NASA Technical Reports Server (NTRS)
Losh, H.
1972-01-01
A brief history of astronomy is presented. A chronology of events in the space program is summarized. The possibilities of interplanetary exploration are postulated. The accomplishments of astronomy in pointing the way to manned spaceflight and improved understanding of the solar system are examined.
Space Pioneers and where they are now
NASA Technical Reports Server (NTRS)
Montoya, Earl J.; Fimmel, Richard O.
1987-01-01
A description of the Pioneer project, its history and achievements is given. Major discoveries concerning near and interplanetary space, the planets, and various comets are outlined. Anticipated future observations are considered. A list of Pioneer project launches, 1986 statuses, and project firsts is given.
NASA Astrophysics Data System (ADS)
Levasseur-Regourd, Anny-Chantal; Gaboriaud, Alain; Buil, Christian; Ressouche, Antoine; Lasue, J.; Palun, Adrien; Apper, Fabien; Elmaleh, Marc
Intensity and linear polarization observations of the solar light scattered by interplanetary dust, the so-called zodiacal light, provide information on properties of the dust particles, such as their spatial density, local changes, morphology and albedo. Earth-based polarimetric observations, with a resolution of 5° or more, have been used to derive the polarization phase curve of interplanetary dust particles and to establish that the polarization at 90° phase angle increases with increasing solar distance, at least up to 1.5 au in the ecliptic, while the albedo decreases [1, 2]. Analysis of such studies will be revisited. Numerical simulations of the polarimetric behavior of interplanetary dust particles strongly suggest that, in the inner solar system, interplanetary dust particles consist of absorbing (e.g., organic compounds) and less absorbing (e.g., silicates) materials, that radial changes originate in a decrease of organics with decreasing solar distance (probably due to alteration processes), and that a significant fraction of the interplanetary dust is of cometary origin, in agreement with dynamical studies [3, 4]. The polarimetric behaviors of interplanetary dust and cometary dust particles seem to present striking similarities. The properties of cometary dust particles, as derived from remote polarimetric observations of comets including 67P/Churyumov-Gerasimenko, the target of the Rosetta rendezvous mission, at various wavelengths, will be summarized [5, 6]. The ground truth expected from Rosetta dust experiments, i.e., MIDAS, COSIMA, GIADA, about dust particles’ morphology, composition, and evolution (with distance to the nucleus before Philae release and with distance to the Sun before and after perihelion passage) over the year and a half of nominal mission, will be discussed. Finally, the Eye-Sat nanosatellite will be presented. This triple cubesat, developed by students from engineering schools working as interns at CNES, is to be launched in 2016 [7]. Its main purpose is to study the zodiacal light intensity and polarization from a Sun-synchronous orbit, for the first time at the high spatial resolution of 1° over a wide portion of the sky and at four different wavelengths (in the visible and near-IR domains). The instrumental choices and new on-board technologies will be summarized, together with the results that may be expected on local properties of the interplanetary dust particles and thus on their similarities and differences with cometary dust particles. Support from CNES is warmly acknowledged. [1] Leinert, C., Bowyer, S., Haikala, L.K., et al. The 1997 reference of diffuse night sky brightness, Astron. Astrophys. Supp., 127, 1-99, 1998. [2] Levasseur-Regourd, A.C., Mann, I., Dumont, R., et al. Optical and thermal properties of interplanetary dust. In Interplanetary dust (Grün, E. et al. Eds), 57-94, Springer-Verlag, Berlin, 2001. [3] Lasue, J., Levasseur-Regourd, A.C., Fray, N., et al. Inferring the interplanetary dust properties from remote observations and simulations, Astron. Astrophys., 473, 641-649, 2007. [4] Nesvorny, D., Jenniskens, P., Levison, H.F., et al. Cometary origin of the zodiacal cloud and carbonaceous micrometeorites: implications for hot debris disks. Astrophys. J. 713, 816-836, 2010. [5] Levasseur-Regourd, A.C., Mukai, T., Lasue, J., et al. Physical properties of cometary and interplanetary dust, Planet. Space Sci., 55, 1010-1020, 2007. [6] Hadamcik, E., Sen, A.K., Levasseur-Regourd, A.C., et al., Astron. Astrophys., 517, A86, 2010. [7] CNES internal report. Eye-Sat end of phase A internal review, EYESAT-PR-0-022-CNES, 2013.
Diagnostic Imaging in the Medical Support of the Future Missions to the Moon
NASA Technical Reports Server (NTRS)
Sargsyan, Ashot E.; Jones, Jeffrey A.; Hamilton, Douglas R.; Dulchavsky, Scott A.; Duncan, J. Michael
2007-01-01
This viewgraph presentation is a course that reviews the diagnostic imaging techniques available for medical support on the future moon missions. The educational objectives of the course are to: 1) Update the audience on the curreultrasound imaging in space flight; 2) Discuss the unique aspects of conducting ultrasound imaging on ISS, interplanetary transit, ultrasound imaging on ISS, interplanetary transit, and lunar surface operations; and 3) Review preliminary data obtained in simulations of medical imaging in lunar surface operations.
Time-dependent radiation dose simulations during interplanetary space flights
NASA Astrophysics Data System (ADS)
Dobynde, Mikhail; Shprits, Yuri; Drozdov, Alexander; Hoffman, Jeffrey; Li, Ju
2016-07-01
Space radiation is one of the main concerns in planning long-term interplanetary human space missions. There are two main types of hazardous radiation - Solar Energetic Particles (SEP) and Galactic Cosmic Rays (GCR). Their intensities and evolution depend on the solar activity. GCR activity is most enhanced during solar minimum, while the most intense SEPs usually occur during the solar maximum. SEPs are better shielded with thick shields, while GCR dose is less behind think shields. Time and thickness dependences of the intensity of these two components encourage looking for a time window of flight, when radiation intensity and dose of SEP and GCR would be minimized. In this study we combine state-of-the-art space environment models with GEANT4 simulations to determine the optimal shielding, geometry of the spacecraft, and launch time with respect to the phase of the solar cycle. The radiation environment was described by the time-dependent GCR model, and the SEP spectra that were measured during the period from 1990 to 2010. We included gamma rays, electrons, neutrons and 27 fully ionized elements from hydrogen to nickel. We calculated the astronaut's radiation doses during interplanetary flights using the Monte-Carlo code that accounts for the primary and the secondary radiation. We also performed sensitivity simulations for the assumed spacecraft size and thickness to find an optimal shielding. In conclusion, we present the dependences of the radiation dose as a function of launch date from 1990 to 2010, for flight durations of up to 3 years.
The scheduling of tracking times for interplanetary spacecraft on the Deep Space Network
NASA Technical Reports Server (NTRS)
Webb, W. A.
1978-01-01
The Deep Space Network (DSN) is a network of tracking stations, located throughout the globe, used to track spacecraft for NASA's interplanetary missions. This paper describes a computer program, DSNTRAK, which provides an optimum daily tracking schedule for the DSN given the view periods at each station for a mission set of n spacecraft, where n is between 2 and 6. The objective function is specified in terms of relative total daily tracking time requirements between the n spacecraft. Linear programming is used to maximize the total daily tracking time and determine an optimal daily tracking schedule consistent with DSN station capabilities. DSNTRAK is used as part of a procedure to provide DSN load forecasting information for proposed future NASA mission sets.
NASA Technical Reports Server (NTRS)
Iucci, N.; Parisi, M.; Signorini, C.; Storini, M.; Villoresi, G.
1985-01-01
Investigations have shown that Forbush decreases (Fds) are produced by the propagation into the interplanetary space of a strong perturbation originating from a solar flare (Sf) accompanied by Type IV radioemission. As the front of the perturbation propagates into the interplanetary space, the region in which the galactic cosmic rays are modulated (Fd-modulated region) rotates westward with the Sun and is generally included between two boundary streams; therefore the Fds not associated with observed type IV Sfs (N.Ass.Fds) are likely to be produced by type IV Sfs occurred on the Sun's backside: these vents can be observed when the Earth crosses the corotating Western boundary of the modulated region.
ExoMars Mission Analysis and Design - Launch, Cruise and Arrival Analyses
NASA Technical Reports Server (NTRS)
Cano, Juan L.; Cacciatore, Francesco
2007-01-01
ExoMars is ESA s next mission to planet Mars. The probe is aimed for launch either in 2013 or in 2016. The project is currently undergoing Phase B1 studies under ESA management and Thales Alenia Space Italia project leadership. In that context, DEIMOS Space is responsible for the Mission Analysis and Design for the interplanetary and the entry, descent and landing (EDL) activities. The present mission baseline is based on an Ariane 5 or Proton M launch in 2013 of a spacecraft Composite bearing a Carrier Module (CM) and a Descent Module (DM). A back-up option is proposed in 2016. This paper presents the current status of the interplanetary mission design from launch up to the start of the EDL phase.
NASA Astrophysics Data System (ADS)
Iucci, N.; Parisi, M.; Signorini, C.; Storini, M.; Villoresi, G.
1985-08-01
Investigations have shown that Forbush decreases (Fds) are produced by the propagation into the interplanetary space of a strong perturbation originating from a solar flare (Sf) accompanied by Type IV radioemission. As the front of the perturbation propagates into the interplanetary space, the region in which the galactic cosmic rays are modulated (Fd-modulated region) rotates westward with the Sun and is generally included between two boundary streams; therefore the Fds not associated with observed type IV Sfs (N.Ass.Fds) are likely to be produced by type IV Sfs occurred on the Sun's backside: these vents can be observed when the Earth crosses the corotating Western boundary of the modulated region.
Per-Pixel, Dual-Counter Scheme for Optical Communications
NASA Technical Reports Server (NTRS)
Farr, William H.; Bimbaum, Kevin M.; Quirk, Kevin J.; Sburlan, Suzana; Sahasrabudhe, Adit
2013-01-01
Free space optical communications links from deep space are projected to fulfill future NASA communication requirements for 2020 and beyond. Accurate laser-beam pointing is required to achieve high data rates at low power levels.This innovation is a per-pixel processing scheme using a pair of three-state digital counters to implement acquisition and tracking of a dim laser beacon transmitted from Earth for pointing control of an interplanetary optical communications system using a focal plane array of single sensitive detectors. It shows how to implement dim beacon acquisition and tracking for an interplanetary optical transceiver with a method that is suitable for both achieving theoretical performance, as well as supporting additional functions of high data rate forward links and precision spacecraft ranging.
NASA Technical Reports Server (NTRS)
Gosling, J. T.
1993-01-01
Many years of research have demonstrated that large, nonrecurrent geomagnetic storms, shock wave disturbances in the solar wind, and energetic particle events in interplanetary space often occur in close association with large solar flares. This result has led to a pradigm of cause and effect - that large solar flares are the fundamental cause of these events in the near-Earth space environmemt. This paradigm, which I call 'the solar flare myth,' dominates the popular perception of the relationship between solar activity and interplanetary and geomagnetic events and has provided much of the pragmatic rationale for the study of the solar flare phenomenon. Yet there is good evidence that this paradigm is wrong and that flares do not generally play a central role in producing major transient disturbances in the near-Earth space environment. In this paper I outline a different paradigm of cause and effect that removes solar flares from their central position in the chain of events leading from the Sun to near-Earth space. Instead, this central role is given to events known as coronal mass ejections.
Earth rocks on Mars: Must planetary quarantine be rethought
NASA Technical Reports Server (NTRS)
Melosh, H. J.
1988-01-01
Recent geochemical, isotopic, and rare gas studies suggest that eight SNC meteorites originated on the planet Mars. Since Martian rocks are found on Earth, consideration is being given to finding Earth rocks on Mars. Detailed consideration of the mechanism by which these meteorites were lofted into space strongly suggest that the process of stress-wave spallation near a large impact with, perhaps, an assist from vapor plume expansion, is the fundamental process by which lightly-shocked rock debris is ejected into interplanetary space. The theory of spall ejection was used to examine the mass and velocity of material ejected from the near vicinity of an impact. It seems likely that the half-dozen largest impact events on Earth would have ejected considerable masses of near surface rocks into interplanetary space. No computations were performed to indicate how long Earth ejecta would take to reach Mars.
MAVEN observations of the response of Mars to an interplanetary coronal mass ejection.
Jakosky, B M; Grebowsky, J M; Luhmann, J G; Connerney, J; Eparvier, F; Ergun, R; Halekas, J; Larson, D; Mahaffy, P; McFadden, J; Mitchell, D F; Schneider, N; Zurek, R; Bougher, S; Brain, D; Ma, Y J; Mazelle, C; Andersson, L; Andrews, D; Baird, D; Baker, D; Bell, J M; Benna, M; Chaffin, M; Chamberlin, P; Chaufray, Y-Y; Clarke, J; Collinson, G; Combi, M; Crary, F; Cravens, T; Crismani, M; Curry, S; Curtis, D; Deighan, J; Delory, G; Dewey, R; DiBraccio, G; Dong, C; Dong, Y; Dunn, P; Elrod, M; England, S; Eriksson, A; Espley, J; Evans, S; Fang, X; Fillingim, M; Fortier, K; Fowler, C M; Fox, J; Gröller, H; Guzewich, S; Hara, T; Harada, Y; Holsclaw, G; Jain, S K; Jolitz, R; Leblanc, F; Lee, C O; Lee, Y; Lefevre, F; Lillis, R; Livi, R; Lo, D; Mayyasi, M; McClintock, W; McEnulty, T; Modolo, R; Montmessin, F; Morooka, M; Nagy, A; Olsen, K; Peterson, W; Rahmati, A; Ruhunusiri, S; Russell, C T; Sakai, S; Sauvaud, J-A; Seki, K; Steckiewicz, M; Stevens, M; Stewart, A I F; Stiepen, A; Stone, S; Tenishev, V; Thiemann, E; Tolson, R; Toublanc, D; Vogt, M; Weber, T; Withers, P; Woods, T; Yelle, R
2015-11-06
Coupling between the lower and upper atmosphere, combined with loss of gas from the upper atmosphere to space, likely contributed to the thin, cold, dry atmosphere of modern Mars. To help understand ongoing ion loss to space, the Mars Atmosphere and Volatile Evolution (MAVEN) spacecraft made comprehensive measurements of the Mars upper atmosphere, ionosphere, and interactions with the Sun and solar wind during an interplanetary coronal mass ejection impact in March 2015. Responses include changes in the bow shock and magnetosheath, formation of widespread diffuse aurora, and enhancement of pick-up ions. Observations and models both show an enhancement in escape rate of ions to space during the event. Ion loss during solar events early in Mars history may have been a major contributor to the long-term evolution of the Mars atmosphere. Copyright © 2015, American Association for the Advancement of Science.
Performance potential of gas-core and fusion rockets - A mission applications survey.
NASA Technical Reports Server (NTRS)
Fishbach, L. H.; Willis, E. A., Jr.
1971-01-01
This paper reports an evaluation of the performance potential of five nuclear rocket engines for four mission classes. These engines are: the regeneratively cooled gas-core nuclear rocket; the light bulb gas-core nuclear rocket; the space-radiator cooled gas-core nuclear rocket; the fusion rocket; and an advanced solid-core nuclear rocket which is included for comparison. The missions considered are: earth-to-orbit launch; near-earth space missions; close interplanetary missions; and distant interplanetary missions. For each of these missions, the capabilities of each rocket engine type are compared in terms of payload ratio for the earth launch mission or by the initial vehicle mass in earth orbit for space missions (a measure of initial cost). Other factors which might determine the engine choice are discussed. It is shown that a 60 day manned round trip to Mars is conceivable.-
NASA Technical Reports Server (NTRS)
Williams, Craig Hamilton
1995-01-01
A simple, analytic approximation is derived to calculate trip time and performance for propulsion systems of very high specific impulse (50,000 to 200,000 seconds) and very high specific power (10 to 1000 kW/kg) for human interplanetary space missions. The approach assumed field-free space, constant thrust/constant specific power, and near straight line (radial) trajectories between the planets. Closed form, one dimensional equations of motion for two-burn rendezvous and four-burn round trip missions are derived as a function of specific impulse, specific power, and propellant mass ratio. The equations are coupled to an optimizing parameter that maximizes performance and minimizes trip time. Data generated for hypothetical one-way and round trip human missions to Jupiter were found to be within 1% and 6% accuracy of integrated solutions respectively, verifying that for these systems, credible analysis does not require computationally intensive numerical techniques.
Atomic Power in Space: A History
DOE R&D Accomplishments Database
1987-03-01
"Atomic Power in Space," a history of the Space Isotope Power Program of the United States, covers the period from the program's inception in the mid-1950s through 1982. Written in non-technical language, the history is addressed to both the general public and those more specialized in nuclear and space technologies. Interplanetary space exploration successes and achievements have been made possible by this technology, for which there is no known substitue.
Interplanetary magnetic field data book
NASA Technical Reports Server (NTRS)
King, J. H.
1975-01-01
An interplanetary magnetic field (IMF) data set is presented that is uniform with respect to inclusion of cislunar IMF data only, and which has as complete time coverage as presently possible over a full solar cycle. Macroscale phenomena in the interplanetary medium (sector structure, heliolatitude variations, solar cycle variations, etc.) and other phenomena (e.g., ground level cosmic-ray events) for which knowledge of the IMF with hourly resolution is necessary, are discussed. Listings and plots of cislunar hourly averaged IMP parameters over the period November 27, 1963, to May 17, 1974, are presented along with discussion of the mutual consistency of the IMF data used herein. The magnetic tape from which the plots and listings were generated, which is available from the National Space Science Data Center (NSSDC), is also discussed.
Testing model for prediction system of 1-AU arrival times of CME-associated interplanetary shocks
NASA Astrophysics Data System (ADS)
Ogawa, Tomoya; den, Mitsue; Tanaka, Takashi; Sugihara, Kohta; Takei, Toshifumi; Amo, Hiroyoshi; Watari, Shinichi
We test a model to predict arrival times of interplanetary shock waves associated with coronal mass ejections (CMEs) using a three-dimensional adaptive mesh refinement (AMR) code. The model is used for the prediction system we develop, which has a Web-based user interface and aims at people who is not familiar with operation of computers and numerical simulations or is not researcher. We apply the model to interplanetary CME events. We first choose coronal parameters so that property of background solar wind observed by ACE space craft is reproduced. Then we input CME parameters observed by SOHO/LASCO. Finally we compare the predicted arrival times with observed ones. We describe results of the test and discuss tendency of the model.
SNAP (Space Nuclear Auxiliary Power) Reactor Overview
1984-08-01
so that emphasis could be placed on the development of the space shuttle and the national space station . During 1969 NASA came up with a requirement...which would need the Zr-H reactor system which was the semipermanent orbiting space station . This helped the Zr-H system weather through the major FY 71...provide power for advanced space missions, such as lunar stations or orbiting space platforms, and for interplanetary com- munications. In addition
Mars exploration, Venus swingby and conjunction class mission modes, time period 2000 to 2045
NASA Technical Reports Server (NTRS)
Young, A. C.; Mulqueen, J. A.; Skinner, J. E.
1984-01-01
Trajectory and mission requirement data are presented for Earth-Mars opposition class and conjunction class round trip stopover mission opportunities available during the time period year 2000 to year 2045. The opposition class mission employs the gravitational field of Venus to accelerate the space vehicle on either the outbound or inbound leg. The gravitational field of Venus was used to reduce the propulsion requirement associated with the opposition class mission. Representative space vehicle systems are sized to compare the initial mass required in low Earth orbit of one mission opportunity with another mission opportunity. The interplanetary space vehicle is made up of the spacecraft and the space vehicle acceleration system. The space vehicle acceleration system consists of three propulsion stages. The first propulsion stage performs the Earth escape maneuver; the second stage brakes the spacecraft and Earth braking stage into the Mars elliptical orbit and effects the escape maneuver from the Mars elliptical orbit. The third propulsion stage brakes the mission module into an elliptical orbit at Earth return. The interplanetary space vehicle was assumed to be assembled in and depart from the space station circular orbit.
NASA Astrophysics Data System (ADS)
Valach, F.; Revallo, M.; Hejda, P.; Bochníček, J.
2010-12-01
Our modern society with its advanced technology is becoming increasingly vulnerable to the Earth's system disorders originating in explosive processes on the Sun. Coronal mass ejections (CMEs) blasted into interplanetary space as gigantic clouds of ionized gas can hit Earth within a few hours or days and cause, among other effects, geomagnetic storms - perhaps the best known manifestation of solar wind interaction with Earth's magnetosphere. Solar energetic particles (SEP), accelerated to near relativistic energy during large solar storms, arrive at the Earth's orbit even in few minutes and pose serious risk to astronauts traveling through the interplanetary space. These and many other threats are the reason why experts pay increasing attention to space weather and its predictability. For research on space weather, it is typically necessary to examine a large number of parameters which are interrelated in a complex non-linear way. One way to cope with such a task is to use an artificial neural network for space weather modeling, a tool originally developed for artificial intelligence. In our contribution, we focus on practical aspects of the neural networks application to modeling and forecasting selected space weather parameters.
Physical properties of interplanetary dust: laboratory and numerical simulations
NASA Astrophysics Data System (ADS)
Hadamcik, Edith; Lasue, Jeremie; Levasseur-Regourd, Anny-Chantal; Renard, Jean-Baptiste; Buch, Arnaud; Carrasco, Nathalie; Cottin, Hervé; Fray, Nicolas; Guan, Yuan Yong; Szopa, Cyril
Laboratory light scattering measurements with the PROGRA2 experiment, in A300-CNES and ESA dedicated microgravity flights or in ground based configurations, offer an alternative to models for exploring the scattering properties of particles with structures too complex to be easily handled by computer simulations [1,2]. The technique allows the use of large size distributions (nanometers to hundreds of micrometers) and a large variety of materials, similar to those suspected to compose the interplanetary particles [3]. Asteroids are probably the source of compact particles, while comets have been shown to eject compact and fluffy materials [4]. Moreover giant planets provide further a small number of interplanetary particles. Some interstellar particles are also present. To choose the best samples and size distributions, we consider previous numerical models for the interplanetary particles and their evolution with solar distance. In this model, fluffy particles are simulated by fractal aggregates and compact particles by ellipsoids. The materials considered are silicates and carbonaceous compound. The silicate grains can be coated by the organics. Observations are fitted with two parameters: the size distribution of the particles and the ratio of silicates over carbonaceous compounds. From the light scattering properties of the particles, their equilibrium temperature can be calculated for different structures and composition. The variation of their optical properties and temperatures are studied with the heliocentric distance [5,6]. Results on analogs of cometary particles [7] and powdered meteorites as asteroidal particles will be presented and compared to numerical simulations as well as observations. Organics on cometary grains can constitute distributed sources if degraded by solar UV and heat [8, 9]. The optical properties of CxHyNz compounds are studied after thermal evolution [10]. As a first approach, they are used to simulate the evolution of cometary or interplanetary dust organics approaching the Sun. Albedo and polarization variations will be discussed. The polarization evolution will be compared to those obtained through observations [11]. Studies of the properties of our interplanetary dust cloud should provide information to better interpret observations of dust around exoplanets. Some of these planets are very close to their star. The thermal evolution of organics driven by chemical reactions will represent a fundamental knowledge to interpret the relevant polarimetric observations. We acknowledge CNES for funding the PROGRA2 experiment, CNES and ESA for the micro-gravity flights. [1] Renard J.-B. et al., Appl. Opt. 41, 609 (2002) [2] Hadamcik E. et al., In: Light scattering rev. 4, 31 (Kokhanovszky ed.), Springer -Praxis, Berlin (2009) [3] Mann I. et al., Space Sci. Rev. 110, 269 (2004) [4] Hoertz F. et al., Science 314, 716 (2006) [5] Lasue J. et al., Astron. Astrophys. 473, 641 (2007) [6] Levasseur-Regourd A.C et al., Planet Space Sci. 55, 1010 (2007) [7] Hadamcik E. et al., Icarus 190, 660 (2007) [8] Cottin H. et al., Adv. Space Res. 42, 2019 (2008) [9] Fray N. et al., Planet. Space Sci. 53, 1243 (2005) [10] Sciamma-O'Brien E. et al., Icarus, accepted [11] Levasseur-Regourd A.C., et al., In: Interplanetary dust, Gruen, Gustafson B., Dermott S., Fechtig H. (Eds), Springer, Berlin, 57 (2001)
Space Travel is Utter Bilge: Early Ideas on Interplanetary Exploration
NASA Astrophysics Data System (ADS)
Yeomans, D. K.
2003-12-01
Until a few decades ago, interplanetary travel was the stuff of dreams but the dreamers often turned out to be farsighted while the predictions of some eminent scientists were far too conservative. The prescient dreamers include the Russian schoolteacher, Konstanin Tsiolkovsky who, in 1883, was the first to note that only rockets could serve the needs of space travel. In 1923, Herman Oberth published a treatise discussing various aspects of interplanetary travel including the impulse necessary to escape the Earth's gravitational pull. In his spare time, a German civil engineer, Walter Hohmann, established in 1925 that the optimal energy transfer orbit between planets is an ellipse that is tangent to the orbits of both bodies. Four year later, an Austrian army officer, Hermann Potocnik outlined the benefits of space stations including those in geosynchronous orbits. Whereas Tsiolkovsky, Oberth, Hohmann, and Potocnik provided ideas and theories, the American, Robert H. Goddard, was testing liquid fueled rockets by as early as 1925. By the time he was finished in 1941, Goddard flew liquid fueled rockets that reached speeds of 700 mph and altitudes above 8,000 feet. In direct contrast to the advances by these mostly amateur engineers, many respected authorities scoffed at space travel because of the insurmountable technological difficulties. One year prior to the launch of Sputnik, the British Astronomer Royal, Sir Richard Wooley, declared, "space travel is utter bilge." While the theories of space travel were well developed by the late 1920's, space travel technology was still a poorly funded, mostly amateur, endeavor until the German army hired Oberth's student, Werner von Braun, and others to develop long range rockets for military purposes. In the early 1940's, Von Braun's team developed the rocket propulsion and guidance systems that would one day form the basis of the American space program.
Solar polar orbit radio telescope for space weather forecast
NASA Astrophysics Data System (ADS)
Wu, J.; Wang, C.; Wang, S.; Wu, J.; Sun, W.; Cai, J.; Yan, Y.
Radio emission from density plasma can be detected at low radio frequencies. An image of such plasma clouds of the entire inner interplanetary space is always a wanted input for space weather forecast and ICME propagation studies. To take such an image within the ecliptic plane may not fully explore what is happening around the Sun not only because of the blockage of the Sun, also because most of the ICMEs are propagating in the low-latitude of the Sun, near the ecliptic plane. It is then proposed to launch a solar polar orbit radio telescope to acquire high density plasma cloud images from the entire inner interplanetary space. Low radio frequency images require a large antenna aperture in space. It is, therefore, proposed to use the existing passive synthetic aperture radiometer technology to reduce mass and complicity of the deployment system of the big antenna. In order to reduce the mass of the antenna by using minimum number of elements, a zero redundant antenna element design can be used with a rotating time-shared sampling system. A preliminary assessment study shows the mission is feasible.
NASA Astrophysics Data System (ADS)
Grefenstette, Brian
2017-08-01
Small satellites (<50 kg) have revolutionized the possibilities for inexpensive science from space-borne platforms. A number of scientific CubeSats have been recently launched or are under development, including some bound for interplanetary space. Recent miniaturization of technology for high-precision pointing, high efficiency solar power, high-powered on-board processing, and scientific detectors provide the capability for groundbreaking, focused science from these resource-limited spacecraft. Similar innovations in both radio frequency and optical/laser communications are poised to increase telemetry bandwidth to a gigabit per second (Gb/s) or more. This enhancement can allow real-time, global science measurements and/or ultra-high fidelity (resolution, cadence, etc.) observations from tens or hundreds of Earth-orbiting satellites, or permit high-bandwidth, direct-to-earth communications for (inter)planetary missions. Here we present the results of a recent Keck Institue for Space Science workshop that brought together scientists and engineers from academia and industry to showcase the breakthrough science enabled by optical communications on small satellites for future missions.
Far Travelers: The Exploring Machines.
ERIC Educational Resources Information Center
Nicks, Oran W.
The National Aeronautics and Space Administration (NASA) program of lunar and planetary exploration produced a flood of scientific information about the moon, planets and the environment of interplanetary space. This book is an account of the people, machines, and the events of this scientific enterprise. It is a story of organizations,…
Astronautics and aeronautics, 1972. [a chronology of events
NASA Technical Reports Server (NTRS)
1974-01-01
Important events of the U. S. space program during 1972 are recorded in a chronology which encompasses all NASA, NASA related, and international cooperative efforts in aeronautics and astronautics. Personnel and budget concerns are documented, along with the major developments in aircraft research, manned space flight, and interplanetary exploration.
Evaluations of Risks from the Lunar and Mars Radiation Environments
NASA Technical Reports Server (NTRS)
Kim, Myung-Hee; Hayat, Matthew J.; Feiveson, Alan H.; Cucinotta, Francis A.
2008-01-01
Protecting astronauts from the space radiation environments requires accurate projections of radiation in future space missions. Characterization of the ionizing radiation environment is challenging because the interplanetary plasma and radiation fields are modulated by solar disturbances and the radiation doses received by astronauts in interplanetary space are likewise influenced. The galactic cosmic radiation (GCR) flux for the next solar cycle was estimated as a function of interplanetary deceleration potential, which has been derived from GCR flux and Climax neutron monitor rate measurements over the last 4 decades. For the chaotic nature of solar particle event (SPE) occurrence, the mean frequency of SPE at any given proton fluence threshold during a defined mission duration was obtained from a Poisson process model using proton fluence measurements of SPEs during the past 5 solar cycles (19-23). Analytic energy spectra of 34 historically large SPEs were constructed over broad energy ranges extending to GeV. Using an integrated space radiation model (which includes the transport codes HZETRN [1] and BRYNTRN [2], and the quantum nuclear interaction model QMSFRG[3]), the propagation and interaction properties of the energetic nucleons through various media were predicted. Risk assessment from GCR and SPE was evaluated at the specific organs inside a typical spacecraft using CAM [4] model. The representative risk level at each event size and their standard deviation were obtained from the analysis of 34 SPEs. Risks from different event sizes and their frequency of occurrences in a specified mission period were evaluated for the concern of acute health effects especially during extra-vehicular activities (EVA). The results will be useful for the development of an integrated strategy of optimizing radiation protection on the lunar and Mars missions. Keywords: Space Radiation Environments; Galactic Cosmic Radiation; Solar Particle Event; Radiation Risk; Risk Analysis; Radiation Protection.
NASA Technical Reports Server (NTRS)
2004-01-01
KENNEDY SPACE CENTER, FLA. Andy Schuerger, a research assistant professor with the University of Florida, demonstrates the Mars Simulation Chamber at the Space Life Sciences Lab during a tour of the facility for members of the news media. Schuerger is studying the effects of interplanetary space and Mars surface conditions on the survival, growth, and potential adaption of terrestrial microbes to the martian surface.
The deep space network, volume 10
NASA Technical Reports Server (NTRS)
1972-01-01
Progress on the Deep Space Network (DSN) supporting research and technology is reported. The objectives, functions and facilities of the DSN are described along with the mission support for the following: interplanetary flight projects, planetary flight projects, and manned space flight projects. Work in advanced engineering and communications systems is reported along with changes in hardware and software configurations in the DSN/MSFN tracking stations.
Endpoint Naming for Space Delay/Disruption Tolerant Networking
NASA Technical Reports Server (NTRS)
Clare, Loren; Burleigh, Scott; Scott, Keith
2010-01-01
Delay/Disruption Tolerant Networking (DTN) provides solutions to space communication challenges such as disconnections when orbiters lose line-of-sight with landers, long propagation delays over interplanetary links, and other operational constraints. DTN is critical to enabling the future space internetworking envisioned by NASA. Interoperability with international partners is essential and standardization is progressing through both the CCSDS and the IETF.
Microbial survival in space shuttle crash
McLean, Robert J.C.; Welsh, Allana K.; Casasanto, Valerie A.
2011-01-01
A slow growing, heat resistant bacterium, identified by 16S rRNA gene sequencing as Microbispora sp., was recovered from the wreckage of the ill-fated space shuttle Columbia (STS-107). As this organism survived disintegration of the space craft, heat of reentry, and impact, it supports the possibility of a natural mechanism for the interplanetary spread of life by meteorites. PMID:21804644
Data analysis and interpretation of UVSP and other experiments on board solar maximum mission
NASA Technical Reports Server (NTRS)
Wu, S. T.
1987-01-01
During the period of this contract (February 1 1980 to February 1987) there were two separate efforts involved: one was programmetric, i.e., the coordination of scientific working groups and the organization of workshops in the solar physics discipline; the second was scientific, i.e., to perform research to investigate the fundamental physical mechanisms of the energy and momentum transport from the solar surface to interplanetary space. In the former, 19 workshops, involving 88 scientists were organized. In the latter aspect, the following were investigated: solar flare energy buildup and release, coronal dynamics, energy and momentum transport from lower solar atmosphere to interplanetary space, numerical methods for the calculation of the nonlinear force-free field, and the evolution of the solar magnetic field.
Mid 19th century minimum of galactic cosmic ray flux inferred from 44Ti in Allegan meteorite
NASA Astrophysics Data System (ADS)
Taricco, C.; Bhandari, N.; Colombetti, P.; Verma, N.
Measurements of 44Ti activity in meteorites show that the galactic cosmic ray (GCR) intensity has been declining in the interplanetary space during the past three centuries and has a component of cyclic variation, with periodicity of about 87 years [Taricco, C., Bhandari, N., Cane, D., et al. Galactic cosmic ray flux decline and periodicities in the interplanetary space during the last 3 centuries revealed by 44Ti in meteorites. J. Geophys. Res. 111, A08102, 2006.]. In order to verify these results, we have measured 44Ti activity in Allegan meteorite which fell in 1899 and in some other meteorites with better precision. The measurements confirm low cosmic ray flux and consequently high solar activity near the middle of 19th century.
Potential Cislunar and Interplanetary Proving Ground Excursion Trajectory Concepts
NASA Technical Reports Server (NTRS)
McGuire, Melissa L.; Strange, Nathan J.; Burke, Laura M.; MacDonald, Mark A.; McElrath, Timothy P.; Landau, Damon F.; Lantoine, Gregory; Hack, Kurt J.; Lopez, Pedro
2016-01-01
NASA has been investigating potential translunar excursion concepts to take place in the 2020s that would be used to test and demonstrate long duration life support and other systems needed for eventual Mars missions in the 2030s. These potential trajectory concepts could be conducted in the proving ground, a region of cislunar and near-Earth interplanetary space where international space agencies could cooperate to develop the technologies needed for interplanetary spaceflight. Enabled by high power Solar Electric Propulsion (SEP) technologies, the excursion trajectory concepts studied are grouped into three classes of increasing distance from the Earth and increasing technical difficulty: the first class of excursion trajectory concepts would represent a 90-120 day round trip trajectory with abort to Earth options throughout the entire length, the second class would be a 180-210 day round trip trajectory with periods in which aborts would not be available, and the third would be a 300-400 day round trip trajectory without aborts for most of the length of the trip. This paper provides a top-level summary of the trajectory and mission design of representative example missions of these three classes of excursion trajectory concepts.
Solar photoionization as a loss mechanism of neutral interstellar hydrogen in interplanetary space
NASA Technical Reports Server (NTRS)
Ogawa, H. S.; Wu, C. Y. Robert; Gangopadhyay, P.; Judge, D. L.
1995-01-01
Two primary loss mechanisms of interstellar neutral hydrogen in interplanetary space are resonance charge exchange ionization with solar wind protons and photoionization by solar EUV radiation. The later process has often been neglected since the average photoionization rate has been estimated to be as much as 5 to 10 times smaller than the charge exchange rate. These factors are based on ionization rates from early measurements of solar EUV and solar wind fluxes. Using revised solar EUV and solar wind fluxes measured near the ecliptic plane we have reinvestigated the ionization rates of interplanetary hydrogen. The result of our analysis indicates that indeed the photoionization rate during solar minimum can be smaller than charge exchange by a factor of 5; however, during solar maximum conditions when solar EUV fluxes are high, and solar wind fluxes are low, photoionization can be over 60% of the charge exchange rate at Earth orbit. To obtain an accurate estimate of the importance of photoionization relative to charge exchange, we have included photoionization from both the ground and metastable states of hydrogen. We find, however, that the photoionization from the metastable state does not contribute significantly to the overall photoionization rate.
NASA Technical Reports Server (NTRS)
Smith, R. E. (Editor)
1971-01-01
A consolidation of natural environment data is presented for use as design criteria guidelines in space and planetary exploration vehicle development programs. In addition to information in the disciplinary areas of aeronomy, radiation, geomagnetism, astrodynamic constants, and meteoroids for the earth's environment above 90 kilometers, interplanetary space, and the planetary environments, the upper atmosphere model currently recommended for use at MSFC is discussed in detail.
Interplanetary medium data book, supplement 4, 1985-1988
NASA Technical Reports Server (NTRS)
King, Joseph H.
1989-01-01
An extension is presented of the series of Interplanetary Medium Data Books and supplements which have been issued by the National Space Science Data Center since 1977. This volume contains solar wind magnetic field (IMF) and plasma data from the IMP 8 spacecraft for 1985 to 1988, and 1985 IMF data from the Czechoslovakian Soviet Prognoz 10 spacecraft. The normalization of the MIT plasma density and temperature, which has been discussed at length in previous volumes, is implemented as before, using the same normalization constants for 1985 to 1988 data as for the earlier data.
1977-11-13
Page 13 DEPENDENCE OF MEDIAN LOG POWER 1.0 ON SOLAR WIND VELOCITY Pc3 PULSATIONS June - September 1974 UCLA Fluxgate Magnetometer ATS - 6 0 Log P=-3.3...interplanetary medium; Cosmic Elec., 1, 90-114, Space Sci. Rev., in press, 1978. 1970. Rusaell, C T., The ISEE I and 2 fluxgate magnetometers IEEE Fairfield. D...investigation is to attain the capacity to use micropulsation records acquired from surface magnetometers to infer certain key parameters of the solar wind
Nuclear electric propulsion mission engineering study. Volume 1: Executive summary
NASA Technical Reports Server (NTRS)
1973-01-01
Results of a mission engineering analysis of nuclear-thermionic electric propulsion spacecraft for unmanned interplanetary and geocentric missions are summarized. Critical technologies associated with the development of nuclear electric propulsion (NEP) are assessed. Outer planet and comet rendezvous mission analysis, NEP stage design for geocentric and interplanetary missions, NEP system development cost and unit costs, and technology requirements for NEP stage development are studied. The NEP stage design provides both inherent reliability and high payload mass capability. The NEP stage and payload integration was found to be compatible with the space shuttle.
Interplanetary magnetic flux - Measurement and balance
NASA Technical Reports Server (NTRS)
Mccomas, D. J.; Gosling, J. T.; Phillips, J. L.
1992-01-01
A new method for determining the approximate amount of magnetic flux in various solar wind structures in the ecliptic (and solar rotation) plane is developed using single-spacecraft measurements in interplanetary space and making certain simplifying assumptions. The method removes the effect of solar wind velocity variations and can be applied to specific, limited-extent solar wind structures as well as to long-term variations. Over the 18-month interval studied, the ecliptic plane flux of coronal mass ejections was determined to be about 4 times greater than that of HFDs.
The geoeffectiveness of CIRs and ICMEs
NASA Astrophysics Data System (ADS)
Shen, C.; Chi, Y.; Wang, Y.
2017-12-01
The corotation rotation regions (CIRs) and interplanetary coronal mass ejections (CMEs) are two typical large scale structures in interplanetary space and also important sources of geomagnetic storms. Using the WIND observations from 1995, the CIRs and ICMEs have been identified manually. Totally, there are 800 CIRs and 500 ICMEs during this period. Based on these catalogues, the properties and geoeffectiveness of CIRs and ICMEs have been carefully studied. In the presentation, we will introduce the properties of these structures first. Then, the detailed comparison between these two structures will also be addressed.
NASA Technical Reports Server (NTRS)
Alania, M. V.; Aslamazashvili, R. G.; Bochorishvili, T.; Djapiashvili, T. V.; Tkemaladze, V. S.
1985-01-01
Results of the numerical solution of the anistoropic diffusion equation are presented. The modulation depth of galactic cosmic rays is defined by the degree of curvature of the neutral current sheet in the heliosphere. The effect of the regular interplanetary magnetic field (IMF) on cosmic ray anisotropy in the period of solar activity minimum (in 1976) is analyzed by the data of the neutron super-monitors of the world network, and the heliolatitudinal gradient and cosmic ray diffusion coefficient are defined.
NASA Technical Reports Server (NTRS)
Smith, R. E. (Compiler); West, G. S. (Compiler)
1983-01-01
Guidelines on space and planetary environment criteria for use in space vehicle development are provided. Information is incorporated in the disciplinary areas of atmospheric and ionospheric properties, radiation, geomagnetic field, astrodynamic constants, and meteoroids for the Earth's atmosphere above 90 km, interplanetary space, and the atmosphere and surfaces (when available) of the Moon and the planets (other than Earth) of this solar system. The Sun, Terrestrial Space, the Moon, Mercury, Venus, and Mars are covered.
Telecommunications Protocol Processing Subsystem Using Reconfigurable Interoperable Gate Arrays
NASA Technical Reports Server (NTRS)
Pang, Jackson; Pingree, Paula; Torgerson, J. Leigh
2006-01-01
Deep Space Telecommunications Requirements: 1) Automated file transfer across inter-planetary distances; 2) Limited communication periods; 3) Reliable transport; 4) Delay and Disruption Tolerant; and 5) Asymmetric Data Channels.
NASA Astrophysics Data System (ADS)
Cheung, K.-M.; Abraham, D.; Arroyo, B.; Basilio, E.; Babuscia, A.; Duncan, C.; Lee, D.; Oudrhiri, K.; Pham, T.; Staehle, R.; Waldherr, S.; Welz, G.; Wyatt, J.; Lanucara, M.; Malphrus, B.; Bellardo, J.; Puig-Suari, J.; Corpino, S.
2015-08-01
As small spacecraft venture out of Earth orbit, they will encounter challenges not experienced or addressed by the numerous low Earth orbit (LEO) CubeSat and smallsat missions staged to date. The LEO CubeSats typically use low-cost, proven CubeSat radios, antennas, and university ground stations with small apertures. As more ambitious yet cost-constrained space mission concepts to the Moon and beyond are being developed, CubeSats and smallsats have the potential to provide a more affordable platform for exploring deep space and performing the associated science. Some of the challenges that have, so far, slowed the proliferation of small interplanetary spacecraft are those of communications and navigation. Unlike Earth-orbiting spacecraft that navigate via government services such as North American Aerospace Defense Command's (NORAD's) tracking elements or the Global Positioning Satellite (GPS) system, interplanetary spacecraft would have to operate in a fundamentally different manner that allows the deep-space communications link to provide both command/telemetry and the radiometric data needed for navigation. Another challenge occurs when smallsat and CubeSat missions would involve multiple spacecraft that require near-simultaneous communication and/or navigation, but have a very limited number of ground antenna assets, as well as available spectrum, to support their links. To address these challenges, the Jet Propulsion Laboratory (JPL) and the Deep Space Network (DSN) it operates for NASA are pursuing the following efforts: (1) Developing a CubeSat-compatible, DSN-compatible transponder -- Iris -- which a commercial vendor can then make available as a product line. (2) Developing CubeSat-compatible high-gain antennas -- deployable reflectors, reflectarrays, and inflatable antennas. (3) Streamlining access and utilization processes for DSN and related services such as the Advanced Multi-Mission Operations System (AMMOS). (4) Developing methodologies for tracking and operating multiple spacecraft simultaneously, including spectrum coordination. (5) Coordination and collaboration with non-DSN facilities. This article further describes the communications and tracking challenges facing interplanetary smallsats and CubeSats, and the next-generation ground network architecture being evolved to mitigate those challenges.
NASA Technical Reports Server (NTRS)
1988-01-01
The Deep Space Network (DSN) is the largest and most sensitive scientific telecommunications and radio navigation network in the world. Its principal responsibilities are to support unmanned interplanetary spacecraft missions and to support radio and radar astronomy observations in the exploration of the solar system and the universe. The DSN facilities and capabilities as of January 1988 are described.
Using the Global Positioning System for Earth Orbiter and Deep Space Tracking
NASA Technical Reports Server (NTRS)
Lichten, Stephen M.
1994-01-01
The Global Positioning System (GPS) can play a major role in supporting orbit and trajectory determination for spacecraft in a wide range of applications, including low-Earth, high-Earth, and even deep space (interplanetary) tracking. This paper summarizes recent results demonstrating these unique and far-ranging applications of GPS.
NASA Astrophysics Data System (ADS)
Murdin, P.
2000-11-01
German space travel visionary, born in Sibiu, Hungary. His book Die Rakete zu den Planetenrämen (The Rocket into Interplanetary Space), established his reputation in 1923, and he became president of the German Society for Space Travel. In the Second World War he worked on rockets at Peenemünde, and went with WERNHER VON BRAUN to the US Army Ballistic Missile Agency in Huntsville, Alabama to devel...
Imaging Interplanetary CMEs at Radio Frequency From Solar Polar Orbit
NASA Astrophysics Data System (ADS)
Wu, Ji; Sun, Weiying; Zheng, Jianhua; Zhang, Cheng; Wang, Chi; Wang, C. B.; Wang, S.
Coronal mass ejections (CMEs) are violent discharges of plasma and magnetic fields from the Sun's corona. They have come to be recognized as the major driver of physical conditions in the Sun-Earth system. Consequently, the detection of CMEs is important for un-derstanding and ultimately predicting space weather conditions. The Solar Polar Orbit Radio Telescope (SPORT) is a proposed mission to observe the propagation of interplanetary CMEs from solar polar orbit. The main payload (radio telescope) on board SPORT will be an in-terferometric imaging radiometer working at the meter wavelength band, which will follow the propagation of interplanetary CMEs from a distance of a few solar radii to near 1 AU from solar polar orbit. The SPORT spacecraft will also be equipped with a set of optical and in situ measurement instruments such as a EUV solar telescope, a solar wind plasma experiment, a solar wind ion composition instrument, an energetic particle detector, a wave detector, a mag-netometer and an interplanetary radio burst tracker. In this paper, we first describe the current shortage of interplanetary CME observations. Next, the scientific motivation and objectives of SPORT are introduced. We discuss the basic specifications of the main radio telescope of SPORT with reference to the radio emission mechanisms and the radio frequency band to be observed. Finally, we discuss the key technologies of the SPORT mission, including the con-ceptual design of the main telescope, the image retrieval algorithm and the solar polar orbit injection. Other payloads and their respective observation objectives are also briefly discussed. Key words: Interplanetary CMEs; Interferometric imaging; Solar polar orbit; Radiometer.
NASA Astrophysics Data System (ADS)
Gushchina, R. T.; Alania, M. V.; Gil, A.; Iskra, K.; Siluszyk, M.
2003-07-01
transport equation of galactic cosmic rays (GCR) has been numerically solved for different qA>0 (1996) and qA<0 (1987) epochs assuming that free path of GCR scattering in the interplanetary space is controlled by the Sun's coronal green line intensity (CGLI). We found some distinctions in the distribution of the expected heliolatitudinal gradients of GCR for two and three dimensional interplanetary magnetic field. INTRODUCTION. modulation of GCR in the interplanetary space is generally determined by four processesdiffusion, convection, drift and energy change of GCR particles due to interaction with the solar wind. The joint effect of all above mentioned processes result the 11year variation of GCR. In papers [1-3] are assumed that the general reason of the 11-year variation of GCR in the energy range more than 1 GeV is different structure of the irregularities of the IMF in the maxima and minima epochs of solar activity (SA) caused the radical changes of the dependence of diffusion coefficient on the rigidity of GCR particles. EXPERIMENTAL DATA AND METHOD OF INVESTIGATION. experimental data of sunspot numbers, sunspots' areas and CGLI (λ = 5303˚) show a considerable changes during the 11-year cycle of SA, while e.g. A the changes of the solar wind velocity are not so noticeable [4, 5]. An attempt to take into account influences of the real distributions of the sunspot's areas and the Sun's CGLI on the modulation of GCR considering delay time of the phenomena in the interplanetary space with respect to the processes on the Sun have been undertaken in papers [6-8]. One of parameters of SA contentiously observed on the Earth is the Sun's CGLI. One can suppose that a modulation of GCR by some means is controlled by the changes of the CGLI; particularly there is assumed that a scattering free path of GCR transport is related with the
NASA Technical Reports Server (NTRS)
Vanallen, J. A.
1978-01-01
Specific fields of current investigation by satellite observation and ground-based radio-astronomical and optical techniques are discussed. Topics include: aspects of energetic particles trapped in the earth's magnetic field and transiently present in the outer magnetosphere and the solar, interplanetary, and terrestrial phenomena associated with them; plasma flows in the magnetosphere and the ionospheric effects of particle precipitation, with corresponding studies of the magnetosphere of Jupiter, Saturn, and possibly Uranus; the origin and propagation of very low frequency radio waves in the earth's magnetosphere and ionosphere; solar particle emissions and their interplanetary propagation and acceleration; solar modulation and the heliocentric radial dependence of the intensity of galactic cosmic rays; radio frequency emissions from the quintescent and flaring sun; shock waves in the interplanetary medium; radio emissions from Jupiter; and radio astronomy of pulsars, flare stars, and other stellar sources.
Interplanetary Program to Optimize Simulated Trajectories (IPOST). Volume 2: Analytic manual
NASA Technical Reports Server (NTRS)
Hong, P. E.; Kent, P. D.; Olson, D. W.; Vallado, C. A.
1992-01-01
The Interplanetary Program to Optimize Space Trajectories (IPOST) is intended to support many analysis phases, from early interplanetary feasibility studies through spacecraft development and operations. The IPOST output provides information for sizing and understanding mission impacts related to propulsion, guidance, communications, sensor/actuators, payload, and other dynamic and geometric environments. IPOST models three degree of freedom trajectory events, such as launch/ascent, orbital coast, propulsive maneuvering (impulsive and finite burn), gravity assist, and atmospheric entry. Trajectory propagation is performed using a choice of Cowell, Encke, Multiconic, Onestep, or Conic methods. The user identifies a desired sequence of trajectory events, and selects which parameters are independent (controls) and dependent (targets), as well as other constraints and the cost function. Targeting and optimization is performed using the Stanford NPSOL algorithm. IPOST structure allows subproblems within a master optimization problem to aid in the general constrained parameter optimization solution. An alternate optimization method uses implicit simulation and collocation techniques.
Effects of Coronal Magnetic Field Structures on the Transport of Solar Energetic Particles
NASA Astrophysics Data System (ADS)
Zhao, Lulu; Zhang, Ming
2018-06-01
This Letter presents a model calculation of solar energetic particle (SEP) transport to test the sensitivity of the distribution of escaped SEPs in interplanetary space and dependence upon the details of the magnetic field structure in the corona. It is applied to a circumsolar event on 2011 November 3, in which SEPs are observed promptly after the solar event eruption by three spacecraft (the twin Solar TErrestrial RElations Observatories (STEREO-A and STEREO-B) and ACE) separated by more than 100° in longitude from each other. The corona magnetic field reconstructed from photosphseric field measurements using the PFSS method changes substantially before and after the solar eruption, especially around the active region. The locations of open field regions, separatrix surfaces including the heliospheric current sheet, and footpoints of magnetic field lines connected to the spacecraft location have shifted substantially. We inject 100 keV energetic electrons on the open field lines at 1.5 R s within the size of observed coronal mass ejections (CMEs) and follow their propagation in the corona and the interplanetary space. We find that with a perpendicular diffusion due to field line random walk equal to 10% of the supergranular diffusion rate, the overall distribution of escaped SEPs does not change much even though the region of open field lines from SEPs has changed. The result suggests that detailed small-scale coronal magnetic field structures and the exact magnetic field connection are not crucially important for observing SEPs in the interplanetary space.
Far travelers: The exploring machines
NASA Technical Reports Server (NTRS)
Nicks, O. W.
1985-01-01
During the first two decades of space activities, unmanned spacecraft played a vital role in the initial exploration of the Moon and the planets. The spacecraft employed emerging technologies to provide extensions of man in the close-up viewing and measurement of the environment and features of Earth's interplanetary neighbors. An account of early experiences in the development and use of interplanetary vehicles is presented. Specific lunar and planetary missions (e.g., Ranger, Mariner, and Viking) are discussed. In addition, incidents highlighting the evolution of significant technologies are presented, based on personal views of people intimately involved in the efforts.
The long life of Pioneer interplanetary spacecraft
NASA Technical Reports Server (NTRS)
Dixon, W. J.
1974-01-01
The Pioneer 6 to 9 interplanetary spacecraft were launched in 1965, 66, 67, and 68. All continue to operate in various orbits about the sun, gathering data on the solar system environment. Pioneer 10 was launched in 1972, and is now more than halfway to Jupiter, with all systems performing their required functions. The paper reviews these programs and the few anomalies which have been observed. The long-term mission success is discussed in terms of possible causative factors: simplicity in design and operation, redundancy in function and in equipment, comprehensive development and acceptance tests, the mildness of the space environment, and luck.
A new technique for observationally derived boundary conditions for space weather
NASA Astrophysics Data System (ADS)
Pagano, Paolo; Mackay, Duncan Hendry; Yeates, Anthony Robinson
2018-04-01
Context. In recent years, space weather research has focused on developing modelling techniques to predict the arrival time and properties of coronal mass ejections (CMEs) at the Earth. The aim of this paper is to propose a new modelling technique suitable for the next generation of Space Weather predictive tools that is both efficient and accurate. The aim of the new approach is to provide interplanetary space weather forecasting models with accurate time dependent boundary conditions of erupting magnetic flux ropes in the upper solar corona. Methods: To produce boundary conditions, we couple two different modelling techniques, MHD simulations and a quasi-static non-potential evolution model. Both are applied on a spatial domain that covers the entire solar surface, although they extend over a different radial distance. The non-potential model uses a time series of observed synoptic magnetograms to drive the non-potential quasi-static evolution of the coronal magnetic field. This allows us to follow the formation and loss of equilibrium of magnetic flux ropes. Following this a MHD simulation captures the dynamic evolution of the erupting flux rope, when it is ejected into interplanetary space. Results.The present paper focuses on the MHD simulations that follow the ejection of magnetic flux ropes to 4 R⊙. We first propose a technique for specifying the pre-eruptive plasma properties in the corona. Next, time dependent MHD simulations describe the ejection of two magnetic flux ropes, that produce time dependent boundary conditions for the magnetic field and plasma at 4 R⊙ that in future may be applied to interplanetary space weather prediction models. Conclusions: In the present paper, we show that the dual use of quasi-static non-potential magnetic field simulations and full time dependent MHD simulations can produce realistic inhomogeneous boundary conditions for space weather forecasting tools. Before a fully operational model can be produced there are a number of technical and scientific challenges that still need to be addressed. Nevertheless, we illustrate that coupling quasi-static and MHD simulations in this way can significantly reduce the computational time required to produce realistic space weather boundary conditions.
Kawaguchi, Yuko; Yang, Yinjie; Kawashiri, Narutoshi; Shiraishi, Keisuke; Takasu, Masako; Narumi, Issay; Satoh, Katsuya; Hashimoto, Hirofumi; Nakagawa, Kazumichi; Tanigawa, Yoshiaki; Momoki, Yoh-Hei; Tanabe, Maiko; Sugino, Tomohiro; Takahashi, Yuta; Shimizu, Yasuyuki; Yoshida, Satoshi; Kobayashi, Kensei; Yokobori, Shin-Ichi; Yamagishi, Akihiko
2013-10-01
To investigate the possible interplanetary transfer of life, numerous exposure experiments have been carried out on various microbes in space since the 1960s. In the Tanpopo mission, we have proposed to carry out experiments on capture and space exposure of microbes at the Exposure Facility of the Japanese Experimental Module of the International Space Station (ISS). Microbial candidates for the exposure experiments in space include Deinococcus spp.: Deinococcus radiodurans, D. aerius and D. aetherius. In this paper, we have examined the survivability of Deinococcus spp. under the environmental conditions in ISS in orbit (i.e., long exposure to heavy-ion beams, temperature cycles, vacuum and UV irradiation). A One-year dose of heavy-ion beam irradiation did not affect the viability of Deinococcus spp. within the detection limit. Vacuum (10(-1) Pa) also had little effect on the cell viability. Experiments to test the effects of changes in temperature from 80 °C to -80 °C in 90 min (± 80 °C/90 min cycle) or from 60 °C to -60 °C in 90 min (± 60 °C/90 min cycle) on cell viability revealed that the survival rate decreased severely by the ± 80 °C/90 min temperature cycle. Exposure of various thicknesses of deinococcal cell aggregates to UV radiation (172 nm and 254 nm, respectively) revealed that a few hundred micrometer thick aggregate of deinococcal cells would be able to withstand the solar UV radiation on ISS for 1 year. We concluded that aggregated deinococcal cells will survive the yearlong exposure experiments. We propose that microbial cells can aggregate as an ark for the interplanetary transfer of microbes, and we named it 'massapanspermia'.
NASA Technical Reports Server (NTRS)
1975-01-01
The objectives, functions, and organization of the Deep Space Network are summarized along with deep space station, ground communication, and network operations control capabilities. Mission support of ongoing planetary/interplanetary flight projects is discussed with emphasis on Viking orbiter radio frequency compatibility tests, the Pioneer Venus orbiter mission, and Helios-1 mission status and operations. Progress is also reported in tracking and data acquisition research and technology, network engineering, hardware and software implementation, and operations.
DOD Dictionary of Military and Associated Terms
2017-03-01
to regionally grouped military and federal customers from commercial distributors using electronic commerce. Also called PV . See also distribution...and magnetosphere, interplanetary space, and the solar atmosphere. (JP 3-59) Terms and Definitions 218 space force application — Combat...precise time and time interval PUK packup kit PV prime vendor PVNTMED preventive medicine PVT positioning, velocity, and timing Abbreviations
The telecommunications and data acquisition
NASA Technical Reports Server (NTRS)
Renzetti, N. A. (Editor)
1980-01-01
Radio astronomy and radio interferometry at microwave frequencies are discussed. Other topics concerning the Deep Space Network include program planning, planetary and interplanetary mission support, tracking and ground based navigation, communications, and station control and system technology.
Design of the VISITOR Tool: A Versatile ImpulSive Interplanetary Trajectory OptimizeR
NASA Technical Reports Server (NTRS)
Corpaccioli, Luca; Linskens, Harry; Komar, David R.
2014-01-01
The design of trajectories for interplanetary missions represents one of the most complex and important problems to solve during conceptual space mission design. To facilitate conceptual mission sizing activities, it is essential to obtain sufficiently accurate trajectories in a fast and repeatable manner. To this end, the VISITOR tool was developed. This tool modularly augments a patched conic MGA-1DSM model with a mass model, launch window analysis, and the ability to simulate more realistic arrival and departure operations. This was implemented in MATLAB, exploiting the built-in optimization tools and vector analysis routines. The chosen optimization strategy uses a grid search and pattern search, an iterative variable grid method. A genetic algorithm can be selectively used to improve search space pruning, at the cost of losing the repeatability of the results and increased computation time. The tool was validated against seven flown missions: the average total mission (Delta)V offset from the nominal trajectory was 9.1%, which was reduced to 7.3% when using the genetic algorithm at the cost of an increase in computation time by a factor 5.7. It was found that VISITOR was well-suited for the conceptual design of interplanetary trajectories, while also facilitating future improvements due to its modular structure.
NASA Astrophysics Data System (ADS)
Hayashi, K.; Tokumaru, M.; Kojima, M.; Fujiki, K.
2008-12-01
We present our new boundary treatment to introduce the temporal variation of the observation-based magnetic field and plasma parameters on the inner boundary sphere (at 30 to 50 Rs) to the MHD simulation of the interplanetary space and the simulation results. The boundary treatment to induce the time-variation of the magnetic field including the radial component is essentially same as shown in our previous AGU meetings and newly modified so that the model can also include the variation of the plasma variables detected by IPS (interplanetary scintillation) observation, a ground-based remote sensing technique for the solar wind plasma. We used the WSO (Wilcox Solar Observatory at Stanford University) for the solar magnetic field input. By using the time-varying boundary condition, smooth variations of heliospheric MHD variables during the several Carrington solar rotation period are obtained. The simulation movie will show how the changes in the inner heliosphere observable by the ground-based instrument propagate outward and affects the outer heliosphere. The simulated MHD variables are compared with the Ulysses in-situ measurement data including ones made during its travel from the Earth to Jupiter for validation, and we obtain better agreements than with the simulation with fixed boundary conditions.
2012-02-17
Space Shuttle Payloads: Kennedy Space Center was the hub for the final preparation and launch of the space shuttle and its payloads. The shuttle carried a wide variety of payloads into Earth orbit. Not all payloads were installed in the shuttle's cargo bay. In-cabin payloads were carried in the shuttle's middeck. Cargo bay payloads were typically large payloads which did not require a pressurized environment, such as interplanetary space probes, earth-orbiting satellites, scientific laboratories and International Space Station trusses and components. Poster designed by Kennedy Space Center Graphics Department/Greg Lee. Credit: NASA
NASA Astrophysics Data System (ADS)
Xiong, Ming; Davies, Jackie A.; Li, Bo; Yang, Liping; Liu, Ying D.; Xia, Lidong; Harrison, Richard A.; Keiji, Hayashi; Li, Huichao
2017-07-01
Interplanetary corotating interaction regions (CIRs) can be remotely imaged in white light (WL), as demonstrated by the Solar Mass Ejection Imager (SMEI) on board the Coriolis spacecraft and Heliospheric Imagers (HIs) on board the twin Solar TErrestrial RElations Observatory (STEREO) spacecraft. The interplanetary WL intensity, due to Thomson scattering of incident sunlight by free electrons, is jointly determined by the 3D distribution of electron number density and line-of-sight (LOS) weighting factors of the Thomson-scattering geometry. The 2D radiance patterns of CIRs in WL sky maps look very different from different 3D viewpoints. Because of the in-ecliptic locations of both the STEREO and Coriolis spacecraft, the longitudinal dimension of interplanetary CIRs has, up to now, always been integrated in WL imagery. To synthesize the WL radiance patterns of CIRs from an out-of-ecliptic (OOE) vantage point, we perform forward magnetohydrodynamic modeling of the 3D inner heliosphere during Carrington Rotation CR1967 at solar maximum. The mixing effects associated with viewing 3D CIRs are significantly minimized from an OOE viewpoint. Our forward modeling results demonstrate that OOE WL imaging from a latitude greater than 60° can (1) enable the garden-hose spiral morphology of CIRs to be readily resolved, (2) enable multiple coexisting CIRs to be differentiated, and (3) enable the continuous tracing of any interplanetary CIR back toward its coronal source. In particular, an OOE view in WL can reveal where nascent CIRs are formed in the extended corona and how these CIRs develop in interplanetary space. Therefore, a panoramic view from a suite of wide-field WL imagers in a solar polar orbit would be invaluable in unambiguously resolving the large-scale longitudinal structure of CIRs in the 3D inner heliosphere.
SPE in Solar Cycle 24 : Flare and CME characteristic
NASA Astrophysics Data System (ADS)
Neflia, Neflia
SPE is one of the most severe hazards in the space environment. Such events, tend to occur during periods of intense solar activity, and can lead to high radiation doses in short time intervals. The proton enhancements produced by these solar events may last several days and are very hard to predict in advance and they also can cause harm to both satellite and human in space. The most significant sources of proton in the interplanetary medium are both solar flares and interplanetary shocks driven by coronal mass ejections (CMEs). In this study, I try to find the characteristic of Flare and CME that can cause the proton events in interplanetary medium. For my preliminary study, I will search flare characteristic such as class and position as an SPE causes. I also did the research with CME characteristic such as Angular Width (AW) and linier velocity. During solar cycle 24, the solar activity remain very low with several large flare and Halo CME. This low activity also occur on solar proton events in interplanetary medium. From January 2009 to May 2013, there are 25 SPEs with flux range from 12 - 6530 sfu (10 MeV). The solar flare during these events varies from C to X- class flare. From 27 X-class flare that occur during 2009 - May 2013, only 7 flares cause the SPE. Most of active region location are at solar Western Hemisphere (16/25). only 24 from 139 halo CME (AW=360) cause SPE. Although the probability of SPE from all flare and CME during this range of time is small but they have 3 common characteristics, ie, most of the SPE have active region position at Solar Western Hemisphere, the CME have AW=360 and they have a high linier velocity.
NASA Technical Reports Server (NTRS)
Germani, M. S.; Bradley, J. P.; Brownlee, D. E.
1990-01-01
A 200 keV electron microscope was used to obtain elemental analyses from over 4000 points on thin sections of eight 'layer silicate' class interplanetary dust particles (IDPs). Major and minor element abundances from a volume approaching that of a cylinder 50 nm in diameter were observed. Mineral phases and their relative abundances in the thin sections were identified and petrographic characteristics were determined. Three of the particles contained smectite (1.0-1.2 nm basal spacing) and two contained serpentine (0.7 nm basal spacing). The point count analyses and Mg-Si-Fe ternary diagrams show that one of the serpentine-containing IDPs is similar to CI and CM chondritic meteorites. The IDPs exhibit evidence of aqueous processing, but they have typically experienced only short range, submicrometer scale alteration. The IDPs may provide a broad sampling of the asteroid belt.
Comparative study of predicted and experimentally detected interplanetary shocks
NASA Astrophysics Data System (ADS)
Kartalev, M. D.; Grigorov, K. G.; Smith, Z.; Dryer, M.; Fry, C. D.; Sun, Wei; Deehr, C. S.
2002-03-01
We compare the real time space weather prediction shock arrival times at 1 AU made by the USAF/NOAA Shock Time of Arrival (STOA) and Interplanetary Shock Propagation Model (ISPM) models, and the Exploration Physics International/University of Alaska Hakamada-Akasofu-Fry Solar Wind Model (HAF-v2) to a real time analysis analysis of plasma and field ACE data. The comparison is made using an algorithm that was developed on the basis of wavelet data analysis and MHD identification procedure. The shock parameters are estimated for selected "candidate events". An appropriate automatically performing Web-based interface periodically utilizes solar wind observations made by the ACE at L1. Near real time results as well an archive of the registered interesting events are available on a specially developed web site. A number of events are considered. These studies are essential for the validation of real time space weather forecasts made from solar data.
Cardiovascular Countermeasures for Exploration-Class Space Flight Missions
NASA Technical Reports Server (NTRS)
Charles, John B.
2004-01-01
Astronaut missions to Mars may be many years or even decades in thc future but current and planned efforts can be extrapolated to required treatments and prophylaxis for delerious efforts of prolonged space flight on the cardiovascular system. The literature of candidate countermeasures was considered in combination with unpublished plans for countermeasure implementation. The scope of cardiovascular countermeasures will be guided by assessments of the efficacy of mechanical, physiological and pharmacological approaches in protecting the cardiovascular capacities of interplanetary crewmembers. Plans for countermeasure development, evaluation and validation will exploit synergies among treatment modalities with the goal of maximizing protective effects while minimizing crew time and in-flight resource use. Protection of the cardiovascular capacity of interplanetary crewmembers will become more effective and efficient over the next few decades, but trade-offs between cost and effectiveness of efficiency are always possible if the increased level of risk can be accepted.
Shock analysis - Three useful new relations. [collisionless hydromagnetic shocks in space plasmas
NASA Technical Reports Server (NTRS)
Smith, Edward J.; Burton, Marcia E.
1988-01-01
The behavior of collisionless hydromagnetic shocks in interplanetary space is considered analytically, with a focus on relations, implicit in the governing Rankine-Hugoniot equations, involving the magnetic field (B) and the plasma velocity (V). A moving reference frame aligned with the shock is employed, and expressions are derived which make it possible (1) to determine the speed of a shock of arbitrary orientation from upstream and downstream measurements of B and V; (2) to characterize the change in flow direction as the plasma crosses the shock in terms of the plasma beta, the Mach number, and the angle between the upstream field and the shock normal; and (3) to infer the third component of the upstream-downstream velocity jump from B and two-dimensional V measurements. These expressions are applied to ISEE-3 data on an interplanetary shock on April 5, 1979, and the results are presented in tables.
Radiation in Space and Its Control of Equilibrium Temperatures in the Solar System
NASA Technical Reports Server (NTRS)
Juhasz, Albert J.
2004-01-01
The problem of determining equilibrium temperatures for reradiating surfaces in space vacuum was analyzed and the resulting mathematical relationships were incorporated in a code to determine space sink temperatures in the solar system. A brief treatment of planetary atmospheres is also included. Temperature values obtained with the code are in good agreement with available spacecraft telemetry and meteorological measurements for Venus and Earth. The code has been used in the design of space power system radiators for future interplanetary missions.
Interplanetary CubeSats system for space weather evaluations and technology demonstration
NASA Astrophysics Data System (ADS)
Viscio, Maria Antonietta; Viola, Nicole; Corpino, Sabrina; Stesina, Fabrizio; Fineschi, Silvano; Fumenti, Federico; Circi, Christian
2014-11-01
The paper deals with the mission analysis and conceptual design of an interplanetary 6U CubeSats system to be implemented in the L1 Earth-Sun Lagrangian Point mission for solar observation and in-situ space weather measurements. Interplanetary CubeSats could be an interesting alternative to big missions, to fulfill both scientific and technological tasks in deep space, as proved by the growing interest in this kind of application in the scientific community and most of all at NASA. Such systems allow less costly missions, due to their reduced sizes and volumes, and consequently less demanding launches requirements. The CubeSats mission presented in this paper is aimed at supporting measurements of space weather. The mission envisages the deployment of a 6U CubeSats system in the L1 Earth-Sun Lagrangian Point, where solar observations for in situ measurements of space weather to provide additional warning time to Earth can be carried out. The proposed mission is also intended as a technology validation mission, giving the chance to test advanced technologies, such as telecommunications and solar sails, envisaged as propulsion system. Furthermore, traveling outside the Van Allen belts, the 6U CubeSats system gives the opportunity to further investigate the space radiation environment: radiation dosimeters and advanced materials are envisaged to be implemented, in order to test their response to the harsh space environment, even in view of future implementation on other spacecrafts (e.g. manned spacecrafts). The main issue related to CubeSats is how to fit big science within a small package - namely power, mass, volume, and data limitations. One of the objectives of the work is therefore to identify and size the required subsystems and equipment, needed to accomplish specific mission objectives, and to investigate the most suitable configuration, in order to be compatible with the typical CubeSats (multi units) standards. The work has been developed as collaboration between Politecnico di Torino, Sapienza University of Rome, "Osservatorio Astrofisico di Torino - INAF" (Astrophysical Observatory of Torino) and Deutsches Zentrum für Luft- und Raumfahrt (DLR) in Bremen.
Horneck, Gerda; Klaus, David M.; Mancinelli, Rocco L.
2010-01-01
Summary: The responses of microorganisms (viruses, bacterial cells, bacterial and fungal spores, and lichens) to selected factors of space (microgravity, galactic cosmic radiation, solar UV radiation, and space vacuum) were determined in space and laboratory simulation experiments. In general, microorganisms tend to thrive in the space flight environment in terms of enhanced growth parameters and a demonstrated ability to proliferate in the presence of normally inhibitory levels of antibiotics. The mechanisms responsible for the observed biological responses, however, are not yet fully understood. A hypothesized interaction of microgravity with radiation-induced DNA repair processes was experimentally refuted. The survival of microorganisms in outer space was investigated to tackle questions on the upper boundary of the biosphere and on the likelihood of interplanetary transport of microorganisms. It was found that extraterrestrial solar UV radiation was the most deleterious factor of space. Among all organisms tested, only lichens (Rhizocarpon geographicum and Xanthoria elegans) maintained full viability after 2 weeks in outer space, whereas all other test systems were inactivated by orders of magnitude. Using optical filters and spores of Bacillus subtilis as a biological UV dosimeter, it was found that the current ozone layer reduces the biological effectiveness of solar UV by 3 orders of magnitude. If shielded against solar UV, spores of B. subtilis were capable of surviving in space for up to 6 years, especially if embedded in clay or meteorite powder (artificial meteorites). The data support the likelihood of interplanetary transfer of microorganisms within meteorites, the so-called lithopanspermia hypothesis. PMID:20197502
NASA Astrophysics Data System (ADS)
Yano, H.; Hirai, T.; Arai, K.; Fujii, M.
2017-12-01
The PVDF thin films have been long, space-proven instruments for hypervelocity impact detection in the diverse regions of the Solar System from orbits of Venus by IKAROS and of Pluto by New Horizons. In particular, light weight but large area membranes of a solar sail spacecraft is an ideal location for such detectors to be deployed for detecting statistically enough nubers of so large micrometeoroids that are sensitive to mean motion resonances and other gravitational effects of flux enhancements and voids with planets. The IKAROS spacecraft first detected in situ dust flux enhancement and gap region within the Earth's circumsolar dust ring as well as those of Venus by 0.54 m^2 detection area of ALADDIN sensors on the slar sail membrane. Advancing this heritage, the Solar Power Sail membrane will carry 0.4+ m^2 ALADDIN-II PVDF sensors with improved impact signal prosessng units to detect both hyperveloity dust impacts in the interplanetary space cruising phase and slow dust impacts bound to the Jupiter Trojan region in its rendezvours phase.
Interplanetary CubeSat Navigational Challenges
NASA Technical Reports Server (NTRS)
Martin-Mur, Tomas J.; Gustafson, Eric D.; Young, Brian T.
2015-01-01
CubeSats are miniaturized spacecraft of small mass that comply with a form specification so they can be launched using standardized deployers. Since the launch of the first CubeSat into Earth orbit in June of 2003, hundreds have been placed into orbit. There are currently a number of proposals to launch and operate CubeSats in deep space, including MarCO, a technology demonstration that will launch two CubeSats towards Mars using the same launch vehicle as NASA's Interior Exploration using Seismic Investigations, Geodesy and Heat Transport (InSight) Mars lander mission. The MarCO CubeSats are designed to relay the information transmitted by the InSight UHF radio during Entry, Descent, and Landing (EDL) in real time to the antennas of the Deep Space Network (DSN) on Earth. Other CubeSatts proposals intend to demonstrate the operation of small probes in deep space, investigate the lunar South Pole, and visit a near Earth object, among others. Placing a CubeSat into an interplanetary trajectory makes it even more challenging to pack the necessary power, communications, and navigation capabilities into such a small spacecraft. This paper presents some of the challenges and approaches for successfully navigating CubeSats and other small spacecraft in deep space.
Space Habitat, assembly and repair facility
NASA Technical Reports Server (NTRS)
Colangelo, Todd A.; Hoetger, Debora C.; Kuo, Addison C.; Lo, Michael C.; Marcus, Leland R.; Tran, Phillip P.; Tutt, Chris J.; Wassmuth, Chad M.; Wildgrube, Gregory M.
1992-01-01
Integrated Space Systems (ISS) has designed a Low Earth Orbit Assembly Facility for submission in the 1992 AIAA/LORAL Team Space Design Competition. This facility, the Space Habitat, Assembly, and Repair Center (SHARC), will be used to construct, assemble, and service space vehicles. SHARC's primary mission will be the construction of interplanetary vehicles, but it will also be able to perform repair and refueling operations of craft which are in an Earth orbit. This facility has been designed using only present and near-present technology. The emphasis is on minimizing cost.
NASA Astrophysics Data System (ADS)
Ehresmann, B.; Hassler, D.; Zeitlin, C.; Guo, J.; Lee, C. O.; Wimmer-Schweingruber, R. F.; Appel, J. K.; Boehm, E.; Boettcher, S. I.; Brinza, D. E.; Burmeister, S.; Lohf, H.; Martin-Garcia, C.; Matthiae, D.; Rafkin, S. C.; Reitz, G.
2017-12-01
NASA's Mars Science Laboratory (MSL) mission has now been operating in Gale crater on the surface of Mars for five years. On board MSL, the Radiation Assessment Detector (MSL/RAD) is measuring the Martian surface radiation environment, providing insights on its intensity and composition. This radiation field is mainly composed of primary Galactic Cosmic Rays (GCRs) and secondary particles created by the GCRs' interactions with the Martian atmosphere and soil. However, on shorter time scales the radiation environment can be dominated by contributions from Solar Energetic Particle (SEP) events. Due to the modulating effect of the Martian atmosphere shape and intensity of these SEP spectra will differ significantly between interplanetary space and the Martian surface. Understanding how SEP events influence the surface radiation field is crucial to assess associated health risks for potential human missions to Mars. Here, we present updated MSL/RAD results for charged particle fluxes measured on the surface during SEP activity from the five years of MSL operations on Mars. The presented results incorporate updated analysis techniques for the MSL/RAD data and yield the most robust particle spectra to date. Furthermore, we compare the MSL/RAD SEP-induced fluxes to measurements from other spacecraft in the inner heliosphere and, in particular, in Martian orbit. Analyzing changes of SEP intensities from interplanetary space to the Martian surface gives insight into the modulating effect of the Martian atmosphere, while comparing timing profiles of SEP events between Mars and different points in interplanetary space can increase our understanding of SEP propagation in the heliosphere.
1959-11-29
Russian Scientists from the Commission of Interplanetary Travel of the Soviet Academy of Science November 21,1959 Left to right: Front row: Yury S. Galkin, Anatoly A. Blagonravov, and Prof. Leonid I. Sedov (Chair of the Commission for Interplanetary Travel)-Soviet Academy of Science, Leninski Gory, Moscow, Russia Dr. H.J. E. Reid and Floyd L. Thompson Langley Research Center. Second row: Boris Kit Translator, Library of Congress, Washington, D.C. Eugene C. Draley and Laurence K. Loftin, Jr. -Langley Research Center Arnold W. Frutkin and Harold R. Lawrence NASA Headquarters. Back row: T.Melvin Butler-Langley Research Center John W. Townsend Goddard Space Flight Center, NASA, Washington D.C., and George M. Low NASA Headquarters.
NASA Technical Reports Server (NTRS)
Englander, Arnold C.; Englander, Jacob A.
2017-01-01
Interplanetary trajectory optimization problems are highly complex and are characterized by a large number of decision variables and equality and inequality constraints as well as many locally optimal solutions. Stochastic global search techniques, coupled with a large-scale NLP solver, have been shown to solve such problems but are inadequately robust when the problem constraints become very complex. In this work, we present a novel search algorithm that takes advantage of the fact that equality constraints effectively collapse the solution space to lower dimensionality. This new approach walks the filament'' of feasibility to efficiently find the global optimal solution.
On the twists of interplanetary magnetic flux ropes observed at 1 AU
NASA Astrophysics Data System (ADS)
Wang, Yuming; Zhuang, Bin; Hu, Qiang; Liu, Rui; Shen, Chenglong; Chi, Yutian
2016-10-01
Magnetic flux ropes (MFRs) are one kind of fundamental structures in the solar/space physics and involved in various eruption phenomena. Twist, characterizing how the magnetic field lines wind around a main axis, is an intrinsic property of MFRs, closely related to the magnetic free energy and stableness. Although the effect of the twist on the behavior of MFRs had been widely studied in observations, theory, modeling, and numerical simulations, it is still unclear how much amount of twist is carried by MFRs in the solar atmosphere and in heliosphere and what role the twist played in the eruptions of MFRs. Contrasting to the solar MFRs, there are lots of in situ measurements of magnetic clouds (MCs), the large-scale MFRs in interplanetary space, providing some important information of the twist of MFRs. Thus, starting from MCs, we investigate the twist of interplanetary MFRs with the aid of a velocity-modified uniform-twist force-free flux rope model. It is found that most of MCs can be roughly fitted by the model and nearly half of them can be fitted fairly well though the derived twist is probably overestimated by a factor of 2.5. By applying the model to 115 MCs observed at 1 AU, we find that (1) the twist angles of interplanetary MFRs generally follow a trend of about 0.6l/R radians, where l/R is the aspect ratio of a MFR, with a cutoff at about 12π radians AU-1, (2) most of them are significantly larger than 2.5π radians but well bounded by 2l/R radians, (3) strongly twisted magnetic field lines probably limit the expansion and size of MFRs, and (4) the magnetic field lines in the legs wind more tightly than those in the leading part of MFRs. These results not only advance our understanding of the properties and behavior of interplanetary MFRs but also shed light on the formation and eruption of MFRs in the solar atmosphere. A discussion about the twist and stableness of solar MFRs are therefore given.
Transceiver optics for interplanetary communications
NASA Astrophysics Data System (ADS)
Roberts, W. T.; Farr, W. H.; Rider, B.; Sampath, D.
2017-11-01
In-situ interplanetary science missions constantly push the spacecraft communications systems to support successively higher downlink rates. However, the highly restrictive mass and power constraints placed on interplanetary spacecraft significantly limit the desired bandwidth increases in going forward with current radio frequency (RF) technology. To overcome these limitations, we have evaluated the ability of free-space optical communications systems to make substantial gains in downlink bandwidth, while holding to the mass and power limits allocated to current state-of-the-art Ka-band communications systems. A primary component of such an optical communications system is the optical assembly, comprised of the optical support structure, optical elements, baffles and outer enclosure. We wish to estimate the total mass that such an optical assembly might require, and assess what form it might take. Finally, to ground this generalized study, we should produce a conceptual design, and use that to verify its ability to achieve the required downlink gain, estimate it's specific optical and opto-mechanical requirements, and evaluate the feasibility of producing the assembly.
Recurrent solar wind streams observed by interplanetary scintillation of 3C 48
DOE Office of Scientific and Technical Information (OSTI.GOV)
Watanabe, T.; Kakinuma, T.
1972-10-01
The interplanetary scintillation of 3C 48 was observed by two spaced receivers (69.3 MHz) during February and March 1971. The recurrent property of the observed velocity increase of the solar wind is clearly seen, and their recurrent period is 24 to 25 days. This value is shorter than the synodic period of 27 days, but this deviation may be explained by the displacement of the closest point to the Sun on the line of sight for 3C 48. A comparison with the data of the wind velocity obtained by apace probes shows that the observed enhancements are associated with twomore » high-velocity streams corotating around the Sun. The enhancements of the scintillation index precede by about two days the velocity enhancements, and it may be concluded that such enhancement of the scintillation index has resulted from the compressed region of the interplanetary plasma formed in front of the high-velocity corotating stream. (auth)« less
Ion Ramp Structure of Bow shocks and Interplanetary Shocks: Differences and Similarities
NASA Astrophysics Data System (ADS)
Goncharov, O.; Safrankova, J.; Nemecek, Z.; Koval, A.; Szabo, A.; Prech, L.; Zastenker, G. N.; Riazantseva, M.
2017-12-01
Collisionless shocks play a significant role in the solar wind interaction with the Earth. Fast forward shocks driven by coronal mass ejections or by interaction of fast and slow solar wind streams can be encountered in the interplanetary space, whereas the bow shock is a standing fast reverse shock formed by an interaction of the supersonic solar wind with the Earth magnetic field. Both types of shocks are responsible for a transformation of a part of the energy of the directed solar wind motion to plasma heating and to acceleration of reflected particles to high energies. These processes are closely related to the shock front structure. In present paper, we compares the analysis of low-Mach number fast forward interplanetary shocks registered in the solar wind by the DSCOVR, WIND, and ACE with observations of bow shock crossings observed by the Cluster, THEMIS, MMS, and Spektr-R spacecraft. An application of the high-time resolution data facilitates further discussion on formation mechanisms of both types of shocks.
1999-10-21
Travel to distant stars is a long-range goal of Marshall Space Flight Center's Advanced Concept Group. One of the many propulsion systems currently being studied is fusion power. The objective of this and many other alternative propulsion systems is to reduce the costs of space access and to reduce the travel time for planetary missions. One of the major factors is providing an alternate engery source for these missions. Pictured is an artist's concept of future interplanetary space flight using fusion power.
Radiation Exposure Effects and Shielding Analysis of Carbon Nanotube Materials
NASA Technical Reports Server (NTRS)
Wilkins, Richard; Armendariz, Lupita (Technical Monitor)
2002-01-01
Carbon nanotube materials promise to be the basis for a variety of emerging technologies with aerospace applications. Potential applications to human space flight include spacecraft shielding, hydrogen storage, structures and fixtures and nano-electronics. Appropriate risk analysis on the properties of nanotube materials is essential for future mission safety. Along with other environmental hazards, materials used in space flight encounter a hostile radiation environment for all mission profiles, from low earth orbit to interplanetary space.
The deep space network, volume 6
NASA Technical Reports Server (NTRS)
1971-01-01
Progress on Deep Space Network (DSN) supporting research and technology is presented, together with advanced development and engineering, implementation, and DSN operations of flight projects. The DSN is described. Interplanetary and planetary flight projects and radio science experiments are discussed. Tracking and navigational accuracy analysis, communications systems and elements research, and supporting research are considered. Development of the ground communications and deep space instrumentation facilities is also presented. Network allocation schedules and angle tracking and test development are included.
MESSENGER Observations of Extreme Space Weather in Mercury's Magnetosphere
NASA Astrophysics Data System (ADS)
Slavin, J. A.
2013-09-01
Increasing activity on the Sun is allowing MESSENGER to make its first observations of Mercury's magnetosphere under extreme solar wind conditions. At Earth interplanetary shock waves and coronal mass ejections produce severe "space weather" in the form of large geomagnetic storms that affect telecommunications, space systems, and ground-based power grids. In the case of Mercury the primary effect of extreme space weather in on the degree to which this it's weak global magnetic field can shield the planet from the solar wind. Direct impact of the solar wind on the surface of airless bodies like Mercury results in space weathering of the regolith and the sputtering of atomic species like sodium and calcium to high altitudes where they contribute to a tenuous, but highly dynamic exosphere. MESSENGER observations indicate that during extreme interplanetary conditions the solar wind plasma gains access to the surface of Mercury through three main regions: 1. The magnetospheric cusps, which fill with energized solar wind and planetary ions; 2. The subsolar magnetopause, which is compressed and eroded by reconnection to very low altitudes where the natural gyro-motion of solar wind protons may result in their impact on the surface; 3. The magnetotail where hot plasma sheet ions rapidly convect sunward to impact the surface on the nightside of Mercury. The possible implications of these new MESSENGER observations for our ability to predict space weather at Earth and other planets will be described.
NASA Astrophysics Data System (ADS)
Bisi, Mario M.; Fallows, Richard A.; Sobey, Charlotte; Eftekhari, Tarraneh; Jensen, Elizabeth A.; Jackson, Bernard V.; Yu, Hsiu-Shan; Hick, P. Paul; Odstrcil, Dusan; Tokumaru, Munetoshi; Oyuki Chang, M. T.
2016-04-01
Space weather - analogous to terrestrial weather (describing the changing pressure, temperature, wind, and humidity conditions on Earth) - is essentially a description of the changes in velocity, density, magnetic field, high-energy particles, and radiation in the near-Earth space environment including the effects of such on the Earth. Space weather can be considered to have two main strands: (i) scientific research, and (ii) applications. The former is self-explanatory, but the latter covers operational aspects including forecasting. Understanding and forecasting space weather near the Earth is of critical importance to protecting our modern-day reliance on satellites, global-communications and navigation networks, high-altitude air travel (radiation concerns particularly on polar routes), long-distance power/oil/gas lines and piping, and for any future human exploration of space to list but a few. This includes both military and commercial considerations. Two ground-based radio-observing techniques that can add to and lead our understanding and forecasting of heliospheric space weather are those of interplanetary scintillation (IPS) and heliospheric Faraday rotation (FR). We present our latest progress using these two radio heliospheric-imaging remote-sensing techniques including the use of three-dimensional (3-D) modelling and reconstruction techniques using other, additional data as input to support and better-interpret individual case-study results.
Solar energetic particle anisotropies and insights into particle transport
NASA Astrophysics Data System (ADS)
Leske, R. A.; Cummings, A. C.; Cohen, C. M. S.; Mewaldt, R. A.; Labrador, A. W.; Stone, E. C.; Wiedenbeck, M. E.; Christian, E. R.; Rosenvinge, T. T. von
2016-03-01
As solar energetic particles (SEPs) travel through interplanetary space, their pitch-angle distributions are shaped by the competing effects of magnetic focusing and scattering. Measurements of SEP anisotropies can therefore reveal information about interplanetary conditions such as magnetic field strength, topology, and turbulence levels at remote locations from the observer. Onboard each of the two STEREO spacecraft, the Low Energy Telescope (LET) measures pitch-angle distributions for protons and heavier ions up to iron at energies of about 2-12 MeV/nucleon. Anisotropies observed using LET include bidirectional flows within interplanetary coronal mass ejections, sunward-flowing particles when STEREO was magnetically connected to the back side of a shock, and loss-cone distributions in which particles with large pitch angles underwent magnetic mirroring at an interplanetary field enhancement that was too weak to reflect particles with the smallest pitch angles. Unusual oscillations in the width of a beamed distribution at the onset of the 23 July 2012 SEP event were also observed and remain puzzling. We report LET anisotropy observations at both STEREO spacecraft and discuss their implications for SEP transport, focusing exclusively on the extreme event of 23 July 2012 in which a large variety of anisotropies were present at various times during the event.
NASA Technical Reports Server (NTRS)
Reyes, A. L.; Campbell, J. E.
1976-01-01
Almost 600 articles and books published since 1960 about microbial and viral inactivation are listed. This bibliography is presented to facilitate literature reviews on chemical, heat, and radiation inactivation of microorganisms and viral particles.
Active shielding for long duration interplanetary manned missions
NASA Astrophysics Data System (ADS)
Spillantini, Piero
The problem of protecting astronauts from the cosmic rays action in unavoidable and was therefore preliminary studied by many space agencies. In Europe, in the years 2002-2004, ESA supported two works on this thematic: a topical team in the frame of the ‘life and physical sciences' and a study, assigned by tender, of the ‘radiation exposure and mission strategies for interplanetary manned missions to Moon and Mars'. In both studies it was concluded that, while the protection from solar cosmic rays can relay on the use of passive absorbers, for long duration missions the astronauts must be protected from the much more energetic galactic cosmic rays during the whole duration of the mission. This requires the protection of a large habitat where they could live and work, and not a temporary small volume shelter, and the use of active shielding is therefore mandatory. The possibilities offered by using superconducting magnets were discussed, and the needed R&D recommended. The technical development occurred in the meantime and the evolution of the panorama of the possible interplanetary missions in the near future require to revise these pioneer studies and think of the problem at a scale allowing long human permanence in ‘deep' space, and not for a relatively small number of dedicated astronauts but also for citizens conducting there ‘normal' activities.
Ecology and thermal inactivation of microbes in and on interplanetary space vehicle components
NASA Technical Reports Server (NTRS)
Campbell, J. E.
1972-01-01
A set of conditions in which 90 C was a more lethal temperature than 125 C for the destruction of Bacillus subtilis var. niger was identified as a function of relative humidity, with maximum effectiveness at 100% R.H. A systematic study of the influence of head-space moisture and temperature on the destruction of B. subtilis var. niger is reported.
Risks of radiation cataracts from interplanetary space missions.
Lett, J T; Lee, A C; Cox, A B
1994-11-01
Recognition of the human risks from radiation exposure during manned missions in deep space has been fostered by international co-operation; interagency collaboration is facilitating their evaluation. Further co-operation can lead, perhaps by the end of this decade, to an evaluation of one of the three major risks, namely radiation cataractogenesis, sufficient for use in the planning of the manned mission to Mars.
IPS Space Weather Research: Korea-Japan-UCSD
2015-04-27
SUBJECT TERMS Solar Physics , Solar Wind, interplanetary scintillation 16. SECURITY CLASSIFICATION OF: 17. LIMITATION OF ABSTRACT SAR 18. NUMBER...Institution : Center for Astrophysics and space science (CASS), University of California, San Diego (UCSD) - Mailing Address : 9500 Gilman Dr. #0424...the physical parameters like solar wind velocities and densities. This is the one of the unique way to observer the solar wind from the earth. The
Preface: New challenges for planetary protection
NASA Astrophysics Data System (ADS)
Kminek, Gerhard
2016-05-01
Planetary protection as a discipline goes back to the advent of the space age and the formation of the Committee on Space Research (COSPAR). Planetary protection constraints are in place to ensure that scientific investigations related to the search for extraterrestrial life are not compromised and that the Earth is protected from the potential hazard posed by extraterrestrial matter carried by a spacecraft returning from an interplanetary mission.
Bold endeavors: behavioral lessons from polar and space exploration
NASA Technical Reports Server (NTRS)
Stuster, J. W.
2000-01-01
Anecdotal comparisons frequently are made between expeditions of the past and space missions of the future. Spacecraft are far more complex than sailing ships, but from a psychological perspective, the differences are few between confinement in a small wooden ship locked in the polar ice cap and confinement in a small high-technology ship hurtling through interplanetary space. This paper discusses some of the behavioral lessons that can be learned from previous expeditions and applied to facilitate human adjustment and performance during future space expeditions of long duration.
GCR and SPE Radiation Effects in Materials
NASA Technical Reports Server (NTRS)
Waller, Jess; Rojdev, Kristina; Nichols, Charles
2016-01-01
This Year 3 project provides risk reduction data to assess galactic cosmic ray (GCR) and solar particle event (SPE) space radiation damage in materials used in manned low-earth orbit, lunar, interplanetary, and Martian surface missions. Long duration (up to 50 years) space radiation damage is being quantified for materials used in inflatable structures (1st priority), and space suit and habitable composite materials (2nd priority). The data collected has relevance for nonmetallic materials (polymers and composites) used in NASA missions where long duration reliability is needed in continuous or intermittent space radiation fluxes.
NASA Technical Reports Server (NTRS)
Aaron, John; Gabris, Edward A.; Sulzman, Frank M.; Connors, Mary M.; Pilcher, Carl
1989-01-01
NASA's Office of Aeronautics and Space Technology has undertaken a series of manned space presence-development efforts under the aegis of the Civil Space Technology Initiative (CSTI) and Project Pathfinder. Typical of these CSTI efforts is the Aeroassist Flight Experiment, which will demonstrate techniques suitable in aerobrake design for slow trajectories to Mars and for lunar mission return. Long-duration human operations in space are a major element of Pathfinder, giving attention to such problems as space radiation exposure effects that could be several orders of magnitude greater on interplanetary exploration missions than on typical Space Shuttle flights. Mars Observer and Lunar Observer orbital missions are planned as a steppingstone to manned planetary exploration.
NASA Technical Reports Server (NTRS)
1983-01-01
Voyager, Infrared Astronomical Satellite, Galileo, Viking, Solar Mesosphere Explorer, Wide-field/Planetary Camera, Venus Mapper, International Solar Polar Mission - Solar Interplanetary Satellite, Extreme Ultraviolet Explores, Starprobe, International Halley Watch, Marine Mark II, Samex, Shuttle Imaging Radar-A, Deep Space Network, Biomedical Technology, Ocean Studies and Robotics are summarized.
Evaluation of sample preservation methods for space mission
NASA Technical Reports Server (NTRS)
Schubert, W.; Rohatgi, N.; Kazarians, G.
2002-01-01
For interplanetary spacecraft that will travel to destinations where future life detection experiments may be conducted or samples are to be returned to earth, we should archive and preserve relevant samples from the spacecraft and cleanrooms for evaluation at a future date.
A study of dynamical behavior of space environment
NASA Technical Reports Server (NTRS)
Wu, S. T.
1974-01-01
Studies have covered a wide range of problems in the space environment, such as the problems of the dynamical behavior of the thermosphere, hydromagnetic wave propagation in the ionosphere, and interplanetary space environment. The theories used to analyze these problems range from a continuum theory of magnetohydrodynamics to the kinetic theory of free molecular flow. This is because the problems encountered covered the entire range of the Knudsen number (i.e., the ratio of mean free path to the characteristic length). Significant results are summarized.
Earth observations during Space Shuttle flight STS-41 - Discovery's mission to planet earth
NASA Technical Reports Server (NTRS)
Lulla, Kamlesh P.; Helfert, Michael R.; Amsbury, David L.; Whitehead, Victor S.; Richards, Richard N.; Cabana, Robert D.; Shepherd, William M.; Akers, Thomas D.; Melnick, Bruce E.
1991-01-01
An overview of space flight STS-41 is presented, including personal observations and comments by the mission astronauts. The crew deployed the Ulysses spacecraft to study the polar regions of the sun and the interplanetary space above the poles. Environmental observations, including those of Lake Turkana, Lake Chad, biomass burning in Madagascar and Argentina, and circular features in Yucatan are described. Observations that include landforms and geology, continental sedimentation, desert landscapes, and river morphology are discussed.
Safety and environmental constraints on space applications of fusion energy
NASA Technical Reports Server (NTRS)
Roth, J. Reece
1990-01-01
Some of the constraints are examined on fusion reactions, plasma confinement systems, and fusion reactors that are intended for such space related missions as manned or unmanned operations in near earth orbit, interplanetary missions, or requirements of the SDI program. Of the many constraints on space power and propulsion systems, those arising from safety and environmental considerations are emphasized since these considerations place severe constraints on some fusion systems and have not been adequately treated in previous studies.
NASA Technical Reports Server (NTRS)
1997-01-01
In this session, Session WP3, the discussion focuses on the following topics: Monitoring Physiological Variables With Membrane Probes; Real Time Confocal Laser Scanning Microscopy, Potential Applications in Space Medicine and Cell Biology; Optimum Versus Universal Planetary and Interplanetary Habitats; Application of Remote Sensing and Geographic Information System Technologies to the Prevention of Diarrheal Diseases in Nigeria; A Small G Loading Human Centrifuge for Space Station ERA; Use of the Bicycle Ergometer on the International Space Station and Its Influence On The Microgravity Environment; Munich Space Chair (MSC) - A Next Generation Body Restraint System for Astronauts; and Thermoelectric Human-Body Cooling Units Used By NASA Space Shuttle Astronauts.
Optimizing Mars Sphere of Influence Maneuvers for NASA's Evolvable Mars Campaign
NASA Technical Reports Server (NTRS)
Merrill, Raymond G.; Komar, D. R.; Chai, Patrick; Qu, Min
2016-01-01
NASA's Human Spaceflight Architecture Team is refining human exploration architectures that will extend human presence to the Martian surface. For both Mars orbital and surface missions, NASA's Evolvable Mars Campaign assumes that cargo and crew can be delivered repeatedly to the same destination. Up to this point, interplanetary trajectories have been optimized to minimize the total propulsive requirements of the in-space transportation systems, while the pre-deployed assets and surface systems are optimized to minimize their respective propulsive requirements separate from the in-space transportation system. There is a need to investigate the coupled problem of optimizing the interplanetary trajectory and optimizing the maneuvers within Mars's sphere of influence. This paper provides a description of the ongoing method development, analysis and initial results of the effort to resolve the discontinuity between the interplanetary trajectory and the Mars sphere of influence trajectories. Assessment of Phobos and Deimos orbital missions shows the in-space transportation and crew taxi allocations are adequate for missions in the 2030s. Because the surface site has yet to be selected, the transportation elements must be sized to provide enough capability to provide surface access to all landing sites under consideration. Analysis shows access to sites from elliptical parking orbits with a lander that is designed for sub-periapsis landing location is either infeasible or requires expensive orbital maneuvers for many latitude ranges. In this case the locus of potential arrival perigee vectors identifies the potential maximum north or south latitudes accessible. Higher arrival velocities can decrease reorientation costs and increase landing site availability. Utilizing hyperbolic arrival and departure vectors in the optimization scheme will increase transportation site accessibility and provide more optimal solutions.
NASA Astrophysics Data System (ADS)
Mishra, Sudheer K.; Singh, Talwinder; Kayshap, P.; Srivastava, A. K.
2018-03-01
We analyze the observations from Solar TErrestrial RElations Observatory (STEREO)-A and B/COR-1 of an eruptive prominence in the intermediate corona on 2011 June 7 at 08:45 UT, which consists of magnetic Rayleigh–Taylor (MRT) unstable plasma segments. Its upper-northward segment shows spatio-temporal evolution of MRT instability in form of finger structures up to the outer corona and low interplanetary space. Using the method of Dolei et al., It is estimated that the density in each bright finger is greater than the corresponding dark region lying below it in the surrounding intermediate corona. The instability is evolved due to wave perturbations that are parallel to the magnetic field at the density interface. We conjecture that the prominence plasma is supported by tension component of the magnetic field against gravity. Through the use of linear stability theory, the magnetic field is estimated as 21–40 mG to suppress growth of MRT instability in the observed finger structures. In the southward plasma segment, a horn-like structure is observed at 11:55 UT in the intermediate corona that also indicates MRT instability. Falling blobs are also observed in both of the plasma segments. In the outer corona, up to 6–13 solar radii, the mushroom-like plasma structures have been identified in the upper-northward MRT unstable plasma segment using STEREO-A/COR-2. These structures most likely grew due to the breaking and twisting of fingers at large spatial scales in weaker magnetic fields. In the lower interplanetary space up to 20 solar radii, these structures are fragmented into various small-scale localized plasma spikes, most likely due to turbulent mixing.
Research in space physics at the University of Iowa, 1982
NASA Technical Reports Server (NTRS)
Vanallen, J. A.; Frank, L. A.; Gurnett, D. A.; Shawhan, S. D.; Robison, E. D.; Robertson, T. D.
1983-01-01
The energetic particles and the electric, magnetic, and electromagnetic fields associated with the Earth, the Sun, the Moon, the planets, comets, and the interplanetary medium are examined. Matters under current investigation are following: energetic particles trapped in the Earth's magnetic field, origin and propagation of very low frequency radio waves and electrostatic, the magnetospheres of Jupiter, Saturn and prospectively Uranus and Neptune, diffusion of energetic particles in Saturn's magnetosphere, radio emissions from Jupiter and Saturn, solar modulation and the heliocentric radial dependence of the intensity of galactic cosmic rays, interplanetary propagation and acceleration of energetic particles, the theory of wave phenomena in turbulent plasmas, and basic wave-particle-chemical processes in the ionospheric plasma.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Xiong, Ming; Yang, Liping; Liu, Ying D.
Interplanetary corotating interaction regions (CIRs) can be remotely imaged in white light (WL), as demonstrated by the Solar Mass Ejection Imager (SMEI) on board the Coriolis spacecraft and Heliospheric Imagers (HIs) on board the twin Solar TErrestrial RElations Observatory ( STEREO ) spacecraft. The interplanetary WL intensity, due to Thomson scattering of incident sunlight by free electrons, is jointly determined by the 3D distribution of electron number density and line-of-sight (LOS) weighting factors of the Thomson-scattering geometry. The 2D radiance patterns of CIRs in WL sky maps look very different from different 3D viewpoints. Because of the in-ecliptic locations ofmore » both the STEREO and Coriolis spacecraft, the longitudinal dimension of interplanetary CIRs has, up to now, always been integrated in WL imagery. To synthesize the WL radiance patterns of CIRs from an out-of-ecliptic (OOE) vantage point, we perform forward magnetohydrodynamic modeling of the 3D inner heliosphere during Carrington Rotation CR1967 at solar maximum. The mixing effects associated with viewing 3D CIRs are significantly minimized from an OOE viewpoint. Our forward modeling results demonstrate that OOE WL imaging from a latitude greater than 60° can (1) enable the garden-hose spiral morphology of CIRs to be readily resolved, (2) enable multiple coexisting CIRs to be differentiated, and (3) enable the continuous tracing of any interplanetary CIR back toward its coronal source. In particular, an OOE view in WL can reveal where nascent CIRs are formed in the extended corona and how these CIRs develop in interplanetary space. Therefore, a panoramic view from a suite of wide-field WL imagers in a solar polar orbit would be invaluable in unambiguously resolving the large-scale longitudinal structure of CIRs in the 3D inner heliosphere.« less
An analysis of interplanetary space radiation exposure for various solar cycles
NASA Technical Reports Server (NTRS)
Badhwar, G. D.; Cucinotta, F. A.; O'Neill, P. M.; Wilson, J. W. (Principal Investigator)
1994-01-01
The radiation dose received by crew members in interplanetary space is influenced by the stage of the solar cycle. Using the recently developed models of the galactic cosmic radiation (GCR) environment and the energy-dependent radiation transport code, we have calculated the dose at 0 and 5 cm water depth; using a computerized anatomical man (CAM) model, we have calculated the skin, eye and blood-forming organ (BFO) doses as a function of aluminum shielding for various solar minima and maxima between 1954 and 1989. These results show that the equivalent dose is within about 15% of the mean for the various solar minima (maxima). The maximum variation between solar minimum and maximum equivalent dose is about a factor of three. We have extended these calculations for the 1976-1977 solar minimum to five practical shielding geometries: Apollo Command Module, the least and most heavily shielded locations in the U.S. space shuttle mid-deck, center of the proposed Space Station Freedom cluster and sleeping compartment of the Skylab. These calculations, using the quality factor of ICRP 60, show that the average CAM BFO equivalent dose is 0.46 Sv/year. Based on an approach that takes fragmentation into account, we estimate a calculation uncertainty of 15% if the uncertainty in the quality factor is neglected.
The Deep Impact Network Experiment Operations Center
NASA Technical Reports Server (NTRS)
Torgerson, J. Leigh; Clare, Loren; Wang, Shin-Ywan
2009-01-01
Delay/Disruption Tolerant Networking (DTN) promises solutions in solving space communications challenges arising from disconnections as orbiters lose line-of-sight with landers, long propagation delays over interplanetary links, and other phenomena. DTN has been identified as the basis for the future NASA space communications network backbone, and international standardization is progressing through both the Consultative Committee for Space Data Systems (CCSDS) and the Internet Engineering Task Force (IETF). JPL has developed an implementation of the DTN architecture, called the Interplanetary Overlay Network (ION). ION is specifically implemented for space use, including design for use in a real-time operating system environment and high processing efficiency. In order to raise the Technology Readiness Level of ION, the first deep space flight demonstration of DTN is underway, using the Deep Impact (DI) spacecraft. Called the Deep Impact Network (DINET), operations are planned for Fall 2008. An essential component of the DINET project is the Experiment Operations Center (EOC), which will generate and receive the test communications traffic as well as "out-of-DTN band" command and control of the DTN experiment, store DTN flight test information in a database, provide display systems for monitoring DTN operations status and statistics (e.g., bundle throughput), and support query and analyses of the data collected. This paper describes the DINET EOC and its value in the DTN flight experiment and potential for further DTN testing.
Ecology and thermal inactivation of microbes in and on interplanetary space vehicle components
NASA Technical Reports Server (NTRS)
Reyes, A. L.; Campbell, J. E.; Wehby, A. J.; Crawford, R. G.; Wimsatt, J. C.; Peeler, J. T.
1976-01-01
The thermal resistance of vegetative cells in the percent RH range of 0.19 to 100 at 60 C was investigated. Staphylococcus aureus was used in the experiment because of the extension of the moisture range that can be examined.
Observations of disconnection of open coronal magnetic structures
NASA Technical Reports Server (NTRS)
Mccomas, D. J.; Phillips, J. L.; Hundhausen, A. J.; Burkepile, J. T.
1991-01-01
The solar maximum mission coronagraph/polarimeter observations are surveyed for evidence of magnetic disconnection of previously open magnetic structures and several sequences of images consistent with this interpretation are identified. Such disconnection occurs when open field lines above helmet streamers reconnect, in contrast to previously suggested disconnections of CMEs into closed plasmoids. In this paper a clear example of open field disconnection is shown in detail. The event, on June 27, 1988, is preceded by compression of a preexisting helmet streamer and the open coronal field around it. The compressed helmet streamer and surrounding open field region detach in a large U-shaped structure which subsequently accelerates outward from the sun. The observed sequence of events is consistent with reconnection across the heliospheric current sheet and the creation of a detached U-shaped magnetic structure. Unlike CMEs, which may open new magnetic flux into interplanetary space, this process could serve to close off previously open flux, perhaps helping to maintain the roughly constant amount of open magnetic flux observed in interplanetary space.
Ushakov, I B; Tsetlin, V V; Moisa, S S
2013-01-01
The authors review the findings of researches into the effects of low-dose ionizing irradiation on diverse biological objects (embryonic Japanese quails, Aspergillus niger, Spirostomum ambiguum Ehrbg., mesenchymal stem cells from mouse marrow, dry higher plants seeds, blood lymphocytes from pilots and cosmonauts). Model experiments with chronic exposure to ionizing radiation doses comparable with the measurements inside orbital vehicles and estimations for trips through the interplanetary space resulted in morphological disorders (embryonic Japanese quails, Aspergillus niger), radiation hormesis (Aspergillus niger, MSCs from mouse marrow), increase in the seed germination rate, inhibition of Spirostomum spontaneous activity, DNA damages, chromosomal aberrations, and increase of the blood lymphocytes reactivity to additional radiation loading. These facts give grounds to assume that the crucial factor in the radiation outcomes is changes in liquid medium. In other words, during extended orbiting within the magnetosphere region and interplanetary missions ionizing radiation affects primarily liquids of organism and, secondarily, its morphofunctional structures.
Flight elements: Advanced avionics systems architectures
NASA Technical Reports Server (NTRS)
1990-01-01
Space transportation objectives are associated with transporting material from Earth to orbit, interplanetary travel, and planetary landing. The objectives considered herein are associated with Earth to orbit transportation. Many good avionics architectural features will support all phases of space transportation, but interplanetary transportation poses significantly different problems such as long mission time with high reliability, unattended operation, and many different opportunities such as long nonoperational flight segments that can be used for equipment fault diagnosis and repair. Fault tolerance can be used to permit continued operation with faulty units, not only during launch but also, and perhaps with more impact, during prelaunch activities. Avionics systems are entering a phase of development where the traditional approaches to satisfactory systems based on engineering judgement and thorough testing will alone no longer be adequate to assure that the required system performance can be obtained. A deeper understanding will be required to make the effects of obscure design decisions clear at a level where their impact can be properly judged.
NASA Astrophysics Data System (ADS)
Gulevich, Andrey V.; Dyachenko, Peter P.; Kukharchuk, Oleg F.; Zrodnikov, Anatoly V.
2000-01-01
In this report the concept of vehicle-based reactor-laser engine for long time interplanetary and interorbital (LEO to GEO) flights is proposed. Reactor-pumped lasers offer the perspective way to create on the base of modern nuclear and lasers technologies the low mass and high energy density, repetitively pulsed vehicle-based laser of average power 100 kW. Nowadays the efficiency of nuclear-to-optical energy conversion reached the value of 2-3%. The demo model of reactor-pumped laser facility is under construction in Institute for Physics and Power Engineering (Obninsk, Russia). It enable us to hope that using high power laser on board of the vehicle could make the effective space laser engine possible. Such engine may provide the high specific impulse ~1000-2000 s with the thrust up to 10-100 n. Some calculation results of the characteristics of vehicle-based reactor-laser thermal engine concept are also presented. .
Global Optimization of Low-Thrust Interplanetary Trajectories Subject to Operational Constraints
NASA Technical Reports Server (NTRS)
Englander, Jacob A.; Vavrina, Matthew A.; Hinckley, David
2016-01-01
Low-thrust interplanetary space missions are highly complex and there can be many locally optimal solutions. While several techniques exist to search for globally optimal solutions to low-thrust trajectory design problems, they are typically limited to unconstrained trajectories. The operational design community in turn has largely avoided using such techniques and has primarily focused on accurate constrained local optimization combined with grid searches and intuitive design processes at the expense of efficient exploration of the global design space. This work is an attempt to bridge the gap between the global optimization and operational design communities by presenting a mathematical framework for global optimization of low-thrust trajectories subject to complex constraints including the targeting of planetary landing sites, a solar range constraint to simplify the thermal design of the spacecraft, and a real-world multi-thruster electric propulsion system that must switch thrusters on and off as available power changes over the course of a mission.
MSFC/EV44 Natural Environment Capabilities
NASA Technical Reports Server (NTRS)
NeergaardParker, Linda; Willis, Emily M.; Minnow, Joseph I.; Coffey, Vic N.
2014-01-01
The Natural Environments Branch at Marshall Space Flight Center is an integral part of many NASA satellite and launch vehicle programs, providing analyses of the space and terrestrial environments that are used for program development efforts, operational support, and anomaly investigations. These capabilities include model development, instrument build and testing, analysis of space and terrestrial related data, spacecraft charging anomaly investigations, surface and internal charging modeling, space environment definition, and radiation assessments for electronic parts. All aspects of space and terrestrial design are implemented with the goal of devising missions that are successful from launch to operations in the space environment of LEO, polar, GEO, and interplanetary orbits.
10 years of Cassini/VIMS observations at Titan
NASA Astrophysics Data System (ADS)
Sotin, C.; Brown, R. H.; Baines, K. H.; Barnes, J.; Buratti, B. J.; Clark, R. N.; Jaumann, R.; LeMouelic, S.; Nicholson, P. D.; Rodriguez, S.; Soderblom, J.; Soderblom, L.; Stephan, K.
2014-04-01
The interplanetary space probe Cassini/Huygens reached Saturn in July 2004 after seven years of cruise phase. Today, the German-lead Cosmic Dust Analyser (CDA) is operated continuously for 10 years in orbit around Saturn. During the cruise phase CDA measured the interstellar dust flux at one AU distance from the Sun, the charge and composition of interplanetary dust grains and the composition of the Jovian nanodust streams. The first discovery of CDA related to Saturn was the measurement of nanometer sized dust particles ejected by its magnetosphere to interplanetary space with speeds higher than 100 km/s. Their origin and composition was analysed and an their dynamical studies showed a strong link to the conditions of the solar wind plasma flow. A recent surprising result was, that stream particles stem from the interior of Enceladus. Since 2004 CDA measured millions of dust impacts characterizing the dust environment of Saturn. The instrument showed strong evidence for ice geysers located at the south pole of Saturn's moon Enceladus in 2005. Later, a detailed compositional analysis of the salt-rich water ice grains in Saturn's E ring system lead to the discovery of liquid water below the icy crust connected to an ocean at depth feeding the icy jets. CDA was even capable to derive a spatially resolved compositional profile of the plume during close Enceladus flybys. A determination of the dust-magnetosphere interaction and the discovery of the extended E ring allowed the definition of a dynamical dust model of Saturn's E ring describing the observed properties. The measured dust density profiles in the dense E ring revealed geometric asymmetries. Cassini performed shadow crossings in the ring plane and dust grain charges were measured in shadow regions delivering important data for dust-plasma interaction studies. In the last years, dedicated measurement campaigns were executed by CDA to monitor the flux of interplanetary and interstellar dust particles reaching Saturn. Currently, the composition of interstellar grains and the meteoroid flux into the Saturnian system are in analysis.
Acceleration of low-energy protons and alpha particles at interplanetary shock waves
NASA Technical Reports Server (NTRS)
Scholer, M.; Hovestadt, D.; Ipavich, F. M.; Gloeckler, G.
1983-01-01
The low-energy protons and alpha particles in the energy range 30 keV/charge to 150 keV/charge associated with three different interplanetary shock waves in the immediate preshock and postshock region are studied using data obtained by the ISEE 3. The spatial distributions in the preshock and postshock medium are presented, and the dependence of the phase space density at different energies on the distance from the shock and on the form of the distribution function of both species immediately at the shock is examined. It is found that in the preshock region the particles are flowing in the solar wind frame of reference away from the shock and in the postshock medium the distribution is more or less isotropic in this frame of reference. The distribution function in the postshock region can be represented by a power law in energy which has the same spectral exponent for both protons and alpha particles. It is concluded that the first-order Fermi acceleration process can consistently explain the data, although the spectra of diffuse bow shock associated particles are different from the spectra of the interplanetary shock-associated particles in the immediate vicinity of the shock. In addition, the mean free path of the low energy ions in the preshock medium is found to be considerably smaller than the mean free path determined by the turbulence of the background interplanetary medium.
Nano-Satellite Secondary Spacecraft on Deep Space Missions
NASA Technical Reports Server (NTRS)
Klesh, Andrew T.; Castillo-Rogez, Julie C.
2012-01-01
NanoSat technology has opened Earth orbit to extremely low-cost science missions through a common interface that provides greater launch accessibility. They have also been used on interplanetary missions, but these missions have used one-off components and architectures so that the return on investment has been limited. A natural question is the role that CubeSat-derived NanoSats could play to increase the science return of deep space missions. We do not consider single instrument nano-satellites as likely to complete entire Discovery-class missions alone,but believe that nano-satellites could augment larger missions to significantly increase science return. The key advantages offered by these mini-spacecrafts over previous planetary probes is the common availability of advanced subsystems that open the door to a large variety of science experiments, including new guidance, navigation and control capabilities. In this paper, multiple NanoSat science applications are investigated, primarily for high risk/high return science areas. We also address the significant challenges and questions that remain as obstacles to the use of nano-satellites in deep space missions. Finally, we provide some thoughts on a development roadmap toward interplanetary usage of NanoSpacecraft.
Multidirectional Cosmic Ray Ion Detector for Deep Space CubeSats
NASA Technical Reports Server (NTRS)
Wrbanek, John D.; Wrbanek, Susan Y.
2016-01-01
Understanding the nature of anisotropy of solar energetic protons (SEPs) and galactic cosmic ray (GCR) fluxes in the interplanetary medium is crucial in characterizing time-dependent radiation exposure in interplanetary space for future exploration missions. NASA Glenn Research Center has proposed a CubeSat-based instrument to study solar and cosmic ray ions in lunar orbit or deep space. The objective of Solar Proton Anisotropy and Galactic cosmic ray High Energy Transport Instrument (SPAGHETI) is to provide multi-directional ion data to further understand anisotropies in SEP and GCR flux. The instrument is to be developed using large area detectors fabricated from high density, high purity silicon carbide (SiC) to measure linear energy transfer (LET) of ions. Stacks of these LET detectors are arranged in a CubeSat at orthogonal directions to provide multidirectional measurements. The low-noise, thermally-stable nature of silicon carbide and its radiation tolerance allows the multidirectional array of detector stacks to be packed in a 6U CubeSat without active cooling. A concept involving additional coincidence/anticoincidence detectors and a high energy Cherenkov detector is possible to further expand ion energy range and sensitivity.
Solar Wind Plasma Flows and Space Weather Aspects Recent Solar Cycle
NASA Astrophysics Data System (ADS)
Kaushik, Sonia; Kaushik, Subhash Chandra
2016-07-01
Solar transients are responsible for initiating short - term and long - term variations in earth's magnetosphere. These variations are termed as geomagnetic disturbances, and driven by the interaction of solar wind features with the geo-magnetosphere. The strength of this modulation process depends upon the magnitude and orientation of the Interplanetary Magnetic Field and solar wind parameters. These interplanetary transients are large scale structures containing plasma and magnetic field expelled from the transient active regions of solar atmosphere. As they come to interplanetary medium the interplanetary magnetic field drape around them. This field line draping was thought as possible cause of the characteristic eastward deflection and giving rise to geomagnetic activities as well as a prime factor in producing the modulation effects in the near Earth environment. The Solar cycle 23 has exhibited the unique extended minima and peculiar effects in the geomagnetosphere. Selecting such transients, occurred during this interval, an attempt has been made to determine quantitative relationships of these transients with solar/ interplanetary and Geophysical Parameters. In this work we used hourly values of IMF data obtained from the NSSD Center. The analysis mainly based on looking into the effects of these transients on earth's magnetic field. The high-resolution data IMF Bz and solar wind data obtained from WDC-A, through its omniweb, available during the selected period. Dst and Ap obtained from WDC-Kyoto are taken as indicator of geomagnetic activities. It is found that Dst index, solar wind velocity, proton temperature and the Bz component of magnetic field have higher values and increase just before the occurrence of these events. Larger and varying magnetic field mainly responsible for producing the short-term changes in geomagnetic intensity are observed during these events associated with coronal holes.
Automated Detection and Analysis of Interplanetary Shocks with Real-Time Application
NASA Astrophysics Data System (ADS)
Vorotnikov, V.; Smith, C. W.; Hu, Q.; Szabo, A.; Skoug, R. M.; Cohen, C. M.
2006-12-01
The ACE real-time data stream provides web-based now-casting capabilities for solar wind conditions upstream of Earth. Our goal is to provide an automated code that finds and analyzes interplanetary shocks as they occur for possible real-time application to space weather nowcasting. Shock analysis algorithms based on the Rankine-Hugoniot jump conditions exist and are in wide-spread use today for the interactive analysis of interplanetary shocks yielding parameters such as shock speed and propagation direction and shock strength in the form of compression ratios. Although these codes can be automated in a reasonable manner to yield solutions not far from those obtained by user-directed interactive analysis, event detection presents an added obstacle and the first step in a fully automated analysis. We present a fully automated Rankine-Hugoniot analysis code that can scan the ACE science data, find shock candidates, analyze the events, obtain solutions in good agreement with those derived from interactive applications, and dismiss false positive shock candidates on the basis of the conservation equations. The intent is to make this code available to NOAA for use in real-time space weather applications. The code has the added advantage of being able to scan spacecraft data sets to provide shock solutions for use outside real-time applications and can easily be applied to science-quality data sets from other missions. Use of the code for this purpose will also be explored.
Sun-to-Earth Analysis of a Major Solar Eruption
NASA Astrophysics Data System (ADS)
Patsourakos, Spiros
During the interval of 7-10 March 2012, Earth's space environment experienced a barrage of space weather phenomena. Early during 7 March 2012, the biggest proton event of 2012 took place, while on 8 March 2012, an interplanetary shock and coronal mass ejection (CME) arrived at 1 AU. This sequence trigerred the biggest geomagnetic storm of cycle 24 so far. The solar source of these activities was a pair of homologous, eruptive X-class flares associated with two ultra-fast CMEs. The two eruptions originated from NOAA active region 11429 during the early hours of 7 March 2012 and within an hour from each other. Using satellite data from a flotilla of solar, heliospheric and magnetospheric missions and monitors, we perform a synergistic Sun-to-Earth study of various observational aspects of the event sequences. We will present an attempt to formulate a cohesive scenario which couples the eruption initiation, interplanetary propagation, and geospace consequences. Our main focus is on building a framework that starting from solar and near-Sun estimates of the magnetic and dynamic content and properties of the Earth-directed CME assess in advance the subsequent geomagnetic response expected, once the associated interplanetary CME reaches 1 AU. This research has been co-financed by the European Union (European Social Fund - ESF) and Greek national funds through the Operational Program "Education and Lifelong Learning" of the National Strategic Reference Framework (NSRF) - Research Funding Program: Thales. Investing in knowledge society through the European Social Fund.
Solar-Planetary Relationships: Magnetospheric Physics
NASA Technical Reports Server (NTRS)
Barnes, Aaron
1979-01-01
The quadrennium 1975-1978 was a period of great advance for solar-wind studies, a period that combined exploration of new regions with increased maturity in established fields of study. The Helios, Pioneer, and Voyager spacecraft have been exploring the inner and outer regions of the solar wind. There has been a rebirth of the study of possible relations between solar variability and Earth's climate and weather, stimulated largely by Eddy's investigation of the Maunder Minimum; the solar wind may well prove to be a significant link in solar-terrestrial relations. Unique coronal data from the SKYLAB 1973-1974 mission, in combination with satellite and ground-based observations, provided the basis for identification of coronal holes as the main source of highspeed solar wind. The interplanetary medium has continued to serve as a laboratory for the study of plasma processes that cannot yet be studied in terrestrial laboratories, providing insights of potential importance both for controlled fusion research and for astrophysics. It is ironic that such a productive period, the legacy of many past space missions, was also a time of severely limited opportunity for new space investigations; the outlook for the future is equally austere. Especially regrettable is the dearth of career opportunities for young scientists in this field; comparison of the bibliography of this report with that of its predecessor 4 years ago shows few new names. Despite such problems, research has continued with enthusiasm and much has been learned. The present report will survey selected topics related to the origin, expansion, and acceleration of the solar wind and the plasma physics of the interplanetary medium. Companion reports deal with a number of closely related topics, including the heliocentric distance and latitude variation of the solar wind and its fluctuations topology of the interplanetary magnetic field morphology of solar-wind streams and shocks, sunweather studies, and interplanetary manifestations of type-3 bursts. Of the subjects that fall within the scope of this report, the study of the relationship between coronal holes and solar-wind streams, and the associated revision of our ideas about solar wind acceleration and heating, have had the most impact; hence I review these topics in considerable detail. In addition, I discuss the topics of hydromagnetic waves and turbulence, and interplanetary electrons, as items of particular importance during the past quadrennium.
The Physical Processes of CME/ICME Evolution
NASA Astrophysics Data System (ADS)
Manchester, Ward; Kilpua, Emilia K. J.; Liu, Ying D.; Lugaz, Noé; Riley, Pete; Török, Tibor; Vršnak, Bojan
2017-11-01
As observed in Thomson-scattered white light, coronal mass ejections (CMEs) are manifest as large-scale expulsions of plasma magnetically driven from the corona in the most energetic eruptions from the Sun. It remains a tantalizing mystery as to how these erupting magnetic fields evolve to form the complex structures we observe in the solar wind at Earth. Here, we strive to provide a fresh perspective on the post-eruption and interplanetary evolution of CMEs, focusing on the physical processes that define the many complex interactions of the ejected plasma with its surroundings as it departs the corona and propagates through the heliosphere. We summarize the ways CMEs and their interplanetary CMEs (ICMEs) are rotated, reconfigured, deformed, deflected, decelerated and disguised during their journey through the solar wind. This study then leads to consideration of how structures originating in coronal eruptions can be connected to their far removed interplanetary counterparts. Given that ICMEs are the drivers of most geomagnetic storms (and the sole driver of extreme storms), this work provides a guide to the processes that must be considered in making space weather forecasts from remote observations of the corona.
Probing interferometric parallax with interplanetary spacecraft
NASA Astrophysics Data System (ADS)
Rodeghiero, G.; Gini, F.; Marchili, N.; Jain, P.; Ralston, J. P.; Dallacasa, D.; Naletto, G.; Possenti, A.; Barbieri, C.; Franceschini, A.; Zampieri, L.
2017-07-01
We describe an experimental scenario for testing a novel method to measure distance and proper motion of astronomical sources. The method is based on multi-epoch observations of amplitude or intensity correlations between separate receiving systems. This technique is called Interferometric Parallax, and efficiently exploits phase information that has traditionally been overlooked. The test case we discuss combines amplitude correlations of signals from deep space interplanetary spacecraft with those from distant galactic and extragalactic radio sources with the goal of estimating the interplanetary spacecraft distance. Interferometric parallax relies on the detection of wavefront curvature effects in signals collected by pairs of separate receiving systems. The method shows promising potentialities over current techniques when the target is unresolved from the background reference sources. Developments in this field might lead to the construction of an independent, geometrical cosmic distance ladder using a dedicated project and future generation instruments. We present a conceptual overview supported by numerical estimates of its performances applied to a spacecraft orbiting the Solar System. Simulations support the feasibility of measurements with a simple and time-saving observational scheme using current facilities.
Variation of Solar, Interplanetary and Geomagnetic Parameters during Solar Cycles 21-24
NASA Astrophysics Data System (ADS)
Oh, Suyeon; Kim, Bogyeong
2013-06-01
The length of solar cycle 23 has been prolonged up to about 13 years. Many studies have speculated that the solar cycle 23/24 minimum will indicate the onset of a grand minimum of solar activity, such as the Maunder Minimum. We check the trends of solar (sunspot number, solar magnetic fields, total solar irradiance, solar radio flux, and frequency of solar X-ray flare), interplanetary (interplanetary magnetic field, solar wind and galactic cosmic ray intensity), and geomagnetic (Ap index) parameters (SIG parameters) during solar cycles 21-24. Most SIG parameters during the period of the solar cycle 23/24 minimum have remarkably low values. Since the 1970s, the space environment has been monitored by ground observatories and satellites. Such prevalently low values of SIG parameters have never been seen. We suggest that these unprecedented conditions of SIG parameters originate from the weakened solar magnetic fields. Meanwhile, the deep 23/24 solar cycle minimum might be the portent of a grand minimum in which the global mean temperature of the lower atmosphere is as low as in the period of Dalton or Maunder minimum.
Are Polar Field Magnetic Flux Concentrations Responsible for Missing Interplanetary Flux?
NASA Astrophysics Data System (ADS)
Linker, Jon A.; Downs, C.; Mikic, Z.; Riley, P.; Henney, C. J.; Arge, C. N.
2012-05-01
Magnetohydrodynamic (MHD) simulations are now routinely used to produce models of the solar corona and inner heliosphere for specific time periods. These models typically use magnetic maps of the photospheric magnetic field built up over a solar rotation, available from a number of ground-based and space-based solar observatories. The line-of-sight field at the Sun's poles is poorly observed, and the polar fields in these maps are filled with a variety of interpolation/extrapolation techniques. These models have been found to frequently underestimate the interplanetary magnetic flux (Riley et al., 2012, in press, Stevens et al., 2012, in press) near the minimum part of the cycle unless mitigating correction factors are applied. Hinode SOT observations indicate that strong concentrations of magnetic flux may be present at the poles (Tsuneta et al. 2008). The ADAPT flux evolution model (Arge et al. 2010) also predicts the appearance of such concentrations. In this paper, we explore the possibility that these flux concentrations may account for a significant amount of magnetic flux and alleviate discrepancies in interplanetary magnetic flux predictions. Research supported by AFOSR, NASA, and NSF.
Magnetic clouds, helicity conservation, and intrinsic scale flux ropes
NASA Technical Reports Server (NTRS)
Kumar, A.; Rust, D. M.
1995-01-01
An intrinsic-scale flux-rope model for interplanetary magnetic clouds, incorporating conservation of magnetic helicity, flux and mass is found to adequately explain clouds' average thermodynamic and magnetic properties. In spite their continuous expansion as they balloon into interplanetary space, magnetic clouds maintain high temperatures. This is shown to be due to magnetic energy dissipation. The temperature of an expanding cloud is shown to pass through a maximum above its starting temperature if the initial plasma beta in the cloud is less than 2/3. Excess magnetic pressure inside the cloud is not an important driver of the expansion as it is almost balanced by the tension in the helical field lines. It is conservation of magnetic helicity and flux that requires that clouds expand radially as they move away from the Sun. Comparison with published data shows good agreement between measured cloud properties and theory. Parameters determined from theoretical fits to the data, when extended back to the Sun, are consistent with the origin of interplanetary magnetic clouds in solar filament eruptions. A possible extension of the heating mechanism discussed here to heating of the solar corona is discussed.
Solar Cycle Variation and Application to the Space Radiation Environment
NASA Technical Reports Server (NTRS)
Wilson, John W.; Kim, Myung-Hee Y.; Shinn, Judy L.; Tai, Hsiang; Cucinotta, Francis A.; Badhwar, Gautam D.; Badavi, Francis F.; Atwell, William
1999-01-01
The interplanetary plasma and fields are affected by the degree of disturbance that is related to the number and types of sunspots in the solar surface. Sunspot observations were improved with the introduction of the telescope in the seventeenth century, allowing observations which cover many centuries. A single quantity (sunspot number) was defined by Wolf in 1848 that is now known to be well correlated with many space observable quantities and is used herein to represent variations caused in the space radiation environment. The resultant environmental models are intended for future aircraft and space-travel-related exposure estimates.
Space Radiation Effects in Inflatable and Composite Habitat Materials
NASA Technical Reports Server (NTRS)
Waller, Jess; Rojdev, Kristina
2015-01-01
This Year 2 project provides much needed risk reduction data to assess solar particle event (SPE) and galactic cosmic ray (GCR) space radiation damage in existing and emerging materials used in manned low-earth orbit, lunar, interplanetary, and Martian surface missions. More specifically, long duration (up to 50 years) space radiation damage is quantified for materials used in inflatable structures (1st priority), and habitable composite structures and space suits materials (2nd priority). The data collected has relevance for nonmetallic materials (polymers and composites) used in NASA missions where long duration reliability is needed in continuous or intermittent radiation fluxes.
Oganov, V S; Bogomolov, V V; Bakulin, A V; Novikov, V E; Kabitskaia, O E; Murashko, L M; Morgun, V V; Kasparskiĭ, R R
2010-01-01
A summary of investigations results of human bone tissue changes in space flight on the orbital station (OS) Mir and international space station (ISS) using dual energy X-ray absorptiometry (DXA) is given. Results comparative analysis revealed an absence of significant differences in bone mass (BM) changes on the both OS. Theoretically expected BM loss was observed in bone trabecular structure of skeleton low part after space flight lasting 5-7 month. The BM losses are qualified in some cases as quicly developed but reversible osteopenia and generally interpreted as evidence of bone functional adaptation to the alterating mechanical loading. It was demonstrated the high individual variability BM loss amplitudes. Simultaneously was observed the individual pattern of BM loss distribution across different segments of skeleton after repetitive flights independently upon type of OS. In according with the above mentioned individual peculiarities it was impossible to establish the dependence of BM changes upon duration of space missions. Therefore we have not sufficiently data for calculation of probability to achive the critical demineralization level by the augmentation the space mission duration till 1.5-2 years. It is more less possibility of the bone quality changes prognosis, which in the aggregate with BM losses determines the bone fracture risk. It become clearly that DXA technology is unsuffitiently for this purpose. It is considered the main direction which may optimized the elaboration of the interplanetary project meaning the perfectly safe of skeleton mechanical function.
NASA Technical Reports Server (NTRS)
Cocks, F. Hadley
1991-01-01
The discovery of materials which are superconducting above 100 K makes possible the use of superconducting coils deployed beyong the hull of an interplanetary spacecraft to produce a magnetic shield capable of giving protection not only against solar flare radiation, but also even against Galactic radiation. Such deployed coils can be of very large size and can thus achieve the great magnetic moments required using only relatively low currents. Deployable high-temperature-superconducting coil magnetic shields appear to offer very substantial reductions in mass and energy compared to other concepts and could readily provide the radiation protection needed for a Mars mission or space colonies.
NASA Technical Reports Server (NTRS)
Roelof, E. C.; Mitchell, D. G.
1979-01-01
The relation of the coronal magnetic field structure to the distribution of approximately 1 MeV protons in interplanetary space between 1 and 5 AU is discussed. After ordering the interplanetary data by its estimated coronal emission source location in heliographic coordinates, the multispacecraft measured proton fluxes are compared with coronal magnetic field structure infrared as observed in soft X-ray photographs and potential field calculations. Evidence for the propagation and possible acceleration of solar flare protons on high magnetic loop structure in the corona is presented. Further, it is shown that corotating proton flux enhancements are associated with regions of low coronal X-ray emission (including coronal holes), usually in association with solar wind stream structure.
Electron heating within interaction zones of simple high-speed solar wind streams
NASA Technical Reports Server (NTRS)
Feldman, W. C.; Asbridge, J. R.; Bame, S. J.; Gosling, J. T.; Lemons, D. S.
1978-01-01
In the present paper, electron heating within the high-speed portions of three simple stream-stream interaction zones is studied to further our understanding of the physics of heat flux regulation in interplanetary space. To this end, the thermal signals present in the compressions at the leading edges of the simple high-speed streams are analyzed, showing that the data are inconsistent with the Spitzer conductivity. Instead, a polynomial law is found to apply. Its implication concerning the mechanism of interplanetary heat conduction is discussed, and the results of applying this conductivity law to high-speed flows inside of 1 AU are studied. A self-consistent model of the radial evolution of electrons in the high-speed solar wind is proposed.
NASA Technical Reports Server (NTRS)
Mason, G. M.; Ng, C. K.; Klecker, B.; Green, G.
1989-01-01
Impulsive solar energetic particle (SEP) events are studied to: (1) describe a distinct class of SEP ion events observed in interplanetary space, and (2) test models of focused transport through detailed comparisons of numerical model prediction with the data. An attempt will also be made to describe the transport and scattering properties of the interplanetary medium during the times these events are observed and to derive source injection profiles in these events. ISEE 3 and Helios 1 magnetic field and plasma data are used to locate the approximate coronal connection points of the spacecraft to organize the particle anisotropy data and to constrain some free parameters in the modeling of flare events.
Deep Space Navigation with Noncoherent Tracking Data
NASA Technical Reports Server (NTRS)
Ellis, J.
1983-01-01
Navigation capabilities of noncoherent tracking data are evaluated for interplanetary cruise phase and planetary (Venus) flyby orbit determination. Results of a formal covariance analysis are presented which show that a combination of one-way Doppler and delta DOR yields orbit accuracies comparable to conventional two-way Doppler tracking. For the interplanetary cruise phase, a tracking cycle consisting of a 3-hour Doppler pass and delta DOR (differential one-way range) from two baselines (one observation per overlap) acquired 3 times a month results in 100-km orbit determination accuracy. For reconstruction of a Venus flyby orbit, 10 days tracking at encounter consisting of continuous one-way Doppler and delta DOR sampled at one observation per overlap is sufficient to satisfy the accuracy requirements.
Upstream waves and particles /Tutorial Lecture/. [from shocks in interplanetary space
NASA Technical Reports Server (NTRS)
Russell, C. T.; Hoppe, M. M.
1983-01-01
The plasma waves, MHD waves, energetic electrons and ions associated with the proximity of the region upstream from terrestrial, planetary and interplanetary shocks are discussed in view of observations and current theories concerning their origin. These waves cannot be separated from the study of shock structure. Since the shocks are supersonic, they continually overtake any ULF waves created in the plasma in front of the shock. The upstream particles and waves are also of intrinsic interest because they provide a plasma laboratory for the study of wave-particle interactions in a plasma which, at least at the earth, is accessible to sophisticated probing. Insight may be gained into interstellar medium cosmic ray acceleration through the study of these phenomena.
Modeling the Space Radiation Environment
NASA Technical Reports Server (NTRS)
Xapsos, Michael A.
2006-01-01
There has been a renaissance of interest in space radiation environment modeling. This has been fueled by the growing need to replace long time standard AP-9 and AE-8 trapped particle models, the interplanetary exploration initiative, the modern satellite instrumentation that has led to unprecedented measurement accuracy, and the pervasive use of Commercial off the Shelf (COTS) microelectronics that require more accurate predictive capabilities. The objective of this viewgraph presentation was to provide basic understanding of the components of the space radiation environment and their variations, review traditional radiation effects application models, and present recent developments.
Design of a fast Mars space transfer system
NASA Astrophysics Data System (ADS)
Woo, Henry H.; Glass, James F.; Roy, Claude
1992-02-01
Architecture strategies and concepts for manned missions to Mars are being developed by NASA and industry. This paper addresses the key Mars transfer vehicle (MTV) design requirements which include surface payload mass, MTV mass, propulsion system characteristics, launch vehicle capability, in-space operations, abort considerations, crew exposure to interplanetary environments, and crew reconditioning for planetary entry. Different mission strategies are presented along with their implications. A representative artificial-g MTV using nuclear thermal propulsion is defined to show concepts which minimize extravehicular activity operations for in-space assembly, inspection, and maintenance.
Autonomous System for MISSE Temperature Measurements
NASA Technical Reports Server (NTRS)
Harvey, G. A.; Lash, T. J.; Kinard, W. H.; Bull, K.; deGeest, F.
2001-01-01
The Materials International Space Station Experiment (MISSE) is scheduled to be deployed during the summer of 2001. This experiment is a cooperative endeavor by NASA-LaRC, NASA-GRC, NASA MSFC, NASA-JSC, the Materials Laboratory at the Air Force Research Laboratory, and the Boeing Phantom Works. The objective of the experiment is to evaluate performance, stability, and long term survivability of materials and components planned for use by NASA and DOD on future LEO, synchronous orbit, and interplanetary space missions. Temperature is an important parameter in the evaluation of space environmental effects on materials.
Ice in space: An experimental and theoretical investigation
NASA Technical Reports Server (NTRS)
Patashnick, H.; Rupprecht, G.
1977-01-01
Basic knowledge is provided on the behavior of ice and ice particles under a wide variety of conditions including those of interplanetary space. This information and, in particular, the lifetime of ice particles as a function of solar distance is an absolute requirement for a proper interpretation of photometric profiles in comets. Because fundamental properties of ice and ice particles are developed in this report, the applicability of this information extends beyond the realm of comets into any area where volatile particles exist, be it in space or in the earth's atmosphere.
Ecology and thermal inactivation of microbes in and on interplanetary space vehicle components
NASA Technical Reports Server (NTRS)
Reyes, A. L.; Campbell, J. E.; Wehby, A. J.; Crawford, R. G.; Wimsatt, J. C.; Peeler, J. T.
1976-01-01
Experiments performed on the heat resistant organism CK 4-6 are described. Its response to dry heat at two temperatures (125 C and 135 C) at eight humidity levels (0.001 percent to 100 percent RH) in a closed can system is studied.
The causes of geomagnetic storms during solar maximum
NASA Technical Reports Server (NTRS)
Tsurutani, Bruce T.; Gonzalez, Walter D.
1994-01-01
One of the oldest mysteries in geomagnetism is the linkage between solar and geomagnetic activity. In investigating the causes of geomagnetic storms occurring during solar maximum, the following topics are discussed: solar phenomena; types of solar wind; magnetic reconnection and magnetic storms; an interplanetary example; and future space physics missions.
Aerospace Medicine and Biology: A Continuing Bibliography with Indexes, Supplement 194
NASA Technical Reports Server (NTRS)
1979-01-01
Articles on the biological, physiological, psychological, and environmental effects to which man is subjected to during and following simulated or actual flight in the earth's atmosphere or in interplanetary space are presented. The emphasis is on applied research more than fundamental studies or theoretical principles.
An antiproton driver for ICF propulsion
NASA Technical Reports Server (NTRS)
Chiang, Pi-Ren; Lewis, R. A.; Smith, G. A.; Gazze, C.; Higman, K.; Newton, R.; Chiaverini, M.; Dailey, J.; Surratt, M.; Werthman, W. Lance
1993-01-01
Inertial confinement fusion (ICF) utilizing an anitprotoncatalyzed target is discussed as a possible source of propulsion for rapid interplanetary manned space missions. The relevant compression, ignition, and thrust mechanisms are presented. Progress on an experiment presently in progress at the Phillips Laboratory, Kirtland AFB, NM to demonstrate proof-of-principle is reviewed.
1960-01-01
Originally investigated in the 1960's by Marshall Space Flight Center plarners as part of the Nuclear Energy for Rocket Vehicle Applications (NERVA) program, nuclear-thermal rocket propulsion has been more recently considered in spacecraft designs for interplanetary human exploration. This artist's concept illustrates a nuclear-thermal rocket with an aerobrake disk as it orbits Mars.
End-to-end information system concept for the Mars Telecommunications Orbiter
NASA Technical Reports Server (NTRS)
Breidenthal, Julian C.; Edwards, Charles D.; Greenberg, Edward; Kazz, Greg J.; Noreen, Gary K.
2006-01-01
The Mars Telecommunications Orbiter (MTO) was intended to provide high-performance deep space relay links to landers, orbiters, sample-return missions, and approaching spacecraft in the vicinity of Mars, to demostrate interplanetary laser communications, to demonstrate autonomous navigation, and to carry out its own science investigations.
End-to-end information system concept for the Mars Telecommunications Orbiter
NASA Technical Reports Server (NTRS)
Bridenthal, Julian C.; Edwards, Charles D.; Greenberg, Edward; Kazz, Greg J.; Noreen, Gary K.
2006-01-01
The Mars Telecommunications Orbiter (MTO) was intended to provide high-performance deep space relay links to landers, orbiters, sample-return, missions, and approaching spacecraft in the vicinity of Mars, to demonstrate interplanetary laser communications, to demonstrate autonomous navigation, and to carry out is own science investigations.
ERIC Educational Resources Information Center
Chapman, Clark R.
2004-01-01
Forty years after Mariner 2, planetary exploration has still only just begun, and many more missions are on drawing boards, nearing the launch pad, or even en route across interplanetary space to their targets. One of the most challenging missions that will be conducted this decade is sending the MESSENGER spacecraft to orbit the planet Mercury.…
Extermophylic microorganisms: issue of interplanetary transfer on external spacecraft surfaces.
NASA Astrophysics Data System (ADS)
Novikova, N.; Deshevaya, E.; Polykarpov, N.; Svistunova, Y.; Grigoriev, A.
Interplanetary transfer of terrestrial microbes capable of surviving in extreme environments and planetary protection from accidental biocontamination by them are the issues of major practical rather than hypothetical value The natural resistance of microbes to extreme environments and a possibility of their transfer beyond geographical barriers of Earth on external spacecraft surfaces have brought forward a need in profound research into the likelihood of their survival in outer space Hardware and a program have been developed at the State Scientific Research Center of the Russian Federation -- Institute for Biomedical Problems with the goal of carrying out a space experiment Biorisk The experiment was aimed at assessing the possibility of long-term comparable with the duration of the Martian flight survival of microorganisms in outer space on materials used in space industry Samples of materials were contaminated with test cultures of bacteria Bacillus and fungi Aspergillus Penicillium Cladosporium known to be common residents of various environments on Earth and resistant to multiple alternation of high and low temperatures Materials used in the construction of external spacecraft surfaces such as steel aluminium alloy heat-insulating coating were chosen as test samples for the experiment Containers with materials and test microorganisms were placed on the external side of the Russian segment of the ISS Unique data have been accumulated after a 204 day exposure on the external side of the ISS which have proved that
Deep-space and near-Earth optical communications by coded orbital angular momentum (OAM) modulation.
Djordjevic, Ivan B
2011-07-18
In order to achieve multi-gigabit transmission (projected for 2020) for the use in interplanetary communications, the usage of large number of time slots in pulse-position modulation (PPM), typically used in deep-space applications, is needed, which imposes stringent requirements on system design and implementation. As an alternative satisfying high-bandwidth demands of future interplanetary communications, while keeping the system cost and power consumption reasonably low, in this paper, we describe the use of orbital angular momentum (OAM) as an additional degree of freedom. The OAM is associated with azimuthal phase of the complex electric field. Because OAM eigenstates are orthogonal the can be used as basis functions for N-dimensional signaling. The OAM modulation and multiplexing can, therefore, be used, in combination with other degrees of freedom, to solve the high-bandwidth requirements of future deep-space and near-Earth optical communications. The main challenge for OAM deep-space communication represents the link between a spacecraft probe and the Earth station because in the presence of atmospheric turbulence the orthogonality between OAM states is no longer preserved. We will show that in combination with LDPC codes, the OAM-based modulation schemes can operate even under strong atmospheric turbulence regime. In addition, the spectral efficiency of proposed scheme is N2/log2N times better than that of PPM.
NEUDOSE: A CubeSat Mission for Dosimetry of Charged Particles and Neutrons in Low-Earth Orbit.
Hanu, A R; Barberiz, J; Bonneville, D; Byun, S H; Chen, L; Ciambella, C; Dao, E; Deshpande, V; Garnett, R; Hunter, S D; Jhirad, A; Johnston, E M; Kordic, M; Kurnell, M; Lopera, L; McFadden, M; Melnichuk, A; Nguyen, J; Otto, A; Scott, R; Wagner, D L; Wiendels, M
2017-01-01
During space missions, astronauts are exposed to a stream of energetic and highly ionizing radiation particles that can suppress immune system function, increase cancer risks and even induce acute radiation syndrome if the exposure is large enough. As human exploration goals shift from missions in low-Earth orbit (LEO) to long-duration interplanetary missions, radiation protection remains one of the key technological issues that must be resolved. In this work, we introduce the NEUtron DOSimetry & Exploration (NEUDOSE) CubeSat mission, which will provide new measurements of dose and space radiation quality factors to improve the accuracy of cancer risk projections for current and future space missions. The primary objective of the NEUDOSE CubeSat is to map the in situ lineal energy spectra produced by charged particles and neutrons in LEO where most of the preparatory activities for future interplanetary missions are currently taking place. To perform these measurements, the NEUDOSE CubeSat is equipped with the Charged & Neutral Particle Tissue Equivalent Proportional Counter (CNP-TEPC), an advanced radiation monitoring instrument that uses active coincidence techniques to separate the interactions of charged particles and neutrons in real time. The NEUDOSE CubeSat, currently under development at McMaster University, provides a modern approach to test the CNP-TEPC instrument directly in the unique environment of outer space while simultaneously collecting new georeferenced lineal energy spectra of the radiation environment in LEO.
The Cambridge encyclopedia of space (revised edition)
NASA Technical Reports Server (NTRS)
D'Allest, Frederic; Arets, Jean; Baker, Phillip J.; Balmino, Georges; Barth, Hans; Benson, Robert H.
1990-01-01
A comprehensive and intensively illustrated development history is presented for spaceflight, ranging over its basic concepts' speculative and fictional origins, the historical roots of rocket-related technologies, and the scientific accomplishments of earth orbit and interplanetary missions to date. Attention is given to propulsion systems, spaceflight launch centers, satellite systems, and solar system exploration by the U.S. and the Soviet Union. Current space-related activities encompass the meteorology, remote sensing, telecommunications and direct broadcasting, and navigation functions of unmanned satellites, as well as such manned spacecraft roles as medical and materials science research. The military uses of space, and increasingly important space industrialization concepts, are discussed as well.
Project WISH: The Emerald City
NASA Technical Reports Server (NTRS)
1990-01-01
When Project WISH (Wandering Interplanetary Space Harbor) was initiated as a multi-year project, several design requirements were specified. The space station must have a lifetime of at least 50 years, be autonomous and independent of Earth resources, be capable of traveling throughout the solar system within a maximum flight time of three years, and have a population of 500 to 1000 people. The purpose of the station is to provide a permanent home for space colonists and to serve as a service station for space missions. The orbital mechanics, propulsion system, vehicle dynamics and control, life support system, communication system, power system, and thermal system are discussed.
Extension of Coronal Structure Into Interplanetary Space
NASA Technical Reports Server (NTRS)
Woo, Richard; Habbal, Shadia Rifai
1996-01-01
The evolution of the solar corona and its imprint on the solar wind is investigated by comparing Ulysses radio occultation measurements of path-integrated electron density and density fluctuations in the heliocentric distance range of 21-32R(sub o) with simultaneous measurements of the solasr corona by the HAO Mauna Loa K-coronameter.
1992-09-25
Titan III vehicle launched the Mars Observer spacecraft and the Transfer Orbit Stage (TOS) from the Cape Canaveral Air Force Station on September 25, 1992. Managed by the Marshall Space Flight Center (MSFC), TOS will fire to send the Observer on an 11-month interplanetary journey to the Mars. The Observer failed to reach the Mars orbit in August 1993.
Limits on Interconnection Bandwidth for On-Board Processing
NASA Technical Reports Server (NTRS)
Lux, James P.
2006-01-01
This viewgraph presentation reviews the constraints, and concerns of spacecraft design, in particular spacecraft instrumentation design and the issues concerning space communication. The advantages and disadvantages of several communication options are reviewed. Ultimately there will be spacecraft communication not between boxes on spacecraft, but between spacecraft. The future of spacecraft communication is interplanetary networks.
NASA Technical Reports Server (NTRS)
Mann, F. I.; Horsewood, J. L.
1974-01-01
Modifications and improvements are described that were made to the HILTOP electric propulsion trajectory optimization computer program during calendar years 1973 and 1974. New program features include the simulation of power degradation, housekeeping power, launch asymptote declination optimization, and powered and unpowered ballistic multiple swingby missions with an optional deep space burn.
Compositions of energetic particle populations in interplanetary space
NASA Technical Reports Server (NTRS)
Gloeckler, G.
1979-01-01
Observations of helium and heavier particles with energies below about 10 to 20 MeV/nucleon are discussed with emphasis on the composition of solar flare particles, corotating energetic particle streams, and the anomalous cosmic ray component. Future advances expected from results obtained from ISEE -3, Voyager, and the international solar polar spacecraft are reviewed.
The Deep Impact Network Experiment Operations Center Monitor and Control System
NASA Technical Reports Server (NTRS)
Wang, Shin-Ywan (Cindy); Torgerson, J. Leigh; Schoolcraft, Joshua; Brenman, Yan
2009-01-01
The Interplanetary Overlay Network (ION) software at JPL is an implementation of Delay/Disruption Tolerant Networking (DTN) which has been proposed as an interplanetary protocol to support space communication. The JPL Deep Impact Network (DINET) is a technology development experiment intended to increase the technical readiness of the JPL implemented ION suite. The DINET Experiment Operations Center (EOC) developed by JPL's Protocol Technology Lab (PTL) was critical in accomplishing the experiment. EOC, containing all end nodes of simulated spaces and one administrative node, exercised publish and subscribe functions for payload data among all end nodes to verify the effectiveness of data exchange over ION protocol stacks. A Monitor and Control System was created and installed on the administrative node as a multi-tiered internet-based Web application to support the Deep Impact Network Experiment by allowing monitoring and analysis of the data delivery and statistics from ION. This Monitor and Control System includes the capability of receiving protocol status messages, classifying and storing status messages into a database from the ION simulation network, and providing web interfaces for viewing the live results in addition to interactive database queries.
Origins and Dynamics of Interplanetary Dust Particles
NASA Technical Reports Server (NTRS)
Dermott, Stanley F.
2005-01-01
This is a final report for research supported by the National Aeronautics and Space Administration issued through the Office of Space Science Planetary Geology and Geophysics Program, covering all relevant activities during its 3-year period of funding from 02/01/2002 through to 01/31/2005. The ongoing aim of the research supported through this grant, and now through a successor award, is to investigate the origin of interplanetary dust particles (IDPs) and their dynamical and collisional evolution, in order to: (1) understand the provenance of zodiacal cloud particles and their transport from their source regions to the inner solar system; (2) produce detailed models of the zodiacal cloud and its constituent components; (3) determine the origin of the dust particles accreted by the Earth; (4) ascertain the level of temporal variations in the dust environment of the inner solar system and the accretion rate of IDPs by the Earth, and evaluate potential effects on global climate; and to (5) exploit this research as a basis for interpreting the structure observed in exozodiacal clouds that may result from the collisional evolution of planetesimals and the presence of unseen planets.
NASA Technical Reports Server (NTRS)
Goldstein, M. L.
1976-01-01
The propagation of charged particles through interstellar and interplanetary space has often been described as a random process in which the particles are scattered by ambient electromagnetic turbulence. In general, this changes both the magnitude and direction of the particles' momentum. Some situations for which scattering in direction (pitch angle) is of primary interest were studied. A perturbed orbit, resonant scattering theory for pitch-angle diffusion in magnetostatic turbulence was slightly generalized and then utilized to compute the diffusion coefficient for spatial propagation parallel to the mean magnetic field, Kappa. All divergences inherent in the quasilinear formalism when the power spectrum of the fluctuation field falls off as K to the minus Q power (Q less than 2) were removed. Various methods of computing Kappa were compared and limits on the validity of the theory discussed. For Q less than 1 or 2, the various methods give roughly comparable values of Kappa, but use of perturbed orbits systematically results in a somewhat smaller Kappa than can be obtained from quasilinear theory.
Applications of different design methodologies in navigation systems and development at JPL
NASA Technical Reports Server (NTRS)
Thurman, S. W.
1990-01-01
The NASA/JPL deep space navigation system consists of a complex array of measurement systems, data processing systems, and support facilities, with components located both on the ground and on-board interplanetary spacecraft. From its beginings nearly 30 years ago, this system has steadily evolved and grown to meet the demands for ever-increasing navigation accuracy placed on it by a succession of unmanned planetary missions. Principal characteristics of this system are its capabilities and great complexity. Three examples in the design and development of interplanetary space navigation systems are examined in order to make a brief assessment of the usefulness of three basic design theories, known as normative, rational, and heuristic. Evaluation of the examples indicates that a heuristic approach, coupled with rational-based mathematical and computational analysis methods, is used most often in problems such as orbit determination strategy development and mission navigation system design, while normative methods have seen only limited use is such applications as the development of large software systems and in the design of certain operational navigation subsystems.
The role of "asteroid taxis" at mastering of Solar system
NASA Astrophysics Data System (ADS)
Steklov, A. F.; Vidmachenko, A. P.
2018-05-01
At the present time, two main tendencies can be considered for the solar system to be habitable: 1) to do something with the objects of the solar system in order to make them suitable for life; and 2), it is necessary to make it so that the interplanetary space of the solar system also becomes suitable for life. We believe that it is better to combine these two trends. To this end, we must develop a methodology for constructing special settlements at asteroids and cometary nuclei. And then, it is necessary to build settlements - the "technospheres" - on the most diverse bodies in the Solar system: asteroids, cometary nuclei, satellites of planets and even on some planets. And, first of all, it is highly desirable to use the own resources of the listed objects. Such "technospheres" should be long-term settlements in interplanetary space and at planetoids. To save energy resources, it is necessary to use near-Earth asteroids enriched with water ice. To successfully implement these concepts, it is necessary at least by two orders of magnitude reduce the cost of such settlements.
Automated Detection and Analysis of Interplanetary Shocks Running Real-Time on the Web
NASA Astrophysics Data System (ADS)
Vorotnikov, V.; Smith, C. W.; Hu, Q.; Szabo, A.; Skoug, R. M.; Cohen, C. M.; Davis, A. J.
2008-05-01
The ACE real-time data stream provides web-based now-casting capabilities for solar wind conditions upstream of Earth. We have built a fully automated code that finds and analyzes interplanetary shocks as they occur and posts their solutions on the Web for possible real-time application to space weather nowcasting. Shock analysis algorithms based on the Rankine-Hugoniot jump conditions exist and are in wide-spread use today for the interactive analysis of interplanetary shocks yielding parameters such as shock speed and propagation direction and shock strength in the form of compression ratios. At a previous meeting we reported on efforts to develop a fully automated code that used ACE Level-2 (science quality) data to prove the applicability and correctness of the code and the associated shock-finder. We have since adapted the code to run ACE RTSW data provided by NOAA. This data lacks the full 3-dimensional velocity vector for the solar wind and contains only a single component wind speed. We show that by assuming the wind velocity to be radial strong shock solutions remain essentially unchanged and the analysis performs as well as it would if 3-D velocity components were available. This is due, at least in part, to the fact that strong shocks tend to have nearly radial shock normals and it is the strong shocks that are most effective in space weather applications. Strong shocks are the only shocks that concern us in this application. The code is now running on the Web and the results are available to all.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kocharov, L.; Laitinen, T.; Vainio, R.
2015-06-10
With the first observations of solar γ-rays from the decay of pions, the relationship of protons producing ground level enhancements (GLEs) on the Earth to those of similar energies producing the γ-rays on the Sun has been debated. These two populations may be either independent and simply coincident in large flares, or they may be, in fact, the same population stemming from a single accelerating agent and jointly distributed at the Sun and also in space. Assuming the latter, we model a scenario in which particles are accelerated near the Sun in a shock wave with a fraction transported backmore » to the solar surface to radiate, while the remainder is detected at Earth in the form of a GLE. Interplanetary ions versus ions interacting at the Sun are studied for a spherical shock wave propagating in a radial magnetic field through a highly turbulent radial ray (the acceleration core) and surrounding weakly turbulent sector in which the accelerated particles can propagate toward or away from the Sun. The model presented here accounts for both the first-order Fermi acceleration at the shock front and the second-order, stochastic re-acceleration by the turbulence enhanced behind the shock. We find that the re-acceleration is important in generating the γ-radiation and we also find that up to 10% of the particle population can find its way to the Sun as compared to particles escaping to the interplanetary space.« less
Tutorial: Radiation Effects in Electronic Systems
NASA Technical Reports Server (NTRS)
Pellish, Jonathan A.
2017-01-01
This tutorial presentation will give an overview of radiation effects in electrical, electronic, and electromechanical (EEE) components as it applies to civilian space systems of varying size and complexity. The natural space environment presents many unique threats to electronic systems regardless of where the systems operate from low-Earth orbit to interplanetary space. The presentation will cover several topics, including: an overview and introduction to the applicable space radiation environments common to a broad range of mission designs; definitions and impacts of effects due to impinging particles in the space environment e.g., total ionizing dose (TID), total non-ionizing dose (TNID), and single-event effects (SEE); and, testing for and evaluation of TID, TNID, and SEE in EEE components.
Engaging space: extraterrestrial architecture and the human psyche
NASA Astrophysics Data System (ADS)
Marie Seguin, Angel
2005-05-01
The human fascination with exploring and inhabiting the space that lies beyond Earth's atmosphere continues to grow. Nevertheless, 40 years of experience to date have clearly established that humans in outer space routinely suffer significant psychological impairment arising from their stressful extraterrestrial living conditions. This paper explores those extraterrestrial conditions through the interactions between the extraordinarily harsh environment of outer space, the sensations that humans encounter in space, and the qualities of a habitat that physically interposes itself between the two. The objective of this paper is to develop a habitat that expresses the extraterrestrial condition while supporting the mental health of its inhabitants, so as to augment the success of prolonged extraterrestrial residence and interplanetary travel.
Space radiation dosimetry in low-Earth orbit and beyond.
Benton, E R; Benton, E V
2001-09-01
Space radiation dosimetry presents one of the greatest challenges in the discipline of radiation protection. This is a result of both the highly complex nature of the radiation fields encountered in low-Earth orbit (LEO) and interplanetary space and of the constraints imposed by spaceflight on instrument design. This paper reviews the sources and composition of the space radiation environment in LEO as well as beyond the Earth's magnetosphere. A review of much of the dosimetric data that have been gathered over the last four decades of human space flight is presented. The different factors affecting the radiation exposures of astronauts and cosmonauts aboard the International Space Station (ISS) are emphasized. Measurements made aboard the Mir Orbital Station have highlighted the importance of both secondary particle production within the structure of spacecraft and the effect of shielding on both crew dose and dose equivalent. Roughly half the dose on ISS is expected to come from trapped protons and half from galactic cosmic rays (GCRs). The dearth of neutron measurements aboard LEO spacecraft and the difficulty inherent in making such measurements have led to large uncertainties in estimates of the neutron contribution to total dose equivalent. Except for a limited number of measurements made aboard the Apollo lunar missions, no crew dosimetry has been conducted beyond the Earth's magnetosphere. At the present time we are forced to rely on model-based estimates of crew dose and dose equivalent when planning for interplanetary missions, such as a mission to Mars. While space crews in LEO are unlikely to exceed the exposure limits recommended by such groups as the NCRP, dose equivalents of the same order as the recommended limits are likely over the course of a human mission to Mars. c2001 Elsevier Science B.V. All rights reserved.
Coronal mass ejections and their sheath regions in interplanetary space
NASA Astrophysics Data System (ADS)
Kilpua, Emilia; Koskinen, Hannu E. J.; Pulkkinen, Tuija I.
2017-11-01
Interplanetary coronal mass ejections (ICMEs) are large-scale heliospheric transients that originate from the Sun. When an ICME is sufficiently faster than the preceding solar wind, a shock wave develops ahead of the ICME. The turbulent region between the shock and the ICME is called the sheath region. ICMEs and their sheaths and shocks are all interesting structures from the fundamental plasma physics viewpoint. They are also key drivers of space weather disturbances in the heliosphere and planetary environments. ICME-driven shock waves can accelerate charged particles to high energies. Sheaths and ICMEs drive practically all intense geospace storms at the Earth, and they can also affect dramatically the planetary radiation environments and atmospheres. This review focuses on the current understanding of observational signatures and properties of ICMEs and the associated sheath regions based on five decades of studies. In addition, we discuss modelling of ICMEs and many fundamental outstanding questions on their origin, evolution and effects, largely due to the limitations of single spacecraft observations of these macro-scale structures. We also present current understanding of space weather consequences of these large-scale solar wind structures, including effects at the other Solar System planets and exoplanets. We specially emphasize the different origin, properties and consequences of the sheaths and ICMEs.
TANPOPO: Microbe and micrometeoroid capture experiments on International Space Station.
NASA Astrophysics Data System (ADS)
Yamagishi, Akihiko; Kobayashi, Kensei; Yano, Hajime; Yokobori, Shinichi; Hashimoto, Hirofumi; Kawai, Hideyuki; Yamashita, Masamichi
There is a long history of the microbe-collection experiments at high altitude. Microbes have been collected using balloons, aircraft and meteorological rockets from 1936 to 1976. Spore forming fungi and Bacilli, and Micrococci have been isolated in these experiments. It is not clear how high do microbes go up. If the microbes might have been present even at higher altitudes, the fact would endorse the possibility of interplanetary migration of life. TANPOPO, dandelion, is the name of a grass whose seeds with floss are spread by the wind. We propose the analyses of interplanetary migration of microbes, organic compounds and meteoroids on Japan Experimental Module (JEM) of the International Space Station (ISS). Ultra low-density aerogel will be used to capture micrometeoroid and debris. Particles captured by aerogel will be used for several analyses after the initial inspection of the gel and tracks. Careful analysis of the tracks in the aerogel will provide the size and velocity dependence of debris flux. The particles will be analyzed for mineralogical, organic and microbiological characteristics. Aerogels are ready for production in Japan. Aerogels and trays are space proven. All the analytical techniques are ready. The Tanpopo mission was accepted as a candidate experiments on Exposed Facility of ISS-JEM.
[Some magnetic-biological problems of distant and long-term space flights].
Trukhanov, K A
2003-01-01
Some magnetobiological problems of orbital (in the geomagnetic field--GMF) and interplanetary (in hypomagnetic conditions) flights are considered. The influence of electromagnetic fields (EMF) created by systems and equipment of the space vehicle (SV) are touched also. A level of the geomagnetic field (GMF) onboard during the orbital flights is discussed. Its periodic variations onboard owing to movement of SV on an orbit are analyzed. The reader's attention in attracted to the papers by R.M. Baevsky et al. in which the influence of magnetic storms and periodic variations of GMS on the cardiovascular system of astronauts onboard are shown. Possible ways and mechanisms of the influence are discussed. The wrong assertions in a number of works namely that at orbital flights an appreciable electrical field is induced in an organism of an astronaut in a space-craft and the electrical field may by responsible for some biological impacts are analyzed. The situation at the future in the terplanetary flights (for example Martian missions) when a crew and biological objects for a long time will be in the interplanetary magnetic field (by several orders less then GMF) is considered. As applied to the flights the opportunities of generation onboard the "artificial" GMF are outlined. The ensuing biological and technical questions are discussed.
NASA Technical Reports Server (NTRS)
Lasher, Larry E.; Hogan, Robert (Technical Monitor)
1999-01-01
This article describes the major achievements of the Pioneer Missions and gives information about mission objectives, spacecraft, and launches of the Pioneers. Pioneer was the United States' longest running space program. The Pioneer Missions began forty years ago. Pioneer 1 was launched shortly after Sputnik startled the world in 1957 as Earth's first artificial satellite at the start of the space age. The Pioneer Missions can be broken down into four distinct groups: Pioneer (PN's) 1 through 5, which comprise the first group - the "First Pioneers" - were launched from 1958 through 1960. These Pioneers made the first thrusts into space toward the Moon and into interplanetary orbit. The next group - the "Interplanetary Pioneers" - consists of PN's 6 through 9, with the initial launch being in 1965 (through 1968); this group explored inward and outward from Earth's orbit and travel in a heliocentric orbit around the Sun just as the Earth. The Pioneer group consisting of 10 and 11 - the "Outer Solar System Pioneers" - blazed a trail through the asteroid belt and was the first to explore Jupiter, Saturn and the outer Solar System and is seeking the borders of the heliosphere and will ultimately journey to the distant stars. The final group of Pioneer 12 and 13 the "Planetary Pioneers" - traveled to Earth's mysterious twin, Venus, to study this planet.
Validating a magnetic reconnection model for the magnetopause
NASA Astrophysics Data System (ADS)
Schultz, Colin
2012-01-01
Originating in the Sun's million-degree corona, the solar wind flows at supersonic speeds into interplanetary space, carrying with it the solar magnetic field. As the solar wind reaches Earth's orbit, its interaction with the geomagnetic field forms the magnetosphere, a bubble-like structure within the solar wind flow that shields Earth from direct exposure to the solar wind as well as to the highly energetic charged particles produced during solar storms. Under certain orientations, the magnetic field entrained in the solar wind, known as the interplanetary magnetic field (IMF), merges with the geomagnetic field, transferring mass, momentum, and energy to the magnetosphere. The merging of these two distinct magnetic fields occurs through magnetic reconnection, a fundamental plasma-physical process that converts magnetic energy into kinetic energy and heat.
Obtaining Reliable Predictions of Terrestrial Energy Coupling From Real-Time Solar Wind Measurements
NASA Technical Reports Server (NTRS)
Weimer, Daniel R.
2002-01-01
Measurements of the interplanetary magnetic field (IMF) from the ACE (Advanced Composition Explorer), Wind, IMP-8 (Interplanetary Monitoring Platform), and Geotail spacecraft have revealed that the IMF variations are contained in phase planes that are tilted with respect to the propagation direction, resulting in continuously variable changes in propagation times between spacecraft, and therefore, to the Earth. Techniques for using 'minimum variance analysis' have been developed in order to be able to measure the phase front tilt angles, and better predict the actual propagation times from the L1 orbit to the Earth, using only the real-time IMF measurements from one spacecraft. The use of empirical models with the IMF measurements at L1 from ACE (or future satellites) for predicting 'space weather' effects has also been demonstrated.
New meteoroid model predictions for directional impacts on LDEF
NASA Technical Reports Server (NTRS)
Divine, Neil; Agueero, Rene C.
1993-01-01
An extensive body of data, from meteors, zodiacal light, spacecraft-borne impact detectors (Helios, Pioneer, Galileo, Ulysses), and other sources, forms the basis of a new numerical model for the distributions of interplanetary meteoroids. For each of the five populations in this model it is possible to evaluate meteoroid concentration and flux for oriented surfaces or detectors having arbitrary position and velocity in interplanetary space. For a spacecraft in geocentric orbit the effects of gravitational focussing and shielding by the Earth have been newly derived with full attention to the directionality of the particles, both on approach (i.e., relative to a massless Earth) and at the target. This modeling approach was exercised to provide an estimate of meteoroid fluence for each of several oriented surfaces on LDEF.
NASA Technical Reports Server (NTRS)
Habbal, Shadia Rifai; Esser, Ruth; Guhathakurta, Madhulika; Fisher, Richard
1995-01-01
Using the empirical constraints provided by observations in the inner corona and in interplanetary space. we derive the flow properties of the solar wind using a two fluid model. Density and scale height temperatures are derived from White Light coronagraph observations on SPARTAN 201-1 and at Mauna Loa, from 1.16 to 5.5 R, in the two polar coronal holes on 11-12 Apr. 1993. Interplanetary measurements of the flow speed and proton mass flux are taken from the Ulysses south polar passage. By comparing the results of the model computations that fit the empirical constraints in the two coronal hole regions, we show how the effects of the line of sight influence the empirical inferences and subsequently the corresponding numerical results.
Potable water supply in U.S. manned space missions
NASA Technical Reports Server (NTRS)
Sauer, Richard L.; Straub, John E., II
1992-01-01
A historical review of potable water supply systems used in the U.S. manned flight program is presented. This review provides a general understanding of the unusual challenges these systems have presented to the designers and operators of the related flight hardware. The presentation concludes with the projection of how water supply should be provided in future space missions - extended duration earth-orbital and interplanetary missions and lunar and Mars habitation bases - and the challenges to the biomedical community that providing these systems can present.
Thunder and lightning—what determines where and when thunderstorms occur?
NASA Astrophysics Data System (ADS)
Rycroft, Michael J.
2014-12-01
Where and when thunderstorms occur is a topic of considerable practical importance for human society on which some meteorologists and atmospheric and space scientists carry out research. Owens et al (2104 Environ. Res. Lett. 9 115009) have found that the occurrence of lightning over the UK is up to ˜50% greater than usual when the magnetic field outside the Earth’s magnetosphere, in interplanetary space, points towards the Sun rather than away from it. But why this happens is not yet totally clear.
Results of Skylab experiment T00-2, manual navigation sightings
NASA Technical Reports Server (NTRS)
Randle, R. J.
1976-01-01
An analysis of navigation data collected using a hand-held space sextant on the second and third manned Skylab missions was presented. From performance data and astronaut comments it was determined that: (1) the space sextant, the sighting station, and the sighting techniques require modification; (2) the sighting window must be of good optical quality; (3) astronaut performance was stable over long mission time; and (4) sightings made with a hand-held sextant were accurate and precise enough for reliable interplanetary manual navigation.
Natural Environment Definition for Exploration Missions
NASA Technical Reports Server (NTRS)
Suggs, Robert M.
2017-01-01
A comprehensive set of environment definitions is necessary from the beginning of the development of a spacecraft. The Cross-Program Design Specification for Natural Environments (DSNE, SLS-SPEC-159) was originally developed during the Constellation Program and then modified and matured for the Exploration Programs (Space Launch System and Orion). The DSNE includes launch, low-earth orbit (LEO), trans-lunar, cislunar, interplanetary, and entry/descent/landing environments developed from standard and custom databases and models. The space environments section will be discussed in detail.
Natural Environment Definition for Exploration Missions
NASA Technical Reports Server (NTRS)
Suggs, Rob
2017-01-01
A comprehensive set of environment definitions is necessary from the beginning of the development of a spacecraft. The Cross-Program Design Specification for Natural Environments (DSNE, SLS-SPEC-159) was originally developed during the Constellation Program and then modified and matured for the Exploration Programs (Space Launch System and Orion). The DSNE includes launch, low-earth orbit, trans-lunar, cis-lunar, interplanetary, and entry/descent/landing environments developed from standard and custom databases and models. The space environments section will be discussed in detail.
NASA Astrophysics Data System (ADS)
Wolverton, Mark
2002-03-01
Launched in March 1972, the Pioneer 10 spacecraft has far exceeded scientists' expectations. It was designed to study Jupiter and interplanetary space, especially the asteroid belt between Mars and Jupiter. Engineered on proven technology, it had no on-board computer and was controlled remotely from Earth. It also carried an aluminum plaque as a message for any extraterrestrial beings who might encounter the spacecraft. The article celebrates the ongoing mission's 30th anniversary as it travels out of the solar system looking for the heliopause, where the solar wind meets interstellar space.
Science objectives of the magnetic field experiment onboard Aditya-L1 spacecraft
NASA Astrophysics Data System (ADS)
Yadav, Vipin K.; Srivastava, Nandita; Ghosh, S. S.; Srikar, P. T.; Subhalakshmi, Krishnamoorthy
2018-01-01
The Aditya-L1 is first Indian solar mission scheduled to be placed in a halo orbit around the first Lagrangian point (L1) of Sun-Earth system in the year 2018-19. The approved scientific payloads onboard Aditya-L1 spacecraft includes a Fluxgate Digital Magnetometer (FGM) to measure the local magnetic field which is necessary to supplement the outcome of other scientific experiments onboard. The in-situ vector magnetic field data at L1 is essential for better understanding of the data provided by the particle and plasma analysis experiments, onboard Aditya-L1 mission. Also, the dynamics of Coronal Mass Ejections (CMEs) can be better understood with the help of in-situ magnetic field data at the L1 point region. This data will also serve as crucial input for the short lead-time space weather forecasting models. The proposed FGM is a dual range magnetic sensor on a 6 m long boom mounted on the Sun viewing panel deck and configured to deploy along the negative roll direction of the spacecraft. Two sets of sensors (tri-axial each) are proposed to be mounted, one at the tip of boom (6 m from the spacecraft) and other, midway (3 m from the spacecraft). The main science objective of this experiment is to measure the magnitude and nature of the interplanetary magnetic field (IMF) locally and to study the disturbed magnetic conditions and extreme solar events by detecting the CME from Sun as a transient event. The proposed secondary science objectives are to study the impact of interplanetary structures and shock solar wind interaction on geo-space environment and to detect low frequency plasma waves emanating from the solar corona at L1 point. This will provide a better understanding on how the Sun affects interplanetary space. In this paper, we shall give the main scientific objectives of the magnetic field experiment and brief technical details of the FGM onboard Aditya-1 spacecraft.
The Unifying Principle of Coordinated Measurements in Geospace Science
NASA Astrophysics Data System (ADS)
Lotko, William
2017-04-01
Space scientists recognize geospace as a coupled dynamical system extending from the Earth's upper atmosphere, ionosphere, and magnetosphere, through interplanetary space to the Sun. The weather in geospace describes variability in the electromagnetic fields, particle radiation, plasmas, and gases permeating it, usually in response to solar disturbances. Severe space weather poses a significant threat to human activities in space and to modern technological systems deployed both in space and at Earth. The challenge of characterizing and predicting space weather requires widely distributed, coordinated observations. Partnerships among government agencies, international consortia, and the private sector are developing creative solutions to address this challenge. This brief commentary highlights some of the coordinated measurements and data systems that are unifying knowledge of the geospace environment.
Space Radiation Effects on Inflatable Habitat Materials Project
NASA Technical Reports Server (NTRS)
Waller, Jess M.; Nichols, Charles
2015-01-01
The Space Radiation Effects on Inflatable Habitat Materials project provides much needed risk reduction data to assess space radiation damage of existing and emerging materials used in manned low-earth orbit, lunar, interplanetary, and Martian surface missions. More specifically, long duration (up to 50 years) space radiation damage will be quantified for materials used in inflatable structures (1st priority), as well as for habitable composite structures and space suits materials (2nd priority). The data acquired will have relevance for nonmetallic materials (polymers and composites) used in NASA missions where long duration reliability is needed in continuous or intermittent radiation fluxes. This project also will help to determine the service lifetimes for habitable inflatable, composite, and space suit materials.
NASA Astrophysics Data System (ADS)
Segret, Boris; Semery, Alain; Vannitsen, Jordan; Mosser, Benoît.; Miau, Jiun-Jih; Juang, Jyh-Ching; Deleflie, Florent
2014-08-01
The AGILE principles in the software industry seems well adapted to the paradigm of CubeSat missions that involve students for the development of space missions. Some of well-known engineering and program processes are revisited on the example of an interplanetary CubeSat mission profile that has been developed by several teams of students in various countries and at various educational levels since 02/2013. The lessons learned at adapting traditional space mission methods are emphasized and they produce a metaphoric image of paving stones.
Advanced In-Space Propulsion: "Exploring the Solar System"
NASA Technical Reports Server (NTRS)
Johnson, Les
2003-01-01
This viewgraph presentation reviews a number of advanced propulsion technologies for interplanetary spacecraft. The objective of the In Space Propulsion Technology Projects Office is to develop in-space propulsion technologies that can enable and/or benefit near and mid-term NASA science missions by significantly reducing cost, mass, and/or travel times. The technologies profiled are divided into several categories: High Priority (aerocapture, next generation ion propulsion, solar sails); Medium Priority (advanced chemical propulsion, solar electric propulsion, Hall thrusters); Low Priority (solar thermal propulsion); and High Payoff/High Risk (1 g/sq m solar sails, momentum exchange tethers, and plasma sails).
Solar Sail Propulsion for Interplanetary Cubesats
NASA Technical Reports Server (NTRS)
Johnson, Les; Sobey, Alex; Sykes, Kevin
2015-01-01
NASA is developing two small satellite missions as part of the Advanced Exploration Systems (AES) Program, both of which will use a solar sail to enable their scientific objectives. Solar sails use sunlight to propel vehicles through space by reflecting solar photons from a large, mirror-like sail made of a lightweight, highly reflective material. This continuous photon pressure provides propellantless thrust, allowing for very high (Delta)V maneuvers on long-duration, deep space exploration. Since reflected light produces thrust, solar sails require no onboard propellant. Solar sail technology is rapidly maturing for space propulsion applications within NASA and around the world.
Space resources. Volume 2: Energy, power, and transport
NASA Technical Reports Server (NTRS)
Mckay, Mary Fae (Editor); Mckay, David S. (Editor); Duke, Michael B. (Editor)
1992-01-01
This volume of the Space Resources report covers a number of technical and policy issues concerning the energy and power to carry out advanced space missions and the means of transportation to get to the sites of those missions. Discussed in the first half of this volume are the technologies which might be used to provide power and a variety of ways to convert power from one form to another, store it, move it wherever it is needed, and use it. In the second half of this volume, various kinds of transportation, including both interplanetary and surface systems, are discussed.
NASA Technical Reports Server (NTRS)
Horowitz, Richard; Ross, Patricia A.; King, Joseph H.
1989-01-01
The main purpose of the data catalog series is to provide descriptive references to data generated by space science flight missions. The data sets described include all of the actual holdings of the Space Science Data Center (NSSDC), all data sets for which direct contact information is available, and some data collections held and serviced by foreign investigators, NASA, and other U.S. government agencies. This volume contains the Master Index. The following spacecraft are included: Mariner, Pioneer, Pioneer Venus, Venera, Viking, Voyager, and Helios. Separate indexes to the planetary and interplanetary missions are also provided.
Counterstreaming electrons in small interplanetary magnetic flux ropes
NASA Astrophysics Data System (ADS)
Feng, H. Q.; Zhao, G. Q.; Wang, J. M.
2015-12-01
Small interplanetary magnetic flux ropes (SIMFRs) are commonly observed by spacecraft at 1 AU, and their origin still remains disputed. We investigated the counterstreaming suprathermal electron (CSE) signatures of 106 SIMFRs measured by Wind during 1995-2005. We found that 79 (75%) of the 106 flux ropes contain CSEs, and the percentages of counterstreaming vary from 8% to 98%, with a mean value of 51%. CSEs are often observed in magnetic clouds (MCs), and this indicates these MCs are still attached to the Sun at both ends. CSEs are also related to heliospheric current sheets (HCSs) and the Earth's bow shock. We divided the SIMFRs into two categories: The first category is far from HCSs, and the second category is in the vicinity of HCSs. The first category has 57 SIMFRs, and only 7 of 57 ropes have no CSEs. This ratio is similar to that of MCs. The second category has 49 SIMFRs; however, 20 of the 49 events have no CSEs. This ratio is larger than that of MCs. These two categories have different origins. One category originates from the solar corona, and most ropes are still connected to the Sun at both ends. The other category is formed near HCSs in the interplanetary space.
Multispacecraft Observations of Solar Flare Particles in the Inner Heliosphere
NASA Technical Reports Server (NTRS)
Wibberenz, G.; Cane, H. V.
2007-01-01
For a number of impulsive solar particle events we examine variations of maximum intensities and times to maximum intensity as a function of longitude, using observations from the two Helios spacecraft and near the Earth. We find that electrons in the MeV range can be detected more than 80 deg. from the flare longitude, corresponding to a considerably wider "well connected" region than that (approx. 20 deg. half width) reported for He-3-rich impulsive solar events. This wide range and the decrease of peak intensities with increasing connection angle revive the concept of some propagation process in the low corona that has a diffusive nature. Delays to the intensity maximum are not systematically correlated with connection angles. We argue that interplanetary scattering parallel to the average interplanetary magnetic field, that varies with position in space, plays an important role in flare particle events. In a specific case variations of the time profiles with radial distance and with particle rigidity are used to quantitatively confirm spatial diffusion. For a few cases near the edges of the well connected region the very long times to maximum intensity might result from interplanetary lateral transport.
NASA Technical Reports Server (NTRS)
Royden, H. N.; Green, D. W.; Walson, G. R.
1981-01-01
Faraday-rotation data from the linearly polarized 137-MHz beacons of the ATS-1, SIRIO, and Kiku-2 geosynchronous satellites are used to determine the ionospheric corrections to the range and Doppler data for interplanetary spacecraft navigation. The JPL operates the Deep Space Network of tracking stations for NASA; these stations monitor Faraday rotation with dual orthogonal, linearly polarized antennas, Teledyne polarization tracking receivers, analog-to-digital converter/scanners, and other support equipment. Computer software examines the Faraday data, resolves the pi ambiguities, constructs a continuous Faraday-rotation profile and converts the profile to columnar zenith total electron content at the ionospheric reference point; a second program computes the line-of-sight ionospheric correction for each pass of the spacecraft over each tracking complex. Line-of-sight ionospheric electron content using mapped Faraday-rotation data is compared with that using dispersive Doppler data from the Voyager spacecraft; a difference of about 0.4 meters, or 5 x 10 to the 16th electrons/sq m is obtained. The technique of determining the electron content of interplanetary plasma by subtraction of the ionospheric contribution is demonstrated on the plasma torus surrounding the orbit of Io.
Cancer Risk Assessment for Space Radiation
NASA Technical Reports Server (NTRS)
Richmond, Robert C.; Curreri, Peter A. (Technical Monitor)
2002-01-01
Predicting the occurrence of human cancer following exposure to any agent causing genetic damage is a difficult task. This is because the uncertainty of uniform exposure to the damaging agent, and the uncertainty of uniform processing of that damage within a complex set of biological variables, degrade the confidence of predicting the delayed expression of cancer as a relatively rare event within any given clinically normal individual. The radiation health research priorities for enabling long-duration human exploration of space were established in the 1996 NRC Report entitled "Radiation Hazards to Crews of Interplanetary Missions: Biological Issues and Research Strategies". This report emphasized that a 15-fold uncertainty in predicting radiation-induced cancer incidence must be reduced before NASA can commit humans to extended interplanetary missions. That report concluded that the great majority of this uncertainty is biologically based, while a minority is physically based due to uncertainties in radiation dosimetry and radiation transport codes. Since that report, the biologically based uncertainty has remained large, and the relatively small uncertainty associated with radiation dosimetry has increased due to the considerations raised by concepts of microdosimetry. In a practical sense, however, the additional uncertainties introduced by microdosimetry are encouraging since they are in a direction of lowered effective dose absorbed through infrequent interactions of any given cell with the high energy particle component of space radiation. The biological uncertainty in predicting cancer risk for space radiation derives from two primary facts. 1) One animal tumor study has been reported that includes a relevant spectrum of particle radiation energies, and that is the Harderian gland model in mice. Fact #1: Extension of cancer risk from animal models, and especially from a single study in an animal model, to humans is inherently uncertain. 2) One human database is predominantly used for assessing cancer risk caused by space radiation, and that is the Japanese atomic bomb survivors. Fact #2: The atomic-bomb-survivor database, itself a remarkable achievement, contains uncertainties. These include the actual exposure to each individual, the radiation quality of that exposure, and the fact that the exposure was to acute doses of predominantly low-LET radiation, not to chronic exposures of high-LET radiation expected on long-duration interplanetary manned missions.
Implementing Badhwar-O'Neill Galactic Cosmic Ray Model for the Analysis of Space Radiation Exposure
NASA Technical Reports Server (NTRS)
Kim, Myung-Hee Y.; O'Neill, Patrick M.; Slaba, Tony C.
2014-01-01
For the analysis of radiation risks to astronauts and planning exploratory space missions, accurate energy spectrum of galactic cosmic radiation (GCR) is necessary. Characterization of the ionizing radiation environment is challenging because the interplanetary plasma and radiation fields are modulated by solar disturbances and the radiation doses received by astronauts in interplanetary space are likewise influenced. A model of the Badhwar-O'Neill 2011 (BO11) GCR environment, which is represented by GCR deceleration potential theta, has been derived by utilizing all of the GCR measurements from balloons, satellites, and the newer NASA Advanced Composition Explorer (ACE). In the BO11 model, the solar modulation level is derived from the mean international sunspot numbers with time-delay, which has been calibrated with actual flight instrument measurements to produce better GCR flux data fit during solar minima. GCR fluxes provided by the BO11 model were compared with various spacecraft measurements at 1 AU, and further comparisons were made for the tissue equivalent proportional counters measurements at low Earth orbits using the high-charge and energy transport (HZETRN) code and various GCR models. For the comparison of the absorbed dose and dose equivalent calculations with the measurements by Radiation Assessment Detector (RAD) at Gale crater on Mars, the intensities and energies of GCR entering the heliosphere were calculated by using the BO11 model, which accounts for time-dependent attenuation of the local interstellar spectrum of each element. The BO11 model, which has emphasized for the last 24 solar minima, showed in relatively good agreement with the RAD data for the first 200 sols, but it was resulted in to be less well during near the solar maximum of solar cycle 24 due to subtleties in the changing heliospheric conditions. By performing the error analysis of the BO11 model and the optimization in reducing overall uncertainty, the resultant BO13 model corrects the fit at solar maxima as well as being accurate at solar minima. The BO13 model is implemented to the NASA Space Cancer Risk model for the assessment of radiation risks. Overall cumulative probability distribution of solar modulation parameters represents the percentile rank of the average interplanetary GCR environment, and the probabilistic radiation risks can be assessed for various levels of GCR environment to support mission design and operational planning for future manned space exploration missions.
Highlights and discoveries of the Cosmic Dust Analyser (CDA) during its 15 years of exploration
NASA Astrophysics Data System (ADS)
Srama, R.; Moragas-Klostermeyer, G.; Kempf, S.; Postberg, F.; Albin, T.; Auer, S.; Altobelli, N.; Beckmann, U.; Bugiel, S.; Burton, M.; Economou, T.; Fliege, K.; Grande, M.; Gruen, E.; Guglielmino, M.; Hillier, J. K.; Schilling, A.; Schmidt, J.; Seiss, M.; Spahn, F.; Sterken, V.; Trieloff, M.
2014-04-01
The interplanetary space probe Cassini/Huygens reached Saturn in July 2004 after seven years of cruise phase. Today, the German-lead Cosmic Dust Analyser (CDA) is operated continuously for 10 years in orbit around Saturn. During the cruise phase CDA measured the interstellar dust flux at one AU distance from the Sun, the charge and composition of interplanetary dust grains and the composition of the Jovian nanodust streams. The first discovery of CDA related to Saturn was the measurement of nanometer sized dust particles ejected by its magnetosphere to interplanetary space with speeds higher than 100 km/s. Their origin and composition was analysed and an their dynamical studies showed a strong link to the conditions of the solar wind plasma flow. A recent surprising result was, that stream particles stem from the interior of Enceladus. Since 2004 CDA measured millions of dust impacts characterizing the dust environment of Saturn. The instrument showed strong evidence for ice geysers located at the south pole of Saturn's moon Enceladus in 2005. Later, a detailed compositional analysis of the salt-rich water ice grains in Saturn's E ring system lead to the discovery of liquid water below the icy crust connected to an ocean at depth feeding the icy jets. CDA was even capable to derive a spatially resolved compositional profile of the plume during close Enceladus flybys. A determination of the dust-magnetosphere interaction and the discovery of the extended E ring allowed the definition of a dynamical dust model of Saturn's E ring describing the observed properties. The measured dust density profiles in the dense E ring revealed geometric asymmetries. Cassini performed shadow crossings in the ring plane and dust grain charges were measured in shadow regions delivering important data for dust-plasma interaction studies. In the last years, dedicated measurement campaigns were executed by CDA to monitor the flux of interplanetary and interstellar dust particles reaching Saturn. Currently, the composition of interstellar grains and the meteoroid flux into the Saturnian system are in analysis.
What can Space Resources do for Astronomy and Planetary Science?
NASA Astrophysics Data System (ADS)
Elvis, Martin
2016-11-01
The rapid cost growth of flagship space missions has created a crisis for astronomy and planetary science. We have hit the funding wall. For the past 3 decades scientists have not had to think much about how space technology would change within their planning horizon. However, this time around enormous improvements in space infrastructure capabilities and, especially, costs are likely on the 20-year gestation periods for large space telescopes. Commercial space will lower launch and spacecraft costs substantially, enable cost-effective on-orbit servicing, cheap lunar landers and interplanetary cubesats by the early 2020s. A doubling of flagship launch rates is not implausible. On a longer timescale it will enable large structures to be assembled and constructed in space. These developments will change how we plan and design missions.
Dynamics of nanoparticules detected at 1 AU by S/WAVES onboard STEREO spacecraft
NASA Astrophysics Data System (ADS)
Belheouane, Soraya; Issautier, Karine; Meyer-Vernet, Nicole; Le Chat, Gaétan; Czechowski, Andrzej; Zaslavsky, Arnaud; Zouganelis, Yannis; Mann, Ingrid
In order to interpret in detail the S/WAVES data on the interplanetary nanodust discovered by STEREO at 1 AU [Meyer-Vernet et al., 2009], we study the dynamics of nanoparticles in the inner interplanetary medium as well as the distribution of their velocities and directions of arrival, with a model based on [Czechowski and Mann, 2012]. We deduce the charges released by their impacts on the STEREO spacecraft at 1 AU and their dependence on the position of the spacecraft on their orbits. The model studies nanoparticles of size equal or smaller than about 70 nm, assumed to be created via collisional fragmentation of dust grains of larger size moving on keplerian orbits, and sublimation of dust, meteoroids and comets. The nanoparticles are released near the Sun with initial velocities close to keplerian, and mainly subjected to the Lorentz force calculated with a simple solar wind model. A part of the nanoparticles is accelerated to high speeds of the order of 300 km/s, thereby providing impact charges between 10(-14) and 10(-11) Cb [Belheouane, 2014] which enable them to be detected by S/WAVES, whereas another part is trapped within about 0.2 AU from the Sun. We discuss how the fluxes and direction of arrival at 1 AU are expected to change in function of the solar cycle. These results enable us to interpret in detail the STEREO/WAVES observations [Zaslavsky et al., 2012]; [Pantellini et al., 2013]; [Le Chat et al., 2013]. Belheouane, S. (2014). Nanoparticules dans le vent solaire, observations spatiales et theorie. PhD thesis, Pierre and Marie Curie University UPMC. Czechowski, A. and Mann, I. (2012). Nanodust Dynamics in Interplanetary Space, chapter Nanodust Dynamics in Interplanetary Space. Springer Berlin Heidelberg. Le Chat, G., Zaslavsky, A., Meyer-Vernet, N., Issautier, K., Belheouane, S., Pantellini, F., Maksimovic, M., Zouganelis, I., Bale, S., and Kasper, J. (2013). Interplanetary Nanodust Detection by the Solar Terrestrial Relations Observatory/WAVES Low Frequency Receiver. Solar Physics, 286(2):549-559. Meyer-Vernet, N., Maksimovic, M., Czechowski, A., Mann, I., Zouganelis, I., Goetz, K., Kaiser, M., Cyr, O. S., Bougeret, J.-L., and Bale, S. (2009). Dust Detection by the Wave Instrument on STEREO : Nanoparticles Picked up by the Solar Wind? Solar Phys, 256:463-474. Pantellini, F., Le Chat, G., Belheouane, S., Meyer-Vernet, N., and Zaslavsky, A. (2013). On the detection of nano dust using spacecraft based boom antennas. Solar Wind 13: Proceedings of the Thirteenth International Solar Wind Conference, 1539:414-417. Zaslavsky, A., Meyer-Vernet, N., Mann, I., Czechowski, A., Issautier, K., Le Chat, G., Pantellini, F., Goetz, K., Maksimovic, M., Bale, S. D., and Kasper, J. K. (2012). Interplanetary dust detection by radio antennas: Mass calibration and fluxes measured by STEREO/WAVES. J. Geophys. Res., 117.
Dusty Plasma Effects in the Interplanetary Medium?
NASA Astrophysics Data System (ADS)
Mann, Ingrid; Issautier, Karine; Meyer-Vernet, Nicole; Le Chat, Gaétan; Czechowski, Andrzej; Zaslavsky, Arnaud; Zouganelis, Yannis; Belheouane, Soraya
Cosmic dust particles exist in a variety of compositions and sizes in the interplanetary medium. There is little direct information on the composition, but those interplanetary dust particles that are collected in the upper Earth’s atmosphere and can be studied in the laboratory typically have an irregular, sometimes porous structure on scales <100 nm. They contain magnesium-rich silicates and silicon carbide, iron-nickel and iron-sulfur compounds, calcium- and aluminum oxides, and chemical compounds that contain a large mass fraction of carbon (e.g. carbonaceous species). A fraction of the dust originates from comets, but because of their bulk material temperature of about 280 K near 1 AU, most icy compounds have disappeared. The dust particles are embedded in the solar wind, a hot plasma with at 1 AU kinetic temperatures around 100 000 K and flow direction nearly radial outward from the Sun at supersonic bulk velocities around 400 km/s. Since the dust particles carry an electric surface charge they are subject to electromagnetic forces and the nanodust particles are efficiently accelerated to velocities of order of solar wind speed. The acceleration of the nanodust is similar, but not identical to the formation of pick-up ions. The S/WAVES radio wave instrument on STEREO measured a flux of nanodust at 1 AU [1]. The nanodust probably forms in the region inward of 1 AU and is accelerated by the solar wind as discussed. We also discuss the different paths of dust - plasma interactions in the interplanetary medium and their observations with space experiments. Comparing these interactions we show that the interplanetary medium near 1 AU can in many cases be described as “dust in plasma" rather than "dusty plasma”. [1] S. Belheouane, N. Meyer-Vernet, K. Issautier, G. Le Chat, A. Zaslavsky, Y. Zouganelis, I. Mann, A. Czechowski: Dynamics of nanoparticles detected at 1 AU by S/WAVES onboard STEREO spacecraft, in this session.
Asynchronous Laser Transponders for Precise Interplanetary Ranging and Time Transfer
NASA Technical Reports Server (NTRS)
Degnan, John J.; Smith, David E. (Technical Monitor)
2001-01-01
The feasibility of a two-way asynchronous (i.e. independently firing) interplanetary laser transponder pair, capable of decimeter ranging and subnanosecond time transfer from Earth to a spacecraft anywhere within the inner Solar System, is discussed. In the Introduction, we briefly discuss the current state-of-the-art in Satellite Laser Ranging (SLR) and Lunar Laser Ranging (LLR) which use single-ended range measurements to a passive optical reflector, and the limitations of this approach in ranging beyond the Moon to the planets. In Section 2 of this paper, we describe two types of transponders (echo and asynchronous), introduce the transponder link equation and the concept of "balanced" transponders, describe how range and time can be transferred between terminals, and preview the potential advantages of photon counting asynchronous transponders for interplanetary applications. In Section 3, we discuss and provide mathematical models for the various sources of noise in an interplanetary transponder link including planetary albedo, solar or lunar illumination of the local atmosphere, and laser backscatter off the local atmosphere. In Section 4, we introduce the key engineering elements of an interplanetary laser transponder and develop an operational scenario for the acquisition and tracking of the opposite terminal. In Section 5, we use the theoretical models of th previous sections to perform an Earth-Mars link analysis over a full synodic period of 780 days under the simplifying assumption of coaxial, coplanar, circular orbits. We demonstrate that, using slightly modified versions of existing space and ground based laser systems, an Earth-Mars transponder link is not only feasible but quite robust. We also demonstrate through analysis the advantages and feasibility of compact, low output power (<300 mW photon-counting transponders using NASA's developmental SLR2000 satellite laser ranging system as the Earth terminal. Section 6 provides a summary of the results and some concluding remarks regarding future applications.
The Major Solar Eruptive Event in July 2012: Defining Extreme Space Weather Scenarios (Invited)
NASA Astrophysics Data System (ADS)
Baker, D. N.
2013-12-01
A key goal for the space weather community is to define extreme conditions that might plausibly afflict human technology. On 23 July 2012 solar active region 1520 (~133°W heliographic longitude) gave rise to a powerful coronal mass ejection (CME) with an initial speed that was determined to be >3000 km/s. The eruption was directed away from Earth toward 144°W longitude. STEREO-A sensors detected the CME arrival only about 18 hours later and made in situ measurements of the solar wind and interplanetary magnetic field. We have posed the question of what would have happened if this huge interplanetary event had been Earthward directed. Using a well-proven geomagnetic storm forecast model, we find that the 23-24 July event would certainly have produced a geomagnetic storm that was comparable to the largest events of the 20th Century (Dst ~ -500nT). Using plausible assumptions about seasonal and time-of-day orientation of the Earth's magnetic dipole, the most extreme modeled value of storm-time disturbance would have been Dst=-1182nT. This is probably considerably larger than the famous Carrington storm of 1859. This finding has far reaching implications because it demonstrates that extreme space weather conditions such as those during March of 1989 or September of 1859 can happen even during a modest solar activity cycle such as the one presently underway. We argue that this extreme event should immediately be employed by the space weather community to model severe space weather effects on technological systems such as the electric power grid.
NASA Astrophysics Data System (ADS)
Kobayashi, Kensei; Fushimi, Hidehiko; Motoyama, Takuya; Kaneko, Takeo; Obayashi, Yumiko; Yoshida, Satoshi; Mita, Hajime; Yabuta, Hikaru; Okudaira, Kyoko; Hashimoto, Hirofumi; Yokobori, Shin-Ichi; Yamagishi, Akihiko
A wide variety of organic compounds including amino acid precursors have been detected in such extraterrestrial bodies as carbonaceous chondrites and comets. It was suggested that these organics were formed in quite cold environments. We irradiated frozen mixtures of possible constituents of ice mantles of interstellar dust particles including water, methanol and ammonia with high-energy heavy ions from HIMAC, National Institute of Radiological Science, Japan. Amino acid precursors with complex structures were detected whose molecular weights are up to a few thousands. Such complex amino acid precursors are much stronger than free amino acids against radiation. Such organics could have been incorporated in solar system small bodies after the formation of the solar system and delivered to the primitive Earth. Possible carriers of such organics are meteorites, comets and interplanetary dust particles (IDPs) that were formed from comets and meteorites. It is suggested that IDPs brought much more organics than meteorites and comets. However, nature of organics in IDPs is little known, since they have been collected only in terrestrial biosphere. We are planning a space experiments named Tanpopo, where IDPs would be collected in aerogel equipped on the Exposure Facility of the International Space Station. In addition, amino acids and their relating compounds would be exposed to space environments to see their possible alteration processes in the interplanetary space. We will report some preliminary results for the preparation of the mission including the capture of amino acid-containing particles at high velocity with ultra-low density aerogel.
Influence of the Sun on the Space Weather Conditions: Cycle 24 Observations from 1 AU to Mars
NASA Astrophysics Data System (ADS)
Lee, Christina
2016-10-01
Motivated by future crewed missions to Mars, there is a growing need to advance our knowledge of the heliospheric conditions between the Earth ( 1 AU) orbit and Mars ( 1.5 AU) orbit locations. Comparative conditions at these locations are of special interest since they are separated by the interplanetary region where most solar wind stream interaction regions develop. These regions alter the propagation of solar-heliospheric disturbances, including the interplanetary CME-driven shocks that create the space radiation (via solar energetic particles) that are hazardous to humans. Although the deep Cycle 23 minimum and the modestly active Cycle 24 maximum have produced generally weaker solar events and heliospheric conditions, observations from solar and planetary missions during the SDO era provide a unique opportunity to study how and to what extent the solar eruptive events impact the local space environments at Earth (and/or STEREO-A) and Mars, and for a given solar-heliospheric event period how the geospace and near-Mars space conditions compare and contrast with one another. Such observations include those from SDO, L1 observers (ACE,WIND,SOHO) and STEREO-A at 1 AU, and Mars Express, MSL, and MAVEN at 1.5 AU. Using these observations, we will highlight a number of Cycle 24 space weather events observed along the 1-AU orbit (at Earth and/or STEREO-A) and Mars that are triggered by CMEs, SEPs, flares, and/or CIRs. Numerical 3D simulations from WSA-Enlil-cone will also be presented to provide global context to the events discussed.
NASA Technical Reports Server (NTRS)
Gopalswamy, Natchimuthuk
2011-01-01
Various manifestations of solar activity cause disturbances known as space weather effects in the interplanetary space, near-Earth environment, and all the Earth's "spheres. Longterm variations in the frequency, intensity and relative importance of the manifestations of solar activity are due to the slow changes in the output of the solar dynamo, and they define space climate. Space climate governs long-term variations in geomagnetic activity and is the primary natural driver of terrestrial climate. To understand how the variable solar activity affects the Earth's environment, geomagnetic activity and climate on both short and long time scales, we need to understand the origins of solar activity itself and its different manifestations, as well as the sequence of coupling processes linking various parts of the system. This session provides a forum to discuss the chain of processes and relations from the Sun to the Earth's surface: the origin and long-term and short-term evolution of solar activity, initiation and temporal variations in solar flares, CMEs, coronal holes, the solar wind and its interaction with the terrestrial magnetosphere, the ionosphere and its connection to the neutral dominated regions below and the plasma dominated regions above, the stratosphere, its variations due to the changing solar activity and its interactions with the underlying troposphere, and the mechanisms of solar influences on the lower atmosphere on different time-scales. Particularly welcome are papers highlighting the coupling processes between the different domains in this complex system.
NASA Astrophysics Data System (ADS)
Avakyan, S. V.; Kovalenok, V. V.; Savinykh, V. P.; Ivanchenkov, A. S.; Voronin, N. A.; Trchounian, A.; Baranova, L. A.
2015-04-01
In interplanetary flight, after large solar flares, cosmonauts are subjected to the action of energetic solar protons and electrons. These energetic particles have an especially strong effect during extravehicular activity or (in the future) during residence on the surface of Mars, when they spend an extended time there. Such particles reach the orbits of the Earth and of Mars with a delay of several hours relative to solar X-rays and UV radiation. Therefore, there is always time to predict their appearance, in particular, by means of an X-ray-UV radiometer from the apparatus complex of the Space Solar Patrol (SSP) that is being developed by the co-authors of this paper. The paper discusses the far unexplored biophysical problem of manned flight to Mars, scheduled for the next decade. In long-term manned space flights on the orbital stations "Salyut" Soviet cosmonaut crews from three of the co-authors (cosmonauts V.V. Kovalenok, A.S. Ivanchenkov, and V.P. Savinykh) had repeatedly observed the effect of certain geophysical conditions on the psychological state of each crew. These effects coincide with the increased intensity of global illumination in the upper ionosphere space on flight altitudes (300-360 km). It is important that during all of these periods, most of the geomagnetic pulsations were completely absent. Possible ways to study the synergistic effects of the simultaneous absence of the geomagnetic field, the magnetic pulsations and the microwave radiation of the terrestrial ionosphere are considered for a flight to Mars.
CME Research and Space Weather Support for the SECCHI Experiments on the STEREO Mission
2014-01-14
Corbett, ed., Cambridge Univ. Press (2010) Kahler, S.W. and D. F. Webb, "Tracking Nonradial Motions and Azimuthal Expansions of Interplanetary CME...Imaging and In-situ Data from LASCO, STEREO and SMEI", Bull. AAS, 41(2), p. 855, 2009. Kahler S. and D. Webb, "Tracking Nonradial Motions and
New Results in Astrodynamics Using Genetic Algorithms
NASA Technical Reports Server (NTRS)
Coverstone-Carroll, V.; Hartmann, J. W.; Williams, S. N.; Mason, W. J.
1998-01-01
Generic algorithms have gained popularity as an effective procedure for obtaining solutions to traditionally difficult space mission optimization problems. In this paper, a brief survey of the use of genetic algorithms to solve astrodynamics problems is presented and is followed by new results obtained from applying a Pareto genetic algorithm to the optimization of low-thrust interplanetary spacecraft missions.
Solar plasma geomagnetism and aurora
DOE Office of Scientific and Technical Information (OSTI.GOV)
Chapman, S.
1968-01-01
This book is based on lectures given in July 1962 at the 12th session of the Les Houches Summer School of Theoretical Physics. Topics considered include geomagnetism and related phenomena, solar plasma in interplanetary space, mutual influence of the solar gas and the geomagnetic field. magnetic disturbance and aurorae, and the ring current and its DR field. (WDM)
Optical Filter Assembly for Interplanetary Optical Communications
NASA Technical Reports Server (NTRS)
Chen, Yijiang; Hemmati, Hamid
2013-01-01
Ground-based, narrow-band, high throughput optical filters are required for optical links from deep space. We report on the development of a tunable filter assembly that operates at telecommunication window of 1550 nanometers. Low insertion loss of 0.5 decibels and bandwidth of 90 picometers over a 2000 nanometers operational range of detectors has been achieved.
Automated Consultation for the Diagnosis of Interplanetary Telecommunications
NASA Technical Reports Server (NTRS)
Quan, A. G.; Schwuttke, U. M.; Herstein, J. S.; Spagnuolo, J. S.; Burleigh, S.
1995-01-01
SHARP (Spacecraft Health Automated Reasoning Program) is a knowledge-based system for the diagnosis of problems in NASA's Deep Space Network (DSN) telecommunications system. This system provides the means of communication between a spacecraft and operations personnel at Jet Propulsion Laboratory. SHARP analyzes problems that occur in both the on-board spacecraft telecom subsystem, and the DSN.
Extreme Magnetic Storms: Their Characteristics and Possible Consequences for Humanity
NASA Astrophysics Data System (ADS)
Falkowski, B. J.; Tsurutani, B.; Lakhina, G. S.; Deng, Y.; Mannucci, A. J.
2015-12-01
The solar and interplanetary conditions necessary to create an extreme magnetic storm will be discussed. The Carrington 1859 event was not the largest possible. It will be shown that different facets of fast ICMEs/extreme magnetic storms will have different limitations. Some possible adverse effects of such extreme space weather events on society will be addressed.
An introduction to Space Weather Integrated Modeling
NASA Astrophysics Data System (ADS)
Zhong, D.; Feng, X.
2012-12-01
The need for a software toolkit that integrates space weather models and data is one of many challenges we are facing with when applying the models to space weather forecasting. To meet this challenge, we have developed Space Weather Integrated Modeling (SWIM) that is capable of analysis and visualizations of the results from a diverse set of space weather models. SWIM has a modular design and is written in Python, by using NumPy, matplotlib, and the Visualization ToolKit (VTK). SWIM provides data management module to read a variety of spacecraft data products and a specific data format of Solar-Interplanetary Conservation Element/Solution Element MHD model (SIP-CESE MHD model) for the study of solar-terrestrial phenomena. Data analysis, visualization and graphic user interface modules are also presented in a user-friendly way to run the integrated models and visualize the 2-D and 3-D data sets interactively. With these tools we can locally or remotely analysis the model result rapidly, such as extraction of data on specific location in time-sequence data sets, plotting interplanetary magnetic field lines, multi-slicing of solar wind speed, volume rendering of solar wind density, animation of time-sequence data sets, comparing between model result and observational data. To speed-up the analysis, an in-situ visualization interface is used to support visualizing the data 'on-the-fly'. We also modified some critical time-consuming analysis and visualization methods with the aid of GPU and multi-core CPU. We have used this tool to visualize the data of SIP-CESE MHD model in real time, and integrated the Database Model of shock arrival, Shock Propagation Model, Dst forecasting model and SIP-CESE MHD model developed by SIGMA Weather Group at State Key Laboratory of Space Weather/CAS.
The Sun to the Earth - and Beyond: A Decadal Research Strategy in Solar and Space Physics
NASA Technical Reports Server (NTRS)
2003-01-01
The sun is the source of energy for life on earth and is the strongest modulator of the human physical environment. In fact, the Sun's influence extends throughout the solar system, both through photons, which provide heat, light, and ionization, and through the continuous outflow of a magnetized, supersonic ionized gas known as the solar wind. While the accomplishments of the past decade have answered important questions about the physics of the Sun, the interplanetary medium, and the space environments of Earth and other solar system bodies, they have also highlighted other questions, some of which are long-standing and fundamental. The Sun to the Earth--and Beyond organizes these questions in terms of five challenges that are expected to be the focus of scientific investigations in solar and space physics during the coming decade and beyond. While the accomplishments of the past decades have answered important questions about the physics of the Sun, the interplanetary medium, and the space environments of Earth and other solar system bodies, they have also highlighted other questions, some of which are long-standing and fundamental. This report organizes these questions in terms of five challenges that are expected to be the focus of scientific investigations in solar and space physics during the coming decade and beyond: Challenge 1: Understanding the structure and dynamics of the Sun's interior, the generation of solar magnetic fields, the origin of the solar cycle, the causes of solar activity, and the structure and dynamics of the corona. Challenge 2: Understanding heliospheric structure, the distribution of magnetic fields and matter throughout the solar system, and the interaction of the solar atmosphere with the local interstellar medium. Challenge 3: Understanding the space environments of Earth and other solar system bodies and their dynamical response to external and internal influences. Challenge 4: Understanding the basic physical principles manifest in processes observed in solar and space plasmas. Challenge 5: Developing a near-real-time predictive capability for understanding and quantifying the impact on human activities of dynamical processes at the Sun, in the interplanetary medium, and in Earth's magnetosphere and ionosphere. This report summarizes the state of knowledge about the total heliospheric system, poses key scientific questions for further research, and presents an integrated research strategy, with prioritized initiatives, for the next decade. The recommended strategy embraces both basic research programs and targeted basic research activities that will enhance knowledge and prediction of space weather effects on Earth. The report emphasizes the importance of understanding the Sun, the heliosphere, and planetary magnetospheres and ionospheres as astrophysical objects and as laboratories for the investigation of fundamental plasma physics phenomena.
NASA Astrophysics Data System (ADS)
Hirai, Takayuki; Cole, Michael J.; Fujii, Masayuki; Hasegawa, Sunao; Iwai, Takeo; Kobayashi, Masanori; Srama, Ralf; Yano, Hajime
2014-10-01
The Arrayed Large-Area Dust Detectors in INterplanetary space (ALADDIN) is an array of polyvinylidene fluoride (PVDF) based dust detectors aboard the solar power sail demonstrator named IKAROS (Interplanetary Kite-craft Accelerated by Radiation Of the Sun). The total sensor area of ALADDIN (0.54 m2) is the world's largest among the past PVDF-based dust detectors. IKAROS was launched in May 2010 and then ALADDIN measured cosmic dust impacts for 16 months while orbiting around between 0.7 and 1.1 AU. The main scientific objective of ALADDIN is to reveal number density of ≥10-μm-sized dust in the zodiacal cloud with much higher time-space resolution than that achieved by any past in-situ measurements. The distribution of ≥10-μm-sized dust can be also observed mainly with the light scattering by optical instruments. This paper gives the scientific objectives, the instrumental description, and the results of microparticle impact calibration of ALADDIN conducted in ground laboratories. For the calibration tests we used Van de Graaf accelerators (VdG), two-stage light gas guns (LGG), and a nano-second pulsed Nd:YAG laser (nsPL). Through these experiments, we obtained depolarization charge signal caused by hypervelocity impacts or laser irradiation using the flight spare of 20-μm-thick PVDF sensor and the electronics box of ALADDIN. In the VdG experiment we accelerated iron, carbon, and silver microparticles at 1-30 km/s, while in the LGG experiment we performed to shoot 100's-μm-sized particles of soda-lime glass and stainless steel at 3-7 km/s as single projectile. For interpolation to ≥10-μm size, we irradiated infrared laser at the energy of 15-20 mJ directly onto the PVDF sensor. From the signal analysis, we developed a calibration law for estimation of masses of impacted dust particles. The dynamic range of ALADDIN corresponds from 9×10-14 kg to 2×10-10 kg (4-56 μm in diameter at density of 2.0 g/cm3) at the expected impact velocity of 10 km/s at 1 AU on the IKAROS inbound orbit. It was found that ALADDIN has ability to measure spatial densities of interplanetary dust particles larger than 10 μm in size by setting the sensor threshold to an output voltage of 1 V.
Architectural Implementation of NASA Space Telecommunications Radio System Specification
NASA Technical Reports Server (NTRS)
Peters, Kenneth J.; Lux, James P.; Lang, Minh; Duncan, Courtney B.
2012-01-01
This software demonstrates a working implementation of the NASA STRS (Space Telecommunications Radio System) architecture specification. This is a developing specification of software architecture and required interfaces to provide commonality among future NASA and commercial software-defined radios for space, and allow for easier mixing of software and hardware from different vendors. It provides required functions, and supports interaction with STRS-compliant simple test plug-ins ("waveforms"). All of it is programmed in "plain C," except where necessary to interact with C++ plug-ins. It offers a small footprint, suitable for use in JPL radio hardware. Future NASA work is expected to develop into fully capable software-defined radios for use on the space station, other space vehicles, and interplanetary probes.
Engaging space: extraterrestrial architecture and the human psyche.
Sequin, Angel Marie
2005-01-01
The human fascination with exploring and inhabiting the space that lies beyond Earth's atmosphere continues to grow. Nevertheless, 40 years of experience to date have clearly established that humans in outer space routinely suffer significant psychological impairment arising from their stressful extraterrestrial living conditions. This paper explores those extraterrestrial conditions through the interactions between the extraordinarily harsh environment of outer space, the sensations that humans encounter in space, and the qualities of a habitat that physically interposes itself between the two. The objective of this paper is to develop a habitat that expresses the extraterrestrial condition while supporting the mental health of its inhabitants, so as to augment the success of prolonged extraterrestrial residence and interplanetary travel. c2005 Elsevier Ltd. All rights reserved.
Asteroids as Propulsion Systems of Space Ships
NASA Technical Reports Server (NTRS)
Bolonkin, Alexander
2003-01-01
Currently, rockets are used to change the trajectory of space ships and probes. This method is very expensive and requires a lot of fuel, which limits the feasibility of space stations, interplanetary space ships, and probes. Sometimes space probes use the gravity field of a planet However, there am only nine planets in the Solar System, all separated by great distances. There are tons of millions of asteroids in outer space. This paper offers a revolutionary method for changing the trajectory of space probes. The method uses the kinetic or rotary energy of asteroids, comet nuclei, meteorites or other space bodies (small planets, natural planetary satellites, space debris, etc.) to increase (to decrease) ship (probe) speed up to 1000 m/sec (or more) and to achieve any new direction in outer space. The flight possibilities of space ships and probes are increased by a factor of millions.
Recent progress and perspectives of space electric propulsion systems based on smart nanomaterials.
Levchenko, I; Xu, S; Teel, G; Mariotti, D; Walker, M L R; Keidar, M
2018-02-28
Drastic miniaturization of electronics and ingression of next-generation nanomaterials into space technology have provoked a renaissance in interplanetary flights and near-Earth space exploration using small unmanned satellites and systems. As the next stage, the NASA's 2015 Nanotechnology Roadmap initiative called for new design paradigms that integrate nanotechnology and conceptually new materials to build advanced, deep-space-capable, adaptive spacecraft. This review examines the cutting edge and discusses the opportunities for integration of nanomaterials into the most advanced types of electric propulsion devices that take advantage of their unique features and boost their efficiency and service life. Finally, we propose a concept of an adaptive thruster.
NASA Technical Reports Server (NTRS)
Von Puttkamer, J.
1985-01-01
Space exploration goals for NASA in the year 2000 time frame are examined. A lunar base would offer the opportunity for continuous earth viewing, further cosmogeochemical exploration and rudimentary steps at self-sufficiency in space. The latter two factors are also compelling reasons to plan a manned Mars base. Furthermore, competition and cooperation in a Mars mission and further interplanetary exploration is an attractive substitute for war. The hardware requirements for various configurations of Mars missions are briefly addressed, along with other, unmanned missions to the asteroid belt, Mercury, Venus, Jupiter and the moons of Jupiter and Saturn. Finally, long-range technological requirements for providing adequate living/working facilities for larger human populations in Space Station environments are summarized.
NASA Astrophysics Data System (ADS)
Vassiliadis, D.; Green, J.
2008-05-01
The phase space density fe of the radiation belt electron population is reconstructed based on measurements made by POLAR/HIST. The density peaks in invariant space (mu, K, L*) are shown to be responding to changes in the solar wind velocity and density, and the interplanetary magnetic field. We have associated specific types of storms with the appearance of peaks thereby producing a climatology of fe. We will report on comparing the phase space density changes during these storms to the ULF wave power in the inner magnetosphere remote- sensed by the IMAGE magnetometer array and related properties of the wave environment.
Doppler frequency in interplanetary radar and general relativity
NASA Technical Reports Server (NTRS)
Mcvittie, G. C.
1972-01-01
The change of frequency of an interplanetary radar signal sent from the earth to another planet or to a space probe is worked out according to general relativity. The Schwarzschild spacetime is employed and its null geodesics control the motion of the signals. Exact Doppler frequency formulas are derived for one-way and two-way radar in terms of an arbitrary Schwarzschild radial coordinate. A reduction to the special relativity case is used to interpret the formulas in terms of the relative radial velocity of emitter and target. The general relativity corrections are worked out approximately for each of three possible Schwarzschild radial coordinates, and a numerical example is given. The amount of the correction is different according as one or the other of the Schwarzschild coordinates is identified with the radius vector deduced from classical celestial mechanics. The identification problem is discussed.
Space technology in remote health care
NASA Technical Reports Server (NTRS)
Pool, Sam L.
1991-01-01
Crews and passengers on future long-duration Earth orbital and interplanetary missions must be provided quality health services - to combat illnesses and accidental injuries, and for routine preventive care. People on Earth-orbital missions can be returned relatively easily to Earth, but those on interplanetary missions cannot. Accordingly, crews on long-duration missions will likely include at least one specially trained person, perhaps a physician's assistant, hospital corpsman, nurse, or physician who will be responsible for providing onboard health services. Specifically, we must determine the most effective way to administer health care to a remotely located population. NASA with the cooperation of the Department of Health, Education, and Welfare is pursuing a program for providing health services to remote locations on Earth as a necessary step to developing and verifying this capability on a spacecraft. The STARPAHC program is described.
CFDP for Interplanetary Overlay Network
NASA Technical Reports Server (NTRS)
Burleigh, Scott C.
2011-01-01
The CCSDS (Consultative Committee for Space Data Systems) File Delivery Protocol for Interplanetary Overlay Network (CFDP-ION) is an implementation of CFDP that uses IO' s DTN (delay tolerant networking) implementation as its UT (unit-data transfer) layer. Because the DTN protocols effect automatic, reliable transmission via multiple relays, CFDP-ION need only satisfy the requirements for Class 1 ("unacknowledged") CFDP. This keeps the implementation small, but without loss of capability. This innovation minimizes processing resources by using zero-copy objects for file data transmission. It runs without modification in VxWorks, Linux, Solaris, and OS/X. As such, this innovation can be used without modification in both flight and ground systems. Integration with DTN enables the CFDP implementation itself to be very simple; therefore, very small. Use of ION infrastructure minimizes consumption of storage and processing resources while maximizing safety.
Three-dimensional exploration of the solar wind using observations of interplanetary scintillation
TOKUMARU, Munetoshi
2013-01-01
The solar wind, a supersonic plasma flow continuously emanating from the Sun, governs the space environment in a vast region extending to the boundary of the heliosphere (∼100 AU). Precise understanding of the solar wind is of importance not only because it will satisfy scientific interest in an enigmatic astrophysical phenomenon, but because it has broad impacts on relevant fields. Interplanetary scintillation (IPS) of compact radio sources at meter to centimeter wavelengths serves as a useful ground-based method for investigating the solar wind. IPS measurements of the solar wind at a frequency of 327 MHz have been carried out regularly since the 1980s using the multi-station system of the Solar-Terrestrial Environment Laboratory (STEL) of Nagoya University. This paper reviews new aspects of the solar wind revealed from our IPS observations. PMID:23391604
Coronal mass ejections and coronal structures
NASA Technical Reports Server (NTRS)
Hildner, E.; Bassi, J.; Bougeret, J. L.; Duncan, R. A.; Gary, D. E.; Gergely, T. E.; Harrison, R. A.; Howard, R. A.; Illing, R. M. E.; Jackson, B. V.
1986-01-01
Research on coronal mass ejections (CMF) took a variety of forms, both observational and theoretical. On the observational side there were: case studies of individual events, in which it was attempted to provide the most complete descriptions possible, using correlative observations in diverse wavelengths; statistical studies of the properties CMEs and their associated activity; observations which may tell us about the initiation of mass ejections; interplanetary observations of associated shocks and energetic particles even observations of CMEs traversing interplanetary space; and the beautiful synoptic charts which show to what degree mass ejections affect the background corona and how rapidly (if at all) the corona recovers its pre-disturbance form. These efforts are described in capsule form with an emphasis on presenting pictures, graphs, and tables so that the reader can form a personal appreciation of the work and its results.
NASA Technical Reports Server (NTRS)
Emrich, Bill
2006-01-01
A simple method of estimating vehicle parameters appropriate for interplanetary travel can provide a useful tool for evaluating the suitability of particular propulsion systems to various space missions. Although detailed mission analyses for interplanetary travel can be quite complex, it is possible to derive hirly simple correlations which will provide reasonable trip time estimates to the planets. In the present work, it is assumed that a constant thrust propulsion system propels a spacecraft on a round trip mission having equidistant outbound and inbound legs in which the spacecraft accelerates during the first portion of each leg of the journey and decelerates during the last portion of each leg of the journey. Comparisons are made with numerical calculations from low thrust trajectory codes to estimate the range of applicability of the simplified correlations.
New meteoroid model predictions for directional impacts on LDEF
NASA Technical Reports Server (NTRS)
Divine, Neil; Aguero, Rene C.
1992-01-01
An extensive body of data, from meteors, zodiacal light, spacecraft-borne impact detectors (helios, Pioneer, Galileo, and Ulysses), and other sources, forms the basis of a new numerical model for the distributions of interplanetary meteoroids. For each of the five populations in this model it is possible to evaluate meteoroid concentration and flux for oriented surfaces or detectors having arbitrary position and velocity in interplanetary space (Divine, 1992, in preparation). For a spacecraft in geocentric orbit, the effects of gravitational focusing and shielding by the Earth were derived with full attention to the directionality of the particles, both on approach (i.e., relative to a massless Earth) and at the target. This modeling approach was exercised to provide an estimate of meteoroid fluence for each of several oriented surfaces on the Long Duration Exposure Facility (LDEF).
Mission Analysis for the Don Quijote Phase-A Study
NASA Technical Reports Server (NTRS)
Cano, Juan L.; Sanchez, Mariano; Cornara, Stefania; Carnelli, Ian
2007-01-01
The Don Quijote Phase-A study is a definition study funded by ESA and devoted to the analysis of the possibilities to deflect a Near Earth Object (NEO) in the range of 300-800 m diameter. DEIMOS Space S.L. and EADS Astrium have teamed up within this study to form one of the three consortia that have analyzed these aspects for ESA. Target asteroids for the mission are 1989 ML, 2002 AT4 and Apophis. This paper presents the mission analysis activities within the consortium providing: low-thrust interplanetary rendezvous Orbiter trajectories to the target asteroids, ballistic interplanetary trajectories for the Impactor, Orbiter arrival description at the asteroids, Orbiter stable orbits characterization at the asteroid, deflection determination by means of a Radio Science Experiment (RSE) as well as the mission timelines and overall mission scenarios.
The MASSE Project: Applications of Biotechnology for Planetary Exploration
NASA Technical Reports Server (NTRS)
Lynch, Kennda; Steele, Andrew; Hedgecock, Jud; Wainwright, Norm; McKay, David S.; Maule, Jake; Schweitzer, Mary
2003-01-01
Automated life-detection experiments for solar system exploration have been previously. proposed and used onboard the. Viking, Mars lander,s, although. with ambiguous results. The recent advances in biotechnology such as biosensors, protein microarrays, and microfluidics alongside increased. knowledge in biomarker science have led to vastly improved sophistication and sensitivity for a new approach in life detection. The MASSE project has taken the challenge of integrating all of this knowledge into a new generation of interplanetary flight instrumentation for the main purpose.ot combining several mutually. confirming tests for life, organic/microbial contamination, prebiotic and abiotic chemicals into a small low powered instrument. Although the primary goal is interplanetary exploration, several terrestrial applications have become apparent specifically in point-of-care medical technology, bio-warfare, environmental sensing and microbial monitoring of manned space-flight vehicles.
The gravitational wave experiment
NASA Technical Reports Server (NTRS)
Bertotti, B.; Ambrosini, R.; Asmar, S. W.; Brenkle, J. P.; Comoretto, G.; Giampieri, G.; Less, L.; Messeri, A.; Wahlquist, H. D.
1992-01-01
Since the optimum size of a gravitational wave detector is the wave length, interplanetary dimensions are needed for the mHz band of interest. Doppler tracking of Ulysses will provide the most sensitive attempt to date at the detection of gravitational waves in the low frequency band. The driving noise source is the fluctuations in the refractive index of interplanetary plasma. This dictates the timing of the experiment to be near solar opposition and sets the target accuracy for the fractional frequency change at 3.0 x 10 exp -14 for integration times of the order of 1000 sec. The instrumentation utilized by the experiment is distributed between the radio systems on the spacecraft and the seven participating ground stations of the Deep Space Network and Medicina. Preliminary analysis is available of the measurements taken during the Ulysses first opposition test.
The Cassini Cosmic Dust Analyser CDA - A 10 year exploration of Saturn's dust environment
NASA Astrophysics Data System (ADS)
Srama, Ralf
2014-05-01
The interplanetary space probe Cassini/Huygens reached Saturn in July 2004 after seven years of cruise phase. Since then, the German-lead Cosmic Dust Analyser (CDA) was operated continuously for 10 years in orbit around Saturn. The first discovery of CDA related to Saturn was the measurement of nanometer sized dust particles ejected by its magnetosphere to interplanetary space with speeds higher than 100 km/s. Their origin and composition was analysed and an their dynamical studies showed a strong link to the conditions of the solar wind plasma flow. A recent surprising result was, that stream particles stem from the interior of Enceladus. Since 2004 CDA measured millions of dust impacts characterizing the dust environment of Saturn. The instrument showed strong evidence for ice geysers located at the south pole of Saturn's moon Enceladus in 2005. Later, a detailed compositional analysis of the salt-rich water ice grains in Saturn's E ring system lead to the discovery of liquid water below the crust connected to an ocean at depth feeding the icy jets. CDA was even capable to derive a spatially resolved compositional profile of the plume during close Enceladus flybys. A determination of the dust-magnetosphere interaction and the discovery of the extended E ring (at least twice as large as previously known) allowed the definition of a dynamical dust model of Saturns E ring describing the observed properties. Cassini performed shadow crossings in the ring plane and dust grain charges were measured in shadow regions delivering important data for dust-plasma interaction studies. In the last years, dedicated measurement campaigns were executed by CDA to monitor the flux of interplanetary and interstellar dust particles reaching Saturn.
NASA Technical Reports Server (NTRS)
Berchem, Jean; Nemecek, Z.; Safrankova, J.; Prech, L.; Simunek, J.; Sauvaud, J.-A.; Fedorov, A.; Stenuit, H.; Fuselier, S. A.; Savin, S.;
2003-01-01
The cusp represents a place where the magnetosheath plasma can directly penetrate into the magnetosphere. Since the main transport processes are connected with merging of the interplanetary and magnetospheric field lines: the interplanetary magnetic field (IMF) Orientation plays a decisive role in the formation of the high-altitude cusp. The importance of the sign of the IMF B(sub Z) component for this process was suggested about 40 years ago and later it was documented by many experimental investigations. However, situations when IMF Bz is the major IMF component are rather rare. The structure of the cusp during periods of a small IMF B(sub Z) is generally unknown, probably due to the fully 3-D nature of the interaction. The present case study reveals the importance of horizontal IMF components on the global magnetospheric configuration as well as on small-scale processes at the cusp-magnetosheath interface. We have used simultaneous measurements of several spacecraft (ISTP program) operating in different regions of interplanetary space and two closely spaced satellites (INTERBALL-1/MAGION-4) crossing the cusp-magnetosheath boundary to show the connection between the short- and large-scale phenomena. In the northern hemisphere, observations suggest a presence of two spots of cusp-like precipitation supplied by reconnection occurring simultaneously in both hemispheres. A source of this bifurcation is the positive IMF B(sub y) component further enhanced by the field draping in the magnetosheath. This magnetic field component shifts the entry point far away from the local noon but in opposite sense in either hemisphere. The cusp represents a place where the magnetosheath plasma can directly
NASA Astrophysics Data System (ADS)
Berdichevsky, D. B.; Lepping, R. P.; Wu, C. C.
2015-12-01
During 1995-2012 Wind recorded 168 magnetic clouds (MCs), 197 magnetic cloud-like structures (MCLs), and 358 interplanetary (IP) shocks. Ninety four MCs and 56 MCLs had upstream shock waves. The following features are found: (i) Averages of solar wind speed, interplanetary magnetic field (IMF), duration (<Δt>), strength of Bzmin, and intensity of the associated geomagnetic storm/activity (Dstmin) for MCs with upstream shock waves (MCSHOCK) are higher (or stronger) than those averages for the MCs without upstream shock waves (MCNO-SHOCK). (ii) The <Δt> of MCSHOCK events (≈19.6 hr) is 9% longer than that for MCNO-SHOCK events (≈17.9 hr). (iii) For the MCSHOCK events, the average duration of the sheath (<ΔtSHEATH>) is 12.1 hrs. These findings could be very useful for space weather predictions, i.e. IP shocks driven by MCs are expected to arrive at Wind (or at 1 AU) about ~12 hours ahead of the front of the MCs on average. (iv) The occurrence frequency of IP shocks is well associated with sunspot number (SSN). The average intensity of geomagnetic storms measured by
Preliminary Design of Low-Thrust Interplanetary Missions
NASA Technical Reports Server (NTRS)
Sims, Jon A.; Flanagan, Steve N.
1997-01-01
For interplanetary missions, highly efficient electric propulsion systems can be used to increase the mass delivered to the destination and/or reduce the trip time over typical chemical propulsion systems. This technology is being demonstrated on the Deep Space 1 mission - part of NASA's New Millennium Program validating technologies which can lower the cost and risk and enhance the performance of future missions. With the successful demonstration on Deep Space 1, future missions can consider electric propulsion as a viable propulsion option. Electric propulsion systems, while highly efficient, produce only a small amount of thrust. As a result, the engines operate during a significant fraction of the trajectory. This characteristic makes it much more difficult to find optimal trajectories. The methods for optimizing low-thrust trajectories are typically categorized as either indirect, or direct. Indirect methods are based on calculus of variations, resulting in a two-point boundary value problem that is solved by satisfying terminal constraints and targeting conditions. These methods are subject to extreme sensitivity to the initial guess of the variables - some of which are not physically intuitive. Adding a gravity assist to the trajectory compounds the sensitivity. Direct methods parameterize the problem and use nonlinear programming techniques to optimize an objective function by adjusting a set of variables. A variety of methods of this type have been examined with varying results. These methods are subject to the limitations of the nonlinear programming techniques. In this paper we present a direct method intended to be used primarily for preliminary design of low-thrust interplanetary trajectories, including those with multiple gravity assists. Preliminary design implies a willingness to accept limited accuracy to achieve an efficient algorithm that executes quickly.
Employment of Asteroids for Movement Space Ship and Probes
NASA Technical Reports Server (NTRS)
Bolonkin, Alexander
2002-01-01
At present, rockets are used to change the trajectory of space ships and probes. This method is very expensive and requires a lot of fuel, which limits the feasibility of space stations, interplanetary space ships, and probes. Sometimes space probes use the gravity field of a planet. However, there are only 9 planets in our solar system and they are separated by great distances. There are tens of millions of asteroids in outer space. The author offers a revolutionary method for changing the trajectory of space probes. This method uses the kinetic or rotary energy of asteroids, meteorites or other space bodies (small planets, natural planet satellites, etc.). to increase (to decrease) ship (probe) speed up to 1000 m/sec (or more) and to get any new direction in outer space. The flight possibilities of space ships and probes are increased by a factor of millions.
NASA Technical Reports Server (NTRS)
1975-01-01
Cost analyses and tradeoff studies are given for waste management in the Space Station, Lunar Surface Bases, and interplanetary space missions. Crew drinking water requirements are discussed and various systems to recycle water are examined. The systems were evaluated for efficiency and weight savings. The systems considered effective for urine water recovery were vapor compression, flash evaporation, and air evaporation with electrolytic pretreatment. For wash water recovery, the system of multifiltration was selected. A wet oxidation system, which can process many kinds of wastes, is also considered.
Collaborative Wideband Compressed Signal Detection in Interplanetary Internet
NASA Astrophysics Data System (ADS)
Wang, Yulin; Zhang, Gengxin; Bian, Dongming; Gou, Liang; Zhang, Wei
2014-07-01
As the development of autonomous radio in deep space network, it is possible to actualize communication between explorers, aircrafts, rovers and satellites, e.g. from different countries, adopting different signal modes. The first mission to enforce the autonomous radio is to detect signals of the explorer autonomously without disturbing the original communication. This paper develops a collaborative wideband compressed signal detection approach for InterPlaNetary (IPN) Internet where there exist sparse active signals in the deep space environment. Compressed sensing (CS) can be utilized by exploiting the sparsity of IPN Internet communication signal, whose useful frequency support occupies only a small portion of an entirely wide spectrum. An estimate of the signal spectrum can be obtained by using reconstruction algorithms. Against deep space shadowing and channel fading, multiple satellites collaboratively sense and make a final decision according to certain fusion rule to gain spatial diversity. A couple of novel discrete cosine transform (DCT) and walsh-hadamard transform (WHT) based compressed spectrum detection methods are proposed which significantly improve the performance of spectrum recovery and signal detection. Finally, extensive simulation results are presented to show the effectiveness of our proposed collaborative scheme for signal detection in IPN Internet. Compared with the conventional discrete fourier transform (DFT) based method, our DCT and WHT based methods reduce computational complexity, decrease processing time, save energy and enhance probability of detection.
Cancer Risk Assessment for Space Radiation
NASA Technical Reports Server (NTRS)
Richmond, Robert C.; Cruz, Angela; Bors, Karen; Curreri, Peter A. (Technical Monitor)
2001-01-01
Predicting the occurrence of human cancer following exposure to any agent causing genetic damage is a difficult task. This is because the uncertainty of uniform exposure to the damaging agent, and the uncertainty of uniform processing of that damage within a complex set of biological variables, degrade the confidence of predicting the delayed expression of cancer as a relatively rare event within any given clinically normal individual. The radiation health research priorities for enabling long-duration human exploration of space were established in the 1996 NRC Report entitled 'Radiation Hazards to Crews of Interplanetary Missions: Biological Issues and Research Strategies'. This report emphasized that a 15-fold uncertainty in predicting radiation-induced cancer incidence must be reduced before NASA can commit humans to extended interplanetary missions. That report concluded that the great majority of this uncertainty is biologically based, while a minority is physically based due to uncertainties in radiation dosimetry and radiation transport codes. Since that report, the biologically based uncertainty has remained large, and the relatively small uncertainty associated with radiation dosimetry has increased due to the considerations raised by concepts of microdosimetry. In a practical sense, however, the additional uncertainties introduced by microdosimetry are encouraging since they are in a direction of lowered effective dose absorbed through infrequent interactions of any given cell with the high energy particle component of space radiation. Additional information is contained in the original extended abstract.
NASA Technical Reports Server (NTRS)
Teles, Jerome (Editor); Samii, Mina V. (Editor)
1993-01-01
A conference on spaceflight dynamics produced papers in the areas of orbit determination, spacecraft tracking, autonomous navigation, the Deep Space Program Science Experiment Mission (DSPSE), the Global Positioning System, attitude control, geostationary satellites, interplanetary missions and trajectories, applications of estimation theory, flight dynamics systems, low-Earth orbit missions, orbital mechanics, mission experience in attitude dynamics, mission experience in sensor studies, attitude dynamics theory and simulations, and orbit-related experience. These papaers covered NASA, European, Russian, Japanese, Chinese, and Brazilian space programs and hardware.
NASA Technical Reports Server (NTRS)
Lewis, B. W.; Stokes, C. S.; Smith, E. W.; Murphy, W. J. (Inventor)
1973-01-01
A chemical system is described for releasing a good yield of free barium neutral atoms and barium ions in the upper atmosphere and interplanetary space for the study of the geophysical properties of the medium. The barium is released in the vapor phase so that it can be ionized by solar radiation and also be excited to emit resonance radiation in the visible range. The ionized luminous cloud of barium becomes a visible indication of magnetic and electrical characteristics in space and allows determination of these properties over relatively large areas at a given time.
NASA Technical Reports Server (NTRS)
Englander, Jacob; Vavrina, Matthew
2015-01-01
The customer (scientist or project manager) most often does not want just one point solution to the mission design problem Instead, an exploration of a multi-objective trade space is required. For a typical main-belt asteroid mission the customer might wish to see the trade-space of: Launch date vs. Flight time vs. Deliverable mass, while varying the destination asteroid, planetary flybys, launch year, etcetera. To address this question we use a multi-objective discrete outer-loop which defines many single objective real-valued inner-loop problems.
NASA Technical Reports Server (NTRS)
Oneal, R. L. (Compiler)
1974-01-01
The meteoroid detection experiment has the objective of measuring the population of 10 to the minus 9th power and 10 to the minus 8th power grams mass particles in interplanetary space with emphasis on making these measurements in the Asteroid Belt. The instrument design, which uses the pressurized-cell-penetration detection technique, and the tests involved in obtaining a flight-qualified instrument are described. The successful demonstration of flight-quality penetration detectors to function properly under long-term simulated space environments is also described.
Launch Period Development for the Juno Mission to Jupiter
NASA Technical Reports Server (NTRS)
Kowalkowski, Theresa D.; Johannesen, Jennie R.; Lam, Try
2008-01-01
The Juno mission to Jupiter is targeted to launch in 2011 and would reach the giant planet about five years later. The interplanetary trajectory is planned to include two large deep space maneuvers and an Earth gravity assist a little more than two years after launch. In this paper, we describe the development of a 21-day launch period for Juno with the objective of keeping overall launch energy and delta-V low while meeting constraints imposed on Earth departure, the deep space maneuvers' timing and geometry, and Jupiter arrival.
NASA Technical Reports Server (NTRS)
Campbell, J. E.
1974-01-01
The uses of scanning electron microscopy in assessing changes that occur in spores exposed to wet and dry heat cycles at elevated temperatures were examined. Several species of Bacillus and other nonspore-forming species of organisms were used for the experiment. Surface morphology of viable and nonviable organisms was clearly detectable by this method, making it a potentially useful technique for investigating microbial inactivation on space vehicle surfaces and components. Micrographs of the spores and bacterial cells are provided.
Integrated System Design for Air Revitalization in Next Generation Crewed Spacecraft
NASA Technical Reports Server (NTRS)
Mulloth, Lila; Perry, Jay; LeVan, Douglas
2004-01-01
The capabilities of NASA's existing environmental control and life support (ECLS) system designs are inadequate for future human space initiatives that involve long-duration space voyages and interplanetary missions. This paper discusses the concept of an integrated system of CO2 removal and trace contaminant control units that utilizes novel gas separation and purification techniques and optimized thermal and mechanical design, for future spacecraft. The integration process will enhance the overall life and economics of the existing systems by eliminating multiple mechanical devices with moving parts.
Spacecraft shielding for a Mars mission
NASA Astrophysics Data System (ADS)
O'Brien, K.
Calculations of the effective radiation dose due to cosmic rays in the interplanetary medium between Earth and Mars show that, as in the atmosphere above the Pfotzer Maximum, the dose rate increases with increasing wall thickness. An unshielded space crew member would receive almost 70 rem (0.70 Sv) a year. The effect of a typically proposed composite space-craft hull of aluminum and polyethylene would increase the dose rate by a few percent. However, 100 g/cm2 of almost any light material would more than double the cosmic radiation exposure of the crew.
NASA Technical Reports Server (NTRS)
Minow, Josep I.; Edwards, David L.
2008-01-01
Qualifying materials for use in the space environment is typically accomplished with laboratory exposures to simulated UV/EUV, atomic oxygen, and charged particle radiation environments with in-situ or subsequent measurements of material properties of interest to the particular application. Choice of environment exposure levels are derived from static design environments intended to represent either mean or extreme conditions that are anticipated to be encountered during a mission. The real space environment however is quite variable. Predictions of the on orbit performance of a material qualified to laboratory environments can be done using information on 'space weather' variations in the real environment. This presentation will first review the variability of space environments of concern for material degradation and then demonstrate techniques for using test data to predict material performance in a variety of space environments from low Earth orbit to interplanetary space using historical measurements and space weather models.
Ecology and thermal inactivation of microbes in and on interplanetary space vehicle components
NASA Technical Reports Server (NTRS)
Campbell, J. E.; Reyes, A. L.; Wehby, A. J.; Crawford, R. G.; Wimsatt, J. C.; Peeler, J. T.
1974-01-01
Dry heat sterilization of spacecraft was investigated by studying the production of spore crops, and thermal inactivation of the spores, and bacillus subtillus. Spore assays were made by conventional plate count methods, and survival curves for the spores are presented. The results indicate that the inherent resistance of spores from a parent cell can be maintained.
2016 Summer Series - Alan Stern - The Exploration of Pluto by New Horizons
2016-08-11
Interplanetary exploration is essential for the long-term survival of our species. Robotic space exploration allows us to advance our knowledge of our solar system and beyond. Dr. Alan Stern will talk about the New Horizons mission to Pluto and the scientific knowledge gained through the exploration of the icy worlds at the edge of our solar system.
Scientific activity program for 1989
NASA Astrophysics Data System (ADS)
1989-04-01
The current research projects are summarized. The research is grouped into four main directions: infrared astronomy, interplanetary media, cosmic rays and gravitational fields. The projects include instruments for the Infrared Space Observatory (ISO) satellite, problems of star formation and star evolution, Tethered Satellite System (TSS) experiment, Opera experiment, propagation of cosmic rays in the ionosphere, design of a solar neutron detector, and gravitational wave antennas experiments.
Application of non-coherent Doppler data types for deep space navigation
NASA Technical Reports Server (NTRS)
Bhaskaran, Shyam
1995-01-01
Recent improvements in computational capability and Deep Space Network technology have renewed interest in examining the possibility of using one-way Doppler data alone to navigate interplanetary spacecraft. The one-way data can be formulated as the standard differenced-count Doppler or as phase measurements, and the data can be received at a single station or differenced if obtained simultaneously at two stations. A covariance analysis is performed which analyzes the accuracy obtainable by combinations of one-way Doppler data and compared with similar results using standard two-way Doppler and range. The sample interplanetary trajectory used was that of the Mars Pathfinder mission to Mars. It is shown that differenced one-way data is capable of determining the angular position of the spacecraft to fairly high accuracy, but has relatively poor sensitivity to the range. When combined with single station data, the position dispersions are roughly an order of magnitude larger in range and comparable in angular position as compared to dispersions obtained with standard data two-way types. It was also found that the phase formulation is less sensitive to data weight variations and data coverage than the differenced-count Doppler formulation.
Dust Measurements by the Student Dust Counter (SDC) onboard the New Horizons Mission
NASA Astrophysics Data System (ADS)
James, David; Horanyi, Mihaly; Poppe, Andrew
The Venetia Burney Student Dust Counter (VSDC) on the New Horizons spacecraft is a dust impact detector designed to map the interplanetary dust distribution along the trajectory of the New Horizons spacecraft as it traverses our solar system. VSDC is the first student built instrument on a deep space mission and is currently operated by a small group of undergraduate and graduate students at the Laboratory for Atmospheric and Space Physics (LASP), University of Colorado. VSDC is based on permanently polarized thin plastic film sensors that generate an electrical signal when an impacting dust particle penetrates them. The total surface area is about 0.1 square meters and the detection threshold is about 1 micron in radius. By the time of this meeting (7/2008), VSDC will have operated for about 500 days, covering an approximate distance of 1.2 to 10.5 AU. In this talk, we will briefly review the VSDC instrument, including the in-flight calibrations and tests. We will report on the measured spatial and size distribution of interplanetary dust particles before and after the New Horizons encounter with Jupiter. These data will also be compared to earlier measurements by Ulysses, Galileo and Cassini.
NASA Astrophysics Data System (ADS)
Kozarev, Kamen; Veronig, Astrid; Duchlev, Peter; Koleva, Kostadinka; Dechev, Momchil; Miteva, Rositsa; Temmer, Manuela; Dissauer, Karin
2017-11-01
Coronal mass ejections (CMEs), one of the most energetic manifestations of solar activity, are complex events, which combine multiple related phenomena occurring on the solar surface, in the extended solar atmosphere (corona), as well as in interplanetary space. We present here an outline of a new collaborative project between scientists from the Bulgarian Academy of Sciences (BAS), Bulgaria and the University of Graz, Austria. The goal of the this research project is to answer the following questions: 1) What are the properties of erupting filaments, CMEs, and CME-driven shock waves near the Sun, and of associated solar energetic particle (SEP) fluxes in interplanetary space? 2) How are these properties related to the coronal acceleration of SEPs? To achieve the scientific goals of this project, we will use remote solar observations with high spatial and temporal resolution to characterize the early stages of coronal eruption events in a systematic way - studying the pre-eruptive behavior of filaments and flares during energy build-up, the kinematics and morphology of CMEs and compressive shock waves, and the signatures of high energy non-thermal particles in both remote and in situ observations.
Radiation and Internal Charging Environments for Thin Dielectrics in Interplanetary Space
NASA Technical Reports Server (NTRS)
Minow, Joseph I.; Parker, Linda Neergaard; Altstatt, Richard L.
2004-01-01
Spacecraft designs using solar sails for propulsion or thin membranes to shade instruments from the sun to achieve cryogenic operating temperatures are being considered for a number of missions in the next decades. A common feature of these designs are thin dielectric materials that will be exposed to the solar wind, solar energetic particle events, and the distant magnetotail plasma environments encountered by spacecraft in orbit about the Earth-Sun L2 point. This paper will discuss the relevant radiation and internal charging environments developed to support spacecraft design for both total dose radiation effects as well as dose rate dependent phenomenon, such as internal charging in the solar wind and distant magnetotail environments. We will describe the development of radiation and internal charging environment models based on nearly a complete solar cycle of Ulysses solar wind plasma measurements over a complete range of heliocentric latitudes and the early years of the Geotail mission where distant magnetotail plasma environments were sampled beyond X(sub GSE) = -100 Re to nearly L2 (X(sub GSE) -236 Re). Example applications of the environment models are shown to demonstrate the radiation and internal charging environments of thin materials exposed to the interplanetary space plasma environments.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bučík, Radoslav; Innes, Davina E.; Mason, Glenn M.
Small, {sup 3}He-rich solar energetic particle (SEP) events have been commonly associated with extreme-ultraviolet (EUV) jets and narrow coronal mass ejections (CMEs) that are believed to be the signatures of magnetic reconnection, involving field lines open to interplanetary space. The elemental and isotopic fractionation in these events are thought to be caused by processes confined to the flare sites. In this study, we identify 32 {sup 3}He-rich SEP events observed by the Advanced Composition Explorer , near the Earth, during the solar minimum period 2007–2010, and we examine their solar sources with the high resolution Solar Terrestrial Relations Observatory (more » STEREO ) EUV images. Leading the Earth, STEREO -A has provided, for the first time, a direct view on {sup 3}He-rich flares, which are generally located on the Sun’s western hemisphere. Surprisingly, we find that about half of the {sup 3}He-rich SEP events in this survey are associated with large-scale EUV coronal waves. An examination of the wave front propagation, the source-flare distribution, and the coronal magnetic field connections suggests that the EUV waves may affect the injection of {sup 3}He-rich SEPs into interplanetary space.« less
MiniCOR: A miniature coronagraph for an interplanetary CUBESAT
NASA Astrophysics Data System (ADS)
Vourlidas, A.; Korendyke, C.; Liewer, P. C.; Cutler, J.; Howard, R.; Plunkett, S. P.; Thernisien, A. F.
2015-12-01
Coronagraphs occupy a unique place in Heliophysics, critical to both NAA and NOAA programs. They are the primary means for the study of the extended solar coorna and its short/long term activity. In addition coronagraphs are the only instrument that can image coronal mass ejections (CMEs) leaving the Sun and provide ciritical information for space weather forecasting. We descirbe a low cost miniaturzied CubeSat coronagraph, MiniCOR, designed to operate in deep space which will returndata with higher cadence and sensitivity than that from the SOHO/LASCO coronagraphs. MiniCOR is a six unit (6U) science craft with a tightly integrated, single instrument interplanetary flight system optiized for science. MiniCOR fully exploits recent technology advance in CubeSat technology and active pixel sensors. With a factor of 2.9 improvement in light gathering power over SOHO and quasi-continuous data collection, MiniCOR can observe the slow solar wind, CMEs and shocks with sufficient signal-to-noise ratio (SNR) to open new windows on our understanding of the inner Heliosphere. An operating Minic'OR would prvide coornagraphic observations in support of the upcoming Solar Probe Plus (SPP) and Solar Orbiter (SO) missions.
Integrated RF/Optical Interplanetary Networking Preliminary Explorations and Empirical Results
NASA Technical Reports Server (NTRS)
Raible, Daniel E.; Hylton, Alan G.
2012-01-01
Over the last decade interplanetary telecommunication capabilities have been significantly expanded--specifically in support of the Mars exploration rover and lander missions. NASA is continuing to drive advances in new, high payoff optical communications technologies to enhance the network to Gbps performance from Mars, and the transition from technology demonstration to operational system is examined through a hybrid RF/optical approach. Such a system combines the best features of RF and optical communications considering availability and performance to realize a dual band trunk line operating within characteristic constraints. Disconnection due to planetary obscuration and solar conjunction, link delays, timing, ground terminal mission congestion and scheduling policy along with space and atmospheric weather disruptions all imply the need for network protocol solutions to ultimately manage the physical layer in a transparent manner to the end user. Delay Tolerant Networking (DTN) is an approach under evaluation which addresses these challenges. A multi-hop multi-path hybrid RF and optical test bed has been constructed to emulate the integrated deep space network and to support protocol and hardware refinement. Initial experimental results characterize several of these challenges and evaluate the effectiveness of DTN as a solution to mitigate them.
NASA Astrophysics Data System (ADS)
Horneck, Gerda
2012-05-01
"Panspermia", coined by S. Arrhenius in 1903, suggests that microscopic forms of life, e.g., bacterial spores, can be dispersed in space by the radiation pressure from the Sun thereby seeding life from one planet to another or even beyond our Solar System. Being ignored for almost the rest of the century, the scenario of interplanetary transfer of life has received increased support from recent discoveries, such as the detection of Martian meteorites and the high resistance of microorganisms to outer space conditions. With the aid of space technology and adequate laboratory devices the following decisive step required for viable transfer from one planet to another have been tested: (i) the escape process, i.e. impact ejection into space; (ii) the journey through space over extended periods of time; and (iii) the landing process, i.e. non-destructive deposition of the biological material on another planet. In systematic shock recovery experiments within a pressure range observed in Martian meteorites (5-50 GPa) a vital launch window of 5-40 GPa has been determined for spores of Bacillus subtilis and the lichen Xanthoria elegans, whereas this window was restricted to 5-10 GPa for the endolithic cyanobaterium Chroococcidiopsis. Traveling through space implies exposure to high vacuum, an intense radiation regime of cosmic and solar origin and high temperature fluctuations. In several space experiments the biological efficiency of these different space parameters has been tested: extraterrestrial solar UV radiation has exerted the most deleterious effects to viruses, as well as to bacterial and fungal spores; however shielding against this intense insolation resulted in 70 % survival of B. subtilis spores after spending 6 years in outer space. Lichens survived 2 weeks in space, even without any shielding. Long-term exposure to space (up to 2 years) of a variety of resistant organisms was recently provided by ESA's EXPOSE missions onboard of the International Space Station. The entry process of microorganisms has been tested in the STONE facility attached to the heat shield of a reentry capsule. The data provide experimental information to the scenario of "Lithopanspermia", which assumes that impact-expelled rocks serve as interplanetary transfer vehicles for microorganisms colonizing those rocks.
NASA Astrophysics Data System (ADS)
Denardini, Clezio Marcos; Padilha, Antonio; Takahashi, Hisao; Souza, Jonas; Mendes, Odim; Batista, Inez S.; SantAnna, Nilson; Gatto, Rubens; Costa, D. Joaquim
On August 2007 the National Institute for Space Research started a task force to develop and operate a space weather program, which is kwon by the acronyms Embrace that stands for the Portuguese statement “Estudo e Monitoramento BRAasileiro de Clima Espacial” Program (Brazilian Space Weather Study and Monitoring program). The main purpose of the Embrace Program is to monitor the space climate and weather from sun, interplanetary space, magnetosphere and ionosphere-atmosphere, and to provide useful information to space related communities, technological, industrial and academic areas. Since then we have being visiting several different space weather costumers and we have host two workshops of Brazilian space weather users at the Embrace facilities. From the inputs and requests collected from the users the Embrace Program decided to monitored several physical parameters of the sun-earth environment through a large ground base network of scientific sensors and under collaboration with space weather centers partners. Most of these physical parameters are daily published on the Brazilian space weather program web portal, related to the entire network sensors available. A comprehensive data bank and an interface layer are under development to allow an easy and direct access to the useful information. Nowadays, the users will count on products derived from a GNSS monitor network that covers most of the South American territory; a digisonde network that monitors the ionospheric profiles in two equatorial sites and in one low latitude site; several solar radio telescopes to monitor solar activity, and a magnetometer network, besides a global ionospheric physical model. Regarding outreach, we publish a daily bulletin in Portuguese with the status of the space weather environment on the Sun, in the Interplanetary Medium and close to the Earth. Since December 2011, all these activities are carried out at the Embrace Headquarter, a building located at the INPE's main campus. Recently, we have release brand new products, among them, some regional magnetic indices and the GNSS vertical error map over South America. Contacting Author: C. M. Denardini (clezio.denardin@inpe.br)
NASA Astrophysics Data System (ADS)
Schooley, A. K.; Kahler, S.; Lepri, S. T.; Liemohn, M. W.
2017-12-01
Gradual solar energetic particle events (SEPs) are produced in the solar corona and as these particle events propagate through the inner heliosphere and interplanetary space they might encounter intervening magnetic obstacles such as the heliospheric current sheet. These encounters may impact SEP acceleration or production. We investigate the extent to which propagation through these intervening structures might be affecting later in-situ SEP measurements at 1 AU. By analyzing large gradual SEP rise phases in a multi-year survey, we investigate the impact crossing a current sheet or other interplanetary magnetic structure has on in-situ SEP time-intensity profiles. Simultaneous Advanced Composition Explorer (ACE) magnetometer observations and measurements of suprathermal electron pitch angle distributions from ACE's Solar Wind Electron, Proton & Alpha Monitor (SWEPAM) are considered to indicate changes in magnetic polarity and magnetic topology. Potential field source surface models of the heliospheric current sheet are used to validate potential current sheet crossing times. We discuss those magnetic obstacles identified that SEPs likely encountered. We discuss the frequency of such encounters, their possible structure and their impact on the SEP time-intensity profiles. Preliminary results indicate that possible intervening interplanetary magnetic structures should be considered when analyzing in-situ SEP observations.
Meteorite and meteoroid: New comprehensive definitions
Rubin, A.E.; Grossman, J.N.
2010-01-01
Meteorites have traditionally been defined as solid objects that have fallen to Earth from space. This definition, however, is no longer adequate. In recent decades, man-made objects have fallen to Earth from space, meteorites have been identified on the Moon and Mars, and small interplanetary objects have impacted orbiting spacecraft. Taking these facts and other potential complications into consideration, we offer new comprehensive definitions of the terms "meteorite,""meteoroid," and their smaller counterparts: A meteoroid is a 10-??m to 1-m-size natural solid object moving in interplanetary space. A micrometeoroid is a meteoroid 10 ??m to 2 mm in size. A meteorite is a natural, solid object larger than 10 ??m in size, derived from a celestial body, that was transported by natural means from the body on which it formed to a region outside the dominant gravitational influence of that body and that later collided with a natural or artificial body larger than itself (even if it is the same body from which it was launched). Weathering and other secondary processes do not affect an object's status as a meteorite as long as something recognizable remains of its original minerals or structure. An object loses its status as a meteorite if it is incorporated into a larger rock that becomes a meteorite itself. A micrometeorite is a meteorite between 10 ??m and 2 mm in size. Meteorite- "a solid substance or body falling from the high regions of the atmosphere" (Craig 1849); "[a] mass of stone and iron that ha[s] been directly observed to have fallen down to the Earth's surface" (translated from Cohen 1894); "[a] solid bod[y] which came to the earth from space" (Farrington 1915); "A mass of solid matter, too small to be considered an asteroid; either traveling through space as an unattached unit, or having landed on the earth and still retaining its identity" (Nininger 1933); "[a meteoroid] which has reached the surface of the Earth without being vaporized" (1958 International Astronomical Union (IAU) definition, quoted by Millman 1961); "a solid body which has arrived on the Earth from outer space" (Mason 1962); "[a] solid bod[y] which reach[es] the Earth (or the Moon, Mars, etc.) from interplanetary space and [is] large enough to survive passage through the Earth's (or Mars', etc.) atmosphere" (Gomes and Keil 1980); "[a meteoroid] that survive[s] passage through the atmosphere and fall[s] to earth" (Burke 1986); "a recovered fragment of a meteoroid that has survived transit through the earth's atmosphere" (McSween 1987); "[a] solid bod[y] of extraterrestrial material that penetrate[s] the atmosphere and reach[es] the Earth's surface" (Krot et al. 2003). ?? The Meteoritical Society, 2010.
NASA Astrophysics Data System (ADS)
Grasso, C.
2015-10-01
Blue Sun Enterprises, Inc. is creating a common deep space bus capable of a wide variety of Mars, asteroid, and comet science missions, observational missions in and near GEO, and interplanetary delivery missions. The spacecraft are modular and highly autonomous, featuring a common core and optional expansion for variable-sized science or commercial payloads. Initial spacecraft designs are targeted for Mars atmospheric science, a Phobos sample return mission, geosynchronous reconnaissance, and en-masse delivery of payloads using packetized propulsion modules. By combining design, build, and operations processes for these missions, the cost and effort for creating the bus is shared across a variety of initial missions, reducing overall costs. A CLIpSAT can be delivered to different orbits and still be able to reach interplanetary targets like Mars due to up to 14.5 km/sec of delta-V provided by its high-ISP Xenon ion thruster(s). A 6U version of the spacecraft form fits PPOD-standard deployment systems, with up to 9 km/s of delta-V. A larger 12-U (with the addition of an expansion module) enables higher overall delta-V, and has the ability to jettison the expansion module and return to the Earth-Moon system from Mars orbit with the main spacecraft. CLIpSAT utilizes radiation-hardened electronics and RF equipment, 140+ We of power at earth (60 We at Mars), a compact navigation camera that doubles as a science imager, and communications of 2000 bps from Mars to the DSN via X-band. This bus could form the cornerstone of a large number asteroid survey projects, comet intercept missions, and planetary observation missions. The TugBot architecture uses groups of CLIpSATs attached to payloads lacking innate high-delta-V propulsion. The TugBots use coordinated trajectory following by each individual spacecraft to move the payload to the desired orbit - for example, a defense asset might be moved from GEO to lunar transfer orbit in order to protect and hide it, then returned to a useful GEO orbit as a replacement for a failed GEO asset. Interplanetary payload delivery can be undertaken by arraying these spacecraft buses, then staging each one. This approach is implemented by using CLIpSATs as propulsion "packets", delivered independently to low earth orbit and directed to rendezvous individually with a structure. Once all packets have attached themselves, the ensemble burns to follow a trajectory, delivering the payload to the desired planetary or heliocentric orbit. Autonomy technologies in CLIpSAT software include Virtual Machine Language 3 (VML 3) sequencing, JPL AutoNav software, optical navigation, ephemeris tracking, trajectory replanning, maneuver execution, advanced state-driven sequencing, expert systems, and fail-operational strategies. These technologies enable small teams to operate large numbers of spacecraft and lessen the need for the deep knowledge normally required. The consortium building CLIpSAT includes Blue Sun Enterprises, the Jet Propulsion Laboratory, Millennium Space Systems, the Laboratory for Atmospheric and Space Physics, and the Southwest Research Institute.
Impacts of space weather events on the structure of the upper atmosphere
NASA Astrophysics Data System (ADS)
Lee, Y.; Mahaffy, P. R.; Benna, M.; Elrod, M. K.
2017-12-01
Due to the absence of the intrinsic magnetic field, Mars' upper atmosphere is vulnerable to the solar wind, which directly strips away the Martian upper atmosphere via various mechanisms, resulting in interesting global phenomena that are observable. The Mars Atmosphere and Volatile EvolutioN (MAVEN) has observed the responses of the upper atmosphere such as Interplanetary Coronal Mass Ejections (ICMEs) and Solar flare events spanning from November 2014 to the present. A comprehensive set of observations taken by the MAVEN instrument package enables the better characterization of the thermospheric and ionospheric behavior affected by various space weather events. The observed impacts include changes in the upper atmospheric and ionospheric density and temperature, enhancements of atmospheric loss rate of ions and neutrals, and changes in important boundary layers. The measurements by plasma and field instruments allows the upstream monitoring of the solar EUV, solar energetic particles, and Interplanetary Magnetic Field (IMF) simultaneously and provide additional information of the near-Mars space weather disturbances. In addition, at low altitudes near the periapsis of the spacecraft, the simultaneous measurements of the magnetic field and properties of the thermosphere and ionosphere allow the analysis of the effects of the local crustal magnetic fields. Here, adding to the reported MAVEN observations of the space weather impacts at Mars, we analyze the responses of the upper atmosphere to the mars-impacting space weather events observed by MAVEN. We focus mainly on the responses of the density and temperature structures, which in turn allow us to examine the effects on the important atmospheric layers such as the M2 layer and transition region from the thermosphere to exosphere.
Solar cosmic rays as a specific source of radiation risk during piloted space flight.
Petrov, V M
2004-01-01
Solar cosmic rays present one of several radiation sources that are unique to space flight. Under ground conditions the exposure to individuals has a controlled form and radiation risk occurs as stochastic radiobiological effects. Existence of solar cosmic rays in space leads to a stochastic mode of radiation environment as a result of which any radiobiological consequences of exposure to solar cosmic rays during the flight will be probabilistic values. In this case, the hazard of deterministic effects should also be expressed in radiation risk values. The main deterministic effect under space conditions is radiation sickness. The best dosimetric functional for its analysis is the blood forming organs dose equivalent but not an effective dose. In addition, the repair processes in red bone marrow affect strongly on the manifestation of this pathology and they must be taken into account for radiation risk assessment. A method for taking into account the mentioned above peculiarities for the solar cosmic rays radiation risk assessment during the interplanetary flights is given in the report. It is shown that radiation risk of deterministic effects defined, as the death probability caused by radiation sickness due to acute solar cosmic rays exposure, can be comparable to risk of stochastic effects. Its value decreases strongly because of the fractional mode of exposure during the orbital movement of the spacecraft. On the contrary, during the interplanetary flight, radiation risk of deterministic effects increases significantly because of the residual component of the blood forming organs dose from previous solar proton events. The noted quality of radiation responses must be taken into account for estimating radiation hazard in space. c2004 COSPAR. Published by Elsevier Ltd. All rights reserved.
Overview of NASA's space radiation research program.
Schimmerling, Walter
2003-06-01
NASA is developing the knowledge required to accurately predict and to efficiently manage radiation risk in space. The strategy employed has three research components: (1) ground-based simulation of space radiation components to develop a science-based understanding of radiation risk; (2) space-based measurements of the radiation environment on planetary surfaces and interplanetary space, as well as use of space platforms to validate predictions; and, (3) implementation of countermeasures to mitigate risk. NASA intends to significantly expand its support of ground-based radiation research in line with completion of the Booster Applications Facility at Brookhaven National Laboratory, expected in summer of 2003. A joint research solicitation with the Department of Energy is under way and other interagency collaborations are being considered. In addition, a Space Radiation Initiative has been submitted by the Administration to Congress that would provide answers to most questions related to the International Space Station within the next 10 years.
Geoeffectiveness of interplanetary shocks controlled by impact angles: A review
NASA Astrophysics Data System (ADS)
Oliveira, D. M.; Samsonov, A. A.
2018-01-01
The high variability of the Sun's magnetic field is responsible for the generation of perturbations that propagate throughout the heliosphere. Such disturbances often drive interplanetary shocks in front of their leading regions. Strong shocks transfer momentum and energy into the solar wind ahead of them which in turn enhance the solar wind interaction with magnetic fields in its way. Shocks then eventually strike the Earth's magnetosphere and trigger a myriad of geomagnetic effects observed not only by spacecraft in space, but also by magnetometers on the ground. Recently, it has been revealed that shocks can show different geoeffectiveness depending closely on the angle of impact. Generally, frontal shocks are more geoeffective than inclined shocks, even if the former are comparatively weaker than the latter. This review is focused on results obtained from modeling and experimental efforts in the last 15 years. Some theoretical and observational background are also provided.
Electron heating and the potential jump across fast mode shocks. [in interplanetary space
NASA Technical Reports Server (NTRS)
Schwartz, Steven J.; Thomsen, Michelle F.; Bame, S. J.; Stansberry, John
1988-01-01
Two different methods were applied to determine the cross-shock potential jump in the de Hoffmann-Teller reference frame, using a data set that represented 66 crossings of the terrestrial bow shock and 14 interplanetary shocks observed by various ISEE spacecraft, and one crossing each of the Jovian bow shock and the Uranian bow shock made by the Voyager spacecraft. Results for estimates of the electrostatic potential based on an estimate of the jump in electron enthalpy correlated well with estimates based on Liouville's theorem, although the Liouville-determined values were systematically the higher of the two, suggesting that significant irreversible processes contribute to the shape of the downstream distribution. The potential jump corresponds to approximately 12-15 percent of the incident ion ram kinetic energy, and was found not to be controlled by the Mach number, plasma beta, shock geometry, or electron to ion temperature ratios.
Infrared Spectroscopy of Anhydrous Interplanetary Dust Particles
NASA Technical Reports Server (NTRS)
Keller, L. P.; Flynn, G. J.
2003-01-01
Infrared (IR) spectroscopy is the primary means of mineralogical analysis of materials outside our solar system. The identity and properties of circumstellar grains are inferred from spectral comparisons between astronomical observations and laboratory data from natural and synthetic materials. These comparisons have been facilitated by the Infrared Space Observatory (ISO), which obtained IR spectra from numerous astrophysical objects over a wide spectral range (out to 50/cm) where crystalline silicates and other phases have distinct features. The anhydrous interplanetary dust particles (IDPs) are particularly important comparison materials because some IDPs contain carbonaceous material with non-solar D/H and N-15/N-14 ratios and amorphous and crystalline silicates with non-solar 0- isotopic ratios, demonstrating that these IDPs contain preserved interstellar material. Here, we report on micro- Fourier transform (FT) IR spectrometry of IDPs, focusing on the inorganic components of primitive IDPs (FTIR spectra from the organic/carbonacecous materials in IDPs are described elsewhere).
Forecasting intense geomagnetic activity using interplanetary magnetic field data
NASA Astrophysics Data System (ADS)
Saiz, E.; Cid, C.; Cerrato, Y.
2008-12-01
Southward interplanetary magnetic fields are considered traces of geoeffectiveness since they are a main agent of magnetic reconnection of solar wind and magnetosphere. The first part of this work revises the ability to forecast intense geomagnetic activity using different procedures available in the literature. The study shows that current methods do not succeed in making confident predictions. This fact led us to develop a new forecasting procedure, which provides trustworthy results in predicting large variations of Dst index over a sample of 10 years of observations and is based on the value Bz only. The proposed forecasting method appears as a worthy tool for space weather purposes because it is not affected by the lack of solar wind plasma data, which usually occurs during severe geomagnetic activity. Moreover, the results obtained guide us to provide a new interpretation of the physical mechanisms involved in the interaction between the solar wind and the magnetosphere using Faraday's law.
Multi-Objective Hybrid Optimal Control for Interplanetary Mission Planning
NASA Technical Reports Server (NTRS)
Englander, Jacob; Vavrina, Matthew; Ghosh, Alexander
2015-01-01
Preliminary design of low-thrust interplanetary missions is a highly complex process. The mission designer must choose discrete parameters such as the number of flybys, the bodies at which those flybys are performed and in some cases the final destination. In addition, a time-history of control variables must be chosen which defines the trajectory. There are often many thousands, if not millions, of possible trajectories to be evaluated. The customer who commissions a trajectory design is not usually interested in a point solution, but rather the exploration of the trade space of trajectories between several different objective functions. This can be a very expensive process in terms of the number of human analyst hours required. An automated approach is therefore very diserable. This work presents such as an approach by posing the mission design problem as a multi-objective hybrid optimal control problem. The method is demonstrated on a hypothetical mission to the main asteroid belt.
Planetary CubeSats Come of Age
NASA Technical Reports Server (NTRS)
Sherwood, Brent; Spangelo, Sara; Frick, Andreas; Castillo-Rogez, Julie; Klesh, Andrew; Wyatt, E. Jay; Reh, Kim; Baker, John
2015-01-01
Jet Propulsion Laboratory initiatives in developing and formulating planetary CubeSats are described. Six flight systems already complete or underway now at JPL for missions to interplanetary space, the Moon, a near-Earth asteroid, and Mars are described at the subsystem level. Key differences between interplanetary nanospacecraft and LEO CubeSats are explained, as well as JPL's adaptation of vendor components and development of system solutions to meet planetary-mission needs. Feasible technology-demonstration and science measurement objectives are described for multiple modes of planetary mission implementation. Seven planetary-science demonstration mission concepts, already proposed to NASA by Discovery-2014 PIs partnered with JPL, are described for investigations at Sun-Earth L5, Venus, NEA 1999 FG3, comet Tempel 2, Phobos, main-belt asteroid 24 Themis, and metal asteroid 16 Psyche. The JPL staff and facilities resources available to PIs for analysis, design, and development of planetary nanospacecraft are catalogued.
Kim, Tae K.; Pogorelov, Nikolai V.; Borovikov, Sergey N.; ...
2012-11-20
Numerical modeling of the heliosphere is a critical component of space weather forecasting. The accuracy of heliospheric models can be improved by using realistic boundary conditions and confirming the results with in situ spacecraft measurements. To accurately reproduce the solar wind (SW) plasma flow near Earth, we need realistic, time-dependent boundary conditions at a fixed distance from the Sun. We may prepare such boundary conditions using SW speed and density determined from interplanetary scintillation (IPS) observations, magnetic field derived from photospheric magnetograms, and temperature estimated from its correlation with SW speed. In conclusion, we present here the time-dependent MHD simulationmore » results obtained by using the 2011 IPS data from the Solar-Terrestrial Environment Laboratory as time-varying inner boundary conditions and compare the simulated data at Earth with OMNI data (spacecraft-interspersed, near-Earth solar wind data).« less
Nymmik, R A
1999-10-01
A wide range of the galactic cosmic ray and SEP event flux simulation problems for the near-Earth satellite and manned spacecraft orbits and for the interplanetary mission trajectories are discussed. The models of the galactic cosmic ray and SEP events in the Earth orbit beyond the Earth's magnetosphere are used as a basis. The particle fluxes in the near-Earth orbits should be calculated using the transmission functions. To calculate the functions, the dependences of the cutoff rigidities on the magnetic disturbance level and on magnetic local time have to be known. In the case of space flights towards the Sun and to the boundary of the solar system, particular attention is paid to the changes in the SEP event occurrence frequency and size. The particle flux gradients are applied in this case to galactic cosmic ray fluxes.
A model of galactic cosmic rays for use in calculating linear energy transfer spectra
NASA Technical Reports Server (NTRS)
Chen, J.; Chenette, D.; Clark, R.; Garcia-Munoz, M.; Guzik, T. G.; Pyle, K. R.; Sang, Y.; Wefel, J. P.
1994-01-01
The Galactic Cosmic Rays (GCR) contain fully stripped nuclei, from Hydrogen to beyond the Iron group, accelerated to high energies and are a major component of the background radiation encountered by satellites and interplanetary spacecraft. This paper presents a GCR model which is based upon our current understanding of the astrophysics of GCR transport through interstellar and interplanetary space. The model can be used to predict the energy spectra for all stable and long-lived radioactive species from H to Ni over an energy range from 50 to 50,000 MeV/nucleon as a function of a single parameter, the solar modulation level phi. The details of this model are summarized, phi is derived for the period 1974 to present, and results from this model during the 1990/1991 Combined Release and Radiation Effects Satellite (CRRES) mission are presented.
Performance comparison of earth and space storable bipropellant systems in interplanetary missions
NASA Technical Reports Server (NTRS)
Meissinger, H. F.
1978-01-01
The paper evaluates and compares the performance of earth-storable and space-storable liquid bipropellant propulsion systems in high-energy planetary mission applications, including specifically Saturn and Mercury orbiters, as well as asteroid and comet rendezvous missions. The discussion covers a brief review of the status of space-storable propulsion technology, along with an illustrative propulsion module design for a three-axis stabilized outer planet and cometary mission spacecraft of the Mariner class. The results take revised Shuttle/Upper Stage performance projections into account. It is shown that in some of the missions the performance improvement achievable in the ballistic transfer mode with space-storable spacecraft propulsion can provide a possible alternative to the use of solar-electric propulsion.
A Flight Demonstration of Plasma Rocket Propulsion
NASA Technical Reports Server (NTRS)
Petro, Andrew
1999-01-01
The Advanced Space Propulsion Laboratory at the Johnson Space Center has been engaged in the development of a magneto-plasma rocket for several years. This type of rocket could be used in the future to propel interplanetary spacecraft. One advantageous feature of this rocket concept is the ability to vary its specific impulse so that it can be operated in a mode which maximizes propellant efficiency or a mode which maximizes thrust. This presentation will describe a proposed flight experiment in which a simple version of the rocket will be tested in space. In addition to the plasma rocket, the flight experiment will also demonstrate the use of a superconducting electromagnet, extensive use of heat pipes, and possibly the transfer of cryogenic propellant in space.
Deep Space Test Bed for Radiation Studies
NASA Technical Reports Server (NTRS)
Adams, James H.; Adcock, Leonard; Apple, Jeffery; Christl, Mark; Cleveand, William; Cox, Mark; Dietz, Kurt; Ferguson, Cynthia; Fountain, Walt; Ghita, Bogdan
2006-01-01
The Deep Space Test-Bed (DSTB) Facility is designed to investigate the effects of galactic cosmic rays on crews and systems during missions to the Moon or Mars. To gain access to the interplanetary ionizing radiation environment the DSTB uses high-altitude polar balloon flights. The DSTB provides a platform for measurements to validate the radiation transport codes that are used by NASA to calculate the radiation environment within crewed space systems. It is also designed to support other Exploration related investigations such as measuring the shielding effectiveness of candidate spacecraft and habitat materials, testing new radiation monitoring instrumentation and flight avionics and investigating the biological effects of deep space radiation. We describe the work completed thus far in the development of the DSTB and its current status.
The Space Radiation Environment
NASA Technical Reports Server (NTRS)
Bourdarie, Sebastien; Xapsos, Michael A.
2008-01-01
The effects of the space radiation environment on spacecraft systems and instruments are significant design considerations for space missions. Astronaut exposure is a serious concern for manned missions. In order to meet these challenges and have reliable, cost-effective designs, the radiation environment must be understood and accurately modeled. The nature of the environment varies greatly between low earth orbits, higher earth orbits and interplanetary space. There are both short-term and long-term variations with the phase of the solar cycle. In this paper we concentrate mainly on charged particle radiations. Descriptions of the radiation belts and particles of solar and cosmic origin are reviewed. An overview of the traditional models is presented accompanied by their application areas and limitations. This is followed by discussion of some recent model developments.
A health maintenance facility for space station freedom
NASA Technical Reports Server (NTRS)
Billica, R. D.; Doarn, C. R.
1991-01-01
We describe a health care facility to be built and used on an orbiting space station in low Earth orbit. This facility, called the health maintenance facility, is based on and modeled after isolated terrestrial medical facilities. It will provide a phased approach to health care for the crews of Space Station Freedom. This paper presents the capabilities of the health maintenance facility. As Freedom is constructed over the next decade there will be an increase in activities, both construction and scientific. The health maintenance facility will evolve with this process until it is a mature, complete, stand-alone health care facility that establishes a foundation to support interplanetary travel. As our experience in space continues to grow so will the commitment to providing health care.
Estimation of micrometeorites and satellite dust flux surrounding Mars in the light of MAVEN results
NASA Astrophysics Data System (ADS)
Pabari, J. P.; Bhalodi, P. J.
2017-05-01
Recently, MAVEN observed dust around Mars from ∼150 km to ∼1000 km and it is a puzzling question to the space scientists about the presence of dust at orbital altitudes and about its source. A continuous supply of dust from various sources could cause existence of dust around Mars and it is expected that the dust could mainly be from either the interplanetary source or the Phobos/Deimos. We have studied incident projectiles or micrometeorites at Mars using the existing model, in this article. Comparison of results with the MAVEN results gives a new value of the population index S, which is reported here. The index S has been referred in a power law model used to describe the number of impacting particles on Mars. In addition, the secondary ejecta from natural satellites of Mars can cause a dust ring or torus around Mars and remain present for its lifetime. The dust particles whose paths are altered by the solar wind over its lifetime, could present a second plausible source of dust around Mars. We have investigated escaping particles from natural satellites of Mars and compared with the interplanetary dust flux estimation. It has been found that flux rate at Mars is dominated (∼2 orders of magnitude higher) by interplanetary particles in comparison with the satellite originated dust. It is inferred that the dust at high altitudes of Mars could be interplanetary in nature and our expectation is in agreement with the MAVEN observation. As a corollary, the mass loss from Martian natural satellites is computed based on the surface erosion by incident projectiles.
NASA Astrophysics Data System (ADS)
Mendes, Odim; Oliveira Domingues, Margarete; Echer, Ezequiel; Hajra, Rajkumar; Everton Menconi, Varlei
2017-08-01
Considering the magnetic reconnection and the viscous interaction as the fundamental mechanisms for transfer particles and energy into the magnetosphere, we study the dynamical characteristics of auroral electrojet (AE) index during high-intensity, long-duration continuous auroral activity (HILDCAA) events, using a long-term geomagnetic database (1975-2012), and other distinct interplanetary conditions (geomagnetically quiet intervals, co-rotating interaction regions (CIRs)/high-speed streams (HSSs) not followed by HILDCAAs, and events of AE comprised in global intense geomagnetic disturbances). It is worth noting that we also study active but non-HILDCAA intervals. Examining the geomagnetic AE index, we apply a dynamics analysis composed of the phase space, the recurrence plot (RP), and the recurrence quantification analysis (RQA) methods. As a result, the quantification finds two distinct clusterings of the dynamical behaviours occurring in the interplanetary medium: one regarding a geomagnetically quiet condition regime and the other regarding an interplanetary activity regime. Furthermore, the HILDCAAs seem unique events regarding a visible, intense manifestations of interplanetary Alfvénic waves; however, they are similar to the other kinds of conditions regarding a dynamical signature (based on RQA), because it is involved in the same complex mechanism of generating geomagnetic disturbances. Also, by characterizing the proper conditions of transitions from quiescent conditions to weaker geomagnetic disturbances inside the magnetosphere and ionosphere system, the RQA method indicates clearly the two fundamental dynamics (geomagnetically quiet intervals and HILDCAA events) to be evaluated with magneto-hydrodynamics simulations to understand better the critical processes related to energy and particle transfer into the magnetosphere-ionosphere system. Finally, with this work, we have also reinforced the potential applicability of the RQA method for characterizing nonlinear geomagnetic processes related to the magnetic reconnection and the viscous interaction affecting the magnetosphere.
The Swedish Interplanetary Society (1950-1969) and the formation of IAF and IAA
NASA Astrophysics Data System (ADS)
Ingemar Skoog, A.
2011-06-01
With a growing interest for rocket technology and space travel after WW II a number of new "space societies" were formed in the period 1948-1951 in addition to the ones already existing in Germany, the UK and the US since before WW II. Soon came the need for a common international platform for exchange of information and experience, and the concept of an international federation of astronautical societies emerged. Sweden was one of the 8 countries to sign the original declaration to create an International Astronautical Federation on October 2, 1950 in Paris at the 1st International Astronautical Congress. The Swedish Society for Space Research (Svenska Sällskapet för Rymdforskning) was formed a few days after the historical event in Paris. The name was soon to be changed to the Swedish Interplanetary Society (Svenska Interplanetariska Sällskapet, SIS). Sweden was one of the 10 countries to sign the IAF foundation in 1951 in London and in the following year the first Constitution of IAF in Stuttgart. The SIS quickly grow to a membership of several hundred persons and its membership in IAF promoted an intensive exchange of journals, and the annual participation at the IAC gave growth to start study projects on spacecraft and sounding rockets, and the publication of astronautical journals in Swedish. In 1957 the first Swede was elected vice-president of IAF. Not too long after the IAF foundation the idea of an international body of distinguished individuals emerged, in addition to the body of "member societies" (IAF). Upon the initiative of Theodor von Karman, Eugen Sänger and Andrew Haley the IAF council approval of an International Academy of Astronautical was given on August 15, 1960 during the 11th IAC in Stockholm. This IAC in Stockholm gave a large publicity to space research and astronautics in Sweden, and put the activities of the SIS in the focus of the general public. This paper presents the Swedish involvement in the foundation of IAF and IAA. It also gives an overview on the positive influence of these two organisations on the work and progress of the Swedish Interplanetary Society and the diffusion of astronautics to the general public in Sweden.
NASA Astrophysics Data System (ADS)
Bisi, M. M.; Fallows, R. A.; Sobey, C.; Eftekhari, T.; Jensen, E. A.; Jackson, B. V.; Yu, H. S.; Hick, P. P.; Odstrcil, D.; Tokumaru, M.
2015-12-01
The phenomenon of space weather - analogous to terrestrial weather which describes the changing pressure, temperature, wind, and humidity conditions on Earth - is essentially a description of the changes in velocity, density, magnetic field, high-energy particles, and radiation in the near-Earth space environment including the effects of such changes on the Earth's magnetosphere, radiation belts, ionosphere, and thermosphere. Space weather can be considered to have two main strands: (i) scientific research, and (ii) applications. The former is self-explanatory, but the latter covers operational aspects which includes its forecasting. Understanding and forecasting space weather in the near-Earth environment is vitally important to protecting our modern-day reliance (militarily and commercially) on satellites, global-communication and navigation networks, high-altitude air travel (radiation concerns particularly on polar routes), long-distance power/oil/gas lines and piping, and for any future human exploration of space to list but a few. Two ground-based radio-observing remote-sensing techniques that can aid our understanding and forecasting of heliospheric space weather are those of interplanetary scintillation (IPS) and heliospheric Faraday rotation (FR). The LOw Frequency ARray (LOFAR) is a next-generation 'software' radio telescope centered in The Netherlands with international stations spread across central and northwest Europe. For several years, scientific observations of IPS on LOFAR have been undertaken on a campaign basis and the experiment is now well developed. More recently, LOFAR has been used to attempt scientific heliospheric FR observations aimed at remotely sensing the magnetic field of the plasma traversing the inner heliosphere. We present our latest progress using these two radio heliospheric-imaging remote-sensing techniques including the use of three-dimensional (3-D) modeling and reconstruction techniques using other, additional data as input (such as IPS data from the Solar Terrestrial Environment Laboratory - STELab) to support and better-interpret the LOFAR results.
NASA Astrophysics Data System (ADS)
Bisi, M. M.; Gonzalez-Esparza, A.; Jackson, B. V.; Aguilar-Rodriguez, E.; Tokumaru, M.; Chashei, I. V.; Tyul'bashev, S. A.; Manoharan, P. K.; Fallows, R. A.; Chang, O.; Mejia-Ambriz, J. C.; Yu, H. S.; Fujiki, K.; Shishov, V.
2016-12-01
The phenomenon of space weather - analogous to terrestrial weather which describes the changing low-altitude atmospheric conditions on Earth - is essentially a description of the changes in the plasma environment at and near the Earth. Some key parameters for space-weather purposes driving space weather at the Earth include velocity, density, magnetic field, high-energy particles, and radiation coming into and within the near-Earth space environment. Interplanetary scintillation (IPS) can be used to provide a global measure of velocity and density as well as indications of changes in the plasma and magnetic-field rotations along each observational line of sight. If the observations are formally inverted into a three-dimensional (3-D) tomographic reconstruction (such as using the University of California, San Diego - UCSD - kinematic model and reconstruction technique), then source-surface magnetic fields can also be propagated out to the Earth (and beyond) as well as in-situ data also being incorporated into the reconstruction. Currently, this has been done using IPS data only from the Institute for Space-Earth Environmental (ISEE) and has been scientifically since the 1990s, and in a forecast mode since around 2000. There is now a defined IPS Common Data Format (IPSCDFv1.0) which is being implemented by the majority of the IPS community (this also feeds into the tomography). The Worldwide IPS Stations (WIPSS) Network aims to bring together, using IPSCDFv1.0, the worldwide real-time capable IPS observatories with well-developed and tested analyses techniques being unified across all single-site systems (such as MEXART, Pushchino, and Ooty) and cross-calibrated to the multi-site ISEE system (as well as learning from the scientific-based systems such as EISCAT, LOFAR, and the MWA), into the UCSD 3-D tomography to improve the accuracy, spatial and temporal data coverage, and both the spatial and temporal resolution for improved space-weather science and forecast capabilities.
NASA Astrophysics Data System (ADS)
Bisi, Mario Mark; Americo Gonzalez-Esparza, J.; Jackson, Bernard; Aguilar-Rodriguez, Ernesto; Tokumaru, Munetoshi; Chashei, Igor; Tyul'bashev, Sergey; Manoharan, Periasamy; Fallows, Richard; Chang, Oyuki; Yu, Hsiu-Shan; Fujiki, Ken'ichi; Shishov, Vladimir; Barnes, David
2017-04-01
The phenomenon of space weather - analogous to terrestrial weather which describes the changing low-altitude atmospheric conditions on Earth - is essentially a description of the changes in the plasma environment at and near the Earth. Some key parameters for space-weather purposes driving space weather at the Earth include velocity, density, magnetic field, high-energy particles, and radiation coming into and within the near-Earth space environment. Interplanetary scintillation (IPS) can be used to provide a global measure of velocity and density as well as indications of changes in the plasma and magnetic-field rotations along each observational line of sight. If the observations are formally inverted into a three-dimensional (3-D) tomographic reconstruction (such as using the University of California, San Diego - UCSD - kinematic model and reconstruction technique), then source-surface magnetic fields can also be propagated out to the Earth (and beyond) as well as in-situ data also being incorporated into the reconstruction. Currently, this has been done using IPS data only from the Institute for Space-Earth Environmental (ISEE) and has been scientifically since the 1990s, and in a forecast mode since around 2000. There is now a defined (and updated) IPS Common Data Format (IPSCDFv1.1) which is being implemented by the majority of the IPS community (this also feeds into the UCSD tomography). The Worldwide IPS Stations (WIPSS) Network aims to bring together, using IPSCDFv1.1, the worldwide real-time capable IPS observatories with well-developed and tested analyses techniques being unified across all single-site systems (such as MEXART, Pushchino, and Ooty) and cross-calibrated to the multi-site ISEE system (as well as learning from the scientific-based systems such as EISCAT, LOFAR, and the MWA), into the UCSD 3-D tomography to improve the accuracy, spatial and temporal data coverage, and both the spatial and temporal resolution for improved space-weather science and forecast capabilities.
Interplanetary field and plasma during initial phase of geomagnetic storms
NASA Technical Reports Server (NTRS)
Patel, V. L.; Wiskerchen, M. J.
1975-01-01
A study has been conducted of a large number of geomagnetic storms occurring during the period from 1966 to 1970. Questions of data selection are discussed and the large-scale interplanetary magnetic field during the initial phase is examined. Small-scale interplanetary fields during the initial phase are also considered, taking into account important features of small-scale variations in the interplanetary field and plasma for three storms. Details concerning 23 geomagnetic storms and the interplanetary magnetic field are presented in a table. A study of the initial phase of these storms indicates that in most of these events, the solar-ecliptic Z component of the interplanetary magnetic field turns southward when the main phase decrease begins.
Mars Transportation Environment Definition Document
NASA Technical Reports Server (NTRS)
Alexander, M. (Editor)
2001-01-01
This document provides a compilation of environments knowledge about the planet Mars. Information is divided into three catagories: (1) interplanetary space environments (environments required by the technical community to travel to and from Mars); (2) atmospheric environments (environments needed to aerocapture, aerobrake, or use aeroassist for precision trajectories down to the surface); and (3) surface environments (environments needed to have robots or explorers survive and work on the surface).
NASA Technical Reports Server (NTRS)
Cheng, L. Y.; Larsen, B.
2004-01-01
Launched in 1997, the Cassini-Huygens Mission sent the largest interplanetary spacecraft ever built in the service of science. Carrying a suite of 12 scientific instruments and an atmospheric entry probe, this complex spacecraft to explore the Saturn system may not have gotten off the ground without undergoing significant design changes and cost reductions.
An interplanetary targeting and orbit insertion maneuver design technique
NASA Technical Reports Server (NTRS)
Hintz, G. R.
1980-01-01
The paper describes a tradeoff in selecting a planetary encounter aimpoint and a spacecraft propulsive maneuver strategy in the Pioneer Venus Orbiter Mission. The method uses parametric data spanning a region of acceptable targeting aimpoints in the delivery space and the geometric considerations. Real-time maneuver adjustments accounted for known attitude control errors, orbit determination updates, and late changes in a targeting specification.
2016-01-22
Q. J. Wei, S. Pan, S. Mohan, and S. Seager, Inflatable antenna for CubeSat : fabrication, deployment and results of experimental tests, 2014 IEEE...Aerospace Conference, pp. 1- 12. [8] A. Babuscia, T. Choi, C. Lee, and K-M. Cheung, Inflatable antennas and arrays for interplanetary communication using CubeSats and SmallSats, 2015 IEEE Aerospace Conference, pp. 1-9.
Large-scale properties of the interplanetary magnetic field
NASA Technical Reports Server (NTRS)
Schatten, K. H.
1972-01-01
Early theoretical work of Parker is presented along with the observational evidence supporting his Archimedes spiral model. Variations present in the interplanetary magnetic field from the spiral angle are related to structures in the solar wind. The causes of these structures are found to be either nonuniform radial solar wind flow or the time evolution of the photospheric field. Coronal magnetic models are related to the connection between the solar magnetic field and the interplanetary magnetic field. Direct extension of the solar field-magnetic nozzle controversy is discussed along with the coronal magnetic models. Effects of active regions on the interplanetary magnetic field is discussed with particular reference to the evolution of interplanetary sectors. Interplanetary magnetic field magnitude variations are shown throughout the solar cycle. The percentage of time the field magnitude is greater than 10 gamma is shown to closely parallel sunspot number. The sun's polar field influence on the interplanetary field and alternative views of the magnetic field structure out of the ecliptic plane are presented. In addition, a variety of significantly different interplanetary field structures are discussed.
Space Weather Workshop 2010 to Be Held in April
NASA Astrophysics Data System (ADS)
Peltzer, Thomas
2010-03-01
The annual Space Weather Workshop will be held in Boulder, Colo., 27-30 April 2010. The workshop will bring customers, forecasters, commercial service providers, researchers, and government agencies together in a lively dialogue about space weather. The workshop will include 4 days of plenary sessions on a variety of topics, with poster sessions focusing on the Sun, interplanetary space, the magnetosphere, and the ionosphere. The conference will address the remarkably diverse impacts of space weather on today's technology. Highlights on this year's agenda include ionospheric storms and their impacts on the Global Navigation Satellite System (GNSS), an update on NASA's recently launched Solar Dynamics Observatory (SDO), and new space weather-related activities in the Federal Emergency Management Agency (FEMA). Also this year, the Commercial Space Weather Interest Group will feature a presentation by former NOAA administrator, Vice Admiral Conrad Lautenbacher, U.S. Navy (Ret.).
Radiological health risks to astronauts from space activities and medical procedures
NASA Technical Reports Server (NTRS)
Peterson, Leif E.; Nachtwey, D. Stuart
1990-01-01
Radiation protection standards for space activities differ substantially from those applied to terrestrial working situations. The levels of radiation and subsequent hazards to which space workers are exposed are quite unlike anything found on Earth. The new more highly refined system of risk management involves assessing the risk to each space worker from all sources of radiation (occupational and non-occupational) at the organ level. The risk coefficients were applied to previous space and medical exposures (diagnostic x ray and nuclear medicine procedures) in order to estimate the radiation-induced lifetime cancer incidence and mortality risk. At present, the risk from medical procedures when compared to space activities is 14 times higher for cancer incidence and 13 times higher for cancer mortality; however, this will change as the per capita dose during Space Station Freedom and interplanetary missions increases and more is known about the risks from exposure to high-LET radiation.
Rapid Development of Gossamer Propulsion for NASA Inner Solar System Science Missions
NASA Technical Reports Server (NTRS)
Young, Roy M.; Montgomery, Edward E.
2006-01-01
Over a two and one-half year period dating from 2003 through 2005, NASA s In-Space Propulsion Program matured solar sail technology from laboratory components to full systems, demonstrated in as relevant a space environment as could feasibly be simulated on the ground. This paper describes the challenges identified; as well as the approaches taken toward solving a broad set of issues spanning material science, manufacturing technology, and interplanetary trajectory optimization. Revolutionary advances in system structural predictive analysis and characterization testing occurred. Also addressed are the remaining technology challenges that might be resolved with further ground technology research, geared toward reducing technical risks associated with future space validation and science missions.
Dual technique magnetometer experiment for the Cassini Orbiter spacecraft
NASA Technical Reports Server (NTRS)
Southwood, D. J.; Balogh, A.; Smith, E. J.
1992-01-01
The dual technique magnetometer to fly on the Cassini Saturn Orbiter Spacecraft is described. The instrument combines two separate techniques of measuring the magnetic field in space using both fluxgate and vector helium devices. In addition, the instrument can be operated in a special scalar mode which is to be used near the planet for highly accurate determination of the interior field of the planet. As well as the planetary field, the instrument will make large contributions to the scientific measurements of the planetary magnetosphere, the highly electrically conducting region of space surrounding Saturn permeated by the Saturnian field, the interaction of Saturn and the interplanetary medium and the interaction of Titan with its space environment.
MultiLaue: A Technique to Extract d-spacings from Laue XRD
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gainsforth, Zack; Marcus, Matthew A.; Tamura, Nobumichi
We present that broad spectrum X-ray Diffraction (XRD) is named Laue after Max von Laue, and is the original XRD technique. Today, monochromatic XRD is more common because Bragg's equation allows determination of d-spacings where Laue does not. Laue still remains in use for single crystal systems because it can be used to make very accurate unit cell determinations as well as for strain and orientation mapping. Lastly, a Laue technique which could provide unambiguous determination of lattice spacings, a la Bragg's equation would be a huge leap forward, especially for multiphase samples such as meteorites, interplanetary dust particles andmore » some geological specimens.« less
A new way to measure the composition of the interstellar gas surrounding the heliosphere
NASA Technical Reports Server (NTRS)
Gruntman, Michael A.
1993-01-01
The composition of neutral gas in the Local Interstellar Medium can be studied by direct, in situ measuring of interstellar neutral atoms penetrating into interplanetary space. A novel experimental approach for in situ atom detection, which has never been used earlier in space, is proposed. The technique is based on the conversion of neutral atoms to negative ions at a specially prepared sensitive surface. Negative ions are subsequently analyzed and detected in an essentially noise-free, multicoincidence mode. It is shown that interstellar hydrogen, deuterium, and oxygen atoms can be measured by the proposed technique. The experiment can be performed from a high-apogee Earth-orbiting satellite or from a deep space probe.
MultiLaue: A Technique to Extract d-spacings from Laue XRD
Gainsforth, Zack; Marcus, Matthew A.; Tamura, Nobumichi; ...
2016-07-25
We present that broad spectrum X-ray Diffraction (XRD) is named Laue after Max von Laue, and is the original XRD technique. Today, monochromatic XRD is more common because Bragg's equation allows determination of d-spacings where Laue does not. Laue still remains in use for single crystal systems because it can be used to make very accurate unit cell determinations as well as for strain and orientation mapping. Lastly, a Laue technique which could provide unambiguous determination of lattice spacings, a la Bragg's equation would be a huge leap forward, especially for multiphase samples such as meteorites, interplanetary dust particles andmore » some geological specimens.« less
NASA Technical Reports Server (NTRS)
Cameron, Winifred Sawtell (Editor); Vostreys, Robert W. (Editor)
1988-01-01
The main purpose of the data catalog series is to provide descriptive references to data generated by space science flight missions. The data sets described include all of the actual holdings of the Space Science Data Center (NSSDC), all data sets for which direct contact information is available, and some data collections held and serviced by foreign investigators, NASA and other U.S. government agencies. This volume contains narrative descriptions of planetary and heliocentric spacecraft and associated experiments. The following spacecraft series are included: Mariner, Pioneer, Pioneer Venus, Venera, Viking, Voyager, and Helios. Separate indexes to the planetary and interplanetary missions are also included.
Launch Vehicle Systems Analysis
NASA Technical Reports Server (NTRS)
Olds, John R.
1999-01-01
This report summaries the key accomplishments of Georgia Tech's Space Systems Design Laboratory (SSDL) under NASA Grant NAG8-1302 from NASA - Marshall Space Flight Center. The report consists of this summary white paper, copies of technical papers written under this grant, and several viewgraph-style presentations. During the course of this grant four main tasks were completed: (1)Simulated Combined-Cycle Rocket Engine Analysis Module (SCCREAM), a computer analysis tool for predicting the performance of various RBCC engine configurations; (2) Hyperion, a single stage to orbit vehicle capable of delivering 25,000 pound payloads to the International Space Station Orbit; (3) Bantam-X Support - a small payload mission; (4) International Trajectory Support for interplanetary human Mars missions.
NASA Astrophysics Data System (ADS)
Haqq-Misra, J.
2014-04-01
The idea that a planet or its biota may be intrinsically valuable, apart from its usefulness to humans, is contentious among ethicists, while difficulties abound in attempting to decide what is objectively better or worse for a planet or life. As a way of dissecting the issue of value and life, I present a two-axis comparative tool for ethical frameworks that considers the intrinsic or instrumental value placed upon organisms, environments, planetary systems, and space. I discuss ethical considerations relevant to contemporary space exploration, near-future human exploration of Solar System bodies, and long-term possibilities of interplanetary colonization. This allows for more transparent discussions of value with regard to future space exploration or the discovery of extraterrestrial life.
Space and man. [planetary exploration and energy sources
NASA Technical Reports Server (NTRS)
Kolman, E.
1974-01-01
The effects of man's entry into space on changes in economics and technology, politics and law, science, philosophy, and art are considered. A single world economy, extracting from the natural resources of the moon and other cosmic bodies raw materials and energy, will avoid terrestrial limitations and improve society by eliminating the inequalities of economic and social status. However, a spacecraft for interplanetary travel require thermonuclear engines that achieve an escape velocity of 0.1 times the speed of light in order to allow an astronaut stellar expedition corresponding to the active life of a single generation.
Mechanisms to deploy the two-stage IUS from the shuttle cargo bay
NASA Technical Reports Server (NTRS)
Haynie, H. T.
1980-01-01
The Inertial Upper Stage (IUS) is a two-stage or three-stage booster used to transport spacecraft from the space shuttle orbit to synchronous orbit or on an interplanetary trajectory. The mechanisms which were designed specifically to perform the two-stage IUS required functions while contained within the cargo bay of the space shuttle during the boost phase and while in a low Earth orbit are discussed. The requirements, configuration, and operation of the mechanisms are described, with particular emphasis on the tilt actuator and the mechanism for decoupling the actuators during boost to eliminate redundant load paths.
1973-03-16
CAPE KENNEDY, Fla. -- In the AO Building at Cape Kennedy Air Force Station in Florida, the Pioneer G spacecraft awaits the installation of its protective payload fairing. The interplanetary space probe is scheduled for launch atop an Atlas Centaur rocket from Cape Kennedy April 5, 1973. Pioneer G's nearly two-year mission will take it on an investigation of the asteroid belt, then on to Jupiter, largest planet in our solar system. NASA's launch teams from the Kennedy Space Center will direct final testing and the launch itself. The mission is a project of the Ames Research Center. Photo Credit: NASA
NASA Astrophysics Data System (ADS)
McKenna-Lawlor, Susan; Bhardwaj, Anil; Ferrari, Franco; Kuznetsov, Nikolay; Lal, Ajay K.; Li, Yinghui; Nagamatsu, Aiko; Nymmik, Rikho; Panasyuk, Michael; Petrov, Vladislav; Reitz, Günther; Pinsky, Lawrence; Shukor, Muszaphar (Sheikh); Singhvi, Ashok K.; Straube, Ulrich; Tomi, Leena; Lawrence, Townsend
2015-04-01
An account is provided of the main sources of energetic particle radiation in interplanetary space (Galactic Cosmic Radiation and Solar Energetic Particles) and career dose limits presently utilized by NASA to mitigate against the cancer and non-cancer effects potentially incurred by astronauts due to irradiation by these components are presented. Certain gaps in knowledge that presently militate against mounting viable human exploration in deep space due to the inherent health risks are identified and recommendations made as to how these gaps might be closed within a framework of global international cooperation.
NASA Astrophysics Data System (ADS)
Pavlos, George; Malandraki, Olga; Pavlos, Evgenios; Iliopoulos, Aggelos; Karakatsanis, Leonidas
2017-04-01
As the solar plasma lives far from equilibrium it is an excellent laboratory for testing non-equilibrium statistical mechanics. In this study, we present the highlights of Tsallis non-extensive statistical mechanics as concerns their applications at solar plasma dynamics, especially at solar wind phenomena and magnetosphere. In this study we present some new and significant results concerning the dynamics of interplanetary coronal mass ejections (ICMEs) observed in the near Earth at L1 solar wind environment, as well as its effect in Earth's magnetosphere. The results are referred to Tsallis non-extensive statistics and in particular to the estimation of Tsallis q-triplet, (qstat, qsen, qrel) of SEPs time series observed at the interplanetary space and magnetic field time series of the ICME observed at the Earth resulting from the solar eruptive activity on March 7, 2012 at the Sun. For the magnetic field, we used a multi-spacecraft approach based on data experiments from ACE, CLUSTER 4, THEMIS-E and THEMIS-C spacecraft. For the data analysis different time periods were considered, sorted as "quiet", "shock" and "aftershock", while different space domains such as the Interplanetary space (near Earth at L1 and upstream of the Earth's bowshock), the Earth's magnetosheath and magnetotail, were also taken into account. Our results reveal significant differences in statistical and dynamical features, indicating important variations of the SEPs profile in time, and magnetic field dynamics both in time and space domains during the shock event, in terms of rate of entropy production, relaxation dynamics and non-equilibrium meta-stable stationary states. So far, Tsallis non-extensive statistical theory and Tsallis extension of the Boltzmann-Gibbs entropy principle to the q-entropy entropy principle (Tsallis, 1988, 2009) reveal strong universality character concerning non-equilibrium dynamics (Pavlos et al. 2012a,b, 2014, 2015, 2016; Karakatsanis et al. 2013). Tsallis q-entropy principle can explain the emergence of a series of new and significant physical characteristics in distributed systems as well as in space plasmas. Such characteristics are: non-Gaussian statistics and anomalous diffusion processes, strange and fractional dynamics, multifractal, percolating and intermittent turbulence structures, multiscale and long spatio-temporal correlations, fractional acceleration and Non-Equilibrium Stationary States (NESS) or non-equilibrium self-organization process and non-equilibrium phase transition and topological phase transition processes according to Zelenyi and Milovanov (2004). In this direction, our results reveal clearly strong self-organization and development of macroscopic ordering of plasma system related to strengthen of non-extensivity, multifractality and intermittency everywhere in the space plasmas region during the CME event. Acknowledgements: This project has received funding form the European Union's Horizon 2020 research and innovation program under grant agreement No 637324.
NASA Astrophysics Data System (ADS)
Somavarapu, Dhathri H.
This thesis proposes a new parallel computing genetic algorithm framework for designing fuel-optimal trajectories for interplanetary spacecraft missions. The framework can capture the deep search space of the problem with the use of a fixed chromosome structure and hidden-genes concept, can explore the diverse set of candidate solutions with the use of the adaptive and twin-space crowding techniques and, can execute on any high-performance computing (HPC) platform with the adoption of the portable message passing interface (MPI) standard. The algorithm is implemented in C++ with the use of the MPICH implementation of the MPI standard. The algorithm uses a patched-conic approach with two-body dynamics assumptions. New procedures are developed for determining trajectories in the Vinfinity-leveraging legs of the flight from the launch and non-launch planets and, deep-space maneuver legs of the flight from the launch and non-launch planets. The chromosome structure maintains the time of flight as a free parameter within certain boundaries. The fitness or the cost function of the algorithm uses only the mission Delta V, and does not include time of flight. The optimization is conducted with two variations for the minimum mission gravity-assist sequence, the 4-gravity-assist, and the 3-gravity-assist, with a maximum of 5 gravity-assists allowed in both the cases. The optimal trajectories discovered using the framework in both of the cases demonstrate the success of this framework.
Using Pre-Melted Phase Change Material to Keep Payloads in Space Warm for Hours without Power
NASA Technical Reports Server (NTRS)
Choi, Michael
2013-01-01
Adding phase change material (PCM) to a mission payload can maintain its temperature above the cold survival limit, without power, for several hours in space. For the International Space Station, PCM is melted by heaters just prior to the payload translation to the worksite when power is available. When power is cut off during the six-hour translation, the PCM releases its latent heat to make up the heat loss from the radiator(s) to space. For the interplanetary Probe, PCM is melted by heaters just prior to separation from the orbiter when power is available from the orbiter power system. After the Probe separates from the orbiter, the PCM releases its latent heat to make up the heat loss from the Probe exterior to space. Paraffin wax is a good PCM candidate.
Cosmic dust collection with a sub-satellite tethered to a space station
NASA Technical Reports Server (NTRS)
Corso, G. J.
1986-01-01
The number concentration and density of 1 micron and submicron sized grains in interplanetary space, as well as their relation to the larger zodical dust particles, and the importance of the Beta meteoroid phenomenon are currently being questioned. The best approach to collecting large numbers of intact micron and submicron sized cosmic dust particles in real time while avoiding terrestrial and man made contamination would be to employ a tethered subsatellite from a space station down into the Earth's atmosphere. Such a subsatellite tied to the space shuttle by a 100 km long tether is being developed. It is also possible that a permanent space station would allow the use of a tether even longer that 100 km. It should be noted that the same tethered collectors could also be employed to study the composition and flux of man made Earth orbiting debris in any direction within 100 km or so of the space station.
Cosmic dust collection with a sub satellite tethered to a Space Station
NASA Technical Reports Server (NTRS)
Corso, George J.
1987-01-01
The number concentration and density of 1 micron and submicron sized grains in interplanetary space, as well as their relation to the larger zodical dust particles, and the importance of the beta meteoroid phenomenon are currently being questioned. The best approach to collecting large numbers of intact micron and submicron sized cosmic dust particles in real time while avoiding terrestrial and man made contamination would be to employ a tethered subsatellite from a space station down into the earth's atmosphere. Such a subsatellite tied to the space shuttle by a 100 km long tether is being developed. It is also possible that a permanent space station would allow the use of a tether even longer than 100 km. It should be noted that the same tethered collectors could also be employed to study the composition and flux of man made earth orbiting debris in any direction within 100 km or so of the space station.
NASA Astrophysics Data System (ADS)
Hapgood, Mike
2017-01-01
Space weather-changes in the Earth's environment that can often be traced to physical processes in the Sun-can have a profound impact on critical Earth-based infrastructures such as power grids and civil aviation. Violent eruptions on the solar surface can eject huge clouds of magnetized plasma and particle radiation, which then propagate across interplanetary space and envelop the Earth. These space weather events can drive major changes in a variety of terrestrial environments, which can disrupt, or even damage, many of the technological systems that underpin modern societies. The aim of this book is to offer an insight into our current scientific understanding of space weather, and how we can use that knowledge to mitigate the risks it poses for Earth-based technologies. It also identifies some key challenges for future space-weather research, and considers how emerging technological developments may introduce new risks that will drive continuing investigation.
NASA Technical Reports Server (NTRS)
Alexander, Harold L.
1991-01-01
Human productivity was studied for extravehicular tasks performed in microgravity, particularly including in-space assembly of truss structures and other large objects. Human factors research probed the anthropometric constraints imposed on microgravity task performance and the associated workstation design requirements. Anthropometric experiments included reach envelope tests conducted using the 3-D Acoustic Positioning System (3DAPS), which permitted measuring the range of reach possible for persons using foot restraints in neutral buoyancy, both with and without space suits. Much neutral buoyancy research was conducted using the support of water to simulate the weightlessness environment of space. It became clear over time that the anticipated EVA requirement associated with the Space Station and with in-space construction of interplanetary probes would heavily burden astronauts, and remotely operated robots (teleoperators) were increasingly considered to absorb the workload. Experience in human EVA productivity led naturally to teleoperation research into the remote performance of tasks through human controlled robots.
Interplanetary scintillation at large elongation angles: Response to solar wind density structure
DOE Office of Scientific and Technical Information (OSTI.GOV)
Erskine, F.T.; Cronyn, W.M.; Shawhan, S.D.
1978-09-01
Synoptic interplanetary scintillation (IPS) index measurements were taken at 34.3 MHz during May-December 1974 using the University of Iowa Coca Cross radiotelescope on a 'grid' of 150 selected radio sources covering solar elongation angles up to 180/sup 0/. Over 80 of these sources displayed definite IPS. The solar elongation dependence of the 34.3-MHz IPS index is consistent with the elongation angle dependence measured at higher frequencies. Large enhancements (factors of> or approx. =2) of the IPS index are found to coincide with the solar wind (proton density increases greater than 10 cm/sup -3/ as measured by Imp 7 and 8more » for nearly all observed IPS sources throughout the sky. These 'all-sky' IPS enhancements appear to be caused by incresed contributions to the scintillation power by turbulent plasma in regions close to the earth (< or approx. =0.3AU) in all directions. Correlation analysis confirms the IPS response to solar wind density and indicates that the events are due primarily to the corotating solar wind turbulent plasma structures which dominated the interplanetary medium during 1974. The expected IPS space-time signature for a simple model of an approaching corotating turbulent structure is not apparent in our observations. In some cases, the enhancement variatons can be attributed to structural differences in the solar wind density turbulence in and out of the ecliptic.« less
Interplanetary Propagation of Coronal Mass Ejections
NASA Technical Reports Server (NTRS)
Gopalswamy, Nat
2011-01-01
Although more than ten thousand coronal mass ejections (CMEs) are produced during each solar cycle at the Sun, only a small fraction hits the Earth. Only a small fraction of the Earth-directed CMEs ultimately arrive at Earth depending on their interaction with the solar wind and other large-scale structures such as coronal holes and CMEs. The interplanetary propagation is essentially controlled by the drag force because the propelling force and the solar gravity are significant only near the Sun. Combined remote-sensing and in situ observations have helped us estimate the influence of the solar wind on the propagation of CMEs. However, these measurements have severe limitations because the remote-sensed and in-situ observations correspond to different portions of the CME. Attempts to overcome this problem are made in two ways: the first is to model the CME and get the space speed of the CME, which can be compared with the in situ speed. The second method is to use stereoscopic observation so that the remote-sensed and in-situ observations make measurements on the Earth-arriving part of CMEs. The Solar Terrestrial Relations Observatory (STEREO) mission observed several such CMEs, which helped understand the interplanetary evolution of these CMEs and to test earlier model results. This paper discusses some of these issues and updates the CME/shock travel time estimates for a number of CMEs.
First Taste of Hot Channel in Interplanetary Space
NASA Astrophysics Data System (ADS)
Song, H. Q.; Zhang, J.; Chen, Y.; Cheng, X.; Li, G.; Wang, Y. M.
2015-04-01
A hot channel (HC) is a high temperature (˜10 MK) structure in the inner corona first revealed by the Atmospheric Imaging Assembly on board the Solar Dynamics Observatory. Eruptions of HCs are often associated with flares and coronal mass ejections (CMEs). Results of previous studies have suggested that an HC is a good proxy for a magnetic flux rope (MFR) in the inner corona as well as another well known MFR candidate, the prominence-cavity structure, which has a normal coronal temperature (˜1-2 MK). In this paper, we report a high temperature structure (HTS, ˜1.5 MK) contained in an interplanetary CME induced by an HC eruption. According to the observations of bidirectional electrons, high temperature and density, strong magnetic field, and its association with the shock, sheath, and plasma pile-up region, we suggest that the HTS is the interplanetary counterpart of the HC. The scale of the measured HTS is around 14 R ⊙ , and it maintained a much higher temperature than the background solar wind even at 1 AU. It is significantly different from the typical magnetic clouds, which usually have a much lower temperature. Our study suggests that the existence of a corotating interaction region ahead of the HC formed a magnetic container to inhibit expansion of the HC and cool it down to a low temperature.
Imaging interplanetary CMEs at radio frequency from solar polar orbit
NASA Astrophysics Data System (ADS)
Wu, Ji; Sun, Weiying; Zheng, Jianhua; Zhang, Cheng; Liu, Hao; Yan, Jingye; Wang, Chi; Wang, Chuanbing; Wang, Shui
2011-09-01
Coronal mass ejections (CMEs) represent a great concentration of mass and energy input into the lower corona. They have come to be recognized as the major driver of physical conditions change in the Sun-Earth system. Consequently, observations of CMEs are important for understanding and ultimately predicting space weather conditions. This paper discusses a proposed mission, the Solar Polar Orbit Radio Telescope (SPORT) mission, which will observe the propagation of interplanetary CMEs to distances of near 0.35 AU from the Sun. The orbit of SPORT is an elliptical solar polar orbit. The inclination angle between the orbit and ecliptic plane should be about 90°. The main payload on board SPORT will be an imaging radiometer working at the meter wavelength band (radio telescope), which can follow the propagation of interplanetary CMEs. The images that are obtained by the radio telescope embody the brightness temperature of the objectives. Due to the very large size required for the antenna aperture of the radio telescope, we adopt interferometric imaging technology to reduce it. Interferometric imaging technology is based on indirect spatial frequency domain measurements plus Fourier transformation. The SPORT spacecraft will also be equipped with a set of optical and in situ measurement instruments such as a EUV solar telescope, a solar wind ion instrument, an energetic particle detector, a magnetometer, a wave detector and a solar radio burst spectrometer.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zhou, X.; Gan, W.; Liu, S.
We investigate electron acceleration by electric fields induced by cascading reconnections in current sheets trailing coronal mass ejections via a test particle approach in the framework of the guiding-center approximation. Although the resistive electric field is much weaker than the inductive electric field, the electron acceleration is still dominated by the former. Anomalous resistivity η is switched on only in regions where the current carrier’s drift velocity is large enough. As a consequence, electron acceleration is very sensitive to the spatial distribution of the resistive electric fields, and electrons accelerated in different segments of the current sheet have different characteristics.more » Due to the geometry of the 2.5-dimensional electromagnetic fields and strong resistive electric field accelerations, accelerated high-energy electrons can be trapped in the corona, precipitating into the chromosphere or escaping into interplanetary space. The trapped and precipitating electrons can reach a few MeV within 1 s and have a very hard energy distribution. Spatial structure of the acceleration sites may also introduce breaks in the electron energy distribution. Most of the interplanetary electrons reach hundreds of keV with a softer distribution. To compare with observations of solar flares and electrons in solar energetic particle events, we derive hard X-ray spectra produced by the trapped and precipitating electrons, fluxes of the precipitating and interplanetary electrons, and electron spatial distributions.« less
NASA Technical Reports Server (NTRS)
Wei, C. Q.; Lee, L. C.; Wang, S.; Akasofu, S.-I.
1991-01-01
Spacecraft observations suggest that flux transfer events and interplanetary magnetic clouds may be associated with magnetic flux ropes which are magnetic flux tubes containing helical magnetic field lines. In the magnetic flux ropes, the azimuthal magnetic field is superposed on the axial field. The time evolution of a localized magnetic flux rope is studied. A two-dimensional compressible MHD simulation code with a cylindrical symmetry is developed to study the wave modes associated with the evolution of flux ropes. It is found that in the initial phase both the fast magnetosonic wave and the Alfven wave are developed in the flux rope. After this initial phase, the Alfven wave becomes the dominant wave mode for the evolution of the magnetic flux rope and the radial expansion velocity of the flux rope is found to be negligible. Numerical results further show that even for a large initial azimuthal component of the magnetic field, the propagation velocity along the axial direction of the flux rope remains the Alfven velocity. It is also found that the localized magnetic flux rope tends to evolve into two separate magnetic ropes propagating in opposite directions. The simulation results are used to study the evolution of magnetic flux ropes associated with flux transfer events observed at the earth's dayside magnetopause and magnetic clouds in the interplanetary space.
Interplanetary Lyman α background and the heliospheric interface
NASA Astrophysics Data System (ADS)
Quémerais, Eric; Sander, Bill R.; Clarke, John T.
2006-09-01
We present some recent measurements of the interplanetary Lyman α background which show a clear signature of the heliospheric interface. The Voyager 1 Ultraviolet Spectrometer has measured the variation of the upwind intensity from 1993 to 2006. The derived radial variation of the intensity is clearly slower than what is expected from a hot model computation. This shows that the hydrogen number density increases ahead of the spacecraft, toward the upwind direction. The data also show an abrupt change of slope in 1998 when the Voyager 1 spacecraft was at 65 AU from the sun. This may be linked to temporal variations induced at the heliospheric interface by the variations of solar activity. Interplanetary Lyman α line profiles measured at one AU from the sun also show a clear signature of the heliospheric interface. The SWAN instrument on-board the SOHO spacecraft has studied the line profiles between 1996 and 2002. It was found that the variations seen in line of sight velocities from solar minimum to solar maximum have a larger amplitude than what is derived from hot model computations. The observed features can be better understood when considering that some of the hydrogen atoms crossing the interface region are slowed down and heated. These results are in good agreement with the present models of the interface. Independent spectral observations made by the Hubble Space Telescope in 1995-2001 confirm the SWAN/SOHO measurements.
Particle acceleration in solar flares
NASA Technical Reports Server (NTRS)
Ramaty, R.; Forman, M. A.
1987-01-01
The most direct signatures of particle acceleration in flares are energetic particles detected in interplanetary space and in the Earth atmosphere, and gamma rays, neutrons, hard X-rays, and radio emissions produced by the energetic particles in the solar atmosphere. The stochastic and shock acceleration theories in flares are reviewed and the implications of observations on particle energy spectra, particle confinement and escape, multiple acceleration phases, particle anistropies, and solar atmospheric abundances are discussed.
Properties of Minor Ions In the Solar Wind and Implications for the Background Solar Wind Plasma
NASA Technical Reports Server (NTRS)
Esser, Ruth; Wagner, William (Technical Monitor)
2002-01-01
Ion charge states measured in situ in interplanetary space carry information on the properties of the solar wind plasma in the inner corona. The goal of the proposal is to determine coronal plasma conditions that produce the in situ observed charge states. This study is carried out using solar wind models, coronal observations, ion fraction calculations and in situ observations.
Orbital Stations: A Time of Quests and Accomplishments,
1983-04-25
Rocket into Planetary Space"), was pub- lished by Hermann Oberth . The German scientist allotted considerable attention to interplanetary stations and their...possible purposes. Everything that was written by these authors was, in principle, a * repetition of the works of Tsiolkovskiy. Oberth himself wrote...worked out with respect to design. Its author was the Austrian Potochnik, known under the name of Hermann Noordung. *" The station consisted of three
Neural net forecasting for geomagnetic activity
NASA Technical Reports Server (NTRS)
Hernandez, J. V.; Tajima, T.; Horton, W.
1993-01-01
We use neural nets to construct nonlinear models to forecast the AL index given solar wind and interplanetary magnetic field (IMF) data. We follow two approaches: (1) the state space reconstruction approach, which is a nonlinear generalization of autoregressive-moving average models (ARMA) and (2) the nonlinear filter approach, which reduces to a moving average model (MA) in the linear limit. The database used here is that of Bargatze et al. (1985).
Dynamic Routing for Delay-Tolerant Networking in Space Flight Operations
NASA Technical Reports Server (NTRS)
Burleigh, Scott
2008-01-01
Computational self-sufficiency - the making of communication decisions on the basis of locally available information that is already in place, rather than on the basis of information residing at other entities - is a fundamental principle of Delay-Tolerant Networking. Contact Graph Routing is an attempt to apply this principle to the problem of dynamic routing in an interplanetary DTN. Testing continues, but preliminary results are promising.
Possible directions of refining criteria of radiation safety of spaceflights
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kovalev, Y.Y.; Petrov, V.M.; Sakovich, V.A.
The possibility of characterizing space flight radiation safety is considered using a value which is integrated over the flight time, takes into account the radiation processes in an irradiated body and averages the probability of adverse radiobiological effects with respect to the distribution of solar proton flares of varying intensity. The proposed characteristic is compared with the current standards with reference to a hypothetic interplanetary flight.
Inertial Upper Stage (IUS) software analysis
NASA Technical Reports Server (NTRS)
Grayson, W. L.; Nickel, C. E.; Rose, P. L.; Singh, R. P.
1979-01-01
The Inertial Upper Stage (IUS) System, an extension of the Space Transportation System (STS) operating regime to include higher orbits, orbital plane changes, geosynchronous orbits, and interplanetary trajectories is presented. The IUS software design, the IUS software interfaces with other systems, and the cost effectiveness in software verification are described. Tasks of the IUS discussed include: (1) design analysis; (2) validation requirements analysis; (3) interface analysis; and (4) requirements analysis.
Back to the future: SETI before the space age
NASA Astrophysics Data System (ADS)
Dick, Steven J.
1995-02-01
In the late 1890s and early 1900s, before the advent of formalized search for extraterrestrial intelligence (SETI) programs, scientists such as Nikola Tesla and Gulielmo Marconi reported evidence of extraterrestrial radio signals. This paper reviews the history of 'interstellar/interplanetary radio communication'. The investigations of David P. Todd and Donald Menzel are discussed, and the fields of radio communication and radio astronomy are mentioned briefly.
NASA Astrophysics Data System (ADS)
James, D.; Poppe, A.; Horanyi, M.
2008-12-01
The Venetia Burney Student Dust Counter (VSDC) on the New Horizons mission is a dust impact detector designed to map the interplanetary dust distribution along the trajectory of the spacecraft as it traverses our solar system. VSDC is the first student-built instrument on a deep space mission and is currently operated by a small group of undergraduate and graduate students at the Laboratory for Atmospheric and Space Physics (LASP), University of Colorado. VSDC is based on permanently polarized thin plastic film sensors that generate an electrical signal when a dust particle impacts them. The total surface area is about 0.1 square meters and the detection threshold is about 1 micron in radius. By the time of this meeting (12/2008), VSDC will have operated for about 500 days, and will have data covering an approximate distance of 1.2 to 11.0 AU from the Sun. In this talk, we will briefly review the VSDC instrument, including the in-flight calibrations and tests. We will report on the measured spatial and size distribution of interplanetary dust particles before and after the New Horizons encounter with Jupiter. These data will also be compared to earlier measurements by Ulysses and Galileo.
Ultra-Compact Ka-Band Parabolic Deployable Antenna for RADAR and Interplanetary CubeSats
NASA Technical Reports Server (NTRS)
Sauder, Jonathan; Chahat, Nacer; Thomson, Mark; Hodges, Richard; Peral, Eva; Rahmat-Samii, Yahya
2015-01-01
Over the past several years, technology and launch opportunities for CubeSats have exploded, enabling a wide variety of missions. However, as instruments become more complex and CubeSats travel deeper into space, data communication rates become an issue. To solve this challenge, JPL has initiated a research and technology development effort to design a 0.5 meter Ka-band parabolic deployable antenna (KaPDA) which would stow in 1.5U (10 x 10 x 15 cu cm) and provide 42dB of gain (50% efficiency). A folding rib architecture and dual reflector Cassegrainian design was selected as it best balances RF gain and stowed size. The design implements an innovative telescoping waveguide and gas powered deployment. RF simulations show that after losses, the antenna would have over 42 dB gain, supported by preliminary test results. KaPDA would create opportunities for a host of new CubeSat missions by allowing high data rate communication which would enable using high fidelity instruments or venturing further into deep space, including potential interplanetary missions. Additionally KaPDA would provide a solution for other small antenna needs and the opportunity to obtain Earth science data. This paper discusses the design challenges encountered, the architecture of the solution, and the antennas expected performance capabilities.
STEREO Space Weather and the Space Weather Beacon
NASA Technical Reports Server (NTRS)
Biesecker, D. A.; Webb, D F.; SaintCyr, O. C.
2007-01-01
The Solar Terrestrial Relations Observatory (STEREO) is first and foremost a solar and interplanetary research mission, with one of the natural applications being in the area of space weather. The obvious potential for space weather applications is so great that NOAA has worked to incorporate the real-time data into their forecast center as much as possible. A subset of the STEREO data will be continuously downlinked in a real-time broadcast mode, called the Space Weather Beacon. Within the research community there has been considerable interest in conducting space weather related research with STEREO. Some of this research is geared towards making an immediate impact while other work is still very much in the research domain. There are many areas where STEREO might contribute and we cannot predict where all the successes will come. Here we discuss how STEREO will contribute to space weather and many of the specific research projects proposed to address STEREO space weather issues. We also discuss some specific uses of the STEREO data in the NOAA Space Environment Center.
NASA Astrophysics Data System (ADS)
Sandberg, I.; Daglis, I. A.; Anastasiadis, A.; Balasis, G.; Georgoulis, M.; Nieminen, P.; Evans, H.; Daly, E.
2012-01-01
Solar energetic particles (SEPs) observed in interplanetary medium consist of electrons, protons, alpha particles and heavier ions (up to Fe), with energies from dozens of keVs to a few GeVs. SEP events, or SEPEs, are particle flux enhancements from background level (< 1 pfu, particle flux unit = particle cm-2sr-1s-1) to several orders of magnitude in the MeV range, and lasting from several hours to a few days. Intense SEPEs can reach fluence values as high as 1010 protons cm-2 for E > 30 MeV. The main part of SEPEs results from the acceleration of particles either by solar flares and/or by interplanetary shocks driven by Coronal Mass Ejections (CMEs); these accelerated particles propagate through the heliosphere, traveling along the interplanetary magnetic field (IMF). SEPEs show significant variability from one event to another and are an important part of space weather, because they pose a serious health risk to humans in space and a serious radiation hazard for the spacecraft hardware which may lead to severe damages. As a consequence, engineering models, observations and theoretical investigations related to the high energy particle environment is a priority issue for both robotic and manned space missions. The European Space Agency operates the Standard Radiation Environment Monitor (SREM) on-board six spacecraft: Proba-1, INTEGRAL, Rosetta, Giove-B, Herschel and Planck, which measures high-energy protons and electrons with a fair angular and spectral resolution. The fact that several SREM units operate in different orbits provides a unique chance for comparative studies of the radiation environment based on multiple data gathered by identical detectors. Furthermore, the radiation environment monitoring by the SREM unit onboard Rosetta may reveal unknown characteristics of SEPEs properties given the fact that the majority of the available radiation data and models only refer to 1AU solar distances. The Institute for Space Applications and Remote Sensing of the National Observatory of Athens (ISARS/NOA) has developed and validated a novel method to obtain flux spectra from SREM count rates. Using this method and by conducting detailed scientific studies we have showed in previous presentations and papers that the exploration and analysis of SREM data may contribute significantly to investigations and modeling efforts of SPE generation and propagation in the heliosphere and in the Earth's magnetosphere. ISARS/NOA recently released an automated software tool for the monitoring of Solar Energetic Proton Fluxes (SEPF) using measurements of SREM. The SEPF tool is based on the automated implementation of the inverse method developed by ISARS/NOA, permitting the calculation of high-energy proton fluxes from SREM data. Results of the method have been validated for selected number of past solar energetic particle events using measurements from other space-born proton monitors. The SEPF tool unfolds downlinked SREM count-rates, calculates the omnidirectional differential proton fluxes and provides results to the space weather community acting as a multi-point proton flux monitor on a daily-basis. The SEPF tool is a significant European space weather asset and will support the efforts towards an efficient European Space Situational Awareness programme.
Sun-to-Earth Analysis of a Major Geoeffective Solar Eruption within the Framework of the
NASA Astrophysics Data System (ADS)
Patsourakos, S.; Vlahos, L.; Georgoulis, M.; Tziotziou, K.; Nindos, A.; Podladchikova, O.; Vourlidas, A.; Anastasiadis, A.; Sandberg, I.; Tsinganos, K.; Daglis, I.; Hillaris, A.; Preka-Papadema, P.; Sarris, M.; Sarris, T.
2013-09-01
Transient expulsions of gigantic clouds of solar coronal plasma into the interplanetary space in the form of Coronal Mass Ejections (CMEs) and sudden, intense flashes of electromagnetic radiation, solar flares, are well-established drivers of the variable Space Weather. Given the innate, intricate links and connections between the solar drivers and their geomagnetic effects, synergistic efforts assembling all pieces of the puzzle along the Sun-Earth line are required to advance our understanding of the physics of Space Weather. This is precisely the focal point of the Hellenic National Space Weather Research Network (HNSWRN) under the THALIS Programme. Within the HNSWRN framework, we present here the first results from a coordinated multi-instrument case study of a major solar eruption (X5.4 and X1.3 flares associated with two ultra-fast (>2000 km/s) CMEs) which were launched early on 7 March 2012 and triggered an intense geomagnetic storm (min Dst =-147 nT) approximately two days afterwards. Several elements of the associated phenomena, such as the flare and CME, EUV wave, WL shock, proton and electron event, interplanetary type II radio burst, ICME and magnetic cloud and their spatiotemporal relationships and connections are studied all way from Sun to Earth. To this end, we make use of satellite data from a flotilla of solar, heliospheric and magnetospheric missions and monitors (e.g., SDO, STEREO, WIND, ACE, Herschel, Planck and INTEGRAL). We also present our first steps toward formulating a cohesive physical scenario to explain the string of the observables and to assess the various physical mechanisms than enabled and gave rise to the significant geoeffectiveness of the eruption.
Space Science in Project SMART: A UNH High School Outreach Program
NASA Astrophysics Data System (ADS)
Smith, C. W.; Broad, L.; Goelzer, S.; Lessard, M.; Levergood, R.; Lugaz, N.; Moebius, E.; Schwadron, N.; Torbert, R. B.; Zhang, J.; Bloser, P. F.
2016-12-01
Every summer for the past 25 years the University of New Hampshire (UNH) has run a month-long, residential outreach program for high school students considering careers in mathematics, science, or engineering. Space science is one of the modules. Students work directly with UNH faculty performing original work with real spacecraft data and hardware and present the results of that effort at the end of the program. Recent research topics have included interplanetary waves and turbulence as recorded by the ACE and Voyager spacecraft, electromagnetic ion cyclotron (EMIC) waves seen by the RBSP spacecraft, interplanetary coronal mass ejections (ICME) acceleration and interstellar pickup ions as seen by the STEREO spacecraft, and prototyping CubeSat hardware. Student research efforts can provide useful results for future research efforts by the faculty while the students gain unique exposure to space physics and a science career. In addition, the students complete a team project. Since 2006, that project has been the construction and flight of a high-altitude balloon payload and instruments. The students typically build the instruments they fly. In the process, students learn circuit design and construction, microcontroller programming, and core atmospheric and space science. Our payload design has evolved significantly since the first flight of a simple rectangular box and now involves a stable descent vehicle that does not require a parachute, an on-board flight control computer, in-flight autonomous control and data acquisition of multiple student-built instruments, and real-time camera images sent to ground. This is a program that can be used as a model for other schools to follow and that high schools can initiate. More information can be found at .
NASA Astrophysics Data System (ADS)
Ravi, Aditya; Radhakrishnan, Arun
2016-07-01
The last decade has borne witness to a large number of Nano-satellites being launched.This increasing trend is mainly down to the advancements in consumer electronics that has played a crucial role in increasing the potential power available on board for mission study and analysis whilst being much smaller in size when compared to their satellite counterparts. This overall reduction in size and weight is a crucial factor when coupled with the recent innovations in various propulsion systems and orbital launch vehicles by private players has also allowed the cost of missions to brought down to a very small budget whilst able to retain the main science objectives of a dedicated space Missions. The success of first time missions such as India's Mars Orbiter Mission and the upcoming Cube-Sat Mission to Mars has served as a catalyst and is a major eye-opener on how Interplanetary missions can be funded and initiated in small time spans. This shows that Interplanetary missions with the main objective of a scientific study can be objectified by using Dedicated Nano-satellite constellations with each satellite carrying specific payloads for various mission parameters such as Telemetry, Observation and possible small lander payloads for studying the various Atmospheric and Geo-Physical parameters of a particular object with-out the requirement of a very long term expensive Spacecraft Mission. The association of Major Universities and Colleges in building Nano and-satellites are facilitating an atmosphere of innovation and research among students in a class-room level as their creative potential will allow for experiments and innovation on a scale never imagined before. In this paper, the Author envisions the feasibility of such low cost Nano satellite missions to various bodies in the solar system and how Nano satellite partnerships from universities and space agencies from around the world could foster a new era in diplomacy and International Co-operation.
Interplanetary Propagation Behavior of the Fast Coronal Mass Ejection on 23 July 2012
NASA Astrophysics Data System (ADS)
Temmer, M.; Nitta, N. V.
2015-03-01
The fast coronal mass ejection (CME) on 23 July 2012 caused attention because of its extremely short transit time from the Sun to 1 AU, which was shorter than 21 h. In situ data from STEREO-A revealed the arrival of a fast forward shock with a speed of more than 2200 km s-1 followed by a magnetic structure moving with almost 1900 km s-1. We investigate the propagation behavior of the CME shock and magnetic structure with the aim to reproduce the short transit time and high impact speed as derived from in situ data. We carefully measured the 3D kinematics of the CME using the graduated cylindrical shell model and obtained a maximum speed of 2580±280 km s-1 for the CME shock and 2270±420 km s-1 for its magnetic structure. Based on the 3D kinematics, the drag-based model (DBM) reproduces the observational data reasonably well. To successfully simulate the CME shock, the ambient flow speed needs to have an average value close to the slow solar wind speed (450 km s-1), and the initial shock speed at a distance of 30 R ⊙ should not exceed ≈ 2300 km s-1, otherwise it would arrive much too early at STEREO-A. The model results indicate that an extremely small aerodynamic drag force is exerted on the shock, smaller by one order of magnitude than average. As a consequence, the CME hardly decelerates in interplanetary space and maintains its high initial speed. The low aerodynamic drag can only be reproduced when the density of the ambient solar wind flow, in which the fast CME propagates, is decreased to ρ sw=1 - 2 cm-3 at the distance of 1 AU. This result is consistent with the preconditioning of interplanetary space by a previous CME.
A tiny event producing an interplanetary type III burst
NASA Astrophysics Data System (ADS)
Alissandrakis, C. E.; Nindos, A.; Patsourakos, S.; Kontogeorgos, A.; Tsitsipis, P.
2015-10-01
Aims: We investigate the conditions under which small-scale energy release events in the low corona gave rise to strong interplanetary (IP) type III bursts. Methods: We analyzed observations of three tiny events, detected by the Nançay Radio Heliograph (NRH), two of which produced IP type III bursts. We took advantage of the NRH positioning information and of the high cadence of AIA/SDO data to identify the associated extreme-UV (EUV) emissions. We measured positions and time profiles of the metric and EUV sources. Results: We found that the EUV events that produced IP type III bursts were located near a coronal hole boundary, while the one that did not was located in a closed magnetic field region. In all three cases tiny flaring loops were involved, without any associated mass eruption. In the best observed case, the radio emission at the highest frequency (435 MHz) was displaced by ~55'' with respect to the small flaring loop. The metric type III emission shows a complex structure in space and in time, indicative of multiple electron beams, despite the low intensity of the events. From the combined analysis of dynamic spectra and NRH images, we derived the electron beam velocity as well as the height, ambient plasma temperature, and density at the level of formation of the 160 MHz emission. From the analysis of the differential emission measure derived from the AIA images, we found that the first evidence of energy release was at the footpoints, and this was followed by the development of flaring loops and subsequent cooling. Conclusions: Even small energy release events can accelerate enough electrons to give rise to powerful IP type III bursts. The proximity of the electron acceleration site to open magnetic field lines facilitates the escape of the electrons into the interplanetary space. The offset between the site of energy release and the metric type III location warrants further investigation. The movie is available in electronic form at http://www.aanda.org
NASA Astrophysics Data System (ADS)
Laitinen, T. L.; Kopp, A.; Effenberger, F.; Dalla, S.; Marsh, M. S.
2014-12-01
Multi-spacecraft observations of Solar Energetic Particles (SEPs) show that the SEPs can spread large distances across the mean Parker spiral field. The SEPs accelerated during a solar eruption can be observed 360° around the Sun, and the dependence of SEP peak intensity on heliographic longitude at 1 AU has been fitted with Gaussian profiles with σ=30-50° for several events (e.g., Dresing et al 2014; Richardson et al 2014). SEP anisotropy measurements suggest that interplanetary transport is an important factor to the SEP cross-field extent (Dresing et al 2014). However, the currently used diffusive Fokker Planck (FP) description of SEP transport, with realistic diffusion coefficients, has been found insufficient to explain the SEP event cross-field extents. Recently Laitinen et al (2013) emphasised the importance of particle propagation along meandering field lines, which cannot be described as diffusion. They showed that early in an event field line meandering dominates particle cross-field transport and produces events wider than the FP description. They also introduced a new FP model that incorporates both field line meandering and SEP cross-field diffusion using stochastic differential equations and a constant background magnetic field. In this work, we implement the new FP model into Parker field geometry, to study the evolution of an SEP event in the interplanetary space. We compare the new model to the traditional FP approach by using particle and field line diffusion coefficients that are calculated consistently for both models using an assumed radial and spectral description of the turbulence evolution. We find that while the traditional SEP propagation modelling gives typically longitudinal extent with σ=10-20°, the new model results in values σ=30-50°, which is consistent with SEP observations. We conclude that field line meandering must be taken into account when modelling SEP propagation in the interplanetary space.
Challenges in Heliophysics and Space Weather: What Instrumentation for the Future?
NASA Astrophysics Data System (ADS)
Guhathakurta, Madhulika
A hundred years ago, the sun-Earth connection (the field of heliophysics research and space weather impacts) was of interest to only a small number of scientists. Solar activity had little effect on daily life. Today, a single strong solar flare could bring civilization to its knees. Modern society has come to depend on technologies sensitive to solar radiation and geomagnetic storms. Particularly vulnerable are intercontinental power grids, interplanetary robotic and human exploration, satellite operations and communications, and GPS navigation. These technologies are woven into the fabric of daily life, from health care and finance to basic utilities. Both short- and long-term forecasting models are urgently needed to mitigate the effects of solar storms and to anticipate their collective impact on aviation, astronaut safety, terrestrial climate and others. Even during a relatively weak solar maximum, the potential consequences that such events can have on society are too important to ignore. The challenges associated with space weather affect all developed and developing countries. Work on space weather specification, modeling, and forecasting has great societal benefit: It is basic research with a high public purpose. At present, we have a fleet “Heliophysics System Observatory” of dedicated spacecraft titled (e.g. SOHO, STEREO, SDO, ACE), and serendipitous resources contributing data for space weather modeling from both remote observations of the sun and in-situ measurements to provide sparse space weather situational awareness which were mostly built for a 2-3 year lifetime and are wearing out and won’t be around for very long. Missions currently in formulation will significantly enhance the capability of physics-based models that are used to understand and predict the impact of the variable sun. To enhance current models, and make them effective in predicting space weather throughout the solar system, we need a distributed network of spacecraft collecting relevant data that can be assimilated into models. In this talk I will discuss several additional approaches that could be used for the necessary augmentation of the existing HSO capabilities and replacement of aging HSO instruments, enabling interplanetary space weather and climate predictions.
Space Weathering Impact on Solar System Surfaces and Planetary Mission Science
NASA Technical Reports Server (NTRS)
Cooper, John F.
2011-01-01
We often look "through a glass, darkly" at solar system bodies with tenuous atmospheres and direct surface exposure to the local space environment. Space weathering exposure acts via universal space-surface interaction processes to produce a thin patina of outer material covering, potentially obscuring endogenic surface materials of greatest interest for understanding origins and interior evolution. Examples of obscuring exogenic layers are radiation crusts on cometary nuclei and iogenic components of sulfate hydrate deposits on the trailing hemisphere of Europa. Weathering processes include plasma ion implantation into surfaces, sputtering by charged particles and solar ultraviolet photons, photolytic chemistry driven by UV irradiation, and radiolytic chemistry evolving from products of charged particle irradiation. Regolith structure from impacts, and underlying deeper structures from internal evolution, affects efficacy of certain surface interactions, e.g. sputtering as affected by porosity and surface irradiation dosage as partly attenuated by local topographic shielding. These processes should be regarded for mission science planning as potentially enabling, e.g. since direct surface sputtering, and resultant surface-bound exospheres, can provide in-situ samples of surface composition to ion and neutral mass spectrometers on orbital spacecraft. Sample return for highest sensitivity compOSitional and structural analyses at Earth will usually be precluded by limited range of surface sampling, long times for return, and high cost. Targeted advancements in instrument technology would be more cost efficient for local remote and in-situ sample analysis. More realistic laboratory simulations, e.g. for bulk samples, are needed to interpret mission science observations of weathered surfaces. Space environment effects on mission spacecraft and science operations must also be specified and mitigated from the hourly to monthly changes in space weather and from longer term (e.g., solar cycle) evolution of space climate. Capable instrumentation on planetary missions can and should be planned to contribute to knowledge of interplanetary space environments. Evolving data system technologies such as virtual observatories should be explored for more interdisciplinary application to the science of planetary surface, atmospheric, magnetospheric, and interplanetary interactions.
NASA Technical Reports Server (NTRS)
Ng, Carolyn; Stonesifer, G. Richard
1989-01-01
The main purpose of the data catalog series is to provide descriptive references to data generated by space science flight missions. The data sets described include all of the actual holdings of the Space Science Data Center (NSSDC), all data sets for which direct contact information is available, and some data collections held and serviced by foreign investigators, NASA and other U.S. government agencies. This volume contains narrative descriptions of data sets from meteorological and terrestrial applications spacecraft and investigations. The following spacecraft series are included: Mariner, Pioneer, Pioneer Venus, Venera, Viking, Voyager, and Helios. Separate indexes to the planetary and interplanetary missions are also provided.
NASA Technical Reports Server (NTRS)
Horowitz, Richard (Compiler); Jackson, John E. (Compiler); Cameron, Winifred S. (Compiler)
1987-01-01
The main purpose of the data catalog series is to provide descriptive references to data generated by space science flight missions. The data sets described include all of the actual holdings of the Space Science Data Center (NSSDC), all data sets for which direct contact information is available, and some data collections held and serviced by foreign investigators, NASA and other U.S. government agencies. This volume contains narrative descriptions of planetary and heliocentric spacecraft and associated experiments. The following spacecraft series are included: Mariner, Pioneer, Pioneer Venus, Venera, Viking, Voyager, and Helios. Separate indexes to the planetary and interplanetary missions are also provided.
Radiation hazard during a manned mission to Mars.
Jäkel, Oliver
2004-01-01
The radiation hazard of interplanetary flights is currently one of the major obstacles to manned missions to Mars. Highly energetic, heavy-charged particles from galactic cosmic radiation can not be sufficiently shielded in space vehicles. The long-term radiation effects to humans of these particles are largely unknown. In addition, unpredictable storms of solar particles may expose the crew to doses that lead to acute radiation effects. A manned flight to Mars currently seems to be a high-risk adventure. This article provides an overview on the radiation sources and risks for a crew on a manned flight to Mars, as currently estimated by scientists of the US National Administration for Space and Aeronautics (NASA) and the Space Studies Board (SSB) of the US National Research Council.
NASA Technical Reports Server (NTRS)
Schofield, Norman J. (Editor); Parthasarathy, R. (Editor); Hills, H. Kent (Editor)
1988-01-01
The main purpose of the data catalog series is to provide descriptive references to data generated by space science flight missions. The data sets described include all of the actual holdings of the Space Science Data Center (NSSDC), all data sets for which direct contact information is available, and some data collections held and serviced by foreign investigators, NASA and other U.S. government agencies. This volume contains narrative descriptions of data sets from geostationary and high altitude scientific spacecraft and investigations. The following spacecraft series are included: Mariner, Pioneer, Pioneer Venus, Venera, Viking, Voyager, and Helios. Separate indexes to the planetary and interplanetary missions are also provided.
NASA Technical Reports Server (NTRS)
Jackson, John E. (Editor); Horowitz, Richard (Editor)
1986-01-01
The main purpose of the data catalog series is to provide descriptive references to data generated by space science flight missions. The data sets described include all of the actual holdings of the Space Science Data Center (NSSDC), all data sets for which direct contact information is available, and some data collections held and serviced by foreign investigators, NASA and other U.S. government agencies. This volume contains narrative descriptions of data sets from low and medium altitude scientific spacecraft and investigations. The following spacecraft series are included: Mariner, Pioneer, Pioneer Venus, Venera, Viking, Voyager, and Helios. Separate indexes to the planetary and interplanetary missions are also provided.
NASA Technical Reports Server (NTRS)
Su, Renjeng
1998-01-01
The Center for Space Construction (CSC) at University of Colorado at Boulder is one of eight University Space Engineering Research Centers established by NASA in 1988. The mission of the Center is to conduct research into space technology and to directly contribute to space engineering education. The Center reports to the Department of Aerospace Engineering Sciences and resides in the College of Engineering and Applied Sciences. The College has a long and successful track record of cultivating multi-disciplinary research and education programs. The Center for Space Construction represents prominent evidence of this record. The basic concept on which the Center was founded is the in-space construction of large space systems, such as space stations, interplanetary space vehicles, and extraterrestrial space structures. Since 1993, the scope of CSC research has evolved to include the design and construction of all spacecraft, large and small. With the broadened scope our research projects seek to impact the technological basis for spacecraft such as remote sensing satellites, communication satellites and other special-purpose spacecraft, as well as large space platforms. A summary of accomplishments, including student participation and degrees awarded, during the contract period is presented.
Psychosocial issues in space: future challenges.
Sandal, G M
2001-06-01
As the duration of space flights increases and crews become more heterogeneous, psychosocial factors are likely to play an increasingly important role in determining mission success. The operations of the International Space Station and planning of interplanetary missions represent important future challenges for how to select, train and monitor crews. So far, empirical evidence about psychological factors in space is based on simulations and personnel in analog environments (i.e. polar expeditions, submarines). It is apparent that attempts to transfer from these environments to space requires a thorough analysis of the human behavior specific to the fields. Recommendations for research include the effects of multi-nationality on crew interaction, development of tension within crews and between Mission Control, and prediction of critical phases in adaptation over time. Selection of interpersonally compatible crews, pre-mission team training and implementation of tools for self-monitoring of psychological parameters ensure that changes in mission requirements maximize crew performance.
Physical Origins of Space Weather Impacts: Open Physics Questions
NASA Astrophysics Data System (ADS)
Lanzerotti, L. J.
2011-12-01
Beginning with the era of development of electrical telegraph systems in the early 19th century, physical processes in the space environment on the Sun, in the interplanetary medium, and around Earth have influenced the design and operations of ever-increasing and sophisticated technical systems, both in space and on the ground. Understanding of Earth's space environment has increased enormously in the last century and one-half. Nevertheless, many of the physical processes that produced effects on early cable and wireless technologies continue to plague modern-day systems. And as new technologies are developed for improved communications, surveillance, navigation, and conditions for human space flight, the solar-terrestrial environment often offers surprises to their safe, secure and uninterrupted operations. This talk will address some of the challenges that I see to the successful operations of some modern-day technical systems that are posed by significant deficiencies of understanding of physical processes operating from the Sun to the Earth.
Conceptual communications system design in the 25.25-27.5 and 37.0-40.5 GHz frequency bands
NASA Technical Reports Server (NTRS)
Thompson, Michael W.
1993-01-01
Future space applications are likely to rely heavily on Ka-band frequencies (20-40 GHz) for communications traffic. Many space research activities are now conducted using S-band and X-band frequencies, which are becoming congested and require a degree of pre-coordination. In addition to providing relief from frequency congestion, Ka-band technologies offer potential size, weight, and power savings when compared to lower frequency bands. The use of the 37.0-37.5 and 40.0-40.5 GHz bands for future planetary missions was recently approved at the 1992 World Administrative Radio Conference (WARC-92). WARC-92 also allocated the band 25.25-27.5 GHz to the Intersatellite Service on a primary basis to accommodate Data Relay Satellite return link requirements. Intersatellite links are defined to be between artificial satellites and thus a communication link with the surface of a planetary body, such as the moon, and a relay satellite orbiting that body are not permitted in this frequency band. This report provides information about preliminary communications system concepts for forward and return links for earth-Mars and earth-lunar links using the 37.0-37.5 (return link) and 40.0-40.5 (forward link) GHz frequency bands. In this study we concentrate primarily on a conceptual system for communications between earth and a single lunar surface terminal (LST), and between earth and a single Mars surface terminal (MST). Due to large space losses, these links have the most stringent link requirements for an overall interplanetary system. The earth ground station is assumed to be the Deep Space Network (DSN) using either 34 meter or 70 meter antennas. We also develop preliminary communications concepts for a space-to-space system operating at near 26 GHz. Space-to-space applications can encompass a variety of operating conditions, and we consider several 'typical' scenarios described in more detail later in this report. Among these scenarios are vehicle-to-vehicle communications, vehicle-to-geosyncronous satellite (GEO) communications, and GEO-to-GEO communications. Additional details about both the interplanetary and space-to-space communications systems are provided in an 'expanded' final report which has been submitted to the Tracking and Communications Division (TCD) at the NASA Johnson Space Center.
NASA Technical Reports Server (NTRS)
Zusmanovich, A. G.; Kryakunova, O. N.; Churunova, L. F.; Shvartsman, Y. E.
1985-01-01
A numerical model of the propagation of galactic cosmic rays in interplanetary space was constructed for the case when the modulation depth determined by the level of solar activity changed in time. Also the contribution of particle drift in the regular field was calculated, and the agreement with experimental data concerning the ratio of protons and electrons in two solar activity minima is shown.
Properties of Minor Ions in the Solar Wind and Implications for the Background Solar Wind Plasma
NASA Technical Reports Server (NTRS)
Esser, Ruth; Ling, James (Technical Monitor)
2001-01-01
Ion charge states measured in situ in interplanetary space carry information on the properties of the solar wind plasma in the inner corona where these ion charge states are formed. The goal of the proposed research was to determine solar wind models and coronal observations that are necessary tools for the interpretation of the ion charge state observations made in situ in the solar wind.
Fabrication of Regolith-Derived Radiation Shield Project
NASA Technical Reports Server (NTRS)
Zeitlin, Nancy; Mantovani, James G.; Townsend, Ivan
2015-01-01
Mars and asteroids have little or no atmosphere, and do not possess a magnetosphere that can protect humans, mechanisms and electronics from damaging Galactic Cosmic Radiation (GCR) and solar particle events (SPE) as does the Earth. These types of space radiation present one of the highest risks to a human crew during interplanetary journeys and to onboard electronics. This project aims to evaluate the effectiveness of carbonaceous asteroid materials as a potential radiation shielding material.
2012-05-03
ENERGETIC ELECTRON EVENTS (POSTPRINT) S.W. Kahler, et al. 03 May 2012 Technical Paper APPROVED FOR PUBLIC RELEASE...REPORT DATE (DD-MM-YYYY) 03-05-2012 2. REPORT TYPE Technical Paper 3. DATES COVERED (From - To) 1 Oct 2007 – 13 Jul 2011 4. TITLE AND SUBTITLE...AND ADDRESS(ES) 8. PERFORMING ORGANIZATION REPORT NUMBER ir Force Research Laboratory Space Vehicles Directorate 3550 Aberdeen Ave SE
Alternative approaches to fusion. [reactor design and reactor physics for Tokamak fusion reactors
NASA Technical Reports Server (NTRS)
Roth, R. J.
1976-01-01
The limitations of the Tokamak fusion reactor concept are discussed and various other fusion reactor concepts are considered that employ the containment of thermonuclear plasmas by magnetic fields (i.e., stellarators). Progress made in the containment of plasmas in toroidal devices is reported. Reactor design concepts are illustrated. The possibility of using fusion reactors as a power source in interplanetary space travel and electric power plants is briefly examined.
High Energy Phenomena on the Sun. [conference on solar activity effects and solar radiation
NASA Technical Reports Server (NTRS)
Ramaty, R. (Editor); Stone, R. G. (Editor)
1973-01-01
The proceedings of a symposium of high energy phenomena on the sun are presented. The subjects discussed include the following: (1) flare theories and optical observations, (2) microwave and hard X-ray observations, (3) ultraviolet and soft X-ray emissions, (4) nuclear reactions in solar flares, (5) energetic particles from the sun, (6) magnetic fields and particle storage, and (7) radio emissions in the corona and interplanetary space.
Habitability during long-duration space missions - Key issues associated with a mission to Mars
NASA Technical Reports Server (NTRS)
Stuster, Jack
1989-01-01
Isolation and confinement conditions similar to those of a long-duration mission to Mars are examined, focusing on 14 behavioral issues with design implications. Consideration is given to sleep, clothing, exercise, medical support, personal hygiene, food preparation, group interaction, habitat aesthetics, outside communications, recreational opportunities, privacy, waste disposal, onboard training, and the microgravity environment. The results are used to develop operational requirements and habitability design guidelines for interplanetary spacecraft.
Derivation of particulate directional information from analysis of elliptical impact craters on LDEF
NASA Technical Reports Server (NTRS)
Newman, P. J.; Mackay, N.; Deshpande, S. P.; Green, S. F.; Mcdonnell, J. A. M.
1993-01-01
The Long Duration Exposure Facility provided a gravity gradient stabilized platform which allowed limited directional information to be derived from particle impact experiments. The morphology of impact craters on semi-infinite materials contains information which may be used to determine the direction of impact much more accurately. We demonstrate the applicability of this technique and present preliminary results of measurements from LDEF and modelling of interplanetary dust and space debris.
Test facilities for high power electric propulsion
NASA Technical Reports Server (NTRS)
Sovey, James S.; Vetrone, Robert H.; Grisnik, Stanley P.; Myers, Roger M.; Parkes, James E.
1991-01-01
Electric propulsion has applications for orbit raising, maneuvering of large space systems, and interplanetary missions. These missions involve propulsion power levels from tenths to tens of megawatts, depending upon the application. General facility requirements for testing high power electric propulsion at the component and thrust systems level are defined. The characteristics and pumping capabilities of many large vacuum chambers in the United States are reviewed and compared with the requirements for high power electric propulsion testing.
Nature vs. nurture debate on TNO carbons: constraints from Raman spectroscopy
NASA Astrophysics Data System (ADS)
Brunetto, R.
2012-02-01
We compare spectroscopic data of irradiated laboratory analogs with those of an interplanetary dust particle of cometary origin. We investigate if this comparison can help constraining the origin of carbonaceous materials on small icy bodies in the outer Solar System (TNOs, Centaurs, etc.). We suggest that Raman spectroscopy can help in interpreting the observed heterogeneity of the extraterrestrial carbonaceous component and in constraining the irradiation dose accumulated in space.
The Interplanetary Transport Effects on the Fe/O Ratio of Large Solar Energetic Particle Events
NASA Astrophysics Data System (ADS)
Qin, G.; Wang, Y.
2016-12-01
Mason and coauthors in 2006 invested the intensities of O and Fe in large western solar energetic particle (SEP) events observed by ACE spacecraft. It was found that the Fe/O ratio decreases with time at the same kinetic energy per nucleon during the rising phase of time-intensity profile, and the Fe/O ratio gradually becomes a constant during the decay phase of intensity. However, if the O intensity is compared at a higher kinetic energy with the Fe intensity, the behaviors of intensity profiles of O and Fe are similar. So they concluded that for such kind of events the injection profiles of Fe and O are similar near the Sun, and that scattering effects dominates. With numerical simulations, we find that in order to get such kind of SEPs behavior, Fe and O have to have similar injection profiles near the Sun, and similar diffusion and adiabatic cooling processes in the interplanetary space.
The British Interplanetary Society - Val Cleaver and Wernher von Braun
NASA Astrophysics Data System (ADS)
Willhite, I. P.
This article is concerned with the early relationship between Wernher von Braun and the British Interplanetary Society (BIS). The BIS/Wernher von Braun/Val Cleaver correspondence files located here at the US Space & Rocket Center in Huntsville, Alabama are unparalleled. As one reads the stimulating comments between Cleaver and von Braun, the need to share their thoughts prevails. Following is an excerpt from one letter that whets ones appetite for more. 10 June 1951 Cleaver writes, “I'm so glad you enjoyed my last letter, and look forward to your promised further contribution to our discussion of the ethics of science in general and astronautics in particu- lar. As regards the one particular point on which you found yourself unable to hold your fire, I should say there are really two distinct issues at stake:. . .” This article attempts to represent the best of the letters as they goad each other on scientific principles, means to prevent wars, and other philosophic ideas.
Observations of an Interplanetary Intermediate Shock Associated with a Magnetic Reconnection Exhaust
NASA Astrophysics Data System (ADS)
Feng, H. Q.; Li, Q. H.; Wang, J. M.; Zhao, G. Q.
2016-07-01
Two intermediate shocks (ISs) in interplanetary space have been identified via one spacecraft observation. However, Feng et al. suggested that the analysis using a single spacecraft observation based only on the Rankine-Hugoniot (R-H) relations could misinterpret a tangential discontinuity (TD) as an IS. The misinterpretation can be fixed if two spacecraft observations are available. In this paper, we report an IS-like discontinuity associated with a magnetic reconnection exhaust, which was observed by Wind on 2000 August 9 at 1 au. We investigated this discontinuity by fitting the R-H relations and referring to the Advanced Composition Explorer (ACE) observations. As a result, we found that the observed magnetic field and plasma data satisfy the R-H relations well, and the discontinuity satisfies all the requirements of the 2\\to 3 type IS. Although the discontinuity cannot be identified strictly by using two spacecraft observations, in light of the ACE observations we consider that the discontinuity should be an IS rather than a TD.
NASA Astrophysics Data System (ADS)
Muñoz, G.; Cantó, J.; Lara, A.; González, R.; Schwenn, R.
Solar Ejecta (SE) have been of interest in the last years, especially those which may reach Earth environment. It is possible to observe the SE early evolution, when they are in the field of view of coronagraphs. There are few indirect observations, as the case of interplanetary scintillation, of SEs in the interplanetary medium. Finally, we observe SEs in situ when they arrive at 1 AU.The SEs structure and evolution are important to understand the origin of these phenomena but to predict the possible effects in the space weather. It is of general acceptance that SEs are "Erupting Flux Ropes" traveling trough the Solar Wind. The "shapes" have been modeled as cylinders or as "ice cream cones" in order to represent the many different projections observed on Coronagraphs.We present a model of the SE evolution based on purely Hydrodynamic considerations. This model reproduces in good approximation some of the features observed in the images and in the measures of the shocks near Earth.
A Voyage through the Heliosphere (Invited)
NASA Astrophysics Data System (ADS)
Burlaga, L. F.
2009-12-01
Parker adopted the word “Heliosphere” to denote “the region of interstellar space swept out by the solar wind” His book “Interplanetary Dynamical Processes” (1963) provided “a comprehensive self-consistent dynamical picture of interplanetary activity” on spatial scales from the Larmor radius to the outermost limits of the heliosphere and over a broad range of temporal scales. The spacecraft Voyagers 1 and 2 have taken us on a journey through much of the heliosphere: from Earth, past the termination shock near 90 AU, and into the inner heliosheath. This talk will use magnetic field observations from V1 and V2 to illustrate how Parker’s dynamical picture has been largely confirmed by observations out to ~100 AU. It will also discuss some “complicating aspects of the dynamics…which will turn up in future observations…” that Parker envisaged. With continued funding, the Voyager spacecraft will allow us to explore the heliosheath, cross the boundary of the heliosphere, and sample the local interstellar medium, guided by still untested predictions of Parker.
The X-ray Detectability of Electron Beams Escaping from the Sun
NASA Astrophysics Data System (ADS)
Saint-Hilaire, Pascal; Krucker, Säm; Christe, Steven; Lin, Robert P.
2009-05-01
We study the detectability and characterization of electron beams as they leave their acceleration site in the low corona toward interplanetary space through their nonthermal X-ray bremsstrahlung emission. We demonstrate that the largest interplanetary electron beams (gsim1035 electrons above 10 keV) can be detected in X-rays with current and future instrumentation, such as RHESSI or the X-Ray Telescope (XRT) onboard Hinode. We make a list of optimal observing conditions and beam characteristics. Amongst others, good imaging (as opposed to mere localization or detection in spatially integrated data) is required for proper characterization, putting the requirement on the number of escaping electrons (above 10 keV) to gsim3 × 1036 for RHESSI, gsim3 × 1035 for Hinode/XRT, and gsim1033 electrons for the FOXSI sounding rocket scheduled to fly in 2011. Moreover, we have found that simple modeling hints at the possibility that coronal soft X-ray jets could be the result of local heating by propagating electron beams.
Magnetohydrodynamic modelling of solar disturbances in the interplanetary medium
NASA Astrophysics Data System (ADS)
Dryer, M.
1985-12-01
A scientifically constructed series of interplanetary magnetohydrodynamic models is made that comprise the foundations for a composite solar terrestrial environment model. These models, unique in the field of solar wind physics, include both 2-1/2D as well as 3D time dependent codes that will lead to future operational status. We have also developed a geomagnetic storm forecasting strategy, referred to as the Solar Terrestrial Environment Model (STEM/2000), whereby these models would be appended in modular fashion to solar, magnetosphere, ionosphere, thermosphere, and neutral atmosphere models. We stress that these models, while still not appropriate at this date for operational use, outline a strategy or blueprint for the future. This strategy, if implemented in its essential features, offers a high probability for technology transfer from theory to operational testing within, approximately, a decade. It would ensure that real time observations would be used to drive physically based models that outputs of which would be used by space environment forecasters.
Effective radiation reduction in Space Station and missions beyond the magnetosphere
NASA Technical Reports Server (NTRS)
Jordan, Thomas M.; Stassinopoulos, E. G.
1989-01-01
This paper investigates the efficiency of low- and high-atomic number materials used as protective shields against biologically effective radiation in doses equivalent to those expected in low-earth-orbit and interplanetary manned missions. Results are presented on calculations for single-material shields from polyethylene, water, Be, Al, Fe, and Ta and multilayer shelds made from the combinations of any two or any three of these materials, for both LEO and interplanetary conditions. It is shown that, whereas for protons and Galactic cosmic rays the ordering of shield materials has a negligible effect, for electrons and secondary bremsstrahlung, both the order and the composition are important parameters. It was found that low-atomic-number materials are most effective shields against protons and galactic cosmic rays, and are most effective in decreasing bremsstrahlung production, while high-atomic-number shields are the best attenuators of both primary electrons (if the dose is dominated by primary electrons) and secondary bremsstrahlung (if this is produced).
Interplanetary medium data book, supplement 5, 1988-1993
NASA Technical Reports Server (NTRS)
King, Joseph H.; Papitashvili, Natalia E.
1994-01-01
This publication represents an extension of the series of Interplanetary Medium Data Books and supplements that have been issued by the National Space Science Data Center since 1977. This volume contains solar wind magnetic field and plasma data from the IMP 8 spacecraft for 1988 through the end of 1993. The normalization of the MIT plasma density and temperature, which has been discussed at length in previous volumes, is implemented as before, using the same normalization constants for 1988-1993 data as for the earlier data. Owing to a combination of non-continuity of IMP 8 telemetry acquisition and IMP's being out of the solar wind for about 40 percent of its orbit, the annual solar wind coverage for 1988-1993 is 40 plus or minus 5 percent. The plots and listings of this supplement are in essentially the same format as in previous supplements. Days for which neither IMF nor plasma data were available for any hours are omitted from the listings.
The Interplanetary Network II: 11 Months of Rapid, Precise GRB Localizations
NASA Astrophysics Data System (ADS)
Hurley, K.; Cline, T.; Mazets, E.; Golenetskii, S.; Trombka, J.; Feroci, M.; Kippen, R. M.; Barthelmy, S.; Frontera, F.; Guidorzi, C.; Montanari, E.
2000-10-01
Since December 1999 the 3rd Interplanetary Network has been producing small ( 10') error boxes at a rate of about one per week, and circulating them rapidly ( 24 h) via the GCN. As of June 2000, 24 such error boxes have been obtained; 18 of them have been searched in the radio and optical ranges for counterparts, resulting in four definite counterpart detections and three redshift determinations. We will review these results and explain the some of the lesser known IPN operations. In particular, we maintain an "early warning" list of potential observers with pagers and cell phones, and send messages to them to alert them to bursts for which error boxes will be obtained, allowing them to prepare for observations many hours before the complete spacecraft data are received and the GCN message is issued. As an interesting aside, now that the CGRO mission is terminated, the IPN consists entirely of non-NASA and/or non-astrophysics missions, specifically, Ulysses and Wind (Space Physics), NEAR (Planetary Physics), and BeppoSAX (ASI).
Mineralogy of interplanetary dust particles from the 'olivine' infrared class
NASA Technical Reports Server (NTRS)
Christoffersen, R.; Buseck, P. R.
1986-01-01
Analytical electron microscopy observations establish that olivine is abundant and the predominant silicate phase in three interplanetary dust particles (IDPs) from the 'olivine' infrared spectra category. Two of the particles have microstructures resembling those of most nonhydrous chondritic IDPs, consisting of micron to submicron grains together with a matrix composed of amorphous carbonaceous material and sub-500 A grains. In addition to olivine these particles respectively contain enstatite and magnetite, and pentlandite plus Ca-rich clinopyroxene. The third IDP consists mostly of olivine and pyrrhotite with little or no matrix material. Olivine grains in this particle contain prominent solar-flare ion tracks with densities corresponding to a space-exposure age between 1000 to 100,000 years. Although the three particles have olivine-rich mineralogies in common, other aspects of their mineralogies and microstructures suggest that they experienced different formation histories. The differences between the particles indicate that the olivine infrared spectral category is a diverse collection of IDPs that probably incorporates several genetic groups.
NASA Technical Reports Server (NTRS)
Englander, Jacob A.; Vavrina, Matthew A.
2015-01-01
Preliminary design of high-thrust interplanetary missions is a highly complex process. The mission designer must choose discrete parameters such as the number of flybys and the bodies at which those flybys are performed. For some missions, such as surveys of small bodies, the mission designer also contributes to target selection. In addition, real-valued decision variables, such as launch epoch, flight times, maneuver and flyby epochs, and flyby altitudes must be chosen. There are often many thousands of possible trajectories to be evaluated. The customer who commissions a trajectory design is not usually interested in a point solution, but rather the exploration of the trade space of trajectories between several different objective functions. This can be a very expensive process in terms of the number of human analyst hours required. An automated approach is therefore very desirable. This work presents such an approach by posing the impulsive mission design problem as a multiobjective hybrid optimal control problem. The method is demonstrated on several real-world problems.
The thermal history of interplanetary dust particles collected in the Earth's stratosphere
NASA Technical Reports Server (NTRS)
Nier, A. O.; Schlutter, D. J.
1993-01-01
Fragments of 24 individual interplanetary dust particles (IDPs) collected in the Earth's stratosphere were obtained from NASA's Johnson Space Center collection and subjected to pulse-heating sequences to extract He and Ne and to learn about the thermal history of the particles. A motivation for the investigation was to see if the procedure would help distinguish between IDPs of asteroidal and cometary origin. The use of a sequence of short-duration heat pulses to perform the extractions is an improvement over the employment of a step-heating sequence, as was used in a previous investigation. The particles studied were fragments of larger parent IDPs, other fragments of which, in coordinated experiments, are undergoing studies of elemental and mineralogical composition in other laboratories. While the present investigation will provide useful temperature history data for the particles, the relatively large size of the parent IDPs (approximately 40 micrometers in diameter) resulted in high entry deceleration temperatures. This limited the usefulness of the study for distinguishing between particles of asteroidal and cometary origin.