A Statistical Study of Interplanetary Type II Bursts: STEREO Observations
NASA Astrophysics Data System (ADS)
Krupar, V.; Eastwood, J. P.; Magdalenic, J.; Gopalswamy, N.; Kruparova, O.; Szabo, A.
2017-12-01
Coronal mass ejections (CMEs) are the primary cause of the most severe and disruptive space weather events such as solar energetic particle (SEP) events and geomagnetic storms at Earth. Interplanetary type II bursts are generated via the plasma emission mechanism by energetic electrons accelerated at CME-driven shock waves and hence identify CMEs that potentially cause space weather impact. As CMEs propagate outward from the Sun, radio emissions are generated at progressively at lower frequencies corresponding to a decreasing ambient solar wind plasma density. We have performed a statistical study of 153 interplanetary type II bursts observed by the two STEREO spacecraft between March 2008 and August 2014. These events have been correlated with manually-identified CMEs contained in the Heliospheric Cataloguing, Analysis and Techniques Service (HELCATS) catalogue. Our results confirm that faster CMEs are more likely to produce interplanetary type II radio bursts. We have compared observed frequency drifts with white-light observations to estimate angular deviations of type II burst propagation directions from radial. We have found that interplanetary type II bursts preferably arise from CME flanks. Finally, we discuss a visibility of radio emissions in relation to the CME propagation direction.
NASA Technical Reports Server (NTRS)
Lengyel-Frey, D.; Stone, R. G.
1989-01-01
A large sample of type II events is the basis of the present study of the properties of interplanetary type II bursts' radio-emission properties. Type II spectra seem to be composed of fundamental and harmonic components of plasma emission, where the intensity of the fundamental component increases relative to the harmonic as the burst evolves with heliocentric distance; burst average flux density increases as a power of the associated shock's average velocity. Solar wind density structures may have a significant influence on type II bandwidths.
Type II solar radio bursts, interplanetary shocks, and energetic particle events
NASA Technical Reports Server (NTRS)
Cane, H. V.; Stone, R. G.
1984-01-01
Using the ISEE-3 radio astronomy experiment data 37 interplanetary (IP) type II bursts have been identified in the period September 1978 to December 1981. These events and the associated phenomena are listed. The events are preceded by intense, soft X ray events with long decay times (LDEs) and type II and/or type IV bursts at meter wavelengths. The meter wavelength type II bursts are usually intense and exhibit herringbone structure. The extension of the herringbone structure into the kilometer wavelength range results in the occurrence of a shock accelerated (SA) event. The majority of the interplanetary type II bursts are associated with energetic particle events. These results support other studies awhich indicate that energetic solar particles detected at 1 A.U. are generated by shock acceleration. From a preliminary analysis of the available data there appears to be a high correlation with white light coronal transients.
Type 2 radio bursts, interplanetary shocks and energetic particle events
NASA Technical Reports Server (NTRS)
Cane, H. V.; Stone, R. G.
1982-01-01
Using the ISEE-3 radio astronomy experiment data 37 interplanetary (IP) type II bursts have been identified in the period September 1978 to December 1981. These events and the associated phenomena are listed. The events are preceded by intense, soft X ray events with long decay times (LDEs) and type II and/or type IV bursts at meter wavelengths. The meter wavelength type II bursts are usually intense and exhibit herringbone structure. The extension of the herringbone structure into the kilometer wavelength range results in the occurrence of a shock accelerated (SA) event. The majority of the interplanetary type II bursts are associated with energetic particle events. These results support other studies which indicate that energetic solar particles detected at 1 A.U. are generated by shock acceleration. From a preliminary analysis of the available data there appears to be a high correlation with white light coronal transients.
Interplanetary type II radio bursts and their association with CMEs and flares
NASA Astrophysics Data System (ADS)
Shanmugaraju, A.; Suresh, K.; Vasanth, V.; Selvarani, G.; Umapathy, S.
2018-06-01
We study the characteristics of the CMEs and their association with the end-frequency of interplanetary (IP)-type-II bursts by analyzing a set of 138 events (IP-type-II bursts-flares-CMEs) observed during the period 1997-2012. The present analysis consider only the type II bursts having starting frequency < 14 MHz to avoid the extension of coronal type IIs. The selected events are classified into three groups depending on the end-frequency of type IIs as follows, (A) Higher, (B) Intermediate and (C) Lower end-frequency. We compare characteristics of CMEs, flares and type II burst for the three selected groups of events and report some of the important differences. The observed height of CMEs is compared with the height of IP type IIs estimated using the electron density models. By applying a density multiplier (m) to this model, the density has been constrained both in the upper corona and in the interplanetary medium, respectively as m= 1 to 10 and m = 1 to 3. This study indicates that there is a correlation between the observed CME height and estimated type II height for groups B and C events whereas this correlation is absent in group A. In all the groups (A, B & C), the different heights of CMEs and type II reveal that the type IIs are not only observed at the nose but also at the flank of the CMEs.
Diffuse Interplanetary Radio Emission (DIRE) Accompanying Type II Radio Bursts
NASA Astrophysics Data System (ADS)
Teklu, T. B.; Gopalswamy, N.; Makela, P. A.; Yashiro, S.; Akiyama, S.; Xie, H.
2015-12-01
We report on an unusual drifting feature in the radio dynamic spectra at frequencies below 14 MHz observed by the Radio and Plasma Wave (WAVES) experiment on board the Wind spacecraft. We call this feature as "Diffuse Interplanetary Radio Emission (DIRE)". The DIRE events are generally associated with intense interplanetary type II radio bursts produced by shocks driven by coronal mass ejections (CMEs). DIREs drift like type II bursts in the dynamic spectra, but the drifting feature consist of a series of short-duration spikes (similar to a type I chain). DIREs occur at higher frequencies than the associated type II bursts, with no harmonic relationship with the type II burst. The onset of DIREs is delayed by several hours from the onset of the eruption. Comparing the radio dynamic spectra with white-light observations from the Solar and Heliospheric Observatory (SOHO) mission, we find that the CMEs are generally very energetic (fast and mostly halos). We suggest that the DIRE source is typically located at the flanks of the CME-driven shock that is still at lower heliocentric distances.
Velocity profiles of interplanetary shocks
NASA Technical Reports Server (NTRS)
Cane, H. V.
1983-01-01
The type 2 radio burst was identified as a shock propagating through solar corona. Radio emission from shocks travelling through the interplanetary (IP) medium was observed. Using the drift rates of IP type II bursts the velocity characteristics of eleven shocks were investigated. It is indicated that shocks in the IP medium undergo acceleration before decelerating and that the slower shocks take longer to attain their maximum velocity.
Propagation Characteristics of Two Coronal Mass Ejections from the Sun Far into Interplanetary Space
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zhao, Xiaowei; Liu, Ying D.; Hu, Huidong
Propagation of coronal mass ejections (CMEs) from the Sun far into interplanetary space is not well understood, due to limited observations. In this study we examine the propagation characteristics of two geo-effective CMEs, which occurred on 2005 May 6 and 13, respectively. Significant heliospheric consequences associated with the two CMEs are observed, including interplanetary CMEs (ICMEs) at the Earth and Ulysses , interplanetary shocks, a long-duration type II radio burst, and intense geomagnetic storms. We use coronagraph observations from SOHO /LASCO, frequency drift of the long-duration type II burst, in situ measurements at the Earth and Ulysses , and magnetohydrodynamicmore » propagation of the observed solar wind disturbances at 1 au to track the CMEs from the Sun far into interplanetary space. We find that both of the CMEs underwent a major deceleration within 1 au and thereafter a gradual deceleration when they propagated from the Earth to deep interplanetary space, due to interactions with the ambient solar wind. The results also reveal that the two CMEs interacted with each other in the distant interplanetary space even though their launch times on the Sun were well separated. The intense geomagnetic storm for each case was caused by the southward magnetic fields ahead of the CME, stressing the critical role of the sheath region in geomagnetic storm generation, although for the first case there is a corotating interaction region involved.« less
Operational, Real-Time, Sun-to-Earth Interplanetary Shock Predictions During Solar Cycle 23
NASA Astrophysics Data System (ADS)
Fry, C. D.; Dryer, M.; Sun, W.; Deehr, C. S.; Smith, Z.; Akasofu, S.
2002-05-01
We report on our progress in predicting interplanetary shock arrival time (SAT) in real-time, using three forecast models: the Hakamada-Akasofu-Fry (HAF) modified kinematic model, the Interplanetary Shock Propagation Model (ISPM) and the Shock Time of Arrival (STOA) model. These models are run concurrently to provide real-time predictions of the arrival time at Earth of interplanetary shocks caused by solar events. These "fearless forecasts" are the first, and presently only, publicly distributed predictions of SAT and are undergoing quantitative evaluation for operational utility and scientific benchmarking. All three models predict SAT, but the HAF model also provides a global view of the propagation of interplanetary shocks through the pre-existing, non-uniform heliospheric structure. This allows the forecaster to track the propagation of the shock and to differentiate between shocks caused by solar events and those associated with co-rotating interaction regions (CIRs). This study includes 173 events during the period February, 1997 to October, 2000. Shock predictions were compared with spacecraft observations at the L1 location to determine how well the models perform. Sixty-eight shocks were observed at L1 within 120 hours of an event. We concluded that 6 of these observed shocks were caused by CIRs, and the remainder were caused by solar events. The forecast skill of the models are presented in terms of RMS errors, contingency tables and skill scores commonly used by the weather forecasting community. The false alarm rate for HAF was higher than for ISPM or STOA but much lower than for predictions based upon empirical studies or climatology. Of the parameters used to characterize a shock source at the Sun, the initial speed of the coronal shock, as represented by the observed metric type II speed, has the largest influence on the predicted SAT. We also found that HAF model predictions based upon type II speed are generally better for shocks originating from sites near central meridian, and worse for limb events. This tendency suggests that the observed type II speed is more representative of the interplanetary shock speed for events occurring near central meridian. In particular, the type II speed appears to underestimate the actual Earth-directed IP shock speed when the source of the event is near the limb. Several of the most interesting events (Bastille Day epoch (2000), April Fools Day epoch (2001))will be discussed in more detail with the use of real-time animations.
NASA Technical Reports Server (NTRS)
Pinter, S.; Dryer, M.
1985-01-01
The relationship between the thermal energy released from 29 solar flares and the propagation features of their associated interplanetary shock waves that were detected at 1 AU is investigated. The 29 interplanetary shock waves were identified unambiguously and their tracking from each solar flare was deduced by tracking their associated interplanetary type-II radio emission. The thermal energy released in the solar flares was estimated from the time-intensity profiles of 1-8 A soft X-ray bursts from each flare. A good relationship is found between the flares' thermal energy with the IP shock-waves' transient velocity and arrival time at the earth - that is, the largest flare energy released is associated with the faster shock waves. Finally, a possible scenario of formation of a shock wave during the early phase of the flare and its propagation features is discussed.
Type II Radio Bursts as Indicators of Space Weather Drivers
NASA Astrophysics Data System (ADS)
Gopalswamy, N.
2015-12-01
Interplanetary type II radio bursts are important indicators of shock-driving coronal mass ejections (CMEs). CME-driven shocks are responsible for large solar energetic particle (SEP) events and sudden commencement/sudden impulse events recorded by ground magnetometers. The excellent overlap of the spatial domains probed by SOHO/STEREO coronagraphs with the spectral domains of Wind/WAVES and STEREO/WAVES has contributed enormously in understanding CMEs and shocks as space weather drivers. This paper is concerned with type II bursts of solar cycle 23 and 24 that had emission components down to kilometric wavelengths. CMEs associated with these bursts seem to be the best indicators of large SEP events, better than the halo CMEs. However, there are some differences between the type II bursts of the two cycles, which are explained based on the different states of the heliosphere in the two cycles. Finally, the type II burst characteristics of some recent extreme events are discussed.
Large Solar Energetic Particle Events Associated With Filament Eruptions Outside Active Regions
NASA Technical Reports Server (NTRS)
Gopalswamy, N.; Makela, P.; Akiyama, S.; Yashiro, S.; Xie, H.; Thakur, N.; Kahler, S. W.
2015-01-01
We report on four large filament eruptions (FEs) from solar cycles 23 and 24 that were associated with large solar energetic particle (SEP) events and interplanetary type II radio bursts. The post-eruption arcades corresponded mostly to C-class soft X-ray enhancements, but an M1.0 flare was associated with one event. However, the associated coronal mass ejections (CMEs) were fast (speeds approx. 1000 km/s) and appeared as halo CMEs in the coronagraph field of view. The interplanetary type II radio bursts occurred over a wide wavelength range, indicating the existence of strong shocks throughout the inner heliosphere. No metric type II bursts were present in three events, indicating that the shocks formed beyond 2-3 Rs. In one case, there was a metric type II burst with low starting frequency, indicating a shock formation height of approx.2 Rs. The FE-associated SEP events did have softer spectra (spectral index >4) in the 10-100 MeV range, but there were other low-intensity SEP events with spectral indices ?4. Some of these events are likely FE-SEP events, but were not classified as such in the literature because they occurred close to active regions. Some were definitely associated with large active region flares, but the shock formation height was large. We definitely find a diminished role for flares and complex type III burst durations in these large SEP events. Fast CMEs and shock formation at larger distances from the Sun seem to be the primary characteristics of the FE-associated SEP events.
On Interplanetary Shocks Driven by Coronal Mass Ejections
NASA Technical Reports Server (NTRS)
Gopalswarmy, Nat
2011-01-01
Traveling interplanetary (IP) shocks were first detected in the early 1960s, but their solar origin has been controversial. Early research focused on solar flares as the source of the shocks, but when CMEs were discovered, it became clear that fast CMEs are the shock drivers. Type radio II bursts are excellent signatures of shocks near the Sun (Type II radio bursts were known long before the detection of shocks and CMEs). The excellent correspondence between type II bursts and solar energetic particle (SEP) events made it clear that the same shock accelerates ions and electrons. Shocks near the Sun are also seen occasionally in white-light coronagraphic images. In the solar wind, shocks are observed as discontinuities in plasma parameters such as density and speed. Energetic storm particle events and sudden commencement of geomagnetic storm are also indicators of shocks arriving at Earth. After an overview on these shock signatures, I will summarize the results of a recent investigation of a large number of IP shocks. The study revealed that about 35% of IP shocks do not produce type II bursts (radio quiet - RQ) or SEPs. Comparing the RQ shocks with the radio loud (RL) ones revealed some interesting results: (1) There is no evidence for blast wave shocks. (2) A small fraction (20%) of RQ shocks is associated with ion enhancements at the shock when the shock passes the spacecraft. (3) The primary difference between the RQ and RL shocks can be traced to the different kinematic properties of the associated CMEs. On the other hand the shock properties measured at 1 AU are not too different for the RQ and RL cases. This can be attributed to the interaction with the IP medium, which seems to erase the difference between the shocks.
LARGE SOLAR ENERGETIC PARTICLE EVENTS ASSOCIATED WITH FILAMENT ERUPTIONS OUTSIDE ACTIVE REGIONS
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gopalswamy, N.; Mäkelä, P.; Akiyama, S.
2015-06-10
We report on four large filament eruptions (FEs) from solar cycles 23 and 24 that were associated with large solar energetic particle (SEP) events and interplanetary type II radio bursts. The post-eruption arcades corresponded mostly to C-class soft X-ray enhancements, but an M1.0 flare was associated with one event. However, the associated coronal mass ejections (CMEs) were fast (speeds ∼ 1000 km s{sup −1}) and appeared as halo CMEs in the coronagraph field of view. The interplanetary type II radio bursts occurred over a wide wavelength range, indicating the existence of strong shocks throughout the inner heliosphere. No metric typemore » II bursts were present in three events, indicating that the shocks formed beyond 2–3 Rs. In one case, there was a metric type II burst with low starting frequency, indicating a shock formation height of ∼2 Rs. The FE-associated SEP events did have softer spectra (spectral index >4) in the 10–100 MeV range, but there were other low-intensity SEP events with spectral indices ≥4. Some of these events are likely FE-SEP events, but were not classified as such in the literature because they occurred close to active regions. Some were definitely associated with large active region flares, but the shock formation height was large. We definitely find a diminished role for flares and complex type III burst durations in these large SEP events. Fast CMEs and shock formation at larger distances from the Sun seem to be the primary characteristics of the FE-associated SEP events.« less
Solar Flares, Type III Radio Bursts, Coronal Mass Ejections, and Energetic Particles
NASA Technical Reports Server (NTRS)
Cane, Hilary V.; Erickson, W. C.; Prestage, N. P.; White, Nicholas E. (Technical Monitor)
2002-01-01
In this correlative study between greater than 20 MeV solar proton events, coronal mass ejections (CMEs), flares, and radio bursts it is found that essentially all of the proton events are preceded by groups of type III bursts and all are preceded by CMEs. These type III bursts (that are a flare phenomenon) usually are long-lasting, intense bursts seen in the low-frequency observations made from space. They are caused by streams of electrons traveling from close to the solar surface out to 1 AU. In most events the type III emissions extend into, or originate at, the time when type II and type IV bursts are reported (some 5 to 10 minutes after the start of the associated soft X-ray flare) and have starting frequencies in the 500 to approximately 100 MHz range that often get lower as a function of time. These later type III emissions are often not reported by ground-based observers, probably because of undue attention to type II bursts. It is suggested to call them type III-1. Type III-1 bursts have previously been called shock accelerated (SA) events, but an examination of radio dynamic spectra over an extended frequency range shows that the type III-1 bursts usually start at frequencies above any type II burst that may be present. The bursts sometimes continue beyond the time when type II emission is seen and, furthermore, sometimes occur in the absence of any type II emission. Thus the causative electrons are unlikely to be shock accelerated and probably originate in the reconnection regions below fast CMEs. A search did not find any type III-1 bursts that were not associated with CMEs. The existence of low-frequency type III bursts proves that open field lines extend from within 0.5 radius of the Sun into the interplanetary medium (the bursts start above 100 MHz, and such emission originates within 0.5 solar radius of the solar surface). Thus it is not valid to assume that only closed field lines exist in the flaring regions associated with CMEs and some interplanetary particles originating in such flare regions might be expected in all solar particle events.
Coronal Mass Ejection-driven Shocks and the Associated Sudden Commencements-sudden Impulses
NASA Technical Reports Server (NTRS)
Veenadhari, B.; Selvakumaran, R.; Singh, Rajesh; Maurya, Ajeet K.; Gopalswamy, N.; Kumar, Sushil; Kikuchi, T.
2012-01-01
Interplanetary (IP) shocks are mainly responsible for the sudden compression of the magnetosphere, causing storm sudden commencement (SC) and sudden impulses (SIs) which are detected by ground-based magnetometers. On the basis of the list of 222 IP shocks compiled by Gopalswamy et al., we have investigated the dependence of SC/SIs amplitudes on the speed of the coronal mass ejections (CMEs) that drive the shocks near the Sun as well as in the interplanetary medium. We find that about 91% of the IP shocks were associated with SC/SIs. The average speed of the SC/SI-associated CMEs is 1015 km/s, which is almost a factor of 2 higher than the general CME speed. When the shocks were grouped according to their ability to produce type II radio burst in the interplanetary medium, we find that the radio-loud (RL) shocks produce a much larger SC/SI amplitude (average approx. 32 nT) compared to the radio-quiet (RQ) shocks (average approx. 19 nT). Clearly, RL shocks are more effective in producing SC/SIs than the RQ shocks. We also divided the IP shocks according to the type of IP counterpart of interplanetary CMEs (ICMEs): magnetic clouds (MCs) and nonmagnetic clouds. We find that the MC-associated shock speeds are better correlated with SC/SI amplitudes than those associated with non-MC ejecta. The SC/SI amplitudes are also higher for MCs than ejecta. Our results show that RL and RQ type of shocks are important parameters in producing the SC/SI amplitude.
On the backscatter of solar He II, 304 A radiation from interplanetary He/+/.
NASA Technical Reports Server (NTRS)
Paresce, F.; Bowyer, S.
1973-01-01
Backscatter of solar He II, 304 A radiation by interplanetary positive helium ions is shown to be insufficient to account for recent observations of this airglow radiation in the night sky at rocket altitudes. In fact, for most viewing directions, the expected intensities probably fall well below the sensitivity threshold of existing extreme ultraviolet instrumentation.
Interplanetary radio storms. II - Emission levels and solar wind speed in the range 0.05-0.8 AU
NASA Technical Reports Server (NTRS)
Bougeret, J.-L.; Fainberg, J.; Stone, R. G.
1984-01-01
Storms of interplanetary type III radio bursts (IP storms) are commonly observed in the interplanetary medium by the ISEE-3 radio instrument. This instrument has the capability of accurately determining the arrival direction of the radio emission. At each observing frequency, the storm radio sources are tracked as they cross the line-of-sight to the sun. Using a simple model, the emission levels are determined at a number of radio frequencies for four separate storms. The IP storm radiation is found to occur in regions of enhanced density at levels of 0.05 to 0.8 AU. The density in these enhancements falls off faster than R(-2). The solar wind speed in the storm region is also measured. The analysis is consistent with steady conditions in the storm region during a few days around the III storm burst radio emission at the harmonic of the local plasma frequency.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Shea, M.A.; Smart, D.F.
1982-12-27
Using spaceship 'Earth' as a detector located at 1 AU, the relativistic solar cosmic ray events of 30 April 1976 and 22 November 1977 are compared to deduce the relativistic solar particle flux anisotropy and pitch angle characteristics in the interplanetary medium. These two ground level events occurred during STIP Interval II and IV respectively - periods of time of coordinated and cooperative scientific efforts.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Krupar, V.; Eastwood, J. P.; Kruparova, O.
Coronal mass ejections (CMEs) are large-scale eruptions of magnetized plasma that may cause severe geomagnetic storms if Earth directed. Here, we report a rare instance with comprehensive in situ and remote sensing observations of a CME combining white-light, radio, and plasma measurements from four different vantage points. For the first time, we have successfully applied a radio direction-finding technique to an interplanetary type II burst detected by two identical widely separated radio receivers. The derived locations of the type II and type III bursts are in general agreement with the white-light CME reconstruction. We find that the radio emission arisesmore » from the flanks of the CME and are most likely associated with the CME-driven shock. Our work demonstrates the complementarity between radio triangulation and 3D reconstruction techniques for space weather applications.« less
NASA Astrophysics Data System (ADS)
Chandra, Harish; Bhatt, Beena
2018-04-01
In this paper, we have selected 114 flare-CME events accompanied with Deca-hectometric (DH) type II radio burst chosen from 1996 to 2008 (i.e., solar cycle 23). Statistical analyses are performed to examine the relationship of flare-CME events accompanied with DH type II radio burst with Interplanetary Magnetic field (IMF), Geomagnetic storms (GSs) and Cosmic Ray Intensity (CRI). The collected sample events are divided into two groups. In the first group, we considered 43 events which lie under the CME span and the second group consists of 71 events which are outside the CME span. Our analysis indicates that flare-CME accompanied with DH type II radio burst is inconsistent with CSHKP flare-CME model. We apply the Chree analysis by the superposed epoch method to both set of data to find the geo-effectiveness. We observed different fluctuations in IMF for arising and decay phase of solar cycle in both the cases. Maximum decrease in Dst during arising and decay phase of solar cycle is different for both the cases. It is noted that when flare lie outside the CME span CRI shows comparatively more variation than the flare lie under the CME span. Furthermore, we found that flare lying under the CME span is more geo effective than the flare outside of CME span. We noticed that the time leg between IMF Peak value and GSs, IMF and CRI is on average one day for both the cases. Also, the time leg between CRI and GSs is on average 0 to 1 day for both the cases. In case flare lie under the CME span we observed high correlation (0.64) between CRI and Dst whereas when flare lie outside the CME span a weak correlation (0.47) exists. Thus, flare position with respect to CME span play a key role for geo-effectiveness of CME.
Interplanetary density models as inferred from solar Type III bursts
NASA Astrophysics Data System (ADS)
Oppeneiger, Lucas; Boudjada, Mohammed Y.; Lammer, Helmut; Lichtenegger, Herbert
2016-04-01
We report on the density models derived from spectral features of solar Type III bursts. They are generated by beams of electrons travelling outward from the Sun along open magnetic field lines. Electrons generate Langmuir waves at the plasma frequency along their ray paths through the corona and the interplanetary medium. A large frequency band is covered by the Type III bursts from several MHz down to few kHz. In this analysis, we consider the previous empirical density models proposed to describe the electron density in the interplanetary medium. We show that those models are mainly based on the analysis of Type III bursts generated in the interplanetary medium and observed by satellites (e.g. RAE, HELIOS, VOYAGER, ULYSSES,WIND). Those models are confronted to stereoscopic observations of Type III bursts recorded by WIND, ULYSSES and CASSINI spacecraft. We discuss the spatial evolution of the electron beam along the interplanetary medium where the trajectory is an Archimedean spiral. We show that the electron beams and the source locations are depending on the choose of the empirical density models.
Solar Type II Radio Bursts and IP Type II Events
NASA Technical Reports Server (NTRS)
Cane, H. V.; Erickson, W. C.
2005-01-01
We have examined radio data from the WAVES experiment on the Wind spacecraft in conjunction with ground-based data in order to investigate the relationship between the shocks responsible for metric type II radio bursts and the shocks in front of coronal mass ejections (CMEs). The bow shocks of fast, large CMEs are strong interplanetary (IP) shocks, and the associated radio emissions often consist of single broad bands starting below approx. 4 MHz; such emissions were previously called IP type II events. In contrast, metric type II bursts are usually narrowbanded and display two harmonically related bands. In addition to displaying complete dynamic spectra for a number of events, we also analyze the 135 WAVES 1 - 14 MHz slow-drift time periods in 2001-2003. We find that most of the periods contain multiple phenomena, which we divide into three groups: metric type II extensions, IP type II events, and blobs and bands. About half of the WAVES listings include probable extensions of metric type II radio bursts, but in more than half of these events, there were also other slow-drift features. In the 3 yr study period, there were 31 IP type II events; these were associated with the very fastest CMEs. The most common form of activity in the WAVES events, blobs and bands in the frequency range between 1 and 8 MHz, fall below an envelope consistent with the early signatures of an IP type II event. However, most of this activity lasts only a few tens of minutes, whereas IP type II events last for many hours. In this study we find many examples in the radio data of two shock-like phenomena with different characteristics that occur simultaneously in the metric and decametric/hectometric bands, and no clear example of a metric type II burst that extends continuously down in frequency to become an IP type II event. The simplest interpretation is that metric type II bursts, unlike IP type II events, are not caused by shocks driven in front of CMEs.
Wave Phenomena Associated with Interplanetary Shocks
NASA Astrophysics Data System (ADS)
Golla, T.; MacDowall, R. J.
2016-12-01
Although laboratory and space-based experiments were used for the last several decades to study the collisionless shocks, several questions remain less than fully understood. These include: (1) what type of wave-particle energy dissipation is responsible for the shock formation, (2) what type of in-situ waves occur in the upstream, transition and downstream regions, and (3) which physical processes are responsible for the excitation of the fundamental and second harmonic solar type II radio emissions. In this study, we will address these issues using (1) the in situ and radio wave data obtained by the WAVES experiments of the STEREO A and B, and WIND spacecraft, especially the high time resolution data from the time domain samplers (TDS) of these WAVES experiments and (2) the Fourier, wavelet and higher order spectral analysis techniques. Using the in situ wave data, especially the high time resolution data observed during the local type II bursts, we will identify the nonlinear processes associated with these solar radio emissions. Comparing the estimated radio intensities by the known emission mechanisms for the observed peak Langmuir wave intensities with the observed peak radio intensities of type II bursts, we will identify the emission mechanisms.
Coronal Mass Ejections: a Summary of Recent Results
NASA Technical Reports Server (NTRS)
Gopalswamy, Nat; Davila, J. M.
2010-01-01
Coronal mass ejections (CMEs) have been recognized as the most energetic phenomenon in the heliosphere, deriving their energy from the stressed magnetic fields on the Sun. This paper highlights some of the recent results on CMEs obtained from the Solar and Heliospheric Observatory (SOHO) and the Solar Terrestrial Relations Observatory (STEREO) missions. The summary of the talk follows. SOHO observations revealed that the CME rate is almost a factor of two larger than previously thought and varied with the solar activity cycle in a complex way (e.g., high-latitude CMEs occurred in great abundance during the solar maximum years). CMEs were found to interact with other CMEs as well as with other large-scale structures (coronal holes), resulting in deflections and additional particle acceleration. STEREO observations have confirmed the three-dimensional nature of CMEs and the shocks surrounding them. The EUV signatures (flare arcades, corona) dimming, filament eruption, and EUV waves) associated with CMEs have become vital in the identification of solar sources from which CMEs erupt. CMEs with speeds exceeding the characteristic speeds of the corona and the interplanetary medium drive shocks, which produce type II radio bursts. The wavelength range of type II bursts depends on the CME kinetic energy: type II bursts with emission components at all wavelengths (metric to kilometric) are due to CMEs of the highest kinetic energy. Some CMEs, as fast as 1600 km/s do not produce type II bursts, while slow CMEs (400 km/s) occasionally produce type II bursts. These observations can be explained as the variation in the ambient flow speed (solar wind) and the Alfven speed. Not all CME-driven shocks produce type II bursts because either they are subcritical or do not have the appropriate geometry. The same shocks that produce type II bursts also produce solar energetic particles (SEPs), whose release near the Sun seems to be delayed with respect to the onset of type II bursts. This may indicate a subtle difference in the acceleration of the ions and 10 keV electrons needed to produce type II bursts. Surprisingly, some shocks lacking type II bursts are associated with energetic storm particle events (ESPs) pointing to the importance of electron escape from the shock for producing the radio emission. CMEs slow down or accelerate in the interplanetary medium because of the drag force, which modifies the transit time of CMEs and shocks. Halo CMEs that appear to surround the occulting disk were known before the SOHO era as occasional events. During the SOHO era, they became very prominent because of their ability to impact Earth and producing geomagnetic storms. Halo CMEs are generally more energetic than ordinary CMEs, which means they can produce severe impact on Earth's magnetosphere. Their origin close to the disk center of the Sun ensures direct impact on the magnetosphere, although their internal magnetic structure is crucial in causing storms. The solar sources of CMEs that produce SEP events at Earth, on the other hand, are generally in the western hemisphere because of the magnetic connectivity. Thus, CMEs are very interesting from the point of view of plasma physics as well as practical implications because of their space weather impact.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kong, Xiangliang; Chen, Yao; Feng, Shiwei
2015-01-10
Two solar type II radio bursts, separated by ∼24 hr in time, are examined together. Both events are associated with coronal mass ejections (CMEs) erupting from the same active region (NOAA 11176) beneath a well-observed helmet streamer. We find that the type II emissions in both events ended once the CME/shock fronts passed the white-light streamer tip, which is presumably the magnetic cusp of the streamer. This leads us to conjecture that the closed magnetic arcades of the streamer may play a role in electron acceleration and type II excitation at coronal shocks. To examine such a conjecture, we conduct a test-particle simulationmore » for electron dynamics within a large-scale partially closed streamer magnetic configuration swept by a coronal shock. We find that the closed field lines play the role of an electron trap via which the electrons are sent back to the shock front multiple times and therefore accelerated to high energies by the shock. Electrons with an initial energy of 300 eV can be accelerated to tens of keV concentrating at the loop apex close to the shock front with a counter-streaming distribution at most locations. These electrons are energetic enough to excite Langmuir waves and radio bursts. Considering the fact that most solar eruptions originate from closed field regions, we suggest that the scenario may be important for the generation of more metric type IIs. This study also provides an explanation of the general ending frequencies of metric type IIs at or above 20-30 MHz and the disconnection issue between metric and interplanetary type IIs.« less
Prediction of CMEs and Type II Bursts from Sun to Earth
NASA Astrophysics Data System (ADS)
Cairns, I. H.; Schmidt, J. M.; Gopalswamy, N.; van der Holst, B.
2017-12-01
Most major space weather events are due to fast CMEs and their shocks interacting with Earth's magnetosphere. SImilarly, type II solar radio bursts are well-known signatures of CMEs and their shocks moving through the corona and solar wind. The properties of the space weather events and the type II radio bursts depend sensitively on the CME velocity, shape, and evolution as functions of position and time, as well as on the magnetic field vector in the coronal and solar wind plasma, downstream of the CME shock, and inside the CME. We report simulations of CMEs and type II bursts from the Sun to Earth with the Space Weather Modelling Framework (2015 and 2016 versions), set up carefully using relevant data, and a kinetic radio emission theory. Excellent agreement between observations, simulations, and theory are found for the coronal (metric) type II burst of 7 September 2014 and associated CME, including the lack of radio emission in the solar wind beyond about 10 solar radii. Similarly, simulation of a CME and type II burst from the Sun to 1 AU over the period 29 November - 1 December 2013 yield excellent agreement for the radio burst from 10 MHz to 30 kHz for STEREO A and B and Wind, arrival of the CME at STEREO A within 1 hour reported time, deceleration of the CME in agreement with the Gopalswamy et al. [2011] observational analyses, and Bz rotations at STEREO A from upstream of the CME shock to within the CME. These results provide strong support for the type II theory and also that the Space WeatherModeling Framework can accurately predict the properties and evolution of CMEs and the interplanetary magnetic field and plasma from the Sun to 1 AU when sufficiently carefully initialized.
Low Frequency Radio Experiment (LORE)
NASA Astrophysics Data System (ADS)
Manoharan, P. K.; Naidu, Arun; Joshi, B. C.; Roy, Jayashree; Kate, G.; Pethe, Kaiwalya; Galande, Shridhar; Jamadar, Sachin; Mahajan, S. P.; Patil, R. A.
2016-03-01
In this paper, we present a case study of Low Frequency Radio Experiment (LORE) payload to probe the corona and the solar disturbances at solar offsets greater than 2 solar radii, i.e., at frequencies below 30 MHz. The LORE can be complimentary to the planned Indian solar mission, “Aditya-L1” and its other payloads as well as synergistic to ground-based interplanetary scintillation (IPS) observations, which are routinely carried out by the Ooty Radio Telescope. We discuss the baseline design and technical details of the proposed LORE and its particular suitability for providing measurements on the detailed time and frequency structure of fast drifting type-III and slow drifting type-II radio bursts with unprecedented time and frequency resolutions. We also brief the gonio-polarimetry, which is possible with better-designed antennas and state-of-the-art electronics, employing FPGAs and an intelligent data management system. These would enable us to make a wide range of studies, such as nonlinear plasma processes in the Sun-Earth distance, in-situ radio emission from coronal mass ejections (CMEs), interplanetary CME driven shocks, nature of ICMEs driving decelerating IP shocks and space weather effects of solar wind interaction regions.
Reconciling CME Kinematics using Radio and White-light Observations from STEREO and SOHO
NASA Astrophysics Data System (ADS)
Gopalswamy, Nat; Yashiro, Seiji; Xie, Hong; Makela, Pertti; Akiyama, Sachiko; Reiner, Michael; MacDowall, Robert
2014-05-01
We study the characteristics of nonthermal radio emission associated with coronal mass ejections (CMEs) observed by STEREO, SOHO, and Wind spacecraft. In particular, we examine three backside CMEs associated with type II radio bursts at frequencies below 16 MHz. These bursts are known to be excellent indicators of solar energetic particle events. We use the universal drift rate spectrum of type II radio bursts and the inferred density scale heights in the corona and interplanetary medium o estimate the speed of the shock waves that produce the type II radio bursts. We find that the radio bursts can provide an accurate estimate of the CME speeds. We consider three backside events and a cannibalism event to show the usefulness of radio dynamic spectrum in inferring CME kinematics. We use radio direction finding technique to show that CME-CME interaction results in enhanced nonthermal radio emission. The radio data also provide constraints on the particle acceleration mechanisms and the reason for the energetic particles observed at wide-ranging longitudes. Finally we infer the shape and extent of the shock associated with one of the biggest solar energetic particle events in the space era.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Liu, Ying D.; Luhmann, Janet G.; Moestl, Christian
We investigate how coronal mass ejections (CMEs) propagate through, and interact with, the inner heliosphere between the Sun and Earth, a key question in CME research and space weather forecasting. CME Sun-to-Earth kinematics are constrained by combining wide-angle heliospheric imaging observations, interplanetary radio type II bursts, and in situ measurements from multiple vantage points. We select three events for this study, the 2012 January 19, 23, and March 7 CMEs. Different from previous event studies, this work attempts to create a general picture for CME Sun-to-Earth propagation and compare different techniques for determining CME interplanetary kinematics. Key results are obtainedmore » concerning CME Sun-to-Earth propagation: (1) the Sun-to-Earth propagation of fast CMEs can be approximately formulated into three phases: an impulsive acceleration, then a rapid deceleration, and finally a nearly constant speed propagation (or gradual deceleration); (2) the CMEs studied here are still accelerating even after the flare maximum, so energy must be continuously fed into the CME even after the time of the maximum heating and radiation has elapsed in the corona; (3) the rapid deceleration, presumably due to interactions with the ambient medium, mainly occurs over a relatively short timescale following the acceleration phase; and (4) CME-CME interactions seem a common phenomenon close to solar maximum. Our comparison between different techniques (and data sets) has important implications for CME observations and their interpretations: (1) for the current cases, triangulation assuming a compact CME geometry is more reliable than triangulation assuming a spherical front attached to the Sun for distances below 50-70 solar radii from the Sun, but beyond about 100 solar radii we would trust the latter more; (2) a proper treatment of CME geometry must be performed in determining CME Sun-to-Earth kinematics, especially when the CME propagation direction is far away from the observer; and (3) our approach to comparing wide-angle heliospheric imaging observations with interplanetary radio type II bursts provides a novel tool in investigating CME propagation characteristics. Future CME observations and space weather forecasting are discussed based on these results.« less
Relation Between Type II Bursts and CMEs Inferred from STEREO Observations
NASA Technical Reports Server (NTRS)
Gopalswamy, N.; Thompson, W.; Davila, J.; Kaiser, M. L.; Yashiro, S.; Maekelae, P.; Michalek, G.; Bougeret, J.-L.; Hoawrd, R. A.
2010-01-01
The inner coronagraph (COR1) of the Solar Terrestrial Relations Observatory (STEREO) mission has made it possible to observe coronal mass ejections (CMEs) a in the spatial domain overlapping with that of the metric type II radio bursts. The type II bursts were associated with generally weak flares (mostly B and C class soft X-ray flares), but the CMEs were quite energetic. Using CME data for a set of type II bursts during the declining phase of solar cycle 23, we determine the CME height when the type II bursts start, thus giving an estimate of the heliocentric distance at which CME-driven shocks form. This distance has been determined to be approximately 1.5Rs (solar radii), which coincides with the distance at which the Alfv?n speed profile has a minimum value. We also use type II radio observations from STEREO/WAVES and Wind/WAVES observations to show that CMEs with moderate speed drive either weak shocks or no shock at all when they attain a height where the Alfv?n speed peaks (?3Rs ? 4Rs). Thus the shocks seem to be most efficient in accelerating electrons in the heliocentric distance range of 1.5Rs to 4Rs. By combining the radial variation of the CME speed in the inner corona (CME speed increase) and interplanetary medium (speed decrease) we were able to correctly account for the deviations from the universal drift-rate spectrum of type II bursts, thus confirming the close physical connection between type II bursts and CMEs. The average height (approximately 1.5 Rs) of STEREO CMEs at the time of type II bursts is smaller than that (2.2 Rs) obtained for SOHO (Solar and Heliospheric Observatory) CMEs. We suggest that this may indicate, at least partly, the density reduction in the corona between the maximum and declining phases, so a given plasma level occurs closer to the Sun in the latter phase. In two cases, there was a diffuse shock-like feature ahead of the main body of the CME, indicating a standoff distance of 1Rs - 2Rs by the time the CME left the LASCO field of view.
Relation Between Type II Bursts and CMEs Inferred from STEREO Observations
NASA Technical Reports Server (NTRS)
Gopalswamy, N.; Thompson, W.; Davila, J.; Kaiser, M.; Yashiro, S.; Maelekae, P.; Michalek, G.; Bougret, J.-L.; Howard, R. A.
2009-01-01
The inner coronagraph (COR1) of the Solar Terrestrial Relations Observatory (STEREO) mission has made it possible to observe CMEs in the spatial domain overlapping with that of the metric type II radio bursts. The type II bursts were associated with generally weak flares (mostly B and C class soft X-ray flares), but the CMEs were quite energetic. Using CME data for a set of type II bursts during the declining phase of solar cycle 23, we determine the CME height when the type II bursts start, thus giving an estimate of the heliocentric distance at which CME-driven shocks form. This distance has been determined to be approx. 1.5Rs (solar radii), which coincides with the distance at which the Alfven speed profile has a minimum value.We also use type II radio observations from STEREO/WAVES and Wind/WAVES observations to show that CMEs with moderate speed drive either weak shocks or no shock at all when they attain a height where the Alfven speed peaks (approx. 3Rs - 4Rs). Thus the shocks seem to be most efficient in accelerating electrons in the heliocentric distance range of 1.5Rs to 4Rs. By combining the radial variation of the CME speed in the inner corona (CME speed increase) and interplanetary medium (speed decrease) we were able to correctly account for the deviations from the universal drift-rate spectrum of type II bursts, thus confirming the close physical connection between type II bursts and CMEs. The average height (approx 1.5Rs) of STEREO CMEs at the time of type II bursts is smaller than that (2.2Rs) obtained for SOHO (Solar and Heliospheric Observatory) CMEs. We suggest that this may indicate, at least partly, the density reduction in the corona between the maximum and declining phases, so a given plasma level occurs closer to the Sun in the latter phase. In two cases, there was a diffuse shock-like feature ahead of the main body of the CME, indicating a standoff distance of 1Rs - 2Rs by the time the CME left the LASCO field of view.
Low-Frequency Radio Bursts and Space Weather
NASA Technical Reports Server (NTRS)
Gopalswamy, N.
2016-01-01
Low-frequency radio phenomena are due to the presence of nonthermal electrons in the interplanetary (IP) medium. Understanding these phenomena is important in characterizing the space environment near Earth and other destinations in the solar system. Substantial progress has been made in the past two decades, because of the continuous and uniform data sets available from space-based radio and white-light instrumentation. This paper highlights some recent results obtained on IP radio phenomena. In particular, the source of type IV radio bursts, the behavior of type III storms, shock propagation in the IP medium, and the solar-cycle variation of type II radio bursts are considered. All these phenomena are closely related to solar eruptions and active region evolution. The results presented were obtained by combining data from the Wind and SOHO missions.
Interplanetary Shocks Lacking Type 2 Radio Bursts
NASA Technical Reports Server (NTRS)
Gopalswamy, N.; Xie, H.; Maekela, P.; Akiyama, S.; Yashiro, S.; Kaiser, M. L.; Howard, R. A.; Bougeret, J.-L.
2010-01-01
We report on the radio-emission characteristics of 222 interplanetary (IP) shocks detected by spacecraft at Sun-Earth L1 during solar cycle 23 (1996 to 2006, inclusive). A surprisingly large fraction of the IP shocks (approximately 34%) was radio quiet (RQ; i.e., the shocks lacked type II radio bursts). We examined the properties of coronal mass ejections (CMEs) and soft X-ray flares associated with such RQ shocks and compared them with those of the radio-loud (RL) shocks. The CMEs associated with the RQ shocks were generally slow (average speed approximately 535 km/s) and only approximately 40% of the CMEs were halos. The corresponding numbers for CMEs associated with RL shocks were 1237 km/s and 72%, respectively. Thus, the CME kinetic energy seems to be the deciding factor in the radio-emission properties of shocks. The lower kinetic energy of CMEs associated with RQ shocks is also suggested by the lower peak soft X-ray flux of the associated flares (C3.4 versus M4.7 for RL shocks). CMEs associated with RQ CMEs were generally accelerating within the coronagraph field of view (average acceleration approximately +6.8 m/s (exp 2)), while those associated with RL shocks were decelerating (average acceleration approximately 3.5 m/s (exp 2)). This suggests that many of the RQ shocks formed at large distances from the Sun, typically beyond 10 Rs, consistent with the absence of metric and decameter-hectometric (DH) type II radio bursts. A small fraction of RL shocks had type II radio emission solely in the kilometric (km) wavelength domain. Interestingly, the kinematics of the CMEs associated with the km type II bursts is similar to those of RQ shocks, except that the former are slightly more energetic. Comparison of the shock Mach numbers at 1 AU shows that the RQ shocks are mostly subcritical, suggesting that they were not efficient in accelerating electrons. The Mach number values also indicate that most of these are quasi-perpendicular shocks. The radio-quietness is predominant in the rise phase and decreases through the maximum and declining phases of solar cycle 23. About 18% of the IP shocks do not have discernible ejecta behind them. These shocks are due to CMEs moving at large angles from the Sun-Earth line and hence are not blast waves. The solar sources of the shock-driving CMEs follow the sunspot butterfly diagram, consistent with the higher-energy requirement for driving shocks.
Evidence of scattering effects on the sizes of interplanetary Type III radio bursts
NASA Technical Reports Server (NTRS)
Steinberg, J. L.; Hoang, S.; Dulk, G. A.
1985-01-01
An analysis is conducted of 162 interplanetary Type III radio bursts; some of these bursts have been observed in association with fast electrons and Langmuir wave events at 1 AU and, in addition, have been subjected to in situ plasma parameter measurements. It is noted that the sizes of burst sources are anomalously large, compared to what one would anticipate on the basis of the interplanetary plasma density distribution, and that the variation of source size with frequency, when compared with the plasma frequency variation measured in situ, implies that the source sizes expand with decreasing frequency to fill a cone whose apex is at the sun. It is also found that some local phenomenon near the earth controls the apparent size of low frequency Type III sources.
NASA Astrophysics Data System (ADS)
Grison, B.; Bocchialini, K.; Menvielle, M.; Chambodut, A.; Cornilleau-Wehrlin, N.; Fontaine, D.; Marchaudon, A.; Pick, M.; Pitout, F.; Schmieder, B.; Regnier, S.; Zouganelis, Y.
2017-12-01
Taking the 32 sudden storm commencements (SSC) listed by the observatory de l'Ebre / ISGI over the year 2002 (maximal solar activity) as a starting point, we performed a statistical analysis of the related solar sources, solar wind signatures, and terrestrial responses. For each event, we characterized and identified, as far as possible, (i) the sources on the Sun (Coronal Mass Ejections -CME-), with the help of a series of herafter detailed criteria (velocities, drag coefficient, radio waves, polarity), as well as (ii) the structure and properties in the interplanetary medium, at L1, of the event associated to the SSC: magnetic clouds -MC-, non-MC interplanetary coronal mass ejections -ICME-, co-rotating/stream interaction regions -SIR/CIR-, shocks only and unclear events that we call "miscellaneous" events. The categorization of the events at L1 is made on published catalogues. For each potential CME/L1 event association we compare the velocity observed at L1 with the one observed at the Sun and the estimated balistic velocity. Observations of radio emissions (Type II, Type IV detected from the ground and /or by WIND) associated to the CMEs make the solar source more probable. We also compare the polarity of the magnetic clouds with the hemisphere of the solar source. The drag coefficient (estimated with the drag-based model) is calculated for each potential association and it is compared to the expected range values. We identified a solar source for 26 SSC related events. 12 of these 26 associations match all criteria. We finally discuss the difficulty to perform such associations.
Theory of Type 3 and Type 2 Solar Radio Emissions
NASA Technical Reports Server (NTRS)
Robinson, P. A.; Cairns, I. H.
2000-01-01
The main features of some current theories of type III and type II bursts are outlined. Among the most common solar radio bursts, type III bursts are produced at frequencies of 10 kHz to a few GHz when electron beams are ejected from solar active regions, entering the corona and solar wind at typical speeds of 0.1c. These beams provide energy to generate Langmuir waves via a streaming instability. In the current stochastic-growth theory, Langmuir waves grow in clumps associated with random low-frequency density fluctuations, leading to the observed spiky waves. Nonlinear wave-wave interactions then lead to secondary emission of observable radio waves near the fundamental and harmonic of the plasma frequency. Subsequent scattering processes modify the dynamic radio spectra, while back-reaction of Langmuir waves on the beam causes it to fluctuate about a state of marginal stability. Theories based on these ideas can account for the observed properties of type III bursts, including the in situ waves and the dynamic spectra of the radiation. Type 11 bursts are associated with shock waves propagating through the corona and interplanetary space and radiating from roughly 30 kHz to 1 GHz. Their basic emission mechanisms are believed to be similar to those of type III events and radiation from Earth's foreshock. However, several sub-classes of type II bursts may exist with different source regions and detailed characteristics. Theoretical models for type II bursts are briefly reviewed, focusing on a model with emission from a foreshock region upstream of the shock for which observational evidence has just been reported.
NASA Technical Reports Server (NTRS)
Cairns, I. H.
1984-01-01
Observations of low frequency ion acoustic-like waves associated with Langmuir waves present during interplanetary Type 3 bursts are used to study plasma emission mechanisms and wave processes involving ion acoustic waves. It is shown that the observed wave frequency characteristics are consistent with the processes L yields T + S (where L = Langmuir waves, T = electromagnetic waves, S = ion acoustic waves) and L yields L' + S proceeding. The usual incoherent (random phase) version of the process L yields T + S cannot explain the observed wave production time scale. The clumpy nature of the observed Langmuir waves is vital to the theory of IP Type 3 bursts. The incoherent process L yields T + S may encounter difficulties explaining the observed Type 3 brightness temperatures when Langmuir wave clumps are incorporated into the theory. The parametric process L yields T + S may be the important emission process for the fundamental radiation of interplanetary Type 3 bursts.
International Launch Vehicle Selection for Interplanetary Travel
NASA Technical Reports Server (NTRS)
Ferrone, Kristine; Nguyen, Lori T.
2010-01-01
In developing a mission strategy for interplanetary travel, the first step is to consider launch capabilities which provide the basis for fundamental parameters of the mission. This investigation focuses on the numerous launch vehicles of various characteristics available and in development internationally with respect to upmass, launch site, payload shroud size, fuel type, cost, and launch frequency. This presentation will describe launch vehicles available and in development worldwide, then carefully detail a selection process for choosing appropriate vehicles for interplanetary missions focusing on international collaboration, risk management, and minimization of cost. The vehicles that fit the established criteria will be discussed in detail with emphasis on the specifications and limitations related to interplanetary travel. The final menu of options will include recommendations for overall mission design and strategy.
STEREO observations of insitu waves in the vicinity of interplanetary shocks
NASA Astrophysics Data System (ADS)
Golla, T.; MacDowall, R. J.
2017-12-01
We present the high time resolution observations of the in situ waves obtained by the time domain sampler (TDS) of the WAVES experiment on the STEREO spacecraft in the vicinity of typical quasi-perpendicular super-critical interplanetary shocks. We show that often Langmuir waves occur as coherent one dimensional magnetic field aligned wave packets in the upstream regions and persist over large distances. The characteristics of these wave packets are consistent with those of Langmuir solitons formed as a result of oscillatting two stream instability (OTSI). Very intense high frequency waves which are completely different from Langmuir waves occur in the transition regions. These waves occur as very incoherent emissions and exhibit broad fundamental and second harmonic spectral peaks. We identify these waves as electron acoustic waves excited by the electron beams in the transition regions. We also show that very intense low frequency ion sound waves occur in the downstream regions. We discuss the implications of these observations on the theories of (1) strong Langmuir turbulence, (2) beam stabilization, (3) emission mechanisms of solar type II radio bursts, (4) wave-particle interactions responsible for collisionless dissipation, and (5) heating of the downstream plasmas.
Radio-Loud Coronal Mass Ejections Without Shocks Near Earth
NASA Technical Reports Server (NTRS)
Gopalswamy, N.; SaintCyr, O. C.; MacDowall, R. J.; Kaiser, M. L.; Xie, H.; Makela, P.; Akiyama, S.
2010-01-01
Type II radio bursts are produced by low energy electrons accelerated in shocks driven by corona) mass ejections (CMEs). One can infer shocks near the Sun, in the Interplanetary medium, and near Earth depending on the wavelength range in which the type II bursts are produced. In fact, type II bursts are good indicators of CMEs that produce solar energetic particles. If the type 11 burst occurs from a source on the Earth-facing side of the solar disk, it is highly likely that a shock arrives at Earth in 2-3 days and hence can be used to predict shock arrival at Earth. However, a significant fraction of CMEs producing type II bursts were not associated shocks at Earth, even though the CMEs originated close to the disk center. There are several reasons for the lack of shock at 1 AU. CMEs originating at large central meridian distances (CMDs) may be driving a shock, but the shock may not be extended sufficiently to reach to the Sun-Earth line. Another possibility is CME cannibalism because of which shocks merge and one observes a single shock at Earth. Finally, the CME-driven shock may become weak and dissipate before reaching 1 AU. We examined a set of 30 type II bursts observed by the Wind/WAVES experiment that had the solar sources very close to the disk center (within a CMD of 15 degrees), but did not have shock at Earth. We find that the near-Sun speeds of the associated CMEs average to approx.600 km/s, only slightly higher than the average speed of CMEs associated with radio-quiet shocks. However, the fraction of halo CMEs is only approx.28%, compared to 40% for radio-quiet shocks and 72% for all radio-loud shocks. We conclude that the disk-center radio loud CMEs with no shocks at 1 AU are generally of lower energy and they drive shocks only close to the Sun.
Overview of Solar Radio Bursts and their Sources
NASA Astrophysics Data System (ADS)
Golla, Thejappa; MacDowall, Robert J.
2018-06-01
Properties of radio bursts emitted by the Sun at frequencies below tens of MHz are reviewed. In this frequency range, the most prominent radio emissions are those of solar type II, complex type III and solar type IV radio bursts, excited probably by the energetic electron populations accelerated in completely different environments: (1) type II bursts are due to non-relativistic electrons accelerated by the CME driven interplanetary shocks, (2) complex type III bursts are due to near-relativistic electrons accelerated either by the solar flare reconnection process or by the SEP shocks, and (3) type IV bursts are due to relativistic electrons, trapped in the post-eruption arcades behind CMEs; these relativistic electrons probably are accelerated by the continued reconnection processes occurring beneath the CME. These radio bursts, which can serve as the natural plasma probes traversing the heliosphere by providing information about various crucial space plasma parameters, are also an ideal instrument for investigating acceleration mechanisms responsible for the high energy particles. The rich collection of valuable high quality radio and high time resolution in situ wave data from the WAVES experiments of the STEREO A, STEREO B and WIND spacecraft has provided an unique opportunity to study these different radio phenomena and understand the complex physics behind their excitation. We have developed Monte Carlo simulation techniques to estimate the propagation effects on the observed characteristics of these low frequency radio bursts. We will present some of the new results and describe how one can use these radio burst observations for space weather studies. We will also describe some of the non-linear plasma processes detected in the source regions of both solar type III and type II radio bursts. The analysis and simulation techniques used in these studies will be of immense use for future space based radio observations.
Observations of interactions between interplanetary and geomagnetic fields
NASA Technical Reports Server (NTRS)
Burch, J. L.
1973-01-01
Magnetospheric effects associated with variations of the north-south component of the interplanetary magnetic field are examined in light of recent recent experimental and theoretical results. Although the occurrence of magnetospheric substorms is statistically related to periods of southward interplanetary magnetic field, the details of the interaction are not understood. In particular, attempts to separate effects resulting directly from the interaction between the interplanetary and geomagnetic fields from those associated with substorms have produced conflicting results. The transfer of magnetic flux from the dayside to the nightside magnetosphere is evidenced by equatorward motion of the polar cusp and increases of the magnetic energy density in the lobes of the geomagnetic tail. The formation of a macroscopic X-type neutral line at tail distances less than 35 R sub E appears to be a substorm phenomenon.
Geomagnetic response of interplanetary coronal mass ejections in the Earth's magnetosphere
NASA Astrophysics Data System (ADS)
Badruddin; Mustajab, F.; Derouich, M.
2018-05-01
A coronal mass ejections (CME) is the huge mass of plasma with embedded magnetic field ejected abruptly from the Sun. These CMEs propagate into interplanetary space with different speed. Some of them hit the Earth's magnetosphere and create many types of disturbances; one of them is the disturbance in the geomagnetic field. Individual geomagnetic disturbances differ not only in their magnitudes, but the nature of disturbance is also different. It is, therefore, desirable to understand these differences not only to understand the physics of geomagnetic disturbances but also to understand the properties of solar/interplanetary structures producing these disturbances of different magnitude and nature. In this work, we use the spacecraft measurements of CMEs with distinct magnetic properties propagating in the interplanetary space and generating disturbances of different levels and nature. We utilize their distinct plasma and field properties to search for the interplanetary parameter(s) playing important role in influencing the geomagnetic response of different coronal mass ejections.
NASA Technical Reports Server (NTRS)
Cairns, Iver H.; Robinson, P. A.
1998-01-01
Existing, competing theories for coronal and interplanetary type III solar radio bursts appeal to one or more of modulational instability, electrostatic (ES) decay processes, or stochastic growth physics to preserve the electron beam, limit the levels of Langmuir-like waves driven by the beam, and produce wave spectra capable of coupling nonlinearly to generate the observed radio emission. Theoretical constraints exist on the wavenumbers and relative sizes of the wave bandwidth and nonlinear growth rate for which Langmuir waves are subject to modulational instability and the parametric and random phase versions of ES decay. A constraint also exists on whether stochastic growth theory (SGT) is appropriate. These constraints are evaluated here using the beam, plasma, and wave properties (1) observed in specific interplanetary type III sources, (2) predicted nominally for the corona, and (3) predicted at heliocentric distances greater than a few solar radii by power-law models based on interplanetary observations. It is found that the Langmuir waves driven directly by the beam have wavenumbers that are almost always too large for modulational instability but are appropriate to ES decay. Even for waves scattered to lower wavenumbers (by ES decay, for instance), the wave bandwidths are predicted to be too large and the nonlinear growth rates too small for modulational instability to occur for the specific interplanetary events studied or the great majority of Langmuir wave packets in type III sources at arbitrary heliocentric distances. Possible exceptions are for very rare, unusually intense, narrowband wave packets, predominantly close to the Sun, and for the front portion of very fast beams traveling through unusually dilute, cold solar wind plasmas. Similar arguments demonstrate that the ES decay should proceed almost always as a random phase process rather than a parametric process, with similar exceptions. These results imply that it is extremely rare for modulational instability or parametric decay to proceed in type III sources at any heliocentric distance: theories for type III bursts based on modulational instability or parametric decay are therefore not viable in general. In contrast, the constraint on SGT can be satisfied and random phase ES decay can proceed at all heliocentric distances under almost all circumstances. (The contrary circumstances involve unusually slow, broad beams moving through unusually hot regions of the Corona.) The analyses presented here strongly justify extending the existing SGT-based model for interplanetary type III bursts (which includes SGT physics, random phase ES decay, and specific electromagnetic emission mechanisms) into a general theory for type III bursts from the corona to beyond 1 AU. This extended theory enjoys strong theoretical support, explains the characteristics of specific interplanetary type III bursts very well, and can account for the detailed dynamic spectra of type III bursts from the lower corona and solar wind.
Demonstration of a viable quantitative theory for interplanetary type II radio bursts
DOE Office of Scientific and Technical Information (OSTI.GOV)
Schmidt, J. M., E-mail: jschmidt@physics.usyd.edu.au; Cairns, Iver H.
Between 29 November and 1 December 2013 the two widely separated spacecraft STEREO A and B observed a long lasting, intermittent, type II radio burst for the extended frequency range ≈ 4 MHz to 30 kHz, including an intensification when the shock wave of the associated coronal mass ejection (CME) reached STEREO A. We demonstrate for the first time our ability to quantitatively and accurately simulate the fundamental (F) and harmonic (H) emission of type II bursts from the higher corona (near 11 solar radii) to 1 AU. Our modeling requires the combination of data-driven three-dimensional magnetohydrodynamic simulations for the CME andmore » plasma background, carried out with the BATS-R-US code, with an analytic quantitative kinetic model for both F and H radio emission, including the electron reflection at the shock, growth of Langmuir waves and radio waves, and the radiations propagation to an arbitrary observer. The intensities and frequencies of the observed radio emissions vary hugely by factors ≈ 10{sup 6} and ≈ 10{sup 3}, respectively; the theoretical predictions are impressively accurate, being typically in error by less than a factor of 10 and 20 %, for both STEREO A and B. We also obtain accurate predictions for the timing and characteristics of the shock and local radio onsets at STEREO A, the lack of such onsets at STEREO B, and the z-component of the magnetic field at STEREO A ahead of the shock, and in the sheath. Very strong support is provided by these multiple agreements for the theory, the efficacy of the BATS-R-US code, and the vision of using type IIs and associated data-theory iterations to predict whether a CME will impact Earth’s magnetosphere and drive space weather events.« less
Demonstration of a viable quantitative theory for interplanetary type II radio bursts
NASA Astrophysics Data System (ADS)
Schmidt, J. M.; Cairns, Iver H.
2016-03-01
Between 29 November and 1 December 2013 the two widely separated spacecraft STEREO A and B observed a long lasting, intermittent, type II radio burst for the extended frequency range ≈ 4 MHz to 30 kHz, including an intensification when the shock wave of the associated coronal mass ejection (CME) reached STEREO A. We demonstrate for the first time our ability to quantitatively and accurately simulate the fundamental (F) and harmonic (H) emission of type II bursts from the higher corona (near 11 solar radii) to 1 AU. Our modeling requires the combination of data-driven three-dimensional magnetohydrodynamic simulations for the CME and plasma background, carried out with the BATS-R-US code, with an analytic quantitative kinetic model for both F and H radio emission, including the electron reflection at the shock, growth of Langmuir waves and radio waves, and the radiations propagation to an arbitrary observer. The intensities and frequencies of the observed radio emissions vary hugely by factors ≈ 106 and ≈ 103, respectively; the theoretical predictions are impressively accurate, being typically in error by less than a factor of 10 and 20 %, for both STEREO A and B. We also obtain accurate predictions for the timing and characteristics of the shock and local radio onsets at STEREO A, the lack of such onsets at STEREO B, and the z-component of the magnetic field at STEREO A ahead of the shock, and in the sheath. Very strong support is provided by these multiple agreements for the theory, the efficacy of the BATS-R-US code, and the vision of using type IIs and associated data-theory iterations to predict whether a CME will impact Earth's magnetosphere and drive space weather events.
NASA Technical Reports Server (NTRS)
1983-01-01
Voyager, Infrared Astronomical Satellite, Galileo, Viking, Solar Mesosphere Explorer, Wide-field/Planetary Camera, Venus Mapper, International Solar Polar Mission - Solar Interplanetary Satellite, Extreme Ultraviolet Explores, Starprobe, International Halley Watch, Marine Mark II, Samex, Shuttle Imaging Radar-A, Deep Space Network, Biomedical Technology, Ocean Studies and Robotics are summarized.
Does magnetic storm generation depend on the solar wind type?
NASA Astrophysics Data System (ADS)
Nikolaeva, N. S.; Yermolaev, Yu. I.; Lodkina, I. G.; Yermolaev, M. Yu.
2017-09-01
The purpose of this work is to draw the reader's attention to the problem of possible differences in the generation of magnetic storms by different large-scale solar wind types: corotating interaction regions (CIRs), Sheaths, and interplanetary coronal mass ejections (ICMEs), including magnetic clouds (MCs) and Ejecta. We recently showed that the description of relationships between interplanetary conditions and Dst and Dst* indices with the modified formula by Burton et al. gives an 50% higher efficiency of storm generation by Sheath and CIR than that by ICME. Many function couplings (FCs) between different interplanetary parameters and the magnetosphere state have been suggested in the literature; however, they have not been analyzed for different solar wind types. In this work, we study the generation efficiency of the main phase of a storm by different solar wind streams with the use of 12 FCs on the basis of OMNI data for 1976-2000. The results show that the Sheath has the highest efficiency for most FCs, and MC is the least efficient, and this result corresponds to our previous results. The reliability of the results and possible causes of differences for different FCs and solar wind types are to be studied further.
NASA Technical Reports Server (NTRS)
Nat, Gopalswamy; Hong, Xie; Seiji, Yashiro; Pertti, Makela; Sachiko, Akiyama
2010-01-01
Traveling interplanetary (IP) shocks were discovered in the early 1960s, but their solar origin has been controversial. Early research focused on solar flares as the source of the shocks, but when coronal mass ejections (CMEs) were discovered, it became clear that fast CMEs clearly can drive the shocks. Type II radio bursts are excellent signatures of shocks near the Sun. The close correspondence between type II radio bursts and solar energetic particles (SEPs) makes it clear that the same shock accelerates ions and electrons. A recent investigation involving a large number of IP shocks revealed that about 35% of IP shocks do not produce type II bursts or SEPs. Comparing these radio quiet (RQ) shocks with the radio loud (RL) ones revealed some interesting results: (1) there is no evidence for blast waves, in that all IP shocks can be attributed to CMEs, (2) a small fraction (20%) of RQ shocks is associated with ion enhancements at the shocks when they move past the observing spacecraft, (3) the primary difference between the RQ and RL shocks can be traced to the different kinematic properties of the associated CMEs and the variation of the characteristic speeds of the ambient medium, and (4) the shock properties measured at 1 AU are not too different for the RQ and RL cases due to the interaction of the shock driver with the IP medium that seems to erase the difference.
Conceptual Design of a Synoptic Interplanetary Monitor Platform at L sub 1 (SIMPL).
1985-11-01
solar events. -159- . . . .. . 105 II1II" -I .5 year mission at Earth-Sun- libration point plus transfer orbit eDashed line is approximate true dose as...Design .. ...................................... 27 4.1 The L Libration Point .......................... 27 4.2 L Orbit Options...34) to provide power, attitude control, communications, and other support to maintain the instruments in a halo orbit around the L libration point ; 4. a
Interplanetary Type III Bursts and Electron Density Fluctuations in the Solar Wind
NASA Astrophysics Data System (ADS)
Krupar, V.; Maksimovic, M.; Kontar, E. P.; Zaslavsky, A.; Santolik, O.; Soucek, J.; Kruparova, O.; Eastwood, J. P.; Szabo, A.
2018-04-01
Type III bursts are generated by fast electron beams originated from magnetic reconnection sites of solar flares. As propagation of radio waves in the interplanetary medium is strongly affected by random electron density fluctuations, type III bursts provide us with a unique diagnostic tool for solar wind remote plasma measurements. Here, we performed a statistical survey of 152 simple and isolated type III bursts observed by the twin-spacecraft Solar TErrestrial RElations Observatory mission. We investigated their time–frequency profiles in order to retrieve decay times as a function of frequency. Next, we performed Monte Carlo simulations to study the role of scattering due to random electron density fluctuations on time–frequency profiles of radio emissions generated in the interplanetary medium. For simplification, we assumed the presence of isotropic electron density fluctuations described by a power law with the Kolmogorov spectral index. Decay times obtained from observations and simulations were compared. We found that the characteristic exponential decay profile of type III bursts can be explained by the scattering of the fundamental component between the source and the observer despite restrictive assumptions included in the Monte Carlo simulation algorithm. Our results suggest that relative electron density fluctuations < δ {n}{{e}}> /{n}{{e}} in the solar wind are 0.06–0.07 over wide range of heliospheric distances.
Review of chemical-kinetic problems of future NASA missions, II: Mars entries
NASA Technical Reports Server (NTRS)
Park, Chul; Howe, John T.; Jaffe, Richard L.; Candler, Graham V.
1994-01-01
The present work aims to derive a set of thermomechanical relaxation rate parameters and chemical reaction rate coefficients relevant to future interplanetary missions. It also attempts to assess the impact of thermochemical nonequilibrium phenomena on radiative heating rates for the stagnation point of the Martian entry vehicle.
Ion Ramp Structure of Bow shocks and Interplanetary Shocks: Differences and Similarities
NASA Astrophysics Data System (ADS)
Goncharov, O.; Safrankova, J.; Nemecek, Z.; Koval, A.; Szabo, A.; Prech, L.; Zastenker, G. N.; Riazantseva, M.
2017-12-01
Collisionless shocks play a significant role in the solar wind interaction with the Earth. Fast forward shocks driven by coronal mass ejections or by interaction of fast and slow solar wind streams can be encountered in the interplanetary space, whereas the bow shock is a standing fast reverse shock formed by an interaction of the supersonic solar wind with the Earth magnetic field. Both types of shocks are responsible for a transformation of a part of the energy of the directed solar wind motion to plasma heating and to acceleration of reflected particles to high energies. These processes are closely related to the shock front structure. In present paper, we compares the analysis of low-Mach number fast forward interplanetary shocks registered in the solar wind by the DSCOVR, WIND, and ACE with observations of bow shock crossings observed by the Cluster, THEMIS, MMS, and Spektr-R spacecraft. An application of the high-time resolution data facilitates further discussion on formation mechanisms of both types of shocks.
Energetic storm particle events in coronal mass ejection-driven shocks
NASA Astrophysics Data System (ADS)
Mäkelä, P.; Gopalswamy, N.; Akiyama, S.; Xie, H.; Yashiro, S.
2011-08-01
We investigate the variability in the occurrence of energetic storm particle (ESP) events associated with shocks driven by coronal mass ejections (CMEs). The interplanetary shocks were detected during the period from 1996 to 2006. First, we analyze the CME properties near the Sun. The CMEs with an ESP-producing shock are faster ($\\langle$VCME$\\rangle$ = 1088 km/s) than those driving shocks without an ESP event ($\\langle$VCME$\\rangle$ = 771 km/s) and have a larger fraction of halo CMEs (67% versus 38%). The Alfvénic Mach numbers of shocks with an ESP event are on average 1.6 times higher than those of shocks without. We also contrast the ESP event properties and frequency in shocks with and without a type II radio burst by dividing the shocks into radio-loud (RL) and radio-quiet (RQ) shocks, respectively. The shocks seem to be organized into a decreasing sequence by the energy content of the CMEs: RL shocks with an ESP event are driven by the most energetic CMEs, followed by RL shocks without an ESP event, then RQ shocks with and without an ESP event. The ESP events occur more often in RL shocks than in RQ shocks: 52% of RL shocks and only ˜33% of RQ shocks produced an ESP event at proton energies above 1.8 MeV; in the keV energy range the ESP frequencies are 80% and 65%, respectively. Electron ESP events were detected in 19% of RQ shocks and 39% of RL shocks. In addition, we find that (1) ESP events in RQ shocks are less intense than those in RL shocks; (2) RQ shocks with ESP events are predominately quasi-perpendicular shocks; (3) their solar sources are located slightly to the east of the central meridian; and (4) ESP event sizes show a modest positive correlation with the CME and shock speeds. The observation that RL shocks tend to produce more frequently ESP events with larger particle flux increases than RQ shocks emphasizes the importance of type II bursts in identifying solar events prone to producing high particle fluxes in the near-Earth space. However, the trend is not definitive. If there is no type II emission, an ESP event is less likely but not absent. The variability in the probability and size of ESP events most likely reflects differences in the shock formation in the low corona and changes in the properties of the shocks as they propagate through interplanetary space and the escape efficiency of accelerated particles from the shock front.
NASA Technical Reports Server (NTRS)
Iucci, N.; Parisi, M.; Signorini, C.; Storini, M.; Villoresi, G.
1985-01-01
Investigations have shown that Forbush decreases (Fds) are produced by the propagation into the interplanetary space of a strong perturbation originating from a solar flare (Sf) accompanied by Type IV radioemission. As the front of the perturbation propagates into the interplanetary space, the region in which the galactic cosmic rays are modulated (Fd-modulated region) rotates westward with the Sun and is generally included between two boundary streams; therefore the Fds not associated with observed type IV Sfs (N.Ass.Fds) are likely to be produced by type IV Sfs occurred on the Sun's backside: these vents can be observed when the Earth crosses the corotating Western boundary of the modulated region.
NASA Astrophysics Data System (ADS)
Iucci, N.; Parisi, M.; Signorini, C.; Storini, M.; Villoresi, G.
1985-08-01
Investigations have shown that Forbush decreases (Fds) are produced by the propagation into the interplanetary space of a strong perturbation originating from a solar flare (Sf) accompanied by Type IV radioemission. As the front of the perturbation propagates into the interplanetary space, the region in which the galactic cosmic rays are modulated (Fd-modulated region) rotates westward with the Sun and is generally included between two boundary streams; therefore the Fds not associated with observed type IV Sfs (N.Ass.Fds) are likely to be produced by type IV Sfs occurred on the Sun's backside: these vents can be observed when the Earth crosses the corotating Western boundary of the modulated region.
NASA Technical Reports Server (NTRS)
Flynn, G. J.; Keller, L. P.
2003-01-01
Reflection spectroscopy suggests the C- , P-, and D-types of asteroids contain abundant carbon, but these Vis-nearIR spectra are featureless, providing no information on the type(s) of carbonaceous matter. Infrared spectroscopy demonstrates that organic carbon is a significant component in comets and as grains or grain coatings in the interstellar medium. Most of the interplanetary dust particles (IDPs) recovered from the Earth s stratosphere are believed to be fragments from asteroids or comets, thus characterization of the carbon in IDPs provides the opportunity to determine the type(s) and abundance of organic matter in asteroids and comets. Some IDPs exhibit isotopic excesses of D and N-15, indicating the presence of interstellar material. The characterization of the carbon in these IDPs, and particularly any carbon spatially associated with the isotopic anomalies, provides the opportunity to characterize interstellar organic matter.
NASA Astrophysics Data System (ADS)
Yermolaev, Yu. I.; Lodkina, I. G.; Nikolaeva, N. S.; Yermolaev, M. Yu.
2011-02-01
We investigate the behavior of mean values of the solar wind’s and interplanetary magnetic field’s (IMF) parameters and their absolute and relative variations during the magnetic storms generated by various types of the solar wind. In this paper, which is a continuation of paper [1], we, on the basis of the OMNI data archive for the period of 1976-2000, have analyzed 798 geomagnetic storms with D st ≤ -50 nT and their interplanetary sources: corotating interaction regions CIR, compression regions Sheath before the interplanetary CMEs; magnetic clouds MC; “Pistons” Ejecta, and an uncertain type of a source. For the analysis the double superposed epoch analysis method was used, in which the instants of the magnetic storm onset and the minimum of the D st index were taken as reference times. It is shown that the set of interplanetary sources of magnetic storms can be sub-divided into two basic groups according to their slowly and fast varying characteristics: (1) ICME (MC and Ejecta) and (2) CIR and Sheath. The mean values, the absolute and relative variations in MC and Ejecta for all parameters appeared to be either mean or lower than the mean value (the mean values of the electric field E y and of the B z component of IMF are higher in absolute value), while in CIR and Sheath they are higher than the mean value. High values of the relative density variation sN/< N> are observed in MC. At the same time, the high values for relative variations of the velocity, B z component, and IMF magnitude are observed in Sheath and CIR. No noticeable distinctions in the relationships between considered parameters for moderate and strong magnetic storms were observed.
Mariner 9 propulsion subsystem performance during interplanetary cruise and Mars orbit insertion
NASA Technical Reports Server (NTRS)
Cork, M. J.; French, R. L.; Leising, C. J.; Schmit, D. D.
1972-01-01
On 14 November 1971 the Mariner 9 1334-N-(300-lbf)-thrust rocket engine was fired for just over 15 min to place the first man-made satellite into orbit about Mars. Propulsion subsystem data gathered during the 5-month interplanetary cruise and orbit insertion are of significance to future missions of this type. Specific results related to performance predictability, zero g heat transfer, and nitrogen permeation, diffusion, and solubility values are presented.
Galactic cosmic ray radiation levels in spacecraft on interplanetary missions
NASA Technical Reports Server (NTRS)
Shinn, J. L.; Nealy, J. E.; Townsend, L. W.; Wilson, J. W.; Wood, J.S.
1994-01-01
Using the Langley Research Center Galactic Cosmic Ray (GCR) transport computer code (HZETRN) and the Computerized Anatomical Man (CAM) model, crew radiation levels inside manned spacecraft on interplanetary missions are estimated. These radiation-level estimates include particle fluxes, LET (Linear Energy Transfer) spectra, absorbed dose, and dose equivalent within various organs of interest in GCR protection studies. Changes in these radiation levels resulting from the use of various different types of shield materials are presented.
Interplanetary Magnetic Field Guiding Relativistic Particles
NASA Technical Reports Server (NTRS)
Masson, S.; Demoulin, P.; Dasso, S.; Klein, K. L.
2011-01-01
The origin and the propagation of relativistic solar particles (0.5 to few Ge V) in the interplanetary medium remains a debated topic. These relativistic particles, detected at the Earth by neutron monitors have been previously accelerated close to the Sun and are guided by the interplanetary magnetic field (IMF) lines, connecting the acceleration site and the Earth. Usually, the nominal Parker spiral is considered for ensuring the magnetic connection to the Earth. However, in most GLEs the IMF is highly disturbed, and the active regions associated to the GLEs are not always located close to the solar footprint of the nominal Parker spiral. A possible explanation is that relativistic particles are propagating in transient magnetic structures, such as Interplanetary Coronal Mass Ejections (ICMEs). In order to check this interpretation, we studied in detail the interplanetary medium where the particles propagate for 10 GLEs of the last solar cycle. Using the magnetic field and the plasma parameter measurements (ACE/MAG and ACE/SWEPAM), we found widely different IMF configurations. In an independent approach we develop and apply an improved method of the velocity dispersion analysis to energetic protons measured by SoHO/ERNE. We determined the effective path length and the solar release time of protons from these data and also combined them with the neutron monitor data. We found that in most of the GLEs, protons propagate in transient magnetic structures. Moreover, the comparison between the interplanetary magnetic structure and the interplanetary length suggest that the timing of particle arrival at Earth is dominantly determined by the type of IMF in which high energetic particles are propagating. Finally we find that these energetic protons are not significantly scattered during their transport to Earth.
Unipolar induction in the magnetosphere
NASA Technical Reports Server (NTRS)
Stern, D. P.
1972-01-01
A theory is described for the production of electric currents in the magnetosphere and for the transfer of energy from the solar wind to the magnetosphere. Assuming that the magnetosheath has ohmic-type conduction properties, it is shown that unipolar induction can energize several current flows, explaining the correlation of the east-west component of the interplanetary magnetic field with polar electric fields and polar magnetic variations. In the tail region, unipolar induction can account for effects correlated with the north-south component of the interplanetary magnetic field.
Circumsolar Energetic Particle Distribution on 2011 November 3
NASA Astrophysics Data System (ADS)
Gómez-Herrero, R.; Dresing, N.; Klassen, A.; Heber, B.; Lario, D.; Agueda, N.; Malandraki, O. E.; Blanco, J. J.; Rodríguez-Pacheco, J.; Banjac, S.
2015-01-01
Late on 2011 November 3, STEREO-A, STEREO-B, MESSENGER, and near-Earth spacecraft observed an energetic particle flux enhancement. Based on the analysis of in situ plasma and particle observations, their correlation with remote sensing observations, and an interplanetary transport model, we conclude that the particle increases observed at multiple locations had a common single-source active region and the energetic particles filled a very broad region around the Sun. The active region was located at the solar backside (as seen from Earth) and was the source of a large flare, a fast and wide coronal mass ejection, and an EIT wave, accompanied by type II and type III radio emission. In contrast to previous solar energetic particle events showing broad longitudinal spread, this event showed clear particle anisotropies at three widely separated observation points at 1 AU, suggesting direct particle injection close to the magnetic footpoint of each spacecraft, lasting for several hours. We discuss these observations and the possible scenarios explaining the extremely broad particle spread for this event.
The Origin of Organic Matter in the Solar System: Evidence from Interplanetary Dust Particles
NASA Technical Reports Server (NTRS)
Flynn, G. J.; Keller, L. P.; Jacobsen, C.; Wirick, S.
2001-01-01
The origin of the organic matter in interplanetary materials has not been established. A variety of mechanisms have been proposed, with two extreme cases being a Fisher-Tropsch type process operating in the gas phase of the solar nebula or a Miller-Urey type process, which requires interaction with an aqueous fluid, presumably occurring on an asteroid. In the Fisher-Tropsch case, we might expect similar organic matter in hydrated and anhydrous interplanetary materials. However, aqueous alteration is required in the case of the Miller-Urey process, and we would expect to see organic matter preferentially in interplanetary materials that exhibit evidence of aqueous activity, such as the presence of hydrated silicates. The types and abundance of organic matter in meteorites have been used as an indicator of the origin of organic matter in the Solar System. Indigenous complex organic matter, including amino acids, has been found in hydrated carbonaceous chondrite meteorites, such as Murchison. Much lower amounts of complex organic matter, possibly only terrestrial contamination, have been found in anhydrous carbonaceous chondrite meteorites, such as Allende, that contain most of their carbon in elemental form. These results seem to favor production of the bulk of the organic matter in the Solar System by aqueous processing on parent bodies such as asteroids, a Miller-Urey process. However, the hydrated carbonaceous chondrite meteorites have approximately solar abundances of the moderately volatile elements, while all anhydrous carbonaceous chondrite meteorites have significantly lower contents of these moderately volatile elements. Two mechanisms, incomplete condensation or evaporation, both of which involve processing at approx. 1200 C, have been suggested to explain the lower content of the moderately volatile elements in all anhydrous meteorites. Additional information is contained in the original extended abstract.
Interplanetary dust. [survey of last four years' research
NASA Technical Reports Server (NTRS)
Brownlee, D. E.
1979-01-01
Progress in the study of interplanetary dust during the past four years is reviewed. Attention is given to determinations of the relative contributions of interstellar dust grains, collisional debris from the asteroid belt and short-period comets to the interplanetary dust cloud. Effects of radiation pressure and collisions on particle dynamics are discussed, noting the discovery of the variation of the orbital parameters of dust particles at 1 AU with size and in situ measurements of dust density between 0.3 and 5 AU by the Helios and Pioneer spacecraft. The interpretation of the zodiacal light as produced by porous absorbing particles 10 to 100 microns in size is noted, and measurements of the Doppler shift, light-producing-particle density, UV spectrum, photometric axis and angular scattering function of the zodiacal light are reported. Results of analyses of lunar rock microcraters as to micrometeoroid density, flux rate, size distribution and composition are indicated and interplanetary dust particles collected from the stratosphere are discussed. Findings concerning the composition of fragile meteoroid types found as cosmic spherules in deep sea sediments are also presented.
Observations of a Small Interplanetary Magnetic Flux Rope Opening by Interchange Reconnection
NASA Astrophysics Data System (ADS)
Wang, J. M.; Feng, H. Q.; Zhao, G. Q.
2018-01-01
Interchange reconnection, specifically magnetic reconnection between open magnetic fields and closed magnetic flux ropes, plays a major role in the heliospheric magnetic flux budget. It is generally accepted that closed magnetic field lines of interplanetary magnetic flux ropes (IMFRs) can gradually open through reconnection between one of its legs and other open field lines until no closed field lines are left to contribute flux to the heliosphere. In this paper, we report an IMFR associated with a magnetic reconnection exhaust, whereby its closed field lines were opening by a magnetic reconnection event near 1 au. The reconnection exhaust and the following IMFR were observed on 2002 February 2 by both the Wind and ACE spacecraft. Observations on counterstreaming suprathermal electrons revealed that most magnetic field lines of the IMFR were closed, especially those after the front boundary of the IMFR, with both ends connected to the Sun. The unidirectional suprathermal electron strahls before the exhaust manifested the magnetic field lines observed before the exhaust was open. These observations provide direct evidence that closed field lines of IMFRs can be opened by interchange reconnection in interplanetary space. This is the first report of the closed field lines of IMFRs being opened by interchange reconnection in interplanetary space. This type of interplanetary interchange reconnection may pose important implications for balancing the heliospheric flux budget.
NASA Technical Reports Server (NTRS)
Fitzenreiter, R. J.; Fainberg, J.; Weber, R. R.; Alvarez, H.; Haddock, F. T.; Potter, W. H.
1977-01-01
Observations of the out-of-ecliptic trajectories of type III solar radio bursts have been obtained from simultaneous direction-finding measurements in two independent satellite experiments, IMP-6 with spin plane in the ecliptic and RAE-2 with spin plane normal to the ecliptic. Burst-exciter trajectories were observed which originated at the active region and then crossed the ecliptic plane at about 0.8 AU. A considerable large-scale north-south component of the interplanetary magnetic field followed by the exciters is found. The apparent north-south and east-west angular source sizes observed by the two spacecraft are approximately equal, and range from 25 deg at 600 kHz to 110 deg at 80 kHz.
NASA Astrophysics Data System (ADS)
Mittal, Nishant; Sharma, Joginder; Verma, Virendar Kumar; Garg, Vijay
2016-08-01
We have studied the characteristics of radio-loud (RL) and radio-quiet (RQ) front side halo coronal mass ejections (HCMEs) (angular width 360°) observed between the time period years 1996-2014. RL-HCMEs are associated with type II radio bursts, while RQ-HCMEs are not associated with type II radio bursts. CMEs near the Sun in the interplanetary medium associated with radio bursts also affect the magnetosphere. The type II radio burst data was observed by WIND/WAVES instrument and HCMEs were observed by LASCO/ SOHO instruments. In our study, we have examined the properties of RL-HCMEs and RQ-HCMEs and found that RL-HCMEs follow the solar cycle variation. Our study also shows that the 26% of slow speed HCMEs and 82% of fast speed HCMEs are RL. The average speed of RL-HCMEs and RQ-HCMEs are 1370 km/s and 727 km/s, respectively. Most of the RQ-HCMEs occur around the solar disc center while most of RL-HCMEs are uniformly distributed across the solar disc. The mean value of acceleration of RL-HCMEs is more than twice that of RQ-HCMEs and mean value of deceleration of RL- HCMEs is very small compare to RQ-HCMEs events. It is also found that RQ-HCMEs events are associated with C- and M-class of SXR flares, while RL-HCMEs events are associated with M and X-class of SXR flares, which indicates that the RQ-HCMEs are less energetic than the RL-HCMEs. We have also discussed the various results obtained in present investigation in view of recent scenario of solar physics.
NASA Astrophysics Data System (ADS)
Yano, H.; Hirai, T.; Arai, K.; Fujii, M.
2017-12-01
The PVDF thin films have been long, space-proven instruments for hypervelocity impact detection in the diverse regions of the Solar System from orbits of Venus by IKAROS and of Pluto by New Horizons. In particular, light weight but large area membranes of a solar sail spacecraft is an ideal location for such detectors to be deployed for detecting statistically enough nubers of so large micrometeoroids that are sensitive to mean motion resonances and other gravitational effects of flux enhancements and voids with planets. The IKAROS spacecraft first detected in situ dust flux enhancement and gap region within the Earth's circumsolar dust ring as well as those of Venus by 0.54 m^2 detection area of ALADDIN sensors on the slar sail membrane. Advancing this heritage, the Solar Power Sail membrane will carry 0.4+ m^2 ALADDIN-II PVDF sensors with improved impact signal prosessng units to detect both hyperveloity dust impacts in the interplanetary space cruising phase and slow dust impacts bound to the Jupiter Trojan region in its rendezvours phase.
NASA Technical Reports Server (NTRS)
Gopalswamy, N.; Akiyama, S.; Yashiro, S.; Michalek, G.; Lepping, R. P.
2009-01-01
One of the figures (Fig. 4) in "Solar sources and geospace consequences of interplanetary magnetic Clouds observed during solar cycle 23 -- Paper 1" by Gopalswamy et al. (2008, JASTP, Vol. 70, Issues 2-4, February 2008, pp. 245-253) is incorrect because of a software error in t he routine that was used to make the plot. The source positions of various magnetic cloud (MC) types are therefore not plotted correctly.
Minifilament Eruption as the Source of a Blowout Jet, C-class Flare, and Type-III Radio Burst
NASA Astrophysics Data System (ADS)
Hong, Junchao; Jiang, Yunchun; Yang, Jiayan; Li, Haidong; Xu, Zhe
2017-01-01
We report a strong minifilament eruption associated with Geostationary Operational Environmental Satellite C1.6 flare and WIND type-III radio burst. The minifilament, which lies at the periphery of active region 12259, is detected by Hα images from the New Vacuum Solar Telescope. The minifilament undergoes a partial and then a full eruption. Simultaneously, two co-spatial jets are successively observed in extreme ultraviolet images from the Solar Dynamic Observatory. The first jet exhibits a typical fan-spine geometry, suggesting that the co-spatial minifilament is possibly embedded in magnetic fields with a fan-spine structure. However, the second jet displays blowout morphology when the entire minifilament erupts upward, leaving behind a hard X-ray emission source in the base. Differential emission measure analyses show that the eruptive region is heated up to about 4 MK during the fan-spine jet, while up to about 7 MK during the blowout jet. In particular, the blowout jet is accompanied by an interplanetary type-III radio burst observed by WIND/WAVES in the frequency range from above 10 to 0.1 MHz. Hence, the minifilament eruption is correlated with the interplanetary type-III radio burst for the first time. These results not only suggest that coronal jets can result from magnetic reconnection initiated by erupting minifilaments with open fields, but also shed light on the potential influence of minifilament eruption on interplanetary space.
MINIFILAMENT ERUPTION AS THE SOURCE OF A BLOWOUT JET, C-CLASS FLARE, AND TYPE-III RADIO BURST
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hong, Junchao; Jiang, Yunchun; Yang, Jiayan
We report a strong minifilament eruption associated with Geostationary Operational Environmental Satellite C1.6 flare and WIND type-III radio burst. The minifilament, which lies at the periphery of active region 12259, is detected by H α images from the New Vacuum Solar Telescope. The minifilament undergoes a partial and then a full eruption. Simultaneously, two co-spatial jets are successively observed in extreme ultraviolet images from the Solar Dynamic Observatory . The first jet exhibits a typical fan-spine geometry, suggesting that the co-spatial minifilament is possibly embedded in magnetic fields with a fan-spine structure. However, the second jet displays blowout morphology whenmore » the entire minifilament erupts upward, leaving behind a hard X-ray emission source in the base. Differential emission measure analyses show that the eruptive region is heated up to about 4 MK during the fan-spine jet, while up to about 7 MK during the blowout jet. In particular, the blowout jet is accompanied by an interplanetary type-III radio burst observed by WIND /WAVES in the frequency range from above 10 to 0.1 MHz. Hence, the minifilament eruption is correlated with the interplanetary type-III radio burst for the first time. These results not only suggest that coronal jets can result from magnetic reconnection initiated by erupting minifilaments with open fields, but also shed light on the potential influence of minifilament eruption on interplanetary space.« less
Time-dependent radiation dose estimations during interplanetary space flights
NASA Astrophysics Data System (ADS)
Dobynde, M. I.; Shprits, Y.; Drozdov, A.
2015-12-01
Time-dependent radiation dose estimations during interplanetary space flights 1,2Dobynde M.I., 2,3Drozdov A.Y., 2,4Shprits Y.Y.1Skolkovo institute of science and technology, Moscow, Russia 2University of California Los Angeles, Los Angeles, USA 3Lomonosov Moscow State University Skobeltsyn Institute of Nuclear Physics, Moscow, Russia4Massachusetts Institute of Technology, Cambridge, USASpace radiation is the main restriction for long-term interplanetary space missions. It induces degradation of external components and propagates inside providing damage to internal environment. Space radiation particles and induced secondary particle showers can lead to variety of damage to astronauts in short- and long- term perspective. Contribution of two main sources of space radiation- Sun and out-of-heliosphere space varies in time in opposite phase due to the solar activity state. Currently the only habituated mission is the international interplanetary station that flights on the low Earth orbit. Besides station shell astronauts are protected with the Earth magnetosphere- a natural shield that prevents significant damage for all humanity. Current progress in space exploration tends to lead humanity out of magnetosphere bounds. With the current study we make estimations of spacecraft parameters and astronauts damage for long-term interplanetary flights. Applying time dependent model of GCR spectra and data on SEP spectra we show the time dependence of the radiation in a human phantom inside the shielding capsule. We pay attention to the shielding capsule design, looking for an optimal geometry parameters and materials. Different types of particles affect differently on the human providing more or less harm to the tissues. Incident particles provide a large amount of secondary particles while propagating through the shielding capsule. We make an attempt to find an optimal combination of shielding capsule parameters, namely material and thickness, that will effectively decrease the incident particle energy, at the same time minimizing flow of secondary induced particles and minimizing most harmful particle types flows.
NASA Astrophysics Data System (ADS)
Sun, W.; Dryer, M.; Fry, C. D.; Deehr, C. S.; Smith, Z.; Akasofu, S.-I.; Kartalev, M. D.; Grigorov, K. G.
2002-07-01
The Sun was extremely active during the "April Fool’s Day" epoch of 2001. We chose this period between a solar flare on 28 March 2001 to a final shock arrival at Earth on 21 April 2001. The activity consisted of two presumed helmet-streamer blowouts, seven M-class flares, and nine X-class flares, the last of which was behind the west limb. We have been experimenting since February 1997 with real-time, end-to-end forecasting of interplanetary coronal mass ejection (ICME) shock arrival times. Since August 1998, these forecasts have been distributed in real-time by e-mail to a list of interested scientists and operational USAF and NOAA forecasters. They are made using three different solar wind models. We describe here the solar events observed during the April Fool’s 2001 epoch, along with the predicted and actual shock arrival times, and the ex post facto correction to the real-time coronal shock speed observations. It appears that the initial estimates of coronal shock speeds from Type II radio burst observations and coronal mass ejections were too high by as much as 30%. We conclude that a 3-dimensional coronal density model should be developed for application to observations of solar flares and their Type II radio burst observations.
Evidence of a primordial solar wind. [T Tauri-type evolution model
NASA Technical Reports Server (NTRS)
Sonett, C. P.
1974-01-01
A model is reviewed which requires a T Tauri 'wind' and at the same time encompasses certain early-object stellar features. The theory rests on electromagnetic induction driven by the 'wind'. Plasma confinement of the induced field prohibits a scattered field, and all energy loss is via ohmic heating in the scatterer (i.e., planetary objects). Two modes, one caused by the interplanetary electric field (transverse magnetic) and the other by time variations in the interplanetary magnetic field (transverse electric) are present. Parent body melting, lunar surface melting, and a primordial magnetic field are components of the proposed model.
NASA Astrophysics Data System (ADS)
Yermolaev, Y. I.; Lodkina, I. G.; Nikolaeva, N. S.; Yermolaev, M. Y.
2017-12-01
This work is a continuation of our previous article (Yermolaev et al. in J. Geophys. Res. 120, 7094, 2015), which describes the average temporal profiles of interplanetary plasma and field parameters in large-scale solar-wind (SW) streams: corotating interaction regions (CIRs), interplanetary coronal mass ejections (ICMEs including both magnetic clouds (MCs) and ejecta), and sheaths as well as interplanetary shocks (ISs). As in the previous article, we use the data of the OMNI database, our catalog of large-scale solar-wind phenomena during 1976 - 2000 (Yermolaev et al. in Cosmic Res., 47, 2, 81, 2009) and the method of double superposed epoch analysis (Yermolaev et al. in Ann. Geophys., 28, 2177, 2010a). We rescale the duration of all types of structures in such a way that the beginnings and endings for all of them coincide. We present new detailed results comparing pair phenomena: 1) both types of compression regions ( i.e. CIRs vs. sheaths) and 2) both types of ICMEs (MCs vs. ejecta). The obtained data allow us to suggest that the formation of the two types of compression regions responds to the same physical mechanism, regardless of the type of piston (high-speed stream (HSS) or ICME); the differences are connected to the geometry ( i.e. the angle between the speed gradient in front of the piston and the satellite trajectory) and the jumps in speed at the edges of the compression regions. In our opinion, one of the possible reasons behind the observed differences in the parameters in MCs and ejecta is that when ejecta are observed, the satellite passes farther from the nose of the area of ICME than when MCs are observed.
Sources of Ionizing Radiation in Interplanetary Space
2013-05-30
This illustration depicts the two main types of radiation that NASA Radiation Assessment Detector RAD onboard Curiosity monitors, and how the magnetic field around Earth affects the radiation in space near Earth.
Solar and interplanetary activities of isolated and non-isolated coronal mass ejections
NASA Astrophysics Data System (ADS)
Bendict Lawrance, M.; Shanmugaraju, A.; Moon, Y.-J.; Umapathy, S.
2017-07-01
We report our results on comparison of two halo Coronal Mass Ejections (CME) associated with X-class flares of similar strength (X1.4) but quite different in CME speed and acceleration, similar geo-effectiveness but quite different in Solar Energetic Particle (SEP) intensity. CME1 (non-isolated) was associated with a double event in X-ray flare and it was preceded by another fast halo CME of speed = 2684 km/s (pre-CME) associated with X-ray flare class X5.4 by 1 h from the same location. Since this pre-CME was more eastern, interaction with CME1 and hitting the earth were not possible. This event (CME1) has not suffered the cannibalism since pre-CME has faster speed than post-CME. Pre-CME plays a very important role in increasing the intensity of SEP and Forbush Decrease (FD) by providing energetic seed particles. So, the seed population is the major difference between these two selected events. CME2 (isolated) was a single event. We would like to address on the kinds of physical conditions related to such CMEs and their associated activities. Their associated activities such as, type II bursts, SEP, geomagnetic storm and FD are compared. The following results are obtained from the analysis. (1) The CME leading edge height at the start of metric/DH type II bursts are 2 R⊙/ 4 R⊙ for CME1, but 2 R⊙/ 2.75 R⊙ for CME2. (2) Peak intensity of SEP event associated with the two CMEs are quite different: 6530 pfu for CME1, but 96 pfu for CME2. (3) The Forbush decrease occurred with a minimum decrease of 9.98% in magnitude for CME1, but 6.90% for CME2. (4) These two events produced similar intense geomagnetic storms of intensity of Dst index -130 nT. (5) The maximum southward magnetic fields corresponding to Interplanetary CME (ICME) of these two events are nearly the same, but there is difference in Sheath Bz maximum (-14.2, -6.9 nT). (6) The time-line chart of the associated activities of two CMEs show some difference in the time delay between the onsets of activities with respect to the onset of flare/CME.
A tiny event producing an interplanetary type III burst
NASA Astrophysics Data System (ADS)
Alissandrakis, C. E.; Nindos, A.; Patsourakos, S.; Kontogeorgos, A.; Tsitsipis, P.
2015-10-01
Aims: We investigate the conditions under which small-scale energy release events in the low corona gave rise to strong interplanetary (IP) type III bursts. Methods: We analyzed observations of three tiny events, detected by the Nançay Radio Heliograph (NRH), two of which produced IP type III bursts. We took advantage of the NRH positioning information and of the high cadence of AIA/SDO data to identify the associated extreme-UV (EUV) emissions. We measured positions and time profiles of the metric and EUV sources. Results: We found that the EUV events that produced IP type III bursts were located near a coronal hole boundary, while the one that did not was located in a closed magnetic field region. In all three cases tiny flaring loops were involved, without any associated mass eruption. In the best observed case, the radio emission at the highest frequency (435 MHz) was displaced by ~55'' with respect to the small flaring loop. The metric type III emission shows a complex structure in space and in time, indicative of multiple electron beams, despite the low intensity of the events. From the combined analysis of dynamic spectra and NRH images, we derived the electron beam velocity as well as the height, ambient plasma temperature, and density at the level of formation of the 160 MHz emission. From the analysis of the differential emission measure derived from the AIA images, we found that the first evidence of energy release was at the footpoints, and this was followed by the development of flaring loops and subsequent cooling. Conclusions: Even small energy release events can accelerate enough electrons to give rise to powerful IP type III bursts. The proximity of the electron acceleration site to open magnetic field lines facilitates the escape of the electrons into the interplanetary space. The offset between the site of energy release and the metric type III location warrants further investigation. The movie is available in electronic form at http://www.aanda.org
Semi-transparent shock model for major solar energetic particle events
NASA Astrophysics Data System (ADS)
Kocharov, Leon
2014-05-01
Production of solar energetic particles in major events typically comprises two stages: (i) the initial stage associated with shocks and magnetic reconnection in solar corona and (ii) the main stage associated with the CME-bow shock in solar wind. The coronal emission of energetic particles from behind the interplanetary shock wave continues for about one hour , being not shielded by the CME shock in solar wind and having the prompt access to particle detectors at 1 AU. On occasion of two well-separated solar eruptions from the same active region, the newly accelerated solar particles may be emitted well behind the previous CME, and those solar particles may penetrate through the interplanetary shock of the previous CME to arrive at the Earth's orbit without significant delay, which is another evidence that high-energy particles from the solar corona can penetrate through travelling interplanetary shocks. Diffusive shock acceleration is fast only if the particle mean free path near the shock is small. The small mean free path (high turbulence level), however, implies that energetic particles from coronal sources could not penetrate through the interplanetary shock, and even the particles accelerated by the interplanetary shock itself could not escape to its far upstream region. If so, they could not be promptly observed at 1 AU. However, high-energy particles in major solar events are detected well before the shock arrival at 1 AU. The theoretical difficulty can be obviated in the framework of the proposed model of a "semitransparent" shock. As in situ plasma observations indicate, the turbulence energy levels in neighboring magnetic tubes of solar wind may differ from each other by more than one order of magnitude. Such an intermittence of coronal and solar wind plasmas can affect energetic particle acceleration in coronal and interplanetary shocks. The new modeling incorporates particle acceleration in the shock front and the particle transport both in parallel to the magnetic field and in perpendicular to the magnetic field directions. The modeling suggests that the perpendicular diffusion is always essential for the energetic particle production, because particles can be accelerated in tubes with a high turbulence level and then escape to far upstream of the shock via neighboring, less turbulent tubes. We have modeled both the transmission of high-energy (>50 MeV) protons from coronal sources through the interplanetary shock wave and the interplanetary shock acceleration of ~1-10 MeV protons with subsequent transport to far upstream of the shock. The modeling results imply that presence of the fast transport channels penetrating the shock and the cross-field transport of accelerated particles to those channels may play a key role in the high-energy particle emission from distant shocks and can explain the prompt onset of major solar energetic particle events observed near the Earth's orbit.
Acceleration and Transport of Solar Energetic Particles in 'Semi-transparent' Shocks
NASA Astrophysics Data System (ADS)
Kocharov, L. G.
2013-12-01
Production of solar energetic particles in major events typically comprises two stages: (i) an initial stage associated with shocks and magnetic reconnection in solar corona and (ii) the main stage associated with the CME-bow shock in solar wind (e.g., Figure 1 of Kocharov et al., 2012, ApJ, 753, 87). As far as the second stage production is ascribed to interplanetary shocks, the first stage production should be attributed to coronal sources. Coronal emission of energetic particles from behind the interplanetary shock wave continues for about one hour (Figures 4-6 of Kocharov et al, 2010, ApJ, 725, 2262). The coronal particles are not shielded by the CME-bow shock in solar wind and have a prompt access to particle detectors at 1 AU. On non-exceptional occasion of two successive solar eruptions from the same active region, the newly accelerated solar particles may be emitted well behind the previous CME, and those solar particles may penetrate through the interplanetary shock of the previous CME to arrive at the Earth's orbit without significant delay (Al-Sawad et al., 2009, Astron. & Astrophys., 497, L1), which is another evidence that high-energy particles from the solar corona can penetrate through travelling interplanetary shocks. Diffusive shock acceleration is fast only if the particle mean free path in the shock is small. A small mean free path (high turbulence level), however, implies that energetic particles from the solar corona could not penetrate through the interplanetary shock and could not escape to its far upstream region. If so, they could not produce a prompt event at 1 AU. However, solar high-energy particle events are observed very far from the shocks. The theoretical difficulty can be obviated in the framework of the new model of a "semi-transparent" shock. As in situ plasma observations indicate, the turbulence energy levels in neighboring magnetic tubes of solar wind may differ from each other by more than one order of magnitude. Such an intermittence of coronal and solar wind plasmas can affect energetic particle acceleration in coronal and interplanetary shocks. The new modeling incorporates particle acceleration in the shock front and the particle transport both in parallel to the magnetic field and in perpendicular to the magnetic field directions. The modeling suggests that the perpendicular diffusion is always essential for the energetic particle production, because particles can be accelerated in tubes with a high turbulence level and then escape to far upstream of the shock via neighboring, less turbulent tubes. Considered are both the penetration of the high-energy (>50 MeV) solar protons through the interplanetary shock and the interplanetary shock acceleration to lower energies (~1-10 MeV). The modeling results are compared with data of spaceborne particle instruments (SOHO. STEREO) and data of neutron monitors.
NASA Technical Reports Server (NTRS)
Wu, S. T.; Guo, W. P.; Dryer, Murray
1996-01-01
The dynamical response of a helmet streamer to a flux rope escape from the sub-photosphere is examined in a physically self-consistent manner within the approximation of axisymmetric three-dimensional magnetohydrodynamics (i.e., so-called '2 1/2 D'). In contrast to the previous planar analyses of Paper 1 (Wu, Guo, and Wang), the present study shows, with the inclusion of out-of-plane components of magnetic and velocity fields, that the magnetic configuration represents a helical flux rope instead of a planar bubble as shown in Paper 1. Because of this more physically-realistic configuration, we are able to examine the dynamical evolution of the helical flux rope's interaction with the helmet streamer. This process leads to the formation of two parts of the solar mass ejection: (i) the expulsion of the helmet dome due to eruption of this flux rope, and (ii) the flux rope's eruption itself. When this two-part feature propagates out to the interplanetary space, it exhibits all the physical characteristics of observed interplanetary magnetic clouds. These numerical simulations also show that the dynamical behavior of the streamer-flux rope system has three distinct states: (i) quasi-equilibrium, (ii) non-equilibrium, and (iii) eruptive state depending on the energy level of the flux rope.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zhou, X.; Gan, W.; Liu, S.
We investigate electron acceleration by electric fields induced by cascading reconnections in current sheets trailing coronal mass ejections via a test particle approach in the framework of the guiding-center approximation. Although the resistive electric field is much weaker than the inductive electric field, the electron acceleration is still dominated by the former. Anomalous resistivity η is switched on only in regions where the current carrier’s drift velocity is large enough. As a consequence, electron acceleration is very sensitive to the spatial distribution of the resistive electric fields, and electrons accelerated in different segments of the current sheet have different characteristics.more » Due to the geometry of the 2.5-dimensional electromagnetic fields and strong resistive electric field accelerations, accelerated high-energy electrons can be trapped in the corona, precipitating into the chromosphere or escaping into interplanetary space. The trapped and precipitating electrons can reach a few MeV within 1 s and have a very hard energy distribution. Spatial structure of the acceleration sites may also introduce breaks in the electron energy distribution. Most of the interplanetary electrons reach hundreds of keV with a softer distribution. To compare with observations of solar flares and electrons in solar energetic particle events, we derive hard X-ray spectra produced by the trapped and precipitating electrons, fluxes of the precipitating and interplanetary electrons, and electron spatial distributions.« less
The Interplanetary Network II: 11 Months of Rapid, Precise GRB Localizations
NASA Astrophysics Data System (ADS)
Hurley, K.; Cline, T.; Mazets, E.; Golenetskii, S.; Trombka, J.; Feroci, M.; Kippen, R. M.; Barthelmy, S.; Frontera, F.; Guidorzi, C.; Montanari, E.
2000-10-01
Since December 1999 the 3rd Interplanetary Network has been producing small ( 10') error boxes at a rate of about one per week, and circulating them rapidly ( 24 h) via the GCN. As of June 2000, 24 such error boxes have been obtained; 18 of them have been searched in the radio and optical ranges for counterparts, resulting in four definite counterpart detections and three redshift determinations. We will review these results and explain the some of the lesser known IPN operations. In particular, we maintain an "early warning" list of potential observers with pagers and cell phones, and send messages to them to alert them to bursts for which error boxes will be obtained, allowing them to prepare for observations many hours before the complete spacecraft data are received and the GCN message is issued. As an interesting aside, now that the CGRO mission is terminated, the IPN consists entirely of non-NASA and/or non-astrophysics missions, specifically, Ulysses and Wind (Space Physics), NEAR (Planetary Physics), and BeppoSAX (ASI).
NASA Technical Reports Server (NTRS)
Bradley, J. P.; Germani, M. S.; Brownlee, D. E.
1989-01-01
An AEM apparatus equipped with digital beam control has obtained quantitative point-count analyses of thin sections taken from eight anhydrous chondritic interplanetary dust particles (IDPs); between 200 and 500 X-ray analyses were collected from each thin section and analyzed for Mg, Al, Si, S, Ca, Cr, Mn, Fe, and Ni. Two types of anhydrous chondritic aggregates were observed in the eight IDPs: one highly porous, the other less so. The eight anhydrous IDPs are characterizable as mixtures of fine- and coarse-grained aggregates, large mineral grains, glass, and carbonaceous materials. Their elemental concentrations follow those of solar abundances, suggesting that they are unperturbed by aqueous alteration.
Unmanned planetary spacecraft chemical rocket propulsion.
NASA Technical Reports Server (NTRS)
Burlage, H., Jr.; Gin, W.; Riebling, R. W.
1972-01-01
Review of some chemical propulsion technology advances suitable for future unmanned spacecraft applications. Discussed system varieties include liquid space-storable propulsion systems, advanced liquid monopropellant systems, liquid systems for rendezvous and landing applications, and low-thrust high-performance solid-propellant systems, as well as hybrid space-storable systems. To optimize the performance and operational characteristics of an unmanned interplanetary spacecraft for a particular mission, and to achieve high cost effectiveness of the entire system, it is shown to be essential that the type of spacecraft propulsion system to be used matches, as closely as possible the various requirements and constraints. The systems discussed are deemed to be the most promising candidates for some of the anticipated interplanetary missions.
NASA Astrophysics Data System (ADS)
Benacquista, R.; Boscher, D.; Rochel, S.; Maget, V.
2018-02-01
In this paper, we study the variations of the radiation belts electron fluxes induced by the interaction of two types of solar wind structures with the Earth magnetosphere: the corotating interaction regions and the interplanetary coronal mass ejections. We use a statistical method based on the comparison of the preevent and postevent fluxes. Applied to the National Oceanic and Atmospheric Administration-Polar Operational Environmental Satellites data, this gives us the opportunity to extend previous studies focused on relativistic electrons at geosynchronous orbit. We enlighten how corotating interaction regions and Interplanetary Coronal Mass Ejections can impact differently the electron belts depending on the energy and the L shell. In addition, we provide a new insight concerning these variations by considering their amplitude. Finally, we show strong relations between the intensity of the magnetic storms related to the events and the variation of the flux. These relations concern both the capacity of the events to increase the flux and the deepness of these increases.
An electrodynamic model of electric currents and magnetic fields in the dayside ionosphere of Venus
NASA Technical Reports Server (NTRS)
Cloutier, P. A.; Tascione, T. F.; Danieli, R. E., Jr.
1981-01-01
The electric current configuration induced in the ionosphere of Venus by the interaction of the solar wind has been calculated in previous papers (Cloutier and Daniell, 1973; Daniell and Cloutier, 1977; Cloutier and Daniell, 1979) for average steady-state solar wind conditions and interplanetary magnetic field. This model is generalized to include the effects of (1) plasma depletion and magnetic field enhancement near the ionopause, (2) velocity-shear-induced MHD instabilities of the Kelvin-Helmholtz type within the ionosphere, and (3) variations in solar wind parameters and interplanetary magnetic field. It is shown that the magnetic field configuration resulting from the model varies in response to changes in solar wind and interplanetary field conditions, and that these variations produce magnetic field profiles in excellent agreement with those seen by the Pioneer-Venus Orbiter. The formation of flux-ropes by the Kelving-Helmholtz instability is shown to be a natural consequence of the model, with the spatial distribution and size of the flux-ropes determined by the magnetic Reynolds number.
Coronal Structure of a Flaring Region and Associated Coronal Mass Ejection
NASA Technical Reports Server (NTRS)
Kundu, Mukul R.; Manoharan, P. K.
2003-01-01
We report the multiwavelength investigations of an eruptive flare event that occurred on 2001 April 2 at about 11 UT. The manifestations associated with this flare event have been studied from the near-Sun region to about 0.5 AU. The H-alpha images from the Meudon Spectroheliograph reveal a fast spectacular eruption of plasmoids from the flare site to the west and a Moreton wave disturbance propagating toward the south, A bright, fast, wide coronal mass ejection (CME) associated with this eruptive event was imaged by SOHO/LASCO and the remote-sensing interplanetary scintillation technique. The timings and positions of the Type II radio bursts, H-alpha eruption, and CME onset as well as the magnetic field configuration suggest a release of energy at the null point. The results seem to support the "breakout" scenario proposed by Antiochos and coworkers, and they are also suggestive that the energy release is followed by magnetic reconnection between the low-lying loops near the separatrix and the loop system above them.
Radio triangulation - mapping the 3D position of the solar radio emission
NASA Astrophysics Data System (ADS)
Magdalenic, Jasmina
2016-04-01
Understanding the relative position of the sources of the radio emission and the associated solar eruptive phenomena (CME and the associated shock wave) has always been a challenge. While ground-based radio interferometer observations provide us with the 2D position information for the radio emission originating from the low corona (up to 2.5 Ro), this is not the case for the radio emission originating at larger heights. The radio triangulation measurements (also referred to as direction-finding or goniopolarimetric measurements) from two or more widely separated spacecraft can provide information on the 3D positions of the sources of the radio emission. This type of interplanetary radio observations are currently performed by STEREO WAVES and WIND WAVES instruments, providing a unique possibility for up to three simultaneous radio triangulations (using up to three different pairs of spacecraft). The recent results of the radio triangulation studies bring new insight into the causal relationship of the solar radio emission and CMEs. In this presentation I will discuss some of the most intriguing results on the source positions of: a) type III radio bursts indicating propagation of the fast electrons accelerated along the open field lines, b) type II radio bursts indicating interaction of the CME-driven shocks and other coronal structures e.g. streamers and c) type IV-like radio bursts possibly associated with CME-CME interaction.
Interplanetary Physics Laboratory (IPL): A concept for an interplanetary mission in the mid-eighties
NASA Technical Reports Server (NTRS)
Burlaga, L. F.; Ogilvie, K. W.; Feldman, W.
1977-01-01
A concept for a near-earth interplanetary mission in the mid-eighties is described. The proposed objectives would be to determine the composition of the interplanetary constituents and its dependence on source-conditions and to investigate energy and momentum transfer processes in the interplanetary medium. Such a mission would accomplish three secondary objectives: (1) provide a baseline for deep space missions, (2) investigate variations of the solar wind with solar activity, and (3) provide input functions for magnetospheric studies.
Large-scale structures of solar wind and dynamics of parameters in them
NASA Astrophysics Data System (ADS)
Yermolaev, Yuri; Lodkina, Irina; Yermolaev, Michael
2017-04-01
On the basis of OMNI dataset and our catalog of large-scale solar wind (SW) phenomena (see web-site ftp://ftp.iki.rssi.ru/pub/omni/ and paper by Yermolaev et al., 2009) we study temporal profile of interplanetary and magnetospheric parameters in following SW phenomena: interplanetary manifestation of coronal mass ejection (ICME) including magnetic cloud (MC) and Ejecta, Sheath—compression region before ICME and corotating interaction region (CIR)—compression region before high-speed stream (HSS) of solar wind. To take into account a possible influence of other SW types, following sequences of phenomena, which include all typical sequences of non-stationary SW events, are analyzed: (1) SW/ CIR/ SW, (2) SW/ IS/ CIR/ SW, (3) SW/ Ejecta/ SW, (4) SW/ Sheath/Ejecta/ SW, (5) SW/ IS/ Sheath/ Ejecta/ SW, (6) SW/ MC/ SW, (7) SW/Sheath/ MC/ SW, (8) SW/ IS/ Sheath/ MC/ SW (where SW is undisturbed solar wind, and IS is interplanetary shock) (Yermolaev et al., 2015) using the method of double superposed epoch analysis for large numbers of events (Yermolaev et al., 2010). Similarities and distinctions of different SW phenomena depending on neighboring SW types and their geoeffectiveness are discussed. The work was supported by the Russian Science Foundation, projects 16-12-10062. References: Yermolaev, Yu. I., N. S. Nikolaeva, I. G. Lodkina, and M. Yu. Yermolaev (2009), Catalog of Large-Scale Solar Wind Phenomena during 1976-2000, Cosmic Research, , Vol. 47, No. 2, pp. 81-94. Yermolaev, Y. I., N. S. Nikolaeva, I. G. Lodkina, and M. Y. Yermolaev (2010), Specific interplanetary conditions for CIR-induced, Sheath-induced, and ICME-induced geomagnetic storms obtained by double superposed epoch analysis, Ann. Geophys., 28, pp. 2177-2186. Yermolaev, Yu. I., I. G. Lodkina, N. S. Nikolaeva, and M. Yu. Yermolaev (2015), Dynamics of large-scale solar wind streams obtained by the double superposed epoch analysis, J. Geophys. Res. Space Physics, 120, doi:10.1002/2015JA021274.
Interplanetary field and plasma during initial phase of geomagnetic storms
NASA Technical Reports Server (NTRS)
Patel, V. L.; Wiskerchen, M. J.
1975-01-01
A study has been conducted of a large number of geomagnetic storms occurring during the period from 1966 to 1970. Questions of data selection are discussed and the large-scale interplanetary magnetic field during the initial phase is examined. Small-scale interplanetary fields during the initial phase are also considered, taking into account important features of small-scale variations in the interplanetary field and plasma for three storms. Details concerning 23 geomagnetic storms and the interplanetary magnetic field are presented in a table. A study of the initial phase of these storms indicates that in most of these events, the solar-ecliptic Z component of the interplanetary magnetic field turns southward when the main phase decrease begins.
Large-scale properties of the interplanetary magnetic field
NASA Technical Reports Server (NTRS)
Schatten, K. H.
1972-01-01
Early theoretical work of Parker is presented along with the observational evidence supporting his Archimedes spiral model. Variations present in the interplanetary magnetic field from the spiral angle are related to structures in the solar wind. The causes of these structures are found to be either nonuniform radial solar wind flow or the time evolution of the photospheric field. Coronal magnetic models are related to the connection between the solar magnetic field and the interplanetary magnetic field. Direct extension of the solar field-magnetic nozzle controversy is discussed along with the coronal magnetic models. Effects of active regions on the interplanetary magnetic field is discussed with particular reference to the evolution of interplanetary sectors. Interplanetary magnetic field magnitude variations are shown throughout the solar cycle. The percentage of time the field magnitude is greater than 10 gamma is shown to closely parallel sunspot number. The sun's polar field influence on the interplanetary field and alternative views of the magnetic field structure out of the ecliptic plane are presented. In addition, a variety of significantly different interplanetary field structures are discussed.
Sun-to-Earth Analysis of a Major Geoeffective Solar Eruption within the Framework of the
NASA Astrophysics Data System (ADS)
Patsourakos, S.; Vlahos, L.; Georgoulis, M.; Tziotziou, K.; Nindos, A.; Podladchikova, O.; Vourlidas, A.; Anastasiadis, A.; Sandberg, I.; Tsinganos, K.; Daglis, I.; Hillaris, A.; Preka-Papadema, P.; Sarris, M.; Sarris, T.
2013-09-01
Transient expulsions of gigantic clouds of solar coronal plasma into the interplanetary space in the form of Coronal Mass Ejections (CMEs) and sudden, intense flashes of electromagnetic radiation, solar flares, are well-established drivers of the variable Space Weather. Given the innate, intricate links and connections between the solar drivers and their geomagnetic effects, synergistic efforts assembling all pieces of the puzzle along the Sun-Earth line are required to advance our understanding of the physics of Space Weather. This is precisely the focal point of the Hellenic National Space Weather Research Network (HNSWRN) under the THALIS Programme. Within the HNSWRN framework, we present here the first results from a coordinated multi-instrument case study of a major solar eruption (X5.4 and X1.3 flares associated with two ultra-fast (>2000 km/s) CMEs) which were launched early on 7 March 2012 and triggered an intense geomagnetic storm (min Dst =-147 nT) approximately two days afterwards. Several elements of the associated phenomena, such as the flare and CME, EUV wave, WL shock, proton and electron event, interplanetary type II radio burst, ICME and magnetic cloud and their spatiotemporal relationships and connections are studied all way from Sun to Earth. To this end, we make use of satellite data from a flotilla of solar, heliospheric and magnetospheric missions and monitors (e.g., SDO, STEREO, WIND, ACE, Herschel, Planck and INTEGRAL). We also present our first steps toward formulating a cohesive physical scenario to explain the string of the observables and to assess the various physical mechanisms than enabled and gave rise to the significant geoeffectiveness of the eruption.
A Search for Extraterrestrial Amino Acids in Polar Ice: A Progress Report
NASA Technical Reports Server (NTRS)
Bada, Jeffrey L.; Brinton, Karen L. F.; McDonald, Gene D.; Wang, Xueyun
1996-01-01
Fifteen polar ice samples-fourteen from Greenland and one from Antarctica-have been analyzed for the extraterrestrial amino acid alpha-aminoisobutyric acid (AIB) in an effort to estimate the flux of interplanetary organic material to the Earth's surface. Only one sample (Greenland GISP II, 4270-4440 years old) contains detectable amounts of AIB, apparently the signature of a transient delivery event. The maximum oceanic concentration of AIB from such an event would be less than 10(exp-9) M.
The Sun and the Solar Wind Close to the Sun
NASA Technical Reports Server (NTRS)
Suess, Steven T.
1998-01-01
One of the benefits from the Ulysses, SOHO, and YOHKOH missions has been a strong stimulus to better understand the magnetohydrodynamic processes involved in coronal expansion. Three topics for which this has been especially true are described here. These are: (i) The observed constancy of the radial interplanetary magnetic field strength (as mapped to constant radius). (ii) The geometric spreading of coronal plumes and coronal holes, and the fate of plumes. (iii) The plasma Beta in streamers and the physics of streamer confinement.
Air Force Cambridge Research Laboratories Report on Research, July 1972 - June 1974
1975-05-01
Achievements of ALADDIN II DANDEKAR, B. S. 1973 Ann. Am. Geophys. Union Mtg., Wash., D. C. Determination of theAtomic Oxygen Concentration from the (16-20...Terrestrial Phys./I7th 1973 Ann. Am. Geophys. Union Mtg., Wash., D. C. Plenary Mtg. of COSPAR, Sao Paulo, Brazil (16-20 April 1973) (17June - I July 1974...Interplanetary Burlington, Mass.), HUFFMAN, R. E., and PAULSEN, Magnetic Field as Inferred from Polar Cap Observations D. E. 1973 Ann. Am. Geophys. Union
The cometary and asteroidal origins of meteors
NASA Technical Reports Server (NTRS)
Kresak, L.
1973-01-01
A quantitative examination of the gravitational and nongravitational changes of orbits shows that for larger interplanetary bodies the perturbations by Jupiter strongly predominate over all other effects, which include perturbations by other planets, splitting of comet nuclei and jet effects of cometary ejections. The structure of meteor streams, indicates that the mutual compensation of the changes in individual elements entering the Jacobian integral, which is characteristic for the comets, does not work among the meteoroids. It appears that additional forces of a different kind must exert appreciable influence on the motion of interplanetary particles of meteoroid size. Nevertheless, the distribution of the Jacobian constant in various samples of meteor orbits furnishes some information on the type of their parent bodies and on the relative contribution of individual sources.
Radio observations of interplanetary magnetic field structures out of the ecliptic
NASA Technical Reports Server (NTRS)
Fitzenreiter, R. J.; Fainberg, J.; Weber, R. R.; Alvarez, H.; Haddock, F. T.; Potter, W. H.
1976-01-01
New observations of the out-of-the ecliptic trajectories of type 3 solar radio bursts have been obtained from simultaneous direction finding measurements on two independent satellite experiments, IMP-6 with spin plane in the ecliptic, and RAE-2 with spin plane normal to the ecliptic. Burst exciter trajectories were observed which originated at the active region and then crossed the ecliptic plane at about 0.8 AU. A considerable large scale north-south component of the interplanetary magnetic field is followed by the exciters. The apparent north-south and east-west angular source sizes observed by the two spacecraft are approximately equal, and range from 25 deg at 600 KHz to 110 deg at 80 KHz.
Dynamics of large-scale solar wind streams obtained by the double superposed epoch analysis
NASA Astrophysics Data System (ADS)
Yermolaev, Yu. I.; Lodkina, I. G.; Nikolaeva, N. S.; Yermolaev, M. Yu.
2015-09-01
Using the OMNI data for period 1976-2000, we investigate the temporal profiles of 20 plasma and field parameters in the disturbed large-scale types of solar wind (SW): corotating interaction regions (CIR), interplanetary coronal mass ejections (ICME) (both magnetic cloud (MC) and Ejecta), and Sheath as well as the interplanetary shock (IS). To take into account the different durations of SW types, we use the double superposed epoch analysis (DSEA) method: rescaling the duration of the interval for all types in such a manner that, respectively, beginning and end for all intervals of selected type coincide. As the analyzed SW types can interact with each other and change parameters as a result of such interaction, we investigate separately eights sequences of SW types: (1) CIR, (2) IS/CIR, (3) Ejecta, (4) Sheath/Ejecta, (5) IS/Sheath/Ejecta, (6) MC, (7) Sheath/MC, and (8) IS/Sheath/MC. The main conclusion is that the behavior of parameters in Sheath and in CIR are very similar both qualitatively and quantitatively. Both the high-speed stream (HSS) and the fast ICME play a role of pistons which push the plasma located ahead them. The increase of speed in HSS and ICME leads at first to formation of compression regions (CIR and Sheath, respectively) and then to IS. The occurrence of compression regions and IS increases the probability of growth of magnetospheric activity.
NASA Technical Reports Server (NTRS)
Fisk, L. A. (Editor); Axford, W. I. (Editor)
1976-01-01
A series of papers are presented from a symposium attended by over 200 European and American scientists to examine the importance of exploring the interplanetary medium and the sun by out-of-the-ecliptic space missions. The likely scientific returns of these missions in the areas of solar, interplanetary, and cosmic ray physics is examined. Theoretical models of the solar wind and its interaction with interplanetary magnetic fields are given.
NASA Astrophysics Data System (ADS)
Nikolaeva, Nadezhda; Yermolaev, Yuri; Lodkina, Irina
2016-07-01
We investigate the efficiency of main phase storm generation by different solar wind (SW) streams when using 12 functions coupling (FC) various interplanetary parameters with magnetospheric state. By using our Catalog of Solar Wind Phenomena [Yermolaev et al., 2009] created on the basis of the OMNI database for 1976-2000, we selected the magnetic storms with Dst ≤ -50 nT for which interplanetary sources were following: MC (10 storms); Ejecta (31 storms); Sheath (21 storms); CIRs (31magnetic storms). To compare the interplanetary drivers we estimate an efficiency of magnetic storm generation by type of solar wind stream with using 12 coupling functions. We obtained that in average Sheath has more large efficiency of the magnetic storm generation and MC has more low efficiency in agreement with our previous results which show that by using a modification of formula by Burton et al. [1975] for connection of interplanetary conditions with Dst and Dst* indices the efficiency of storm generation by Sheath and CIR was ~50% higher than generation by ICME [Nikolaeva et al., 2013; 2015]. The most part of FCs has sufficiently high correlation coefficients. In particular the highest values of coefficients (~ 0.5 up to 0.63) are observed for Sheath- driven storms. In a small part of FCs with low coefficients it is necessary to increase the number of magnetic storms to increase the statistical significance of results. The reliability of the obtained data and possible reasons of divergences for various FCs and various SW types require further researches. The authors are grateful for the opportunity to use the OMNI database. This work was supported by the Russian Foundation for Basic Research, project 16-02-00125, and by Program of Presidium of the Russian Academy of Sciences. References: Nikolaeva, N. S., Y. I. Yermolaev, and I. G. Lodkina (2013), Modeling of Dst-index temporal profile on the main phase of the magnetic storms generated by different types of solar wind, Cosmic Res., 51 (6), 401-412. Nikolaeva, N. S., Y. I. Yermolaev, and I. G. Lodkina (2015), Modeling of the corrected Dst* index temporal profile on the main phase of the magnetic storms generated by different types of solar wind, Cosmic Res., 53(2), 119-127. Yermolaev, Yu. I., N. S. Nikolaeva, I. G. Lodkina, and M. Yu. Yermolaev (2009), Catalog of Large-Scale Solar Wind Phenomena during 1976-2000, Cosmic Research, 47(2), 81-94.
Asynchronous Laser Transponders for Precise Interplanetary Ranging and Time Transfer
NASA Technical Reports Server (NTRS)
Degnan, John J.; Smith, David E. (Technical Monitor)
2001-01-01
The feasibility of a two-way asynchronous (i.e. independently firing) interplanetary laser transponder pair, capable of decimeter ranging and subnanosecond time transfer from Earth to a spacecraft anywhere within the inner Solar System, is discussed. In the Introduction, we briefly discuss the current state-of-the-art in Satellite Laser Ranging (SLR) and Lunar Laser Ranging (LLR) which use single-ended range measurements to a passive optical reflector, and the limitations of this approach in ranging beyond the Moon to the planets. In Section 2 of this paper, we describe two types of transponders (echo and asynchronous), introduce the transponder link equation and the concept of "balanced" transponders, describe how range and time can be transferred between terminals, and preview the potential advantages of photon counting asynchronous transponders for interplanetary applications. In Section 3, we discuss and provide mathematical models for the various sources of noise in an interplanetary transponder link including planetary albedo, solar or lunar illumination of the local atmosphere, and laser backscatter off the local atmosphere. In Section 4, we introduce the key engineering elements of an interplanetary laser transponder and develop an operational scenario for the acquisition and tracking of the opposite terminal. In Section 5, we use the theoretical models of th previous sections to perform an Earth-Mars link analysis over a full synodic period of 780 days under the simplifying assumption of coaxial, coplanar, circular orbits. We demonstrate that, using slightly modified versions of existing space and ground based laser systems, an Earth-Mars transponder link is not only feasible but quite robust. We also demonstrate through analysis the advantages and feasibility of compact, low output power (<300 mW photon-counting transponders using NASA's developmental SLR2000 satellite laser ranging system as the Earth terminal. Section 6 provides a summary of the results and some concluding remarks regarding future applications.
A Flight Demonstration of Plasma Rocket Propulsion
NASA Technical Reports Server (NTRS)
Petro, Andrew; Chang-Diaz, Franklin; Schwenterly, WIlliam; Hitt, Michael; Lepore, Joseph
2000-01-01
The Advanced Space Propulsion Laboratory at the NASA Johnson Space Center has been engaged in the development of a variable specific impulse magnetoplasma rocket (V ASIMR) for several years. This type of rocket could be used in the future to propel interplanetary spacecraft and has the potential to open the entire solar system to human exploration. One feature of this propulsion technology is the ability to vary its specific impulse so that it can be operated in a mode that maximizes propellant efficiency or a mode that maximizes thrust. Variation of specific impulse and thrust enhances the ability to optimize interplanetary trajectories and results in shorter trip times and lower propellant requirements than with a fixed specific impulse. In its ultimate application for interplanetary travel, the VASIMR would be a multi-megawatt device. A much lower power system is being designed for demonstration in the 2004 timeframe. This first space demonstration would employ a lO-kilowatt thruster aboard a solar powered spacecraft in Earth orbit. The 1O-kilowatt V ASIMR demonstration unit would operate for a period of several months with hydrogen or deuterium propellant with a specific impulse of 10,000 seconds.
On the source of flare-ejecta responsible for geomagnetic storms
NASA Technical Reports Server (NTRS)
Sakurai, K.
1974-01-01
It is shown that magnetic bottles as the sources of moving metric type 4 bursts are not responsible for the development of geomagnetic storms, despite the fact that shock waves producing type 2 bursts are the sources of the interplanetary shock waves, which produce SSC's on the geomagnetic field. These magnetic bottles, in general, tend to move in the solar envelope with the speed of several hundred Km/sec at most, which is much slower than that of the motion of type 2 radio sources.
The causes of geomagnetic storms during solar maximum
NASA Technical Reports Server (NTRS)
Tsurutani, Bruce T.; Gonzalez, Walter D.
1994-01-01
One of the oldest mysteries in geomagnetism is the linkage between solar and geomagnetic activity. In investigating the causes of geomagnetic storms occurring during solar maximum, the following topics are discussed: solar phenomena; types of solar wind; magnetic reconnection and magnetic storms; an interplanetary example; and future space physics missions.
Global Optimization of Interplanetary Trajectories in the Presence of Realistic Mission Constraints
NASA Technical Reports Server (NTRS)
Hinckley, David; Englander, Jacob; Hitt, Darren
2015-01-01
Single trial evaluations Trial creation by Phase-wise GA-style or DE-inspired recombination Bin repository structure requires an initialization period Non-exclusionary Kill Distance Population collapse mechanic Main loop Creation Probabilistic switch between GA and DE creation types Locally optimize Submit to repository Repeat.
The performance of differential VLBI delay during interplanetary cruise
NASA Technical Reports Server (NTRS)
Moultrie, B.; Wolff, P. J.; Taylor, T. H.
1984-01-01
Project Voyager radio metric data are used to evaluate the orbit determination abilities of several data strategies during spacecraft interplanetary cruise. Benchmark performance is established with an operational data strategy of conventional coherent doppler, coherent range, and explicitly differenced range data from two intercontinental baselines to ameliorate the low declination singularity of the doppler data. Employing a Voyager operations trajectory as a reference, the performance of the operational data strategy is compared to the performances of data strategies using differential VLBI delay data (spacecraft delay minus quasar delay) in combinations with the aforementioned conventional data types. The comparison of strategy performances indicates that high accuracy cruise orbit determination can be achieved with a data strategy employing differential VLBI delay data, where the quantity of coherent radio metric data has been greatly reduced.
The spectral properties of interplanetary dust particles
NASA Technical Reports Server (NTRS)
Sandford, Scott A.
1988-01-01
The observed spectral and mineralogical properties of interplanetary dust particles (IDP) allows the conclusion that: (1) the majority of IDP infrared spectra are dominated by olivine, pyroxene, or layer lattice silicate minerals, (2) to the first order the emission spectra of comets Halley and Kohoutek can be matched by mixtures of these IDP infrared types, implying that comets contain mixtures of these different crystalline silicates and may vary from comet to comet and perhaps even within a single comet, (3) do not expect to observe a single 20 micron feature in cometary spectra, (4) carbonaceous materials dominate the visible spectra properties of the IDPs even though the mass in these particles consists primarily of silicates, and (5) the particle characteristics summarized need to be properly accounted for in future cometary emission models.
Navigation and Guidance for Low-Thrust Trajectories, LOTNAV
NASA Astrophysics Data System (ADS)
Cano, J. L.; Bello, M.; Rodriguez-Canabal, J.
A number of interplanetary low-thrust missions have already been flown by many space agencies. Examples of already flown missions based on the use of electric propulsion are Deep Space 1, Hayabusa and SMART-1. Many others are already in the assessment phase or in the development phase itself. In such perspective, it is required by the space agencies the procurement and utilisation of assessment tools for fast prototyping in the areas of mission design and navigation. The Low-Thrust Interplanetary Navigation Tool, which is the subject of this paper, allows the mission analyst performing such type of quick assessment studies for the early phases in the development of low-thrust missions. A number of test cases on low-thrust missions are also presented along with the utilities composing the LOTNAV tool.
NASA Technical Reports Server (NTRS)
Lin, R. P.; Kahler, S. W.
1992-01-01
The paper discusses observations of 2- to 8.5-keV electrons, made by measurements aboard the ISEE 3 spacecraft during the periods of heat flux decreases (HFDs) reported by McComas et al. (1989). In at least eight of the total of 25 HFDs observed, strong streaming of electrons that were equal to or greater than 2 keV outward from the sun was recorded. In one HFD, an impulsive solar electron event was observed with an associated type III radio burst, which could be tracked from the sun to about 1 AU. It is concluded that, in many HFDs, the interplanetary field is still connected to the sun and that some energy-dependent process may produce HFDs without significantly perturbing electrons of higher energies.
NASA Astrophysics Data System (ADS)
Rout, Diptiranjan; Chakrabarty, D.; Sarkhel, S.; Sekar, R.; Fejer, B. G.; Reeves, G. D.; Kulkarni, Atul S.; Aponte, Nestor; Sulzer, Mike; Mathews, John D.; Kerr, Robert B.; Noto, John
2018-05-01
On 13 April 2013, the ACE spacecraft detected arrival of an interplanetary shock at 2250 UT, which is followed by the passage of the sheath region of an interplanetary coronal mass ejection (ICME) for a prolonged (18-hr) period. The polarity of interplanetary magnetic field Bz was northward inside the magnetic cloud region of the ICME. The ring current (SYM-H) index did not go below -7 nT during this event suggesting the absence of a typical geomagnetic storm. The responses of the global ionospheric electric field associated with the passage of the ICME sheath region have been investigated using incoherent scatter radar measurements of Jicamarca and Arecibo (postmidnight sector) along with the variations of equatorial electrojet strength over India (day sector). It is found that westward and eastward prompt penetration (PP) electric fields affected ionosphere over Jicamarca/Arecibo and Indian sectors, respectively, during 0545-0800 UT. The polarities of the PP electric field perturbations over the day/night sectors are consistent with model predictions. In fact, DP2-type electric field perturbations with ˜40-min periodicity are found to affect the ionosphere over both the sectors for about 2.25 hr during the passage of the ICME sheath region. This result shows that SYM-H index may not capture the full geoeffectivenss of the ICME sheath-driven storms and suggests that the PP electric field perturbations should be evaluated for geoeffectiveness of ICME when the polarity of interplanetary magnetic field Bz is northward inside the magnetic cloud region of the ICME.
Interplanetary Program to Optimize Simulated Trajectories (IPOST). Volume 3: Programmer's manual
NASA Technical Reports Server (NTRS)
Hong, P. E.; Kent, P. D.; Olson, D. W.; Vallado, C. A.
1992-01-01
The Interplanetary Program to Optimize Space Trajectories (IPOST) is intended to support many analysis phases, from early interplanetary feasibility studies through spacecraft development and operations. Here, information is given on the IPOST code.
Well-defined EUV wave associated with a CME-driven shock
NASA Astrophysics Data System (ADS)
Cunha-Silva, R. D.; Selhorst, C. L.; Fernandes, F. C. R.; Oliveira e Silva, A. J.
2018-05-01
Aims: We report on a well-defined EUV wave observed by the Extreme Ultraviolet Imager (EUVI) on board the Solar Terrestrial Relations Observatory (STEREO) and the Atmospheric Imaging Assembly (AIA) on board the Solar Dynamics Observatory (SDO). The event was accompanied by a shock wave driven by a halo CME observed by the Large Angle and Spectrometric Coronagraph (LASCO-C2/C3) on board the Solar and Heliospheric Observatory (SOHO), as evidenced by the occurrence of type II bursts in the metric and dekameter-hectometric wavelength ranges. We investigated the kinematics of the EUV wave front and the radio source with the purpose of verifying the association between the EUV wave and the shock wave. Methods: The EUV wave fronts were determined from the SDO/AIA images by means of two appropriate directions (slices). The heights (radial propagation) of the EUV wave observed by STEREO/EUVI and of the radio source associated with the shock wave were compared considering the whole bandwidth of the harmonic lane of the radio emission, whereas the speed of the shock was estimated using the lowest frequencies of the harmonic lane associated with the undisturbed corona, using an appropriate multiple of the Newkirk (1961, ApJ, 133, 983) density model and taking into account the H/F frequency ratio fH/fF = 2. The speed of the radio source associated with the interplanetary shock was determined using the Mann et al. (1999, A&A, 348, 614) density model. Results: The EUV wave fronts determined from the SDO/AIA images revealed the coexistence of two types of EUV waves, a fast one with a speed of 560 km s-1, and a slower one with a speed of 250 km s-1, which corresponds approximately to one-third of the average speed of the radio source ( 680 km s-1). The radio signature of the interplanetary shock revealed an almost constant speed of 930 km s-1, consistent with the linear speed of the halo CME (950 km s-1) and with the values found for the accelerating coronal shock ( 535-823 km s-1), taking into account the gap between the radio emissions.
NASA Technical Reports Server (NTRS)
Dryer, M. (Editor); Tandberg-Hanssen, E.
1980-01-01
The symposium focuses on solar phenomena as the source of transient events propagating through the solar system, and theoretical and observational assessments of the dynamic processes involved in these events. The topics discussed include the life history of coronal structures and fields, coronal and interplanetary responses to long time scale phenomena, solar transient phenomena affecting the corona and interplanetary medium, coronal and interplanetary responses to short time scale phenomena, and future directions.
The "Approximate 150 Day Quasi-Periodicity" in Interplanetary and Solar Phenomena During Cycle 23
NASA Technical Reports Server (NTRS)
Richardson, I. G.; Cane, H. V.
2004-01-01
A"quasi-periodicity" of approx. 150 days in various solar and interplanetary phenomena has been reported in earlier solar cycles. We suggest that variations in the occurrence of solar energetic particle events, inter-planetary coronal mass ejections, and geomagnetic storm sudden commenceents during solar cycle 23 show evidence of this quasi-periodicity, which is also present in the sunspot number, in particular in the northern solar hemisphere. It is not, however, prominent in the interplanetary magnetic field strength.
Genesis of Interplanetary Intermittent Turbulence: a Case Study of Rope-Rope Magnetic Reconnection
NASA Technical Reports Server (NTRS)
Chian, Abraham C.- L.; Feng, Heng Q.; Hu, Qiang; Loew, Murray H.; Miranda, Rodrigo A.; Munoz, Pablo R.; Sibeck, David G.; Wu, De J.
2016-01-01
In a recent paper, the relation between current sheet, magnetic reconnection, and turbulence at the leading edge of an interplanetary coronal mass ejection was studied. We report here the observation of magnetic reconnection at the interface region of two interplanetary magnetic flux ropes. The front and rear boundary layers of three interplanetary magnetic flux ropes are identified, and the structures of magnetic flux ropes are reconstructed by the Grad Shafranov method. A quantitative analysis of the reconnection condition and the degree of intermittency reveals that rope-rope magnetic reconnection is the most likely site for genesis of interplanetary intermittency turbulence in this event. The dynamic pressure pulse resulting from this reconnection triggers the onset of a geomagnetic storm.
Interplanetary radio storms. 2: Emission levels and solar wind speed in the range 0.05-0.8 AU
NASA Technical Reports Server (NTRS)
Bougeret, J. L.; Fainberg, J.; Stone, R. G.
1982-01-01
Storms of interplanetary type III radio bursts (IP storms) are commonly observed in the interplanetry medium by the ISEE-3 radio instrument. This instrument has the capability of accurately determining the arrival direction of the radio emission. At each observing frequency, the storm radio sources are tracked as they cross the line-of-sight to the Sun. Usng a simple model, the emission levels are determined at a number of radio frequencies for four separate storms. The IP storm radiation is found to occur in regions of enhanced density at levels of 0.05 to 0.8 AU. The density in these enhancements falls off faster than R(-2). The solar wind speed in the storm region is also measured. The analysis is consistent with steady conditions in the storm region during a few days around the central meridian passage of the storm. The comparison with average in situ density measurements compiled from the HELIOS 1-2 observations favors type III storm burst radio emission at the harmonic of the local plasma frequency.
Interplanetary approach optical navigation with applications
NASA Technical Reports Server (NTRS)
Jerath, N.
1978-01-01
The use of optical data from onboard television cameras for the navigation of interplanetary spacecraft during the planet approach phase is investigated. Three optical data types were studied: the planet limb with auxiliary celestial references, the satellite-star, and the planet-star two-camera methods. Analysis and modelling issues related to the nature and information content of the optical methods were examined. Dynamic and measurement system modelling, data sequence design, measurement extraction, model estimation and orbit determination, as relating optical navigation, are discussed, and the various error sources were analyzed. The methodology developed was applied to the Mariner 9 and the Viking Mars missions. Navigation accuracies were evaluated at the control and knowledge points, with particular emphasis devoted to the combined use of radio and optical data. A parametric probability analysis technique was developed to evaluate navigation performance as a function of system reliabilities.
Trajectory Browser: An Online Tool for Interplanetary Trajectory Analysis and Visualization
NASA Technical Reports Server (NTRS)
Foster, Cyrus James
2013-01-01
The trajectory browser is a web-based tool developed at the NASA Ames Research Center for finding preliminary trajectories to planetary bodies and for providing relevant launch date, time-of-flight and (Delta)V requirements. The site hosts a database of transfer trajectories from Earth to planets and small-bodies for various types of missions such as rendezvous, sample return or flybys. A search engine allows the user to find trajectories meeting desired constraints on the launch window, mission duration and (Delta)V capability, while a trajectory viewer tool allows the visualization of the heliocentric trajectory and the detailed mission itinerary. The anticipated user base of this tool consists primarily of scientists and engineers designing interplanetary missions in the context of pre-phase A studies, particularly for performing accessibility surveys to large populations of small-bodies.
Small Spacecraft System-Level Design and Optimization for Interplanetary Trajectories
NASA Technical Reports Server (NTRS)
Spangelo, Sara; Dalle, Derek; Longmier, Ben
2014-01-01
The feasibility of an interplanetary mission for a CubeSat, a type of miniaturized spacecraft, that uses an emerging technology, the CubeSat Ambipolar Thruster (CAT) is investigated. CAT is a large delta-V propulsion system that uses a high-density plasma source that has been miniaturized for small spacecraft applications. An initial feasibility assessment that demonstrated escaping Low Earth Orbit (LEO) and achieving Earth-escape trajectories with a 3U CubeSat and this thruster technology was demonstrated in previous work. We examine a mission architecture with a trajectory that begins in Earth orbits such as LEO and Geostationary Earth Orbit (GEO) which escapes Earth orbit and travels to Mars, Jupiter, or Saturn. The goal was to minimize travel time to reach the destinations and considering trade-offs between spacecraft dry mass, fuel mass, and solar power array size. Sensitivities to spacecraft dry mass and available power are considered. CubeSats are extremely size, mass, and power constrained, and their subsystems are tightly coupled, limiting their performance potential. System-level modeling, simulation, and optimization approaches are necessary to find feasible and optimal operational solutions to ensure system-level interactions are modeled. Thus, propulsion, power/energy, attitude, and orbit transfer models are integrated to enable systems-level analysis and trades. The CAT technology broadens the possible missions achievable with small satellites. In particular, this technology enables more sophisticated maneuvers by small spacecraft such as polar orbit insertion from an equatorial orbit, LEO to GEO transfers, Earth-escape trajectories, and transfers to other interplanetary bodies. This work lays the groundwork for upcoming CubeSat launch opportunities and supports future development of interplanetary and constellation CubeSat and small satellite mission concepts.
The pioneers of interplanetary communication: From Gauss to Tesla
NASA Astrophysics Data System (ADS)
Raulin-Cerceau, Florence
2010-12-01
The present overview covers the period from 1820 to the beginning of the 20th century. Emphasis is laid on the latter half of the 19th century because many efforts have been done at that time to elaborate schemes for contacting our neighboring planets by interplanetary telegraphy. This period knew many advances not only in planetary studies but also in the nascent field of telecommunications. Such a context led astronomers who were also interested in the problem of planetary habitability, to envisage that other planets could be contacted, especially the planet Mars. Interplanetary communication using a celestial telegraphy was planned during this period of great speculations about life on Mars. This paper focuses on four authors: the Frenchmen C. Flammarion, Ch. Cros, A. Mercier and the Serbian N. Tesla, who formulated early proposals to communicate with Mars or Venus. The first proposals (which remained only theoretical) showed that an initial reflection had started as early as the second part of the 19th century on the type of language that could be both universal and distinguishable from a natural signal. Literary history of interplanetary communication preceded by far the scientific one. Authors of the 1900s were very prolific on this topic. French fictions are mentioned in this paper as examples of such a literature. This incursion into selected texts stresses the fact that the problem of techniques and messages employed to communicate with other planets goes beyond the strict scientific framework. Finally, this paper aims to highlight the similarities as well as the differences between the different proposals and to underline what that could possibly help present SETI research to define messages supposed to be sent to other planetary systems.
Influence of interplanetary magnetic field and solar wind on auroral brightness in different regions
NASA Astrophysics Data System (ADS)
Yang, Y. F.; Lu, J. Y.; Wang, J.-S.; Peng, Z.; Zhou, L.
2013-01-01
By integrating and averaging the auroral brightness from Polar Ultraviolet Imager auroral images, which have the whole auroral ovals, and combining the observation data of interplanetary magnetic field (IMF) and solar wind from NASA Operating Missions as a Node on the Internet (OMNI), we investigate the influence of IMF and solar wind on auroral activities, and analyze the separate roles of the solar wind dynamic pressure, density, and velocity on aurora, respectively. We statistically analyze the relations between the interplanetary conditions and the auroral brightness in dawnside, dayside, duskside, and nightside. It is found that the three components of the IMF have different effects on the auroral brightness in the different regions. Different from the nightside auroral brightness, the dawnside, dayside, and duskside auroral brightness are affected by the IMF Bx, and By components more significantly. The IMF Bx and By components have different effects on these three regional auroral brightness under the opposite polarities of the IMF Bz. As expected, the nightside aurora is mainly affected by the IMF Bz, and under southward IMF, the larger the |Bz|, the brighter the nightside aurora. The IMF Bx and By components have no visible effects. On the other hand, it is also found that the aurora is not intensified singly with the increase of the solar wind dynamic pressure: when only the dynamic pressure is high, but the solar wind velocity is not very fast, the aurora will not necessarily be intensified significantly. These results can be used to qualitatively predict the auroral activities in different regions for various interplanetary conditions.
GENESIS OF INTERPLANETARY INTERMITTENT TURBULENCE: A CASE STUDY OF ROPE–ROPE MAGNETIC RECONNECTION
DOE Office of Scientific and Technical Information (OSTI.GOV)
Chian, Abraham C.-L.; Loew, Murray H.; Feng, Heng Q.
In a recent paper, the relation between current sheet, magnetic reconnection, and turbulence at the leading edge of an interplanetary coronal mass ejection was studied. We report here the observation of magnetic reconnection at the interface region of two interplanetary magnetic flux ropes. The front and rear boundary layers of three interplanetary magnetic flux ropes are identified, and the structures of magnetic flux ropes are reconstructed by the Grad–Shafranov method. A quantitative analysis of the reconnection condition and the degree of intermittency reveals that rope–rope magnetic reconnection is the most likely site for genesis of interplanetary intermittency turbulence in this event.more » The dynamic pressure pulse resulting from this reconnection triggers the onset of a geomagnetic storm.« less
NASA Astrophysics Data System (ADS)
Armstrong, T. P.; Manweiler, J. W.; Gerrard, A. J.; Gkioulidou, M.; Lanzerotti, L. J.; Patterson, J. D.
2013-12-01
Observations from ACE EPAM including energy spectra of protons, helium, and oxygen will be prepared for coordinated use in estimating the direct and indirect access of energetic particles to inner and outer geomagnetic trapping zones. Complete temporal coverage from ACE at 12 seconds, 5 minutes, 17 minutes, hourly and daily cadences will be used to catalog interplanetary events arriving at Earth including interplanetary magnetic field sector boundaries, interplanetary shocks, and interplanetary coronal mass ejections, ICMEs. The first 6 months of 2013 have included both highly disturbed times, March 17 and May 22, and extended quiet periods of little or no variations. Among the specific questions that ACE and Van Allen Probes coordinated observations may aid in resolving are: 1. How much, if any, direct capture of interplanetary energetic particles occurs and what conditions account for it? 2. How much influence do interplanetary field and particle variations have on energization and/or loss of geomagnetically trapped populations? The poster will also present important links and describe methods and important details of access to numerically expressed ACE EPAM and Van Allen Probes RBSPICE observations that can be flexibly and easily accessed via the internet for student and senior researcher use.
NASA Astrophysics Data System (ADS)
Berdichevsky, D. B.; Lepping, R. P.; Wu, C. C.
2015-12-01
During 1995-2012 Wind recorded 168 magnetic clouds (MCs), 197 magnetic cloud-like structures (MCLs), and 358 interplanetary (IP) shocks. Ninety four MCs and 56 MCLs had upstream shock waves. The following features are found: (i) Averages of solar wind speed, interplanetary magnetic field (IMF), duration (<Δt>), strength of Bzmin, and intensity of the associated geomagnetic storm/activity (Dstmin) for MCs with upstream shock waves (MCSHOCK) are higher (or stronger) than those averages for the MCs without upstream shock waves (MCNO-SHOCK). (ii) The <Δt> of MCSHOCK events (≈19.6 hr) is 9% longer than that for MCNO-SHOCK events (≈17.9 hr). (iii) For the MCSHOCK events, the average duration of the sheath (<ΔtSHEATH>) is 12.1 hrs. These findings could be very useful for space weather predictions, i.e. IP shocks driven by MCs are expected to arrive at Wind (or at 1 AU) about ~12 hours ahead of the front of the MCs on average. (iv) The occurrence frequency of IP shocks is well associated with sunspot number (SSN). The average intensity of geomagnetic storms measured by
Correlation of interplanetary-space B sub z field fluctuations and trapped-particle redistribution.
NASA Technical Reports Server (NTRS)
Parks, G. K.; Pellat, R.
1972-01-01
Observations of interplanetary magnetic field fluctuations in correlation with trapped particle fluctuations are discussed. From observations of particle-redistribution effects, properties of the magnetospheric electric field are derived. The obtained results suggest that the interplanetary B(sub z) field fluctuations might represent a strong driving source for particle diffusion.
Radio-scintillation observations of interplanetary disturbances
DOE Office of Scientific and Technical Information (OSTI.GOV)
Watanabe, T.; Kakinuma, T.
1984-01-01
Recent developments in the studies of interplanetary disturbances by scintillation techniques are briefly reviewed. The turbulent postshock region of an interplanetary disturbance produces transient enhancements in the scintillation level and the flow speed in many cases. An empirical method to determine three-dimensional angular distribution of the propagation speed of the disturbance on the basis of interplanetary scintillation measurements of postshock flow speeds is applied to 17 events which took place in 1978-1981. Among them, four representative examples, including two events which were associated with disappearing solar filaments, are described in detail. Several disturbances had oblate configurations the latitudinal extent ismore » smaller than the longitudinal extent. On the average, the angular distribution of the propagation speed at 1-AU heliocentric distance is quasi-isotropic over a longitudinal range of 100 deg centered at the normal of relevant solar phenomenon. The net excess mass and energy in an interplanetary disturbance associated with a disappearing solar filament can be comparable to those of an interplanetary disturbance associated with a large solar flare. 57 references.« less
NASA Technical Reports Server (NTRS)
Figueroa-Vinas, Adolfo; Nieves-Chinchilla, Teresa; Vourlidas, Angelos; Gomez-Herrero, Raul; Malandraki, Olga; Szabo, Adam; Dresing, Nina; Davila, Joseph M.
2010-01-01
EUV disk imagers and white light coronagraphs have provided for many years information on the early formation and evolution of corona) mass ejections (CMEs). More recently, the novel heliospheric imaging instruments aboard the STEREO mission are providing crucial remote sensing information on the interplanetary evolution of these events while in situ instruments complete the overall characterization of the interplanetary CMEs. In this work, we present an analysis of CMEs from the Sun to the interplanetary medium using combined data from THE SOHO, STEREO, WIND, and ACE spacecraft. The events were selected to cover the widest possible spectrum of different ambient solar wind, magnetic field configurations, plasma parameters, etc. to allow uncovering those aspects that are important in understanding the propagation and evolution mechanisms of CMEs in the interplanetary medium.
Interplanetary Coronal Mass Ejections During 1996 - 2007
NASA Technical Reports Server (NTRS)
Richardson, I. G.; Cane, H. V.
2007-01-01
Interplanetary coronal mass ejections, the interplanetary counterparts of coronal mass ejections at the Sun, are the major drivers of interplanetary shocks in the heliosphere, and are associated with modulations of the galactic cosmic ray intensity, both short term (Forbush decreases caused by the passage of the shock, post-shock sheath, and ICME), and possibly with longer term modulation. Using several in-situ signatures of ICMEs, including plasma temperature, and composition, magnetic fields, and cosmic ray modulations, made by near-Earth spacecraft, we have compiled a "comprehensive" list of ICMEs passing the Earth since 1996, encompassing solar cycle 23. We summarize the properties of these ICMEs, such as their occurrence rate, speeds and other parameters, the fraction of ICMEs that are classic magnetic clouds, and their association with solar energetic particle events, halo CMEs, interplanetary shocks, geomagnetic storms, shocks and cosmic ray decreases.
Study of large Forbush decreases in cosmic-ray intensity observed during solar cycle 23 and 24
NASA Astrophysics Data System (ADS)
Kumar, Anand; Badruddin, B.
2016-07-01
Neutron monitors at different geomagnetic latitude and longitude of Earth measure the cosmic-ray intensity with high precision. Sudden decreases in cosmic-ray intensity within few hours and slow recovery to pre-decrease level within a few days (Forbush decreases) are observed in neutron monitor data. We identify large-amplitude Forbush decreases (FDs), using high counting rate neutron monitor data, that occurred during previous solar cycle 23 (1995-2009) and current solar cycle 24 (2010-2015). We then search for the solar sources and the interplanetary structures responsible for these decreases. We attempt to find the relative importance of various interplanetary plasma and field parameters and the physical mechanism(s) responsible for FDs of varying amplitudes. We analyze a number of interplanetary plasma and field parameters, during both the phases (main and recovery) of FDs. The interplanetary plasma and field data analyzed in this study are the solar-wind velocity, the interplanetary magnetic field, its fluctuations, interplanetary electric field and the time variation of interplanetary electric potential. For monitoring the changes in interplanetary plasma/field conditions during the development of FDs, we also utilize plasma density, temperature and plasma beta, dynamic pressure and Mach number during the passage of interplanetary structures responsible for FDs. In addition to their amplitude, we study the recovery of FDs in detail after determining the time constant during their recovery by exponential fit to the data. As the solar magnetic polarity reversed during the maximum phase of solar cycle 23 (in the year 2000), we study the differences in amplitude, time constant of recovery and plasma/field condition to search for the polarity dependent effects, if any, on the amplitude and recovery of FDs due to implication for the models suggested to explain the Forbush decrease phenomena. The implications of these results are discussed.
ESOC's System for Interplanetary Orbit Determination: Implementation and Operational Experience
NASA Astrophysics Data System (ADS)
Budnik, F.; Morley, T. A.; MacKenzie, R. A.
A system for interplanetary orbit determination has been developed at ESOC over the past six years. Today, the system is in place and has been proven to be both reliable and robust by successfully supporting critical operations of ESA's interplanetary spacecraft Rosetta, Mars Express, and SMART-1. To reach this stage a long and challenging way had to be travelled. This paper gives a digest about the journey from the development and testing to the operational use of ESOC's new interplanetary orbit determination system. It presents the capabilities and reflects experiences gained from the performed tests and tracking campaigns.
Magnetohydrodynamic Modelling of Interplanetary Disturbances between the Sun and Earth.
1982-12-21
Physical Sciences, University Paul Sabatier de Toulouse, Toulouse, France. 7. Smart, D. F., Garrett, H.B., and Shea, M.A. (1980) The prediction of AE, ap...Ii, r uti fistur’V.1 v:, Ins it th.V salt.’c moat ions. I’ho basic pat zlainc,’ti’ sonir t inA volo.’it v is il’iii’, i hr l I linu !i o3 is a...Engendrees par des Eruptions Solaires, PhD thesis in Physical Sciences, University Paul Sabatier de Toulouse, Toulouse, France. 7. Smart, D. F. , Garrett, H. B
Advanced flight computers for planetary exploration
NASA Technical Reports Server (NTRS)
Stephenson, R. Rhoads
1988-01-01
Research concerning flight computers for use on interplanetary probes is reviewed. The history of these computers from the Viking mission to the present is outlined. The differences between ground commercial computers and computers for planetary exploration are listed. The development of a computer for the Mariner Mark II comet rendezvous asteroid flyby mission is described. Various aspects of recently developed computer systems are examined, including the Max real time, embedded computer, a hypercube distributed supercomputer, a SAR data processor, a processor for the High Resolution IR Imaging Spectrometer, and a robotic vision multiresolution pyramid machine for processsing images obtained by a Mars Rover.
The Swedish Interplanetary Society (1950-1969) and the formation of IAF and IAA
NASA Astrophysics Data System (ADS)
Ingemar Skoog, A.
2011-06-01
With a growing interest for rocket technology and space travel after WW II a number of new "space societies" were formed in the period 1948-1951 in addition to the ones already existing in Germany, the UK and the US since before WW II. Soon came the need for a common international platform for exchange of information and experience, and the concept of an international federation of astronautical societies emerged. Sweden was one of the 8 countries to sign the original declaration to create an International Astronautical Federation on October 2, 1950 in Paris at the 1st International Astronautical Congress. The Swedish Society for Space Research (Svenska Sällskapet för Rymdforskning) was formed a few days after the historical event in Paris. The name was soon to be changed to the Swedish Interplanetary Society (Svenska Interplanetariska Sällskapet, SIS). Sweden was one of the 10 countries to sign the IAF foundation in 1951 in London and in the following year the first Constitution of IAF in Stuttgart. The SIS quickly grow to a membership of several hundred persons and its membership in IAF promoted an intensive exchange of journals, and the annual participation at the IAC gave growth to start study projects on spacecraft and sounding rockets, and the publication of astronautical journals in Swedish. In 1957 the first Swede was elected vice-president of IAF. Not too long after the IAF foundation the idea of an international body of distinguished individuals emerged, in addition to the body of "member societies" (IAF). Upon the initiative of Theodor von Karman, Eugen Sänger and Andrew Haley the IAF council approval of an International Academy of Astronautical was given on August 15, 1960 during the 11th IAC in Stockholm. This IAC in Stockholm gave a large publicity to space research and astronautics in Sweden, and put the activities of the SIS in the focus of the general public. This paper presents the Swedish involvement in the foundation of IAF and IAA. It also gives an overview on the positive influence of these two organisations on the work and progress of the Swedish Interplanetary Society and the diffusion of astronautics to the general public in Sweden.
Global Magnetospheric Response to an Interplanetary Shock: THEMIS Observations
NASA Technical Reports Server (NTRS)
Zhang, Hui; Sibeck, David G.; Zong, Q.-G.; McFadden, James P.; Larson, Davin; Glassmeier, K.-H.; Angelopoulos, V.
2011-01-01
We investigate the global response of geospace plasma environment to an interplanetary shock at approx. 0224 UT on May 28, 2008 from multiple THEMIS spacecraft observations in the magnetosheath (THEMIS B and C) and the mid-afternoon (THEMIS A) and dusk magnetosphere (THEMIS D and E). The interaction of the transmitted interplanetary shock with the magnetosphere has global effects. Consequently, it can affect geospace plasma significantly. After interacting with the bow shock, the interplanetary shock transmitted a fast shock and a discontinuity which propagated through the magnetosheath toward the Earth at speeds of 300 km/s and 137 km/s respectively. THEMIS A observations indicate that the plasmaspheric plume changed significantly by the interplanetary shock impact. The plasmaspheric plume density increased rapidly from 10 to 100/ cubic cm in 4 min and the ion distribution changed from isotropic to strongly anisotropic distribution. Electromagnetic ion cyclotron (EMIC) waves observed by THEMIS A are most likely excited by the anisotropic ion distributions caused by the interplanetary shock impact. To our best knowledge, this is the first direct observation of the plasmaspheric plume response to an interplanetary shock's impact. THEMIS A, but not D or E, observed a plasmaspheric plume in the dayside magnetosphere. Multiple spacecraft observations indicate that the dawn-side edge of the plasmaspheric plume was located between THEMIS A and D (or E).
Demonstration of new data types for use in interplanetary navigation
NASA Technical Reports Server (NTRS)
Ondrasik, V. J.; Chao, C. C.; Winn, F. B.; Yip, K. B.; Acton, C. H.; Reinbold, S. J.
1974-01-01
Mariner 10 was the first mission which contained many elements of the advanced navigation system which will be used in the late 1970's and 1980's. Preliminary navigation demonstrated were conducted using S/X charged particle calibrations, simultaneous Doppler data, nearly simultaneous range data, and bright object/star imaging data. The results of these demonstrations are very encouraging and a navigation system based upon these data types should be an order of magnitude better than the current system.
High energy astronomy or astrophysics and properties of the interplanetary plasma
NASA Technical Reports Server (NTRS)
1971-01-01
The research activities related to high energy astrophysics and interplanetary plasma are reported. The experimental work in the following areas are described: (1) balloon-and rocket-borne cosmic X-ray, (2) X-ray spectroscopy, and (3) OSO-3 gamma ray experiment. Plasma studies in the interplanetary region, magnetosphere, and geomagnetic tail are included.
The Polar Ionosphere and Interplanetary Field.
1987-08-01
model for investigating time dependent behavior of the Polar F-region ionosphere in response to varying interplanetary magnetic field (IMF...conditions. The model has been used to illustrate ionospheric behavior during geomagnetic storms conditions. Future model applications may include...magnetosphere model for investigating time dependent behavior of the polar F-region ionosphere in response to varying interplanetary magnetic field
Performance potential of gas-core and fusion rockets - A mission applications survey.
NASA Technical Reports Server (NTRS)
Fishbach, L. H.; Willis, E. A., Jr.
1971-01-01
This paper reports an evaluation of the performance potential of five nuclear rocket engines for four mission classes. These engines are: the regeneratively cooled gas-core nuclear rocket; the light bulb gas-core nuclear rocket; the space-radiator cooled gas-core nuclear rocket; the fusion rocket; and an advanced solid-core nuclear rocket which is included for comparison. The missions considered are: earth-to-orbit launch; near-earth space missions; close interplanetary missions; and distant interplanetary missions. For each of these missions, the capabilities of each rocket engine type are compared in terms of payload ratio for the earth launch mission or by the initial vehicle mass in earth orbit for space missions (a measure of initial cost). Other factors which might determine the engine choice are discussed. It is shown that a 60 day manned round trip to Mars is conceivable.-
Langmuir waveforms at interplanetary shocks: STEREO statistical analysis
NASA Astrophysics Data System (ADS)
Briand, C.
2016-12-01
Wave-particle interactions and particle acceleration are the two main processes allowing energy dissipation at non collisional shocks. Ion acceleration has been deeply studied for many years, also for their central role in the shock front reformation. Electron dynamics is also important in the shock dynamics through the instabilities they can generate which may impact the ion dynamics.Particle measurements can be efficiently completed by wave measurements to determine the characteristics of the electron beams and study the turbulence of the medium. Electric waveforms obtained from the S/WAVES instrument of the STEREO mission between 2007 to 2014 are analyzed. Thus, clear signature of Langmuir waves are observed on 41 interplanetary shocks. These data enable a statistical analysis and to deduce some characteristics of the electron dynamics on different shocks sources (SIR or ICME) and types (quasi-perpendicular or quasi-parallel). The conversion process between electrostatic to electromagnetic waves has also been tested in several cases.
NASA Technical Reports Server (NTRS)
Dulk, G. A.
1990-01-01
This paper reviews observations of interplanetary particle beams of the kind that frequently accompany a solar flare. It is shown that the most frequently observed beams are beams of electrons which are associated with radio bursts of type III, but occasionally with flares and X-ray bursts. Although the main features of these beams and their associated plasma waves and radio bursts are known, uncertainties remain in terms of the correlation between electron beams and filamentary structures, the relative importance of the quasi-linear and the nonlinear wave emissions as the dominant process, and the mechanism of conversion of some of the Langmuir wave energy into radio emissions. Other particle beams discussed are those composed of protons, neutrons, He ions, or heavy ions. While most of these beams originate from sun flares, the source of some of particle beams may be the earth, Jupiter, or other planets as well as comets.
Zodiacal light as an indicator of interplanetary dust
NASA Technical Reports Server (NTRS)
Weinberg, J. L.; Sparrow, J. G.
1978-01-01
The most striking feature of the night sky in the tropics is the zodiacal light, which appears as a cone in the west after sunset and in the east before sunrise. It is caused by sunlight scattered or absorbed by particles in the interplanetary medium. The zodiacal light is the only source of information about the integrated properties of the whole ensemble of interplanetary dust. The brightness and polarization in different directions and at different colors can provide information on the optical properties and spatial distribution of the scattering particles. The zodiacal light arises from two independent physical processes related to the scattering of solar continuum radiation by interplanetary dust and to thermal emission which arises from solar radiation that is absorbed by interplanetary dust and reemitted mainly at infrared wavelengths. Attention is given to observational parameters of zodiacal light, the methods of observation, errors and absolute calibration, and the observed characteristics of zodiacal light.
NASA Astrophysics Data System (ADS)
Nichols, J. D.; Badman, S. V.; Bagenal, F.; Bolton, S. J.; Bonfond, B.; Bunce, E. J.; Clarke, J. T.; Connerney, J. E. P.; Cowley, S. W. H.; Ebert, R. W.; Fujimoto, M.; Gérard, J.-C.; Gladstone, G. R.; Grodent, D.; Kimura, T.; Kurth, W. S.; Mauk, B. H.; Murakami, G.; McComas, D. J.; Orton, G. S.; Radioti, A.; Stallard, T. S.; Tao, C.; Valek, P. W.; Wilson, R. J.; Yamazaki, A.; Yoshikawa, I.
2017-08-01
We present the first comparison of Jupiter's auroral morphology with an extended, continuous, and complete set of near-Jupiter interplanetary data, revealing the response of Jupiter's auroras to the interplanetary conditions. We show that for ˜1-3 days following compression region onset, the planet's main emission brightened. A duskside poleward region also brightened during compressions, as well as during shallow rarefaction conditions at the start of the program. The power emitted from the noon active region did not exhibit dependence on any interplanetary parameter, though the morphology typically differed between rarefactions and compressions. The auroras equatorward of the main emission brightened over ˜10 days following an interval of increased volcanic activity on Io. These results show that the dependence of Jupiter's magnetosphere and auroras on the interplanetary conditions are more diverse than previously thought.
Type 2 solar radio events observed in the interplanetary medium. Part 1: General characteristics
NASA Technical Reports Server (NTRS)
Cane, H. V.; Stone, R. G.; Fainberg, J.; Steinberg, J. L.; Hoang, S.
1980-01-01
Twelve type 2 solar radio events were observed in the 2 MHz to 30 kHz frequency range by the radio astronomy experiment on the ISEE-3 satellite over the period from September 1978 to December 1979. These data provide the most comprehensive sample of type 2 radio bursts observed at kilometer wavelengths. Dynamic spectra of a number of events are presented. Where possible, the 12 events were associated with an initiating flare, ground based radio data, the passage of a shock at the spacecraft, and the sudden commencement of a geomagnetic storm. The general characteristics of kilometric type 2 bursts are discussed.
Interplanetary scintillation observations of the solar wind close to the Sun and out of the ecliptic
NASA Technical Reports Server (NTRS)
Sime, D. G.
1983-01-01
A brief review is given of recent developments in the observation of the solar wind by the method of interplanetary scintillation. The emphasis is on observations of the velocity structure, the electron density and the effect of propagating disturbances in the interplanetary medium as detected principally by intensity and phase scintillation and by spectral broadening.
The delivery of organic matter from asteroids and comets to the early surface of Mars
NASA Technical Reports Server (NTRS)
Flynn, G. J.
1996-01-01
Carbon delivered to the Earth by interplanetary dust particles may have been an important source of pre-biotic organic matter (Anders, 1989). Interplanetary dust is shown to deliver an order-of-magnitude higher surface concentration of carbon onto Mars than onto Earth, suggesting interplanetary dust may be an important source of carbon on Mars as well.
Aquarius, a reusable water-based interplanetary human spaceflight transport
NASA Astrophysics Data System (ADS)
Adamo, Daniel R.; Logan, James S.
2016-11-01
Attributes of a reusable interplanetary human spaceflight transport are proposed and applied to example transits between the Earth/Moon system and Deimos, the outer moon of Mars. Because the transport is 54% water by mass at an interplanetary departure, it is christened Aquarius. In addition to supporting crew hydration/hygiene, water aboard Aquarius serves as propellant and as enhanced crew habitat radiation shielding during interplanetary transit. Key infrastructure and technology supporting Aquarius operations include pre-emplaced consumables and subsurface habitat at Deimos with crew radiation shielding equivalent to sea level on Earth, resupply in a selenocentric distant retrograde orbit, and nuclear thermal propulsion.
NASA Technical Reports Server (NTRS)
Akasofu, S.-I.
1979-01-01
Akasofu (1979) has reported that the interplanetary parameter epsilon correlates reasonably well with the magnetospheric substorm index AE; in the first approximation, epsilon represents the solar wind coupled to the magnetosphere. The correlation between the interplanetary parameter, the auroral electrojet index and the ring current index is examined for three magnetic storms. It is shown that when the interplanetary parameter exceeds the amount that can be dissipated by the ionosphere in terms of the Joule heat production, the excess energy is absorbed by the ring current belt, producing an abnormal growth of the ring current index.
The source of the electric field in the nightside magnetosphere
NASA Technical Reports Server (NTRS)
Stern, D. P.
1975-01-01
In the open magnetosphere model magnetic field lines from the polar caps connect to the interplanetary magnetic field and conduct an electric field from interplanetary space to the polar ionosphere. By examining the magnetic flux involved it is concluded that only slightly more than half of the magnetic flux in the polar caps belongs to open field lines and that such field lines enter or leave the magnetosphere through narrow elongated windows stretching the tail. These window regions are identified with the tail's boundary region and shift their position with changes in the interplanetary magnetic field, in particular when a change of interplanetary magnetic sector occurs. The circuit providing electric current in the magnetopause and the plasma sheet is extended across those windows; thus energy is drained from the interplanetary electric field and an electric potential drop is produced across the plasma sheet. The polar cap receives its electric field from interplanetary space on the day side from open magnetic field lines and on the night side from closed field lines leading to the plasma sheet. The theory described provides improved understanding of magnetic flux bookkeeping, of the origin of Birkeland currents, and of the boundary layer of the geomagnetic tail.
Application of non-coherent Doppler data types for deep space navigation
NASA Technical Reports Server (NTRS)
Bhaskaran, Shyam
1995-01-01
Recent improvements in computational capability and Deep Space Network technology have renewed interest in examining the possibility of using one-way Doppler data alone to navigate interplanetary spacecraft. The one-way data can be formulated as the standard differenced-count Doppler or as phase measurements, and the data can be received at a single station or differenced if obtained simultaneously at two stations. A covariance analysis is performed which analyzes the accuracy obtainable by combinations of one-way Doppler data and compared with similar results using standard two-way Doppler and range. The sample interplanetary trajectory used was that of the Mars Pathfinder mission to Mars. It is shown that differenced one-way data is capable of determining the angular position of the spacecraft to fairly high accuracy, but has relatively poor sensitivity to the range. When combined with single station data, the position dispersions are roughly an order of magnitude larger in range and comparable in angular position as compared to dispersions obtained with standard data two-way types. It was also found that the phase formulation is less sensitive to data weight variations and data coverage than the differenced-count Doppler formulation.
The application of noncoherent Doppler data types for Deep Space Navigation
NASA Technical Reports Server (NTRS)
Bhaskaran, S.
1995-01-01
Recent improvements in computational capability and DSN technology have renewed interest in examining the possibility of using one-way Doppler data alone to navigate interplanetary spacecraft. The one-way data can be formulated as the standard differenced-count Doppler or as phase measurements, and the data can be received at a single station or differenced if obtained simultaneously at two stations. A covariance analysis, which analyzes the accuracy obtainable by combinations of one-way Doppler data, is performed and compared with similar results using standard two-way Doppler and range. The sample interplanetary trajectory used was that of the Mars Pathfinder mission to Mars. It is shown that differenced one-way data are capable of determining the angular position of the spacecraft to fairly high accuracy, but have relatively poor sensitivity to the range. When combined with single-station data, the position dispersions are roughly an order of magnitude larger in range and comparable in angular position as compared to dispersions obtained with standard two-way data types. It was also found that the phase formulation is less sensitive to data weight variations and data coverage than the differenced-count Doppler formulation.
Different Types of Ion Populations Upstream of the 2013 October 8 Interplanetary Shock
NASA Astrophysics Data System (ADS)
Kajdič, Primož; Hietala, Heli; Blanco-Cano, Xóchitl
2017-11-01
We show for the first time that different types of suprathermal ion distributions may exist upstream of a single interplanetary shock. ACE and the two ARTEMIS satellites observed a shock on 2013 October 8. The ARTEMIS P1 and P2 spacecraft first observed field-aligned ions (P1) and gyrating ions (P2) arriving from the shock. These were followed by intermediate ions and later by a diffuse population. At the location of the P2 the shock exhibited an Alfvénic Mach number of M A = 5.7 and was marginally quasi-perpendicular ({θ }{Bn}=47^\\circ ). At P1 spacecraft the shock was weaker (M A = 4.9) and more perpendicular ({θ }{Bn}=61^\\circ ). Consequently, the observed suprathermal ion and ultra-low-frequency wave properties were somewhat different. At P2 the ultra-low-frequency waves are more intense and extend farther upstream from the shock. The energies of field-aligned and gyrating ions in the shock rest-frame were ˜20 keV, which is much more than in the case of the stronger (M A = 6-7) Earth’s bow shock, where they are less than 10 keV.
NASA Astrophysics Data System (ADS)
Sultan, M. S.; Jules, A.; Marchese, P.; Damas, M. C.
2017-12-01
It is crucial to study space weather because severe interplanetary conditions can cause geomagnetic storms that may damage both space- and ground-based technological systems such as satellites, communication systems, and power grids. Interplanetary coronal mass ejections (ICMEs) and corotating interaction regions (CIRs) are the primary drivers of geomagnetic storms. As they travel through interplanetary space and reach geospace, their spatial structures change which can result in various geomagnetic effects. Therefore, studying these drivers and their structures is essential in order to better understand and mitigate their impact on technological systems, as well as to forecast geomagnetic storms. In this study, over 150 storms were cross-checked for both solar cycles (SC) 23 and 24. This data has revealed the most common interplanetary structures, i.e., sheath (Sh); magnetic cloud following a shock front (sMC); sheath region and magnetic cloud (Sh/MC); and corotating interaction regions (CIRs). Furthermore, plasma parameters as well as variation in the intensity and duration of storms resulting from different interplanetary structures are studied for their effect on geomagnetically induced currents (GICs), as well as for their effect on power grids. Although preliminary results for SC 23 indicate that storm intensity may play a dominant role for GICs, duration might also be a factor, albeit smaller. Results from both SC 23 and 24 are analyzed and compared, and should lead to an enhanced understanding of space weather consequences of interplanetary structures and their possible forecasting.
NASA Technical Reports Server (NTRS)
Tan, Lun C.; Malandraki, Olga E.; Reames, Donald; NG, Chee K.; Wang, Linghua; Patsou, Ioanna; Papaioannou, Athanasios
2013-01-01
We have examined the Wind/3DP/SST electron and Wind/EPACT/LEMT ion data to investigate the path length difference between solar electrons and ions in the ground-level enhancement (GLE) events in solar cycle 23. Assuming that the onset time of metric type II or decameter-hectometric (DH) type III radio bursts is the solar release time of non-relativistic electrons, we have found that within an error range of plus or minus 10% the deduced path length of low-energy (approximately 27 keV) electrons from their release site near the Sun to the 1 AU observer is consistent with the ion path length deduced by Reames from the onset time analysis. In addition, the solar longitude distribution and IMF topology of the GLE events examined are in favor of the coronal mass ejection-driven shock acceleration origin of observed non-relativistic electrons.We have also found an increase of electron path lengths with increasing electron energies. The increasing rate of path lengths is correlated with the pitch angle distribution (PAD) of peak electron intensities locally measured, with a higher rate corresponding to a broader PAD. The correlation indicates that the path length enhancement is due to the interplanetary scattering experienced by first arriving electrons. The observed path length consistency implies that the maximum stable time of magnetic flux tubes, along which particles transport, could reach 4.8 hr.
NASA Technical Reports Server (NTRS)
Englander, Jacob
2016-01-01
This set of tutorial slides is an introduction to the Evolutionary Mission Trajectory Generator (EMTG), NASA Goddard Space Flight Center's autonomous tool for preliminary design of interplanetary missions. This slide set covers the basics of creating and post-processing simple interplanetary missions in EMTG using both high-thrust chemical and low-thrust electric propulsion along with a variety of operational constraints.
The Ambient and Perturbed Solar Wind: From the Sun to 1 AU
NASA Technical Reports Server (NTRS)
Steinolfson, R. S.
1997-01-01
The overall objective of the proposed research was to use numerical solutions of the magnetohydrodynamic (MHD) equations along with comparisons of the computed results with observations to study the following topics: (1) ambient solar wind solutions that extend from the solar surface to 1 astronomical unit (AU), contain closed magnetic structures near the Sun, and are consistent with observed values; (2) magnetic and plasma structures in coronal mass ejections (CMES) as they propagate to the interplanetary medium; (3) relation of MHD shocks to CMEs in the interplanetary medium; (4) interaction of MHD shocks with structures (such as other shocks, corotating interaction regions, current sheets) in the interplanetary plasma; and (5) simulations of observed interplanetary structures. A planned close collaboration with data analysts served to make the model more relevant to the data. The outcome of this research program is an improved understanding of the physical processes occurring in solar-generated disturbances in the interplanetary medium between the Sun and 1 AU.
NASA Astrophysics Data System (ADS)
Ni, Y. Y.
2018-03-01
We study the interplanetary causes of intense geomagnetic storms (Dst ≤ -100 nT) and the corresponding Geomagnetically Induced Current (GIC) events occurred in Ling’ao nuclear power station, Guangdong during the declining phase of solar cycle 23 (2003–2006). The result shows that sMC (a magnetic cloud with a shock), SH (sheath) and SH+MC (a sheath followed by a magnetic cloud) are the three most common interplanetary structures responsible for the storms which will cause GIC events in this period. As an interplanetary structure, CIR (corotating interaction regions) also plays an important role, however, the CIR-driven storms have a relatively minor effect to the GIC. Among the interplanetary parameters, the solar wind velocity and the southward component of the IMF (interplanetary magnetic field) are more important than solar wind density and the temperature to a geomagnetic storm and GIC.
TPS Ablator Technologies for Interplanetary Spacecraft
NASA Technical Reports Server (NTRS)
Curry, Donald M.
2004-01-01
This slide presentation reviews the status of Thermal Protection System (TPS) Ablator technologies and the preparation for use in interplanetary spacecraft. NASA does not have adequate TPS ablatives and sufficient selection for planned missions. It includes a comparison of shuttle and interplanetary TPS requirements, the status of mainline TPS charring ablator materials, a summary of JSC SBIR accomplishments in developing advanced charring ablators and the benefits of SBIR Ablator/fabrication technology.
Solar-Planetary Relationships: Magnetospheric Physics
NASA Technical Reports Server (NTRS)
Barnes, Aaron
1979-01-01
The quadrennium 1975-1978 was a period of great advance for solar-wind studies, a period that combined exploration of new regions with increased maturity in established fields of study. The Helios, Pioneer, and Voyager spacecraft have been exploring the inner and outer regions of the solar wind. There has been a rebirth of the study of possible relations between solar variability and Earth's climate and weather, stimulated largely by Eddy's investigation of the Maunder Minimum; the solar wind may well prove to be a significant link in solar-terrestrial relations. Unique coronal data from the SKYLAB 1973-1974 mission, in combination with satellite and ground-based observations, provided the basis for identification of coronal holes as the main source of highspeed solar wind. The interplanetary medium has continued to serve as a laboratory for the study of plasma processes that cannot yet be studied in terrestrial laboratories, providing insights of potential importance both for controlled fusion research and for astrophysics. It is ironic that such a productive period, the legacy of many past space missions, was also a time of severely limited opportunity for new space investigations; the outlook for the future is equally austere. Especially regrettable is the dearth of career opportunities for young scientists in this field; comparison of the bibliography of this report with that of its predecessor 4 years ago shows few new names. Despite such problems, research has continued with enthusiasm and much has been learned. The present report will survey selected topics related to the origin, expansion, and acceleration of the solar wind and the plasma physics of the interplanetary medium. Companion reports deal with a number of closely related topics, including the heliocentric distance and latitude variation of the solar wind and its fluctuations topology of the interplanetary magnetic field morphology of solar-wind streams and shocks, sunweather studies, and interplanetary manifestations of type-3 bursts. Of the subjects that fall within the scope of this report, the study of the relationship between coronal holes and solar-wind streams, and the associated revision of our ideas about solar wind acceleration and heating, have had the most impact; hence I review these topics in considerable detail. In addition, I discuss the topics of hydromagnetic waves and turbulence, and interplanetary electrons, as items of particular importance during the past quadrennium.
Mineralogy of dark clasts in primitive versus differentiated meteorites
NASA Technical Reports Server (NTRS)
Zolensky, M. E.; Weisberg, M. K.; Barrett, R. A.; Prinz, M.
1993-01-01
The presence of dark lithic clasts within meteorites can provide information concerning asteroidal regolith processes, the extent of interactions between asteroids, and the relationship between meteorite types, micrometeorites, and interplanetary dust particles. Accordingly, we have been seeking and characterizing dark clasts found within carbonaceous chondrites, unequilibrated ordinary chondrites, howardites, and eucrites. We find that unequilibrated chondrites in this study contain fine-grained, anhydrous unequilibrated inclusions, while the howardites often contain inclusions from geochemically processed, hydrous asteroids (type 1 and 2 carbonaceous chondrites). Eucrites and howardities contain unusual clasts, not easily classified.
Astrophysics with Extraterrestrial Materials
NASA Astrophysics Data System (ADS)
Nittler, Larry R.; Ciesla, Fred
2016-09-01
Extraterrestrial materials, including meteorites, interplanetary dust, and spacecraft-returned asteroidal and cometary samples, provide a record of the starting materials and early evolution of the Solar System. We review how laboratory analyses of these materials provide unique information, complementary to astronomical observations, about a wide variety of stellar, interstellar and protoplanetary processes. Presolar stardust grains retain the isotopic compositions of their stellar sources, mainly asymptotic giant branch stars and Type II supernovae. They serve as direct probes of nucleosynthetic and dust formation processes in stars, galactic chemical evolution, and interstellar dust processing. Extinct radioactivities suggest that the Sun's birth environment was decoupled from average galactic nucleosynthesis for some tens to hundreds of Myr but was enriched in short-lived isotopes from massive stellar winds or explosions shortly before or during formation of the Solar System. Radiometric dating of meteorite components tells us about the timing and duration over which solar nebula solids were assembled into the building blocks of the planets. Components of the most primitive meteoritical materials provide further detailed constraints on the formation, processing, and transport of material and associated timescales in the Sun's protoplanetary disk as well as in other forming planetary systems.
Cometary dust: the diversity of primitive refractory grains
Ishii, H. A.
2017-01-01
Comet dust is primitive and shows significant diversity. Our knowledge of the properties of primitive cometary particles has expanded significantly through microscale investigations of cosmic dust samples (anhydrous interplanetary dust particles (IDPs), chondritic porous (CP) IDPs and UltraCarbonaceous Antarctic micrometeorites, Stardust and Rosetta), as well as through remote sensing (Spitzer IR spectroscopy). Comet dust are aggregate particles of materials unequilibrated at submicrometre scales. We discuss the properties and processes experienced by primitive matter in comets. Primitive particles exhibit a diverse range of: structure and typology; distribution of constituents; concentration and form of carbonaceous and refractory organic matter; Mg- and Fe-contents of the silicate minerals; sulfides; existence/abundance of type II chondrule fragments; high-temperature calcium–aluminium inclusions and ameboid-olivine aggregates; and rarely occurring Mg-carbonates and magnetite, whose explanation requires aqueous alteration on parent bodies. The properties of refractory materials imply there were disc processes that resulted in different comets having particular selections of primitive materials. The diversity of primitive particles has implications for the diversity of materials in the protoplanetary disc present at the time and in the region where the comets formed. This article is part of the themed issue ‘Cometary science after Rosetta’. PMID:28554979
Study of Historical 4B/X17 Mega Flare on 28 October 2003 (P58)
NASA Astrophysics Data System (ADS)
Uddin, W.; Chandra, R.; Ali, S. S.
2006-11-01
wuddin_99@yahoo.com We analysed multi-wavelength data of 28 October 2003 4B/X17.2 class extremely energetic parallel ribbon solar flare, which occurred in NOAA 10486. The flare was well observed in H-alpha at ARIES, Nainital and various space (SOHO, TRACE, RHESSI, WIND etc.) and ground based Observatories. The H-alpha observations show the stretching/detwisting and eruption of helically twisted S shaped (sigmoid) filament in the South-West direction of the active region with bright shock front followed by rapid increase in intensity and area of the gigantic flare. The flare is associated with a bright/fast full halo earth directed CME, strong type II, III and IV radio bursts, an intense proton event and GLE. It seems that the filament eruption triggered the halo CME because the helical structure is clearly visible in the SOHO/LASCO C2, C3 images. This indicates helicity transfer from chromosphere to corona and interplanetary medium. The magnetic field of the flaring region was most complex with high magnetic shear. From the above analysis we feel that the energy buildup/release process of this unique flare support helically twisted magnetic flux rope model.
Coronal Shock Waves and Solar Energetic Particle Events
NASA Astrophysics Data System (ADS)
Cliver, Edward
Recent evidence supports the view first expressed by Wild, Smerd, and Weiss in 1963 that large solar energetic particle (SEP) events are a consequence of shock waves manifested by radio type II bursts. Following Tylka et al. (ApJ 625, 474, 2005), our picture of SEP acceleration at shocks now includes the effects of variable seed particle population and shock geometry. By taking these factors into account, Tylka and Lee (ApJ 646, 1319, 2006; see also Sandroos Vainio, ApJ 662, L127, 2007; AA 507, L21, 2009) were able to account for the charge-to-mass variability in high-Z ions first reported by Breneman and Stone in 1985. Recent studies of electron-to-proton ratios, both in interplanetary space (Cliver Ling, ApJ 658, 1349, 2007; Dietrich et al., in preparation, 2010) and in gamma-ray-line events (Shih et al., ApJ 698, L152, 2009), also support the view that large SEP events originate in coronal shocks and not in solar flares. Concurrent with the above developments, there is growing evidence that coronal shocks are driven by coronal mass ejections rather than by flare pressure pulses.
NASA Astrophysics Data System (ADS)
Moeller, Ralf; Berger, Thomas; Matthiä, Daniel; Okayasu, Ryuichi; Kitamura, H.; Reitz, Guenther
Based on their unique resistance to various space parameters, bacterial spores (mainly spores of Bacillus subtilis) are one of the model systems used for astrobiological studies. More re-cently, spores of B. subtilis have been applied for experimental research on the likelihood of interplanetary transfer of life. Since its first postulation by Arrhenius in 1903, the pansper-mia hypothesis has been revisited many-times, e.g. after the discovery of several lunar and Martian meteorites on Earth [1,2]. These information provided intriguing evidence that rocks may naturally be transferred between the terrestrial planets. The scenario of panspermia, now termed "lithopanspermia" involves three basic hypothetical steps: (i) the escape process, i.e. removal to space of biological material, which has survived being lifted from the surface to high altitudes; (ii) interim state in space, i.e., survival of the biological material over time scales comparable with interplanetary or interstellar passage; (iii) the entry process, i.e. nondestruc-tive deposition of the biological material on another planet [2]. In our research, spores of B. subtilis were used to study the effects of galactic cosmic radiation on spore survival and induced mutations. On an interplanetary journey, outside a protective magnetic field, spore-containing rocks would be exposed to bombardment by high-energy charged particle radiation from galac-tic sources and from the sun. Air-dried spore layers on three different host materials (i.e., non-porous igneous rocks (gabbro), quartz, and spacecraft analog material (aluminum)) were irradiated with accelerated heavy ions (Helium and Iron) with a LET (linear energy transfer) ˆ of 2 and 200 keV/Am, at the Heavy Ion Medical Accelerator (HIMAC) at the National In-stitute of Radiological Sciences, (NIRS), Chiba, Japan in the frame of the HIMAC research project 20B463 "Characterization of heavy ion-induced damage in Bacillus subtilis spores and their global transcriptional response during spore germination" (Moeller et al., 2008 [3]). To simulate the interplanetary journey of a meteorite, stacks of spore-samples on gabbro slides in different depths were exposed. Spore survival and the rate of the induced mutations (i.e., sporulation-deficiency (Spo-)) depended on the LET of the applied species of ions as well as on the location (and depth) of the irradiated spores in the artificial meteorite. The exposure to high LET iron ions led to a low level of spore survival and increased frequency of mutation to Spo-compared to low-energy charged particles compared to the low LET helium ions. In order to obtain insights on the role of DNA repair by nonhomologous end joining (NHEJ), homologous recombination (HR) and apurinic/apyrimidinic (AP) endonucleases in B. subtilis spore resistance to high-energy charged particles has been studied in parallel. Spores deficient in NHEJ and AP endonucleases were significantly more sensitive to HZE particle bombardment than were the HR-mutant and wild-type spores, indicating that NHEJ and AP endonucleases provide DNA break repair pathways during spore germination. ((References: [1] Arrhenius, S. 1903. Die Verbreitung des Lebens im Weltenraum. Umschau 7:481-485.; [2] Nicholson, W. L. 2009. Ancient micronauts: interplanetary transport of microbes by cosmic impacts. Trends Mi-crobiol. 17:243-250.; [3] Moeller, R., P. Setlow, G. Horneck, T. Berger, G. Reitz, P. Rettberg, A. J. Doherty, R. Okayasu, and W. L. Nicholson. 2008. Roles of the major, small, acid-soluble spore proteins and spore-specific and universal DNA repair mechanisms in resistance of Bacillus subtilis spores to ionizing radiation from X-rays and high-energy charged-particle bombardment. J. Bacteriol. 190:1134-1140.))
Kuiper Belt Dust Grains as a Source of Interplanetary Dust Particles
NASA Technical Reports Server (NTRS)
Liou, Jer-Chyi; Zook, Herbert A.; Dermott, Stanley F.
1996-01-01
The recent discovery of the so-called Kuiper belt objects has prompted the idea that these objects produce dust grains that may contribute significantly to the interplanetary dust population. In this paper, the orbital evolution of dust grains, of diameters 1 to 9 microns, that originate in the region of the Kuiper belt is studied by means of direct numerical integration. Gravitational forces of the Sun and planets, solar radiation pressure, as well as Poynting-Robertson drag and solar wind drag are included. The interactions between charged dust grains and solar magnetic field are not considered in the model. Because of the effects of drag forces, small dust grains will spiral toward the Sun once they are released from their large parent bodies. This motion leads dust grains to pass by planets as well as encounter numerous mean motion resonances associated with planets. Our results show that about 80% of the Kuiper belt grains are ejected from the Solar System by the giant planets, while the remaining 20% of the grains evolve all the way to the Sun. Surprisingly, the latter dust grains have small orbital eccentricities and inclinations when they cross the orbit of the Earth. This makes them behave more like asteroidal than cometary-type dust particles. This also enhances their chances of being captured by the Earth and makes them a possible source of the collected interplanetary dust particles; in particular, they represent a possible source that brings primitive/organic materials from the outer Solar System to the Earth. When collisions with interstellar dust grains are considered, however, Kuiper belt dust grains around 9 microns appear likely to be collisionally shattered before they can evolve toward the inner part of the Solar System. The collision destruction can be applied to Kuiper belt grains up to about 50 microns. Therefore, Kuiper belt dust grains within this range may not be a significant part of the interplanetary dust complex in the inner Solar System.
NASA Astrophysics Data System (ADS)
Souza, V. M. C. E. S.; Da Silva, L. A.; Sibeck, D. G.; Alves, L. R.; Jauer, P. R.; Dias Silveira, M. V.; Medeiros, C.; Marchezi, J.; Rockenbach, M.; Baker, D. N.; Kletzing, C.; Kanekal, S. G.; Georgiou, M.; Mendes, O., Jr.; Dal Lago, A.; Vieira, L. E. A.
2015-12-01
We present a case study describing the dynamics of the outer radiation belt for two different solar wind conditions. First, we discuss a dropout of outer belt energetic electron fluxes corresponding to the arrival of an interplanetary coronal mass ejection (ICME) followed by a corotating stream in September 2014. Second, we discuss the reformation of the outer radiation belt that began on September 22nd. We find that the arrival of the ICME and the corotating interaction region that preceded the stream cause a long-duration (many day) dropout of high-energy electrons. The recovery in radiation belt fluxes only begins when the high-speed stream begins to develop IMF Bz fluctuations and auroral activity resumes. Furthermore, during periods in which several consecutive solar wind structures appear, the first structure primes the outer radiation belt prior to the interaction of the subsequent solar wind structures with the magnetosphere. Consequently, the evolution of the outer radiation belt through the solar cycle is significantly affected by the dominant structure of each phase of the cycle. We use energetic electron and magnetic field observations provided by the Van Allen Probes, THEMIS, and GOES missions.
Interplanetary Small Satellite Conference 2017 Program
NASA Technical Reports Server (NTRS)
Dalle, Derek Jordan
2017-01-01
The Interplanetary Small Satellite Conference will be held at San Jose State University on May 1 and 2, 2017. The program attached here contains logistical information for attendees, the agenda, and abstracts of the conference presentations. All abstracts were reviewed by their authors' home institute and approved for public release prior to inclusion in the program booklet. The ISSC explores mission concepts, emerging technologies, and fosters outside the box thinking critical to future interplanetary small satellite missions.
Research in space physics at the University of Iowa
NASA Technical Reports Server (NTRS)
Vanallen, J. A.
1976-01-01
Energetic particles in outer space and their relationship to electric, magnetic, and electromagnetic fields associated with the earth, sun, moon, and planets, and the interplanetary medium are investigated. Special attention was given to observations of earth and moon satellites and interplanetary spacecraft; phenomenological analysis and interpretation were emphasized. Data also cover ground based on radio astronomical and optical techniques and theoretical problems in plasma physics as revelant to solar planetary and interplanetary phenomena.
Hydromagnetic waves, turbulence, and collisionless processes in the interplanetary medium
NASA Technical Reports Server (NTRS)
Barnes, A.
1983-01-01
An extended discussion is conducted concerning the origin and evolution of interplanetary hydromagnetic waves and turbulence, and their influence on the large scale dynamics of the solar wind. The solar wind is at present the preeminent medium for the study of hydromagnetic waves and turbulence, providing an opportunity for advancement of understanding of the most fundamental processes of the astrophysical plasmas. All interplanetary fluctuations whose time scale is observed to be greater than 1 sec can be regarded as hydromagnetic fluctuations. It has been found to be simplest, and generally very satisfactory, to model interplanetary variations as fluctuations in an MHD fluid. Attention is given to the classification of wave modes, geometrical hydromagnetics, Alfven wave pressure, rugged invariants, and the kinetic theory of collisionless processes.
STIP Symposium on Physical Interpretation of Solar/Interplanetary and Cometary Intervals
NASA Technical Reports Server (NTRS)
Wu, S. T.
1987-01-01
The study of travelling interplanetary phenomena has continued over a period of years. The STIP (Study of Travelling Interplanetary Phenomena) Symposium on Physical Interpretation of Solar/Interplanetary and Cometary Intervals was held in Huntsville, Alabama, on May 12-15, 1987, the first of these meetings to be held in the United States. The Symposium's objective was to coordinate and disseminate new science gained from the recent solar-terrestrial and cometary intervals which can be used to better understand the linkage of physical events to the Sun's vagaries (flares, coronal holes, eruptive prominences) from their initial detection to their consequence. Fifty-one presentations were made during the four-day period. Abstracts of these reports are included as Appendix A.
Interplanetary laser ranging - an emerging technology for planetary science missions
NASA Astrophysics Data System (ADS)
Dirkx, D.; Vermeersen, L. L. A.
2012-09-01
Interplanetary laser ranging (ILR) is an emerging technology for very high accuracy distance determination between Earth-based stations and spacecraft or landers at interplanetary distances. It has evolved from laser ranging to Earth-orbiting satellites, modified with active laser transceiver systems at both ends of the link instead of the passive space-based retroreflectors. It has been estimated that this technology can be used for mm- to cm-level accuracy range determination at interplanetary distances [2, 7]. Work is being performed in the ESPaCE project [6] to evaluate in detail the potential and limitations of this technology by means of bottom-up laser link simulation, allowing for a reliable performance estimate from mission architecture and hardware characteristics.
Type III bursts in interplanetary space - Fundamental or harmonic?
NASA Technical Reports Server (NTRS)
Dulk, G. A.; Steinberg, J. L.; Hoang, S.
1984-01-01
ISEE-3 spacecraft observation of 120 relatively simple, isolated bursts in the 30-1980 kHz range are the basis of the present study of Type III bursts in the solar wind. Several characteristics are identified for many of these bursts which imply that the mode of emission changes from predominantly fundamental plasma radiation during the rise phase to predominantly second harmonic during decay. The fundamental emission begins in time coincidence with the start of Langmuir waves, confirming the conventional belief in these waves' causation of Type III bursts. Attention is given to the characteristics of fundamental components, by comparison to harmonics, at km-wavelengths.
NASA Astrophysics Data System (ADS)
Druckmüller, Miloslav; Habbal, Shadia R.; Alzate, Nathalia; Emmanouilidis, Constantinos
2017-12-01
We report on white light observations of high latitude tethered prominences acquired during the total solar eclipses of 2012 November 13 and 2013 November 3, at solar maximum, with a field of view spanning several solar radii. Distinguished by their pinkish hue, characteristic of emission from neutral hydrogen and helium, the four tethered prominences were akin to twisted flux ropes, stretching out to the limit of the field of view, while remaining anchored at the Sun. Cotemporal observations in the extreme ultraviolet from the Solar Dynamics Observatory (SDO/AIA) clearly showed that the pinkish emission from the cool (≈ {10}4-{10}5 K) filamentary prominences was cospatial with the 30.4 nm He II emission, and was directly linked to filamentary structures emitting at coronal temperatures ≥slant {10}6 K in 17.1 and 19.3 nm. The tethered prominences evolved from typical tornado types. Each one formed the core of different types of coronal mass ejections (CMEs), as inferred from coordinated LASCO C2, C3, and STEREO A and B coronagraph observations. Two of them evolved into a series of faint, unstructured puffs. One was a normal CME. The most striking one was a “light-bulb” type CME, whose three-dimensional structure was confirmed from all four coronagraphs. These first uninterrupted detections of prominence-CME systems anchored at the Sun, and stretching out to at least the edge of the field of view of LASCO C3, provide the first observational confirmation for the source of counter-streaming electron fluxes measured in interplanetary CMEs, or ICMEs.
The interplanetary and solar magnetic field sector structures, 1962 - 1968
NASA Technical Reports Server (NTRS)
Jones, D. E.
1972-01-01
The interplanetary magnetic field sector structure was observed from late 1962 through 1968. During this time it has been possible to study the manner in which the sector pattern and its relation to the photospheric magnetic field configuration changes from solar minimum to solar maximum. Observations were also made relating sector boundaries to specific regions on the solar disk. These and other observations related to the solar origin of the interplanetary field are briefly reviewed.
Velocity Distributions of Interplanetary Dust Derived from Astronomical Sky Spectra
NASA Astrophysics Data System (ADS)
Huestis, D. L.; Ali, S.; Cosby, P. C.; Slanger, T. G.
2001-11-01
Characterization of interplanetary dust is important for understanding the creation by accretion of planets and moons, the development of planetary atmospheres, and, potentially, for the initiation of prebiotic chemistry. The recent COBE mission has provided a profile in ecliptic coordinates of the distribution of interplanetary dust particles through their thermal infrared emission. Additional information about interplanetary dust can be extracted from its visible spectrum of scattered sunlight, called Zodiacal Light. Night sky spectra taken at large-aperture telescopes using high-resolution echelle spectrographs reveal Fraunhofer absorption features in the Zodiacal Light spectrum of scattered sunlight, a nuisance in subtraction from the spectrum of the extraterrestrial object under investigation. We are analyzing the intensity modulations and Doppler shifts of solar Fraunhofer absorption lines in the Zodiacal Light component of sky spectra, donated by collaborating astronomers using Keck/HIRES and other high-performance astronomical facilities. Our objectives include velocity distributions of interplanetary dust and improved separation of terrestrial and extraterrestrial sources in sky spectra. Participation of S. Ali was made possible by a grant from the NSF Physics Research Experiences for Undergraduates (REU) program.
Flux rope evolution in interplanetary coronal mass ejections: the 13 May 2005 event
NASA Astrophysics Data System (ADS)
Manchester, W. B., IV; van der Holst, B.; Lavraud, B.
2014-06-01
Coronal mass ejections (CMEs) are a dramatic manifestation of solar activity that release vast amounts of plasma into the heliosphere, and have many effects on the interplanetary medium and on planetary atmospheres, and are the major driver of space weather. CMEs occur with the formation and expulsion of large-scale magnetic flux ropes from the solar corona, which are routinely observed in interplanetary space. Simulating and predicting the structure and dynamics of these interplanetary CME magnetic fields are essential to the progress of heliospheric science and space weather prediction. We discuss the simulation of the 13 May 2005 CME event in which we follow the propagation of a flux rope from the solar corona to beyond Earth orbit. In simulating this event, we find that the magnetic flux rope reconnects with the interplanetary magnetic field, to evolve to an open configuration and later reconnects to reform a twisted structure sunward of the original rope. Observations of the 13 May 2005 CME magnetic field near Earth suggest that such a rearrangement of magnetic flux by reconnection may have occurred.
Large-scale solar wind streams: Average temporal evolution of parameters
NASA Astrophysics Data System (ADS)
Yermolaev, Yuri; Lodkina, Irina; Yermolaev, Michael; Nikolaeva, Nadezhda
2016-07-01
In the report we describe the average temporal profiles of plasma and field parameters in the disturbed large-scale types of solar wind (SW): corotating interaction regions (CIR), interplanetary coronal mass ejections (ICME) (both magnetic cloud (MC) and Ejecta), and Sheath as well as the interplanetary shock (IS) on the basis of OMNI database and our Catalog of large-scale solar wind phenomena during 1976-2000 (see website ftp://ftp.iki.rssi.ru/pub/omni/ and paper [Yermolaev et al., 2009]). To consider influence of both the surrounding undisturbed solar wind, and the interaction of the disturbed types of the solar wind on the parameters, we separately analyze the following sequences of the phenomena: (1) SW/CIR/SW, (2) SW/IS/CIR/SW, (3) SW/Ejecta/SW, (4) SW/Sheath/Ejecta/SW, (5) SW/IS/Sheath/Ejecta/SW, (6) SW/MC/SW, (7) SW/Sheath/MC/SW, and (8) SW/IS/Sheath/MC/SW. To take into account the different durations of SW types, we use the double superposed epoch analysis (DSEA) method: rescaling the duration of the interval for all types in such a manner that, respectively, beginning and end for all intervals of selected type coincide [Yermolaev et al., 2010; 2015]. Obtained data allow us to suggest that (1) the behavior of parameters in Sheath and in CIR is very similar not only qualitatively but also quantitatively, and (2) the speed angle phi in ICME changes from 2 to -2deg. while in CIR and Sheath it changes from -2 to 2 deg., i.e., the streams in CIR/Sheath and ICME deviate in the opposite side. The work was supported by the Russian Foundation for Basic Research, project 16-02-00125 and by Program of Presidium of the Russian Academy of Sciences. References: Yermolaev, Yu. I., N. S. Nikolaeva, I. G. Lodkina, and M. Yu. Yermolaev (2009), Catalog of Large-Scale Solar Wind Phenomena during 1976-2000, Cosmic Research, , Vol. 47, No. 2, pp. 81-94. Yermolaev, Y. I., N. S. Nikolaeva, I. G. Lodkina, and M. Y. Yermolaev (2010), Specific interplanetary conditions for CIR-induced, Sheath-induced, and ICME-induced geomagnetic storms obtained by double superposed epoch analysis, Ann. Geophys., 28, pp. 2177-2186. Yermolaev, Yu. I., I. G. Lodkina, N. S. Nikolaeva, and M. Yu. Yermolaev (2015), Dynamics of large-scale solar wind streams obtained by the double superposed epoch analysis, J. Geophys. Res. Space Physics, 120, doi:10.1002/2015JA021274
NASA Technical Reports Server (NTRS)
Mann, F. I.; Horsewood, J. L.
1974-01-01
A performance-analysis computer program, that was developed explicitly to generate optimum electric propulsion trajectory data for missions of interest in the exploration of the solar system is presented. The program was primarily designed to evaluate the performance capabilities of electric propulsion systems, and in the simulation of a wide variety of interplanetary missions. A numerical integration of the two-body, three-dimensional equations of motion and the Euler-Lagrange equations was used in the program. Transversality conditions which permit the rapid generation of converged maximum-payload trajectory data, and the optimization of numerous other performance indices for which no transversality conditions exist are included. The ability to simulate constrained optimum solutions, including trajectories having specified propulsion time and constant thrust cone angle, is also in the program. The program was designed to handle multiple-target missions with various types of encounters, such as rendezvous, stopover, orbital capture, and flyby. Performance requirements for a variety of launch vehicles can be determined.
Observations of an Interplanetary Intermediate Shock Associated with a Magnetic Reconnection Exhaust
NASA Astrophysics Data System (ADS)
Feng, H. Q.; Li, Q. H.; Wang, J. M.; Zhao, G. Q.
2016-07-01
Two intermediate shocks (ISs) in interplanetary space have been identified via one spacecraft observation. However, Feng et al. suggested that the analysis using a single spacecraft observation based only on the Rankine-Hugoniot (R-H) relations could misinterpret a tangential discontinuity (TD) as an IS. The misinterpretation can be fixed if two spacecraft observations are available. In this paper, we report an IS-like discontinuity associated with a magnetic reconnection exhaust, which was observed by Wind on 2000 August 9 at 1 au. We investigated this discontinuity by fitting the R-H relations and referring to the Advanced Composition Explorer (ACE) observations. As a result, we found that the observed magnetic field and plasma data satisfy the R-H relations well, and the discontinuity satisfies all the requirements of the 2\\to 3 type IS. Although the discontinuity cannot be identified strictly by using two spacecraft observations, in light of the ACE observations we consider that the discontinuity should be an IS rather than a TD.
NASA Astrophysics Data System (ADS)
Hajra, Rajkumar; Tsurutani, Bruce T.
2018-05-01
We present case studies of two interplanetary shock-induced supersubstorms (SSSs) with extremely high intensities (peak SML ‑4418 and ‑2668 nT) and long durations (∼1.7 and ∼3.1 hr). The events occurred on 2005 January 21 and 2010 April 5, respectively. It is shown that these SSSs have a different auroral evolution than a nominal Akasofu-type substorm. The auroras associated with the SSSs did not have the standard midnight onset and following expansion. Instead, at the time of the SML index peak, the midnight sector was generally devoid of intense auroras, while the most intense auroras were located in the premidnight and postmidnight magnetic local times. Precursor energy input through magnetic reconnection was insufficient to balance the large ionospheric energy dissipation during the SSSs. It is argued that besides the release of stored magnetotail energy during the SSSs, these were powered by additional direct driving through both dayside magnetic reconnection and solar wind ram energy.
NASA Astrophysics Data System (ADS)
Linker, J. A.; Caplan, R. M.; Downs, C.; Riley, P.; Mikic, Z.; Lionello, R.; Henney, C. J.; Arge, C. N.; Liu, Y.; Derosa, M. L.; Yeates, A.; Owens, M. J.
2017-10-01
The heliospheric magnetic field is of pivotal importance in solar and space physics. The field is rooted in the Sun’s photosphere, where it has been observed for many years. Global maps of the solar magnetic field based on full-disk magnetograms are commonly used as boundary conditions for coronal and solar wind models. Two primary observational constraints on the models are (1) the open field regions in the model should approximately correspond to coronal holes (CHs) observed in emission and (2) the magnitude of the open magnetic flux in the model should match that inferred from in situ spacecraft measurements. In this study, we calculate both magnetohydrodynamic and potential field source surface solutions using 14 different magnetic maps produced from five different types of observatory magnetograms, for the time period surrounding 2010 July. We have found that for all of the model/map combinations, models that have CH areas close to observations underestimate the interplanetary magnetic flux, or, conversely, for models to match the interplanetary flux, the modeled open field regions are larger than CHs observed in EUV emission. In an alternative approach, we estimate the open magnetic flux entirely from solar observations by combining automatically detected CHs for Carrington rotation 2098 with observatory synoptic magnetic maps. This approach also underestimates the interplanetary magnetic flux. Our results imply that either typical observatory maps underestimate the Sun’s magnetic flux, or a significant portion of the open magnetic flux is not rooted in regions that are obviously dark in EUV and X-ray emission.
The Ring Current Response to Solar and Interplanetary Storm Drivers
NASA Astrophysics Data System (ADS)
Mouikis, C.; Kistler, L. M.; Bingham, S.; Kronberg, E. A.; Gkioulidou, M.; Huang, C. L.; Farrugia, C. J.
2014-12-01
The ring current responds differently to the different solar and interplanetary storm drivers such as coronal mass injections, (CME's), corotating interaction regions (CIR's), high-speed streamers and other structures. The resulting changes in the ring current particle pressure, in turn, change the global magnetic field, controlling the transport of the radiation belts. To quantitatively determine the field changes during a storm throughout the magnetosphere, it is necessary to understand the transport, sources and losses of the particles that contribute to the ring current. Because the measured ring current energy spectra depend not only on local processes, but also on the history of the ions along their entire drift path, measurements of ring current energy spectra at two or more locations can be used to strongly constrain the time dependent magnetic and electric fields. In this study we use data predominantly from the Cluster and the Van Allen Probes, covering more than a full solar cycle (from 2001 to 2014). For the period 2001-2012, the Cluster CODIF and RAPID measurements of the inner magnetosphere are the primary data set used to monitor the storm time ring current variability. After 2012, the Cluster data set complements the data from the Van Allen Probes HOPE and RBSPICE instruments, providing additional measurements from different MLT and L shells. Selected storms from this periods, allow us to study the ring current dynamics and pressure changes, as a function of L shell, magnetic local time, and the type of interplanetary disturbances.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Linker, J. A.; Caplan, R. M.; Downs, C.
The heliospheric magnetic field is of pivotal importance in solar and space physics. The field is rooted in the Sun’s photosphere, where it has been observed for many years. Global maps of the solar magnetic field based on full-disk magnetograms are commonly used as boundary conditions for coronal and solar wind models. Two primary observational constraints on the models are (1) the open field regions in the model should approximately correspond to coronal holes (CHs) observed in emission and (2) the magnitude of the open magnetic flux in the model should match that inferred from in situ spacecraft measurements. Inmore » this study, we calculate both magnetohydrodynamic and potential field source surface solutions using 14 different magnetic maps produced from five different types of observatory magnetograms, for the time period surrounding 2010 July. We have found that for all of the model/map combinations, models that have CH areas close to observations underestimate the interplanetary magnetic flux, or, conversely, for models to match the interplanetary flux, the modeled open field regions are larger than CHs observed in EUV emission. In an alternative approach, we estimate the open magnetic flux entirely from solar observations by combining automatically detected CHs for Carrington rotation 2098 with observatory synoptic magnetic maps. This approach also underestimates the interplanetary magnetic flux. Our results imply that either typical observatory maps underestimate the Sun’s magnetic flux, or a significant portion of the open magnetic flux is not rooted in regions that are obviously dark in EUV and X-ray emission.« less
Time-dependent radiation dose simulations during interplanetary space flights
NASA Astrophysics Data System (ADS)
Dobynde, Mikhail; Shprits, Yuri; Drozdov, Alexander; Hoffman, Jeffrey; Li, Ju
2016-07-01
Space radiation is one of the main concerns in planning long-term interplanetary human space missions. There are two main types of hazardous radiation - Solar Energetic Particles (SEP) and Galactic Cosmic Rays (GCR). Their intensities and evolution depend on the solar activity. GCR activity is most enhanced during solar minimum, while the most intense SEPs usually occur during the solar maximum. SEPs are better shielded with thick shields, while GCR dose is less behind think shields. Time and thickness dependences of the intensity of these two components encourage looking for a time window of flight, when radiation intensity and dose of SEP and GCR would be minimized. In this study we combine state-of-the-art space environment models with GEANT4 simulations to determine the optimal shielding, geometry of the spacecraft, and launch time with respect to the phase of the solar cycle. The radiation environment was described by the time-dependent GCR model, and the SEP spectra that were measured during the period from 1990 to 2010. We included gamma rays, electrons, neutrons and 27 fully ionized elements from hydrogen to nickel. We calculated the astronaut's radiation doses during interplanetary flights using the Monte-Carlo code that accounts for the primary and the secondary radiation. We also performed sensitivity simulations for the assumed spacecraft size and thickness to find an optimal shielding. In conclusion, we present the dependences of the radiation dose as a function of launch date from 1990 to 2010, for flight durations of up to 3 years.
NASA Astrophysics Data System (ADS)
Levasseur-Regourd, Anny-Chantal; Gaboriaud, Alain; Buil, Christian; Ressouche, Antoine; Lasue, J.; Palun, Adrien; Apper, Fabien; Elmaleh, Marc
Intensity and linear polarization observations of the solar light scattered by interplanetary dust, the so-called zodiacal light, provide information on properties of the dust particles, such as their spatial density, local changes, morphology and albedo. Earth-based polarimetric observations, with a resolution of 5° or more, have been used to derive the polarization phase curve of interplanetary dust particles and to establish that the polarization at 90° phase angle increases with increasing solar distance, at least up to 1.5 au in the ecliptic, while the albedo decreases [1, 2]. Analysis of such studies will be revisited. Numerical simulations of the polarimetric behavior of interplanetary dust particles strongly suggest that, in the inner solar system, interplanetary dust particles consist of absorbing (e.g., organic compounds) and less absorbing (e.g., silicates) materials, that radial changes originate in a decrease of organics with decreasing solar distance (probably due to alteration processes), and that a significant fraction of the interplanetary dust is of cometary origin, in agreement with dynamical studies [3, 4]. The polarimetric behaviors of interplanetary dust and cometary dust particles seem to present striking similarities. The properties of cometary dust particles, as derived from remote polarimetric observations of comets including 67P/Churyumov-Gerasimenko, the target of the Rosetta rendezvous mission, at various wavelengths, will be summarized [5, 6]. The ground truth expected from Rosetta dust experiments, i.e., MIDAS, COSIMA, GIADA, about dust particles’ morphology, composition, and evolution (with distance to the nucleus before Philae release and with distance to the Sun before and after perihelion passage) over the year and a half of nominal mission, will be discussed. Finally, the Eye-Sat nanosatellite will be presented. This triple cubesat, developed by students from engineering schools working as interns at CNES, is to be launched in 2016 [7]. Its main purpose is to study the zodiacal light intensity and polarization from a Sun-synchronous orbit, for the first time at the high spatial resolution of 1° over a wide portion of the sky and at four different wavelengths (in the visible and near-IR domains). The instrumental choices and new on-board technologies will be summarized, together with the results that may be expected on local properties of the interplanetary dust particles and thus on their similarities and differences with cometary dust particles. Support from CNES is warmly acknowledged. [1] Leinert, C., Bowyer, S., Haikala, L.K., et al. The 1997 reference of diffuse night sky brightness, Astron. Astrophys. Supp., 127, 1-99, 1998. [2] Levasseur-Regourd, A.C., Mann, I., Dumont, R., et al. Optical and thermal properties of interplanetary dust. In Interplanetary dust (Grün, E. et al. Eds), 57-94, Springer-Verlag, Berlin, 2001. [3] Lasue, J., Levasseur-Regourd, A.C., Fray, N., et al. Inferring the interplanetary dust properties from remote observations and simulations, Astron. Astrophys., 473, 641-649, 2007. [4] Nesvorny, D., Jenniskens, P., Levison, H.F., et al. Cometary origin of the zodiacal cloud and carbonaceous micrometeorites: implications for hot debris disks. Astrophys. J. 713, 816-836, 2010. [5] Levasseur-Regourd, A.C., Mukai, T., Lasue, J., et al. Physical properties of cometary and interplanetary dust, Planet. Space Sci., 55, 1010-1020, 2007. [6] Hadamcik, E., Sen, A.K., Levasseur-Regourd, A.C., et al., Astron. Astrophys., 517, A86, 2010. [7] CNES internal report. Eye-Sat end of phase A internal review, EYESAT-PR-0-022-CNES, 2013.
NASA Technical Reports Server (NTRS)
Hooke, A. J.
2000-01-01
Architectural design of the interplanetary internet is now underway and prototype flight testing of some of the candidate protocols is anticipated within a year. This talk will describe the current status of the project.
NASA Technical Reports Server (NTRS)
Beckley, L. E.
1977-01-01
Progress in various space flight research programs is reported. Emphasis is placed on X-ray astronomy and interplanetary plasma physics. Topics covered include: infrared astronomy, long base line interferometry, geological spectroscopy, space life science experiments, atmospheric physics, and space based materials and structures research. Analysis of galactic and extra-galactic X-ray data from the Small Astronomy Satellite (SAS-3) and HEAO-A and interplanetary plasma data for Mariner 10, Explorers 47 and 50, and Solrad is discussed.
NASA Astrophysics Data System (ADS)
Cornilleau-Wehrlin, Nicole; Bocchialini, Karine; Menvielle, Michel; Chambodut, Aude; Fontaine, Dominique; Grison, Benjamin; Marchaudon, Aurélie; Pick, Monique; Pitout, Frédéric; Schmieder, Brigitte; Régnier, Stéphane; Zouganelis, Yannis
2017-04-01
Taking the 32 sudden storm commencements (SSC) listed by the observatory de l'Ebre / ISGI over the year 2002 (maximal solar activity) as a starting point, we performed a statistical analysis of the related solar sources, solar wind signatures, and terrestrial responses. For each event, we characterized and identified, as far as possible, (i) the sources on the Sun (Coronal Mass Ejections -CME-), with the help of a series of criteria (velocities, drag coefficient, radio waves, helicity), as well as (ii) the structure and properties in the interplanetary medium, at L1, of the event associated to the SSC: magnetic clouds -MC-, non-MC interplanetary coronal mass ejections -ICME-, co-rotating/stream interaction regions -SIR/CIR-, shocks only and unclear events that we call "miscellaneous" events. The observed Sun-to-Earth travel times are compared to those estimated using existing simple models of propagation in the interplanetary medium. This comparison is used to statistically assess performances of various models. The geoeffectiveness of the events, classified by category at L1, is analysed by their signatures in the Earth ionized (magnetosphere and ionosphere) and neutral (thermosphere) environments, using a broad set of in situ, remote and ground based instrumentation. The role of the presence of a unique or of a multiple source at the Sun, of its nature, halo or non halo CME, is also discussed. The set of observations is statistically analyzed so as to evaluate and compare the geoeffectiveness of the events. The results obtained for this set of geomagnetic storms started by SSCs is compared to the overall statistics of year 2002, relying on already published catalogues of events, allowing assessing the relevance of our approach (for instance the all 12 well identified Magnetic Clouds of 2002 give rise to SSCs).
NASA Astrophysics Data System (ADS)
Ballatore, Paola
2003-10-01
The paper [2002] (the paper commented) shows that the statistical significance of the correlations between the interplanetary parameters and the geomagnetic indices (Kp or Dst) is generally less significant during the fastest solar wind. On the other hand, at these fast solar wind periods, the significance of the Kp versus Dst correlation is equal to or higher than during slower solar wind. These results, together with further observations related to substorm periods and with previously published findings, are interpreted in terms of a difference in the interplanetary-magnetospheric coupling for solar wind faster or slower than a certain threshold (identified between about 500 and 600 km/s). Specifically, it is suggested that a possible linear approximation of the geomagnetic-interplanetary coupling is more appropriate during solar wind speed (Vsw) slower than this threshold, being nonlinear processes more dominant during the fastest speeds. This reply highlights that the correlation coefficients shown by [2003] are in agreement with these findings. In addition, Wang and Chao show that the statistical significance of the difference between the correlation coefficients for Vsw ≥ 550 km/s and those for Vsw < 550 km/s would indicate that the interplanetary-geomagnetic correlations during the fastest speeds are not significantly different from those at slower Vsw ranges. Here we give evidence of the fact that according to the common definition of this parameter, the calculation of the significance of the difference between two correlation coefficients made by Wang and Chao is wrong. Moreover, Wang and Chao recalculate the correlations between the interplanetary parameters and the ΔDst instead of Dst; in fact they note that the time derivative of this index (not the index itself) is driven by the interplanetary medium. Here we note that on the contrary, they show that the correlation coefficients between interplanetary parameters and Dst are larger than those obtained using ΔDst and we suggest a possible interpretation in terms of nonlinearity.
Comparison of comet 81P/Wild 2 dust with interplanetary dust from comets.
Ishii, Hope A; Bradley, John P; Dai, Zu Rong; Chi, Miaofang; Kearsley, Anton T; Burchell, Mark J; Browning, Nigel D; Molster, Frank
2008-01-25
The Stardust mission returned the first sample of a known outer solar system body, comet 81P/Wild 2, to Earth. The sample was expected to resemble chondritic porous interplanetary dust particles because many, and possibly all, such particles are derived from comets. Here, we report that the most abundant and most recognizable silicate materials in chondritic porous interplanetary dust particles appear to be absent from the returned sample, indicating that indigenous outer nebula material is probably rare in 81P/Wild 2. Instead, the sample resembles chondritic meteorites from the asteroid belt, composed mostly of inner solar nebula materials. This surprising finding emphasizes the petrogenetic continuum between comets and asteroids and elevates the astrophysical importance of stratospheric chondritic porous interplanetary dust particles as a precious source of the most cosmically primitive astromaterials.
Interplanetary magnetic field effects on high latitude ionospheric convection
NASA Technical Reports Server (NTRS)
Heelis, R. A.
1985-01-01
Relations between the electric field and the electric current in the ionosphere can be established on the basis of a system of mathematical and physical equations provided by the equations of current continuity and Ohm's law. For this reason, much of the synthesis of electric field and plasma velocity data in the F-region is made with the aid of similar data sets derived from field-aligned current and horizontal current measurements. During the past decade, the development of a self-consistent picture of the distribution and behavior of these measurements has proceeded almost in parallel. The present paper is concerned with the picture as it applies to the electric field and plasma drift velocity and its dependence on the interplanetary magnetic field. Attention is given to the southward interplanetary magnetic field and the northward interplanetary magnetic field.
Study of Travelling Interplanetary Phenomena Report
NASA Astrophysics Data System (ADS)
Dryer, Murray
1987-09-01
Scientific progress on the topic of energy, mass, and momentum transport from the Sun into the heliosphere is contingent upon interdisciplinary and international cooperative efforts on the part of many workers. Summarized here is a report of some highlights of research carried out during the SMY/SMA by the STIP (Study of Travelling Interplanetary Phenomena) Project that included solar and interplanetary scientists around the world. These highlights are concerned with coronal mass ejections from solar flares or erupting prominences (sometimes together); their large-scale consequences in interplanetary space (such as shocks and magnetic 'bubbles'); and energetic particles and their relationship to these large-scale structures. It is concluded that future progress is contingent upon similar international programs assisted by real-time (or near-real-time) warnings of solar activity by cooperating agencies along the lines experienced during the SMY/SMA.
Electron dropout echoes induced by interplanetary shock: A statistical study
NASA Astrophysics Data System (ADS)
Liu, Z. Y.; Zong, Q.-G.; Hao, Y. X.; Zhou, X.-Z.; Ma, X. H.; Liu, Y.
2017-08-01
"Electron dropout echo" as indicated by repeated moderate dropout and recovery signatures of the flux of energetic electron in the outer radiation belt region has been investigated systematically. The electron moderate dropout and its echoes are usually found for higher-energy (>300 keV) channel fluxes, whereas the flux enhancements are obvious for lower energy electrons simultaneously after the interplanetary shock arrives at the Earth's geosynchronous orbit. The electron dropout echo events are found to be usually associated with the interplanetary shocks arrival. The 104 dropout echo events have been found from 215 interplanetary shock events from 1998 to 2007 based on the Los Alamos National Laboratory satellite data. In analogy to substorm injections, these 104 events could be naturally divided into two categories: dispersionless (49 events) or dispersive (55 events) according to the energy dispersion of the initial dropout. It is found that locations of dispersionless events are distributed mainly in the duskside magnetosphere. Further, the obtained locations derived from dispersive events with the time-of-flight technique of the initial dropout regions are mainly located at the duskside as well. Statistical studies have shown that the effect of shock normal, interplanetary magnetic field Bz and solar wind dynamic pressure may be insignificant to these electron dropout events. We suggest that the ˜1 min electric field impulse induced by the interplanetary shock produces a more pronounced inward migration of electrons at the duskside, resulting in the observed duskside moderate dropout of electron flux and its consequent echoes.
Testing Fundamental Gravity with Interplanetary Laser Ranging
NASA Astrophysics Data System (ADS)
Turyshev, S. G.; Shao, M.; Hahn, I.
2018-02-01
Very accurate range measurements with the Interplanetary Laser Ranging Terminal (ILRT) will push high-precision tests of astrophysics/gravitation into a new regime. It could be used for navigation and investigations in planetary/lunar science.
Flight Performance of the Inflatable Reentry Vehicle Experiment 3
NASA Technical Reports Server (NTRS)
Dillman, Robert; DiNonno, John; Bodkin, Richard; Gsell, Valerie; Miller, Nathanael; Olds, Aaron; Bruce, Walter
2013-01-01
The Inflatable Reentry Vehicle Experiment 3 (IRVE-3) launched July 23, 2012, from NASA Wallops Flight Facility (WFF) on a Black Brant XI suborbital sounding rocket and successfully performed its mission, demonstrating the survivability of a hypersonic inflatable aerodynamic decelerator (HIAD) in the reentry heating environment and also illustrating the effect of an offset center of gravity on the HIAD's lift-to-drag ratio. IRVE-3 was a follow-on to 2009's IRVE-II mission, which demonstrated exo-atmospheric inflation, reentry survivability - without significant heating - and the aerodynamic stability of a HIAD down to subsonic flight conditions. NASA Langley Research Center is leading the development of HIAD technology for use on future interplanetary and Earth reentry missions.
NASA Technical Reports Server (NTRS)
Roelof, E. C.; Gold, R. E.; Krimigis, S. M.; Krieger, A. S.; Nolte, J. T.; Mcintosh, P. S.; Lazarus, A. J.; Sullivan, J. D.
1975-01-01
We report the striking coronal control of low-energy solar particles from the solar flare of September 7, 1973. The flare was at S18, W46 (Carrington longitude 188 deg) in McMath Plage Region 12307. We find strong intensity gradients in heliolongitude (about 10% per deg) that are nearly identical in protons, helium, and medium nuclei at energies about 0.5 MeV/nuc, as well as relativistic electrons and 3 MeV protons. This pervasive gradient occurs at longitudes over bright X-ray emission structures east of the flare site which interconnect large-scale chromospheric polarity regions identifiable in H-alpha filtergrams.
First Solar Power Sail Demonstration by IKAROS
NASA Astrophysics Data System (ADS)
Mori, Osamu; Sawada, Hirotaka; Funase, Ryu; Morimoto, Mutsuko; Endo, Tatsuya; Yamamoto, Takayuki; Tsuda, Yuichi; Kawakatsu, Yasuhiro; Kawaguchi, Jun'ichiro; Miyazaki, Yasuyuki; Shirasawa, Yoji; Demonstration Team; Solar Sail Working Group, Ikaros
The Japan Aerospace Exploration Agency (JAXA) will make the world's first solar power sail craft demonstration of photon propulsion and thin film solar power generation during its interplanetary cruise by IKAROS (Interplanetary Kite-craft Accelerated by Radiation Of the Sun). The spacecraft deploys and spans a membrane of 20 meters in diameter taking the advantage of the spin centrifugal force. The spacecraft weighs approximately 310kg, launched together with the agency's Venus Climate Orbiter, AKATSUKI in May 2010. This will be the first actual solar sail flying an interplanetary voyage.
Research in space physics at the University of Iowa
NASA Technical Reports Server (NTRS)
Vanallen, J. A.
1979-01-01
Current investigations relating to energetic particles and the electric, magnetic, and electromagnetic fields associated with the earth, the sun, the moon, the planets, comets, and the interplanetary medium are reported. Primary emphasis is on observational work using a wide diversity of intruments on satellites of the earth and the moon and on planetary and interplanetary spacecraft, and on phenomenological analysis and interpretation. Secondary emphasis is given to closely related observational work by ground based radio-astronomical and optical techniques, and to theoretical problems in plasma physics as relevant to solar, planetary, and interplanetary phenomena.
The emergence of different polarity photospheric flux as the cause of CMEs and interplanetary shocks
NASA Technical Reports Server (NTRS)
Bravo, S.
1995-01-01
Here we discuss the effect that the emergence of flux with a polarity opposed to that previously established in a certain photospheric region. can have on the magnetic structure of the solar atmosphere. We show that such a flux emergence may lead to the ejection of coronal material into the interplanetary medium (a CME) and also to a rapid change in the velocity of the solar wind from the region, which may eventually lead to the formation of an interplanetary shock.
Fabrication of Regolith-Derived Radiation Shield Project
NASA Technical Reports Server (NTRS)
Zeitlin, Nancy; Mantovani, James G.; Townsend, Ivan
2015-01-01
Mars and asteroids have little or no atmosphere, and do not possess a magnetosphere that can protect humans, mechanisms and electronics from damaging Galactic Cosmic Radiation (GCR) and solar particle events (SPE) as does the Earth. These types of space radiation present one of the highest risks to a human crew during interplanetary journeys and to onboard electronics. This project aims to evaluate the effectiveness of carbonaceous asteroid materials as a potential radiation shielding material.
2012-05-03
ENERGETIC ELECTRON EVENTS (POSTPRINT) S.W. Kahler, et al. 03 May 2012 Technical Paper APPROVED FOR PUBLIC RELEASE...REPORT DATE (DD-MM-YYYY) 03-05-2012 2. REPORT TYPE Technical Paper 3. DATES COVERED (From - To) 1 Oct 2007 – 13 Jul 2011 4. TITLE AND SUBTITLE...AND ADDRESS(ES) 8. PERFORMING ORGANIZATION REPORT NUMBER ir Force Research Laboratory Space Vehicles Directorate 3550 Aberdeen Ave SE
NASA Astrophysics Data System (ADS)
Singh, Y. P.; Badruddin
2007-02-01
Interplanetary manifestations of coronal mass ejections (CMEs) with specific plasma and field properties, called ``interplanetary magnetic clouds,'' have been observed in the heliosphere since the mid-1960s. Depending on their associated features, a set of observed magnetic clouds identified at 1 AU were grouped in four different classes using data over 4 decades: (1) interplanetary magnetic clouds moving with the ambient solar wind (MC structure), (2) magnetic clouds moving faster than the ambient solar wind and forming a shock/sheath structure of compressed plasma and field ahead of it (SMC structure), (3) magnetic clouds ``pushed'' by the high-speed streams from behind, forming an interaction region between the two (MIH structure), and (4) shock-associated magnetic clouds followed by high-speed streams (SMH structure). This classification into different groups led us to study the role, effect, and the relative importance of (1) closed field magnetic cloud structure with low field variance, (2) interplanetary shock and magnetically turbulent sheath region, (3) interaction region with large field variance, and (4) the high-speed solar wind stream coming from the open field regions, in modulating the galactic cosmic rays (GCRs). MC structures are responsible for transient decrease with fast recovery. SMC structures are responsible for fast decrease and slow recovery, MIH structures produce depression with slow decrease and slow recovery, and SMH structures are responsible for fast decrease with very slow recovery. Simultaneous variations of GCR intensity, solar plasma velocity, interplanetary magnetic field strength, and its variance led us to study the relative effectiveness of different structures as well as interplanetary plasma/field parameters. Possible role of the magnetic field, its topology, field turbulence, and the high-speed streams in influencing the amplitude and time profile of resulting decreases in GCR intensity have also been discussed.
Nanodust released in interplanetary collisions
NASA Astrophysics Data System (ADS)
Lai, H. R.; Russell, C. T.
2018-07-01
The lifecycle of near-Earth objects (NEOs) involves a collisional cascade that produces ever smaller debris ending with nanoscale particles which are removed from the solar system by radiation pressure and electromagnetic effects. It has been proposed that the nanodust clouds released in collisions perturb the background interplanetary magnetic field and create the interplanetary field enhancements (IFEs). Assuming that this IFE formation scenario is actually operating, we calculate the interplanetary collision rate, estimate the total debris mass carried by nanodust, and compare the collision rate with the IFE rate. We find that to release the same amount of nanodust, the collision rate is comparable to the observed IFE rate. Besides quantitatively testing the association between the collisions evolving large objects and giant solar wind structures, such a study can be extended to ranges of smaller scales and to investigate the source of moderate and small solar wind perturbations.
NASA Technical Reports Server (NTRS)
Bame, S. J.; Asbridge, J. R.; Feldman, W. C.; Gosling, J. T.; Zwickl, R. D.
1981-01-01
In near time coincidence with the arrival of helium enriched plasma driving the shock wave disturbance of November 12-13, 1978, strong bi-directional streaming of solar wind electrons greater than about 80 eV was observed with Los Alamos instrumentation on ISEE 3. The streaming persisted for many hours simultaneously parallel and anti-parallel to the interplanetary magnetic field which was directed roughly perpendicular to the sun-satellite line. This example of bidirectional streaming cannot be explained by field line connection to the earth's bow shock or the outward propagating interplanetary shock which passed ISEE 3 approximately 16 hours earlier. The event is explained if the local interplanetary field was a part of a magnetic bottle rooted at the sun or a disconnected loop propagating outward.
Muon and neutron observations in connection with the corotating interaction regions
NASA Astrophysics Data System (ADS)
da Silva, M. R.; Dal Lago, A.; Echer, E.; de Lucas, A.; Gonzalez, W. D.; Schuch, N. J.; Munakata, K.; Vieira, L. E. A.; Guarnieri, F. L.
Ground cosmic ray observations are used for studying several kinds of interplanetary structures. The cosmic ray data has different responses to each kind of interplanetary structure. This article has as objective to study cosmic ray muon and neutron signatures due to the passage of corotating interaction region (CIR) in the interplanetary medium, and identify the signatures in the cosmic ray data due to these events. The cosmic ray muon data used in this work are recorded by the multidirectional muon detector installed at INPE’s Observatório Espacial do Sul OES/CRSPE/INPE-MCT, in São Martinho da Serra, RS (Brazil) and the neutron data was recorded by the neutron monitor installed in Newark (USA). The CIR events were selected in the period from 2001 to 2004. CIRs clearly affect cosmic ray density in the interplanetary medium in the Earth’s vicinity, where the magnetic field plays an important role.
"Driverless" Shocks in the Interplanetary Medium
NASA Technical Reports Server (NTRS)
Gopalswamy, N.; Kaiser, M. L.; Lara, A.
1999-01-01
Many interplanetary shocks have been detected without an obvious driver behind them. These shocks have been thought to be either blast waves from solar flares or shocks due to sudden increase in solar wind speed caused by interactions between large scale open and closed field lines of the Sun. We investigated this problem using a set of interplanetary shock detected {\\it in situ} by the Wind space craft and tracing their solar origins using low frequency radio data obtained by the Wind/WAVES experiment. For each of these "driverless shocks" we could find a unique coronal mass ejections (CME) event observed by the SOHO (Solar and Heliospheric Observatory) coronagraphs. We also found that these CMEs were ejected at large angles from the Sun-Earth line. It appears that the "driverless shocks" are actually driver shocks, but the drivers were not intercepted by the spacecraft. We conclude that the interplanetary shocks are much more extended than the driving CMEs.
GCR Modulation by Small-Scale Features in the Interplanetary Medium
NASA Astrophysics Data System (ADS)
Jordan, A. P.; Spence, H. E.; Blake, J. B.; Mulligan, T. L.; Shaul, D. N.; Galametz, M.
2007-12-01
In an effort to uncover the properties of structures in the interplanetary medium (IPM) that modulate galactic cosmic rays (GCR) on short time-scales (from hours to days), we study periods of differing conditions in the IPM. We analyze GCR variations from spacecraft both inside and outside the magnetosphere, using the High Sensitivity Telescope (HIST) on Polar and the Spectrometer for INTEGRAL (SPI). We seek causal correlations between the observed GCR modulations and structures in the solar wind plasma and interplanetary magnetic field, as measured concurrently with ACE and/or Wind. Our analysis spans time-/size-scale variations ranging from classic Forbush decreases (Fds), to substructure embedded within Fds, to much smaller amplitude and shorter duration variations observed during comparatively benign interplanetary conditions. We compare and contrast the conditions leading to the range of different GCR responses to modulating structures in the IPM.
NASA Technical Reports Server (NTRS)
Ng, C. K.
1986-01-01
The purpose is to provide an overview of the contributions presented in sessions SH3, SH1.5, SH4.6 and SH4.7 of the 19th International Cosmic Ray Conference. These contributed papers indicate that steady progress continues to be made in both the observational and the theoretical aspects of the transport and acceleration of energetic charged particles in the heliosphere. Studies of solar and interplanetary particles have placed emphasis on particle directional distributions in relation to pitch-angle scattering and magnetic focusing, on the rigidity and spatial dependence of the mean free path, and on new propagation regimes in the inner and outer heliosphere. Coronal propagation appears in need of correlative multi-spacecraft studies in association with detailed observation of the flare process and coronal magnetic structures. Interplanetary acceleration has now gone into a consolidation phase, with theories being worked out in detail and checked against observation.
Direct Measurements of Interplanetary Dust Particles in the Vicinity of Earth
NASA Technical Reports Server (NTRS)
McCracken, C. W.; Alexander, W. M.; Dubin, M.
1961-01-01
The direct measurements made by the Explorer VIII satellite provide the first sound basis for analyzing all available direct measurements of the distribution of interplanetary dust particles. The model average distribution curve established by such an analysis departs significantly from that predicted by the (uncertain) extrapolation of results from meteor observations. A consequence of this difference is that the daily accretion of interplanetary particulate matter by the earth is now considered to be mainly dust particles of the direct measurements range of particle size. Almost all the available direct measurements obtained with microphone systems on rockets, satellites, and spacecraft fit directly on the distribution curve defined by Explorer VIII data. The lack of reliable datum points departing significantly from the model average distribution curve means that available direct measurements show no discernible evidence of an appreciable geocentric concentration of interplanetary dust particles.
NASA Astrophysics Data System (ADS)
Bisi, Mario M.; Fallows, Richard A.; Sobey, Charlotte; Eftekhari, Tarraneh; Jensen, Elizabeth A.; Jackson, Bernard V.; Yu, Hsiu-Shan; Hick, P. Paul; Odstrcil, Dusan; Tokumaru, Munetoshi; Oyuki Chang, M. T.
2016-04-01
Space weather - analogous to terrestrial weather (describing the changing pressure, temperature, wind, and humidity conditions on Earth) - is essentially a description of the changes in velocity, density, magnetic field, high-energy particles, and radiation in the near-Earth space environment including the effects of such on the Earth. Space weather can be considered to have two main strands: (i) scientific research, and (ii) applications. The former is self-explanatory, but the latter covers operational aspects including forecasting. Understanding and forecasting space weather near the Earth is of critical importance to protecting our modern-day reliance on satellites, global-communications and navigation networks, high-altitude air travel (radiation concerns particularly on polar routes), long-distance power/oil/gas lines and piping, and for any future human exploration of space to list but a few. This includes both military and commercial considerations. Two ground-based radio-observing techniques that can add to and lead our understanding and forecasting of heliospheric space weather are those of interplanetary scintillation (IPS) and heliospheric Faraday rotation (FR). We present our latest progress using these two radio heliospheric-imaging remote-sensing techniques including the use of three-dimensional (3-D) modelling and reconstruction techniques using other, additional data as input to support and better-interpret individual case-study results.
NASA Astrophysics Data System (ADS)
Parvathi, S. P.; Ramanan, R. V.
2018-06-01
An iterative analytical trajectory design technique that includes perturbations in the departure phase of the interplanetary orbiter missions is proposed. The perturbations such as non-spherical gravity of Earth and the third body perturbations due to Sun and Moon are included in the analytical design process. In the design process, first the design is obtained using the iterative patched conic technique without including the perturbations and then modified to include the perturbations. The modification is based on, (i) backward analytical propagation of the state vector obtained from the iterative patched conic technique at the sphere of influence by including the perturbations, and (ii) quantification of deviations in the orbital elements at periapsis of the departure hyperbolic orbit. The orbital elements at the sphere of influence are changed to nullify the deviations at the periapsis. The analytical backward propagation is carried out using the linear approximation technique. The new analytical design technique, named as biased iterative patched conic technique, does not depend upon numerical integration and all computations are carried out using closed form expressions. The improved design is very close to the numerical design. The design analysis using the proposed technique provides a realistic insight into the mission aspects. Also, the proposed design is an excellent initial guess for numerical refinement and helps arrive at the four distinct design options for a given opportunity.
Imaging Interplanetary CMEs at Radio Frequency From Solar Polar Orbit
NASA Astrophysics Data System (ADS)
Wu, Ji; Sun, Weiying; Zheng, Jianhua; Zhang, Cheng; Wang, Chi; Wang, C. B.; Wang, S.
Coronal mass ejections (CMEs) are violent discharges of plasma and magnetic fields from the Sun's corona. They have come to be recognized as the major driver of physical conditions in the Sun-Earth system. Consequently, the detection of CMEs is important for un-derstanding and ultimately predicting space weather conditions. The Solar Polar Orbit Radio Telescope (SPORT) is a proposed mission to observe the propagation of interplanetary CMEs from solar polar orbit. The main payload (radio telescope) on board SPORT will be an in-terferometric imaging radiometer working at the meter wavelength band, which will follow the propagation of interplanetary CMEs from a distance of a few solar radii to near 1 AU from solar polar orbit. The SPORT spacecraft will also be equipped with a set of optical and in situ measurement instruments such as a EUV solar telescope, a solar wind plasma experiment, a solar wind ion composition instrument, an energetic particle detector, a wave detector, a mag-netometer and an interplanetary radio burst tracker. In this paper, we first describe the current shortage of interplanetary CME observations. Next, the scientific motivation and objectives of SPORT are introduced. We discuss the basic specifications of the main radio telescope of SPORT with reference to the radio emission mechanisms and the radio frequency band to be observed. Finally, we discuss the key technologies of the SPORT mission, including the con-ceptual design of the main telescope, the image retrieval algorithm and the solar polar orbit injection. Other payloads and their respective observation objectives are also briefly discussed. Key words: Interplanetary CMEs; Interferometric imaging; Solar polar orbit; Radiometer.
NASA Astrophysics Data System (ADS)
Jang, Soojeong; Moon, Y.-J.; Lee, Jae-Ok; Na, Hyeonock
2014-09-01
We have made a comparison between coronal mass ejection (CME)-associated shock propagations based on the Wang-Sheeley-Arge (WSA)-ENLIL model using three cone types and in situ observations. For this we use 28 full-halo CMEs, whose cone parameters are determined and their corresponding interplanetary shocks were observed at the Earth, from 2001 to 2002. We consider three different cone types (an asymmetric cone model, an ice cream cone model, and an elliptical cone model) to determine 3-D CME cone parameters (radial velocity, angular width, and source location), which are the input values of the WSA-ENLIL model. The mean absolute error of the CME-associated shock travel times for the WSA-ENLIL model using the ice-cream cone model is 9.9 h, which is about 1 h smaller than those of the other models. We compare the peak values and profiles of solar wind parameters (speed and density) with in situ observations. We find that the root-mean-square errors of solar wind peak speed and density for the ice cream and asymmetric cone model are about 190 km/s and 24/cm3, respectively. We estimate the cross correlations between the models and observations within the time lag of ± 2 days from the shock travel time. The correlation coefficients between the solar wind speeds from the WSA-ENLIL model using three cone types and in situ observations are approximately 0.7, which is larger than those of solar wind density (cc ˜0.6). Our preliminary investigations show that the ice cream cone model seems to be better than the other cone models in terms of the input parameters of the WSA-ENLIL model.
Operating CFDP in the Interplanetary Internet
NASA Technical Reports Server (NTRS)
Burleigh, S.
2002-01-01
This paper examines the design elements of CCSDS File Delivery Protocol and Interplanetary Internet technologies that will simplify their integration and discusses the resulting new capabilities, such as efficient transmission of large files via multiple relay satellites operating in parallel.
NASA Technical Reports Server (NTRS)
Gopalswamy, Natchimuthuk
2011-01-01
Using the kinematics of coronal mass ejections (CMEs), onset time of soft X-ray flares, and the finite size of the pre-eruption CME structure, we derive the heliocentric distane at which the energetic particles during the ground level enhancement (GLE) events of Solar Cycle 23. We find that the GLE particles are released when the CMEs reach an average heliocentric distance of approx.3.25 solar radii (Rs). From this we infer that the shocks accelerating the particles are located at similar heights. Type II radio burst observations indicate that the CMEs are at much lower distances (average approx.1.4 Rs) when the CME-driven shock first forms. The shock seems to travel approx.1.8 Rs over a period of approox.30 min on the average before releasing the GLE particles. In deriving these results, we made three assumptions that have observational support: (i) the CME lift off occurs from an initial distance of about 1.25 Rs; (ii) the flare onset and CME onset are one and the same because these are two different manifestations of the same eruption; and (iii) the CME has positive acceleration from the onset to the first appearance in the coronagraphic field of view (2.5 to 6 Rs). Observations of coronal cavities in eclipse pictures and in coronagraphic images justify the assumption (i). The close relationship between the flare reconnection magnetic flux and the azimuthal flux of interplanetary magnetic clouds justify assumption (ii) consistent with the standard model (CSHKP) of solar eruption. Coronagraphic observations made close to the solar surface indicate a large positive acceleration of CMEs to a heliocentric distance of approx.3 Rs before they start slowing down due to the drag force. The inferred acceleration (approx.1.5 km/s/s) is consistent with reported values in the literature.
Interplanetary Trajectories, Encke Method (ITEM)
NASA Technical Reports Server (NTRS)
Whitlock, F. H.; Wolfe, H.; Lefton, L.; Levine, N.
1972-01-01
Modified program has been developed using improved variation of Encke method which avoids accumulation of round-off errors and avoids numerical ambiguities arising from near-circular orbits of low inclination. Variety of interplanetary trajectory problems can be computed with maximum accuracy and efficiency.
Search Coil vs. Fluxgate Magnetometer Measurements at Interplanetary Shocks
NASA Technical Reports Server (NTRS)
Wilson, L.B., III
2012-01-01
We present magnetic field observations at interplanetary shocks comparing two different sample rates showing significantly different results. Fluxgate magnetometer measurements show relatively laminar supercritical shock transitions at roughly 11 samples/s. Search coil magnetometer measurements at 1875 samples/s, however, show large amplitude (dB/B as large as 2) fluctuations that are not resolved by the fluxgate magnetometer. We show that these fluctuations, identified as whistler mode waves, would produce a significant perturbation to the shock transition region changing the interpretation from laminar to turbulent. Thus, previous observations of supercritical interplanetary shocks classified as laminar may have been under sampled.
Mars Science Laboratory Interplanetary Navigation Performance
NASA Technical Reports Server (NTRS)
Martin-Mur, Tomas J.; Kruizinga, Gerhard; Wong, Mau
2013-01-01
The Mars Science Laboratory spacecraft, carrying the Curiosity rover to Mars, hit the top of the Martian atmosphere just 200 meters from where it had been predicted more than six days earlier, and 2.6 million kilometers away. This un-expected level of accuracy was achieved by a combination of factors including: spacecraft performance, tracking data processing, dynamical modeling choices, and navigation filter setup. This paper will describe our best understanding of what were the factors that contributed to this excellent interplanetary trajectory prediction performance. The accurate interplanetary navigation contributed to the very precise landing performance, and to the overall success of the mission.
Geometry of the diffusive propagation region in the August 14, 1982 solar electron event
NASA Technical Reports Server (NTRS)
Evenson, P. A.
1985-01-01
On August 14, 1982, relativistic electrons arrived promptly after an impulsive gamma ray flare, indicating that very little scattering was taking place in interplanetary space. By ignoring anisotropy data the time profile of the event is well described by interplanetary diffusion except for the derived particle injection time. This discrepancy provides independent evidence that the particles are diffusing in a volume close to the Sun rather than in interplanetary space. The flux at maximum method of determining the number of particles produced is still a good approximation when appropriately applied.
NASA Technical Reports Server (NTRS)
Bravo, S.
1995-01-01
Coronal holes are the sources of the solar wind and, according to recent YOKOH observations, may undergo rapid changes which are associated with manifestations of explosive solar activity. Rapid changes in a hole's structure will produce rapid changes in the characteristics of the wind emerging from it and, in the particular c se of a sudden increase in wind velocity, this may lead to the formation of an interplanetary shock. We discuss the characteristics of shocks formed in such a way and compare them with interplanetary observations.
1986-09-01
AD-R173 822 MWD SIMULATION OF THE INTERPLANETARY ENVIRONMENT IN THE 1/1 ECLIPTIC PLRNE DU (U) AIR FORCE GEOPHYSICS LAS HANSCOM AFB MA M DRYER ET AL...RESOLUTION TEST CHART M4rtqOAI RIM) Of STANDARMS 96I-A AFGL-TR-86-0189 M Simulation of the Interplanetary Environment in the Ecliptic Plane During the 3-9...CLASSIFICATION OF THIS PAGE Cant of Block 11: in the Ecliptic Plane During the 3-9 February 1986 Solar and Geomagnetic Activity Cant of Block 19 (ABSTRACT
NASA Technical Reports Server (NTRS)
Spangelo, Sara; Dalle, Derek; Longmier, Benjamin
2015-01-01
This paper investigates the feasibility of Earth-transfer and interplanetary mission architectures for miniaturized spacecraft using emerging small solar electric propulsion technologies. Emerging small SEP thrusters offer significant advantages relative to existing technologies and will enable U-class systems to perform trajectory maneuvers with significant Delta V requirements. The approach in this paper is unique because it integrates trajectory design with vehicle sizing and accounts for the system and operational constraints of small U-class missions. The modeling framework includes integrated propulsion, orbit, energy, and external environment dynamics and systems-level power, energy, mass, and volume constraints. The trajectory simulation environment models orbit boosts in Earth orbit and flyby and capture trajectories to interplanetary destinations. A family of small spacecraft mission architectures are studied, including altitude and inclination transfers in Earth orbit and trajectories that escape Earth orbit and travel to interplanetary destinations such as Mercury, Venus, and Mars. Results are presented visually to show the trade-offs between competing performance objectives such as maximizing available mass and volume for payloads and minimizing transfer time. The results demonstrate the feasibility of using small spacecraft to perform significant Earth and interplanetary orbit transfers in less than one year with reasonable U-class mass, power, volume, and mission durations.
3-D model of ICME in the interplanetary medium
NASA Astrophysics Data System (ADS)
Borgazzi, A.; Lara, A.; Niembro, T.
2011-12-01
We developed a method that describes with simply geometry the coordinates of intersection between the leading edge of an ICME and the position of an arbitrary satellite. When a fast CME is ejected from the Sun to the interplanetary space in most of the cases drives a shock. As the CME moves in the corona and later in the interplanetary space more material is stacking in the front and edges of the ejecta. In a first approximation, it is possible to assume the shape of these structures, the CME and the stacked material as a cone of revolution, (the ice-cream model [Schwenn et al., (2005)]). The interface may change due to the interaction of the structure and the non-shocked material in front of the ICME but the original shape of a cone of revolution is preserved. We assume, in a three dimensional geometry, an ice-cream cone shape for the ICME and apply an analytical model for its transport in the interplanetary medium. The goal of the present method is to give the time and the intersection coordinates between the leading edge of the ICME and any satellite that may be in the path of the ICME. With this information we can modelate the travel of the ICME in the interplanetary space using STEREO data.
NASA Technical Reports Server (NTRS)
Clements, E. B.; Carlton, A. K.; Joyce, C. J.; Schwadron, N. A.; Spence, H. E.; Sun, X.; Cahoy, K.
2016-01-01
Space weather is a major concern for radiation-sensitive space systems, particularly for interplanetary missions, which operate outside of the protection of Earth's magnetic field. We examine and quantify the effects of space weather on silicon avalanche photodiodes (SiAPDs), which are used for interplanetary laser altimeters and communications systems and can be sensitive to even low levels of radiation (less than 50 cGy). While ground-based radiation testing has been performed on avalanche photodiode (APDs) for space missions, in-space measurements of SiAPD response to interplanetary space weather have not been previously reported. We compare noise data from the Lunar Reconnaissance Orbiter (LRO) Lunar Orbiter Laser Altimeter (LOLA) SiAPDs with radiation measurements from the onboard Cosmic Ray Telescope for the Effects of Radiation (CRaTER) instrument. We did not find any evidence to support radiation as the cause of changes in detector threshold voltage during radiation storms, both for transient detector noise and long-term average detector noise, suggesting that the approximately 1.3 cm thick shielding (a combination of titanium and beryllium) of the LOLA detectors is sufficient for SiAPDs on interplanetary missions with radiation environments similar to what the LRO experienced (559 cGy of radiation over 4 years).
NASA Technical Reports Server (NTRS)
Flynn, G. J.
1993-01-01
Calculations by Anders and Chyba et al. have recently revived interest in the suggestion that organic compounds important to the development of life were delivered to the primitive surface of the Earth by comets, asteroids or the interplanetary dust derived from these two sources. Anders has shown that the major post-accretion contribution of extraterrestrial organic matter to the surface of the Earth is from interplanetary dust. Since Mars is a much more favorable site for the gentle deceleration of interplanetary dust particles than is Earth, model calculations show that biologically important organic compounds are likely to have been delivered to the early surface of Mars by the interplanetary dust in an order-of-magnitude higher surface density than onto the early Earth. Using the method described by Flynn and McKay, the size frequency distribution, and the atmospheric entry velocity distribution of IDP's at Mars were calculated. The entry velocity distribution, coupled with the atmospheric entry heating model developed by Whipple and extended by Fraundorf was used to calculate the fraction of the particles in each mass decade which survives atmospheric entry without melting (i.e., those not heated above 1600K). The incident mass and surviving mass in each mass decade are shown for both Earth and Mars.
A theory of solar type 3 radio bursts
NASA Technical Reports Server (NTRS)
Goldstein, M. L.; Papadopoulos, K.; Smith, R. A.
1979-01-01
Energetic electrons propagating through the interplanetary medium are shown to excite the one dimensional oscillating two stream instability (OTSI). The OTSI is in turn stabilized by anomalous resistivity which completes the transfer of long wavelength Langmuir waves to short wavelengths, out of resonance with the electrons. The theory explains the small energy losses suffered by the electrons in propagating to 1 AU, the predominance of second harmonic radiation, and the observed correlation between radio and electron fluxes.
NASA Technical Reports Server (NTRS)
Mackinnon, Ian D. R.; Rietmeijer, Frans J. M.; Mckay, David S.
1987-01-01
In order to describe the total mineralogical diversity within primitive extraterrestrial materials, individual interplanetary dust particles (IDPs) collected from the stratosphere as part of the JSC Cosmic Dust Curatorial Program were analyzed using a variety of AEM techniques. Identification of over 250 individual grains within one chondritic porous (CP) IDP shows that most phases could be formed by low temperature processes and that heating of the IDP during atmospheric entry is minimal and less than 600 C. In a review of the mineralogy of IDPs, it was suggested that the occurrence of other silicates such as enstatite whiskers is consistent with the formation in an early turbulent period of the solar nebula. Experimental confirmation of fundamental chemical and physical processes in a stellar environment, such as vapor phase condensation, nucleation, and growth by annealing, is an important aspect of astrophysical models for the evolution of the Solar System. A detailed comparison of chondritic IDP and carbonaceous chondrite mineralogies shows significant differences between the types of silicate minerals as well as the predominant oxides.
MCNPX Cosmic Ray Shielding Calculations with the NORMAN Phantom Model
NASA Technical Reports Server (NTRS)
James, Michael R.; Durkee, Joe W.; McKinney, Gregg; Singleterry Robert
2008-01-01
The United States is planning manned lunar and interplanetary missions in the coming years. Shielding from cosmic rays is a critical aspect of manned spaceflight. These ventures will present exposure issues involving the interplanetary Galactic Cosmic Ray (GCR) environment. GCRs are comprised primarily of protons (approx.84.5%) and alpha-particles (approx.14.7%), while the remainder is comprised of massive, highly energetic nuclei. The National Aeronautics and Space Administration (NASA) Langley Research Center (LaRC) has commissioned a joint study with Los Alamos National Laboratory (LANL) to investigate the interaction of the GCR environment with humans using high-fidelity, state-of-the-art computer simulations. The simulations involve shielding and dose calculations in order to assess radiation effects in various organs. The simulations are being conducted using high-resolution voxel-phantom models and the MCNPX[1] Monte Carlo radiation-transport code. Recent advances in MCNPX physics packages now enable simulated transport over 2200 types of ions of widely varying energies in large, intricate geometries. We report here initial results obtained using a GCR spectrum and a NORMAN[3] phantom.
Main Properties of Forbush Effects Related to High-Speed Streams from Coronal Holes
NASA Astrophysics Data System (ADS)
Melkumyan, A. A.; Belov, A. V.; Abunina, M. A.; Abunin, A. A.; Eroshenko, E. A.; Oleneva, V. A.; Yanke, V. G.
2018-03-01
The IZMIRAN database of Forbush effects and interplanetary disturbances was used to study features of the action of high-speed solar wind streams from coronal holes on cosmic rays. Three hundred and fifty Forbush effects created by coronal holes without other actions were distinguished. The mean values and distributions have been found for different characteristics of events from this group and compared with all Forbush effects and Forbush effects caused by coronal ejections. Despite the great differences in high-speed streams from coronal holes, this group turned out to be more compact and uniform as compared to events related to coronal ejections. Regression dependences and correlation relations between different parameters of events for the studied groups have been obtained. It has been shown that Forbush effects caused by coronal ejections depend considerably more strongly on the characteristics of interplanetary disturbances as compared to Forbush effects related to coronal holes. This suggests a significant difference between the modulation mechanisms of Forbush effects of different types and corroborates earlier conclusions based on indirect data.
Nanosats for a Radio Interferometer Observatory in Space
NASA Astrophysics Data System (ADS)
Cecconi, B.; Katsanevras, S.; Puy, D.; Bentum, M.
2015-10-01
During the last decades, astronomy and space physics changed dramatically our knowledge of the evolution of the Universe. However, our view is still incomplete in the very low frequency range (1- 30 MHz), which is thus one of the last unexplored astrophysical spectral band. Below 30 MHz, ionospheric fluctuations severely perturb groundbased observations. They are impossible below 10 MHz due to the ionospheric cutoff. In addition, man made radio interferences makes it even more difficult to observe from ground at low frequencies. Deploying a radio instrument in space is the only way to open this new window on the Universe. Among the many science objectives for such type of instrumentations, we can find cosmological studies such as the Dark Ages of the Universe, the remote astrophysical objects, pulsars and fast transients, the interstellar medium. The following Solar system and Planetary objectives are also very important: - Sun-Earth Interactions: The Sun is strongly influencing the interplanetary medium (IPM) and the terrestrial geospatial environment. The evolution mechanisms of coronal mass ejections (CME) and their impact on solar system bodies are still not fully understood. This results in large inaccuracies on the eruption models and prediction tools, and their consequences on the Earth environment. Very low frequency radio imaging capabilities (especially for the Type II solar radio bursts, which are linked with interplanetary shocks) should allow the scientific community to make a big step forward in understanding of the physics and the dynamics of these phenomena, by observing the location of the radio source, how they correlate with their associated shocks and how they propagate within the IPM. - Planets and Exoplanets: The Earth and the fourgiant planets are hosting strong magnetic fields producing large magnetospheres. Particle acceleration are very efficient therein and lead to emitting intense low frequency radio waves in their auroral regions. These radio emissions are produced through the Cyclotron Maser Instability (CMI). Locating the radio sources and tracing back their path along magnetic field lines leads to the particle acceleration regions. This diagnostic is powerful remote sensing tool for studying the dynamics of planetary magnetospheres. Planetary lightnings are also a source electromagnetic radiation, which allows us to sound both planetary atmospheric and ionospheric properties. Finally, the potential observations of exoplanetary radio emissions at low frequencies are a very promising way of getting intrinsic properties of exoplanets such as their sidereal rotation period, the inclination of their rotation axis or magnetic axis, the intensity of their internal magnetic field, etc…
Trace Element Abundance Measurements on Cosmic Dust Particles
NASA Technical Reports Server (NTRS)
Flynn, George
1996-01-01
The X-Ray Microprobe on beamline X-26A at the National Synchrotron Light Source (NSLS) at Brookhaven National Laboratory was used to determine the abundances of elements from Cr through Sr in individual interplanetary dust particles (IDPs) collected from the Earth's stratosphere and the Scanning Transmission X-ray Microscope (STXM) on beamline X-1A at the NSLS was used to determine the carbon abundances and spatial distributions in IDPs. In addition, modeling was performed in an attempt to associate particular types of IDPs with specific types of parent bodies, and thus to infer the chemistry, mineralogy, and structural properties of those parent bodies.
NASA Astrophysics Data System (ADS)
Xiong, Ming; Davies, Jackie A.; Li, Bo; Yang, Liping; Liu, Ying D.; Xia, Lidong; Harrison, Richard A.; Keiji, Hayashi; Li, Huichao
2017-07-01
Interplanetary corotating interaction regions (CIRs) can be remotely imaged in white light (WL), as demonstrated by the Solar Mass Ejection Imager (SMEI) on board the Coriolis spacecraft and Heliospheric Imagers (HIs) on board the twin Solar TErrestrial RElations Observatory (STEREO) spacecraft. The interplanetary WL intensity, due to Thomson scattering of incident sunlight by free electrons, is jointly determined by the 3D distribution of electron number density and line-of-sight (LOS) weighting factors of the Thomson-scattering geometry. The 2D radiance patterns of CIRs in WL sky maps look very different from different 3D viewpoints. Because of the in-ecliptic locations of both the STEREO and Coriolis spacecraft, the longitudinal dimension of interplanetary CIRs has, up to now, always been integrated in WL imagery. To synthesize the WL radiance patterns of CIRs from an out-of-ecliptic (OOE) vantage point, we perform forward magnetohydrodynamic modeling of the 3D inner heliosphere during Carrington Rotation CR1967 at solar maximum. The mixing effects associated with viewing 3D CIRs are significantly minimized from an OOE viewpoint. Our forward modeling results demonstrate that OOE WL imaging from a latitude greater than 60° can (1) enable the garden-hose spiral morphology of CIRs to be readily resolved, (2) enable multiple coexisting CIRs to be differentiated, and (3) enable the continuous tracing of any interplanetary CIR back toward its coronal source. In particular, an OOE view in WL can reveal where nascent CIRs are formed in the extended corona and how these CIRs develop in interplanetary space. Therefore, a panoramic view from a suite of wide-field WL imagers in a solar polar orbit would be invaluable in unambiguously resolving the large-scale longitudinal structure of CIRs in the 3D inner heliosphere.
(abstract) Application of Non-coherent Data Types for Deep Space Navigation
NASA Technical Reports Server (NTRS)
Bhaskaran, Shyam
1995-01-01
Several options are being examined to reduce the costs of spacecraft and deep space missions. One such option is to fly spacecraft in a non-coherent mode, that is, the spacecraft does not carry a transponder and cannot coherently return a Doppler signal. Historically, such one-way data has not been used as the sole data type due to the instability of the onboard oscillator, the use of S-band frequencies, and the corresponding larger error sources which could not be modeled. However, with the advent of high-speed work stations and more sophisticated modeling ability, the possibility of using one-way data is being re-examined. This paper addresses the navigation performance of various one-way data types for use in interplanetary missions.
NASA Technical Reports Server (NTRS)
Alves, L. R.; Da Silva, L. A.; Souza, V. M.; Sibeck, D. G.; Jauer, P. R.; Vieira, L. E. A.; Walsh, B. M.; Silveira, M. V. D.; Marchezi, J. P.; Rockenbach, M.;
2016-01-01
Magnetopause shadowing and wave-particle interactions are recognized as the two primary mechanisms for losses of electrons from the outer radiation belt. We investigate these mechanisms, sing satellite observations both in interplanetary space and within the magnetosphere and particle drift modeling. Two interplanetary shocks sheaths impinged upon the magnetopause causing a relativistic electron flux dropout. The magnetic cloud (C) and interplanetary structure sunward of the MC had primarily northward magnetic field, perhaps leading to a concomitant lack of substorm activity and a 10 day long quiescent period. The arrival of two shocks caused an unusual electron flux dropout. Test-particle simulations have shown 2 to 5 MeV energy, equatorially mirroring electrons with initial values of L 5.5can be lost to the magnetosheath via magnetopause shadowing alone. For electron losses at lower L-shells, coherent chorus wave-driven pitch angle scattering and ULF wave-driven radial transport have been shownto be viable mechanisms.
Interplanetary magnetic field control of the Mars bow shock: Evidence for Venuslike interaction
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zhang, T.L.; Schwingenschuh, K.; Lichtenegger, H.
1991-07-01
The Mars bow shock location and shape have been determined by examining the PHOBOS spacecraft magnetometer data. Observations show that the position of the terminator bow shock varies with interplanetary magnetic field orientation in the same way as at Venus. The shock is farthest from Mars in the direction of the interplanetary electric field, consistent with the idea that mass loading plays an important role in the solar wind interaction with Mars. The authors also find that the shock cross section at the terminator plane is asymmetric and is controlled by the interplanetary magnetic field as expected from the asymmetricmore » propagation velocity of the fast magnetosonic wave. Comparing with earlier mission data, they show that the Mars shock location varies with solar activity. The shock is farther from Mars during solar maximum. Thus the solar wind interaction with Mars appears to be Venuslike, with a magnetic moment too small to affect significantly the solar wind interaction.« less
The interplanetary exchange of photosynthesis.
Cockell, Charles S
2008-02-01
Panspermia, the transfer of organisms from one planet to another, either through interplanetary or interstellar space, remains speculation. However, its potential can be experimentally tested. Conceptually, it is island biogeography on an interplanetary or interstellar scale. Of special interest is the possibility of the transfer of oxygenic photosynthesis between one planet and another, as it can initiate large scale biospheric productivity. Photosynthetic organisms, which must live near the surface of rocks, can be shown experimentally to be subject to destruction during atmospheric transit. Many of them grow as vegetative cells, which are shown experimentally to be susceptible to destruction by shock during impact ejection, although the effectiveness of this dispersal filter can be shown to be mitigated by the characteristics of the cells and their local environment. Collectively these, and other, experiments reveal the particular barriers to the cross-inoculation of photosynthesis. If oxygen biosignatures are eventually found in the atmospheres of extrasolar planets, understanding the potential for the interplanetary exchange of photosynthesis will aid in their interpretation.
Interplanetary Electric Propulsion Uranus Mission Trades Supporting the Decadal Survey
NASA Technical Reports Server (NTRS)
Dankanich, John W.; McAdams, James
2011-01-01
The Decadal Survey Committee was tasked to develop a comprehensive science and mission strategy for planetary science that updates and extends the National Academies Space Studies Board s current solar system exploration decadal survey. A Uranus orbiter mission has been evaluated as a part of this 2013-2022 Planetary Science Decadal Survey. A comprehensive Uranus orbiter mission design was completed, including a broad search of interplanetary electric propulsion transfer options. The scope of interplanetary trades was limited to electric propulsion concepts, both solar and radioisotope powered. Solar electric propulsion offers significant payloads to Uranus. Inserted mass into the initial science orbit due is highly sensitive to transfer time due to arrival velocities. The recommended baseline trajectory is a 13 year transfer with an Atlas 551, a 1+1 NEXT stage with 15 kW of power using an EEJU trajectory and a 1,000km EGA flyby altitude constraint. This baseline delivers over 2,000kg into the initial science orbit. Interplanetary trajectory trades and sensitivity analyses are presented herein.
PROPAGATION AND EVOLUTION OF THE JUNE 1st 2008 CME IN THE INTERPLANETARY MEDIUM
NASA Astrophysics Data System (ADS)
Nieves-Chinchilla, T.; Lamb, D. A.; Davila, J. M.; Vinas, A. F.; Moestl, C.; Hidalgo, M. A.; Farrugia, C. J.; Malandraki, O.; Dresing, N.; Gómez-Herrero, R.
2009-12-01
In this work we present a study of the coronal mass ejection (CME) of June 1st of 2008 in the interplanetary medium. This event has been extensively studied by others because of its favorable geometry and the possible consequences of its peculiar initiation for space weather forecasting. We show an analysis of the evolution of the CME in the interplanetary medium in order to shed some light on the propagation mechanism of the ICME. We have determined the typical shock associated characteristics of the ICME in order to understand the propagation properties. Using two different non force-free models of the magnetic cloud allows us to incorporate expansion of the cloud. We use in-situ measurements from STEREO B/IMPACT to characterize the ICME. In addition, we use images from STEREO A/SECCHI-HI to analyze the propagation and visual evolution of the associated flux rope in the interplanetary medium. We compare and contrast these observations with the results of the analytical models.
The causes of recurrent geomagnetic storms
NASA Technical Reports Server (NTRS)
Burlaga, L. F.; Lepping, R. P.
1976-01-01
The causes of recurrent geomagnetic activity were studied by analyzing interplanetary magnetic field and plasma data from earth-orbiting spacecraft in the interval from November 1973 to February 1974. This interval included the start of two long sequences of geomagnetic activity and two corresponding corotating interplanetary streams. In general, the geomagnetic activity was related to an electric field which was due to two factors: (1) the ordered, mesoscale pattern of the stream itself, and (2) random, smaller-scale fluctuations in the southward component of the interplanetary magnetic field Bz. The geomagnetic activity in each recurrent sequence consisted of two successive stages. The first stage was usually the most intense, and it occurred during the passage of the interaction region at the front of a stream. These large amplitudes of Bz were primarily produced in the interplanetary medium by compression of ambient fluctuations as the stream steepened in transit to 1 A.U. The second stage of geomagnetic activity immediately following the first was associated with the highest speeds in the stream.
The search for refractory interplanetary dust particles from preindustrial aged Antarctic ice
NASA Technical Reports Server (NTRS)
Zolensky, Michael E.; Webb, Susan J.; Thomas, Kathie
1988-01-01
In a study of refractory interplanetary dust particles, preindustrial-aged Antarctic ice samples have been collected, melted, and filtered to separate the particle load. Particles containing a significant amount of aluminum, titanium, and/or calcium were singled out for detailed SEM and STEM characterization. The majority of these particles are shown to be volcanic tephra from nearby volcanic centers. Six spherical aggregates were encountered that consist of submicron-sized grains of rutile within polycrystalline cristobalite. These particles are probably of terrestrial volcanic origin, but have not been previously reported from any environment. One aggregate particle containing fassaite and hibonite is described as a probable interplanetary dust particle. The constituent grain sizes of this particle vary from 0.1 to 0.3 microns, making it significantly more fine-grained than meteoritic calcium-aluminum-rich inclusions. This particle is mineralogically and morphologically similar to recently reported refractory interplanetary dust particles collected from the stratosphere, and dissimilar to the products of modern spacecraft debris.
Electron-Scale Measurements of Magnetic Reconnection in Space
NASA Technical Reports Server (NTRS)
Burch, J. L.; Torbert, R. B.; Phan, T. D.; Chen, L.-J.; Moore, T. E.; Ergun, R. E.; Eastwood, J. P.; Gershman, D. J.; Cassak, P. A.; Argall, M. R.;
2016-01-01
Magnetic reconnection is a fundamental physical process in plasmas whereby stored magnetic energy is converted into heat and kinetic energy of charged particles. Reconnection occurs in many astrophysical plasma environments and in laboratory plasmas. Using measurements with very high time resolution, NASA's Magnetospheric Multiscale (MMS) mission has found direct evidence for electron demagnetization and acceleration at sites along the sunward boundary of Earth's magnetosphere where the interplanetary magnetic field reconnects with the terrestrial magnetic field. We have (i) observed the conversion of magnetic energy to particle energy; (ii) measured the electric field and current, which together cause the dissipation of magnetic energy; and (iii) identified the electron population that carries the current as a result of demagnetization and acceleration within the reconnection diffusion/dissipation region.
Dependence of the High Latitude Middle Atmosphere Ionization on Structures in Interplanetary Space
NASA Technical Reports Server (NTRS)
Bremer, J.; Lauter, E. A.
1984-01-01
The precipitation of high energetic electrons during and after strong geomagnetic storms into heights below 100 km in middle and subauroral latitudes is markedly modulated by the structure of the interplanetary magnetic field (IMF). Under relative quiet conditions the D-region ionization caused by high energetic particle precipitation (energies greater than 20 to 50 keV) depends on changes of the interplanetary magnetic field and also on the velocity of the solar wind. To test this assumption, the influence of the IMF-sector boundary crossings on ionospheric absorption data of high and middle latitudes by the superposed-epoch method was investigated.
NASA Technical Reports Server (NTRS)
Kumar, S.; Broadfoot, A. L.
1979-01-01
A detailed analysis is conducted which shows that signatures in the interplanetary Lyman-alpha emissions observed in three different data sets from Mariner 10 (corresponding to different locations of the spacecraft) provide firm evidence that the intensity departures are correlated with a decrease in solar wind flux with increasing latitude. It is suggested that observations of the interplanetary emission can be used to monitor average solar wind activity at high latitudes. The asymmetry in the solar radiation field as a source of observed departures in L-alpha data is considered and attention is given to the interstellar hydrogen and helium density.
Interstellar chemistry recorded in organic matter from primitive meteorites.
Busemann, Henner; Young, Andrea F; Alexander, Conel M O'd; Hoppe, Peter; Mukhopadhyay, Sujoy; Nittler, Larry R
2006-05-05
Organic matter in extraterrestrial materials has isotopic anomalies in hydrogen and nitrogen that suggest an origin in the presolar molecular cloud or perhaps in the protoplanetary disk. Interplanetary dust particles are generally regarded as the most primitive solar system matter available, in part because until recently they exhibited the most extreme isotope anomalies. However, we show that hydrogen and nitrogen isotopic compositions in carbonaceous chondrite organic matter reach and even exceed those found in interplanetary dust particles. Hence, both meteorites (originating from the asteroid belt) and interplanetary dust particles (possibly from comets) preserve primitive organics that were a component of the original building blocks of the solar system.
Global Optimization of Interplanetary Trajectories in the Presence of Realistic Mission Contraints
NASA Technical Reports Server (NTRS)
Hinckley, David, Jr.; Englander, Jacob; Hitt, Darren
2015-01-01
Interplanetary missions are often subject to difficult constraints, like solar phase angle upon arrival at the destination, velocity at arrival, and altitudes for flybys. Preliminary design of such missions is often conducted by solving the unconstrained problem and then filtering away solutions which do not naturally satisfy the constraints. However this can bias the search into non-advantageous regions of the solution space, so it can be better to conduct preliminary design with the full set of constraints imposed. In this work two stochastic global search methods are developed which are well suited to the constrained global interplanetary trajectory optimization problem.
Optical spectroscopy of interplanetary dust collected in the earth's stratosphere
NASA Technical Reports Server (NTRS)
Fraundorf, P.; Patel, R. I.; Shirck, J.; Walker, R. M.; Freeman, J. J.
1980-01-01
Optical absorption spectra of interplanetary dust particles 2-30 microns in size collected in the atmosphere at an altitude of 20 km by inertial impactors mounted on NASA U-2 aircraft are reported. Fourier transform absorption spectroscopy of crushed samples of the particles reveals a broad feature in the region 1300-800 kaysers which has also been found in meteorite and cometary dust spectra, and a weak iron crystal field absorption band at approximately 9800 kaysers, as is observed in meteorites. Work is currently in progress to separate the various components of the interplanetary dust particles in order to evaluate separately their contributions to the absorption.
The Radiation, Interplanetary Shocks, and Coronal Sources (RISCS) Toolset
NASA Technical Reports Server (NTRS)
Zank, G. P.; Spann, James F.
2014-01-01
The goal of this project is to serve the needs of space system designers and operators by developing an interplanetary radiation environment model within 10 AU:Radiation, Interplanetary Shocks, and Coronal Sources (RISCS) toolset: (1) The RISCS toolset will provide specific reference environments for space system designers and nowcasting and forecasting capabilities for space system operators; (2) We envision the RISCS toolset providing the spatial and temporal radiation environment external to the Earth's (and other planets') magnetosphere, as well as possessing the modularity to integrate separate applications (apps) that can map to specific magnetosphere locations and/or perform the subsequent radiation transport and dosimetry for a specific target.
NASA Astrophysics Data System (ADS)
Zong, Qiugang
Strong interplanetary shocks interaction with the Earth's magnetosphere would have great impacts on the Earth's magnetosphere. Cluster and Double Star constellation provides an ex-cellent opportunity to study the inner magnetospheric response to a powerful interplanetary solar wind forcing. An interplanetary shock on Nov.7 2004 with the solar wind dynamic pres-sure ˜ 70 nPa (Maximum) induced a large bipolar electric field in the plasmasphere boundary layer as observed by Cluster fleet, the peak-to-peak ∆Ey is more than 60 mV/m. Energetic elec-trons in the outer radiation belt are accelerated almost simultaneously when the interplanetary shock impinges upon the Earth's magnetosphere. Energetic electron bursts are coincident with the induced large electric field, energetic electrons (30 to 500 keV) with 900 pitch angles are accelerated first whereas those electrons are decelerated when the shock-induced electric field turns to positive value. Both toroidal and poloidal mode waves are found to be important but interacting with energetic electron at a different L-shell and a different period. At the Cluster's position (L = 4.4,), poloidal is predominant wave mode whereas at the geosynchronous orbits (L = 6.6), the ULF waves observed by the GOES -10 and -12 satellites are mostly toroidal. For comparison, a rather weak interplanetary shock on Aug. 30, 2001 (dynamic pressure ˜ 2.7 nPa) is also investigated in this paper. It is found that interplanetary shocks or solar wind pressure pulses with even small dynamic pressure change would have non-ignorable role in the radiation belt dynamic. Further, in this paper, our results also reveal the excitation of ULF waves re-sponses on the passing interplanetary shock, especially the importance of difference ULF wave modes when interacting with the energetic electrons in the radiation belt. The damping of the shock induced ULF waves could be separated into two terms: one term corresponds to the generalized Landau damping, the damping rate is large and the damping is fast; the other term corresponds to the damping through ionosphere due to its finite electric conductivity, the damping rate of this item is small and the damping is slow. The fast damping rate at (˜ 10-3 ) is significant larger than the slow damping rate (˜ 10-4 ) suggesting a rapid ULF wave energy lost is via drift resonance with energetic electrons in the radiation belt.
Forecast the energetic electron flux on geosynchronous orbit with interplanetary parameters
NASA Astrophysics Data System (ADS)
Xue, B.; Ye, Z.
The high flux of energetic electron on geo-synchronous orbit can cause many kinds of malfunction of the satellite there, within which the bulk charging is the most significant that several broadcast satellite failures were confirmed to be due to this effect. The electron flux on geo-synchronous orbit varies in a large range even up to three orders accompanied the passage of interplanetary magnetic cloud and the following geomagnetic disturbances. Upon investigating electron flux, interplanetary solar wind data, and geomagnetic data as well, we found that: (1) The enhancement of energetic flux on the geo-synchronous orbit exhibits periodic recurrence of 27days. (2)Significant increase of electron flux relates to interplanetary index and characters of their distribution. (3)The electron flux also has relation to solar activity index. In our research work, artificial neural network was employed and constructed according to the job. The neural network, we call it full connecting network, was proved to be a sufficient tool to analyze the character of the evolving parameters, remember the omen of "electron storm", and establish the relationship between interplanetary parameters etc., and the fluence of high energetic electrons. The neural network was carefully constructed and trained to do the job mentioned above. Preliminary result showed that the accuracy forecast of electron flux 1 day ahead can reach 80%, and 70% for 2 days ahead.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lhotka, Christoph; Bourdin, Philippe; Narita, Yasuhito, E-mail: christoph.lhotka@oeaw.ac.at, E-mail: philippe.bourdin@oeaw.ac.at, E-mail: yasuhito.narita@oeaw.ac.at
We investigate the combined effect of solar wind, Poynting–Robertson drag, and the frozen-in interplanetary magnetic field on the motion of charged dust grains in our solar system. For this reason, we derive a secular theory of motion by the means of an averaging method and validate it with numerical simulations of the unaveraged equations of motions. The theory predicts that the secular motion of charged particles is mainly affected by the z -component of the solar magnetic axis, or the normal component of the interplanetary magnetic field. The normal component of the interplanetary magnetic field leads to an increase ormore » decrease of semimajor axis depending on its functional form and sign of charge of the dust grain. It is generally accepted that the combined effects of solar wind and photon absorption and re-emmision (Poynting–Robertson drag) lead to a decrease in semimajor axis on secular timescales. On the contrary, we demonstrate that the interplanetary magnetic field may counteract these drag forces under certain circumstances. We derive a simple relation between the parameters of the magnetic field, the physical properties of the dust grain, as well as the shape and orientation of the orbital ellipse of the particle, which is a necessary conditions for the stabilization in semimajor axis.« less
2009-05-14
courtesy of I. Richardson. itoring, and adequate data latency would constitute a reliable tool for early warning of storms. Is] The first Earth...some ICMEs appear to undergo little change as they propagate outward from their low coronal origins, in this case out to 45° elongation. Such...and that, given much better data latency , a future SMEI-type heliospheric im- ager could be used to forecast the onset and maybe even the
The Goddard program of gamma ray transient astronomy
NASA Technical Reports Server (NTRS)
Cline, T. L.; Desai, U. D.; Teegarden, B. J.
1980-01-01
Gamma ray burst studies are reviewed. The past results, present status and future expectations are outlined regarding endeavors using experiments on balloons, IMP-6 and -7, OGO-3, ISEE-1 and -3, Helios-2, Solar Maximum Mission, the Einstein Observatory, Solar Polar and the Gamma Ray Observatory, and with the interplanetary gamma ray burst networks, to which some of these spacecraft sensors contribute. Additional emphasis is given to the recent discovery of a new type of gamma ray transient, detected on 1979 March 5.
Applications of presently planned interplanetary missions to testing gravitational theories
NASA Technical Reports Server (NTRS)
Friedman, L. D.
1971-01-01
A summary of the probable interplanetary missions for the 1970's is presented, which may prove useful in testing the general theory of relativity. Mission characteristics are discussed, as well as instrumentation. This last includes a low-level accelerometer and S-/X-band transponders and antennas.
On the Contribution of Asteroid Disruptions to the Interplanetary Dust Flux
NASA Astrophysics Data System (ADS)
Kehoe, T. J. J.; Kehoe, A. E.
2017-12-01
Recent modeling has shown the significant contribution of micron- to millimeter-sized particles released by the disruption of main-belt asteroids (MBAs) to the interplanetary dust particle (IDP) flux (e.g., Dermott et al., 2002; Nesvorný et al., 2003; Espy Kehoe et al., 2015). In this paper, we present the results of a study that indicates that the dust injected into the zodiacal cloud due to the catastrophic disruption of an asteroid is dominated by the release of its surface regolith particles. Our research suggests that disrupting a single asteroid with diameter O(100 km) will be enough to regenerate the entire zodiacal cloud. The breakup of smaller asteroids with diameters O(10 km) will likely produce more moderate, but still significant, changes in the dust environment of the inner solar system. As collisional disruptions of asteroids in this size range occur more frequently, it is important that we develop a better understanding of the injection of asteroidal material into the zodiacal cloud as a result of these type of events in order to determine the temporal evolution of the interplanetary dust flux. The results presented in this paper will lead to a better understanding of the threat to exploration activities due to the enhanced IDP flux resulting from the disruption of asteroidal regoliths. These findings can be employed to improve engineering models, for example, the NASA Meteoroid Engineering Model (MEM) that is widely utilized to assess the impact hazard to space hardware and activities in the inner solar system due to the natural meteoroid environment (McNamara et al., 2004). This is an important area of concern for current and future mission development purposes.
NASA Astrophysics Data System (ADS)
Yermolaev, Y. I.; Lodkina, I. G.; Yermolaev, M. Y.
2018-06-01
This work is a continuation of our previous articles (Yermolaev et al. in J. Geophys. Res. 120, 7094, 2015 and Yermolaev et al. in Solar Phys. 292, 193, 2017), which describe the average temporal profiles of interplanetary plasma and field parameters in large-scale solar-wind (SW) streams: corotating interaction regions (CIRs), interplanetary coronal mass ejections (ICMEs, including both magnetic clouds (MCs) and ejecta), and sheaths as well as interplanetary shocks (ISs). Changes in the longitude angle, φ, in CIRs from -2 to 2° agree with earlier results ( e.g. Gosling and Pizzo, 1999). We have also analyzed the average temporal profiles of the bulk velocity angles in sheaths and ICMEs. We have found that the angle φ in ICMEs changes from 2 to -2°, while in sheaths it changes from -2 to 2° (similar to the change in CIRs), i.e. the angle in CIRs and sheaths deflects in the opposite sense to ICMEs. When averaging the latitude angle θ on all the intervals of the chosen SW types, the angle θ is almost constant at {˜} 1°. We made for the first time a selection of SW events with increasing and decreasing θ and found that the average θ temporal profiles in the selected events have the same "integral-like" shape as for φ. The difference in φ and θ average profiles is explained by the fact that most events have increasing profiles for the angle in the ecliptic plane as a result of solar rotation, while for the angle in the meridional plane, the numbers of events with increasing and decreasing profiles are equal.
Preliminary Design of Low-Thrust Interplanetary Missions
NASA Technical Reports Server (NTRS)
Sims, Jon A.; Flanagan, Steve N.
1997-01-01
For interplanetary missions, highly efficient electric propulsion systems can be used to increase the mass delivered to the destination and/or reduce the trip time over typical chemical propulsion systems. This technology is being demonstrated on the Deep Space 1 mission - part of NASA's New Millennium Program validating technologies which can lower the cost and risk and enhance the performance of future missions. With the successful demonstration on Deep Space 1, future missions can consider electric propulsion as a viable propulsion option. Electric propulsion systems, while highly efficient, produce only a small amount of thrust. As a result, the engines operate during a significant fraction of the trajectory. This characteristic makes it much more difficult to find optimal trajectories. The methods for optimizing low-thrust trajectories are typically categorized as either indirect, or direct. Indirect methods are based on calculus of variations, resulting in a two-point boundary value problem that is solved by satisfying terminal constraints and targeting conditions. These methods are subject to extreme sensitivity to the initial guess of the variables - some of which are not physically intuitive. Adding a gravity assist to the trajectory compounds the sensitivity. Direct methods parameterize the problem and use nonlinear programming techniques to optimize an objective function by adjusting a set of variables. A variety of methods of this type have been examined with varying results. These methods are subject to the limitations of the nonlinear programming techniques. In this paper we present a direct method intended to be used primarily for preliminary design of low-thrust interplanetary trajectories, including those with multiple gravity assists. Preliminary design implies a willingness to accept limited accuracy to achieve an efficient algorithm that executes quickly.
Studying the evolution of a type III radio from the Sun up to 1 AU
NASA Astrophysics Data System (ADS)
Mann, Gottfried; Breitling, Frank; Vocks, Christian; Fallows, Richard; Melnik, Valentin; Konovalenko, Alexander
2017-04-01
On March 16, 2016, a type III burst was observed with the ground-based radio telescopes LOFAR and URAN-2 as well as with the radiospectrometer aboard the spacecraft WIND.It started at 80 MHz at 06:37 UT and reached 50 kHz after 23 minutes. A type III burst are considered as the radio signature of an electron beam travelling from the corona into the interplanetary space. The energetic electrons carrying the beam excites Langmuir waves, which convert into radio waves by wave-particle interaction. The relationship between the drift rate and the frequency as derived from the dynamic radio spectra reveals that the velocity of the electrons generating the radio waves of the type III burst is increasing with increasing distance from the center of the Sun.
Modeling of ion acceleration through drift and diffusion at interplanetary shocks
NASA Technical Reports Server (NTRS)
Decker, R. B.; Vlahos, L.
1986-01-01
A test particle simulation designed to model ion acceleration through drift and diffusion at interplanetary shocks is described. The technique consists of integrating along exact particle orbits in a system where the angle between the shock normal and mean upstream magnetic field, the level of magnetic fluctuations, and the energy of injected particles can assume a range of values. The technique makes it possible to study time-dependent shock acceleration under conditions not amenable to analytical techniques. To illustrate the capability of the numerical model, proton acceleration was considered under conditions appropriate for interplanetary shocks at 1 AU, including large-amplitude transverse magnetic fluctuations derived from power spectra of both ambient and shock-associated MHD waves.
Upstream electron oscillations and ion overshoot at an interplanetary shock wave
NASA Technical Reports Server (NTRS)
Potter, D. W.; Parks, G. K.
1983-01-01
During the passage of a large interplanetary shock on Oct. 13, 1981, the ISEE-1 and -2 spacecraft were in the solar wind outside of the upstream region of the bow shock. The high time resolution data of the University of California particle instruments allow pinpointing the expected electron spike as occurring just before the magnetic ramp. In addition, two features that occur at this shock have not been observed before: electron oscillations associated with low frequency waves upstream of the shock and sharp 'overshoot' (about 1 sec) in the ion fluxes that occur right after the magnetic ramp. This interplanetary shock exhibits many of the same characteristics that are observed at the earth's bow shock.
Radio Emmision during the interaction of two Interplanetary Coronal Mass Ejections
NASA Astrophysics Data System (ADS)
Lara, Alejandro; Niembro, Tatiana; González, Ricardo
2016-07-01
We show that some sporadic radio emission observed by the WIND/WAVES experiment in the decametric/kilometric bands are due to the interaction of two interplanetary Coronal Mass Ejections. We have performed hydrodynamic simulations of the evolution of two consecutive Coronal Mass ejections in the interplanetary medium. With these simulations it is possible to follow the density evolution of the merged structure, and therefore, compute the frequency limits of the possible plasma emission. We study four well documented ICME interaction events, and found radio emission at the time and frequencies predicted by the simulations. This emission may help to anticipate the complexity of the merged region before it reaches one AU.
Infrared spectroscopy of interplanetary dust in the laboratory
NASA Technical Reports Server (NTRS)
Fraundorf, P.; Patel, R. I.; Freeman, J. J.
1981-01-01
A mount containing three crushed chondritic interplanetary dust particles (IDPs) collected in the earth's stratosphere and subjected to infrared spectroscopic measurements shows features near 1000 and 500/cm, suggesting crystalline pyroxene rather than crystalline olivine, amorphous olivine, or meteoritic clay minerals. Chondritic IDP structural diversity and atmospheric heating effects must be considered when comparing this spectrum with interplanetary and cometary dust astrophysical spectra. TEM and infrared observations of one member of the rare subset of IDPs resembling hydrated carbonaceous chondrite matrix material shows a close infrared spectrum resemblance between 4000 and 400/cm to the C2 meteorite Murchison. TEM observations suggest that this class of particles may be used as an atmospheric entry heating-process thermometer.
NASA Technical Reports Server (NTRS)
Burlaga, L. F.; Ness, N. F.
1976-01-01
A literature review is presented of theoretical models of the interaction of the solar wind and interplanetary magnetic fields. Observations of interplanetary magnetic fields by the IMP and OSO spacecraft are discussed. The causes for cosmic ray variations (Forbush decreases) by the solar wind are examined. The model of Parker is emphasized. This model shows the three dimensional magnetic field lines of the solar wind to have the form of spirals wrapped on cones. It is concluded that an out-of-the-ecliptic solar probe mission would allow the testing and verification of the various theoretical models examined. Diagrams of the various models are shown.
Software Risk Identification for Interplanetary Probes
NASA Technical Reports Server (NTRS)
Dougherty, Robert J.; Papadopoulos, Periklis E.
2005-01-01
The need for a systematic and effective software risk identification methodology is critical for interplanetary probes that are using increasingly complex and critical software. Several probe failures are examined that suggest more attention and resources need to be dedicated to identifying software risks. The direct causes of these failures can often be traced to systemic problems in all phases of the software engineering process. These failures have lead to the development of a practical methodology to identify risks for interplanetary probes. The proposed methodology is based upon the tailoring of the Software Engineering Institute's (SEI) method of taxonomy-based risk identification. The use of this methodology will ensure a more consistent and complete identification of software risks in these probes.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gdalevich, G.L.; Afonin, V.V.; Eliseev, A.Y.
1986-07-01
Data from the Kosmos-900 satellite are used to examine variations of the ion concentration in the region of the main ionospheric trough at altitudes of about 500 km during the storm of December 18-19, 1978. These variations of ion densities are compared with the variations of the parameters of the interplanetary medium, in particular, with the E /sub y/ = -VB /sub z/ component of the interplanetary electric field. The results of the comparison are discussed. A scheme is proposed for the formation and motion of the trough during magnetic disturbances.
Plasma and energetic particle structure of a collisionless quasi-parallel shock
NASA Technical Reports Server (NTRS)
Kennel, C. F.; Scarf, F. L.; Coroniti, F. V.; Russell, C. T.; Smith, E. J.; Wenzel, K. P.; Reinhard, R.; Sanderson, T. R.; Feldman, W. C.; Parks, G. K.
1983-01-01
The quasi-parallel interplanetary shock of November 11-12, 1978 from both the collisionless shock and energetic particle points of view were studied using measurements of the interplanetary magnetic and electric fields, solar wind electrons, plasma and MHD waves, and intermediate and high energy ions obtained on ISEE-1, -2, and -3. The interplanetary environment through which the shock was propagating when it encountered the three spacecraft was characterized; the observations of this shock are documented and current theories of quasi-parallel shock structure and particle acceleration are tested. These observations tend to confirm present self consistent theories of first order Fermi acceleration by shocks and of collisionless shock dissipation involving firehouse instability.
Quasi-linear theory and transport theory. [particle acceleration in interplanetary medium
NASA Technical Reports Server (NTRS)
Smith, Charles W.
1992-01-01
The theory of energetic particle scattering by magnetostatic fluctuations is reviewed in so far as it fails to produce the rigidity-independent mean-free-paths observed. Basic aspects of interplanetary magnetic field fluctuations are reviewed with emphasis placed on the existence of dissipation range spectra at high wavenumbers. These spectra are then incorporated into existing theories for resonant magnetostatic scattering and are shown to yield infinite mean-free-paths. Nonresonant scattering in the form of magnetic mirroring is examined and offered as a partial solution to the magnetostatic problem. In the process, mean-free-paths are obtained in good agreement with observations in the interplanetary medium at 1 AU and upstream of planetary bow shocks.
Langmuir-like waves and radiation in planetary foreshocks
NASA Technical Reports Server (NTRS)
Cairns, Iver H.; Robinson, P. A.; Anderson, R. R.; Gurnett, D. A.; Kurth, W. S.
1995-01-01
The basic objectives of this NASA Grant are to develop theoretical understandings (tested with spacecraft data) of the generation and characteristics of electron plasma waves, commonly known as Langmuir-like waves, and associated radiation near f(sub p) and 2f(sub p) in planetary foreshocks. (Here f(sub p) is plasma frequency.) Related waves and radiation in the source regions of interplanetary type III solar radio bursts provide a simpler observational and theoretical context for developing and testing such understandings. Accordingly, applications to type III bursts constitute a significant fraction of the research effort. The testing of the new Stochastic Growth Theory (SGT) for type III bursts, and its extension and testing for foreshock waves and radiation, constitutes a major longterm strategic goal of the research effort.
Temporal Variability in the Accretion Rate of Interplanetary Dust Using (3)He as a Tracer
NASA Technical Reports Server (NTRS)
Farley, K. A.
2005-01-01
The research supported by this grant falls under three topics: 1) Weekly Interplanetary Dust Sampling via (3)He; 2) Extraterrestrial (3)He at Major Impact Boundaries; 3) Completing a Moderately-High Resolution Record of Extraterrestrial (3)He Flux: A Major Asteroidal Break up Event at 8.2 Ma.
The interplanetary pioneers. Volume 1: Summary
NASA Technical Reports Server (NTRS)
Corliss, W. R.
1972-01-01
The Pioneer Space Probe Project is explained to document the events which occurred during the project. The subjects discussed are: (1) origin and history of interplanetary Pioneer program, (2) Pioneer system development and design, (3) Pioneer flight operations, and (4) Pioneer scientific results. Line drawings, circuit diagrams, illustrations, and photographs are included to augment the written material.
Towards an interplanetary internet: a proposed strategy for standardization
NASA Technical Reports Server (NTRS)
Hooke, A. J.
2002-01-01
This paper reviews the current set of standard data communications capabilities that exist to support advanced missions, discusses the architectural concepts for the future Interplanetary Internet, and suggests how a standardized set of space communications protocols that can grow to support future scenarios where human intelligence is widely distributed across the Solar System.
Research in particles and fields. [using spacecraft and balloons
NASA Technical Reports Server (NTRS)
Vogt, R. E.
1974-01-01
Investigations, by particle-detectors flown on spacecraft, of the astrophysical aspects of cosmic radiation and the radiation environment of the earth are reported along with the research of the interplanetary medium, and planetary magnetic fields. The cosmic ray interactions with the interplanetary and interstellar medium, and radio scintillation theory were also studied.
Solar events and their influence on the interplanetary medium
NASA Technical Reports Server (NTRS)
Joselyn, Joann
1987-01-01
Aspects of a workshop on Solar events and their influence on the interplanetary medium, held in September 1986, are reviewed, the goal of which was to foster interactions among colleagues, leading to an improved understanding of the unified relationship between solar events and interplanetary disturbances. The workshop consisted of three working groups: (1) flares, eruptives, and other near-Sun activity; (2) coronal mass ejections; and (3) interplanetary events. Each group discussed topics distributed in advance. The flares-eruptives group members agreed that pre-event energy is stored in stressed/sheared magnetic fields, but could not agree that flares and other eruptive events (e.g., eruptive solar prominences) are aspects of the same physical phenomenon. In the coronal mass ejection group, general agreement was reached on the presence of prominences in CMEs, and that they have a significant three-dimensional structure. Some topics identified for further research were the aftermath of CMEs (streamer deflections, transient coronal holes, possible disconnections), identification of the leading edge of CMEs, and studies of the range and prevalence of CME mass sizes and energies.
NASA Technical Reports Server (NTRS)
Burch, J. L.
1972-01-01
Data from the auroral particles experiment on OGO-4 were used to study effects of substorm activity, interplanetary magnetic field latitutde, and dipole tilt angle on high-latitude precipitation of 700 eV electrons. It was found that: (1) The high-latitude zone of 700 eV electron precipitation in late evening and early morning hours moves equatorward by 5 to 10 deg during substorms. (2) The low-latitude boundary of polar cusp electron precipitation at 9 to 15 hours MLT also moves equatorward by several degrees during substorms and, in the absence of significant substorm activity, after a period of southward interplanetary magnetic field. (3) With times containing substorm activity or a southward interplanetary magnetic field eliminated, the low-latitude boundary of polar cusp electron precipitation is found to move by approximately 4 deg over the total yearly range of tilt angles. At maximum winter and summer conditions the invariant latitude of the boundary is shown to shift by approximately -3 deg and +1 deg respectively from its equinox location.
The interplanetary electric field, cleft currents and plasma convection in the polar caps
NASA Technical Reports Server (NTRS)
Banks, P. M.; Clauer, C. R.; Araki, T.; St. Maurice, J. P.; Foster, J. C.
1984-01-01
The relationship between the pattern of plasma convection in the polar cleft and the dynamics of the interplanetary electric field (IEF) is examined theoretically. It is shown that owing to the geometrical properties of the magnetosphere, the East-West component of the IEF will drive field-aligned currents which connect to the ionosphere at points lying on either side of noon, while currents associated with the North-South component of the IEF will connect the two polar caps as sheet currents, also centered at 12 MLT. In order to describe the consequences of the Interplanetary Magnetic Field (IMF) effects upon high-latitude electric fields and convection patterns, a series of numerical simulations was carried out. The simulations were based on a solution to the steady-state equation of current continuity in a height-integrated ionospheric current. The simulations demonstrate that a simple hydrodynamical model can account for the narrow 'throats' of strong dayside antisunward convection observed during periods of southward interplanetary IMF drift, as well as the sunward convection observed during periods of strongly northward IMF drift.
NASA Astrophysics Data System (ADS)
Aléon, J.; Engrand, C.; Leshin, L. A.; McKeegan, K. D.
2009-08-01
Oxygen isotopes were measured in four chondritic hydrated interplanetary dust particles (IDPs) and five chondritic anhydrous IDPs including two GEMS-rich particles (Glass embedded with metal and sulfides) by a combination of high precision and high lateral resolution ion microprobe techniques. All IDPs have isotopic compositions tightly clustered around that of solar system planetary materials. Hydrated IDPs have mass-fractionated oxygen isotopic compositions similar to those of CI and CM carbonaceous chondrites, consistent with hydration of initially anhydrous protosolar dust. Anhydrous IDPs have small 16O excesses and depletions similar to those of carbonaceous chondrites, the largest 16O variations being hosted by the two GEMS-rich IDPs. Coarse-grained forsteritic olivine and enstatite in anhydrous IDPs are isotopically similar to their counterparts in comet Wild 2 and in chondrules suggesting a high temperature inner solar system origin. The small variations in the 16O content of GEMS-rich IDPs suggest that most GEMS either do not preserve a record of interstellar processes or the initial interstellar dust is not 16O-rich as expected by self-shielding models, although a larger dataset is required to verify these conclusions. Together with other chemical and mineralogical indicators, O isotopes show that the parent-bodies of carbonaceous chondrites, of chondritic IDPs, of most Antarctic micrometeorites, and comet Wild 2 belong to a single family of objects of carbonaceous chondrite chemical affinity as distinct from ordinary, enstatite, K- and R-chondrites. Comparison with astronomical observations thus suggests a chemical continuum of objects including main belt and outer solar system asteroids such as C-type, P-type and D-type asteroids, Trojans and Centaurs as well as short-period comets and other Kuiper Belt Objects.
Solar bus regulator and battery charger for IMP's H, I, and J
NASA Technical Reports Server (NTRS)
Paulkovich, J.
1972-01-01
Interplanetary Monitoring Probe (IMP) spacecrafts H, I, and J utilize a direct energy transfer (DET) type of power system operating from a solar array source. A shunt type of regulator prevents the bus voltage from exceeding a preset voltage level. The power system utilizes a single differential amplifier with dual outputs to control the battery charge/shunt regulator and the discharge regulator. A two-voltage level, current limited, series charger and a current sensor control battery state of charge of the silver-cadmium battery pack. Premature termination of the battery charge is prevented by a power available gate that also initiates charge current to the battery upon availability of excess power.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Xiong, Ming; Yang, Liping; Liu, Ying D.
Interplanetary corotating interaction regions (CIRs) can be remotely imaged in white light (WL), as demonstrated by the Solar Mass Ejection Imager (SMEI) on board the Coriolis spacecraft and Heliospheric Imagers (HIs) on board the twin Solar TErrestrial RElations Observatory ( STEREO ) spacecraft. The interplanetary WL intensity, due to Thomson scattering of incident sunlight by free electrons, is jointly determined by the 3D distribution of electron number density and line-of-sight (LOS) weighting factors of the Thomson-scattering geometry. The 2D radiance patterns of CIRs in WL sky maps look very different from different 3D viewpoints. Because of the in-ecliptic locations ofmore » both the STEREO and Coriolis spacecraft, the longitudinal dimension of interplanetary CIRs has, up to now, always been integrated in WL imagery. To synthesize the WL radiance patterns of CIRs from an out-of-ecliptic (OOE) vantage point, we perform forward magnetohydrodynamic modeling of the 3D inner heliosphere during Carrington Rotation CR1967 at solar maximum. The mixing effects associated with viewing 3D CIRs are significantly minimized from an OOE viewpoint. Our forward modeling results demonstrate that OOE WL imaging from a latitude greater than 60° can (1) enable the garden-hose spiral morphology of CIRs to be readily resolved, (2) enable multiple coexisting CIRs to be differentiated, and (3) enable the continuous tracing of any interplanetary CIR back toward its coronal source. In particular, an OOE view in WL can reveal where nascent CIRs are formed in the extended corona and how these CIRs develop in interplanetary space. Therefore, a panoramic view from a suite of wide-field WL imagers in a solar polar orbit would be invaluable in unambiguously resolving the large-scale longitudinal structure of CIRs in the 3D inner heliosphere.« less
NASA Technical Reports Server (NTRS)
Frank, David R.; Westphal, Andrew J.; Zolensky, Michael E.; Gainsforth, Zack; Butterworth, Anna L.; Bastien, Ronald K.; Allen, Carlton; Anderson, David; Bechtel, Hans A.; Sandford, Scott A.
2013-01-01
We discuss the inherent difficulties that arise during "ground truth" characterization of the Stardust interstellar dust collector. The challenge of identifying contemporary interstellar dust impact tracks in aerogel is described within the context of background spacecraft secondaries and possible interplanetary dust particles and beta-meteoroids. In addition, the extraction of microscopic dust embedded in aerogel is technically challenging. Specifically, we provide a detailed description of the sample preparation techniques developed to address the unique goals and restrictions of the Interstellar Preliminary Exam. These sample preparation requirements and the scarcity of candidate interstellar impact tracks exacerbate the difficulties. We also illustrate the role of initial optical imaging with critically important examples, and summarize the overall processing of the collection to date.
Observations of Interplanetary Scintillation (IPS) Using the Mexican Array Radio Telescope (MEXART)
NASA Astrophysics Data System (ADS)
Mejia-Ambriz, J. C.; Villanueva-Hernandez, P.; Gonzalez-Esparza, J. A.; Aguilar-Rodriguez, E.; Jeyakumar, S.
2010-08-01
The Mexican Array Radio Telescope (MEXART) consists of a 64×64 (4096) full-wavelength dipole antenna array, operating at 140 MHz, with a bandwidth of 2 MHz, occupying about 9660 square meters (69 m × 140 m) (
Forbush decreases geomagnetic and atmospheric effects cosmogenic nuclides
NASA Technical Reports Server (NTRS)
Flueckiger, E. O.
1986-01-01
An overview and synthesis is given of recent developments that have occurred in the areas of Forbush decreases, geomagnetic and atmospheric effects, and cosmogenic nuclides. Experimental evidence has been found for substantial differences in the effects of the various types of interplanetary perturbations on cosmic rays, and for a dependence of these effects on the three-dimensional configuration of the interplanetary medium. In order to fully understand and to be able to simulate the solar cosmic ray particle access to the polar regions of the earth we need accurate models of the magnetospheric magnetic field. These models must include all major magnetospheric current systems (in particular the field aligned currents), and they should represent magnetically quiet time periods as well as different levels of geomagnetic activity. In the evolution of magnetospheric magnetic field models, cosmic ray and magnetospheric physicists should work closely together since cosmic ray measurements are a powerful additional tool in the study of the perturbed magnetosphere. In the field of cosmogenic nuclides, finally, exciting new results and developments follow in rapid succession. Thanks to new techniques and new isotopes the analysis of cosmic ray history has entered into a new dimension.
NASA Technical Reports Server (NTRS)
Lepping, R. P.; Benhannon, K. W.
1980-01-01
The characteristics of directional discontinuities (DD's) in the interplanetary magnetic field are studied using data from the Mariner 10 primary mission between 1.0 and 0.46 AU. Statistical and visual survey methods for DD identification resulted in a total of 644 events. Two methods were used to estimate the ratio of the number of tangential discontinuities (TD's) to the number of rotational discontinuities (RD's). Both methods show that the ratio of TD's to RD's varied with time and decreased with decreasing radial distance. A decrease in average discontinuity thickness of approx. 40 percent was found between 1.0 and 0.72 AU and approx. 54 percent between 1.0 and 0.46 AU, independent of type (TD or RD). This decrease in thickness for decreasing r is in qualitative agreement with Pioneer 10 observations between 1 and 5 AU. When the individual DD thickness are normalized with respect to the estimated local proton gyroradius (RA sub L), the average thickness at the three locations is nearly constant, 43 + or - 6 R sub L. This also holds true for both RD's and TD's separately. Statistical distributions of other properties, such as normal components and discontinuity plane angles, are presented.
Global ionospheric dynamics and electrodynamics during geomagnetic storms (Invited)
NASA Astrophysics Data System (ADS)
Mannucci, A. J.; Tsurutani, B.; Verkhoglyadova, O. P.; Komjathy, A.; Butala, M. D.
2013-12-01
Globally distributed total electron content (TEC) data has become an important tool for exploring the consequences of storm-time electrodynamics. Magnetosphere-ionosphere coupling during the main phase is responsible for the largest ionospheric effects observed during geomagnetic storms, mediated by global scale electrodynamics. Recent research using case studies reveals a complex picture of M-I coupling and its relationship to interplanetary drivers such as the solar wind electric field. Periods of direct coupling exist where the solar wind electric field is strongly correlated with prompt penetration electric fields, observed as enhanced vertical plasma drifts or an enhanced electrojet in the daytime equatorial ionosphere. Periods of decoupling between low latitude electric fields and the solar wind electric field are also observed, but the factors distinguishing these two types of response have not been clearly identified. Recent studies during superstorms suggest a role for the transverse (y-component) of the interplanetary magnetic field, which affects magnetospheric current systems and therefore may affect M-I coupling, with significant ionospheric consequences. Observations of the global ionospheric response to a range of geomagnetic storm intensities are presented. Scientific understanding of the different factors that affect electrodynamic aspects of M-I coupling are discussed.
NASA Technical Reports Server (NTRS)
1975-01-01
Pioneer 10's encounter with Jupiter is discussed along with the interplanetary space beyond the orbit of Mars. Other topics discussed include the size of Jupiter, the Galilean satellites, the magnetic field of Jupiter, radiation belts, Jupiter's weather and interior, and future exploration possibilities. Educational projects are also included.
Interplanetary dust - Trace element analysis of individual particles by neutron activation
NASA Technical Reports Server (NTRS)
Ganapathy, R.; Brownlee, D. E.
1979-01-01
Although micrometeorites of cometary origin are thought to be the dominant component of interplanetary dust, it has never been possible to positively identify such micrometer-sized particles. Two such particles have been identified as definitely micrometeorites since their abundances of volatile and nonvolatile trace elements closely match those of primitive solar system material.
NASA Astrophysics Data System (ADS)
Tyul'Bashev, S. A.
2009-01-01
A complete sample of radio sources has been studied using the interplanetary scintillation method. In total, 32 sources were observed, with scintillations detected in 12 of them. The remaining sources have upper limits for the flux densities of their compact components. Integrated flux densities are estimated for 18 sources.
Interplanetary monitoring platform engineering history and achievements
NASA Technical Reports Server (NTRS)
Butler, P. M.
1980-01-01
In the fall of 1979, last of ten Interplanetary Monitoring Platform Satellite (IMP) missions ended a ten year series of flights dedicated to obtaining new knowledge of the radiation effects in outer space and of solar phenomena during a period of maximum solar flare activity. The technological achievements and scientific accomplishments from the IMP program are described.
On the causes of geomagnetic activity
NASA Technical Reports Server (NTRS)
Svalgaard, L.
1975-01-01
The causes of geomagnetic activity are studied both theoretically in terms of the reconnection model and empirically using the am-index and interplanetary solar wind parameters. It is found that two separate mechanisms supply energy to the magnetosphere. One mechanism depends critically on the magnitude and direction of the interplanetary magnetic field. Both depend strongly on solar wind speed.
NASA Technical Reports Server (NTRS)
Marsden, R. G.; Sanderson, T. R.; Wenzel, K. P.; Smith, E. J.
1985-01-01
It is known that the interplanetary medium in the period approaching solar maximum is characterized by an enhancement in the occurrence of transient solar wind streams and shocks and that such systems are often associated with looplike magnetic structures or clouds. There is observational evidence that bidirectional, field aligned flows of low energy particles could be a signature of such looplike structures, although detailed models for the magnetic field configuration and injection mechanisms do not exist at the current time. Preliminary results of a survey of low energy proton bidirectional anisotropies measured on ISEE-3 in the interplanetary medium between August 1978 and May 1982, together with magnetic field data from the same spacecraft are presented.
Cosmic-ray streaming and anisotropies
NASA Technical Reports Server (NTRS)
Forman, M. A.; Gleeson, L. J.
1975-01-01
The paper is concerned with the differential current densities and anisotropies that exist in the interplanetary cosmic-ray gas, and in particular with a correct formulation and simple interpretation of the momentum equation that describes these on a local basis. Two examples of the use of this equation in the interpretation of previous data are given. It is demonstrated that in interplanetary space, the electric-field drifts and convective flow parallel to the magnetic field of cosmic-ray particles combine as a simple convective flow with the solar wind, and that there exist diffusive currents and transverse gradient drift currents. Thus direct reference to the interplanetary electric-field drifts is eliminated, and the study of steady-state and transient cosmic-ray anisotropies is both more systematic and simpler.
Tin in a chondritic interplanetary dust particle
NASA Technical Reports Server (NTRS)
Rietmeijer, Frans J. M.
1989-01-01
Submicron platey Sn-rich grains are present in chondritic porous interplanetary dust particle (IDP) W7029 A and it is the second occurrence of a tin mineral in a stratospheric micrometeorite. Selected Area Electron Diffraction data for the Sn-rich grains match with Sn2O3 and Sn3O4. The oxide(s) may have formed in the solar nebula when tin metal catalytically supported reduction of CO or during flash heating on atmospheric entry of the IDP. The presence of tin is consistent with enrichments for other volatile trace elements in chondritic IDPs and may signal an emerging trend toward nonchondritic volatile element abundances in chondritic IDPs. The observation confirms small-scale mineralogical heterogeneity in fine-grained chondritic porous interplanetary dust.
NASA Technical Reports Server (NTRS)
Kyte, F. T.
1977-01-01
Meteor ablation debris was distinguished from unablated interplanetary dust in a collection of extraterrestrial particles collected in the stratosphere using NASA U-2 aircraft. A 62 g sample of the Murchison (C2) meteorite was artificially ablated to characterize ablation debris for comparison with the stratospheric particles. By using proper experimental conditions, artificial ablation debris can be produced that is similar to natural ablation debris. Analyses of natural fusion crusts, artificial fusion crust, and artificial ablation debris of the Murchison meteorite produced criteria for recognizing debris ablated by a primitive meteoroid. Ninety-five percent of the stratospheric particles can be described as either ablation debris from a primitive meteoroid, or as very primitive interplanetary dust.
Modeling solar wind with boundary conditions from interplanetary scintillations
Manoharan, P.; Kim, T.; Pogorelov, N. V.; ...
2015-09-30
Interplanetary scintillations make it possible to create three-dimensional, time- dependent distributions of the solar wind velocity. Combined with the magnetic field observations in the solar photosphere, they help perform solar wind simulations in a genuinely time-dependent way. Interplanetary scintillation measurements from the Ooty Radio Astronomical Observatory in India provide directions to multiple stars and may assure better resolution of transient processes in the solar wind. In this paper, we present velocity distributions derived from Ooty observations and compare them with those obtained with the Wang-Sheeley-Arge (WSA) model. We also present our simulations of the solar wind flow from 0.1 AUmore » to 1 AU with the boundary conditions based on both Ooty and WSA data.« less
NASA Astrophysics Data System (ADS)
St. Cyr, O. C.; Kaiser, M. L.; Meyer-Vernet, N.; Howard, R. A.; Harrison, R. A.; Bale, S. D.; Thompson, W. T.; Goetz, K.; Maksimovic, M.; Bougeret, J.-L.; Wang, D.; Crothers, S.
2009-05-01
Early in the STEREO mission observers noted that the white-light instruments of the SECCHI suite were detecting significantly more spacecraft-related “debris” than any previously flown coronagraphic instruments. Comparison of SECCHI “debris storms” with S/WAVES indicates that almost all are coincident with the most intense transient emissions observed by the radio and plasma waves instrument. We believe the debris is endogenous ( i.e., from the spacecraft thermal blanketing), and the storms appear to be caused by impacts of large interplanetary dust grains that are detected by S/WAVES. Here we report the observations, compare them to interplanetary dust distributions, and document a reminder for future spacebased coronagraphic instrument builders.
Study of Travelling Interplanetary Phenomena (STIP) workshop travel
NASA Technical Reports Server (NTRS)
Wu, S. T.
1986-01-01
Thirty six abstracts are provided from the SCOSTEP/STIP Symposium on Retrospective Analyses and Future Coordinated Intervals held in Switzerland on June 10 to 12, 1985. Six American scientists participated in the symposium and their abstracts are also included. The titles of their papers are: (1) An analysis of near surface and coronal activity during STIP interval 12, by T. E. Gergely; (2) Helios images of STIP intervals 6, B. V. Jackson; (3) Results from the analysis of solar and interplanetary observations during STIP interval 7, S. R. Kane; (4) STIP interval 19, E. Cliver; (5) Hydrodynamic buoyancy force in the solar atmosphere, T. Yeh; and (6) A combined MHD modes for the energy and momentum transport from solar surface to interplanetary space, S. T. Wu.
A Free-Return Earth-Moon Cycler Orbit for an Interplanetary Cruise Ship
NASA Technical Reports Server (NTRS)
Genova, Anthony L.; Aldrin, Buzz
2015-01-01
A periodic circumlunar orbit is presented that can be used by an interplanetary cruise ship for regular travel between Earth and the Moon. This Earth-Moon cycler orbit was revealed by introducing solar gravity and modest phasing maneuvers (average of 39 m/s per month) which yields close-Earth encounters every 7 or 10 days. Lunar encounters occur every 26 days and offer the chance for a smaller craft to depart the cycler and enter lunar orbit, or head for a Lagrange point (e.g., EM-L2 halo orbit), distant retrograde orbit (DRO), or interplanetary destination such as a near-Earth object (NEO) or Mars. Additionally, return-to-Earth abort options are available from many points along the cycling trajectory.
A model of the open magnetosphere. [with field configuration based on Chapman-Ferraro theory
NASA Technical Reports Server (NTRS)
Kan, J. R.; Akasofu, S.-I.
1974-01-01
The Chapman-Ferraro image method is extended to construct an idealized model of the open magnetosphere that responds to a change of the interplanetary field direction as well as to a change of the field magnitude or of the solar wind momentum flux. The magnetopause of the present model is an infinite plane surface having a normal field component distribution that is consistent with the merging theory. An upper limit on the inward displacement of the magnetopause following a southward turning of the interplanetary field is obtained. The results are in fair agreement with a single event reported by Aubry et al. (1971). The model determines the field configuration and the total magnetic flux connecting the magnetosphere to interplanetary space.
The solar origins of two high-latitude interplanetary disturbances
NASA Technical Reports Server (NTRS)
Hudson, H. S.; Acton, L. W.; Alexander, D.; Harvey, K. L.; Kurokawa, H.; Kahler, S.; Lemen, J. R.
1995-01-01
Two extremely similar interplanetary forward/reverse shock events, with bidirectional electron streaming were detected by Ulysses in 1994. Ground-based and Yohkoh/SXT observations show two strikingly different solar events that could be associated with them: an LDE flare on 20 Feb. 1994, and a extremely large-scale eruptive event on 14 April 1994. Both events resulted in geomagnetic storms and presumably were associated with coronal mass ejections. The sharply contrasting nature of these solar events argues against an energetic causal relationship between them and the bidirectional streaming events observed by Ulysses during its S polar passage. We suggest instead that for each pair of events. a common solar trigger may have caused independent instabilities leading to the solar and interplanetary phenomena.
Raman Spectrum of Quenched Carbonaceous Composites
NASA Technical Reports Server (NTRS)
Wada, S.; Hayashi, S.; Miyaoka, H.; Tokunaga, A. T.
1996-01-01
Quenched Carbonaceous Composites (QCC's) are products from the ejecta of a hydrocarbon plasma. Two types of QCC, dark QCC and thermally-altered (heated) filmy QCC, have been shown to have a 220 nm absorption feature similar to that seen in the interstellar extinction curve. We present here Raman spectra of the QCCs and compare them with various carbonaceous materials to better understand the structure QCC. We find that structure of QCC is different from that of graphite and more similar to carbonaceous material found in some interplanetary dust particles and chondritic meteorites.
Libration-point staging concepts for Earth-Mars transportation
NASA Technical Reports Server (NTRS)
Farquhar, Robert; Dunham, David
1986-01-01
The use of libration points as transfer nodes for an Earth-Mars transportation system is briefly described. It is assumed that a reusable Interplanetary Shuttle Vehicle (ISV) operates between the libration point and Mars orbit. Propellant for the round-trip journey to Mars and other supplies would be carried from low Earth orbit (LEO) to the ISV by additional shuttle vehicles. Different types of trajectories between LEO and libration points are presented, and approximate delta-V estimates for these transfers are given. The possible use of lunar gravity-assist maneuvers is also discussed.
NASA Astrophysics Data System (ADS)
Ngwira, Chigomezyo M.; Pulkkinen, Antti; Kuznetsova, Maria M.; Glocer, Alex
2018-02-01
In this response, we address the three main comments by Tsurutani et al. (2018, http://doi.org/10.1002/2017JA024779) namely, unusually high plasma density, interplanetary magnetic field intensity, and fast storm recovery phase. The authors agree that there is room to improve the modeling by taking into account these comments and other aspects that were not fully explored during our initial work. We are already in the process of undertaking a more comprehensive modeling project.
Chronic shin splints. Classification and management of medial tibial stress syndrome.
Detmer, D E
1986-01-01
A clinical classification and treatment programme has been developed for chronic medial tibial stress syndrome. Medial tibial stress syndrome has been reported to be either tibial stress fracture or microfracture, tibial periostitis, or distal deep posterior chronic compartment syndrome. Three chronic types exist and may coexist: Type I (tibial microfracture, bone stress reaction or cortical fracture); type II (periostalgia from chronic avulsion of the periosteum at the periosteal-fascial junction); and type III (chronic compartment syndrome syndrome). Type I disease is treated nonoperatively. Operations for resistant types II and III medial tibial stress syndrome were performed in 41 patients. Bilaterality was common (type II, 50% type III, 88%). Seven had coexistent type II/III; one had type I/II. Preoperative symptoms averaged 24 months in type II, 6 months in type III, and 33 months in types II/III. Mean age was 22 years (15 to 51). Resting compartment pressures were normal in type II (mean 12 mm Hg) and elevated in type III and type II/III (mean 23 mm Hg). Type II and type II/III patients received fasciotomy plus periosteal cauterisation. Type III patients had fasciotomy only. All procedures were performed on an outpatient basis using local anaesthesia. Follow up was complete and averaged 6 months (2 to 14 months). Improved performance was as follows: type II, 93%, type III, 100%; type II/III, 86%. Complete cures were as follows: type II, 78%; type III, 75%; and type II/III, 57%. This experience suggests that with precise diagnosis and treatment involving minimal risk and cost the athlete has a reasonable chance of return to full activity.
Dust analysis on board the Destiny+ mission to 3200 Phaethon
NASA Astrophysics Data System (ADS)
Krüger, H.; Kobayashi, M.; Arai, T.; Srama, R.; Sarli, B. V.; Kimura, H.; Moragas-Klostermeyer, G.; Soja, R.; Altobelli, N.; Grün, E.
2017-09-01
The Japanese Destiny+ spacecraft will be launched to the active asteroid 3200 Phaethon in 2022. Among the proposed core payload is an in-situ dust instrument based on the Cassini Cosmic Dust Analyzer. We use the ESA Interplanetary Meteoroid Engineering Model (IMEM), to study detection conditions and fluences of interplanetary and interstellar dust with a dust analyzer on board Destiny+.
Nonlinear Electromagnetic Waves and Spherical Arc-Polarized Waves in Space Plasmas
NASA Technical Reports Server (NTRS)
Tsurutani, B.; Ho, Christian M.; Arballo, John K.; Lakhina, Gurbax S.; Glassmeier, Karl-Heinz; Neubauer, Fritz M.
1997-01-01
We review observations of nonlinear plasma waves detected by interplanetary spacecraft. For this paper we will focus primarily on the phase-steepened properties of such waves. Plasma waves at comet Giacobini-Zinner measured by the International Cometary Explorer (ICE), at comets Halley and Grigg-Skjellerup measured by Giotto, and interplanetary Alfven waves measured by Ulysses, will be discussed and intercompared.
Latitudinal Dependence of the Radial IMF Component - Interplanetary Imprint
NASA Technical Reports Server (NTRS)
Suess, S. T.; Smith, E. J.; Phillips, J.; Goldstein, B. E.; Nerney, S.
1996-01-01
Ulysses measurements have confirmed that there is no significant gradient with respect to heliomagnetic latitude in the radial component, B(sub r,), of the interplanetary magnetic field. There are two processes responsible for this observation. In the corona, the plasma beta is much less than 1, except directly above streamers, so both longitudinal and latitudinal (meridional) gradients in field strength will relax, due to the transverse magnetic pressure gradient force, as the solar wind carries magnetic flux away from the Sun. This happens so quickly that the field is essentially uniform by 5 solar radius. Beyond 10 solar radius, beta is greater than 1 and it is possible for a meridional thermal pressure gradient to redistribute magnetic flux - an effect apparently absent in Ulysses and earlier ICE and Interplanetary Magnetic Physics (IMP) data. We discuss this second effect here, showing that its absence is mainly due to the perpendicular part of the anisotropic thermal pressure gradient in the interplanetary medium being too small to drive significant meridional transport between the Sun and approx. 4 AU. This is done using a linear analytic estimate of meridional transport. The first effect was discussed in an earlier paper.
Relativistic electron dropout echoes induced by interplanetary shocks
NASA Astrophysics Data System (ADS)
Schiller, Q.; Kanekal, S. G.; Boyd, A. J.; Baker, D. N.; Blake, J. B.; Spence, H. E.
2017-12-01
Interplanetary shocks that impact Earth's magnetosphere can produce immediate and dramatic responses in the trapped relativistic electron population. One well-studied response is a prompt injection capable of transporting relativistic electrons deep into the magnetosphere and accelerating them to multi-MeV energies. The converse effect, electron dropout echoes, are observations of a sudden dropout of electron fluxes observed after the interplanetary shock arrival. Like the injection echo signatures, dropout echoes can also show clear energy dispersion signals. They are of particular interest because they have only recently been observed and their causal mechanism is not well understood. In the analysis presented here, we show observations of electron drift echo signatures from the Relativistic Electron-Proton Telescope (REPT) and Magnetic Electron and Ion Sensors (MagEIS) onboard NASA's Van Allen Probes mission, which show simultaneous prompt enhancements and dropouts within minutes of the associated with shock impact. We show that the observations associated with both enhancements and dropouts are explained by the inward motion caused by the electric field impulse induced by the interplanetary shock, and either energization to cause the enhancement, or lack of a seed population to cause the dropout.
NASA Technical Reports Server (NTRS)
Levasseur-Regourd, A. C.; Lasue, J.
2011-01-01
Interplanetary dust particles physical properties may be approached through observations of the solar light they scatter, specially its polarization, and of their thermal emission. Results, at least near the ecliptic plane, on polarization phase curves and on the heliocentric dependence of the local spatial density, albedo, polarization and temperature are summarized. As far as interpretations through simulations are concerned, a very good fit of the polarization phase curve near 1.5 AU is obtained for a mixture of silicates and more absorbing organics material, with a significant amount of fluffy aggregates. In the 1.5-0.5 AU solar distance range, the temperature variation suggests the presence of a large amount of absorbing organic compounds, while the decrease of the polarization with decreasing solar distance is indeed compatible with a decrease of the organics towards the Sun. Such results are in favor of the predominance of dust of cometary origin in the interplanetary dust cloud, at least below 1.5 AU. The implication of these results on the delivery of complex organic molecules on Earth during the LHB epoch, when the spatial density of the interplanetary dust cloud was orders of magnitude greater than today, is discussed.
NASA Technical Reports Server (NTRS)
Farrugia, C. J.; Harris, B.; Leitner, M.; Moestl, C.; Galvin, A. B.; Simunac, K. D. C.; Torbert, R. B.; Temmer, M. B.; Veronig, A. M.; Erkaev, N. V.;
2012-01-01
We discuss the temporal variations and frequency distributions of solar wind and interplanetary magnetic field parameters during the solar minimum of 2007 - 2009 from measurements returned by the IMPACT and PLASTIC instruments on STEREO-A.We find that the density and total field strength were significantly weaker than in the previous minimum. The Alfven Mach number was higher than typical. This reflects the weakness of magnetohydrodynamic (MHD) forces, and has a direct effect on the solar wind-magnetosphere interactions.We then discuss two major aspects that this weak solar activity had on the magnetosphere, using data from Wind and ground-based observations: i) the dayside contribution to the cross-polar cap potential (CPCP), and ii) the shapes of the magnetopause and bow shock. For i) we find a low interplanetary electric field of 1.3+/-0.9 mV/m and a CPCP of 37.3+/-20.2 kV. The auroral activity is closely correlated to the prevalent stream-stream interactions. We suggest that the Alfven wave trains in the fast streams and Kelvin-Helmholtz instability were the predominant agents mediating the transfer of solar wind momentum and energy to the magnetosphere during this three-year period. For ii) we determine 328 magnetopause and 271 bow shock crossings made by Geotail, Cluster 1, and the THEMIS B and C spacecraft during a three-month interval when the daily averages of the magnetic and kinetic energy densities attained their lowest value during the three years under survey.We use the same numerical approach as in Fairfield's empirical model and compare our findings with three magnetopause models. The stand-off distance of the subsolar magnetopause and bow shock were 11.8 R(sub E) and 14.35 R(sub E), respectively. When comparing with Fairfield's classic result, we find that the subsolar magnetosheath is thinner by approx. 1 R(sub E). This is mainly due to the low dynamic pressure which results in a sunward shift of the magnetopause. The magnetopause is more flared than in Fairfield's model. By contrast the bow shock is less flared, and the latter is the result of weaker MHD forces.
NASA Technical Reports Server (NTRS)
Riley, P.; Richardson, I. G.
2012-01-01
In-situ measurements of interplanetary coronal mass ejections (ICMEs) display a wide range of properties. A distinct subset, "magnetic clouds" (MCs), are readily identifiable by a smooth rotation in an enhanced magnetic field, together with an unusually low solar wind proton temperature. In this study, we analyze Ulysses spacecraft measurements to systematically investigate five possible explanations for why some ICMEs are observed to be MCs and others are not: i) An observational selection effect; that is, all ICMEs do in fact contain MCs, but the trajectory of the spacecraft through the ICME determines whether the MC is actually encountered; ii) interactions of an erupting flux rope (PR) with itself or between neighboring FRs, which produce complex structures in which the coherent magnetic structure has been destroyed; iii) an evolutionary process, such as relaxation to a low plasma-beta state that leads to the formation of an MC; iv) the existence of two (or more) intrinsic initiation mechanisms, some of which produce MCs and some that do not; or v) MCs are just an easily identifiable limit in an otherwise corntinuous spectrum of structures. We apply quantitative statistical models to assess these ideas. In particular, we use the Akaike information criterion (AIC) to rank the candidate models and a Gaussian mixture model (GMM) to uncover any intrinsic clustering of the data. Using a logistic regression, we find that plasma-beta, CME width, and the ratio O(sup 7) / O(sup 6) are the most significant predictor variables for the presence of an MC. Moreover, the propensity for an event to be identified as an MC decreases with heliocentric distance. These results tend to refute ideas ii) and iii). GMM clustering analysis further identifies three distinct groups of ICMEs; two of which match (at the 86% level) with events independently identified as MCs, and a third that matches with non-MCs (68 % overlap), Thus, idea v) is not supported. Choosing between ideas i) and iv) is more challenging, since they may effectively be indistinguishable from one another by a single in-situ spacecraft. We offer some suggestions on how future studies may address this.
Interplanetary magnetic field data book
NASA Technical Reports Server (NTRS)
King, J. H.
1975-01-01
An interplanetary magnetic field (IMF) data set is presented that is uniform with respect to inclusion of cislunar IMF data only, and which has as complete time coverage as presently possible over a full solar cycle. Macroscale phenomena in the interplanetary medium (sector structure, heliolatitude variations, solar cycle variations, etc.) and other phenomena (e.g., ground level cosmic-ray events) for which knowledge of the IMF with hourly resolution is necessary, are discussed. Listings and plots of cislunar hourly averaged IMP parameters over the period November 27, 1963, to May 17, 1974, are presented along with discussion of the mutual consistency of the IMF data used herein. The magnetic tape from which the plots and listings were generated, which is available from the National Space Science Data Center (NSSDC), is also discussed.
NASA Technical Reports Server (NTRS)
Koontz, Steven L.; Rojdev, Kristina; Valle, Gerard D.; Zipay, John J.; Atwell, William S.
2013-01-01
The Hybrid Inflatable DSH combined with electric propulsion and high power solar-electric power systems offer a near TRL-now solution to the space radiation crew dose problem that is an inevitable aspect of long term manned interplanetary flight. Spreading program development and launch costs over several years can lead to a spending plan that fits with NASA's current and future budgetary limitations, enabling early manned interplanetary operations with space radiation dose control, in the near future while biomedical research, nuclear electric propulsion and active shielding research and development proceed in parallel. Furthermore, future work should encompass laboratory validation of HZETRN calculations, as previous laboratory investigations have not considered large shielding thicknesses and the calculations presented at these thicknesses are currently performed via extrapolation.
NASA Technical Reports Server (NTRS)
Giorgini, Jon; Wong, S. Kuen; You, Tung-Han; Chadbourne, Pam; Lim, Lily
1995-01-01
The Magellan spacecraft has been aerobraked into a 197 x 541 km near-circular orbit around Venus from which it is conducting a high-resolution gravity mapping mission. This was the first interplanetary aerobrake maneuver and involved flying the spacecraft through the upper reaches of the Venusian atmosphere 730 times over a 70 day period. Round-trip light-time varied from 9.57 to 18.83 minutes during this period. Navigation for this dynamic phase of the Magellan mission was planned and executed in the face of budget-driven down-sizing with all spacecraft safe modes disabled and a flight-team one-third the size of comparable interplanetary missions. Successful execution of this manuever using spacecraft hardware not designed to operate in a planetary atmosphere, demonstrated a practical cost-saving technique for both large and small future interplanetary missions.
Testing model for prediction system of 1-AU arrival times of CME-associated interplanetary shocks
NASA Astrophysics Data System (ADS)
Ogawa, Tomoya; den, Mitsue; Tanaka, Takashi; Sugihara, Kohta; Takei, Toshifumi; Amo, Hiroyoshi; Watari, Shinichi
We test a model to predict arrival times of interplanetary shock waves associated with coronal mass ejections (CMEs) using a three-dimensional adaptive mesh refinement (AMR) code. The model is used for the prediction system we develop, which has a Web-based user interface and aims at people who is not familiar with operation of computers and numerical simulations or is not researcher. We apply the model to interplanetary CME events. We first choose coronal parameters so that property of background solar wind observed by ACE space craft is reproduced. Then we input CME parameters observed by SOHO/LASCO. Finally we compare the predicted arrival times with observed ones. We describe results of the test and discuss tendency of the model.
NASA Technical Reports Server (NTRS)
Witt, N.; Blum, P. W.; Ajello, J. M.
1981-01-01
The analysis of Mariner 10 observations of Lyman-alpha resonance radiation shows an increase of interplanetary neutral hydrogen densities above the solar poles. This increase is caused by a latitudinal variation of the solar wind velocity and/or flux. Using both the Mariner 10 results and other solar wind observations, the values of the solar wind flux and velocity with latitude are determined for several cases of interest. The latitudinal variation of interplanetary hydrogen gas, arising from the solar wind latitudinal variation, is shown to be most pronounced in the inner solar system. From this result it is shown that spacecraft Lyman-alpha observations are more sensitive to the latitudinal anisotropy for a spacecraft location in the inner solar system near the downwind axis.
Simulating Autonomous Telecommunication Networks for Space Exploration
NASA Technical Reports Server (NTRS)
Segui, John S.; Jennings, Esther H.
2008-01-01
Currently, most interplanetary telecommunication systems require human intervention for command and control. However, considering the range from near Earth to deep space missions, combined with the increase in the number of nodes and advancements in processing capabilities, the benefits from communication autonomy will be immense. Likewise, greater mission science autonomy brings the need for unscheduled, unpredictable communication and network routing. While the terrestrial Internet protocols are highly developed their suitability for space exploration has been questioned. JPL has developed the Multi-mission Advanced Communications Hybrid Environment for Test and Evaluation (MACHETE) tool to help characterize network designs and protocols. The results will allow future mission planners to better understand the trade offs of communication protocols. This paper discusses various issues with interplanetary network and simulation results of interplanetary networking protocols.
NASA Technical Reports Server (NTRS)
Niedner, Malcolm B., Jr.; Schwingenschuh, Konrad; Hoeksema, J. Todd; Dryer, Murray; Mcintosh, Patrick S.
1987-01-01
The encounters of five spacecraft with Halley's Comet during 6-14 March 1986 offered a unique opportunity to calibrate the solar-wind interaction with cometary plasmas as recorded by remote wide-field and narrow-field/narrowband imaging. Perhaps not generally recognized in the comet community is the additional opportunity offered by the Halley Armada to study the structure of the solar-wind and interplanetary magnetic field (IMF) in three dimensions using five sets of data obtained over similar time intervals and heliocentric distances, but at somewhat different heliolatitudes. In fact, the two problems, i.e., comet physics and the structure of the interplanetary medium, are coupled if one wants to understand what conditions pertained at the comet between the encounters. This relationship is discussed.
NASA Astrophysics Data System (ADS)
Armano, M.; Audley, H.; Baird, J.; Bassan, M.; Benella, S.; Binetruy, P.; Born, M.; Bortoluzzi, D.; Cavalleri, A.; Cesarini, A.; Cruise, A. M.; Danzmann, K.; de Deus Silva, M.; Diepholz, I.; Dixon, G.; Dolesi, R.; Fabi, M.; Ferraioli, L.; Ferroni, V.; Finetti, N.; Fitzsimons, E. D.; Freschi, M.; Gesa, L.; Gibert, F.; Giardini, D.; Giusteri, R.; Grimani, C.; Grzymisch, J.; Harrison, I.; Heinzel, G.; Hewitson, M.; Hollington, D.; Hoyland, D.; Hueller, M.; Inchauspé, H.; Jennrich, O.; Jetzer, P.; Karnesis, N.; Kaune, B.; Korsakova, N.; Killow, C. J.; Laurenza, M.; Lobo, J. A.; Lloro, I.; Liu, L.; López-Zaragoza, J. P.; Maarschalkerweerd, R.; Mance, D.; Martín, V.; Martin-Polo, L.; Martino, J.; Martin-Porqueras, F.; Mateos, I.; McNamara, P. W.; Mendes, J.; Mendes, L.; Nofrarias, M.; Paczkowski, S.; Perreur-Lloyd, M.; Petiteau, A.; Pivato, P.; Plagnol, E.; Ramos-Castro, J.; Reiche, J.; Robertson, D. I.; Rivas, F.; Russano, G.; Sabbatini, F.; Slutsky, J.; Sopuerta, C. F.; Sumner, T.; Telloni, D.; Texier, D.; Thorpe, J. I.; Vetrugno, D.; Vitale, S.; Wanner, G.; Ward, H.; Wass, P.; Weber, W. J.; Wissel, L.; Wittchen, A.; Zambotti, A.; Zenoni, C.; Zweifel, P.
2018-02-01
Galactic cosmic-ray (GCR) energy spectra observed in the inner heliosphere are modulated by the solar activity, the solar polarity and structures of solar and interplanetary origin. A high counting rate particle detector (PD) aboard LISA Pathfinder, meant for subsystems diagnostics, was devoted to the measurement of GCR and solar energetic particle integral fluxes above 70 MeV n‑1 up to 6500 counts s‑1. PD data were gathered with a sampling time of 15 s. Characteristics and energy dependence of GCR flux recurrent depressions and of a Forbush decrease dated 2016 August 2 are reported here. The capability of interplanetary missions, carrying PDs for instrument performance purposes, in monitoring the passage of interplanetary coronal mass ejections is also discussed.
Aoki, Hironori; Yamamoto, Eiichiro; Yamano, Hiro-O; Sugai, Tamotsu; Kimura, Tomoaki; Tanaka, Yoshihito; Matsushita, Hiro-O; Yoshikawa, Kenjiro; Takagi, Ryo; Harada, Eiji; Nakaoka, Michiko; Yoshida, Yuko; Harada, Taku; Sudo, Gota; Eizuka, Makoto; Yorozu, Akira; Kitajima, Hiroshi; Niinuma, Takeshi; Kai, Masahiro; Nojima, Masanori; Suzuki, Hiromu; Nakase, Hiroshi
2018-03-15
Colorectal serrated lesions (SLs) are important premalignant lesions whose clinical and biological features are not fully understood. We aimed to establish accurate colonoscopic diagnosis and treatment of SLs through evaluation of associations among the morphological, pathological, and molecular characteristics of SLs. A total of 388 premalignant and 18 malignant colorectal lesions were studied. Using magnifying colonoscopy, microsurface structures were assessed based on Kudo's pit pattern classification system, and the Type II pit pattern was subcategorized into classical Type II, Type II-Open (Type II-O) and Type II-Long (Type II-L). BRAF/KRAS mutations and DNA methylation of CpG island methylator phenotype (CIMP) markers (MINT1, - 2, - 12, - 31, p16, and MLH1) were analyzed through pyrosequencing. Type II-O was tightly associated with sessile serrated adenoma/polyps (SSA/Ps) with BRAF mutation and CIMP-high. Most lesions with simple Type II or Type II-L were hyperplastic polyps, while mixtures of Type II or Type II-L plus more advanced pit patterns (III/IV) were characteristic of traditional serrated adenomas (TSAs). Type II-positive TSAs frequently exhibited BRAF mutation and CIMP-low, while Type II-L-positive TSAs were tightly associated with KRAS mutation and CIMP-low. Analysis of lesions containing both premalignant and cancerous components suggested Type II-L-positive TSAs may develop into KRAS-mutated/CIMP-low/microsatellite stable cancers, while Type II-O-positive SSA/Ps develop into BRAF-mutated/CIMP-high/microsatellite unstable cancers. These results suggest that Type II subtypes reflect distinct molecular subclasses in the serrated neoplasia pathway and that they could be useful hallmarks for identifying SLs at high risk of developing into CRC.
The Interplanetary Internet: A Communications Infrastructure for Mars Exploration
NASA Astrophysics Data System (ADS)
Burleigh, S.; Cerf, V.; Durst, R.; Fall, K.; Hooke, A.; Scott, K.; Weiss, H.
2002-01-01
A successful program of Mars Exploration will depend heavily on a robust and dependable space communications infrastructure that is well integrated with the terrestrial Internet. In the same way that the underpinnings of the Internet are the standardized "TCP/IP" suite of protocols, an "Interplanetary Internet" will need a similar set of capabilities that can support reliable communications across vast distances and highly stressed communications environments. For the past twenty years, the Consultative Committee for Space Data Systems (CCSDS) has been developing standardized long- haul space link communications techniques that are now in use by over two hundred missions within the international space community. New CCSDS developments, shortly to be infused into Mars missions, include a proximity link standard and a store-and- forward file transfer protocol. As part of its `Next Generation Internet' initiative, the U.S. Defense Advanced Projects Agency (DARPA) recently supported an architectural study of a future "InterPlaNetary Internet" (IPN). The IPN architecture assumes that in short-delay environments - such as on and around Mars - standard Internet technologies will be adapted to the locally harsh environment and deployed within surface vehicles and orbiting relays. A long-haul interplanetary backbone network that includes Deep Space Network (DSN) gateways into the terrestrial Internet will interconnect these distributed internets that are scattered across the Solar System. Just as TCP/IP unites the Earth's "network of networks" to become the Internet, a new suite of protocols known as "Bundling" will enable the IPN to become a "network of internets" to support true interplanetary dialog. An InterPlaNetary Internet Research Group has been established within the Internet community to coordinate this research and NASA has begun to support the further development of the IPN architecture and the Bundling protocols. A strategy is being developed whereby the current set of standard CCSDS data communications protocols can be incrementally evolved so that true InterPlaNetary Internet operations are feasible by the end of the decade. The strategy - which is already in progress via the deployment of Mars relay links - needs individual missions to each contribute increments of capability so that a standard communications infrastructure can rapidly accrete. This paper will describe the IPN architectural concepts, discuss the current set of standard data communications capabilities that exist to support Mars exploration and review the proposed new developments. We will also postulate that the concept is scalable and can grow to support future scenarios where human intelligence is widely distributed across the Solar System and day-to-day communications dialog among planets is routine. 1 2 3 4 5
NASA Technical Reports Server (NTRS)
Vaden, Karl R.
2006-01-01
Communication systems for future NASA interplanetary spacecraft require transmitter power ranging from several hundred watts to kilowatts. Several hybrid junctions are considered as elements within a corporate combining architecture for high power Ka-band space traveling-wave tube amplifiers (TWTAs). This report presents the simulated transmission characteristics of several hybrid junctions designed for a low loss, high power waveguide based power combiner.
NASA Technical Reports Server (NTRS)
Ivory, K.; Schwenn, R.
1995-01-01
The solar wind data obtained from the two Helios solar probes in the years 1974 to 1986 were systematically searched for the occurrence of bi-directional electron events. Most often these events are found in conjunction with shock associated magnetic clouds. The implications of these observations for the topology of interplanetary plasma clouds are discussed.
Mimicry by asx- and ST-turns of the four main types of beta-turn in proteins.
Duddy, William J; Nissink, J Willem M; Allen, Frank H; Milner-White, E James
2004-11-01
Hydrogen-bonded beta-turns in proteins occur in four categories: type I (the most common), type II, type II', and type I'. Asx-turns resemble beta-turns, in that both have an NH. . .OC hydrogen bond forming a ring of 10 atoms. Serine and threonine side chains also commonly form hydrogen-bonded turns, here called ST-turns. Asx-turns and ST-turns can be categorized into four classes, based on side chain rotamers and the conformation of the central turn residue, which are geometrically equivalent to the four types of beta-turns. We propose asx- and ST-turns be named using the type I, II, I', and II' beta-turn nomenclature. Using this, the frequency of occurrence of both asx- and ST-turns is: type II' > type I > type II > type I', whereas for beta-turns it is type I > type II > type I' > type II'. Almost all type II asx-turns occur as a recently described three residue feature named an asx-nest.
Comparison of the WSA-ENLIL model with three CME cone types
NASA Astrophysics Data System (ADS)
Jang, Soojeong; Moon, Y.; Na, H.
2013-07-01
We have made a comparison of the CME-associated shock propagation based on the WSA-ENLIL model with three cone types using 29 halo CMEs from 2001 to 2002. These halo CMEs have cone model parameters as well as their associated interplanetary (IP) shocks. For this study we consider three different cone types (an asymmetric cone model, an ice-cream cone model and an elliptical cone model) to determine 3-D CME parameters (radial velocity, angular width and source location), which are the input values of the WSA-ENLIL model. The mean absolute error (MAE) of the arrival times for the asymmetric cone model is 10.6 hours, which is about 1 hour smaller than those of the other models. Their ensemble average of MAE is 9.5 hours. However, this value is still larger than that (8.7 hours) of the empirical model of Kim et al. (2007). We will compare their IP shock velocities and densities with those from ACE in-situ measurements and discuss them in terms of the prediction of geomagnetic storms.Abstract (2,250 Maximum Characters): We have made a comparison of the CME-associated shock propagation based on the WSA-ENLIL model with three cone types using 29 halo CMEs from 2001 to 2002. These halo CMEs have cone model parameters as well as their associated interplanetary (IP) shocks. For this study we consider three different cone types (an asymmetric cone model, an ice-cream cone model and an elliptical cone model) to determine 3-D CME parameters (radial velocity, angular width and source location), which are the input values of the WSA-ENLIL model. The mean absolute error (MAE) of the arrival times for the asymmetric cone model is 10.6 hours, which is about 1 hour smaller than those of the other models. Their ensemble average of MAE is 9.5 hours. However, this value is still larger than that (8.7 hours) of the empirical model of Kim et al. (2007). We will compare their IP shock velocities and densities with those from ACE in-situ measurements and discuss them in terms of the prediction of geomagnetic storms.
The use of x-ray pulsar-based navigation method for interplanetary flight
NASA Astrophysics Data System (ADS)
Yang, Bo; Guo, Xingcan; Yang, Yong
2009-07-01
As interplanetary missions are increasingly complex, the existing unique mature interplanetary navigation method mainly based on radiometric tracking techniques of Deep Space Network can not meet the rising demands of autonomous real-time navigation. This paper studied the applications for interplanetary flights of a new navigation technology under rapid development-the X-ray pulsar-based navigation for spacecraft (XPNAV), and valued its performance with a computer simulation. The XPNAV is an excellent autonomous real-time navigation method, and can provide comprehensive navigation information, including position, velocity, attitude, attitude rate and time. In the paper the fundamental principles and time transformation of the XPNAV were analyzed, and then the Delta-correction XPNAV blending the vehicles' trajectory dynamics with the pulse time-of-arrival differences at nominal and estimated spacecraft locations within an Unscented Kalman Filter (UKF) was discussed with a background mission of Mars Pathfinder during the heliocentric transferring orbit. The XPNAV has an intractable problem of integer pulse phase cycle ambiguities similar to the GPS carrier phase navigation. This article innovatively proposed the non-ambiguity assumption approach based on an analysis of the search space array method to resolve pulse phase cycle ambiguities between the nominal position and estimated position of the spacecraft. The simulation results show that the search space array method are computationally intensive and require long processing time when the position errors are large, and the non-ambiguity assumption method can solve ambiguity problem quickly and reliably. It is deemed that autonomous real-time integrated navigation system of the XPNAV blending with DSN, celestial navigation, inertial navigation and so on will be the development direction of interplanetary flight navigation system in the future.
Solar Wind Plasma Flows and Space Weather Aspects Recent Solar Cycle
NASA Astrophysics Data System (ADS)
Kaushik, Sonia; Kaushik, Subhash Chandra
2016-07-01
Solar transients are responsible for initiating short - term and long - term variations in earth's magnetosphere. These variations are termed as geomagnetic disturbances, and driven by the interaction of solar wind features with the geo-magnetosphere. The strength of this modulation process depends upon the magnitude and orientation of the Interplanetary Magnetic Field and solar wind parameters. These interplanetary transients are large scale structures containing plasma and magnetic field expelled from the transient active regions of solar atmosphere. As they come to interplanetary medium the interplanetary magnetic field drape around them. This field line draping was thought as possible cause of the characteristic eastward deflection and giving rise to geomagnetic activities as well as a prime factor in producing the modulation effects in the near Earth environment. The Solar cycle 23 has exhibited the unique extended minima and peculiar effects in the geomagnetosphere. Selecting such transients, occurred during this interval, an attempt has been made to determine quantitative relationships of these transients with solar/ interplanetary and Geophysical Parameters. In this work we used hourly values of IMF data obtained from the NSSD Center. The analysis mainly based on looking into the effects of these transients on earth's magnetic field. The high-resolution data IMF Bz and solar wind data obtained from WDC-A, through its omniweb, available during the selected period. Dst and Ap obtained from WDC-Kyoto are taken as indicator of geomagnetic activities. It is found that Dst index, solar wind velocity, proton temperature and the Bz component of magnetic field have higher values and increase just before the occurrence of these events. Larger and varying magnetic field mainly responsible for producing the short-term changes in geomagnetic intensity are observed during these events associated with coronal holes.
Preconditioning of Interplanetary Space Due to Transient CME Disturbances
DOE Office of Scientific and Technical Information (OSTI.GOV)
Temmer, M.; Reiss, M. A.; Hofmeister, S. J.
Interplanetary space is characteristically structured mainly by high-speed solar wind streams emanating from coronal holes and transient disturbances such as coronal mass ejections (CMEs). While high-speed solar wind streams pose a continuous outflow, CMEs abruptly disrupt the rather steady structure, causing large deviations from the quiet solar wind conditions. For the first time, we give a quantification of the duration of disturbed conditions (preconditioning) for interplanetary space caused by CMEs. To this aim, we investigate the plasma speed component of the solar wind and the impact of in situ detected interplanetary CMEs (ICMEs), compared to different background solar wind modelsmore » (ESWF, WSA, persistence model) for the time range 2011–2015. We quantify in terms of standard error measures the deviations between modeled background solar wind speed and observed solar wind speed. Using the mean absolute error, we obtain an average deviation for quiet solar activity within a range of 75.1–83.1 km s{sup −1}. Compared to this baseline level, periods within the ICME interval showed an increase of 18%–32% above the expected background, and the period of two days after the ICME displayed an increase of 9%–24%. We obtain a total duration of enhanced deviations over about three and up to six days after the ICME start, which is much longer than the average duration of an ICME disturbance itself (∼1.3 days), concluding that interplanetary space needs ∼2–5 days to recover from the impact of ICMEs. The obtained results have strong implications for studying CME propagation behavior and also for space weather forecasting.« less
Interplanetary Circumstances of Quasi-Perpendicular Interplanetary Shocks in 1996-2005
NASA Technical Reports Server (NTRS)
Richardson, I. G.; Cane, H. V.
2010-01-01
The angle (theta(sub Bn)) between the normal to an interplanetary shock front and the upstream magnetic field direction, though often thought of as a property "of the shock," is also determined by the configuration of the magnetic field immediately upstream of the shock. We investigate the interplanetary circumstances of 105 near-Earth quasi-perpendicular shocks during 1996-2005 identified by theta(sub Bn) greater than or equal to 80 degrees and/or by evidence of shock drift particle acceleration. Around 87% of these shocks were driven by interplanetary coronal mass ejections (ICMEs); the remainder were probably the forward shocks of corotating interaction regions. For around half of the shocks, the upstream field was approximately perpendicular to the radial direction, either east-west or west-east or highly inclined to the ecliptic. Such field directions will give quasi-perpendicular configurations for radially propagating shocks. Around 30% of the shocks were propagating through, or closely followed, ICMEs at the time of observation. Another quarter were propagating through the heliospheric plasma sheet (HPS), and a further quarter occurred in slow solar wind that did not have characteristics of the HPS. Around 11% were observed in high-speed streams, and 7% in the sheaths following other shocks. The fraction of shocks found in high-speed streams is around a third of that expected based on the fraction of the time when such streams were observed at Earth. Quasi-perpendicular shocks are found traveling through ICMEs around 2-3 times more frequently than expected. In addition, shocks propagating through ICMEs are more likely to have larger values of theta(sub Bn) than shocks outside ICMEs.
The geocentric particulate distribution: Cometary, asteroidal, or space debris?
NASA Technical Reports Server (NTRS)
Mcdonnell, J. A. M.; Ratcliff, P. R.
1992-01-01
Definition of the Low Earth Orbit (LEO) particulate environment has been refined considerably with the analysis of data from NASA's Long Duration Exposure Facility (LDEF). Measurements of the impact rates from particulates ranging from sub-micron to millimetres in dimension and, especially, information on their directionality has permitted new scrunity of the sources of the particulates. Modelling of the dynamics of both bound (Earth orbital) and unbound (hyperbolic interplanetary) particulates intercepting LDEF's faces leads to the conclusion that the source is dominantly interplanetary for particle dimensions of greater than some 5 microns diameter; however the anisotropy below this dimension demands lower velocities and is compatible with an orbital component. Characteristics of the LDEF interplanetary component are compatible with familiar meteoroid sources and deep space measurements. Understanding of the orbital component which exceeds the interplanetary flux by a factor of 4 is less clear; although the very small particulates in orbit have been associated with space debris (Lawrance and Brownlee, 1986) this data conflicts with other measurements (McDonnell, Carey and Dixon, 1984) at the same epoch. By analysis of trajectories approaching the Earth and its atmosphere, we have shown that a significant contribution could be captured by aerocapture, i.e., atmospheric drag, from either asteroidal or cometary sources; such enhancement is unlikely however to provide the temporal and spatial fluctuations observed by the LDEF Interplanetary Dust Experiment (Mullholland et al. 1992). A further new mechanism is also examined, that of aerofragmentation capture, where an atmospheric grazing trajectory, which would not normally lead to capture, leads to fragmentation by thermal or mechanical shock; the microparticulates thus created can be injected in large numbers, but only into short-lifetime orbits. The concentration in one particular orbit plane, could explain the temporal fluctuations seen on LDEF; space debris could also explain the phenomenon.
Heliospheric Impact on Cosmic Rays Modulation
NASA Astrophysics Data System (ADS)
Tiwari, Bhupendra Kumar
2016-07-01
Heliospheric Impact on Cosmic RaysModulation B. K. Tiwari Department of Physics, A. P. S. University, Rewa (M.P.), btiwari70@yahoo.com Cosmic rays (CRs) flux at earth is modulated by the heliosphereric magnetic field and the structure of the heliosphere, controls by solar outputs and their variability. Sunspots numbers (SSN) is often treated as a primary indicator of solar activity (SA). GCRs entering the helioshphere are affected by the interplanetary magnetic field (IMF) and solar wind speed, their modulation varies with the varying solar activity. The observation based on data recoded from Omniweb data Centre for solar- interplanetary activity indices and monthly mean count rate of cosmic ray intensity (CRI) data from neutron monitors of different cut-off rigidities(Rc) (Moscow Rc=2.42Gv and Oulu Rc=0.80Gv). During minimum solar activity periodof solar cycle 23/24, the sun is remarkably quiet, weakest strength of the IMF and least dense and slowest, solar wind speed, whereas, in 2003, highest value of yearly averaged solar wind speed (~568 Km/sec) associated with several coronal holes, which generate high speed wind stream has been recorded. It is observed that GCRs fluxes reduces and is high anti-correlated with SSN (0.80) and IMF (0.86). CRI modulation produces by a strong solar flare, however, CME associated solar flare produce more disturbance in the interplanetary medium as well as in geomagnetic field. It is found that count rate of cosmic ray intensity and solar- interplanetary parameters were inverse correlated and solar indices were positive correlated. Keywords- Galactic Cosmic rays (GCRs), Sunspot number (SSN), Solar activity (SA), Coronal Mass Ejection (CME), Interplanetary magnetic field (IMF)
Filamentation instability of magnetosonic waves in the solar wind environment
NASA Technical Reports Server (NTRS)
Kuo, S. P.; Lee, M. C.
1989-01-01
Intense magnetosonic waves, originally propagating at the right angle with the interplanetary magnetic field, can excite a purely growing mode along the interplanetary magnetic field together with two symmetric magnetosonic sidebands propagating obliquely across the magnetic field. This instability process leads to the filamentation of the magnetosonic pump waves. These two excited magnetosonic sideband modes propagate together perpendicularly across the magnetic field and, meanwhile, form a standing wave pattern along the magnetic field. The thresholds of this filamentation instability can be exceeded in the solar wind environment. It is predicted that the density fluctuations produced by the filamentation instability along the interplanetary magnetic field have wavelengths greater than, at least, a few earth radii. The polarization of the obliquely propagating magnetosonic waves excited by the filamentation instability is determined by the characteristics of the magnetosonic pump waves and the environmental plasmas.
NASA Technical Reports Server (NTRS)
Marsden, R. G.; Sanderson, T. R.; Tranquille, C.; Wenzel, K.-P.; Smith, E. J.
1987-01-01
The paper represents the results of a comprehensive survey of low-energy proton bidirectional anisotropies and associated transient magnetic structures as observed in the 35-1600 keV energy range on ISEE-3 during the last solar maximum. The majority of observed bidirectional flow (BDF) events (more than 70 percent) are associated with isolated magnetic structures which are postulated to be an interplanetary manifestation of coronal mass ejection (CME) events. The observed BDF events can be qualitatively grouped into five classes depending on the field signature of the related magnetic structure and the association (or lack of association) with an interplanetary shock. Concerning the topology of the CME-related magnetic structures, the observations are interpreted as being consistent with a detached bubble, comprising closed loops or tightly wound helices.
NASA Astrophysics Data System (ADS)
Chashei, I. V.; Tyul'bashev, S. A.; Shishov, V. I.; Subaev, I. A.
2018-05-01
Results of monitoring of interplanetary scintillations with the Large Phased Array of the Pushchino Radio AstronomyObservatory at 111 MHz during a period of flare activity of the Sun in the first ten days of September 2017 are presented. Enhancements of scintillations associated with interplanetary coronal mass ejections propagating after limb flares have been recorded. The propagation velocities are estimated to be about 2000 km/s for an ejection on September 7 and about 1000 km/s for an ejection on September 6. It is shown that, during the propagation from the Sun, the lateral part of the ejections decelerates faster than its leading part. Night-time enhancements of second-timescale scintillations during periods of high geomagnetic activity have an ionospheric origin.
NASA Technical Reports Server (NTRS)
Divine, N.
1975-01-01
The design of space vehicles for operation in interplanetary space is given, based on descriptions of solar wind, solar particle events, and galactic cosmic rays. A state-of-the-art review is presented and design criteria are developed from experiment findings aboard interplanetary and high-altitude earth-orbiting spacecraft. Solar cells were found to be particularly sensitive. Solar protons may also impact the reliability of electric propulsion systems and spacecraft surfaces, as well as causing interference, detector saturation, and spurious signals. Galactic cosmic-ray impact can lead to similar electronic failure and interference and may register in photographic films and other emulsions. It was concluded that solar wind electron measurements might result from differential charging when shadowed portions of the spacecraft acquired a negative charge from electron impact.
Interplanetary boundary layers at 1 AU. [magnetic field measurements from Explorer 34
NASA Technical Reports Server (NTRS)
Burlaga, L. F.; Lemaire, J. F.; Turner, J. M.
1976-01-01
The structure and nature of discontinuities in the interplanetary magnetic field at 1 AU in the period March 18, 1971 to April 9, 1971, is determined by using high-resolution magnetic field measurements from Explorer 34. The discontinuities that were selected for this analysis occurred under a variety of interplanetary conditions at an average rate of 0.5/hr. This set does not include all discontinuities that were present, but the sample is large and it is probably representative. Both tangential and rotational discontinuities were identified, the ratio of TD's to RD's being approximately 3 to 1. Tangential discontinuities were observed every day, even among Alfvenic fluctuations. The structure of most of the boundary layers was simple and ordered, i.e., the magnetic field usually changed smoothly and monotonically from one side of the boundary layer to the other.
Earth orbital operations supporting manned interplanetary missions
NASA Astrophysics Data System (ADS)
Sherwood, Brent; Buddington, Patricia A.; Whittaker, William L.
The orbital operations required to accumulate, assemble, test, verify, maintain, and launch complex manned space systems on interplanetary missions from earth orbit are as vital as the flight hardware itself. Vast numbers of orbital crew are neither necessary nor desirable for accomplishing the required tasks. A suite of robotic techniques under human supervisory control, relying on sensors, software and manipulators either currently emergent or already applied in terrestrial settings, can make the job tractable. The mission vehicle becomes largely self-assembling, using its own rigid aerobrake as a work platform. The Space Station, having been used as a laboratory testbed and to house an assembly crew of four, is not dominated by the process. A feasible development schedule, if begun soon, could emplace orbital support technologies for exploration missions in time for a 2004 first interplanetary launch.
Coronal Mass Ejections Near the Sun and in the Interplanetary Medium
NASA Technical Reports Server (NTRS)
Gopalswamy, Nat
2012-01-01
Coronal mass ejections (CMEs) are the most energetic phenomenon in the heliosphere. During solar eruptions, the released energy flows out from the Sun in the form of magnetized plasma and electromagnetic radiation. The electromagnetic radiation suddenly increases the ionization content of the ionosphere, thus impacting communication and navigation systems. The plasma clouds can drive shocks that accelerate charged particles to very high energies in the interplanetary space, which pose radiation hazard to astronauts and space systems. The plasma clouds also arrive at Earth in about two days and impact Earth's magnetosphere, producing geomagnetic storms. The magnetic storms result in a number of effects including induced currents that can disrupt power grids, railroads, and underground pipelines. This lecture presents an overview of the origin, propagation, and geospace consequences of CMEs and their interplanetary counterparts.
Atypical Particle Heating at a Supercritical Interplanetary Shock
NASA Technical Reports Server (NTRS)
Wilson, Lynn B., III
2010-01-01
We present the first observations at an interplanetary shock of large amplitude (> 100 mV/m pk-pk) solitary waves and large amplitude (approx.30 mV/m pk-pk) waves exhibiting characteristics consistent with electron Bernstein waves. The Bernstein-like waves show enhanced power at integer and half-integer harmonics of the cyclotron frequency with a broadened power spectrum at higher frequencies, consistent with the electron cyclotron drift instability. The Bernstein-like waves are obliquely polarized with respect to the magnetic field but parallel to the shock normal direction. Strong particle heating is observed in both the electrons and ions. The observed heating and waveforms are likely due to instabilities driven by the free energy provided by reflected ions at this supercritical interplanetary shock. These results offer new insights into collisionless shock dissipation and wave-particle interactions in the solar wind.
NASA Technical Reports Server (NTRS)
Orth, Charles D.; Klein, Gail; Sercel, Joel; Hoffman, Nate; Murray, Kathy; Chang-Diaz, Franklin
1987-01-01
Inertial Confinement Fusion (ICF) is an attractive engine power source for interplanetary manned spacecraft, especially for near-term missions requiring minimum flight duration, because ICF has inherent high power-to-mass ratios and high specific impulses. We have developed a new vehicle concept called VISTA that uses ICF and is capable of round-trip manned missions to Mars in 100 days using A.D. 2020 technology. We describe VISTA's engine operation, discuss associated plasma issues, and describe the advantages of DT fuel for near-term applications. Although ICF is potentially superior to non-fusion technologies for near-term interplanetary transport, the performance capabilities of VISTA cannot be meaningfully compared with those of magnetic-fusion systems because of the lack of a comparable study of the magnetic-fusion systems. We urge that such a study be conducted.
Interplanetary and Interstellar Dust Observed by the Wind/WAVES Electric Field Instrument
NASA Technical Reports Server (NTRS)
Malaspina, David; Horanyi, M.; Zaslavsky, A.; Goetz, K.; Wilson, L. B., III; Kersten, K.
2014-01-01
Observations of hypervelocity dust particles impacting the Wind spacecraft are reported here for the first time using data from the WindWAVES electric field instrument. A unique combination of rotating spacecraft, amplitude-triggered high-cadence waveform collection, and electric field antenna configuration allow the first direct determination of dust impact direction by any spacecraft using electric field data. Dust flux and impact direction data indicate that the observed dust is approximately micron-sized with both interplanetary and interstellar populations. Nanometer radius dust is not detected by Wind during times when nanometer dust is observed on the STEREO spacecraft and both spacecraft are in close proximity. Determined impact directions suggest that interplanetary dust detected by electric field instruments at 1 AU is dominated by particles on bound trajectories crossing Earths orbit, rather than dust with hyperbolic orbits.
NASA Technical Reports Server (NTRS)
Ootsubo, T.; Onaka, T.; Yamamura, I.; Ishihara, D.; Tanabe, T.; Roellig, T. L.
2003-01-01
Within a few astronomical units of the Sun the solar system is filled with interplanetary dust, which is believed to be dust of cometary and asteroidal origin. Spectroscopic observations of the zodiacal emission with moderate resolution provide key information on the composition and size distribution of the dust in the interplanetary space. They can be compared directly to laboratory measurements of candidate materials, meteorites, and dust particles collected in the stratosphere. Recently mid-infrared spectroscopic observations of the zodiacal emission have been made by two instruments on board the Infrared Space Observatory; the camera (ISOCAM) and the spectrophotometer (ISOPHOT-S). A broad excess emission feature in the 9-11 micron range is reported in the ISOCAM spectrum, whereas the ISOPHOT-S spectra in 6-12 microns can be well fitted by a blackbody radiation without spectral features.
NASA Astrophysics Data System (ADS)
Paulino-Lima, Ivan Gláucio; Pilling, Sérgio; Janot-Pacheco, Eduardo; de Brito, Arnaldo Naves; Barbosa, João Alexandre Ribeiro Gonçalves; Leitão, Alvaro Costa; Lage, Claudia de Alencar Santos
2010-08-01
The radiation-resistant bacterium Deinococcus radiodurans was exposed to a simulated interplanetary UV radiation at the Brazilian Synchrotron Light Laboratory (LNLS). Bacterial samples were irradiated on different substrates to investigate the influence of surface relief on cell survival. The effects of cell multi-layers were also investigated. The ratio of viable microorganisms remained virtually the same (average 2%) for integrated doses from 1.2 to 12 kJ m -2, corresponding to 16 h of irradiation at most. The asymptotic profiles of the curves, clearly connected to a shielding effect provided by multi-layering cells on a cavitary substrate (carbon tape), means that the inactivation rate may not change significantly along extended periods of exposure to radiation. Such high survival rates reinforce the possibility of an interplanetary transfer of viable microbes.
Earth orbital operations supporting manned interplanetary missions
NASA Technical Reports Server (NTRS)
Sherwood, Brent; Buddington, Patricia A.; Whittaker, William L.
1989-01-01
The orbital operations required to accumulate, assemble, test, verify, maintain, and launch complex manned space systems on interplanetary missions from earth orbit are as vital as the flight hardware itself. Vast numbers of orbital crew are neither necessary nor desirable for accomplishing the required tasks. A suite of robotic techniques under human supervisory control, relying on sensors, software and manipulators either currently emergent or already applied in terrestrial settings, can make the job tractable. The mission vehicle becomes largely self-assembling, using its own rigid aerobrake as a work platform. The Space Station, having been used as a laboratory testbed and to house an assembly crew of four, is not dominated by the process. A feasible development schedule, if begun soon, could emplace orbital support technologies for exploration missions in time for a 2004 first interplanetary launch.
Workshop on the Analysis of Interplanetary Dust Particles
NASA Technical Reports Server (NTRS)
Zolensky, Michael E. (Editor)
1994-01-01
Great progress has been made in the analysis of interplanetary dust particles (IDP's) over the past few years. This workshop provided a forum for the discussion of the following topics: observation and modeling of dust in the solar system, mineralogy and petrography of IDP's, processing of IDP's in the solar system and terrestrial atmosphere, comparison of IDP's to meteorites and micrometeorites, composition of IDP's, classification, and collection of IDP's.
3rd Interplanetary Network Gamma-Ray Burst Website
NASA Astrophysics Data System (ADS)
Hurley, Kevin
1998-05-01
We announce the opening of the 3rd Interplanetary Network web site at http://ssl.berkeley.edu/ipn3/index.html This site presently has four parts: 1. A bibliography of over 3000 publications on gamma-ray bursts, 2. IPN data on all bursts triangulated up to February 1998, 3. A master list showing which spacecraft observed which bursts, 4. Preliminary IPN data on the latest bursts observed.
Integrated shielding systems for manned interplanetary spaceflight
NASA Astrophysics Data System (ADS)
George, Jeffrey A.
1992-01-01
The radiation environment encountered by manned interplanetary missions can have a severe impact on both vehicle design and mission performance. This study investigates the potential impact of radiation protection on interplanetary vehicle design for a manned Mars mission. A systems approach was used to investigate the radiation protection requirements of the sum interplanetary environment. Radiation budgets were developed which result in minimum integrated shielding system masses for both nuclear and non-nuclear powered missions. A variety of system configurations and geometries were assessed over a range of dose constraints. For an annual dose equivalent rate limit of 50 rem/yr, an environmental shielding system composed of a habitat shield and storm shelter was found to result in the lowest total mass. For a limit of 65 rem/yr, a system composed of a sleeping quarters shield was least massive, and resulted in significantly reduced system mass. At a limit of 75 rem/yr, a storm shelter alone was found to be sufficient, and exhibited a further mass reduction. Optimal shielding system results for 10 MWe nuclear powered missions were found to follow along similar lines, with the addition of a reactor shadow shield. A solar minimum galactic cosmic ray spectrum and one anomalously large solar particle event during the course of a two year mission were assumed. Water was assumed for environmental radiation shielding.
NASA Technical Reports Server (NTRS)
Langel, R. A.
1973-01-01
Variations in the scalar magnetic field (delta B) from the polar orbiting OGO 2, 4, and 6 spacecraft are examined as a function of altitude for times when the interplanetary magnetic field is toward the sun and for times when the interplanetary magnetic field away from the sun. This morphology is basically the same as that found when all data, irrespective of interplanetary magnetic sector, are averaged together. Differences in delta B occur, both between sectors and between seasons, which are similar in nature to variations in the surface delta Z found by Langel (1973c). The altitude variation of delta B at sunlit local times, together with delta Z at the earth's surface, demonstrates that the delta Z and delta B which varies with sector has an ionospheric source. Langel (1973b) showed that the positive delta B region in the dark portion of the hemisphere is due to at least two sources, the westward electrojet and an unidentified non-ionospheric source(s). Comparison of magnetic variations between season/sector at the surface and at the satellite, in the dark portion of the hemisphere, indicates that these variations are caused by variations in the latitudinally narrow electrojet currents and not by variations in the non-ionospheric source of delta B.
Smoothing and Predicting Celestial Pole Offsets using a Kalman Filter and Smoother
NASA Astrophysics Data System (ADS)
Nastula, J.; Chin, T. M.; Gross, R. S.; Winska, M.; Winska, J.
2017-12-01
Since the early days of interplanetary spaceflight, accounting for changes in the Earth's rotation is recognized to be critical for accurate navigation. In the 1960s, tracking anomalies during the Ranger VII and VIII lunar missions were traced to errors in the Earth orientation parameters. As a result, Earth orientation calibration methods were improved to support the Mariner IV and V planetary missions. Today, accurate Earth orientation parameters are used to track and navigate every interplanetary spaceflight mission. The interplanetary spacecraft tracking and navigation teams at JPL require the UT1 and polar motion parameters, and these Earth orientation parameters are estimated by the use of a Kalman filter to combine past measurements of these parameters and predict their future evolution. A model was then used to provide the nutation/precession components of the Earth's orientation separately. As a result, variations caused by the free core nutation were not taken into account. But for the highest accuracy, these variations must be considered. So JPL recently developed an approach based upon the use of a Kalman filter and smoother to provide smoothed and predicted celestial pole offsets (CPOs) to the interplanetary spacecraft tracking and navigation teams. The approach used at JPL to do this and an evaluation of the accuracy of the predicted CPOs will be given here.
The angular distribution of solar wind ˜20-200 keV superhalo electrons at quiet times
NASA Astrophysics Data System (ADS)
Yang, Liu; Wang, Linghua; Li, Gang; He, Jiansen; Salem, Chadi S.; Tu, Chuanyi; Wimmer-Schweingruber, Robert F.; Bale, Stuart D.
2016-03-01
We present a comprehensive study of the angular distribution of ˜20-200 keV superhalo electrons measured at 1 AU by the WIND 3DP instrument during quiet times from 1995 January through 2005 December. According to the interplanetary magnetic field, we re-bin the observed electron pitch angle distributions to obtain the differential flux, Jout (Jin), of electrons traveling outward from (inward toward) the Sun, and define the anisotropy of superhalo electrons as A =2/(Jo u t-Ji n) Jo u t+Ji n at a given energy. We found that for out in ˜96% of the selected quiet-time samples, superhalo electrons have isotropic angular distributions, while for ˜3% (˜1%) of quiet-time samples, superhalo electrons are outward-anisotropic (inward-anisotropic). All three groups of angular distributions show no correlation with the local solar wind plasma, interplanetary magnetic field and turbulence. Furthermore, the superhalo electron spectral index shows no correlation with the spectral index of local solar wind turbulence. These quiet-time superhalo electrons may be accelerated by nonthermal processes related to the solar wind source and strongly scattered/ reflected in the interplanetary medium, or could be formed due to the electron acceleration through the interplanetary medium.
Solar energetic particle anisotropies and insights into particle transport
NASA Astrophysics Data System (ADS)
Leske, R. A.; Cummings, A. C.; Cohen, C. M. S.; Mewaldt, R. A.; Labrador, A. W.; Stone, E. C.; Wiedenbeck, M. E.; Christian, E. R.; Rosenvinge, T. T. von
2016-03-01
As solar energetic particles (SEPs) travel through interplanetary space, their pitch-angle distributions are shaped by the competing effects of magnetic focusing and scattering. Measurements of SEP anisotropies can therefore reveal information about interplanetary conditions such as magnetic field strength, topology, and turbulence levels at remote locations from the observer. Onboard each of the two STEREO spacecraft, the Low Energy Telescope (LET) measures pitch-angle distributions for protons and heavier ions up to iron at energies of about 2-12 MeV/nucleon. Anisotropies observed using LET include bidirectional flows within interplanetary coronal mass ejections, sunward-flowing particles when STEREO was magnetically connected to the back side of a shock, and loss-cone distributions in which particles with large pitch angles underwent magnetic mirroring at an interplanetary field enhancement that was too weak to reflect particles with the smallest pitch angles. Unusual oscillations in the width of a beamed distribution at the onset of the 23 July 2012 SEP event were also observed and remain puzzling. We report LET anisotropy observations at both STEREO spacecraft and discuss their implications for SEP transport, focusing exclusively on the extreme event of 23 July 2012 in which a large variety of anisotropies were present at various times during the event.
NASA Astrophysics Data System (ADS)
Hu, H.; Liu, Y. D.; Wang, R.; Zhao, X.; Zhu, B.; Yang, Z.
2017-12-01
We investigate the coronal and interplanetary evolution of a coronal mass ejection (CME) launched on 2010 September 4 from a source region linking two active regions (ARs), 11101 and 11103, using extreme ultraviolet imaging, magnetogram, white-light, and in situ observations from SDO, STEREO, SOHO, VEX, and Wind. A potential-field source-surface model is employed to examine the configuration of the coronal magnetic field surrounding the source region. The graduated cylindrical shell model and a triangulation method are applied to determine the kinematics of the CME in the corona and interplanetary space. From the remote sensing and in situ observations, we obtain some key results: (1) the CME was deflected in both the eastward and southward directions in the low corona by the magnetic pressure from the two ARs, and possibly interacted with another ejection, which caused that the CME arrived at VEX that was longitudinally distant from the source region; (2) although VEX was closer to the Sun, the observed and derived CME arrival times at VEX are not earlier than those at Wind, which suggests the importance of determining both the frontal shape and propagation direction of the CME in interplanetary space; and (3) the ICME was compressed in the radial direction while the longitudinal transverse size was extended.
Sheath-accumulating Propagation of Interplanetary Coronal Mass Ejection
NASA Astrophysics Data System (ADS)
Takahashi, Takuya; Shibata, Kazunari
2017-03-01
Fast interplanetary coronal mass ejections (ICMEs) are the drivers of strong space weather storms such as solar energetic particle events and geomagnetic storms. The connection between the space-weather-impacting solar wind disturbances associated with fast ICMEs at Earth and the characteristics of causative energetic CMEs observed near the Sun is a key question in the study of space weather storms, as well as in the development of practical space weather prediction. Such shock-driving fast ICMEs usually expand at supersonic speeds during the propagation, resulting in the continuous accumulation of shocked sheath plasma ahead. In this paper, we propose a “sheath-accumulating propagation” (SAP) model that describes the coevolution of the interplanetary sheath and decelerating ICME ejecta by taking into account the process of upstream solar wind plasma accumulation within the sheath region. Based on the SAP model, we discuss (1) ICME deceleration characteristics; (2) the fundamental condition for fast ICMEs at Earth; (3) the thickness of interplanetary sheaths; (4) arrival time prediction; and (5) the super-intense geomagnetic storms associated with huge solar flares. We quantitatively show that not only the speed but also the mass of the CME are crucial for discussing the above five points. The similarities and differences between the SAP model, the drag-based model, and the“snow-plow” model proposed by Tappin are also discussed.
Sandford, S A; Bradley, J P
1989-01-01
The majority of the interplanetary dust particles (IDPs) collected in the stratosphere belong to one of three major classes, the first two dominated by the anhydrous minerals olivine and pyroxene, and the third by hydrous layer-lattice silicates. Infrared spectroscopy and transmission electron microscopy studies show that the different IDP classes represent different types of dust that exist as individual particles in interplanetary space. The majority of the collected IDPs smaller than 30 micrometers in diameter in the layer-lattice silicate and pyroxene classes appear not to have been heated to temperatures above 600 degrees C during atmospheric entry. The relatively low maximum temperatures experienced by these IDPs during atmospheric entry imply that they arrive at the top of the atmosphere with low geocentric encounter velocities. This limits the possible encounter trajectories for these particles to relatively circular, prograde orbits. As a result, it is unlikely that these IDPs are from Earth-crossing comets or asteroids. Asteroids, and comets having low inclinations and perihelia outside 1.2 AU, appear to be the best candidates for the parent bodies of the pyroxene and layer-lattice silicate particles. Chemical and mineralogical information suggests that the pyroxene-rich IDPs are from comets and the layer-lattice silicate-rich IDPs are from asteroids. The collected IDPs dominated by olivine appear to include a larger fraction of particles heating above 600 degrees C, suggesting that these particles were captured from more eccentric orbits. This, and the observation of the infrared spectral features of olivine in several comets suggest these particles have a cometary origin. Since much of the collected dust has apparently been captured from nearly circular, prograde orbits and since there are no appropriate parent bodies presently in such orbits, these results provide an experimental confirmation that the Poynting-Robertson effect exists as a nongravitational force important in the orbital evolution of dust in the Solar System.
Energetic protons from a disappearing solar filament
NASA Technical Reports Server (NTRS)
Kahler, S. W.; Cliver, E. W.; Cane, H. V.; Mcguire, R. E.; Stone, R. G.; Sheeley, N. R., Jr.
1985-01-01
A solar energetic (E 50 MeV) particle (SEP) event observed at 1 AU began about 15000 UT on 1981 December 5. This event was associated with a fast coronal mass ejection observed with the Solwind coronagraph on the P78-1 satellite. No metric type 2 or type 4 burst was observed, but a weak interplanetary type 2 burst was observed with the low frequency radio experiment on the International Sun-Earth Explorer-3 satellite. The mass ejection was associated with the eruption of a large solar quiescent filament which lay well away from any active regions. The eruption resulted in an H alpha double ribbon structure which straddled the magnetic inversion line. No impulsive phase was obvious in either the H alpha or the microwave observations. This event indicates that neither a detectable impulsive phase nor a strong or complex magnetic field is necessary for the production of energetic ions.
NASA Technical Reports Server (NTRS)
Zolensky, M. E.; Lindstrom, David J.; Lindstrom, Richard M.; Lindstrom, M. M.
1989-01-01
Today the major elemental composition of interplanetary dust particles (IDPs) is routinely determined in many laboratories. These and mineralogical studies have revealed the presence of at least two major types of IDPs, chondritic and refractory. Preliminary results of a successful attempt to determine abundances of a large suite of trace elements from both chondritic and refractory IDPs are reported. The analytical procedure can be used in the grain-by-grain analysis of returned cometary samples. Chondritic and refractory IDPs are characterized by standard scanning electron microscopy and energy dispersive x ray spectroscopy (SEM-EDX) techniques. With this system, detection limits for many elements are well below picogram levels, and some approach femtogram levels. This technique is non-destructive, although some sample handling is required, so particles can be analyzed by other techniques after instrument neutron activation analysis (INAA) is completed. Data is presently being reduced from the analyses of 7 IDPs. These are U2015E10, U2015F1, W7029-A2, W7029-A3, W7013A8, LACl (all chondritic) and 705 (refractory). So far, 17 different major and trace elements were detected and measured in these particles, including rare earths and some very volatile elements (Br and Zn).
NASA Astrophysics Data System (ADS)
Tsurutani, Bruce T.; Lakhina, Gurbax S.; Echer, Ezequiel; Hajra, Rajkumar; Nayak, Chinmaya; Mannucci, Anthony J.; Meng, Xing
2018-02-01
An alternative scenario to the Ngwira et al. (2014, https://doi.org/10.1002/2013JA019661) high sheath densities is proposed for modeling the Carrington magnetic storm. Typical slow solar wind densities ( 5 cm-3) and lower interplanetary magnetic cloud magnetic field intensities ( 90 nT) can be used to explain the observed initial and main phase storm features. A second point is that the fast storm recovery may be explained by ring current losses due to electromagnetic ion cyclotron wave scattering.
Solar Cycle Variation and Application to the Space Radiation Environment
NASA Technical Reports Server (NTRS)
Wilson, John W.; Kim, Myung-Hee Y.; Shinn, Judy L.; Tai, Hsiang; Cucinotta, Francis A.; Badhwar, Gautam D.; Badavi, Francis F.; Atwell, William
1999-01-01
The interplanetary plasma and fields are affected by the degree of disturbance that is related to the number and types of sunspots in the solar surface. Sunspot observations were improved with the introduction of the telescope in the seventeenth century, allowing observations which cover many centuries. A single quantity (sunspot number) was defined by Wolf in 1848 that is now known to be well correlated with many space observable quantities and is used herein to represent variations caused in the space radiation environment. The resultant environmental models are intended for future aircraft and space-travel-related exposure estimates.
Evaluation of optical data for Mars approach navigation.
NASA Technical Reports Server (NTRS)
Jerath, N.
1972-01-01
Investigation of several optical data types which can be obtained from science and engineering instruments normally aboard interplanetary spacecraft. TV cameras are assumed to view planets or satellites and stars for celestial references. Also, spacecraft attitude sensors are assumed to yield celestial references. The investigation of approach phases of typical Mars missions showed that the navigation accuracy was greatly enhanced with the addition of optical data to radio data. Viewing stars and the planet Mars was found most advantageous ten days before Mars encounter, and viewing Deimos or Phobos and stars was most advantageous within ten days of encounter.
Helium in interplanetary dust particles
NASA Technical Reports Server (NTRS)
Nier, A. O.; Schlutter, D. J.
1993-01-01
Helium and neon were extracted from fragments of individual stratosphere-collected interplanetary dust particles (IDP's) by subjecting them to increasing temperature by applying short-duration pulses of power in increasing amounts to the ovens containing the fragments. The experiment was designed to see whether differences in release temperatures could be observed which might provide clues as to the asteroidal or cometary origin of the particles. Variations were observed which show promise for elucidating the problem.
Interplanetary medium data book, appendix
NASA Technical Reports Server (NTRS)
King, J. H.
1977-01-01
Computer generated listings of hourly average interplanetary plasma and magnetic field parameters are given. Parameters include proton temperature, proton density, bulk speed, an identifier of the source of the plasma data for the hour, average magnetic field magnitude and cartesian components of the magnetic field. Also included are longitude and latitude angles of the vector made up of the average field components, a vector standard deviation, and an identifier of the source of magnetic field data.
Energy densities of Alfven waves between 0.7 and 1.6 AU. [in interplanetary medium
NASA Technical Reports Server (NTRS)
Belcher, J. W.; Burchsted, R.
1974-01-01
Plasma and field data from Mariner 4 and 5 between 0.7 and 1.6 AU are used to study the radial dependence of the levels of microscale fluctuation associated with interplanetary Alfven waves. The observed decrease of these levels with increasing distance from the sun is consistent with little or no local generation or damping of the ambient Alfven waves over this range of radial distance.
NASA Technical Reports Server (NTRS)
Brownlee, Donald E.; Sandford, Scott A.
1992-01-01
Dust is a ubiquitous component of our galaxy and the solar system. The collection and analysis of extraterrestrial dust particles is important to exobiology because it provides information about the sources of biogenically significant elements and compounds that accumulated in distant regions of the solar nebula and that were later accreted on the planets. The topics discussed include the following: general properties of interplanetary dust; the carbonaceous component of interplanetary dust particles; and the presence of an interstellar component.
NASA Technical Reports Server (NTRS)
Flynn, G. J.; Keller, L. P.
2002-01-01
Some interplanetary dust particles (IDPs), collected by NASA from the Earth's stratosphere, are the most primitive extraterrestrial material available for laboratory analysis. Many exhibit isotopic anomalies in H, N, and O, suggesting they contain preserved interstellar matter. We report the preliminary results of a comparison of the infrared absorption spectra of subunits of the IDPs with astronomical spectra of interstellar grains.
NASA Technical Reports Server (NTRS)
Vanallen, J. A.
1978-01-01
Specific fields of current investigation by satellite observation and ground-based radio-astronomical and optical techniques are discussed. Topics include: aspects of energetic particles trapped in the earth's magnetic field and transiently present in the outer magnetosphere and the solar, interplanetary, and terrestrial phenomena associated with them; plasma flows in the magnetosphere and the ionospheric effects of particle precipitation, with corresponding studies of the magnetosphere of Jupiter, Saturn, and possibly Uranus; the origin and propagation of very low frequency radio waves in the earth's magnetosphere and ionosphere; solar particle emissions and their interplanetary propagation and acceleration; solar modulation and the heliocentric radial dependence of the intensity of galactic cosmic rays; radio frequency emissions from the quintescent and flaring sun; shock waves in the interplanetary medium; radio emissions from Jupiter; and radio astronomy of pulsars, flare stars, and other stellar sources.
NASA Astrophysics Data System (ADS)
Bu, Yanlong; Zhang, Qiang; Ding, Chibiao; Tang, Geshi; Wang, Hang; Qiu, Rujin; Liang, Libo; Yin, Hejun
2017-02-01
This paper presents an interplanetary optical navigation algorithm based on two spherical celestial bodies. The remarkable characteristic of the method is that key navigation parameters can be estimated depending entirely on known sizes and ephemerides of two celestial bodies, especially positioning is realized through a single image and does not rely on traditional terrestrial radio tracking any more. Actual Earth-Moon group photos captured by China's Chang'e-5T1 probe were used to verify the effectiveness of the algorithm. From 430,000 km away from the Earth, the camera pointing accuracy reaches 0.01° (one sigma) and the inertial positioning error is less than 200 km, respectively; meanwhile, the cost of the ground control and human resources are greatly reduced. The algorithm is flexible, easy to implement, and can provide reference to interplanetary autonomous navigation in the solar system.
Interplanetary Program to Optimize Simulated Trajectories (IPOST). Volume 2: Analytic manual
NASA Technical Reports Server (NTRS)
Hong, P. E.; Kent, P. D.; Olson, D. W.; Vallado, C. A.
1992-01-01
The Interplanetary Program to Optimize Space Trajectories (IPOST) is intended to support many analysis phases, from early interplanetary feasibility studies through spacecraft development and operations. The IPOST output provides information for sizing and understanding mission impacts related to propulsion, guidance, communications, sensor/actuators, payload, and other dynamic and geometric environments. IPOST models three degree of freedom trajectory events, such as launch/ascent, orbital coast, propulsive maneuvering (impulsive and finite burn), gravity assist, and atmospheric entry. Trajectory propagation is performed using a choice of Cowell, Encke, Multiconic, Onestep, or Conic methods. The user identifies a desired sequence of trajectory events, and selects which parameters are independent (controls) and dependent (targets), as well as other constraints and the cost function. Targeting and optimization is performed using the Stanford NPSOL algorithm. IPOST structure allows subproblems within a master optimization problem to aid in the general constrained parameter optimization solution. An alternate optimization method uses implicit simulation and collocation techniques.
Large-Amplitude Electrostatic Waves Observed at a Supercritical Interplanetary Shock
NASA Technical Reports Server (NTRS)
Wilson, L. B., III; Cattell, C. A.; Kellogg, P. J.; Goetz, K.; Kersten, K.; Kasper, J. C.; Szabo, A.; Wilber, M.
2010-01-01
We present the first observations at an interplanetary shock of large-amplitude (> 100 mV/m pk-pk) solitary waves and large-amplitude (approx.30 mV/m pk-pk) waves exhibiting characteristics consistent with electron Bernstein waves. The Bernstein-like waves show enhanced power at integer and half-integer harmonics of the cyclotron frequency with a broadened power spectrum at higher frequencies, consistent with the electron cyclotron drift instability. The Bernstein-like waves are obliquely polarized with respect to the magnetic field but parallel to the shock normal direction. Strong particle heating is observed in both the electrons and ions. The observed heating and waveforms are likely due to instabilities driven by the free energy provided by reflected ions at this supercritical interplanetary shock. These results offer new insights into collisionless shock dissipation and wave-particle interactions in the solar wind.
Electron dropout echoes induced by interplanetary shock: Van Allen Probes observations
Hao, Y. X.; Zong, Q. -G.; Zhou, X. -Z.; ...
2016-06-07
On 23 November 2012, a sudden dropout of the relativistic electron flux was observed after an interplanetary shock arrival. The dropout peaks at ~1 MeV and more than 80% of the electrons disappeared from the drift shell. Van Allen twin Probes observed a sharp electron flux dropout with clear energy dispersion signals. The repeating flux dropout and recovery signatures, or “dropout echoes”, constitute a new phenomenon referred to as a “drifting electron dropout” with a limited initial spatial range. The azimuthal range of the dropout is estimated to be on the duskside, from ~1300 to 0100 LT. We then concludemore » that the shock-induced electron dropout is not caused by the magnetopause shadowing. Furthermore, the dropout and consequent echoes suggest that the radial migration of relativistic electrons is induced by the strong dusk-dawn asymmetric interplanetary shock compression on the magnetosphere.« less
Cultural ethology as a new approach of interplanetary crew's behavior
NASA Astrophysics Data System (ADS)
Tafforin, Carole; Giner Abati, Francisco
2017-10-01
From an evolutionary perspective, during short-term and medium-term orbital flights, human beings developed new spatial and motor behaviors to compensate for the lack of terrestrial gravity. Past space ethological studies have shown adaptive strategies to the tri-dimensional environment, with the goal of optimizing relationships between the astronaut and unusual sensorial-motor conditions. During a long-term interplanetary journey, crewmembers will have to develop new individual and social behaviors to adapt, far from earth, to isolation and confinement and as a result to extreme conditions of living and working together. Recent space psychological studies pointed out that heterogeneity is a feature of interplanetary crews, based on personality, gender mixing, internationality and diversity of backgrounds. Intercultural issues could arise between space voyagers. As a new approach we propose to emphasize the behavioral strategies of human groups' adaptation to this new multicultural dimension of the environment.
NASA Technical Reports Server (NTRS)
Heelis, R. A.
1984-01-01
The Atmosphere Explorer C data base of Northern Hemisphere ionospheric convection signatures at high latitudes is examined during times when the interplanetary magnetic field orientation is relatively stable. It is found that when the interplanetary magnetic field (IMF) has its expected garden hose orientation, the center of a region where the ion flow rotates from sunward to antisunward is displaced from local noon toward dawn irrespective of the sign of By. Poleward of this rotation region, called the cleft, the ion convection is directed toward dawn or dusk depending on whether By is positive or negative, respectively. The observed flow geometry can be explained in terms of a magnetosphere solar wind interaction in which merging is favored in either the prenoon Northern Hemisphere or the prenoon Southern Hemisphere when the IMF has a normal sector structure that is toward or away, respectively.
Terada, Yutaka; Matsui, Nobutaka; Noguchi, Keita; Kuwata, Ryusei; Shimoda, Hiroshi; Soma, Takehisa; Mochizuki, Masami; Maeda, Ken
2014-01-01
Type II feline coronavirus (FCoV) emerged via double recombination between type I FCoV and type II canine coronavirus (CCoV). In this study, two type I FCoVs, three type II FCoVs and ten type II CCoVs were genetically compared. The results showed that three Japanese type II FCoVs, M91-267, KUK-H/L and Tokyo/cat/130627, also emerged by homologous recombination between type I FCoV and type II CCoV and their parent viruses were genetically different from one another. In addition, the 3′-terminal recombination sites of M91-267, KUK-H/L and Tokyo/cat/130627 were different from one another within the genes encoding membrane and spike proteins, and the 5′-terminal recombination sites were also located at different regions of ORF1. These results indicate that at least three Japanese type II FCoVs emerged independently. Sera from a cat experimentally infected with type I FCoV was unable to neutralize type II CCoV infection, indicating that cats persistently infected with type I FCoV may be superinfected with type II CCoV. Our previous study reported that few Japanese cats have antibody against type II FCoV. All of these observations suggest that type II FCoV emerged inside the cat body and is unable to readily spread among cats, indicating that these recombination events for emergence of pathogenic coronaviruses occur frequently. PMID:25180686
NASA Technical Reports Server (NTRS)
Reiner, M. J.; Stone, R. G.; Fainberg, J.
1992-01-01
Type III radio emission generated in the vicinity of the Ulysses spacecraft has been detected at both the fundamental and harmonic of the local plasma frequency. The observations represent the first clear evidence of locally generated type III radio emission. This local emission shows no evidence of frequency drift, exhibits a relatively short rise time, is less intense than the observed remotely generated radio emission, and is temporally correlated with observed in situ Langmuir waves. The observations were made with the unified radio astronomy and wave (URAP) experiment on the Ulysses spacecraft between 1990 November 4 and 1991 April 30, as it traveled from 1 to 3 AU from the sun. During this time period many thousands of bursts were observed. However, only three examples of local emission and associated Langmuir waves were identified. This supports previous suggestions that type III radio emission is generated in localized regions of the interplanetary medium, rather than uniformly along the extent of the electron exciter beam.
NASA Technical Reports Server (NTRS)
Donnelly, H.
1983-01-01
Before discussing Deep Space Network receivers, a brief description of the functions of receivers and how they interface with other elements of the Network is presented. Different types of receivers are used in the Network for various purposes. The principal receiver type is used for telemetry and tracking. This receiver provides the capability, with other elements of the Network, to track the space probe utilizing Doppler and range measurements, and to receive telemetry, including both scientific data from the onboard experiments and engineering data pertaining to the health of the probe. Another type of receiver is used for radio science applications. This receiver measures phase perturbations on the carrier signal to obtain information on the composition of solar and planetary atmospheres and interplanetary space. A third type of receiver utilizes very long baseline interferometry (VLBI) techniques for both radio science and spacecraft navigation data. Only the telemetry receiver is described in detail in this document. The integration of the Receiver-Exciter subsystem with other portions of the Deep Space Network is described.
On High and Low Starting Frequencies of Type II Radio Bursts
NASA Astrophysics Data System (ADS)
Sharma, J.; Mittal, N.
2017-06-01
We have studied the characteristics of type II radio burst during the period May 1996 to March 2015, for the solar cycle 23 and 24, observed by WIND/WAVES radio instrument. A total of 642 events were recorded by the instrument during the study period. We have divided the events with two starting frequency range (high > 1 MHz; low ≤ 1MHz) as type II1 (i.e., 1-16 MHz) radio burst and type II2 (i.e., 20 KHz - 1020 KHz) radio burst which constitute the DH and km type II radio burst observed by WIND spacecraft, and determined their time and frequency characteristics. The mean drift rate of type II1 and type II2 radio bursts is 29.76 × 10-4 MHz/s and 0.17 × 10-4 MHz/s respectively, which shows that type II1 with high start frequency hase larger drift rate than the type II2 with low starting frequencies. We have also reported that the start frequency and the drift rate of type II1 are in good correlation, with a linear correlation coefficient of 0.58.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ding, Liu-Guan; Xu, Fei; Gu, Bin
We investigate the eruption and interaction of two coronal mass ejections (CMEs) during the large 2013 May 22 solar energetic particle event using multiple spacecraft observations. Two CMEs, having similar propagation directions, were found to erupt from two nearby active regions (ARs), AR11748 and AR11745, at ∼08:48 UT and ∼13:25 UT, respectively. The second CME was faster than the first CME. Using the graduated cylindrical shell model, we reconstructed the propagation of these two CMEs and found that the leading edge of the second CME caught up with the trailing edge of the first CME at a height of ∼6 solar radii. Aftermore » about two hours, the leading edges of the two CMEs merged at a height of ∼20 solar radii. Type II solar radio bursts showed strong enhancement during this two hour period. Using the velocity dispersion method, we obtained the solar particle release (SPR) time and the path length for energetic electrons. Further assuming that energetic protons propagated along the same interplanetary magnetic field, we also obtained the SPR time for energetic protons, which were close to that of electrons. These release times agreed with the time when the second CME caught up with the trailing edge of the first CME, indicating that the CME-CME interaction (and shock-CME interaction) plays an important role in the process of particle acceleration in this event.« less
NASA Astrophysics Data System (ADS)
Yang, Zhongwei; Lu, Quanming; Liu, Ying D.; Wang, Rui
2018-04-01
Electron dynamics at low-Mach-number collisionless shocks are investigated by using two-dimensional electromagnetic particle-in-cell simulations with various shock normal angles. We found: (1) The reflected ions and incident electrons at the shock front provide an effective mechanism for the quasi-electrostatic wave generation due to the charge-separation. A fraction of incident electrons can be effectively trapped and accelerated at the leading edge of the shock foot. (2) At quasi-perpendicular shocks, the electron trapping and reflection is nonuniform due to the shock rippling along the shock surface and is more likely to take place at some locations accompanied by intense reflected ion-beams. The electron trapping process has a periodical evolution over time due to the shock front self-reformation, which is controlled by ion dynamics. Thus, this is a cross-scale coupling phenomenon. (3) At quasi-parallel shocks, reflected ions can travel far back upstream. Consequently, quasi-electrostatic waves can be excited in the shock transition and the foreshock region. The electron trajectory analysis shows these waves can trap electrons at the foot region and reflect a fraction of them far back upstream. Simulation runs in this paper indicate that the micro-turbulence at the shock foot can provide a possible scenario for producing the reflected electron beam, which is a basic condition for the type II radio burst emission at low-Mach-number interplanetary shocks driven by Coronal Mass Ejections (CMEs).
Tao, Yiqing; Zhou, Xiaopeng; Liu, Dongyu; Li, Hao; Liang, Chengzhen; Li, Fangcai; Chen, Qixin
2016-01-01
During degeneration process, the catabolism of collagen type II and anabolism of collagen type I in nucleus pulposus (NP) may influence the bioactivity of transplanted cells. Human adipose-derived mesenchymal stem cells (hADMSCs) were cultured as a micromass or in a series of gradual proportion hydrogels of a mix of collagen types I and II. Cell proliferation and cytotoxicity were detected using CCK-8 and LDH assays respectively. The expression of differentiation-related genes and proteins, including SOX9, aggrecan, collagen type I, and collagen type II, was examined using RT-qPCR and Western blotting. Novel phenotypic genes were also detected by RT-qPCR and western blotting. Alcian blue and dimethylmethylene blue assays were used to investigate sulfate proteoglycan expression, and PI3K/AKT, MAPK/ERK, and Smad signaling pathways were examined by Western blotting. The results showed collagen hydrogels have good biocompatibility, and cell proliferation increased after collagen type II treatment. Expressions of SOX9, aggrecan, and collagen type II were increased in a collagen type II dependent manner. Sulfate proteoglycan synthesis increased in proportion to collagen type II concentration. Only hADMSCs highly expressed NP cell marker KRT19 in collagen type II culture. Additionally, phosphorylated Smad3, which is associated with phosphorylated ERK, was increased after collagen type II-stimulation. The concentration and type of collagen affect hADMSC differentiation into NP cells. Collagen type II significantly ameliorates hADMSC differentiation into NP cells and promotes extracellular matrix synthesis. Therefore, anabolism of collagen type I and catabolism of type II may attenuate the differentiation and biosynthesis of transplanted stem cells. © 2016 International Union of Biochemistry and Molecular Biology.
Simulated trajectories error analysis program, version 2. Volume 2: Programmer's manual
NASA Technical Reports Server (NTRS)
Vogt, E. D.; Adams, G. L.; Working, M. M.; Ferguson, J. B.; Bynum, M. R.
1971-01-01
A series of three computer programs for the mathematical analysis of navigation and guidance of lunar and interplanetary trajectories was developed. All three programs require the integration of n-body trajectories for both interplanetary and lunar missions. The virutal mass technique is used in all three programs. The user's manual contains the information necessary to operate the programs. The input and output quantities of the programs are described. Sample cases are given and discussed.
Interplanetary medium data book
NASA Technical Reports Server (NTRS)
King, J. H.
1977-01-01
Unresolved questions on the physics of solar wind and its effects on magnetospheric processes and cosmic ray propagation were addressed with hourly averaged interplanetary plasma and magnetic field data. This composite data set is described with its content and extent, sources, limits of validity, and the mutual consistency studies and normalizations to which the input data were subjected. Hourly averaged parameters were presented in the form of digital listings and 27-day plots. The listings are contained in a separately bound appendix.
Transport equations for low-energy solar particles in evolving interplanetary magnetic fields
NASA Technical Reports Server (NTRS)
Ng, C. K.
1988-01-01
Two new forms of a simplified Fokker-Planck equation are derived for the transport of low-energy solar energetic particles in an evolving interplanetary magnetic field, carried by a variable radial solar wind. An idealized solution suggests that the 'invariant' anisotropy direction reported by Allum et al. (1974) may be explained within the conventional theoretical framework. The equations may be used to relate studies of solar particle propagation to solar wind transients, and vice versa.
Moderate Geomagnetic Storms: Interplanetary Origins and Coupling Functions (ISEE3 Data)
NASA Technical Reports Server (NTRS)
Mendes, Odim, Jr.; Gonzalez, W. D.; Gonzalez, A. L. C.; Pinto, O., Jr.; Tsurutani, B. T.
1996-01-01
Geomagnetic storms are related to the ring current intensification, which is driven by energy injection primarily during energetic solar wind-magnetosphere coupling due to reconnection at the magnetopause. This work identified the interplanetary origins of moderate geomagnetic storms (-100nT is less or equal to Dst(sub peak) is less than or equal to -50 nT) and analyzed the coupling processes during the storm main phase at solar maximum (1978-1979).
Alfven wave refraction by interplanetary inhomogeneities
NASA Technical Reports Server (NTRS)
Daily, W. D.
1973-01-01
Pioneer 6 magnetic data reveals that the propagation direction of Alfven waves in the interplanetary medium is strongly oriented along the ambient field. Magnetic fluctuations of frequencies up to 1/30 sec in the spacecraft frame are shown to satisfy a necessary condition for Alfven wave normal. It appears from this analysis that geometrical hydromagnetics may satisfactorily describe deviation of the wave normal from the background field. The rotational discontinuity is likely also to propagate along the field lines.
Advanced planning activity. [for interplanetary flight and space exploration
NASA Technical Reports Server (NTRS)
1974-01-01
Selected mission concepts for interplanetary exploration through 1985 were examined, including: (1) Jupiter orbiter performance characteristics; (2) solar electric propulsion missions to Mercury, Venus, Neptune, and Uranus; (3) space shuttle planetary missions; (4) Pioneer entry probes to Saturn and Uranus; (5) rendezvous with Comet Kohoutek and Comet Encke; (6) space tug capabilities; and (7) a Pioneer mission to Mars in 1979. Mission options, limitations, and performance predictions are assessed, along with probable configurational, boost, and propulsion requirements.
Accretion of Interplanetary Dust: A New Record from He-3 In Polar Ice Cores
NASA Technical Reports Server (NTRS)
Brook, Edward
2002-01-01
This grant funded measurements of extraterrestrial He-3 in particles extracted from polar ice samples. The overall objective was to develop measurements of He-3 as tracers of the flux of interplanetary dust particles (IDP's) to the earth. To our knowledge these are the first such measurements, apart from our earlier work. The project also funded an EPO activity - a climate and global change workshop for high school science teachers.
Nuclear electric propulsion mission engineering study. Volume 2: Final report
NASA Technical Reports Server (NTRS)
1973-01-01
Results of a mission engineering analysis of nuclear-thermionic electric propulsion spacecraft for unmanned interplanetary and geocentric missions are summarized. Critical technologies associated with the development of nuclear electric propulsion (NEP) are assessed, along with the impact of its availability on future space programs. Outer planet and comet rendezvous mission analysis, NEP stage design for geocentric and interplanetary missions, NEP system development cost and unit costs, and technology requirements for NEP stage development are studied.
Variations in elemental composition of several MEV/nucleon ions observed in interplanetary space
NASA Technical Reports Server (NTRS)
Mcguire, R. E.; Vonrosenvinge, T. T.; Reames, D. V.
1985-01-01
Six years of accumulated ISEE-3 and IMP-8 data to study variations in elemental relative abundances among the different populations of energetic ions seen in interplanetary space are surveyed. Evidence suggesting that heavy ion enrichments may be organized by a rigidity scaling factor A/Z over the range H to Fe is presented. Data to support the hypothesis that shock-associated particles are probably accelerated from ambient energetic fluxes are shown.
The Role of Hydromagnetic Waves in the Magnetosphere and the Ionosphere
1991-01-31
of right-hand-polarized waves in instabilities, we follow the examples discussed by Wong interplanetary shocks and in the terrestrial foreshock and... foreshock , (Received January 14, 1988;J. Geophys. Res., 90, 1429, 1985. Spangler, S.R., and J.P. Sheerin, Alfv6.n wave revised April 15, 1988;collapse...bow shocks,2 and in the interplanetary shocks and the a four-wave parametric coupling process is a.alyzed for the terrestrial foreshock .3 .4 Moreover
NASA Technical Reports Server (NTRS)
Sakurai, K.
1972-01-01
Active heliographic longitudes at the sun are investigated by using the observational data for long-lived metric continuum noise sources. It is shown that, for the period from 1963 to 1969, the number of such longitudes was four in general and these longitudes were very stable for this radio activity since 1963. A discussion is given on the relationship between those longitudes and the sector structure of the interplanetary magnetic field.
Spatial Correlation of Solar-Wind Turbulence from Two-Point Measurements
NASA Technical Reports Server (NTRS)
Matthaeus, W. H.; Milano, L. J.; Dasso, S.; Weygand, J. M.; Smith, C. W.; Kivelson, M. G.
2005-01-01
Interplanetary turbulence, the best studied case of low frequency plasma turbulence, is the only directly quantified instance of astrophysical turbulence. Here, magnetic field correlation analysis, using for the first time only proper two-point, single time measurements, provides a key step in unraveling the space-time structure of interplanetary turbulence. Simultaneous magnetic field data from the Wind, ACE, and Cluster spacecraft are analyzed to determine the correlation (outer) scale, and the Taylor microscale near Earth's orbit.
Division F Commission 22: Meteors, Meteorites, and Interplanetary Dust
NASA Astrophysics Data System (ADS)
Jenniskens, Peter; Borovička, Jiří; Watanabe, Jun-Ichi; Jopek, Tadeusz; Abe, Shinsuke; Consolmagno, Guy J.; Ishiguro, Masateru; Janches, Diego; Ryabova, Galina O.; Vaubaillon, Jérémie; Zhu, Jin
2016-04-01
Commission 22 (Meteors, Meteorites and Interplanetary Dust) was established at the first IAU General Assembly held in Rome in 1922, with William Frederick Denning as its first President. Denning was an accountant by profession, but as an amateur astronomer he contributed extensively to meteor science. Commission 22 thus established a pattern that has continued to this day that non-professional astronomers were welcomed and valued and could play a significant role in its affairs. The field of meteors, meteorites and interplanetary dust has played a disproportional role in the astronomical perception of the general public through the majestic displays of our annual meteor showers. Those in the field deployed many techniques uncommon in other fields of astronomy, studying the ``vermin of space'', the small solid bodies that pervade interplanetary space and impact Earth's atmosphere, the surface of the Moon, and that of our satellites in orbit. Over time, the field has tackled a wide array of problems, from predicting the encounter with meteoroid streams, to the origin of our meteorites and the nature of the zodiacal cloud. Commission 22 has played an important role in organizing the field through dedicated meetings, a data centre, and working groups that developed professional-amateur relationships and that organized the nomenclature of meteor showers. The contribution of Commission 22 to the field is perhaps most readily seen in the work of the presidents that followed in the footsteps of Denning.
GEO Debris and Interplanetary Dust: Fluxes and Charging Behavior
NASA Astrophysics Data System (ADS)
Graps, A. L.; Green, S. F.; McBride, N. M.; McDonnell, J. A. M.; Drolshagen, G.; Svedhem, H.; Bunte, K. D.
2005-08-01
A population of cosmic dust mixed with a population of man-made debris exists within the Earth's magnetosphere. Measurements of these provide the data samples for studies of the interplanetary dust particles that travel through our magnetosphere from the outside and for studies of the local byproducts of our space endeavours. Even though instruments to detect natural meteoroids and space debris particles have been flown in Low Earth Orbits (LEO) and on interplanetary missions, very little information on the particle environment for Earth orbits above about 600 km altitude have been available. In particular, knowledge about particles smaller than 1 m in the geostationary (GEO) region was largely unknown before GORID. In September 1996, a dust/debris detector: GORID was launched into GEO as a piggyback instrument on the Russian Express-2 telecommunications spacecraft. The instrument began its normal operation in April 1997 and ended its mission in July 2002. The goal of this work was to use GORID's particle data to identify and separate the space debris from the interplanetary dust particles (IDPs) in GEO, to more finely determine the instrument's measurement characteristics and to derive impact fluxes. Here we present some results of that study. We give GORID flux distributions for debris and IDPs and then present intriguing debris clustering features that might be the result of electrostatic fragmentation of the rocket slag particles.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hu, Huidong; Liu, Ying D.; Wang, Rui
We investigate the coronal and interplanetary evolution of a coronal mass ejection (CME) launched on 2010 September 4 from a source region linking two active regions (ARs), 11101 and 11103, using extreme ultraviolet imaging, magnetogram, white-light, and in situ observations from SDO , STEREO , SOHO , VEX , and Wind . A potential-field source-surface model is employed to examine the configuration of the coronal magnetic field surrounding the source region. The graduated cylindrical shell model and a triangulation method are applied to determine the kinematics of the CME in the corona and interplanetary space. From the remote sensing andmore » in situ observations, we obtain some key results: (1) the CME was deflected in both the eastward and southward directions in the low corona by the magnetic pressure from the two ARs, and possibly interacted with another ejection, which caused that the CME arrived at VEX that was longitudinally distant from the source region; (2) although VEX was closer to the Sun, the observed and derived CME arrival times at VEX are not earlier than those at Wind , which suggests the importance of determining both the frontal shape and propagation direction of the CME in interplanetary space; and (3) the ICME was compressed in the radial direction while the longitudinal transverse size was extended.« less
Acceleration of low-energy protons and alpha particles at interplanetary shock waves
NASA Technical Reports Server (NTRS)
Scholer, M.; Hovestadt, D.; Ipavich, F. M.; Gloeckler, G.
1983-01-01
The low-energy protons and alpha particles in the energy range 30 keV/charge to 150 keV/charge associated with three different interplanetary shock waves in the immediate preshock and postshock region are studied using data obtained by the ISEE 3. The spatial distributions in the preshock and postshock medium are presented, and the dependence of the phase space density at different energies on the distance from the shock and on the form of the distribution function of both species immediately at the shock is examined. It is found that in the preshock region the particles are flowing in the solar wind frame of reference away from the shock and in the postshock medium the distribution is more or less isotropic in this frame of reference. The distribution function in the postshock region can be represented by a power law in energy which has the same spectral exponent for both protons and alpha particles. It is concluded that the first-order Fermi acceleration process can consistently explain the data, although the spectra of diffuse bow shock associated particles are different from the spectra of the interplanetary shock-associated particles in the immediate vicinity of the shock. In addition, the mean free path of the low energy ions in the preshock medium is found to be considerably smaller than the mean free path determined by the turbulence of the background interplanetary medium.
Sheath-accumulating Propagation of Interplanetary Coronal Mass Ejection
DOE Office of Scientific and Technical Information (OSTI.GOV)
Takahashi, Takuya; Shibata, Kazunari, E-mail: takahasi@kusastro.kyoto-u.ac.jp
Fast interplanetary coronal mass ejections (ICMEs) are the drivers of strong space weather storms such as solar energetic particle events and geomagnetic storms. The connection between the space-weather-impacting solar wind disturbances associated with fast ICMEs at Earth and the characteristics of causative energetic CMEs observed near the Sun is a key question in the study of space weather storms, as well as in the development of practical space weather prediction. Such shock-driving fast ICMEs usually expand at supersonic speeds during the propagation, resulting in the continuous accumulation of shocked sheath plasma ahead. In this paper, we propose a “sheath-accumulating propagation”more » (SAP) model that describes the coevolution of the interplanetary sheath and decelerating ICME ejecta by taking into account the process of upstream solar wind plasma accumulation within the sheath region. Based on the SAP model, we discuss (1) ICME deceleration characteristics; (2) the fundamental condition for fast ICMEs at Earth; (3) the thickness of interplanetary sheaths; (4) arrival time prediction; and (5) the super-intense geomagnetic storms associated with huge solar flares. We quantitatively show that not only the speed but also the mass of the CME are crucial for discussing the above five points. The similarities and differences between the SAP model, the drag-based model, and the“snow-plow” model proposed by Tappin are also discussed.« less
Electron Dropout Echoes Induced by Interplanetary Shock: A Statistical Study
NASA Astrophysics Data System (ADS)
Liu, Z.; Zong, Q.; Hao, Y.; Zhou, X.; Ma, X.; Liu, Y.
2017-12-01
"Electron dropout echo" as indicated by repeated moderate dropout and recovery signatures of the flux of energetic electron in the out radiation belt region has been investigated systematically. The electron dropout and its echoes are usually found for higher energy (> 300 keV) channels fluxes, whereas the flux enhancements are obvious for lower energy electrons simultaneously after the interplanetary shock arrives at the Earth's geosynchronous orbit. 104 dropout echo events have been found from 215 interplanetary shock events from 1998 to 2007 based on LANL satellite data. In analogy to substorm injections, these 104 events could be naturally divided into two categories: dispersionless (49 events) or dispersive (55 events) according to the energy dispersion of the initial dropout. It is found that locations of dispersionless events are distributed mainly in the duskside magnetosphere. Further, the obtained locations derived from dispersive events with the time-of-flight technique of the initial dropout regions are mainly located at the duskside as well. Statistical studies have shown that the effect of shock normal, interplanetary magnetic field Bz and solar wind dynamic pressure may be insignificant to these electron dropout events. We suggest that the electric field impulse induced by the IP shock produces a more pronounced inward migration of electrons at the dusk side, resulting in the observed dusk-side moderate dropout of electron flux and its consequent echoes.
Xu, Lei; Chu, Bin; Feng, Yang; Xu, Feng; Zou, Yue-Fen
2016-01-01
The purpose of this study is to evaluate the distribution of end plate oedema in different types of Modic change especially in mixed type and to analyze the presence of end plate sclerosis in various types of Modic change. 276 patients with low back pain were scanned with 1.5-T MRI. Three radiologists assessed the MR images by T1 weighted, T2 weighted and fat-saturation T2 weighted sequences and classified them according to the Modic changes. Pure oedematous end plate signal changes were classified as Modic Type I; pure fatty end plate changes were classified as Modic Type II; and pure sclerotic end plate changes as Modic Type III. A mixed feature of both Types I and II with predominant oedematous signal change is classified as Modic I-II, and a mixture of Types I and II with predominant fatty change is classified as Modic II-I. Thus, the mixed types can further be subdivided into seven subtypes: Types I-II, Types II-I, Types I-III, Types III-I, Types II-III, Types III-II and Types I-III. During the same period, 52 of 276 patients who underwent CT and MRI were retrospectively reviewed to determine end plate sclerosis. (1) End plate oedema: of the 2760 end plates (276 patients) examined, 302 end plates showed Modic changes, of which 82 end plates showed mixed Modic changes. The mixed Modic changes contain 92.7% of oedematous changes. The mixed types especially Types I-II and Types II-I made up the majority of end plate oedematous changes. (2) End plate sclerosis: 52 of 276 patients were examined by both MRI and CT. Of the 520 end plates, 93 end plates showed Modic changes, of which 34 end plates have shown sclerotic changes in CT images. 11.8% of 34 end plates have shown Modic Type I, 20.6% of 34 end plates have shown Modic Type II, 2.9% of 34 end plates have shown Modic Type III and 64.7% of 34 end plates have shown mixed Modic type. End plate oedema makes up the majority of mixed types especially Types I-II and Types II-I. The end plate sclerosis on CT images may not just mean Modic Type III but does exist in all types of Modic changes, especially in mixed Modic types, and may reflect vertebral body mineralization rather than change in the bone marrow. End plate oedema and end plate sclerosis are present in a large proportion of mixed types.
Propagation Characteristics of CMEs Associated with Magnetic Clouds and Ejecta
NASA Astrophysics Data System (ADS)
Kim, R.-S.; Gopalswamy, N.; Cho, K.-S.; Moon, Y.-J.; Yashiro, S.
2013-05-01
We have investigated the characteristics of magnetic cloud (MC) and ejecta (EJ) associated coronal mass ejections (CMEs) based on the assumption that all CMEs have a flux rope structure. For this, we used 54 CMEs and their interplanetary counterparts (interplanetary CMEs: ICMEs) that constitute the list of events used by the NASA/LWS Coordinated Data Analysis Workshop (CDAW) on CME flux ropes. We considered the location, angular width, and speed as well as the direction parameter, D. The direction parameter quantifies the degree of asymmetry of the CME shape in coronagraph images, and shows how closely the CME propagation is directed to Earth. For the 54 CDAW events, we found the following properties of the CMEs: i) the average value of D for the 23 MCs (0.62) is larger than that for the 31 EJs (0.49), which indicates that the MC-associated CMEs propagate more directly toward the Earth than the EJ-associated CMEs; ii) comparison between the direction parameter and the source location shows that the majority of the MC-associated CMEs are ejected along the radial direction, while many of the EJ-associated CMEs are ejected non-radially; iii) the mean speed of MC-associated CMEs (946 km s-1) is faster than that of EJ-associated CMEs (771 km s-1). For seven very fast CMEs (≥ 1500 km s-1), all CMEs with large D (≥ 0.4) are associated with MCs and the CMEs with small D are associated with EJs. From the statistical analysis of CME parameters, we found the superiority of the direction parameter. Based on these results, we suggest that the CME trajectory essentially determines the observed ICME structure.
A Vortical Dawn Flank Boundary Layer for Near-Radial IMF: Wind Observations on 24 October 2001
NASA Technical Reports Server (NTRS)
Farrugia, C. J.; Gratton, F. T.; Gnavi, G.; Torbert, R. B.; Wilson, Lynn B., III
2014-01-01
We present an example of a boundary layer tailward of the dawn terminator which is entirely populated by rolled-up flow vortices. Observations were made by Wind on 24 October 2001 as the spacecraft moved across the region at the X plane approximately equal to -13 Earth radii. Interplanetary conditions were steady with a near-radial interplanetary magnetic field (IMF). Approximately 15 vortices were observed over the 1.5 hours duration of Wind's crossing, each lasting approximately 5 min. The rolling up is inferred from the presence of a hot tenuous plasma being accelerated to speeds higher than in the adjoining magnetosheath, a circumstance which has been shown to be a reliable signature of this in single-spacecraft observations. A blob of cold dense plasma was entrained in each vortex, at whose leading edge abrupt polarity changes of field and velocity components at current sheets were regularly observed. In the frame of the average boundary layer velocity, the dense blobs were moving predominantly sunward and their scale size along the X plane was approximately 7.4 Earth radii. Inquiring into the generation mechanism of the vortices, we analyze the stability of the boundary layer to sheared flows using compressible magnetohydrodynamic Kelvin-Helmholtz theory with continuous profiles for the physical quantities. We input parameters from (i) the exact theory of magnetosheath flow under aligned solar wind field and flow vectors near the terminator and (ii) the Wind data. It is shown that the configuration is indeed Kelvin-Helmholtz (KH) unstable. This is the first reported example of KH-unstable waves at the magnetopause under a radial IMF.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ebert, R. W.; Dayeh, M. A.; Desai, M. I.
2016-11-10
We examine the longitude distribution of and relationship between interplanetary (IP) shock properties and ∼0.1–20 MeV nucleon{sup -1} O and Fe ions during seven multi-spacecraft energetic storm particle (ESP) events at 1 au. These ESP events were observed at two spacecraft and were primarily associated with low Mach number, quasi-perpendicular shocks. Key observations include the following: (i) the Alfvén Mach number increased from east to west of the coronal mass ejection source longitude, while the shock speed, compression ratios, and obliquity showed no clear dependence; (ii) the O and Fe time intensity profiles and peak intensities varied significantly between longitudinallymore » separated spacecraft observing the same event, the peak intensities being larger near the nose and smaller along the flank of the IP shock; (iii) the O and Fe peak intensities had weak to no correlations with the shock parameters; (iv) the Fe/O time profiles showed intra-event variations upstream of the shock that disappeared downstream of the shock, where values plateaued to those comparable to the mean Fe/O of solar cycle 23; (v) the O and Fe spectral index ranged from ∼1.0 to 3.4, the Fe spectra being softer in most events; and (vi) the observed spectral index was softer than the value predicted from the shock compression ratio in most events. We conclude that while the variations in IP shock properties may account for some variations in O and Fe properties within these multi-spacecraft events, detailed examination of the upstream seed population and IP turbulence, along with modeling, are required to fully characterize these observations.« less
NASA Astrophysics Data System (ADS)
Cornilleau-Wehrlin, N.; Bocchialini, K.; Menvielle, M.; Fontaine, D.; Grison, B.; Marchaudon, A.; Pick, M.; Pitout, F.; Schmieder, B.; Regnier, S.; Zouganelis, Y.; Chambodut, A.
2017-12-01
Taking the 32 sudden storm commencements (SSC) listed by the observatory de l'Ebre / ISGI over the year 2002 (maximal solar activity) as a starting point, we performed a statistical analysis of the related solar sources, solar wind signatures, and terrestrial responses. For each event, we characterized and identified, as far as possible, (i) the sources on the Sun (Coronal Mass Ejections -CME-), with the help of a series of criteria (velocities, drag coefficient, radio waves, magnetic field polarity), as well as (ii) the structure and properties in the interplanetary medium, at L1, of the event associated to the SSC: magnetic clouds -MC-, non-MC interplanetary coronal mass ejections -ICME-, co-rotating/stream interaction regions -SIR/CIR-, shocks only and unclear events that we call "miscellaneous" events. The geoeffectiveness of the events, classified by category at L1, is analysed by their signatures in the Earth ionized (magnetosphere and ionosphere) and neutral (thermosphere) environments, using a broad set of in situ, remote and ground based instrumentation. The role of the presence of a unique or of a multiple source at the Sun, of its nature, halo or non halo CME, is also discussed. The set of observations is statistically analyzed so as to evaluate and compare the geoeffectiveness of the events. The results obtained for this set of geomagnetic storms started by SSCs is compared to the overall statistics of year 2002, relying on already published catalogues of events, allowing assessing the relevance of our approach ; for instance all the 12 well identified Magnetic Clouds of 2002 give rise to SSCs.
A study of the geomagnetic indices asymmetry based on the interplanetary magnetic field polarities
NASA Astrophysics Data System (ADS)
El-Borie, M. A.; El-Taher, A. M.; Aly, N. E.; Bishara, A. A.
2018-05-01
Data of geomagnetic indices ( aa, Kp, Ap, and Dst) recorded near 1 AU over the period 1967-2016, have been studied based on the asymmetry between the interplanetary magnetic field (IMF) directions above and below of the heliospheric current sheet (HCS). Our results led to the following conclusions: (i) Throughout the considered period, 31 random years (62%) showed apparent asymmetries between Toward (T) and Away (A) polarity days and 19 years (38%) exhibited nearly a symmetrical behavior. The days of A polarity predominated over the T polarity days by 4.3% during the positive magnetic polarity epoch (1991-1999). While the days of T polarity exceeded the days of A polarity by 5.8% during the negative magnetic polarity epoch (2001-2012). (ii) Considerable yearly North-South (N-S) asymmetries of geomagnetic indices observed throughout the considered period. (iii) The largest toward dominant peaks for aa and Ap indices occurred in 1995 near to minimum of solar activity. Moreover, the most substantial away dominant peaks for aa and Ap indices occurred in 2003 (during the descending phase of the solar cycle 23) and in 1991 (near the maximum of solar activity cycle) respectively. (iv) The N-S asymmetry of Kp index indicated a most significant away dominant peak occurred in 2003. (v) Four of the away dominant peaks of Dst index occurred at the maxima of solar activity in the years 1980, 1990, 2000, and 2013. The largest toward dominant peak occurred in 1991 (at the reversal of IMF polarity). (vi) The geomagnetic indices ( aa, Ap, and Kp) all have northern dominance during positive magnetic polarity epoch (1971-1979), while the asymmetries shifts to the southern solar hemisphere during negative magnetic polarity epoch (2001-2012).
DOE Office of Scientific and Technical Information (OSTI.GOV)
Khabarova, Olga V.; Zank, Gary P.; Li, Gang
2016-08-20
We explore the role of heliospheric magnetic field configurations and conditions that favor the generation and confinement of small-scale magnetic islands associated with atypical energetic particle events (AEPEs) in the solar wind. Some AEPEs do not align with standard particle acceleration mechanisms, such as flare-related or simple diffusive shock acceleration processes related to interplanetary coronal mass ejections (ICMEs) and corotating interaction regions (CIRs). As we have shown recently, energetic particle flux enhancements may well originate locally and can be explained by particle acceleration in regions filled with small-scale magnetic islands with a typical width of ∼0.01 au or less, whichmore » is often observed near the heliospheric current sheet (HCS). The particle energization is a consequence of magnetic reconnection-related processes in islands experiencing either merging or contraction, observed, for example, in HCS ripples. Here we provide more observations that support the idea and the theory of particle energization produced by small-scale-flux-rope dynamics (Zank et al. and Le Roux et al.). If the particles are pre-accelerated to keV energies via classical mechanisms, they may be additionally accelerated up to 1–1.5 MeV inside magnetically confined cavities of various origins. The magnetic cavities, formed by current sheets, may occur at the interface of different streams such as CIRs and ICMEs or ICMEs and coronal hole flows. They may also form during the HCS interaction with interplanetary shocks (ISs) or CIRs/ICMEs. Particle acceleration inside magnetic cavities may explain puzzling AEPEs occurring far beyond ISs, within ICMEs, before approaching CIRs as well as between CIRs.« less
NASA Technical Reports Server (NTRS)
Farral, Joseph F.; Seshan, P. K.; Rohatgi, Naresh K.
1991-01-01
This paper describes the Generic Modular Flow Schematic (GMFS) architecture capable of encompassing all functional elements of a physical/chemical life support system (LSS). The GMFS can be implemented to synthesize, model, analyze, and quantitatively compare many configurations of LSSs, from a simple, completely open-loop to a very complex closed-loop. The GMFS model is coded in ASPEN, a state-of-the-art chemical process simulation program, to accurately compute the material, heat, and power flow quantities for every stream in each of the subsystem functional elements (SFEs) in the chosen configuration of a life support system. The GMFS approach integrates the various SFEs and subsystems in a hierarchical and modular fashion facilitating rapid substitutions and reconfiguration of a life support system. The comprehensive ASPEN material and energy balance output is transferred to a systems and technology assessment spreadsheet for rigorous system analysis and trade studies.
First determination of the tropospheric CO abundance in Saturn
NASA Astrophysics Data System (ADS)
Fouchet, Thierry; Lellouch, Emmanuel; Cavalié, Thibault; Bézard, Bruno
2017-10-01
In Giant Planets, CO has two potential origins: i) an external source in form of cometary impacts, infalling ring/satellite dust or/and interplanetary particles; ii) an internal origin that involves convective transport from the deep, dense, hot atmosphere where the thermodynamic equilibrium CO abundance is relatively large.In Saturn, submilimeter stratospheric CO emissions have been detected (Cavalié et al. A&A, 510, A88, 2010; Cavalié et al. Icarus, 203, 531, 2009), suggesting a cometary impact 200 years ago. In contrast, no observation was in position to confirm or rule out the presence of CO in Saturn's troposphere (Noll et al. Icarus, 89, 168, 1990).Here, we present CRIRES/ELT 5-μm observations of Saturn that definitely confirm the presence of CO in Saturn's troposphere. We will present the derived CO abundance and its implication for Saturn's tropospheric transport rate and water deep abundance.
Similarities and distinctions of CIR and Sheath
NASA Astrophysics Data System (ADS)
Yermolaev, Yuri; Lodkina, Irina; Nikolaeva, Nadezhda; Yermolaev, Michael
2016-04-01
On the basis of OMNI data and our catalog of large scale solar wind (SW) streams during 1976-2000 [Yermolaev et al., 2009] we study the average temporal profiles for two types of compressed regions: CIR (corotating interaction region - compressed region before High Speed Stream (HSS)) and Sheath (compressed region before fast Interplanetary CMEs (ICMEs), including Magnetic Cloud (MC) and Ejecta). As have been shown by Nikolaeva et al, [2015], the efficiency of magnetic storm generation is ~50% higher for Sheath and CIR than for ICME (MC and Ejecta), i.e. reaction magnetosphere depends on type of driver. To take into account the different durations of SW types, we use the double superposed epoch analysis (DSEA) method: rescaling the duration of the interval for all types in such a manner that, respectively, beginning and end for all intervals of selected type coincide [Yermolaev et al., 2010; 2015]. Obtained data allows us to suggest that the formation of all types of compression regions has the same physical mechanism irrespective of piston (HSS or ICME) type and differences are connected with geometry and full jumps of speed in edges of compression regions. If making the natural assumption that the gradient of speed is directed approximately on normal to the piston, CIR has the largest angle between the gradient of speed and the direction of average SW speed, and ICME - the smallest angle. The work was supported by the Russian Foundation for Basic Research, projects 13-02-00158, 16-02-00125 and by Program of Presidium of the Russian Academy of Sciences. References: Nikolaeva, N. S. , Yu. I. Yermolaev, and I. G. Lodkina (2015), Modeling of the Corrected Dst* Index Temporal Profile on the Main Phase of the Magnetic Storms Generated by Different Types of Solar Wind, Cosmic Research, Vol. 53, No. 2, pp. 119-127. Yermolaev, Yu. I., N. S. Nikolaeva, I. G. Lodkina, and M. Yu. Yermolaev (2009), Catalog of Large-Scale Solar Wind Phenomena during 1976-2000, Cosmic Research, , Vol. 47, No. 2, pp. 81-94. Yermolaev, Y. I., N. S. Nikolaeva, I. G. Lodkina, and M. Y. Yermolaev (2010), Specific interplanetary conditions for CIR-induced, Sheath-induced, and ICME-induced geomagnetic storms obtained by double superposed epoch analysis, Ann. Geophys., 28, pp. 2177-2186. Yermolaev, Yu. I., I. G. Lodkina, N. S. Nikolaeva, and M. Yu. Yermolaev (2015), Dynamics of large-scale solar wind streams obtained by the double superposed epoch analysis, J. Geophys. Res. Space Physics, 120, doi:10.1002/2015JA021274.
Genetics Home Reference: distal hereditary motor neuropathy, type II
... hereditary motor neuropathy, type II Distal hereditary motor neuropathy, type II Printable PDF Open All Close All ... the expand/collapse boxes. Description Distal hereditary motor neuropathy, type II is a progressive disorder that affects ...
Floquet Weyl semimetals in light-irradiated type-II and hybrid line-node semimetals
NASA Astrophysics Data System (ADS)
Chen, Rui; Zhou, Bin; Xu, Dong-Hui
2018-04-01
Type-II Weyl semimetals have recently attracted intensive research interest because they host Lorentz-violating Weyl fermions as quasiparticles. The discovery of type-II Weyl semimetals evokes the study of type-II line-node semimetals (LNSMs) whose linear dispersion is strongly tilted near the nodal ring. We present here a study on the circularly polarized light-induced Floquet states in type-II LNSMs, as well as those in hybrid LNSMs that have a partially overtilted linear dispersion in the vicinity of the nodal ring. We illustrate that two distinct types of Floquet Weyl semimetal (WSM) states can be induced in periodically driven type-II and hybrid LNSMs, and the type of Floquet WSMs can be tuned by the direction and intensity of the incident light. We construct phase diagrams of light-irradiated type-II and hybrid LNSMs which are quite distinct from those of light-irradiated type-I LNSMs. Moreover, we show that photoinduced Floquet type-I and type-II WSMs can be characterized by the emergence of different anomalous Hall conductivities.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Du Yuzhe; Nomura, Yoshiko; Luo Ningguang
2009-01-15
Pyrethroid insecticides are classified as type I or type II based on their distinct symptomology and effects on sodium channel gating. Structurally, type II pyrethroids possess an {alpha}-cyano group at the phenylbenzyl alcohol position, which is lacking in type I pyrethroids. Both type I and type II pyrethroids inhibit deactivation consequently prolonging the opening of sodium channels. However, type II pyrethroids inhibit the deactivation of sodium channels to a greater extent than type I pyrethroids inducing much slower decaying of tail currents upon repolarization. The molecular basis of a type II-specific action, however, is not known. Here we report themore » identification of a residue G{sup 1111} and two positively charged lysines immediately downstream of G{sup 1111} in the intracellular linker connecting domains II and III of the cockroach sodium channel that are specifically involved in the action of type II pyrethroids, but not in the action of type I pyrethroids. Deletion of G{sup 1111}, a consequence of alternative splicing, reduced the sodium channel sensitivity to type II pyrethroids, but had no effect on channel sensitivity to type I pyrethroids. Interestingly, charge neutralization or charge reversal of two positively charged lysines (Ks) downstream of G{sup 1111} had a similar effect. These results provide the molecular insight into the type II-specific interaction of pyrethroids with the sodium channel at the molecular level.« less
Dusty Plasma Effects in the Interplanetary Medium?
NASA Astrophysics Data System (ADS)
Mann, Ingrid; Issautier, Karine; Meyer-Vernet, Nicole; Le Chat, Gaétan; Czechowski, Andrzej; Zaslavsky, Arnaud; Zouganelis, Yannis; Belheouane, Soraya
Cosmic dust particles exist in a variety of compositions and sizes in the interplanetary medium. There is little direct information on the composition, but those interplanetary dust particles that are collected in the upper Earth’s atmosphere and can be studied in the laboratory typically have an irregular, sometimes porous structure on scales <100 nm. They contain magnesium-rich silicates and silicon carbide, iron-nickel and iron-sulfur compounds, calcium- and aluminum oxides, and chemical compounds that contain a large mass fraction of carbon (e.g. carbonaceous species). A fraction of the dust originates from comets, but because of their bulk material temperature of about 280 K near 1 AU, most icy compounds have disappeared. The dust particles are embedded in the solar wind, a hot plasma with at 1 AU kinetic temperatures around 100 000 K and flow direction nearly radial outward from the Sun at supersonic bulk velocities around 400 km/s. Since the dust particles carry an electric surface charge they are subject to electromagnetic forces and the nanodust particles are efficiently accelerated to velocities of order of solar wind speed. The acceleration of the nanodust is similar, but not identical to the formation of pick-up ions. The S/WAVES radio wave instrument on STEREO measured a flux of nanodust at 1 AU [1]. The nanodust probably forms in the region inward of 1 AU and is accelerated by the solar wind as discussed. We also discuss the different paths of dust - plasma interactions in the interplanetary medium and their observations with space experiments. Comparing these interactions we show that the interplanetary medium near 1 AU can in many cases be described as “dust in plasma" rather than "dusty plasma”. [1] S. Belheouane, N. Meyer-Vernet, K. Issautier, G. Le Chat, A. Zaslavsky, Y. Zouganelis, I. Mann, A. Czechowski: Dynamics of nanoparticles detected at 1 AU by S/WAVES onboard STEREO spacecraft, in this session.
The effect of interplanetary trajectory options on a manned Mars aerobrake configuration
NASA Technical Reports Server (NTRS)
Braun, Robert D.; Powell, Richard W.; Hartung, Lin C.
1990-01-01
Manned Mars missions originating in low Earth orbit (LEO) in the time frame 2010 to 2025 were analyzed to identify preferred mission opportunities and their associated vehicle and trajectory characteristics. Interplanetary and Mars atmospheric trajectory options were examined under the constraints of an initial manned exploration scenario. Two chemically propelled vehicle options were considered: (1) an all propulsive configuration, and (2) a configuration which employs aerobraking at Earth and Mars with low lift/drag (L/D) shapes. Both the interplanetary trajectory options as well as the Mars atmospheric passage are addressed to provide a coupled trajectory simulation. Direct and Venus swingby interplanetary transfers with a 60 day Mars stopover are considered. The range and variation in both Earth and Mars entry velocity are also defined. Two promising mission strategies emerged from the study: (1) a 1.0 to 2.0 year Venus swingby mission, and (2) a 2.0 to 2.5 year direct mission. Through careful trajectory selection, 11 mission opportunities are identified in which the Mars entry velocity is between 6 and 10 km/sec and Earth entry velocity ranges from 11.5 to 12.5 km/sec. Simulation of the Earth return aerobraking maneuver is not performed. It is shown that a low L/D configuration is not feasible for Mars aerobraking without substantial improvements in the interplanetary navigation system. However, even with an advanced navigation system, entry corridor and aerothermal requirements restrict the number of potential mission opportunities. It is also shown that for a large blunt Mars aerobrake configuration, the effects of radiative heating can be significant at entry velocities as low as 6.2 km/sec and will grow to dominate the aerothermal environment at entry velocities above 8.5 km/sec. Despite the additional system complexity associated with an aerobraking vehicle, the use of aerobraking was shown to significantly lower the required initial LEO weight. In comparison with an all propulsive mission, savings between 19 and 59 percent were obtained depending upon launch date.
SpaceNet: Modeling and Simulating Space Logistics
NASA Technical Reports Server (NTRS)
Lee, Gene; Jordan, Elizabeth; Shishko, Robert; de Weck, Olivier; Armar, Nii; Siddiqi, Afreen
2008-01-01
This paper summarizes the current state of the art in interplanetary supply chain modeling and discusses SpaceNet as one particular method and tool to address space logistics modeling and simulation challenges. Fundamental upgrades to the interplanetary supply chain framework such as process groups, nested elements, and cargo sharing, enabled SpaceNet to model an integrated set of missions as a campaign. The capabilities and uses of SpaceNet are demonstrated by a step-by-step modeling and simulation of a lunar campaign.
NASA Technical Reports Server (NTRS)
Thorne, K. S.; Braginsky, V. B.
1974-01-01
Supermassive black holes which exist in the nuclei of many quasars and galaxies are examined along with the collapse which forms these holes and subsequent collisions between them which produce strong, broad-band bursts of gravitational waves. Such bursts might arrive at earth as often as 50 times per year--or as rarely as once each 300 years. The detection of such bursts with dual-frequency Doppler tracking of interplanetary spacecraft is considered.
Physics of spacecraft-based interplanetary dust collection by impact into low-density media
NASA Technical Reports Server (NTRS)
Anderson, William W.; Ahrens, T. J.
1994-01-01
A spacecraft encountering an interplanetary dust particle (IDP) at a relative velocity of several kilometers per second may be used to capture that particle for in situ analysis or for analysis upon Earth return. In this paper we study the impact of a dust particle into a low-density medium (i.e., a foam) such that the foam dissipates the kinetic energy of impact over a sufficient distance to stop the particle without destroying it.
Contributions to the Fourth Solar Wind Conference. [interplanetary magnetic fields and medium
NASA Technical Reports Server (NTRS)
Acuna, M. H.; Behannon, K. W.; Burlaga, L. F.; Lepping, R.; Ness, N.; Ogilvie, K.; Pizzo, J.
1979-01-01
Recent results in interplanetary physics are examined. These include observations of shock waves and post-shock magnetic fields made by Voyager 1, 2; observations of the electron temperature as a function of distance between 1.36 AU and 2.25 AU; and observations of the structure of sector boundaries observed by Helios 1. A theory of electron energy transport in the collisionless solar wind is presented, and compared with observations. Alfven waves and Alvenic fluctuations in the solar wind are also discussed.
A multinational Mars mission for the International Space University
NASA Technical Reports Server (NTRS)
Mendell, Wendell W.
1992-01-01
The International Space University's 1991 design project activity has yielded a report on the organization and implementation of a multinational program for manned exploration of Mars; the organization encompasses a political as well as a technical component. This International Manned Mission employs an artificial-gravity spacecraft with nuclear-electric propulsion for interplanetary transfer. An unmanned cargo mission precedes the piloted flights to increase the mass deliverable to Mars, as well as to serve as a testbed for interplanetary vehicle design.
NASA Technical Reports Server (NTRS)
Sandford, S. A.
1986-01-01
A chemical dissolution experiment on an interplanetary dust particle (IDP) showed that carbonates, not acid-insoluble organic compounds, were responsible for virtually all the absorption at 6.8 micrometers seen in the infrared spectra of this particle. The IDP examined had an infrared spectrum characteristic of layer-lattice silicates and belongs to a class of IDP's whose spectra resemble those of protostellar objects like W33 A, which also exhibit a band at 6.8 micrometers.
Orbital and angular motion construction for low thrust interplanetary flight
NASA Astrophysics Data System (ADS)
Yelnikov, R. V.; Mashtakov, Y. V.; Ovchinnikov, M. Yu.; Tkachev, S. S.
2016-11-01
Low thrust interplanetary flight is considered. Firstly, the fuel-optimal control is found. Then the angular motion is synthesized. This motion provides the thruster tracking of the required by optimal control direction. And, finally, reaction wheel control law for tracking this angular motion is proposed and implemented. The numerical example is given and total operation time for thrusters is found. Disturbances from solar pressure, thrust eccentricity, inaccuracy of reaction wheels installation and errors of inertia tensor are taken into account.
Use of Reference Frames for Interplanetary Navigation at JPL
NASA Technical Reports Server (NTRS)
Heflin, Michael; Jacobs, Chris; Sovers, Ojars; Moore, Angelyn; Owen, Sue
2010-01-01
Navigation of interplanetary spacecraft is typically based on range, Doppler, and differential interferometric measurements made by ground-based telescopes. Acquisition and interpretation of these observations requires accurate knowledge of the terrestrial reference frame and its orientation with respect to the celestial frame. Work is underway at JPL to reprocess historical VLBI and GPS data to improve realizations of the terrestrial and celestial frames. Improvements include minimal constraint alignment, improved tropospheric modeling, better orbit determination, and corrections for antenna phase center patterns.
Interplanetary propagation of flare-associated energetic particles
NASA Technical Reports Server (NTRS)
Masung, L. L.; Earl, J. A.
1978-01-01
A propagation model which combines a Gaussian profile for particle release from the sun, with interplanetary particle densities predicted by focused diffusion, was proposed to explain the propagation history of flare associated energetic particles. This model, which depends on only two parameters, successfully describes the time-intensity profiles of 30 proton and electron events originating from the western hemisphere of the sun. Generally, particles are released from the sun over a finite interval. In almost all events, particle release begins at the time of flare acceleration.
Discovery of nuclear tracks in interplanetary dust
NASA Technical Reports Server (NTRS)
Bradley, J. P.; Brownlee, D. E.; Fraundorf, P.
1984-01-01
Nuclear tracks have been identified in interplanetary dust particles (IDP's) collected from the stratosphere. The presence of tracks unambiguously confirms the extraterrestrial nature of IDP's, and the high track densities (10 to the 10th to 10 to the 11th per square centimeter) suggest an exposure age of approximately 10,000 years within the inner solar system. Tracks also provide an upper temperature limit for the heating of IDP's during atmospheric entry, thereby making it possible to distinguish between pristine and thermally modified micrometeorites.
The role of automatic control in future interplanetary spaceflight
NASA Technical Reports Server (NTRS)
Scull, J. R.; Moore, J. W.
1976-01-01
The paper reviews the guidance and automatic control techniques used in previous U.S. and Soviet lunar and planetary exploration spacecraft, and examines the objectives and requirements of potential future interplanetary missions from the viewpoint of their further demands on automatic control technology. These missions include the Venus orbital imaging radar mission, the Pioneer Mars penetrator mission, the Mars surface sample return mission, Pioneer Saturn/Uranus/Titan probe missions, the Mariner Jupiter orbiter with daughter satellite, and comet and asteroid missions.
Helium-3 Mining Aerostats in the Atmospheres of the Outer Planets
NASA Technical Reports Server (NTRS)
VanCleve, Jeffrey E.; Grillmair, Carl; Hanna, Mark; Reinert, Rich
2005-01-01
Imagine an interplanetary future where: a) d-He3 fusion produces most of Earth s energy needs without radioactivity or carbon emissions; b) Space transportation has been revolutionized by an efficient fusion propulsion system with exhaust velocity up to 0.088 c; c) Space commerce is stimulated by the existence of an interplanetary cargo worth $3-M a kilogram; and d) Unmanned probes travel to the nearest star systems with flight times less than a human lifetime.
Diagnostic Imaging in the Medical Support of the Future Missions to the Moon
NASA Technical Reports Server (NTRS)
Sargsyan, Ashot E.; Jones, Jeffrey A.; Hamilton, Douglas R.; Dulchavsky, Scott A.; Duncan, J. Michael
2007-01-01
This viewgraph presentation is a course that reviews the diagnostic imaging techniques available for medical support on the future moon missions. The educational objectives of the course are to: 1) Update the audience on the curreultrasound imaging in space flight; 2) Discuss the unique aspects of conducting ultrasound imaging on ISS, interplanetary transit, ultrasound imaging on ISS, interplanetary transit, and lunar surface operations; and 3) Review preliminary data obtained in simulations of medical imaging in lunar surface operations.
Type I and II Endometrial Cancers: Have They Different Risk Factors?
Setiawan, Veronica Wendy; Yang, Hannah P.; Pike, Malcolm C.; McCann, Susan E.; Yu, Herbert; Xiang, Yong-Bing; Wolk, Alicja; Wentzensen, Nicolas; Weiss, Noel S.; Webb, Penelope M.; van den Brandt, Piet A.; van de Vijver, Koen; Thompson, Pamela J.; Strom, Brian L.; Spurdle, Amanda B.; Soslow, Robert A.; Shu, Xiao-ou; Schairer, Catherine; Sacerdote, Carlotta; Rohan, Thomas E.; Robien, Kim; Risch, Harvey A.; Ricceri, Fulvio; Rebbeck, Timothy R.; Rastogi, Radhai; Prescott, Jennifer; Polidoro, Silvia; Park, Yikyung; Olson, Sara H.; Moysich, Kirsten B.; Miller, Anthony B.; McCullough, Marjorie L.; Matsuno, Rayna K.; Magliocco, Anthony M.; Lurie, Galina; Lu, Lingeng; Lissowska, Jolanta; Liang, Xiaolin; Lacey, James V.; Kolonel, Laurence N.; Henderson, Brian E.; Hankinson, Susan E.; Håkansson, Niclas; Goodman, Marc T.; Gaudet, Mia M.; Garcia-Closas, Montserrat; Friedenreich, Christine M.; Freudenheim, Jo L.; Doherty, Jennifer; De Vivo, Immaculata; Courneya, Kerry S.; Cook, Linda S.; Chen, Chu; Cerhan, James R.; Cai, Hui; Brinton, Louise A.; Bernstein, Leslie; Anderson, Kristin E.; Anton-Culver, Hoda; Schouten, Leo J.; Horn-Ross, Pamela L.
2013-01-01
Purpose Endometrial cancers have long been divided into estrogen-dependent type I and the less common clinically aggressive estrogen-independent type II. Little is known about risk factors for type II tumors because most studies lack sufficient cases to study these much less common tumors separately. We examined whether so-called classical endometrial cancer risk factors also influence the risk of type II tumors. Patients and Methods Individual-level data from 10 cohort and 14 case-control studies from the Epidemiology of Endometrial Cancer Consortium were pooled. A total of 14,069 endometrial cancer cases and 35,312 controls were included. We classified endometrioid (n = 7,246), adenocarcinoma not otherwise specified (n = 4,830), and adenocarcinoma with squamous differentiation (n = 777) as type I tumors and serous (n = 508) and mixed cell (n = 346) as type II tumors. Results Parity, oral contraceptive use, cigarette smoking, age at menarche, and diabetes were associated with type I and type II tumors to similar extents. Body mass index, however, had a greater effect on type I tumors than on type II tumors: odds ratio (OR) per 2 kg/m2 increase was 1.20 (95% CI, 1.19 to 1.21) for type I and 1.12 (95% CI, 1.09 to 1.14) for type II tumors (Pheterogeneity < .0001). Risk factor patterns for high-grade endometrioid tumors and type II tumors were similar. Conclusion The results of this pooled analysis suggest that the two endometrial cancer types share many common etiologic factors. The etiology of type II tumors may, therefore, not be completely estrogen independent, as previously believed. PMID:23733771
The gaseous component of the disk around Beta Pictoris
NASA Technical Reports Server (NTRS)
Hobbs, L. M.; Vidal-Madjar, A.; Ferlet, R.; Albert, C. E.; Gry, C.
1985-01-01
Optical spectra of alpha Lyr, alpha PsA, and beta Pic have been obtained at a velocity resolution of 3 km/s. No circumstellar absorption lines of Ca II or Na I are detected toward alpha Lyr or alpha PsA at sensitive limits. In the favorable case of beta Pic, where the circumstellar disk imaged by Smith and Terrile (1984) is seen nearly edge-on, a strong, narrow, circumstellar Ca II K absorption line previously reported by Slettebak (1982) and weaker, still narrower circumstellar Na I D lines are detected. Negative results of high sensitivity also are obtained for the Ca I 4226 A and CH(+) 4232 A lines, along with upper limits on the Zn II 2026, 2062 A doublet from archival IUE spectra. Under assumptions which agree with other well-established observations of the gaseous abundances of calcium and zinc, the total gaseous column density of hydrogen along a radius of the circumstellar disk is between 10 to the 18th and 4 x 10 to the 20th/sq cm. Within the boundaries of the dust disk detected by Smith and Terrile (1984) the total gaseous mass then is less than about 2, or less than 1 percent of the mass of the planetary system. A simplified model of the density distribution in the gaseous disk yields a characteristic total density n(H) of about 100,000/cu cm, which exceeds that of all interplanetary gas at earth's position by a factor of about 10,000.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Pavitt, Ania S.; Bylaska, Eric J.; Tratnyek, Paul G.
As described in the main text, we classified our voltammograms into four types. For phenols, most compounds were type I or type II, except four phenols that were type III (4-nitrophenol, 4-cyanophenol, DNOC, and 4-hydroxyacetphenone); and two phenols that were type IV (4-aminophenol and dopamine). Almost all of the compounds gave the same type by SCV and SWV, except for 2,4-dinitrophenol (whose current went up and down and therefore could be considered a type II or III), 4-cyanophenol (which fell into a type III for SCV, but whose current went up and down in SWV (type II or III)), andmore » 4-hydroxyacetophenone (which was a type III in SCV, but a type II in SWV). The majority of the anilines were type I except for p-toluidine (type II) and 4-methyl-3-nitroaniline and 2-methoxy-5-nitroaniline (both were type I for SWV, but for SCV fell into type III and type II respectively).« less
Pavitt, Ania S.; Bylaska, Eric J.; Tratnyek, Paul G.
2017-02-10
As described in the main text, we classified our voltammograms into four types. For phenols, most compounds were type I or type II, except four phenols that were type III (4-nitrophenol, 4-cyanophenol, DNOC, and 4-hydroxyacetphenone); and two phenols that were type IV (4-aminophenol and dopamine). Almost all of the compounds gave the same type by SCV and SWV, except for 2,4-dinitrophenol (whose current went up and down and therefore could be considered a type II or III), 4-cyanophenol (which fell into a type III for SCV, but whose current went up and down in SWV (type II or III)), andmore » 4-hydroxyacetophenone (which was a type III in SCV, but a type II in SWV). The majority of the anilines were type I except for p-toluidine (type II) and 4-methyl-3-nitroaniline and 2-methoxy-5-nitroaniline (both were type I for SWV, but for SCV fell into type III and type II respectively).« less
Past and current perspective on new therapeutic targets for Type-II diabetes.
Patil, Pradip D; Mahajan, Umesh B; Patil, Kalpesh R; Chaudhari, Sandip; Patil, Chandragouda R; Agrawal, Yogeeta O; Ojha, Shreesh; Goyal, Sameer N
2017-01-01
Loss of pancreatic β-cell function is a hallmark of Type-II diabetes mellitus (DM). It is a chronic metabolic disorder that results from defects in both insulin secretion and insulin action. Recently, United Kingdom Prospective Diabetes Study reported that Type-II DM is a progressive disorder. Although, DM can be treated initially by monotherapy with oral agent; eventually, it may require multiple drugs. Additionally, insulin therapy is needed in many patients to achieve glycemic control. Pharmacological approaches are unsatisfactory in improving the consequences of insulin resistance. Single therapeutic approach in the treatment of Type-II DM is unsuccessful and usually a combination therapy is adopted. Increased understanding of biochemical, cellular and pathological alterations in Type-II DM has provided new insight in the management of Type-II DM. Knowledge of underlying mechanisms of Type-II DM development is essential for the exploration of novel therapeutic targets. Present review provides an insight into therapeutic targets of Type-II DM and their role in the development of insulin resistance. An overview of important signaling pathways and mechanisms in Type-II DM is provided for the better understanding of disease pathology. This review includes case studies of drugs that are withdrawn from the market. The experience gathered from previous studies and knowledge of Type-II DM pathways can guide the anti-diabetic drug development toward the discovery of clinically viable drugs that are useful in Type-II DM.
Nonlinear stability of solar type 3 radio bursts. 1: Theory
NASA Technical Reports Server (NTRS)
Smith, R. A.; Goldstein, M. L.; Papadopoulos, K.
1978-01-01
A theory of the excitation of solar type 3 bursts is presented. Electrons initially unstable to the linear bump-in-tail instability are shown to rapidly amplify Langmuir waves to energy densities characteristic of strong turbulence. The three-dimensional equations which describe the strong coupling (wave-wave) interactions are derived. For parameters characteristic of the interplanetary medium the equations reduce to one dimension. In this case, the oscillating two stream instability (OTSI) is the dominant nonlinear instability, and is stablized through the production of nonlinear ion density fluctuations that efficiently scatter Langmuir waves out of resonance with the electron beam. An analytical model of the electron distribution function is also developed which is used to estimate the total energy losses suffered by the electron beam as it propagates from the solar corona to 1 A.U. and beyond.
On the source conditions for herringbone structure in type II solar radio bursts
NASA Technical Reports Server (NTRS)
Cane, H. V.; White, S. M.
1989-01-01
An investigation is made of the correlation of the occurrence of the herringbone phenomenon in type II solar radio bursts with various flare properties. It is shown that herringbone is strongly correlated with the intensity of the type II burst: whereas about 21 percent of all type II bursts show herringbone, about 60 percent of the most intense bursts contain herringbone. This fact can explain most of the correlations between herringbone and other properties such as intense type III bursts, type IV emission, and high type II starting frequencies. It is also shown that when this is taken into account, there is no need to postulate two classes of type II burst in order to explain why there appears to be a difference in herringbone occurrence between the set of type II bursts associated with the leading edges of coronal mass ejections, and those not so associated. It is argued that the data are consistent with the idea that all coronal type II bursts are due to blast waves from flares.
Nucleus structure and dust morphology: Post-Rosetta understanding and implications
NASA Astrophysics Data System (ADS)
Levasseur-Regourd, A.; Bentley, Mark; Ciarletti, Valérie; Kofman, Woldek; Lasue, Jeremie; Mannel, Thurid; Herique, Alain
2017-10-01
The structure of cometary nuclei and the morphology of dust particles they eject have long been unknowns in cometary science. The combination of these two subjects, as revealed by the Rosetta mission at 67P/C-G, is currently providing an unprecedented insight about Solar System formation and early evolution.Rosetta has established that the bulk porosity of 67P/C-G nucleus is high, in the 70% to 85% range, both from the determination of its density and from permittivity measurements with CONSERT bistatic radar experiment [1-2]. CONSERT, through operations after Philae landing on 12-13 November 2014, has also allowed us to estimate that i) the porosity is likely to be higher inside the nucleus than on its subsurface, ii) a major component of the nucleus is refractory carbonaceous compounds, and iii) the small lobe is homogeneous at a scale of a few wavelengths (i.e., about 10 m), while heterogeneities in the 3-m range (similar to the rounded nodules noticed on walls of large pits) cannot be ruled out [2-4].Rosetta has also established, through its 26 months rendezvous with 67P/C-G, the aggregated structure of dust particles within a wide range of sizes in the inner cometary coma. The MIDAS atomic force microscope experiment has given us evidence (from 3D topographic images with nano- to micrometer resolution) for i) a hierarchical structure of aggregated dust particles, down to tens of nm-sized grains, ii) one extremely porous dust particle, with a fractal dimension of (1.7 ± 0.1) [5-6]. The accuracy of comparisons between cometary dust particles and interplanetary dust particles collected in the stratosphere (including CP-IDPs) could thus be improved.Such results should further refine the main processes (e.g., low velocity aggregation) that allowed the formation of comets in the early Solar System, and the implications of a possible late heavy bombardment on the interplanetary dust clouds and on telluric planets.References. 1. Pätzold et al. Nature 530 63 2016. 2. Kofman et al. Science 349 6247 2015. 3. Herique et al. MNRAS 462 S516 2016. 4. Ciarletti et al. A&A 583 A40 2015. 5. Bentley et al., Nature 537 73 2016. 6. Mannel et al., MNRAS 462 S304 2016.
Titan's highly variable plasma environment
NASA Astrophysics Data System (ADS)
Wolf, D. A.; Neubauer, F. M.
1982-02-01
It is noted that Titan's plasma environment is variable for two reasons. The variability of the solar wind is such that Titan may be located in the outer magnetosphere, the magnetosheath, or the interplanetary medium around noon Saturnian local time. What is more, there are local time variations in Saturn's magnetosphere. The location of the stagnation point of Saturn's magnetosphere is calculated, assuming a terrestrial type magnetosphere. Characteristic plasma parameters along the orbit of Titan are shown for high solar wind pressure. During crossings of the Saturnian magnetopause or bow shock by Titan, abrupt changes in the flow direction and stagnation pressure are expected, as are rapid associated changes in Titan's uppermost atmosphere.
Representations of Invariant Manifolds for Applications in Three-Body Systems
NASA Technical Reports Server (NTRS)
Howell, K.; Beckman, M.; Patterson, C.; Folta, D.
2004-01-01
The Lunar L1 and L2 libration points have been proposed as gateways granting inexpensive access to interplanetary space. To date, only individual solutions to the transfer between three-body systems have been found. The methodology to solve the problem for arbitrary three-body systems and entire families of orbits is currently being studied. This paper presents an initial approach to solve the general problem for single and multiple impulse transfers. Two different methods of representing and storing the invariant manifold data are presented. Some particular solutions are presented for two types of transfer problems, though the emphasis is on developing the methodology for solving the general problem.
Asymmetry of nonlinear interactions of solar MHD discontinuities with the bow shock
NASA Astrophysics Data System (ADS)
Grib, S. A.; Pushkar, E. A.
2006-07-01
Oblique interaction between the solar fast shock wave, which is a typical nonstationary strong discontinuity in the interplanetary space, and the bow shock front upstream of an Earth-type planetary magnetosphere is studied. Attention has been paid to the qualitative and quantitative (with respect to the proton density distribution) dawn-dusk (or morning-evening) asymmetry of the discontinuities refracted into the magnetosheath, which originates in the ecliptic plane on different sides of the Sun-Earth line. The results under discussion have been corroborated experimentally by the gas-kinetic pattern of the bow-shock front and the WIND and ISEE 3 spacecraft measurements of the plasma density.
Circulating transportation orbits between earth and Mars
NASA Technical Reports Server (NTRS)
Friedlander, A. L.; Niehoff, J. C.; Byrnes, D. V.; Longuski, J. M.
1986-01-01
This paper describes the basic characteristics of circulating (cyclical) orbit design as applied to round-trip transportation of crew and materials between earth and Mars in support of a sustained manned Mars Surface Base. The two main types of nonstopover circulating trajectories are the socalled VISIT orbits and the Up/Down Escalator orbits. Access to the large transportation facilities placed in these orbits is by way of taxi vehicles using hyperbolic rendezvous techniques during the successive encounters with earth and Mars. Specific examples of real trajectory data are presented in explanation of flight times, encounter frequency, hyperbolic velocities, closest approach distances, and Delta V maneuver requirements in both interplanetary and planetocentric space.
Radiometric Spacecraft Tracking for Deep Space Navigation
NASA Technical Reports Server (NTRS)
Lanyi, Gabor E.; Border, James S.; Shin, Dong K.
2008-01-01
Interplanetary spacecraft navigation relies on three types of terrestrial tracking observables.1) Ranging measures the distance between the observing site and the probe. 2) The line-of-sight velocity of the probe is inferred from Doppler-shift by measuring the frequency shift of the received signal with respect to the unshifted frequency. 3) Differential angular coordinates of the probe with respect to natural radio sources are nominally obtained via a differential delay technique of (Delta) DOR (Delta Differential One-way Ranging). The accuracy of spacecraft coordinate determination depends on the measurement uncertainties associated with each of these three techniques. We evaluate the corresponding sources of error and present a detailed error budget.
Interplanetary program to optimize simulated trajectories (IPOST). Volume 4: Sample cases
NASA Technical Reports Server (NTRS)
Hong, P. E.; Kent, P. D; Olson, D. W.; Vallado, C. A.
1992-01-01
The Interplanetary Program to Optimize Simulated Trajectories (IPOST) is intended to support many analysis phases, from early interplanetary feasibility studies through spacecraft development and operations. The IPOST output provides information for sizing and understanding mission impacts related to propulsion, guidance, communications, sensor/actuators, payload, and other dynamic and geometric environments. IPOST models three degree of freedom trajectory events, such as launch/ascent, orbital coast, propulsive maneuvering (impulsive and finite burn), gravity assist, and atmospheric entry. Trajectory propagation is performed using a choice of Cowell, Encke, Multiconic, Onestep, or Conic methods. The user identifies a desired sequence of trajectory events, and selects which parameters are independent (controls) and dependent (targets), as well as other constraints and the cost function. Targeting and optimization are performed using the Standard NPSOL algorithm. The IPOST structure allows sub-problems within a master optimization problem to aid in the general constrained parameter optimization solution. An alternate optimization method uses implicit simulation and collocation techniques.
Transceiver optics for interplanetary communications
NASA Astrophysics Data System (ADS)
Roberts, W. T.; Farr, W. H.; Rider, B.; Sampath, D.
2017-11-01
In-situ interplanetary science missions constantly push the spacecraft communications systems to support successively higher downlink rates. However, the highly restrictive mass and power constraints placed on interplanetary spacecraft significantly limit the desired bandwidth increases in going forward with current radio frequency (RF) technology. To overcome these limitations, we have evaluated the ability of free-space optical communications systems to make substantial gains in downlink bandwidth, while holding to the mass and power limits allocated to current state-of-the-art Ka-band communications systems. A primary component of such an optical communications system is the optical assembly, comprised of the optical support structure, optical elements, baffles and outer enclosure. We wish to estimate the total mass that such an optical assembly might require, and assess what form it might take. Finally, to ground this generalized study, we should produce a conceptual design, and use that to verify its ability to achieve the required downlink gain, estimate it's specific optical and opto-mechanical requirements, and evaluate the feasibility of producing the assembly.
Relationship of Interplanetary Shock Micro and Macro Characteristics: A Wind Study
NASA Technical Reports Server (NTRS)
Szabo, Adam; Koval, A
2008-01-01
The non-linear least squared MHD fitting technique of Szabo 11 9941 has been recently further refined to provide realistic confidence regions for interplanetary shock normal directions and speeds. Analyzing Wind observed interplanetary shocks from 1995 to 200 1, macro characteristics such as shock strength, Theta Bn and Mach numbers can be compared to the details of shock micro or kinetic structures. The now commonly available very high time resolution (1 1 or 22 vectors/sec) Wind magnetic field data allows the precise characterization of shock kinetic structures, such as the size of the foot, ramp, overshoot and the duration of damped oscillations on either side of the shock. Detailed comparison of the shock micro and macro characteristics will be given. This enables the elucidation of shock kinetic features, relevant for particle energization processes, for observations where high time resolution data is not available. Moreover, establishing a quantitative relationship between the shock micro and macro structures will improve the confidence level of shock fitting techniques during disturbed solar wind conditions.
Recurrent solar wind streams observed by interplanetary scintillation of 3C 48
DOE Office of Scientific and Technical Information (OSTI.GOV)
Watanabe, T.; Kakinuma, T.
1972-10-01
The interplanetary scintillation of 3C 48 was observed by two spaced receivers (69.3 MHz) during February and March 1971. The recurrent property of the observed velocity increase of the solar wind is clearly seen, and their recurrent period is 24 to 25 days. This value is shorter than the synodic period of 27 days, but this deviation may be explained by the displacement of the closest point to the Sun on the line of sight for 3C 48. A comparison with the data of the wind velocity obtained by apace probes shows that the observed enhancements are associated with twomore » high-velocity streams corotating around the Sun. The enhancements of the scintillation index precede by about two days the velocity enhancements, and it may be concluded that such enhancement of the scintillation index has resulted from the compressed region of the interplanetary plasma formed in front of the high-velocity corotating stream. (auth)« less
An interplanetary magnetic field ensemble at 1 AU
NASA Technical Reports Server (NTRS)
Matthaeus, W. H.; Goldstein, M. L.; King, J. H.
1985-01-01
A method for calculation ensemble averages from magnetic field data is described. A data set comprising approximately 16 months of nearly continuous ISEE-3 magnetic field data is used in this study. Individual subintervals of this data, ranging from 15 hours to 15.6 days comprise the ensemble. The sole condition for including each subinterval in the averages is the degree to which it represents a weakly time-stationary process. Averages obtained by this method are appropriate for a turbulence description of the interplanetary medium. The ensemble average correlation length obtained from all subintervals is found to be 4.9 x 10 to the 11th cm. The average value of the variances of the magnetic field components are in the approximate ratio 8:9:10, where the third component is the local mean field direction. The correlation lengths and variances are found to have a systematic variation with subinterval duration, reflecting the important role of low-frequency fluctuations in the interplanetary medium.
Analysis of an Interplanetary Coronal Mass Ejection by a Spacecraft Radio Signal: A Case Study
NASA Astrophysics Data System (ADS)
Molera Calvés, G.; Kallio, E.; Cimo, G.; Quick, J.; Duev, D. A.; Bocanegra Bahamón, T.; Nickola, M.; Kharinov, M. A.; Mikhailov, A. G.
2017-11-01
Tracking radio communication signals from planetary spacecraft with ground-based telescopes offers the possibility to study the electron density and the interplanetary scintillation of the solar wind. Observations of the telemetry link of planetary spacecraft have been conducted regularly with ground antennae from the European Very Long Baseline Interferometry Network, aiming to study the propagation of radio signals in the solar wind at different solar elongations and distances from the Sun. We have analyzed the Mars Express spacecraft radio signal phase fluctuations while, based on a 3-D heliosphere plasma simulation, an interplanetary coronal mass ejection (ICME) crossed the radio path during one of our observations on 6 April 2015. Our measurements showed that the phase scintillation indices increased by a factor of 4 during the passage of the ICME. The method presented here confirms that the phase scintillation technique based on spacecraft signals provides information of the properties and propagation of the ICMEs in the heliosphere.
Space Weather: The Solar Perspective
NASA Astrophysics Data System (ADS)
Schwenn, Rainer
2006-08-01
The term space weather refers to conditions on the Sun and in the solar wind, magnetosphere, ionosphere, and thermosphere that can influence the performance and reliability of space-borne and ground-based technological systems and that can affect human life and health. Our modern hi-tech society has become increasingly vulnerable to disturbances from outside the Earth system, in particular to those initiated by explosive events on the Sun: Flares release flashes of radiation that can heat up the terrestrial atmosphere such that satellites are slowed down and drop into lower orbits, solar energetic particles accelerated to near-relativistic energies may endanger astronauts traveling through interplanetary space, and coronal mass ejections are gigantic clouds of ionized gas ejected into interplanetary space that after a few hours or days may hit the Earth and cause geomagnetic storms. In this review, I describe the several chains of actions originating in our parent star, the Sun, that affect Earth, with particular attention to the solar phenomena and the subsequent effects in interplanetary space.
Bismuth Oxide Nanoparticles in the Stratosphere
NASA Technical Reports Server (NTRS)
Rietmeijer, Frans J. M.; Mackinnon, Ian D. R.
1997-01-01
Platey grains of cubic Bi2O3, alpha-Bi2O3, and Bi2O(2.75), nanograins were associated with chondritic porous interplanetary dust particles W7029C1, W7029E5, and 2011C2 that were collected in the stratosphere at 17-19 km altitude. Similar Bi oxide nanograins were present in the upper stratosphere during May 1985. These grains are linked to the plumes of several major volcanic eruptions during the early 1980s that injected material into the stratosphere. The mass of sulfur from these eruptions is a proxy for the mass of stratospheric Bi from which we derive the particle number densities (p/cu m) for "average Bi2O3 nanograins" due to this volcanic activity and those necessary to contaminate the extraterrestrial chondritic porous interplanetary dust particles via collisional sticking. The match between both values supports the idea that Bi2O3 nanograins of volcanic origin could contaminate interplanetary dust particles in the Earth's stratosphere.
NASA Technical Reports Server (NTRS)
Lepping, R. P.; Chao, J. K.
1976-01-01
An estimated shape is presented for the surface of the flare-associated interplanetary shock of February 15-16, 1967, as seen in the ecliptic-plane cross section. The estimate is based on observations by Explorer 33 and Pioneers 6 and 7. The estimated shock normal at the Explorer 33 position is obtained by a least-squares shock parameter-fitting procedure for that satellite's data; the shock normal at the Pioneer 7 position is found by using the magnetic coplanarity theorem and magnetic-field data. The average shock speed from the sun to each spacecraft is determined along with the local speed at Explorer 33 and the relations between these speeds and the position of the initiating solar flare. The Explorer 33 shock normal is found to be severely inclined and not typical of interplanetary shocks. It is shown that the curvature of the shock surface in the ecliptic plane near the earth-Pioneer 7 region is consistent with a radius of not more than 0.4 AU.
High time resolution observations of the drivers of Forbush decreases
NASA Astrophysics Data System (ADS)
Jordan, A. P.; Spence, H. E.; Blake, J. B.; Mulligan, T. L.; Shaul, D. N.
2008-12-01
The drivers of Forbush decreases in galactic cosmic ray (GCR) fluxes are thought to be magnetic turbulence in the sheath of an interplanetary coronal mass ejection (ICME) and the closed magnetic field lines in the ICME itself. This model, however, is the result of studies utilizing hourly or longer time averaging. Such averaging can smooth over important correlations between variabilities in the GCR flux and those in the interplanetary medium. To test the validity of the current model of Forbush decreases, we analyze a number of Forbush decreases using high time resolution GCR data from the High Sensitivity Telescope (HIST) on Polar and the Spectrometer for INTEGRAL (SPI). We seek causal correlations between the onset of the decrease and structures in the solar wind plasma and interplanetary magnetic field, as measured concurrently with ACE and/or Wind. We find evidence that planar magnetic structures in the sheath preceding the ICME may be a factor in driving the decrease in at least one event.
The local time dependence of the anisotropic solar cosmic ray flux.
Smart, D F; Shea, M A
2003-01-01
The distribution of the solar cosmic radiation flux over the earth is not uniform, but the result of complex phenomena involving the interplanetary magnetic field, the geomagnetic field and latitude and longitude of locations on the earth. The latitude effect relates to the geomagnetic shield; the longitude effect relates to local time. For anisotropic solar cosmic ray events the maximum particle flux is always along the interplanetary magnetic field direction, sometimes called the Archimedean spiral path from the sun to the earth. During anisotropic solar cosmic ray event, the locations on the earth viewing "sunward" into the interplanetary magnetic field direction will observe the largest flux (when adjustments are made for the magnetic latitude effect). To relate this phenomena to aircraft routes, for anisotropic solar cosmic ray events that occur during "normal quiescent" conditions, the maximum solar cosmic ray flux (and corresponding solar particle radiation dose) will be observed in the dawn quadrant, ideally at about 06 hours local time. Published by Elsevier Ltd on behalf of COSPAR.
NASA Technical Reports Server (NTRS)
Farrugia, C. J.; Burlaga, L. F.; Osherovich, V. A.; Richardson, I. G.; Freeman, M. P.; Lepping, R. P.; Lazarus, A. J.
1993-01-01
High time resolution interplanetary magnetic field and plasma measurements of an interplanetary magnetic cloud and its interaction with the earth's magnetosphere on January 14/15, 1988 are interpreted and discussed. It is argued that the data are consistent with the theoretical model of magnetic clouds as flux ropes of local straight cylindrical geometry. The data also suggest that this cloud is aligned with its axis in the ecliptic plane and pointing in the east-west direction. Evidence consisting of the intensity and directional distribution of energetic particle in the magnetic cloud argues in favor of the connectedness of the magnetic field lines to the sun's surface. The intensities of about 0.5 MeV ions is rapidly enhanced and the particles stream in a collimated beam along the magnetic field preferentially from the west of the sun. The particles travel form a flare site along the cloud magnetic field lines, which are thus presumably still attached to the sun.
Time Delay Between Dst Index and Magnetic Storm Related Structure in the Solar Wind
NASA Technical Reports Server (NTRS)
Osherovich, Vladimir A.; Fainberg, Joseph
2015-01-01
Benson et al. (2015, this volume) selected 10 large magnetic storms, with associated Dst minimum values less than or equal to -100 nT, for which high-latitude topside ionospheric electron density profiles are available from topside-sounder satellites. For these 10 storms, we performed a superposition of Dst and interplanetary parameters B, v, N(sub p) and T(sub p). We have found that two interplanetary parameters, namely B and v, are sufficient to reproduce Dst with correlation coefficient cc approximately 0.96 provided that the interplanetary parameter times are taken 0.15 days earlier than the associated Dst times. Thus we have found which part of the solar wind is responsible for each phase of the magnetic storm. This result is also verified for individual storms as well. The total duration of SRS (storm related structure in the solar wind) is 4 - 5 days which is the same as the associated Dst interval of the magnetic storm.
NASA Technical Reports Server (NTRS)
Evans, L. C.
1972-01-01
The access of 1.2 to 40 MeV protons and 0.4 to 1.0 MeV electrons from interplanetary space to the polar cap regions was investigated with an experiment on board a low altitude, polar-orbiting satellite (0G0 4). A total of 333 quiet time observations of the electron polar cap boundary give a mapping of the boundary between open and closed geomagnetic field lines. Observations of events associated with co-rotating regions of enhanced proton flux in interplanetary space were used to establish the characteristics of the 1.2 to 40 MeV proton access windows. The results were compared to particle access predictions of the distant geomagnetic tail configurations. The role played by interplanetary anisotropies in the observation of persistent polar cap features is discussed. Special emphasis is given to the problem of nonadiabatic particle entry through regions where the magnetic field is changing direction.
NASA Technical Reports Server (NTRS)
Gloeckler, G.
1977-01-01
An instrument is described for measuring the mass and charge state composition as well as the energy spectra and angular distributions of 0.5 to 350 kev/charge ions in interplanetary space and in magnetospheres of planets such as Jupiter and earth. Electrostatic deflection combined with a time-of-flight and energy measurement allows three-parameter analysis of output signals from which the mass, charge states, and energy are determined. Post-acceleration by 30 kV extends the energy range of the detector system into the solar wind and magnetosphere plasma regime. Isotopes of H and He are easily resolved as are individual elements up to Ne and the dominant elements up to and including Fe. This instrument has an extremely large dynamic range in intensity and is sensitive to rare elements even in the presence of high intensity radiation, and is adapted for interplanetary, deep-space, and out-of-the-ecliptic missions, as well as for flights on spacecraft orbiting Jupiter and earth.
The interplanetary shock of September 24, 1998: Arrival at Earth
NASA Astrophysics Data System (ADS)
Russell, C. T.; Wang, Y. L.; Raeder, J.; Tokar, R. L.; Smith, C. W.; Ogilvie, K. W.; Lazarus, A. J.; Lepping, R. P.; Szabo, A.; Kawano, H.; Mukai, T.; Savin, S.; Yermolaev, Y. I.; Zhou, X.-Y.; Tsurutani, B. T.
2000-11-01
At close to 2345 UT on September 24, 1998, the magnetosphere was suddenly compressed by the passage of an interplanetary shock. In order to properly interpret the magnetospheric events triggered by the arrival of this shock, we calculate the orientation of the shock, its velocity, and its estimated time of arrival at the nose of the magnetosphere. Our best fit shock normal has an orientation of (-0.981 -0.157 -0.112) in solar ecliptic coordinates, a speed of 769 km/s, and an arrival time of 2344:19 at the magnetopause at 10 RE. Since measurements of the solar wind and interplanetary magnetic field are available from multiple spacecraft, we can compare several different techniques of shock-normal determination. Of the single spacecraft techniques the magnetic coplanarity solution is most accurate and the mixed mode solution is of lesser accuracy. Uncertainty in the timing and location of the IMP 8 spacecraft limits the accuracy of solutions using the time of arrival at the position of IMP 8.
Dependence of efficiency of magnetic storm generation on the types of interplanetary drivers.
NASA Astrophysics Data System (ADS)
Yermolaev, Yuri; Nikolaeva, Nadezhda; Lodkina, Irina
2015-04-01
To compare the coupling coefficients between the solar-wind electric field Ey and Dst (and corrected Dst*) index during the magnetic storms generated by different types of interplanetary drivers, we use the Kyoto Dst-index data, the OMNI data of solar wind plasma and magnetic field measurements, and our "Catalog of large scale phenomena during 1976-2000" (published in [1] and presented on websites: ftp://ftp.iki.rssi.ru/pub/omni/). Both indexes at the main phase of magnetic storms are approximated by the linear dependence on the following solar wind parameters: integrated electric field of solar wind (sumEy), solar wind dynamic pressure (Pd), and the level of magnetic field fluctuations (sB), and the fitting coefficients are determined by the technique of least squares. We present the results of the main phase modelling for magnetic storms with Dst<-50 nT induced by 4 types of the solar wind streams: MC (10 events), CIR (41), Sheath (26), Ejecta (45). Our analysis [2, 3] shows that the coefficients of coupling between Dst and Dst* indexes and integral electric field are significantly higher for Sheath (for Dst*and Dst they are -3.4 and -3.3 nT/V m-1 h, respectively) and CIR (-3.0 and -2.8) than for MC (-2.0 and -2.5) and Ejecta (-2.1 and -2.3). Thus we obtained additional confirmation of experimental fact that Sheath and CIR have higher efficiency in generation of magnetic storms than MC and Ejecta. This work was supported by the RFBR, project 13-02-00158a, and by the Program 9 of Presidium of Russian Academy of Sciences. References 1. Yu. I. Yermolaev, N. S. Nikolaeva, I. G. Lodkina, and M. Yu. Yermolaev, Catalog of Large-Scale Solar Wind Phenomena during 1976-2000, Cosmic Research, 2009, Vol. 47, No. 2, pp. 81-94. 2. N.S. Nikolaeva, Yu.I. Yermolaev, I.G. Lodkina, Modeling of Dst-index temporal profile on the main phase of the magnetic storms generated by different types of solar wind, Cosmic Research, 2013, Vol. 51, No. 6, pp. 401-412 3. Nikolaeva N.S., Yermolaev Yu.I., Lodkina I.G., Modeling of corrected Dst-index temporal profile on the main phase of the magnetic storms generated by different types of solar wind, Cosmic Research, 2015, Vol.53, No. 2, 81, DOI: 10.7868/S0023420615020077
Implementing New Non-Chromate Coatings Systems (Briefing Charts)
2011-02-09
Initiate Cr6+ authorization process for continued Cr6+ use using the form, Authorization to Use Hexavalent Chromium. YES NO • Approval of...Aluminum and magnesium anodizing • Hard Chrome Plating • Type II conversion coating on aluminum alloys under chromated primer • Type II conversion coating...Elimination of Hexavalent Chromium 80% 5% 14% 1% Type II Type III Type IC Type IC Fatigue Critical 50% 50% Type II Type IC FRC-SE (JAX) Fully Integrated FRC
Fusion Propulsion Z-Pinch Engine Concept
NASA Technical Reports Server (NTRS)
Miernik, J.; Statham, G.; Fabisinski, L.; Maples, C. D.; Adams, R.; Polsgrove, T.; Fincher, S.; Cassibry, J.; Cortez, R.; Turner, M.;
2011-01-01
Fusion-based nuclear propulsion has the potential to enable fast interplanetary transportation. Due to the great distances between the planets of our solar system and the harmful radiation environment of interplanetary space, high specific impulse (Isp) propulsion in vehicles with high payload mass fractions must be developed to provide practical and safe vehicles for human spaceflight missions. The Z-Pinch dense plasma focus method is a Magneto-Inertial Fusion (MIF) approach that may potentially lead to a small, low cost fusion reactor/engine assembly1. Recent advancements in experimental and theoretical understanding of this concept suggest favorable scaling of fusion power output yield 2. The magnetic field resulting from the large current compresses the plasma to fusion conditions, and this process can be pulsed over short timescales (10(exp -6 sec). This type of plasma formation is widely used in the field of Nuclear Weapons Effects testing in the defense industry, as well as in fusion energy research. A Decade Module 2 (DM2), approx.500 KJ pulsed-power is coming to the RSA Aerophysics Lab managed by UAHuntsville in January, 2012. A Z-Pinch propulsion concept was designed for a vehicle based on a previous fusion vehicle study called "Human Outer Planet Exploration" (HOPE), which used Magnetized Target Fusion (MTF) 3 propulsion. The reference mission is the transport of crew and cargo to Mars and back, with a reusable vehicle.
Models of Solar Wind Structures and Their Interaction with the Earth's Space Environment
NASA Astrophysics Data System (ADS)
Watermann, J.; Wintoft, P.; Sanahuja, B.; Saiz, E.; Poedts, S.; Palmroth, M.; Milillo, A.; Metallinou, F.-A.; Jacobs, C.; Ganushkina, N. Y.; Daglis, I. A.; Cid, C.; Cerrato, Y.; Balasis, G.; Aylward, A. D.; Aran, A.
2009-11-01
The discipline of “Space Weather” is built on the scientific foundation of solar-terrestrial physics but with a strong orientation toward applied research. Models describing the solar-terrestrial environment are therefore at the heart of this discipline, for both physical understanding of the processes involved and establishing predictive capabilities of the consequences of these processes. Depending on the requirements, purely physical models, semi-empirical or empirical models are considered to be the most appropriate. This review focuses on the interaction of solar wind disturbances with geospace. We cover interplanetary space, the Earth’s magnetosphere (with the exception of radiation belt physics), the ionosphere (with the exception of radio science), the neutral atmosphere and the ground (via electromagnetic induction fields). Space weather relevant state-of-the-art physical and semi-empirical models of the various regions are reviewed. They include models for interplanetary space, its quiet state and the evolution of recurrent and transient solar perturbations (corotating interaction regions, coronal mass ejections, their interplanetary remnants, and solar energetic particle fluxes). Models of coupled large-scale solar wind-magnetosphere-ionosphere processes (global magnetohydrodynamic descriptions) and of inner magnetosphere processes (ring current dynamics) are discussed. Achievements in modeling the coupling between magnetospheric processes and the neutral and ionized upper and middle atmospheres are described. Finally we mention efforts to compile comprehensive and flexible models from selections of existing modules applicable to particular regions and conditions in interplanetary space and geospace.
NASA Technical Reports Server (NTRS)
Simpson, John A.; Garcia-Munoz, Moises
1995-01-01
Research was continued on the origins, acceleration mechanisms, and the propagation modes of the hierarchy of energetic charged particles found in a wide range of astrophysical settings, extending from the cosmic rays arriving from the depth of the galaxy to the energetic particles in the heliosphere and in the near earth environment. In particular this grant has been a vital support in the investigation of the particle radiations in the earth's magnetosphere. The ONR-604 instrument was launched in July 1990 aboard the CRRES spacecraft. The CRRES mission has been a joint program of NASA and the U.S. Air Force Space Test Program which has provided launch support and telemetry coverage. The spacecraft was placed into a low-inclination eccentric orbit with a period of approximately 10 hours, and thus measured charged particle fluxes in both interplanetary space and in the earth's trapped radiation. ONR-604 performed extremely well, both in interplanetary space and in the intense radiation belt environment. We were able to make detailed measurements of interplanetary fluxes and composition into L=4, or for more than 50% of the orbital period. Thus the experiment produced two valuable datasets, one set outside of L=4 for interplanetary studies, and one set inside of L=4 for radiation belt studies. The data returned by the University of Chicago ONR-604 instrument has been the base for 10 papers on magnetospheric and galactic energetic-particle research.
Solar Electric and Chemical Propulsion Technology Applications to a Titan Orbiter/Lander Mission
NASA Technical Reports Server (NTRS)
Cupples, Michael
2007-01-01
Several advanced propulsion technology options were assessed for a conceptual Titan Orbiter/Lander mission. For convenience of presentation, the mission was broken into two phases: interplanetary and Titan capture. The interplanetary phase of the mission was evaluated for an advanced Solar Electric Propulsion System (SEPS), while the Titan capture phase was evaluated for state-of-art chemical propulsion (NTO/Hydrazine), three advanced chemical propulsion options (LOX/Hydrazine, Fluorine/Hydrazine, high Isp mono-propellant), and advanced tank technologies. Hence, this study was referred to as a SEPS/Chemical based option. The SEPS/Chemical study results were briefly compared to a 2002 NASA study that included two general propulsion options for the same conceptual mission: an all propulsive based mission and a SEPS/Aerocapture based mission. The SEP/Chemical study assumed identical science payload as the 2002 NASA study science payload. The SEPS/Chemical study results indicated that the Titan mission was feasible for a medium launch vehicle, an interplanetary transfer time of approximately 8 years, an advanced SEPS (30 kW), and current chemical engine technology (yet with advanced tanks) for the Titan capture. The 2002 NASA study showed the feasibility of the mission based on a somewhat smaller medium launch vehicle, an interplanetary transfer time of approximately 5.9 years, an advanced SEPS (24 kW), and advanced Aerocapture based propulsion technology for the Titan capture. Further comparisons and study results were presented for the advanced chemical and advanced tank technologies.
Temkin, Sarah M; Miller, Eric A; Samimi, Goli; Berg, Christine D; Pinsky, Paul; Minasian, Lori
2017-12-01
A mortality benefit from screening for ovarian cancer has never been demonstrated. The aim of this study was to evaluate the screening outcomes for different histologic subtypes of ovarian cancers. Women in the screening arm of the Prostate, Lung, Colorectal and Ovarian Screening Trial underwent CA-125 and transvaginal ultrasound annually for 3-5 years. We compared screening test characteristics (including overdiagnosis) and outcomes by tumour type (type II versus other) and study arm (screening versus usual care). Of 78,215 women randomised, 496 women were diagnosed with ovarian cancer. Of the tumours that were characterised (n = 413; 83%), 74% (n = 305) were type II versus 26% other (n = 108). Among screened patients, 70% of tumours were type II compared to 78% in usual care (p = 0.09). Within the screening arm, 29% of type II tumours were screen detected compared to 54% of the others (p < 0.01). The sensitivity of screening was 65% for type II tumours versus 86% for other types (p = 0.02). 15% of type II screen-detected tumours were stage I/II, compared to 81% of other tumours (p < 0.01). The overdiagnosis rate was lower for type II compared to other tumours (28.2% versus 72.2%; p < 0.01). Ovarian cancer-specific survival was worse for type II tumours compared to others (p < 0.01). Survival was similar for type II (p = 0.74) or other types (p = 0.32) regardless of study arm. Test characteristics of screening for ovarian cancer differed for type II tumours compared to other ovarian tumours. Type II tumours were less likely to be screen diagnosed, early stage at diagnosis or overdiagnosed. Copyright © 2017 Elsevier Ltd. All rights reserved.
Pearson, Joshua; Dahal, Upendra P.; Rock, Daniel; Peng, Chi-Chi; Schenk, James O.; Joswig-Jones, Carolyn; Jones, Jeffrey P.
2011-01-01
The metabolic stability of a drug is an important property that should be optimized during drug design and development. Nitrogen incorporation is hypothesized to increase the stability by coordination of nitrogen to the heme iron of cytochrome P450, a binding mode that is referred to as type II binding. However, we noticed that the type II binding compound 1 has less metabolic stability at subsaturating conditions than a closely related type I binding compound 3. Three kinetic models will be presented for type II binder metabolism; 1) Dead-end type II binding, 2) a rapid equilibrium between type I and II binding modes before reduction, and 3) a direct reduction of the type II coordinated heme. Data will be presented on reduction rates of iron, the off rates of substrate (using surface plasmon resonance) and the catalytic rate constants. These data argue against the dead-end, and rapid equilibrium models, leaving the direct reduction kinetic mechanism for metabolism of the type II binding compound 1. PMID:21530484
Sloan, M A; Alexandrov, A V; Tegeler, C H; Spencer, M P; Caplan, L R; Feldmann, E; Wechsler, L R; Newell, D W; Gomez, C R; Babikian, V L; Lefkowitz, D; Goldman, R S; Armon, C; Hsu, C Y; Goodin, D S
2004-05-11
To review the use of transcranial Doppler ultrasonography (TCD) and transcranial color-coded sonography (TCCS) for diagnosis. The authors searched the literature for evidence of 1) if TCD provides useful information in specific clinical settings; 2) if using this information improves clinical decision making, as reflected by improved patient outcomes; and 3) if TCD is preferable to other diagnostic tests in these clinical situations. TCD is of established value in the screening of children aged 2 to 16 years with sickle cell disease for stroke risk (Type A, Class I) and the detection and monitoring of angiographic vasospasm after spontaneous subarachnoid hemorrhage (Type A, Class I to II). TCD and TCCS provide important information and may have value for detection of intracranial steno-occlusive disease (Type B, Class II to III), vasomotor reactivity testing (Type B, Class II to III), detection of cerebral circulatory arrest/brain death (Type A, Class II), monitoring carotid endarterectomy (Type B, Class II to III), monitoring cerebral thrombolysis (Type B, Class II to III), and monitoring coronary artery bypass graft operations (Type B to C, Class II to III). Contrast-enhanced TCD/TCCS can also provide useful information in right-to-left cardiac/extracardiac shunts (Type A, Class II), intracranial occlusive disease (Type B, Class II to IV), and hemorrhagic cerebrovascular disease (Type B, Class II to IV), although other techniques may be preferable in these settings.
Kuriyan, Ajay E.; Woeller, Collynn F.; O'Loughlin, Charles W.; Phipps, Richard P.; Feldon, Steven E.
2013-01-01
Purpose. Thyroid eye disease (TED) patients are classified as type I (predominantly fat compartment enlargement) or type II (predominantly extraocular muscle enlargement) based on orbital imaging. Orbital fibroblasts (OFs) can be driven to proliferate or differentiate into adipocytes in vitro. We tested the hypothesis that type I OFs undergo more adipogenesis than type II OFs, whereas type II OFs proliferate more than type I OFs. We also examined the effect of cyclooxygenase (COX) inhibitors on OF adipogenesis and proliferation. Methods. Type I, type II, and non-TED OFs were treated with transforming growth factor-beta (TGFβ) to induce proliferation and with 15-deoxy-Δ−12,14-prostaglandin J2 (15d-PGJ2) to induce adipogenesis. Proliferation was measured using the [3H]thymidine assay, and adipogenesis was measured using the AdipoRed assay, Oil Red O staining, and flow cytometry. The effect of COX inhibition on adipogenesis and proliferation was also studied. Results. Type II OFs incorporated 1.7-fold more [3H]thymidine than type I OFs (P < 0.05). Type I OFs accumulated 4.8-fold more lipid than type II OFs (P < 0.05) and 12.6-fold more lipid than non-TED OFs (P < 0.05). Oil Red O staining and flow cytometry also demonstrated increased adipogenesis in type I OFs compared to type II and non-TED OFs. Cyclooxygenase inhibition significantly decreased proliferation and adipogenesis in type II OFs, but not type I OFs. Conclusions. We have demonstrated that OFs from TED patients have heterogeneous responses to proproliferative and proadipogenic stimulators in vitro in a manner that corresponds to their different clinical manifestations. Furthermore, we demonstrated a differential effect of COX inhibitors on type I and type II OF proliferation and adipogenesis. PMID:24135759
Solar, interplanetary, and magnetospheric parameters for the radiation belt energetic electron flux
NASA Astrophysics Data System (ADS)
Vassiliadis, D.; Fung, S. F.; Klimas, A. J.
2005-04-01
In developing models of the radiation belt energetic electron flux, it is important to include the states of the interplanetary medium and the magnetosphere, as well as the solar activity. In this study we choose the log flux je(t;L;E) at 2-6 MeV, as measured by the Proton-Electron Telescope (PET) on SAMPEX in the period 1993-2002, as a representative flux variable and evaluate the usefulness of 17 interplanetary and magnetospheric (IP/MS) parameters in its specification. The reference parameter is the solar wind velocity, chosen because of its known high geoeffectiveness. We use finite impulse response filters to represent the effective coupling of the individual parameters to the log flux. We measure the temporal and spatial scales of the coupling using the impulse response function and the input's geoeffectiveness using the data-model correlation. The correlation profile as a function of L is complex, and we identify its peaks in reference to the radial regions P0 (L = 3.1-4.0, inner edge of the outer belt), P1 (4.1-7.5, main outer belt), and P2 (>7.5, quasi-trapped population), whose boundaries are determined from a radial correlative analysis (Vassiliadis et al., 2003b). Using the profiles, we classify the IP/MS parameters in four categories: (1) For the solar wind velocity and pressure the correlation is high and largely independent of L across P0 and P1, reaching its maximum in L = 4.8-6.1, or the central part of P1. (2) The IMF BSouth component and related IP/MS parameters have a bimodal correlation function, with peaks in region P0 (L = 3.0-4.1) and the geosynchronous orbit region within P1. (3) The IMF BNorth and four other interplanetary or solar irradiance parameters have a minimum correlation in P1, while the highest correlation is in the slot-outer belt boundary (L = 2.5). (4) Finally, the solar wind density has a unique correlation profile, which is anticorrelated with that of the solar wind velocity for certain L shells. We verify this classification using more complex filtering methods as well as standard correlation analysis. The categories correspond to four types of solar-terrestrial interactions, namely, viscous interaction, magnetic reconnection, effects of ionospheric heating, and effects of high solar wind density. The response to these interactions produces the observed inner magnetospheric coherence. In each category the L dependence of the correlation profile helps explain why geoeffective solar wind structures are followed by electron acceleration in some L ranges but not in others.
NASA Astrophysics Data System (ADS)
Ishihara, Y.; Yamamoto, M.; Hiramatsu, Y.; Furumoto, M.; Fujita, K.
2010-12-01
After 7 years and 6,000,000,000 km of challenging cruise in the solar system, the Hayabusa did come back to the Earth on June 13, 2010. The Hayabusa, the first sample-return explorer to NEA, landed on 25243 Itokawa in 2005, capturing surface particles on the S-type asteroid into its sample return capsule (SRC). Following to the reentries of the Genesis in 2004 and the Stardust in 2006, the return of the Hayabusa SRC was the third direct reentry event from the interplanetary transfer orbit to the Earth at a velocity of over 11.2 km/s. In addition, it was world first case of direct reentry of spacecraft from interplanetary transfer orbit. After the successful resumption of the SRC, it was carefully sent to ISAS/JAXA, and at present, small particles expected to be the first sample-return materials from the minor planet are carefully investigated. In order to obtain precise trajectory information to ensure the quick procedure for the Hayabusa SRC resumption team, we observed the Hayabusa SRC reentry by optically in Australian night sky. High-resolution imaging and spectroscopy were carried out with several high-sensitivity instruments to investigate thermal-protection process of thermal protection ablator (TPA) as well as interaction process between SRC surface materials and upper atmospheric neutral and plasma components. Moreover, shockwaves were observed by infrasound/seismic sensor arrays on ground to investigate reentry related shockwaves as well as air-to-ground coupling process at the extremely rare opportunity. With respect to nominal trajectory of the Hayabusa SRC reentry, four optical stations were set inside and near the Woomera Prohibited Area, Australia, targeting on peak-heat and/or front-heat profiles of ablating TPA for engineering aspect. Infrasound and seismic sensors were also deployed as three arrayed stations and three single stations to realize direction findings of sonic boom type shockwaves from the SRC and spacecraft and point source type shockwaves from explosion of the Hayabusa itself as well as investigate precise parameters of pressure waves and energy transforming processes through the air-to-ground couplings. At 23:21 local time (13:51 UT) on June 13, 2010, the reentry of the SRC and the Hayabusa itself were successfully operated on the exact schedule and trajectory, giving us fruitful images and signals on almost all cameras and infrasound/seismic sensors. Moreover, several audible sound signals were detected at an observation site about 70 km apart from the trajectory. In this talk, we introduce our ground observations and preliminary results of infrasound/seismic observation part of this ground observation campaign. Acknowledgement: This research was partially supported by the Ministry of Education, Science, Sports and Culture, Grant-in-Aid for Scientific Research (B), Field Research in Abroad, 22403005, 2010 (PI: Y.H.).
SARS-CoV replicates in primary human alveolar type II cell cultures but not in type I-like cells
Mossel, Eric C.; Wang, Jieru; Jeffers, Scott; Edeen, Karen E.; Wang, Shuanglin; Cosgrove, Gregory P.; Funk, C. Joel; Manzer, Rizwan; Miura, Tanya A.; Pearson, Leonard D.; Holmes, Kathryn V.; Mason, Robert J.
2008-01-01
Severe acute respiratory syndrome (SARS) is a disease characterized by diffuse alveolar damage. We isolated alveolar type II cells and maintained them in a highly differentiated state. Type II cell cultures supported SARS-CoV replication as evidenced by RT-PCR detection of viral subgenomic RNA and an increase in virus titer. Virus titers were maximal by 24 hours and peaked at approximately 105 pfu/mL. Two cell types within the cultures were infected. One cell type was type II cells, which were positive for SP-A, SP-C, cytokeratin, a type II cell-specific monoclonal antibody, and Ep-CAM. The other cell type was composed of spindle-shaped cells that were positive for vimentin and collagen III and likely fibroblasts. Viral replication was not detected in type I-like cells or macrophages. Hence, differentiated adult human alveolar type II cells were infectible but alveolar type I-like cells and alveolar macrophages did not support productive infection. PMID:18022664
Characteristics of coronal shock waves and solar type 2 radio bursts
NASA Technical Reports Server (NTRS)
Mann, G.; Classen, H.-T.
1995-01-01
In the solar corona shock waves generated by flares and/or coronal mass ejections can be observed by radio astronomical methods in terms of solar type 2 radio bursts. In dynamic radio spectra they appear as emission stripes slowly drifting from high to low frequencies. A sample of 25 solar type 2 radio bursts observed in the range of 40 - 170 MHz with a time resolution of 0.1 s by the new radiospectrograph of the Astrophvsikalisches Institut Potsdam in Tremsdorf is statistically investigated concerning their spectral features, i.e, drift rate, instantaneous bandwidth, and fundamental harmonic ratio. In-situ plasma wave measurements at interplanetary shocks provide the assumption that type 2 radio radiation is emitted in the vicinity of the transition region of shock waves. Thus, the instantaneous bandwidth of a solar type 2 radio burst would reflect the density jump across the associated shock wave. Comparing the inspection of the Rankine-Hugoniot relations of shock waves under coronal circumstances with those obtained from the observational study, solar type 2 radio bursts should be regarded to be generated by weak supercritical, quasi-parallel, fast magnetosonic shock waves in the corona.
Energetic particle abundances in solar electron events
NASA Technical Reports Server (NTRS)
Reames, D. V.; Cane, H. V.; Von Rosenvinge, T. T.
1990-01-01
The results of a comprehensive search of the ISEE 3 energetic particle data for solar electron events with associated increases in elements with atomic number Z = 6 or greater are reported. A sample of 90 such events was obtained. The events support earlier evidence of a bimodal distribution in Fe/O or, more clearly, in Fe/C. Most of the electron events belong to the group that is Fe-rich in comparison with the coronal abundance. The Fe-rich events are frequently also He-3-rich and are associated with type III and type V radio bursts and impulsive solar flares. Fe-poor events are associated with type IV bursts and with interplanetary shocks. With some exceptions, event-to-event enhancements in the heavier elements vary smoothly with Z and with Fe/C. In fact, these variations extend across the full range of events despite inferred differences in acceleration mechanism. The origin of source material in all events appears to be coronal and not photospheric.
Satellite observations of type III solar radio bursts at low frequencies
NASA Technical Reports Server (NTRS)
Fainberg, J.; Stone, R. G.
1974-01-01
Type III solar radio bursts have been observed from 10 MHz to 10 kHz by satellite experiments above the terrestrial plasmasphere. Solar radio emission in this frequency range results from excitation of the interplanetary plasma by energetic particles propagating outward along open field lines over distances from 5 earth radii to at least 1 AU from the sun. This review summarizes the morphology, characteristics, and analysis of individual as well as storms of bursts. Substantial evidence is available to show that the radio emission is observed at the second harmonic instead of the fundamental of the plasma frequency. This brings the density scale derived by radio observations into better agreement with direct solar wind density measurements at 1 AU and relaxes the requirement for type III propagation along large density-enhanced regions. This density scale with the measured direction of arrival of the radio burst allows the trajectory of the exciter path to be determined from 10 earth radii to 1 AU.
Two types of geomagnetic storms and relationship between Dst and AE indexes
NASA Astrophysics Data System (ADS)
Shadrina, Lyudmila P.
2017-10-01
The study of the relationship between Dst and AE indices of the geomagnetic field and its manifestation in geomagnetic storms in the XXIII solar cycle was carried out. It is shown that geomagnetic storms are divided into two groups according to the ratio of the amplitude of Ds index decrease to the sum of the AE index during the main phase of the storm. For the first group it is characteristic that for small depressions of the Dst index, significant amounts of the AE index are observed. Most often these are storms with a gradual beginning and a long main phase associated with recurrent solar wind streams. Storms of the second group differ in large amplitudes of Dst index decrease, shorter duration of main phase and small amounts of AE-index. Usually these are sporadic geomagnetic storms with a sudden commencement caused by interplanetary disturbances of the CME type. The storms of these two types differ also in their geoeffects, including the effect on human health.
Interplanetary medium data book, supplement 4, 1985-1988
NASA Technical Reports Server (NTRS)
King, Joseph H.
1989-01-01
An extension is presented of the series of Interplanetary Medium Data Books and supplements which have been issued by the National Space Science Data Center since 1977. This volume contains solar wind magnetic field (IMF) and plasma data from the IMP 8 spacecraft for 1985 to 1988, and 1985 IMF data from the Czechoslovakian Soviet Prognoz 10 spacecraft. The normalization of the MIT plasma density and temperature, which has been discussed at length in previous volumes, is implemented as before, using the same normalization constants for 1985 to 1988 data as for the earlier data.
NASA Technical Reports Server (NTRS)
Burlaga, L. F.; Lepping, R. P.; Weber, R.; Armstrong, T.; Goodrich, C.; Sullivan, J.; Gurnett, D.; Kellogg, P.; Keppler, E.; Mariani, F.
1979-01-01
The principal interplanetary events observed are described and analyzed. Three flow systems were observed: (1) a corotating stream and a stream interface associated with a coronal hole; (2) a shock wave and an energetic particle event associated with a 2-B flare; and (3) an isolated shock wave of uncertain origin. Data from 28 experiments and 6 spacecraft provide measurements of solar wind plasma, magnetic fields, plasma waves, radio waves, energetic electrons, and low energy protons.
NASA Technical Reports Server (NTRS)
Greenstadt, E. W.
1974-01-01
Hourly averages of HEOS A interplanetary field and plasma parameters are compared with micropulsation spectrograms taken by auroral zone stations. Visual evaluation of tungsten induction coil records and a statistical summary indicate a class of pulsations sometimes in the Pc 3, sometimes in the Pc 4 range, whose appearance correlates with solar wind field flow alignment. It is concluded that there is a pulsation phenomenon of variable period strongly associated with certain interplanetary field directions.
The energy spectrum of Jovian electrons in interplanetary space
NASA Technical Reports Server (NTRS)
Christon, S. P.; Cummings, A. C.; Stone, E. C.; Webber, W. R.
1985-01-01
The energy spectrum of electrons with energies approximately 10 to approximately 180 MeV measured with the electron telescope on the Voyager 1 and 2 spacecraft in interplanetary space from 1978 to 1983 is reported. The kinetic energy of electrons is determined by double dE/dx measurements from the first two detectors (D1,D2) of a stack of eight solid state detectors and by the range of particle penetration into the remaining six detectors (D3 to D8) which are interleaved with tungsten absorbers.
NASA Technical Reports Server (NTRS)
Hurley, K.; Briggs, M.; Connaughton, V.; Meegan, C.; von Kienlin, A.; Rau, A.; Zhang, X.; Golenetskii, S.; Aptekar, R.; Mazets, E.;
2012-01-01
In the first two years of operation of the Fermi GBM, the 9-spacecraft Interplanetary Network (IPN) detected 158 GBM bursts with one or two distant spacecraft, and triangulated them to annuli or error boxes. Combining the IPN and GBM localizations leads to error boxes which are up to 4 orders of magnitude smaller than those of the GBM alone. These localizations comprise the IPN supplement to the GBM catalog, and they support a wide range of scientific investigations.
1977-11-13
Page 13 DEPENDENCE OF MEDIAN LOG POWER 1.0 ON SOLAR WIND VELOCITY Pc3 PULSATIONS June - September 1974 UCLA Fluxgate Magnetometer ATS - 6 0 Log P=-3.3...interplanetary medium; Cosmic Elec., 1, 90-114, Space Sci. Rev., in press, 1978. 1970. Rusaell, C T., The ISEE I and 2 fluxgate magnetometers IEEE Fairfield. D...investigation is to attain the capacity to use micropulsation records acquired from surface magnetometers to infer certain key parameters of the solar wind
Problems of Interplanetary and Interstellar Trade
NASA Astrophysics Data System (ADS)
Hickman, John
2008-01-01
If and when interplanetary and interstellar trade develops, it will be novel in two respects. First, the distances and time spans involved will reduce all or nearly all trade to the exchange of intangible goods. That threatens the possibility of conducting business in a genuinely common currency and of enforcing debt agreements, especially those involving sovereign debt. Second, interstellar trade suggests trade between humans and aliens. Cultural distance is a probable obstacle to initiating and sustaining such trade. Such exchange also threatens the release of new and potentially toxic memes.
Acceleration and propagation of energetic charged particles in the inner heliosphere.
NASA Astrophysics Data System (ADS)
Kallenrode, M. B.
1995-02-01
Both particle propagation and acceleration are intimately related to the strength of scattering. The author reviews some developments in our understanding of interplanetary propagation, in particular the dawn of a solution of the well-known discrepancy problem between mean free paths derived from quasi-linear theory and from fits to observational data. With this much improved understanding of particle scattering one can re-evaluate the understanding of particle acceleration at interplanetary shocks. Special attention is paid to the model of coupled hydrodynamic wave excitation and ion acceleration at shocks.
A decametric wavelength radio telescope for interplanetary scintillation observations
NASA Technical Reports Server (NTRS)
Cronyn, W. M.; Shawhan, S. D.
1975-01-01
A phased array, electrically steerable radio telescope (with a total collecting area of 18 acres), constructed for the purpose of remotely sensing electron density irregularity structure in the solar wind, is presented. The radio telescope is able to locate, map, and track large scale features of the solar wind, such as streams and blast waves, by monitoring a large grid of natural radio sources subject to rapid intensity fluctuation (interplanetary scintillation) caused by the irregularity structure. Observations verify the performance of the array, the receiver, and the scintillation signal processing circuitry of the telescope.
Evidence for confinement of low-energy cosmic rays ahead of interplanetary shock waves.
NASA Technical Reports Server (NTRS)
Palmeira, R. A. R.; Allum, F. R.
1973-01-01
Short-lived (about 15 min), low-energy proton increases associated with the passage of interplanetary shock waves have been previously reported. In the present paper, we have examined in a fine time scale (about 1 min) the concurrent particle and magnetic field data, taken by detectors on Explorer 34, for four of these events. Our results further support the view that these impulsive events are due to confinement of the solar cosmic-ray particles in the region just ahead (about 1,000,000 km) of the advancing shock front.
Nuclear electric propulsion mission engineering study. Volume 1: Executive summary
NASA Technical Reports Server (NTRS)
1973-01-01
Results of a mission engineering analysis of nuclear-thermionic electric propulsion spacecraft for unmanned interplanetary and geocentric missions are summarized. Critical technologies associated with the development of nuclear electric propulsion (NEP) are assessed. Outer planet and comet rendezvous mission analysis, NEP stage design for geocentric and interplanetary missions, NEP system development cost and unit costs, and technology requirements for NEP stage development are studied. The NEP stage design provides both inherent reliability and high payload mass capability. The NEP stage and payload integration was found to be compatible with the space shuttle.
Interplanetary magnetic flux - Measurement and balance
NASA Technical Reports Server (NTRS)
Mccomas, D. J.; Gosling, J. T.; Phillips, J. L.
1992-01-01
A new method for determining the approximate amount of magnetic flux in various solar wind structures in the ecliptic (and solar rotation) plane is developed using single-spacecraft measurements in interplanetary space and making certain simplifying assumptions. The method removes the effect of solar wind velocity variations and can be applied to specific, limited-extent solar wind structures as well as to long-term variations. Over the 18-month interval studied, the ecliptic plane flux of coronal mass ejections was determined to be about 4 times greater than that of HFDs.
Transparency of a magnetic cloud boundary for cosmic rays
NASA Astrophysics Data System (ADS)
Petukhov, I. S.; Petukhov, S. I.
2013-02-01
We have suggested a model of magnetic cloud presented as a torus with magnetic flux rope structure situated inside the interplanetary corona mass ejecta expanding radially away from the Sun through the interplanetary medium. The magnetic field of the torus changing during its propagation has been obtained. The magnetic cloud — solar wind boundary transparency for cosmic rays with different energies depending on the cloud orientation and properties of the torus magnetic field has been determined by means of calculation of the particle trajectories at the boundary.
The geoeffectiveness of CIRs and ICMEs
NASA Astrophysics Data System (ADS)
Shen, C.; Chi, Y.; Wang, Y.
2017-12-01
The corotation rotation regions (CIRs) and interplanetary coronal mass ejections (CMEs) are two typical large scale structures in interplanetary space and also important sources of geomagnetic storms. Using the WIND observations from 1995, the CIRs and ICMEs have been identified manually. Totally, there are 800 CIRs and 500 ICMEs during this period. Based on these catalogues, the properties and geoeffectiveness of CIRs and ICMEs have been carefully studied. In the presentation, we will introduce the properties of these structures first. Then, the detailed comparison between these two structures will also be addressed.
The effects of 8 Helios observed solar proton events of interplanetary magnetic field fluctuations
NASA Technical Reports Server (NTRS)
ValdezGalicia, J. F.; Alexander, P.; Otaola, J. A.
1995-01-01
There have been recent suggestions that large fluxes during solar energetic particle events may produce their own turbulence. To verify this argument it becomes essential to find out whether these flows cause an enhancement of interplanetary magnetic field fluctuations. In the present work, power and helicity spectra of the IMF before, during and after 8 Helios-observed solar proton events in the range 0.3 - 1 AU are analyzed. In order to detect proton self generated waves, the time evolution of spectra are followed.
NASA Technical Reports Server (NTRS)
Lengyel-Frey, D.; Macdowall, R. J.; Stone, R. G.; Hoang, S.; Pantellini, F.; Harvey, C.; Mangeney, A.; Kellogg, P.; Thiessen, J.; Canu, P.
1992-01-01
We present Ulysses URAP observations of plasma waves at seven interplanetary shocks detected between approximately 1 and 3 AU. The URAP data allows ready correlation of wave phenomena from .1 Hz to 1 MHz. Wave phenomena observed in the shock vicinity include abrupt changes in the quasi-thermal noise continuum, Langmuir wave activity, ion acoustic noise, whistler waves and low frequency electrostatic waves. We focus on the forward/reverse shock pair of May 27, 1991 to demonstrate the characteristics of the URAP data.
Transfers from Earth to LEO and LEO to interplanetary space using lasers
NASA Astrophysics Data System (ADS)
Phipps, Claude R.; Bonnal, Christophe; Masson, Fréderic; Boustie, Michel; Berthe, Laurent; Schneider, Matthieu; Baton, Sophie; Brambrink, Erik; Chevalier, Jean-Marc; Videau, Laurent; Boyer, Séverine A. E.
2018-05-01
New data on some materials at 80ps pulse duration and 1057 nm wavelength give us the option of proportionally combining them to obtain arbitrary values between 35 (aluminum) and 800 N/MW (POM, polyoxymethylene) for momentum coupling coefficient Cm. Laser ablation physics lets us transfer to LEO from Earth, or to interplanetary space using repetitively pulsed lasers and Cm values appropriate for each mission. We discuss practical results for lifting small payloads from Earth to LEO, and space missions such as a cis-Mars orbit with associated laser system parameters.
NASA Technical Reports Server (NTRS)
Alania, M. V.; Aslamazashvili, R. G.; Bochorishvili, T.; Djapiashvili, T. V.; Tkemaladze, V. S.
1985-01-01
Results of the numerical solution of the anistoropic diffusion equation are presented. The modulation depth of galactic cosmic rays is defined by the degree of curvature of the neutral current sheet in the heliosphere. The effect of the regular interplanetary magnetic field (IMF) on cosmic ray anisotropy in the period of solar activity minimum (in 1976) is analyzed by the data of the neutron super-monitors of the world network, and the heliolatitudinal gradient and cosmic ray diffusion coefficient are defined.
Some properties of flare-not-associated Forbush decreases
NASA Astrophysics Data System (ADS)
Iucci, N.; Parisi, M.; Signorini, C.; Storini, M.; Villoresi, G.
1984-07-01
All non flare-associated Forbush decreases (N Ass Fds) over the period 1957 to 1979 are investigated. The connection between N Ass Fds occurrence and the central meridian passage of strong active regions producing great flare associated Fds shows the flare origin of the N Ass Fds. The interplanetary perturbations at the eastern and western boundaries of the modulated region are found to be long living corotating structures. These structures mark the boundaries of the region in which the (1 to 4 Mev) protons accelerated by interplanetary flare generated shocks are confined.
Analysis of Interplanetary Dust Experiment Detectors and Other Witness Plates
NASA Technical Reports Server (NTRS)
Griffis, D. P.; Wortman, J. J.
1992-01-01
The development of analytical procedures for identifying the chemical composition of residue from impacts that occurred on the Interplanetary Dust Experiment (IDE) detectors during the flight of Long Duration Exposure Facility (LDEF) and the carrying out of actual analysis on IDE detectors and other witness plates are discussed. Two papers on the following topics are presented: (1) experimental analysis of hypervelocity microparticle impact sites on IDE sensor surfaces; and (2) contaminant interfaces with secondary Ion Mass Spectrometer (SIMS) analysis of microparticle impactor residues on LDEF surfaces.
Griffin, M; Bhandari, R; Hamilton, G; Chan, Y C; Powell, J T
1993-06-01
During alveolar development and alveolar repair close contacts are established between fibroblasts and lung epithelial cells through gaps in the basement membrane. Using co-culture systems we have investigated whether these close contacts influence synthesis and secretion of the principal surfactant apoprotein (SP-A) by cultured rat lung alveolar type II cells and the synthesis and secretion of type I collagen by fibroblasts. The alveolar type II cells remained cuboidal and grew in colonies on fibroblast feeder layers and on Matrigel-coated cell culture inserts but were progressively more flattened on fixed fibroblast monolayers and plastic. Alveolar type II cells cultured on plastic released almost all their SP-A into the medium by 4 days. Alveolar type II cells cultured on viable fibroblasts or Matrigel-coated inserts above fibroblasts accumulated SP-A in the medium at a constant rate for the first 4 days, and probably recycle SP-A by endocytosis. The amount of mRNA for SP-A was very low after 4 days of culture of alveolar type II cells on plastic, Matrigel-coated inserts or fixed fibroblast monolayers: relatively, the amount of mRNA for SP-A was increased 4-fold after culture of alveolar type II cells on viable fibroblasts. Co-culture of alveolar type II cells with confluent human dermal fibroblasts stimulated by 2- to 3-fold the secretion of collagen type I into the culture medium, even after the fibroblasts' growth had been arrested with mitomycin C. Collagen secretion, by fibroblasts, also was stimulated 2-fold by conditioned medium from alveolar type II cells cultured on Matrigel. The amount of mRNA for type I collagen increased only modestly when fibroblasts were cultured in this conditioned medium. This stimulation of type I collagen secretion diminished as the conditioned medium was diluted out, but at high dilutions further stimulation occurred, indicating that a factor that inhibited collagen secretion also was being diluted out. The conditioned medium contained low levels of IGF-1 and the stimulation of type I collagen secretion was abolished when the conditioned medium was pre-incubated with antibodies to insulin-like growth factor 1 (IGF-1). There are important reciprocal interactions between alveolar type II cells and fibroblasts in co-culture. Direct contacts between alveolar type II cells and fibroblasts appear to have a trophic effect on cultured alveolar type II cells, increasing the levels of mRNA for SP-A. Rat lung alveolar type II cells appear to release a factor (possibly IGF-1) that stimulates type I collagen secretion by fibroblasts.
Excitonic transitions in highly efficient (GaIn)As/Ga(AsSb) type-II quantum-well structures
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gies, S.; Kruska, C.; Berger, C.
2015-11-02
The excitonic transitions of the type-II (GaIn)As/Ga(AsSb) gain medium of a “W”-laser structure are characterized experimentally by modulation spectroscopy and analyzed using microscopic quantum theory. On the basis of the very good agreement between the measured and calculated photoreflectivity, the type-I or type-II character of the observable excitonic transitions is identified. Whereas the energetically lowest three transitions exhibit type-II character, the subsequent energetically higher transitions possess type-I character with much stronger dipole moments. Despite the type-II character, the quantum-well structure exhibits a bright luminescence.
Whole-brain MRI phenotyping in dysplasia-related frontal lobe epilepsy.
Hong, Seok-Jun; Bernhardt, Boris C; Schrader, Dewi S; Bernasconi, Neda; Bernasconi, Andrea
2016-02-16
To perform whole-brain morphometry in patients with frontal lobe epilepsy and evaluate the utility of group-level patterns for individualized diagnosis and prognosis. We compared MRI-based cortical thickness and folding complexity between 2 frontal lobe epilepsy cohorts with histologically verified focal cortical dysplasia (FCD) (13 type I; 28 type II) and 41 closely matched controls. Pattern learning algorithms evaluated the utility of group-level findings to predict histologic FCD subtype, the side of the seizure focus, and postsurgical seizure outcome in single individuals. Relative to controls, FCD type I displayed multilobar cortical thinning that was most marked in ipsilateral frontal cortices. Conversely, type II showed thickening in temporal and postcentral cortices. Cortical folding also diverged, with increased complexity in prefrontal cortices in type I and decreases in type II. Group-level findings successfully guided automated FCD subtype classification (type I: 100%; type II: 96%), seizure focus lateralization (type I: 92%; type II: 86%), and outcome prediction (type I: 92%; type II: 82%). FCD subtypes relate to diverse whole-brain structural phenotypes. While cortical thickening in type II may indicate delayed pruning, a thin cortex in type I likely results from combined effects of seizure excitotoxicity and the primary malformation. Group-level patterns have a high translational value in guiding individualized diagnostics. © 2016 American Academy of Neurology.
Steinmetz, Eric; Rubin, Brian G; Sanchez, Luis A; Choi, Eric T; Geraghty, Patrick J; Baty, Jack; Thompson, Robert W; Flye, M Wayne; Hovsepian, David M; Picus, Daniel; Sicard, Gregorio A
2004-02-01
The conservative versus therapeutic approach to type II endoleak after endovascular repair of abdominal aortic aneurysm (EVAR) has been controversial. The purpose of this study was to evaluate the safety and cost-effectiveness of the conservative approach of embolizing type II endoleak only when persistent for more than 6 months and associated with aneurysm sac growth of 5 mm or more. Data for 486 consecutive patients who underwent EVAR were analyzed for incidence and outcome of type II endoleaks. Spiral computed tomography (CT) scans were reviewed, and patient outcome was evaluated at either office visit or telephone contact. Patients with new or late-appearing type II endoleak were evaluated with spiral CT at 6-month intervals to evaluate both persistence of the endoleak and size of the aneurysm sac. Persistent (>or=6 months) type II endoleak and aneurysm sac growth of 5 mm or greater were treated with either translumbar glue or coil embolization of the lumbar source, or transarterial coil embolization of the inferior mesenteric artery. Type II endoleaks were detected in 90 (18.5%) patients. With a mean follow-up of 21.7 +/- 16 months, only 35 (7.2%) patients had type II endoleak that persisted for 6 months or longer. Aneurysm sac enlargement was noted in 5 patients, representing 1% of the total series. All 5 patients underwent successful translumbar sac embolization (n = 4) or transarterial inferior mesenteric artery embolization (n = 4) at a mean follow-up of 18.2 +/- 8.0 months, with no recurrence or aneurysm sac growth. No patient with treated or untreated type II endoleak has had rupture of the aneurysm. The mean global cost for treatment of persistent type II endoleak associated with aneurysm sac growth was US dollars 6695.50 (hospital cost plus physician reimbursement). Treatment in the 30 patients with persistent type II endoleak but no aneurysm sac growth would have represented an additional cost of US dollars 200000 or more. The presence or absence of a type II endoleak did not affect survival (78% vs 73%) at 48 months. Selective intervention to treat type II endoleak that persists for 6 months and is associated with aneurysm enlargement seems to be both safe and cost-effective. Longer follow-up will determine whether this conservative approach to management of type II endoleak is the standard of care.
Physical properties of interplanetary dust: laboratory and numerical simulations
NASA Astrophysics Data System (ADS)
Hadamcik, Edith; Lasue, Jeremie; Levasseur-Regourd, Anny-Chantal; Renard, Jean-Baptiste; Buch, Arnaud; Carrasco, Nathalie; Cottin, Hervé; Fray, Nicolas; Guan, Yuan Yong; Szopa, Cyril
Laboratory light scattering measurements with the PROGRA2 experiment, in A300-CNES and ESA dedicated microgravity flights or in ground based configurations, offer an alternative to models for exploring the scattering properties of particles with structures too complex to be easily handled by computer simulations [1,2]. The technique allows the use of large size distributions (nanometers to hundreds of micrometers) and a large variety of materials, similar to those suspected to compose the interplanetary particles [3]. Asteroids are probably the source of compact particles, while comets have been shown to eject compact and fluffy materials [4]. Moreover giant planets provide further a small number of interplanetary particles. Some interstellar particles are also present. To choose the best samples and size distributions, we consider previous numerical models for the interplanetary particles and their evolution with solar distance. In this model, fluffy particles are simulated by fractal aggregates and compact particles by ellipsoids. The materials considered are silicates and carbonaceous compound. The silicate grains can be coated by the organics. Observations are fitted with two parameters: the size distribution of the particles and the ratio of silicates over carbonaceous compounds. From the light scattering properties of the particles, their equilibrium temperature can be calculated for different structures and composition. The variation of their optical properties and temperatures are studied with the heliocentric distance [5,6]. Results on analogs of cometary particles [7] and powdered meteorites as asteroidal particles will be presented and compared to numerical simulations as well as observations. Organics on cometary grains can constitute distributed sources if degraded by solar UV and heat [8, 9]. The optical properties of CxHyNz compounds are studied after thermal evolution [10]. As a first approach, they are used to simulate the evolution of cometary or interplanetary dust organics approaching the Sun. Albedo and polarization variations will be discussed. The polarization evolution will be compared to those obtained through observations [11]. Studies of the properties of our interplanetary dust cloud should provide information to better interpret observations of dust around exoplanets. Some of these planets are very close to their star. The thermal evolution of organics driven by chemical reactions will represent a fundamental knowledge to interpret the relevant polarimetric observations. We acknowledge CNES for funding the PROGRA2 experiment, CNES and ESA for the micro-gravity flights. [1] Renard J.-B. et al., Appl. Opt. 41, 609 (2002) [2] Hadamcik E. et al., In: Light scattering rev. 4, 31 (Kokhanovszky ed.), Springer -Praxis, Berlin (2009) [3] Mann I. et al., Space Sci. Rev. 110, 269 (2004) [4] Hoertz F. et al., Science 314, 716 (2006) [5] Lasue J. et al., Astron. Astrophys. 473, 641 (2007) [6] Levasseur-Regourd A.C et al., Planet Space Sci. 55, 1010 (2007) [7] Hadamcik E. et al., Icarus 190, 660 (2007) [8] Cottin H. et al., Adv. Space Res. 42, 2019 (2008) [9] Fray N. et al., Planet. Space Sci. 53, 1243 (2005) [10] Sciamma-O'Brien E. et al., Icarus, accepted [11] Levasseur-Regourd A.C., et al., In: Interplanetary dust, Gruen, Gustafson B., Dermott S., Fechtig H. (Eds), Springer, Berlin, 57 (2001)
AlHasan, Dana M; Eberth, Jan Marie
2016-01-05
Studies suggest that the built environment with high numbers of fast food restaurants and convenience stores and low numbers of super stores and grocery stores are related to obesity, type II diabetes mellitus, and other chronic diseases. Since few studies assess these relationships at the county level, we aim to examine fast food restaurant density, convenience store density, super store density, and grocery store density and prevalence of type II diabetes among counties in South Carolina. Pearson's correlation between four types of food outlet densities- fast food restaurants, convenience stores, super stores, and grocery stores- and prevalence of type II diabetes were computed. The relationship between each of these food outlet densities were mapped with prevalence of type II diabetes, and OLS regression analysis was completed adjusting for county-level rates of obesity, physical inactivity, density of recreation facilities, unemployment, households with no car and limited access to stores, education, and race. We showed a significant, negative relationship between fast food restaurant density and prevalence of type II diabetes, and a significant, positive relationship between convenience store density and prevalence of type II diabetes. In adjusted analysis, the food outlet densities (of any type) was not associated with prevalence of type II diabetes. This ecological analysis showed no associations between fast food restaurants, convenience stores, super stores, or grocery stores densities and the prevalence of type II diabetes. Consideration of environmental, social, and cultural determinants, as well as individual behaviors is needed in future research.
On the twists of interplanetary magnetic flux ropes observed at 1 AU
NASA Astrophysics Data System (ADS)
Wang, Yuming; Zhuang, Bin; Hu, Qiang; Liu, Rui; Shen, Chenglong; Chi, Yutian
2016-10-01
Magnetic flux ropes (MFRs) are one kind of fundamental structures in the solar/space physics and involved in various eruption phenomena. Twist, characterizing how the magnetic field lines wind around a main axis, is an intrinsic property of MFRs, closely related to the magnetic free energy and stableness. Although the effect of the twist on the behavior of MFRs had been widely studied in observations, theory, modeling, and numerical simulations, it is still unclear how much amount of twist is carried by MFRs in the solar atmosphere and in heliosphere and what role the twist played in the eruptions of MFRs. Contrasting to the solar MFRs, there are lots of in situ measurements of magnetic clouds (MCs), the large-scale MFRs in interplanetary space, providing some important information of the twist of MFRs. Thus, starting from MCs, we investigate the twist of interplanetary MFRs with the aid of a velocity-modified uniform-twist force-free flux rope model. It is found that most of MCs can be roughly fitted by the model and nearly half of them can be fitted fairly well though the derived twist is probably overestimated by a factor of 2.5. By applying the model to 115 MCs observed at 1 AU, we find that (1) the twist angles of interplanetary MFRs generally follow a trend of about 0.6l/R radians, where l/R is the aspect ratio of a MFR, with a cutoff at about 12π radians AU-1, (2) most of them are significantly larger than 2.5π radians but well bounded by 2l/R radians, (3) strongly twisted magnetic field lines probably limit the expansion and size of MFRs, and (4) the magnetic field lines in the legs wind more tightly than those in the leading part of MFRs. These results not only advance our understanding of the properties and behavior of interplanetary MFRs but also shed light on the formation and eruption of MFRs in the solar atmosphere. A discussion about the twist and stableness of solar MFRs are therefore given.
Acoustic Type-II Weyl Nodes from Stacking Dimerized Chains
NASA Astrophysics Data System (ADS)
Yang, Zhaoju; Zhang, Baile
2016-11-01
Lorentz-violating type-II Weyl fermions, which were missed in Weyl's prediction of nowadays classified type-I Weyl fermions in quantum field theory, have recently been proposed in condensed matter systems. The semimetals hosting type-II Weyl fermions offer a rare platform for realizing many exotic physical phenomena that are different from type-I Weyl systems. Here we construct the acoustic version of a type-II Weyl Hamiltonian by stacking one-dimensional dimerized chains of acoustic resonators. This acoustic type-II Weyl system exhibits distinct features in a finite density of states and unique transport properties of Fermi-arc-like surface states. In a certain momentum space direction, the velocity of these surface states is determined by the tilting direction of the type-II Weyl nodes rather than the chirality dictated by the Chern number. Our study also provides an approach of constructing acoustic topological phases at different dimensions with the same building blocks.
Mimicry by asx- and ST-turns of the four main types of β-turn in proteins
Duddy, William J.; Nissink, J. Willem M.; Allen, Frank H.; Milner-White, E. James
2004-01-01
Hydrogen-bonded β-turns in proteins occur in four categories: type I (the most common), type II, type II’, and type I’. Asx-turns resemble β-turns, in that both have an NH. . .OC hydrogen bond forming a ring of 10 atoms. Serine and threonine side chains also commonly form hydrogen-bonded turns, here called ST-turns. Asx-turns and ST-turns can be categorized into four classes, based on side chain rotamers and the conformation of the central turn residue, which are geometrically equivalent to the four types of β-turns. We propose asx- and ST-turns be named using the type I, II, I’, and II’ β-turn nomenclature. Using this, the frequency of occurrence of both asx- and ST-turns is: type II’ > type I > type II > type I’, whereas for β-turns it is type I > type II > type I’ > type II’. Almost all type II asx-turns occur as a recently described three residue feature named an asx-nest. PMID:15459339