Sample records for interplanetary type iii

  1. Interplanetary density models as inferred from solar Type III bursts

    NASA Astrophysics Data System (ADS)

    Oppeneiger, Lucas; Boudjada, Mohammed Y.; Lammer, Helmut; Lichtenegger, Herbert

    2016-04-01

    We report on the density models derived from spectral features of solar Type III bursts. They are generated by beams of electrons travelling outward from the Sun along open magnetic field lines. Electrons generate Langmuir waves at the plasma frequency along their ray paths through the corona and the interplanetary medium. A large frequency band is covered by the Type III bursts from several MHz down to few kHz. In this analysis, we consider the previous empirical density models proposed to describe the electron density in the interplanetary medium. We show that those models are mainly based on the analysis of Type III bursts generated in the interplanetary medium and observed by satellites (e.g. RAE, HELIOS, VOYAGER, ULYSSES,WIND). Those models are confronted to stereoscopic observations of Type III bursts recorded by WIND, ULYSSES and CASSINI spacecraft. We discuss the spatial evolution of the electron beam along the interplanetary medium where the trajectory is an Archimedean spiral. We show that the electron beams and the source locations are depending on the choose of the empirical density models.

  2. Evidence of scattering effects on the sizes of interplanetary Type III radio bursts

    NASA Technical Reports Server (NTRS)

    Steinberg, J. L.; Hoang, S.; Dulk, G. A.

    1985-01-01

    An analysis is conducted of 162 interplanetary Type III radio bursts; some of these bursts have been observed in association with fast electrons and Langmuir wave events at 1 AU and, in addition, have been subjected to in situ plasma parameter measurements. It is noted that the sizes of burst sources are anomalously large, compared to what one would anticipate on the basis of the interplanetary plasma density distribution, and that the variation of source size with frequency, when compared with the plasma frequency variation measured in situ, implies that the source sizes expand with decreasing frequency to fill a cone whose apex is at the sun. It is also found that some local phenomenon near the earth controls the apparent size of low frequency Type III sources.

  3. Constraints on Nonlinear and Stochastic Growth Theories for Type 3 Solar Radio Bursts from the Corona to 1 AU

    NASA Technical Reports Server (NTRS)

    Cairns, Iver H.; Robinson, P. A.

    1998-01-01

    Existing, competing theories for coronal and interplanetary type III solar radio bursts appeal to one or more of modulational instability, electrostatic (ES) decay processes, or stochastic growth physics to preserve the electron beam, limit the levels of Langmuir-like waves driven by the beam, and produce wave spectra capable of coupling nonlinearly to generate the observed radio emission. Theoretical constraints exist on the wavenumbers and relative sizes of the wave bandwidth and nonlinear growth rate for which Langmuir waves are subject to modulational instability and the parametric and random phase versions of ES decay. A constraint also exists on whether stochastic growth theory (SGT) is appropriate. These constraints are evaluated here using the beam, plasma, and wave properties (1) observed in specific interplanetary type III sources, (2) predicted nominally for the corona, and (3) predicted at heliocentric distances greater than a few solar radii by power-law models based on interplanetary observations. It is found that the Langmuir waves driven directly by the beam have wavenumbers that are almost always too large for modulational instability but are appropriate to ES decay. Even for waves scattered to lower wavenumbers (by ES decay, for instance), the wave bandwidths are predicted to be too large and the nonlinear growth rates too small for modulational instability to occur for the specific interplanetary events studied or the great majority of Langmuir wave packets in type III sources at arbitrary heliocentric distances. Possible exceptions are for very rare, unusually intense, narrowband wave packets, predominantly close to the Sun, and for the front portion of very fast beams traveling through unusually dilute, cold solar wind plasmas. Similar arguments demonstrate that the ES decay should proceed almost always as a random phase process rather than a parametric process, with similar exceptions. These results imply that it is extremely rare for modulational instability or parametric decay to proceed in type III sources at any heliocentric distance: theories for type III bursts based on modulational instability or parametric decay are therefore not viable in general. In contrast, the constraint on SGT can be satisfied and random phase ES decay can proceed at all heliocentric distances under almost all circumstances. (The contrary circumstances involve unusually slow, broad beams moving through unusually hot regions of the Corona.) The analyses presented here strongly justify extending the existing SGT-based model for interplanetary type III bursts (which includes SGT physics, random phase ES decay, and specific electromagnetic emission mechanisms) into a general theory for type III bursts from the corona to beyond 1 AU. This extended theory enjoys strong theoretical support, explains the characteristics of specific interplanetary type III bursts very well, and can account for the detailed dynamic spectra of type III bursts from the lower corona and solar wind.

  4. Interplanetary Type III Bursts and Electron Density Fluctuations in the Solar Wind

    NASA Astrophysics Data System (ADS)

    Krupar, V.; Maksimovic, M.; Kontar, E. P.; Zaslavsky, A.; Santolik, O.; Soucek, J.; Kruparova, O.; Eastwood, J. P.; Szabo, A.

    2018-04-01

    Type III bursts are generated by fast electron beams originated from magnetic reconnection sites of solar flares. As propagation of radio waves in the interplanetary medium is strongly affected by random electron density fluctuations, type III bursts provide us with a unique diagnostic tool for solar wind remote plasma measurements. Here, we performed a statistical survey of 152 simple and isolated type III bursts observed by the twin-spacecraft Solar TErrestrial RElations Observatory mission. We investigated their time–frequency profiles in order to retrieve decay times as a function of frequency. Next, we performed Monte Carlo simulations to study the role of scattering due to random electron density fluctuations on time–frequency profiles of radio emissions generated in the interplanetary medium. For simplification, we assumed the presence of isotropic electron density fluctuations described by a power law with the Kolmogorov spectral index. Decay times obtained from observations and simulations were compared. We found that the characteristic exponential decay profile of type III bursts can be explained by the scattering of the fundamental component between the source and the observer despite restrictive assumptions included in the Monte Carlo simulation algorithm. Our results suggest that relative electron density fluctuations < δ {n}{{e}}> /{n}{{e}} in the solar wind are 0.06–0.07 over wide range of heliospheric distances.

  5. A tiny event producing an interplanetary type III burst

    NASA Astrophysics Data System (ADS)

    Alissandrakis, C. E.; Nindos, A.; Patsourakos, S.; Kontogeorgos, A.; Tsitsipis, P.

    2015-10-01

    Aims: We investigate the conditions under which small-scale energy release events in the low corona gave rise to strong interplanetary (IP) type III bursts. Methods: We analyzed observations of three tiny events, detected by the Nançay Radio Heliograph (NRH), two of which produced IP type III bursts. We took advantage of the NRH positioning information and of the high cadence of AIA/SDO data to identify the associated extreme-UV (EUV) emissions. We measured positions and time profiles of the metric and EUV sources. Results: We found that the EUV events that produced IP type III bursts were located near a coronal hole boundary, while the one that did not was located in a closed magnetic field region. In all three cases tiny flaring loops were involved, without any associated mass eruption. In the best observed case, the radio emission at the highest frequency (435 MHz) was displaced by ~55'' with respect to the small flaring loop. The metric type III emission shows a complex structure in space and in time, indicative of multiple electron beams, despite the low intensity of the events. From the combined analysis of dynamic spectra and NRH images, we derived the electron beam velocity as well as the height, ambient plasma temperature, and density at the level of formation of the 160 MHz emission. From the analysis of the differential emission measure derived from the AIA images, we found that the first evidence of energy release was at the footpoints, and this was followed by the development of flaring loops and subsequent cooling. Conclusions: Even small energy release events can accelerate enough electrons to give rise to powerful IP type III bursts. The proximity of the electron acceleration site to open magnetic field lines facilitates the escape of the electrons into the interplanetary space. The offset between the site of energy release and the metric type III location warrants further investigation. The movie is available in electronic form at http://www.aanda.org

  6. Minifilament Eruption as the Source of a Blowout Jet, C-class Flare, and Type-III Radio Burst

    NASA Astrophysics Data System (ADS)

    Hong, Junchao; Jiang, Yunchun; Yang, Jiayan; Li, Haidong; Xu, Zhe

    2017-01-01

    We report a strong minifilament eruption associated with Geostationary Operational Environmental Satellite C1.6 flare and WIND type-III radio burst. The minifilament, which lies at the periphery of active region 12259, is detected by Hα images from the New Vacuum Solar Telescope. The minifilament undergoes a partial and then a full eruption. Simultaneously, two co-spatial jets are successively observed in extreme ultraviolet images from the Solar Dynamic Observatory. The first jet exhibits a typical fan-spine geometry, suggesting that the co-spatial minifilament is possibly embedded in magnetic fields with a fan-spine structure. However, the second jet displays blowout morphology when the entire minifilament erupts upward, leaving behind a hard X-ray emission source in the base. Differential emission measure analyses show that the eruptive region is heated up to about 4 MK during the fan-spine jet, while up to about 7 MK during the blowout jet. In particular, the blowout jet is accompanied by an interplanetary type-III radio burst observed by WIND/WAVES in the frequency range from above 10 to 0.1 MHz. Hence, the minifilament eruption is correlated with the interplanetary type-III radio burst for the first time. These results not only suggest that coronal jets can result from magnetic reconnection initiated by erupting minifilaments with open fields, but also shed light on the potential influence of minifilament eruption on interplanetary space.

  7. MINIFILAMENT ERUPTION AS THE SOURCE OF A BLOWOUT JET, C-CLASS FLARE, AND TYPE-III RADIO BURST

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hong, Junchao; Jiang, Yunchun; Yang, Jiayan

    We report a strong minifilament eruption associated with Geostationary Operational Environmental Satellite C1.6 flare and WIND type-III radio burst. The minifilament, which lies at the periphery of active region 12259, is detected by H α images from the New Vacuum Solar Telescope. The minifilament undergoes a partial and then a full eruption. Simultaneously, two co-spatial jets are successively observed in extreme ultraviolet images from the Solar Dynamic Observatory . The first jet exhibits a typical fan-spine geometry, suggesting that the co-spatial minifilament is possibly embedded in magnetic fields with a fan-spine structure. However, the second jet displays blowout morphology whenmore » the entire minifilament erupts upward, leaving behind a hard X-ray emission source in the base. Differential emission measure analyses show that the eruptive region is heated up to about 4 MK during the fan-spine jet, while up to about 7 MK during the blowout jet. In particular, the blowout jet is accompanied by an interplanetary type-III radio burst observed by WIND /WAVES in the frequency range from above 10 to 0.1 MHz. Hence, the minifilament eruption is correlated with the interplanetary type-III radio burst for the first time. These results not only suggest that coronal jets can result from magnetic reconnection initiated by erupting minifilaments with open fields, but also shed light on the potential influence of minifilament eruption on interplanetary space.« less

  8. Radio observations of interplanetary magnetic field structures out of the ecliptic. [related to type III solar bursts

    NASA Technical Reports Server (NTRS)

    Fitzenreiter, R. J.; Fainberg, J.; Weber, R. R.; Alvarez, H.; Haddock, F. T.; Potter, W. H.

    1977-01-01

    Observations of the out-of-ecliptic trajectories of type III solar radio bursts have been obtained from simultaneous direction-finding measurements in two independent satellite experiments, IMP-6 with spin plane in the ecliptic and RAE-2 with spin plane normal to the ecliptic. Burst-exciter trajectories were observed which originated at the active region and then crossed the ecliptic plane at about 0.8 AU. A considerable large-scale north-south component of the interplanetary magnetic field followed by the exciters is found. The apparent north-south and east-west angular source sizes observed by the two spacecraft are approximately equal, and range from 25 deg at 600 kHz to 110 deg at 80 kHz.

  9. Arguments for fundamental emission by the parametric process L yields T + S in interplanetary type III bursts. [langmuir, electromagnetic, ion acoustic waves (L, T, S)

    NASA Technical Reports Server (NTRS)

    Cairns, I. H.

    1984-01-01

    Observations of low frequency ion acoustic-like waves associated with Langmuir waves present during interplanetary Type 3 bursts are used to study plasma emission mechanisms and wave processes involving ion acoustic waves. It is shown that the observed wave frequency characteristics are consistent with the processes L yields T + S (where L = Langmuir waves, T = electromagnetic waves, S = ion acoustic waves) and L yields L' + S proceeding. The usual incoherent (random phase) version of the process L yields T + S cannot explain the observed wave production time scale. The clumpy nature of the observed Langmuir waves is vital to the theory of IP Type 3 bursts. The incoherent process L yields T + S may encounter difficulties explaining the observed Type 3 brightness temperatures when Langmuir wave clumps are incorporated into the theory. The parametric process L yields T + S may be the important emission process for the fundamental radiation of interplanetary Type 3 bursts.

  10. Solar Flares, Type III Radio Bursts, Coronal Mass Ejections, and Energetic Particles

    NASA Technical Reports Server (NTRS)

    Cane, Hilary V.; Erickson, W. C.; Prestage, N. P.; White, Nicholas E. (Technical Monitor)

    2002-01-01

    In this correlative study between greater than 20 MeV solar proton events, coronal mass ejections (CMEs), flares, and radio bursts it is found that essentially all of the proton events are preceded by groups of type III bursts and all are preceded by CMEs. These type III bursts (that are a flare phenomenon) usually are long-lasting, intense bursts seen in the low-frequency observations made from space. They are caused by streams of electrons traveling from close to the solar surface out to 1 AU. In most events the type III emissions extend into, or originate at, the time when type II and type IV bursts are reported (some 5 to 10 minutes after the start of the associated soft X-ray flare) and have starting frequencies in the 500 to approximately 100 MHz range that often get lower as a function of time. These later type III emissions are often not reported by ground-based observers, probably because of undue attention to type II bursts. It is suggested to call them type III-1. Type III-1 bursts have previously been called shock accelerated (SA) events, but an examination of radio dynamic spectra over an extended frequency range shows that the type III-1 bursts usually start at frequencies above any type II burst that may be present. The bursts sometimes continue beyond the time when type II emission is seen and, furthermore, sometimes occur in the absence of any type II emission. Thus the causative electrons are unlikely to be shock accelerated and probably originate in the reconnection regions below fast CMEs. A search did not find any type III-1 bursts that were not associated with CMEs. The existence of low-frequency type III bursts proves that open field lines extend from within 0.5 radius of the Sun into the interplanetary medium (the bursts start above 100 MHz, and such emission originates within 0.5 solar radius of the solar surface). Thus it is not valid to assume that only closed field lines exist in the flaring regions associated with CMEs and some interplanetary particles originating in such flare regions might be expected in all solar particle events.

  11. Interplanetary radio storms. II - Emission levels and solar wind speed in the range 0.05-0.8 AU

    NASA Technical Reports Server (NTRS)

    Bougeret, J.-L.; Fainberg, J.; Stone, R. G.

    1984-01-01

    Storms of interplanetary type III radio bursts (IP storms) are commonly observed in the interplanetary medium by the ISEE-3 radio instrument. This instrument has the capability of accurately determining the arrival direction of the radio emission. At each observing frequency, the storm radio sources are tracked as they cross the line-of-sight to the sun. Using a simple model, the emission levels are determined at a number of radio frequencies for four separate storms. The IP storm radiation is found to occur in regions of enhanced density at levels of 0.05 to 0.8 AU. The density in these enhancements falls off faster than R(-2). The solar wind speed in the storm region is also measured. The analysis is consistent with steady conditions in the storm region during a few days around the III storm burst radio emission at the harmonic of the local plasma frequency.

  12. Type III bursts in interplanetary space - Fundamental or harmonic?

    NASA Technical Reports Server (NTRS)

    Dulk, G. A.; Steinberg, J. L.; Hoang, S.

    1984-01-01

    ISEE-3 spacecraft observation of 120 relatively simple, isolated bursts in the 30-1980 kHz range are the basis of the present study of Type III bursts in the solar wind. Several characteristics are identified for many of these bursts which imply that the mode of emission changes from predominantly fundamental plasma radiation during the rise phase to predominantly second harmonic during decay. The fundamental emission begins in time coincidence with the start of Langmuir waves, confirming the conventional belief in these waves' causation of Type III bursts. Attention is given to the characteristics of fundamental components, by comparison to harmonics, at km-wavelengths.

  13. Studying the evolution of a type III radio from the Sun up to 1 AU

    NASA Astrophysics Data System (ADS)

    Mann, Gottfried; Breitling, Frank; Vocks, Christian; Fallows, Richard; Melnik, Valentin; Konovalenko, Alexander

    2017-04-01

    On March 16, 2016, a type III burst was observed with the ground-based radio telescopes LOFAR and URAN-2 as well as with the radiospectrometer aboard the spacecraft WIND.It started at 80 MHz at 06:37 UT and reached 50 kHz after 23 minutes. A type III burst are considered as the radio signature of an electron beam travelling from the corona into the interplanetary space. The energetic electrons carrying the beam excites Langmuir waves, which convert into radio waves by wave-particle interaction. The relationship between the drift rate and the frequency as derived from the dynamic radio spectra reveals that the velocity of the electrons generating the radio waves of the type III burst is increasing with increasing distance from the center of the Sun.

  14. Langmuir-like waves and radiation in planetary foreshocks

    NASA Technical Reports Server (NTRS)

    Cairns, Iver H.; Robinson, P. A.; Anderson, R. R.; Gurnett, D. A.; Kurth, W. S.

    1995-01-01

    The basic objectives of this NASA Grant are to develop theoretical understandings (tested with spacecraft data) of the generation and characteristics of electron plasma waves, commonly known as Langmuir-like waves, and associated radiation near f(sub p) and 2f(sub p) in planetary foreshocks. (Here f(sub p) is plasma frequency.) Related waves and radiation in the source regions of interplanetary type III solar radio bursts provide a simpler observational and theoretical context for developing and testing such understandings. Accordingly, applications to type III bursts constitute a significant fraction of the research effort. The testing of the new Stochastic Growth Theory (SGT) for type III bursts, and its extension and testing for foreshock waves and radiation, constitutes a major longterm strategic goal of the research effort.

  15. Interplanetary radio storms. 2: Emission levels and solar wind speed in the range 0.05-0.8 AU

    NASA Technical Reports Server (NTRS)

    Bougeret, J. L.; Fainberg, J.; Stone, R. G.

    1982-01-01

    Storms of interplanetary type III radio bursts (IP storms) are commonly observed in the interplanetry medium by the ISEE-3 radio instrument. This instrument has the capability of accurately determining the arrival direction of the radio emission. At each observing frequency, the storm radio sources are tracked as they cross the line-of-sight to the Sun. Usng a simple model, the emission levels are determined at a number of radio frequencies for four separate storms. The IP storm radiation is found to occur in regions of enhanced density at levels of 0.05 to 0.8 AU. The density in these enhancements falls off faster than R(-2). The solar wind speed in the storm region is also measured. The analysis is consistent with steady conditions in the storm region during a few days around the central meridian passage of the storm. The comparison with average in situ density measurements compiled from the HELIOS 1-2 observations favors type III storm burst radio emission at the harmonic of the local plasma frequency.

  16. Detection of fundamental and harmonic type III radio emission and the associated Langmuir waves at the source region

    NASA Technical Reports Server (NTRS)

    Reiner, M. J.; Stone, R. G.; Fainberg, J.

    1992-01-01

    Type III radio emission generated in the vicinity of the Ulysses spacecraft has been detected at both the fundamental and harmonic of the local plasma frequency. The observations represent the first clear evidence of locally generated type III radio emission. This local emission shows no evidence of frequency drift, exhibits a relatively short rise time, is less intense than the observed remotely generated radio emission, and is temporally correlated with observed in situ Langmuir waves. The observations were made with the unified radio astronomy and wave (URAP) experiment on the Ulysses spacecraft between 1990 November 4 and 1991 April 30, as it traveled from 1 to 3 AU from the sun. During this time period many thousands of bursts were observed. However, only three examples of local emission and associated Langmuir waves were identified. This supports previous suggestions that type III radio emission is generated in localized regions of the interplanetary medium, rather than uniformly along the extent of the electron exciter beam.

  17. Low Altitude Solar Magnetic Reconnection, Type III Solar Radio Bursts, and X-ray Emissions.

    PubMed

    Cairns, I H; Lobzin, V V; Donea, A; Tingay, S J; McCauley, P I; Oberoi, D; Duffin, R T; Reiner, M J; Hurley-Walker, N; Kudryavtseva, N A; Melrose, D B; Harding, J C; Bernardi, G; Bowman, J D; Cappallo, R J; Corey, B E; Deshpande, A; Emrich, D; Goeke, R; Hazelton, B J; Johnston-Hollitt, M; Kaplan, D L; Kasper, J C; Kratzenberg, E; Lonsdale, C J; Lynch, M J; McWhirter, S R; Mitchell, D A; Morales, M F; Morgan, E; Ord, S M; Prabu, T; Roshi, A; Shankar, N Udaya; Srivani, K S; Subrahmanyan, R; Wayth, R B; Waterson, M; Webster, R L; Whitney, A R; Williams, A; Williams, C L

    2018-01-26

    Type III solar radio bursts are the Sun's most intense and frequent nonthermal radio emissions. They involve two critical problems in astrophysics, plasma physics, and space physics: how collective processes produce nonthermal radiation and how magnetic reconnection occurs and changes magnetic energy into kinetic energy. Here magnetic reconnection events are identified definitively in Solar Dynamics Observatory UV-EUV data, with strong upward and downward pairs of jets, current sheets, and cusp-like geometries on top of time-varying magnetic loops, and strong outflows along pairs of open magnetic field lines. Type III bursts imaged by the Murchison Widefield Array and detected by the Learmonth radiospectrograph and STEREO B spacecraft are demonstrated to be in very good temporal and spatial coincidence with specific reconnection events and with bursts of X-rays detected by the RHESSI spacecraft. The reconnection sites are low, near heights of 5-10 Mm. These images and event timings provide the long-desired direct evidence that semi-relativistic electrons energized in magnetic reconnection regions produce type III radio bursts. Not all the observed reconnection events produce X-ray events or coronal or interplanetary type III bursts; thus different special conditions exist for electrons leaving reconnection regions to produce observable radio, EUV, UV, and X-ray bursts.

  18. Interplanetary magnetic field connection to the sun during electron heat flux dropouts in the solar wind

    NASA Technical Reports Server (NTRS)

    Lin, R. P.; Kahler, S. W.

    1992-01-01

    The paper discusses observations of 2- to 8.5-keV electrons, made by measurements aboard the ISEE 3 spacecraft during the periods of heat flux decreases (HFDs) reported by McComas et al. (1989). In at least eight of the total of 25 HFDs observed, strong streaming of electrons that were equal to or greater than 2 keV outward from the sun was recorded. In one HFD, an impulsive solar electron event was observed with an associated type III radio burst, which could be tracked from the sun to about 1 AU. It is concluded that, in many HFDs, the interplanetary field is still connected to the sun and that some energy-dependent process may produce HFDs without significantly perturbing electrons of higher energies.

  19. Satellite observations of type III solar radio bursts at low frequencies

    NASA Technical Reports Server (NTRS)

    Fainberg, J.; Stone, R. G.

    1974-01-01

    Type III solar radio bursts have been observed from 10 MHz to 10 kHz by satellite experiments above the terrestrial plasmasphere. Solar radio emission in this frequency range results from excitation of the interplanetary plasma by energetic particles propagating outward along open field lines over distances from 5 earth radii to at least 1 AU from the sun. This review summarizes the morphology, characteristics, and analysis of individual as well as storms of bursts. Substantial evidence is available to show that the radio emission is observed at the second harmonic instead of the fundamental of the plasma frequency. This brings the density scale derived by radio observations into better agreement with direct solar wind density measurements at 1 AU and relaxes the requirement for type III propagation along large density-enhanced regions. This density scale with the measured direction of arrival of the radio burst allows the trajectory of the exciter path to be determined from 10 earth radii to 1 AU.

  20. Interplanetary particle beams

    NASA Technical Reports Server (NTRS)

    Dulk, G. A.

    1990-01-01

    This paper reviews observations of interplanetary particle beams of the kind that frequently accompany a solar flare. It is shown that the most frequently observed beams are beams of electrons which are associated with radio bursts of type III, but occasionally with flares and X-ray bursts. Although the main features of these beams and their associated plasma waves and radio bursts are known, uncertainties remain in terms of the correlation between electron beams and filamentary structures, the relative importance of the quasi-linear and the nonlinear wave emissions as the dominant process, and the mechanism of conversion of some of the Langmuir wave energy into radio emissions. Other particle beams discussed are those composed of protons, neutrons, He ions, or heavy ions. While most of these beams originate from sun flares, the source of some of particle beams may be the earth, Jupiter, or other planets as well as comets.

  1. Theory of Type 3 and Type 2 Solar Radio Emissions

    NASA Technical Reports Server (NTRS)

    Robinson, P. A.; Cairns, I. H.

    2000-01-01

    The main features of some current theories of type III and type II bursts are outlined. Among the most common solar radio bursts, type III bursts are produced at frequencies of 10 kHz to a few GHz when electron beams are ejected from solar active regions, entering the corona and solar wind at typical speeds of 0.1c. These beams provide energy to generate Langmuir waves via a streaming instability. In the current stochastic-growth theory, Langmuir waves grow in clumps associated with random low-frequency density fluctuations, leading to the observed spiky waves. Nonlinear wave-wave interactions then lead to secondary emission of observable radio waves near the fundamental and harmonic of the plasma frequency. Subsequent scattering processes modify the dynamic radio spectra, while back-reaction of Langmuir waves on the beam causes it to fluctuate about a state of marginal stability. Theories based on these ideas can account for the observed properties of type III bursts, including the in situ waves and the dynamic spectra of the radiation. Type 11 bursts are associated with shock waves propagating through the corona and interplanetary space and radiating from roughly 30 kHz to 1 GHz. Their basic emission mechanisms are believed to be similar to those of type III events and radiation from Earth's foreshock. However, several sub-classes of type II bursts may exist with different source regions and detailed characteristics. Theoretical models for type II bursts are briefly reviewed, focusing on a model with emission from a foreshock region upstream of the shock for which observational evidence has just been reported.

  2. Model interpretation of type III radio burst characteristics. I - Spatial aspects

    NASA Technical Reports Server (NTRS)

    Reiner, M. J.; Stone, R. G.

    1988-01-01

    The ways that the finite size of the source region and directivity of the emitted radiation modify the observed characteristics of type III radio bursts as they propagate through the interplanetary medium are investigated. A simple model that simulates the radio source region is developed to provide insight into the spatial behavior of the parameters that characterize radio bursts. The model is used to demonstrate that observed radio azimuths are systematically displaced from the geometric centroid of the exciter electron beam in such a way as to cause trajectories of the radio bursts to track back to the observer at low frequencies, rather than to follow expected Archimedean spiral-like paths. The source region model is used to investigate the spatial behavior of the peak intensities of radio bursts, and it is found that the model can qualitatively account for both the frequency dependence and the east-west asymmetry of the observed peak flux densities.

  3. Characteristics of type III exciters derived from low frequency radio observations

    NASA Technical Reports Server (NTRS)

    Evans, L. G.; Fainberg, J.; Stone, R. G.

    1973-01-01

    Low-frequency radio observations (2.8 MHz to 67 kHz) from the RAE-1 and IMP-6 satellites allow the tracking of type III solar burst exciters out to large distances from the sun (of the order of 1 AU). A study of the interaction processes between the exciter and the interplanetary medium was made using the time-intensity profiles of the radio emission. The change in exciter length with distance from the sun, and the resulting exciter velocity dispersion which can be deduced from this change are investigated. From detailed measurements on 35 simple bursts it is found that the exciter length increases at a faster rate than a constant velocity dispersion would give. The damping of the radio emission is also investigated, and it is concluded that some current theories of the damping mechanism give results which are not consistent with the low-frequency observations.

  4. Low Frequency Radio Experiment (LORE)

    NASA Astrophysics Data System (ADS)

    Manoharan, P. K.; Naidu, Arun; Joshi, B. C.; Roy, Jayashree; Kate, G.; Pethe, Kaiwalya; Galande, Shridhar; Jamadar, Sachin; Mahajan, S. P.; Patil, R. A.

    2016-03-01

    In this paper, we present a case study of Low Frequency Radio Experiment (LORE) payload to probe the corona and the solar disturbances at solar offsets greater than 2 solar radii, i.e., at frequencies below 30 MHz. The LORE can be complimentary to the planned Indian solar mission, “Aditya-L1” and its other payloads as well as synergistic to ground-based interplanetary scintillation (IPS) observations, which are routinely carried out by the Ooty Radio Telescope. We discuss the baseline design and technical details of the proposed LORE and its particular suitability for providing measurements on the detailed time and frequency structure of fast drifting type-III and slow drifting type-II radio bursts with unprecedented time and frequency resolutions. We also brief the gonio-polarimetry, which is possible with better-designed antennas and state-of-the-art electronics, employing FPGAs and an intelligent data management system. These would enable us to make a wide range of studies, such as nonlinear plasma processes in the Sun-Earth distance, in-situ radio emission from coronal mass ejections (CMEs), interplanetary CME driven shocks, nature of ICMEs driving decelerating IP shocks and space weather effects of solar wind interaction regions.

  5. A Statistical Study of Interplanetary Type II Bursts: STEREO Observations

    NASA Astrophysics Data System (ADS)

    Krupar, V.; Eastwood, J. P.; Magdalenic, J.; Gopalswamy, N.; Kruparova, O.; Szabo, A.

    2017-12-01

    Coronal mass ejections (CMEs) are the primary cause of the most severe and disruptive space weather events such as solar energetic particle (SEP) events and geomagnetic storms at Earth. Interplanetary type II bursts are generated via the plasma emission mechanism by energetic electrons accelerated at CME-driven shock waves and hence identify CMEs that potentially cause space weather impact. As CMEs propagate outward from the Sun, radio emissions are generated at progressively at lower frequencies corresponding to a decreasing ambient solar wind plasma density. We have performed a statistical study of 153 interplanetary type II bursts observed by the two STEREO spacecraft between March 2008 and August 2014. These events have been correlated with manually-identified CMEs contained in the Heliospheric Cataloguing, Analysis and Techniques Service (HELCATS) catalogue. Our results confirm that faster CMEs are more likely to produce interplanetary type II radio bursts. We have compared observed frequency drifts with white-light observations to estimate angular deviations of type II burst propagation directions from radial. We have found that interplanetary type II bursts preferably arise from CME flanks. Finally, we discuss a visibility of radio emissions in relation to the CME propagation direction.

  6. Interplanetary baseline observations of type III solar radio bursts

    NASA Technical Reports Server (NTRS)

    Weber, R. R.; Fitzenreiter, R. J.; Novaco, J. C.; Fainberg, J.

    1977-01-01

    Simultaneous observations of type III radio bursts from spacecraft separated by 0.43 AU have been made using the solar orbiters Helios-A and Helios-B. The burst beginning at 19:22 UT on March 28, 1976, has been located from the intersection of the source directions measured at each spacecraft and from burst arrival-time differences. The source positions range from 0.03 AU from the sun at 3000 kHz to 0.08 AU at 585 kHz. The electron density along the burst trajectory and the exciter velocity (0.13c) were determined directly without the need to assume a density model, as has been done with single-spacecraft observations. The separation of Helios-A and -B has also provided measurements of burst directivity at low frequencies. For the March 28 burst the intensity observed from near the source longitude (Helios-B) was 3-10dB greater than that from 60 deg west of the source (Helios-A)

  7. Low-Frequency Radio Bursts and Space Weather

    NASA Technical Reports Server (NTRS)

    Gopalswamy, N.

    2016-01-01

    Low-frequency radio phenomena are due to the presence of nonthermal electrons in the interplanetary (IP) medium. Understanding these phenomena is important in characterizing the space environment near Earth and other destinations in the solar system. Substantial progress has been made in the past two decades, because of the continuous and uniform data sets available from space-based radio and white-light instrumentation. This paper highlights some recent results obtained on IP radio phenomena. In particular, the source of type IV radio bursts, the behavior of type III storms, shock propagation in the IP medium, and the solar-cycle variation of type II radio bursts are considered. All these phenomena are closely related to solar eruptions and active region evolution. The results presented were obtained by combining data from the Wind and SOHO missions.

  8. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Krupar, V.; Eastwood, J. P.; Kruparova, O.

    Coronal mass ejections (CMEs) are large-scale eruptions of magnetized plasma that may cause severe geomagnetic storms if Earth directed. Here, we report a rare instance with comprehensive in situ and remote sensing observations of a CME combining white-light, radio, and plasma measurements from four different vantage points. For the first time, we have successfully applied a radio direction-finding technique to an interplanetary type II burst detected by two identical widely separated radio receivers. The derived locations of the type II and type III bursts are in general agreement with the white-light CME reconstruction. We find that the radio emission arisesmore » from the flanks of the CME and are most likely associated with the CME-driven shock. Our work demonstrates the complementarity between radio triangulation and 3D reconstruction techniques for space weather applications.« less

  9. Imaging spectroscopy of type U and J solar radio bursts with LOFAR

    NASA Astrophysics Data System (ADS)

    Reid, Hamish A. S.; Kontar, Eduard P.

    2017-10-01

    Context. Radio U-bursts and J-bursts are signatures of electron beams propagating along magnetic loops confined to the corona. The more commonly observed type III radio bursts are signatures of electron beams propagating along magnetic loops that extend into interplanetary space. Given the prevalence of solar magnetic flux to be closed in the corona, why type III bursts are more frequently observed than U-bursts or J-bursts is an outstanding question. Aims: We use Low-Frequency Array (LOFAR) imaging spectroscopy between 30-80 MHz of low-frequency U-bursts and J-bursts, for the first time, to understand why electron beams travelling along coronal loops produce radio emission less often. Radio burst observations provide information not only about the exciting electron beams but also about the structure of large coronal loops with densities that are too low for standard extreme ultraviolet (EUV) or X-ray analysis. Methods: We analysed LOFAR images of a sequence of two J-bursts and one U-burst. The different radio source positions were used to model the spatial structure of the guiding magnetic flux tube and then deduce the energy range of the exciting electron beams without the assumption of a standard density model. We also estimated the electron density along the magnetic flux rope and compared it to coronal models. Results: The radio sources infer a magnetic loop that is 1 solar radius in altitude with the highest frequency sources starting around 0.6 solar radii. Electron velocities were found between 0.13 c and 0.24 c with the front of the electron beam travelling faster than the back of the electron beam. The velocities correspond to energy ranges within the beam from 0.7-11 keV to 0.7-43 keV. The density along the loop is higher than typical coronal density models and the density gradient is smaller. Conclusions: We found that a more restrictive range of accelerated beam and background plasma parameters can result in U-bursts or J-bursts, causing type III bursts to be more frequently observed. The large instability distances required before Langmuir waves are produced by some electron beams, and the small magnitude of the background density gradients makes closed loops less facilitative for radio emission than loops that extend into interplanetary space.

  10. Large Solar Energetic Particle Events Associated With Filament Eruptions Outside Active Regions

    NASA Technical Reports Server (NTRS)

    Gopalswamy, N.; Makela, P.; Akiyama, S.; Yashiro, S.; Xie, H.; Thakur, N.; Kahler, S. W.

    2015-01-01

    We report on four large filament eruptions (FEs) from solar cycles 23 and 24 that were associated with large solar energetic particle (SEP) events and interplanetary type II radio bursts. The post-eruption arcades corresponded mostly to C-class soft X-ray enhancements, but an M1.0 flare was associated with one event. However, the associated coronal mass ejections (CMEs) were fast (speeds approx. 1000 km/s) and appeared as halo CMEs in the coronagraph field of view. The interplanetary type II radio bursts occurred over a wide wavelength range, indicating the existence of strong shocks throughout the inner heliosphere. No metric type II bursts were present in three events, indicating that the shocks formed beyond 2-3 Rs. In one case, there was a metric type II burst with low starting frequency, indicating a shock formation height of approx.2 Rs. The FE-associated SEP events did have softer spectra (spectral index >4) in the 10-100 MeV range, but there were other low-intensity SEP events with spectral indices ?4. Some of these events are likely FE-SEP events, but were not classified as such in the literature because they occurred close to active regions. Some were definitely associated with large active region flares, but the shock formation height was large. We definitely find a diminished role for flares and complex type III burst durations in these large SEP events. Fast CMEs and shock formation at larger distances from the Sun seem to be the primary characteristics of the FE-associated SEP events.

  11. Overview of Solar Radio Bursts and their Sources

    NASA Astrophysics Data System (ADS)

    Golla, Thejappa; MacDowall, Robert J.

    2018-06-01

    Properties of radio bursts emitted by the Sun at frequencies below tens of MHz are reviewed. In this frequency range, the most prominent radio emissions are those of solar type II, complex type III and solar type IV radio bursts, excited probably by the energetic electron populations accelerated in completely different environments: (1) type II bursts are due to non-relativistic electrons accelerated by the CME driven interplanetary shocks, (2) complex type III bursts are due to near-relativistic electrons accelerated either by the solar flare reconnection process or by the SEP shocks, and (3) type IV bursts are due to relativistic electrons, trapped in the post-eruption arcades behind CMEs; these relativistic electrons probably are accelerated by the continued reconnection processes occurring beneath the CME. These radio bursts, which can serve as the natural plasma probes traversing the heliosphere by providing information about various crucial space plasma parameters, are also an ideal instrument for investigating acceleration mechanisms responsible for the high energy particles. The rich collection of valuable high quality radio and high time resolution in situ wave data from the WAVES experiments of the STEREO A, STEREO B and WIND spacecraft has provided an unique opportunity to study these different radio phenomena and understand the complex physics behind their excitation. We have developed Monte Carlo simulation techniques to estimate the propagation effects on the observed characteristics of these low frequency radio bursts. We will present some of the new results and describe how one can use these radio burst observations for space weather studies. We will also describe some of the non-linear plasma processes detected in the source regions of both solar type III and type II radio bursts. The analysis and simulation techniques used in these studies will be of immense use for future space based radio observations.

  12. Type II solar radio bursts, interplanetary shocks, and energetic particle events

    NASA Technical Reports Server (NTRS)

    Cane, H. V.; Stone, R. G.

    1984-01-01

    Using the ISEE-3 radio astronomy experiment data 37 interplanetary (IP) type II bursts have been identified in the period September 1978 to December 1981. These events and the associated phenomena are listed. The events are preceded by intense, soft X ray events with long decay times (LDEs) and type II and/or type IV bursts at meter wavelengths. The meter wavelength type II bursts are usually intense and exhibit herringbone structure. The extension of the herringbone structure into the kilometer wavelength range results in the occurrence of a shock accelerated (SA) event. The majority of the interplanetary type II bursts are associated with energetic particle events. These results support other studies awhich indicate that energetic solar particles detected at 1 A.U. are generated by shock acceleration. From a preliminary analysis of the available data there appears to be a high correlation with white light coronal transients.

  13. Type 2 radio bursts, interplanetary shocks and energetic particle events

    NASA Technical Reports Server (NTRS)

    Cane, H. V.; Stone, R. G.

    1982-01-01

    Using the ISEE-3 radio astronomy experiment data 37 interplanetary (IP) type II bursts have been identified in the period September 1978 to December 1981. These events and the associated phenomena are listed. The events are preceded by intense, soft X ray events with long decay times (LDEs) and type II and/or type IV bursts at meter wavelengths. The meter wavelength type II bursts are usually intense and exhibit herringbone structure. The extension of the herringbone structure into the kilometer wavelength range results in the occurrence of a shock accelerated (SA) event. The majority of the interplanetary type II bursts are associated with energetic particle events. These results support other studies which indicate that energetic solar particles detected at 1 A.U. are generated by shock acceleration. From a preliminary analysis of the available data there appears to be a high correlation with white light coronal transients.

  14. Propagation Characteristics of Two Coronal Mass Ejections from the Sun Far into Interplanetary Space

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhao, Xiaowei; Liu, Ying D.; Hu, Huidong

    Propagation of coronal mass ejections (CMEs) from the Sun far into interplanetary space is not well understood, due to limited observations. In this study we examine the propagation characteristics of two geo-effective CMEs, which occurred on 2005 May 6 and 13, respectively. Significant heliospheric consequences associated with the two CMEs are observed, including interplanetary CMEs (ICMEs) at the Earth and Ulysses , interplanetary shocks, a long-duration type II radio burst, and intense geomagnetic storms. We use coronagraph observations from SOHO /LASCO, frequency drift of the long-duration type II burst, in situ measurements at the Earth and Ulysses , and magnetohydrodynamicmore » propagation of the observed solar wind disturbances at 1 au to track the CMEs from the Sun far into interplanetary space. We find that both of the CMEs underwent a major deceleration within 1 au and thereafter a gradual deceleration when they propagated from the Earth to deep interplanetary space, due to interactions with the ambient solar wind. The results also reveal that the two CMEs interacted with each other in the distant interplanetary space even though their launch times on the Sun were well separated. The intense geomagnetic storm for each case was caused by the southward magnetic fields ahead of the CME, stressing the critical role of the sheath region in geomagnetic storm generation, although for the first case there is a corotating interaction region involved.« less

  15. Characteristics of interplanetary type II radio emission and the relationship to shock and plasma properties

    NASA Technical Reports Server (NTRS)

    Lengyel-Frey, D.; Stone, R. G.

    1989-01-01

    A large sample of type II events is the basis of the present study of the properties of interplanetary type II bursts' radio-emission properties. Type II spectra seem to be composed of fundamental and harmonic components of plasma emission, where the intensity of the fundamental component increases relative to the harmonic as the burst evolves with heliocentric distance; burst average flux density increases as a power of the associated shock's average velocity. Solar wind density structures may have a significant influence on type II bandwidths.

  16. LARGE SOLAR ENERGETIC PARTICLE EVENTS ASSOCIATED WITH FILAMENT ERUPTIONS OUTSIDE ACTIVE REGIONS

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gopalswamy, N.; Mäkelä, P.; Akiyama, S.

    2015-06-10

    We report on four large filament eruptions (FEs) from solar cycles 23 and 24 that were associated with large solar energetic particle (SEP) events and interplanetary type II radio bursts. The post-eruption arcades corresponded mostly to C-class soft X-ray enhancements, but an M1.0 flare was associated with one event. However, the associated coronal mass ejections (CMEs) were fast (speeds ∼ 1000 km s{sup −1}) and appeared as halo CMEs in the coronagraph field of view. The interplanetary type II radio bursts occurred over a wide wavelength range, indicating the existence of strong shocks throughout the inner heliosphere. No metric typemore » II bursts were present in three events, indicating that the shocks formed beyond 2–3 Rs. In one case, there was a metric type II burst with low starting frequency, indicating a shock formation height of ∼2 Rs. The FE-associated SEP events did have softer spectra (spectral index >4) in the 10–100 MeV range, but there were other low-intensity SEP events with spectral indices ≥4. Some of these events are likely FE-SEP events, but were not classified as such in the literature because they occurred close to active regions. Some were definitely associated with large active region flares, but the shock formation height was large. We definitely find a diminished role for flares and complex type III burst durations in these large SEP events. Fast CMEs and shock formation at larger distances from the Sun seem to be the primary characteristics of the FE-associated SEP events.« less

  17. Velocity profiles of interplanetary shocks

    NASA Technical Reports Server (NTRS)

    Cane, H. V.

    1983-01-01

    The type 2 radio burst was identified as a shock propagating through solar corona. Radio emission from shocks travelling through the interplanetary (IP) medium was observed. Using the drift rates of IP type II bursts the velocity characteristics of eleven shocks were investigated. It is indicated that shocks in the IP medium undergo acceleration before decelerating and that the slower shocks take longer to attain their maximum velocity.

  18. Interplanetary baseline observations of type 3 solar radio bursts. [by Helios satellites

    NASA Technical Reports Server (NTRS)

    Weber, R. R.; Fitzenreiter, R. J.; Novaco, J. C.; Fainberg, J.

    1977-01-01

    Simultaneous observations of type III radio bursts using spacecraft separated by several tenths of an AU were made using the solar orbiters HELIOS-A and -B. The burst beginning at 1922 UT on March 28, 1976, was located from the intersection of the source directions measured at each spacecraft, and from the burst arrival time differences. Wide baseline observations give the radial distance of the source at each observing frequency. Consequently, coronal electron densities and exciter velocity were determined directly, without the need to assume a density model as is done with single spacecraft observations. The separation of HELIOS-A and -B also provided the first measurements of burst directivity at low frequencies. For the March 28 burst, the intensity observed from near the source longitude (HELIOS-B) was significantly greater than from 60 W of the source (HELIOS-A).

  19. Evaluation of the Interplanetary Magnetic Field Strength Using the Cosmic-Ray Shadow of the Sun

    NASA Astrophysics Data System (ADS)

    Amenomori, M.; Bi, X. J.; Chen, D.; Chen, T. L.; Chen, W. Y.; Cui, S. W.; Danzengluobu, Ding, L. K.; Feng, C. F.; Feng, Zhaoyang; Feng, Z. Y.; Gou, Q. B.; Guo, Y. Q.; He, H. H.; He, Z. T.; Hibino, K.; Hotta, N.; Hu, Haibing; Hu, H. B.; Huang, J.; Jia, H. Y.; Jiang, L.; Kajino, F.; Kasahara, K.; Katayose, Y.; Kato, C.; Kawata, K.; Kozai, M.; Labaciren, Le, G. M.; Li, A. F.; Li, H. J.; Li, W. J.; Liu, C.; Liu, J. S.; Liu, M. Y.; Lu, H.; Meng, X. R.; Miyazaki, T.; Mizutani, K.; Munakata, K.; Nakajima, T.; Nakamura, Y.; Nanjo, H.; Nishizawa, M.; Niwa, T.; Ohnishi, M.; Ohta, I.; Ozawa, S.; Qian, X. L.; Qu, X. B.; Saito, T.; Saito, T. Y.; Sakata, M.; Sako, T. K.; Shao, J.; Shibata, M.; Shiomi, A.; Shirai, T.; Sugimoto, H.; Takita, M.; Tan, Y. H.; Tateyama, N.; Torii, S.; Tsuchiya, H.; Udo, S.; Wang, H.; Wu, H. R.; Xue, L.; Yamamoto, Y.; Yamauchi, K.; Yang, Z.; Yuan, A. F.; Yuda, T.; Zhai, L. M.; Zhang, H. M.; Zhang, J. L.; Zhang, X. Y.; Zhang, Y.; Zhang, Yi; Zhang, Ying; Zhaxisangzhu, Zhou, X. X.; Tibet AS γ Collaboration

    2018-01-01

    We analyze the Sun's shadow observed with the Tibet-III air shower array and find that the shadow's center deviates northward (southward) from the optical solar disk center in the "away" ("toward") interplanetary magnetic field (IMF) sector. By comparing with numerical simulations based on the solar magnetic field model, we find that the average IMF strength in the away (toward) sector is 1.54 ±0.21stat±0.20syst (1.62 ±0.15stat±0.22syst ) times larger than the model prediction. These demonstrate that the observed Sun's shadow is a useful tool for the quantitative evaluation of the average solar magnetic field.

  20. Evaluation of the Interplanetary Magnetic Field Strength Using the Cosmic-Ray Shadow of the Sun.

    PubMed

    Amenomori, M; Bi, X J; Chen, D; Chen, T L; Chen, W Y; Cui, S W; Danzengluobu; Ding, L K; Feng, C F; Feng, Zhaoyang; Feng, Z Y; Gou, Q B; Guo, Y Q; He, H H; He, Z T; Hibino, K; Hotta, N; Hu, Haibing; Hu, H B; Huang, J; Jia, H Y; Jiang, L; Kajino, F; Kasahara, K; Katayose, Y; Kato, C; Kawata, K; Kozai, M; Labaciren; Le, G M; Li, A F; Li, H J; Li, W J; Liu, C; Liu, J S; Liu, M Y; Lu, H; Meng, X R; Miyazaki, T; Mizutani, K; Munakata, K; Nakajima, T; Nakamura, Y; Nanjo, H; Nishizawa, M; Niwa, T; Ohnishi, M; Ohta, I; Ozawa, S; Qian, X L; Qu, X B; Saito, T; Saito, T Y; Sakata, M; Sako, T K; Shao, J; Shibata, M; Shiomi, A; Shirai, T; Sugimoto, H; Takita, M; Tan, Y H; Tateyama, N; Torii, S; Tsuchiya, H; Udo, S; Wang, H; Wu, H R; Xue, L; Yamamoto, Y; Yamauchi, K; Yang, Z; Yuan, A F; Yuda, T; Zhai, L M; Zhang, H M; Zhang, J L; Zhang, X Y; Zhang, Y; Zhang, Yi; Zhang, Ying; Zhaxisangzhu; Zhou, X X

    2018-01-19

    We analyze the Sun's shadow observed with the Tibet-III air shower array and find that the shadow's center deviates northward (southward) from the optical solar disk center in the "away" ("toward") interplanetary magnetic field (IMF) sector. By comparing with numerical simulations based on the solar magnetic field model, we find that the average IMF strength in the away (toward) sector is 1.54±0.21_{stat}±0.20_{syst} (1.62±0.15_{stat}±0.22_{syst}) times larger than the model prediction. These demonstrate that the observed Sun's shadow is a useful tool for the quantitative evaluation of the average solar magnetic field.

  1. Energetic particle abundances in solar electron events

    NASA Technical Reports Server (NTRS)

    Reames, D. V.; Cane, H. V.; Von Rosenvinge, T. T.

    1990-01-01

    The results of a comprehensive search of the ISEE 3 energetic particle data for solar electron events with associated increases in elements with atomic number Z = 6 or greater are reported. A sample of 90 such events was obtained. The events support earlier evidence of a bimodal distribution in Fe/O or, more clearly, in Fe/C. Most of the electron events belong to the group that is Fe-rich in comparison with the coronal abundance. The Fe-rich events are frequently also He-3-rich and are associated with type III and type V radio bursts and impulsive solar flares. Fe-poor events are associated with type IV bursts and with interplanetary shocks. With some exceptions, event-to-event enhancements in the heavier elements vary smoothly with Z and with Fe/C. In fact, these variations extend across the full range of events despite inferred differences in acceleration mechanism. The origin of source material in all events appears to be coronal and not photospheric.

  2. Diffuse Interplanetary Radio Emission (DIRE) Accompanying Type II Radio Bursts

    NASA Astrophysics Data System (ADS)

    Teklu, T. B.; Gopalswamy, N.; Makela, P. A.; Yashiro, S.; Akiyama, S.; Xie, H.

    2015-12-01

    We report on an unusual drifting feature in the radio dynamic spectra at frequencies below 14 MHz observed by the Radio and Plasma Wave (WAVES) experiment on board the Wind spacecraft. We call this feature as "Diffuse Interplanetary Radio Emission (DIRE)". The DIRE events are generally associated with intense interplanetary type II radio bursts produced by shocks driven by coronal mass ejections (CMEs). DIREs drift like type II bursts in the dynamic spectra, but the drifting feature consist of a series of short-duration spikes (similar to a type I chain). DIREs occur at higher frequencies than the associated type II bursts, with no harmonic relationship with the type II burst. The onset of DIREs is delayed by several hours from the onset of the eruption. Comparing the radio dynamic spectra with white-light observations from the Solar and Heliospheric Observatory (SOHO) mission, we find that the CMEs are generally very energetic (fast and mostly halos). We suggest that the DIRE source is typically located at the flanks of the CME-driven shock that is still at lower heliocentric distances.

  3. Launch Vehicles

    NASA Image and Video Library

    1992-09-25

    Titan III vehicle launched the Mars Observer spacecraft and the Transfer Orbit Stage (TOS) from the Cape Canaveral Air Force Station on September 25, 1992. Managed by the Marshall Space Flight Center (MSFC), TOS will fire to send the Observer on an 11-month interplanetary journey to the Mars. The Observer failed to reach the Mars orbit in August 1993.

  4. International Launch Vehicle Selection for Interplanetary Travel

    NASA Technical Reports Server (NTRS)

    Ferrone, Kristine; Nguyen, Lori T.

    2010-01-01

    In developing a mission strategy for interplanetary travel, the first step is to consider launch capabilities which provide the basis for fundamental parameters of the mission. This investigation focuses on the numerous launch vehicles of various characteristics available and in development internationally with respect to upmass, launch site, payload shroud size, fuel type, cost, and launch frequency. This presentation will describe launch vehicles available and in development worldwide, then carefully detail a selection process for choosing appropriate vehicles for interplanetary missions focusing on international collaboration, risk management, and minimization of cost. The vehicles that fit the established criteria will be discussed in detail with emphasis on the specifications and limitations related to interplanetary travel. The final menu of options will include recommendations for overall mission design and strategy.

  5. MMS Observations of Langmuir Collapse and Emission?

    NASA Astrophysics Data System (ADS)

    Boardsen, S. A.; Che, H.; Wilder, F. D.; Ergun, R.; Le Contel, O.; Gershman, D. J.; Giles, B. L.; Moore, T. E.; Paterson, W.

    2017-12-01

    Through the two stream instability, electron beams accelerated by solar flares and nanoflares are believed to be responsible for several types of solar radio bursts observed in the corona and interplanetary medium, including flare-associated coronal Type J, U, and Type III radio bursts, and nanoflare-associated weak coronal type III bursts. However the duration of these radio bursts is several orders of magnitude longer than the linear saturation time of the electron two-stream instability. This discrepancy has been a long-standing puzzle. Recently Che et al. [2017, doi: 10.1073/pnas.1614055114] proposed a mechanism in which the plasma coherent emission is maintained by the cyclic Langmuir collapse. Wave coupling between Langmuir waves and electrostatic whistler waves is the key process necessary to close the feedback loop. In the magnetosphere, electron beams are commonly produced by acceleration processes such as magnetic reconnection, during which both whistlers and Langmuir waves are observed and thus provide possible in-situ observations to test and study the emission process near the acceleration source region. The high spatial and time resolution MMS fields and particle data are used to test aspects of this mechanism. In this presentation, we will present some preliminary results from MMS observations of electron beams near a reconnection region. We investigate, in the regions where the electron beams are observed, the coupling between high frequency Langmuir waves and low frequency electrostatic whistler waves, and the associated electromagnetic emissions, along with other possible specific features predicted by this model.

  6. Wind Observations of Wave Heating and/or Particle Energization at Supercritical Interplanetary Shocks

    NASA Technical Reports Server (NTRS)

    Wilson, Lynn Bruce, III; Szabo, Adam; Koval, Andriy; Cattell, Cynthia A.; Kellogg, Paul J.; Goetz, Keith; Breneman, Aaron; Kersten, Kris; Kasper, Justin C.; Pulupa, Marc

    2011-01-01

    We present the first observations at supercritical interplanetary shocks of large amplitude (> 100 mV/m pk-pk) solitary waves, approx.30 mV/m pk-pk waves exhibiting characteristics consistent with electron Bernstein waves, and > 20 nT pk-pk electromagnetic lower hybrid-like waves, with simultaneous evidence for wave heating and particle energization. The solitary waves and the Bernstein-like waves were likely due to instabilities driven by the free energy provided by reflected ions [Wilson III et al., 2010]. They were associated with strong particle heating in both the electrons and ions. We also show a case example of parallel electron energization and perpendicular ion heating due to a electromagnetic lower hybrid-like wave. Both studies provide the first experimental evidence of wave heating and/or particle energization at interplanetary shocks. Our experimental results, together with the results of recent Vlasov [Petkaki and Freeman, 2008] and PIC [Matsukyo and Scholer, 2006] simulations using realistic mass ratios provide new evidence to suggest that the importance of wave-particle dissipation at shocks may be greater than previously thought.

  7. Electron Beams Escaping the Sun: Hard X-ray Diagnostics of Jet-related Electron Acceleration

    NASA Astrophysics Data System (ADS)

    Glesener, L.; Musset, S.; Saint-Hilaire, P.; Fleishman, G. D.; Krucker, S.; Christe, S.; Shih, A. Y.

    2017-12-01

    Coronal jets, which arise via an interaction between closed and open magnetic field, offer a convenient configuration for accelerated electrons to escape the low corona. Jets occur in all regions of the Sun, but those flare-related jets that occur in active regions are associated with bremsstrahlung hard X-rays (HXRs) from accelerated electrons. However, HXR measurement of the escaping beams themselves is elusive as it requires extremely high sensitivity. Jets are strongly correlated with Type III radio bursts in the corona and in interplanetary space. In this poster we present RHESSI observations of HXRs from flare-related jets, including multiwavelength analysis (with extreme ultraviolet and radio emission) and modeling of the emitting electron populations. We also present predicted observations of Type III-emitting electron beams by the FOXSI Small Explorer, which is currently undergoing a NASA Phase A concept study. FOXSI will measure HXRs from jets and flares in the low corona, providing quantitative diagnostics of accelerated electron beams at their origin. These same electron beams will be measured at higher altitudes by instruments aboard NASA's Parker Solar Probe and ESA's Solar Orbiter. With a planned launch in the rising phase of Solar Cycle 25, FOXSI will be ideally timed and optimized for collaborative study of electron beams escaping the Sun.

  8. Mission Analysis Program for Solar Electric Propulsion (MAPSEP). Volume 3: Program manual for earth orbital MAPSEP

    NASA Technical Reports Server (NTRS)

    1975-01-01

    A revised user's manual for the computer program MAPSEP is presented. Major changes from the interplanetary version of MAPSEP are summarized. The changes are intended to provide a basic capability to analyze anticipated solar electric missions, and a foundation for future more complex, modifications. For Vol. III, N75-16589.

  9. Observations of interactions between interplanetary and geomagnetic fields

    NASA Technical Reports Server (NTRS)

    Burch, J. L.

    1973-01-01

    Magnetospheric effects associated with variations of the north-south component of the interplanetary magnetic field are examined in light of recent recent experimental and theoretical results. Although the occurrence of magnetospheric substorms is statistically related to periods of southward interplanetary magnetic field, the details of the interaction are not understood. In particular, attempts to separate effects resulting directly from the interaction between the interplanetary and geomagnetic fields from those associated with substorms have produced conflicting results. The transfer of magnetic flux from the dayside to the nightside magnetosphere is evidenced by equatorward motion of the polar cusp and increases of the magnetic energy density in the lobes of the geomagnetic tail. The formation of a macroscopic X-type neutral line at tail distances less than 35 R sub E appears to be a substorm phenomenon.

  10. Interplanetary type II radio bursts and their association with CMEs and flares

    NASA Astrophysics Data System (ADS)

    Shanmugaraju, A.; Suresh, K.; Vasanth, V.; Selvarani, G.; Umapathy, S.

    2018-06-01

    We study the characteristics of the CMEs and their association with the end-frequency of interplanetary (IP)-type-II bursts by analyzing a set of 138 events (IP-type-II bursts-flares-CMEs) observed during the period 1997-2012. The present analysis consider only the type II bursts having starting frequency < 14 MHz to avoid the extension of coronal type IIs. The selected events are classified into three groups depending on the end-frequency of type IIs as follows, (A) Higher, (B) Intermediate and (C) Lower end-frequency. We compare characteristics of CMEs, flares and type II burst for the three selected groups of events and report some of the important differences. The observed height of CMEs is compared with the height of IP type IIs estimated using the electron density models. By applying a density multiplier (m) to this model, the density has been constrained both in the upper corona and in the interplanetary medium, respectively as m= 1 to 10 and m = 1 to 3. This study indicates that there is a correlation between the observed CME height and estimated type II height for groups B and C events whereas this correlation is absent in group A. In all the groups (A, B & C), the different heights of CMEs and type II reveal that the type IIs are not only observed at the nose but also at the flank of the CMEs.

  11. Geomagnetic response of interplanetary coronal mass ejections in the Earth's magnetosphere

    NASA Astrophysics Data System (ADS)

    Badruddin; Mustajab, F.; Derouich, M.

    2018-05-01

    A coronal mass ejections (CME) is the huge mass of plasma with embedded magnetic field ejected abruptly from the Sun. These CMEs propagate into interplanetary space with different speed. Some of them hit the Earth's magnetosphere and create many types of disturbances; one of them is the disturbance in the geomagnetic field. Individual geomagnetic disturbances differ not only in their magnitudes, but the nature of disturbance is also different. It is, therefore, desirable to understand these differences not only to understand the physics of geomagnetic disturbances but also to understand the properties of solar/interplanetary structures producing these disturbances of different magnitude and nature. In this work, we use the spacecraft measurements of CMEs with distinct magnetic properties propagating in the interplanetary space and generating disturbances of different levels and nature. We utilize their distinct plasma and field properties to search for the interplanetary parameter(s) playing important role in influencing the geomagnetic response of different coronal mass ejections.

  12. MAGNETIC FIELD-LINE LENGTHS IN INTERPLANETARY CORONAL MASS EJECTIONS INFERRED FROM ENERGETIC ELECTRON EVENTS

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kahler, S. W.; Haggerty, D. K.; Richardson, I. G., E-mail: AFRL.RVB.PA@hanscom.af.mil

    About one quarter of the observed interplanetary coronal mass ejections (ICMEs) are characterized by enhanced magnetic fields that smoothly rotate in direction over timescales of about 10-50 hr. These ICMEs have the appearance of magnetic flux ropes and are known as 'magnetic clouds' (MCs). The total lengths of MC field lines can be determined using solar energetic particles of known speeds when the solar release times and the 1 AU onset times of the particles are known. A recent examination of about 30 near-relativistic (NR) electron events in and near 8 MCs showed no obvious indication that the field-line lengthsmore » were longest near the MC boundaries and shortest at the MC axes or outside the MCs, contrary to the expectations for a flux rope. Here we use the impulsive beamed NR electron events observed with the Electron Proton and Alpha Monitor instrument on the Advanced Composition Explorer spacecraft and type III radio bursts observed on the Wind spacecraft to determine the field-line lengths inside ICMEs included in the catalog of Richardson and Cane. In particular, we extend this technique to ICMEs that are not MCs and compare the field-line lengths inside MCs and non-MC ICMEs with those in the ambient solar wind outside the ICMEs. No significant differences of field-line lengths are found among MCs, ICMEs, and the ambient solar wind. The estimated number of ICME field-line turns is generally smaller than those deduced for flux-rope model fits to MCs. We also find cases in which the electron injections occur in solar active regions (ARs) distant from the source ARs of the ICMEs, supporting CME models that require extensive coronal magnetic reconnection with surrounding fields. The field-line lengths are found to be statistically longer for the NR electron events classified as ramps and interpreted as shock injections somewhat delayed from the type III bursts. The path lengths of the remaining spike and pulse electron events are compared with model calculations of solar wind field-line lengths resulting from turbulence and found to be in good agreement.« less

  13. Magnetic Field-Line Lengths in Interplanetary Coronal Mass Ejections Inferred from Energetic Electron Events

    NASA Technical Reports Server (NTRS)

    Kahler, S. W.; Haggerty, D. K.; Richardson, I. G.

    2011-01-01

    About one quarter of the observed interplanetary coronal mass ejections (ICMEs) are characterized by enhanced magnetic fields that smoothly rotate in direction over timescales of about 10-50 hr. These ICMEs have the appearance of magnetic flux ropes and are known as "magnetic clouds" (MCs). The total lengths of MC field lines can be determined using solar energetic particles of known speeds when the solar release times and the I AU onset times of the particles are known. A recent examination of about 30 near-relativistic (NR) electron events in and near 8 MCs showed no obvious indication that the field-line lengths were longest near the MC boundaries and shortest at the MC axes or outside the MCs, contrary to the expectations for a flux rope. Here we use the impulsive beamed NR electron events observed with the Electron Proton and Alpha Monitor instrument on the Advanced Composition Explorer spacecraft and type III radio bursts observed on the Wind spacecraft to determine the field-line lengths inside ICMEs included in the catalog of Richardson & Cane. In particular, we extend this technique to ICMEs that are not MCs and compare the field-line lengths inside MCs and non-MC ICMEs with those in the ambient solar wind outside the ICMEs. No significant differences of field-line lengths are found among MCs, ICMEs, and the ambient solar wind. The estimated number of ICME field-line turns is generally smaller than those deduced for flux-rope model fits to MCs. We also find cases in which the electron injections occur in solar active regions CARs) distant from the source ARs of the ICMEs, supporting CME models that require extensive coronal magnetic reconnection with surrounding fields. The field-line lengths are found to be statistically longer for the NR electron events classified as ramps and interpreted as shock injections somewhat delayed from the type III bursts. The path lengths of the remaining spike and pulse electron events are compared with model calculations of solar wind field-line lengths resulting from turbulence and found to be in good agreement.

  14. Correlation of electron path lengths observed in the highly wound outer region of magnetic clouds with the slab fraction of magnetic turbulence in the dissipation range

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tan, Lun C.; Shao, Xi; Reames, Donald V.

    2014-05-10

    Three magnetic cloud events, in which solar impulsive electron events occurred in their outer region, are employed to investigate the difference of path lengths L {sub 0eIII} traveled by non-relativistic electrons from their release site near the Sun to the observer at 1 AU, where L {sub 0eIII} = v {sub l} × (t {sub l} – t {sub III}), v {sub l} and t {sub l} being the velocity and arrival time of electrons in the lowest energy channel (∼27 keV) of the Wind/3DP/SST sensor, respectively, and t {sub III} being the onset time of type III radio bursts.more » The deduced L {sub 0eIII} value ranges from 1.3 to 3.3 AU. Since a negligible interplanetary scattering level can be seen in both L {sub 0eIII} > 3 AU and ∼1.2 AU events, the difference in L {sub 0eIII} could be linked to the turbulence geometry (slab or two-dimensional) in the solar wind. By using the Wind/MFI magnetic field data with a time resolution of 92 ms, we examine the turbulence geometry in the dissipation range. In our examination, ∼6 minutes of sampled subintervals are used in order to improve time resolution. We have found that, in the transverse turbulence, the observed slab fraction is increased with an increasing L {sub 0eIII} value, reaching ∼100% in the L {sub 0eIII} > 3 AU event. Our observation implies that when only the slab spectral component exists, magnetic flux tubes (magnetic surfaces) are closed and regular for a very long distance along the transport route of particles.« less

  15. Circumsolar Energetic Particle Distribution on 2011 November 3

    NASA Astrophysics Data System (ADS)

    Gómez-Herrero, R.; Dresing, N.; Klassen, A.; Heber, B.; Lario, D.; Agueda, N.; Malandraki, O. E.; Blanco, J. J.; Rodríguez-Pacheco, J.; Banjac, S.

    2015-01-01

    Late on 2011 November 3, STEREO-A, STEREO-B, MESSENGER, and near-Earth spacecraft observed an energetic particle flux enhancement. Based on the analysis of in situ plasma and particle observations, their correlation with remote sensing observations, and an interplanetary transport model, we conclude that the particle increases observed at multiple locations had a common single-source active region and the energetic particles filled a very broad region around the Sun. The active region was located at the solar backside (as seen from Earth) and was the source of a large flare, a fast and wide coronal mass ejection, and an EIT wave, accompanied by type II and type III radio emission. In contrast to previous solar energetic particle events showing broad longitudinal spread, this event showed clear particle anisotropies at three widely separated observation points at 1 AU, suggesting direct particle injection close to the magnetic footpoint of each spacecraft, lasting for several hours. We discuss these observations and the possible scenarios explaining the extremely broad particle spread for this event.

  16. A New View of the Origin of the Solar Wind

    NASA Technical Reports Server (NTRS)

    Woo, Richard; Habbal, Shadia Rifai

    1999-01-01

    This paper uses white-light measurements made by the SOHO LASCO coronagraph and HAO Mauna Loa Mk III K-coronameter to illustrate the new view of solar wind structure deduced originally from radio occultation measurements. It is shown that the density profile closest to the Sun at 1.15 Ro, representing the imprint of the Sun, is carried essentially radially into interplanetary space by small-scale raylike structures that permeate the solar corona and which have only been observed by radio occultation measurements. The only exception is the small volume of interplanetary space occupied by the heliospheric plasma sheet that evolves from coronal streamers within a few solar radii of the Sun. The radial preservation of the density profile also implies that a significant fraction of field lines which extend into interplanetary space originate from the quiet Sun, and are indistinguishable in character from those emanating from polar coronal holes. The white-light measurements dispel the long-held belief that the boundaries of polar coronal holes diverge significantly, and further support the view originally proposed that the fast solar wind originates from the quiet Sun as well as polar coronal holes.

  17. Does magnetic storm generation depend on the solar wind type?

    NASA Astrophysics Data System (ADS)

    Nikolaeva, N. S.; Yermolaev, Yu. I.; Lodkina, I. G.; Yermolaev, M. Yu.

    2017-09-01

    The purpose of this work is to draw the reader's attention to the problem of possible differences in the generation of magnetic storms by different large-scale solar wind types: corotating interaction regions (CIRs), Sheaths, and interplanetary coronal mass ejections (ICMEs), including magnetic clouds (MCs) and Ejecta. We recently showed that the description of relationships between interplanetary conditions and Dst and Dst* indices with the modified formula by Burton et al. gives an 50% higher efficiency of storm generation by Sheath and CIR than that by ICME. Many function couplings (FCs) between different interplanetary parameters and the magnetosphere state have been suggested in the literature; however, they have not been analyzed for different solar wind types. In this work, we study the generation efficiency of the main phase of a storm by different solar wind streams with the use of 12 FCs on the basis of OMNI data for 1976-2000. The results show that the Sheath has the highest efficiency for most FCs, and MC is the least efficient, and this result corresponds to our previous results. The reliability of the results and possible causes of differences for different FCs and solar wind types are to be studied further.

  18. The influence of the energy emitted by solar flare soft X-ray bursts on the propagation of their associated interplanetary shock waves

    NASA Technical Reports Server (NTRS)

    Pinter, S.; Dryer, M.

    1985-01-01

    The relationship between the thermal energy released from 29 solar flares and the propagation features of their associated interplanetary shock waves that were detected at 1 AU is investigated. The 29 interplanetary shock waves were identified unambiguously and their tracking from each solar flare was deduced by tracking their associated interplanetary type-II radio emission. The thermal energy released in the solar flares was estimated from the time-intensity profiles of 1-8 A soft X-ray bursts from each flare. A good relationship is found between the flares' thermal energy with the IP shock-waves' transient velocity and arrival time at the earth - that is, the largest flare energy released is associated with the faster shock waves. Finally, a possible scenario of formation of a shock wave during the early phase of the flare and its propagation features is discussed.

  19. Mars Observer/Transfer Orbit Stage (TOS)

    NASA Technical Reports Server (NTRS)

    1992-01-01

    In the Payload Hazardous Servicing Facility, the integrated Mars Observer/Transfer Orbit Stage (TOS) payload is ready for encapsulation in the Titan III nose fairing. The TOS booster maiden flight was dedicated to Thomas O. Paine, a former NASA administrator who strongly supported interplanetary exploration and was an early backer of the TOS program. Launched September 25, 1992 from the Kennedy Space Flight Center aboard a Titan III rocket and the TOS, the Mars Observer spacecraft was to be the first U.S. spacecraft to study Mars since the Viking missions 18 years prior. Unfortunately, the Mars Observer spacecraft fell silent just 3 days prior to entering orbit around Mars.

  20. Space Science

    NASA Image and Video Library

    1992-08-13

    In the Payload Hazardous Servicing Facility, the integrated Mars Observer/Transfer Orbit Stage (TOS) payload is ready for encapsulation in the Titan III nose fairing. The TOS booster maiden flight was dedicated to Thomas O. Paine, a former NASA administrator who strongly supported interplanetary exploration and was an early backer of the TOS program. Launched September 25, 1992 from the Kennedy Space Flight Center aboard a Titan III rocket and the TOS, the Mars Observer spacecraft was to be the first U.S. spacecraft to study Mars since the Viking missions 18 years prior. Unfortunately, the Mars Observer spacecraft fell silent just 3 days prior to entering orbit around Mars.

  1. Common origin of kinetic scale turbulence and the electron halo in the solar wind – Connection to nanoflares

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Che, Haihong; Goddard Space Flight Center, NASA, Greenbelt, MD, 20771

    2016-03-25

    We summarize our recent studies on the origin of solar wind kinetic scale turbulence and electron halo in the electron velocity distribution function. Increasing observations of nanoflares and microscopic type III radio bursts strongly suggest that nanoflares and accelerated electron beams are common in the corona. Based on particle-in-cell simulations, we show that both the core-halo feature and kinetic scale turbulence observed in the solar wind can be produced by the nonlinear evolution of electron two-stream instability driven by nanoflare accelerated electron beams. The energy exchange between waves and particles reaches equilibrium in the inner corona and the key featuresmore » of the turbulence and velocity distribution are preserved as the solar wind escapes into interplanetary space along open magnetic field lines. Observational tests of the model and future theoretical work are discussed.« less

  2. Ion Ramp Structure of Bow shocks and Interplanetary Shocks: Differences and Similarities

    NASA Astrophysics Data System (ADS)

    Goncharov, O.; Safrankova, J.; Nemecek, Z.; Koval, A.; Szabo, A.; Prech, L.; Zastenker, G. N.; Riazantseva, M.

    2017-12-01

    Collisionless shocks play a significant role in the solar wind interaction with the Earth. Fast forward shocks driven by coronal mass ejections or by interaction of fast and slow solar wind streams can be encountered in the interplanetary space, whereas the bow shock is a standing fast reverse shock formed by an interaction of the supersonic solar wind with the Earth magnetic field. Both types of shocks are responsible for a transformation of a part of the energy of the directed solar wind motion to plasma heating and to acceleration of reflected particles to high energies. These processes are closely related to the shock front structure. In present paper, we compares the analysis of low-Mach number fast forward interplanetary shocks registered in the solar wind by the DSCOVR, WIND, and ACE with observations of bow shock crossings observed by the Cluster, THEMIS, MMS, and Spektr-R spacecraft. An application of the high-time resolution data facilitates further discussion on formation mechanisms of both types of shocks.

  3. The flare origin of Forbush decreases not associated with solar flares on the visible hemisphere of the Sun

    NASA Technical Reports Server (NTRS)

    Iucci, N.; Parisi, M.; Signorini, C.; Storini, M.; Villoresi, G.

    1985-01-01

    Investigations have shown that Forbush decreases (Fds) are produced by the propagation into the interplanetary space of a strong perturbation originating from a solar flare (Sf) accompanied by Type IV radioemission. As the front of the perturbation propagates into the interplanetary space, the region in which the galactic cosmic rays are modulated (Fd-modulated region) rotates westward with the Sun and is generally included between two boundary streams; therefore the Fds not associated with observed type IV Sfs (N.Ass.Fds) are likely to be produced by type IV Sfs occurred on the Sun's backside: these vents can be observed when the Earth crosses the corotating Western boundary of the modulated region.

  4. The flare origin of Forbush decreases not associated with solar flares on the visible hemisphere of the Sun

    NASA Astrophysics Data System (ADS)

    Iucci, N.; Parisi, M.; Signorini, C.; Storini, M.; Villoresi, G.

    1985-08-01

    Investigations have shown that Forbush decreases (Fds) are produced by the propagation into the interplanetary space of a strong perturbation originating from a solar flare (Sf) accompanied by Type IV radioemission. As the front of the perturbation propagates into the interplanetary space, the region in which the galactic cosmic rays are modulated (Fd-modulated region) rotates westward with the Sun and is generally included between two boundary streams; therefore the Fds not associated with observed type IV Sfs (N.Ass.Fds) are likely to be produced by type IV Sfs occurred on the Sun's backside: these vents can be observed when the Earth crosses the corotating Western boundary of the modulated region.

  5. Operational, Real-Time, Sun-to-Earth Interplanetary Shock Predictions During Solar Cycle 23

    NASA Astrophysics Data System (ADS)

    Fry, C. D.; Dryer, M.; Sun, W.; Deehr, C. S.; Smith, Z.; Akasofu, S.

    2002-05-01

    We report on our progress in predicting interplanetary shock arrival time (SAT) in real-time, using three forecast models: the Hakamada-Akasofu-Fry (HAF) modified kinematic model, the Interplanetary Shock Propagation Model (ISPM) and the Shock Time of Arrival (STOA) model. These models are run concurrently to provide real-time predictions of the arrival time at Earth of interplanetary shocks caused by solar events. These "fearless forecasts" are the first, and presently only, publicly distributed predictions of SAT and are undergoing quantitative evaluation for operational utility and scientific benchmarking. All three models predict SAT, but the HAF model also provides a global view of the propagation of interplanetary shocks through the pre-existing, non-uniform heliospheric structure. This allows the forecaster to track the propagation of the shock and to differentiate between shocks caused by solar events and those associated with co-rotating interaction regions (CIRs). This study includes 173 events during the period February, 1997 to October, 2000. Shock predictions were compared with spacecraft observations at the L1 location to determine how well the models perform. Sixty-eight shocks were observed at L1 within 120 hours of an event. We concluded that 6 of these observed shocks were caused by CIRs, and the remainder were caused by solar events. The forecast skill of the models are presented in terms of RMS errors, contingency tables and skill scores commonly used by the weather forecasting community. The false alarm rate for HAF was higher than for ISPM or STOA but much lower than for predictions based upon empirical studies or climatology. Of the parameters used to characterize a shock source at the Sun, the initial speed of the coronal shock, as represented by the observed metric type II speed, has the largest influence on the predicted SAT. We also found that HAF model predictions based upon type II speed are generally better for shocks originating from sites near central meridian, and worse for limb events. This tendency suggests that the observed type II speed is more representative of the interplanetary shock speed for events occurring near central meridian. In particular, the type II speed appears to underestimate the actual Earth-directed IP shock speed when the source of the event is near the limb. Several of the most interesting events (Bastille Day epoch (2000), April Fools Day epoch (2001))will be discussed in more detail with the use of real-time animations.

  6. Coronal Mass Ejection-driven Shocks and the Associated Sudden Commencements-sudden Impulses

    NASA Technical Reports Server (NTRS)

    Veenadhari, B.; Selvakumaran, R.; Singh, Rajesh; Maurya, Ajeet K.; Gopalswamy, N.; Kumar, Sushil; Kikuchi, T.

    2012-01-01

    Interplanetary (IP) shocks are mainly responsible for the sudden compression of the magnetosphere, causing storm sudden commencement (SC) and sudden impulses (SIs) which are detected by ground-based magnetometers. On the basis of the list of 222 IP shocks compiled by Gopalswamy et al., we have investigated the dependence of SC/SIs amplitudes on the speed of the coronal mass ejections (CMEs) that drive the shocks near the Sun as well as in the interplanetary medium. We find that about 91% of the IP shocks were associated with SC/SIs. The average speed of the SC/SI-associated CMEs is 1015 km/s, which is almost a factor of 2 higher than the general CME speed. When the shocks were grouped according to their ability to produce type II radio burst in the interplanetary medium, we find that the radio-loud (RL) shocks produce a much larger SC/SI amplitude (average approx. 32 nT) compared to the radio-quiet (RQ) shocks (average approx. 19 nT). Clearly, RL shocks are more effective in producing SC/SIs than the RQ shocks. We also divided the IP shocks according to the type of IP counterpart of interplanetary CMEs (ICMEs): magnetic clouds (MCs) and nonmagnetic clouds. We find that the MC-associated shock speeds are better correlated with SC/SI amplitudes than those associated with non-MC ejecta. The SC/SI amplitudes are also higher for MCs than ejecta. Our results show that RL and RQ type of shocks are important parameters in producing the SC/SI amplitude.

  7. Analysis of the Organic Matter in Interplanetary Dust Particles: Clues to the Organic Matter in Comets, Asteroids, and Interstellar Grains

    NASA Technical Reports Server (NTRS)

    Flynn, G. J.; Keller, L. P.

    2003-01-01

    Reflection spectroscopy suggests the C- , P-, and D-types of asteroids contain abundant carbon, but these Vis-nearIR spectra are featureless, providing no information on the type(s) of carbonaceous matter. Infrared spectroscopy demonstrates that organic carbon is a significant component in comets and as grains or grain coatings in the interstellar medium. Most of the interplanetary dust particles (IDPs) recovered from the Earth s stratosphere are believed to be fragments from asteroids or comets, thus characterization of the carbon in IDPs provides the opportunity to determine the type(s) and abundance of organic matter in asteroids and comets. Some IDPs exhibit isotopic excesses of D and N-15, indicating the presence of interstellar material. The characterization of the carbon in these IDPs, and particularly any carbon spatially associated with the isotopic anomalies, provides the opportunity to characterize interstellar organic matter.

  8. Statistical study of interplanetary condition effect on geomagnetic storms: 2. Variations of parameters

    NASA Astrophysics Data System (ADS)

    Yermolaev, Yu. I.; Lodkina, I. G.; Nikolaeva, N. S.; Yermolaev, M. Yu.

    2011-02-01

    We investigate the behavior of mean values of the solar wind’s and interplanetary magnetic field’s (IMF) parameters and their absolute and relative variations during the magnetic storms generated by various types of the solar wind. In this paper, which is a continuation of paper [1], we, on the basis of the OMNI data archive for the period of 1976-2000, have analyzed 798 geomagnetic storms with D st ≤ -50 nT and their interplanetary sources: corotating interaction regions CIR, compression regions Sheath before the interplanetary CMEs; magnetic clouds MC; “Pistons” Ejecta, and an uncertain type of a source. For the analysis the double superposed epoch analysis method was used, in which the instants of the magnetic storm onset and the minimum of the D st index were taken as reference times. It is shown that the set of interplanetary sources of magnetic storms can be sub-divided into two basic groups according to their slowly and fast varying characteristics: (1) ICME (MC and Ejecta) and (2) CIR and Sheath. The mean values, the absolute and relative variations in MC and Ejecta for all parameters appeared to be either mean or lower than the mean value (the mean values of the electric field E y and of the B z component of IMF are higher in absolute value), while in CIR and Sheath they are higher than the mean value. High values of the relative density variation sN/< N> are observed in MC. At the same time, the high values for relative variations of the velocity, B z component, and IMF magnitude are observed in Sheath and CIR. No noticeable distinctions in the relationships between considered parameters for moderate and strong magnetic storms were observed.

  9. Mariner 9 propulsion subsystem performance during interplanetary cruise and Mars orbit insertion

    NASA Technical Reports Server (NTRS)

    Cork, M. J.; French, R. L.; Leising, C. J.; Schmit, D. D.

    1972-01-01

    On 14 November 1971 the Mariner 9 1334-N-(300-lbf)-thrust rocket engine was fired for just over 15 min to place the first man-made satellite into orbit about Mars. Propulsion subsystem data gathered during the 5-month interplanetary cruise and orbit insertion are of significance to future missions of this type. Specific results related to performance predictability, zero g heat transfer, and nitrogen permeation, diffusion, and solubility values are presented.

  10. Galactic cosmic ray radiation levels in spacecraft on interplanetary missions

    NASA Technical Reports Server (NTRS)

    Shinn, J. L.; Nealy, J. E.; Townsend, L. W.; Wilson, J. W.; Wood, J.S.

    1994-01-01

    Using the Langley Research Center Galactic Cosmic Ray (GCR) transport computer code (HZETRN) and the Computerized Anatomical Man (CAM) model, crew radiation levels inside manned spacecraft on interplanetary missions are estimated. These radiation-level estimates include particle fluxes, LET (Linear Energy Transfer) spectra, absorbed dose, and dose equivalent within various organs of interest in GCR protection studies. Changes in these radiation levels resulting from the use of various different types of shield materials are presented.

  11. Interplanetary Magnetic Field Guiding Relativistic Particles

    NASA Technical Reports Server (NTRS)

    Masson, S.; Demoulin, P.; Dasso, S.; Klein, K. L.

    2011-01-01

    The origin and the propagation of relativistic solar particles (0.5 to few Ge V) in the interplanetary medium remains a debated topic. These relativistic particles, detected at the Earth by neutron monitors have been previously accelerated close to the Sun and are guided by the interplanetary magnetic field (IMF) lines, connecting the acceleration site and the Earth. Usually, the nominal Parker spiral is considered for ensuring the magnetic connection to the Earth. However, in most GLEs the IMF is highly disturbed, and the active regions associated to the GLEs are not always located close to the solar footprint of the nominal Parker spiral. A possible explanation is that relativistic particles are propagating in transient magnetic structures, such as Interplanetary Coronal Mass Ejections (ICMEs). In order to check this interpretation, we studied in detail the interplanetary medium where the particles propagate for 10 GLEs of the last solar cycle. Using the magnetic field and the plasma parameter measurements (ACE/MAG and ACE/SWEPAM), we found widely different IMF configurations. In an independent approach we develop and apply an improved method of the velocity dispersion analysis to energetic protons measured by SoHO/ERNE. We determined the effective path length and the solar release time of protons from these data and also combined them with the neutron monitor data. We found that in most of the GLEs, protons propagate in transient magnetic structures. Moreover, the comparison between the interplanetary magnetic structure and the interplanetary length suggest that the timing of particle arrival at Earth is dominantly determined by the type of IMF in which high energetic particles are propagating. Finally we find that these energetic protons are not significantly scattered during their transport to Earth.

  12. Unipolar induction in the magnetosphere

    NASA Technical Reports Server (NTRS)

    Stern, D. P.

    1972-01-01

    A theory is described for the production of electric currents in the magnetosphere and for the transfer of energy from the solar wind to the magnetosphere. Assuming that the magnetosheath has ohmic-type conduction properties, it is shown that unipolar induction can energize several current flows, explaining the correlation of the east-west component of the interplanetary magnetic field with polar electric fields and polar magnetic variations. In the tail region, unipolar induction can account for effects correlated with the north-south component of the interplanetary magnetic field.

  13. The Origin of Organic Matter in the Solar System: Evidence from Interplanetary Dust Particles

    NASA Technical Reports Server (NTRS)

    Flynn, G. J.; Keller, L. P.; Jacobsen, C.; Wirick, S.

    2001-01-01

    The origin of the organic matter in interplanetary materials has not been established. A variety of mechanisms have been proposed, with two extreme cases being a Fisher-Tropsch type process operating in the gas phase of the solar nebula or a Miller-Urey type process, which requires interaction with an aqueous fluid, presumably occurring on an asteroid. In the Fisher-Tropsch case, we might expect similar organic matter in hydrated and anhydrous interplanetary materials. However, aqueous alteration is required in the case of the Miller-Urey process, and we would expect to see organic matter preferentially in interplanetary materials that exhibit evidence of aqueous activity, such as the presence of hydrated silicates. The types and abundance of organic matter in meteorites have been used as an indicator of the origin of organic matter in the Solar System. Indigenous complex organic matter, including amino acids, has been found in hydrated carbonaceous chondrite meteorites, such as Murchison. Much lower amounts of complex organic matter, possibly only terrestrial contamination, have been found in anhydrous carbonaceous chondrite meteorites, such as Allende, that contain most of their carbon in elemental form. These results seem to favor production of the bulk of the organic matter in the Solar System by aqueous processing on parent bodies such as asteroids, a Miller-Urey process. However, the hydrated carbonaceous chondrite meteorites have approximately solar abundances of the moderately volatile elements, while all anhydrous carbonaceous chondrite meteorites have significantly lower contents of these moderately volatile elements. Two mechanisms, incomplete condensation or evaporation, both of which involve processing at approx. 1200 C, have been suggested to explain the lower content of the moderately volatile elements in all anhydrous meteorites. Additional information is contained in the original extended abstract.

  14. Interplanetary dust. [survey of last four years' research

    NASA Technical Reports Server (NTRS)

    Brownlee, D. E.

    1979-01-01

    Progress in the study of interplanetary dust during the past four years is reviewed. Attention is given to determinations of the relative contributions of interstellar dust grains, collisional debris from the asteroid belt and short-period comets to the interplanetary dust cloud. Effects of radiation pressure and collisions on particle dynamics are discussed, noting the discovery of the variation of the orbital parameters of dust particles at 1 AU with size and in situ measurements of dust density between 0.3 and 5 AU by the Helios and Pioneer spacecraft. The interpretation of the zodiacal light as produced by porous absorbing particles 10 to 100 microns in size is noted, and measurements of the Doppler shift, light-producing-particle density, UV spectrum, photometric axis and angular scattering function of the zodiacal light are reported. Results of analyses of lunar rock microcraters as to micrometeoroid density, flux rate, size distribution and composition are indicated and interplanetary dust particles collected from the stratosphere are discussed. Findings concerning the composition of fragile meteoroid types found as cosmic spherules in deep sea sediments are also presented.

  15. Observations of a Small Interplanetary Magnetic Flux Rope Opening by Interchange Reconnection

    NASA Astrophysics Data System (ADS)

    Wang, J. M.; Feng, H. Q.; Zhao, G. Q.

    2018-01-01

    Interchange reconnection, specifically magnetic reconnection between open magnetic fields and closed magnetic flux ropes, plays a major role in the heliospheric magnetic flux budget. It is generally accepted that closed magnetic field lines of interplanetary magnetic flux ropes (IMFRs) can gradually open through reconnection between one of its legs and other open field lines until no closed field lines are left to contribute flux to the heliosphere. In this paper, we report an IMFR associated with a magnetic reconnection exhaust, whereby its closed field lines were opening by a magnetic reconnection event near 1 au. The reconnection exhaust and the following IMFR were observed on 2002 February 2 by both the Wind and ACE spacecraft. Observations on counterstreaming suprathermal electrons revealed that most magnetic field lines of the IMFR were closed, especially those after the front boundary of the IMFR, with both ends connected to the Sun. The unidirectional suprathermal electron strahls before the exhaust manifested the magnetic field lines observed before the exhaust was open. These observations provide direct evidence that closed field lines of IMFRs can be opened by interchange reconnection in interplanetary space. This is the first report of the closed field lines of IMFRs being opened by interchange reconnection in interplanetary space. This type of interplanetary interchange reconnection may pose important implications for balancing the heliospheric flux budget.

  16. The Sun and the Solar Wind Close to the Sun

    NASA Technical Reports Server (NTRS)

    Suess, Steven T.

    1998-01-01

    One of the benefits from the Ulysses, SOHO, and YOHKOH missions has been a strong stimulus to better understand the magnetohydrodynamic processes involved in coronal expansion. Three topics for which this has been especially true are described here. These are: (i) The observed constancy of the radial interplanetary magnetic field strength (as mapped to constant radius). (ii) The geometric spreading of coronal plumes and coronal holes, and the fate of plumes. (iii) The plasma Beta in streamers and the physics of streamer confinement.

  17. Erratum to "Solar Sources and Geospace Consequences of Interplanetary Magnetic Clouds Observed During Solar Cycle 23-Paper 1" [J. Atmos. Sol.-Terr. Phys. 70(2-4) (2008) 245-253

    NASA Technical Reports Server (NTRS)

    Gopalswamy, N.; Akiyama, S.; Yashiro, S.; Michalek, G.; Lepping, R. P.

    2009-01-01

    One of the figures (Fig. 4) in "Solar sources and geospace consequences of interplanetary magnetic Clouds observed during solar cycle 23 -- Paper 1" by Gopalswamy et al. (2008, JASTP, Vol. 70, Issues 2-4, February 2008, pp. 245-253) is incorrect because of a software error in t he routine that was used to make the plot. The source positions of various magnetic cloud (MC) types are therefore not plotted correctly.

  18. Time-dependent radiation dose estimations during interplanetary space flights

    NASA Astrophysics Data System (ADS)

    Dobynde, M. I.; Shprits, Y.; Drozdov, A.

    2015-12-01

    Time-dependent radiation dose estimations during interplanetary space flights 1,2Dobynde M.I., 2,3Drozdov A.Y., 2,4Shprits Y.Y.1Skolkovo institute of science and technology, Moscow, Russia 2University of California Los Angeles, Los Angeles, USA 3Lomonosov Moscow State University Skobeltsyn Institute of Nuclear Physics, Moscow, Russia4Massachusetts Institute of Technology, Cambridge, USASpace radiation is the main restriction for long-term interplanetary space missions. It induces degradation of external components and propagates inside providing damage to internal environment. Space radiation particles and induced secondary particle showers can lead to variety of damage to astronauts in short- and long- term perspective. Contribution of two main sources of space radiation- Sun and out-of-heliosphere space varies in time in opposite phase due to the solar activity state. Currently the only habituated mission is the international interplanetary station that flights on the low Earth orbit. Besides station shell astronauts are protected with the Earth magnetosphere- a natural shield that prevents significant damage for all humanity. Current progress in space exploration tends to lead humanity out of magnetosphere bounds. With the current study we make estimations of spacecraft parameters and astronauts damage for long-term interplanetary flights. Applying time dependent model of GCR spectra and data on SEP spectra we show the time dependence of the radiation in a human phantom inside the shielding capsule. We pay attention to the shielding capsule design, looking for an optimal geometry parameters and materials. Different types of particles affect differently on the human providing more or less harm to the tissues. Incident particles provide a large amount of secondary particles while propagating through the shielding capsule. We make an attempt to find an optimal combination of shielding capsule parameters, namely material and thickness, that will effectively decrease the incident particle energy, at the same time minimizing flow of secondary induced particles and minimizing most harmful particle types flows.

  19. Radio triangulation - mapping the 3D position of the solar radio emission

    NASA Astrophysics Data System (ADS)

    Magdalenic, Jasmina

    2016-04-01

    Understanding the relative position of the sources of the radio emission and the associated solar eruptive phenomena (CME and the associated shock wave) has always been a challenge. While ground-based radio interferometer observations provide us with the 2D position information for the radio emission originating from the low corona (up to 2.5 Ro), this is not the case for the radio emission originating at larger heights. The radio triangulation measurements (also referred to as direction-finding or goniopolarimetric measurements) from two or more widely separated spacecraft can provide information on the 3D positions of the sources of the radio emission. This type of interplanetary radio observations are currently performed by STEREO WAVES and WIND WAVES instruments, providing a unique possibility for up to three simultaneous radio triangulations (using up to three different pairs of spacecraft). The recent results of the radio triangulation studies bring new insight into the causal relationship of the solar radio emission and CMEs. In this presentation I will discuss some of the most intriguing results on the source positions of: a) type III radio bursts indicating propagation of the fast electrons accelerated along the open field lines, b) type II radio bursts indicating interaction of the CME-driven shocks and other coronal structures e.g. streamers and c) type IV-like radio bursts possibly associated with CME-CME interaction.

  20. Evidence of a primordial solar wind. [T Tauri-type evolution model

    NASA Technical Reports Server (NTRS)

    Sonett, C. P.

    1974-01-01

    A model is reviewed which requires a T Tauri 'wind' and at the same time encompasses certain early-object stellar features. The theory rests on electromagnetic induction driven by the 'wind'. Plasma confinement of the induced field prohibits a scattered field, and all energy loss is via ohmic heating in the scatterer (i.e., planetary objects). Two modes, one caused by the interplanetary electric field (transverse magnetic) and the other by time variations in the interplanetary magnetic field (transverse electric) are present. Parent body melting, lunar surface melting, and a primordial magnetic field are components of the proposed model.

  1. Dynamics of Large-Scale Solar-Wind Streams Obtained by the Double Superposed Epoch Analysis: 2. Comparisons of CIRs vs. Sheaths and MCs vs. Ejecta

    NASA Astrophysics Data System (ADS)

    Yermolaev, Y. I.; Lodkina, I. G.; Nikolaeva, N. S.; Yermolaev, M. Y.

    2017-12-01

    This work is a continuation of our previous article (Yermolaev et al. in J. Geophys. Res. 120, 7094, 2015), which describes the average temporal profiles of interplanetary plasma and field parameters in large-scale solar-wind (SW) streams: corotating interaction regions (CIRs), interplanetary coronal mass ejections (ICMEs including both magnetic clouds (MCs) and ejecta), and sheaths as well as interplanetary shocks (ISs). As in the previous article, we use the data of the OMNI database, our catalog of large-scale solar-wind phenomena during 1976 - 2000 (Yermolaev et al. in Cosmic Res., 47, 2, 81, 2009) and the method of double superposed epoch analysis (Yermolaev et al. in Ann. Geophys., 28, 2177, 2010a). We rescale the duration of all types of structures in such a way that the beginnings and endings for all of them coincide. We present new detailed results comparing pair phenomena: 1) both types of compression regions ( i.e. CIRs vs. sheaths) and 2) both types of ICMEs (MCs vs. ejecta). The obtained data allow us to suggest that the formation of the two types of compression regions responds to the same physical mechanism, regardless of the type of piston (high-speed stream (HSS) or ICME); the differences are connected to the geometry ( i.e. the angle between the speed gradient in front of the piston and the satellite trajectory) and the jumps in speed at the edges of the compression regions. In our opinion, one of the possible reasons behind the observed differences in the parameters in MCs and ejecta is that when ejecta are observed, the satellite passes farther from the nose of the area of ICME than when MCs are observed.

  2. Energetic Particle Propagation in the Inner Heliosphere as Deduced from Low Frequency (less than 100 kHz) Observations of Type III Radio Bursts

    NASA Technical Reports Server (NTRS)

    Cane, H. V.; Erickson, W. C.

    2003-01-01

    Solar energetic particle (SEP) events are well-associated with solar flares. It is observed that the delay between the time of the flare and the first-arriving particles at a spacecraft increases with increasing difference between the flare longitude and the footpoint of the field line on which the spacecraft is located. This difference we call the "connection angle" and can be as large as approximately 120 deg. Recently it has been found that all SEP events are preceded by type III radio bursts. These bursts are plasma emission caused by the propagation of 2-50 keV flare electrons through the solar corona and into the solar wind. The drift of these type III radio bursts to lower and lower frequencies enables the propagation of the flare electrons to be traced from the Sun to about 1 AU. We have made an extensive analysis of the type III bursts associated with greater than 20 MeV proton events and find that, in most cases, the radio emission extends to the local plasma frequency when the energetic particles arrive within a few hours of the flare. We conclude that this emission at the lowest possible frequency is generated close to the spacecraft. We then use the time from when the burst started at the Sun to when it reached the local plasma frequency to infer the time it took the radio producing electrons to travel to the spacecraft. We find that these delay times are organized by the connection angle and correlate with the proton delay times. We also find that the differences between the radio delays at Wind and Ulysses are matched by differences in the relative arrival times of the energetic particles at the two spacecraft. The consistent timing between the relative arrival times of energetic electrons and protons and the start of the lowest frequency radio emissions suggests that the first arriving particles of both species are accelerated as part of the flare process and that they propagate to the spacecraft along trajectories similar to those of the lower energy flare electrons. To be detected by observers at locations distant from the nominal field lines originating in the flaring regions the particles must undergo lateral transport. The continuity of the radio bursts suggests that the cross-field transport may occur in the interplanetary medium.

  3. Sources of Ionizing Radiation in Interplanetary Space

    NASA Image and Video Library

    2013-05-30

    This illustration depicts the two main types of radiation that NASA Radiation Assessment Detector RAD onboard Curiosity monitors, and how the magnetic field around Earth affects the radiation in space near Earth.

  4. Coronal electron stream and Langmuir wave detection inside a propagation channel at 4.3 AU

    NASA Technical Reports Server (NTRS)

    Buttighoffer, A.; Pick, M.; Roelof, E. C.; Hoang, S.; Mangeney, A.; Lanzerotti, L. J.; Forsyth, R. J.; Phillips, J. L.

    1995-01-01

    Observations of an energetic interplanetary electron event associated with the production of Langmuir waves, both of which are identified at 4.3 AU by instruments on the Ulysses spacecraft, are presented in this paper. This electron event propagates inside a well-defined magnetic structure. The existence of this structure is firmly established by joint particle and plasma observations made by Ulysses instruments. Its local estimated radial width is of the order of 2.3 x 10(exp 7) km (0.15 AU). The electron beam is associated with a type III burst observed from Earth at high frequencies and at low frequencies from Ulysses in association with Langmuir waves detected inside the structure. The consistency of local (Ulysses) and remote (Earth) observations in terms of temporal and geometrical considerations establishes that the structure is anchored in the solar corona near the solar active region responisble for the observed type III emission and gives an accurate determination of the injection time for the observed electron beam. Propagation analysis of the electron event is presented. In order to quantify the magnetic field properties, a variance analysis has been performed and is presented in this paper. The analysis establishes that inside the structure the amount of magnetic energy involved in the fluctuations is less than 4% of the total magnetic energy; the minimal variance direction is well defined and in coincidence with the direction of the mean magnetic field. This configuration may produce conditions favorable for scatter free streaming of energetic electrons and/or Langmuir wave production. The results presented show that the magnetic field might play a role in stabilizing the coronal-origin plasma structures and then preserving them to large, approximately 4 AU, distances in the heliosphere.

  5. First Test of Stochastic Growth Theory for Langmuir Waves in Earth's Foreshock

    NASA Technical Reports Server (NTRS)

    Cairns, Iver H.; Robinson, P. A.

    1997-01-01

    This paper presents the first test of whether stochastic growth theory (SGT) can explain the detailed characteristics of Langmuir-like waves in Earth's foreshock. A period with unusually constant solar wind magnetic field is analyzed. The observed distributions P(logE) of wave fields E for two intervals with relatively constant spacecraft location (DIFF) are shown to agree well with the fundamental prediction of SGT, that P(logE) is Gaussian in log E. This stochastic growth can be accounted for semi-quantitatively in terms of standard foreshock beam parameters and a model developed for interplanetary type III bursts. Averaged over the entire period with large variations in DIFF, the P(logE) distribution is a power-law with index approximately -1; this is interpreted in terms of convolution of intrinsic, spatially varying P(logE) distributions with a probability function describing ISEE's residence time at a given DIFF. Wave data from this interval thus provide good observational evidence that SGT can sometimes explain the clumping, burstiness, persistence, and highly variable fields of the foreshock Langmuir-like waves.

  6. First test of stochastic growth theory for Langmuir waves in Earth's foreshock

    NASA Astrophysics Data System (ADS)

    Cairns, Iver H.; Robinson, P. A.

    This paper presents the first test of whether stochastic growth theory (SGT) can explain the detailed characteristics of Langmuir-like waves in Earth's foreshock. A period with unusually constant solar wind magnetic field is analyzed. The observed distributions P(log E) of wave fields E for two intervals with relatively constant spacecraft location (DIFF) are shown to agree well with the fundamental prediction of SGT, that P(log E) is Gaussian in log E. This stochastic growth can be accounted for semi-quantitatively in terms of standard foreshock beam parameters and a model developed for interplanetary type III bursts. Averaged over the entire period with large variations in DIFF, the P(log E) distribution is a power-law with index ˜ -1 this is interpreted in terms of convolution of intrinsic, spatially varying P(log E) distributions with a probability function describing ISEE's residence time at a given DIFF. Wave data from this interval thus provide good observational evidence that SGT can sometimes explain the clumping, burstiness, persistence, and highly variable fields of the foreshock Langmuir-like waves.

  7. Magnetohydrodynamic Modelling of Interplanetary Disturbances between the Sun and Earth.

    DTIC Science & Technology

    1982-12-21

    Physical Sciences, University Paul Sabatier de Toulouse, Toulouse, France. 7. Smart, D. F., Garrett, H.B., and Shea, M.A. (1980) The prediction of AE, ap...Ii, r uti fistur’V.1 v:, Ins it th.V salt.’c moat ions. I’ho basic pat zlainc,’ti’ sonir t inA volo.’it v is il’iii’, i hr l I linu !i o3 is a...Engendrees par des Eruptions Solaires, PhD thesis in Physical Sciences, University Paul Sabatier de Toulouse, Toulouse, France. 7. Smart, D. F. , Garrett, H. B

  8. Automated thin-film analyses of anhydrous interplanetary dust particles in the analytical electron microscope

    NASA Technical Reports Server (NTRS)

    Bradley, J. P.; Germani, M. S.; Brownlee, D. E.

    1989-01-01

    An AEM apparatus equipped with digital beam control has obtained quantitative point-count analyses of thin sections taken from eight anhydrous chondritic interplanetary dust particles (IDPs); between 200 and 500 X-ray analyses were collected from each thin section and analyzed for Mg, Al, Si, S, Ca, Cr, Mn, Fe, and Ni. Two types of anhydrous chondritic aggregates were observed in the eight IDPs: one highly porous, the other less so. The eight anhydrous IDPs are characterizable as mixtures of fine- and coarse-grained aggregates, large mineral grains, glass, and carbonaceous materials. Their elemental concentrations follow those of solar abundances, suggesting that they are unperturbed by aqueous alteration.

  9. Unmanned planetary spacecraft chemical rocket propulsion.

    NASA Technical Reports Server (NTRS)

    Burlage, H., Jr.; Gin, W.; Riebling, R. W.

    1972-01-01

    Review of some chemical propulsion technology advances suitable for future unmanned spacecraft applications. Discussed system varieties include liquid space-storable propulsion systems, advanced liquid monopropellant systems, liquid systems for rendezvous and landing applications, and low-thrust high-performance solid-propellant systems, as well as hybrid space-storable systems. To optimize the performance and operational characteristics of an unmanned interplanetary spacecraft for a particular mission, and to achieve high cost effectiveness of the entire system, it is shown to be essential that the type of spacecraft propulsion system to be used matches, as closely as possible the various requirements and constraints. The systems discussed are deemed to be the most promising candidates for some of the anticipated interplanetary missions.

  10. Variations of the Electron Fluxes in the Terrestrial Radiation Belts Due To the Impact of Corotating Interaction Regions and Interplanetary Coronal Mass Ejections

    NASA Astrophysics Data System (ADS)

    Benacquista, R.; Boscher, D.; Rochel, S.; Maget, V.

    2018-02-01

    In this paper, we study the variations of the radiation belts electron fluxes induced by the interaction of two types of solar wind structures with the Earth magnetosphere: the corotating interaction regions and the interplanetary coronal mass ejections. We use a statistical method based on the comparison of the preevent and postevent fluxes. Applied to the National Oceanic and Atmospheric Administration-Polar Operational Environmental Satellites data, this gives us the opportunity to extend previous studies focused on relativistic electrons at geosynchronous orbit. We enlighten how corotating interaction regions and Interplanetary Coronal Mass Ejections can impact differently the electron belts depending on the energy and the L shell. In addition, we provide a new insight concerning these variations by considering their amplitude. Finally, we show strong relations between the intensity of the magnetic storms related to the events and the variation of the flux. These relations concern both the capacity of the events to increase the flux and the deepness of these increases.

  11. An electrodynamic model of electric currents and magnetic fields in the dayside ionosphere of Venus

    NASA Technical Reports Server (NTRS)

    Cloutier, P. A.; Tascione, T. F.; Danieli, R. E., Jr.

    1981-01-01

    The electric current configuration induced in the ionosphere of Venus by the interaction of the solar wind has been calculated in previous papers (Cloutier and Daniell, 1973; Daniell and Cloutier, 1977; Cloutier and Daniell, 1979) for average steady-state solar wind conditions and interplanetary magnetic field. This model is generalized to include the effects of (1) plasma depletion and magnetic field enhancement near the ionopause, (2) velocity-shear-induced MHD instabilities of the Kelvin-Helmholtz type within the ionosphere, and (3) variations in solar wind parameters and interplanetary magnetic field. It is shown that the magnetic field configuration resulting from the model varies in response to changes in solar wind and interplanetary field conditions, and that these variations produce magnetic field profiles in excellent agreement with those seen by the Pioneer-Venus Orbiter. The formation of flux-ropes by the Kelving-Helmholtz instability is shown to be a natural consequence of the model, with the spatial distribution and size of the flux-ropes determined by the magnetic Reynolds number.

  12. Interplanetary Physics Laboratory (IPL): A concept for an interplanetary mission in the mid-eighties

    NASA Technical Reports Server (NTRS)

    Burlaga, L. F.; Ogilvie, K. W.; Feldman, W.

    1977-01-01

    A concept for a near-earth interplanetary mission in the mid-eighties is described. The proposed objectives would be to determine the composition of the interplanetary constituents and its dependence on source-conditions and to investigate energy and momentum transfer processes in the interplanetary medium. Such a mission would accomplish three secondary objectives: (1) provide a baseline for deep space missions, (2) investigate variations of the solar wind with solar activity, and (3) provide input functions for magnetospheric studies.

  13. Large-scale structures of solar wind and dynamics of parameters in them

    NASA Astrophysics Data System (ADS)

    Yermolaev, Yuri; Lodkina, Irina; Yermolaev, Michael

    2017-04-01

    On the basis of OMNI dataset and our catalog of large-scale solar wind (SW) phenomena (see web-site ftp://ftp.iki.rssi.ru/pub/omni/ and paper by Yermolaev et al., 2009) we study temporal profile of interplanetary and magnetospheric parameters in following SW phenomena: interplanetary manifestation of coronal mass ejection (ICME) including magnetic cloud (MC) and Ejecta, Sheath—compression region before ICME and corotating interaction region (CIR)—compression region before high-speed stream (HSS) of solar wind. To take into account a possible influence of other SW types, following sequences of phenomena, which include all typical sequences of non-stationary SW events, are analyzed: (1) SW/ CIR/ SW, (2) SW/ IS/ CIR/ SW, (3) SW/ Ejecta/ SW, (4) SW/ Sheath/Ejecta/ SW, (5) SW/ IS/ Sheath/ Ejecta/ SW, (6) SW/ MC/ SW, (7) SW/Sheath/ MC/ SW, (8) SW/ IS/ Sheath/ MC/ SW (where SW is undisturbed solar wind, and IS is interplanetary shock) (Yermolaev et al., 2015) using the method of double superposed epoch analysis for large numbers of events (Yermolaev et al., 2010). Similarities and distinctions of different SW phenomena depending on neighboring SW types and their geoeffectiveness are discussed. The work was supported by the Russian Science Foundation, projects 16-12-10062. References: Yermolaev, Yu. I., N. S. Nikolaeva, I. G. Lodkina, and M. Yu. Yermolaev (2009), Catalog of Large-Scale Solar Wind Phenomena during 1976-2000, Cosmic Research, , Vol. 47, No. 2, pp. 81-94. Yermolaev, Y. I., N. S. Nikolaeva, I. G. Lodkina, and M. Y. Yermolaev (2010), Specific interplanetary conditions for CIR-induced, Sheath-induced, and ICME-induced geomagnetic storms obtained by double superposed epoch analysis, Ann. Geophys., 28, pp. 2177-2186. Yermolaev, Yu. I., I. G. Lodkina, N. S. Nikolaeva, and M. Yu. Yermolaev (2015), Dynamics of large-scale solar wind streams obtained by the double superposed epoch analysis, J. Geophys. Res. Space Physics, 120, doi:10.1002/2015JA021274.

  14. Interplanetary field and plasma during initial phase of geomagnetic storms

    NASA Technical Reports Server (NTRS)

    Patel, V. L.; Wiskerchen, M. J.

    1975-01-01

    A study has been conducted of a large number of geomagnetic storms occurring during the period from 1966 to 1970. Questions of data selection are discussed and the large-scale interplanetary magnetic field during the initial phase is examined. Small-scale interplanetary fields during the initial phase are also considered, taking into account important features of small-scale variations in the interplanetary field and plasma for three storms. Details concerning 23 geomagnetic storms and the interplanetary magnetic field are presented in a table. A study of the initial phase of these storms indicates that in most of these events, the solar-ecliptic Z component of the interplanetary magnetic field turns southward when the main phase decrease begins.

  15. Large-scale properties of the interplanetary magnetic field

    NASA Technical Reports Server (NTRS)

    Schatten, K. H.

    1972-01-01

    Early theoretical work of Parker is presented along with the observational evidence supporting his Archimedes spiral model. Variations present in the interplanetary magnetic field from the spiral angle are related to structures in the solar wind. The causes of these structures are found to be either nonuniform radial solar wind flow or the time evolution of the photospheric field. Coronal magnetic models are related to the connection between the solar magnetic field and the interplanetary magnetic field. Direct extension of the solar field-magnetic nozzle controversy is discussed along with the coronal magnetic models. Effects of active regions on the interplanetary magnetic field is discussed with particular reference to the evolution of interplanetary sectors. Interplanetary magnetic field magnitude variations are shown throughout the solar cycle. The percentage of time the field magnitude is greater than 10 gamma is shown to closely parallel sunspot number. The sun's polar field influence on the interplanetary field and alternative views of the magnetic field structure out of the ecliptic plane are presented. In addition, a variety of significantly different interplanetary field structures are discussed.

  16. RELATIONSHIPs among Geomagnetic storms, interplanetary shocks, magnetic clouds, and SUNSPOT NUMBER during 1995-2012

    NASA Astrophysics Data System (ADS)

    Berdichevsky, D. B.; Lepping, R. P.; Wu, C. C.

    2015-12-01

    During 1995-2012 Wind recorded 168 magnetic clouds (MCs), 197 magnetic cloud-like structures (MCLs), and 358 interplanetary (IP) shocks. Ninety four MCs and 56 MCLs had upstream shock waves. The following features are found: (i) Averages of solar wind speed, interplanetary magnetic field (IMF), duration (<Δt>), strength of Bzmin, and intensity of the associated geomagnetic storm/activity (Dstmin) for MCs with upstream shock waves (MCSHOCK) are higher (or stronger) than those averages for the MCs without upstream shock waves (MCNO-SHOCK). (ii) The <Δt> of MCSHOCK events (≈19.6 hr) is 9% longer than that for MCNO-SHOCK events (≈17.9 hr). (iii) For the MCSHOCK events, the average duration of the sheath (<ΔtSHEATH>) is 12.1 hrs. These findings could be very useful for space weather predictions, i.e. IP shocks driven by MCs are expected to arrive at Wind (or at 1 AU) about ~12 hours ahead of the front of the MCs on average. (iv) The occurrence frequency of IP shocks is well associated with sunspot number (SSN). The average intensity of geomagnetic storms measured by for MCSHOCK and MCNOSHOCK events is -102 and -31 nT, respectively. The is -78, -70, and -35 nT for the 358 IP shocks, 168 MCs, and 197 MCLs, respectively. These results imply that IP shocks, when they occur with MCs/MCLs, must play an important role in the strength of geomagnetic storms. We speculate as to why this is so. Yearly occurrence frequencies of MCSHOCK and IP shocks are well correlated with solar activity (e.g., SSN). Choosing the right Dstmin estimating formula for predicting the intensity of MC-associated geomagnetic storms is crucial for space weather predictions.

  17. The cometary and asteroidal origins of meteors

    NASA Technical Reports Server (NTRS)

    Kresak, L.

    1973-01-01

    A quantitative examination of the gravitational and nongravitational changes of orbits shows that for larger interplanetary bodies the perturbations by Jupiter strongly predominate over all other effects, which include perturbations by other planets, splitting of comet nuclei and jet effects of cometary ejections. The structure of meteor streams, indicates that the mutual compensation of the changes in individual elements entering the Jacobian integral, which is characteristic for the comets, does not work among the meteoroids. It appears that additional forces of a different kind must exert appreciable influence on the motion of interplanetary particles of meteoroid size. Nevertheless, the distribution of the Jacobian constant in various samples of meteor orbits furnishes some information on the type of their parent bodies and on the relative contribution of individual sources.

  18. Radio observations of interplanetary magnetic field structures out of the ecliptic

    NASA Technical Reports Server (NTRS)

    Fitzenreiter, R. J.; Fainberg, J.; Weber, R. R.; Alvarez, H.; Haddock, F. T.; Potter, W. H.

    1976-01-01

    New observations of the out-of-the ecliptic trajectories of type 3 solar radio bursts have been obtained from simultaneous direction finding measurements on two independent satellite experiments, IMP-6 with spin plane in the ecliptic, and RAE-2 with spin plane normal to the ecliptic. Burst exciter trajectories were observed which originated at the active region and then crossed the ecliptic plane at about 0.8 AU. A considerable large scale north-south component of the interplanetary magnetic field is followed by the exciters. The apparent north-south and east-west angular source sizes observed by the two spacecraft are approximately equal, and range from 25 deg at 600 KHz to 110 deg at 80 KHz.

  19. Dynamics of large-scale solar wind streams obtained by the double superposed epoch analysis

    NASA Astrophysics Data System (ADS)

    Yermolaev, Yu. I.; Lodkina, I. G.; Nikolaeva, N. S.; Yermolaev, M. Yu.

    2015-09-01

    Using the OMNI data for period 1976-2000, we investigate the temporal profiles of 20 plasma and field parameters in the disturbed large-scale types of solar wind (SW): corotating interaction regions (CIR), interplanetary coronal mass ejections (ICME) (both magnetic cloud (MC) and Ejecta), and Sheath as well as the interplanetary shock (IS). To take into account the different durations of SW types, we use the double superposed epoch analysis (DSEA) method: rescaling the duration of the interval for all types in such a manner that, respectively, beginning and end for all intervals of selected type coincide. As the analyzed SW types can interact with each other and change parameters as a result of such interaction, we investigate separately eights sequences of SW types: (1) CIR, (2) IS/CIR, (3) Ejecta, (4) Sheath/Ejecta, (5) IS/Sheath/Ejecta, (6) MC, (7) Sheath/MC, and (8) IS/Sheath/MC. The main conclusion is that the behavior of parameters in Sheath and in CIR are very similar both qualitatively and quantitatively. Both the high-speed stream (HSS) and the fast ICME play a role of pistons which push the plasma located ahead them. The increase of speed in HSS and ICME leads at first to formation of compression regions (CIR and Sheath, respectively) and then to IS. The occurrence of compression regions and IS increases the probability of growth of magnetospheric activity.

  20. Proceedings of the Symposium on the Study of the Sun and Interplanetary Medium in Three Dimensions. [space mission planning and interplanetary trajectories by NASA and ESA to better observe the sun and solar system

    NASA Technical Reports Server (NTRS)

    Fisk, L. A. (Editor); Axford, W. I. (Editor)

    1976-01-01

    A series of papers are presented from a symposium attended by over 200 European and American scientists to examine the importance of exploring the interplanetary medium and the sun by out-of-the-ecliptic space missions. The likely scientific returns of these missions in the areas of solar, interplanetary, and cosmic ray physics is examined. Theoretical models of the solar wind and its interaction with interplanetary magnetic fields are given.

  1. Comparison Between Path Lengths Traveled by Solar Electrons and Ions in Ground-Level Enhancement Events

    NASA Technical Reports Server (NTRS)

    Tan, Lun C.; Malandraki, Olga E.; Reames, Donald; NG, Chee K.; Wang, Linghua; Patsou, Ioanna; Papaioannou, Athanasios

    2013-01-01

    We have examined the Wind/3DP/SST electron and Wind/EPACT/LEMT ion data to investigate the path length difference between solar electrons and ions in the ground-level enhancement (GLE) events in solar cycle 23. Assuming that the onset time of metric type II or decameter-hectometric (DH) type III radio bursts is the solar release time of non-relativistic electrons, we have found that within an error range of plus or minus 10% the deduced path length of low-energy (approximately 27 keV) electrons from their release site near the Sun to the 1 AU observer is consistent with the ion path length deduced by Reames from the onset time analysis. In addition, the solar longitude distribution and IMF topology of the GLE events examined are in favor of the coronal mass ejection-driven shock acceleration origin of observed non-relativistic electrons.We have also found an increase of electron path lengths with increasing electron energies. The increasing rate of path lengths is correlated with the pitch angle distribution (PAD) of peak electron intensities locally measured, with a higher rate corresponding to a broader PAD. The correlation indicates that the path length enhancement is due to the interplanetary scattering experienced by first arriving electrons. The observed path length consistency implies that the maximum stable time of magnetic flux tubes, along which particles transport, could reach 4.8 hr.

  2. Differences in generation of magnetic storms driven by magnetic clouds, ejecta, sheath region before ICME and CIR

    NASA Astrophysics Data System (ADS)

    Nikolaeva, Nadezhda; Yermolaev, Yuri; Lodkina, Irina

    2016-07-01

    We investigate the efficiency of main phase storm generation by different solar wind (SW) streams when using 12 functions coupling (FC) various interplanetary parameters with magnetospheric state. By using our Catalog of Solar Wind Phenomena [Yermolaev et al., 2009] created on the basis of the OMNI database for 1976-2000, we selected the magnetic storms with Dst ≤ -50 nT for which interplanetary sources were following: MC (10 storms); Ejecta (31 storms); Sheath (21 storms); CIRs (31magnetic storms). To compare the interplanetary drivers we estimate an efficiency of magnetic storm generation by type of solar wind stream with using 12 coupling functions. We obtained that in average Sheath has more large efficiency of the magnetic storm generation and MC has more low efficiency in agreement with our previous results which show that by using a modification of formula by Burton et al. [1975] for connection of interplanetary conditions with Dst and Dst* indices the efficiency of storm generation by Sheath and CIR was ~50% higher than generation by ICME [Nikolaeva et al., 2013; 2015]. The most part of FCs has sufficiently high correlation coefficients. In particular the highest values of coefficients (~ 0.5 up to 0.63) are observed for Sheath- driven storms. In a small part of FCs with low coefficients it is necessary to increase the number of magnetic storms to increase the statistical significance of results. The reliability of the obtained data and possible reasons of divergences for various FCs and various SW types require further researches. The authors are grateful for the opportunity to use the OMNI database. This work was supported by the Russian Foundation for Basic Research, project 16-02-00125, and by Program of Presidium of the Russian Academy of Sciences. References: Nikolaeva, N. S., Y. I. Yermolaev, and I. G. Lodkina (2013), Modeling of Dst-index temporal profile on the main phase of the magnetic storms generated by different types of solar wind, Cosmic Res., 51 (6), 401-412. Nikolaeva, N. S., Y. I. Yermolaev, and I. G. Lodkina (2015), Modeling of the corrected Dst* index temporal profile on the main phase of the magnetic storms generated by different types of solar wind, Cosmic Res., 53(2), 119-127. Yermolaev, Yu. I., N. S. Nikolaeva, I. G. Lodkina, and M. Yu. Yermolaev (2009), Catalog of Large-Scale Solar Wind Phenomena during 1976-2000, Cosmic Research, 47(2), 81-94.

  3. Asynchronous Laser Transponders for Precise Interplanetary Ranging and Time Transfer

    NASA Technical Reports Server (NTRS)

    Degnan, John J.; Smith, David E. (Technical Monitor)

    2001-01-01

    The feasibility of a two-way asynchronous (i.e. independently firing) interplanetary laser transponder pair, capable of decimeter ranging and subnanosecond time transfer from Earth to a spacecraft anywhere within the inner Solar System, is discussed. In the Introduction, we briefly discuss the current state-of-the-art in Satellite Laser Ranging (SLR) and Lunar Laser Ranging (LLR) which use single-ended range measurements to a passive optical reflector, and the limitations of this approach in ranging beyond the Moon to the planets. In Section 2 of this paper, we describe two types of transponders (echo and asynchronous), introduce the transponder link equation and the concept of "balanced" transponders, describe how range and time can be transferred between terminals, and preview the potential advantages of photon counting asynchronous transponders for interplanetary applications. In Section 3, we discuss and provide mathematical models for the various sources of noise in an interplanetary transponder link including planetary albedo, solar or lunar illumination of the local atmosphere, and laser backscatter off the local atmosphere. In Section 4, we introduce the key engineering elements of an interplanetary laser transponder and develop an operational scenario for the acquisition and tracking of the opposite terminal. In Section 5, we use the theoretical models of th previous sections to perform an Earth-Mars link analysis over a full synodic period of 780 days under the simplifying assumption of coaxial, coplanar, circular orbits. We demonstrate that, using slightly modified versions of existing space and ground based laser systems, an Earth-Mars transponder link is not only feasible but quite robust. We also demonstrate through analysis the advantages and feasibility of compact, low output power (<300 mW photon-counting transponders using NASA's developmental SLR2000 satellite laser ranging system as the Earth terminal. Section 6 provides a summary of the results and some concluding remarks regarding future applications.

  4. A Flight Demonstration of Plasma Rocket Propulsion

    NASA Technical Reports Server (NTRS)

    Petro, Andrew; Chang-Diaz, Franklin; Schwenterly, WIlliam; Hitt, Michael; Lepore, Joseph

    2000-01-01

    The Advanced Space Propulsion Laboratory at the NASA Johnson Space Center has been engaged in the development of a variable specific impulse magnetoplasma rocket (V ASIMR) for several years. This type of rocket could be used in the future to propel interplanetary spacecraft and has the potential to open the entire solar system to human exploration. One feature of this propulsion technology is the ability to vary its specific impulse so that it can be operated in a mode that maximizes propellant efficiency or a mode that maximizes thrust. Variation of specific impulse and thrust enhances the ability to optimize interplanetary trajectories and results in shorter trip times and lower propellant requirements than with a fixed specific impulse. In its ultimate application for interplanetary travel, the VASIMR would be a multi-megawatt device. A much lower power system is being designed for demonstration in the 2004 timeframe. This first space demonstration would employ a lO-kilowatt thruster aboard a solar powered spacecraft in Earth orbit. The 1O-kilowatt V ASIMR demonstration unit would operate for a period of several months with hydrogen or deuterium propellant with a specific impulse of 10,000 seconds.

  5. On the source of flare-ejecta responsible for geomagnetic storms

    NASA Technical Reports Server (NTRS)

    Sakurai, K.

    1974-01-01

    It is shown that magnetic bottles as the sources of moving metric type 4 bursts are not responsible for the development of geomagnetic storms, despite the fact that shock waves producing type 2 bursts are the sources of the interplanetary shock waves, which produce SSC's on the geomagnetic field. These magnetic bottles, in general, tend to move in the solar envelope with the speed of several hundred Km/sec at most, which is much slower than that of the motion of type 2 radio sources.

  6. Study of Historical 4B/X17 Mega Flare on 28 October 2003 (P58)

    NASA Astrophysics Data System (ADS)

    Uddin, W.; Chandra, R.; Ali, S. S.

    2006-11-01

    wuddin_99@yahoo.com We analysed multi-wavelength data of 28 October 2003 4B/X17.2 class extremely energetic parallel ribbon solar flare, which occurred in NOAA 10486. The flare was well observed in H-alpha at ARIES, Nainital and various space (SOHO, TRACE, RHESSI, WIND etc.) and ground based Observatories. The H-alpha observations show the stretching/detwisting and eruption of helically twisted S shaped (sigmoid) filament in the South-West direction of the active region with bright shock front followed by rapid increase in intensity and area of the gigantic flare. The flare is associated with a bright/fast full halo earth directed CME, strong type II, III and IV radio bursts, an intense proton event and GLE. It seems that the filament eruption triggered the halo CME because the helical structure is clearly visible in the SOHO/LASCO C2, C3 images. This indicates helicity transfer from chromosphere to corona and interplanetary medium. The magnetic field of the flaring region was most complex with high magnetic shear. From the above analysis we feel that the energy buildup/release process of this unique flare support helically twisted magnetic flux rope model.

  7. The causes of geomagnetic storms during solar maximum

    NASA Technical Reports Server (NTRS)

    Tsurutani, Bruce T.; Gonzalez, Walter D.

    1994-01-01

    One of the oldest mysteries in geomagnetism is the linkage between solar and geomagnetic activity. In investigating the causes of geomagnetic storms occurring during solar maximum, the following topics are discussed: solar phenomena; types of solar wind; magnetic reconnection and magnetic storms; an interplanetary example; and future space physics missions.

  8. Global Optimization of Interplanetary Trajectories in the Presence of Realistic Mission Constraints

    NASA Technical Reports Server (NTRS)

    Hinckley, David; Englander, Jacob; Hitt, Darren

    2015-01-01

    Single trial evaluations Trial creation by Phase-wise GA-style or DE-inspired recombination Bin repository structure requires an initialization period Non-exclusionary Kill Distance Population collapse mechanic Main loop Creation Probabilistic switch between GA and DE creation types Locally optimize Submit to repository Repeat.

  9. The performance of differential VLBI delay during interplanetary cruise

    NASA Technical Reports Server (NTRS)

    Moultrie, B.; Wolff, P. J.; Taylor, T. H.

    1984-01-01

    Project Voyager radio metric data are used to evaluate the orbit determination abilities of several data strategies during spacecraft interplanetary cruise. Benchmark performance is established with an operational data strategy of conventional coherent doppler, coherent range, and explicitly differenced range data from two intercontinental baselines to ameliorate the low declination singularity of the doppler data. Employing a Voyager operations trajectory as a reference, the performance of the operational data strategy is compared to the performances of data strategies using differential VLBI delay data (spacecraft delay minus quasar delay) in combinations with the aforementioned conventional data types. The comparison of strategy performances indicates that high accuracy cruise orbit determination can be achieved with a data strategy employing differential VLBI delay data, where the quantity of coherent radio metric data has been greatly reduced.

  10. The spectral properties of interplanetary dust particles

    NASA Technical Reports Server (NTRS)

    Sandford, Scott A.

    1988-01-01

    The observed spectral and mineralogical properties of interplanetary dust particles (IDP) allows the conclusion that: (1) the majority of IDP infrared spectra are dominated by olivine, pyroxene, or layer lattice silicate minerals, (2) to the first order the emission spectra of comets Halley and Kohoutek can be matched by mixtures of these IDP infrared types, implying that comets contain mixtures of these different crystalline silicates and may vary from comet to comet and perhaps even within a single comet, (3) do not expect to observe a single 20 micron feature in cometary spectra, (4) carbonaceous materials dominate the visible spectra properties of the IDPs even though the mass in these particles consists primarily of silicates, and (5) the particle characteristics summarized need to be properly accounted for in future cometary emission models.

  11. Navigation and Guidance for Low-Thrust Trajectories, LOTNAV

    NASA Astrophysics Data System (ADS)

    Cano, J. L.; Bello, M.; Rodriguez-Canabal, J.

    A number of interplanetary low-thrust missions have already been flown by many space agencies. Examples of already flown missions based on the use of electric propulsion are Deep Space 1, Hayabusa and SMART-1. Many others are already in the assessment phase or in the development phase itself. In such perspective, it is required by the space agencies the procurement and utilisation of assessment tools for fast prototyping in the areas of mission design and navigation. The Low-Thrust Interplanetary Navigation Tool, which is the subject of this paper, allows the mission analyst performing such type of quick assessment studies for the early phases in the development of low-thrust missions. A number of test cases on low-thrust missions are also presented along with the utilities composing the LOTNAV tool.

  12. The Ionospheric Impact of an ICME-Driven Sheath Region Over Indian and American Sectors in the Absence of a Typical Geomagnetic Storm

    NASA Astrophysics Data System (ADS)

    Rout, Diptiranjan; Chakrabarty, D.; Sarkhel, S.; Sekar, R.; Fejer, B. G.; Reeves, G. D.; Kulkarni, Atul S.; Aponte, Nestor; Sulzer, Mike; Mathews, John D.; Kerr, Robert B.; Noto, John

    2018-05-01

    On 13 April 2013, the ACE spacecraft detected arrival of an interplanetary shock at 2250 UT, which is followed by the passage of the sheath region of an interplanetary coronal mass ejection (ICME) for a prolonged (18-hr) period. The polarity of interplanetary magnetic field Bz was northward inside the magnetic cloud region of the ICME. The ring current (SYM-H) index did not go below -7 nT during this event suggesting the absence of a typical geomagnetic storm. The responses of the global ionospheric electric field associated with the passage of the ICME sheath region have been investigated using incoherent scatter radar measurements of Jicamarca and Arecibo (postmidnight sector) along with the variations of equatorial electrojet strength over India (day sector). It is found that westward and eastward prompt penetration (PP) electric fields affected ionosphere over Jicamarca/Arecibo and Indian sectors, respectively, during 0545-0800 UT. The polarities of the PP electric field perturbations over the day/night sectors are consistent with model predictions. In fact, DP2-type electric field perturbations with ˜40-min periodicity are found to affect the ionosphere over both the sectors for about 2.25 hr during the passage of the ICME sheath region. This result shows that SYM-H index may not capture the full geoeffectivenss of the ICME sheath-driven storms and suggests that the PP electric field perturbations should be evaluated for geoeffectiveness of ICME when the polarity of interplanetary magnetic field Bz is northward inside the magnetic cloud region of the ICME.

  13. Interplanetary Program to Optimize Simulated Trajectories (IPOST). Volume 3: Programmer's manual

    NASA Technical Reports Server (NTRS)

    Hong, P. E.; Kent, P. D.; Olson, D. W.; Vallado, C. A.

    1992-01-01

    The Interplanetary Program to Optimize Space Trajectories (IPOST) is intended to support many analysis phases, from early interplanetary feasibility studies through spacecraft development and operations. Here, information is given on the IPOST code.

  14. The Origin of the Excess Near-Infrared Diffuse Sky Brightness: Population III Stars or Zodiacal Light?

    NASA Technical Reports Server (NTRS)

    Dwek, Eli

    2006-01-01

    The intensity of the diffuse 1 to 5 micron sky emission from which solar system and Galactic foregrounds have been subtracted is in excess of that expected from energy released by galaxies and stars that formed during the z < 5 redshift interval. The spectral signature of this excess near-infrared background light (NIRBL) component is almost identical to that of reflected sunlight from the interplanetary dust cloud, and could therefore be the result of the incomplete subtraction of this foreground emission component from the diffuse sky maps. Alternatively, this emission component could be extragalactic. Its spectral signature is consistent with that of redshifted continuum and recombination line emission from H-II regions formed by the first generation of very massive stars. In this talk I will present the implications of this excess emission for our understanding of the zodiacal dust cloud, the formation rate of Pop III stars, and the TeV gamma-ray opacity to nearby blazars.

  15. Dynamical Evolution of a Coronal Streamer-Flux Rope System: 2. A Self-Consistent Non-Planar Magnetohydrodynamic Simulation

    NASA Technical Reports Server (NTRS)

    Wu, S. T.; Guo, W. P.; Dryer, Murray

    1996-01-01

    The dynamical response of a helmet streamer to a flux rope escape from the sub-photosphere is examined in a physically self-consistent manner within the approximation of axisymmetric three-dimensional magnetohydrodynamics (i.e., so-called '2 1/2 D'). In contrast to the previous planar analyses of Paper 1 (Wu, Guo, and Wang), the present study shows, with the inclusion of out-of-plane components of magnetic and velocity fields, that the magnetic configuration represents a helical flux rope instead of a planar bubble as shown in Paper 1. Because of this more physically-realistic configuration, we are able to examine the dynamical evolution of the helical flux rope's interaction with the helmet streamer. This process leads to the formation of two parts of the solar mass ejection: (i) the expulsion of the helmet dome due to eruption of this flux rope, and (ii) the flux rope's eruption itself. When this two-part feature propagates out to the interplanetary space, it exhibits all the physical characteristics of observed interplanetary magnetic clouds. These numerical simulations also show that the dynamical behavior of the streamer-flux rope system has three distinct states: (i) quasi-equilibrium, (ii) non-equilibrium, and (iii) eruptive state depending on the energy level of the flux rope.

  16. Solar and interplanetary dynamics; Proceedings of the Symposium, Harvard University, Cambridge, Mass., August 27-31, 1979

    NASA Technical Reports Server (NTRS)

    Dryer, M. (Editor); Tandberg-Hanssen, E.

    1980-01-01

    The symposium focuses on solar phenomena as the source of transient events propagating through the solar system, and theoretical and observational assessments of the dynamic processes involved in these events. The topics discussed include the life history of coronal structures and fields, coronal and interplanetary responses to long time scale phenomena, solar transient phenomena affecting the corona and interplanetary medium, coronal and interplanetary responses to short time scale phenomena, and future directions.

  17. The "Approximate 150 Day Quasi-Periodicity" in Interplanetary and Solar Phenomena During Cycle 23

    NASA Technical Reports Server (NTRS)

    Richardson, I. G.; Cane, H. V.

    2004-01-01

    A"quasi-periodicity" of approx. 150 days in various solar and interplanetary phenomena has been reported in earlier solar cycles. We suggest that variations in the occurrence of solar energetic particle events, inter-planetary coronal mass ejections, and geomagnetic storm sudden commenceents during solar cycle 23 show evidence of this quasi-periodicity, which is also present in the sunspot number, in particular in the northern solar hemisphere. It is not, however, prominent in the interplanetary magnetic field strength.

  18. Genesis of Interplanetary Intermittent Turbulence: a Case Study of Rope-Rope Magnetic Reconnection

    NASA Technical Reports Server (NTRS)

    Chian, Abraham C.- L.; Feng, Heng Q.; Hu, Qiang; Loew, Murray H.; Miranda, Rodrigo A.; Munoz, Pablo R.; Sibeck, David G.; Wu, De J.

    2016-01-01

    In a recent paper, the relation between current sheet, magnetic reconnection, and turbulence at the leading edge of an interplanetary coronal mass ejection was studied. We report here the observation of magnetic reconnection at the interface region of two interplanetary magnetic flux ropes. The front and rear boundary layers of three interplanetary magnetic flux ropes are identified, and the structures of magnetic flux ropes are reconstructed by the Grad Shafranov method. A quantitative analysis of the reconnection condition and the degree of intermittency reveals that rope-rope magnetic reconnection is the most likely site for genesis of interplanetary intermittency turbulence in this event. The dynamic pressure pulse resulting from this reconnection triggers the onset of a geomagnetic storm.

  19. Chronic shin splints. Classification and management of medial tibial stress syndrome.

    PubMed

    Detmer, D E

    1986-01-01

    A clinical classification and treatment programme has been developed for chronic medial tibial stress syndrome. Medial tibial stress syndrome has been reported to be either tibial stress fracture or microfracture, tibial periostitis, or distal deep posterior chronic compartment syndrome. Three chronic types exist and may coexist: Type I (tibial microfracture, bone stress reaction or cortical fracture); type II (periostalgia from chronic avulsion of the periosteum at the periosteal-fascial junction); and type III (chronic compartment syndrome syndrome). Type I disease is treated nonoperatively. Operations for resistant types II and III medial tibial stress syndrome were performed in 41 patients. Bilaterality was common (type II, 50% type III, 88%). Seven had coexistent type II/III; one had type I/II. Preoperative symptoms averaged 24 months in type II, 6 months in type III, and 33 months in types II/III. Mean age was 22 years (15 to 51). Resting compartment pressures were normal in type II (mean 12 mm Hg) and elevated in type III and type II/III (mean 23 mm Hg). Type II and type II/III patients received fasciotomy plus periosteal cauterisation. Type III patients had fasciotomy only. All procedures were performed on an outpatient basis using local anaesthesia. Follow up was complete and averaged 6 months (2 to 14 months). Improved performance was as follows: type II, 93%, type III, 100%; type II/III, 86%. Complete cures were as follows: type II, 78%; type III, 75%; and type II/III, 57%. This experience suggests that with precise diagnosis and treatment involving minimal risk and cost the athlete has a reasonable chance of return to full activity.

  20. Interplanetary approach optical navigation with applications

    NASA Technical Reports Server (NTRS)

    Jerath, N.

    1978-01-01

    The use of optical data from onboard television cameras for the navigation of interplanetary spacecraft during the planet approach phase is investigated. Three optical data types were studied: the planet limb with auxiliary celestial references, the satellite-star, and the planet-star two-camera methods. Analysis and modelling issues related to the nature and information content of the optical methods were examined. Dynamic and measurement system modelling, data sequence design, measurement extraction, model estimation and orbit determination, as relating optical navigation, are discussed, and the various error sources were analyzed. The methodology developed was applied to the Mariner 9 and the Viking Mars missions. Navigation accuracies were evaluated at the control and knowledge points, with particular emphasis devoted to the combined use of radio and optical data. A parametric probability analysis technique was developed to evaluate navigation performance as a function of system reliabilities.

  1. Trajectory Browser: An Online Tool for Interplanetary Trajectory Analysis and Visualization

    NASA Technical Reports Server (NTRS)

    Foster, Cyrus James

    2013-01-01

    The trajectory browser is a web-based tool developed at the NASA Ames Research Center for finding preliminary trajectories to planetary bodies and for providing relevant launch date, time-of-flight and (Delta)V requirements. The site hosts a database of transfer trajectories from Earth to planets and small-bodies for various types of missions such as rendezvous, sample return or flybys. A search engine allows the user to find trajectories meeting desired constraints on the launch window, mission duration and (Delta)V capability, while a trajectory viewer tool allows the visualization of the heliocentric trajectory and the detailed mission itinerary. The anticipated user base of this tool consists primarily of scientists and engineers designing interplanetary missions in the context of pre-phase A studies, particularly for performing accessibility surveys to large populations of small-bodies.

  2. Small Spacecraft System-Level Design and Optimization for Interplanetary Trajectories

    NASA Technical Reports Server (NTRS)

    Spangelo, Sara; Dalle, Derek; Longmier, Ben

    2014-01-01

    The feasibility of an interplanetary mission for a CubeSat, a type of miniaturized spacecraft, that uses an emerging technology, the CubeSat Ambipolar Thruster (CAT) is investigated. CAT is a large delta-V propulsion system that uses a high-density plasma source that has been miniaturized for small spacecraft applications. An initial feasibility assessment that demonstrated escaping Low Earth Orbit (LEO) and achieving Earth-escape trajectories with a 3U CubeSat and this thruster technology was demonstrated in previous work. We examine a mission architecture with a trajectory that begins in Earth orbits such as LEO and Geostationary Earth Orbit (GEO) which escapes Earth orbit and travels to Mars, Jupiter, or Saturn. The goal was to minimize travel time to reach the destinations and considering trade-offs between spacecraft dry mass, fuel mass, and solar power array size. Sensitivities to spacecraft dry mass and available power are considered. CubeSats are extremely size, mass, and power constrained, and their subsystems are tightly coupled, limiting their performance potential. System-level modeling, simulation, and optimization approaches are necessary to find feasible and optimal operational solutions to ensure system-level interactions are modeled. Thus, propulsion, power/energy, attitude, and orbit transfer models are integrated to enable systems-level analysis and trades. The CAT technology broadens the possible missions achievable with small satellites. In particular, this technology enables more sophisticated maneuvers by small spacecraft such as polar orbit insertion from an equatorial orbit, LEO to GEO transfers, Earth-escape trajectories, and transfers to other interplanetary bodies. This work lays the groundwork for upcoming CubeSat launch opportunities and supports future development of interplanetary and constellation CubeSat and small satellite mission concepts.

  3. The pioneers of interplanetary communication: From Gauss to Tesla

    NASA Astrophysics Data System (ADS)

    Raulin-Cerceau, Florence

    2010-12-01

    The present overview covers the period from 1820 to the beginning of the 20th century. Emphasis is laid on the latter half of the 19th century because many efforts have been done at that time to elaborate schemes for contacting our neighboring planets by interplanetary telegraphy. This period knew many advances not only in planetary studies but also in the nascent field of telecommunications. Such a context led astronomers who were also interested in the problem of planetary habitability, to envisage that other planets could be contacted, especially the planet Mars. Interplanetary communication using a celestial telegraphy was planned during this period of great speculations about life on Mars. This paper focuses on four authors: the Frenchmen C. Flammarion, Ch. Cros, A. Mercier and the Serbian N. Tesla, who formulated early proposals to communicate with Mars or Venus. The first proposals (which remained only theoretical) showed that an initial reflection had started as early as the second part of the 19th century on the type of language that could be both universal and distinguishable from a natural signal. Literary history of interplanetary communication preceded by far the scientific one. Authors of the 1900s were very prolific on this topic. French fictions are mentioned in this paper as examples of such a literature. This incursion into selected texts stresses the fact that the problem of techniques and messages employed to communicate with other planets goes beyond the strict scientific framework. Finally, this paper aims to highlight the similarities as well as the differences between the different proposals and to underline what that could possibly help present SETI research to define messages supposed to be sent to other planetary systems.

  4. Influence of interplanetary magnetic field and solar wind on auroral brightness in different regions

    NASA Astrophysics Data System (ADS)

    Yang, Y. F.; Lu, J. Y.; Wang, J.-S.; Peng, Z.; Zhou, L.

    2013-01-01

    Abstract<p label="1">By integrating and averaging the auroral brightness from Polar Ultraviolet Imager auroral images, which have the whole auroral ovals, and combining the observation data of interplanetary magnetic field (IMF) and solar wind from NASA Operating Missions as a Node on the Internet (OMNI), we investigate the influence of IMF and solar wind on auroral activities, and analyze the separate roles of the solar wind dynamic pressure, density, and velocity on aurora, respectively. We statistically analyze the relations between the interplanetary conditions and the auroral brightness in dawnside, dayside, duskside, and nightside. It is found that the three components of the IMF have different effects on the auroral brightness in the different regions. Different from the nightside auroral brightness, the dawnside, dayside, and duskside auroral brightness are affected by the IMF Bx, and By components more significantly. The IMF Bx and By components have different effects on these three regional auroral brightness under the opposite polarities of the IMF Bz. As expected, the nightside aurora is mainly affected by the IMF Bz, and under southward IMF, the larger the |Bz|, the brighter the nightside aurora. The IMF Bx and By components have no visible effects. On the other hand, it is also found that the aurora is not intensified singly with the increase of the solar wind dynamic pressure: when only the dynamic pressure is high, but the solar wind velocity is not very fast, the aurora will not necessarily be intensified significantly. These results can be used to qualitatively predict the auroral activities in different regions for various interplanetary conditions.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.osti.gov/biblio/22660989-genesis-interplanetary-intermittent-turbulence-case-study-roperope-magnetic-reconnection','SCIGOV-STC'); return false;" href="https://www.osti.gov/biblio/22660989-genesis-interplanetary-intermittent-turbulence-case-study-roperope-magnetic-reconnection"><span>GENESIS OF INTERPLANETARY INTERMITTENT TURBULENCE: A CASE STUDY OF ROPE–ROPE MAGNETIC RECONNECTION</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.osti.gov/search">DOE Office of Scientific and Technical Information (OSTI.GOV)</a></p> <p>Chian, Abraham C.-L.; Loew, Murray H.; Feng, Heng Q.</p> <p></p> <p>In a recent paper, the relation between current sheet, magnetic reconnection, and turbulence at the leading edge of an interplanetary coronal mass ejection was studied. We report here the observation of magnetic reconnection at the interface region of two interplanetary magnetic flux ropes. The front and rear boundary layers of three interplanetary magnetic flux ropes are identified, and the structures of magnetic flux ropes are reconstructed by the Grad–Shafranov method. A quantitative analysis of the reconnection condition and the degree of intermittency reveals that rope–rope magnetic reconnection is the most likely site for genesis of interplanetary intermittency turbulence in this event.more » The dynamic pressure pulse resulting from this reconnection triggers the onset of a geomagnetic storm.« less</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2013AGUFMSM33A2155A','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2013AGUFMSM33A2155A"><span>Using ACE Observations of Interplanetary Particles and Magnetic Fields as Possible Contributors to Variations Observed at Van Allen Probes during Major events in 2013</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Armstrong, T. P.; Manweiler, J. W.; Gerrard, A. J.; Gkioulidou, M.; Lanzerotti, L. J.; Patterson, J. D.</p> <p>2013-12-01</p> <p>Observations from ACE EPAM including energy spectra of protons, helium, and oxygen will be prepared for coordinated use in estimating the direct and indirect access of energetic particles to inner and outer geomagnetic trapping zones. Complete temporal coverage from ACE at 12 seconds, 5 minutes, 17 minutes, hourly and daily cadences will be used to catalog interplanetary events arriving at Earth including interplanetary magnetic field sector boundaries, interplanetary shocks, and interplanetary coronal mass ejections, ICMEs. The first 6 months of 2013 have included both highly disturbed times, March 17 and May 22, and extended quiet periods of little or no variations. Among the specific questions that ACE and Van Allen Probes coordinated observations may aid in resolving are: 1. How much, if any, direct capture of interplanetary energetic particles occurs and what conditions account for it? 2. How much influence do interplanetary field and particle variations have on energization and/or loss of geomagnetically trapped populations? The poster will also present important links and describe methods and important details of access to numerically expressed ACE EPAM and Van Allen Probes RBSPICE observations that can be flexibly and easily accessed via the internet for student and senior researcher use.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2010cosp...38.3313M','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2010cosp...38.3313M"><span>Bacterial spore survival after exposure to HZE particle bombardment -implication for the lithopanspermia hypothesis.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Moeller, Ralf; Berger, Thomas; Matthiä, Daniel; Okayasu, Ryuichi; Kitamura, H.; Reitz, Guenther</p> <p></p> <p>Based on their unique resistance to various space parameters, bacterial spores (mainly spores of Bacillus subtilis) are one of the model systems used for astrobiological studies. More re-cently, spores of B. subtilis have been applied for experimental research on the likelihood of interplanetary transfer of life. Since its first postulation by Arrhenius in 1903, the pansper-mia hypothesis has been revisited many-times, e.g. after the discovery of several lunar and Martian meteorites on Earth [1,2]. These information provided intriguing evidence that rocks may naturally be transferred between the terrestrial planets. The scenario of panspermia, now termed "lithopanspermia" involves three basic hypothetical steps: (i) the escape process, i.e. removal to space of biological material, which has survived being lifted from the surface to high altitudes; (ii) interim state in space, i.e., survival of the biological material over time scales comparable with interplanetary or interstellar passage; (iii) the entry process, i.e. nondestruc-tive deposition of the biological material on another planet [2]. In our research, spores of B. subtilis were used to study the effects of galactic cosmic radiation on spore survival and induced mutations. On an interplanetary journey, outside a protective magnetic field, spore-containing rocks would be exposed to bombardment by high-energy charged particle radiation from galac-tic sources and from the sun. Air-dried spore layers on three different host materials (i.e., non-porous igneous rocks (gabbro), quartz, and spacecraft analog material (aluminum)) were irradiated with accelerated heavy ions (Helium and Iron) with a LET (linear energy transfer) ˆ of 2 and 200 keV/Am, at the Heavy Ion Medical Accelerator (HIMAC) at the National In-stitute of Radiological Sciences, (NIRS), Chiba, Japan in the frame of the HIMAC research project 20B463 "Characterization of heavy ion-induced damage in Bacillus subtilis spores and their global transcriptional response during spore germination" (Moeller et al., 2008 [3]). To simulate the interplanetary journey of a meteorite, stacks of spore-samples on gabbro slides in different depths were exposed. Spore survival and the rate of the induced mutations (i.e., sporulation-deficiency (Spo-)) depended on the LET of the applied species of ions as well as on the location (and depth) of the irradiated spores in the artificial meteorite. The exposure to high LET iron ions led to a low level of spore survival and increased frequency of mutation to Spo-compared to low-energy charged particles compared to the low LET helium ions. In order to obtain insights on the role of DNA repair by nonhomologous end joining (NHEJ), homologous recombination (HR) and apurinic/apyrimidinic (AP) endonucleases in B. subtilis spore resistance to high-energy charged particles has been studied in parallel. Spores deficient in NHEJ and AP endonucleases were significantly more sensitive to HZE particle bombardment than were the HR-mutant and wild-type spores, indicating that NHEJ and AP endonucleases provide DNA break repair pathways during spore germination. ((References: [1] Arrhenius, S. 1903. Die Verbreitung des Lebens im Weltenraum. Umschau 7:481-485.; [2] Nicholson, W. L. 2009. Ancient micronauts: interplanetary transport of microbes by cosmic impacts. Trends Mi-crobiol. 17:243-250.; [3] Moeller, R., P. Setlow, G. Horneck, T. Berger, G. Reitz, P. Rettberg, A. J. Doherty, R. Okayasu, and W. L. Nicholson. 2008. Roles of the major, small, acid-soluble spore proteins and spore-specific and universal DNA repair mechanisms in resistance of Bacillus subtilis spores to ionizing radiation from X-rays and high-energy charged-particle bombardment. J. Bacteriol. 190:1134-1140.))</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://ntrs.nasa.gov/search.jsp?R=19720033802&hterms=Particles&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D10%26Ntt%3DZ%2BParticles','NASA-TRS'); return false;" href="https://ntrs.nasa.gov/search.jsp?R=19720033802&hterms=Particles&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D10%26Ntt%3DZ%2BParticles"><span>Correlation of interplanetary-space B sub z field fluctuations and trapped-particle redistribution.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Parks, G. K.; Pellat, R.</p> <p>1972-01-01</p> <p>Observations of interplanetary magnetic field fluctuations in correlation with trapped particle fluctuations are discussed. From observations of particle-redistribution effects, properties of the magnetospheric electric field are derived. The obtained results suggest that the interplanetary B(sub z) field fluctuations might represent a strong driving source for particle diffusion.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.osti.gov/biblio/5477110-radio-scintillation-observations-interplanetary-disturbances','SCIGOV-STC'); return false;" href="https://www.osti.gov/biblio/5477110-radio-scintillation-observations-interplanetary-disturbances"><span>Radio-scintillation observations of interplanetary disturbances</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.osti.gov/search">DOE Office of Scientific and Technical Information (OSTI.GOV)</a></p> <p>Watanabe, T.; Kakinuma, T.</p> <p>1984-01-01</p> <p>Recent developments in the studies of interplanetary disturbances by scintillation techniques are briefly reviewed. The turbulent postshock region of an interplanetary disturbance produces transient enhancements in the scintillation level and the flow speed in many cases. An empirical method to determine three-dimensional angular distribution of the propagation speed of the disturbance on the basis of interplanetary scintillation measurements of postshock flow speeds is applied to 17 events which took place in 1978-1981. Among them, four representative examples, including two events which were associated with disappearing solar filaments, are described in detail. Several disturbances had oblate configurations the latitudinal extent ismore » smaller than the longitudinal extent. On the average, the angular distribution of the propagation speed at 1-AU heliocentric distance is quasi-isotropic over a longitudinal range of 100 deg centered at the normal of relevant solar phenomenon. The net excess mass and energy in an interplanetary disturbance associated with a disappearing solar filament can be comparable to those of an interplanetary disturbance associated with a large solar flare. 57 references.« less</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://ntrs.nasa.gov/search.jsp?R=20100026445&hterms=figueroa&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D30%26Ntt%3Dfigueroa','NASA-TRS'); return false;" href="https://ntrs.nasa.gov/search.jsp?R=20100026445&hterms=figueroa&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D30%26Ntt%3Dfigueroa"><span>Propagation and Evolution of CMEs in the Interplanetary Medium: Analysis of Remote Sensing and In situ Observations</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Figueroa-Vinas, Adolfo; Nieves-Chinchilla, Teresa; Vourlidas, Angelos; Gomez-Herrero, Raul; Malandraki, Olga; Szabo, Adam; Dresing, Nina; Davila, Joseph M.</p> <p>2010-01-01</p> <p>EUV disk imagers and white light coronagraphs have provided for many years information on the early formation and evolution of corona) mass ejections (CMEs). More recently, the novel heliospheric imaging instruments aboard the STEREO mission are providing crucial remote sensing information on the interplanetary evolution of these events while in situ instruments complete the overall characterization of the interplanetary CMEs. In this work, we present an analysis of CMEs from the Sun to the interplanetary medium using combined data from THE SOHO, STEREO, WIND, and ACE spacecraft. The events were selected to cover the widest possible spectrum of different ambient solar wind, magnetic field configurations, plasma parameters, etc. to allow uncovering those aspects that are important in understanding the propagation and evolution mechanisms of CMEs in the interplanetary medium.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://ntrs.nasa.gov/search.jsp?R=20070023320&hterms=mass+fraction&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D50%26Ntt%3Dmass%2Bfraction','NASA-TRS'); return false;" href="https://ntrs.nasa.gov/search.jsp?R=20070023320&hterms=mass+fraction&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D50%26Ntt%3Dmass%2Bfraction"><span>Interplanetary Coronal Mass Ejections During 1996 - 2007</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Richardson, I. G.; Cane, H. V.</p> <p>2007-01-01</p> <p>Interplanetary coronal mass ejections, the interplanetary counterparts of coronal mass ejections at the Sun, are the major drivers of interplanetary shocks in the heliosphere, and are associated with modulations of the galactic cosmic ray intensity, both short term (Forbush decreases caused by the passage of the shock, post-shock sheath, and ICME), and possibly with longer term modulation. Using several in-situ signatures of ICMEs, including plasma temperature, and composition, magnetic fields, and cosmic ray modulations, made by near-Earth spacecraft, we have compiled a "comprehensive" list of ICMEs passing the Earth since 1996, encompassing solar cycle 23. We summarize the properties of these ICMEs, such as their occurrence rate, speeds and other parameters, the fraction of ICMEs that are classic magnetic clouds, and their association with solar energetic particle events, halo CMEs, interplanetary shocks, geomagnetic storms, shocks and cosmic ray decreases.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2016cosp...41E1082K','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2016cosp...41E1082K"><span>Study of large Forbush decreases in cosmic-ray intensity observed during solar cycle 23 and 24</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Kumar, Anand; Badruddin, B.</p> <p>2016-07-01</p> <p>Neutron monitors at different geomagnetic latitude and longitude of Earth measure the cosmic-ray intensity with high precision. Sudden decreases in cosmic-ray intensity within few hours and slow recovery to pre-decrease level within a few days (Forbush decreases) are observed in neutron monitor data. We identify large-amplitude Forbush decreases (FDs), using high counting rate neutron monitor data, that occurred during previous solar cycle 23 (1995-2009) and current solar cycle 24 (2010-2015). We then search for the solar sources and the interplanetary structures responsible for these decreases. We attempt to find the relative importance of various interplanetary plasma and field parameters and the physical mechanism(s) responsible for FDs of varying amplitudes. We analyze a number of interplanetary plasma and field parameters, during both the phases (main and recovery) of FDs. The interplanetary plasma and field data analyzed in this study are the solar-wind velocity, the interplanetary magnetic field, its fluctuations, interplanetary electric field and the time variation of interplanetary electric potential. For monitoring the changes in interplanetary plasma/field conditions during the development of FDs, we also utilize plasma density, temperature and plasma beta, dynamic pressure and Mach number during the passage of interplanetary structures responsible for FDs. In addition to their amplitude, we study the recovery of FDs in detail after determining the time constant during their recovery by exponential fit to the data. As the solar magnetic polarity reversed during the maximum phase of solar cycle 23 (in the year 2000), we study the differences in amplitude, time constant of recovery and plasma/field condition to search for the polarity dependent effects, if any, on the amplitude and recovery of FDs due to implication for the models suggested to explain the Forbush decrease phenomena. The implications of these results are discussed.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2004ESASP.548..387B','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2004ESASP.548..387B"><span>ESOC's System for Interplanetary Orbit Determination: Implementation and Operational Experience</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Budnik, F.; Morley, T. A.; MacKenzie, R. A.</p> <p></p> <p>A system for interplanetary orbit determination has been developed at ESOC over the past six years. Today, the system is in place and has been proven to be both reliable and robust by successfully supporting critical operations of ESA's interplanetary spacecraft Rosetta, Mars Express, and SMART-1. To reach this stage a long and challenging way had to be travelled. This paper gives a digest about the journey from the development and testing to the operational use of ESOC's new interplanetary orbit determination system. It presents the capabilities and reflects experiences gained from the performed tests and tracking campaigns.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://hdl.handle.net/2060/20110022647','NASA-TRS'); return false;" href="http://hdl.handle.net/2060/20110022647"><span>Global Magnetospheric Response to an Interplanetary Shock: THEMIS Observations</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Zhang, Hui; Sibeck, David G.; Zong, Q.-G.; McFadden, James P.; Larson, Davin; Glassmeier, K.-H.; Angelopoulos, V.</p> <p>2011-01-01</p> <p>We investigate the global response of geospace plasma environment to an interplanetary shock at approx. 0224 UT on May 28, 2008 from multiple THEMIS spacecraft observations in the magnetosheath (THEMIS B and C) and the mid-afternoon (THEMIS A) and dusk magnetosphere (THEMIS D and E). The interaction of the transmitted interplanetary shock with the magnetosphere has global effects. Consequently, it can affect geospace plasma significantly. After interacting with the bow shock, the interplanetary shock transmitted a fast shock and a discontinuity which propagated through the magnetosheath toward the Earth at speeds of 300 km/s and 137 km/s respectively. THEMIS A observations indicate that the plasmaspheric plume changed significantly by the interplanetary shock impact. The plasmaspheric plume density increased rapidly from 10 to 100/ cubic cm in 4 min and the ion distribution changed from isotropic to strongly anisotropic distribution. Electromagnetic ion cyclotron (EMIC) waves observed by THEMIS A are most likely excited by the anisotropic ion distributions caused by the interplanetary shock impact. To our best knowledge, this is the first direct observation of the plasmaspheric plume response to an interplanetary shock's impact. THEMIS A, but not D or E, observed a plasmaspheric plume in the dayside magnetosphere. Multiple spacecraft observations indicate that the dawn-side edge of the plasmaspheric plume was located between THEMIS A and D (or E).</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://ntrs.nasa.gov/search.jsp?R=19750029001&hterms=data+types&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D20%26Ntt%3Ddata%2Btypes','NASA-TRS'); return false;" href="https://ntrs.nasa.gov/search.jsp?R=19750029001&hterms=data+types&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D20%26Ntt%3Ddata%2Btypes"><span>Demonstration of new data types for use in interplanetary navigation</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Ondrasik, V. J.; Chao, C. C.; Winn, F. B.; Yip, K. B.; Acton, C. H.; Reinbold, S. J.</p> <p>1974-01-01</p> <p>Mariner 10 was the first mission which contained many elements of the advanced navigation system which will be used in the late 1970's and 1980's. Preliminary navigation demonstrated were conducted using S/X charged particle calibrations, simultaneous Doppler data, nearly simultaneous range data, and bright object/star imaging data. The results of these demonstrations are very encouraging and a navigation system based upon these data types should be an order of magnitude better than the current system.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://hdl.handle.net/2060/19720008104','NASA-TRS'); return false;" href="http://hdl.handle.net/2060/19720008104"><span>High energy astronomy or astrophysics and properties of the interplanetary plasma</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p></p> <p>1971-01-01</p> <p>The research activities related to high energy astrophysics and interplanetary plasma are reported. The experimental work in the following areas are described: (1) balloon-and rocket-borne cosmic X-ray, (2) X-ray spectroscopy, and (3) OSO-3 gamma ray experiment. Plasma studies in the interplanetary region, magnetosphere, and geomagnetic tail are included.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://www.dtic.mil/docs/citations/ADA185386','DTIC-ST'); return false;" href="http://www.dtic.mil/docs/citations/ADA185386"><span>The Polar Ionosphere and Interplanetary Field.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.dtic.mil/">DTIC Science & Technology</a></p> <p></p> <p>1987-08-01</p> <p>model for investigating time dependent behavior of the Polar F-region ionosphere in response to varying interplanetary magnetic field (IMF...conditions. The model has been used to illustrate ionospheric behavior during geomagnetic storms conditions. Future model applications may include...magnetosphere model for investigating time dependent behavior of the polar F-region ionosphere in response to varying interplanetary magnetic field</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://ntrs.nasa.gov/search.jsp?R=19720027662&hterms=nuclear+fusion&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D30%26Ntt%3Dnuclear%2Bfusion','NASA-TRS'); return false;" href="https://ntrs.nasa.gov/search.jsp?R=19720027662&hterms=nuclear+fusion&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D30%26Ntt%3Dnuclear%2Bfusion"><span>Performance potential of gas-core and fusion rockets - A mission applications survey.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Fishbach, L. H.; Willis, E. A., Jr.</p> <p>1971-01-01</p> <p>This paper reports an evaluation of the performance potential of five nuclear rocket engines for four mission classes. These engines are: the regeneratively cooled gas-core nuclear rocket; the light bulb gas-core nuclear rocket; the space-radiator cooled gas-core nuclear rocket; the fusion rocket; and an advanced solid-core nuclear rocket which is included for comparison. The missions considered are: earth-to-orbit launch; near-earth space missions; close interplanetary missions; and distant interplanetary missions. For each of these missions, the capabilities of each rocket engine type are compared in terms of payload ratio for the earth launch mission or by the initial vehicle mass in earth orbit for space missions (a measure of initial cost). Other factors which might determine the engine choice are discussed. It is shown that a 60 day manned round trip to Mars is conceivable.-</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2016AGUFMSH21A2499B','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2016AGUFMSH21A2499B"><span>Langmuir waveforms at interplanetary shocks: STEREO statistical analysis</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Briand, C.</p> <p>2016-12-01</p> <p>Wave-particle interactions and particle acceleration are the two main processes allowing energy dissipation at non collisional shocks. Ion acceleration has been deeply studied for many years, also for their central role in the shock front reformation. Electron dynamics is also important in the shock dynamics through the instabilities they can generate which may impact the ion dynamics.Particle measurements can be efficiently completed by wave measurements to determine the characteristics of the electron beams and study the turbulence of the medium. Electric waveforms obtained from the S/WAVES instrument of the STEREO mission between 2007 to 2014 are analyzed. Thus, clear signature of Langmuir waves are observed on 41 interplanetary shocks. These data enable a statistical analysis and to deduce some characteristics of the electron dynamics on different shocks sources (SIR or ICME) and types (quasi-perpendicular or quasi-parallel). The conversion process between electrostatic to electromagnetic waves has also been tested in several cases.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://ntrs.nasa.gov/search.jsp?R=20170002560&hterms=electrons&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D40%26Ntt%3Delectrons','NASA-TRS'); return false;" href="https://ntrs.nasa.gov/search.jsp?R=20170002560&hterms=electrons&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D40%26Ntt%3Delectrons"><span>Electron-Scale Measurements of Magnetic Reconnection in Space</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Burch, J. L.; Torbert, R. B.; Phan, T. D.; Chen, L.-J.; Moore, T. E.; Ergun, R. E.; Eastwood, J. P.; Gershman, D. J.; Cassak, P. A.; Argall, M. R.; <a style="text-decoration: none; " href="javascript:void(0); " onClick="displayelement('author_20170002560'); toggleEditAbsImage('author_20170002560_show'); toggleEditAbsImage('author_20170002560_hide'); "> <img style="display:inline; width:12px; height:12px; " src="images/arrow-up.gif" width="12" height="12" border="0" alt="hide" id="author_20170002560_show"> <img style="width:12px; height:12px; display:none; " src="images/arrow-down.gif" width="12" height="12" border="0" alt="hide" id="author_20170002560_hide"></p> <p>2016-01-01</p> <p>Magnetic reconnection is a fundamental physical process in plasmas whereby stored magnetic energy is converted into heat and kinetic energy of charged particles. Reconnection occurs in many astrophysical plasma environments and in laboratory plasmas. Using measurements with very high time resolution, NASA's Magnetospheric Multiscale (MMS) mission has found direct evidence for electron demagnetization and acceleration at sites along the sunward boundary of Earth's magnetosphere where the interplanetary magnetic field reconnects with the terrestrial magnetic field. We have (i) observed the conversion of magnetic energy to particle energy; (ii) measured the electric field and current, which together cause the dissipation of magnetic energy; and (iii) identified the electron population that carries the current as a result of demagnetization and acceleration within the reconnection diffusion/dissipation region.</p> </li> </ol> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_5");'>5</a></li> <li><a href="#" onclick='return showDiv("page_6");'>6</a></li> <li class="active"><span>7</span></li> <li><a href="#" onclick='return showDiv("page_8");'>8</a></li> <li><a href="#" onclick='return showDiv("page_9");'>9</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div><!-- col-sm-12 --> </div><!-- row --> </div><!-- page_7 --> <div id="page_8" class="hiddenDiv"> <div class="row"> <div class="col-sm-12"> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_6");'>6</a></li> <li><a href="#" onclick='return showDiv("page_7");'>7</a></li> <li class="active"><span>8</span></li> <li><a href="#" onclick='return showDiv("page_9");'>9</a></li> <li><a href="#" onclick='return showDiv("page_10");'>10</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div> </div> <div class="row"> <div class="col-sm-12"> <ol class="result-class" start="141"> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://ntrs.nasa.gov/search.jsp?R=19780054319&hterms=sparrow&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D10%26Ntt%3Dsparrow','NASA-TRS'); return false;" href="https://ntrs.nasa.gov/search.jsp?R=19780054319&hterms=sparrow&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D10%26Ntt%3Dsparrow"><span>Zodiacal light as an indicator of interplanetary dust</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Weinberg, J. L.; Sparrow, J. G.</p> <p>1978-01-01</p> <p>The most striking feature of the night sky in the tropics is the zodiacal light, which appears as a cone in the west after sunset and in the east before sunrise. It is caused by sunlight scattered or absorbed by particles in the interplanetary medium. The zodiacal light is the only source of information about the integrated properties of the whole ensemble of interplanetary dust. The brightness and polarization in different directions and at different colors can provide information on the optical properties and spatial distribution of the scattering particles. The zodiacal light arises from two independent physical processes related to the scattering of solar continuum radiation by interplanetary dust and to thermal emission which arises from solar radiation that is absorbed by interplanetary dust and reemitted mainly at infrared wavelengths. Attention is given to observational parameters of zodiacal light, the methods of observation, errors and absolute calibration, and the observed characteristics of zodiacal light.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017GeoRL..44.7643N','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017GeoRL..44.7643N"><span>Response of Jupiter's auroras to conditions in the interplanetary medium as measured by the Hubble Space Telescope and Juno</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Nichols, J. D.; Badman, S. V.; Bagenal, F.; Bolton, S. J.; Bonfond, B.; Bunce, E. J.; Clarke, J. T.; Connerney, J. E. P.; Cowley, S. W. H.; Ebert, R. W.; Fujimoto, M.; Gérard, J.-C.; Gladstone, G. R.; Grodent, D.; Kimura, T.; Kurth, W. S.; Mauk, B. H.; Murakami, G.; McComas, D. J.; Orton, G. S.; Radioti, A.; Stallard, T. S.; Tao, C.; Valek, P. W.; Wilson, R. J.; Yamazaki, A.; Yoshikawa, I.</p> <p>2017-08-01</p> <p>We present the first comparison of Jupiter's auroral morphology with an extended, continuous, and complete set of near-Jupiter interplanetary data, revealing the response of Jupiter's auroras to the interplanetary conditions. We show that for ˜1-3 days following compression region onset, the planet's main emission brightened. A duskside poleward region also brightened during compressions, as well as during shallow rarefaction conditions at the start of the program. The power emitted from the noon active region did not exhibit dependence on any interplanetary parameter, though the morphology typically differed between rarefactions and compressions. The auroras equatorward of the main emission brightened over ˜10 days following an interval of increased volcanic activity on Io. These results show that the dependence of Jupiter's magnetosphere and auroras on the interplanetary conditions are more diverse than previously thought.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://hdl.handle.net/2060/19810007412','NASA-TRS'); return false;" href="http://hdl.handle.net/2060/19810007412"><span>Type 2 solar radio events observed in the interplanetary medium. Part 1: General characteristics</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Cane, H. V.; Stone, R. G.; Fainberg, J.; Steinberg, J. L.; Hoang, S.</p> <p>1980-01-01</p> <p>Twelve type 2 solar radio events were observed in the 2 MHz to 30 kHz frequency range by the radio astronomy experiment on the ISEE-3 satellite over the period from September 1978 to December 1979. These data provide the most comprehensive sample of type 2 radio bursts observed at kilometer wavelengths. Dynamic spectra of a number of events are presented. Where possible, the 12 events were associated with an initiating flare, ground based radio data, the passage of a shock at the spacecraft, and the sudden commencement of a geomagnetic storm. The general characteristics of kilometric type 2 bursts are discussed.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://hdl.handle.net/2060/19840005034','NASA-TRS'); return false;" href="http://hdl.handle.net/2060/19840005034"><span>Interplanetary scintillation observations of the solar wind close to the Sun and out of the ecliptic</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Sime, D. G.</p> <p>1983-01-01</p> <p>A brief review is given of recent developments in the observation of the solar wind by the method of interplanetary scintillation. The emphasis is on observations of the velocity structure, the electron density and the effect of propagating disturbances in the interplanetary medium as detected principally by intensity and phase scintillation and by spectral broadening.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://ntrs.nasa.gov/search.jsp?R=20040089697&hterms=Organic+mars&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D60%26Ntt%3DOrganic%2Bmars','NASA-TRS'); return false;" href="https://ntrs.nasa.gov/search.jsp?R=20040089697&hterms=Organic+mars&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D60%26Ntt%3DOrganic%2Bmars"><span>The delivery of organic matter from asteroids and comets to the early surface of Mars</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Flynn, G. J.</p> <p>1996-01-01</p> <p>Carbon delivered to the Earth by interplanetary dust particles may have been an important source of pre-biotic organic matter (Anders, 1989). Interplanetary dust is shown to deliver an order-of-magnitude higher surface concentration of carbon onto Mars than onto Earth, suggesting interplanetary dust may be an important source of carbon on Mars as well.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2016AcAau.128..160A','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2016AcAau.128..160A"><span>Aquarius, a reusable water-based interplanetary human spaceflight transport</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Adamo, Daniel R.; Logan, James S.</p> <p>2016-11-01</p> <p>Attributes of a reusable interplanetary human spaceflight transport are proposed and applied to example transits between the Earth/Moon system and Deimos, the outer moon of Mars. Because the transport is 54% water by mass at an interplanetary departure, it is christened Aquarius. In addition to supporting crew hydration/hygiene, water aboard Aquarius serves as propellant and as enhanced crew habitat radiation shielding during interplanetary transit. Key infrastructure and technology supporting Aquarius operations include pre-emplaced consumables and subsurface habitat at Deimos with crew radiation shielding equivalent to sea level on Earth, resupply in a selenocentric distant retrograde orbit, and nuclear thermal propulsion.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://ntrs.nasa.gov/search.jsp?R=19790059028&hterms=Wind+energy&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D40%26Ntt%3DWind%2Benergy','NASA-TRS'); return false;" href="https://ntrs.nasa.gov/search.jsp?R=19790059028&hterms=Wind+energy&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D40%26Ntt%3DWind%2Benergy"><span>Relationship between the growth of the ring current and the interplanetary quantity. [solar wind energy-magnetospheric coupling parameter correlation with substorm AE index</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Akasofu, S.-I.</p> <p>1979-01-01</p> <p>Akasofu (1979) has reported that the interplanetary parameter epsilon correlates reasonably well with the magnetospheric substorm index AE; in the first approximation, epsilon represents the solar wind coupled to the magnetosphere. The correlation between the interplanetary parameter, the auroral electrojet index and the ring current index is examined for three magnetic storms. It is shown that when the interplanetary parameter exceeds the amount that can be dissipated by the ionosphere in terms of the Joule heat production, the excess energy is absorbed by the ring current belt, producing an abnormal growth of the ring current index.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://hdl.handle.net/2060/19750020523','NASA-TRS'); return false;" href="http://hdl.handle.net/2060/19750020523"><span>The source of the electric field in the nightside magnetosphere</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Stern, D. P.</p> <p>1975-01-01</p> <p>In the open magnetosphere model magnetic field lines from the polar caps connect to the interplanetary magnetic field and conduct an electric field from interplanetary space to the polar ionosphere. By examining the magnetic flux involved it is concluded that only slightly more than half of the magnetic flux in the polar caps belongs to open field lines and that such field lines enter or leave the magnetosphere through narrow elongated windows stretching the tail. These window regions are identified with the tail's boundary region and shift their position with changes in the interplanetary magnetic field, in particular when a change of interplanetary magnetic sector occurs. The circuit providing electric current in the magnetopause and the plasma sheet is extended across those windows; thus energy is drained from the interplanetary electric field and an electric potential drop is produced across the plasma sheet. The polar cap receives its electric field from interplanetary space on the day side from open magnetic field lines and on the night side from closed field lines leading to the plasma sheet. The theory described provides improved understanding of magnetic flux bookkeeping, of the origin of Birkeland currents, and of the boundary layer of the geomagnetic tail.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://hdl.handle.net/2060/19950021367','NASA-TRS'); return false;" href="http://hdl.handle.net/2060/19950021367"><span>Application of non-coherent Doppler data types for deep space navigation</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Bhaskaran, Shyam</p> <p>1995-01-01</p> <p>Recent improvements in computational capability and Deep Space Network technology have renewed interest in examining the possibility of using one-way Doppler data alone to navigate interplanetary spacecraft. The one-way data can be formulated as the standard differenced-count Doppler or as phase measurements, and the data can be received at a single station or differenced if obtained simultaneously at two stations. A covariance analysis is performed which analyzes the accuracy obtainable by combinations of one-way Doppler data and compared with similar results using standard two-way Doppler and range. The sample interplanetary trajectory used was that of the Mars Pathfinder mission to Mars. It is shown that differenced one-way data is capable of determining the angular position of the spacecraft to fairly high accuracy, but has relatively poor sensitivity to the range. When combined with single station data, the position dispersions are roughly an order of magnitude larger in range and comparable in angular position as compared to dispersions obtained with standard data two-way types. It was also found that the phase formulation is less sensitive to data weight variations and data coverage than the differenced-count Doppler formulation.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://hdl.handle.net/2060/19950025805','NASA-TRS'); return false;" href="http://hdl.handle.net/2060/19950025805"><span>The application of noncoherent Doppler data types for Deep Space Navigation</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Bhaskaran, S.</p> <p>1995-01-01</p> <p>Recent improvements in computational capability and DSN technology have renewed interest in examining the possibility of using one-way Doppler data alone to navigate interplanetary spacecraft. The one-way data can be formulated as the standard differenced-count Doppler or as phase measurements, and the data can be received at a single station or differenced if obtained simultaneously at two stations. A covariance analysis, which analyzes the accuracy obtainable by combinations of one-way Doppler data, is performed and compared with similar results using standard two-way Doppler and range. The sample interplanetary trajectory used was that of the Mars Pathfinder mission to Mars. It is shown that differenced one-way data are capable of determining the angular position of the spacecraft to fairly high accuracy, but have relatively poor sensitivity to the range. When combined with single-station data, the position dispersions are roughly an order of magnitude larger in range and comparable in angular position as compared to dispersions obtained with standard two-way data types. It was also found that the phase formulation is less sensitive to data weight variations and data coverage than the differenced-count Doppler formulation.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017ApJ...849L..27K','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017ApJ...849L..27K"><span>Different Types of Ion Populations Upstream of the 2013 October 8 Interplanetary Shock</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Kajdič, Primož; Hietala, Heli; Blanco-Cano, Xóchitl</p> <p>2017-11-01</p> <p>We show for the first time that different types of suprathermal ion distributions may exist upstream of a single interplanetary shock. ACE and the two ARTEMIS satellites observed a shock on 2013 October 8. The ARTEMIS P1 and P2 spacecraft first observed field-aligned ions (P1) and gyrating ions (P2) arriving from the shock. These were followed by intermediate ions and later by a diffuse population. At the location of the P2 the shock exhibited an Alfvénic Mach number of M A = 5.7 and was marginally quasi-perpendicular ({θ }{Bn}=47^\\circ ). At P1 spacecraft the shock was weaker (M A = 4.9) and more perpendicular ({θ }{Bn}=61^\\circ ). Consequently, the observed suprathermal ion and ultra-low-frequency wave properties were somewhat different. At P2 the ultra-low-frequency waves are more intense and extend farther upstream from the shock. The energies of field-aligned and gyrating ions in the shock rest-frame were ˜20 keV, which is much more than in the case of the stronger (M A = 6-7) Earth’s bow shock, where they are less than 10 keV.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/26828968','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/26828968"><span>Modic changes in lumbar spine: prevalence and distribution patterns of end plate oedema and end plate sclerosis.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Xu, Lei; Chu, Bin; Feng, Yang; Xu, Feng; Zou, Yue-Fen</p> <p>2016-01-01</p> <p>The purpose of this study is to evaluate the distribution of end plate oedema in different types of Modic change especially in mixed type and to analyze the presence of end plate sclerosis in various types of Modic change. 276 patients with low back pain were scanned with 1.5-T MRI. Three radiologists assessed the MR images by T1 weighted, T2 weighted and fat-saturation T2 weighted sequences and classified them according to the Modic changes. Pure oedematous end plate signal changes were classified as Modic Type I; pure fatty end plate changes were classified as Modic Type II; and pure sclerotic end plate changes as Modic Type III. A mixed feature of both Types I and II with predominant oedematous signal change is classified as Modic I-II, and a mixture of Types I and II with predominant fatty change is classified as Modic II-I. Thus, the mixed types can further be subdivided into seven subtypes: Types I-II, Types II-I, Types I-III, Types III-I, Types II-III, Types III-II and Types I-III. During the same period, 52 of 276 patients who underwent CT and MRI were retrospectively reviewed to determine end plate sclerosis. (1) End plate oedema: of the 2760 end plates (276 patients) examined, 302 end plates showed Modic changes, of which 82 end plates showed mixed Modic changes. The mixed Modic changes contain 92.7% of oedematous changes. The mixed types especially Types I-II and Types II-I made up the majority of end plate oedematous changes. (2) End plate sclerosis: 52 of 276 patients were examined by both MRI and CT. Of the 520 end plates, 93 end plates showed Modic changes, of which 34 end plates have shown sclerotic changes in CT images. 11.8% of 34 end plates have shown Modic Type I, 20.6% of 34 end plates have shown Modic Type II, 2.9% of 34 end plates have shown Modic Type III and 64.7% of 34 end plates have shown mixed Modic type. End plate oedema makes up the majority of mixed types especially Types I-II and Types II-I. The end plate sclerosis on CT images may not just mean Modic Type III but does exist in all types of Modic changes, especially in mixed Modic types, and may reflect vertebral body mineralization rather than change in the bone marrow. End plate oedema and end plate sclerosis are present in a large proportion of mixed types.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017AGUFMED11D0150S','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017AGUFMED11D0150S"><span>An Investigation of Interplanetary Structures for Solar Cycles 23 and 24 and their Space Weather Consequences.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Sultan, M. S.; Jules, A.; Marchese, P.; Damas, M. C.</p> <p>2017-12-01</p> <p>It is crucial to study space weather because severe interplanetary conditions can cause geomagnetic storms that may damage both space- and ground-based technological systems such as satellites, communication systems, and power grids. Interplanetary coronal mass ejections (ICMEs) and corotating interaction regions (CIRs) are the primary drivers of geomagnetic storms. As they travel through interplanetary space and reach geospace, their spatial structures change which can result in various geomagnetic effects. Therefore, studying these drivers and their structures is essential in order to better understand and mitigate their impact on technological systems, as well as to forecast geomagnetic storms. In this study, over 150 storms were cross-checked for both solar cycles (SC) 23 and 24. This data has revealed the most common interplanetary structures, i.e., sheath (Sh); magnetic cloud following a shock front (sMC); sheath region and magnetic cloud (Sh/MC); and corotating interaction regions (CIRs). Furthermore, plasma parameters as well as variation in the intensity and duration of storms resulting from different interplanetary structures are studied for their effect on geomagnetically induced currents (GICs), as well as for their effect on power grids. Although preliminary results for SC 23 indicate that storm intensity may play a dominant role for GICs, duration might also be a factor, albeit smaller. Results from both SC 23 and 24 are analyzed and compared, and should lead to an enhanced understanding of space weather consequences of interplanetary structures and their possible forecasting.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://hdl.handle.net/2060/20160003519','NASA-TRS'); return false;" href="http://hdl.handle.net/2060/20160003519"><span>Rapid Preliminary Design of Interplanetary Trajectories Using the Evolutionary Mission Trajectory Generator</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Englander, Jacob</p> <p>2016-01-01</p> <p>This set of tutorial slides is an introduction to the Evolutionary Mission Trajectory Generator (EMTG), NASA Goddard Space Flight Center's autonomous tool for preliminary design of interplanetary missions. This slide set covers the basics of creating and post-processing simple interplanetary missions in EMTG using both high-thrust chemical and low-thrust electric propulsion along with a variety of operational constraints.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://hdl.handle.net/2060/19980028486','NASA-TRS'); return false;" href="http://hdl.handle.net/2060/19980028486"><span>The Ambient and Perturbed Solar Wind: From the Sun to 1 AU</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Steinolfson, R. S.</p> <p>1997-01-01</p> <p>The overall objective of the proposed research was to use numerical solutions of the magnetohydrodynamic (MHD) equations along with comparisons of the computed results with observations to study the following topics: (1) ambient solar wind solutions that extend from the solar surface to 1 astronomical unit (AU), contain closed magnetic structures near the Sun, and are consistent with observed values; (2) magnetic and plasma structures in coronal mass ejections (CMES) as they propagate to the interplanetary medium; (3) relation of MHD shocks to CMEs in the interplanetary medium; (4) interaction of MHD shocks with structures (such as other shocks, corotating interaction regions, current sheets) in the interplanetary plasma; and (5) simulations of observed interplanetary structures. A planned close collaboration with data analysts served to make the model more relevant to the data. The outcome of this research program is an improved understanding of the physical processes occurring in solar-generated disturbances in the interplanetary medium between the Sun and 1 AU.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2018MS%26E..339a2013N','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2018MS%26E..339a2013N"><span>The statistical analysis of the Geomagnetically Induced Current events occurred in Guangdong, China during the declining phase of solar cycle 23 (2003–2006)</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Ni, Y. Y.</p> <p>2018-03-01</p> <p>We study the interplanetary causes of intense geomagnetic storms (Dst ≤ -100 nT) and the corresponding Geomagnetically Induced Current (GIC) events occurred in Ling’ao nuclear power station, Guangdong during the declining phase of solar cycle 23 (2003–2006). The result shows that sMC (a magnetic cloud with a shock), SH (sheath) and SH+MC (a sheath followed by a magnetic cloud) are the three most common interplanetary structures responsible for the storms which will cause GIC events in this period. As an interplanetary structure, CIR (corotating interaction regions) also plays an important role, however, the CIR-driven storms have a relatively minor effect to the GIC. Among the interplanetary parameters, the solar wind velocity and the southward component of the IMF (interplanetary magnetic field) are more important than solar wind density and the temperature to a geomagnetic storm and GIC.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://hdl.handle.net/2060/20100042593','NASA-TRS'); return false;" href="http://hdl.handle.net/2060/20100042593"><span>TPS Ablator Technologies for Interplanetary Spacecraft</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Curry, Donald M.</p> <p>2004-01-01</p> <p>This slide presentation reviews the status of Thermal Protection System (TPS) Ablator technologies and the preparation for use in interplanetary spacecraft. NASA does not have adequate TPS ablatives and sufficient selection for planned missions. It includes a comparison of shuttle and interplanetary TPS requirements, the status of mainline TPS charring ablator materials, a summary of JSC SBIR accomplishments in developing advanced charring ablators and the benefits of SBIR Ablator/fabrication technology.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=414541','PMC'); return false;" href="https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=414541"><span>Immunochemical cross-reactions between type III group B Streptococcus and type 14 Streptococcus pneumoniae.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pmc">PubMed Central</a></p> <p>Crumrine, M H; Fischer, G W; Balk, M W</p> <p>1979-01-01</p> <p>Serological cross-reactions between certain streptococci and some serotypes of Streptococcus pneumoniae have been reported. These studies detail the serological cross-reactivity observed between hot HCl-extracted group b streptococcus type III (GBS III) antigens and S. pneumoniae type 14 (Pn 14) polysaccharide. Similar electrophoretic migration patterns of GBS III and Pn 14 were observed when either type-specific BGS III antisera or pneumococcal omniserum was utilized to precipitate these antigens. Both the GBS III antigen and the Pn 14 polysaccharide migrated toward the cathode, whereas all other pneumococcal polysaccharides migrated toward the anode. No cross-reactions were observed between GBS III antisera and the 11 other types of pneumococcal polysaccharides. Lines of identity were observed between type-specific GBS III antisera and monospecific Pn 14 antiserum with either GBS III antigens or purified Pn 14 polysaccharide. The cross-reacting antigens of GBS III and Pn 14 appear to be identical by immunodiffusion and immunoelectrophoresis. Images PMID:40876</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://hdl.handle.net/2060/19980217101','NASA-TRS'); return false;" href="http://hdl.handle.net/2060/19980217101"><span>Solar-Planetary Relationships: Magnetospheric Physics</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Barnes, Aaron</p> <p>1979-01-01</p> <p>The quadrennium 1975-1978 was a period of great advance for solar-wind studies, a period that combined exploration of new regions with increased maturity in established fields of study. The Helios, Pioneer, and Voyager spacecraft have been exploring the inner and outer regions of the solar wind. There has been a rebirth of the study of possible relations between solar variability and Earth's climate and weather, stimulated largely by Eddy's investigation of the Maunder Minimum; the solar wind may well prove to be a significant link in solar-terrestrial relations. Unique coronal data from the SKYLAB 1973-1974 mission, in combination with satellite and ground-based observations, provided the basis for identification of coronal holes as the main source of highspeed solar wind. The interplanetary medium has continued to serve as a laboratory for the study of plasma processes that cannot yet be studied in terrestrial laboratories, providing insights of potential importance both for controlled fusion research and for astrophysics. It is ironic that such a productive period, the legacy of many past space missions, was also a time of severely limited opportunity for new space investigations; the outlook for the future is equally austere. Especially regrettable is the dearth of career opportunities for young scientists in this field; comparison of the bibliography of this report with that of its predecessor 4 years ago shows few new names. Despite such problems, research has continued with enthusiasm and much has been learned. The present report will survey selected topics related to the origin, expansion, and acceleration of the solar wind and the plasma physics of the interplanetary medium. Companion reports deal with a number of closely related topics, including the heliocentric distance and latitude variation of the solar wind and its fluctuations topology of the interplanetary magnetic field morphology of solar-wind streams and shocks, sunweather studies, and interplanetary manifestations of type-3 bursts. Of the subjects that fall within the scope of this report, the study of the relationship between coronal holes and solar-wind streams, and the associated revision of our ideas about solar wind acceleration and heating, have had the most impact; hence I review these topics in considerable detail. In addition, I discuss the topics of hydromagnetic waves and turbulence, and interplanetary electrons, as items of particular importance during the past quadrennium.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://ntrs.nasa.gov/search.jsp?R=19940016434&hterms=1584&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D40%26Ntt%3D%2526%25231584','NASA-TRS'); return false;" href="https://ntrs.nasa.gov/search.jsp?R=19940016434&hterms=1584&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D40%26Ntt%3D%2526%25231584"><span>Mineralogy of dark clasts in primitive versus differentiated meteorites</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Zolensky, M. E.; Weisberg, M. K.; Barrett, R. A.; Prinz, M.</p> <p>1993-01-01</p> <p>The presence of dark lithic clasts within meteorites can provide information concerning asteroidal regolith processes, the extent of interactions between asteroids, and the relationship between meteorite types, micrometeorites, and interplanetary dust particles. Accordingly, we have been seeking and characterizing dark clasts found within carbonaceous chondrites, unequilibrated ordinary chondrites, howardites, and eucrites. We find that unequilibrated chondrites in this study contain fine-grained, anhydrous unequilibrated inclusions, while the howardites often contain inclusions from geochemically processed, hydrous asteroids (type 1 and 2 carbonaceous chondrites). Eucrites and howardities contain unusual clasts, not easily classified.</p> </li> </ol> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_6");'>6</a></li> <li><a href="#" onclick='return showDiv("page_7");'>7</a></li> <li class="active"><span>8</span></li> <li><a href="#" onclick='return showDiv("page_9");'>9</a></li> <li><a href="#" onclick='return showDiv("page_10");'>10</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div><!-- col-sm-12 --> </div><!-- row --> </div><!-- page_8 --> <div id="page_9" class="hiddenDiv"> <div class="row"> <div class="col-sm-12"> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_7");'>7</a></li> <li><a href="#" onclick='return showDiv("page_8");'>8</a></li> <li class="active"><span>9</span></li> <li><a href="#" onclick='return showDiv("page_10");'>10</a></li> <li><a href="#" onclick='return showDiv("page_11");'>11</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div> </div> <div class="row"> <div class="col-sm-12"> <ol class="result-class" start="161"> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/6588922','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/6588922"><span>[Diagnostic values of type III Procollagen N-terminal peptide and combination assay of type III procollagen N-terminal peptide with CEA and CA 19-9 in gastric cancer].</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Akazawa, S; Harada, A; Futatsuki, K</p> <p>1984-07-01</p> <p>It is known that interstitial collagens are initially synthesized as precursors (procollagen), which possess extra peptide segments at both ends of the molecules. The authors attempted to detect the aminoterminal peptide of type III procollagen (type III-N-peptide) and also to measure the carcinoembryonic antigen (CEA) and carbohydrate antigen (CA 19-9) together in sera of patients with gastric cancer. The results showed that: (1) mean serum levels and positive ratios of the type III-N-peptide increased as the clinical stage of the patients with gastric cancer advanced; (2) serum levels of the type III-N-peptide were not correlated either with those of CEA or CA 19-9; (3) positive ratios of type III-N-peptide, CEA and CA 19-9 were 51.7%, 44.8% and 48.3%, respectively: (4) positive ratio in combination of the type III-N-peptide with CEA was 69.3% and that in combination of the type III-N-peptide with CEA and CA 19-9 was 72.4%. These results suggest that type III-N-peptide is available for diagnosis of gastric cancer and, that the combination assay of type III-N-peptide with CEA and CA 19-9 is more effective than a single assay for diagnosis.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://hdl.handle.net/2060/19970026865','NASA-TRS'); return false;" href="http://hdl.handle.net/2060/19970026865"><span>Kuiper Belt Dust Grains as a Source of Interplanetary Dust Particles</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Liou, Jer-Chyi; Zook, Herbert A.; Dermott, Stanley F.</p> <p>1996-01-01</p> <p>The recent discovery of the so-called Kuiper belt objects has prompted the idea that these objects produce dust grains that may contribute significantly to the interplanetary dust population. In this paper, the orbital evolution of dust grains, of diameters 1 to 9 microns, that originate in the region of the Kuiper belt is studied by means of direct numerical integration. Gravitational forces of the Sun and planets, solar radiation pressure, as well as Poynting-Robertson drag and solar wind drag are included. The interactions between charged dust grains and solar magnetic field are not considered in the model. Because of the effects of drag forces, small dust grains will spiral toward the Sun once they are released from their large parent bodies. This motion leads dust grains to pass by planets as well as encounter numerous mean motion resonances associated with planets. Our results show that about 80% of the Kuiper belt grains are ejected from the Solar System by the giant planets, while the remaining 20% of the grains evolve all the way to the Sun. Surprisingly, the latter dust grains have small orbital eccentricities and inclinations when they cross the orbit of the Earth. This makes them behave more like asteroidal than cometary-type dust particles. This also enhances their chances of being captured by the Earth and makes them a possible source of the collected interplanetary dust particles; in particular, they represent a possible source that brings primitive/organic materials from the outer Solar System to the Earth. When collisions with interstellar dust grains are considered, however, Kuiper belt dust grains around 9 microns appear likely to be collisionally shattered before they can evolve toward the inner part of the Solar System. The collision destruction can be applied to Kuiper belt grains up to about 50 microns. Therefore, Kuiper belt dust grains within this range may not be a significant part of the interplanetary dust complex in the inner Solar System.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://hdl.handle.net/2060/20170009836','NASA-TRS'); return false;" href="http://hdl.handle.net/2060/20170009836"><span>Interplanetary Small Satellite Conference 2017 Program</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Dalle, Derek Jordan</p> <p>2017-01-01</p> <p>The Interplanetary Small Satellite Conference will be held at San Jose State University on May 1 and 2, 2017. The program attached here contains logistical information for attendees, the agenda, and abstracts of the conference presentations. All abstracts were reviewed by their authors' home institute and approved for public release prior to inclusion in the program booklet. The ISSC explores mission concepts, emerging technologies, and fosters outside the box thinking critical to future interplanetary small satellite missions.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://hdl.handle.net/2060/19760007897','NASA-TRS'); return false;" href="http://hdl.handle.net/2060/19760007897"><span>Research in space physics at the University of Iowa</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Vanallen, J. A.</p> <p>1976-01-01</p> <p>Energetic particles in outer space and their relationship to electric, magnetic, and electromagnetic fields associated with the earth, sun, moon, and planets, and the interplanetary medium are investigated. Special attention was given to observations of earth and moon satellites and interplanetary spacecraft; phenomenological analysis and interpretation were emphasized. Data also cover ground based on radio astronomical and optical techniques and theoretical problems in plasma physics as revelant to solar planetary and interplanetary phenomena.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://ntrs.nasa.gov/search.jsp?R=19840051069&hterms=media+influence&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D30%26Ntt%3Dmedia%2Binfluence','NASA-TRS'); return false;" href="https://ntrs.nasa.gov/search.jsp?R=19840051069&hterms=media+influence&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D30%26Ntt%3Dmedia%2Binfluence"><span>Hydromagnetic waves, turbulence, and collisionless processes in the interplanetary medium</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Barnes, A.</p> <p>1983-01-01</p> <p>An extended discussion is conducted concerning the origin and evolution of interplanetary hydromagnetic waves and turbulence, and their influence on the large scale dynamics of the solar wind. The solar wind is at present the preeminent medium for the study of hydromagnetic waves and turbulence, providing an opportunity for advancement of understanding of the most fundamental processes of the astrophysical plasmas. All interplanetary fluctuations whose time scale is observed to be greater than 1 sec can be regarded as hydromagnetic fluctuations. It has been found to be simplest, and generally very satisfactory, to model interplanetary variations as fluctuations in an MHD fluid. Attention is given to the classification of wave modes, geometrical hydromagnetics, Alfven wave pressure, rugged invariants, and the kinetic theory of collisionless processes.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://hdl.handle.net/2060/19880001327','NASA-TRS'); return false;" href="http://hdl.handle.net/2060/19880001327"><span>STIP Symposium on Physical Interpretation of Solar/Interplanetary and Cometary Intervals</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Wu, S. T.</p> <p>1987-01-01</p> <p>The study of travelling interplanetary phenomena has continued over a period of years. The STIP (Study of Travelling Interplanetary Phenomena) Symposium on Physical Interpretation of Solar/Interplanetary and Cometary Intervals was held in Huntsville, Alabama, on May 12-15, 1987, the first of these meetings to be held in the United States. The Symposium's objective was to coordinate and disseminate new science gained from the recent solar-terrestrial and cometary intervals which can be used to better understand the linkage of physical events to the Sun's vagaries (flares, coronal holes, eruptive prominences) from their initial detection to their consequence. Fifty-one presentations were made during the four-day period. Abstracts of these reports are included as Appendix A.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2012epsc.conf..117D','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2012epsc.conf..117D"><span>Interplanetary laser ranging - an emerging technology for planetary science missions</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Dirkx, D.; Vermeersen, L. L. A.</p> <p>2012-09-01</p> <p>Interplanetary laser ranging (ILR) is an emerging technology for very high accuracy distance determination between Earth-based stations and spacecraft or landers at interplanetary distances. It has evolved from laser ranging to Earth-orbiting satellites, modified with active laser transceiver systems at both ends of the link instead of the passive space-based retroreflectors. It has been estimated that this technology can be used for mm- to cm-level accuracy range determination at interplanetary distances [2, 7]. Work is being performed in the ESPaCE project [6] to evaluate in detail the potential and limitations of this technology by means of bottom-up laser link simulation, allowing for a reliable performance estimate from mission architecture and hardware characteristics.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/28484457','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/28484457"><span>Type I and Type III Interferons Display Different Dependency on Mitogen-Activated Protein Kinases to Mount an Antiviral State in the Human Gut.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Pervolaraki, Kalliopi; Stanifer, Megan L; Münchau, Stephanie; Renn, Lynnsey A; Albrecht, Dorothee; Kurzhals, Stefan; Senís, Elena; Grimm, Dirk; Schröder-Braunstein, Jutta; Rabin, Ronald L; Boulant, Steeve</p> <p>2017-01-01</p> <p>Intestinal epithelial cells (IECs) are constantly exposed to commensal flora and pathogen challenges. How IECs regulate their innate immune response to maintain gut homeostasis remains unclear. Interferons (IFNs) are cytokines produced during infections. While type I IFN receptors are ubiquitously expressed, type III IFN receptors are expressed only on epithelial cells. This epithelium specificity strongly suggests exclusive functions at epithelial surfaces, but the relative roles of type I and III IFNs in the establishment of an antiviral innate immune response in human IECs are not clearly defined. Here, we used mini-gut organoids to define the functions of types I and III IFNs to protect the human gut against viral infection. We show that primary non-transformed human IECs, upon viral challenge, upregulate the expression of both type I and type III IFNs at the transcriptional level but only secrete type III IFN in the supernatant. However, human IECs respond to both type I and type III IFNs by producing IFN-stimulated genes that in turn induce an antiviral state. Using genetic ablation of either type I or type III IFN receptors, we show that either IFN can independently restrict virus infection in human IECs. Importantly, we report, for the first time, differences in the mechanisms by which each IFN establishes the antiviral state. Contrary to type I IFN, the antiviral activity induced by type III IFN is strongly dependent on the mitogen-activated protein kinases signaling pathway, suggesting a pathway used by type III IFNs that non-redundantly contributes to the antiviral state. In conclusion, we demonstrate that human intestinal epithelial cells specifically regulate their innate immune response favoring type III IFN-mediated signaling, which allows for efficient protection against pathogens without producing excessive inflammation. Our results strongly suggest that type III IFN constitutes the frontline of antiviral response in the human gut. We propose that mucosal surfaces, particularly the gastrointestinal tract, have evolved to favor type III IFN-mediated response to pathogen infections as it allows for spatial segregation of signaling and moderate production of inflammatory signals which we propose are key to maintain gut homeostasis.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2018SoPh..293...26M','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2018SoPh..293...26M"><span>Properties of Decameter IIIb-III Pairs</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Melnik, V. N.; Brazhenko, A. I.; Frantsuzenko, A. V.; Dorovskyy, V. V.; Rucker, H. O.</p> <p>2018-02-01</p> <p>A large number of Type IIIb-III pairs, in which the first component is a Type IIIb burst and the second one is a Type III burst, are often recorded during decameter Type III burst storms. From the beginning of their observation, the question of whether the components of these pairs are the first and the second harmonics of radio emission or not has remained open. We discuss properties of decameter IIIb-III pairs in detail to answer this question. The components of these pairs, Type IIIb bursts and Type III bursts, have essentially different durations and polarizations. At the same time their frequency drift rates are rather close, provided that the drift rates of Type IIIb bursts are a little larger those of Type III bursts at the same frequency. Frequency ratios of the bursts at the same moment are close to two. This points at a harmonic connection of the components in IIIb-III pairs. At the same time there was a serious difficulty, namely why the first harmonic had fine frequency structure in the form of striae and the second harmonic did not have it. Recently Loi, Cairns, and Li ( Astrophys. J. 790, 67, 2014) succeeded in solving this problem. The physical aspects of observational properties of decameter IIIb-III pairs are discussed and pros and cons of harmonic character of Type IIIb bursts and Type III bursts in IIIb-III pairs are presented. We conclude that practically all properties of the IIIb-III pair components can be understood in the framework of the harmonic relation of the components of the IIIb-III pairs.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://hdl.handle.net/2060/20100025526','NASA-TRS'); return false;" href="http://hdl.handle.net/2060/20100025526"><span>Type III Radio Burst Duration and SEP Events</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Gopalswamy, N.; Makela, P.; Xie, H.</p> <p>2010-01-01</p> <p>Long-duration (>15 min), low-frequency (<14 MHz) type III radio bursts have been reported to be indicative of solar energetic particle events. We measured the durations of type III bursts associated with large SEP events of solar cycle 23. The Type III durations are distributed symmetrically at 1 MHz yielding a mean value of approximately 33 min (median = 32 min) for the large SEP events. When the SEP events with ground level enhancement (GLE,) are considered, the distribution is essentially unchanged (mean = 32 min, median = 30 min). To test the importance of type III bursts in indicating SEP events, we considered a set of six type III bursts from the same active region (AR 10588) whose durations fit the "long duration" criterion. We analyzed the coronal mass ejections (CMEs), flares, and type II radio bursts associated with the type III bursts. The CMEs were of similar speeds and the flares are also of similar size and duration. All but one of the type III bursts was not associated with a type II burst in the metric or longer wavelength domains. The burst without type II burst also lacked a solar energetic particle (SEP) event at energies >25 MeV. The 1-MHz duration of the type III burst (28 rein) is near the median value of type III durations found for gradual SEP events and ground level enhancement (GLE) events. Yet, there was no sign of SEP events. On the other hand, two other type III bursts from the same active region had similar duration but accompanied by WAVES type 11 bursts; these bursts were also accompanied by SEP events detected by SOHO/ERNE. This study suggests that the type III burst duration may not be a good indicator of an SEP event, consistent with the statistical study of Cliver and Ling (2009, ApJ ).</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://hdl.handle.net/2060/19730002043','NASA-TRS'); return false;" href="http://hdl.handle.net/2060/19730002043"><span>The interplanetary and solar magnetic field sector structures, 1962 - 1968</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Jones, D. E.</p> <p>1972-01-01</p> <p>The interplanetary magnetic field sector structure was observed from late 1962 through 1968. During this time it has been possible to study the manner in which the sector pattern and its relation to the photospheric magnetic field configuration changes from solar minimum to solar maximum. Observations were also made relating sector boundaries to specific regions on the solar disk. These and other observations related to the solar origin of the interplanetary field are briefly reviewed.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2001DPS....33.3901H','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2001DPS....33.3901H"><span>Velocity Distributions of Interplanetary Dust Derived from Astronomical Sky Spectra</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Huestis, D. L.; Ali, S.; Cosby, P. C.; Slanger, T. G.</p> <p>2001-11-01</p> <p>Characterization of interplanetary dust is important for understanding the creation by accretion of planets and moons, the development of planetary atmospheres, and, potentially, for the initiation of prebiotic chemistry. The recent COBE mission has provided a profile in ecliptic coordinates of the distribution of interplanetary dust particles through their thermal infrared emission. Additional information about interplanetary dust can be extracted from its visible spectrum of scattered sunlight, called Zodiacal Light. Night sky spectra taken at large-aperture telescopes using high-resolution echelle spectrographs reveal Fraunhofer absorption features in the Zodiacal Light spectrum of scattered sunlight, a nuisance in subtraction from the spectrum of the extraterrestrial object under investigation. We are analyzing the intensity modulations and Doppler shifts of solar Fraunhofer absorption lines in the Zodiacal Light component of sky spectra, donated by collaborating astronomers using Keck/HIRES and other high-performance astronomical facilities. Our objectives include velocity distributions of interplanetary dust and improved separation of terrestrial and extraterrestrial sources in sky spectra. Participation of S. Ali was made possible by a grant from the NSF Physics Research Experiences for Undergraduates (REU) program.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2014PPCF...56f4006M','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2014PPCF...56f4006M"><span>Flux rope evolution in interplanetary coronal mass ejections: the 13 May 2005 event</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Manchester, W. B., IV; van der Holst, B.; Lavraud, B.</p> <p>2014-06-01</p> <p>Coronal mass ejections (CMEs) are a dramatic manifestation of solar activity that release vast amounts of plasma into the heliosphere, and have many effects on the interplanetary medium and on planetary atmospheres, and are the major driver of space weather. CMEs occur with the formation and expulsion of large-scale magnetic flux ropes from the solar corona, which are routinely observed in interplanetary space. Simulating and predicting the structure and dynamics of these interplanetary CME magnetic fields are essential to the progress of heliospheric science and space weather prediction. We discuss the simulation of the 13 May 2005 CME event in which we follow the propagation of a flux rope from the solar corona to beyond Earth orbit. In simulating this event, we find that the magnetic flux rope reconnects with the interplanetary magnetic field, to evolve to an open configuration and later reconnects to reform a twisted structure sunward of the original rope. Observations of the 13 May 2005 CME magnetic field near Earth suggest that such a rearrangement of magnetic flux by reconnection may have occurred.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2016cosp...41E2108Y','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2016cosp...41E2108Y"><span>Large-scale solar wind streams: Average temporal evolution of parameters</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Yermolaev, Yuri; Lodkina, Irina; Yermolaev, Michael; Nikolaeva, Nadezhda</p> <p>2016-07-01</p> <p>In the report we describe the average temporal profiles of plasma and field parameters in the disturbed large-scale types of solar wind (SW): corotating interaction regions (CIR), interplanetary coronal mass ejections (ICME) (both magnetic cloud (MC) and Ejecta), and Sheath as well as the interplanetary shock (IS) on the basis of OMNI database and our Catalog of large-scale solar wind phenomena during 1976-2000 (see website ftp://ftp.iki.rssi.ru/pub/omni/ and paper [Yermolaev et al., 2009]). To consider influence of both the surrounding undisturbed solar wind, and the interaction of the disturbed types of the solar wind on the parameters, we separately analyze the following sequences of the phenomena: (1) SW/CIR/SW, (2) SW/IS/CIR/SW, (3) SW/Ejecta/SW, (4) SW/Sheath/Ejecta/SW, (5) SW/IS/Sheath/Ejecta/SW, (6) SW/MC/SW, (7) SW/Sheath/MC/SW, and (8) SW/IS/Sheath/MC/SW. To take into account the different durations of SW types, we use the double superposed epoch analysis (DSEA) method: rescaling the duration of the interval for all types in such a manner that, respectively, beginning and end for all intervals of selected type coincide [Yermolaev et al., 2010; 2015]. Obtained data allow us to suggest that (1) the behavior of parameters in Sheath and in CIR is very similar not only qualitatively but also quantitatively, and (2) the speed angle phi in ICME changes from 2 to -2deg. while in CIR and Sheath it changes from -2 to 2 deg., i.e., the streams in CIR/Sheath and ICME deviate in the opposite side. The work was supported by the Russian Foundation for Basic Research, project 16-02-00125 and by Program of Presidium of the Russian Academy of Sciences. References: Yermolaev, Yu. I., N. S. Nikolaeva, I. G. Lodkina, and M. Yu. Yermolaev (2009), Catalog of Large-Scale Solar Wind Phenomena during 1976-2000, Cosmic Research, , Vol. 47, No. 2, pp. 81-94. Yermolaev, Y. I., N. S. Nikolaeva, I. G. Lodkina, and M. Y. Yermolaev (2010), Specific interplanetary conditions for CIR-induced, Sheath-induced, and ICME-induced geomagnetic storms obtained by double superposed epoch analysis, Ann. Geophys., 28, pp. 2177-2186. Yermolaev, Yu. I., I. G. Lodkina, N. S. Nikolaeva, and M. Yu. Yermolaev (2015), Dynamics of large-scale solar wind streams obtained by the double superposed epoch analysis, J. Geophys. Res. Space Physics, 120, doi:10.1002/2015JA021274</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.osti.gov/servlets/purl/1356492','SCIGOV-STC'); return false;" href="https://www.osti.gov/servlets/purl/1356492"><span></span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.osti.gov/search">DOE Office of Scientific and Technical Information (OSTI.GOV)</a></p> <p>Pavitt, Ania S.; Bylaska, Eric J.; Tratnyek, Paul G.</p> <p></p> <p>As described in the main text, we classified our voltammograms into four types. For phenols, most compounds were type I or type II, except four phenols that were type III (4-nitrophenol, 4-cyanophenol, DNOC, and 4-hydroxyacetphenone); and two phenols that were type IV (4-aminophenol and dopamine). Almost all of the compounds gave the same type by SCV and SWV, except for 2,4-dinitrophenol (whose current went up and down and therefore could be considered a type II or III), 4-cyanophenol (which fell into a type III for SCV, but whose current went up and down in SWV (type II or III)), andmore » 4-hydroxyacetophenone (which was a type III in SCV, but a type II in SWV). The majority of the anilines were type I except for p-toluidine (type II) and 4-methyl-3-nitroaniline and 2-methoxy-5-nitroaniline (both were type I for SWV, but for SCV fell into type III and type II respectively).« less</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.osti.gov/pages/biblio/1356492-oxidation-potentials-phenols-anilines-correlation-analysis-electrochemical-theoretical-values','SCIGOV-DOEP'); return false;" href="https://www.osti.gov/pages/biblio/1356492-oxidation-potentials-phenols-anilines-correlation-analysis-electrochemical-theoretical-values"><span>Oxidation potentials of phenols and anilines: correlation analysis of electrochemical and theoretical values</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.osti.gov/pages">DOE PAGES</a></p> <p>Pavitt, Ania S.; Bylaska, Eric J.; Tratnyek, Paul G.</p> <p>2017-02-10</p> <p>As described in the main text, we classified our voltammograms into four types. For phenols, most compounds were type I or type II, except four phenols that were type III (4-nitrophenol, 4-cyanophenol, DNOC, and 4-hydroxyacetphenone); and two phenols that were type IV (4-aminophenol and dopamine). Almost all of the compounds gave the same type by SCV and SWV, except for 2,4-dinitrophenol (whose current went up and down and therefore could be considered a type II or III), 4-cyanophenol (which fell into a type III for SCV, but whose current went up and down in SWV (type II or III)), andmore » 4-hydroxyacetophenone (which was a type III in SCV, but a type II in SWV). The majority of the anilines were type I except for p-toluidine (type II) and 4-methyl-3-nitroaniline and 2-methoxy-5-nitroaniline (both were type I for SWV, but for SCV fell into type III and type II respectively).« less</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://hdl.handle.net/2060/19750020012','NASA-TRS'); return false;" href="http://hdl.handle.net/2060/19750020012"><span>Program manual for HILTOP, a heliocentric interplanetary low thrust trajectory optimization program. Part 1: User's guide</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Mann, F. I.; Horsewood, J. L.</p> <p>1974-01-01</p> <p>A performance-analysis computer program, that was developed explicitly to generate optimum electric propulsion trajectory data for missions of interest in the exploration of the solar system is presented. The program was primarily designed to evaluate the performance capabilities of electric propulsion systems, and in the simulation of a wide variety of interplanetary missions. A numerical integration of the two-body, three-dimensional equations of motion and the Euler-Lagrange equations was used in the program. Transversality conditions which permit the rapid generation of converged maximum-payload trajectory data, and the optimization of numerous other performance indices for which no transversality conditions exist are included. The ability to simulate constrained optimum solutions, including trajectories having specified propulsion time and constant thrust cone angle, is also in the program. The program was designed to handle multiple-target missions with various types of encounters, such as rendezvous, stopover, orbital capture, and flyby. Performance requirements for a variety of launch vehicles can be determined.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2016ApJ...826...15F','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2016ApJ...826...15F"><span>Observations of an Interplanetary Intermediate Shock Associated with a Magnetic Reconnection Exhaust</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Feng, H. Q.; Li, Q. H.; Wang, J. M.; Zhao, G. Q.</p> <p>2016-07-01</p> <p>Two intermediate shocks (ISs) in interplanetary space have been identified via one spacecraft observation. However, Feng et al. suggested that the analysis using a single spacecraft observation based only on the Rankine-Hugoniot (R-H) relations could misinterpret a tangential discontinuity (TD) as an IS. The misinterpretation can be fixed if two spacecraft observations are available. In this paper, we report an IS-like discontinuity associated with a magnetic reconnection exhaust, which was observed by Wind on 2000 August 9 at 1 au. We investigated this discontinuity by fitting the R-H relations and referring to the Advanced Composition Explorer (ACE) observations. As a result, we found that the observed magnetic field and plasma data satisfy the R-H relations well, and the discontinuity satisfies all the requirements of the 2\\to 3 type IS. Although the discontinuity cannot be identified strictly by using two spacecraft observations, in light of the ACE observations we consider that the discontinuity should be an IS rather than a TD.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2018ApJ...858..123H','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2018ApJ...858..123H"><span>Interplanetary Shocks Inducing Magnetospheric Supersubstorms (SML < ‑2500 nT): Unusual Auroral Morphologies and Energy Flow</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Hajra, Rajkumar; Tsurutani, Bruce T.</p> <p>2018-05-01</p> <p>We present case studies of two interplanetary shock-induced supersubstorms (SSSs) with extremely high intensities (peak SML ‑4418 and ‑2668 nT) and long durations (∼1.7 and ∼3.1 hr). The events occurred on 2005 January 21 and 2010 April 5, respectively. It is shown that these SSSs have a different auroral evolution than a nominal Akasofu-type substorm. The auroras associated with the SSSs did not have the standard midnight onset and following expansion. Instead, at the time of the SML index peak, the midnight sector was generally devoid of intense auroras, while the most intense auroras were located in the premidnight and postmidnight magnetic local times. Precursor energy input through magnetic reconnection was insufficient to balance the large ionospheric energy dissipation during the SSSs. It is argued that besides the release of stored magnetotail energy during the SSSs, these were powered by additional direct driving through both dayside magnetic reconnection and solar wind ram energy.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017ApJ...848...70L','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017ApJ...848...70L"><span>The Open Flux Problem</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Linker, J. A.; Caplan, R. M.; Downs, C.; Riley, P.; Mikic, Z.; Lionello, R.; Henney, C. J.; Arge, C. N.; Liu, Y.; Derosa, M. L.; Yeates, A.; Owens, M. J.</p> <p>2017-10-01</p> <p>The heliospheric magnetic field is of pivotal importance in solar and space physics. The field is rooted in the Sun’s photosphere, where it has been observed for many years. Global maps of the solar magnetic field based on full-disk magnetograms are commonly used as boundary conditions for coronal and solar wind models. Two primary observational constraints on the models are (1) the open field regions in the model should approximately correspond to coronal holes (CHs) observed in emission and (2) the magnitude of the open magnetic flux in the model should match that inferred from in situ spacecraft measurements. In this study, we calculate both magnetohydrodynamic and potential field source surface solutions using 14 different magnetic maps produced from five different types of observatory magnetograms, for the time period surrounding 2010 July. We have found that for all of the model/map combinations, models that have CH areas close to observations underestimate the interplanetary magnetic flux, or, conversely, for models to match the interplanetary flux, the modeled open field regions are larger than CHs observed in EUV emission. In an alternative approach, we estimate the open magnetic flux entirely from solar observations by combining automatically detected CHs for Carrington rotation 2098 with observatory synoptic magnetic maps. This approach also underestimates the interplanetary magnetic flux. Our results imply that either typical observatory maps underestimate the Sun’s magnetic flux, or a significant portion of the open magnetic flux is not rooted in regions that are obviously dark in EUV and X-ray emission.</p> </li> </ol> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_7");'>7</a></li> <li><a href="#" onclick='return showDiv("page_8");'>8</a></li> <li class="active"><span>9</span></li> <li><a href="#" onclick='return showDiv("page_10");'>10</a></li> <li><a href="#" onclick='return showDiv("page_11");'>11</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div><!-- col-sm-12 --> </div><!-- row --> </div><!-- page_9 --> <div id="page_10" class="hiddenDiv"> <div class="row"> <div class="col-sm-12"> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_8");'>8</a></li> <li><a href="#" onclick='return showDiv("page_9");'>9</a></li> <li class="active"><span>10</span></li> <li><a href="#" onclick='return showDiv("page_11");'>11</a></li> <li><a href="#" onclick='return showDiv("page_12");'>12</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div> </div> <div class="row"> <div class="col-sm-12"> <ol class="result-class" start="181"> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2014AGUFMSM31D4239M','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2014AGUFMSM31D4239M"><span>The Ring Current Response to Solar and Interplanetary Storm Drivers</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Mouikis, C.; Kistler, L. M.; Bingham, S.; Kronberg, E. A.; Gkioulidou, M.; Huang, C. L.; Farrugia, C. J.</p> <p>2014-12-01</p> <p>The ring current responds differently to the different solar and interplanetary storm drivers such as coronal mass injections, (CME's), corotating interaction regions (CIR's), high-speed streamers and other structures. The resulting changes in the ring current particle pressure, in turn, change the global magnetic field, controlling the transport of the radiation belts. To quantitatively determine the field changes during a storm throughout the magnetosphere, it is necessary to understand the transport, sources and losses of the particles that contribute to the ring current. Because the measured ring current energy spectra depend not only on local processes, but also on the history of the ions along their entire drift path, measurements of ring current energy spectra at two or more locations can be used to strongly constrain the time dependent magnetic and electric fields. In this study we use data predominantly from the Cluster and the Van Allen Probes, covering more than a full solar cycle (from 2001 to 2014). For the period 2001-2012, the Cluster CODIF and RAPID measurements of the inner magnetosphere are the primary data set used to monitor the storm time ring current variability. After 2012, the Cluster data set complements the data from the Van Allen Probes HOPE and RBSPICE instruments, providing additional measurements from different MLT and L shells. Selected storms from this periods, allow us to study the ring current dynamics and pressure changes, as a function of L shell, magnetic local time, and the type of interplanetary disturbances.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.osti.gov/biblio/22679762-open-flux-problem','SCIGOV-STC'); return false;" href="https://www.osti.gov/biblio/22679762-open-flux-problem"><span>The Open Flux Problem</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.osti.gov/search">DOE Office of Scientific and Technical Information (OSTI.GOV)</a></p> <p>Linker, J. A.; Caplan, R. M.; Downs, C.</p> <p></p> <p>The heliospheric magnetic field is of pivotal importance in solar and space physics. The field is rooted in the Sun’s photosphere, where it has been observed for many years. Global maps of the solar magnetic field based on full-disk magnetograms are commonly used as boundary conditions for coronal and solar wind models. Two primary observational constraints on the models are (1) the open field regions in the model should approximately correspond to coronal holes (CHs) observed in emission and (2) the magnitude of the open magnetic flux in the model should match that inferred from in situ spacecraft measurements. Inmore » this study, we calculate both magnetohydrodynamic and potential field source surface solutions using 14 different magnetic maps produced from five different types of observatory magnetograms, for the time period surrounding 2010 July. We have found that for all of the model/map combinations, models that have CH areas close to observations underestimate the interplanetary magnetic flux, or, conversely, for models to match the interplanetary flux, the modeled open field regions are larger than CHs observed in EUV emission. In an alternative approach, we estimate the open magnetic flux entirely from solar observations by combining automatically detected CHs for Carrington rotation 2098 with observatory synoptic magnetic maps. This approach also underestimates the interplanetary magnetic flux. Our results imply that either typical observatory maps underestimate the Sun’s magnetic flux, or a significant portion of the open magnetic flux is not rooted in regions that are obviously dark in EUV and X-ray emission.« less</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2016cosp...41E.476D','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2016cosp...41E.476D"><span>Time-dependent radiation dose simulations during interplanetary space flights</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Dobynde, Mikhail; Shprits, Yuri; Drozdov, Alexander; Hoffman, Jeffrey; Li, Ju</p> <p>2016-07-01</p> <p>Space radiation is one of the main concerns in planning long-term interplanetary human space missions. There are two main types of hazardous radiation - Solar Energetic Particles (SEP) and Galactic Cosmic Rays (GCR). Their intensities and evolution depend on the solar activity. GCR activity is most enhanced during solar minimum, while the most intense SEPs usually occur during the solar maximum. SEPs are better shielded with thick shields, while GCR dose is less behind think shields. Time and thickness dependences of the intensity of these two components encourage looking for a time window of flight, when radiation intensity and dose of SEP and GCR would be minimized. In this study we combine state-of-the-art space environment models with GEANT4 simulations to determine the optimal shielding, geometry of the spacecraft, and launch time with respect to the phase of the solar cycle. The radiation environment was described by the time-dependent GCR model, and the SEP spectra that were measured during the period from 1990 to 2010. We included gamma rays, electrons, neutrons and 27 fully ionized elements from hydrogen to nickel. We calculated the astronaut's radiation doses during interplanetary flights using the Monte-Carlo code that accounts for the primary and the secondary radiation. We also performed sensitivity simulations for the assumed spacecraft size and thickness to find an optimal shielding. In conclusion, we present the dependences of the radiation dose as a function of launch date from 1990 to 2010, for flight durations of up to 3 years.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2014cosp...40E1802L','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2014cosp...40E1802L"><span>Link between interplanetary & cometary dust: Polarimetric observations and space studies with Rosetta & Eye-Sat</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Levasseur-Regourd, Anny-Chantal; Gaboriaud, Alain; Buil, Christian; Ressouche, Antoine; Lasue, J.; Palun, Adrien; Apper, Fabien; Elmaleh, Marc</p> <p></p> <p>Intensity and linear polarization observations of the solar light scattered by interplanetary dust, the so-called zodiacal light, provide information on properties of the dust particles, such as their spatial density, local changes, morphology and albedo. Earth-based polarimetric observations, with a resolution of 5° or more, have been used to derive the polarization phase curve of interplanetary dust particles and to establish that the polarization at 90° phase angle increases with increasing solar distance, at least up to 1.5 au in the ecliptic, while the albedo decreases [1, 2]. Analysis of such studies will be revisited. Numerical simulations of the polarimetric behavior of interplanetary dust particles strongly suggest that, in the inner solar system, interplanetary dust particles consist of absorbing (e.g., organic compounds) and less absorbing (e.g., silicates) materials, that radial changes originate in a decrease of organics with decreasing solar distance (probably due to alteration processes), and that a significant fraction of the interplanetary dust is of cometary origin, in agreement with dynamical studies [3, 4]. The polarimetric behaviors of interplanetary dust and cometary dust particles seem to present striking similarities. The properties of cometary dust particles, as derived from remote polarimetric observations of comets including 67P/Churyumov-Gerasimenko, the target of the Rosetta rendezvous mission, at various wavelengths, will be summarized [5, 6]. The ground truth expected from Rosetta dust experiments, i.e., MIDAS, COSIMA, GIADA, about dust particles’ morphology, composition, and evolution (with distance to the nucleus before Philae release and with distance to the Sun before and after perihelion passage) over the year and a half of nominal mission, will be discussed. Finally, the Eye-Sat nanosatellite will be presented. This triple cubesat, developed by students from engineering schools working as interns at CNES, is to be launched in 2016 [7]. Its main purpose is to study the zodiacal light intensity and polarization from a Sun-synchronous orbit, for the first time at the high spatial resolution of 1° over a wide portion of the sky and at four different wavelengths (in the visible and near-IR domains). The instrumental choices and new on-board technologies will be summarized, together with the results that may be expected on local properties of the interplanetary dust particles and thus on their similarities and differences with cometary dust particles. Support from CNES is warmly acknowledged. [1] Leinert, C., Bowyer, S., Haikala, L.K., et al. The 1997 reference of diffuse night sky brightness, Astron. Astrophys. Supp., 127, 1-99, 1998. [2] Levasseur-Regourd, A.C., Mann, I., Dumont, R., et al. Optical and thermal properties of interplanetary dust. In Interplanetary dust (Grün, E. et al. Eds), 57-94, Springer-Verlag, Berlin, 2001. [3] Lasue, J., Levasseur-Regourd, A.C., Fray, N., et al. Inferring the interplanetary dust properties from remote observations and simulations, Astron. Astrophys., 473, 641-649, 2007. [4] Nesvorny, D., Jenniskens, P., Levison, H.F., et al. Cometary origin of the zodiacal cloud and carbonaceous micrometeorites: implications for hot debris disks. Astrophys. J. 713, 816-836, 2010. [5] Levasseur-Regourd, A.C., Mukai, T., Lasue, J., et al. Physical properties of cometary and interplanetary dust, Planet. Space Sci., 55, 1010-1020, 2007. [6] Hadamcik, E., Sen, A.K., Levasseur-Regourd, A.C., et al., Astron. Astrophys., 517, A86, 2010. [7] CNES internal report. Eye-Sat end of phase A internal review, EYESAT-PR-0-022-CNES, 2013.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://ntrs.nasa.gov/search.jsp?R=20060033201&hterms=internet&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D90%26Ntt%3Dinternet','NASA-TRS'); return false;" href="https://ntrs.nasa.gov/search.jsp?R=20060033201&hterms=internet&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D90%26Ntt%3Dinternet"><span>The interplanetary Internet</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Hooke, A. J.</p> <p>2000-01-01</p> <p>Architectural design of the interplanetary internet is now underway and prototype flight testing of some of the candidate protocols is anticipated within a year. This talk will describe the current status of the project.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://hdl.handle.net/2060/19770023199','NASA-TRS'); return false;" href="http://hdl.handle.net/2060/19770023199"><span>Research in space science and technology. [including X-ray astronomy and interplanetary plasma physics</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Beckley, L. E.</p> <p>1977-01-01</p> <p>Progress in various space flight research programs is reported. Emphasis is placed on X-ray astronomy and interplanetary plasma physics. Topics covered include: infrared astronomy, long base line interferometry, geological spectroscopy, space life science experiments, atmospheric physics, and space based materials and structures research. Analysis of galactic and extra-galactic X-ray data from the Small Astronomy Satellite (SAS-3) and HEAO-A and interplanetary plasma data for Mariner 10, Explorers 47 and 50, and Solrad is discussed.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://ntrs.nasa.gov/search.jsp?R=20120016557&hterms=understand&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D20%26Ntt%3Dunderstand','NASA-TRS'); return false;" href="https://ntrs.nasa.gov/search.jsp?R=20120016557&hterms=understand&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D20%26Ntt%3Dunderstand"><span>Using Statistical Multivariable Models to Understand the Relationship Between Interplanetary Coronal Mass Ejecta and Magnetic Flux Ropes</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Riley, P.; Richardson, I. G.</p> <p>2012-01-01</p> <p>In-situ measurements of interplanetary coronal mass ejections (ICMEs) display a wide range of properties. A distinct subset, "magnetic clouds" (MCs), are readily identifiable by a smooth rotation in an enhanced magnetic field, together with an unusually low solar wind proton temperature. In this study, we analyze Ulysses spacecraft measurements to systematically investigate five possible explanations for why some ICMEs are observed to be MCs and others are not: i) An observational selection effect; that is, all ICMEs do in fact contain MCs, but the trajectory of the spacecraft through the ICME determines whether the MC is actually encountered; ii) interactions of an erupting flux rope (PR) with itself or between neighboring FRs, which produce complex structures in which the coherent magnetic structure has been destroyed; iii) an evolutionary process, such as relaxation to a low plasma-beta state that leads to the formation of an MC; iv) the existence of two (or more) intrinsic initiation mechanisms, some of which produce MCs and some that do not; or v) MCs are just an easily identifiable limit in an otherwise corntinuous spectrum of structures. We apply quantitative statistical models to assess these ideas. In particular, we use the Akaike information criterion (AIC) to rank the candidate models and a Gaussian mixture model (GMM) to uncover any intrinsic clustering of the data. Using a logistic regression, we find that plasma-beta, CME width, and the ratio O(sup 7) / O(sup 6) are the most significant predictor variables for the presence of an MC. Moreover, the propensity for an event to be identified as an MC decreases with heliocentric distance. These results tend to refute ideas ii) and iii). GMM clustering analysis further identifies three distinct groups of ICMEs; two of which match (at the 86% level) with events independently identified as MCs, and a third that matches with non-MCs (68 % overlap), Thus, idea v) is not supported. Choosing between ideas i) and iv) is more challenging, since they may effectively be indistinguishable from one another by a single in-situ spacecraft. We offer some suggestions on how future studies may address this.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2003JGRA..108.1387B','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2003JGRA..108.1387B"><span>Reply to Comment on ``Effects of fast and slow solar wind on the correlations between interplanetary medium and geomagnetic activity'' by C. B. Wang and J. K. Chao</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Ballatore, Paola</p> <p>2003-10-01</p> <p>The paper [2002] (the paper commented) shows that the statistical significance of the correlations between the interplanetary parameters and the geomagnetic indices (Kp or Dst) is generally less significant during the fastest solar wind. On the other hand, at these fast solar wind periods, the significance of the Kp versus Dst correlation is equal to or higher than during slower solar wind. These results, together with further observations related to substorm periods and with previously published findings, are interpreted in terms of a difference in the interplanetary-magnetospheric coupling for solar wind faster or slower than a certain threshold (identified between about 500 and 600 km/s). Specifically, it is suggested that a possible linear approximation of the geomagnetic-interplanetary coupling is more appropriate during solar wind speed (Vsw) slower than this threshold, being nonlinear processes more dominant during the fastest speeds. This reply highlights that the correlation coefficients shown by [2003] are in agreement with these findings. In addition, Wang and Chao show that the statistical significance of the difference between the correlation coefficients for Vsw ≥ 550 km/s and those for Vsw < 550 km/s would indicate that the interplanetary-geomagnetic correlations during the fastest speeds are not significantly different from those at slower Vsw ranges. Here we give evidence of the fact that according to the common definition of this parameter, the calculation of the significance of the difference between two correlation coefficients made by Wang and Chao is wrong. Moreover, Wang and Chao recalculate the correlations between the interplanetary parameters and the ΔDst instead of Dst; in fact they note that the time derivative of this index (not the index itself) is driven by the interplanetary medium. Here we note that on the contrary, they show that the correlation coefficients between interplanetary parameters and Dst are larger than those obtained using ΔDst and we suggest a possible interpretation in terms of nonlinearity.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/18689625','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/18689625"><span>Prevalent genotypes of Toxoplasma gondii in pregnant women and patients from Crete and Cyprus.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Messaritakis, Ippokratis; Detsika, Maria; Koliou, Maria; Sifakis, Stavros; Antoniou, Maria</p> <p>2008-08-01</p> <p>Molecular genotyping has been used to characterize Toxoplasma gondii strains into the three clonal lineages known as types I, II, and III. To characterize T. gondii strains from Greece and Cyprus, polymerase chain reaction-restriction fragment length polymorphism analysis on the GRA6 gene was performed directly on 20 clinical samples from 18 humans (11 pregnant women, six patients with lymphadenopathy, and one patient positive for human immunodeficiency virus) and two rats. Characterization of T. gondii types was performed after digestion of amplified products with Mse I. The 20 strains were characterized as type II (20%) and type III (80%). Of these strains, 19 originated from the island of Crete (4 strains type II and 15 strains type III), and 1 from the island of Cyprus (type III). Although both type II and type III strains were found, type III was the most prevalent in Crete.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.osti.gov/biblio/22357004-multi-spacecraft-observations-recurrent-sup-he-rich-solar-energetic-particles','SCIGOV-STC'); return false;" href="https://www.osti.gov/biblio/22357004-multi-spacecraft-observations-recurrent-sup-he-rich-solar-energetic-particles"><span>Multi-spacecraft observations of recurrent {sup 3}He-rich solar energetic particles</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.osti.gov/search">DOE Office of Scientific and Technical Information (OSTI.GOV)</a></p> <p>Bučík, R.; Innes, D. E.; Mall, U.</p> <p>2014-05-01</p> <p>We study the origin of {sup 3}He-rich solar energetic particles (<1 MeV nucleon{sup –1}) that are observed consecutively on STEREO-B, Advanced Composition Explorer (ACE), and STEREO-A spacecraft when they are separated in heliolongitude by more than 90°. The {sup 3}He-rich period on STEREO-B and STEREO-A commences on 2011 July 1 and 2011 July 16, respectively. The ACE {sup 3}He-rich period consists of two sub-events starting on 2011 July 7 and 2011 July 9. We associate the STEREO-B July 1 and ACE July 7 {sup 3}He-rich events with the same sizeable active region (AR) producing X-ray flares accompanied by prompt electronmore » events, when it was near the west solar limb as seen from the respective spacecraft. The ACE July 9 and STEREO-A July 16 events were dispersionless with enormous {sup 3}He enrichment, lacking solar energetic electrons and occurring in corotating interaction regions. We associate these events with a small, recently emerged AR near the border of a low-latitude coronal hole that produced numerous jet-like emissions temporally correlated with type III radio bursts. For the first time we present observations of (1) solar regions with long-lasting conditions for {sup 3}He acceleration and (2) solar energetic {sup 3}He that is temporarily confined/re-accelerated in interplanetary space.« less</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/18218892','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/18218892"><span>Comparison of comet 81P/Wild 2 dust with interplanetary dust from comets.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Ishii, Hope A; Bradley, John P; Dai, Zu Rong; Chi, Miaofang; Kearsley, Anton T; Burchell, Mark J; Browning, Nigel D; Molster, Frank</p> <p>2008-01-25</p> <p>The Stardust mission returned the first sample of a known outer solar system body, comet 81P/Wild 2, to Earth. The sample was expected to resemble chondritic porous interplanetary dust particles because many, and possibly all, such particles are derived from comets. Here, we report that the most abundant and most recognizable silicate materials in chondritic porous interplanetary dust particles appear to be absent from the returned sample, indicating that indigenous outer nebula material is probably rare in 81P/Wild 2. Instead, the sample resembles chondritic meteorites from the asteroid belt, composed mostly of inner solar nebula materials. This surprising finding emphasizes the petrogenetic continuum between comets and asteroids and elevates the astrophysical importance of stratospheric chondritic porous interplanetary dust particles as a precious source of the most cosmically primitive astromaterials.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://ntrs.nasa.gov/search.jsp?R=19860039281&hterms=attention+pictures&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D70%26Ntt%3Dattention%2Bpictures','NASA-TRS'); return false;" href="https://ntrs.nasa.gov/search.jsp?R=19860039281&hterms=attention+pictures&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D70%26Ntt%3Dattention%2Bpictures"><span>Interplanetary magnetic field effects on high latitude ionospheric convection</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Heelis, R. A.</p> <p>1985-01-01</p> <p>Relations between the electric field and the electric current in the ionosphere can be established on the basis of a system of mathematical and physical equations provided by the equations of current continuity and Ohm's law. For this reason, much of the synthesis of electric field and plasma velocity data in the F-region is made with the aid of similar data sets derived from field-aligned current and horizontal current measurements. During the past decade, the development of a self-consistent picture of the distribution and behavior of these measurements has proceeded almost in parallel. The present paper is concerned with the picture as it applies to the electric field and plasma drift velocity and its dependence on the interplanetary magnetic field. Attention is given to the southward interplanetary magnetic field and the northward interplanetary magnetic field.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/1987SoPh..114..407D','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/1987SoPh..114..407D"><span>Study of Travelling Interplanetary Phenomena Report</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Dryer, Murray</p> <p>1987-09-01</p> <p>Scientific progress on the topic of energy, mass, and momentum transport from the Sun into the heliosphere is contingent upon interdisciplinary and international cooperative efforts on the part of many workers. Summarized here is a report of some highlights of research carried out during the SMY/SMA by the STIP (Study of Travelling Interplanetary Phenomena) Project that included solar and interplanetary scientists around the world. These highlights are concerned with coronal mass ejections from solar flares or erupting prominences (sometimes together); their large-scale consequences in interplanetary space (such as shocks and magnetic 'bubbles'); and energetic particles and their relationship to these large-scale structures. It is concluded that future progress is contingent upon similar international programs assisted by real-time (or near-real-time) warnings of solar activity by cooperating agencies along the lines experienced during the SMY/SMA.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017JGRA..122.8037L','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017JGRA..122.8037L"><span>Electron dropout echoes induced by interplanetary shock: A statistical study</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Liu, Z. Y.; Zong, Q.-G.; Hao, Y. X.; Zhou, X.-Z.; Ma, X. H.; Liu, Y.</p> <p>2017-08-01</p> <p>"Electron dropout echo" as indicated by repeated moderate dropout and recovery signatures of the flux of energetic electron in the outer radiation belt region has been investigated systematically. The electron moderate dropout and its echoes are usually found for higher-energy (>300 keV) channel fluxes, whereas the flux enhancements are obvious for lower energy electrons simultaneously after the interplanetary shock arrives at the Earth's geosynchronous orbit. The electron dropout echo events are found to be usually associated with the interplanetary shocks arrival. The 104 dropout echo events have been found from 215 interplanetary shock events from 1998 to 2007 based on the Los Alamos National Laboratory satellite data. In analogy to substorm injections, these 104 events could be naturally divided into two categories: dispersionless (49 events) or dispersive (55 events) according to the energy dispersion of the initial dropout. It is found that locations of dispersionless events are distributed mainly in the duskside magnetosphere. Further, the obtained locations derived from dispersive events with the time-of-flight technique of the initial dropout regions are mainly located at the duskside as well. Statistical studies have shown that the effect of shock normal, interplanetary magnetic field Bz and solar wind dynamic pressure may be insignificant to these electron dropout events. We suggest that the ˜1 min electric field impulse induced by the interplanetary shock produces a more pronounced inward migration of electrons at the duskside, resulting in the observed duskside moderate dropout of electron flux and its consequent echoes.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/26432704','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/26432704"><span>Dissecting the taxonomic heterogeneity within Propionibacterium acnes: proposal for Propionibacterium acnes subsp. acnes subsp. nov. and Propionibacterium acnes subsp. elongatum subsp. nov.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Dekio, Itaru; Culak, Renata; Misra, Raju; Gaulton, Tom; Fang, Min; Sakamoto, Mitsuo; Ohkuma, Moriya; Oshima, Kenshiro; Hattori, Masahira; Klenk, Hans-Peter; Rajendram, Dunstan; Gharbia, Saheer E; Shah, Haroun N</p> <p>2015-12-01</p> <p>Propionibacterium acnes subsp. acnes subsp. nov. and Propionibacterium acnes subsp. elongatum subsp. nov. are described. These emanate from the three known phylotypes of P. acnes, designated types I, II and III. Electron microscopy confirmed the filamentous cell shape of type III, showing a striking difference from types I/II, which were short rods. Biochemical tests indicated that, in types I/II, either the pyruvate, l-pyrrolidonyl arylamidase or d-ribose 2 test was positive, whereas all of these were negative among type III strains. Matrix-assisted laser-desorption/ionization time-of-flight mass spectrometry (MALDI-TOF MS) spectra, which profile mainly their ribosomal proteins, were different between these two groups. Surface-enhanced laser-desorption/ionization time-of-flight mass spectrometry (SELDI-TOF MS) spectra of all phylotypes revealed a specific protein biomarker that was overexpressed in type III strains compared with types I/II only when grown aerobically. Reference strains had high whole-genome similarity between types I (>91 %) and II (>75 %), but a considerably lower level of 72 % similarity with type III. recA and gyrB sequence dendrograms confirmed the distant relatedness of type III, indicating the presence of two distinct centres of variation within the species P. acnes. On the other hand, cellular fatty acid profiles and 16S rRNA gene sequence relatedness (>99.3 %) circumscribed the species. Thus, we propose two subspecies, Propionibacterium acnes subsp. acnes subsp. nov. for types I/II and Propionibacterium acnes subsp. elongatum subsp. nov. for type III. The type strain of Propionibacterium acnes subsp. acnes is NCTC 737T ( = ATCC 6919T = JCM 6425T = DSM 1897T = CCUG 1794T), while the type strain of Propionibacterium acnes subsp. elongatum is K124T ( = NCTC 13655T = JCM 18919T).</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2018LPICo2063.3013T','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2018LPICo2063.3013T"><span>Testing Fundamental Gravity with Interplanetary Laser Ranging</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Turyshev, S. G.; Shao, M.; Hahn, I.</p> <p>2018-02-01</p> <p>Very accurate range measurements with the Interplanetary Laser Ranging Terminal (ILRT) will push high-precision tests of astrophysics/gravitation into a new regime. It could be used for navigation and investigations in planetary/lunar science.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/24152110','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/24152110"><span>Cell-type-dependent action potentials and voltage-gated currents in mouse fungiform taste buds.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Kimura, Kenji; Ohtubo, Yoshitaka; Tateno, Katsumi; Takeuchi, Keita; Kumazawa, Takashi; Yoshii, Kiyonori</p> <p>2014-01-01</p> <p>Taste receptor cells fire action potentials in response to taste substances to trigger non-exocytotic neurotransmitter release in type II cells and exocytotic release in type III cells. We investigated possible differences between these action potentials fired by mouse taste receptor cells using in situ whole-cell recordings, and subsequently we identified their cell types immunologically with cell-type markers, an IP3 receptor (IP3 R3) for type II cells and a SNARE protein (SNAP-25) for type III cells. Cells not immunoreactive to these antibodies were examined as non-IRCs. Here, we show that type II cells and type III cells fire action potentials using different ionic mechanisms, and that non-IRCs also fire action potentials with either of the ionic mechanisms. The width of action potentials was significantly narrower and their afterhyperpolarization was deeper in type III cells than in type II cells. Na(+) current density was similar in type II cells and type III cells, but it was significantly smaller in non-IRCs than in the others. Although outwardly rectifying current density was similar between type II cells and type III cells, tetraethylammonium (TEA) preferentially suppressed the density in type III cells and the majority of non-IRCs. Our mathematical model revealed that the shape of action potentials depended on the ratio of TEA-sensitive current density and TEA-insensitive current one. The action potentials of type II cells and type III cells under physiological conditions are discussed. © 2013 Federation of European Neuroscience Societies and John Wiley & Sons Ltd.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2011TJSAI...8To425M','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2011TJSAI...8To425M"><span>First Solar Power Sail Demonstration by IKAROS</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Mori, Osamu; Sawada, Hirotaka; Funase, Ryu; Morimoto, Mutsuko; Endo, Tatsuya; Yamamoto, Takayuki; Tsuda, Yuichi; Kawakatsu, Yasuhiro; Kawaguchi, Jun'ichiro; Miyazaki, Yasuyuki; Shirasawa, Yoji; Demonstration Team; Solar Sail Working Group, Ikaros</p> <p></p> <p>The Japan Aerospace Exploration Agency (JAXA) will make the world's first solar power sail craft demonstration of photon propulsion and thin film solar power generation during its interplanetary cruise by IKAROS (Interplanetary Kite-craft Accelerated by Radiation Of the Sun). The spacecraft deploys and spans a membrane of 20 meters in diameter taking the advantage of the spin centrifugal force. The spacecraft weighs approximately 310kg, launched together with the agency's Venus Climate Orbiter, AKATSUKI in May 2010. This will be the first actual solar sail flying an interplanetary voyage.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://hdl.handle.net/2060/19790019894','NASA-TRS'); return false;" href="http://hdl.handle.net/2060/19790019894"><span>Research in space physics at the University of Iowa</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Vanallen, J. A.</p> <p>1979-01-01</p> <p>Current investigations relating to energetic particles and the electric, magnetic, and electromagnetic fields associated with the earth, the sun, the moon, the planets, comets, and the interplanetary medium are reported. Primary emphasis is on observational work using a wide diversity of intruments on satellites of the earth and the moon and on planetary and interplanetary spacecraft, and on phenomenological analysis and interpretation. Secondary emphasis is given to closely related observational work by ground based radio-astronomical and optical techniques, and to theoretical problems in plasma physics as relevant to solar, planetary, and interplanetary phenomena.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://ntrs.nasa.gov/search.jsp?R=19960021344&hterms=geofisica&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D30%26Ntt%3Dgeofisica','NASA-TRS'); return false;" href="https://ntrs.nasa.gov/search.jsp?R=19960021344&hterms=geofisica&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D30%26Ntt%3Dgeofisica"><span>The emergence of different polarity photospheric flux as the cause of CMEs and interplanetary shocks</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Bravo, S.</p> <p>1995-01-01</p> <p>Here we discuss the effect that the emergence of flux with a polarity opposed to that previously established in a certain photospheric region. can have on the magnetic structure of the solar atmosphere. We show that such a flux emergence may lead to the ejection of coronal material into the interplanetary medium (a CME) and also to a rapid change in the velocity of the solar wind from the region, which may eventually lead to the formation of an interplanetary shock.</p> </li> </ol> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_8");'>8</a></li> <li><a href="#" onclick='return showDiv("page_9");'>9</a></li> <li class="active"><span>10</span></li> <li><a href="#" onclick='return showDiv("page_11");'>11</a></li> <li><a href="#" onclick='return showDiv("page_12");'>12</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div><!-- col-sm-12 --> </div><!-- row --> </div><!-- page_10 --> <div id="page_11" class="hiddenDiv"> <div class="row"> <div class="col-sm-12"> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_9");'>9</a></li> <li><a href="#" onclick='return showDiv("page_10");'>10</a></li> <li class="active"><span>11</span></li> <li><a href="#" onclick='return showDiv("page_12");'>12</a></li> <li><a href="#" onclick='return showDiv("page_13");'>13</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div> </div> <div class="row"> <div class="col-sm-12"> <ol class="result-class" start="201"> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://hdl.handle.net/2060/20150016610','NASA-TRS'); return false;" href="http://hdl.handle.net/2060/20150016610"><span>Fabrication of Regolith-Derived Radiation Shield Project</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Zeitlin, Nancy; Mantovani, James G.; Townsend, Ivan</p> <p>2015-01-01</p> <p>Mars and asteroids have little or no atmosphere, and do not possess a magnetosphere that can protect humans, mechanisms and electronics from damaging Galactic Cosmic Radiation (GCR) and solar particle events (SPE) as does the Earth. These types of space radiation present one of the highest risks to a human crew during interplanetary journeys and to onboard electronics. This project aims to evaluate the effectiveness of carbonaceous asteroid materials as a potential radiation shielding material.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://www.dtic.mil/docs/citations/ADA562634','DTIC-ST'); return false;" href="http://www.dtic.mil/docs/citations/ADA562634"><span>Magnetic Field-Line Lengths in Interplanetary Coronal Mass Ejections Inferred From Energetic Electron Events (Postprint)</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.dtic.mil/">DTIC Science & Technology</a></p> <p></p> <p>2012-05-03</p> <p>ENERGETIC ELECTRON EVENTS (POSTPRINT) S.W. Kahler, et al. 03 May 2012 Technical Paper APPROVED FOR PUBLIC RELEASE...REPORT DATE (DD-MM-YYYY) 03-05-2012 2. REPORT TYPE Technical Paper 3. DATES COVERED (From - To) 1 Oct 2007 – 13 Jul 2011 4. TITLE AND SUBTITLE...AND ADDRESS(ES) 8. PERFORMING ORGANIZATION REPORT NUMBER ir Force Research Laboratory Space Vehicles Directorate 3550 Aberdeen Ave SE</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/3985646','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/3985646"><span>[Diagnostic values of serum type III procollagen N-terminal peptide in type IV gastric cancer].</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Akazawa, S; Fujiki, T; Kanda, Y; Kumai, R; Yoshida, S</p> <p>1985-04-01</p> <p>Since increased synthesis of collagen has been demonstrated in tissue of type IV gastric cancer, we attempted to distinguish type IV gastric cancer from other cancers by measuring serum levels of type III procollagen N-terminal peptide (type III-N-peptide). Mean serum levels in type IV gastric cancer patients without metastasis were found to be elevated above normal values and developed a tendency to be higher than those in types I, II and III gastric cancer patients without metastasis. Highly positive ratios were found in patients with liver diseases including hepatoma and colon cancer, biliary tract cancer, and esophageal cancer patients with liver, lung or bone metastasis, but only 2 out of 14 of these cancer patients without such metastasis showed positive serum levels of type III-N-peptide. Positive cases in patients with type IV gastric cancer were obtained not only in the group with clinical stage IV but also in the groups with clinical stages II and III. In addition, high serum levels of type III-N-peptide in patients with type IV gastric cancer were seen not only in the cases with liver, lung or bone metastasis but also in cases with disseminated peritoneal metastasis alone. These results suggest that if the serum level of type III-N-peptide is elevated above normal values, type IV gastric cancer should be suspected after ruling out liver diseases, myelofibrosis and liver, lung or bone metastasis.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2007JGRA..112.2101S','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2007JGRA..112.2101S"><span>Effects of interplanetary magnetic clouds, interaction regions, and high-speed streams on the transient modulation of galactic cosmic rays</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Singh, Y. P.; Badruddin</p> <p>2007-02-01</p> <p>Interplanetary manifestations of coronal mass ejections (CMEs) with specific plasma and field properties, called ``interplanetary magnetic clouds,'' have been observed in the heliosphere since the mid-1960s. Depending on their associated features, a set of observed magnetic clouds identified at 1 AU were grouped in four different classes using data over 4 decades: (1) interplanetary magnetic clouds moving with the ambient solar wind (MC structure), (2) magnetic clouds moving faster than the ambient solar wind and forming a shock/sheath structure of compressed plasma and field ahead of it (SMC structure), (3) magnetic clouds ``pushed'' by the high-speed streams from behind, forming an interaction region between the two (MIH structure), and (4) shock-associated magnetic clouds followed by high-speed streams (SMH structure). This classification into different groups led us to study the role, effect, and the relative importance of (1) closed field magnetic cloud structure with low field variance, (2) interplanetary shock and magnetically turbulent sheath region, (3) interaction region with large field variance, and (4) the high-speed solar wind stream coming from the open field regions, in modulating the galactic cosmic rays (GCRs). MC structures are responsible for transient decrease with fast recovery. SMC structures are responsible for fast decrease and slow recovery, MIH structures produce depression with slow decrease and slow recovery, and SMH structures are responsible for fast decrease with very slow recovery. Simultaneous variations of GCR intensity, solar plasma velocity, interplanetary magnetic field strength, and its variance led us to study the relative effectiveness of different structures as well as interplanetary plasma/field parameters. Possible role of the magnetic field, its topology, field turbulence, and the high-speed streams in influencing the amplitude and time profile of resulting decreases in GCR intensity have also been discussed.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=5713876','PMC'); return false;" href="https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=5713876"><span>Molecular architectures of benzoic acid-specific type III polyketide synthases</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pmc">PubMed Central</a></p> <p>Stewart, Charles; Woods, Kate; Macias, Greg; Allan, Andrew C.; Noel, Joseph P.</p> <p>2017-01-01</p> <p>Biphenyl synthase and benzophenone synthase constitute an evolutionarily distinct clade of type III polyketide synthases (PKSs) that use benzoic acid-derived substrates to produce defense metabolites in plants. The use of benzoyl-CoA as an endogenous substrate is unusual for type III PKSs. Moreover, sequence analyses indicate that the residues responsible for the functional diversification of type III PKSs are mutated in benzoic acid-specific type III PKSs. In order to gain a better understanding of structure–function relationships within the type III PKS family, the crystal structures of biphenyl synthase from Malus × domestica and benzophenone synthase from Hypericum androsaemum were compared with the structure of an archetypal type III PKS: chalcone synthase from Malus × domestica. Both biphenyl synthase and benzophenone synthase contain mutations that reshape their active-site cavities to prevent the binding of 4-coumaroyl-CoA and to favor the binding of small hydrophobic substrates. The active-site cavities of biphenyl synthase and benzophenone synthase also contain a novel pocket associated with their chain-elongation and cyclization reactions. Collectively, these results illuminate structural determinants of benzoic acid-specific type III PKSs and expand the understanding of the evolution of specialized metabolic pathways in plants. PMID:29199980</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2018P%26SS..156....2L','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2018P%26SS..156....2L"><span>Nanodust released in interplanetary collisions</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Lai, H. R.; Russell, C. T.</p> <p>2018-07-01</p> <p>The lifecycle of near-Earth objects (NEOs) involves a collisional cascade that produces ever smaller debris ending with nanoscale particles which are removed from the solar system by radiation pressure and electromagnetic effects. It has been proposed that the nanodust clouds released in collisions perturb the background interplanetary magnetic field and create the interplanetary field enhancements (IFEs). Assuming that this IFE formation scenario is actually operating, we calculate the interplanetary collision rate, estimate the total debris mass carried by nanodust, and compare the collision rate with the IFE rate. We find that to release the same amount of nanodust, the collision rate is comparable to the observed IFE rate. Besides quantitatively testing the association between the collisions evolving large objects and giant solar wind structures, such a study can be extended to ranges of smaller scales and to investigate the source of moderate and small solar wind perturbations.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://ntrs.nasa.gov/search.jsp?R=19810040378&hterms=Streaming+Media&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D40%26Ntt%3DStreaming%2BMedia','NASA-TRS'); return false;" href="https://ntrs.nasa.gov/search.jsp?R=19810040378&hterms=Streaming+Media&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D40%26Ntt%3DStreaming%2BMedia"><span>Bi-directional streaming of solar wind electrons greater than 80 eV - ISEE evidence for a closed-field structure within the driver gas of an interplanetary shock</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Bame, S. J.; Asbridge, J. R.; Feldman, W. C.; Gosling, J. T.; Zwickl, R. D.</p> <p>1981-01-01</p> <p>In near time coincidence with the arrival of helium enriched plasma driving the shock wave disturbance of November 12-13, 1978, strong bi-directional streaming of solar wind electrons greater than about 80 eV was observed with Los Alamos instrumentation on ISEE 3. The streaming persisted for many hours simultaneously parallel and anti-parallel to the interplanetary magnetic field which was directed roughly perpendicular to the sun-satellite line. This example of bidirectional streaming cannot be explained by field line connection to the earth's bow shock or the outward propagating interplanetary shock which passed ISEE 3 approximately 16 hours earlier. The event is explained if the local interplanetary field was a part of a magnetic bottle rooted at the sun or a disconnected loop propagating outward.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2007AdSpR..40..348D','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2007AdSpR..40..348D"><span>Muon and neutron observations in connection with the corotating interaction regions</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>da Silva, M. R.; Dal Lago, A.; Echer, E.; de Lucas, A.; Gonzalez, W. D.; Schuch, N. J.; Munakata, K.; Vieira, L. E. A.; Guarnieri, F. L.</p> <p></p> <p>Ground cosmic ray observations are used for studying several kinds of interplanetary structures. The cosmic ray data has different responses to each kind of interplanetary structure. This article has as objective to study cosmic ray muon and neutron signatures due to the passage of corotating interaction region (CIR) in the interplanetary medium, and identify the signatures in the cosmic ray data due to these events. The cosmic ray muon data used in this work are recorded by the multidirectional muon detector installed at INPE’s Observatório Espacial do Sul OES/CRSPE/INPE-MCT, in São Martinho da Serra, RS (Brazil) and the neutron data was recorded by the neutron monitor installed in Newark (USA). The CIR events were selected in the period from 2001 to 2004. CIRs clearly affect cosmic ray density in the interplanetary medium in the Earth’s vicinity, where the magnetic field plays an important role.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://ntrs.nasa.gov/search.jsp?R=20000011205&hterms=driverless&qs=N%3D0%26Ntk%3DAll%26Ntx%3Dmode%2Bmatchall%26Ntt%3Ddriverless','NASA-TRS'); return false;" href="https://ntrs.nasa.gov/search.jsp?R=20000011205&hterms=driverless&qs=N%3D0%26Ntk%3DAll%26Ntx%3Dmode%2Bmatchall%26Ntt%3Ddriverless"><span>"Driverless" Shocks in the Interplanetary Medium</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Gopalswamy, N.; Kaiser, M. L.; Lara, A.</p> <p>1999-01-01</p> <p>Many interplanetary shocks have been detected without an obvious driver behind them. These shocks have been thought to be either blast waves from solar flares or shocks due to sudden increase in solar wind speed caused by interactions between large scale open and closed field lines of the Sun. We investigated this problem using a set of interplanetary shock detected {\\it in situ} by the Wind space craft and tracing their solar origins using low frequency radio data obtained by the Wind/WAVES experiment. For each of these "driverless shocks" we could find a unique coronal mass ejections (CME) event observed by the SOHO (Solar and Heliospheric Observatory) coronagraphs. We also found that these CMEs were ejected at large angles from the Sun-Earth line. It appears that the "driverless shocks" are actually driver shocks, but the drivers were not intercepted by the spacecraft. We conclude that the interplanetary shocks are much more extended than the driving CMEs.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2007AGUFMSH31A0232J','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2007AGUFMSH31A0232J"><span>GCR Modulation by Small-Scale Features in the Interplanetary Medium</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Jordan, A. P.; Spence, H. E.; Blake, J. B.; Mulligan, T. L.; Shaul, D. N.; Galametz, M.</p> <p>2007-12-01</p> <p>In an effort to uncover the properties of structures in the interplanetary medium (IPM) that modulate galactic cosmic rays (GCR) on short time-scales (from hours to days), we study periods of differing conditions in the IPM. We analyze GCR variations from spacecraft both inside and outside the magnetosphere, using the High Sensitivity Telescope (HIST) on Polar and the Spectrometer for INTEGRAL (SPI). We seek causal correlations between the observed GCR modulations and structures in the solar wind plasma and interplanetary magnetic field, as measured concurrently with ACE and/or Wind. Our analysis spans time-/size-scale variations ranging from classic Forbush decreases (Fds), to substructure embedded within Fds, to much smaller amplitude and shorter duration variations observed during comparatively benign interplanetary conditions. We compare and contrast the conditions leading to the range of different GCR responses to modulating structures in the IPM.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://hdl.handle.net/2060/19860022023','NASA-TRS'); return false;" href="http://hdl.handle.net/2060/19860022023"><span>Coronal and interplanetary propagation, interplanetary acceleration, cosmic-ray observations by deep space network and anomalous component</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Ng, C. K.</p> <p>1986-01-01</p> <p>The purpose is to provide an overview of the contributions presented in sessions SH3, SH1.5, SH4.6 and SH4.7 of the 19th International Cosmic Ray Conference. These contributed papers indicate that steady progress continues to be made in both the observational and the theoretical aspects of the transport and acceleration of energetic charged particles in the heliosphere. Studies of solar and interplanetary particles have placed emphasis on particle directional distributions in relation to pitch-angle scattering and magnetic focusing, on the rigidity and spatial dependence of the mean free path, and on new propagation regimes in the inner and outer heliosphere. Coronal propagation appears in need of correlative multi-spacecraft studies in association with detailed observation of the flare process and coronal magnetic structures. Interplanetary acceleration has now gone into a consolidation phase, with theories being worked out in detail and checked against observation.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://hdl.handle.net/2060/19980227780','NASA-TRS'); return false;" href="http://hdl.handle.net/2060/19980227780"><span>Direct Measurements of Interplanetary Dust Particles in the Vicinity of Earth</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>McCracken, C. W.; Alexander, W. M.; Dubin, M.</p> <p>1961-01-01</p> <p>The direct measurements made by the Explorer VIII satellite provide the first sound basis for analyzing all available direct measurements of the distribution of interplanetary dust particles. The model average distribution curve established by such an analysis departs significantly from that predicted by the (uncertain) extrapolation of results from meteor observations. A consequence of this difference is that the daily accretion of interplanetary particulate matter by the earth is now considered to be mainly dust particles of the direct measurements range of particle size. Almost all the available direct measurements obtained with microphone systems on rockets, satellites, and spacecraft fit directly on the distribution curve defined by Explorer VIII data. The lack of reliable datum points departing significantly from the model average distribution curve means that available direct measurements show no discernible evidence of an appreciable geocentric concentration of interplanetary dust particles.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.gpo.gov/fdsys/pkg/CFR-2010-title12-vol1/pdf/CFR-2010-title12-vol1-sec1-4.pdf','CFR'); return false;" href="https://www.gpo.gov/fdsys/pkg/CFR-2010-title12-vol1/pdf/CFR-2010-title12-vol1-sec1-4.pdf"><span>12 CFR 1.4 - Calculation of limits.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.gpo.gov/fdsys/browse/collectionCfr.action?selectedYearFrom=2010&page.go=Go">Code of Federal Regulations, 2010 CFR</a></p> <p></p> <p>2010-01-01</p> <p>... separately to the Type III and Type V securities held by a bank. (e) Limit on investment company holdings—(1... investment limits at that interval until further notice. (d) Calculation of Type III and Type V securities holdings—(1) General. In calculating the amount of its investment in Type III or Type V securities issued...</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=2728592','PMC'); return false;" href="https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=2728592"><span>Type III Neuregulin-1 is required for normal sensorimotor gating, memory related behaviors and cortico-striatal circuit components</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pmc">PubMed Central</a></p> <p>Chen, Ying-Jiun J.; Johnson, Madeleine A.; Lieberman, Michael D.; Goodchild, Rose E.; Schobel, Scott; Lewandowski, Nicole; Rosoklija, Gorazd; Liu, Ruei-Che; Gingrich, Jay A.; Small, Scott; Moore, Holly; Dwork, Andrew J.; Talmage, David A.; Role, Lorna W.</p> <p>2008-01-01</p> <p>Neuregulin-1 (Nrg1)/erbB signaling regulates neuronal development, migration, myelination, and synaptic maintenance. The Nrg1 gene is a schizophrenia susceptibility gene. To understand the contribution of Nrg1 signaling to adult brain structure and behaviors, we have studied the regulation of Type III Nrg1 expression and evaluated the effect of decreased expression of the Type III Nrg1 isoforms. Type III Nrg1 is transcribed by a promoter distinct from those for other Nrg1 isoforms and, in the adult brain, is expressed in the medial prefrontal cortex, ventral hippocampus and ventral subiculum, regions involved in the regulation of sensorimotor gating and short term memory. Adult heterozygous mutant mice with a targeted disruption for Type III Nrg1 (Nrg1tm1.1Lwr+/-) have enlarged lateral ventricles and decreased dendritic spine density on subicular pyramidal neurons. MRI imaging of Type III Nrg1 heterozygous mice revealed hypo-function in the medial prefrontal cortex and the hippocampal CA1 and subiculum regions. Type III Nrg1 heterozygous mice also have impaired performance on delayed alternation memory tasks, and deficits in prepulse inhibition (PPI). Chronic nicotine treatment eliminated differences in PPI between Type III Nrg1 heterozygous mice and their wild type littermates. Our findings demonstrate a role of Type III Nrg1-signaling in the maintenance of cortico-striatal components, and in the neural circuits involved in sensorimotor gating and short term memory. PMID:18596162</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2010cosp...38.1924W','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2010cosp...38.1924W"><span>Imaging Interplanetary CMEs at Radio Frequency From Solar Polar Orbit</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Wu, Ji; Sun, Weiying; Zheng, Jianhua; Zhang, Cheng; Wang, Chi; Wang, C. B.; Wang, S.</p> <p></p> <p>Coronal mass ejections (CMEs) are violent discharges of plasma and magnetic fields from the Sun's corona. They have come to be recognized as the major driver of physical conditions in the Sun-Earth system. Consequently, the detection of CMEs is important for un-derstanding and ultimately predicting space weather conditions. The Solar Polar Orbit Radio Telescope (SPORT) is a proposed mission to observe the propagation of interplanetary CMEs from solar polar orbit. The main payload (radio telescope) on board SPORT will be an in-terferometric imaging radiometer working at the meter wavelength band, which will follow the propagation of interplanetary CMEs from a distance of a few solar radii to near 1 AU from solar polar orbit. The SPORT spacecraft will also be equipped with a set of optical and in situ measurement instruments such as a EUV solar telescope, a solar wind plasma experiment, a solar wind ion composition instrument, an energetic particle detector, a wave detector, a mag-netometer and an interplanetary radio burst tracker. In this paper, we first describe the current shortage of interplanetary CME observations. Next, the scientific motivation and objectives of SPORT are introduced. We discuss the basic specifications of the main radio telescope of SPORT with reference to the radio emission mechanisms and the radio frequency band to be observed. Finally, we discuss the key technologies of the SPORT mission, including the con-ceptual design of the main telescope, the image retrieval algorithm and the solar polar orbit injection. Other payloads and their respective observation objectives are also briefly discussed. Key words: Interplanetary CMEs; Interferometric imaging; Solar polar orbit; Radiometer.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://hdl.handle.net/2060/20110008254','NASA-TRS'); return false;" href="http://hdl.handle.net/2060/20110008254"><span>On Interplanetary Shocks Driven by Coronal Mass Ejections</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Gopalswarmy, Nat</p> <p>2011-01-01</p> <p>Traveling interplanetary (IP) shocks were first detected in the early 1960s, but their solar origin has been controversial. Early research focused on solar flares as the source of the shocks, but when CMEs were discovered, it became clear that fast CMEs are the shock drivers. Type radio II bursts are excellent signatures of shocks near the Sun (Type II radio bursts were known long before the detection of shocks and CMEs). The excellent correspondence between type II bursts and solar energetic particle (SEP) events made it clear that the same shock accelerates ions and electrons. Shocks near the Sun are also seen occasionally in white-light coronagraphic images. In the solar wind, shocks are observed as discontinuities in plasma parameters such as density and speed. Energetic storm particle events and sudden commencement of geomagnetic storm are also indicators of shocks arriving at Earth. After an overview on these shock signatures, I will summarize the results of a recent investigation of a large number of IP shocks. The study revealed that about 35% of IP shocks do not produce type II bursts (radio quiet - RQ) or SEPs. Comparing the RQ shocks with the radio loud (RL) ones revealed some interesting results: (1) There is no evidence for blast wave shocks. (2) A small fraction (20%) of RQ shocks is associated with ion enhancements at the shock when the shock passes the spacecraft. (3) The primary difference between the RQ and RL shocks can be traced to the different kinematic properties of the associated CMEs. On the other hand the shock properties measured at 1 AU are not too different for the RQ and RL cases. This can be attributed to the interaction with the IP medium, which seems to erase the difference between the shocks.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2014JGRA..119.7120J','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2014JGRA..119.7120J"><span>Comparison of interplanetary CME arrival times and solar wind parameters based on the WSA-ENLIL model with three cone types and observations</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Jang, Soojeong; Moon, Y.-J.; Lee, Jae-Ok; Na, Hyeonock</p> <p>2014-09-01</p> <p>We have made a comparison between coronal mass ejection (CME)-associated shock propagations based on the Wang-Sheeley-Arge (WSA)-ENLIL model using three cone types and in situ observations. For this we use 28 full-halo CMEs, whose cone parameters are determined and their corresponding interplanetary shocks were observed at the Earth, from 2001 to 2002. We consider three different cone types (an asymmetric cone model, an ice cream cone model, and an elliptical cone model) to determine 3-D CME cone parameters (radial velocity, angular width, and source location), which are the input values of the WSA-ENLIL model. The mean absolute error of the CME-associated shock travel times for the WSA-ENLIL model using the ice-cream cone model is 9.9 h, which is about 1 h smaller than those of the other models. We compare the peak values and profiles of solar wind parameters (speed and density) with in situ observations. We find that the root-mean-square errors of solar wind peak speed and density for the ice cream and asymmetric cone model are about 190 km/s and 24/cm3, respectively. We estimate the cross correlations between the models and observations within the time lag of ± 2 days from the shock travel time. The correlation coefficients between the solar wind speeds from the WSA-ENLIL model using three cone types and in situ observations are approximately 0.7, which is larger than those of solar wind density (cc ˜0.6). Our preliminary investigations show that the ice cream cone model seems to be better than the other cone models in terms of the input parameters of the WSA-ENLIL model.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://ntrs.nasa.gov/search.jsp?R=20060029807&hterms=internet&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D50%26Ntt%3Dinternet','NASA-TRS'); return false;" href="https://ntrs.nasa.gov/search.jsp?R=20060029807&hterms=internet&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D50%26Ntt%3Dinternet"><span>Operating CFDP in the Interplanetary Internet</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Burleigh, S.</p> <p>2002-01-01</p> <p>This paper examines the design elements of CCSDS File Delivery Protocol and Interplanetary Internet technologies that will simplify their integration and discusses the resulting new capabilities, such as efficient transmission of large files via multiple relay satellites operating in parallel.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2018MNRAS.tmp.1595C','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2018MNRAS.tmp.1595C"><span>Interplanetary Scintillation studies with the Murchison Wide-field Array III: Comparison of source counts and densities for radio sources and their sub-arcsecond components at 162 MHz</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Chhetri, R.; Ekers, R. D.; Morgan, J.; Macquart, J.-P.; Franzen, T. M. O.</p> <p>2018-06-01</p> <p>We use Murchison Widefield Array observations of interplanetary scintillation (IPS) to determine the source counts of point (<0.3 arcsecond extent) sources and of all sources with some subarcsecond structure, at 162 MHz. We have developed the methodology to derive these counts directly from the IPS observables, while taking into account changes in sensitivity across the survey area. The counts of sources with compact structure follow the behaviour of the dominant source population above ˜3 Jy but below this they show Euclidean behaviour. We compare our counts to those predicted by simulations and find a good agreement for our counts of sources with compact structure, but significant disagreement for point source counts. Using low radio frequency SEDs from the GLEAM survey, we classify point sources as Compact Steep-Spectrum (CSS), flat spectrum, or peaked. If we consider the CSS sources to be the more evolved counterparts of the peaked sources, the two categories combined comprise approximately 80% of the point source population. We calculate densities of potential calibrators brighter than 0.4 Jy at low frequencies and find 0.2 sources per square degrees for point sources, rising to 0.7 sources per square degree if sources with more complex arcsecond structure are included. We extrapolate to estimate 4.6 sources per square degrees at 0.04 Jy. We find that a peaked spectrum is an excellent predictor for compactness at low frequencies, increasing the number of good calibrators by a factor of three compared to the usual flat spectrum criterion.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://hdl.handle.net/2060/19720000603','NASA-TRS'); return false;" href="http://hdl.handle.net/2060/19720000603"><span>Interplanetary Trajectories, Encke Method (ITEM)</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Whitlock, F. H.; Wolfe, H.; Lefton, L.; Levine, N.</p> <p>1972-01-01</p> <p>Modified program has been developed using improved variation of Encke method which avoids accumulation of round-off errors and avoids numerical ambiguities arising from near-circular orbits of low inclination. Variety of interplanetary trajectory problems can be computed with maximum accuracy and efficiency.</p> </li> </ol> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_9");'>9</a></li> <li><a href="#" onclick='return showDiv("page_10");'>10</a></li> <li class="active"><span>11</span></li> <li><a href="#" onclick='return showDiv("page_12");'>12</a></li> <li><a href="#" onclick='return showDiv("page_13");'>13</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div><!-- col-sm-12 --> </div><!-- row --> </div><!-- page_11 --> <div id="page_12" class="hiddenDiv"> <div class="row"> <div class="col-sm-12"> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_10");'>10</a></li> <li><a href="#" onclick='return showDiv("page_11");'>11</a></li> <li class="active"><span>12</span></li> <li><a href="#" onclick='return showDiv("page_13");'>13</a></li> <li><a href="#" onclick='return showDiv("page_14");'>14</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div> </div> <div class="row"> <div class="col-sm-12"> <ol class="result-class" start="221"> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://hdl.handle.net/2060/20120009632','NASA-TRS'); return false;" href="http://hdl.handle.net/2060/20120009632"><span>Search Coil vs. Fluxgate Magnetometer Measurements at Interplanetary Shocks</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Wilson, L.B., III</p> <p>2012-01-01</p> <p>We present magnetic field observations at interplanetary shocks comparing two different sample rates showing significantly different results. Fluxgate magnetometer measurements show relatively laminar supercritical shock transitions at roughly 11 samples/s. Search coil magnetometer measurements at 1875 samples/s, however, show large amplitude (dB/B as large as 2) fluctuations that are not resolved by the fluxgate magnetometer. We show that these fluctuations, identified as whistler mode waves, would produce a significant perturbation to the shock transition region changing the interpretation from laminar to turbulent. Thus, previous observations of supercritical interplanetary shocks classified as laminar may have been under sampled.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://ntrs.nasa.gov/search.jsp?R=20150008672&hterms=celestial+navigation&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D40%26Ntt%3Dcelestial%2Bnavigation','NASA-TRS'); return false;" href="https://ntrs.nasa.gov/search.jsp?R=20150008672&hterms=celestial+navigation&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D40%26Ntt%3Dcelestial%2Bnavigation"><span>Mars Science Laboratory Interplanetary Navigation Performance</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Martin-Mur, Tomas J.; Kruizinga, Gerhard; Wong, Mau</p> <p>2013-01-01</p> <p>The Mars Science Laboratory spacecraft, carrying the Curiosity rover to Mars, hit the top of the Martian atmosphere just 200 meters from where it had been predicted more than six days earlier, and 2.6 million kilometers away. This un-expected level of accuracy was achieved by a combination of factors including: spacecraft performance, tracking data processing, dynamical modeling choices, and navigation filter setup. This paper will describe our best understanding of what were the factors that contributed to this excellent interplanetary trajectory prediction performance. The accurate interplanetary navigation contributed to the very precise landing performance, and to the overall success of the mission.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://hdl.handle.net/2060/19850026496','NASA-TRS'); return false;" href="http://hdl.handle.net/2060/19850026496"><span>Geometry of the diffusive propagation region in the August 14, 1982 solar electron event</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Evenson, P. A.</p> <p>1985-01-01</p> <p>On August 14, 1982, relativistic electrons arrived promptly after an impulsive gamma ray flare, indicating that very little scattering was taking place in interplanetary space. By ignoring anisotropy data the time profile of the event is well described by interplanetary diffusion except for the derived particle injection time. This discrepancy provides independent evidence that the particles are diffusing in a volume close to the Sun rather than in interplanetary space. The flux at maximum method of determining the number of particles produced is still a good approximation when appropriately applied.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://ntrs.nasa.gov/search.jsp?R=19960021485&hterms=geofisica&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D30%26Ntt%3Dgeofisica','NASA-TRS'); return false;" href="https://ntrs.nasa.gov/search.jsp?R=19960021485&hterms=geofisica&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D30%26Ntt%3Dgeofisica"><span>Characteristics of the interplanetary shocks formed by a sudden increase in the velocity of the solar wind from a coronal hole</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Bravo, S.</p> <p>1995-01-01</p> <p>Coronal holes are the sources of the solar wind and, according to recent YOKOH observations, may undergo rapid changes which are associated with manifestations of explosive solar activity. Rapid changes in a hole's structure will produce rapid changes in the characteristics of the wind emerging from it and, in the particular c se of a sudden increase in wind velocity, this may lead to the formation of an interplanetary shock. We discuss the characteristics of shocks formed in such a way and compare them with interplanetary observations.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://www.dtic.mil/docs/citations/ADA173822','DTIC-ST'); return false;" href="http://www.dtic.mil/docs/citations/ADA173822"><span>MHD Simulation of the Interplanetary Environment in the Ecliptic Plane during the 3-9 February 1986 Solar and Geomagnetic Activity.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.dtic.mil/">DTIC Science & Technology</a></p> <p></p> <p>1986-09-01</p> <p>AD-R173 822 MWD SIMULATION OF THE INTERPLANETARY ENVIRONMENT IN THE 1/1 ECLIPTIC PLRNE DU (U) AIR FORCE GEOPHYSICS LAS HANSCOM AFB MA M DRYER ET AL...RESOLUTION TEST CHART M4rtqOAI RIM) Of STANDARMS 96I-A AFGL-TR-86-0189 M Simulation of the Interplanetary Environment in the Ecliptic Plane During the 3-9...CLASSIFICATION OF THIS PAGE Cant of Block 11: in the Ecliptic Plane During the 3-9 February 1986 Solar and Geomagnetic Activity Cant of Block 19 (ABSTRACT</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://ntrs.nasa.gov/search.jsp?R=20170008211&hterms=earth+system+modeling&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D70%26Ntt%3Dearth%2Bsystem%2Bmodeling','NASA-TRS'); return false;" href="https://ntrs.nasa.gov/search.jsp?R=20170008211&hterms=earth+system+modeling&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D70%26Ntt%3Dearth%2Bsystem%2Bmodeling"><span>Integrated Vehicle and Trajectory Design of Small Spacecraft with Electric Propulsion for Earth and Interplanetary Missions</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Spangelo, Sara; Dalle, Derek; Longmier, Benjamin</p> <p>2015-01-01</p> <p>This paper investigates the feasibility of Earth-transfer and interplanetary mission architectures for miniaturized spacecraft using emerging small solar electric propulsion technologies. Emerging small SEP thrusters offer significant advantages relative to existing technologies and will enable U-class systems to perform trajectory maneuvers with significant Delta V requirements. The approach in this paper is unique because it integrates trajectory design with vehicle sizing and accounts for the system and operational constraints of small U-class missions. The modeling framework includes integrated propulsion, orbit, energy, and external environment dynamics and systems-level power, energy, mass, and volume constraints. The trajectory simulation environment models orbit boosts in Earth orbit and flyby and capture trajectories to interplanetary destinations. A family of small spacecraft mission architectures are studied, including altitude and inclination transfers in Earth orbit and trajectories that escape Earth orbit and travel to interplanetary destinations such as Mercury, Venus, and Mars. Results are presented visually to show the trade-offs between competing performance objectives such as maximizing available mass and volume for payloads and minimizing transfer time. The results demonstrate the feasibility of using small spacecraft to perform significant Earth and interplanetary orbit transfers in less than one year with reasonable U-class mass, power, volume, and mission durations.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2011AGUFMSH23A1944B','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2011AGUFMSH23A1944B"><span>3-D model of ICME in the interplanetary medium</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Borgazzi, A.; Lara, A.; Niembro, T.</p> <p>2011-12-01</p> <p>We developed a method that describes with simply geometry the coordinates of intersection between the leading edge of an ICME and the position of an arbitrary satellite. When a fast CME is ejected from the Sun to the interplanetary space in most of the cases drives a shock. As the CME moves in the corona and later in the interplanetary space more material is stacking in the front and edges of the ejecta. In a first approximation, it is possible to assume the shape of these structures, the CME and the stacked material as a cone of revolution, (the ice-cream model [Schwenn et al., (2005)]). The interface may change due to the interaction of the structure and the non-shocked material in front of the ICME but the original shape of a cone of revolution is preserved. We assume, in a three dimensional geometry, an ice-cream cone shape for the ICME and apply an analytical model for its transport in the interplanetary medium. The goal of the present method is to give the time and the intersection coordinates between the leading edge of the ICME and any satellite that may be in the path of the ICME. With this information we can modelate the travel of the ICME in the interplanetary space using STEREO data.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://ntrs.nasa.gov/search.jsp?R=20160014483&hterms=WEATHER&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D50%26Ntt%3DWEATHER','NASA-TRS'); return false;" href="https://ntrs.nasa.gov/search.jsp?R=20160014483&hterms=WEATHER&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D50%26Ntt%3DWEATHER"><span>Interplanetary Space Weather Effects on Lunar Reconnaissance Orbiter Avalanche Photodiode Performance</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Clements, E. B.; Carlton, A. K.; Joyce, C. J.; Schwadron, N. A.; Spence, H. E.; Sun, X.; Cahoy, K.</p> <p>2016-01-01</p> <p>Space weather is a major concern for radiation-sensitive space systems, particularly for interplanetary missions, which operate outside of the protection of Earth's magnetic field. We examine and quantify the effects of space weather on silicon avalanche photodiodes (SiAPDs), which are used for interplanetary laser altimeters and communications systems and can be sensitive to even low levels of radiation (less than 50 cGy). While ground-based radiation testing has been performed on avalanche photodiode (APDs) for space missions, in-space measurements of SiAPD response to interplanetary space weather have not been previously reported. We compare noise data from the Lunar Reconnaissance Orbiter (LRO) Lunar Orbiter Laser Altimeter (LOLA) SiAPDs with radiation measurements from the onboard Cosmic Ray Telescope for the Effects of Radiation (CRaTER) instrument. We did not find any evidence to support radiation as the cause of changes in detector threshold voltage during radiation storms, both for transient detector noise and long-term average detector noise, suggesting that the approximately 1.3 cm thick shielding (a combination of titanium and beryllium) of the LOLA detectors is sufficient for SiAPDs on interplanetary missions with radiation environments similar to what the LRO experienced (559 cGy of radiation over 4 years).</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://ntrs.nasa.gov/search.jsp?R=19940007787&hterms=Organic+mars&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D60%26Ntt%3DOrganic%2Bmars','NASA-TRS'); return false;" href="https://ntrs.nasa.gov/search.jsp?R=19940007787&hterms=Organic+mars&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D60%26Ntt%3DOrganic%2Bmars"><span>Organic matter on the early surface of Mars: An assessment of the contribution by interplanetary dust</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Flynn, G. J.</p> <p>1993-01-01</p> <p>Calculations by Anders and Chyba et al. have recently revived interest in the suggestion that organic compounds important to the development of life were delivered to the primitive surface of the Earth by comets, asteroids or the interplanetary dust derived from these two sources. Anders has shown that the major post-accretion contribution of extraterrestrial organic matter to the surface of the Earth is from interplanetary dust. Since Mars is a much more favorable site for the gentle deceleration of interplanetary dust particles than is Earth, model calculations show that biologically important organic compounds are likely to have been delivered to the early surface of Mars by the interplanetary dust in an order-of-magnitude higher surface density than onto the early Earth. Using the method described by Flynn and McKay, the size frequency distribution, and the atmospheric entry velocity distribution of IDP's at Mars were calculated. The entry velocity distribution, coupled with the atmospheric entry heating model developed by Whipple and extended by Fraundorf was used to calculate the fraction of the particles in each mass decade which survives atmospheric entry without melting (i.e., those not heated above 1600K). The incident mass and surviving mass in each mass decade are shown for both Earth and Mars.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/21616073','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/21616073"><span>The type III secretion system is involved in Escherichia coli K1 interactions with Acanthamoeba.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Siddiqui, Ruqaiyyah; Malik, Huma; Sagheer, Mehwish; Jung, Suk-Yul; Khan, Naveed Ahmed</p> <p>2011-08-01</p> <p>The type III secretion system among Gram-negative bacteria is known to deliver effectors into host cell to interfere with host cellular processes. The type III secretion system in Yersina, Pseudomonas and Enterohemorrhagic Escherichia coli have been well documented to be involved in the bacterial pathogenicity. The existence of type III secretion system has been demonstrated in neuropathogenic E. coli K1 strains. Here, it is observed that the deletion mutant of type III secretion system in E. coli strain EC10 exhibited defects in the invasion and intracellular survival in Acanthamoeba castellanii (a keratitis isolate) compared to its parent strain. Next, it was determined whether type III secretion system plays a role in E. coli K1 survival inside Acanthamoeba during the encystment process. Using encystment assays, our findings revealed that the type III secretion system-deletion mutant exhibited significantly reduced survival inside Acanthamoeba cysts compared with its parent strain, EC10 (P<0.01). This is the first demonstration that the type III secretion system plays an important role in E. coli interactions with Acanthamoeba. A complete understanding of how amoebae harbor bacterial pathogens will help design strategies against E. coli transmission to the susceptible hosts. Copyright © 2011 Elsevier Inc. All rights reserved.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://hdl.handle.net/2060/19790010699','NASA-TRS'); return false;" href="http://hdl.handle.net/2060/19790010699"><span>A theory of solar type 3 radio bursts</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Goldstein, M. L.; Papadopoulos, K.; Smith, R. A.</p> <p>1979-01-01</p> <p>Energetic electrons propagating through the interplanetary medium are shown to excite the one dimensional oscillating two stream instability (OTSI). The OTSI is in turn stabilized by anomalous resistivity which completes the transfer of long wavelength Langmuir waves to short wavelengths, out of resonance with the electrons. The theory explains the small energy losses suffered by the electrons in propagating to 1 AU, the predominance of second harmonic radiation, and the observed correlation between radio and electron fluxes.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=2364689','PMC'); return false;" href="https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=2364689"><span>Presynaptic Type III Neuregulin1-ErbB signaling targets α7 nicotinic acetylcholine receptors to axons</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pmc">PubMed Central</a></p> <p>Hancock, Melissa L.; Canetta, Sarah E.; Role, Lorna W.; Talmage, David A.</p> <p>2008-01-01</p> <p>Type III Neuregulin1 (Nrg1) isoforms are membrane-tethered proteins capable of participating in bidirectional juxtacrine signaling. Neuronal nicotinic acetylcholine receptors (nAChRs), which can modulate the release of a rich array of neurotransmitters, are differentially targeted to presynaptic sites. We demonstrate that Type III Nrg1 back signaling regulates the surface expression of α7 nAChRs along axons of sensory neurons. Stimulation of Type III Nrg1 back signaling induces an increase in axonal surface α7 nAChRs, which results from a redistribution of preexisting intracellular pools of α7 rather than from increased protein synthesis. We also demonstrate that Type III Nrg1 back signaling activates a phosphatidylinositol 3-kinase signaling pathway and that activation of this pathway is required for the insertion of preexisting α7 nAChRs into the axonal plasma membrane. These findings, in conjunction with prior results establishing that Type III Nrg1 back signaling controls gene transcription, demonstrate that Type III Nrg1 back signaling can regulate both short-and long-term changes in neuronal function. PMID:18458158</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/18458158','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/18458158"><span>Presynaptic type III neuregulin1-ErbB signaling targets {alpha}7 nicotinic acetylcholine receptors to axons.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Hancock, Melissa L; Canetta, Sarah E; Role, Lorna W; Talmage, David A</p> <p>2008-05-05</p> <p>Type III Neuregulin1 (Nrg1) isoforms are membrane-tethered proteins capable of participating in bidirectional juxtacrine signaling. Neuronal nicotinic acetylcholine receptors (nAChRs), which can modulate the release of a rich array of neurotransmitters, are differentially targeted to presynaptic sites. We demonstrate that Type III Nrg1 back signaling regulates the surface expression of alpha7 nAChRs along axons of sensory neurons. Stimulation of Type III Nrg1 back signaling induces an increase in axonal surface alpha7 nAChRs, which results from a redistribution of preexisting intracellular pools of alpha7 rather than from increased protein synthesis. We also demonstrate that Type III Nrg1 back signaling activates a phosphatidylinositol 3-kinase signaling pathway and that activation of this pathway is required for the insertion of preexisting alpha7 nAChRs into the axonal plasma membrane. These findings, in conjunction with prior results establishing that Type III Nrg1 back signaling controls gene transcription, demonstrate that Type III Nrg1 back signaling can regulate both short-and long-term changes in neuronal function.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/18504310','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/18504310"><span>Presynaptic type III neuregulin1-ErbB signaling targets alpha7 nicotinic acetylcholine receptors to axons.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Hancock, Melissa L; Canetta, Sarah E; Role, Lorna W; Talmage, David A</p> <p>2008-06-01</p> <p>Type III Neuregulin1 (Nrg1) isoforms are membrane-tethered proteins capable of participating in bidirectional juxtacrine signaling. Neuronal nicotinic acetylcholine receptors (nAChRs), which can modulate the release of a rich array of neurotransmitters, are differentially targeted to presynaptic sites. We demonstrate that Type III Nrg1 back signaling regulates the surface expression of alpha7 nAChRs along axons of sensory neurons. Stimulation of Type III Nrg1 back signaling induces an increase in axonal surface alpha7 nAChRs, which results from a redistribution of preexisting intracellular pools of alpha7 rather than from increased protein synthesis. We also demonstrate that Type III Nrg1 back signaling activates a phosphatidylinositol 3-kinase signaling pathway and that activation of this pathway is required for the insertion of preexisting alpha7 nAChRs into the axonal plasma membrane. These findings, in conjunction with prior results establishing that Type III Nrg1 back signaling controls gene transcription, demonstrate that Type III Nrg1 back signaling can regulate both short-and long-term changes in neuronal function.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://hdl.handle.net/2060/19870013943','NASA-TRS'); return false;" href="http://hdl.handle.net/2060/19870013943"><span>Analytical electron microscopy of fine-grained phases in primitive interplanetary dust particles and carbonaceous chondrites</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Mackinnon, Ian D. R.; Rietmeijer, Frans J. M.; Mckay, David S.</p> <p>1987-01-01</p> <p>In order to describe the total mineralogical diversity within primitive extraterrestrial materials, individual interplanetary dust particles (IDPs) collected from the stratosphere as part of the JSC Cosmic Dust Curatorial Program were analyzed using a variety of AEM techniques. Identification of over 250 individual grains within one chondritic porous (CP) IDP shows that most phases could be formed by low temperature processes and that heating of the IDP during atmospheric entry is minimal and less than 600 C. In a review of the mineralogy of IDPs, it was suggested that the occurrence of other silicates such as enstatite whiskers is consistent with the formation in an early turbulent period of the solar nebula. Experimental confirmation of fundamental chemical and physical processes in a stellar environment, such as vapor phase condensation, nucleation, and growth by annealing, is an important aspect of astrophysical models for the evolution of the Solar System. A detailed comparison of chondritic IDP and carbonaceous chondrite mineralogies shows significant differences between the types of silicate minerals as well as the predominant oxides.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://hdl.handle.net/2060/20080047663','NASA-TRS'); return false;" href="http://hdl.handle.net/2060/20080047663"><span>MCNPX Cosmic Ray Shielding Calculations with the NORMAN Phantom Model</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>James, Michael R.; Durkee, Joe W.; McKinney, Gregg; Singleterry Robert</p> <p>2008-01-01</p> <p>The United States is planning manned lunar and interplanetary missions in the coming years. Shielding from cosmic rays is a critical aspect of manned spaceflight. These ventures will present exposure issues involving the interplanetary Galactic Cosmic Ray (GCR) environment. GCRs are comprised primarily of protons (approx.84.5%) and alpha-particles (approx.14.7%), while the remainder is comprised of massive, highly energetic nuclei. The National Aeronautics and Space Administration (NASA) Langley Research Center (LaRC) has commissioned a joint study with Los Alamos National Laboratory (LANL) to investigate the interaction of the GCR environment with humans using high-fidelity, state-of-the-art computer simulations. The simulations involve shielding and dose calculations in order to assess radiation effects in various organs. The simulations are being conducted using high-resolution voxel-phantom models and the MCNPX[1] Monte Carlo radiation-transport code. Recent advances in MCNPX physics packages now enable simulated transport over 2200 types of ions of widely varying energies in large, intricate geometries. We report here initial results obtained using a GCR spectrum and a NORMAN[3] phantom.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2018Ge%26Ae..58..154M','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2018Ge%26Ae..58..154M"><span>Main Properties of Forbush Effects Related to High-Speed Streams from Coronal Holes</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Melkumyan, A. A.; Belov, A. V.; Abunina, M. A.; Abunin, A. A.; Eroshenko, E. A.; Oleneva, V. A.; Yanke, V. G.</p> <p>2018-03-01</p> <p>The IZMIRAN database of Forbush effects and interplanetary disturbances was used to study features of the action of high-speed solar wind streams from coronal holes on cosmic rays. Three hundred and fifty Forbush effects created by coronal holes without other actions were distinguished. The mean values and distributions have been found for different characteristics of events from this group and compared with all Forbush effects and Forbush effects caused by coronal ejections. Despite the great differences in high-speed streams from coronal holes, this group turned out to be more compact and uniform as compared to events related to coronal ejections. Regression dependences and correlation relations between different parameters of events for the studied groups have been obtained. It has been shown that Forbush effects caused by coronal ejections depend considerably more strongly on the characteristics of interplanetary disturbances as compared to Forbush effects related to coronal holes. This suggests a significant difference between the modulation mechanisms of Forbush effects of different types and corroborates earlier conclusions based on indirect data.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/15936356','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/15936356"><span>Cytochemical and functional characterization of blood and inflammatory cells from the lizard Ameiva ameiva.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Alberio, Sanny O; Diniz, Jose A; Silva, Edilene O; de Souza, Wanderley; DaMatta, Renato A</p> <p>2005-06-01</p> <p>The fine structure and differential cell count of blood and coelomic exudate leukocytes were studied with the aim to identify granulocytes from Ameiva ameiva, a lizard distributed in the tropical regions of the Americas. Blood leukocytes were separated with a Percoll cushion and coelomic exudate cells were obtained 24 h after intracoelomic thioglycollate injection. In the blood, erythrocytes, monocytes, thrombocytes, lymphocytes, plasma cells and four types of granulocytes were identified based on their morphology and cytochemistry. Types I and III granulocytes had round intracytoplasmic granules with the same basic morphology; however, type III granulocyte had a bilobued nucleus and higher amounts of heterochromatin suggesting an advance stage of maturation. Type II granulocytes had fusiformic granules and more mitochondria. Type IV granulocytes were classified as the basophil mammalian counterpart based on their morphology and relative number. Macrophages and granulocytes type III were found in the normal coelomic cavity. However, after the thioglycollate injection the number of type III granulocyte increased. Granulocytes found in the coelomic cavity were related to type III blood granulocyte based on the morphology and cytochemical localization of alkaline phosphatase and basic proteins in their intracytoplasmic granules. Differential blood leukocyte counts showed a predominance of type III granulocyte followed by lymphocyte, type I granulocyte, type II granulocyte, monocyte and type IV granulocyte. Taken together, these results indicate that types I and III granulocytes correspond to the mammalian neutrophils/heterophils and type II to the eosinophil granulocytes.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://hdl.handle.net/2060/19980003827','NASA-TRS'); return false;" href="http://hdl.handle.net/2060/19980003827"><span>Trace Element Abundance Measurements on Cosmic Dust Particles</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Flynn, George</p> <p>1996-01-01</p> <p>The X-Ray Microprobe on beamline X-26A at the National Synchrotron Light Source (NSLS) at Brookhaven National Laboratory was used to determine the abundances of elements from Cr through Sr in individual interplanetary dust particles (IDPs) collected from the Earth's stratosphere and the Scanning Transmission X-ray Microscope (STXM) on beamline X-1A at the NSLS was used to determine the carbon abundances and spatial distributions in IDPs. In addition, modeling was performed in an attempt to associate particular types of IDPs with specific types of parent bodies, and thus to infer the chemistry, mineralogy, and structural properties of those parent bodies.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=5091034','PMC'); return false;" href="https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=5091034"><span>Behind the lines–actions of bacterial type III effector proteins in plant cells</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pmc">PubMed Central</a></p> <p>Büttner, Daniela</p> <p>2016-01-01</p> <p>Pathogenicity of most Gram-negative plant-pathogenic bacteria depends on the type III secretion (T3S) system, which translocates bacterial effector proteins into plant cells. Type III effectors modulate plant cellular pathways to the benefit of the pathogen and promote bacterial multiplication. One major virulence function of type III effectors is the suppression of plant innate immunity, which is triggered upon recognition of pathogen-derived molecular patterns by plant receptor proteins. Type III effectors also interfere with additional plant cellular processes including proteasome-dependent protein degradation, phytohormone signaling, the formation of the cytoskeleton, vesicle transport and gene expression. This review summarizes our current knowledge on the molecular functions of type III effector proteins with known plant target molecules. Furthermore, plant defense strategies for the detection of effector protein activities or effector-triggered alterations in plant targets are discussed. PMID:28201715</p> </li> </ol> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_10");'>10</a></li> <li><a href="#" onclick='return showDiv("page_11");'>11</a></li> <li class="active"><span>12</span></li> <li><a href="#" onclick='return showDiv("page_13");'>13</a></li> <li><a href="#" onclick='return showDiv("page_14");'>14</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div><!-- col-sm-12 --> </div><!-- row --> </div><!-- page_12 --> <div id="page_13" class="hiddenDiv"> <div class="row"> <div class="col-sm-12"> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_11");'>11</a></li> <li><a href="#" onclick='return showDiv("page_12");'>12</a></li> <li class="active"><span>13</span></li> <li><a href="#" onclick='return showDiv("page_14");'>14</a></li> <li><a href="#" onclick='return showDiv("page_15");'>15</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div> </div> <div class="row"> <div class="col-sm-12"> <ol class="result-class" start="241"> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017ApJ...844...76X','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017ApJ...844...76X"><span>Prospective Out-of-ecliptic White-light Imaging of Interplanetary Corotating Interaction Regions at Solar Maximum</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Xiong, Ming; Davies, Jackie A.; Li, Bo; Yang, Liping; Liu, Ying D.; Xia, Lidong; Harrison, Richard A.; Keiji, Hayashi; Li, Huichao</p> <p>2017-07-01</p> <p>Interplanetary corotating interaction regions (CIRs) can be remotely imaged in white light (WL), as demonstrated by the Solar Mass Ejection Imager (SMEI) on board the Coriolis spacecraft and Heliospheric Imagers (HIs) on board the twin Solar TErrestrial RElations Observatory (STEREO) spacecraft. The interplanetary WL intensity, due to Thomson scattering of incident sunlight by free electrons, is jointly determined by the 3D distribution of electron number density and line-of-sight (LOS) weighting factors of the Thomson-scattering geometry. The 2D radiance patterns of CIRs in WL sky maps look very different from different 3D viewpoints. Because of the in-ecliptic locations of both the STEREO and Coriolis spacecraft, the longitudinal dimension of interplanetary CIRs has, up to now, always been integrated in WL imagery. To synthesize the WL radiance patterns of CIRs from an out-of-ecliptic (OOE) vantage point, we perform forward magnetohydrodynamic modeling of the 3D inner heliosphere during Carrington Rotation CR1967 at solar maximum. The mixing effects associated with viewing 3D CIRs are significantly minimized from an OOE viewpoint. Our forward modeling results demonstrate that OOE WL imaging from a latitude greater than 60° can (1) enable the garden-hose spiral morphology of CIRs to be readily resolved, (2) enable multiple coexisting CIRs to be differentiated, and (3) enable the continuous tracing of any interplanetary CIR back toward its coronal source. In particular, an OOE view in WL can reveal where nascent CIRs are formed in the extended corona and how these CIRs develop in interplanetary space. Therefore, a panoramic view from a suite of wide-field WL imagers in a solar polar orbit would be invaluable in unambiguously resolving the large-scale longitudinal structure of CIRs in the 3D inner heliosphere.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://ntrs.nasa.gov/search.jsp?R=20060038088&hterms=data+types&qs=N%3D0%26Ntk%3DAll%26Ntx%3Dmode%2Bmatchall%26Ntt%3Ddata%2Btypes','NASA-TRS'); return false;" href="https://ntrs.nasa.gov/search.jsp?R=20060038088&hterms=data+types&qs=N%3D0%26Ntk%3DAll%26Ntx%3Dmode%2Bmatchall%26Ntt%3Ddata%2Btypes"><span>(abstract) Application of Non-coherent Data Types for Deep Space Navigation</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Bhaskaran, Shyam</p> <p>1995-01-01</p> <p>Several options are being examined to reduce the costs of spacecraft and deep space missions. One such option is to fly spacecraft in a non-coherent mode, that is, the spacecraft does not carry a transponder and cannot coherently return a Doppler signal. Historically, such one-way data has not been used as the sole data type due to the instability of the onboard oscillator, the use of S-band frequencies, and the corresponding larger error sources which could not be modeled. However, with the advent of high-speed work stations and more sophisticated modeling ability, the possibility of using one-way data is being re-examined. This paper addresses the navigation performance of various one-way data types for use in interplanetary missions.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/28826484','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/28826484"><span>Type III CRISPR-Cas systems can provide redundancy to counteract viral escape from type I systems.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Silas, Sukrit; Lucas-Elio, Patricia; Jackson, Simon A; Aroca-Crevillén, Alejandra; Hansen, Loren L; Fineran, Peter C; Fire, Andrew Z; Sánchez-Amat, Antonio</p> <p>2017-08-17</p> <p>CRISPR-Cas-mediated defense utilizes information stored as spacers in CRISPR arrays to defend against genetic invaders. We define the mode of target interference and role in antiviral defense for two CRISPR-Cas systems in Marinomonas mediterranea . One system (type I-F) targets DNA. A second system (type III-B) is broadly capable of acquiring spacers in either orientation from RNA and DNA, and exhibits transcription-dependent DNA interference. Examining resistance to phages isolated from Mediterranean seagrass meadows, we found that the type III-B machinery co-opts type I-F CRISPR-RNAs. Sequencing and infectivity assessments of related bacterial and phage strains suggests an 'arms race' in which phage escape from the type I-F system can be overcome through use of type I-F spacers by a horizontally-acquired type III-B system. We propose that the phage-host arms race can drive selection for horizontal uptake and maintenance of promiscuous type III interference modules that supplement existing host type I CRISPR-Cas systems.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/20625199','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/20625199"><span>Kernel based machine learning algorithm for the efficient prediction of type III polyketide synthase family of proteins.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Mallika, V; Sivakumar, K C; Jaichand, S; Soniya, E V</p> <p>2010-07-13</p> <p>Type III Polyketide synthases (PKS) are family of proteins considered to have significant roles in the biosynthesis of various polyketides in plants, fungi and bacteria. As these proteins shows positive effects to human health, more researches are going on regarding this particular protein. Developing a tool to identify the probability of sequence being a type III polyketide synthase will minimize the time consumption and manpower efforts. In this approach, we have designed and implemented PKSIIIpred, a high performance prediction server for type III PKS where the classifier is Support Vector Machines (SVMs). Based on the limited training dataset, the tool efficiently predicts the type III PKS superfamily of proteins with high sensitivity and specificity. The PKSIIIpred is available at http://type3pks.in/prediction/. We expect that this tool may serve as a useful resource for type III PKS researchers. Currently work is being progressed for further betterment of prediction accuracy by including more sequence features in the training dataset.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://ntrs.nasa.gov/search.jsp?R=19990089276&hterms=new+star&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D10%26Ntt%3Dnew%2Bstar','NASA-TRS'); return false;" href="https://ntrs.nasa.gov/search.jsp?R=19990089276&hterms=new+star&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D10%26Ntt%3Dnew%2Bstar"><span>Stellar C III Emissions as a New Classification Parameter for (WC) Central Stars</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Feibelman, W. A.</p> <p>1999-01-01</p> <p>We report detection of stellar C III lambda 1909 emission in International Ultraviolet Explorer (IUE) echelle spectra of early-type [WC] planetary nebula central stars (CSPNs). Additionally, stellar C III emission at lambda 2297 is observed in early- and late-type [WC) CSPNS. Inclusion of these C III features for abundance determinations may resolve a conflict of underabundance of C/O for early type [WC2] - [WC4] CSPNS. A linear dependence on stellar C III lambda 2297 equivalent widths can be used to indicate a new classification of type [WCUV] central stars.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://ntrs.nasa.gov/search.jsp?R=20170002758&hterms=Cyclotrons&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26Nf%3DPublication-Date%257CBTWN%2B20150101%2B20180618%26N%3D0%26No%3D40%26Ntt%3DCyclotrons','NASA-TRS'); return false;" href="https://ntrs.nasa.gov/search.jsp?R=20170002758&hterms=Cyclotrons&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26Nf%3DPublication-Date%257CBTWN%2B20150101%2B20180618%26N%3D0%26No%3D40%26Ntt%3DCyclotrons"><span>Outer Radiation Belt Dropout Dynamics Following the Arrival of Two Interplanetary Coronal Mass Ejections</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Alves, L. R.; Da Silva, L. A.; Souza, V. M.; Sibeck, D. G.; Jauer, P. R.; Vieira, L. E. A.; Walsh, B. M.; Silveira, M. V. D.; Marchezi, J. P.; Rockenbach, M.; <a style="text-decoration: none; " href="javascript:void(0); " onClick="displayelement('author_20170002758'); toggleEditAbsImage('author_20170002758_show'); toggleEditAbsImage('author_20170002758_hide'); "> <img style="display:inline; width:12px; height:12px; " src="images/arrow-up.gif" width="12" height="12" border="0" alt="hide" id="author_20170002758_show"> <img style="width:12px; height:12px; display:none; " src="images/arrow-down.gif" width="12" height="12" border="0" alt="hide" id="author_20170002758_hide"></p> <p>2016-01-01</p> <p>Magnetopause shadowing and wave-particle interactions are recognized as the two primary mechanisms for losses of electrons from the outer radiation belt. We investigate these mechanisms, sing satellite observations both in interplanetary space and within the magnetosphere and particle drift modeling. Two interplanetary shocks sheaths impinged upon the magnetopause causing a relativistic electron flux dropout. The magnetic cloud (C) and interplanetary structure sunward of the MC had primarily northward magnetic field, perhaps leading to a concomitant lack of substorm activity and a 10 day long quiescent period. The arrival of two shocks caused an unusual electron flux dropout. Test-particle simulations have shown 2 to 5 MeV energy, equatorially mirroring electrons with initial values of L 5.5can be lost to the magnetosheath via magnetopause shadowing alone. For electron losses at lower L-shells, coherent chorus wave-driven pitch angle scattering and ULF wave-driven radial transport have been shownto be viable mechanisms.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.osti.gov/biblio/5224461-interplanetary-magnetic-field-control-mars-bow-shock-evidence-venuslike-interaction','SCIGOV-STC'); return false;" href="https://www.osti.gov/biblio/5224461-interplanetary-magnetic-field-control-mars-bow-shock-evidence-venuslike-interaction"><span>Interplanetary magnetic field control of the Mars bow shock: Evidence for Venuslike interaction</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.osti.gov/search">DOE Office of Scientific and Technical Information (OSTI.GOV)</a></p> <p>Zhang, T.L.; Schwingenschuh, K.; Lichtenegger, H.</p> <p>1991-07-01</p> <p>The Mars bow shock location and shape have been determined by examining the PHOBOS spacecraft magnetometer data. Observations show that the position of the terminator bow shock varies with interplanetary magnetic field orientation in the same way as at Venus. The shock is farthest from Mars in the direction of the interplanetary electric field, consistent with the idea that mass loading plays an important role in the solar wind interaction with Mars. The authors also find that the shock cross section at the terminator plane is asymmetric and is controlled by the interplanetary magnetic field as expected from the asymmetricmore » propagation velocity of the fast magnetosonic wave. Comparing with earlier mission data, they show that the Mars shock location varies with solar activity. The shock is farther from Mars during solar maximum. Thus the solar wind interaction with Mars appears to be Venuslike, with a magnetic moment too small to affect significantly the solar wind interaction.« less</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/17906941','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/17906941"><span>The interplanetary exchange of photosynthesis.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Cockell, Charles S</p> <p>2008-02-01</p> <p>Panspermia, the transfer of organisms from one planet to another, either through interplanetary or interstellar space, remains speculation. However, its potential can be experimentally tested. Conceptually, it is island biogeography on an interplanetary or interstellar scale. Of special interest is the possibility of the transfer of oxygenic photosynthesis between one planet and another, as it can initiate large scale biospheric productivity. Photosynthetic organisms, which must live near the surface of rocks, can be shown experimentally to be subject to destruction during atmospheric transit. Many of them grow as vegetative cells, which are shown experimentally to be susceptible to destruction by shock during impact ejection, although the effectiveness of this dispersal filter can be shown to be mitigated by the characteristics of the cells and their local environment. Collectively these, and other, experiments reveal the particular barriers to the cross-inoculation of photosynthesis. If oxygen biosignatures are eventually found in the atmospheres of extrasolar planets, understanding the potential for the interplanetary exchange of photosynthesis will aid in their interpretation.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://hdl.handle.net/2060/20120018044','NASA-TRS'); return false;" href="http://hdl.handle.net/2060/20120018044"><span>Interplanetary Electric Propulsion Uranus Mission Trades Supporting the Decadal Survey</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Dankanich, John W.; McAdams, James</p> <p>2011-01-01</p> <p>The Decadal Survey Committee was tasked to develop a comprehensive science and mission strategy for planetary science that updates and extends the National Academies Space Studies Board s current solar system exploration decadal survey. A Uranus orbiter mission has been evaluated as a part of this 2013-2022 Planetary Science Decadal Survey. A comprehensive Uranus orbiter mission design was completed, including a broad search of interplanetary electric propulsion transfer options. The scope of interplanetary trades was limited to electric propulsion concepts, both solar and radioisotope powered. Solar electric propulsion offers significant payloads to Uranus. Inserted mass into the initial science orbit due is highly sensitive to transfer time due to arrival velocities. The recommended baseline trajectory is a 13 year transfer with an Atlas 551, a 1+1 NEXT stage with 15 kW of power using an EEJU trajectory and a 1,000km EGA flyby altitude constraint. This baseline delivers over 2,000kg into the initial science orbit. Interplanetary trajectory trades and sensitivity analyses are presented herein.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2009AGUFMSH41A1626N','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2009AGUFMSH41A1626N"><span>PROPAGATION AND EVOLUTION OF THE JUNE 1st 2008 CME IN THE INTERPLANETARY MEDIUM</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Nieves-Chinchilla, T.; Lamb, D. A.; Davila, J. M.; Vinas, A. F.; Moestl, C.; Hidalgo, M. A.; Farrugia, C. J.; Malandraki, O.; Dresing, N.; Gómez-Herrero, R.</p> <p>2009-12-01</p> <p>In this work we present a study of the coronal mass ejection (CME) of June 1st of 2008 in the interplanetary medium. This event has been extensively studied by others because of its favorable geometry and the possible consequences of its peculiar initiation for space weather forecasting. We show an analysis of the evolution of the CME in the interplanetary medium in order to shed some light on the propagation mechanism of the ICME. We have determined the typical shock associated characteristics of the ICME in order to understand the propagation properties. Using two different non force-free models of the magnetic cloud allows us to incorporate expansion of the cloud. We use in-situ measurements from STEREO B/IMPACT to characterize the ICME. In addition, we use images from STEREO A/SECCHI-HI to analyze the propagation and visual evolution of the associated flux rope in the interplanetary medium. We compare and contrast these observations with the results of the analytical models.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://hdl.handle.net/2060/19770007709','NASA-TRS'); return false;" href="http://hdl.handle.net/2060/19770007709"><span>The causes of recurrent geomagnetic storms</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Burlaga, L. F.; Lepping, R. P.</p> <p>1976-01-01</p> <p>The causes of recurrent geomagnetic activity were studied by analyzing interplanetary magnetic field and plasma data from earth-orbiting spacecraft in the interval from November 1973 to February 1974. This interval included the start of two long sequences of geomagnetic activity and two corresponding corotating interplanetary streams. In general, the geomagnetic activity was related to an electric field which was due to two factors: (1) the ordered, mesoscale pattern of the stream itself, and (2) random, smaller-scale fluctuations in the southward component of the interplanetary magnetic field Bz. The geomagnetic activity in each recurrent sequence consisted of two successive stages. The first stage was usually the most intense, and it occurred during the passage of the interaction region at the front of a stream. These large amplitudes of Bz were primarily produced in the interplanetary medium by compression of ambient fluctuations as the stream steepened in transit to 1 A.U. The second stage of geomagnetic activity immediately following the first was associated with the highest speeds in the stream.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://ntrs.nasa.gov/search.jsp?R=19890023530&hterms=Singled&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D10%26Ntt%3DSingled','NASA-TRS'); return false;" href="https://ntrs.nasa.gov/search.jsp?R=19890023530&hterms=Singled&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D10%26Ntt%3DSingled"><span>The search for refractory interplanetary dust particles from preindustrial aged Antarctic ice</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Zolensky, Michael E.; Webb, Susan J.; Thomas, Kathie</p> <p>1988-01-01</p> <p>In a study of refractory interplanetary dust particles, preindustrial-aged Antarctic ice samples have been collected, melted, and filtered to separate the particle load. Particles containing a significant amount of aluminum, titanium, and/or calcium were singled out for detailed SEM and STEM characterization. The majority of these particles are shown to be volcanic tephra from nearby volcanic centers. Six spherical aggregates were encountered that consist of submicron-sized grains of rutile within polycrystalline cristobalite. These particles are probably of terrestrial volcanic origin, but have not been previously reported from any environment. One aggregate particle containing fassaite and hibonite is described as a probable interplanetary dust particle. The constituent grain sizes of this particle vary from 0.1 to 0.3 microns, making it significantly more fine-grained than meteoritic calcium-aluminum-rich inclusions. This particle is mineralogically and morphologically similar to recently reported refractory interplanetary dust particles collected from the stratosphere, and dissimilar to the products of modern spacecraft debris.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://hdl.handle.net/2060/19750012350','NASA-TRS'); return false;" href="http://hdl.handle.net/2060/19750012350"><span>A study of unmanned mission opportunities to comets and asteroids</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Mann, F. I.; Horsewood, J. L.; Bjorkman, W.</p> <p>1974-01-01</p> <p>Several unmanned multiple-target mission opportunities to comets and asteroids were studied. The targets investigated include Grigg-Skjellerup, Giacobini-Zinner, Tuttle-Giacobini-Kresak, Borrelly, Halley, Schaumasse, Geographos, Eros, Icarus, and Toro, and the trajectories consist of purely ballistic flight, except that powered swingbys and deep space burns are employed when necessary. Optimum solar electric rendezvous trajectories to the comets Giacobini-Zinner/85, Borrelly/87, and Temple (2)/83 and /88 employing the 8.67 kw Sert III spacecraft modified for interplanetary flight were also investigated. The problem of optimizing electric propulsion heliocentric trajectories, including the effects of geocentric launch asymptote declination on launch vehicle performance capability, was formulated, and a solution developed using variational calculus techniques. Improvements were made to the HILTOP trajectory optimization computer program. An error analysis of high-thrust maneuvers involving spin-stabilized spacecraft was developed and applied to a synchronous meteorological satellite mission.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://ntrs.nasa.gov/search.jsp?R=19920039130&hterms=travel+study&qs=N%3D0%26Ntk%3DAll%26Ntx%3Dmode%2Bmatchall%26Ntt%3Dtravel%2Bstudy','NASA-TRS'); return false;" href="https://ntrs.nasa.gov/search.jsp?R=19920039130&hterms=travel+study&qs=N%3D0%26Ntk%3DAll%26Ntx%3Dmode%2Bmatchall%26Ntt%3Dtravel%2Bstudy"><span>Human life support during interplanetary travel and domicile. III - Mars expedition system trade study</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Seshan, P. K.; Ferrall, Joseph F.; Rohatgi, Naresh K.</p> <p>1991-01-01</p> <p>Several alternative configurations of life-support systems (LSSs) for a Mars missions are compared analytically on a quantitative basis in terms of weight, volume, and power. A baseline technology set is utilized for the illustrations of systems including totally open loop, carbon dioxide removal only, partially closed loop, and totally closed loop. The analytical model takes advantage of a modular, top-down hierarchical breakdown of LSS subsystems into functional elements that represent individual processing technologies. The open-loop systems are not competitive in terms of weight for both long-duration orbiters and short-duration lander vehicles, and power demands are lowest with the open loop and highest with the closed loop. The closed-loop system can reduce vehicle weight by over 70,000 lbs and thereby overcome the power penalty of 1600 W; the closed-loop variety is championed as the preferred system for a Mars expedition.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/21949864','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/21949864"><span>Type III Nrg1 back signaling enhances functional TRPV1 along sensory axons contributing to basal and inflammatory thermal pain sensation.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Canetta, Sarah E; Luca, Edlira; Pertot, Elyse; Role, Lorna W; Talmage, David A</p> <p>2011-01-01</p> <p>Type III Nrg1, a member of the Nrg1 family of signaling proteins, is expressed in sensory neurons, where it can signal in a bi-directional manner via interactions with the ErbB family of receptor tyrosine kinases (ErbB RTKs). Type III Nrg1 signaling as a receptor (Type III Nrg1 back signaling) can acutely activate phosphatidylinositol-3-kinase (PtdIns3K) signaling, as well as regulate levels of α7* nicotinic acetylcholine receptors, along sensory axons. Transient receptor potential vanilloid 1 (TRPV1) is a cation-permeable ion channel found in primary sensory neurons that is necessary for the detection of thermal pain and for the development of thermal hypersensitivity to pain under inflammatory conditions. Cell surface expression of TRPV1 can be enhanced by activation of PtdIns3K, making it a potential target for regulation by Type III Nrg1. We now show that Type III Nrg1 signaling in sensory neurons affects functional axonal TRPV1 in a PtdIns3K-dependent manner. Furthermore, mice heterozygous for Type III Nrg1 have specific deficits in their ability to respond to noxious thermal stimuli and to develop capsaicin-induced thermal hypersensitivity to pain. Cumulatively, these results implicate Type III Nrg1 as a novel regulator of TRPV1 and a molecular mediator of nociceptive function.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://hdl.handle.net/2060/19850012177','NASA-TRS'); return false;" href="http://hdl.handle.net/2060/19850012177"><span>Dependence of the High Latitude Middle Atmosphere Ionization on Structures in Interplanetary Space</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Bremer, J.; Lauter, E. A.</p> <p>1984-01-01</p> <p>The precipitation of high energetic electrons during and after strong geomagnetic storms into heights below 100 km in middle and subauroral latitudes is markedly modulated by the structure of the interplanetary magnetic field (IMF). Under relative quiet conditions the D-region ionization caused by high energetic particle precipitation (energies greater than 20 to 50 keV) depends on changes of the interplanetary magnetic field and also on the velocity of the solar wind. To test this assumption, the influence of the IMF-sector boundary crossings on ionospheric absorption data of high and middle latitudes by the superposed-epoch method was investigated.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://ntrs.nasa.gov/search.jsp?R=19790041801&hterms=wind+monitor&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D70%26Ntt%3Dwind%2Bmonitor','NASA-TRS'); return false;" href="https://ntrs.nasa.gov/search.jsp?R=19790041801&hterms=wind+monitor&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D70%26Ntt%3Dwind%2Bmonitor"><span>Signatures of solar wind latitudinal structure in interplanetary Lyman-alpha emissions - Mariner 10 observations</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Kumar, S.; Broadfoot, A. L.</p> <p>1979-01-01</p> <p>A detailed analysis is conducted which shows that signatures in the interplanetary Lyman-alpha emissions observed in three different data sets from Mariner 10 (corresponding to different locations of the spacecraft) provide firm evidence that the intensity departures are correlated with a decrease in solar wind flux with increasing latitude. It is suggested that observations of the interplanetary emission can be used to monitor average solar wind activity at high latitudes. The asymmetry in the solar radiation field as a source of observed departures in L-alpha data is considered and attention is given to the interstellar hydrogen and helium density.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/16675696','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/16675696"><span>Interstellar chemistry recorded in organic matter from primitive meteorites.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Busemann, Henner; Young, Andrea F; Alexander, Conel M O'd; Hoppe, Peter; Mukhopadhyay, Sujoy; Nittler, Larry R</p> <p>2006-05-05</p> <p>Organic matter in extraterrestrial materials has isotopic anomalies in hydrogen and nitrogen that suggest an origin in the presolar molecular cloud or perhaps in the protoplanetary disk. Interplanetary dust particles are generally regarded as the most primitive solar system matter available, in part because until recently they exhibited the most extreme isotope anomalies. However, we show that hydrogen and nitrogen isotopic compositions in carbonaceous chondrite organic matter reach and even exceed those found in interplanetary dust particles. Hence, both meteorites (originating from the asteroid belt) and interplanetary dust particles (possibly from comets) preserve primitive organics that were a component of the original building blocks of the solar system.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://hdl.handle.net/2060/20150020817','NASA-TRS'); return false;" href="http://hdl.handle.net/2060/20150020817"><span>Global Optimization of Interplanetary Trajectories in the Presence of Realistic Mission Contraints</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Hinckley, David, Jr.; Englander, Jacob; Hitt, Darren</p> <p>2015-01-01</p> <p>Interplanetary missions are often subject to difficult constraints, like solar phase angle upon arrival at the destination, velocity at arrival, and altitudes for flybys. Preliminary design of such missions is often conducted by solving the unconstrained problem and then filtering away solutions which do not naturally satisfy the constraints. However this can bias the search into non-advantageous regions of the solution space, so it can be better to conduct preliminary design with the full set of constraints imposed. In this work two stochastic global search methods are developed which are well suited to the constrained global interplanetary trajectory optimization problem.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://ntrs.nasa.gov/search.jsp?R=19800063628&hterms=monsanto&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D20%26Ntt%3Dmonsanto','NASA-TRS'); return false;" href="https://ntrs.nasa.gov/search.jsp?R=19800063628&hterms=monsanto&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D20%26Ntt%3Dmonsanto"><span>Optical spectroscopy of interplanetary dust collected in the earth's stratosphere</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Fraundorf, P.; Patel, R. I.; Shirck, J.; Walker, R. M.; Freeman, J. J.</p> <p>1980-01-01</p> <p>Optical absorption spectra of interplanetary dust particles 2-30 microns in size collected in the atmosphere at an altitude of 20 km by inertial impactors mounted on NASA U-2 aircraft are reported. Fourier transform absorption spectroscopy of crushed samples of the particles reveals a broad feature in the region 1300-800 kaysers which has also been found in meteorite and cometary dust spectra, and a weak iron crystal field absorption band at approximately 9800 kaysers, as is observed in meteorites. Work is currently in progress to separate the various components of the interplanetary dust particles in order to evaluate separately their contributions to the absorption.</p> </li> </ol> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_11");'>11</a></li> <li><a href="#" onclick='return showDiv("page_12");'>12</a></li> <li class="active"><span>13</span></li> <li><a href="#" onclick='return showDiv("page_14");'>14</a></li> <li><a href="#" onclick='return showDiv("page_15");'>15</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div><!-- col-sm-12 --> </div><!-- row --> </div><!-- page_13 --> <div id="page_14" class="hiddenDiv"> <div class="row"> <div class="col-sm-12"> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_12");'>12</a></li> <li><a href="#" onclick='return showDiv("page_13");'>13</a></li> <li class="active"><span>14</span></li> <li><a href="#" onclick='return showDiv("page_15");'>15</a></li> <li><a href="#" onclick='return showDiv("page_16");'>16</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div> </div> <div class="row"> <div class="col-sm-12"> <ol class="result-class" start="261"> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://hdl.handle.net/2060/20140010128','NASA-TRS'); return false;" href="http://hdl.handle.net/2060/20140010128"><span>The Radiation, Interplanetary Shocks, and Coronal Sources (RISCS) Toolset</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Zank, G. P.; Spann, James F.</p> <p>2014-01-01</p> <p>The goal of this project is to serve the needs of space system designers and operators by developing an interplanetary radiation environment model within 10 AU:Radiation, Interplanetary Shocks, and Coronal Sources (RISCS) toolset: (1) The RISCS toolset will provide specific reference environments for space system designers and nowcasting and forecasting capabilities for space system operators; (2) We envision the RISCS toolset providing the spatial and temporal radiation environment external to the Earth's (and other planets') magnetosphere, as well as possessing the modularity to integrate separate applications (apps) that can map to specific magnetosphere locations and/or perform the subsequent radiation transport and dosimetry for a specific target.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.osti.gov/biblio/22126625-sun-earth-propagation-coronal-mass-ejections','SCIGOV-STC'); return false;" href="https://www.osti.gov/biblio/22126625-sun-earth-propagation-coronal-mass-ejections"><span></span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.osti.gov/search">DOE Office of Scientific and Technical Information (OSTI.GOV)</a></p> <p>Liu, Ying D.; Luhmann, Janet G.; Moestl, Christian</p> <p></p> <p>We investigate how coronal mass ejections (CMEs) propagate through, and interact with, the inner heliosphere between the Sun and Earth, a key question in CME research and space weather forecasting. CME Sun-to-Earth kinematics are constrained by combining wide-angle heliospheric imaging observations, interplanetary radio type II bursts, and in situ measurements from multiple vantage points. We select three events for this study, the 2012 January 19, 23, and March 7 CMEs. Different from previous event studies, this work attempts to create a general picture for CME Sun-to-Earth propagation and compare different techniques for determining CME interplanetary kinematics. Key results are obtainedmore » concerning CME Sun-to-Earth propagation: (1) the Sun-to-Earth propagation of fast CMEs can be approximately formulated into three phases: an impulsive acceleration, then a rapid deceleration, and finally a nearly constant speed propagation (or gradual deceleration); (2) the CMEs studied here are still accelerating even after the flare maximum, so energy must be continuously fed into the CME even after the time of the maximum heating and radiation has elapsed in the corona; (3) the rapid deceleration, presumably due to interactions with the ambient medium, mainly occurs over a relatively short timescale following the acceleration phase; and (4) CME-CME interactions seem a common phenomenon close to solar maximum. Our comparison between different techniques (and data sets) has important implications for CME observations and their interpretations: (1) for the current cases, triangulation assuming a compact CME geometry is more reliable than triangulation assuming a spherical front attached to the Sun for distances below 50-70 solar radii from the Sun, but beyond about 100 solar radii we would trust the latter more; (2) a proper treatment of CME geometry must be performed in determining CME Sun-to-Earth kinematics, especially when the CME propagation direction is far away from the observer; and (3) our approach to comparing wide-angle heliospheric imaging observations with interplanetary radio type II bursts provides a novel tool in investigating CME propagation characteristics. Future CME observations and space weather forecasting are discussed based on these results.« less</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2010cosp...38.2017Z','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2010cosp...38.2017Z"><span>Energetic electrons response to ULF waves induced by interplanetary shocks in the outer radiation belt</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Zong, Qiugang</p> <p></p> <p>Strong interplanetary shocks interaction with the Earth's magnetosphere would have great impacts on the Earth's magnetosphere. Cluster and Double Star constellation provides an ex-cellent opportunity to study the inner magnetospheric response to a powerful interplanetary solar wind forcing. An interplanetary shock on Nov.7 2004 with the solar wind dynamic pres-sure ˜ 70 nPa (Maximum) induced a large bipolar electric field in the plasmasphere boundary layer as observed by Cluster fleet, the peak-to-peak ∆Ey is more than 60 mV/m. Energetic elec-trons in the outer radiation belt are accelerated almost simultaneously when the interplanetary shock impinges upon the Earth's magnetosphere. Energetic electron bursts are coincident with the induced large electric field, energetic electrons (30 to 500 keV) with 900 pitch angles are accelerated first whereas those electrons are decelerated when the shock-induced electric field turns to positive value. Both toroidal and poloidal mode waves are found to be important but interacting with energetic electron at a different L-shell and a different period. At the Cluster's position (L = 4.4,), poloidal is predominant wave mode whereas at the geosynchronous orbits (L = 6.6), the ULF waves observed by the GOES -10 and -12 satellites are mostly toroidal. For comparison, a rather weak interplanetary shock on Aug. 30, 2001 (dynamic pressure ˜ 2.7 nPa) is also investigated in this paper. It is found that interplanetary shocks or solar wind pressure pulses with even small dynamic pressure change would have non-ignorable role in the radiation belt dynamic. Further, in this paper, our results also reveal the excitation of ULF waves re-sponses on the passing interplanetary shock, especially the importance of difference ULF wave modes when interacting with the energetic electrons in the radiation belt. The damping of the shock induced ULF waves could be separated into two terms: one term corresponds to the generalized Landau damping, the damping rate is large and the damping is fast; the other term corresponds to the damping through ionosphere due to its finite electric conductivity, the damping rate of this item is small and the damping is slow. The fast damping rate at (˜ 10-3 ) is significant larger than the slow damping rate (˜ 10-4 ) suggesting a rapid ULF wave energy lost is via drift resonance with energetic electrons in the radiation belt.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2002cosp...34E.520X','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2002cosp...34E.520X"><span>Forecast the energetic electron flux on geosynchronous orbit with interplanetary parameters</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Xue, B.; Ye, Z.</p> <p></p> <p>The high flux of energetic electron on geo-synchronous orbit can cause many kinds of malfunction of the satellite there, within which the bulk charging is the most significant that several broadcast satellite failures were confirmed to be due to this effect. The electron flux on geo-synchronous orbit varies in a large range even up to three orders accompanied the passage of interplanetary magnetic cloud and the following geomagnetic disturbances. Upon investigating electron flux, interplanetary solar wind data, and geomagnetic data as well, we found that: (1) The enhancement of energetic flux on the geo-synchronous orbit exhibits periodic recurrence of 27days. (2)Significant increase of electron flux relates to interplanetary index and characters of their distribution. (3)The electron flux also has relation to solar activity index. In our research work, artificial neural network was employed and constructed according to the job. The neural network, we call it full connecting network, was proved to be a sufficient tool to analyze the character of the evolving parameters, remember the omen of "electron storm", and establish the relationship between interplanetary parameters etc., and the fluence of high energetic electrons. The neural network was carefully constructed and trained to do the job mentioned above. Preliminary result showed that the accuracy forecast of electron flux 1 day ahead can reach 80%, and 70% for 2 days ahead.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.osti.gov/biblio/22667481-charged-dust-grain-dynamics-subject-solar-wind-poyntingrobertson-drag-interplanetary-magnetic-field','SCIGOV-STC'); return false;" href="https://www.osti.gov/biblio/22667481-charged-dust-grain-dynamics-subject-solar-wind-poyntingrobertson-drag-interplanetary-magnetic-field"><span>CHARGED DUST GRAIN DYNAMICS SUBJECT TO SOLAR WIND, POYNTING–ROBERTSON DRAG, AND THE INTERPLANETARY MAGNETIC FIELD</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.osti.gov/search">DOE Office of Scientific and Technical Information (OSTI.GOV)</a></p> <p>Lhotka, Christoph; Bourdin, Philippe; Narita, Yasuhito, E-mail: christoph.lhotka@oeaw.ac.at, E-mail: philippe.bourdin@oeaw.ac.at, E-mail: yasuhito.narita@oeaw.ac.at</p> <p></p> <p>We investigate the combined effect of solar wind, Poynting–Robertson drag, and the frozen-in interplanetary magnetic field on the motion of charged dust grains in our solar system. For this reason, we derive a secular theory of motion by the means of an averaging method and validate it with numerical simulations of the unaveraged equations of motions. The theory predicts that the secular motion of charged particles is mainly affected by the z -component of the solar magnetic axis, or the normal component of the interplanetary magnetic field. The normal component of the interplanetary magnetic field leads to an increase ormore » decrease of semimajor axis depending on its functional form and sign of charge of the dust grain. It is generally accepted that the combined effects of solar wind and photon absorption and re-emmision (Poynting–Robertson drag) lead to a decrease in semimajor axis on secular timescales. On the contrary, we demonstrate that the interplanetary magnetic field may counteract these drag forces under certain circumstances. We derive a simple relation between the parameters of the magnetic field, the physical properties of the dust grain, as well as the shape and orientation of the orbital ellipse of the particle, which is a necessary conditions for the stabilization in semimajor axis.« less</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://www.dtic.mil/docs/citations/ADA500640','DTIC-ST'); return false;" href="http://www.dtic.mil/docs/citations/ADA500640"><span>Studying Geoeffective Interplanetary Coronal Mass Ejections Between the Sun and Earth: Space Weather Implications of Solar Mass Ejection Imager Observations</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.dtic.mil/">DTIC Science & Technology</a></p> <p></p> <p>2009-05-14</p> <p>courtesy of I. Richardson. itoring, and adequate data latency would constitute a reliable tool for early warning of storms. Is] The first Earth...some ICMEs appear to undergo little change as they propagate outward from their low coronal origins, in this case out to 45° elongation. Such...and that, given much better data latency , a future SMEI-type heliospheric im- ager could be used to forecast the onset and maybe even the</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://hdl.handle.net/2060/19800017731','NASA-TRS'); return false;" href="http://hdl.handle.net/2060/19800017731"><span>The Goddard program of gamma ray transient astronomy</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Cline, T. L.; Desai, U. D.; Teegarden, B. J.</p> <p>1980-01-01</p> <p>Gamma ray burst studies are reviewed. The past results, present status and future expectations are outlined regarding endeavors using experiments on balloons, IMP-6 and -7, OGO-3, ISEE-1 and -3, Helios-2, Solar Maximum Mission, the Einstein Observatory, Solar Polar and the Gamma Ray Observatory, and with the interplanetary gamma ray burst networks, to which some of these spacecraft sensors contribute. Additional emphasis is given to the recent discovery of a new type of gamma ray transient, detected on 1979 March 5.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=1361762','PMC'); return false;" href="https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=1361762"><span>Structural changes of oviduct of freshwater shrimp, Macrobrachium nipponense (Decapoda, Palaemonidae), during spawning*</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pmc">PubMed Central</a></p> <p>Lu, Jian-ping; Zhang, Xiao-hui; Yu, Xiao-yun</p> <p>2006-01-01</p> <p>The structural change of the oviduct of freshwater shrimp (Macrobrachium nipponense) during spawning was examined by electron microscopy. The oviduct wall structural characteristics seem to be influenced significantly by the spawning process. Before the parturition and ovulation, two types of epithelial cells (types I and II) are found in the epithelium. The free surfaces of type I and type II cells have very dense long microvilli. Under the type I and type II cells, are a relatively thick layer of secreting material and a layer of mostly dead cells. After ovulation, two other types of epithelial cells (types III and IV) are found in the oviduct wall epithelium. The free surface of type III cells only has short microvilli scattered on the surface. The thick layer with secreting material and the dead cell layer disappeared at this stage. In some type III cells, the leaking out of cytoplasm from broken cell membrane led to the death of these type III cells. The transformation of all four types of epithelial cells was in the order: IV→I→II→III. PMID:16365928</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://ntrs.nasa.gov/search.jsp?R=19720006153&hterms=theory+relativity&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D90%26Ntt%3Dtheory%2Brelativity','NASA-TRS'); return false;" href="https://ntrs.nasa.gov/search.jsp?R=19720006153&hterms=theory+relativity&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D90%26Ntt%3Dtheory%2Brelativity"><span>Applications of presently planned interplanetary missions to testing gravitational theories</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Friedman, L. D.</p> <p>1971-01-01</p> <p>A summary of the probable interplanetary missions for the 1970's is presented, which may prove useful in testing the general theory of relativity. Mission characteristics are discussed, as well as instrumentation. This last includes a low-level accelerometer and S-/X-band transponders and antennas.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017AGUFM.P23B2730K','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017AGUFM.P23B2730K"><span>On the Contribution of Asteroid Disruptions to the Interplanetary Dust Flux</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Kehoe, T. J. J.; Kehoe, A. E.</p> <p>2017-12-01</p> <p>Recent modeling has shown the significant contribution of micron- to millimeter-sized particles released by the disruption of main-belt asteroids (MBAs) to the interplanetary dust particle (IDP) flux (e.g., Dermott et al., 2002; Nesvorný et al., 2003; Espy Kehoe et al., 2015). In this paper, we present the results of a study that indicates that the dust injected into the zodiacal cloud due to the catastrophic disruption of an asteroid is dominated by the release of its surface regolith particles. Our research suggests that disrupting a single asteroid with diameter O(100 km) will be enough to regenerate the entire zodiacal cloud. The breakup of smaller asteroids with diameters O(10 km) will likely produce more moderate, but still significant, changes in the dust environment of the inner solar system. As collisional disruptions of asteroids in this size range occur more frequently, it is important that we develop a better understanding of the injection of asteroidal material into the zodiacal cloud as a result of these type of events in order to determine the temporal evolution of the interplanetary dust flux. The results presented in this paper will lead to a better understanding of the threat to exploration activities due to the enhanced IDP flux resulting from the disruption of asteroidal regoliths. These findings can be employed to improve engineering models, for example, the NASA Meteoroid Engineering Model (MEM) that is widely utilized to assess the impact hazard to space hardware and activities in the inner solar system due to the natural meteoroid environment (McNamara et al., 2004). This is an important area of concern for current and future mission development purposes.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2018SoPh..293...91Y','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2018SoPh..293...91Y"><span>Dynamics of Large-Scale Solar-Wind Streams Obtained by the Double Superposed Epoch Analysis: 3. Deflection of the Velocity Vector</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Yermolaev, Y. I.; Lodkina, I. G.; Yermolaev, M. Y.</p> <p>2018-06-01</p> <p>This work is a continuation of our previous articles (Yermolaev et al. in J. Geophys. Res. 120, 7094, 2015 and Yermolaev et al. in Solar Phys. 292, 193, 2017), which describe the average temporal profiles of interplanetary plasma and field parameters in large-scale solar-wind (SW) streams: corotating interaction regions (CIRs), interplanetary coronal mass ejections (ICMEs, including both magnetic clouds (MCs) and ejecta), and sheaths as well as interplanetary shocks (ISs). Changes in the longitude angle, φ, in CIRs from -2 to 2° agree with earlier results ( e.g. Gosling and Pizzo, 1999). We have also analyzed the average temporal profiles of the bulk velocity angles in sheaths and ICMEs. We have found that the angle φ in ICMEs changes from 2 to -2°, while in sheaths it changes from -2 to 2° (similar to the change in CIRs), i.e. the angle in CIRs and sheaths deflects in the opposite sense to ICMEs. When averaging the latitude angle θ on all the intervals of the chosen SW types, the angle θ is almost constant at {˜} 1°. We made for the first time a selection of SW events with increasing and decreasing θ and found that the average θ temporal profiles in the selected events have the same "integral-like" shape as for φ. The difference in φ and θ average profiles is explained by the fact that most events have increasing profiles for the angle in the ecliptic plane as a result of solar rotation, while for the angle in the meridional plane, the numbers of events with increasing and decreasing profiles are equal.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://hdl.handle.net/2060/20000057422','NASA-TRS'); return false;" href="http://hdl.handle.net/2060/20000057422"><span>Preliminary Design of Low-Thrust Interplanetary Missions</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Sims, Jon A.; Flanagan, Steve N.</p> <p>1997-01-01</p> <p>For interplanetary missions, highly efficient electric propulsion systems can be used to increase the mass delivered to the destination and/or reduce the trip time over typical chemical propulsion systems. This technology is being demonstrated on the Deep Space 1 mission - part of NASA's New Millennium Program validating technologies which can lower the cost and risk and enhance the performance of future missions. With the successful demonstration on Deep Space 1, future missions can consider electric propulsion as a viable propulsion option. Electric propulsion systems, while highly efficient, produce only a small amount of thrust. As a result, the engines operate during a significant fraction of the trajectory. This characteristic makes it much more difficult to find optimal trajectories. The methods for optimizing low-thrust trajectories are typically categorized as either indirect, or direct. Indirect methods are based on calculus of variations, resulting in a two-point boundary value problem that is solved by satisfying terminal constraints and targeting conditions. These methods are subject to extreme sensitivity to the initial guess of the variables - some of which are not physically intuitive. Adding a gravity assist to the trajectory compounds the sensitivity. Direct methods parameterize the problem and use nonlinear programming techniques to optimize an objective function by adjusting a set of variables. A variety of methods of this type have been examined with varying results. These methods are subject to the limitations of the nonlinear programming techniques. In this paper we present a direct method intended to be used primarily for preliminary design of low-thrust interplanetary trajectories, including those with multiple gravity assists. Preliminary design implies a willingness to accept limited accuracy to achieve an efficient algorithm that executes quickly.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://rosap.ntl.bts.gov/view/dot/21467','DOTNTL'); return false;" href="https://rosap.ntl.bts.gov/view/dot/21467"><span>Aircraft evacuations through type-III exits II : effects of individual subject differences.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntlsearch.bts.gov/tris/index.do">DOT National Transportation Integrated Search</a></p> <p></p> <p>1995-08-01</p> <p>Simulated emergency egress from Type III over-wing exits was studied to support regulatory action by the FAA. Passageway width from the aircraft center aisle to the Type-III exit was the major variable of interest; effects of individual subject attri...</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2015AGUFMSH41F..04G','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2015AGUFMSH41F..04G"><span>Type II Radio Bursts as Indicators of Space Weather Drivers</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Gopalswamy, N.</p> <p>2015-12-01</p> <p>Interplanetary type II radio bursts are important indicators of shock-driving coronal mass ejections (CMEs). CME-driven shocks are responsible for large solar energetic particle (SEP) events and sudden commencement/sudden impulse events recorded by ground magnetometers. The excellent overlap of the spatial domains probed by SOHO/STEREO coronagraphs with the spectral domains of Wind/WAVES and STEREO/WAVES has contributed enormously in understanding CMEs and shocks as space weather drivers. This paper is concerned with type II bursts of solar cycle 23 and 24 that had emission components down to kilometric wavelengths. CMEs associated with these bursts seem to be the best indicators of large SEP events, better than the halo CMEs. However, there are some differences between the type II bursts of the two cycles, which are explained based on the different states of the heliosphere in the two cycles. Finally, the type II burst characteristics of some recent extreme events are discussed.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=5576922','PMC'); return false;" href="https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=5576922"><span>Type III CRISPR-Cas systems can provide redundancy to counteract viral escape from type I systems</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pmc">PubMed Central</a></p> <p>Silas, Sukrit; Lucas-Elio, Patricia; Jackson, Simon A; Aroca-Crevillén, Alejandra; Hansen, Loren L; Fineran, Peter C</p> <p>2017-01-01</p> <p>CRISPR-Cas-mediated defense utilizes information stored as spacers in CRISPR arrays to defend against genetic invaders. We define the mode of target interference and role in antiviral defense for two CRISPR-Cas systems in Marinomonas mediterranea. One system (type I-F) targets DNA. A second system (type III-B) is broadly capable of acquiring spacers in either orientation from RNA and DNA, and exhibits transcription-dependent DNA interference. Examining resistance to phages isolated from Mediterranean seagrass meadows, we found that the type III-B machinery co-opts type I-F CRISPR-RNAs. Sequencing and infectivity assessments of related bacterial and phage strains suggests an ‘arms race’ in which phage escape from the type I-F system can be overcome through use of type I-F spacers by a horizontally-acquired type III-B system. We propose that the phage-host arms race can drive selection for horizontal uptake and maintenance of promiscuous type III interference modules that supplement existing host type I CRISPR-Cas systems. PMID:28826484</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=3176819','PMC'); return false;" href="https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=3176819"><span>Type III Nrg1 Back Signaling Enhances Functional TRPV1 along Sensory Axons Contributing to Basal and Inflammatory Thermal Pain Sensation</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pmc">PubMed Central</a></p> <p>Canetta, Sarah E.; Luca, Edlira; Pertot, Elyse; Role, Lorna W.; Talmage, David A.</p> <p>2011-01-01</p> <p>Type III Nrg1, a member of the Nrg1 family of signaling proteins, is expressed in sensory neurons, where it can signal in a bi-directional manner via interactions with the ErbB family of receptor tyrosine kinases (ErbB RTKs) [1]. Type III Nrg1 signaling as a receptor (Type III Nrg1 back signaling) can acutely activate phosphatidylinositol-3-kinase (PtdIns3K) signaling, as well as regulate levels of α7* nicotinic acetylcholine receptors, along sensory axons [2]. Transient receptor potential vanilloid 1 (TRPV1) is a cation-permeable ion channel found in primary sensory neurons that is necessary for the detection of thermal pain and for the development of thermal hypersensitivity to pain under inflammatory conditions [3]. Cell surface expression of TRPV1 can be enhanced by activation of PtdIns3K [4], [5], [6], making it a potential target for regulation by Type III Nrg1. We now show that Type III Nrg1 signaling in sensory neurons affects functional axonal TRPV1 in a PtdIns3K-dependent manner. Furthermore, mice heterozygous for Type III Nrg1 have specific deficits in their ability to respond to noxious thermal stimuli and to develop capsaicin-induced thermal hypersensitivity to pain. Cumulatively, these results implicate Type III Nrg1 as a novel regulator of TRPV1 and a molecular mediator of nociceptive function. PMID:21949864</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://rosap.ntl.bts.gov/view/dot/21464','DOTNTL'); return false;" href="https://rosap.ntl.bts.gov/view/dot/21464"><span>Aircraft evacuations through type-III exits I : effects of seat placement at the exit.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntlsearch.bts.gov/tris/index.do">DOT National Transportation Integrated Search</a></p> <p></p> <p>1995-07-01</p> <p>Simulated emergency egress from Type III over-wing exits was studied to support regulatory action by the FAA. Passageway width and seat encroachment distance adjacent to the Type-III exit were the major variables of interest. : Methods. Two subject g...</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/28069942','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/28069942"><span>A paradox of transcriptional and functional innate interferon responses of human intestinal enteroids to enteric virus infection.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Saxena, Kapil; Simon, Lukas M; Zeng, Xi-Lei; Blutt, Sarah E; Crawford, Sue E; Sastri, Narayan P; Karandikar, Umesh C; Ajami, Nadim J; Zachos, Nicholas C; Kovbasnjuk, Olga; Donowitz, Mark; Conner, Margaret E; Shaw, Chad A; Estes, Mary K</p> <p>2017-01-24</p> <p>The intestinal epithelium can limit enteric pathogens by producing antiviral cytokines, such as IFNs. Type I IFN (IFN-α/β) and type III IFN (IFN-λ) function at the epithelial level, and their respective efficacies depend on the specific pathogen and site of infection. However, the roles of type I and type III IFN in restricting human enteric viruses are poorly characterized as a result of the difficulties in cultivating these viruses in vitro and directly obtaining control and infected small intestinal human tissue. We infected nontransformed human intestinal enteroid cultures from multiple individuals with human rotavirus (HRV) and assessed the host epithelial response by using RNA-sequencing and functional assays. The dominant transcriptional pathway induced by HRV infection is a type III IFN-regulated response. Early after HRV infection, low levels of type III IFN protein activate IFN-stimulated genes. However, this endogenous response does not restrict HRV replication because replication-competent HRV antagonizes the type III IFN response at pre- and posttranscriptional levels. In contrast, exogenous IFN treatment restricts HRV replication, with type I IFN being more potent than type III IFN, suggesting that extraepithelial sources of type I IFN may be the critical IFN for limiting enteric virus replication in the human intestine.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=5278484','PMC'); return false;" href="https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=5278484"><span>A paradox of transcriptional and functional innate interferon responses of human intestinal enteroids to enteric virus infection</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pmc">PubMed Central</a></p> <p>Saxena, Kapil; Simon, Lukas M.; Zeng, Xi-Lei; Blutt, Sarah E.; Crawford, Sue E.; Sastri, Narayan P.; Karandikar, Umesh C.; Ajami, Nadim J.; Zachos, Nicholas C.; Kovbasnjuk, Olga; Donowitz, Mark; Conner, Margaret E.; Shaw, Chad A.; Estes, Mary K.</p> <p>2017-01-01</p> <p>The intestinal epithelium can limit enteric pathogens by producing antiviral cytokines, such as IFNs. Type I IFN (IFN-α/β) and type III IFN (IFN-λ) function at the epithelial level, and their respective efficacies depend on the specific pathogen and site of infection. However, the roles of type I and type III IFN in restricting human enteric viruses are poorly characterized as a result of the difficulties in cultivating these viruses in vitro and directly obtaining control and infected small intestinal human tissue. We infected nontransformed human intestinal enteroid cultures from multiple individuals with human rotavirus (HRV) and assessed the host epithelial response by using RNA-sequencing and functional assays. The dominant transcriptional pathway induced by HRV infection is a type III IFN-regulated response. Early after HRV infection, low levels of type III IFN protein activate IFN-stimulated genes. However, this endogenous response does not restrict HRV replication because replication-competent HRV antagonizes the type III IFN response at pre- and posttranscriptional levels. In contrast, exogenous IFN treatment restricts HRV replication, with type I IFN being more potent than type III IFN, suggesting that extraepithelial sources of type I IFN may be the critical IFN for limiting enteric virus replication in the human intestine. PMID:28069942</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/19679517','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/19679517"><span>Differential control of collagen synthesis by the sympathetic and renin-angiotensin systems in the rat left ventricle.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Dab, Houcine; Hachani, Rafik; Hodroj, Wassim; Sakly, Mohsen; Bricca, Giampiero; Kacem, Kamel</p> <p>2009-12-03</p> <p>In the present study, we tested the hypothesis of the indirect (via the sympathetic nervous system (SNS)) and direct (via AT1 receptors) contributions of Angiotensin II (Ang II) on the synthesis of collagen types I and III in the left ventricle (LV) in vivo. Sympathectomy and blockade of the Ang II receptor AT1 were performed alone or in combination in normotensive rats. The mRNA and protein synthesis of collagen types I and III were examined by Q-RT-PCR and immunoblotting in the LV. Collagen types I and III mRNA were decreased respectively by 53% and 22% after sympathectomy and only collagen type I mRNA was increased by 52% after AT1 receptor blockade. mRNA was not changed for collagen type I but was decreased by 25% for collagen type III after double treatment. Only collagen protein type III was decreased after sympathectomy by 12%, but collagen proteins were increased respectively for types I and III by 145% and 52% after AT1 receptor blockade and by 45% and 60% after double treatment. Deducted interpretations from our experimental approach suggest that Ang II stimulates indirectly (via SNS) and inhibits directly (via AT1 receptors) the collagen type I at transcriptional and protein levels. For collagen type III, it stimulates indirectly the transcription and inhibited directly the protein level. Therefore, the Ang II regulates collagen synthesis differently through indirect and direct pathways.</p> </li> </ol> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_12");'>12</a></li> <li><a href="#" onclick='return showDiv("page_13");'>13</a></li> <li class="active"><span>14</span></li> <li><a href="#" onclick='return showDiv("page_15");'>15</a></li> <li><a href="#" onclick='return showDiv("page_16");'>16</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div><!-- col-sm-12 --> </div><!-- row --> </div><!-- page_14 --> <div id="page_15" class="hiddenDiv"> <div class="row"> <div class="col-sm-12"> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_13");'>13</a></li> <li><a href="#" onclick='return showDiv("page_14");'>14</a></li> <li class="active"><span>15</span></li> <li><a href="#" onclick='return showDiv("page_16");'>16</a></li> <li><a href="#" onclick='return showDiv("page_17");'>17</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div> </div> <div class="row"> <div class="col-sm-12"> <ol class="result-class" start="281"> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/28559298','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/28559298"><span>Phylogenetic and structural comparisons of the three types of methyl-coenzyme M reductase from Methanococcales and Methanobacteriales.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Wagner, Tristan; Wegner, Carl-Eric; Kahnt, Jörg; Ermler, Ulrich; Shima, Seigo</p> <p>2017-05-30</p> <p>The phylogenetically diverse family of methanogenic archaea universally use methyl-coenzyme M reductase (MCR) for catalyzing the final methane-forming reaction step of the methanogenic energy metabolism. Some methanogens of the orders Methanobacteriales and Methanococcales contain two isoenzymes. Comprehensive phylogenetic analyses on the basis of all three subunits grouped MCRs from Methanobacteriales, Methanococcales and Methanopyrales into three distinct types: (1) MCRs from Methanobacteriales, (2) MCRs from Methanobacteriales and Methanococcales and (3) MCRs from Methanococcales. The first and second types contain MCR isoenzyme I and II from Methanothermobacter marburgensis , respectively; therefore, they were designated as MCR type I and type II and accordingly, the third one was designated as MCR type III. For comparison with the known MCR type I and type II structures, we determined the structure of MCR type III from Methanotorris formicicus and Methanothermococcus thermolithotrophicus As predicted, the three MCR types revealed highly similar overall structures and a virtually identical active site architecture reflecting the chemically challenging mechanism of methane formation. Pronounced differences were found at the protein surface with respect to loop geometries and electrostatic properties, which also involve the entrance of the active site funnel. In addition, the C-terminal end of the γ-subunit is prolonged by an extra helix after helix γ8 in MCR type II and type III, which is, however, differently arranged in the two MCR types. MCR types I, II and III share most of the post-translational modifications which appear to fine-tune the enzymatic catalysis. Interestingly, MCR type III lacks the methyl-cysteine but possesses in subunit α of M. formicicus a 6-hydroxy-tryptophan, which has been, so far, only found in the α-amanitin toxin peptide but not in proteins. IMPORTANCE Methyl-coenzyme M reductase (MCR) represents a prime target for the mitigation of methane releases. Phylogenetic analyses of MCR suggested several distinct sequence clusters; those from Methanobacteriales and Methanococcales were subdivided into three types: MCR type I from Methanobacteriales, MCR type II from Methanobacteriales and Methanococcales and the newly designated MCR type III exclusively from Methanococcales. We determined the first X-ray structures for an MCR type III. Detailed analyses only revealed substantial differences between the three types in the peripheral region. Identified subtle modifications and electrostatic profiles suggested enhanced substrate binding for MCR type III. In addition, MCR type III from Methanotorris formicicus contains 6-hydroxy-tryptophan, a new post-translational modification that was, so far, only found in the α-amanitin toxin. Copyright © 2017 American Society for Microbiology.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://ntrs.nasa.gov/search.jsp?R=19870039705&hterms=vlahos&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAuthor-Name%26N%3D0%26No%3D20%26Ntt%3Dvlahos','NASA-TRS'); return false;" href="https://ntrs.nasa.gov/search.jsp?R=19870039705&hterms=vlahos&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAuthor-Name%26N%3D0%26No%3D20%26Ntt%3Dvlahos"><span>Modeling of ion acceleration through drift and diffusion at interplanetary shocks</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Decker, R. B.; Vlahos, L.</p> <p>1986-01-01</p> <p>A test particle simulation designed to model ion acceleration through drift and diffusion at interplanetary shocks is described. The technique consists of integrating along exact particle orbits in a system where the angle between the shock normal and mean upstream magnetic field, the level of magnetic fluctuations, and the energy of injected particles can assume a range of values. The technique makes it possible to study time-dependent shock acceleration under conditions not amenable to analytical techniques. To illustrate the capability of the numerical model, proton acceleration was considered under conditions appropriate for interplanetary shocks at 1 AU, including large-amplitude transverse magnetic fluctuations derived from power spectra of both ambient and shock-associated MHD waves.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://ntrs.nasa.gov/search.jsp?R=19830059897&hterms=wave+oscillation&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D30%26Ntt%3Dwave%2Boscillation','NASA-TRS'); return false;" href="https://ntrs.nasa.gov/search.jsp?R=19830059897&hterms=wave+oscillation&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D30%26Ntt%3Dwave%2Boscillation"><span>Upstream electron oscillations and ion overshoot at an interplanetary shock wave</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Potter, D. W.; Parks, G. K.</p> <p>1983-01-01</p> <p>During the passage of a large interplanetary shock on Oct. 13, 1981, the ISEE-1 and -2 spacecraft were in the solar wind outside of the upstream region of the bow shock. The high time resolution data of the University of California particle instruments allow pinpointing the expected electron spike as occurring just before the magnetic ramp. In addition, two features that occur at this shock have not been observed before: electron oscillations associated with low frequency waves upstream of the shock and sharp 'overshoot' (about 1 sec) in the ion fluxes that occur right after the magnetic ramp. This interplanetary shock exhibits many of the same characteristics that are observed at the earth's bow shock.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2016cosp...41E1113L','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2016cosp...41E1113L"><span>Radio Emmision during the interaction of two Interplanetary Coronal Mass Ejections</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Lara, Alejandro; Niembro, Tatiana; González, Ricardo</p> <p>2016-07-01</p> <p>We show that some sporadic radio emission observed by the WIND/WAVES experiment in the decametric/kilometric bands are due to the interaction of two interplanetary Coronal Mass Ejections. We have performed hydrodynamic simulations of the evolution of two consecutive Coronal Mass ejections in the interplanetary medium. With these simulations it is possible to follow the density evolution of the merged structure, and therefore, compute the frequency limits of the possible plasma emission. We study four well documented ICME interaction events, and found radio emission at the time and frequencies predicted by the simulations. This emission may help to anticipate the complexity of the merged region before it reaches one AU.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://ntrs.nasa.gov/search.jsp?R=19820033674&hterms=monsanto&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D20%26Ntt%3Dmonsanto','NASA-TRS'); return false;" href="https://ntrs.nasa.gov/search.jsp?R=19820033674&hterms=monsanto&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D20%26Ntt%3Dmonsanto"><span>Infrared spectroscopy of interplanetary dust in the laboratory</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Fraundorf, P.; Patel, R. I.; Freeman, J. J.</p> <p>1981-01-01</p> <p>A mount containing three crushed chondritic interplanetary dust particles (IDPs) collected in the earth's stratosphere and subjected to infrared spectroscopic measurements shows features near 1000 and 500/cm, suggesting crystalline pyroxene rather than crystalline olivine, amorphous olivine, or meteoritic clay minerals. Chondritic IDP structural diversity and atmospheric heating effects must be considered when comparing this spectrum with interplanetary and cometary dust astrophysical spectra. TEM and infrared observations of one member of the rare subset of IDPs resembling hydrated carbonaceous chondrite matrix material shows a close infrared spectrum resemblance between 4000 and 400/cm to the C2 meteorite Murchison. TEM observations suggest that this class of particles may be used as an atmospheric entry heating-process thermometer.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://hdl.handle.net/2060/19760017040','NASA-TRS'); return false;" href="http://hdl.handle.net/2060/19760017040"><span>The large-scale magnetic field in the solar wind. [astronomical models of interplanetary magnetics and the solar magnetic field</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Burlaga, L. F.; Ness, N. F.</p> <p>1976-01-01</p> <p>A literature review is presented of theoretical models of the interaction of the solar wind and interplanetary magnetic fields. Observations of interplanetary magnetic fields by the IMP and OSO spacecraft are discussed. The causes for cosmic ray variations (Forbush decreases) by the solar wind are examined. The model of Parker is emphasized. This model shows the three dimensional magnetic field lines of the solar wind to have the form of spirals wrapped on cones. It is concluded that an out-of-the-ecliptic solar probe mission would allow the testing and verification of the various theoretical models examined. Diagrams of the various models are shown.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://hdl.handle.net/2060/20070014640','NASA-TRS'); return false;" href="http://hdl.handle.net/2060/20070014640"><span>Software Risk Identification for Interplanetary Probes</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Dougherty, Robert J.; Papadopoulos, Periklis E.</p> <p>2005-01-01</p> <p>The need for a systematic and effective software risk identification methodology is critical for interplanetary probes that are using increasingly complex and critical software. Several probe failures are examined that suggest more attention and resources need to be dedicated to identifying software risks. The direct causes of these failures can often be traced to systemic problems in all phases of the software engineering process. These failures have lead to the development of a practical methodology to identify risks for interplanetary probes. The proposed methodology is based upon the tailoring of the Software Engineering Institute's (SEI) method of taxonomy-based risk identification. The use of this methodology will ensure a more consistent and complete identification of software risks in these probes.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.osti.gov/biblio/6931558-variations-ionospheric-plasma-concentration-region-main-ionospheric-trough-during-magnetic-storm-december-connection-measurements-interplanetary-magnetic-field','SCIGOV-STC'); return false;" href="https://www.osti.gov/biblio/6931558-variations-ionospheric-plasma-concentration-region-main-ionospheric-trough-during-magnetic-storm-december-connection-measurements-interplanetary-magnetic-field"><span>Variations of the ionospheric plasma concentration in the region of the main ionospheric trough during the magnetic storm of December 18-19, 1978, in connection with measurements of the interplanetary magnetic field</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.osti.gov/search">DOE Office of Scientific and Technical Information (OSTI.GOV)</a></p> <p>Gdalevich, G.L.; Afonin, V.V.; Eliseev, A.Y.</p> <p>1986-07-01</p> <p>Data from the Kosmos-900 satellite are used to examine variations of the ion concentration in the region of the main ionospheric trough at altitudes of about 500 km during the storm of December 18-19, 1978. These variations of ion densities are compared with the variations of the parameters of the interplanetary medium, in particular, with the E /sub y/ = -VB /sub z/ component of the interplanetary electric field. The results of the comparison are discussed. A scheme is proposed for the formation and motion of the trough during magnetic disturbances.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://ntrs.nasa.gov/search.jsp?R=19830027585&hterms=quasi+particle&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D10%26Ntt%3Dquasi%2Bparticle','NASA-TRS'); return false;" href="https://ntrs.nasa.gov/search.jsp?R=19830027585&hterms=quasi+particle&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D10%26Ntt%3Dquasi%2Bparticle"><span>Plasma and energetic particle structure of a collisionless quasi-parallel shock</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Kennel, C. F.; Scarf, F. L.; Coroniti, F. V.; Russell, C. T.; Smith, E. J.; Wenzel, K. P.; Reinhard, R.; Sanderson, T. R.; Feldman, W. C.; Parks, G. K.</p> <p>1983-01-01</p> <p>The quasi-parallel interplanetary shock of November 11-12, 1978 from both the collisionless shock and energetic particle points of view were studied using measurements of the interplanetary magnetic and electric fields, solar wind electrons, plasma and MHD waves, and intermediate and high energy ions obtained on ISEE-1, -2, and -3. The interplanetary environment through which the shock was propagating when it encountered the three spacecraft was characterized; the observations of this shock are documented and current theories of quasi-parallel shock structure and particle acceleration are tested. These observations tend to confirm present self consistent theories of first order Fermi acceleration by shocks and of collisionless shock dissipation involving firehouse instability.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://ntrs.nasa.gov/search.jsp?R=19930055986&hterms=quasi+particle&qs=N%3D0%26Ntk%3DAll%26Ntx%3Dmode%2Bmatchall%26Ntt%3Dquasi%2Bparticle','NASA-TRS'); return false;" href="https://ntrs.nasa.gov/search.jsp?R=19930055986&hterms=quasi+particle&qs=N%3D0%26Ntk%3DAll%26Ntx%3Dmode%2Bmatchall%26Ntt%3Dquasi%2Bparticle"><span>Quasi-linear theory and transport theory. [particle acceleration in interplanetary medium</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Smith, Charles W.</p> <p>1992-01-01</p> <p>The theory of energetic particle scattering by magnetostatic fluctuations is reviewed in so far as it fails to produce the rigidity-independent mean-free-paths observed. Basic aspects of interplanetary magnetic field fluctuations are reviewed with emphasis placed on the existence of dissipation range spectra at high wavenumbers. These spectra are then incorporated into existing theories for resonant magnetostatic scattering and are shown to yield infinite mean-free-paths. Nonresonant scattering in the form of magnetic mirroring is examined and offered as a partial solution to the magnetostatic problem. In the process, mean-free-paths are obtained in good agreement with observations in the interplanetary medium at 1 AU and upstream of planetary bow shocks.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/19476839','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/19476839"><span>A unifying concept: pancreatic ductal anatomy both predicts and determines the major complications resulting from pancreatitis.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Nealon, William H; Bhutani, Manoop; Riall, Taylor S; Raju, Gottumukkala; Ozkan, Orhan; Neilan, Ryan</p> <p>2009-05-01</p> <p>Precepts about acute pancreatitis, necrotizing pancreatitis, and pancreatic fluid collections or pseudocyst rarely include the impact of pancreatic ductal injuries on their natural course and outcomes. We previously examined and established a system to categorize ductal changes. We sought a unifying concept that may predict course and direct therapies in these complex patients. We use our system categorizing ductal changes in pseudocyst of the pancreas and severe necrotizing pancreatitis (type I, normal duct; type II, duct stricture; type III, duct occlusion or "disconnected duct"; and type IV, chronic pancreatitis). From 1985 to 2006, a policy was implemented of routine imaging (cross-sectional, endoscopic retrograde cholangiopancreatography, or magnetic resonance cholangiopancreatography). Clinical outcomes were measured. Among 563 patients with pseudocyst, 142 resolved spontaneously (87% of type I, 5% of type II, and no type III, and 3% of type IV). Percutaneous drainage was successful in 83% of type I, 49% of type II, and no type III or type IV. Among 174 patients with severe acute pancreatitis percutaneous drainage was successful in 64% of type I, 38% of type II, and no type III. Operative debridement was required in 39% of type I and 83% and 85% of types II and III, respectively. Persistent fistula after debridement occurred in 27%, 54%, and 85% of types I, II, and III ducts, respectively. Late complications correlated with duct injury. Pancreatic ductal changes predict spontaneous resolution, success of nonoperative measures, and direct therapies in pseudocyst. Ductal changes also predict patients with necrotizing pancreatitis who are most likely to have immediate and delayed complications.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2013SoPh..284...77K','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2013SoPh..284...77K"><span>Propagation Characteristics of CMEs Associated with Magnetic Clouds and Ejecta</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Kim, R.-S.; Gopalswamy, N.; Cho, K.-S.; Moon, Y.-J.; Yashiro, S.</p> <p>2013-05-01</p> <p>We have investigated the characteristics of magnetic cloud (MC) and ejecta (EJ) associated coronal mass ejections (CMEs) based on the assumption that all CMEs have a flux rope structure. For this, we used 54 CMEs and their interplanetary counterparts (interplanetary CMEs: ICMEs) that constitute the list of events used by the NASA/LWS Coordinated Data Analysis Workshop (CDAW) on CME flux ropes. We considered the location, angular width, and speed as well as the direction parameter, D. The direction parameter quantifies the degree of asymmetry of the CME shape in coronagraph images, and shows how closely the CME propagation is directed to Earth. For the 54 CDAW events, we found the following properties of the CMEs: i) the average value of D for the 23 MCs (0.62) is larger than that for the 31 EJs (0.49), which indicates that the MC-associated CMEs propagate more directly toward the Earth than the EJ-associated CMEs; ii) comparison between the direction parameter and the source location shows that the majority of the MC-associated CMEs are ejected along the radial direction, while many of the EJ-associated CMEs are ejected non-radially; iii) the mean speed of MC-associated CMEs (946 km s-1) is faster than that of EJ-associated CMEs (771 km s-1). For seven very fast CMEs (≥ 1500 km s-1), all CMEs with large D (≥ 0.4) are associated with MCs and the CMEs with small D are associated with EJs. From the statistical analysis of CME parameters, we found the superiority of the direction parameter. Based on these results, we suggest that the CME trajectory essentially determines the observed ICME structure.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.osti.gov/biblio/22667229-multi-spacecraft-analysis-energetic-heavy-ion-interplanetary-shock-properties-energetic-storm-particle-events-near-au','SCIGOV-STC'); return false;" href="https://www.osti.gov/biblio/22667229-multi-spacecraft-analysis-energetic-heavy-ion-interplanetary-shock-properties-energetic-storm-particle-events-near-au"><span>MULTI-SPACECRAFT ANALYSIS OF ENERGETIC HEAVY ION AND INTERPLANETARY SHOCK PROPERTIES IN ENERGETIC STORM PARTICLE EVENTS NEAR 1 au</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.osti.gov/search">DOE Office of Scientific and Technical Information (OSTI.GOV)</a></p> <p>Ebert, R. W.; Dayeh, M. A.; Desai, M. I.</p> <p>2016-11-10</p> <p>We examine the longitude distribution of and relationship between interplanetary (IP) shock properties and ∼0.1–20 MeV nucleon{sup -1} O and Fe ions during seven multi-spacecraft energetic storm particle (ESP) events at 1 au. These ESP events were observed at two spacecraft and were primarily associated with low Mach number, quasi-perpendicular shocks. Key observations include the following: (i) the Alfvén Mach number increased from east to west of the coronal mass ejection source longitude, while the shock speed, compression ratios, and obliquity showed no clear dependence; (ii) the O and Fe time intensity profiles and peak intensities varied significantly between longitudinallymore » separated spacecraft observing the same event, the peak intensities being larger near the nose and smaller along the flank of the IP shock; (iii) the O and Fe peak intensities had weak to no correlations with the shock parameters; (iv) the Fe/O time profiles showed intra-event variations upstream of the shock that disappeared downstream of the shock, where values plateaued to those comparable to the mean Fe/O of solar cycle 23; (v) the O and Fe spectral index ranged from ∼1.0 to 3.4, the Fe spectra being softer in most events; and (vi) the observed spectral index was softer than the value predicted from the shock compression ratio in most events. We conclude that while the variations in IP shock properties may account for some variations in O and Fe properties within these multi-spacecraft events, detailed examination of the upstream seed population and IP turbulence, along with modeling, are required to fully characterize these observations.« less</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2018Ap%26SS.363..106E','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2018Ap%26SS.363..106E"><span>A study of the geomagnetic indices asymmetry based on the interplanetary magnetic field polarities</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>El-Borie, M. A.; El-Taher, A. M.; Aly, N. E.; Bishara, A. A.</p> <p>2018-05-01</p> <p>Data of geomagnetic indices ( aa, Kp, Ap, and Dst) recorded near 1 AU over the period 1967-2016, have been studied based on the asymmetry between the interplanetary magnetic field (IMF) directions above and below of the heliospheric current sheet (HCS). Our results led to the following conclusions: (i) Throughout the considered period, 31 random years (62%) showed apparent asymmetries between Toward (T) and Away (A) polarity days and 19 years (38%) exhibited nearly a symmetrical behavior. The days of A polarity predominated over the T polarity days by 4.3% during the positive magnetic polarity epoch (1991-1999). While the days of T polarity exceeded the days of A polarity by 5.8% during the negative magnetic polarity epoch (2001-2012). (ii) Considerable yearly North-South (N-S) asymmetries of geomagnetic indices observed throughout the considered period. (iii) The largest toward dominant peaks for aa and Ap indices occurred in 1995 near to minimum of solar activity. Moreover, the most substantial away dominant peaks for aa and Ap indices occurred in 2003 (during the descending phase of the solar cycle 23) and in 1991 (near the maximum of solar activity cycle) respectively. (iv) The N-S asymmetry of Kp index indicated a most significant away dominant peak occurred in 2003. (v) Four of the away dominant peaks of Dst index occurred at the maxima of solar activity in the years 1980, 1990, 2000, and 2013. The largest toward dominant peak occurred in 1991 (at the reversal of IMF polarity). (vi) The geomagnetic indices ( aa, Ap, and Kp) all have northern dominance during positive magnetic polarity epoch (1971-1979), while the asymmetries shifts to the southern solar hemisphere during negative magnetic polarity epoch (2001-2012).</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://hdl.handle.net/2060/20050051575','NASA-TRS'); return false;" href="http://hdl.handle.net/2060/20050051575"><span>Temporal Variability in the Accretion Rate of Interplanetary Dust Using (3)He as a Tracer</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Farley, K. A.</p> <p>2005-01-01</p> <p>The research supported by this grant falls under three topics: 1) Weekly Interplanetary Dust Sampling via (3)He; 2) Extraterrestrial (3)He at Major Impact Boundaries; 3) Completing a Moderately-High Resolution Record of Extraterrestrial (3)He Flux: A Major Asteroidal Break up Event at 8.2 Ma.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://hdl.handle.net/2060/19730006137','NASA-TRS'); return false;" href="http://hdl.handle.net/2060/19730006137"><span>The interplanetary pioneers. Volume 1: Summary</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Corliss, W. R.</p> <p>1972-01-01</p> <p>The Pioneer Space Probe Project is explained to document the events which occurred during the project. The subjects discussed are: (1) origin and history of interplanetary Pioneer program, (2) Pioneer system development and design, (3) Pioneer flight operations, and (4) Pioneer scientific results. Line drawings, circuit diagrams, illustrations, and photographs are included to augment the written material.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://ntrs.nasa.gov/search.jsp?R=20060029791&hterms=internet&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D50%26Ntt%3Dinternet','NASA-TRS'); return false;" href="https://ntrs.nasa.gov/search.jsp?R=20060029791&hterms=internet&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D50%26Ntt%3Dinternet"><span>Towards an interplanetary internet: a proposed strategy for standardization</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Hooke, A. J.</p> <p>2002-01-01</p> <p>This paper reviews the current set of standard data communications capabilities that exist to support advanced missions, discusses the architectural concepts for the future Interplanetary Internet, and suggests how a standardized set of space communications protocols that can grow to support future scenarios where human intelligence is widely distributed across the Solar System.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://hdl.handle.net/2060/19740021121','NASA-TRS'); return false;" href="http://hdl.handle.net/2060/19740021121"><span>Research in particles and fields. [using spacecraft and balloons</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Vogt, R. E.</p> <p>1974-01-01</p> <p>Investigations, by particle-detectors flown on spacecraft, of the astrophysical aspects of cosmic radiation and the radiation environment of the earth are reported along with the research of the interplanetary medium, and planetary magnetic fields. The cosmic ray interactions with the interplanetary and interstellar medium, and radio scintillation theory were also studied.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://hdl.handle.net/2060/19880001352','NASA-TRS'); return false;" href="http://hdl.handle.net/2060/19880001352"><span>Solar events and their influence on the interplanetary medium</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Joselyn, Joann</p> <p>1987-01-01</p> <p>Aspects of a workshop on Solar events and their influence on the interplanetary medium, held in September 1986, are reviewed, the goal of which was to foster interactions among colleagues, leading to an improved understanding of the unified relationship between solar events and interplanetary disturbances. The workshop consisted of three working groups: (1) flares, eruptives, and other near-Sun activity; (2) coronal mass ejections; and (3) interplanetary events. Each group discussed topics distributed in advance. The flares-eruptives group members agreed that pre-event energy is stored in stressed/sheared magnetic fields, but could not agree that flares and other eruptive events (e.g., eruptive solar prominences) are aspects of the same physical phenomenon. In the coronal mass ejection group, general agreement was reached on the presence of prominences in CMEs, and that they have a significant three-dimensional structure. Some topics identified for further research were the aftermath of CMEs (streamer deflections, transient coronal holes, possible disconnections), identification of the leading edge of CMEs, and studies of the range and prevalence of CME mass sizes and energies.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://hdl.handle.net/2060/19720018182','NASA-TRS'); return false;" href="http://hdl.handle.net/2060/19720018182"><span>Precipitation of low energy electrons at high latitudes: Effects of substorms, interplanetary magnetic field and dipole tilt angle</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Burch, J. L.</p> <p>1972-01-01</p> <p>Data from the auroral particles experiment on OGO-4 were used to study effects of substorm activity, interplanetary magnetic field latitutde, and dipole tilt angle on high-latitude precipitation of 700 eV electrons. It was found that: (1) The high-latitude zone of 700 eV electron precipitation in late evening and early morning hours moves equatorward by 5 to 10 deg during substorms. (2) The low-latitude boundary of polar cusp electron precipitation at 9 to 15 hours MLT also moves equatorward by several degrees during substorms and, in the absence of significant substorm activity, after a period of southward interplanetary magnetic field. (3) With times containing substorm activity or a southward interplanetary magnetic field eliminated, the low-latitude boundary of polar cusp electron precipitation is found to move by approximately 4 deg over the total yearly range of tilt angles. At maximum winter and summer conditions the invariant latitude of the boundary is shown to shift by approximately -3 deg and +1 deg respectively from its equinox location.</p> </li> </ol> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_13");'>13</a></li> <li><a href="#" onclick='return showDiv("page_14");'>14</a></li> <li class="active"><span>15</span></li> <li><a href="#" onclick='return showDiv("page_16");'>16</a></li> <li><a href="#" onclick='return showDiv("page_17");'>17</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div><!-- col-sm-12 --> </div><!-- row --> </div><!-- page_15 --> <div id="page_16" class="hiddenDiv"> <div class="row"> <div class="col-sm-12"> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_14");'>14</a></li> <li><a href="#" onclick='return showDiv("page_15");'>15</a></li> <li class="active"><span>16</span></li> <li><a href="#" onclick='return showDiv("page_17");'>17</a></li> <li><a href="#" onclick='return showDiv("page_18");'>18</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div> </div> <div class="row"> <div class="col-sm-12"> <ol class="result-class" start="301"> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://ntrs.nasa.gov/search.jsp?R=19850035908&hterms=Electric+current&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D90%26Ntt%3DElectric%2Bcurrent','NASA-TRS'); return false;" href="https://ntrs.nasa.gov/search.jsp?R=19850035908&hterms=Electric+current&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D90%26Ntt%3DElectric%2Bcurrent"><span>The interplanetary electric field, cleft currents and plasma convection in the polar caps</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Banks, P. M.; Clauer, C. R.; Araki, T.; St. Maurice, J. P.; Foster, J. C.</p> <p>1984-01-01</p> <p>The relationship between the pattern of plasma convection in the polar cleft and the dynamics of the interplanetary electric field (IEF) is examined theoretically. It is shown that owing to the geometrical properties of the magnetosphere, the East-West component of the IEF will drive field-aligned currents which connect to the ionosphere at points lying on either side of noon, while currents associated with the North-South component of the IEF will connect the two polar caps as sheet currents, also centered at 12 MLT. In order to describe the consequences of the Interplanetary Magnetic Field (IMF) effects upon high-latitude electric fields and convection patterns, a series of numerical simulations was carried out. The simulations were based on a solution to the steady-state equation of current continuity in a height-integrated ionospheric current. The simulations demonstrate that a simple hydrodynamical model can account for the narrow 'throats' of strong dayside antisunward convection observed during periods of southward interplanetary IMF drift, as well as the sunward convection observed during periods of strongly northward IMF drift.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://ntrs.nasa.gov/search.jsp?R=19930044749&hterms=collagen&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D30%26Ntt%3Dcollagen','NASA-TRS'); return false;" href="https://ntrs.nasa.gov/search.jsp?R=19930044749&hterms=collagen&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D30%26Ntt%3Dcollagen"><span>Alterations in biosynthetic accumulation of collagen types I and III during growth and morphogenesis of embryonic mouse salivary glands</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Hardman, P.; Spooner, B. S.</p> <p>1992-01-01</p> <p>We examined the biosynthetic patterns of interstitial collagens in mouse embryonic submandibular and sublingual glands cultured in vitro. Rudiments explanted on day 13 of gestation and cultured for 24, 48, and 72 h all synthesized collagen types I, III, and V. However, while the total incorporation of label into collagenous proteins did not change over the three-day culture period, the rate of accumulation of newly synthesized types I and III did change. At 24 h, the ratio of newly synthesized collagen types I:III was approximately 2, whereas at 72 h, the ratio was approximately 5. These data suggest that collagen types I and III may be important in initiation of branching in this organ, but that type I may become dominant in the later stages of development and in maintenance of the adult organ.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2009GeCoA..73.4558A','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2009GeCoA..73.4558A"><span>Oxygen isotopic composition of chondritic interplanetary dust particles: A genetic link between carbonaceous chondrites and comets</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Aléon, J.; Engrand, C.; Leshin, L. A.; McKeegan, K. D.</p> <p>2009-08-01</p> <p>Oxygen isotopes were measured in four chondritic hydrated interplanetary dust particles (IDPs) and five chondritic anhydrous IDPs including two GEMS-rich particles (Glass embedded with metal and sulfides) by a combination of high precision and high lateral resolution ion microprobe techniques. All IDPs have isotopic compositions tightly clustered around that of solar system planetary materials. Hydrated IDPs have mass-fractionated oxygen isotopic compositions similar to those of CI and CM carbonaceous chondrites, consistent with hydration of initially anhydrous protosolar dust. Anhydrous IDPs have small 16O excesses and depletions similar to those of carbonaceous chondrites, the largest 16O variations being hosted by the two GEMS-rich IDPs. Coarse-grained forsteritic olivine and enstatite in anhydrous IDPs are isotopically similar to their counterparts in comet Wild 2 and in chondrules suggesting a high temperature inner solar system origin. The small variations in the 16O content of GEMS-rich IDPs suggest that most GEMS either do not preserve a record of interstellar processes or the initial interstellar dust is not 16O-rich as expected by self-shielding models, although a larger dataset is required to verify these conclusions. Together with other chemical and mineralogical indicators, O isotopes show that the parent-bodies of carbonaceous chondrites, of chondritic IDPs, of most Antarctic micrometeorites, and comet Wild 2 belong to a single family of objects of carbonaceous chondrite chemical affinity as distinct from ordinary, enstatite, K- and R-chondrites. Comparison with astronomical observations thus suggests a chemical continuum of objects including main belt and outer solar system asteroids such as C-type, P-type and D-type asteroids, Trojans and Centaurs as well as short-period comets and other Kuiper Belt Objects.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://hdl.handle.net/2060/19720011406','NASA-TRS'); return false;" href="http://hdl.handle.net/2060/19720011406"><span>Solar bus regulator and battery charger for IMP's H, I, and J</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Paulkovich, J.</p> <p>1972-01-01</p> <p>Interplanetary Monitoring Probe (IMP) spacecrafts H, I, and J utilize a direct energy transfer (DET) type of power system operating from a solar array source. A shunt type of regulator prevents the bus voltage from exceeding a preset voltage level. The power system utilizes a single differential amplifier with dual outputs to control the battery charge/shunt regulator and the discharge regulator. A two-voltage level, current limited, series charger and a current sensor control battery state of charge of the silver-cadmium battery pack. Premature termination of the battery charge is prevented by a power available gate that also initiates charge current to the battery upon availability of excess power.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/23207867','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/23207867"><span>Oral findings in patients with mucolipidosis type III.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Cavalcante, Weber Céo; Santos, Luciano Cincurá Silva; Dos Santos, Josiane Nascimento; de Vasconcellos, Sara Juliana de Abreu; de Azevedo, Roberto Almeida; Dos Santos, Jean Nunes</p> <p>2012-01-01</p> <p>Mucolipidosis type III is a rare, autosomal recessive disorder, which is part of a group of storage diseases as a result of inborn error of lysosomal enzyme metabolism. It is characterized by the gradual onset of signs and symptoms affecting the physical and mental development as well as visual changes, heart, skeletal and joint. Although oral findings associated with mucolipidosis type II have been extensively reported, there is a shortage of information on mucolipidosis type III. This paper presents radiological and histological findings of multiple radiolucent lesions associated with impacted teeth in the jaw of a 16 year-old youngster with mucolipidosis type III.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://eric.ed.gov/?q=disorder+AND+development+AND+personality&pg=3&id=EJ1156898','ERIC'); return false;" href="https://eric.ed.gov/?q=disorder+AND+development+AND+personality&pg=3&id=EJ1156898"><span>Symptoms of Autism Spectrum Disorder (ASD) in Individuals with Mucopolysaccharide Disease Type III (Sanfilippo Syndrome): A Systematic Review</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.eric.ed.gov/ERICWebPortal/search/extended.jsp?_pageLabel=advanced">ERIC Educational Resources Information Center</a></p> <p>Wolfenden, C.; Wittkowski, A.; Hare, D. J.</p> <p>2017-01-01</p> <p>The prevalence of autism spectrum disorder (ASD) in many genetic disorders is well documented but not as yet in Mucopolysaccharidosis type III (MPS III). MPS III is a recessively inherited metabolic disorder and evidence suggests that symptoms of ASD present in MPS III. This systematic review examined the extant literature on the symptoms of ASD…</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2018CQGra..35l5003M','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2018CQGra..35l5003M"><span>Essential core of the Hawking–Ellis types</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Martín-Moruno, Prado; Visser, Matt</p> <p>2018-06-01</p> <p>The Hawking–Ellis (Segre–Plebański) classification of possible stress–energy tensors is an essential tool in analyzing the implications of the Einstein field equations in a more-or-less model-independent manner. In the current article the basic idea is to simplify the Hawking–Ellis type I, II, III, and IV classification by isolating the ‘essential core’ of the type II, type III, and type IV stress–energy tensors; this being done by subtracting (special cases of) type I to simplify the (Lorentz invariant) eigenvalue structure as much as possible without disturbing the eigenvector structure. We will denote these ‘simplified cores’ type II0, type III0, and type IV0. These ‘simplified cores’ have very nice and simple algebraic properties. Furthermore, types I and II0 have very simple classical interpretations, while type IV0 is known to arise semi-classically (in renormalized expectation values of standard stress–energy tensors). In contrast type III0 stands out in that it has neither a simple classical interpretation, nor even a simple semi-classical interpretation. We will also consider the robustness of this classification considering the stability of the different Hawking–Ellis types under perturbations. We argue that types II and III are definitively unstable, whereas types I and IV are stable.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2016MNRAS.462.1603Y','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2016MNRAS.462.1603Y"><span>Spectroscopic identification of type 2 quasars at z < 1 in SDSS-III/BOSS</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Yuan, Sihan; Strauss, Michael A.; Zakamska, Nadia L.</p> <p>2016-10-01</p> <p>The physics and demographics of type 2 quasars remain poorly understood, and new samples of such objects selected in a variety of ways can give insight into their physical properties, evolution, and relationship to their host galaxies. We present a sample of 2758 type 2 quasars at z ≲ 1 from the Sloan Digital Sky Survey-III (SDSS-III)/Baryon Oscillation Spectroscopic Survey (BOSS) spectroscopic data base, selected on the basis of their emission-line properties. We probe the luminous end of the population by requiring the rest-frame equivalent width of [O III] to be >100 Å. We distinguish our objects from star-forming galaxies and type 1 quasars using line widths, standard emission line ratio diagnostic diagrams at z < 0.52 and detection of [Ne V]λ3426 Å at z > 0.52. The majority of our objects have [O III] luminosities in the range 1.2 × 1042-3.8 × 1043 erg s-1 and redshifts between 0.4 and 0.65. Our sample includes over 400 type 2 quasars with incorrectly measured redshifts in the BOSS data base; such objects often show kinematic substructure or outflows in the [O III] line. The majority of the sample has counterparts in the Wide-field Infrared Survey Explorer survey, with median infrared luminosity νLν[12 μm] = 4.2 × 1044 erg s- 1. Only 34 per cent of the newly identified type 2 quasars would be selected by infrared colour cuts designed to identify obscured active nuclei, highlighting the difficulty of identifying complete samples of type 2 quasars. We make public the multi-Gaussian decompositions of all [O III] profiles for the new sample and for 568 type 2 quasars from SDSS I/II, together with non-parametric measures of the [O III] line profile shapes. We also identify over 600 candidate double-peaked [O III] profiles.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=5774401','PMC'); return false;" href="https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=5774401"><span>Clipping treatment of posterior communicating artery aneurysms associated with arteriosclerosis and calcification: A single center study of 136 cases</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pmc">PubMed Central</a></p> <p>Shi, Lei; Yu, Jing; Zhao, Ying; Xu, Kan; Yu, Jinlu</p> <p>2018-01-01</p> <p>It is widely acknowledged that arteriosclerosis and calcification of the parent artery and aneurysm neck make it difficult to clip posterior communicating artery (PCoA) aneurysms. A total of 136 cases of PCoA aneurysms accompanied by arteriosclerosis and calcification were collected and treated with clipping in the present study. Of the 136 patients, 112 were females (82.4%) and 24 were males (17.6%), with ages ranging from 37 to 76 years (mean age, 60.2 years). Rupture of a PCoA aneurysm was identified in 132 cases (97.1%), and there were 4 cases of unruptured PCoA aneurysms (2.9%). According to the severity of arteriosclerosis and calcification, the aneurysms were divided into type I, II or III. The treatment of type I aneurysms achieved the best curative effect. It is difficult to temporarily occlude type II and III aneurysms during surgery, and temporary occlusion failed in almost 50% of cases. Types II and III were prone to intraoperative aneurysm ruptures. A significantly higher rate of intraoperative aneurysm rupture was seen in type III compared with type II cases. Type II and III cases were more likely to be treated using a fenestrated clip for aneurysm clipping compared with type I cases, and fenestrated clips were used significantly more frequently in type III cases compared with type II cases. Arteriosclerosis and calcification were likely to affect the prognosis of patients, particularly in cases with type III arteriosclerosis and calcification of the parent artery and aneurysm neck. Therefore, the stratification of the arteriosclerosis and calcification of the parent artery and aneurysm neck into types I–III can guide the intraoperative aneurysm clipping strategy, aid in choosing the correct clips, and inform predictions of the occurrence of rupture and hemorrhage, as well as the prognosis for aneurysms. PMID:29434749</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/29434749','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/29434749"><span>Clipping treatment of posterior communicating artery aneurysms associated with arteriosclerosis and calcification: A single center study of 136 cases.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Shi, Lei; Yu, Jing; Zhao, Ying; Xu, Kan; Yu, Jinlu</p> <p>2018-02-01</p> <p>It is widely acknowledged that arteriosclerosis and calcification of the parent artery and aneurysm neck make it difficult to clip posterior communicating artery (PCoA) aneurysms. A total of 136 cases of PCoA aneurysms accompanied by arteriosclerosis and calcification were collected and treated with clipping in the present study. Of the 136 patients, 112 were females (82.4%) and 24 were males (17.6%), with ages ranging from 37 to 76 years (mean age, 60.2 years). Rupture of a PCoA aneurysm was identified in 132 cases (97.1%), and there were 4 cases of unruptured PCoA aneurysms (2.9%). According to the severity of arteriosclerosis and calcification, the aneurysms were divided into type I, II or III. The treatment of type I aneurysms achieved the best curative effect. It is difficult to temporarily occlude type II and III aneurysms during surgery, and temporary occlusion failed in almost 50% of cases. Types II and III were prone to intraoperative aneurysm ruptures. A significantly higher rate of intraoperative aneurysm rupture was seen in type III compared with type II cases. Type II and III cases were more likely to be treated using a fenestrated clip for aneurysm clipping compared with type I cases, and fenestrated clips were used significantly more frequently in type III cases compared with type II cases. Arteriosclerosis and calcification were likely to affect the prognosis of patients, particularly in cases with type III arteriosclerosis and calcification of the parent artery and aneurysm neck. Therefore, the stratification of the arteriosclerosis and calcification of the parent artery and aneurysm neck into types I-III can guide the intraoperative aneurysm clipping strategy, aid in choosing the correct clips, and inform predictions of the occurrence of rupture and hemorrhage, as well as the prognosis for aneurysms.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.osti.gov/biblio/22663351-prospective-out-ecliptic-white-light-imaging-interplanetary-corotating-interaction-regions-solar-maximum','SCIGOV-STC'); return false;" href="https://www.osti.gov/biblio/22663351-prospective-out-ecliptic-white-light-imaging-interplanetary-corotating-interaction-regions-solar-maximum"><span>Prospective Out-of-ecliptic White-light Imaging of Interplanetary Corotating Interaction Regions at Solar Maximum</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.osti.gov/search">DOE Office of Scientific and Technical Information (OSTI.GOV)</a></p> <p>Xiong, Ming; Yang, Liping; Liu, Ying D.</p> <p></p> <p>Interplanetary corotating interaction regions (CIRs) can be remotely imaged in white light (WL), as demonstrated by the Solar Mass Ejection Imager (SMEI) on board the Coriolis spacecraft and Heliospheric Imagers (HIs) on board the twin Solar TErrestrial RElations Observatory ( STEREO ) spacecraft. The interplanetary WL intensity, due to Thomson scattering of incident sunlight by free electrons, is jointly determined by the 3D distribution of electron number density and line-of-sight (LOS) weighting factors of the Thomson-scattering geometry. The 2D radiance patterns of CIRs in WL sky maps look very different from different 3D viewpoints. Because of the in-ecliptic locations ofmore » both the STEREO and Coriolis spacecraft, the longitudinal dimension of interplanetary CIRs has, up to now, always been integrated in WL imagery. To synthesize the WL radiance patterns of CIRs from an out-of-ecliptic (OOE) vantage point, we perform forward magnetohydrodynamic modeling of the 3D inner heliosphere during Carrington Rotation CR1967 at solar maximum. The mixing effects associated with viewing 3D CIRs are significantly minimized from an OOE viewpoint. Our forward modeling results demonstrate that OOE WL imaging from a latitude greater than 60° can (1) enable the garden-hose spiral morphology of CIRs to be readily resolved, (2) enable multiple coexisting CIRs to be differentiated, and (3) enable the continuous tracing of any interplanetary CIR back toward its coronal source. In particular, an OOE view in WL can reveal where nascent CIRs are formed in the extended corona and how these CIRs develop in interplanetary space. Therefore, a panoramic view from a suite of wide-field WL imagers in a solar polar orbit would be invaluable in unambiguously resolving the large-scale longitudinal structure of CIRs in the 3D inner heliosphere.« less</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/12686625','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/12686625"><span>Identification of type II and type III pyoverdine receptors from Pseudomonas aeruginosa.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>de Chial, Magaly; Ghysels, Bart; Beatson, Scott A; Geoffroy, Valérie; Meyer, Jean Marie; Pattery, Theresa; Baysse, Christine; Chablain, Patrice; Parsons, Yasmin N; Winstanley, Craig; Cordwell, Stuart J; Cornelis, Pierre</p> <p>2003-04-01</p> <p>Pseudomonas aeruginosa produces, under conditions of iron limitation, a high-affinity siderophore, pyoverdine (PVD), which is recognized at the level of the outer membrane by a specific TonB-dependent receptor, FpvA. So far, for P. aeruginosa, three different PVDs, differing in their peptide chain, have been described (types I-III), but only the FpvA receptor for type I is known. Two PVD-producing P. aeruginosa strains, one type II and one type III, were mutagenized by a mini-TnphoA3 transposon. In each case, one mutant unable to grow in the presence of the strong iron chelator ethylenediaminedihydroxyphenylacetic acid (EDDHA) and the cognate PVD was selected. The first mutant, which had an insertion in the pvdE gene, upstream of fpvA, was unable to take up type II PVD and showed resistance to pyocin S3, which is known to use type II FpvA as receptor. The second mutant was unable to take up type III PVD and had the transposon insertion in fpvA. Cosmid libraries of the respective type II and type III PVD wild-type strains were constructed and screened for clones restoring the capacity to grow in the presence of PVD. From the respective complementing genomic fragments, type II and type III fpvA sequences were determined. When in trans, type II and type III fpvA restored PVD production, uptake, growth in the presence of EDDHA and, in the case of type II fpvA, pyocin S3 sensitivity. Complementation of fpvA mutants obtained by allelic exchange was achieved by the presence of cognate fpvA in trans. All three receptors posses an N-terminal extension of about 70 amino acids, similar to FecA of Escherichia coli, but only FpvAI has a TAT export sequence at its N-terminal end.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2010SoPh..265..309M','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2010SoPh..265..309M"><span>Observations of Interplanetary Scintillation (IPS) Using the Mexican Array Radio Telescope (MEXART)</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Mejia-Ambriz, J. C.; Villanueva-Hernandez, P.; Gonzalez-Esparza, J. A.; Aguilar-Rodriguez, E.; Jeyakumar, S.</p> <p>2010-08-01</p> <p>The Mexican Array Radio Telescope (MEXART) consists of a 64×64 (4096) full-wavelength dipole antenna array, operating at 140 MHz, with a bandwidth of 2 MHz, occupying about 9660 square meters (69 m × 140 m) (<ExternalRef> <RefSource> http://www.mexart.unam.mx </RefSource> <RefTarget Address="http://www.mexart.unam.mx" TargetType="URL"/> </ExternalRef>). This is a dedicated radio array for Interplanetary Scintillation (IPS) observations located at latitude 19°48'N, longitude 101°41'W. We characterize the performance of the system. We report the first IPS observations with the instrument, employing a Butler Matrix (BM) of 16×16 ports, fed by 16 east - west lines of 64 dipoles (1/4 of the total array). The BM displays a radiation pattern of 16 beams at different declinations (from -48, to +88 degrees). We present a list of 19 strong IPS radio sources (having at least 3 σ in power gain) detected by the instrument. We report the power spectral analysis procedure of the intensity fluctuations. The operation of MEXART will allow us a better coverage of solar wind disturbances, complementing the data provided by the other, previously built, instruments.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://hdl.handle.net/2060/19860022025','NASA-TRS'); return false;" href="http://hdl.handle.net/2060/19860022025"><span>Forbush decreases geomagnetic and atmospheric effects cosmogenic nuclides</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Flueckiger, E. O.</p> <p>1986-01-01</p> <p>An overview and synthesis is given of recent developments that have occurred in the areas of Forbush decreases, geomagnetic and atmospheric effects, and cosmogenic nuclides. Experimental evidence has been found for substantial differences in the effects of the various types of interplanetary perturbations on cosmic rays, and for a dependence of these effects on the three-dimensional configuration of the interplanetary medium. In order to fully understand and to be able to simulate the solar cosmic ray particle access to the polar regions of the earth we need accurate models of the magnetospheric magnetic field. These models must include all major magnetospheric current systems (in particular the field aligned currents), and they should represent magnetically quiet time periods as well as different levels of geomagnetic activity. In the evolution of magnetospheric magnetic field models, cosmic ray and magnetospheric physicists should work closely together since cosmic ray measurements are a powerful additional tool in the study of the perturbed magnetosphere. In the field of cosmogenic nuclides, finally, exciting new results and developments follow in rapid succession. Thanks to new techniques and new isotopes the analysis of cosmic ray history has entered into a new dimension.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://hdl.handle.net/2060/19810004452','NASA-TRS'); return false;" href="http://hdl.handle.net/2060/19810004452"><span>Magnetic field directional discontinuities. 2: Characteristics between 0.46 and 1.0 AU. [interplanetary magnetic fields</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Lepping, R. P.; Benhannon, K. W.</p> <p>1980-01-01</p> <p>The characteristics of directional discontinuities (DD's) in the interplanetary magnetic field are studied using data from the Mariner 10 primary mission between 1.0 and 0.46 AU. Statistical and visual survey methods for DD identification resulted in a total of 644 events. Two methods were used to estimate the ratio of the number of tangential discontinuities (TD's) to the number of rotational discontinuities (RD's). Both methods show that the ratio of TD's to RD's varied with time and decreased with decreasing radial distance. A decrease in average discontinuity thickness of approx. 40 percent was found between 1.0 and 0.72 AU and approx. 54 percent between 1.0 and 0.46 AU, independent of type (TD or RD). This decrease in thickness for decreasing r is in qualitative agreement with Pioneer 10 observations between 1 and 5 AU. When the individual DD thickness are normalized with respect to the estimated local proton gyroradius (RA sub L), the average thickness at the three locations is nearly constant, 43 + or - 6 R sub L. This also holds true for both RD's and TD's separately. Statistical distributions of other properties, such as normal components and discontinuity plane angles, are presented.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017AGUFMSH51A2480G','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017AGUFMSH51A2480G"><span>STEREO observations of insitu waves in the vicinity of interplanetary shocks</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Golla, T.; MacDowall, R. J.</p> <p>2017-12-01</p> <p>We present the high time resolution observations of the in situ waves obtained by the time domain sampler (TDS) of the WAVES experiment on the STEREO spacecraft in the vicinity of typical quasi-perpendicular super-critical interplanetary shocks. We show that often Langmuir waves occur as coherent one dimensional magnetic field aligned wave packets in the upstream regions and persist over large distances. The characteristics of these wave packets are consistent with those of Langmuir solitons formed as a result of oscillatting two stream instability (OTSI). Very intense high frequency waves which are completely different from Langmuir waves occur in the transition regions. These waves occur as very incoherent emissions and exhibit broad fundamental and second harmonic spectral peaks. We identify these waves as electron acoustic waves excited by the electron beams in the transition regions. We also show that very intense low frequency ion sound waves occur in the downstream regions. We discuss the implications of these observations on the theories of (1) strong Langmuir turbulence, (2) beam stabilization, (3) emission mechanisms of solar type II radio bursts, (4) wave-particle interactions responsible for collisionless dissipation, and (5) heating of the downstream plasmas.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2013AGUFMSM11D..01M','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2013AGUFMSM11D..01M"><span>Global ionospheric dynamics and electrodynamics during geomagnetic storms (Invited)</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Mannucci, A. J.; Tsurutani, B.; Verkhoglyadova, O. P.; Komjathy, A.; Butala, M. D.</p> <p>2013-12-01</p> <p>Globally distributed total electron content (TEC) data has become an important tool for exploring the consequences of storm-time electrodynamics. Magnetosphere-ionosphere coupling during the main phase is responsible for the largest ionospheric effects observed during geomagnetic storms, mediated by global scale electrodynamics. Recent research using case studies reveals a complex picture of M-I coupling and its relationship to interplanetary drivers such as the solar wind electric field. Periods of direct coupling exist where the solar wind electric field is strongly correlated with prompt penetration electric fields, observed as enhanced vertical plasma drifts or an enhanced electrojet in the daytime equatorial ionosphere. Periods of decoupling between low latitude electric fields and the solar wind electric field are also observed, but the factors distinguishing these two types of response have not been clearly identified. Recent studies during superstorms suggest a role for the transverse (y-component) of the interplanetary magnetic field, which affects magnetospheric current systems and therefore may affect M-I coupling, with significant ionospheric consequences. Observations of the global ionospheric response to a range of geomagnetic storm intensities are presented. Scientific understanding of the different factors that affect electrodynamic aspects of M-I coupling are discussed.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://hdl.handle.net/2060/19750016564','NASA-TRS'); return false;" href="http://hdl.handle.net/2060/19750016564"><span>A New Look at Jupiter: Results at the Now Frontier. [Pioneer 10, interplanetary space, and Jupiter atmosphere</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p></p> <p>1975-01-01</p> <p>Pioneer 10's encounter with Jupiter is discussed along with the interplanetary space beyond the orbit of Mars. Other topics discussed include the size of Jupiter, the Galilean satellites, the magnetic field of Jupiter, radiation belts, Jupiter's weather and interior, and future exploration possibilities. Educational projects are also included.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://ntrs.nasa.gov/search.jsp?R=19800028904&hterms=1075&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D50%26Ntt%3D%2526%25231075','NASA-TRS'); return false;" href="https://ntrs.nasa.gov/search.jsp?R=19800028904&hterms=1075&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D50%26Ntt%3D%2526%25231075"><span>Interplanetary dust - Trace element analysis of individual particles by neutron activation</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Ganapathy, R.; Brownlee, D. E.</p> <p>1979-01-01</p> <p>Although micrometeorites of cometary origin are thought to be the dominant component of interplanetary dust, it has never been possible to positively identify such micrometer-sized particles. Two such particles have been identified as definitely micrometeorites since their abundances of volatile and nonvolatile trace elements closely match those of primitive solar system material.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2009ARep...53...30T','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2009ARep...53...30T"><span>Study of compact radio sources using interplanetary scintillations at 111 MHz. The Pearson-Readhead sample</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Tyul'Bashev, S. A.</p> <p>2009-01-01</p> <p>A complete sample of radio sources has been studied using the interplanetary scintillation method. In total, 32 sources were observed, with scintillations detected in 12 of them. The remaining sources have upper limits for the flux densities of their compact components. Integrated flux densities are estimated for 18 sources.</p> </li> </ol> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_14");'>14</a></li> <li><a href="#" onclick='return showDiv("page_15");'>15</a></li> <li class="active"><span>16</span></li> <li><a href="#" onclick='return showDiv("page_17");'>17</a></li> <li><a href="#" onclick='return showDiv("page_18");'>18</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div><!-- col-sm-12 --> </div><!-- row --> </div><!-- page_16 --> <div id="page_17" class="hiddenDiv"> <div class="row"> <div class="col-sm-12"> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_15");'>15</a></li> <li><a href="#" onclick='return showDiv("page_16");'>16</a></li> <li class="active"><span>17</span></li> <li><a href="#" onclick='return showDiv("page_18");'>18</a></li> <li><a href="#" onclick='return showDiv("page_19");'>19</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div> </div> <div class="row"> <div class="col-sm-12"> <ol class="result-class" start="321"> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://hdl.handle.net/2060/19800012928','NASA-TRS'); return false;" href="http://hdl.handle.net/2060/19800012928"><span>Interplanetary monitoring platform engineering history and achievements</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Butler, P. M.</p> <p>1980-01-01</p> <p>In the fall of 1979, last of ten Interplanetary Monitoring Platform Satellite (IMP) missions ended a ten year series of flights dedicated to obtaining new knowledge of the radiation effects in outer space and of solar phenomena during a period of maximum solar flare activity. The technological achievements and scientific accomplishments from the IMP program are described.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://hdl.handle.net/2060/19770016723','NASA-TRS'); return false;" href="http://hdl.handle.net/2060/19770016723"><span>On the causes of geomagnetic activity</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Svalgaard, L.</p> <p>1975-01-01</p> <p>The causes of geomagnetic activity are studied both theoretically in terms of the reconnection model and empirically using the am-index and interplanetary solar wind parameters. It is found that two separate mechanisms supply energy to the magnetosphere. One mechanism depends critically on the magnitude and direction of the interplanetary magnetic field. Both depend strongly on solar wind speed.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://hdl.handle.net/2060/19850026500','NASA-TRS'); return false;" href="http://hdl.handle.net/2060/19850026500"><span>Low energy proton bidirectional anisotropies and their relation to transient interplanetary magnetic structures: ISEE-3 observations</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Marsden, R. G.; Sanderson, T. R.; Wenzel, K. P.; Smith, E. J.</p> <p>1985-01-01</p> <p>It is known that the interplanetary medium in the period approaching solar maximum is characterized by an enhancement in the occurrence of transient solar wind streams and shocks and that such systems are often associated with looplike magnetic structures or clouds. There is observational evidence that bidirectional, field aligned flows of low energy particles could be a signature of such looplike structures, although detailed models for the magnetic field configuration and injection mechanisms do not exist at the current time. Preliminary results of a survey of low energy proton bidirectional anisotropies measured on ISEE-3 in the interplanetary medium between August 1978 and May 1982, together with magnetic field data from the same spacecraft are presented.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://ntrs.nasa.gov/search.jsp?R=19750038083&hterms=Streaming+Media&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D40%26Ntt%3DStreaming%2BMedia','NASA-TRS'); return false;" href="https://ntrs.nasa.gov/search.jsp?R=19750038083&hterms=Streaming+Media&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D40%26Ntt%3DStreaming%2BMedia"><span>Cosmic-ray streaming and anisotropies</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Forman, M. A.; Gleeson, L. J.</p> <p>1975-01-01</p> <p>The paper is concerned with the differential current densities and anisotropies that exist in the interplanetary cosmic-ray gas, and in particular with a correct formulation and simple interpretation of the momentum equation that describes these on a local basis. Two examples of the use of this equation in the interpretation of previous data are given. It is demonstrated that in interplanetary space, the electric-field drifts and convective flow parallel to the magnetic field of cosmic-ray particles combine as a simple convective flow with the solar wind, and that there exist diffusive currents and transverse gradient drift currents. Thus direct reference to the interplanetary electric-field drifts is eliminated, and the study of steady-state and transient cosmic-ray anisotropies is both more systematic and simpler.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://ntrs.nasa.gov/search.jsp?R=19890056998&hterms=tins&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D90%26Ntt%3Dtins','NASA-TRS'); return false;" href="https://ntrs.nasa.gov/search.jsp?R=19890056998&hterms=tins&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D90%26Ntt%3Dtins"><span>Tin in a chondritic interplanetary dust particle</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Rietmeijer, Frans J. M.</p> <p>1989-01-01</p> <p>Submicron platey Sn-rich grains are present in chondritic porous interplanetary dust particle (IDP) W7029 A and it is the second occurrence of a tin mineral in a stratospheric micrometeorite. Selected Area Electron Diffraction data for the Sn-rich grains match with Sn2O3 and Sn3O4. The oxide(s) may have formed in the solar nebula when tin metal catalytically supported reduction of CO or during flash heating on atmospheric entry of the IDP. The presence of tin is consistent with enrichments for other volatile trace elements in chondritic IDPs and may signal an emerging trend toward nonchondritic volatile element abundances in chondritic IDPs. The observation confirms small-scale mineralogical heterogeneity in fine-grained chondritic porous interplanetary dust.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://hdl.handle.net/2060/19780012091','NASA-TRS'); return false;" href="http://hdl.handle.net/2060/19780012091"><span>On the origin of extraterrestrial stratospheric particles: Interplanetary dust or meteor ablation debris?. M.S. Thesis</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Kyte, F. T.</p> <p>1977-01-01</p> <p>Meteor ablation debris was distinguished from unablated interplanetary dust in a collection of extraterrestrial particles collected in the stratosphere using NASA U-2 aircraft. A 62 g sample of the Murchison (C2) meteorite was artificially ablated to characterize ablation debris for comparison with the stratospheric particles. By using proper experimental conditions, artificial ablation debris can be produced that is similar to natural ablation debris. Analyses of natural fusion crusts, artificial fusion crust, and artificial ablation debris of the Murchison meteorite produced criteria for recognizing debris ablated by a primitive meteoroid. Ninety-five percent of the stratospheric particles can be described as either ablation debris from a primitive meteoroid, or as very primitive interplanetary dust.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.osti.gov/pages/biblio/1326077-modeling-solar-wind-boundary-conditions-from-interplanetary-scintillations','SCIGOV-DOEP'); return false;" href="https://www.osti.gov/pages/biblio/1326077-modeling-solar-wind-boundary-conditions-from-interplanetary-scintillations"><span>Modeling solar wind with boundary conditions from interplanetary scintillations</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.osti.gov/pages">DOE PAGES</a></p> <p>Manoharan, P.; Kim, T.; Pogorelov, N. V.; ...</p> <p>2015-09-30</p> <p>Interplanetary scintillations make it possible to create three-dimensional, time- dependent distributions of the solar wind velocity. Combined with the magnetic field observations in the solar photosphere, they help perform solar wind simulations in a genuinely time-dependent way. Interplanetary scintillation measurements from the Ooty Radio Astronomical Observatory in India provide directions to multiple stars and may assure better resolution of transient processes in the solar wind. In this paper, we present velocity distributions derived from Ooty observations and compare them with those obtained with the Wang-Sheeley-Arge (WSA) model. We also present our simulations of the solar wind flow from 0.1 AUmore » to 1 AU with the boundary conditions based on both Ooty and WSA data.« less</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2009SoPh..256..475S','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2009SoPh..256..475S"><span>STEREO SECCHI and S/WAVES Observations of Spacecraft Debris Caused by Micron-Size Interplanetary Dust Impacts</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>St. Cyr, O. C.; Kaiser, M. L.; Meyer-Vernet, N.; Howard, R. A.; Harrison, R. A.; Bale, S. D.; Thompson, W. T.; Goetz, K.; Maksimovic, M.; Bougeret, J.-L.; Wang, D.; Crothers, S.</p> <p>2009-05-01</p> <p>Early in the STEREO mission observers noted that the white-light instruments of the SECCHI suite were detecting significantly more spacecraft-related “debris” than any previously flown coronagraphic instruments. Comparison of SECCHI “debris storms” with S/WAVES indicates that almost all are coincident with the most intense transient emissions observed by the radio and plasma waves instrument. We believe the debris is endogenous ( i.e., from the spacecraft thermal blanketing), and the storms appear to be caused by impacts of large interplanetary dust grains that are detected by S/WAVES. Here we report the observations, compare them to interplanetary dust distributions, and document a reminder for future spacebased coronagraphic instrument builders.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://hdl.handle.net/2060/19860012006','NASA-TRS'); return false;" href="http://hdl.handle.net/2060/19860012006"><span>Study of Travelling Interplanetary Phenomena (STIP) workshop travel</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Wu, S. T.</p> <p>1986-01-01</p> <p>Thirty six abstracts are provided from the SCOSTEP/STIP Symposium on Retrospective Analyses and Future Coordinated Intervals held in Switzerland on June 10 to 12, 1985. Six American scientists participated in the symposium and their abstracts are also included. The titles of their papers are: (1) An analysis of near surface and coronal activity during STIP interval 12, by T. E. Gergely; (2) Helios images of STIP intervals 6, B. V. Jackson; (3) Results from the analysis of solar and interplanetary observations during STIP interval 7, S. R. Kane; (4) STIP interval 19, E. Cliver; (5) Hydrodynamic buoyancy force in the solar atmosphere, T. Yeh; and (6) A combined MHD modes for the energy and momentum transport from solar surface to interplanetary space, S. T. Wu.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://hdl.handle.net/2060/20150018049','NASA-TRS'); return false;" href="http://hdl.handle.net/2060/20150018049"><span>A Free-Return Earth-Moon Cycler Orbit for an Interplanetary Cruise Ship</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Genova, Anthony L.; Aldrin, Buzz</p> <p>2015-01-01</p> <p>A periodic circumlunar orbit is presented that can be used by an interplanetary cruise ship for regular travel between Earth and the Moon. This Earth-Moon cycler orbit was revealed by introducing solar gravity and modest phasing maneuvers (average of 39 m/s per month) which yields close-Earth encounters every 7 or 10 days. Lunar encounters occur every 26 days and offer the chance for a smaller craft to depart the cycler and enter lunar orbit, or head for a Lagrange point (e.g., EM-L2 halo orbit), distant retrograde orbit (DRO), or interplanetary destination such as a near-Earth object (NEO) or Mars. Additionally, return-to-Earth abort options are available from many points along the cycling trajectory.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://ntrs.nasa.gov/search.jsp?R=19740044934&hterms=Open+Field&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D30%26Ntt%3DOpen%2BField','NASA-TRS'); return false;" href="https://ntrs.nasa.gov/search.jsp?R=19740044934&hterms=Open+Field&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D30%26Ntt%3DOpen%2BField"><span>A model of the open magnetosphere. [with field configuration based on Chapman-Ferraro theory</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Kan, J. R.; Akasofu, S.-I.</p> <p>1974-01-01</p> <p>The Chapman-Ferraro image method is extended to construct an idealized model of the open magnetosphere that responds to a change of the interplanetary field direction as well as to a change of the field magnitude or of the solar wind momentum flux. The magnetopause of the present model is an infinite plane surface having a normal field component distribution that is consistent with the merging theory. An upper limit on the inward displacement of the magnetopause following a southward turning of the interplanetary field is obtained. The results are in fair agreement with a single event reported by Aubry et al. (1971). The model determines the field configuration and the total magnetic flux connecting the magnetosphere to interplanetary space.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://ntrs.nasa.gov/search.jsp?R=19960021340&hterms=solar+two&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D30%26Ntt%3Dsolar%2Btwo','NASA-TRS'); return false;" href="https://ntrs.nasa.gov/search.jsp?R=19960021340&hterms=solar+two&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D30%26Ntt%3Dsolar%2Btwo"><span>The solar origins of two high-latitude interplanetary disturbances</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Hudson, H. S.; Acton, L. W.; Alexander, D.; Harvey, K. L.; Kurokawa, H.; Kahler, S.; Lemen, J. R.</p> <p>1995-01-01</p> <p>Two extremely similar interplanetary forward/reverse shock events, with bidirectional electron streaming were detected by Ulysses in 1994. Ground-based and Yohkoh/SXT observations show two strikingly different solar events that could be associated with them: an LDE flare on 20 Feb. 1994, and a extremely large-scale eruptive event on 14 April 1994. Both events resulted in geomagnetic storms and presumably were associated with coronal mass ejections. The sharply contrasting nature of these solar events argues against an energetic causal relationship between them and the bidirectional streaming events observed by Ulysses during its S polar passage. We suggest instead that for each pair of events. a common solar trigger may have caused independent instabilities leading to the solar and interplanetary phenomena.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/27717540','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/27717540"><span>Notch sensitivity jeopardizes titanium locking plate fatigue strength.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Tseng, Wo-Jan; Chao, Ching-Kong; Wang, Chun-Chin; Lin, Jinn</p> <p>2016-12-01</p> <p>Notch sensitivity may compromise titanium-alloy plate fatigue strength. However, no studies providing head-to-head comparisons of stainless-steel or titanium-alloy locking plates exist. Custom-designed identically structured locking plates were made from stainless steel (F138 and F1314) or titanium alloy. Three screw-hole designs were compared: threaded screw-holes with angle edges (type I); threaded screw-holes with chamfered edges (type II); and non-threaded screw-holes with chamfered edges (type III). The plates' bending stiffness, bending strength, and fatigue life, were investigated. The stress concentration at the screw threads was assessed using finite element analyses (FEA). The titanium plates had higher bending strength than the F1314 and F138 plates (2.95:1.56:1) in static loading tests. For all metals, the type-III plate fatigue life was highest, followed by type-II and type-I. The type-III titanium plates had longer fatigue lives than their F138 counterparts, but the type-I and type-II titanium plates had significantly shorter fatigue lives. All F1314 plate types had longer fatigue lives than the type-III titanium plates. The FEA showed minimal stress difference (0.4%) between types II and III, but the stress for types II and III was lower (11.9% and 12.4%) than that for type I. The screw threads did not cause stress concentration in the locking plates in FEA, but may have jeopardized the fatigue strength, especially in the notch-sensitive titanium plates. Improvement to the locking plate design is necessary. Copyright © 2016 Elsevier Ltd. All rights reserved.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://www.ars.usda.gov/research/publications/publication/?seqNo115=263032','TEKTRAN'); return false;" href="http://www.ars.usda.gov/research/publications/publication/?seqNo115=263032"><span>Antiviral activity of bovine type III interferon against foot-and-mouth disease virus</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ars.usda.gov/research/publications/find-a-publication/">USDA-ARS?s Scientific Manuscript database</a></p> <p></p> <p></p> <p>Interferons (IFN) are the first line of defense against viral infections. Recently a new family of IFNs, type III, has been identified in humans, mice, swine and chickens. Here we report the identification and characterization of a member of the bovine type III IFN family, boIFN-lambda3, also known...</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/2327863','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/2327863"><span>[Sublethal microcephalic chondrodysplasia. Taybi-Linder syndrome, primordial microcephalic nanism types I and III].</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Maroteaux, P; Badoual, J</p> <p>1990-02-01</p> <p>The authors describe a case of microcephalic dwarfism observed in a newborn until 10 months of age and discuss the diagnostic challenge. They show that the Taybi-Linder syndrome and the primordial dwarfism type I and type III of Majewski are an identical recessive autosomal entity. The radiological evolution explains the initial separation of type I and type III. Because of the skeletal lesions, lacking in the Seckel syndrome, the name of sublethal microcephalic chondrodysplasia is proposed for this disease.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2018NewA...60...22C','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2018NewA...60...22C"><span>Solar flares associated coronal mass ejection accompanied with DH type II radio burst in relation with interplanetary magnetic field, geomagnetic storms and cosmic ray intensity</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Chandra, Harish; Bhatt, Beena</p> <p>2018-04-01</p> <p>In this paper, we have selected 114 flare-CME events accompanied with Deca-hectometric (DH) type II radio burst chosen from 1996 to 2008 (i.e., solar cycle 23). Statistical analyses are performed to examine the relationship of flare-CME events accompanied with DH type II radio burst with Interplanetary Magnetic field (IMF), Geomagnetic storms (GSs) and Cosmic Ray Intensity (CRI). The collected sample events are divided into two groups. In the first group, we considered 43 events which lie under the CME span and the second group consists of 71 events which are outside the CME span. Our analysis indicates that flare-CME accompanied with DH type II radio burst is inconsistent with CSHKP flare-CME model. We apply the Chree analysis by the superposed epoch method to both set of data to find the geo-effectiveness. We observed different fluctuations in IMF for arising and decay phase of solar cycle in both the cases. Maximum decrease in Dst during arising and decay phase of solar cycle is different for both the cases. It is noted that when flare lie outside the CME span CRI shows comparatively more variation than the flare lie under the CME span. Furthermore, we found that flare lying under the CME span is more geo effective than the flare outside of CME span. We noticed that the time leg between IMF Peak value and GSs, IMF and CRI is on average one day for both the cases. Also, the time leg between CRI and GSs is on average 0 to 1 day for both the cases. In case flare lie under the CME span we observed high correlation (0.64) between CRI and Dst whereas when flare lie outside the CME span a weak correlation (0.47) exists. Thus, flare position with respect to CME span play a key role for geo-effectiveness of CME.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/29895024','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/29895024"><span>Prognostic Evaluations Tailored to Specific Gastric Neuroendocrine Neoplasms: Analysis Of 200 Cases with Extended Follow-Up.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Vanoli, Alessandro; La Rosa, Stefano; Miceli, Emanuela; Klersy, Catherine; Maragliano, Roberta; Capuano, Francesca; Persichella, Andrea; Martino, Michele; Inzani, Frediano; Luinetti, Ombretta; Di Sabatino, Antonio; Sessa, Fausto; Paulli, Marco; Corazza, Gino Roberto; Rindi, Guido; Bordi, Cesare; Capella, Carlo; Solcia, Enrico</p> <p>2018-06-12</p> <p>Gastric neuroendocrine neoplasms (NENs) are very heterogeneous, ranging from mostly indolent, atrophic gastritis-associated, type I neuroendocrine tumors (NETs), through highly malignant, poorly differentiated neuroendocrine carcinomas (pdNECs), to sporadic type III NETs with intermediate prognosis, and various rare tumor types. Histologic differentiation, proliferative grade, size, level of gastric wall invasion, and local or distant metastases are used as prognostic markers. However, their value remains to be tailored to specific gastric NENs. Series of type I NETs (n = 123 cases), type III NETs (n = 34 cases), and pdNECs (n = 43 cases) were retrospectively collected from four pathology centers specializing in endocrine pathology. All cases were characterized clinically and histopathologically. During follow-up (median 93 months) data were recorded to assess disease-specific patient survival. Type I NETs, type III NETs, and pdNECs differed markedly in terms of tumor size, grade, invasive and metastatic power, as well as patient outcome. Size was used to stratify type I NETs into subgroups with significantly different invasive and metastatic behavior. All 70 type I NETs < 0.5 cm (micro-NETs) were uneventful. Ki67-based grading proved efficient for the prognostic stratification of type III NETs; however, grade 2 (G2) was not associated with tumor behavior in type I NETs. Although G3 NETs (2 type I and 9 type III) had a very poor prognosis, it was found that patient survival was longer with type III G3 NETs compared to pdNECs. Given the marked, tumor type-related behavior differences, evaluation of gastric NEN prognostic parameters should be tailored to the type of neoplastic disease. © 2018 S. Karger AG, Basel.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://ntrs.nasa.gov/search.jsp?R=19820028334&hterms=1094&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D50%26Ntt%3D%2526%25231094','NASA-TRS'); return false;" href="https://ntrs.nasa.gov/search.jsp?R=19820028334&hterms=1094&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D50%26Ntt%3D%2526%25231094"><span>The stimulation of auroral kilometric radiation by type III solar radio bursts</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Calvert, W.</p> <p>1981-01-01</p> <p>It has been found that the onset of auroral kilometric radiation (AKR) frequently coincides with the arrival of type III solar radio bursts. Although the AKR onsets are usually abrupt and appear to be spontaneous, they sometimes develop from a discrete frequency near the leading edge of a type III burst or sometimes occur at progressively lower frequencies following that edge. From this, and the absence of the related solar electrons in specific cases, it was concluded that the incoming type III waves were sometimes responsible for stimulating auroral kilometric radiation. It was estimated that intense, isolated type III bursts were capable of stimulating AKR roughly one third of the time, and that at least ten percent of the observed AKR onsets could be attributed to these and weaker bursts, including some barely detectable by the ISEE plasma wave receivers.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://ntrs.nasa.gov/search.jsp?R=19880058302&hterms=XRP&qs=N%3D0%26Ntk%3DAll%26Ntx%3Dmode%2Bmatchall%26Ntt%3DXRP','NASA-TRS'); return false;" href="https://ntrs.nasa.gov/search.jsp?R=19880058302&hterms=XRP&qs=N%3D0%26Ntk%3DAll%26Ntx%3Dmode%2Bmatchall%26Ntt%3DXRP"><span>A study of solar preflare activity using two-dimensional radio and SMM-XRP observations</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Kundu, M. R.; Gopalswamy, N.; Saba, J. L. R.; Schmelz, J. T. S.; Strong, K. T.</p> <p>1987-01-01</p> <p>A study of type III activity at meter-decameter wavelengths in the preflare phase of the February 3, 1986 flare is presented, using data obtained with the Clark Lake Multifrequency Radioheliograph. This activity is compared with similar type III burst activity during the impulsive phase, and it is found that there is a displacement of burst sources between the onset and end times of the activity. A comparison of this displacement at three frequencies suggests that the type III emitting electrons gain access progressively to diverging and different field lines relative to the initial field lines. The energetics of the type III emitting electrons are inferred from observations and compared with those of the associated hard X-ray emitting electrons. The soft X-ray data from SMM-XRP show enhanced emission measure, density, and temperature in the region associated with the preflare type III activity.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/1987SoPh..114..273K','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/1987SoPh..114..273K"><span>A study of solar preflare activity using two-dimensional radio and SMM-XRP observations</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Kundu, M. R.; Gopalswamy, N.; Saba, J. L. R.; Schmelz, J. T. S.; Strong, K. T.</p> <p>1987-09-01</p> <p>The authors present a study of type III activity at meter-decameter wavelengths in the preflare phase of the 1986 February 3 flare using data obtained with the Clark Lake Multifrequency Radioheliograph. They compare this activity with similar type III burst activity during the impulsive phase and find that there is a displacement of burst sources between the onset and end times of the activity. A comparison of this displacement at three frequencies suggests that the type III emitting electrons gain access progressively to diverging and different field lines relative to the initial field lines. The energetics of the type III emitting electrons are inferred from observations and compared with those of the associated hard X-ray emitting electrons. The soft X-ray data from SMM-XRP shows enhanced emission measure, density and temperature in the region associated with the preflare type III activity.</p> </li> </ol> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_15");'>15</a></li> <li><a href="#" onclick='return showDiv("page_16");'>16</a></li> <li class="active"><span>17</span></li> <li><a href="#" onclick='return showDiv("page_18");'>18</a></li> <li><a href="#" onclick='return showDiv("page_19");'>19</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div><!-- col-sm-12 --> </div><!-- row --> </div><!-- page_17 --> <div id="page_18" class="hiddenDiv"> <div class="row"> <div class="col-sm-12"> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_16");'>16</a></li> <li><a href="#" onclick='return showDiv("page_17");'>17</a></li> <li class="active"><span>18</span></li> <li><a href="#" onclick='return showDiv("page_19");'>19</a></li> <li><a href="#" onclick='return showDiv("page_20");'>20</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div> </div> <div class="row"> <div class="col-sm-12"> <ol class="result-class" start="341"> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://ntrs.nasa.gov/search.jsp?R=19970007872&hterms=Hayashi&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D80%26Ntt%3DHayashi','NASA-TRS'); return false;" href="https://ntrs.nasa.gov/search.jsp?R=19970007872&hterms=Hayashi&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D80%26Ntt%3DHayashi"><span>Raman Spectrum of Quenched Carbonaceous Composites</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Wada, S.; Hayashi, S.; Miyaoka, H.; Tokunaga, A. T.</p> <p>1996-01-01</p> <p>Quenched Carbonaceous Composites (QCC's) are products from the ejecta of a hydrocarbon plasma. Two types of QCC, dark QCC and thermally-altered (heated) filmy QCC, have been shown to have a 220 nm absorption feature similar to that seen in the interstellar extinction curve. We present here Raman spectra of the QCCs and compare them with various carbonaceous materials to better understand the structure QCC. We find that structure of QCC is different from that of graphite and more similar to carbonaceous material found in some interplanetary dust particles and chondritic meteorites.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://hdl.handle.net/2060/19870008294','NASA-TRS'); return false;" href="http://hdl.handle.net/2060/19870008294"><span>Libration-point staging concepts for Earth-Mars transportation</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Farquhar, Robert; Dunham, David</p> <p>1986-01-01</p> <p>The use of libration points as transfer nodes for an Earth-Mars transportation system is briefly described. It is assumed that a reusable Interplanetary Shuttle Vehicle (ISV) operates between the libration point and Mars orbit. Propellant for the round-trip journey to Mars and other supplies would be carried from low Earth orbit (LEO) to the ISV by additional shuttle vehicles. Different types of trajectories between LEO and libration points are presented, and approximate delta-V estimates for these transfers are given. The possible use of lunar gravity-assist maneuvers is also discussed.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2018JGRA..123.1393N','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2018JGRA..123.1393N"><span>Reply to Comments by Tsurutani et al. on "Modeling Extreme `Carrington-Type' Space Weather Events Using Three-Dimensional Global MHD Simulations"</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Ngwira, Chigomezyo M.; Pulkkinen, Antti; Kuznetsova, Maria M.; Glocer, Alex</p> <p>2018-02-01</p> <p>In this response, we address the three main comments by Tsurutani et al. (2018, http://doi.org/10.1002/2017JA024779) namely, unusually high plasma density, interplanetary magnetic field intensity, and fast storm recovery phase. The authors agree that there is room to improve the modeling by taking into account these comments and other aspects that were not fully explored during our initial work. We are already in the process of undertaking a more comprehensive modeling project.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=2190119','PMC'); return false;" href="https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=2190119"><span>Immunochemical characterization of the "native" type III polysaccharide of group B Streptococcus</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pmc">PubMed Central</a></p> <p></p> <p>1976-01-01</p> <p>The type III polysaccharide of -roup B Streptococcus has been isolated and purified by a method that employs washing of intact cells at neutral pH. That the polysaccharide prepared by this procedure is the "native" type III antigen is suggested by its molecular size in excess of 10(6) daltons, its degradation by acid and heat treatment to a fragment with immunologic characteristics of the classical HCl antigen, and its type-specific serologic activity. The type III polysaccharide in native form contains sialic acid, galactose, glucose, glucosamine, heptose, and mannose. It is acidic in nature, is resistant to neuramindiase degradation, contains no O-acetyl groups, and does not share antigenic determinants with capsular type K1 antigen of Escherichia coli or Group B polysaccharide antigen of Neiserria meningitidis. PMID:55450</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/28507574','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/28507574"><span>Blood groups and acute aortic dissection type III.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Fatic, Nikola; Nikolic, Aleksandar; Vukmirovic, Mihailo; Radojevic, Nemanja; Zornic, Nenad; Banzic, Igor; Ilic, Nikola; Kostic, Dusan; Pajovic, Bogdan</p> <p>2017-04-01</p> <p>Acute aortic type III dissection is one of the most catastrophic events, with in-hospital mortality ranging between 10% and 12%. The majority of patients are treated medically, but complicated dissections, which represent 15% to 20% of cases, require surgical or thoracic endovascular aortic repair (TEVAR). For the best outcomes adequate blood transfusion support is required. Interest in the relationship between blood type and vascular disease has been established. The aim of our study is to evaluate distribution of blood groups among patients with acute aortic type III dissection and to identify any kind of relationship between blood type and patient's survival. From January 2005 to December 2014, 115 patients with acute aortic type III dissection were enrolled at the Clinic of Vascular and Endovascular Surgery in Belgrade, Serbia and retrospectively analyzed. Patients were separated into two groups. The examination group consisted of patients with a lethal outcome, and the control group consisted of patients who survived. The analysis of the blood groups and RhD typing between groups did not reveal a statistically significant difference ( p = 0.220). Our results indicated no difference between different blood groups and RhD typing with respect to in-hospital mortality of patients with acute aortic dissection type III.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=5870536','PMC'); return false;" href="https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=5870536"><span>Discriminating the reaction types of plant type III polyketide synthases</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pmc">PubMed Central</a></p> <p>Shimizu, Yugo; Ogata, Hiroyuki; Goto, Susumu</p> <p>2017-01-01</p> <p>Abstract Motivation: Functional prediction of paralogs is challenging in bioinformatics because of rapid functional diversification after gene duplication events combined with parallel acquisitions of similar functions by different paralogs. Plant type III polyketide synthases (PKSs), producing various secondary metabolites, represent a paralogous family that has undergone gene duplication and functional alteration. Currently, there is no computational method available for the functional prediction of type III PKSs. Results: We developed a plant type III PKS reaction predictor, pPAP, based on the recently proposed classification of type III PKSs. pPAP combines two kinds of similarity measures: one calculated by profile hidden Markov models (pHMMs) built from functionally and structurally important partial sequence regions, and the other based on mutual information between residue positions. pPAP targets PKSs acting on ring-type starter substrates, and classifies their functions into four reaction types. The pHMM approach discriminated two reaction types with high accuracy (97.5%, 39/40), but its accuracy decreased when discriminating three reaction types (87.8%, 43/49). When combined with a correlation-based approach, all 49 PKSs were correctly discriminated, and pPAP was still highly accurate (91.4%, 64/70) even after adding other reaction types. These results suggest pPAP, which is based on linear discriminant analyses of similarity measures, is effective for plant type III PKS function prediction. Availability and Implementation: pPAP is freely available at ftp://ftp.genome.jp/pub/tools/ppap/ Contact: goto@kuicr.kyoto-u.ac.jp Supplementary information: Supplementary data are available at Bioinformatics online. PMID:28334262</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://files.eric.ed.gov/fulltext/EJ805094.pdf','ERIC'); return false;" href="http://files.eric.ed.gov/fulltext/EJ805094.pdf"><span>The Effects of Non-Normality on Type III Error for Comparing Independent Means</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.eric.ed.gov/ERICWebPortal/search/extended.jsp?_pageLabel=advanced">ERIC Educational Resources Information Center</a></p> <p>Mendes, Mehmet</p> <p>2007-01-01</p> <p>The major objective of this study was to investigate the effects of non-normality on Type III error rates for ANOVA F its three commonly recommended parametric counterparts namely Welch, Brown-Forsythe, and Alexander-Govern test. Therefore these tests were compared in terms of Type III error rates across the variety of population distributions,…</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/11916315','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/11916315"><span>Outcome of tyrosinaemia type III.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Ellaway, C J; Holme, E; Standing, S; Preece, M A; Green, A; Ploechl, E; Ugarte, M; Trefz, F K; Leonard, J V</p> <p>2001-12-01</p> <p>Tyrosinaemia type III is a rare disorder caused by a deficiency of 4-hydroxyphenylpyruvate dioxygenase, the second enzyme in the catabolic pathway of tyrosine. The majority of the nine previously reported patients have presented with neurological symptoms after the neonatal period, while others detected by neonatal screening have been asymptomatic. All have had normal liver and renal function and none has skin or eye abnormalities. A further four patients with tyrosinaemia type III are described. It is not clear whether a strict low tyrosine diet alters the natural history of tyrosinaemia type III, although there remains a suspicion that treatment may be important, at least in infancy.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017EPSC...11..204K','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017EPSC...11..204K"><span>Dust analysis on board the Destiny+ mission to 3200 Phaethon</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Krüger, H.; Kobayashi, M.; Arai, T.; Srama, R.; Sarli, B. V.; Kimura, H.; Moragas-Klostermeyer, G.; Soja, R.; Altobelli, N.; Grün, E.</p> <p>2017-09-01</p> <p>The Japanese Destiny+ spacecraft will be launched to the active asteroid 3200 Phaethon in 2022. Among the proposed core payload is an in-situ dust instrument based on the Cassini Cosmic Dust Analyzer. We use the ESA Interplanetary Meteoroid Engineering Model (IMEM), to study detection conditions and fluences of interplanetary and interstellar dust with a dust analyzer on board Destiny+.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://ntrs.nasa.gov/search.jsp?R=19730058893&hterms=radiation+Solar&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D40%26Ntt%3Dradiation%2BSolar','NASA-TRS'); return false;" href="https://ntrs.nasa.gov/search.jsp?R=19730058893&hterms=radiation+Solar&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D40%26Ntt%3Dradiation%2BSolar"><span>On the backscatter of solar He II, 304 A radiation from interplanetary He/+/.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Paresce, F.; Bowyer, S.</p> <p>1973-01-01</p> <p>Backscatter of solar He II, 304 A radiation by interplanetary positive helium ions is shown to be insufficient to account for recent observations of this airglow radiation in the night sky at rocket altitudes. In fact, for most viewing directions, the expected intensities probably fall well below the sensitivity threshold of existing extreme ultraviolet instrumentation.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://ntrs.nasa.gov/search.jsp?R=20060035047&hterms=plasma+focus&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D60%26Ntt%3Dplasma%2Bfocus','NASA-TRS'); return false;" href="https://ntrs.nasa.gov/search.jsp?R=20060035047&hterms=plasma+focus&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D60%26Ntt%3Dplasma%2Bfocus"><span>Nonlinear Electromagnetic Waves and Spherical Arc-Polarized Waves in Space Plasmas</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Tsurutani, B.; Ho, Christian M.; Arballo, John K.; Lakhina, Gurbax S.; Glassmeier, Karl-Heinz; Neubauer, Fritz M.</p> <p>1997-01-01</p> <p>We review observations of nonlinear plasma waves detected by interplanetary spacecraft. For this paper we will focus primarily on the phase-steepened properties of such waves. Plasma waves at comet Giacobini-Zinner measured by the International Cometary Explorer (ICE), at comets Halley and Grigg-Skjellerup measured by Giotto, and interplanetary Alfven waves measured by Ulysses, will be discussed and intercompared.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://hdl.handle.net/2060/19970021679','NASA-TRS'); return false;" href="http://hdl.handle.net/2060/19970021679"><span>Latitudinal Dependence of the Radial IMF Component - Interplanetary Imprint</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Suess, S. T.; Smith, E. J.; Phillips, J.; Goldstein, B. E.; Nerney, S.</p> <p>1996-01-01</p> <p>Ulysses measurements have confirmed that there is no significant gradient with respect to heliomagnetic latitude in the radial component, B(sub r,), of the interplanetary magnetic field. There are two processes responsible for this observation. In the corona, the plasma beta is much less than 1, except directly above streamers, so both longitudinal and latitudinal (meridional) gradients in field strength will relax, due to the transverse magnetic pressure gradient force, as the solar wind carries magnetic flux away from the Sun. This happens so quickly that the field is essentially uniform by 5 solar radius. Beyond 10 solar radius, beta is greater than 1 and it is possible for a meridional thermal pressure gradient to redistribute magnetic flux - an effect apparently absent in Ulysses and earlier ICE and Interplanetary Magnetic Physics (IMP) data. We discuss this second effect here, showing that its absence is mainly due to the perpendicular part of the anisotropic thermal pressure gradient in the interplanetary medium being too small to drive significant meridional transport between the Sun and approx. 4 AU. This is done using a linear analytic estimate of meridional transport. The first effect was discussed in an earlier paper.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017AGUFMSM11B2304S','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017AGUFMSM11B2304S"><span>Relativistic electron dropout echoes induced by interplanetary shocks</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Schiller, Q.; Kanekal, S. G.; Boyd, A. J.; Baker, D. N.; Blake, J. B.; Spence, H. E.</p> <p>2017-12-01</p> <p>Interplanetary shocks that impact Earth's magnetosphere can produce immediate and dramatic responses in the trapped relativistic electron population. One well-studied response is a prompt injection capable of transporting relativistic electrons deep into the magnetosphere and accelerating them to multi-MeV energies. The converse effect, electron dropout echoes, are observations of a sudden dropout of electron fluxes observed after the interplanetary shock arrival. Like the injection echo signatures, dropout echoes can also show clear energy dispersion signals. They are of particular interest because they have only recently been observed and their causal mechanism is not well understood. In the analysis presented here, we show observations of electron drift echo signatures from the Relativistic Electron-Proton Telescope (REPT) and Magnetic Electron and Ion Sensors (MagEIS) onboard NASA's Van Allen Probes mission, which show simultaneous prompt enhancements and dropouts within minutes of the associated with shock impact. We show that the observations associated with both enhancements and dropouts are explained by the inward motion caused by the electric field impulse induced by the interplanetary shock, and either energization to cause the enhancement, or lack of a seed population to cause the dropout.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://hdl.handle.net/2060/20110016612','NASA-TRS'); return false;" href="http://hdl.handle.net/2060/20110016612"><span>Inferring Sources in the Interplanetary Dust Cloud, from Observations and Simulations of Zodiacal Light and Thermal Emission</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Levasseur-Regourd, A. C.; Lasue, J.</p> <p>2011-01-01</p> <p>Interplanetary dust particles physical properties may be approached through observations of the solar light they scatter, specially its polarization, and of their thermal emission. Results, at least near the ecliptic plane, on polarization phase curves and on the heliocentric dependence of the local spatial density, albedo, polarization and temperature are summarized. As far as interpretations through simulations are concerned, a very good fit of the polarization phase curve near 1.5 AU is obtained for a mixture of silicates and more absorbing organics material, with a significant amount of fluffy aggregates. In the 1.5-0.5 AU solar distance range, the temperature variation suggests the presence of a large amount of absorbing organic compounds, while the decrease of the polarization with decreasing solar distance is indeed compatible with a decrease of the organics towards the Sun. Such results are in favor of the predominance of dust of cometary origin in the interplanetary dust cloud, at least below 1.5 AU. The implication of these results on the delivery of complex organic molecules on Earth during the LHB epoch, when the spatial density of the interplanetary dust cloud was orders of magnitude greater than today, is discussed.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=2919805','PMC'); return false;" href="https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=2919805"><span>Intramembranous valine linked to schizophrenia is required for neuregulin 1 regulation of the morphological development of cortical neurons</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pmc">PubMed Central</a></p> <p>Chen, Yachi; Hancock, Melissa L.; Role, Lorna W.; Talmage, David A.</p> <p>2010-01-01</p> <p>Neuregulin 1 (NRG1) signaling is critical to various aspects of neuronal development and function. Among different NRG1 isoforms, the Type III isoforms of NRG1 are unique in their ability to signal via the intracellular domain following γ-secretase-dependent intramembranous processing. However, the functional consequences of Type III NRG1 signaling via its intracellular domain are largely unknown. In this study, we have identified mutations within Type III NRG1 that disrupt intramembranous proteolytic processing and abolish intracellular domain signaling. In particular, substitutions at valine 321, previously linked to schizophrenia risks, result in NRG1 proteins that fail to undergo γ-secretase-mediated nuclear localization and transcriptional activation. Using processing-defective mutants of Type III NRG1, we demonstrate that the intracellular domain signaling is specifically required for NRG1 regulation of the growth and branching of cortical dendrites but not axons. Consistent with the role of Type III NRG1 signaling via the intracellular domain in the initial patterning of cortical dendrites, our findings from pharmacological and genetic studies indicate that Type III NRG1 functions in dendritic development independent of ERBB kinase activity. Taken together, these results support the proposal that aberrant intracellular processing and defective signaling via the intracellular domain of Type III NRG1 impair a subset of NRG1 functions in cortical development and contribute to abnormal neuroconnectivity implicated in schizophrenia. PMID:20610754</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://www.dtic.mil/docs/citations/ADA614551','DTIC-ST'); return false;" href="http://www.dtic.mil/docs/citations/ADA614551"><span>Infection Reduces Return-to-duty Rates for Soldiers with Type III Open Tibia Fractures</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.dtic.mil/">DTIC Science & Technology</a></p> <p></p> <p>2014-09-01</p> <p>Infection reduces return-to-duty rates for soldiers with Type III open tibia fractures Matthew A. Napierala, MD, Jessica C. Rivera, MD, Travis C... Type III open tibia fracture and tabulated the prevalence of infectious complications.We searched the Physical Evaluation Board database to determine...were not infected ( p 0.1407). Soldiers who experienced any type of infectious complication ( p 0.0470) and having osteomyelitis ( p 0.0335) had a lower</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://hdl.handle.net/2060/19750013117','NASA-TRS'); return false;" href="http://hdl.handle.net/2060/19750013117"><span>Interplanetary magnetic field data book</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>King, J. H.</p> <p>1975-01-01</p> <p>An interplanetary magnetic field (IMF) data set is presented that is uniform with respect to inclusion of cislunar IMF data only, and which has as complete time coverage as presently possible over a full solar cycle. Macroscale phenomena in the interplanetary medium (sector structure, heliolatitude variations, solar cycle variations, etc.) and other phenomena (e.g., ground level cosmic-ray events) for which knowledge of the IMF with hourly resolution is necessary, are discussed. Listings and plots of cislunar hourly averaged IMP parameters over the period November 27, 1963, to May 17, 1974, are presented along with discussion of the mutual consistency of the IMF data used herein. The magnetic tape from which the plots and listings were generated, which is available from the National Space Science Data Center (NSSDC), is also discussed.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://hdl.handle.net/2060/20140000418','NASA-TRS'); return false;" href="http://hdl.handle.net/2060/20140000418"><span>Estimating the Effects of Astronaut Career Ionizing Radiation Dose Limits on Manned Interplanetary Flight Programs</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Koontz, Steven L.; Rojdev, Kristina; Valle, Gerard D.; Zipay, John J.; Atwell, William S.</p> <p>2013-01-01</p> <p>The Hybrid Inflatable DSH combined with electric propulsion and high power solar-electric power systems offer a near TRL-now solution to the space radiation crew dose problem that is an inevitable aspect of long term manned interplanetary flight. Spreading program development and launch costs over several years can lead to a spending plan that fits with NASA's current and future budgetary limitations, enabling early manned interplanetary operations with space radiation dose control, in the near future while biomedical research, nuclear electric propulsion and active shielding research and development proceed in parallel. Furthermore, future work should encompass laboratory validation of HZETRN calculations, as previous laboratory investigations have not considered large shielding thicknesses and the calculations presented at these thicknesses are currently performed via extrapolation.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://ntrs.nasa.gov/search.jsp?R=19950047934&hterms=disabled&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D70%26Ntt%3Ddisabled','NASA-TRS'); return false;" href="https://ntrs.nasa.gov/search.jsp?R=19950047934&hterms=disabled&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D70%26Ntt%3Ddisabled"><span>Magellan aerobrake navigation</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Giorgini, Jon; Wong, S. Kuen; You, Tung-Han; Chadbourne, Pam; Lim, Lily</p> <p>1995-01-01</p> <p>The Magellan spacecraft has been aerobraked into a 197 x 541 km near-circular orbit around Venus from which it is conducting a high-resolution gravity mapping mission. This was the first interplanetary aerobrake maneuver and involved flying the spacecraft through the upper reaches of the Venusian atmosphere 730 times over a 70 day period. Round-trip light-time varied from 9.57 to 18.83 minutes during this period. Navigation for this dynamic phase of the Magellan mission was planned and executed in the face of budget-driven down-sizing with all spacecraft safe modes disabled and a flight-team one-third the size of comparable interplanetary missions. Successful execution of this manuever using spacecraft hardware not designed to operate in a planetary atmosphere, demonstrated a practical cost-saving technique for both large and small future interplanetary missions.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2008cosp...37.2275O','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2008cosp...37.2275O"><span>Testing model for prediction system of 1-AU arrival times of CME-associated interplanetary shocks</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Ogawa, Tomoya; den, Mitsue; Tanaka, Takashi; Sugihara, Kohta; Takei, Toshifumi; Amo, Hiroyoshi; Watari, Shinichi</p> <p></p> <p>We test a model to predict arrival times of interplanetary shock waves associated with coronal mass ejections (CMEs) using a three-dimensional adaptive mesh refinement (AMR) code. The model is used for the prediction system we develop, which has a Web-based user interface and aims at people who is not familiar with operation of computers and numerical simulations or is not researcher. We apply the model to interplanetary CME events. We first choose coronal parameters so that property of background solar wind observed by ACE space craft is reproduced. Then we input CME parameters observed by SOHO/LASCO. Finally we compare the predicted arrival times with observed ones. We describe results of the test and discuss tendency of the model.</p> </li> </ol> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_16");'>16</a></li> <li><a href="#" onclick='return showDiv("page_17");'>17</a></li> <li class="active"><span>18</span></li> <li><a href="#" onclick='return showDiv("page_19");'>19</a></li> <li><a href="#" onclick='return showDiv("page_20");'>20</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div><!-- col-sm-12 --> </div><!-- row --> </div><!-- page_18 --> <div id="page_19" class="hiddenDiv"> <div class="row"> <div class="col-sm-12"> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_17");'>17</a></li> <li><a href="#" onclick='return showDiv("page_18");'>18</a></li> <li class="active"><span>19</span></li> <li><a href="#" onclick='return showDiv("page_20");'>20</a></li> <li><a href="#" onclick='return showDiv("page_21");'>21</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div> </div> <div class="row"> <div class="col-sm-12"> <ol class="result-class" start="361"> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://ntrs.nasa.gov/search.jsp?R=19810044425&hterms=radiation+Solar&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D30%26Ntt%3Dradiation%2BSolar','NASA-TRS'); return false;" href="https://ntrs.nasa.gov/search.jsp?R=19810044425&hterms=radiation+Solar&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D30%26Ntt%3Dradiation%2BSolar"><span>Polar solar wind and interstellar wind properties from interplanetary Lyman-alpha radiation measurements</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Witt, N.; Blum, P. W.; Ajello, J. M.</p> <p>1981-01-01</p> <p>The analysis of Mariner 10 observations of Lyman-alpha resonance radiation shows an increase of interplanetary neutral hydrogen densities above the solar poles. This increase is caused by a latitudinal variation of the solar wind velocity and/or flux. Using both the Mariner 10 results and other solar wind observations, the values of the solar wind flux and velocity with latitude are determined for several cases of interest. The latitudinal variation of interplanetary hydrogen gas, arising from the solar wind latitudinal variation, is shown to be most pronounced in the inner solar system. From this result it is shown that spacecraft Lyman-alpha observations are more sensitive to the latitudinal anisotropy for a spacecraft location in the inner solar system near the downwind axis.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://ntrs.nasa.gov/search.jsp?R=20150014729&hterms=telecommunications&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D20%26Ntt%3Dtelecommunications','NASA-TRS'); return false;" href="https://ntrs.nasa.gov/search.jsp?R=20150014729&hterms=telecommunications&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D20%26Ntt%3Dtelecommunications"><span>Simulating Autonomous Telecommunication Networks for Space Exploration</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Segui, John S.; Jennings, Esther H.</p> <p>2008-01-01</p> <p>Currently, most interplanetary telecommunication systems require human intervention for command and control. However, considering the range from near Earth to deep space missions, combined with the increase in the number of nodes and advancements in processing capabilities, the benefits from communication autonomy will be immense. Likewise, greater mission science autonomy brings the need for unscheduled, unpredictable communication and network routing. While the terrestrial Internet protocols are highly developed their suitability for space exploration has been questioned. JPL has developed the Multi-mission Advanced Communications Hybrid Environment for Test and Evaluation (MACHETE) tool to help characterize network designs and protocols. The results will allow future mission planners to better understand the trade offs of communication protocols. This paper discusses various issues with interplanetary network and simulation results of interplanetary networking protocols.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://hdl.handle.net/2060/19880001370','NASA-TRS'); return false;" href="http://hdl.handle.net/2060/19880001370"><span>Plasma-tail activity and the interplanetary medium at Halley's Comet during Armada Week: 6-14 March 1986</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Niedner, Malcolm B., Jr.; Schwingenschuh, Konrad; Hoeksema, J. Todd; Dryer, Murray; Mcintosh, Patrick S.</p> <p>1987-01-01</p> <p>The encounters of five spacecraft with Halley's Comet during 6-14 March 1986 offered a unique opportunity to calibrate the solar-wind interaction with cometary plasmas as recorded by remote wide-field and narrow-field/narrowband imaging. Perhaps not generally recognized in the comet community is the additional opportunity offered by the Halley Armada to study the structure of the solar-wind and interplanetary magnetic field (IMF) in three dimensions using five sets of data obtained over similar time intervals and heliocentric distances, but at somewhat different heliolatitudes. In fact, the two problems, i.e., comet physics and the structure of the interplanetary medium, are coupled if one wants to understand what conditions pertained at the comet between the encounters. This relationship is discussed.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2018ApJ...854..113A','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2018ApJ...854..113A"><span>Characteristics and Energy Dependence of Recurrent Galactic Cosmic-Ray Flux Depressions and of a Forbush Decrease with LISA Pathfinder</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Armano, M.; Audley, H.; Baird, J.; Bassan, M.; Benella, S.; Binetruy, P.; Born, M.; Bortoluzzi, D.; Cavalleri, A.; Cesarini, A.; Cruise, A. M.; Danzmann, K.; de Deus Silva, M.; Diepholz, I.; Dixon, G.; Dolesi, R.; Fabi, M.; Ferraioli, L.; Ferroni, V.; Finetti, N.; Fitzsimons, E. D.; Freschi, M.; Gesa, L.; Gibert, F.; Giardini, D.; Giusteri, R.; Grimani, C.; Grzymisch, J.; Harrison, I.; Heinzel, G.; Hewitson, M.; Hollington, D.; Hoyland, D.; Hueller, M.; Inchauspé, H.; Jennrich, O.; Jetzer, P.; Karnesis, N.; Kaune, B.; Korsakova, N.; Killow, C. J.; Laurenza, M.; Lobo, J. A.; Lloro, I.; Liu, L.; López-Zaragoza, J. P.; Maarschalkerweerd, R.; Mance, D.; Martín, V.; Martin-Polo, L.; Martino, J.; Martin-Porqueras, F.; Mateos, I.; McNamara, P. W.; Mendes, J.; Mendes, L.; Nofrarias, M.; Paczkowski, S.; Perreur-Lloyd, M.; Petiteau, A.; Pivato, P.; Plagnol, E.; Ramos-Castro, J.; Reiche, J.; Robertson, D. I.; Rivas, F.; Russano, G.; Sabbatini, F.; Slutsky, J.; Sopuerta, C. F.; Sumner, T.; Telloni, D.; Texier, D.; Thorpe, J. I.; Vetrugno, D.; Vitale, S.; Wanner, G.; Ward, H.; Wass, P.; Weber, W. J.; Wissel, L.; Wittchen, A.; Zambotti, A.; Zenoni, C.; Zweifel, P.</p> <p>2018-02-01</p> <p>Galactic cosmic-ray (GCR) energy spectra observed in the inner heliosphere are modulated by the solar activity, the solar polarity and structures of solar and interplanetary origin. A high counting rate particle detector (PD) aboard LISA Pathfinder, meant for subsystems diagnostics, was devoted to the measurement of GCR and solar energetic particle integral fluxes above 70 MeV n‑1 up to 6500 counts s‑1. PD data were gathered with a sampling time of 15 s. Characteristics and energy dependence of GCR flux recurrent depressions and of a Forbush decrease dated 2016 August 2 are reported here. The capability of interplanetary missions, carrying PDs for instrument performance purposes, in monitoring the passage of interplanetary coronal mass ejections is also discussed.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2018ApJ...853..142L','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2018ApJ...853..142L"><span>Generation of Kappa Distributions in Solar Wind at 1 au</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Livadiotis, G.; Desai, M. I.; Wilson, L. B., III</p> <p>2018-02-01</p> <p>We examine the generation of kappa distributions in the solar wind plasma near 1 au. Several mechanisms are mentioned in the literature, each characterized by a specific relationship between the solar wind plasma features, the interplanetary magnetic field (IMF), and the kappa index—the parameter that governs the kappa distributions. This relationship serves as a signature condition that helps the identification of the mechanism in the plasma. In general, a mechanism that generates kappa distributions involves a single or a series of stochastic or physical processes that induces local correlations among particles. We identify three fundamental solar wind plasma conditions that can generate kappa distributions, noted as (i) Debye shielding, (ii) frozen IMF, and (iii) temperature fluctuations, each one prevailing in different scales of solar wind plasma and magnetic field properties. Moreover, our findings show that the kappa distributions, and thus, their generating mechanisms, vary significantly with solar wind features: (i) the kappa index has different dependence on the solar wind speed for slow and fast modes, i.e., slow wind is characterized by a quasi-constant kappa index, κ ≈ 4.3 ± 0.7, while fast wind exhibits kappa indices that increase with bulk speed; (ii) the dispersion of magnetosonic waves is more effective for lower kappa indices (i.e., further from thermal equilibrium); and (iii) the kappa and polytropic indices are positively correlated, as it was anticipated by the theory.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/27132705','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/27132705"><span>Histochemical analysis of collagen fibers in giant cell fibroma and inflammatory fibrous hyperplasia.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Schmidt, Mônica Jarema; Tschoeke, André; Noronha, Lúcia; Moraes, Rafaela Scariot de; Mesquita, Ricardo Alves; Grégio, Ana Maria Trindade; Alanis, Luciana Reis Azevedo; Ignácio, Sérgio Aparecido; Santos, Jean Nunes Dos; Lima, Antonio Adilson Soares de; Luiz, Teixeira Suelen; Michels, Arielli Carine; Aguiar, Maria Cássia Ferreira; Johann, Aline Cristina Batista Rodrigues</p> <p>2016-06-01</p> <p>The aim was to investigate collagen fibers in giant cell fibroma, inflammatory fibrous hyperplasia, and oral normal mucosa. Sixty-six cases were stained with picrosirius red. The slides were observed under polarization, followed by the measurement of the area and the percentage of the type I and type III collagens. The age and gender were obtained from the clinical records. No differences could be observed in both the area and percentage of the type I and type III collagens within the categories of lesions and normal mucosa. In the giant cells fibroma, a greater area and percentage of type I collagen could be identified in individuals of less than 41.5 years (p<0.05). The distribution of type I and type III collagen fibers in the studied lesions followed a similar pattern to that observed in the normal mucosa, indicating a normal collagen maturation process of type III to I. The study supports that multinucleated and stellate cells of the giant cell fibroma appear to be functional within collagen types III and I turnover. The greater amount of type I collagen identified in giant cell fibroma in individuals of less than 41.5 years reinforce the neoplastic nature of lesion. Copyright © 2016 Elsevier GmbH. All rights reserved.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2015JPhCS.642a2006D','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2015JPhCS.642a2006D"><span>Type III-L Solar Radio Bursts and Solar Energetic Particle Events</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Duffin, R. T.; White, S. M.; Ray, P. S.; Kaiser, M. L.</p> <p>2015-09-01</p> <p>A radio-selected sample of fast drift radio bursts with complex structure occurring after the impulsive phase of the associated flare (“Type III-L bursts”) is identified by inspection of radio dynamic spectra from 1 to 180 MHz for over 300 large flares in 2001. An operational definition that takes into account previous work on these radio bursts starting from samples of solar energetic particle (SEP) events is applied to the data, and 66 Type III-L bursts are found in the sample. In order to determine whether the presence of these radio bursts can be used to predict the occurrence of SEP events, we also develop a catalog of all SEP proton events in 2001 using data from the ERNE detector on the SOHO satellite. 68 SEP events are found, for 48 of which we can identify a solar source and hence look for associated Type III-L emission. We confirm previous work that found that most (76% in our sample) of the solar sources of SEP events exhibit radio emission of this type. However, the correlation in the opposite direction is not as strong: starting from a radio-selected sample of Type III-L events, around 64% of the bursts that occur at longitudes magnetically well-connected to the Earth, and hence favorable for detection of SEPs, are associated with SEP events. The degree of association increases when the events have durations over 10 minutes at 1 MHz, but in general Type III-L bursts do not perform any better than Type II bursts in our sample as predictors of SEP events. A comparison of Type III-L timing with the arrival of near-relativistic electrons at the ACE spacecraft is not inconsistent with a common source for the accelerated electrons in both phenomena.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2014EGUGA..16.1373K','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2014EGUGA..16.1373K"><span>Semi-transparent shock model for major solar energetic particle events</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Kocharov, Leon</p> <p>2014-05-01</p> <p>Production of solar energetic particles in major events typically comprises two stages: (i) the initial stage associated with shocks and magnetic reconnection in solar corona and (ii) the main stage associated with the CME-bow shock in solar wind. The coronal emission of energetic particles from behind the interplanetary shock wave continues for about one hour , being not shielded by the CME shock in solar wind and having the prompt access to particle detectors at 1 AU. On occasion of two well-separated solar eruptions from the same active region, the newly accelerated solar particles may be emitted well behind the previous CME, and those solar particles may penetrate through the interplanetary shock of the previous CME to arrive at the Earth's orbit without significant delay, which is another evidence that high-energy particles from the solar corona can penetrate through travelling interplanetary shocks. Diffusive shock acceleration is fast only if the particle mean free path near the shock is small. The small mean free path (high turbulence level), however, implies that energetic particles from coronal sources could not penetrate through the interplanetary shock, and even the particles accelerated by the interplanetary shock itself could not escape to its far upstream region. If so, they could not be promptly observed at 1 AU. However, high-energy particles in major solar events are detected well before the shock arrival at 1 AU. The theoretical difficulty can be obviated in the framework of the proposed model of a "semitransparent" shock. As in situ plasma observations indicate, the turbulence energy levels in neighboring magnetic tubes of solar wind may differ from each other by more than one order of magnitude. Such an intermittence of coronal and solar wind plasmas can affect energetic particle acceleration in coronal and interplanetary shocks. The new modeling incorporates particle acceleration in the shock front and the particle transport both in parallel to the magnetic field and in perpendicular to the magnetic field directions. The modeling suggests that the perpendicular diffusion is always essential for the energetic particle production, because particles can be accelerated in tubes with a high turbulence level and then escape to far upstream of the shock via neighboring, less turbulent tubes. We have modeled both the transmission of high-energy (>50 MeV) protons from coronal sources through the interplanetary shock wave and the interplanetary shock acceleration of ~1-10 MeV protons with subsequent transport to far upstream of the shock. The modeling results imply that presence of the fast transport channels penetrating the shock and the cross-field transport of accelerated particles to those channels may play a key role in the high-energy particle emission from distant shocks and can explain the prompt onset of major solar energetic particle events observed near the Earth's orbit.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2013AGUFMSH21A2053K','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2013AGUFMSH21A2053K"><span>Acceleration and Transport of Solar Energetic Particles in 'Semi-transparent' Shocks</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Kocharov, L. G.</p> <p>2013-12-01</p> <p>Production of solar energetic particles in major events typically comprises two stages: (i) an initial stage associated with shocks and magnetic reconnection in solar corona and (ii) the main stage associated with the CME-bow shock in solar wind (e.g., Figure 1 of Kocharov et al., 2012, ApJ, 753, 87). As far as the second stage production is ascribed to interplanetary shocks, the first stage production should be attributed to coronal sources. Coronal emission of energetic particles from behind the interplanetary shock wave continues for about one hour (Figures 4-6 of Kocharov et al, 2010, ApJ, 725, 2262). The coronal particles are not shielded by the CME-bow shock in solar wind and have a prompt access to particle detectors at 1 AU. On non-exceptional occasion of two successive solar eruptions from the same active region, the newly accelerated solar particles may be emitted well behind the previous CME, and those solar particles may penetrate through the interplanetary shock of the previous CME to arrive at the Earth's orbit without significant delay (Al-Sawad et al., 2009, Astron. & Astrophys., 497, L1), which is another evidence that high-energy particles from the solar corona can penetrate through travelling interplanetary shocks. Diffusive shock acceleration is fast only if the particle mean free path in the shock is small. A small mean free path (high turbulence level), however, implies that energetic particles from the solar corona could not penetrate through the interplanetary shock and could not escape to its far upstream region. If so, they could not produce a prompt event at 1 AU. However, solar high-energy particle events are observed very far from the shocks. The theoretical difficulty can be obviated in the framework of the new model of a "semi-transparent" shock. As in situ plasma observations indicate, the turbulence energy levels in neighboring magnetic tubes of solar wind may differ from each other by more than one order of magnitude. Such an intermittence of coronal and solar wind plasmas can affect energetic particle acceleration in coronal and interplanetary shocks. The new modeling incorporates particle acceleration in the shock front and the particle transport both in parallel to the magnetic field and in perpendicular to the magnetic field directions. The modeling suggests that the perpendicular diffusion is always essential for the energetic particle production, because particles can be accelerated in tubes with a high turbulence level and then escape to far upstream of the shock via neighboring, less turbulent tubes. Considered are both the penetration of the high-energy (>50 MeV) solar protons through the interplanetary shock and the interplanetary shock acceleration to lower energies (~1-10 MeV). The modeling results are compared with data of spaceborne particle instruments (SOHO. STEREO) and data of neutron monitors.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/24299018','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/24299018"><span>Distinct Pseudomonas type-III effectors use a cleavable transit peptide to target chloroplasts.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Li, Guangyong; Froehlich, John E; Elowsky, Christian; Msanne, Joseph; Ostosh, Andrew C; Zhang, Chi; Awada, Tala; Alfano, James R</p> <p>2014-01-01</p> <p>The pathogen Pseudomonas syringae requires a type-III protein secretion system and the effector proteins it injects into plant cells for pathogenesis. The primary role for P. syringae type-III effectors is the suppression of plant immunity. The P. syringae pv. tomato DC3000 HopK1 type-III effector was known to suppress the hypersensitive response (HR), a programmed cell death response associated with effector-triggered immunity. Here we show that DC3000 hopK1 mutants are reduced in their ability to grow in Arabidopsis, and produce reduced disease symptoms. Arabidopsis transgenically expressing HopK1 are reduced in PAMP-triggered immune responses compared with wild-type plants. An N-terminal region of HopK1 shares similarity with the corresponding region in the well-studied type-III effector AvrRps4; however, their C-terminal regions are dissimilar, indicating that they have different effector activities. HopK1 is processed in planta at the same processing site found in AvrRps4. The processed forms of HopK1 and AvrRps4 are chloroplast localized, indicating that the shared N-terminal regions of these type-III effectors represent a chloroplast transit peptide. The HopK1 contribution to virulence and the ability of HopK1 and AvrRps4 to suppress immunity required their respective transit peptides, but the AvrRps4-induced HR did not. Our results suggest that a primary virulence target of these type-III effectors resides in chloroplasts, and that the recognition of AvrRps4 by the plant immune system occurs elsewhere. Moreover, our results reveal that distinct type-III effectors use a cleavable transit peptide to localize to chloroplasts, and that targets within this organelle are important for immunity. © 2013 The Authors The Plant Journal © 2013 John Wiley & Sons Ltd.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=3546927','PMC'); return false;" href="https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=3546927"><span>Inter- and Intra-subtype genotypic differences that differentiate Mycobacterium avium subspecies paratuberculosis strains</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pmc">PubMed Central</a></p> <p></p> <p>2012-01-01</p> <p>Background Mycobacterium avium subspecies paratuberculosis (Map) is the aetiological agent of Johne’s disease or paratuberculosis and is included within the Mycobacterium avium complex (MAC). Map strains are of two major types often referred to as ‘Sheep’ or ‘S-type’ and ‘Cattle’ or ‘C-type’. With the advent of more discriminatory typing techniques it has been possible to further classify the S-type strains into two groups referred to as Type I and Type III. This study was undertaken to genotype a large panel of S-type small ruminant isolates from different hosts and geographical origins and to compare them with a large panel of well documented C-type isolates to assess the genetic diversity of these strain types. Methods used included Mycobacterial Interspersed Repetitive Units - Variable-Number Tandem Repeat analysis (MIRU-VNTR), analysis of Large Sequence Polymorphisms by PCR (LSP analysis), Single Nucleotide Polymorphism (SNP) analysis of gyr genes, Pulsed-Field Gel Electrophoresis (PFGE) and Restriction Fragment Length Polymorphism analysis coupled with hybridization to IS900 (IS900-RFLP) analysis. Results The presence of LSPA4 and absence of LSPA20 was confirmed in all 24 Map S-type strains analysed. SNPs within the gyr genes divided the S-type strains into types I and III. Twenty four PFGE multiplex profiles and eleven different IS900-RFLP profiles were identified among the S-type isolates, some of them not previously published. Both PFGE and IS900-RFLP segregated the S-type strains into types I and III and the results concurred with those of the gyr SNP analysis. Nine MIRU-VNTR genotypes were identified in these isolates. MIRU-VNTR analysis differentiated Map strains from other members of Mycobacterium avium Complex, and Map S-type from C-type but not type I from III. Pigmented Map isolates were found of type I or III. Conclusion This is the largest panel of S-type strains investigated to date. The S-type strains could be further divided into two subtypes, I and III by some of the typing techniques (IS900-RFLP, PFGE and SNP analysis of the gyr genes). MIRU-VNTR did not divide the strains into the subtypes I and III but did detect genetic differences between isolates within each of the subtypes. Pigmentation is not exclusively associated with type I strains. PMID:23164429</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/27936514','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/27936514"><span>Comparing acquired angioedema with hereditary angioedema (types I/II): findings from the Icatibant Outcome Survey.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Longhurst, H J; Zanichelli, A; Caballero, T; Bouillet, L; Aberer, W; Maurer, M; Fain, O; Fabien, V; Andresen, I</p> <p>2017-04-01</p> <p>Icatibant is used to treat acute hereditary angioedema with C1 inhibitor deficiency types I/II (C1-INH-HAE types I/II) and has shown promise in angioedema due to acquired C1 inhibitor deficiency (C1-INH-AAE). Data from the Icatibant Outcome Survey (IOS) were analysed to evaluate the effectiveness of icatibant in the treatment of patients with C1-INH-AAE and compare disease characteristics with those with C1-INH-HAE types I/II. Key medical history (including prior occurrence of attacks) was recorded upon IOS enrolment. Thereafter, data were recorded retrospectively at approximately 6-month intervals during patient follow-up visits. In the icatibant-treated population, 16 patients with C1-INH-AAE had 287 attacks and 415 patients with C1-INH-HAE types I/II had 2245 attacks. Patients with C1-INH-AAE versus C1-INH-HAE types I/II were more often male (69 versus 42%; P = 0·035) and had a significantly later mean (95% confidence interval) age of symptom onset [57·9 (51·33-64·53) versus 14·0 (12·70-15·26) years]. Time from symptom onset to diagnosis was significantly shorter in patients with C1-INH-AAE versus C1-INH-HAE types I/II (mean 12·3 months versus 118·1 months; P = 0·006). Patients with C1-INH-AAE showed a trend for higher occurrence of attacks involving the face (35 versus 21% of attacks; P = 0·064). Overall, angioedema attacks were more severe in patients with C1-INH-HAE types I/II versus C1-INH-AAE (61 versus 40% of attacks were classified as severe to very severe; P < 0·001). Median total attack duration was 5·0 h and 9·0 h for patients with C1-INH-AAE versus C1-INH-HAE types I/II, respectively. © 2016 British Society for Immunology.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=5343339','PMC'); return false;" href="https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=5343339"><span>Comparing acquired angioedema with hereditary angioedema (types I/II): findings from the Icatibant Outcome Survey</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pmc">PubMed Central</a></p> <p>Zanichelli, A.; Caballero, T.; Bouillet, L.; Aberer, W.; Maurer, M.; Fain, O.; Fabien, V.; Andresen, I.</p> <p>2017-01-01</p> <p>Summary Icatibant is used to treat acute hereditary angioedema with C1 inhibitor deficiency types I/II (C1‐INH‐HAE types I/II) and has shown promise in angioedema due to acquired C1 inhibitor deficiency (C1‐INH‐AAE). Data from the Icatibant Outcome Survey (IOS) were analysed to evaluate the effectiveness of icatibant in the treatment of patients with C1‐INH‐AAE and compare disease characteristics with those with C1‐INH‐HAE types I/II. Key medical history (including prior occurrence of attacks) was recorded upon IOS enrolment. Thereafter, data were recorded retrospectively at approximately 6‐month intervals during patient follow‐up visits. In the icatibant‐treated population, 16 patients with C1‐INH‐AAE had 287 attacks and 415 patients with C1‐INH‐HAE types I/II had 2245 attacks. Patients with C1‐INH‐AAE versus C1‐INH‐HAE types I/II were more often male (69 versus 42%; P = 0·035) and had a significantly later mean (95% confidence interval) age of symptom onset [57·9 (51·33–64·53) versus 14·0 (12·70–15·26) years]. Time from symptom onset to diagnosis was significantly shorter in patients with C1‐INH‐AAE versus C1‐INH‐HAE types I/II (mean 12·3 months versus 118·1 months; P = 0·006). Patients with C1‐INH‐AAE showed a trend for higher occurrence of attacks involving the face (35 versus 21% of attacks; P = 0·064). Overall, angioedema attacks were more severe in patients with C1‐INH‐HAE types I/II versus C1‐INH‐AAE (61 versus 40% of attacks were classified as severe to very severe; P < 0·001). Median total attack duration was 5·0 h and 9·0 h for patients with C1‐INH‐AAE versus C1‐INH‐HAE types I/II, respectively. PMID:27936514</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2002iaf..confE.700B','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2002iaf..confE.700B"><span>The Interplanetary Internet: A Communications Infrastructure for Mars Exploration</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Burleigh, S.; Cerf, V.; Durst, R.; Fall, K.; Hooke, A.; Scott, K.; Weiss, H.</p> <p>2002-01-01</p> <p>A successful program of Mars Exploration will depend heavily on a robust and dependable space communications infrastructure that is well integrated with the terrestrial Internet. In the same way that the underpinnings of the Internet are the standardized "TCP/IP" suite of protocols, an "Interplanetary Internet" will need a similar set of capabilities that can support reliable communications across vast distances and highly stressed communications environments. For the past twenty years, the Consultative Committee for Space Data Systems (CCSDS) has been developing standardized long- haul space link communications techniques that are now in use by over two hundred missions within the international space community. New CCSDS developments, shortly to be infused into Mars missions, include a proximity link standard and a store-and- forward file transfer protocol. As part of its `Next Generation Internet' initiative, the U.S. Defense Advanced Projects Agency (DARPA) recently supported an architectural study of a future "InterPlaNetary Internet" (IPN). The IPN architecture assumes that in short-delay environments - such as on and around Mars - standard Internet technologies will be adapted to the locally harsh environment and deployed within surface vehicles and orbiting relays. A long-haul interplanetary backbone network that includes Deep Space Network (DSN) gateways into the terrestrial Internet will interconnect these distributed internets that are scattered across the Solar System. Just as TCP/IP unites the Earth's "network of networks" to become the Internet, a new suite of protocols known as "Bundling" will enable the IPN to become a "network of internets" to support true interplanetary dialog. An InterPlaNetary Internet Research Group has been established within the Internet community to coordinate this research and NASA has begun to support the further development of the IPN architecture and the Bundling protocols. A strategy is being developed whereby the current set of standard CCSDS data communications protocols can be incrementally evolved so that true InterPlaNetary Internet operations are feasible by the end of the decade. The strategy - which is already in progress via the deployment of Mars relay links - needs individual missions to each contribute increments of capability so that a standard communications infrastructure can rapidly accrete. This paper will describe the IPN architectural concepts, discuss the current set of standard data communications capabilities that exist to support Mars exploration and review the proposed new developments. We will also postulate that the concept is scalable and can grow to support future scenarios where human intelligence is widely distributed across the Solar System and day-to-day communications dialog among planets is routine. 1 2 3 4 5</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://hdl.handle.net/2060/20060008933','NASA-TRS'); return false;" href="http://hdl.handle.net/2060/20060008933"><span>Computer Aided Design of Ka-Band Waveguide Power Combining Architectures for Interplanetary Spacecraft</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Vaden, Karl R.</p> <p>2006-01-01</p> <p>Communication systems for future NASA interplanetary spacecraft require transmitter power ranging from several hundred watts to kilowatts. Several hybrid junctions are considered as elements within a corporate combining architecture for high power Ka-band space traveling-wave tube amplifiers (TWTAs). This report presents the simulated transmission characteristics of several hybrid junctions designed for a low loss, high power waveguide based power combiner.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://ntrs.nasa.gov/search.jsp?R=19960021482&hterms=Streaming+Media&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D30%26Ntt%3DStreaming%2BMedia','NASA-TRS'); return false;" href="https://ntrs.nasa.gov/search.jsp?R=19960021482&hterms=Streaming+Media&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D30%26Ntt%3DStreaming%2BMedia"><span>Bi-directional streaming of halo electrons in interplanetary plasma clouds observed between 0.3 and 1 AU</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Ivory, K.; Schwenn, R.</p> <p>1995-01-01</p> <p>The solar wind data obtained from the two Helios solar probes in the years 1974 to 1986 were systematically searched for the occurrence of bi-directional electron events. Most often these events are found in conjunction with shock associated magnetic clouds. The implications of these observations for the topology of interplanetary plasma clouds are discussed.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/10439072','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/10439072"><span>The effect of iron to manganese substitution on microperoxidase 8 catalysed peroxidase and cytochrome P450 type of catalysis.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Primus, J L; Boersma, M G; Mandon, D; Boeren, S; Veeger, C; Weiss, R; Rietjens, I M</p> <p>1999-06-01</p> <p>This study describes the catalytic properties of manganese microperoxidase 8 [Mn(III)MP8] compared to iron microperoxidase 8 [Fe(III)MP8]. The mini-enzymes were tested for pH-dependent activity and operational stability in peroxidase-type conversions, using 2-methoxyphenol and 3,3'-dimethoxybenzidine, and in a cytochrome P450-like oxygen transfer reaction converting aniline to para-aminophenol. For the peroxidase type of conversions the Fe to Mn replacement resulted in a less than 10-fold decrease in the activity at optimal pH, whereas the aniline para-hydroxylation is reduced at least 30-fold. In addition it was observed that the peroxidase type of conversions are all fully blocked by ascorbate and that aniline para-hydroxylation by Fe(III)MP8 is increased by ascorbate whereas aniline para-hydroxylation by Mn(III)MP8 is inhibited by ascorbate. Altogether these results indicate that different types of reactive metal oxygen intermediates are involved in the various conversions. Compound I/II, scavenged by ascorbate, may be the reactive species responsible for the peroxidase reactions, the polymerization of aniline and (part of) the oxygen transfer to aniline in the absence of ascorbate. The para-hydroxylation of aniline by Fe(III)MP8, in the presence of ascorbate, must be mediated by another reactive iron-oxo species which could be the electrophilic metal(III) hydroperoxide anion of microperoxidase 8 [M(III)OOH MP8]. The lower oxidative potential of Mn, compared to Fe, may affect the reactivity of both compound I/II and the metal(III) hydroperoxide anion intermediate, explaining the differential effect of the Fe to Mn substitution on the pH-dependent behavior, the rate of catalysis and the operational stability of MP8.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2014AGUFMSM52A..03N','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2014AGUFMSM52A..03N"><span>The Missing Link Coupling the Foreshock to the Magnetosphere?: Impact of the Magnetosheath Velocity Fluctuations on the Growth of the Kelvin-Helmholtz instability.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Nykyri, K.; Dimmock, A. P.; Pulkkinen, T. I.; Otto, A.; Ma, X.</p> <p>2014-12-01</p> <p>Our statistical study of magnetosheath velocity fluctuations using 6+ years of THEMIS spacecraft measurements in Magnetosheath InterPlanetary Medium (MIPM) reference frame show that amplitudes of the velocity fluctuations are enhanced in the magnetosheath downstream of the quasi-parallel shock. The fluctuation amplitudes can be substantial and frequencies of these flcutuations can vary. We have examined the role of the i) amplitude, ii) frequency, iii) number of the modes, iv) as well as mode combinations of magnetosheath velocity fluctuations on the growth of Kelvin-Helmholtz Instability (KHI) using high-resolution macro-scale MHD simulations in magnetospheric inertial frame. The results show that even for the same magnetic field and plasma parameters across the magnetopause there can be major differences due to 'magnetosheath fluctuation state' on the growth and dynamical evolution of the KHI. This may provide the missing link how foreshock fluctuations couple to the magnetosphere and into the ionosphere</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017AGUFMSH41B2780N','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017AGUFMSH41B2780N"><span>Searching for a Link Between Suprathermal Ions and Solar Wind Parameters During Quiet Times.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Nickell, J.; Desai, M. I.; Dayeh, M. A.</p> <p>2017-12-01</p> <p>The acceleration processes that suprathermal particles undergo are largely ambiguous. The two prevailing acceleration processes are: 1) Continuous acceleration in the IP space due to i) Bulk velocity fluctuations (e.g., Fahr et al. 2012), ii) magnetic compressions (e.g., Fisk and Gloeckler 2012), iii) magnetic field waves and turbulence (e.g., Zhang and Lee 2013), and iv) reconnection between magnetic islands (e.g., Drake et al. 2014) . 2) Discrete acceleration that occurs in discrete solar events such as CIRs, CME-driven shocks, and flares (e.g., Reames 1999, Desai et al. 2008). Using data from ACE/ULEIS during solar cycles 23 and 24 (1997-present), we examine the solar wind and magnetic field parameters during quiet-times (e.g., Dayeh et al. 2017) in an attempt to gain insights into the acceleration processes of the suprathermal particle population. In particular, we look for compression regions by performing comparative studies between solar wind and magnetic field parameters during quiet-times in the interplanetary space.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2013SPD....44..123J','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2013SPD....44..123J"><span>Comparison of the WSA-ENLIL model with three CME cone types</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Jang, Soojeong; Moon, Y.; Na, H.</p> <p>2013-07-01</p> <p>We have made a comparison of the CME-associated shock propagation based on the WSA-ENLIL model with three cone types using 29 halo CMEs from 2001 to 2002. These halo CMEs have cone model parameters as well as their associated interplanetary (IP) shocks. For this study we consider three different cone types (an asymmetric cone model, an ice-cream cone model and an elliptical cone model) to determine 3-D CME parameters (radial velocity, angular width and source location), which are the input values of the WSA-ENLIL model. The mean absolute error (MAE) of the arrival times for the asymmetric cone model is 10.6 hours, which is about 1 hour smaller than those of the other models. Their ensemble average of MAE is 9.5 hours. However, this value is still larger than that (8.7 hours) of the empirical model of Kim et al. (2007). We will compare their IP shock velocities and densities with those from ACE in-situ measurements and discuss them in terms of the prediction of geomagnetic storms.Abstract (2,250 Maximum Characters): We have made a comparison of the CME-associated shock propagation based on the WSA-ENLIL model with three cone types using 29 halo CMEs from 2001 to 2002. These halo CMEs have cone model parameters as well as their associated interplanetary (IP) shocks. For this study we consider three different cone types (an asymmetric cone model, an ice-cream cone model and an elliptical cone model) to determine 3-D CME parameters (radial velocity, angular width and source location), which are the input values of the WSA-ENLIL model. The mean absolute error (MAE) of the arrival times for the asymmetric cone model is 10.6 hours, which is about 1 hour smaller than those of the other models. Their ensemble average of MAE is 9.5 hours. However, this value is still larger than that (8.7 hours) of the empirical model of Kim et al. (2007). We will compare their IP shock velocities and densities with those from ACE in-situ measurements and discuss them in terms of the prediction of geomagnetic storms.</p> </li> </ol> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_17");'>17</a></li> <li><a href="#" onclick='return showDiv("page_18");'>18</a></li> <li class="active"><span>19</span></li> <li><a href="#" onclick='return showDiv("page_20");'>20</a></li> <li><a href="#" onclick='return showDiv("page_21");'>21</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div><!-- col-sm-12 --> </div><!-- row --> </div><!-- page_19 --> <div id="page_20" class="hiddenDiv"> <div class="row"> <div class="col-sm-12"> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_18");'>18</a></li> <li><a href="#" onclick='return showDiv("page_19");'>19</a></li> <li class="active"><span>20</span></li> <li><a href="#" onclick='return showDiv("page_21");'>21</a></li> <li><a href="#" onclick='return showDiv("page_22");'>22</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div> </div> <div class="row"> <div class="col-sm-12"> <ol class="result-class" start="381"> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.osti.gov/biblio/22663699-investigating-origins-two-extreme-solar-particle-events-proton-source-profile-associated-electromagnetic-emissions','SCIGOV-STC'); return false;" href="https://www.osti.gov/biblio/22663699-investigating-origins-two-extreme-solar-particle-events-proton-source-profile-associated-electromagnetic-emissions"><span>Investigating the Origins of Two Extreme Solar Particle Events: Proton Source Profile and Associated Electromagnetic Emissions</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.osti.gov/search">DOE Office of Scientific and Technical Information (OSTI.GOV)</a></p> <p>Kocharov, Leon; Usoskin, Ilya; Pohjolainen, Silja</p> <p></p> <p>We analyze the high-energy particle emission from the Sun in two extreme solar particle events in which protons are accelerated to relativistic energies and can cause a significant signal even in the ground-based particle detectors. Analysis of a relativistic proton event is based on modeling of the particle transport and interaction, from a near-Sun source through the solar wind and the Earth’s magnetosphere and atmosphere to a detector on the ground. This allows us to deduce the time profile of the proton source at the Sun and compare it with observed electromagnetic emissions. The 1998 May 2 event is associatedmore » with a flare and a coronal mass ejection (CME), which were well observed by the Nançay Radioheliograph, thus the images of the radio sources are available. For the 2003 November 2 event, the low corona images of the CME liftoff obtained at the Mauna Loa Solar Observatory are available. Those complementary data sets are analyzed jointly with the broadband dynamic radio spectra, EUV images, and other data available for both events. We find a common scenario for both eruptions, including the flare’s dual impulsive phase, the CME-launch-associated decimetric-continuum burst, and the late, low-frequency type III radio bursts at the time of the relativistic proton injection into the interplanetary medium. The analysis supports the idea that the two considered events start with emission of relativistic protons previously accelerated during the flare and CME launch, then trapped in large-scale magnetic loops and later released by the expanding CME.« less</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/27690100','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/27690100"><span>Structure, Evolution, and Functions of Bacterial Type III Toxin-Antitoxin Systems.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Goeders, Nathalie; Chai, Ray; Chen, Bihe; Day, Andrew; Salmond, George P C</p> <p>2016-09-28</p> <p>Toxin-antitoxin (TA) systems are small genetic modules that encode a toxin (that targets an essential cellular process) and an antitoxin that neutralises or suppresses the deleterious effect of the toxin. Based on the molecular nature of the toxin and antitoxin components, TA systems are categorised into different types. Type III TA systems, the focus of this review, are composed of a toxic endoribonuclease neutralised by a non-coding RNA antitoxin in a pseudoknotted configuration. Bioinformatic analysis shows that the Type III systems can be classified into subtypes. These TA systems were originally discovered through a phage resistance phenotype arising due to a process akin to an altruistic suicide; the phenomenon of abortive infection. Some Type III TA systems are bifunctional and can stabilise plasmids during vegetative growth and sporulation. Features particular to Type III systems are explored here, emphasising some of the characteristics of the RNA antitoxin and how these may affect the co-evolutionary relationship between toxins and cognate antitoxins in their quaternary structures. Finally, an updated analysis of the distribution and diversity of these systems are presented and discussed.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=5086642','PMC'); return false;" href="https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=5086642"><span>Structure, Evolution, and Functions of Bacterial Type III Toxin-Antitoxin Systems</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pmc">PubMed Central</a></p> <p>Goeders, Nathalie; Chai, Ray; Chen, Bihe; Day, Andrew; Salmond, George P. C.</p> <p>2016-01-01</p> <p>Toxin-antitoxin (TA) systems are small genetic modules that encode a toxin (that targets an essential cellular process) and an antitoxin that neutralises or suppresses the deleterious effect of the toxin. Based on the molecular nature of the toxin and antitoxin components, TA systems are categorised into different types. Type III TA systems, the focus of this review, are composed of a toxic endoribonuclease neutralised by a non-coding RNA antitoxin in a pseudoknotted configuration. Bioinformatic analysis shows that the Type III systems can be classified into subtypes. These TA systems were originally discovered through a phage resistance phenotype arising due to a process akin to an altruistic suicide; the phenomenon of abortive infection. Some Type III TA systems are bifunctional and can stabilise plasmids during vegetative growth and sporulation. Features particular to Type III systems are explored here, emphasising some of the characteristics of the RNA antitoxin and how these may affect the co-evolutionary relationship between toxins and cognate antitoxins in their quaternary structures. Finally, an updated analysis of the distribution and diversity of these systems are presented and discussed. PMID:27690100</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2009SPIE.7385E..0XY','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2009SPIE.7385E..0XY"><span>The use of x-ray pulsar-based navigation method for interplanetary flight</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Yang, Bo; Guo, Xingcan; Yang, Yong</p> <p>2009-07-01</p> <p>As interplanetary missions are increasingly complex, the existing unique mature interplanetary navigation method mainly based on radiometric tracking techniques of Deep Space Network can not meet the rising demands of autonomous real-time navigation. This paper studied the applications for interplanetary flights of a new navigation technology under rapid development-the X-ray pulsar-based navigation for spacecraft (XPNAV), and valued its performance with a computer simulation. The XPNAV is an excellent autonomous real-time navigation method, and can provide comprehensive navigation information, including position, velocity, attitude, attitude rate and time. In the paper the fundamental principles and time transformation of the XPNAV were analyzed, and then the Delta-correction XPNAV blending the vehicles' trajectory dynamics with the pulse time-of-arrival differences at nominal and estimated spacecraft locations within an Unscented Kalman Filter (UKF) was discussed with a background mission of Mars Pathfinder during the heliocentric transferring orbit. The XPNAV has an intractable problem of integer pulse phase cycle ambiguities similar to the GPS carrier phase navigation. This article innovatively proposed the non-ambiguity assumption approach based on an analysis of the search space array method to resolve pulse phase cycle ambiguities between the nominal position and estimated position of the spacecraft. The simulation results show that the search space array method are computationally intensive and require long processing time when the position errors are large, and the non-ambiguity assumption method can solve ambiguity problem quickly and reliably. It is deemed that autonomous real-time integrated navigation system of the XPNAV blending with DSN, celestial navigation, inertial navigation and so on will be the development direction of interplanetary flight navigation system in the future.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2016cosp...41E.963K','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2016cosp...41E.963K"><span>Solar Wind Plasma Flows and Space Weather Aspects Recent Solar Cycle</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Kaushik, Sonia; Kaushik, Subhash Chandra</p> <p>2016-07-01</p> <p>Solar transients are responsible for initiating short - term and long - term variations in earth's magnetosphere. These variations are termed as geomagnetic disturbances, and driven by the interaction of solar wind features with the geo-magnetosphere. The strength of this modulation process depends upon the magnitude and orientation of the Interplanetary Magnetic Field and solar wind parameters. These interplanetary transients are large scale structures containing plasma and magnetic field expelled from the transient active regions of solar atmosphere. As they come to interplanetary medium the interplanetary magnetic field drape around them. This field line draping was thought as possible cause of the characteristic eastward deflection and giving rise to geomagnetic activities as well as a prime factor in producing the modulation effects in the near Earth environment. The Solar cycle 23 has exhibited the unique extended minima and peculiar effects in the geomagnetosphere. Selecting such transients, occurred during this interval, an attempt has been made to determine quantitative relationships of these transients with solar/ interplanetary and Geophysical Parameters. In this work we used hourly values of IMF data obtained from the NSSD Center. The analysis mainly based on looking into the effects of these transients on earth's magnetic field. The high-resolution data IMF Bz and solar wind data obtained from WDC-A, through its omniweb, available during the selected period. Dst and Ap obtained from WDC-Kyoto are taken as indicator of geomagnetic activities. It is found that Dst index, solar wind velocity, proton temperature and the Bz component of magnetic field have higher values and increase just before the occurrence of these events. Larger and varying magnetic field mainly responsible for producing the short-term changes in geomagnetic intensity are observed during these events associated with coronal holes.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.osti.gov/biblio/22663951-preconditioning-interplanetary-space-due-transient-cme-disturbances','SCIGOV-STC'); return false;" href="https://www.osti.gov/biblio/22663951-preconditioning-interplanetary-space-due-transient-cme-disturbances"><span>Preconditioning of Interplanetary Space Due to Transient CME Disturbances</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.osti.gov/search">DOE Office of Scientific and Technical Information (OSTI.GOV)</a></p> <p>Temmer, M.; Reiss, M. A.; Hofmeister, S. J.</p> <p></p> <p>Interplanetary space is characteristically structured mainly by high-speed solar wind streams emanating from coronal holes and transient disturbances such as coronal mass ejections (CMEs). While high-speed solar wind streams pose a continuous outflow, CMEs abruptly disrupt the rather steady structure, causing large deviations from the quiet solar wind conditions. For the first time, we give a quantification of the duration of disturbed conditions (preconditioning) for interplanetary space caused by CMEs. To this aim, we investigate the plasma speed component of the solar wind and the impact of in situ detected interplanetary CMEs (ICMEs), compared to different background solar wind modelsmore » (ESWF, WSA, persistence model) for the time range 2011–2015. We quantify in terms of standard error measures the deviations between modeled background solar wind speed and observed solar wind speed. Using the mean absolute error, we obtain an average deviation for quiet solar activity within a range of 75.1–83.1 km s{sup −1}. Compared to this baseline level, periods within the ICME interval showed an increase of 18%–32% above the expected background, and the period of two days after the ICME displayed an increase of 9%–24%. We obtain a total duration of enhanced deviations over about three and up to six days after the ICME start, which is much longer than the average duration of an ICME disturbance itself (∼1.3 days), concluding that interplanetary space needs ∼2–5 days to recover from the impact of ICMEs. The obtained results have strong implications for studying CME propagation behavior and also for space weather forecasting.« less</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://ntrs.nasa.gov/search.jsp?R=20110015529&hterms=white+cane&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D20%26Ntt%3Dwhite%2Bcane','NASA-TRS'); return false;" href="https://ntrs.nasa.gov/search.jsp?R=20110015529&hterms=white+cane&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D20%26Ntt%3Dwhite%2Bcane"><span>Interplanetary Circumstances of Quasi-Perpendicular Interplanetary Shocks in 1996-2005</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Richardson, I. G.; Cane, H. V.</p> <p>2010-01-01</p> <p>The angle (theta(sub Bn)) between the normal to an interplanetary shock front and the upstream magnetic field direction, though often thought of as a property "of the shock," is also determined by the configuration of the magnetic field immediately upstream of the shock. We investigate the interplanetary circumstances of 105 near-Earth quasi-perpendicular shocks during 1996-2005 identified by theta(sub Bn) greater than or equal to 80 degrees and/or by evidence of shock drift particle acceleration. Around 87% of these shocks were driven by interplanetary coronal mass ejections (ICMEs); the remainder were probably the forward shocks of corotating interaction regions. For around half of the shocks, the upstream field was approximately perpendicular to the radial direction, either east-west or west-east or highly inclined to the ecliptic. Such field directions will give quasi-perpendicular configurations for radially propagating shocks. Around 30% of the shocks were propagating through, or closely followed, ICMEs at the time of observation. Another quarter were propagating through the heliospheric plasma sheet (HPS), and a further quarter occurred in slow solar wind that did not have characteristics of the HPS. Around 11% were observed in high-speed streams, and 7% in the sheaths following other shocks. The fraction of shocks found in high-speed streams is around a third of that expected based on the fraction of the time when such streams were observed at Earth. Quasi-perpendicular shocks are found traveling through ICMEs around 2-3 times more frequently than expected. In addition, shocks propagating through ICMEs are more likely to have larger values of theta(sub Bn) than shocks outside ICMEs.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://hdl.handle.net/2060/19930010020','NASA-TRS'); return false;" href="http://hdl.handle.net/2060/19930010020"><span>The geocentric particulate distribution: Cometary, asteroidal, or space debris?</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Mcdonnell, J. A. M.; Ratcliff, P. R.</p> <p>1992-01-01</p> <p>Definition of the Low Earth Orbit (LEO) particulate environment has been refined considerably with the analysis of data from NASA's Long Duration Exposure Facility (LDEF). Measurements of the impact rates from particulates ranging from sub-micron to millimetres in dimension and, especially, information on their directionality has permitted new scrunity of the sources of the particulates. Modelling of the dynamics of both bound (Earth orbital) and unbound (hyperbolic interplanetary) particulates intercepting LDEF's faces leads to the conclusion that the source is dominantly interplanetary for particle dimensions of greater than some 5 microns diameter; however the anisotropy below this dimension demands lower velocities and is compatible with an orbital component. Characteristics of the LDEF interplanetary component are compatible with familiar meteoroid sources and deep space measurements. Understanding of the orbital component which exceeds the interplanetary flux by a factor of 4 is less clear; although the very small particulates in orbit have been associated with space debris (Lawrance and Brownlee, 1986) this data conflicts with other measurements (McDonnell, Carey and Dixon, 1984) at the same epoch. By analysis of trajectories approaching the Earth and its atmosphere, we have shown that a significant contribution could be captured by aerocapture, i.e., atmospheric drag, from either asteroidal or cometary sources; such enhancement is unlikely however to provide the temporal and spatial fluctuations observed by the LDEF Interplanetary Dust Experiment (Mullholland et al. 1992). A further new mechanism is also examined, that of aerofragmentation capture, where an atmospheric grazing trajectory, which would not normally lead to capture, leads to fragmentation by thermal or mechanical shock; the microparticulates thus created can be injected in large numbers, but only into short-lifetime orbits. The concentration in one particular orbit plane, could explain the temporal fluctuations seen on LDEF; space debris could also explain the phenomenon.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2016cosp...41E1914T','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2016cosp...41E1914T"><span>Heliospheric Impact on Cosmic Rays Modulation</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Tiwari, Bhupendra Kumar</p> <p>2016-07-01</p> <p>Heliospheric Impact on Cosmic RaysModulation B. K. Tiwari Department of Physics, A. P. S. University, Rewa (M.P.), btiwari70@yahoo.com Cosmic rays (CRs) flux at earth is modulated by the heliosphereric magnetic field and the structure of the heliosphere, controls by solar outputs and their variability. Sunspots numbers (SSN) is often treated as a primary indicator of solar activity (SA). GCRs entering the helioshphere are affected by the interplanetary magnetic field (IMF) and solar wind speed, their modulation varies with the varying solar activity. The observation based on data recoded from Omniweb data Centre for solar- interplanetary activity indices and monthly mean count rate of cosmic ray intensity (CRI) data from neutron monitors of different cut-off rigidities(Rc) (Moscow Rc=2.42Gv and Oulu Rc=0.80Gv). During minimum solar activity periodof solar cycle 23/24, the sun is remarkably quiet, weakest strength of the IMF and least dense and slowest, solar wind speed, whereas, in 2003, highest value of yearly averaged solar wind speed (~568 Km/sec) associated with several coronal holes, which generate high speed wind stream has been recorded. It is observed that GCRs fluxes reduces and is high anti-correlated with SSN (0.80) and IMF (0.86). CRI modulation produces by a strong solar flare, however, CME associated solar flare produce more disturbance in the interplanetary medium as well as in geomagnetic field. It is found that count rate of cosmic ray intensity and solar- interplanetary parameters were inverse correlated and solar indices were positive correlated. Keywords- Galactic Cosmic rays (GCRs), Sunspot number (SSN), Solar activity (SA), Coronal Mass Ejection (CME), Interplanetary magnetic field (IMF)</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/2660146','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/2660146"><span>Identification of a high-virulence clone of type III Streptococcus agalactiae (group B Streptococcus) causing invasive neonatal disease.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Musser, J M; Mattingly, S J; Quentin, R; Goudeau, A; Selander, R K</p> <p>1989-06-01</p> <p>Chromosomal genotypes of 128 isolates of six serotypes (Ia, Ib, Ic, II, Ic/II, and III) of Streptococcus agalactiae (group B Streptococcus) recovered predominantly from human infants in the United States were characterized by an analysis of electrophoretically demonstrable allelic profiles at 11 metabolic enzyme loci. Nineteen distinctive electrophoretic types (ETs), representing multilocus clonal genotypes, were identified. Mean genetic diversity per locus among ETs of isolates of the same serotype was, on average, nearly equal to that in all 19 ETs. Cluster analysis of the ETs revealed two primary phylogenetic divisions at a genetic distance of 0.65. A single clone (ET 1) represented by 40 isolates expressing type III antigen formed division I. Division II was composed of 18 ETs in three major lineages diverging from one another at distances greater than 0.35 and included strains of all six antigenic classes. The type III organisms in division I produce more extracellular neuraminidase and apparently are more virulent than the type III strains in division II, which are related to strains of other serotypes that cause disease much less frequently. The existence of this unusually virulent clone accounts, in major part, for the high morbidity and mortality associated with infection by type III organisms.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/2823254','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/2823254"><span>Transposon mutagenesis of type III group B Streptococcus: correlation of capsule expression with virulence.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Rubens, C E; Wessels, M R; Heggen, L M; Kasper, D L</p> <p>1987-10-01</p> <p>The capsular polysaccharide of type III group B Streptococcus (GBS) is thought to be a major factor in the virulence of this organism. Transposon mutagenesis was used to obtain isogenic strains of a GBS serotype III clinical isolate (COH 31r/s) with site-specific mutations in the gene(s) responsible for capsule production. The self-conjugative transposon Tn916 was transferred to strain COH 31r/s during incubation with Streptococcus faecalis strain CG110 on membrane filters. Eleven transconjugant clones did not bind type III GBS antiserum by immunoblot. Immunofluorescence, competitive ELISA, and electron microscopy confirmed the absence of detectable GBS type III capsular polysaccharide in one of the transconjugants, COH 31-15. Southern hybridization analysis with a Tn916 probe confirmed the presence of the transposon sequence within each mutant. A 3.0-kilobase EcoRI fragment that flanked the Tn916 sequence was subcloned from mutant COH 31-15. This fragment shared homology with DNA from the other GBS serotypes, suggesting a common sequence for capsulation shared by organisms of different capsular types. Loss of capsule expression resulted in loss of virulence in a neonatal rat model. We conclude that a gene common to all capsular types of GBS is required for surface expression of the type III capsule and that inactivation of this gene by Tn916 results in the loss of virulence.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/23331413','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/23331413"><span>Autosomal dominant cerebellar ataxia type III: a review of the phenotypic and genotypic characteristics.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Fujioka, Shinsuke; Sundal, Christina; Wszolek, Zbigniew K</p> <p>2013-01-18</p> <p>Autosomal Dominant Cerebellar Ataxia (ADCA) Type III is a type of spinocerebellar ataxia (SCA) classically characterized by pure cerebellar ataxia and occasionally by non-cerebellar signs such as pyramidal signs, ophthalmoplegia, and tremor. The onset of symptoms typically occurs in adulthood; however, a minority of patients develop clinical features in adolescence. The incidence of ADCA Type III is unknown. ADCA Type III consists of six subtypes, SCA5, SCA6, SCA11, SCA26, SCA30, and SCA31. The subtype SCA6 is the most common. These subtypes are associated with four causative genes and two loci. The severity of symptoms and age of onset can vary between each SCA subtype and even between families with the same subtype. SCA5 and SCA11 are caused by specific gene mutations such as missense, inframe deletions, and frameshift insertions or deletions. SCA6 is caused by trinucleotide CAG repeat expansions encoding large uninterrupted glutamine tracts. SCA31 is caused by repeat expansions that fall outside of the protein-coding region of the disease gene. Currently, there are no specific gene mutations associated with SCA26 or SCA30, though there is a confirmed locus for each subtype. This disease is mainly diagnosed via genetic testing; however, differential diagnoses include pure cerebellar ataxia and non-cerebellar features in addition to ataxia. Although not fatal, ADCA Type III may cause dysphagia and falls, which reduce the quality of life of the patients and may in turn shorten the lifespan. The therapy for ADCA Type III is supportive and includes occupational and speech modalities. There is no cure for ADCA Type III, but a number of recent studies have highlighted novel therapies, which bring hope for future curative treatments.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=3558377','PMC'); return false;" href="https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=3558377"><span>Autosomal dominant cerebellar ataxia type III: a review of the phenotypic and genotypic characteristics</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pmc">PubMed Central</a></p> <p></p> <p>2013-01-01</p> <p>Autosomal Dominant Cerebellar Ataxia (ADCA) Type III is a type of spinocerebellar ataxia (SCA) classically characterized by pure cerebellar ataxia and occasionally by non-cerebellar signs such as pyramidal signs, ophthalmoplegia, and tremor. The onset of symptoms typically occurs in adulthood; however, a minority of patients develop clinical features in adolescence. The incidence of ADCA Type III is unknown. ADCA Type III consists of six subtypes, SCA5, SCA6, SCA11, SCA26, SCA30, and SCA31. The subtype SCA6 is the most common. These subtypes are associated with four causative genes and two loci. The severity of symptoms and age of onset can vary between each SCA subtype and even between families with the same subtype. SCA5 and SCA11 are caused by specific gene mutations such as missense, inframe deletions, and frameshift insertions or deletions. SCA6 is caused by trinucleotide CAG repeat expansions encoding large uninterrupted glutamine tracts. SCA31 is caused by repeat expansions that fall outside of the protein-coding region of the disease gene. Currently, there are no specific gene mutations associated with SCA26 or SCA30, though there is a confirmed locus for each subtype. This disease is mainly diagnosed via genetic testing; however, differential diagnoses include pure cerebellar ataxia and non-cerebellar features in addition to ataxia. Although not fatal, ADCA Type III may cause dysphagia and falls, which reduce the quality of life of the patients and may in turn shorten the lifespan. The therapy for ADCA Type III is supportive and includes occupational and speech modalities. There is no cure for ADCA Type III, but a number of recent studies have highlighted novel therapies, which bring hope for future curative treatments. PMID:23331413</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://eric.ed.gov/?q=david+AND+sillence&id=EJ858489','ERIC'); return false;" href="https://eric.ed.gov/?q=david+AND+sillence&id=EJ858489"><span>Extrapyramidal Symptoms and Medication Use in Mucopolysaccharidosis Type III</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.eric.ed.gov/ERICWebPortal/search/extended.jsp?_pageLabel=advanced">ERIC Educational Resources Information Center</a></p> <p>Tchan, Michel C.; Sillence, David</p> <p>2009-01-01</p> <p>Background: We report the case of a 16-year-old male with Mucopolysaccharidosis III type A (Sanfilippo syndrome) who was commenced on risperidone for behaviour management. He rapidly developed extrapyramidal symptoms that have not resolved. Method: The medication histories of 20 patients with Mucopolysaccharidosis III seen at a Lysosomal Storage…</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2018A%26A...614A..69R','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2018A%26A...614A..69R"><span>Solar type III radio burst time characteristics at LOFAR frequencies and the implications for electron beam transport</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Reid, Hamish A. S.; Kontar, Eduard P.</p> <p>2018-06-01</p> <p>Context. Solar type III radio bursts contain a wealth of information about the dynamics of electron beams in the solar corona and the inner heliosphere; this information is currently unobtainable through other means. However, the motion of different regions of an electron beam (front, middle, and back) have never been systematically analysed before. Aims: We characterise the type III burst frequency-time evolution using the enhanced resolution of LOFAR (LOw Frequency ARray) in the frequency range 30-70 MHz and use this to probe electron beam dynamics. Methods: The rise, peak, and decay times with a 0.2 MHz spectral resolution were defined for a collection of 31 type III bursts. The frequency evolution was used to ascertain the apparent velocities of the front, middle, and back of the type III sources, and the trends were interpreted using theoretical and numerical treatments. Results: The type III time profile was better approximated by an asymmetric Gaussian profile and not an exponential, as was used previously. Rise and decay times increased with decreasing frequency and showed a strong correlation. Durations were shorter than previously observed. Drift rates from the rise times were faster than from the decay times, corresponding to inferred mean electron beam speeds for the front, middle, and back of 0.2, 0.17, 0.15 c, respectively. Faster beam speeds correlate with shorter type III durations. We also find that the type III frequency bandwidth decreases as frequency decreases. Conclusions: The different speeds naturally explain the elongation of an electron beam in space as it propagates through the heliosphere. The expansion rate is proportional to the mean speed of the exciter; faster beams expand faster. Beam speeds are attributed to varying ensembles of electron energies at the front, middle, and back of the beam.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://ntrs.nasa.gov/search.jsp?R=19900024450&hterms=Wind+Pump&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D10%26Ntt%3DWind%2BPump','NASA-TRS'); return false;" href="https://ntrs.nasa.gov/search.jsp?R=19900024450&hterms=Wind+Pump&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D10%26Ntt%3DWind%2BPump"><span>Filamentation instability of magnetosonic waves in the solar wind environment</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Kuo, S. P.; Lee, M. C.</p> <p>1989-01-01</p> <p>Intense magnetosonic waves, originally propagating at the right angle with the interplanetary magnetic field, can excite a purely growing mode along the interplanetary magnetic field together with two symmetric magnetosonic sidebands propagating obliquely across the magnetic field. This instability process leads to the filamentation of the magnetosonic pump waves. These two excited magnetosonic sideband modes propagate together perpendicularly across the magnetic field and, meanwhile, form a standing wave pattern along the magnetic field. The thresholds of this filamentation instability can be exceeded in the solar wind environment. It is predicted that the density fluctuations produced by the filamentation instability along the interplanetary magnetic field have wavelengths greater than, at least, a few earth radii. The polarization of the obliquely propagating magnetosonic waves excited by the filamentation instability is determined by the characteristics of the magnetosonic pump waves and the environmental plasmas.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://ntrs.nasa.gov/search.jsp?R=19880026249&hterms=Magnetic+energy&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D70%26Ntt%3DMagnetic%2Benergy','NASA-TRS'); return false;" href="https://ntrs.nasa.gov/search.jsp?R=19880026249&hterms=Magnetic+energy&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D70%26Ntt%3DMagnetic%2Benergy"><span>ISEE 3 observations of low-energy proton bidirectional events and their relation to isolated interplanetary magnetic structures</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Marsden, R. G.; Sanderson, T. R.; Tranquille, C.; Wenzel, K.-P.; Smith, E. J.</p> <p>1987-01-01</p> <p>The paper represents the results of a comprehensive survey of low-energy proton bidirectional anisotropies and associated transient magnetic structures as observed in the 35-1600 keV energy range on ISEE-3 during the last solar maximum. The majority of observed bidirectional flow (BDF) events (more than 70 percent) are associated with isolated magnetic structures which are postulated to be an interplanetary manifestation of coronal mass ejection (CME) events. The observed BDF events can be qualitatively grouped into five classes depending on the field signature of the related magnetic structure and the association (or lack of association) with an interplanetary shock. Concerning the topology of the CME-related magnetic structures, the observations are interpreted as being consistent with a detached bubble, comprising closed loops or tightly wound helices.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2018ARep...62..346C','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2018ARep...62..346C"><span>Coronal Mass Ejections in September 2017 from Monitoring of Interplanetary Scintillations with the Large Phased Array of the Lebedev Institute of Physics</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Chashei, I. V.; Tyul'bashev, S. A.; Shishov, V. I.; Subaev, I. A.</p> <p>2018-05-01</p> <p>Results of monitoring of interplanetary scintillations with the Large Phased Array of the Pushchino Radio AstronomyObservatory at 111 MHz during a period of flare activity of the Sun in the first ten days of September 2017 are presented. Enhancements of scintillations associated with interplanetary coronal mass ejections propagating after limb flares have been recorded. The propagation velocities are estimated to be about 2000 km/s for an ejection on September 7 and about 1000 km/s for an ejection on September 6. It is shown that, during the propagation from the Sun, the lateral part of the ejections decelerates faster than its leading part. Night-time enhancements of second-timescale scintillations during periods of high geomagnetic activity have an ionospheric origin.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://hdl.handle.net/2060/19750016535','NASA-TRS'); return false;" href="http://hdl.handle.net/2060/19750016535"><span>Interplanetary charged particle models (1974). [and the effects of cosmic exposure upon spacecraft and spacecraft components</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Divine, N.</p> <p>1975-01-01</p> <p>The design of space vehicles for operation in interplanetary space is given, based on descriptions of solar wind, solar particle events, and galactic cosmic rays. A state-of-the-art review is presented and design criteria are developed from experiment findings aboard interplanetary and high-altitude earth-orbiting spacecraft. Solar cells were found to be particularly sensitive. Solar protons may also impact the reliability of electric propulsion systems and spacecraft surfaces, as well as causing interference, detector saturation, and spurious signals. Galactic cosmic-ray impact can lead to similar electronic failure and interference and may register in photographic films and other emulsions. It was concluded that solar wind electron measurements might result from differential charging when shadowed portions of the spacecraft acquired a negative charge from electron impact.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://hdl.handle.net/2060/19760024027','NASA-TRS'); return false;" href="http://hdl.handle.net/2060/19760024027"><span>Interplanetary boundary layers at 1 AU. [magnetic field measurements from Explorer 34</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Burlaga, L. F.; Lemaire, J. F.; Turner, J. M.</p> <p>1976-01-01</p> <p>The structure and nature of discontinuities in the interplanetary magnetic field at 1 AU in the period March 18, 1971 to April 9, 1971, is determined by using high-resolution magnetic field measurements from Explorer 34. The discontinuities that were selected for this analysis occurred under a variety of interplanetary conditions at an average rate of 0.5/hr. This set does not include all discontinuities that were present, but the sample is large and it is probably representative. Both tangential and rotational discontinuities were identified, the ratio of TD's to RD's being approximately 3 to 1. Tangential discontinuities were observed every day, even among Alfvenic fluctuations. The structure of most of the boundary layers was simple and ordered, i.e., the magnetic field usually changed smoothly and monotonically from one side of the boundary layer to the other.</p> </li> </ol> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_18");'>18</a></li> <li><a href="#" onclick='return showDiv("page_19");'>19</a></li> <li class="active"><span>20</span></li> <li><a href="#" onclick='return showDiv("page_21");'>21</a></li> <li><a href="#" onclick='return showDiv("page_22");'>22</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div><!-- col-sm-12 --> </div><!-- row --> </div><!-- page_20 --> <div id="page_21" class="hiddenDiv"> <div class="row"> <div class="col-sm-12"> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_19");'>19</a></li> <li><a href="#" onclick='return showDiv("page_20");'>20</a></li> <li class="active"><span>21</span></li> <li><a href="#" onclick='return showDiv("page_22");'>22</a></li> <li><a href="#" onclick='return showDiv("page_23");'>23</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div> </div> <div class="row"> <div class="col-sm-12"> <ol class="result-class" start="401"> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/1989ommd.proc..191S','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/1989ommd.proc..191S"><span>Earth orbital operations supporting manned interplanetary missions</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Sherwood, Brent; Buddington, Patricia A.; Whittaker, William L.</p> <p></p> <p>The orbital operations required to accumulate, assemble, test, verify, maintain, and launch complex manned space systems on interplanetary missions from earth orbit are as vital as the flight hardware itself. Vast numbers of orbital crew are neither necessary nor desirable for accomplishing the required tasks. A suite of robotic techniques under human supervisory control, relying on sensors, software and manipulators either currently emergent or already applied in terrestrial settings, can make the job tractable. The mission vehicle becomes largely self-assembling, using its own rigid aerobrake as a work platform. The Space Station, having been used as a laboratory testbed and to house an assembly crew of four, is not dominated by the process. A feasible development schedule, if begun soon, could emplace orbital support technologies for exploration missions in time for a 2004 first interplanetary launch.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://hdl.handle.net/2060/20120015887','NASA-TRS'); return false;" href="http://hdl.handle.net/2060/20120015887"><span>Coronal Mass Ejections Near the Sun and in the Interplanetary Medium</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Gopalswamy, Nat</p> <p>2012-01-01</p> <p>Coronal mass ejections (CMEs) are the most energetic phenomenon in the heliosphere. During solar eruptions, the released energy flows out from the Sun in the form of magnetized plasma and electromagnetic radiation. The electromagnetic radiation suddenly increases the ionization content of the ionosphere, thus impacting communication and navigation systems. The plasma clouds can drive shocks that accelerate charged particles to very high energies in the interplanetary space, which pose radiation hazard to astronauts and space systems. The plasma clouds also arrive at Earth in about two days and impact Earth's magnetosphere, producing geomagnetic storms. The magnetic storms result in a number of effects including induced currents that can disrupt power grids, railroads, and underground pipelines. This lecture presents an overview of the origin, propagation, and geospace consequences of CMEs and their interplanetary counterparts.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://hdl.handle.net/2060/20110005580','NASA-TRS'); return false;" href="http://hdl.handle.net/2060/20110005580"><span>Atypical Particle Heating at a Supercritical Interplanetary Shock</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Wilson, Lynn B., III</p> <p>2010-01-01</p> <p>We present the first observations at an interplanetary shock of large amplitude (> 100 mV/m pk-pk) solitary waves and large amplitude (approx.30 mV/m pk-pk) waves exhibiting characteristics consistent with electron Bernstein waves. The Bernstein-like waves show enhanced power at integer and half-integer harmonics of the cyclotron frequency with a broadened power spectrum at higher frequencies, consistent with the electron cyclotron drift instability. The Bernstein-like waves are obliquely polarized with respect to the magnetic field but parallel to the shock normal direction. Strong particle heating is observed in both the electrons and ions. The observed heating and waveforms are likely due to instabilities driven by the free energy provided by reflected ions at this supercritical interplanetary shock. These results offer new insights into collisionless shock dissipation and wave-particle interactions in the solar wind.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://hdl.handle.net/2060/19880003642','NASA-TRS'); return false;" href="http://hdl.handle.net/2060/19880003642"><span>The VISTA spacecraft: Advantages of ICF (Inertial Confinement Fusion) for interplanetary fusions propulsion applications</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Orth, Charles D.; Klein, Gail; Sercel, Joel; Hoffman, Nate; Murray, Kathy; Chang-Diaz, Franklin</p> <p>1987-01-01</p> <p>Inertial Confinement Fusion (ICF) is an attractive engine power source for interplanetary manned spacecraft, especially for near-term missions requiring minimum flight duration, because ICF has inherent high power-to-mass ratios and high specific impulses. We have developed a new vehicle concept called VISTA that uses ICF and is capable of round-trip manned missions to Mars in 100 days using A.D. 2020 technology. We describe VISTA's engine operation, discuss associated plasma issues, and describe the advantages of DT fuel for near-term applications. Although ICF is potentially superior to non-fusion technologies for near-term interplanetary transport, the performance capabilities of VISTA cannot be meaningfully compared with those of magnetic-fusion systems because of the lack of a comparable study of the magnetic-fusion systems. We urge that such a study be conducted.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://hdl.handle.net/2060/20150007929','NASA-TRS'); return false;" href="http://hdl.handle.net/2060/20150007929"><span>Interplanetary and Interstellar Dust Observed by the Wind/WAVES Electric Field Instrument</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Malaspina, David; Horanyi, M.; Zaslavsky, A.; Goetz, K.; Wilson, L. B., III; Kersten, K.</p> <p>2014-01-01</p> <p>Observations of hypervelocity dust particles impacting the Wind spacecraft are reported here for the first time using data from the WindWAVES electric field instrument. A unique combination of rotating spacecraft, amplitude-triggered high-cadence waveform collection, and electric field antenna configuration allow the first direct determination of dust impact direction by any spacecraft using electric field data. Dust flux and impact direction data indicate that the observed dust is approximately micron-sized with both interplanetary and interstellar populations. Nanometer radius dust is not detected by Wind during times when nanometer dust is observed on the STEREO spacecraft and both spacecraft are in close proximity. Determined impact directions suggest that interplanetary dust detected by electric field instruments at 1 AU is dominated by particles on bound trajectories crossing Earths orbit, rather than dust with hyperbolic orbits.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://ntrs.nasa.gov/search.jsp?R=20030073597&hterms=spectrophotometer&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D70%26Ntt%3Dspectrophotometer','NASA-TRS'); return false;" href="https://ntrs.nasa.gov/search.jsp?R=20030073597&hterms=spectrophotometer&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D70%26Ntt%3Dspectrophotometer"><span>Mid-Infrared Spectrum of the Zodiacal Emission: Detection of Crystalline Silicates in Interplanetary Dust</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Ootsubo, T.; Onaka, T.; Yamamura, I.; Ishihara, D.; Tanabe, T.; Roellig, T. L.</p> <p>2003-01-01</p> <p>Within a few astronomical units of the Sun the solar system is filled with interplanetary dust, which is believed to be dust of cometary and asteroidal origin. Spectroscopic observations of the zodiacal emission with moderate resolution provide key information on the composition and size distribution of the dust in the interplanetary space. They can be compared directly to laboratory measurements of candidate materials, meteorites, and dust particles collected in the stratosphere. Recently mid-infrared spectroscopic observations of the zodiacal emission have been made by two instruments on board the Infrared Space Observatory; the camera (ISOCAM) and the spectrophotometer (ISOPHOT-S). A broad excess emission feature in the 9-11 micron range is reported in the ISOCAM spectrum, whereas the ISOPHOT-S spectra in 6-12 microns can be well fitted by a blackbody radiation without spectral features.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2010P%26SS...58.1180P','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2010P%26SS...58.1180P"><span>Laboratory simulation of interplanetary ultraviolet radiation (broad spectrum) and its effects on Deinococcus radiodurans</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Paulino-Lima, Ivan Gláucio; Pilling, Sérgio; Janot-Pacheco, Eduardo; de Brito, Arnaldo Naves; Barbosa, João Alexandre Ribeiro Gonçalves; Leitão, Alvaro Costa; Lage, Claudia de Alencar Santos</p> <p>2010-08-01</p> <p>The radiation-resistant bacterium Deinococcus radiodurans was exposed to a simulated interplanetary UV radiation at the Brazilian Synchrotron Light Laboratory (LNLS). Bacterial samples were irradiated on different substrates to investigate the influence of surface relief on cell survival. The effects of cell multi-layers were also investigated. The ratio of viable microorganisms remained virtually the same (average 2%) for integrated doses from 1.2 to 12 kJ m -2, corresponding to 16 h of irradiation at most. The asymptotic profiles of the curves, clearly connected to a shielding effect provided by multi-layering cells on a cavitary substrate (carbon tape), means that the inactivation rate may not change significantly along extended periods of exposure to radiation. Such high survival rates reinforce the possibility of an interplanetary transfer of viable microbes.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://ntrs.nasa.gov/search.jsp?R=19900056445&hterms=Whittaker&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAuthor-Name%26N%3D0%26No%3D20%26Ntt%3DWhittaker','NASA-TRS'); return false;" href="https://ntrs.nasa.gov/search.jsp?R=19900056445&hterms=Whittaker&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAuthor-Name%26N%3D0%26No%3D20%26Ntt%3DWhittaker"><span>Earth orbital operations supporting manned interplanetary missions</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Sherwood, Brent; Buddington, Patricia A.; Whittaker, William L.</p> <p>1989-01-01</p> <p>The orbital operations required to accumulate, assemble, test, verify, maintain, and launch complex manned space systems on interplanetary missions from earth orbit are as vital as the flight hardware itself. Vast numbers of orbital crew are neither necessary nor desirable for accomplishing the required tasks. A suite of robotic techniques under human supervisory control, relying on sensors, software and manipulators either currently emergent or already applied in terrestrial settings, can make the job tractable. The mission vehicle becomes largely self-assembling, using its own rigid aerobrake as a work platform. The Space Station, having been used as a laboratory testbed and to house an assembly crew of four, is not dominated by the process. A feasible development schedule, if begun soon, could emplace orbital support technologies for exploration missions in time for a 2004 first interplanetary launch.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=4748077','PMC'); return false;" href="https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=4748077"><span>Amiloride-Insensitive Salt Taste Is Mediated by Two Populations of Type III Taste Cells with Distinct Transduction Mechanisms</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pmc">PubMed Central</a></p> <p>Sukumaran, Sunil K.; Margolskee, Robert F.; Bachmanov, Alexander A.</p> <p>2016-01-01</p> <p>Responses in the amiloride-insensitive (AI) pathway, one of the two pathways mediating salty taste in mammals, are modulated by the size of the anion of a salt. This “anion effect” has been hypothesized to result from inhibitory transepithelial potentials (TPs) generated across the lingual epithelium as cations permeate through tight junctions and leave their larger and less permeable anions behind (Ye et al., 1991). We tested directly the necessity of TPs for the anion effect by measuring responses to NaCl and Na-gluconate (small and large anion sodium salts, respectively) in isolated taste cells from mouse circumvallate papillae. Using calcium imaging, we identified AI salt-responsive type III taste cells and demonstrated that they compose a subpopulation of acid-responsive taste cells. Even in the absence of TPs, many (66%) AI salt-responsive type III taste cells still exhibited the anion effect, demonstrating that some component of the transduction machinery for salty taste in type III cells is sensitive to anion size. We hypothesized that osmotic responses could explain why a minority of type III cells (34%) had AI salt responses but lacked anion sensitivity. All AI type III cells had osmotic responses to cellobiose, which were significantly modulated by extracellular sodium concentration, suggesting the presence of a sodium-conducting osmotically sensitive ion channel. However, these responses were significantly larger in AI type III cells that did not exhibit the anion effect. These findings indicate that multiple mechanisms could underlie AI salt responses in type III taste cells, one of which may contribute to the anion effect. SIGNIFICANCE STATEMENT Understanding the mechanisms underlying salty taste will help inform strategies to combat the health problems associated with NaCl overconsumption by humans. Of the two pathways underlying salty taste in mammals, the amiloride-insensitive (AI) pathway is the least understood. Using calcium imaging of isolated mouse taste cells, we identify two separate populations of AI salt-responsive type III taste cells distinguished by their sensitivity to anion size and show that these cells compose subpopulations of acid-responsive taste cells. We also find evidence that a sodium-conducting osmotically sensitive mechanism contributes to salt responses in type III taste cells. Our data not only provide new insights into the transduction mechanisms of AI salt taste but also have important implications for general theories of taste encoding. PMID:26865617</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2018SoPh..293...41M','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2018SoPh..293...41M"><span>Spectropolarimetric Observations of Solar Noise Storms at Low Frequencies</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Mugundhan, V.; Ramesh, R.; Kathiravan, C.; Gireesh, G. V. S.; Hegde, Aathira</p> <p>2018-03-01</p> <p>A new high-resolution radio spectropolarimeter instrument operating in the frequency range of 15 - 85 MHz has recently been commissioned at the Radio Astronomy Field Station of the Indian Institute of Astrophysics at Gauribidanur, 100 km north of Bangalore, India. We describe the design and construction of this instrument. We present observations of a solar radio noise storm associated with Active Region (AR) 12567 in the frequency range of {≈} 15 - 85 MHz during 18 and 19 July 2016, observed using this instrument in the meridian-transit mode. This is the first report that we are aware of in which both the burst and continuum properties are derived simultaneously. Spectral indices and degree of polarization of both the continuum radiation and bursts are estimated. It is found that i) Type I storm bursts have a spectral index of {≈} {+}3.5, ii) the spectral index of the background continuum is ≈+2.9, iii) the transition frequency between Type I and Type III storms occurs at ≈55 MHz, iv) Type III bursts have an average spectral index of ≈-2.7, v) the spectral index of the Type III continuum is ≈-1.6, and vi) the degree of circular polarization of all Type I (Type III) bursts is ≈90% (30%). The results obtained here indicate that the continuum emission is due to bursts occurring in rapid succession. We find that the derived parameters for Type I bursts are consistent with suprathermal electron acceleration theory and those of Type III favor fundamental plasma emission.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://hdl.handle.net/2060/19950004531','NASA-TRS'); return false;" href="http://hdl.handle.net/2060/19950004531"><span>Workshop on the Analysis of Interplanetary Dust Particles</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Zolensky, Michael E. (Editor)</p> <p>1994-01-01</p> <p>Great progress has been made in the analysis of interplanetary dust particles (IDP's) over the past few years. This workshop provided a forum for the discussion of the following topics: observation and modeling of dust in the solar system, mineralogy and petrography of IDP's, processing of IDP's in the solar system and terrestrial atmosphere, comparison of IDP's to meteorites and micrometeorites, composition of IDP's, classification, and collection of IDP's.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.osti.gov/biblio/5500967-relativistic-solar-particle-events-during-stip-study-travelling-interplanetary-phenomena-intervals-ii-iv','SCIGOV-STC'); return false;" href="https://www.osti.gov/biblio/5500967-relativistic-solar-particle-events-during-stip-study-travelling-interplanetary-phenomena-intervals-ii-iv"><span>Relativistic solar particle events during STIP (study of travelling interplanetary phenomena) intervals II and IV</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.osti.gov/search">DOE Office of Scientific and Technical Information (OSTI.GOV)</a></p> <p>Shea, M.A.; Smart, D.F.</p> <p>1982-12-27</p> <p>Using spaceship 'Earth' as a detector located at 1 AU, the relativistic solar cosmic ray events of 30 April 1976 and 22 November 1977 are compared to deduce the relativistic solar particle flux anisotropy and pitch angle characteristics in the interplanetary medium. These two ground level events occurred during STIP Interval II and IV respectively - periods of time of coordinated and cooperative scientific efforts.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/1998ATel...19....1H','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/1998ATel...19....1H"><span>3rd Interplanetary Network Gamma-Ray Burst Website</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Hurley, Kevin</p> <p>1998-05-01</p> <p>We announce the opening of the 3rd Interplanetary Network web site at http://ssl.berkeley.edu/ipn3/index.html This site presently has four parts: 1. A bibliography of over 3000 publications on gamma-ray bursts, 2. IPN data on all bursts triangulated up to February 1998, 3. A master list showing which spacecraft observed which bursts, 4. Preliminary IPN data on the latest bursts observed.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/1992AIPC..246..130G','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/1992AIPC..246..130G"><span>Integrated shielding systems for manned interplanetary spaceflight</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>George, Jeffrey A.</p> <p>1992-01-01</p> <p>The radiation environment encountered by manned interplanetary missions can have a severe impact on both vehicle design and mission performance. This study investigates the potential impact of radiation protection on interplanetary vehicle design for a manned Mars mission. A systems approach was used to investigate the radiation protection requirements of the sum interplanetary environment. Radiation budgets were developed which result in minimum integrated shielding system masses for both nuclear and non-nuclear powered missions. A variety of system configurations and geometries were assessed over a range of dose constraints. For an annual dose equivalent rate limit of 50 rem/yr, an environmental shielding system composed of a habitat shield and storm shelter was found to result in the lowest total mass. For a limit of 65 rem/yr, a system composed of a sleeping quarters shield was least massive, and resulted in significantly reduced system mass. At a limit of 75 rem/yr, a storm shelter alone was found to be sufficient, and exhibited a further mass reduction. Optimal shielding system results for 10 MWe nuclear powered missions were found to follow along similar lines, with the addition of a reactor shadow shield. A solar minimum galactic cosmic ray spectrum and one anomalously large solar particle event during the course of a two year mission were assumed. Water was assumed for environmental radiation shielding.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://hdl.handle.net/2060/19740005453','NASA-TRS'); return false;" href="http://hdl.handle.net/2060/19740005453"><span>Variation with interplanetary sector of the total magnetic field measured at the OGO 2, 4, and 6 satellites</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Langel, R. A.</p> <p>1973-01-01</p> <p>Variations in the scalar magnetic field (delta B) from the polar orbiting OGO 2, 4, and 6 spacecraft are examined as a function of altitude for times when the interplanetary magnetic field is toward the sun and for times when the interplanetary magnetic field away from the sun. This morphology is basically the same as that found when all data, irrespective of interplanetary magnetic sector, are averaged together. Differences in delta B occur, both between sectors and between seasons, which are similar in nature to variations in the surface delta Z found by Langel (1973c). The altitude variation of delta B at sunlit local times, together with delta Z at the earth's surface, demonstrates that the delta Z and delta B which varies with sector has an ionospheric source. Langel (1973b) showed that the positive delta B region in the dark portion of the hemisphere is due to at least two sources, the westward electrojet and an unidentified non-ionospheric source(s). Comparison of magnetic variations between season/sector at the surface and at the satellite, in the dark portion of the hemisphere, indicates that these variations are caused by variations in the latitudinally narrow electrojet currents and not by variations in the non-ionospheric source of delta B.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017AGUFM.G11A0694N','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017AGUFM.G11A0694N"><span>Smoothing and Predicting Celestial Pole Offsets using a Kalman Filter and Smoother</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Nastula, J.; Chin, T. M.; Gross, R. S.; Winska, M.; Winska, J.</p> <p>2017-12-01</p> <p>Since the early days of interplanetary spaceflight, accounting for changes in the Earth's rotation is recognized to be critical for accurate navigation. In the 1960s, tracking anomalies during the Ranger VII and VIII lunar missions were traced to errors in the Earth orientation parameters. As a result, Earth orientation calibration methods were improved to support the Mariner IV and V planetary missions. Today, accurate Earth orientation parameters are used to track and navigate every interplanetary spaceflight mission. The interplanetary spacecraft tracking and navigation teams at JPL require the UT1 and polar motion parameters, and these Earth orientation parameters are estimated by the use of a Kalman filter to combine past measurements of these parameters and predict their future evolution. A model was then used to provide the nutation/precession components of the Earth's orientation separately. As a result, variations caused by the free core nutation were not taken into account. But for the highest accuracy, these variations must be considered. So JPL recently developed an approach based upon the use of a Kalman filter and smoother to provide smoothed and predicted celestial pole offsets (CPOs) to the interplanetary spacecraft tracking and navigation teams. The approach used at JPL to do this and an evaluation of the accuracy of the predicted CPOs will be given here.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2016AIPC.1720g0009Y','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2016AIPC.1720g0009Y"><span>The angular distribution of solar wind ˜20-200 keV superhalo electrons at quiet times</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Yang, Liu; Wang, Linghua; Li, Gang; He, Jiansen; Salem, Chadi S.; Tu, Chuanyi; Wimmer-Schweingruber, Robert F.; Bale, Stuart D.</p> <p>2016-03-01</p> <p>We present a comprehensive study of the angular distribution of ˜20-200 keV superhalo electrons measured at 1 AU by the WIND 3DP instrument during quiet times from 1995 January through 2005 December. According to the interplanetary magnetic field, we re-bin the observed electron pitch angle distributions to obtain the differential flux, Jout (Jin), of electrons traveling outward from (inward toward) the Sun, and define the anisotropy of superhalo electrons as A =2/(Jo u t-Ji n) Jo u t+Ji n at a given energy. We found that for out in ˜96% of the selected quiet-time samples, superhalo electrons have isotropic angular distributions, while for ˜3% (˜1%) of quiet-time samples, superhalo electrons are outward-anisotropic (inward-anisotropic). All three groups of angular distributions show no correlation with the local solar wind plasma, interplanetary magnetic field and turbulence. Furthermore, the superhalo electron spectral index shows no correlation with the spectral index of local solar wind turbulence. These quiet-time superhalo electrons may be accelerated by nonthermal processes related to the solar wind source and strongly scattered/ reflected in the interplanetary medium, or could be formed due to the electron acceleration through the interplanetary medium.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2016AIPC.1720g0004L','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2016AIPC.1720g0004L"><span>Solar energetic particle anisotropies and insights into particle transport</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Leske, R. A.; Cummings, A. C.; Cohen, C. M. S.; Mewaldt, R. A.; Labrador, A. W.; Stone, E. C.; Wiedenbeck, M. E.; Christian, E. R.; Rosenvinge, T. T. von</p> <p>2016-03-01</p> <p>As solar energetic particles (SEPs) travel through interplanetary space, their pitch-angle distributions are shaped by the competing effects of magnetic focusing and scattering. Measurements of SEP anisotropies can therefore reveal information about interplanetary conditions such as magnetic field strength, topology, and turbulence levels at remote locations from the observer. Onboard each of the two STEREO spacecraft, the Low Energy Telescope (LET) measures pitch-angle distributions for protons and heavier ions up to iron at energies of about 2-12 MeV/nucleon. Anisotropies observed using LET include bidirectional flows within interplanetary coronal mass ejections, sunward-flowing particles when STEREO was magnetically connected to the back side of a shock, and loss-cone distributions in which particles with large pitch angles underwent magnetic mirroring at an interplanetary field enhancement that was too weak to reflect particles with the smallest pitch angles. Unusual oscillations in the width of a beamed distribution at the onset of the 23 July 2012 SEP event were also observed and remain puzzling. We report LET anisotropy observations at both STEREO spacecraft and discuss their implications for SEP transport, focusing exclusively on the extreme event of 23 July 2012 in which a large variety of anisotropies were present at various times during the event.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017AGUFMSH31D..07H','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017AGUFMSH31D..07H"><span>Multi-spacecraft Observations of the Coronal and Interplanetary Evolution of a Solar Eruption Associated with Two Active Regions</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Hu, H.; Liu, Y. D.; Wang, R.; Zhao, X.; Zhu, B.; Yang, Z.</p> <p>2017-12-01</p> <p>We investigate the coronal and interplanetary evolution of a coronal mass ejection (CME) launched on 2010 September 4 from a source region linking two active regions (ARs), 11101 and 11103, using extreme ultraviolet imaging, magnetogram, white-light, and in situ observations from SDO, STEREO, SOHO, VEX, and Wind. A potential-field source-surface model is employed to examine the configuration of the coronal magnetic field surrounding the source region. The graduated cylindrical shell model and a triangulation method are applied to determine the kinematics of the CME in the corona and interplanetary space. From the remote sensing and in situ observations, we obtain some key results: (1) the CME was deflected in both the eastward and southward directions in the low corona by the magnetic pressure from the two ARs, and possibly interacted with another ejection, which caused that the CME arrived at VEX that was longitudinally distant from the source region; (2) although VEX was closer to the Sun, the observed and derived CME arrival times at VEX are not earlier than those at Wind, which suggests the importance of determining both the frontal shape and propagation direction of the CME in interplanetary space; and (3) the ICME was compressed in the radial direction while the longitudinal transverse size was extended.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017ApJ...837L..17T','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017ApJ...837L..17T"><span>Sheath-accumulating Propagation of Interplanetary Coronal Mass Ejection</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Takahashi, Takuya; Shibata, Kazunari</p> <p>2017-03-01</p> <p>Fast interplanetary coronal mass ejections (ICMEs) are the drivers of strong space weather storms such as solar energetic particle events and geomagnetic storms. The connection between the space-weather-impacting solar wind disturbances associated with fast ICMEs at Earth and the characteristics of causative energetic CMEs observed near the Sun is a key question in the study of space weather storms, as well as in the development of practical space weather prediction. Such shock-driving fast ICMEs usually expand at supersonic speeds during the propagation, resulting in the continuous accumulation of shocked sheath plasma ahead. In this paper, we propose a “sheath-accumulating propagation” (SAP) model that describes the coevolution of the interplanetary sheath and decelerating ICME ejecta by taking into account the process of upstream solar wind plasma accumulation within the sheath region. Based on the SAP model, we discuss (1) ICME deceleration characteristics; (2) the fundamental condition for fast ICMEs at Earth; (3) the thickness of interplanetary sheaths; (4) arrival time prediction; and (5) the super-intense geomagnetic storms associated with huge solar flares. We quantitatively show that not only the speed but also the mass of the CME are crucial for discussing the above five points. The similarities and differences between the SAP model, the drag-based model, and the“snow-plow” model proposed by Tappin are also discussed.</p> </li> </ol> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_19");'>19</a></li> <li><a href="#" onclick='return showDiv("page_20");'>20</a></li> <li class="active"><span>21</span></li> <li><a href="#" onclick='return showDiv("page_22");'>22</a></li> <li><a href="#" onclick='return showDiv("page_23");'>23</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div><!-- col-sm-12 --> </div><!-- row --> </div><!-- page_21 --> <div id="page_22" class="hiddenDiv"> <div class="row"> <div class="col-sm-12"> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_20");'>20</a></li> <li><a href="#" onclick='return showDiv("page_21");'>21</a></li> <li class="active"><span>22</span></li> <li><a href="#" onclick='return showDiv("page_23");'>23</a></li> <li><a href="#" onclick='return showDiv("page_24");'>24</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div> </div> <div class="row"> <div class="col-sm-12"> <ol class="result-class" start="421"> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/11538675','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/11538675"><span>Interplanetary dust particles collected in the stratosphere: observations of atmospheric heating and constraints on their interrelationships and sources.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Sandford, S A; Bradley, J P</p> <p>1989-01-01</p> <p>The majority of the interplanetary dust particles (IDPs) collected in the stratosphere belong to one of three major classes, the first two dominated by the anhydrous minerals olivine and pyroxene, and the third by hydrous layer-lattice silicates. Infrared spectroscopy and transmission electron microscopy studies show that the different IDP classes represent different types of dust that exist as individual particles in interplanetary space. The majority of the collected IDPs smaller than 30 micrometers in diameter in the layer-lattice silicate and pyroxene classes appear not to have been heated to temperatures above 600 degrees C during atmospheric entry. The relatively low maximum temperatures experienced by these IDPs during atmospheric entry imply that they arrive at the top of the atmosphere with low geocentric encounter velocities. This limits the possible encounter trajectories for these particles to relatively circular, prograde orbits. As a result, it is unlikely that these IDPs are from Earth-crossing comets or asteroids. Asteroids, and comets having low inclinations and perihelia outside 1.2 AU, appear to be the best candidates for the parent bodies of the pyroxene and layer-lattice silicate particles. Chemical and mineralogical information suggests that the pyroxene-rich IDPs are from comets and the layer-lattice silicate-rich IDPs are from asteroids. The collected IDPs dominated by olivine appear to include a larger fraction of particles heating above 600 degrees C, suggesting that these particles were captured from more eccentric orbits. This, and the observation of the infrared spectral features of olivine in several comets suggest these particles have a cometary origin. Since much of the collected dust has apparently been captured from nearly circular, prograde orbits and since there are no appropriate parent bodies presently in such orbits, these results provide an experimental confirmation that the Poynting-Robertson effect exists as a nongravitational force important in the orbital evolution of dust in the Solar System.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/28856504','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/28856504"><span>Symptoms of Autism Spectrum Disorder (ASD) in Individuals with Mucopolysaccharide Disease Type III (Sanfilippo Syndrome): A Systematic Review.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Wolfenden, C; Wittkowski, A; Hare, D J</p> <p>2017-11-01</p> <p>The prevalence of autism spectrum disorder (ASD) in many genetic disorders is well documented but not as yet in Mucopolysaccharidosis type III (MPS III). MPS III is a recessively inherited metabolic disorder and evidence suggests that symptoms of ASD present in MPS III. This systematic review examined the extant literature on the symptoms of ASD in MPS III and quality assessed a total of 16 studies. Results indicated that difficulties within speech, language and communication consistent with ASD were present in MPS III, whilst repetitive and restricted behaviours and interests were less widely reported. The presence of ASD-like symptoms can result in late diagnosis or misdiagnosis of MPS III and prevent opportunities for genetic counselling and the provision of treatments.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/21385054','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/21385054"><span>The C. elegans PRMT-3 possesses a type III protein arginine methyltransferase activity.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Takahashi, Yuta; Daitoku, Hiroaki; Yokoyama, Atsuko; Nakayama, Kimihiro; Kim, Jun-Dal; Fukamizu, Akiyoshi</p> <p>2011-04-01</p> <p>Protein arginine methylation is a common post-translational modification in eukaryotes that is catalyzed by a family of the protein arginine methyltransferases (PRMTs). PRMTs are classified into three types: type I and type II add asymmetrically and symmetrically dimethyl groups to arginine, respectively, while type III adds solely monomethyl group to arginine. However, although the enzymatic activity of type I and type II PRMTs have been reported, the substrate specificity and the methylation activity of type III PRMTs still remains unknown. Here, we report the characterization of Caenorhabditis elegans PRMT-2 and PRMT-3, both of which are highly homologous to human PRMT7. We find that these two PRMTs can bind to S-adenosyl methionine (SAM), but only PRMT-3 has methyltransferase activity for histone H2A depending on its SAM-binding domain. Importantly, thin-layer chromatographic analysis demonstrates that PRMT-3 catalyzes the formation of monomethylated, but not dimethylated arginine. Our study thus identifies the first type III PRMT in C. elegans and provides a means to elucidate the physiological significance of arginine monomethylation in multicellular organisms.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://hdl.handle.net/2060/19850026441','NASA-TRS'); return false;" href="http://hdl.handle.net/2060/19850026441"><span>Energetic protons from a disappearing solar filament</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Kahler, S. W.; Cliver, E. W.; Cane, H. V.; Mcguire, R. E.; Stone, R. G.; Sheeley, N. R., Jr.</p> <p>1985-01-01</p> <p>A solar energetic (E 50 MeV) particle (SEP) event observed at 1 AU began about 15000 UT on 1981 December 5. This event was associated with a fast coronal mass ejection observed with the Solwind coronagraph on the P78-1 satellite. No metric type 2 or type 4 burst was observed, but a weak interplanetary type 2 burst was observed with the low frequency radio experiment on the International Sun-Earth Explorer-3 satellite. The mass ejection was associated with the eruption of a large solar quiescent filament which lay well away from any active regions. The eruption resulted in an H alpha double ribbon structure which straddled the magnetic inversion line. No impulsive phase was obvious in either the H alpha or the microwave observations. This event indicates that neither a detectable impulsive phase nor a strong or complex magnetic field is necessary for the production of energetic ions.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://hdl.handle.net/2060/19900007340','NASA-TRS'); return false;" href="http://hdl.handle.net/2060/19900007340"><span>The measurement of trace elements in interplanetary dust and cometary particles by ultra-high sensitivity INAA</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Zolensky, M. E.; Lindstrom, David J.; Lindstrom, Richard M.; Lindstrom, M. M.</p> <p>1989-01-01</p> <p>Today the major elemental composition of interplanetary dust particles (IDPs) is routinely determined in many laboratories. These and mineralogical studies have revealed the presence of at least two major types of IDPs, chondritic and refractory. Preliminary results of a successful attempt to determine abundances of a large suite of trace elements from both chondritic and refractory IDPs are reported. The analytical procedure can be used in the grain-by-grain analysis of returned cometary samples. Chondritic and refractory IDPs are characterized by standard scanning electron microscopy and energy dispersive x ray spectroscopy (SEM-EDX) techniques. With this system, detection limits for many elements are well below picogram levels, and some approach femtogram levels. This technique is non-destructive, although some sample handling is required, so particles can be analyzed by other techniques after instrument neutron activation analysis (INAA) is completed. Data is presently being reduced from the analyses of 7 IDPs. These are U2015E10, U2015F1, W7029-A2, W7029-A3, W7013A8, LACl (all chondritic) and 705 (refractory). So far, 17 different major and trace elements were detected and measured in these particles, including rare earths and some very volatile elements (Br and Zn).</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/20857301','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/20857301"><span>Neuronal migration disorders in microcephalic osteodysplastic primordial dwarfism type I/III.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Juric-Sekhar, Gordana; Kapur, Raj P; Glass, Ian A; Murray, Mitzi L; Parnell, Shawn E; Hevner, Robert F</p> <p>2011-04-01</p> <p>Microcephalic osteodysplastic primordial dwarfism (MOPD) is a rare microlissencephaly syndrome, with at least two distinct phenotypic and genetic types. MOPD type II is caused by pericentrin mutations, while types I and III appear to represent a distinct entity (MOPD I/III) with variably penetrant phenotypes and unknown genetic basis. The neuropathology of MOPD I/III is little understood, especially in comparison to other forms of lissencephaly. Here, we report postmortem brain findings in an 11-month-old female infant with MOPD I/III. The cerebral cortex was diffusely pachygyric, with a right parietal porencephalic lesion. Histologically, the cortex was abnormally thick and disorganized. Distinct malformations were observed in different cerebral lobes, as characterized using layer-specific neuronal markers. Frontal cortex was severely disorganized and coated with extensive leptomeningeal glioneuronal heterotopia. Temporal cortex had a relatively normal 6-layered pattern, despite cortical thickening. Occipital cortex was variably affected. The corpus callosum was extremely hypoplastic. Brainstem and cerebellar malformations were also present, as well as old necrotic foci. Findings in this case suggest that the cortical malformation in MOPD I/III is distinct from other forms of pachygyria-lissencephaly.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/15136667','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/15136667"><span>Assessment: transcranial Doppler ultrasonography: report of the Therapeutics and Technology Assessment Subcommittee of the American Academy of Neurology.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Sloan, M A; Alexandrov, A V; Tegeler, C H; Spencer, M P; Caplan, L R; Feldmann, E; Wechsler, L R; Newell, D W; Gomez, C R; Babikian, V L; Lefkowitz, D; Goldman, R S; Armon, C; Hsu, C Y; Goodin, D S</p> <p>2004-05-11</p> <p>To review the use of transcranial Doppler ultrasonography (TCD) and transcranial color-coded sonography (TCCS) for diagnosis. The authors searched the literature for evidence of 1) if TCD provides useful information in specific clinical settings; 2) if using this information improves clinical decision making, as reflected by improved patient outcomes; and 3) if TCD is preferable to other diagnostic tests in these clinical situations. TCD is of established value in the screening of children aged 2 to 16 years with sickle cell disease for stroke risk (Type A, Class I) and the detection and monitoring of angiographic vasospasm after spontaneous subarachnoid hemorrhage (Type A, Class I to II). TCD and TCCS provide important information and may have value for detection of intracranial steno-occlusive disease (Type B, Class II to III), vasomotor reactivity testing (Type B, Class II to III), detection of cerebral circulatory arrest/brain death (Type A, Class II), monitoring carotid endarterectomy (Type B, Class II to III), monitoring cerebral thrombolysis (Type B, Class II to III), and monitoring coronary artery bypass graft operations (Type B to C, Class II to III). Contrast-enhanced TCD/TCCS can also provide useful information in right-to-left cardiac/extracardiac shunts (Type A, Class II), intracranial occlusive disease (Type B, Class II to IV), and hemorrhagic cerebrovascular disease (Type B, Class II to IV), although other techniques may be preferable in these settings.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.osti.gov/biblio/5440506-variations-photoperiodic-cloacal-response-japanese-quail-association-testes-weight-feather-color','SCIGOV-STC'); return false;" href="https://www.osti.gov/biblio/5440506-variations-photoperiodic-cloacal-response-japanese-quail-association-testes-weight-feather-color"><span>Variations in the photoperiodic cloacal response of Japanese quail: association with testes weight and feather color</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.osti.gov/search">DOE Office of Scientific and Technical Information (OSTI.GOV)</a></p> <p>Oishi, T.; Konishi, T.</p> <p>1983-04-01</p> <p>The size of the cloacal gland was found to be a reliable indicator of testicular activity of Japanese quail. Six experiments were performed to examine the effects of alternating long and short photoperiod on the size of the cloacal gland of male Japanese quail. Three types of photoperiodic cloacal responses were distinguished. Type I birds became refractory to short photoperiods after they had experienced 5 weeks or more of short days. They maintained large cloacal glands under subsequent condition of alternating long and short photoperiod. Type II birds were intermediate types I and III birds did not become refractory tomore » short photoperiods after experiencing 5 weeks or more of short days. The cloacal glands responded to conditions of alternating long and short photoperiods with increases or decreases in size. Feather color on the throat was found to correspond to the type of cloacal response. Type I birds had brick-red throat feathers. Type II birds had white feathers intermingled with brick-red feathers. Type III had white throat feathers. The percentages of types I, II, and III observed in the experimental population was 67, 18, and 15%, respectively. Type III birds were used to study the effects of blinding on the cloacal response to short photoperiod. Five out of eight blinded type III birds did not lose the responsiveness to short photoperiod. These results are consistent with the view that extraocular photoreceptors participate in the photoperiodic gonadal response of Japanese quail.« less</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2018JGRA..123.1388T','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2018JGRA..123.1388T"><span>Comment on "Modeling Extreme "Carrington-Type" Space Weather Events Using Three-Dimensional Global MHD Simulations" by C. M. Ngwira, A. Pulkkinen, M. M. Kuznetsova, and A. Glocer"</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Tsurutani, Bruce T.; Lakhina, Gurbax S.; Echer, Ezequiel; Hajra, Rajkumar; Nayak, Chinmaya; Mannucci, Anthony J.; Meng, Xing</p> <p>2018-02-01</p> <p>An alternative scenario to the Ngwira et al. (2014, https://doi.org/10.1002/2013JA019661) high sheath densities is proposed for modeling the Carrington magnetic storm. Typical slow solar wind densities ( 5 cm-3) and lower interplanetary magnetic cloud magnetic field intensities ( 90 nT) can be used to explain the observed initial and main phase storm features. A second point is that the fast storm recovery may be explained by ring current losses due to electromagnetic ion cyclotron wave scattering.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://hdl.handle.net/2060/19990070313','NASA-TRS'); return false;" href="http://hdl.handle.net/2060/19990070313"><span>Solar Cycle Variation and Application to the Space Radiation Environment</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Wilson, John W.; Kim, Myung-Hee Y.; Shinn, Judy L.; Tai, Hsiang; Cucinotta, Francis A.; Badhwar, Gautam D.; Badavi, Francis F.; Atwell, William</p> <p>1999-01-01</p> <p>The interplanetary plasma and fields are affected by the degree of disturbance that is related to the number and types of sunspots in the solar surface. Sunspot observations were improved with the introduction of the telescope in the seventeenth century, allowing observations which cover many centuries. A single quantity (sunspot number) was defined by Wolf in 1848 that is now known to be well correlated with many space observable quantities and is used herein to represent variations caused in the space radiation environment. The resultant environmental models are intended for future aircraft and space-travel-related exposure estimates.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://ntrs.nasa.gov/search.jsp?R=19720060980&hterms=celestial+navigation&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D10%26Ntt%3Dcelestial%2Bnavigation','NASA-TRS'); return false;" href="https://ntrs.nasa.gov/search.jsp?R=19720060980&hterms=celestial+navigation&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D10%26Ntt%3Dcelestial%2Bnavigation"><span>Evaluation of optical data for Mars approach navigation.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Jerath, N.</p> <p>1972-01-01</p> <p>Investigation of several optical data types which can be obtained from science and engineering instruments normally aboard interplanetary spacecraft. TV cameras are assumed to view planets or satellites and stars for celestial references. Also, spacecraft attitude sensors are assumed to yield celestial references. The investigation of approach phases of typical Mars missions showed that the navigation accuracy was greatly enhanced with the addition of optical data to radio data. Viewing stars and the planet Mars was found most advantageous ten days before Mars encounter, and viewing Deimos or Phobos and stars was most advantageous within ten days of encounter.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/22252870','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/22252870"><span>Polymorphisms in the lcrV gene of Yersinia enterocolitica and their effect on plague protective immunity.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Miller, Nathan C; Quenee, Lauriane E; Elli, Derek; Ciletti, Nancy A; Schneewind, Olaf</p> <p>2012-04-01</p> <p>Current efforts to develop plague vaccines focus on LcrV, a polypeptide that resides at the tip of type III secretion needles. LcrV-specific antibodies block Yersinia pestis type III injection of Yop effectors into host immune cells, thereby enabling phagocytes to kill the invading pathogen. Earlier work reported that antibodies against Y. pestis LcrV cannot block type III injection by Yersinia enterocolitica strains and suggested that lcrV polymorphisms may provide for escape from LcrV-mediated plague immunity. We show here that polyclonal or monoclonal antibodies raised against Y. pestis KIM D27 LcrV (LcrV(D27)) bind LcrV from Y. enterocolitica O:9 strain W22703 (LcrV(W22703)) or O:8 strain WA-314 (LcrV(WA-314)) but are otherwise unable to block type III injection by Y. enterocolitica strains. Replacing the lcrV gene on the pCD1 virulence plasmid of Y. pestis KIM D27 with either lcrV(W22703) or lcrV(WA-314) does not affect the ability of plague bacteria to secrete proteins via the type III pathway, to inject Yops into macrophages, or to cause lethal plague infections in mice. LcrV(D27)-specific antibodies blocked type III injection by Y. pestis expressing lcrV(W22703) or lcrV(WA-314) and protected mice against intravenous lethal plague challenge with these strains. Thus, although antibodies raised against LcrV(D27) are unable to block the type III injection of Y. enterocolitica strains, expression of lcrV(W22703) or lcrV(WA-314) in Y. pestis did not allow these strains to escape LcrV-mediated plague protective immunity in the intravenous challenge model.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.osti.gov/biblio/22594178-systematic-analysis-acceptor-specificity-reaction-kinetics-five-human-sialyltransferases-product-inhibition-studies-illustrate-reaction-mechanism-st3gal','SCIGOV-STC'); return false;" href="https://www.osti.gov/biblio/22594178-systematic-analysis-acceptor-specificity-reaction-kinetics-five-human-sialyltransferases-product-inhibition-studies-illustrate-reaction-mechanism-st3gal"><span>A systematic analysis of acceptor specificity and reaction kinetics of five human α(2,3)sialyltransferases: Product inhibition studies illustrate reaction mechanism for ST3Gal-I</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.osti.gov/search">DOE Office of Scientific and Technical Information (OSTI.GOV)</a></p> <p>Gupta, Rohitesh, E-mail: rohitesh.gupta@gmail.com; Matta, Khushi L.; Neelamegham, Sriram, E-mail: neel@buffalo.edu</p> <p>2016-01-15</p> <p>Sialyltransferases (STs) catalyze the addition of sialic acids to the non-reducing ends of glycoproteins and glycolipids. In this work, we examined the acceptor specificity of five human α(2,3)sialyltransferases, namely ST3Gal -I, -II, -III, -IV and -VI. K{sub M} values for each of these enzymes is presented using radioactivity for acceptors containing Type-I (Galβ1,3GlcNAc), Type-II (Galβ1,4GlcNAc), Type-III (Galβ1,3GalNAc) and Core-2 (Galβ1,3(GlcNAcβ1,6)GalNAc) reactive groups. Several variants of acceptors inhibited ST3Gal activity emphasizing structural role of acceptor in enzyme-catalyzed reactions. In some cases, mass spectrometry was performed for structural verification. The results demonstrate human ST3Gal-I catalysis towards Type-III and Core-2 acceptors with K{submore » M} = 5–50 μM and high V{sub Max} values. The K{sub M} for ST3Gal-I and ST3Gal-II was 100 and 30-fold lower, respectively, for Type-III compared to Type-I acceptors. Variants of Type-I and Type-II structures characterized ST3Gal-III, -IV and -VI for their catalytic specificity. This manuscript also estimates K{sub M} for human ST3Gal-VI using Type-I and Type-II substrates. Together, these findings built a platform for designing inhibitors of STs having therapeutic potential. - Highlights: • K{sub M} for five Human ST3Gals is reported towards Type-I, Type-II & Type-III acceptors. • LC-MS simultaneously quantifies CMP-Neu5Ac & Glycans in a sialylation reaction. • Efficient Core2 sialylation indicates co-operativitiy between ST3Gal-I & C2GnT1. • ST3Gal-I inhibition study proposes iso- or random-sequential bi-bi mechanism.« less</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=3545546','PMC'); return false;" href="https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=3545546"><span>Immunolocalization of Collagens (I and III) and Cartilage Oligomeric Matrix Protein in the Normal and Injured Equine Superficial Digital Flexor Tendon</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pmc">PubMed Central</a></p> <p></p> <p>2013-01-01</p> <p>This is a descriptive study of tendon pathology with different structural appearances of repair tissue correlated to immunolocalization of cartilage oligomeric matrix protein (COMP) and type I and III collagens and expression of COMP mRNA. The material consists of nine tendons from seven horses (5–25 years old; mean age of 10 years) with clinical tendinopathy and three normal tendons from horses (3, 3, and 13 years old) euthanized for non-orthopedic reasons. The injured tendons displayed different repair-tissue appearances with organized and disorganized fibroblastic regions as well as areas of necrosis. The normal tendons presented distinct immunoreactivity for COMP and expression of COMP mRNA and type I collagen in the normal aligned fiber structures, but no immunolabeling of type III collagen. However, immunoreactivity for type III collagen was present in the endotenon surrounding the fiber bundles, where no expression of COMP could be seen. Immunostaining for type I and III collagens was present in all of the pathologic regions indicating repair tissue. Interestingly, the granulation tissues showed immunostaining for COMP and expression of COMP mRNA, indicating a role for COMP in repair and remodeling of the tendon after fiber degeneration and rupture. The present results suggest that not only type III collagen but also COMP is involved in the repair and remodeling processes of the tendon. PMID:23020676</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2018ApJ...856...73C','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2018ApJ...856...73C"><span>Fine Structures of Solar Radio Type III Bursts and Their Possible Relationship with Coronal Density Turbulence</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Chen, Xingyao; Kontar, Eduard P.; Yu, Sijie; Yan, Yihua; Huang, Jing; Tan, Baolin</p> <p>2018-03-01</p> <p>Solar radio type III bursts are believed to be the most sensitive signatures of near-relativistic electron beam propagation in the corona. A solar radio type IIIb-III pair burst with fine frequency structures, observed by the Low Frequency Array (LOFAR) with high temporal (∼10 ms) and spectral (12.5 kHz) resolutions at 30–80 MHz, is presented. The observations show that the type III burst consists of many striae, which have a frequency scale of about 0.1 MHz in both the fundamental (plasma) and the harmonic (double plasma) emission. We investigate the effects of background density fluctuations based on the observation of striae structure to estimate the density perturbation in the solar corona. It is found that the spectral index of the density fluctuation spectrum is about ‑1.7, and the characteristic spatial scale of the density perturbation is around 700 km. This spectral index is very close to a Kolmogorov turbulence spectral index of ‑5/3, consistent with a turbulent cascade. This fact indicates that the coronal turbulence may play the important role of modulating the time structures of solar radio type III bursts, and the fine structure of radio type III bursts could provide a useful and unique tool to diagnose the turbulence in the solar corona.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://ntrs.nasa.gov/search.jsp?R=19940016180&hterms=1076&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D80%26Ntt%3D%2526%25231076','NASA-TRS'); return false;" href="https://ntrs.nasa.gov/search.jsp?R=19940016180&hterms=1076&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D80%26Ntt%3D%2526%25231076"><span>Helium in interplanetary dust particles</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Nier, A. O.; Schlutter, D. J.</p> <p>1993-01-01</p> <p>Helium and neon were extracted from fragments of individual stratosphere-collected interplanetary dust particles (IDP's) by subjecting them to increasing temperature by applying short-duration pulses of power in increasing amounts to the ovens containing the fragments. The experiment was designed to see whether differences in release temperatures could be observed which might provide clues as to the asteroidal or cometary origin of the particles. Variations were observed which show promise for elucidating the problem.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://hdl.handle.net/2060/19770027122','NASA-TRS'); return false;" href="http://hdl.handle.net/2060/19770027122"><span>Interplanetary medium data book, appendix</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>King, J. H.</p> <p>1977-01-01</p> <p>Computer generated listings of hourly average interplanetary plasma and magnetic field parameters are given. Parameters include proton temperature, proton density, bulk speed, an identifier of the source of the plasma data for the hour, average magnetic field magnitude and cartesian components of the magnetic field. Also included are longitude and latitude angles of the vector made up of the average field components, a vector standard deviation, and an identifier of the source of magnetic field data.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://ntrs.nasa.gov/search.jsp?R=19750032577&hterms=Wave+Energy&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D80%26Ntt%3DWave%2BEnergy','NASA-TRS'); return false;" href="https://ntrs.nasa.gov/search.jsp?R=19750032577&hterms=Wave+Energy&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D80%26Ntt%3DWave%2BEnergy"><span>Energy densities of Alfven waves between 0.7 and 1.6 AU. [in interplanetary medium</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Belcher, J. W.; Burchsted, R.</p> <p>1974-01-01</p> <p>Plasma and field data from Mariner 4 and 5 between 0.7 and 1.6 AU are used to study the radial dependence of the levels of microscale fluctuation associated with interplanetary Alfven waves. The observed decrease of these levels with increasing distance from the sun is consistent with little or no local generation or damping of the ambient Alfven waves over this range of radial distance.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://hdl.handle.net/2060/19930009365','NASA-TRS'); return false;" href="http://hdl.handle.net/2060/19930009365"><span>Cosmic dust</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Brownlee, Donald E.; Sandford, Scott A.</p> <p>1992-01-01</p> <p>Dust is a ubiquitous component of our galaxy and the solar system. The collection and analysis of extraterrestrial dust particles is important to exobiology because it provides information about the sources of biogenically significant elements and compounds that accumulated in distant regions of the solar nebula and that were later accreted on the planets. The topics discussed include the following: general properties of interplanetary dust; the carbonaceous component of interplanetary dust particles; and the presence of an interstellar component.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://hdl.handle.net/2060/20030058889','NASA-TRS'); return false;" href="http://hdl.handle.net/2060/20030058889"><span>Synchrotron FTIR Examination of Interplanetary Dust Particles: An Effort to Determine the Compounds and Minerals in Interstellar and Circumstellar Dust</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Flynn, G. J.; Keller, L. P.</p> <p>2002-01-01</p> <p>Some interplanetary dust particles (IDPs), collected by NASA from the Earth's stratosphere, are the most primitive extraterrestrial material available for laboratory analysis. Many exhibit isotopic anomalies in H, N, and O, suggesting they contain preserved interstellar matter. We report the preliminary results of a comparison of the infrared absorption spectra of subunits of the IDPs with astronomical spectra of interstellar grains.</p> </li> </ol> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_20");'>20</a></li> <li><a href="#" onclick='return showDiv("page_21");'>21</a></li> <li class="active"><span>22</span></li> <li><a href="#" onclick='return showDiv("page_23");'>23</a></li> <li><a href="#" onclick='return showDiv("page_24");'>24</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div><!-- col-sm-12 --> </div><!-- row --> </div><!-- page_22 --> <div id="page_23" class="hiddenDiv"> <div class="row"> <div class="col-sm-12"> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_21");'>21</a></li> <li><a href="#" onclick='return showDiv("page_22");'>22</a></li> <li class="active"><span>23</span></li> <li><a href="#" onclick='return showDiv("page_24");'>24</a></li> <li><a href="#" onclick='return showDiv("page_25");'>25</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div> </div> <div class="row"> <div class="col-sm-12"> <ol class="result-class" start="441"> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://hdl.handle.net/2060/19780019090','NASA-TRS'); return false;" href="http://hdl.handle.net/2060/19780019090"><span>Research in space physics at the University of Iowa. [energetic particles and electric, magnetic, and electromagnetic fields</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Vanallen, J. A.</p> <p>1978-01-01</p> <p>Specific fields of current investigation by satellite observation and ground-based radio-astronomical and optical techniques are discussed. Topics include: aspects of energetic particles trapped in the earth's magnetic field and transiently present in the outer magnetosphere and the solar, interplanetary, and terrestrial phenomena associated with them; plasma flows in the magnetosphere and the ionospheric effects of particle precipitation, with corresponding studies of the magnetosphere of Jupiter, Saturn, and possibly Uranus; the origin and propagation of very low frequency radio waves in the earth's magnetosphere and ionosphere; solar particle emissions and their interplanetary propagation and acceleration; solar modulation and the heliocentric radial dependence of the intensity of galactic cosmic rays; radio frequency emissions from the quintescent and flaring sun; shock waves in the interplanetary medium; radio emissions from Jupiter; and radio astronomy of pulsars, flare stars, and other stellar sources.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017AdSpR..59..907B','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017AdSpR..59..907B"><span>A novel interplanetary optical navigation algorithm based on Earth-Moon group photos by Chang'e-5T1 probe</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Bu, Yanlong; Zhang, Qiang; Ding, Chibiao; Tang, Geshi; Wang, Hang; Qiu, Rujin; Liang, Libo; Yin, Hejun</p> <p>2017-02-01</p> <p>This paper presents an interplanetary optical navigation algorithm based on two spherical celestial bodies. The remarkable characteristic of the method is that key navigation parameters can be estimated depending entirely on known sizes and ephemerides of two celestial bodies, especially positioning is realized through a single image and does not rely on traditional terrestrial radio tracking any more. Actual Earth-Moon group photos captured by China's Chang'e-5T1 probe were used to verify the effectiveness of the algorithm. From 430,000 km away from the Earth, the camera pointing accuracy reaches 0.01° (one sigma) and the inertial positioning error is less than 200 km, respectively; meanwhile, the cost of the ground control and human resources are greatly reduced. The algorithm is flexible, easy to implement, and can provide reference to interplanetary autonomous navigation in the solar system.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://hdl.handle.net/2060/19930010932','NASA-TRS'); return false;" href="http://hdl.handle.net/2060/19930010932"><span>Interplanetary Program to Optimize Simulated Trajectories (IPOST). Volume 2: Analytic manual</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Hong, P. E.; Kent, P. D.; Olson, D. W.; Vallado, C. A.</p> <p>1992-01-01</p> <p>The Interplanetary Program to Optimize Space Trajectories (IPOST) is intended to support many analysis phases, from early interplanetary feasibility studies through spacecraft development and operations. The IPOST output provides information for sizing and understanding mission impacts related to propulsion, guidance, communications, sensor/actuators, payload, and other dynamic and geometric environments. IPOST models three degree of freedom trajectory events, such as launch/ascent, orbital coast, propulsive maneuvering (impulsive and finite burn), gravity assist, and atmospheric entry. Trajectory propagation is performed using a choice of Cowell, Encke, Multiconic, Onestep, or Conic methods. The user identifies a desired sequence of trajectory events, and selects which parameters are independent (controls) and dependent (targets), as well as other constraints and the cost function. Targeting and optimization is performed using the Stanford NPSOL algorithm. IPOST structure allows subproblems within a master optimization problem to aid in the general constrained parameter optimization solution. An alternate optimization method uses implicit simulation and collocation techniques.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://ntrs.nasa.gov/search.jsp?R=20110007813&hterms=electrostatics&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D60%26Ntt%3Delectrostatics','NASA-TRS'); return false;" href="https://ntrs.nasa.gov/search.jsp?R=20110007813&hterms=electrostatics&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D60%26Ntt%3Delectrostatics"><span>Large-Amplitude Electrostatic Waves Observed at a Supercritical Interplanetary Shock</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Wilson, L. B., III; Cattell, C. A.; Kellogg, P. J.; Goetz, K.; Kersten, K.; Kasper, J. C.; Szabo, A.; Wilber, M.</p> <p>2010-01-01</p> <p>We present the first observations at an interplanetary shock of large-amplitude (> 100 mV/m pk-pk) solitary waves and large-amplitude (approx.30 mV/m pk-pk) waves exhibiting characteristics consistent with electron Bernstein waves. The Bernstein-like waves show enhanced power at integer and half-integer harmonics of the cyclotron frequency with a broadened power spectrum at higher frequencies, consistent with the electron cyclotron drift instability. The Bernstein-like waves are obliquely polarized with respect to the magnetic field but parallel to the shock normal direction. Strong particle heating is observed in both the electrons and ions. The observed heating and waveforms are likely due to instabilities driven by the free energy provided by reflected ions at this supercritical interplanetary shock. These results offer new insights into collisionless shock dissipation and wave-particle interactions in the solar wind.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.osti.gov/pages/biblio/1402595-electron-dropout-echoes-induced-interplanetary-shock-van-allen-probes-observations','SCIGOV-DOEP'); return false;" href="https://www.osti.gov/pages/biblio/1402595-electron-dropout-echoes-induced-interplanetary-shock-van-allen-probes-observations"><span>Electron dropout echoes induced by interplanetary shock: Van Allen Probes observations</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.osti.gov/pages">DOE PAGES</a></p> <p>Hao, Y. X.; Zong, Q. -G.; Zhou, X. -Z.; ...</p> <p>2016-06-07</p> <p>On 23 November 2012, a sudden dropout of the relativistic electron flux was observed after an interplanetary shock arrival. The dropout peaks at ~1 MeV and more than 80% of the electrons disappeared from the drift shell. Van Allen twin Probes observed a sharp electron flux dropout with clear energy dispersion signals. The repeating flux dropout and recovery signatures, or “dropout echoes”, constitute a new phenomenon referred to as a “drifting electron dropout” with a limited initial spatial range. The azimuthal range of the dropout is estimated to be on the duskside, from ~1300 to 0100 LT. We then concludemore » that the shock-induced electron dropout is not caused by the magnetopause shadowing. Furthermore, the dropout and consequent echoes suggest that the radial migration of relativistic electrons is induced by the strong dusk-dawn asymmetric interplanetary shock compression on the magnetosphere.« less</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017AcAau.139..102T','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017AcAau.139..102T"><span>Cultural ethology as a new approach of interplanetary crew's behavior</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Tafforin, Carole; Giner Abati, Francisco</p> <p>2017-10-01</p> <p>From an evolutionary perspective, during short-term and medium-term orbital flights, human beings developed new spatial and motor behaviors to compensate for the lack of terrestrial gravity. Past space ethological studies have shown adaptive strategies to the tri-dimensional environment, with the goal of optimizing relationships between the astronaut and unusual sensorial-motor conditions. During a long-term interplanetary journey, crewmembers will have to develop new individual and social behaviors to adapt, far from earth, to isolation and confinement and as a result to extreme conditions of living and working together. Recent space psychological studies pointed out that heterogeneity is a feature of interplanetary crews, based on personality, gender mixing, internationality and diversity of backgrounds. Intercultural issues could arise between space voyagers. As a new approach we propose to emphasize the behavioral strategies of human groups' adaptation to this new multicultural dimension of the environment.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://ntrs.nasa.gov/search.jsp?R=19840051835&hterms=Orientation+basis&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D40%26Ntt%3DOrientation%2Bbasis','NASA-TRS'); return false;" href="https://ntrs.nasa.gov/search.jsp?R=19840051835&hterms=Orientation+basis&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D40%26Ntt%3DOrientation%2Bbasis"><span>The effects of interplanetary magnetic field orientation on dayside high-latitude ionospheric convection</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Heelis, R. A.</p> <p>1984-01-01</p> <p>The Atmosphere Explorer C data base of Northern Hemisphere ionospheric convection signatures at high latitudes is examined during times when the interplanetary magnetic field orientation is relatively stable. It is found that when the interplanetary magnetic field (IMF) has its expected garden hose orientation, the center of a region where the ion flow rotates from sunward to antisunward is displaced from local noon toward dawn irrespective of the sign of By. Poleward of this rotation region, called the cleft, the ion convection is directed toward dawn or dusk depending on whether By is positive or negative, respectively. The observed flow geometry can be explained in terms of a magnetosphere solar wind interaction in which merging is favored in either the prenoon Northern Hemisphere or the prenoon Southern Hemisphere when the IMF has a normal sector structure that is toward or away, respectively.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://rosap.ntl.bts.gov/view/dot/21326','DOTNTL'); return false;" href="https://rosap.ntl.bts.gov/view/dot/21326"><span>The effects of wearing Passenger Protective Breathing Equipment on evacuation times through type III and type IV emergency aircraft exits in clear air and smoke.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntlsearch.bts.gov/tris/index.do">DOT National Transportation Integrated Search</a></p> <p></p> <p>1989-11-01</p> <p>The effects of Passenger Protective Breathing Equipment (PPBE) on the time required for simulated emergency evacuations through Type III and Type IV overwing aircraft exits were studied in two quasi-independent experiments, one in clear air and anoth...</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://pubs.er.usgs.gov/publication/70031550','USGSPUBS'); return false;" href="https://pubs.er.usgs.gov/publication/70031550"><span>Functional classification of mitochondrion-rich cells in euryhaline Mozambique tilapia (Oreochromis mossambicus) embryos, by means of triple immunofluorescence staining for Na+/K+-ATPase, Na +/K+/2Cl- cotransporter and CFTR anion channel</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://pubs.er.usgs.gov/pubs/index.jsp?view=adv">USGS Publications Warehouse</a></p> <p>Hiroi, J.; McCormick, S.D.; Ohtani-Kaneko, R.; Kaneko, T.</p> <p>2005-01-01</p> <p>Mozambique tilapia Oreochromis mossambicus embryos were transferred from freshwater to seawater and vice versa, and short-term changes in the localization of three major ion transport proteins, Na+/K +-ATPase, Na+/K+/2Cl- cotransporter (NKCC) and cystic fibrosis transmembrane conductance regulator (CFTR) were examined within mitochondrion-rich cells (MRCs) in the embryonic yolk-sac membrane. Triple-color immunofluorescence staining allowed us to classify MRCs into four types: type I, showing only basolateral Na+/K +-ATPase staining; type II, basolateral Na+/K +-ATPase and apical NKCC; type III, basolateral Na+/K +-ATPase and basolateral NKCC; type IV, basolateral Na +/K+-ATPase, basolateral NKCC and apical CFTR. In freshwater, type-I, type-II and type-III cells were observed. Following transfer from freshwater to seawater, type-IV cells appeared at 12 h and showed a remarkable increase in number between 24 h and 48 h, whereas type-III cells disappeared. When transferred from seawater back to freshwater, type-IV cells decreased and disappeared at 48 h, type-III cells increased, and type-II cells, which were not found in seawater, appeared at 12 h and increased in number thereafter. Type-I cells existed consistently irrespective of salinity changes. These results suggest that type I is an immature MRC, type II is a freshwater-type ion absorptive cell, type III is a dormant type-IV cell and/or an ion absorptive cell (with a different mechanism from type II), and type IV is a seawater-type ion secretory cell. The intracellular localization of the three ion transport proteins in type-IV cells is completely consistent with a widely accepted model for ion secretion by MRCs. A new model for ion absorption is proposed based on type-II cells possessing apical NKCC.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/19464209','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/19464209"><span>Comparison of the efficacy and technical accuracy of different rectangular collimators for intraoral radiography.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Zhang, Wenjian; Abramovitch, Kenneth; Thames, Walter; Leon, Inga-Lill K; Colosi, Dan C; Goren, Arthur D</p> <p>2009-07-01</p> <p>The objective of this study was to compare the operating efficiency and technical accuracy of 3 different rectangular collimators. A full-mouth intraoral radiographic series excluding central incisor views were taken on training manikins by 2 groups of undergraduate dental and dental hygiene students. Three types of rectangular collimator were used: Type I ("free-hand"), Type II (mechanical interlocking), and Type III (magnetic collimator). Eighteen students exposed one side of the manikin with a Type I collimator and the other side with a Type II. Another 15 students exposed the manikin with Type I and Type III respectively. Type I is currently used for teaching and patient care at our institution and was considered as the control to which both Types II and III were compared. The time necessary to perform the procedure, subjective user friendliness, and the number of technique errors (placement, projection, and cone cut errors) were assessed. The Student t test or signed rank test was used to determine statistical difference (P <or= .05). Compared with Type I, Type II collimation was more efficient and user friendly, but generated a greater number of placement errors. Type III collimation was also more user friendly, but generated more cone cut errors. Further optimization of these collimators is expected to improve operator/clinician performance and utility.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/24301929','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/24301929"><span>TaALMT1 promoter sequence compositions, acid tolerance, and Al tolerance in wheat cultivars and landraces from Sichuan in China.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Han, C; Dai, S F; Liu, D C; Pu, Z J; Wei, Y M; Zheng, Y L; Wen, D J; Zhao, L; Yan, Z H</p> <p>2013-11-18</p> <p>Previous genetic studies on wheat from various sources have indicated that aluminum (Al) tolerance may have originated independently in USA, Brazil, and China. Here, TaALMT1 promoter sequences of 92 landraces and cultivars from Sichuan, China, were sequenced. Five promoter types (I', II, III, IV, and V) were observed in 39 cultivars, and only three promoter types (I, II, and III) were observed in 53 landraces. Among the wheat collections worldwide, only the Chinese Spring (CS) landrace native to Sichuan, China, carried the TaALMT1 promoter type III. Besides CS, two other Sichuan-bred landraces and six cultivars with TaALMT1 promoter type III were identified in this study. In the phylogenetic tree constructed based on the TaALMT1 promoter sequences, type III formed a separate branch, which was supported by a high bootstrap value. It is likely that TaALMT1 promoter type III originated from Sichuan-bred wheat landraces of China. In addition, the landraces with promoter type I showed the lowest Al tolerance among all landraces and cultivars. Furthermore, the cultivars with promoter type IV showed better Al tolerance than landraces with promoter type II. A comparison of acid tolerance and Al tolerance between cultivars and landraces showed that the landraces had better acid tolerance than the cultivars, whereas the cultivars showed better Al tolerance than the landraces. Moreover, significant difference in Al tolerance was also observed between the cultivars raised by the National Ministry of Agriculture and by Sichuan Province. Among the landraces from different regions, those from the East showed better acid tolerance and Al tolerance than those from the South and West of Sichuan. Additional Al-tolerant and acid-tolerant wheat lines were also identified.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/29431577','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/29431577"><span>What does "Diversity" Mean for Public Engagement in Science? A New Metric for Innovation Ecosystem Diversity.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Özdemir, Vural; Springer, Simon</p> <p>2018-03-01</p> <p>Diversity is increasingly at stake in early 21st century. Diversity is often conceptualized across ethnicity, gender, socioeconomic status, sexual preference, and professional credentials, among other categories of difference. These are important and relevant considerations and yet, they are incomplete. Diversity also rests in the way we frame questions long before answers are sought. Such diversity in the framing (epistemology) of scientific and societal questions is important for they influence the types of data, results, and impacts produced by research. Errors in the framing of a research question, whether in technical science or social science, are known as type III errors, as opposed to the better known type I (false positives) and type II errors (false negatives). Kimball defined "error of the third kind" as giving the right answer to the wrong problem. Raiffa described the type III error as correctly solving the wrong problem. Type III errors are upstream or design flaws, often driven by unchecked human values and power, and can adversely impact an entire innovation ecosystem, waste money, time, careers, and precious resources by focusing on the wrong or incorrectly framed question and hypothesis. Decades may pass while technology experts, scientists, social scientists, funding agencies and management consultants continue to tackle questions that suffer from type III errors. We propose a new diversity metric, the Frame Diversity Index (FDI), based on the hitherto neglected diversities in knowledge framing. The FDI would be positively correlated with epistemological diversity and technological democracy, and inversely correlated with prevalence of type III errors in innovation ecosystems, consortia, and knowledge networks. We suggest that the FDI can usefully measure (and prevent) type III error risks in innovation ecosystems, and help broaden the concepts and practices of diversity and inclusion in science, technology, innovation and society.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://hdl.handle.net/2060/19730022043','NASA-TRS'); return false;" href="http://hdl.handle.net/2060/19730022043"><span>Sunspot motion and flaring in M482</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Lazareff, B.; Zirin, H.</p> <p>1971-01-01</p> <p>A series of flares was studied in McMath 11482 August 19-22, 1971, with particular reference to the basis for the flares and comparison with dekameter radio data. The flares were produced by rapid (approximately 1000 km/hr) westward motion of a large new p spot. Many flares occur just in front of the spot, and they cease when the motion stops. All flares occuring in front of the spot produce type III bursts, while even strong flares elsewhere in the region produce little or no type III. The time of type III emission agrees perfectly with the start of the H alpha flare. Thus type III bursts are only produced in favorable configurations. Simultaneous K-line movies are compared with H alpha films and show little difference in flare appearance.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.gpo.gov/fdsys/pkg/CFR-2012-title46-vol6/pdf/CFR-2012-title46-vol6-sec164-019-3.pdf','CFR2012'); return false;" href="https://www.gpo.gov/fdsys/pkg/CFR-2012-title46-vol6/pdf/CFR-2012-title46-vol6-sec164-019-3.pdf"><span>46 CFR 164.019-3 - Definitions.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.gpo.gov/fdsys/browse/collectionCfr.action?selectedYearFrom=2012&page.go=Go">Code of Federal Regulations, 2012 CFR</a></p> <p></p> <p>2012-10-01</p> <p>... Guard-approved PFDs. Commandant means the Chief of the Lifesaving and Fire Safety Division, Office of... code PFD type acceptable for use 1 I, II, and III. 2 II and III. 3 III. 4B IV (all Ring Buoys). 4BC IV (Buoyant Cushions). 4RB IV (Recreational Ring Buoys only). 5 Wearable Type V (intended use must be...</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://ntrs.nasa.gov/search.jsp?R=19830028035&hterms=Exciter&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D70%26Ntt%3DExciter','NASA-TRS'); return false;" href="https://ntrs.nasa.gov/search.jsp?R=19830028035&hterms=Exciter&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D70%26Ntt%3DExciter"><span>Receivers</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Donnelly, H.</p> <p>1983-01-01</p> <p>Before discussing Deep Space Network receivers, a brief description of the functions of receivers and how they interface with other elements of the Network is presented. Different types of receivers are used in the Network for various purposes. The principal receiver type is used for telemetry and tracking. This receiver provides the capability, with other elements of the Network, to track the space probe utilizing Doppler and range measurements, and to receive telemetry, including both scientific data from the onboard experiments and engineering data pertaining to the health of the probe. Another type of receiver is used for radio science applications. This receiver measures phase perturbations on the carrier signal to obtain information on the composition of solar and planetary atmospheres and interplanetary space. A third type of receiver utilizes very long baseline interferometry (VLBI) techniques for both radio science and spacecraft navigation data. Only the telemetry receiver is described in detail in this document. The integration of the Receiver-Exciter subsystem with other portions of the Deep Space Network is described.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/24279012','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/24279012"><span>[Cannulated lag screw combined with lateral supporting plate for treatment of Hoffa fracture of Letenneur type I and type III].</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Lin, Tao; Yang, Shuhua; Xiao, Baojun; Fu, Dehao</p> <p>2013-09-01</p> <p>To investigate the effectiveness of cannulated lag screws combined with lateral supporting plates in the treatment of Hoffa fracture of Letenneur type I and type III. Between May 2004 and April 2011, 11 patients with Hoffa fracture of Letenneur type I and type III were treated, including 6 males and 5 females with an average age of 36 years (range, 25-47 years). Factures were caused by traffic accident in 8 cases, by falling in 2 cases, and by the other in 1 case. Fracture involved the left knee in 7 patients and the right knee in 4 patients. According Letenneur's classification criteria, there were 7 type I fractures (6 lateral condyle fractures and 1 medial condyle fracture) and 4 type III fractures (3 lateral condyle fractures and 1 medial condyle fracture). Of 11 fractures, 9 were fresh fractures and 2 were old fractures. Two 6.5 mm cannulated lag screws combined with lateral supporting plates were used to fix fractures by anterolateral or anteromedial incision. All incisions achieved primary healing with no early complication. All patients were followed up 12-26 months (mean, 15 months). X-ray films showed bone healing with an average healing time of 15 weeks (range, 10-18 weeks). No loosening or breaking of internal fixator was observed; the removal time of internal fixation was 9-15 months (mean, 12 months). Accoding to Letenneur's functional assessment system, the results were excellent in 7 cases, good in 3 cases, and poor in 1 case at last follow-up. Cannulated lag screws combined with lateral supporting plates fixation is effective in treatment of Hoffa fracture of Letenneur type I and type III with a high union rate; anterolateral or anteromedial approach is the first choice for Hoffa fracture of type I and type III, especially for complicating by tibial plateau fracture or patella fracture.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/28327689','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/28327689"><span>Unusual case of failure to thrive: Type III Bartter syndrome.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Agrawal, S; Subedi, K; Ray, P; Rayamajhi, A</p> <p>2016-09-01</p> <p>Bartter syndrome Type III is a rare autosomal recessive disorder resulting from an inherited defect in the thick ascending limb of the loop of henle of the nephrons in kidney. The typical clinical manifestations in childhood are failure to thrive and recurrent episodes of vomiting. Typical laboratory findings which help in the diagnosis are hypokalemic metabolic alkalosis, hypomagnesemia and hypercalciuria. We report a case of Type III Bartter syndrome not responding to repeated conventional treatment of failure to thrive.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=4110214','PMC'); return false;" href="https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=4110214"><span>Complete Genome Sequence of Staphylococcus aureus XN108, an ST239-MRSA-SCCmec III Strain with Intermediate Vancomycin Resistance Isolated in Mainland China</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pmc">PubMed Central</a></p> <p>Zhang, Xia; Xu, Xiaomeng; Yuan, Wenchang; Hu, Qiwen; Shang, Weilong; Hu, Xiaomei</p> <p>2014-01-01</p> <p>ST239-MRSA-SCCmec III (ST239, sequence type 239; MRSA, methicillin-resistant Staphylococcus aureus; SCCmec III, staphylococcal cassette chromosome mec type III) is the most predominant clone of hospital-acquired methicillin-resistant S. aureus in mainland China. We report here the complete genome sequence of XN108, the first vancomycin-intermediate S. aureus strain isolated from a steam-burned patient with a wound infection. PMID:25059856</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/25185510','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/25185510"><span>Sunlight exposure and photoprotection behaviour of white Caucasian adolescents in the UK.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Gould, M; Farrar, M D; Kift, R; Berry, J L; Mughal, M Z; Bundy, C; Vail, A; Webb, A R; Rhodes, L E</p> <p>2015-04-01</p> <p>Sun exposure has positive and negative effects on health, yet little is known about the sun exposure behaviour of UK adolescents, including those more prone or less prone to sunburn. To examine sun exposure behaviour of UK white Caucasian adolescents including time spent outdoors, holiday behaviour, use of sunscreen and clothing, with assessment for differences between sun-reactive skin type groups. White Caucasian adolescents (12-15 years) attending schools in Greater Manchester completed a two-page questionnaire to assess sun exposure and photoprotective behaviour. A total of 133 adolescents (median age 13.4 years; 39% skin type I/II, 61% skin type III/IV) completed the questionnaire. In summer, adolescents spent significantly longer outdoors at weekends (median 4 h/day, range 0.25-10) than on weekdays (2, 0.25-6; P < 0.0001). When at home in the UK during summer, 44% reported never wearing sunscreen compared to just 1% when on a sunny holiday. Sunscreen use was also greater (frequency/coverage) when on a sunny holiday than at home in the UK summer (P < 0.0001). Adolescents of skin types I/II (easy burning) spent significantly less time outdoors than skin types III/IV (easy tanning) on summer weekends (P < 0.001), summer weekdays (P < 0.05) and on a sunny holiday (P = 0.001). Furthermore, skin types I/II reported greater sunscreen use during summer in the UK and on sunny holiday (both P < 0.01), and wore clothing covering a greater skin area on a sunny holiday (P < 0.01) than skin types III/IV. There was no difference in sun exposure behaviour/protection between males and females. The greater sun-protective measures reported by adolescents of sun-reactive skin type group I/II than III/IV suggest those who burn more easily are aware of the greater need to protect their skin. However, use of sunscreen during the UK summer is low and may need more effective promotion in adolescents. © 2014 European Academy of Dermatology and Venereology.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.osti.gov/biblio/22443430-lanthanide-coordination-polymers-synthesis-diverse-structure-luminescence-properties','SCIGOV-STC'); return false;" href="https://www.osti.gov/biblio/22443430-lanthanide-coordination-polymers-synthesis-diverse-structure-luminescence-properties"><span>Lanthanide coordination polymers: Synthesis, diverse structure and luminescence properties</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.osti.gov/search">DOE Office of Scientific and Technical Information (OSTI.GOV)</a></p> <p>Song, Xue-Qin, E-mail: songxq@mail.lzjtu.cn; Lei, Yao-Kun; Wang, Xiao-Run</p> <p>2014-10-15</p> <p>The new semirigid exo-bidentate ligand incorporating furfurysalicylamide terminal groups, namely, 1,4-bis([(2′-furfurylaminoformyl)phenoxyl]methyl)-2,5-bismethylbenzene (L) was synthesized and used as building blocks for constructing lanthanide coordination polymers with luminescent properties. The series of lanthanide nitrate complexes have been characterized by elemental analysis, IR spectroscopy, and X-ray diffraction analysis. The semirigid ligand L, as a bridging ligand, reacts with lanthanide nitrates forming three distinct structure types: chiral noninterpenetrated two-dimensional (2D) honeycomblike (6,3) (hcb, Schläfli symbol 6{sup 3}, vertex symbol 6 6 6) topological network as type I, 1D zigzag chain as type II and 1D trapezoid ladder-like chain as type III. The structural diversitiesmore » indicate that lanthanide contraction effect played significant roles in the structural self-assembled process. The luminescent properties of Eu{sup III}, Tb{sup III} and Dy{sup III} complexes are discussed in detail. Due to the good match between the lowest triplet state of the ligand and the resonant energy level of the lanthanide ion, the lanthanide ions in Eu{sup III}, Tb{sup III} and Dy{sup III} complexes can be efficiently sensitized by the ligand. - Graphical abstract: We present herein six lanthanide coordination polymers of a new semirigid exo-bidentate ligand which not only display diverse structures but also possess strong luminescence properties. - Highlights: • We present lanthanide coordination polymers of a new semirigid exo-bidentate ligand. • The lanthanide coordination polymers exhibit diverse structures. • The luminescent properties of Tb{sup III}, Eu{sup III} and Dy{sup III} complexes are discussed in detail.« less</p> </li> </ol> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_21");'>21</a></li> <li><a href="#" onclick='return showDiv("page_22");'>22</a></li> <li class="active"><span>23</span></li> <li><a href="#" onclick='return showDiv("page_24");'>24</a></li> <li><a href="#" onclick='return showDiv("page_25");'>25</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div><!-- col-sm-12 --> </div><!-- row --> </div><!-- page_23 --> <div id="page_24" class="hiddenDiv"> <div class="row"> <div class="col-sm-12"> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_21");'>21</a></li> <li><a href="#" onclick='return showDiv("page_22");'>22</a></li> <li><a href="#" onclick='return showDiv("page_23");'>23</a></li> <li class="active"><span>24</span></li> <li><a href="#" onclick='return showDiv("page_25");'>25</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div> </div> <div class="row"> <div class="col-sm-12"> <ol class="result-class" start="461"> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=105323','PMC'); return false;" href="https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=105323"><span>Comparison of Genomic Methods for Differentiating Strains of Enterococcus faecium: Assessment Using Clinical Epidemiologic Data</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pmc">PubMed Central</a></p> <p>Savor, Connie; Pfaller, Michael A.; Kruszynski, Julie A.; Hollis, Richard J.; Noskin, Gary A.; Peterson, Lance R.</p> <p>1998-01-01</p> <p>Genomic DNA extracted from 45 vancomycin-resistant Enterococcus faecium (VRE) isolates was cleaved with HindIII and HaeIII and subjected to agarose gel electrophoresis. The ability of this method (restriction endonuclease analysis [REA]) to distinguish strains at the subspecies level was compared with results previously determined by pulsed-field gel electrophoresis (PFGE). Chart reviews were performed to provide a clinical correlation of possible epidemiologic relatedness. A likely clinical association was found for 29 patients as part of two outbreaks. REA found 21 of 21 isolates were the same type in the first outbreak, with PFGE calling 19 strains the same type. In the second outbreak with eight patient isolates, HindIII found six were the same type and two were unique types. HaeIII found three strains were the same type, two strains were a separate type, and three more strains were unique types, while PFGE found three were the same type and five were unique types. No single “ideal” method can be used without clinical epidemiologic investigation, but any of these techniques is helpful in providing focus to infection control practitioners assessing possible outbreaks of nosocomial infection. PMID:9774587</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://ntrs.nasa.gov/search.jsp?R=19820048707&hterms=Exciter&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D70%26Ntt%3DExciter','NASA-TRS'); return false;" href="https://ntrs.nasa.gov/search.jsp?R=19820048707&hterms=Exciter&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D70%26Ntt%3DExciter"><span>Positions of type II fundamental and harmonic sources in the 30-100 MHZ range</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Sawant, H. S.; Gergely, T. E.; Kundu, M. R.</p> <p>1982-01-01</p> <p>An excellent example of a type III-V burst followed by a type II burst with fundamental and harmonic bands was observed on June 18, 1979 at the Clark Lake Radio Observatory. The observations are described in detail and their implications are discussed with regard to the problem of directionality with respect to the magnetic field lines of the collisionless MHD shock wave generated at the start of the flash phase. It is found that the positions of type III and type II (F) bursts at a number of frequencies are essentially the same, which implies that the shock responsible for the type II radiation follows the path of the type III exciter, that is, the shock propagates along the open field lines.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=1869816','PMC'); return false;" href="https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=1869816"><span>Collagen remodeling after myocardial infarction in the rat heart.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pmc">PubMed Central</a></p> <p>Cleutjens, J. P.; Verluyten, M. J.; Smiths, J. F.; Daemen, M. J.</p> <p>1995-01-01</p> <p>In this study changes in the amount and distribution of types I and III collagen mRNA and protein were investigated in the rat heart after induction of a left ventricular myocardial infarction (MI). Sham operated rats served as controls. The animals were sacrificed at different time intervals after operation. Northern blotting of cardiac RNA and hybridization with cDNA probes for types I and III procollagen revealed a 5- to 15-fold increase in the infarcted left ventricle. Type III procollagen mRNA levels were already increased at day 2 after MI, whereas type I procollagen mRNA followed this response at day 4 after MI. This increase was sustained for at least 21 days in the infarcted left ventricle for type III procollagen mRNA, whereas type 1 procollagen mRNA levels were still elevated at 90 days after MI. In the noninfarcted right ventricle a 5- to 7-fold increase was observed for both type I and type III procollagen mRNA levels, but only at day 4 after MI. In the non-infarcted septum a transient increase was observed for type I procollagen mRNA from day 7-21 (4- to 5-fold increase) and a decline to sham levels thereafter. In the septum type III procollagen mRNA levels were only elevated at 7 days after MI (4- to 5-fold increase) compared with sham operated controls. In situ hybridization with the same types I and III procollagen probes showed procollagen mRNA-producing cells in the infarcted area around necrotic cardiomyocytes, and in the interstitial cells in the non-infarcted part of the myocardium. No labeling was detected above cardiomyocytes. Combined in situ hybridization and immunohistochemistry showed that the collagen mRNA producing cells have a myofibroblast-like phenotype in the infarcted myocardium and are fibroblasts in the noninfarcted septum and right ventricle. The increase in types I and III procollagen mRNA in both infarcted and non-infarcted myocardium was followed by an increased collagen deposition, measured by computerized morphometry on sirius red-stained tissue sections as well as by the hydroxyproline assay. In the non-infarcted septum and right ventricle the collagen-positive area was maximal at day 14 (3- to 5-fold increase compared with sham operated controls) and slightly declined at day 21. In the infarcted myocardium the collagen-positive area was 57 +/- 10% at day 14 after MI. Hydroxyproline contents were significantly increased in the noninfarcted septum.(ABSTRACT TRUNCATED AT 400 WORDS) Images Figure 1 Figure 4 Figure 5 Figure 8 Figure 9 PMID:7639329</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/7639329','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/7639329"><span>Collagen remodeling after myocardial infarction in the rat heart.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Cleutjens, J P; Verluyten, M J; Smiths, J F; Daemen, M J</p> <p>1995-08-01</p> <p>In this study changes in the amount and distribution of types I and III collagen mRNA and protein were investigated in the rat heart after induction of a left ventricular myocardial infarction (MI). Sham operated rats served as controls. The animals were sacrificed at different time intervals after operation. Northern blotting of cardiac RNA and hybridization with cDNA probes for types I and III procollagen revealed a 5- to 15-fold increase in the infarcted left ventricle. Type III procollagen mRNA levels were already increased at day 2 after MI, whereas type I procollagen mRNA followed this response at day 4 after MI. This increase was sustained for at least 21 days in the infarcted left ventricle for type III procollagen mRNA, whereas type 1 procollagen mRNA levels were still elevated at 90 days after MI. In the noninfarcted right ventricle a 5- to 7-fold increase was observed for both type I and type III procollagen mRNA levels, but only at day 4 after MI. In the non-infarcted septum a transient increase was observed for type I procollagen mRNA from day 7-21 (4- to 5-fold increase) and a decline to sham levels thereafter. In the septum type III procollagen mRNA levels were only elevated at 7 days after MI (4- to 5-fold increase) compared with sham operated controls. In situ hybridization with the same types I and III procollagen probes showed procollagen mRNA-producing cells in the infarcted area around necrotic cardiomyocytes, and in the interstitial cells in the non-infarcted part of the myocardium. No labeling was detected above cardiomyocytes. Combined in situ hybridization and immunohistochemistry showed that the collagen mRNA producing cells have a myofibroblast-like phenotype in the infarcted myocardium and are fibroblasts in the noninfarcted septum and right ventricle. The increase in types I and III procollagen mRNA in both infarcted and non-infarcted myocardium was followed by an increased collagen deposition, measured by computerized morphometry on sirius red-stained tissue sections as well as by the hydroxyproline assay. In the non-infarcted septum and right ventricle the collagen-positive area was maximal at day 14 (3- to 5-fold increase compared with sham operated controls) and slightly declined at day 21. In the infarcted myocardium the collagen-positive area was 57 +/- 10% at day 14 after MI. Hydroxyproline contents were significantly increased in the noninfarcted septum.(ABSTRACT TRUNCATED AT 400 WORDS)</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://hdl.handle.net/2060/19740003544','NASA-TRS'); return false;" href="http://hdl.handle.net/2060/19740003544"><span>Simulated trajectories error analysis program, version 2. Volume 2: Programmer's manual</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Vogt, E. D.; Adams, G. L.; Working, M. M.; Ferguson, J. B.; Bynum, M. R.</p> <p>1971-01-01</p> <p>A series of three computer programs for the mathematical analysis of navigation and guidance of lunar and interplanetary trajectories was developed. All three programs require the integration of n-body trajectories for both interplanetary and lunar missions. The virutal mass technique is used in all three programs. The user's manual contains the information necessary to operate the programs. The input and output quantities of the programs are described. Sample cases are given and discussed.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://hdl.handle.net/2060/19770027121','NASA-TRS'); return false;" href="http://hdl.handle.net/2060/19770027121"><span>Interplanetary medium data book</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>King, J. H.</p> <p>1977-01-01</p> <p>Unresolved questions on the physics of solar wind and its effects on magnetospheric processes and cosmic ray propagation were addressed with hourly averaged interplanetary plasma and magnetic field data. This composite data set is described with its content and extent, sources, limits of validity, and the mutual consistency studies and normalizations to which the input data were subjected. Hourly averaged parameters were presented in the form of digital listings and 27-day plots. The listings are contained in a separately bound appendix.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://ntrs.nasa.gov/search.jsp?R=19880053447&hterms=Magnetic+energy&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D60%26Ntt%3DMagnetic%2Benergy','NASA-TRS'); return false;" href="https://ntrs.nasa.gov/search.jsp?R=19880053447&hterms=Magnetic+energy&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D60%26Ntt%3DMagnetic%2Benergy"><span>Transport equations for low-energy solar particles in evolving interplanetary magnetic fields</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Ng, C. K.</p> <p>1988-01-01</p> <p>Two new forms of a simplified Fokker-Planck equation are derived for the transport of low-energy solar energetic particles in an evolving interplanetary magnetic field, carried by a variable radial solar wind. An idealized solution suggests that the 'invariant' anisotropy direction reported by Allum et al. (1974) may be explained within the conventional theoretical framework. The equations may be used to relate studies of solar particle propagation to solar wind transients, and vice versa.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://ntrs.nasa.gov/search.jsp?R=19970040330&hterms=estado&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D30%26Ntt%3Destado','NASA-TRS'); return false;" href="https://ntrs.nasa.gov/search.jsp?R=19970040330&hterms=estado&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D30%26Ntt%3Destado"><span>Moderate Geomagnetic Storms: Interplanetary Origins and Coupling Functions (ISEE3 Data)</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Mendes, Odim, Jr.; Gonzalez, W. D.; Gonzalez, A. L. C.; Pinto, O., Jr.; Tsurutani, B. T.</p> <p>1996-01-01</p> <p>Geomagnetic storms are related to the ring current intensification, which is driven by energy injection primarily during energetic solar wind-magnetosphere coupling due to reconnection at the magnetopause. This work identified the interplanetary origins of moderate geomagnetic storms (-100nT is less or equal to Dst(sub peak) is less than or equal to -50 nT) and analyzed the coupling processes during the storm main phase at solar maximum (1978-1979).</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://hdl.handle.net/2060/19730017140','NASA-TRS'); return false;" href="http://hdl.handle.net/2060/19730017140"><span>Alfven wave refraction by interplanetary inhomogeneities</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Daily, W. D.</p> <p>1973-01-01</p> <p>Pioneer 6 magnetic data reveals that the propagation direction of Alfven waves in the interplanetary medium is strongly oriented along the ambient field. Magnetic fluctuations of frequencies up to 1/30 sec in the spacecraft frame are shown to satisfy a necessary condition for Alfven wave normal. It appears from this analysis that geometrical hydromagnetics may satisfactorily describe deviation of the wave normal from the background field. The rotational discontinuity is likely also to propagate along the field lines.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://hdl.handle.net/2060/19740027147','NASA-TRS'); return false;" href="http://hdl.handle.net/2060/19740027147"><span>Advanced planning activity. [for interplanetary flight and space exploration</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p></p> <p>1974-01-01</p> <p>Selected mission concepts for interplanetary exploration through 1985 were examined, including: (1) Jupiter orbiter performance characteristics; (2) solar electric propulsion missions to Mercury, Venus, Neptune, and Uranus; (3) space shuttle planetary missions; (4) Pioneer entry probes to Saturn and Uranus; (5) rendezvous with Comet Kohoutek and Comet Encke; (6) space tug capabilities; and (7) a Pioneer mission to Mars in 1979. Mission options, limitations, and performance predictions are assessed, along with probable configurational, boost, and propulsion requirements.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://hdl.handle.net/2060/20030022718','NASA-TRS'); return false;" href="http://hdl.handle.net/2060/20030022718"><span>Accretion of Interplanetary Dust: A New Record from He-3 In Polar Ice Cores</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Brook, Edward</p> <p>2002-01-01</p> <p>This grant funded measurements of extraterrestrial He-3 in particles extracted from polar ice samples. The overall objective was to develop measurements of He-3 as tracers of the flux of interplanetary dust particles (IDP's) to the earth. To our knowledge these are the first such measurements, apart from our earlier work. The project also funded an EPO activity - a climate and global change workshop for high school science teachers.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://hdl.handle.net/2060/19730013998','NASA-TRS'); return false;" href="http://hdl.handle.net/2060/19730013998"><span>Nuclear electric propulsion mission engineering study. Volume 2: Final report</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p></p> <p>1973-01-01</p> <p>Results of a mission engineering analysis of nuclear-thermionic electric propulsion spacecraft for unmanned interplanetary and geocentric missions are summarized. Critical technologies associated with the development of nuclear electric propulsion (NEP) are assessed, along with the impact of its availability on future space programs. Outer planet and comet rendezvous mission analysis, NEP stage design for geocentric and interplanetary missions, NEP system development cost and unit costs, and technology requirements for NEP stage development are studied.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://hdl.handle.net/2060/19850026475','NASA-TRS'); return false;" href="http://hdl.handle.net/2060/19850026475"><span>Variations in elemental composition of several MEV/nucleon ions observed in interplanetary space</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Mcguire, R. E.; Vonrosenvinge, T. T.; Reames, D. V.</p> <p>1985-01-01</p> <p>Six years of accumulated ISEE-3 and IMP-8 data to study variations in elemental relative abundances among the different populations of energetic ions seen in interplanetary space are surveyed. Evidence suggesting that heavy ion enrichments may be organized by a rigidity scaling factor A/Z over the range H to Fe is presented. Data to support the hypothesis that shock-associated particles are probably accelerated from ambient energetic fluxes are shown.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://www.dtic.mil/docs/citations/ADA248332','DTIC-ST'); return false;" href="http://www.dtic.mil/docs/citations/ADA248332"><span>The Role of Hydromagnetic Waves in the Magnetosphere and the Ionosphere</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.dtic.mil/">DTIC Science & Technology</a></p> <p></p> <p>1991-01-31</p> <p>of right-hand-polarized waves in instabilities, we follow the examples discussed by Wong interplanetary shocks and in the terrestrial foreshock and... foreshock , (Received January 14, 1988;J. Geophys. Res., 90, 1429, 1985. Spangler, S.R., and J.P. Sheerin, Alfv6.n wave revised April 15, 1988;collapse...bow shocks,2 and in the interplanetary shocks and the a four-wave parametric coupling process is a.alyzed for the terrestrial foreshock .3 .4 Moreover</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://hdl.handle.net/2060/19720023138','NASA-TRS'); return false;" href="http://hdl.handle.net/2060/19720023138"><span>Recurrent active regions related to metric radio continuum emissions and the interplanetary magnetic sector structure</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Sakurai, K.</p> <p>1972-01-01</p> <p>Active heliographic longitudes at the sun are investigated by using the observational data for long-lived metric continuum noise sources. It is shown that, for the period from 1963 to 1969, the number of such longitudes was four in general and these longitudes were very stable for this radio activity since 1963. A discussion is given on the relationship between those longitudes and the sector structure of the interplanetary magnetic field.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://ntrs.nasa.gov/search.jsp?R=20060009195&hterms=investigaciones+de+fisica&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D10%26Ntt%3Dinvestigaciones%2Bde%2Bfisica','NASA-TRS'); return false;" href="https://ntrs.nasa.gov/search.jsp?R=20060009195&hterms=investigaciones+de+fisica&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D10%26Ntt%3Dinvestigaciones%2Bde%2Bfisica"><span>Spatial Correlation of Solar-Wind Turbulence from Two-Point Measurements</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Matthaeus, W. H.; Milano, L. J.; Dasso, S.; Weygand, J. M.; Smith, C. W.; Kivelson, M. G.</p> <p>2005-01-01</p> <p>Interplanetary turbulence, the best studied case of low frequency plasma turbulence, is the only directly quantified instance of astrophysical turbulence. Here, magnetic field correlation analysis, using for the first time only proper two-point, single time measurements, provides a key step in unraveling the space-time structure of interplanetary turbulence. Simultaneous magnetic field data from the Wind, ACE, and Cluster spacecraft are analyzed to determine the correlation (outer) scale, and the Taylor microscale near Earth's orbit.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/22288167','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/22288167"><span>[Macro- and microscopic systematization of cerebral cortex malformations in children].</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Milovanov, A P; Milovanova, O A</p> <p>2011-01-01</p> <p>For the first time in pediatric pathologicoanatomic practice the complete systematization of cerebral cortex malformations is represented. Organ, macroscopic forms: microencephaly, macroencephaly, micropolygyria, pachygyria, schizencephaly, porencephaly, lissencephaly. Histic microdysgenesis of cortex: type I includes isolated abnormalities such as radial (IA) and tangential (I B) subtypes of cortical dislamination; type II includes sublocal cortical dislamination with immature dysmorphic neurons (II A) and balloon cells (II B); type III are the combination focal cortical dysplasia with tuberous sclerosis of the hippocampus (III A), tumors (III B) and malformations of vessels, traumatic and hypoxic disorders (III C). Band heterotopias. Subependimal nodular heterotopias. Tuberous sclerosis. Cellular typification of cortical dysplasia: immature neurons and balloon cells.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2016IAUTA..29..365J','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2016IAUTA..29..365J"><span>Division F Commission 22: Meteors, Meteorites, and Interplanetary Dust</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Jenniskens, Peter; Borovička, Jiří; Watanabe, Jun-Ichi; Jopek, Tadeusz; Abe, Shinsuke; Consolmagno, Guy J.; Ishiguro, Masateru; Janches, Diego; Ryabova, Galina O.; Vaubaillon, Jérémie; Zhu, Jin</p> <p>2016-04-01</p> <p>Commission 22 (Meteors, Meteorites and Interplanetary Dust) was established at the first IAU General Assembly held in Rome in 1922, with William Frederick Denning as its first President. Denning was an accountant by profession, but as an amateur astronomer he contributed extensively to meteor science. Commission 22 thus established a pattern that has continued to this day that non-professional astronomers were welcomed and valued and could play a significant role in its affairs. The field of meteors, meteorites and interplanetary dust has played a disproportional role in the astronomical perception of the general public through the majestic displays of our annual meteor showers. Those in the field deployed many techniques uncommon in other fields of astronomy, studying the ``vermin of space'', the small solid bodies that pervade interplanetary space and impact Earth's atmosphere, the surface of the Moon, and that of our satellites in orbit. Over time, the field has tackled a wide array of problems, from predicting the encounter with meteoroid streams, to the origin of our meteorites and the nature of the zodiacal cloud. Commission 22 has played an important role in organizing the field through dedicated meetings, a data centre, and working groups that developed professional-amateur relationships and that organized the nomenclature of meteor showers. The contribution of Commission 22 to the field is perhaps most readily seen in the work of the presidents that followed in the footsteps of Denning.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2005DPS....37.1702G','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2005DPS....37.1702G"><span>GEO Debris and Interplanetary Dust: Fluxes and Charging Behavior</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Graps, A. L.; Green, S. F.; McBride, N. M.; McDonnell, J. A. M.; Drolshagen, G.; Svedhem, H.; Bunte, K. D.</p> <p>2005-08-01</p> <p>A population of cosmic dust mixed with a population of man-made debris exists within the Earth's magnetosphere. Measurements of these provide the data samples for studies of the interplanetary dust particles that travel through our magnetosphere from the outside and for studies of the local byproducts of our space endeavours. Even though instruments to detect natural meteoroids and space debris particles have been flown in Low Earth Orbits (LEO) and on interplanetary missions, very little information on the particle environment for Earth orbits above about 600 km altitude have been available. In particular, knowledge about particles smaller than 1 m in the geostationary (GEO) region was largely unknown before GORID. In September 1996, a dust/debris detector: GORID was launched into GEO as a piggyback instrument on the Russian Express-2 telecommunications spacecraft. The instrument began its normal operation in April 1997 and ended its mission in July 2002. The goal of this work was to use GORID's particle data to identify and separate the space debris from the interplanetary dust particles (IDPs) in GEO, to more finely determine the instrument's measurement characteristics and to derive impact fluxes. Here we present some results of that study. We give GORID flux distributions for debris and IDPs and then present intriguing debris clustering features that might be the result of electrostatic fragmentation of the rocket slag particles.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.osti.gov/biblio/22663626-multi-spacecraft-observations-coronal-interplanetary-evolution-solar-eruption-associated-two-active-regions','SCIGOV-STC'); return false;" href="https://www.osti.gov/biblio/22663626-multi-spacecraft-observations-coronal-interplanetary-evolution-solar-eruption-associated-two-active-regions"><span>Multi-spacecraft Observations of the Coronal and Interplanetary Evolution of a Solar Eruption Associated with Two Active Regions</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.osti.gov/search">DOE Office of Scientific and Technical Information (OSTI.GOV)</a></p> <p>Hu, Huidong; Liu, Ying D.; Wang, Rui</p> <p></p> <p>We investigate the coronal and interplanetary evolution of a coronal mass ejection (CME) launched on 2010 September 4 from a source region linking two active regions (ARs), 11101 and 11103, using extreme ultraviolet imaging, magnetogram, white-light, and in situ observations from SDO , STEREO , SOHO , VEX , and Wind . A potential-field source-surface model is employed to examine the configuration of the coronal magnetic field surrounding the source region. The graduated cylindrical shell model and a triangulation method are applied to determine the kinematics of the CME in the corona and interplanetary space. From the remote sensing andmore » in situ observations, we obtain some key results: (1) the CME was deflected in both the eastward and southward directions in the low corona by the magnetic pressure from the two ARs, and possibly interacted with another ejection, which caused that the CME arrived at VEX that was longitudinally distant from the source region; (2) although VEX was closer to the Sun, the observed and derived CME arrival times at VEX are not earlier than those at Wind , which suggests the importance of determining both the frontal shape and propagation direction of the CME in interplanetary space; and (3) the ICME was compressed in the radial direction while the longitudinal transverse size was extended.« less</p> </li> </ol> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_21");'>21</a></li> <li><a href="#" onclick='return showDiv("page_22");'>22</a></li> <li><a href="#" onclick='return showDiv("page_23");'>23</a></li> <li class="active"><span>24</span></li> <li><a href="#" onclick='return showDiv("page_25");'>25</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div><!-- col-sm-12 --> </div><!-- row --> </div><!-- page_24 --> <div id="page_25" class="hiddenDiv"> <div class="row"> <div class="col-sm-12"> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_21");'>21</a></li> <li><a href="#" onclick='return showDiv("page_22");'>22</a></li> <li><a href="#" onclick='return showDiv("page_23");'>23</a></li> <li><a href="#" onclick='return showDiv("page_24");'>24</a></li> <li class="active"><span>25</span></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div> </div> <div class="row"> <div class="col-sm-12"> <ol class="result-class" start="481"> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://ntrs.nasa.gov/search.jsp?R=19830042535&hterms=Wave+Energy&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D70%26Ntt%3DWave%2BEnergy','NASA-TRS'); return false;" href="https://ntrs.nasa.gov/search.jsp?R=19830042535&hterms=Wave+Energy&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D70%26Ntt%3DWave%2BEnergy"><span>Acceleration of low-energy protons and alpha particles at interplanetary shock waves</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Scholer, M.; Hovestadt, D.; Ipavich, F. M.; Gloeckler, G.</p> <p>1983-01-01</p> <p>The low-energy protons and alpha particles in the energy range 30 keV/charge to 150 keV/charge associated with three different interplanetary shock waves in the immediate preshock and postshock region are studied using data obtained by the ISEE 3. The spatial distributions in the preshock and postshock medium are presented, and the dependence of the phase space density at different energies on the distance from the shock and on the form of the distribution function of both species immediately at the shock is examined. It is found that in the preshock region the particles are flowing in the solar wind frame of reference away from the shock and in the postshock medium the distribution is more or less isotropic in this frame of reference. The distribution function in the postshock region can be represented by a power law in energy which has the same spectral exponent for both protons and alpha particles. It is concluded that the first-order Fermi acceleration process can consistently explain the data, although the spectra of diffuse bow shock associated particles are different from the spectra of the interplanetary shock-associated particles in the immediate vicinity of the shock. In addition, the mean free path of the low energy ions in the preshock medium is found to be considerably smaller than the mean free path determined by the turbulence of the background interplanetary medium.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.osti.gov/biblio/22654525-sheath-accumulating-propagation-interplanetary-coronal-mass-ejection','SCIGOV-STC'); return false;" href="https://www.osti.gov/biblio/22654525-sheath-accumulating-propagation-interplanetary-coronal-mass-ejection"><span>Sheath-accumulating Propagation of Interplanetary Coronal Mass Ejection</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.osti.gov/search">DOE Office of Scientific and Technical Information (OSTI.GOV)</a></p> <p>Takahashi, Takuya; Shibata, Kazunari, E-mail: takahasi@kusastro.kyoto-u.ac.jp</p> <p></p> <p>Fast interplanetary coronal mass ejections (ICMEs) are the drivers of strong space weather storms such as solar energetic particle events and geomagnetic storms. The connection between the space-weather-impacting solar wind disturbances associated with fast ICMEs at Earth and the characteristics of causative energetic CMEs observed near the Sun is a key question in the study of space weather storms, as well as in the development of practical space weather prediction. Such shock-driving fast ICMEs usually expand at supersonic speeds during the propagation, resulting in the continuous accumulation of shocked sheath plasma ahead. In this paper, we propose a “sheath-accumulating propagation”more » (SAP) model that describes the coevolution of the interplanetary sheath and decelerating ICME ejecta by taking into account the process of upstream solar wind plasma accumulation within the sheath region. Based on the SAP model, we discuss (1) ICME deceleration characteristics; (2) the fundamental condition for fast ICMEs at Earth; (3) the thickness of interplanetary sheaths; (4) arrival time prediction; and (5) the super-intense geomagnetic storms associated with huge solar flares. We quantitatively show that not only the speed but also the mass of the CME are crucial for discussing the above five points. The similarities and differences between the SAP model, the drag-based model, and the“snow-plow” model proposed by Tappin are also discussed.« less</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017AGUFMSM11B2303L','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017AGUFMSM11B2303L"><span>Electron Dropout Echoes Induced by Interplanetary Shock: A Statistical Study</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Liu, Z.; Zong, Q.; Hao, Y.; Zhou, X.; Ma, X.; Liu, Y.</p> <p>2017-12-01</p> <p>"Electron dropout echo" as indicated by repeated moderate dropout and recovery signatures of the flux of energetic electron in the out radiation belt region has been investigated systematically. The electron dropout and its echoes are usually found for higher energy (> 300 keV) channels fluxes, whereas the flux enhancements are obvious for lower energy electrons simultaneously after the interplanetary shock arrives at the Earth's geosynchronous orbit. 104 dropout echo events have been found from 215 interplanetary shock events from 1998 to 2007 based on LANL satellite data. In analogy to substorm injections, these 104 events could be naturally divided into two categories: dispersionless (49 events) or dispersive (55 events) according to the energy dispersion of the initial dropout. It is found that locations of dispersionless events are distributed mainly in the duskside magnetosphere. Further, the obtained locations derived from dispersive events with the time-of-flight technique of the initial dropout regions are mainly located at the duskside as well. Statistical studies have shown that the effect of shock normal, interplanetary magnetic field Bz and solar wind dynamic pressure may be insignificant to these electron dropout events. We suggest that the electric field impulse induced by the IP shock produces a more pronounced inward migration of electrons at the dusk side, resulting in the observed dusk-side moderate dropout of electron flux and its consequent echoes.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/9719374','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/9719374"><span>Usher syndrome type III (USH3) linked to chromosome 3q in an Italian family.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Gasparini, P; De Fazio, A; Croce, A I; Stanziale, P; Zelante, L</p> <p>1998-08-01</p> <p>We report an Italian family affected by Usher type III syndrome. Linkage study, performed using markers corresponding to the Usher loci already mapped, clearly showed linkage with markers on chromosome 3q24-25. Our data further support the presence of an Usher III locus on chromosome 3, as recently reported in a Finnish population.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=3059390','PMC'); return false;" href="https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=3059390"><span>Neuronal migration disorders in microcephalic osteodysplastic primordial dwarfism type I/III</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pmc">PubMed Central</a></p> <p>Juric-Sekhar, Gordana; Kapur, Raj P.; Glass, Ian A.; Murray, Mitzi L.; Parnell, Shawn E.</p> <p>2011-01-01</p> <p>Microcephalic osteodysplastic primordial dwarfism (MOPD) is a rare microlissencephaly syndrome, with at least two distinct phenotypic and genetic types. MOPD type II is caused by pericentrin mutations, while types I and III appear to represent a distinct entity (MOPD I/III) with variably penetrant phenotypes and unknown genetic basis. The neuropathology of MOPD I/III is little understood, especially in comparison to other forms of lissencephaly. Here, we report postmortem brain findings in an 11-month-old female infant with MOPD I/III. The cerebral cortex was diffusely pachygyric, with a right parietal porencephalic lesion. Histologically, the cortex was abnormally thick and disorganized. Distinct malformations were observed in different cerebral lobes, as characterized using layer-specific neuronal markers. Frontal cortex was severely disorganized and coated with extensive leptomeningeal glioneuronal heterotopia. Temporal cortex had a relatively normal 6-layered pattern, despite cortical thickening. Occipital cortex was variably affected. The corpus callosum was extremely hypoplastic. Brainstem and cerebellar malformations were also present, as well as old necrotic foci. Findings in this case suggest that the cortical malformation in MOPD I/III is distinct from other forms of pachygyria–lissencephaly. PMID:20857301</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/25375939','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/25375939"><span>Prevalence and genotype identification of Toxoplasma gondii in wild animals from southwestern Spain.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Calero-Bernal, Rafael; Saugar, José M; Frontera, Eva; Pérez-Martín, Juan E; Habela, Miguel A; Serrano, Francisco J; Reina, David; Fuentes, Isabel</p> <p>2015-01-01</p> <p>We used PCR to detect Toxoplasma gondii in the principal game species in southwestern Spain. We detected T. gondii in 32.2% of animals tested. Prevalences varied from 14.7% in wild boar (Sus scrofa) to 51.2% in red fox (Vulpes vulpes). The most prevalent genotype was type II (50.0%), followed by type III (20.6%) and type I (5.9%). Mixed infections (11.8%) were detected in wild boar (types I+III) and red fox (types II+III). Polymorphic strains (11.8%) were detected in several species. The high prevalence and the genetic variability shown could have implications for infection of farm animals and humans.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=3973734','PMC'); return false;" href="https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=3973734"><span>CRISPR adaptive immune systems of Archaea</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pmc">PubMed Central</a></p> <p>Vestergaard, Gisle; Garrett, Roger A; Shah, Shiraz A</p> <p>2014-01-01</p> <p>CRISPR adaptive immune systems were analyzed for all available completed genomes of archaea, which included representatives of each of the main archaeal phyla. Initially, all proteins encoded within, and proximal to, CRISPR-cas loci were clustered and analyzed using a profile–profile approach. Then cas genes were assigned to gene cassettes and to functional modules for adaptation and interference. CRISPR systems were then classified primarily on the basis of their concatenated Cas protein sequences and gene synteny of the interference modules. With few exceptions, they could be assigned to the universal Type I or Type III systems. For Type I, subtypes I-A, I-B, and I-D dominate but the data support the division of subtype I-B into two subtypes, designated I-B and I-G. About 70% of the Type III systems fall into the universal subtypes III-A and III-B but the remainder, some of which are phyla-specific, diverge significantly in Cas protein sequences, and/or gene synteny, and they are classified separately. Furthermore, a few CRISPR systems that could not be assigned to Type I or Type III are categorized as variant systems. Criteria are presented for assigning newly sequenced archaeal CRISPR systems to the different subtypes. Several accessory proteins were identified that show a specific gene linkage, especially to Type III interference modules, and these may be cofunctional with the CRISPR systems. Evidence is presented for extensive exchange having occurred between adaptation and interference modules of different archaeal CRISPR systems, indicating the wide compatibility of the functionally diverse interference complexes with the relatively conserved adaptation modules. PMID:24531374</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017AGUFMSH31A2711G','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017AGUFMSH31A2711G"><span>Statistical Analysis of Solar Events Associated with SSC over Year of Solar Maximum during Cycle 23: 1. Identification of Related Sun-Earth Events</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Grison, B.; Bocchialini, K.; Menvielle, M.; Chambodut, A.; Cornilleau-Wehrlin, N.; Fontaine, D.; Marchaudon, A.; Pick, M.; Pitout, F.; Schmieder, B.; Regnier, S.; Zouganelis, Y.</p> <p>2017-12-01</p> <p>Taking the 32 sudden storm commencements (SSC) listed by the observatory de l'Ebre / ISGI over the year 2002 (maximal solar activity) as a starting point, we performed a statistical analysis of the related solar sources, solar wind signatures, and terrestrial responses. For each event, we characterized and identified, as far as possible, (i) the sources on the Sun (Coronal Mass Ejections -CME-), with the help of a series of herafter detailed criteria (velocities, drag coefficient, radio waves, polarity), as well as (ii) the structure and properties in the interplanetary medium, at L1, of the event associated to the SSC: magnetic clouds -MC-, non-MC interplanetary coronal mass ejections -ICME-, co-rotating/stream interaction regions -SIR/CIR-, shocks only and unclear events that we call "miscellaneous" events. The categorization of the events at L1 is made on published catalogues. For each potential CME/L1 event association we compare the velocity observed at L1 with the one observed at the Sun and the estimated balistic velocity. Observations of radio emissions (Type II, Type IV detected from the ground and /or by WIND) associated to the CMEs make the solar source more probable. We also compare the polarity of the magnetic clouds with the hemisphere of the solar source. The drag coefficient (estimated with the drag-based model) is calculated for each potential association and it is compared to the expected range values. We identified a solar source for 26 SSC related events. 12 of these 26 associations match all criteria. We finally discuss the difficulty to perform such associations.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=3548260','PMC'); return false;" href="https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=3548260"><span>Novel findings in patients with primary hyperoxaluria type III and implications for advanced molecular testing strategies</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pmc">PubMed Central</a></p> <p>Beck, Bodo B; Baasner, Anne; Buescher, Anja; Habbig, Sandra; Reintjes, Nadine; Kemper, Markus J; Sikora, Przemyslaw; Mache, Christoph; Pohl, Martin; Stahl, Mirjam; Toenshoff, Burkhard; Pape, Lars; Fehrenbach, Henry; Jacob, Dorrit E; Grohe, Bernd; Wolf, Matthias T; Nürnberg, Gudrun; Yigit, Gökhan; Salido, Eduardo C; Hoppe, Bernd</p> <p>2013-01-01</p> <p>Identification of mutations in the HOGA1 gene as the cause of autosomal recessive primary hyperoxaluria (PH) type III has revitalized research in the field of PH and related stone disease. In contrast to the well-characterized entities of PH type I and type II, the pathophysiology and prevalence of type III is largely unknown. In this study, we analyzed a large cohort of subjects previously tested negative for type I/II by complete HOGA1 sequencing. Seven distinct mutations, among them four novel, were found in 15 patients. In patients of non-consanguineous European descent the previously reported c.700+5G>T splice-site mutation was predominant and represents a potential founder mutation, while in consanguineous families private homozygous mutations were identified throughout the gene. Furthermore, we identified a family where a homozygous mutation in HOGA1 (p.P190L) segregated in two siblings with an additional AGXT mutation (p.D201E). The two girls exhibiting triallelic inheritance presented a more severe phenotype than their only mildly affected p.P190L homozygous father. In silico analysis of five mutations reveals that HOGA1 deficiency is causing type III, yet reduced HOGA1 expression or aberrant subcellular protein targeting is unlikely to be the responsible pathomechanism. Our results strongly suggest HOGA1 as a major cause of PH, indicate a greater genetic heterogeneity of hyperoxaluria, and point to a favorable outcome of type III in the context of PH despite incomplete or absent biochemical remission. Multiallelic inheritance could have implications for genetic testing strategies and might represent an unrecognized mechanism for phenotype variability in PH. PMID:22781098</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/22781098','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/22781098"><span>Novel findings in patients with primary hyperoxaluria type III and implications for advanced molecular testing strategies.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Beck, Bodo B; Baasner, Anne; Buescher, Anja; Habbig, Sandra; Reintjes, Nadine; Kemper, Markus J; Sikora, Przemyslaw; Mache, Christoph; Pohl, Martin; Stahl, Mirjam; Toenshoff, Burkhard; Pape, Lars; Fehrenbach, Henry; Jacob, Dorrit E; Grohe, Bernd; Wolf, Matthias T; Nürnberg, Gudrun; Yigit, Gökhan; Salido, Eduardo C; Hoppe, Bernd</p> <p>2013-02-01</p> <p>Identification of mutations in the HOGA1 gene as the cause of autosomal recessive primary hyperoxaluria (PH) type III has revitalized research in the field of PH and related stone disease. In contrast to the well-characterized entities of PH type I and type II, the pathophysiology and prevalence of type III is largely unknown. In this study, we analyzed a large cohort of subjects previously tested negative for type I/II by complete HOGA1 sequencing. Seven distinct mutations, among them four novel, were found in 15 patients. In patients of non-consanguineous European descent the previously reported c.700+5G>T splice-site mutation was predominant and represents a potential founder mutation, while in consanguineous families private homozygous mutations were identified throughout the gene. Furthermore, we identified a family where a homozygous mutation in HOGA1 (p.P190L) segregated in two siblings with an additional AGXT mutation (p.D201E). The two girls exhibiting triallelic inheritance presented a more severe phenotype than their only mildly affected p.P190L homozygous father. In silico analysis of five mutations reveals that HOGA1 deficiency is causing type III, yet reduced HOGA1 expression or aberrant subcellular protein targeting is unlikely to be the responsible pathomechanism. Our results strongly suggest HOGA1 as a major cause of PH, indicate a greater genetic heterogeneity of hyperoxaluria, and point to a favorable outcome of type III in the context of PH despite incomplete or absent biochemical remission. Multiallelic inheritance could have implications for genetic testing strategies and might represent an unrecognized mechanism for phenotype variability in PH.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/23164417','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/23164417"><span>Bartter syndrome type III and congenital anomalies of the kidney and urinary tract: an antenatal presentation.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Westland, Rik; Hack, Wilfried W; van der Horst, Henricus J R; Uittenbogaard, Lukas B; van Hagen, Johanna M; van der Valk, Paul; Kamsteeg, Erik J; van den Heuvel, Lambert P; van Wijk, Joanna A E</p> <p>2012-12-01</p> <p>Bartter syndrome encompasses a variety of inheritable renal tubular transport disorders characterized by hypokalemia and hypochloremic metabolic alkalosis. Bartter syndrome Type III is caused by genetic alterations in the chloride channel kidney B (CLCNKB) gene and often presents in the first 2 years of life, known as classic Bartter syndrome. However, in rare cases Bartter syndrome Type III has an antenatal presentation with polyhydramnios, premature delivery and severe dehydration in the first weeks of life. Associations between congenital anomalies of the kidney and urinary tract and Bartter syndrome are extremely rare. This case report presents a girl with Bartter syndrome Type III due to a homozygous CLCNKB mutation and bilateral congenital anomalies of the kidney and urinary tract. In addition, we describe the antenatal presentation as well as its perinatal management.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/7512815','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/7512815"><span>Crystal structure of tandem type III fibronectin domains from Drosophila neuroglian at 2.0 A.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Huber, A H; Wang, Y M; Bieber, A J; Bjorkman, P J</p> <p>1994-04-01</p> <p>We report the crystal structure of two adjacent fibronectin type III repeats from the Drosophila neural cell adhesion molecule neuroglian. Each domain consists of two antiparallel beta sheets and is folded topologically identically to single fibronectin type III domains from the extracellular matrix proteins tenascin and fibronectin. beta bulges and left-handed polyproline II helices disrupt the regular beta sheet structure of both neuroglian domains. The hydrophobic interdomain interface includes a metal-binding site, presumably involved in stabilizing the relative orientation between domains and predicted by sequence comparision to be present in the vertebrate homolog molecule L1. The neuroglian domains are related by a near perfect 2-fold screw axis along the longest molecular dimension. Using this relationship, a model for arrays of tandem fibronectin type III repeats in neuroglian and other molecules is proposed.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/22465133','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/22465133"><span>Plant-bacterial pathogen interactions mediated by type III effectors.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Feng, Feng; Zhou, Jian-Min</p> <p>2012-08-01</p> <p>Effectors secreted by the bacterial type III system play a central role in the interaction between Gram-negative bacterial pathogens and their host plants. Recent advances in the effector studies have helped cementing several key concepts concerning bacterial pathogenesis, plant immunity, and plant-pathogen co-evolution. Type III effectors use a variety of biochemical mechanisms to target specific host proteins or DNA for pathogenesis. The identifications of their host targets led to the identification of novel components of plant innate immune system. Key modules of plant immune signaling pathways such as immune receptor complexes and MAPK cascades have emerged as a major battle ground for host-pathogen adaptation. These modules are attacked by multiple type III effectors, and some components of these modules have evolved to actively sense the effectors and trigger immunity. Copyright © 2012 Elsevier Ltd. All rights reserved.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/28164296','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/28164296"><span>Deinfibulation for preventing or treating complications in women living with type III female genital mutilation: A systematic review and meta-analysis.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Okusanya, Babasola O; Oduwole, Olabisi; Nwachuku, Nuria; Meremikwu, Martin M</p> <p>2017-02-01</p> <p>Deinfibulation is a surgical procedure carried out to re-open the vaginal introitus of women living with type III female genital mutilation (FGM). To assess the impact of deinfibulation on gynecologic or obstetric outcomes by comparing women who were deinfibulated with women with type III FGM or women without FGM. Major databases including CENTRAL, MEDLINE, and Scopus were searched until August 2015. We included nonrandomized studies that compared obstetric outcomes of women with deinfibulation, type III FGM (not deinfibulated during labor), and no FGM. Quality of evidence was determined following the GRADE methodology. Summary measures were calculated using odds ratios at 95% confidence intervals. We found no randomized controlled trials. We included four case-control studies. The quality of evidence was very low. Compared with women with type III FGM at delivery, deinfibulated women had a significant reduction in the risk of having a cesarean delivery or postpartum hemorrhage. Compared with women without FGM, deinfibulated women had a similar risk of episiotomy, cesarean delivery, vaginal lacerations, postpartum hemorrhage, and blood loss at vaginal delivery. The length of second stage of labor, mean maternal hospital stay, and Apgar scores less than 7 were also comparable. Low-quality evidence suggests deinfibulation improves birth outcomes for women with type III FGM. CRD42015024466. © 2017 International Federation of Gynecology and Obstetrics. The World Health Organization retains copyright and all other rights in the manuscript of this article as submitted for publication.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/29911924','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/29911924"><span>Comprehensive search for accessory proteins encoded with archaeal and bacterial type III CRISPR-cas gene cassettes reveals 39 new cas gene families.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Shah, Shiraz A; Alkhnbashi, Omer S; Behler, Juliane; Han, Wenyuan; She, Qunxin; Hess, Wolfgang R; Garrett, Roger A; Backofen, Rolf</p> <p>2018-06-19</p> <p>A study was undertaken to identify conserved proteins that are encoded adjacent to cas gene cassettes of Type III CRISPR-Cas (Clustered Regularly Interspaced Short Palindromic Repeats - CRISPR associated) interference modules. Type III modules have been shown to target and degrade dsDNA, ssDNA and ssRNA and are frequently intertwined with cofunctional accessory genes, including genes encoding CRISPR-associated Rossman Fold (CARF) domains. Using a comparative genomics approach, and defining a Type III association score accounting for coevolution and specificity of flanking genes, we identified and classified 39 new Type III associated gene families. Most archaeal and bacterial Type III modules were seen to be flanked by several accessory genes, around half of which did not encode CARF domains and remain of unknown function. Northern blotting and interference assays in Synechocystis confirmed that one particular non-CARF accessory protein family was involved in crRNA maturation. Non-CARF accessory genes were generally diverse, encoding nuclease, helicase, protease, ATPase, transporter and transmembrane domains with some encoding no known domains. We infer that additional families of non-CARF accessory proteins remain to be found. The method employed is scalable for potential application to metagenomic data once automated pipelines for annotation of CRISPR-Cas systems have been developed. All accessory genes found in this study are presented online in a readily accessible and searchable format for researchers to audit their model organism of choice: http://accessory.crispr.dk .</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2016EGUGA..18.6063Y','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2016EGUGA..18.6063Y"><span>Similarities and distinctions of CIR and Sheath</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Yermolaev, Yuri; Lodkina, Irina; Nikolaeva, Nadezhda; Yermolaev, Michael</p> <p>2016-04-01</p> <p>On the basis of OMNI data and our catalog of large scale solar wind (SW) streams during 1976-2000 [Yermolaev et al., 2009] we study the average temporal profiles for two types of compressed regions: CIR (corotating interaction region - compressed region before High Speed Stream (HSS)) and Sheath (compressed region before fast Interplanetary CMEs (ICMEs), including Magnetic Cloud (MC) and Ejecta). As have been shown by Nikolaeva et al, [2015], the efficiency of magnetic storm generation is ~50% higher for Sheath and CIR than for ICME (MC and Ejecta), i.e. reaction magnetosphere depends on type of driver. To take into account the different durations of SW types, we use the double superposed epoch analysis (DSEA) method: rescaling the duration of the interval for all types in such a manner that, respectively, beginning and end for all intervals of selected type coincide [Yermolaev et al., 2010; 2015]. Obtained data allows us to suggest that the formation of all types of compression regions has the same physical mechanism irrespective of piston (HSS or ICME) type and differences are connected with geometry and full jumps of speed in edges of compression regions. If making the natural assumption that the gradient of speed is directed approximately on normal to the piston, CIR has the largest angle between the gradient of speed and the direction of average SW speed, and ICME - the smallest angle. The work was supported by the Russian Foundation for Basic Research, projects 13-02-00158, 16-02-00125 and by Program of Presidium of the Russian Academy of Sciences. References: Nikolaeva, N. S. , Yu. I. Yermolaev, and I. G. Lodkina (2015), Modeling of the Corrected Dst* Index Temporal Profile on the Main Phase of the Magnetic Storms Generated by Different Types of Solar Wind, Cosmic Research, Vol. 53, No. 2, pp. 119-127. Yermolaev, Yu. I., N. S. Nikolaeva, I. G. Lodkina, and M. Yu. Yermolaev (2009), Catalog of Large-Scale Solar Wind Phenomena during 1976-2000, Cosmic Research, , Vol. 47, No. 2, pp. 81-94. Yermolaev, Y. I., N. S. Nikolaeva, I. G. Lodkina, and M. Y. Yermolaev (2010), Specific interplanetary conditions for CIR-induced, Sheath-induced, and ICME-induced geomagnetic storms obtained by double superposed epoch analysis, Ann. Geophys., 28, pp. 2177-2186. Yermolaev, Yu. I., I. G. Lodkina, N. S. Nikolaeva, and M. Yu. Yermolaev (2015), Dynamics of large-scale solar wind streams obtained by the double superposed epoch analysis, J. Geophys. Res. Space Physics, 120, doi:10.1002/2015JA021274.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=4468381','PMC'); return false;" href="https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=4468381"><span>Comparative genomics of a cannabis pathogen reveals insight into the evolution of pathogenicity in Xanthomonas</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pmc">PubMed Central</a></p> <p>Jacobs, Jonathan M.; Pesce, Céline; Lefeuvre, Pierre; Koebnik, Ralf</p> <p>2015-01-01</p> <p>Pathogenic bacteria in the genus Xanthomonas cause diseases on over 350 plant species, including cannabis (Cannabis sativa L.). Because of regulatory limitations, the biology of the Xanthomonas-cannabis pathosystem remains largely unexplored. To gain insight into the evolution of Xanthomonas strains pathogenic to cannabis, we sequenced the genomes of two geographically distinct Xanthomonas strains, NCPPB 3753 and NCPPB 2877, which were previously isolated from symptomatic plant tissue in Japan and Romania. Comparative multilocus sequence analysis of housekeeping genes revealed that they belong to Group 2, which comprises most of the described species of Xanthomonas. Interestingly, both strains lack the Hrp Type III secretion system and do not contain any of the known Type III effectors. Yet their genomes notably encode two key Hrp pathogenicity regulators HrpG and HrpX, and hrpG and hrpX are in the same genetic organization as in the other Group 2 xanthomonads. Promoter prediction of HrpX-regulated genes suggests the induction of an aminopeptidase, a lipase and two polygalacturonases upon plant colonization, similar to other plant-pathogenic xanthomonads. Genome analysis of the distantly related Xanthomonas maliensis strain 97M, which was isolated from a rice leaf in Mali, similarly demonstrated the presence of HrpG, HrpX, and a HrpX-regulated polygalacturonase, and the absence of the Hrp Type III secretion system and known Type III effectors. Given the observation that some Xanthomonas strains across distinct taxa do not contain hrpG and hrpX, we speculate a stepwise evolution of pathogenicity, which involves (i) acquisition of key regulatory genes and cell wall-degrading enzymes, followed by (ii) acquisition of the Hrp Type III secretion system, which is ultimately accompanied by (iii) successive acquisition of Type III effectors. PMID:26136759</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/3763232','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/3763232"><span>Male and female chronic pain patients categorized by DSM-III psychiatric diagnostic criteria.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Fishbain, D A; Goldberg, M; Meagher, B R; Steele, R; Rosomoff, H</p> <p>1986-08-01</p> <p>Two hundred and eighty-three chronic pain patients, consecutive admissions to the Comprehensive Pain Center of the University of Miami School of Medicine, received an extensive psychiatric evaluation based upon the American Psychiatric Association, Diagnostic and Statistical Manual of Mental Disorders (DSM-III) criteria and flowsheets. All patients received the following type of diagnoses: DSM-III axis I; DSM-III axis II, and personality type. The distribution of assigned diagnoses for the entire patient sample was reviewed and a statistical comparison between male and female patients was performed with regards to the prevalence of each diagnosis. Anxiety syndromes and depression of various diagnostic types were the most frequently assigned axis I diagnoses with over half the patient sample receiving each of these diagnoses. Males were significantly overrepresented in the axis I diagnoses of intermittent explosive disorders, adjustment disorders with work inhibitions, and alcohol abuse and other drug dependence, while females were significantly overrepresented in disorders of current depression of various diagnostic types and somatization disorders. 58.4% of the patients fulfilled criteria for axis II personality disorder diagnoses. The most frequently personality disorders found in the patient group were dependent (17.4%), passive aggressive (14.9%), and histrionic (11.7%). Males were significantly overrepresented in paranoid and narcissistic disorders while females were overrepresented in histrionic disorder. The most frequent personality types found in the patient group were compulsive (24.5%) and dependent (10.6%). All personality types were similarly distributed between the sexes. The results of the present study were compared to a previous study of DSM-III diagnoses in chronic pain patients and are discussed in terms of the prevalence of DSM-III diagnoses in the general population. Questions are raised as to the applicability of certain DSM-III diagnoses in the chronic pain population.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/22068492','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/22068492"><span>Deciphering the biodiversity of Listeria monocytogenes lineage III strains by polyphasic approaches.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Zhao, Hanxin; Chen, Jianshun; Fang, Chun; Xia, Ye; Cheng, Changyong; Jiang, Lingli; Fang, Weihuan</p> <p>2011-10-01</p> <p>Listeria monocytogenes is a foodborne pathogen of humans and animals. The majority of human listeriosis cases are caused by strains of lineages I and II, while lineage III strains are rare and seldom implicated in human listeriosis. We revealed by 16S rRNA sequencing the special evolutionary status of L. monocytogenes lineage III, which falls between lineages I and II strains of L. monocytogenes and the non-pathogenic species L. innocua and L. marthii in the dendrogram. Thirteen lineage III strains were then characterized by polyphasic approaches. Biochemical reactions demonstrated 8 biotypes, internalin profiling identified 10 internal-in types clustered in 4 groups, and multilocus sequence typing differentiated 12 sequence types. These typing schemes show that lineage III strains represent the most diverse population of L. monocytogenes, and comprise at least four subpopulations IIIA-1, IIIA-2, HIB, and IIIC. The in vitro and in vivo virulence assessments showed that two lineage IIIA-2 strains had reduced pathogenicity, while the other lineage III strains had comparable virulence to lineages I and II. The HIB strains are phylogenetically distinct from other sub-populations, providing additional evidence that this sublineage represents a novel lineage. The two biochemical reactions L-rhamnose and L-lactate alkalinization, and 10 internalins were identified as potential markers for lineage III subpopulations. This study provides new insights into the biodiversity and population structure of lineage III strains, which are important for understanding the evolution of the L. mono-cytogenes-L. innocua clade.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=514950','PMC'); return false;" href="https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=514950"><span>Arabidopsis CYP86A2 represses Pseudomonas syringae type III genes and is required for cuticle development</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pmc">PubMed Central</a></p> <p>Xiao, Fangming; Mark Goodwin, S; Xiao, Yanmei; Sun, Zhaoyu; Baker, Douglas; Tang, Xiaoyan; Jenks, Matthew A; Zhou, Jian-Min</p> <p>2004-01-01</p> <p>Pseudomonas syringae relies on type III secretion system to deliver effector proteins into the host cell for parasitism. Type III genes are induced in planta, but host factors affecting the induction are poorly understood. Here we report on the identification of an Arabidopsis mutant, att1 (for aberrant induction of type three genes), that greatly enhances the expression of bacterial type III genes avrPto and hrpL. att1 plants display enhanced disease severity to a virulent strain of P. syringae, suggesting a role of ATT1 in disease resistance. ATT1 encodes CYP86A2, a cytochrome P450 monooxygenase catalyzing fatty acid oxidation. The cutin content is reduced to 30% in att1, indicating that CYP86A2 plays a major role in the biosynthesis of extracellular lipids. att1 has a loose cuticle membrane ultrastructure and shows increased permeability to water vapor, demonstrating the importance of the cuticle membrane in controlling water loss. The enhanced avrPto-luc expression is specific to att1, but not another cuticle mutant, wax2. The results suggest that certain cutin-related fatty acids synthesized by CYP86A2 may repress bacterial type III gene expression in the intercellular spaces. PMID:15241470</p> </li> </ol> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_21");'>21</a></li> <li><a href="#" onclick='return showDiv("page_22");'>22</a></li> <li><a href="#" onclick='return showDiv("page_23");'>23</a></li> <li><a href="#" onclick='return showDiv("page_24");'>24</a></li> <li class="active"><span>25</span></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div><!-- col-sm-12 --> </div><!-- row --> </div><!-- page_25 --> <div class="footer-extlink text-muted" style="margin-bottom:1rem; text-align:center;">Some links on this page may take you to non-federal websites. Their policies may differ from this site.</div> </div><!-- container --> <a id="backToTop" href="#top"> Top </a> <footer> <nav> <ul class="links"> <li><a href="/sitemap.html">Site Map</a></li> <li><a href="/website-policies.html">Website Policies</a></li> <li><a href="https://www.energy.gov/vulnerability-disclosure-policy" target="_blank">Vulnerability Disclosure Program</a></li> <li><a href="/contact.html">Contact Us</a></li> </ul> </nav> </footer> <script type="text/javascript"><!-- // var lastDiv = ""; function showDiv(divName) { // hide last div if (lastDiv) { document.getElementById(lastDiv).className = "hiddenDiv"; } //if value of the box is not nothing and an object with that name exists, then change the class if (divName && document.getElementById(divName)) { document.getElementById(divName).className = "visibleDiv"; lastDiv = divName; } } //--> </script> <script> /** * Function that tracks a click on an outbound link in Google Analytics. * This function takes a valid URL string as an argument, and uses that URL string * as the event label. */ var trackOutboundLink = function(url,collectionCode) { try { h = window.open(url); setTimeout(function() { ga('send', 'event', 'topic-page-click-through', collectionCode, url); }, 1000); } catch(err){} }; </script> <!-- Google Analytics --> <script> (function(i,s,o,g,r,a,m){i['GoogleAnalyticsObject']=r;i[r]=i[r]||function(){ (i[r].q=i[r].q||[]).push(arguments)},i[r].l=1*new Date();a=s.createElement(o), m=s.getElementsByTagName(o)[0];a.async=1;a.src=g;m.parentNode.insertBefore(a,m) })(window,document,'script','//www.google-analytics.com/analytics.js','ga'); ga('create', 'UA-1122789-34', 'auto'); ga('send', 'pageview'); </script> <!-- End Google Analytics --> <script> showDiv('page_1') </script> </body> </html>