Colon delivery of budesonide: evaluation of chitosan-chondroitin sulfate interpolymer complex.
Kaur, Gurpreet; Rana, Vikas; Jain, Subheet; Tiwary, Ashok K
2010-03-01
The present study was aimed at formulating tablets comprising of coating susceptible to microbial enzyme degradation for releasing budesonide in the colon. Tablets prepared by using Avicel pH 102 as diluent and Eudragit L100-55 as binder were coated to a weight gain of 10% w/w employing aqueous mixtures containing chitosan (CH) and chondroitin sulfate (CS). The interpolymer complex between CH and CS was characterized using Fourier transform infrared (FTIR) and differential scanning calorimetery (DSC) studies. The tablets were evaluated for release of budesonide through in vitro in vivo studies. Formation of bonds between -COO(-) and -OSO3(-) groups of CS and -NH3+ groups of CH was evident in the FTIR spectra of these interpolymer complexed (IPC) films. The DSC thermograms of these films revealed one endothermic transition between 190 degrees C and 205 degrees C, suggesting the formation of new bonds in the IPC. The pH sensitive swelling exhibited by these films was observed to be a function of CH concentration. Tablets coated with aqueous mixtures containing 40:60 or 50:50 ratio of CH/CS totally prevented the release of budesonide in pH 1.2 buffer. The peaks (FTIR) and endothermic transitions (DSC) characteristic of interpolymer complexation were observed to remain unaffected after sequential exposure of the films to pH 1.2 and pH 7.4 buffer IP. This proved the versatility of these IPC films for colon delivery. C (max) of 1,168.99 and 1,174.2 ng/mL, respectively, at 12 and 8 h post-oral dosing of tablets coated with 40:60 or 50:50 ratio of CH/CS was observed in rats. The aqueous CH/CS (40:60) coating could provide a facile method for delivering budesonide to the colon.
NASA Astrophysics Data System (ADS)
Abd El-Rehim, H. A.; Hegazy, E. A.; Khalil, F. H.; Hamed, N. A.
2007-01-01
The present study deals with the radiation synthesis of stimuli response hydrophilic polymers from polyacrylic acid (PAAc). To maintain the property of PAAc and control the water swellibility for its application as a drug delivery system, radiation polymerization of AAc in the presence of poly(vinyl pyrrolidone) (PVP) as a template polymer was carried out. Characterization of the prepared PAA/PVP inter-polymer complex was investigated by determining gel content, swelling property, hydrogel microstructure and the release rate of caffeine as a model drug. The release rate of caffeine from the PAA/PVP inter-polymer complexes showed pH-dependency, and seemed to be mainly controlled by the dissolution rate of the complex above a p Ka of PAAc. The prepared inter-polymer complex could be used for application as drug carriers.
Yusif, Rehab Mohammad; Abu Hashim, Irhan Ibrahim; Mohamed, Elham Abdelmonem; El Rakhawy, Mohamed Magdy
2016-01-01
Carbopol (CP) is a biocompatible bioadhesive polymer used as a matrix for gastroretentive (GR) tablets, however, its rapid hydration shortens its bioadhesion and floating when incorporated in effervescent formulae. The interpolymer complexation of CP with polyvinylpyrrolidone (PVP) significantly reduced the excessive hydration of CP, prolonging floating and maintaining the mucoadhesiveness. In early attempts, a lengthy process was followed to prepare such an interpolymer complex. In this study, an in situ interpolymer complexation between CP and two grades of PVP (K25 and K90) in 0.1 N HCl was investigated and characterized by Fourier transform infrared spectroscopy (FT-IR) and differential scanning calorimetry (DSC). Hence, directly compressed GR tablets of different combinations of PVP and CP with sodium bicarbonate (SB) as an effervescent agent were examined for prolonged gastroretention and sustained release of ranitidine hydrochloride (RHCl) as a model drug. Tablets were evaluated for in vitro buoyancy, bioadhesiveness, swelling, and drug release in 0.1 N HCl. All GR tablets containing PVP-CP combinations achieved more prolonged floating (>24 h) than CP tablets (5.2 h). Their bioadhesiveness, swelling, and drug release were dependent on the PVP molecular weight and its ratio to CP. Drug release profiles of all formulae followed non-Fickian diffusion. Formula containing the PVP K90-CP combination at a respective ratio of 1 : 3 (P90C13) was a promising system, exhibiting good floating and bioadhesive properties as well as sustained drug release. Abdominal X-ray imaging of P90C13 formula, loaded with barium sulfate, in six healthy volunteers showed a mean gastric retention period of 6.8±0.3 h.
NASA Astrophysics Data System (ADS)
Kadłubowski, Sławomir; Henke, Artur; Ulański, Piotr; Rosiak, Janusz M.
2010-03-01
pH-sensitive PVP-PAA hydrogels have been prepared by electron-beam-induced irradiation at pH close to pKa of carboxylic groups. Protonation of these groups promoted the formation of hydrogen bonds between the PAA and PVP segments within the crosslinked structure and caused interpolymer complex formation. To demonstrate possible future application of such gels, we tested them as simple chemical detectors. When loaded with glucose oxidase, the PAA-PVP gel's turbidity and shrinkage was triggered by the presence of glucose due to a drop in pH caused by the enzymatic reaction.
NASA Astrophysics Data System (ADS)
Ershadul Haque, S. K.; Sheela, A.
2017-11-01
Development of sustained release formulations of Metformin hydrochloride (Met) having low bioavailability and short half-life is one of the frontier areas of research towards achieving novel drug delivery systems. Towards the same, we have prepared interpolymer complexes (IPCs) of chitosan (CH) and two different viscosity grades of hydroxypropyl methylcellulose - HPMC (K4M and K100M) in various ratios, say, 4:6, 2:8, 1:9, respectively. The IPCs are characterized by Fourier transform infrared spectroscopy (FT-IR) and Thermo gravimetric analysis (TGA) techniques. Drug compatibility study is carried out by FT-IR and powder X-ray diffraction (XRD) techniques. The physical properties and drug content of formulated tablets are evaluated and found to be optimum. In addition, in vitro drug release kinetics is carried out at two different pH, say, 1.2 and 6.8. The release pattern from different polymeric matrices is shown in figure below: a) Chitosan, HPMC K4M and HPMC K100M b) IPCs of CH/HPMC K4M in [2:3, 1:4 and 1:9 ratios] c) IPCs of CH/HPMC K100M in [2:3, 1:4 and 1:9 ratios]. From the study, it has been observed that the drug release is sustained for a period of 12h in 1:9 ratio of CH: K100M IPC due to the formation of complex network matrix.
Interpolymer complexation: comparisons of bulk and interfacial structures.
Cattoz, Beatrice; de Vos, Wiebe M; Cosgrove, Terence; Crossman, Martin; Espidel, Youssef; Prescott, Stuart W
2015-04-14
The interactions between the strong polyelectrolyte sodium poly(styrenesulfonate), NaPSS, and the neutral polymer poly(vinylpyrrolidone), PVP, were investigated in bulk and at the silica/solution interface using a combination of diffusion nuclear magnetic resonance spectroscopy (NMR), small-angle neutron scattering (SANS), solvent relaxation NMR, and ellipsometry. We show for the first time that complex formation occurs between NaPSS and PVP in solution; the complexes formed were shown not to be influenced by pH variation, whereas increasing the ionic strength increases the complexation of NaPSS but does not influence the PVP directly. The complexes formed contained a large proportion of NaPSS. Study of these interactions at the silica interface demonstrated that complexes also form at the nanoparticle interface where PVP is added in the system prior to NaPSS. For a constant PVP concentration and varying NaPSS concentration, the system remains stable until NaPSS is added in excess, which leads to depletion flocculation. Surface complex formation using the layer-by-layer technique was also reported at a planar silica interface.
Mamvura, C I; Moolman, F S; Kalombo, L; Hall, A N; Thantsha, M S
2011-06-01
The method of producing poly-(vinylpyrrolidone)-poly-(vinylacetate-co-crotonic acid) (PVP:PVAc-CA) interpolymer complex matrix microparticles in supercritical carbon dioxide (scCO2), encapsulating bacteria, has recently been developed. This study was aimed at probing the external and internal structure of these microparticles, which can be used in food. The encapsulation efficiency and distribution of encapsulated Bifidobacterium lactis Bb12 within these microparticles were also investigated. Scanning electron microscopy (SEM) revealed irregular, mostly small, smooth microparticles with no visible bacterial cells on the surface. However, some of the microparticles appeared to have porous surfaces. The results of a Microtrac S3500 particle size analyzer showed that the PVP:PVAc-CA interpolymer complex matrix microparticles encapsulating B. lactis Bb12 had an average particle size of 166.1 μm (<350 μm designated standard size for microparticles). The D 10, D 50 and D 90 values for these microparticles were 48.16, 166.06 and 382.55 μm, respectively. Both SEM and confocal laser scanning microscopy showed a high density of bacterial cells within the microparticles. An average encapsulation efficiency of 96% was achieved. Consequently, the microparticles have the potential to be evenly distributed in foods, deliver adequate amounts of probiotics and produce minimal adverse effects on the texture and mouth feel of the foods into which they are incorporated.
Thantsha, M S; Labuschagne, P W; Mamvura, C I
2014-02-01
The probiotic industry faces the challenge of retention of probiotic culture viability as numbers of these cells within their products inevitably decrease over time. In order to retain probiotic viability levels above the therapeutic minimum over the duration of the product's shelf life, various methods have been employed, among which encapsulation has received much interest. In line with exploitation of encapsulation for protection of probiotics against adverse conditions, we have previously encapsulated bifidobacteria in poly-(vinylpyrrolidone)-poly-(vinylacetate-co-crotonic acid) (PVP:PVAc-CA) interpolymer complex microparticles under supercritical conditions. The microparticles produced had suitable characteristics for food applications and also protected the bacteria in simulated gastrointestinal fluids. The current study reports on accelerated shelf life studies of PVP:PVAc-CA encapsulated Bifidobacterium lactis Bb12 and Bifidobacterium longum Bb46. Samples were stored as free powders in glass vials at 30 °C for 12 weeks and then analysed for viable counts and water activity levels weekly or fortnightly. Water activities of the samples were within the range of 0.25-0.43, with an average a(w) = 0.34, throughout the storage period. PVP:PVAc-CA interpolymer complex encapsulation retained viable levels above the recommended minimum for 10 and 12 weeks, for B. longum Bb46 and B. lactis Bb12, respectively, thereby extending their shelf lives under high storage temperature by between 4 and 7 weeks. These results reveal the possibility for manufacture of encapsulated probiotic powders with increased stability at ambient temperatures. This would potentially allow the supply of a stable probiotic formulation to impoverished communities without proper storage facilities recommended for most of the currently available commercial probiotic products.
Ghorbani Gorji, Sara; Ghorbani Gorji, Elham; Mohammadifar, Mohammad Amin; Zargaraan, Azizollaah
2014-06-01
We investigated complex coacervation of sodium caseinate/Astragalus rahensis (A.r) as a function of pH with light scattering, spectrophotometry, and viscosity measurements. Interestingly, sodium caseinate/A.r displayed five structural transitions; pH 7.00 to pH ∼5.40: no interaction occurred, pH ∼5.40 to pH ∼4.80: initiation of the formation of primary soluble complexes, pH ∼4.80 to ∼4.30: formation of interpolymer complexes, pH ∼4.30 to ∼4.02: optimum coacervation and pH ∼4.02 to ∼2.50: suppression of coacervation. In addition, rheological properties of sodium caseinate/A.r coacervates were studied at various pH values. A much higher storage modulus (G') than loss modulus (G″) for all sodium caseinate/A.r coacervates suggests the formation of highly interconnected gel-like network structures with mainly elastic behaviour. Moreover, sodium caseinate/A.r coacervates at all pH values exhibited a shear thinning behaviour across the entire shear rate range investigated. Effects of different species of gum tragacanth on the interactions with sodium caseinate have been scarcely studied. Our study showed that systems containing various species (A.r, soluble fraction of A.r and Astragalus gossypinus (A.g)) had different critical pH values and particle sizes during complex coacervation, which could be due to different ratio of soluble to insoluble fractions and uronic acid content of various species. Copyright © 2014 Elsevier B.V. All rights reserved.
Kaur, Amanpreet; Kaur, Gurpreet
2011-01-01
The study was designed to develop bioadhesive patches of carvedilol hydrochloride using chitosan (CH) and pectin (PE) interpolymer complexes and to systematically evaluate their in vitro and in vivo performances. Mucoadhesive buccal patches of carvedilol were prepared using solvent casting method. The physicochemical interaction between CH and PE was investigated by FTIR and DSC studies. The patches were evaluated for their physical characteristics like mass variation, content uniformity, folding endurance, ex vivo mucoadhesion strength, ex vivo mucoadhesion time, surface pH, in vitro drug release, in situ release study, and in vivo bioavailability study. The swelling index of the patches was found to be proportional to the PE concentration. The surface pH of all the formulated bioadhesive patches was found to lie between 6.2 and 7.2. The optimized bioadhesive patch (C1, CH:PE 20:80) showed bioadhesive strength of 22.10 ± 0.20 g, in vitro release of 98.73% and ex vivo mucoadhesion time of 451 min with in a period of 8 h. The optimized patch demonstrated good in vitro and in vivo results. The buccal delivery of carvedilol in rabbits showed a significant improvement in bioavailability of carvedilol from patches when compared to oral route. PMID:23960773
Kaur, Amanpreet; Kaur, Gurpreet
2012-01-01
The study was designed to develop bioadhesive patches of carvedilol hydrochloride using chitosan (CH) and pectin (PE) interpolymer complexes and to systematically evaluate their in vitro and in vivo performances. Mucoadhesive buccal patches of carvedilol were prepared using solvent casting method. The physicochemical interaction between CH and PE was investigated by FTIR and DSC studies. The patches were evaluated for their physical characteristics like mass variation, content uniformity, folding endurance, ex vivo mucoadhesion strength, ex vivo mucoadhesion time, surface pH, in vitro drug release, in situ release study, and in vivo bioavailability study. The swelling index of the patches was found to be proportional to the PE concentration. The surface pH of all the formulated bioadhesive patches was found to lie between 6.2 and 7.2. The optimized bioadhesive patch (C1, CH:PE 20:80) showed bioadhesive strength of 22.10 ± 0.20 g, in vitro release of 98.73% and ex vivo mucoadhesion time of 451 min with in a period of 8 h. The optimized patch demonstrated good in vitro and in vivo results. The buccal delivery of carvedilol in rabbits showed a significant improvement in bioavailability of carvedilol from patches when compared to oral route.
NASA Astrophysics Data System (ADS)
Nita, Loredana E.; Chiriac, Aurica P.; Bercea, Maria; Nistor, Manuela T.
2015-12-01
The present investigation is focused on evaluation of self-assembling ability in aqueous solutions of two water soluble polymers: poly(aspartic acid) (PAS) and Pluronic F127 (PL). The intermolecular complexes, realized between polyacid and neutral copolymer surfactant in different ratios, have been studied by combining various characterization techniques as rheology, DLS, spectroscopy, microscopy, chemical imaging, and zeta potential determination, measurements performed in static and/or dynamic conditions. In static conditions, when the equilibrium state between PAS/PL polymeric pair was reached, and depending on the polymers mixture composition, and of experimental rheological conditions, positive or negative deviations from the additive rule are registered. Conformational changes of the macromolecular chains and correspondingly physical interactions are generated between PL and PAS for self-assembly and the formation of interpolymer complex as suprastructure with micellar configuration. The phenomenon was better evidenced in case of 1/1 wt ratio between the two polymers. In dynamic conditions of determination, during ;in situ; evaluation of the hydrodynamic diameter, zeta potential and conductivity, when the equilibrium state is not reached and as result either the intermolecular bonds are not achieved, the self-assembling process is not so obvious evidenced.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Niwa, Masazo; Hayashi, Takehiro; Higashi, Nobuyuki
1990-01-01
Amphiphilic block polymers (2,3) composed of poly(acrylic acid) (PAA) or poly(oxyethylene) (POE) and chain length controlled poly(styrene) (PSt) have been prepared by using a catalytic system of tribromomethyl-terminated oligomer and manganese carbonyl. All the amphiphilic materials formed well-behaved surface monolayers, and the II-A curves for them expanded systematically with an increase of the PSt chain length.
Nita, Loredana Elena; Chiriac, Aurica P; Neamtu, Iordana; Bercea, Maria
2010-03-01
The interpenetrated macromolecular chains complexation between poly(aspartic acid) and poly(vinyl alcohol) in aqueous solution it was investigated. The interpolymer complexation process was evaluated through dynamic rheology. The aspects concerning the stability of the tested homopolymers and the prepared interpolymeric complex there were achieved from the evaluation of the aqueous solutions'zeta potential and also by determining the pH influence upon the zeta potential and the conductivity. The data obtained through the rheological dynamic measurements were correlated with the composition of the polymeric mixture, the dependence of zeta potential and conductivity. The study reveals the conditions for the formation of interpenetrated polymeric complex as being a ratio of 70wt.% PAS to 30wt.% PVA at 22 degrees C and 50/50 PAS/PVA ratio at 37 degrees C temperature. From the pH influence upon the zeta potential values it was evidenced the PAS aqueous solution does not reach the isoelectric point. At the same time, PVA solution and the complex PAS/PVA reaches the isoelectric point at strongly acid pH. The better stability of PAS, PVA and their mixture in solution is recorded in the alkaline domain (7.5
Structure-sensitive film materials based on polyvinyl alcohol compositions with polyacids
NASA Astrophysics Data System (ADS)
Lazareva, Tatjana G.; Iljushenko, Irina A.
1995-05-01
The influence of polyacidic additives (silicotungstic acid -- STA, carboxymethylcellulose -- Na-CMC, polymethacrylic acid -- PMA, polyacrylic acid -- PAA) on the molecular mobility of film composition based on polyvinyl alcohol (PVA) in the temperature range 20 - 200 degree(s)C has been evaluated. It has been concluded that interpolymer complexes are formed due to hydrogen bonding of the PVA and polyacidic additive molecules, which results in the change of the PVA stereoregularity. The formation of the complexes depends on the type and concentration of the polyacidic additive, the process of (alpha) -relaxation and, in a certain concentration range of the additive, increases the molecular mobility of the kinetic segments surrounding the complex. The influence of short-term UV-irradiation on the structure and properties of such materials has been investigated. A possibility of the reversible change of molecular mobility and stereoregularity of the examined compositions as a result of short-term UV-irradiation has been established. Introduction of polyacids into the PVA structure gives rise to the electrosensitivity, i.e., the ability to change structure under the action of an electric field. In this case the distinguishing feature is the relation between the molecular mobility and electrosensitivity in the range of parameters where the (alpha) - relaxation occurs.
Pseudotannins Self-assembled into Antioxidant Complexes
Cheng, H. A.; Drinnan, C. T.; Pleshko, N.; Fisher, O. Z.
2015-01-01
Natural tannins are attractive as building blocks for biomaterials due to their antioxidant properties and ability to form interpolymer complexes (IPCs) with other macromolecules. One of the major challenges to tannin usage in biomedical applications is their instability at physiological conditions and a lack of control over the purity and reactivity. Herein, we report the synthesis and characterization of tannin-like polymers with controlled architecture, reactivity, and size. These pseudotannins were synthesized by substituting linear dextran chains with gallic, resorcylic, and protocatechuic pendant groups to mimic the structure of natural hydrolysable tannins. We demonstrate that these novel materials can self-assemble to form reductive and colloidally stable nanoscale and microscale particles. Specifically, the synthesis, turbidity, particle size, antioxidant power, and cell uptake of IPCs derived from pseudotannins and poly(ethylene glycol) was evaluated. PMID:26313262
Pseudotannins self-assembled into antioxidant complexes.
Cheng, H A; Drinnan, C T; Pleshko, N; Fisher, O Z
2015-10-21
Natural tannins are attractive as building blocks for biomaterials due to their antioxidant properties and ability to form interpolymer complexes (IPCs) with other macromolecules. One of the major challenges to tannin usage in biomedical applications is their instability at physiological conditions and a lack of control over the purity and reactivity. Herein, we report the synthesis and characterization of tannin-like polymers with controlled architecture, reactivity, and size. These pseudotannins were synthesized by substituting linear dextran chains with gallic, resorcylic, and protocatechuic pendant groups to mimic the structure of natural hydrolysable tannins. We demonstrate that these novel materials can self-assemble to form reductive and colloidally stable nanoscale and microscale particles. Specifically, the synthesis, turbidity, particle size, antioxidant power, and cell uptake of IPCs derived from pseudotannins and poly(ethylene glycol) was evaluated.
Bistable collective behavior of polymers tethered in a nanopore
NASA Astrophysics Data System (ADS)
Osmanovic, Dino; Bailey, Joe; Harker, Anthony H.; Fassati, Ariberto; Hoogenboom, Bart W.; Ford, Ian J.
2012-06-01
Polymer-coated pores play a crucial role in nucleo-cytoplasmic transport and in a number of biomimetic and nanotechnological applications. Here we present Monte Carlo and Density Functional Theory approaches to identify different collective phases of end-grafted polymers in a nanopore and to study their relative stability as a function of intermolecular interactions. Over a range of system parameters that is relevant for nuclear pore complexes, we observe two distinct phases: one with the bulk of the polymers condensed at the wall of the pore, and the other with the polymers condensed along its central axis. The relative stability of these two phases depends on the interpolymer interactions. The existence the two phases suggests a mechanism in which marginal changes in these interactions, possibly induced by nuclear transport receptors, cause the pore to transform between open and closed configurations, which will influence transport through the pore.
Goel, Honey; Tiwary, Ashok K; Rana, Vikas
2011-01-01
The objective of the present work was to optimize the formulation of fast disintegrating tablets (FDTs) of ondansetron HCl containing novel superdisintegrants, possessing sufficient mechanical strength and disintegration time comparable to those containing crospovidone or croscarmellose sodium. The FDTs were formulated using a novel superdisintegrant (chitosan-alginate (1:1) interpolymer complex and chitin) to achieve a sweet tasting disintegrating system. The results revealed that chitin (5-20%) increased the porosity and decreased the DT of tablets. At higher concentrations chitin maintained tablet porosity even at 5.5 kg crushing strength. Ondansetron HCl was found to antagonize the wicking action of glycine. Further, evaluation of the mechanism of disintegration revealed that glycine transported the aqueous medium to different parts of the tablets while the chitosan-alginate complex swelled up due to transfer of moisture from glycine. This phenomenon resulted in breakage of the tablet within seconds. For preparing optimized FDTs, the reduced model equations generated from Box-Behnken design (BBD) were solved after substituting the known disintegration time of FDTs containing superdisintegrants in the reduced model equations. The results suggested that excipient system under investigation not only improved the disintegration time but also made it possible to prepare FDTs with higher crushing strength as compared to tablets containing known superdisintegrants.
Wei, Dafu; Chen, Yan; Zhang, Youwei
2016-01-20
Taking advantage of the self-assembly between the components, novel stable antibacterial nanoparticles were efficiently fabricated via a facile one-step co-polymerization of acrylic acid (AA) and N,N'-methylenebisacrylamide (MBA) on a mixed aqueous solution of poly(hexamethylene guanidine hydrochloride) (PHMG) and hydroxyethylcellulose (HEC). The z-average hydrodynamic diameters of the nanoparticles ranged from 220 nm to 450 nm. The inner layer of the nanoparticles is composed of water-insoluble interpolymer complexes of PHMG and PAA networks, while the outer layer is composed of PHMG and HEC. The nanoparticles are stabilized by electrostatic interactions, hydrogen bonding interactions, and the chemical bonds. The nanoparticle solution remained stable in a wide pH range of 2.0-12.0 and at salt concentrations below 0.25 mol/L. The nanoparticles were incorporated into handsheets using a dipping treatment. The resulted handsheets exhibited excellent antimicrobial activities even after multiple water washing treatments. The nanoparticles are promising in fabricating paper, water-based coatings and textiles with permanent antibacterial activity. Copyright © 2015 Elsevier Ltd. All rights reserved.
Angelova, N; Hunkeler, D
2001-01-01
Capsules were obtained by interpolymer complexation between chitosan (polycation) and sodium hexametaphosphate (SMP, oligoanion). The effect of the preparation conditions on the capsule characteristics was evaluated. Specifically, the influence of variables such as pH, ionic strength, reagent concentration, and additives on the capsule permeability properties was investigated using dextran as a model permeant. The capsule membrane permeability was found to increase by decreasing the chitosan/SMP ratio as well as adding mannitol to the oligoanion recipient bath. Increasing the ionic strength or the pH of the initial chitosan solution was also found to enhance the membrane permeability, moving the membrane exclusion limit to higher values. Generally, the capsules prepared tinder all tested conditions had a relatively low permeability which rarely exceeded a molecular cut-off of 40 kD based on dextran standards. Furthermore, the diffusion rate showed a strong temporal dependence, indicating that the capsules prepared under various conditions exhibit different apparent pore size densities on the surface. The results indicated that, in order to obtain the desired capsule mass-transfer properties, the preparation conditions should be carefully considered and adjusted. Adding a polyol as well as low salt amount (less than 0.15%) is preferable as a means of modulating the diffusion characteristics, without disturbing the capsule mechanical stability.
Zhu, Wenting; Peng, Hailong; Luo, Mei; Yu, Ningxiang; Xiong, Hua; Wang, Ronghui; Li, Yanbin
2018-09-30
Zipper-like on/off-switchable and magnetic molecularly imprinted microspheres (SM-MIMs) were constructed using acrylamide (AAm) and 2-acrylamide-2-methyl propanesulfonic acid (AMPS) as functional monomers for 17β-estradiol (17β-E 2 ) recognition and extraction. The imprinted polymer interactions between poly(AAm) (PAAm) and poly(AMPS) (PAMPS) with on/off-switchable property to temperature, exhibited dissociation at relatively higher temperatures (such as 30 °C) and helped 17β-E 2 enter into imprinted sites, leading to higher binding capability. Conversely, the interpolymer complexes between PAAm and PAMPS formed and blocked 17β-E 2 access to imprinted sites at lower temperature (such as 20 °C). SM-MIMs were used as dispersive solid phase extraction (SPE) adsorbent with HPLC for 17β-E 2 pretreatment and detection in food samples, and low limit detection (2.52 µg L -1 ) and quantification (10.76 µg L -1 ) with higher recovery were obtained. Therefore, SM-MIMs may be a promising adsorbent for 17β-E 2 pretreatment in food samples owing to its advantages of on/off-switchable recognition, eco-friendly elution, and efficient separation. Copyright © 2018. Published by Elsevier Ltd.
Li, Xiaobo; Sergeyev, Ivan V; Aussenac, Fabien; Masters, Anthony F; Maschmeyer, Thomas; Hook, James M
2018-06-04
Metal-free polymeric carbon nitrides (PCNs) are promising photocatalysts for solar hydrogen production, but their structure-photoactivity relationship remains elusive. Two PCNs were characterized by dynamic-nuclear-polarization-enhanced solid-state NMR spectroscopy, which circumvented the need for specific labeling with either 13 C- or 15 N-enriched precursors. Rapid 1D and 2D data acquisition was possible, providing insights into the structural contrasts between the PCNs. Compared to PCN_B with lower performance, PCN_P is a more porous and more active photocatalyst that is richer in terminal N-H bonds not associated with interpolymer chains. It is proposed that terminal N-H groups act as efficient carrier traps and reaction sites. © 2018 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.
Domozych, David S.; Sørensen, Iben; Popper, Zoë A.; Ochs, Julie; Andreas, Amanda; Fangel, Jonatan U.; Pielach, Anna; Sacks, Carly; Brechka, Hannah; Ruisi-Besares, Pia; Willats, William G.T.; Rose, Jocelyn K.C.
2014-01-01
The pectin polymer homogalacturonan (HG) is a major component of land plant cell walls and is especially abundant in the middle lamella. Current models suggest that HG is deposited into the wall as a highly methylesterified polymer, demethylesterified by pectin methylesterase enzymes and cross-linked by calcium ions to form a gel. However, this idea is based largely on indirect evidence and in vitro studies. We took advantage of the wall architecture of the unicellular alga Penium margaritaceum, which forms an elaborate calcium cross-linked HG-rich lattice on its cell surface, to test this model and other aspects of pectin dynamics. Studies of live cells and microscopic imaging of wall domains confirmed that the degree of methylesterification and sufficient levels of calcium are critical for lattice formation in vivo. Pectinase treatments of live cells and immunological studies suggested the presence of another class of pectin polymer, rhamnogalacturonan I, and indicated its colocalization and structural association with HG. Carbohydrate microarray analysis of the walls of P. margaritaceum, Physcomitrella patens, and Arabidopsis (Arabidopsis thaliana) further suggested the conservation of pectin organization and interpolymer associations in the walls of green plants. The individual constituent HG polymers also have a similar size and branched structure to those of embryophytes. The HG-rich lattice of P. margaritaceum, a member of the charophyte green algae, the immediate ancestors of land plants, was shown to be important for cell adhesion. Therefore, the calcium-HG gel at the cell surface may represent an early evolutionary innovation that paved the way for an adhesive middle lamella in multicellular land plants. PMID:24652345
Nakahata, Rina; Yusa, Shin-Ichi
2018-01-05
Amphoteric random copolymers P(AMPS/APTAC50) x , where x = 41, 89, and 117, composed of sodium 2-acrylamido-2-methylpropanesulfonate (AMPS) and 3-acrylamidopropyltrimethylammonium chloride (APTAC) were prepared via reversible addition-fragmentation chain transfer radical polymerization. P(AMPS/APTAC50) x can dissolve in pure water to form small interpolymer aggregates. In aqueous solutions of NaCl, P(AMPS/APTAC50) x can dissolve in the unimer state. Amphoteric random copolymer P(AMPS/APTAC50) c with high molecular weight was prepared via conventional free-radical polymerization. Although P(AMPS/APTAC50) c cannot dissolve in pure water, it can dissolve in aqueous solutions of NaCl. In amphoteric random copolymers with high molecular weight, the possibility of continuous sequences of monomers with the same charge may increase, which may cause strong interactions between polymer chains. When fetal bovine serum (FBS) and polyelectrolytes were mixed in phosphate-buffered saline, the hydrodynamic radius and light-scattering intensity increased. There was no interaction between P(AMPS/APTAC50) x and FBS because corresponding increases could not be observed.
Rohatgi, Charu Vashisth; Dutta, Naba K.; Choudhury, Namita Roy
2015-01-01
In this work, we report separator membranes from crosslinking of two polymers, such as poly vinyl alcohol (PVA) with an ionic polymer poly(methyl vinyl ether-alt-maleic anhydride) (PMVE-MA). Such interpolymer-networked systems were extensively used for biomedical and desalination applications but they were not examined for their potential use as membranes or separators for batteries. Therefore, the chemical interactions between these two polymers and the influence of such crosslinking on physicochemical properties of the membrane are systematically investigated through rheology and by critical gel point study. The hydrogen bonding and the chemical interaction between PMVE-MA and PVA resulted in highly cross-linked membranes. Effect of the molecular weight of PVA on the membrane properties was also examined. The developed membranes were extensively characterized by studying their physicochemical properties (water uptake, swelling ratio, and conductivity), thermal and electrochemical properties using differential scanning calorimetry (DSC), dynamic mechanical analysis (DMA), thermo-gravimetric analysis (TGA) and electrochemical impedance spectroscopy (EIS). The DSC study shows the presence of a single Tg in the membranes indicating compatibility of the two polymers in flexible and transparent films. The membranes show good stability and ion conductivity suitable for separator applications. PMID:28347019
Chang, S C; Sommer, R D; Rheingold, A L; Goldberg, D P
2001-11-21
The synthesis and crystallographic characterization of a new (N2S)zinc-alkyl complex and (N2S)zinc-formate complex is described; the bonding mode of the formate complex has implications for the mechanism of action of the enzyme peptide deformylase.
Su, Cai Xia; Chen, Jie; Shi, Fu Ming; Guo, Ming Shen; Chang, Yan Lin
2017-07-01
The acrosome complex plays an indispensable role in the normal function of mature spermatozoa. However, the dynamic process of acrosome complex formation in insect remains poorly understood. Gampsocleis gratiosa Brunner von Wattenwyl possesses the typical characteristic of insect sperms, which is tractable in terms of size, and therefore was selected for the acrosome formation study in this report. The results show that acrosome formation can be divided into six phases: round, rotating, rhombic, cylindrical, transforming and mature phase, based on the morphological dynamics of acrosome complex and nucleus. In addition, the cytoskeleton plays a critical role in the process of acrosome formation. The results from this study indicate that: (1) glycoprotein is the major component of the acrosome proper; (2) the microfilament is one element of the acrosome complex, and may mediate the morphologic change of the acrosome complex; (3) the microtubules might also shape the nucleus and acrosome complex during the acrosome formation. Copyright © 2017 Elsevier Ltd. All rights reserved.
NASA Technical Reports Server (NTRS)
Kudryashov, B. A.; Shapiro, F. B.; Lomovskaya, F. B.; Lyapina, L. A.
1979-01-01
Adrenocorticotropin (ACTH) was administered to rats at different times following adrenalectomy. Adrenocorticotropin caused a significant increase in the formation of heparin complexes even in the absence of stress factor. When ACTH secretion is blocked, immobilization stress is not accompanied by an increase in the process of complex formation. The effect of ACTH on the formation of heparin complexes was mediated through its stimulation of the adrenal cortex.
Formation, Migration, and Reactivity of Au CO Complexes on Gold Surfaces
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wang, Jun; McEntee, Monica; Tang, Wenjie
2016-01-12
Here, we report experimental as well as theoretical evidence that suggests Au CO complex formation upon the exposure of CO to active sites (step edges and threading dislocations) on a Au(111) surface. Room-temperature scanning tunneling microscopy (STM), X-ray photoelectron spectroscopy, transmission infrared spectroscopy, and density functional theory calculations point to Au CO complex formation and migration. Room-temperature STM of the Au(111) surface at CO pressures in the range from 10^ 8 to 10^ 4 Torr (dosage up to 10^6 langmuir) indicates Au atom extraction from dislocation sites of the herringbone reconstruction, mobile Au CO complex formation and diffusion, and Aumore » adatom cluster formation on both elbows and step edges on the Au surface. The formation and mobility of the Au CO complex result from the reduced Au Au bonding at elbows and step edges leading to stronger Au CO bonding and to the formation of a more positively charged CO (CO +) on Au. These studies indicate that the mobile Au CO complex is involved in the Au nanoparticle formation and reactivity, and that the positive charge on CO increases due to the stronger adsorption of CO at Au sites with lower coordination numbers.« less
Bagramyan, K; Trchounian, A
2003-11-01
Formate hydrogen lyase from Escherichia coli is a membrane-bound complex that oxidizes formic acid to carbon dioxide and molecular hydrogen. Under anaerobic growth conditions and fermentation of sugars (glucose), it exists in two forms. One form is constituted by formate dehydrogenase H and hydrogenase 3, and the other one is the same formate dehydrogenase and hydrogenase 4; the presence of small protein subunits, carriers of electrons, is also probable. Other proteins may also be involved in formation of the enzyme complex, which requires the presence of metal (nickel-cobalt). Its formation also depends on the external pH and the presence of formate. Activity of both forms requires F(0)F(1)-ATPase; this explains dependence of the complex functioning on proton-motive force. It is also possible that the formate hydrogen lyase complex will exhibit its own proton-translocating function.
C-Cbl reverses HER2-mediated tamoxifen resistance in human breast cancer cells.
Li, Wei; Xu, Ling; Che, Xiaofang; Li, Haizhou; Zhang, Ye; Song, Na; Wen, Ti; Hou, Kezuo; Yang, Yi; Zhou, Lu; Xin, Xing; Xu, Lu; Zeng, Xue; Shi, Sha; Liu, Yunpeng; Qu, Xiujuan; Teng, Yuee
2018-05-02
Tamoxifen is a frontline therapy for estrogen receptor (ER)-positive breast cancer in premenopausal women. However, many patients develop resistance to tamoxifen, and the mechanism underlying tamoxifen resistance is not well understood. Here we examined whether ER-c-Src-HER2 complex formation is involved in tamoxifen resistance. MTT and colony formation assays were used to measure cell viability and proliferation. Western blot was used to detect protein expression and protein complex formations were detected by immunoprecipitation and immunofluorescence. SiRNA was used to examine the function of HER2 in of BT474 cells. An in vivo xenograft animal model was established to examine the role of c-Cbl in tumor growth. MTT and colony formation assay showed that BT474 cells are resistant to tamoxifen and T47D cells are sensitive to tamoxifen. Immunoprecipitation experiments revealed ER-c-Src-HER2 complex formation in BT474 cells but not in T47D cells. However, ER-c-Src-HER2 complex formation was detected after overexpressing HER2 in T47D cells and these cells were more resistant to tamoxifen. HER2 knockdown by siRNA in BT474 cells reduced ER-c-Src-HER2 complex formation and reversed tamoxifen resistance. ER-c-Src-HER2 complex formation was also disrupted and tamoxifen resistance was reversed in BT474 cells by the c-Src inhibitor PP2 and HER2 antibody trastuzumab. Nystatin, a lipid raft inhibitor, reduced ER-c-Src-HER2 complex formation and partially reversed tamoxifen resistance. ER-c-Src-HER2 complex formation was disrupted by overexpression of c-Cbl but not by the c-Cbl ubiquitin ligase mutant. In addition, c-Cbl could reverse tamoxifen resistance in BT474 cells, but the ubiquitin ligase mutant had no effect. The effect of c-Cbl was validated in BT474 tumor-bearing nude mice in vivo. Immunofluorescence also revealed ER-c-Src-HER2 complex formation was reduced in tumor tissues of nude mice with c-Cbl overexpression. Our results suggested that c-Cbl can reverse tamoxifen resistance in HER2-overexpressing breast cancer cells by inhibiting the formation of the ER-c-Src-HER2 complex.
El-Sherif, Ahmed A; Shoukry, Mohamed M
2007-03-01
The formation equilibria of copper(II) complexes and the ternary complexes Cu(PDC)L (PDC=2,6-bis-(hydroxymethyl)-pyridine, HL=amino acid, amides or DNA constituents) have been investigated. Ternary complexes are formed by a simultaneous mechanism. The results showed the formation of Cu(PDC)L, Cu(PDC, H(-1))(L) and Cu(PDC, H(-2))(L) complexes. The concentration distribution of the complexes in solution is evaluated as a function of pH. The effect of dioxane as a solvent on the protonation constant of PDC and the formation constants of Cu(II) complexes are discussed. The thermodynamic parameters DeltaH degrees and DeltaS degrees calculated from the temperature dependence of the equilibrium constants are investigated.
NASA Astrophysics Data System (ADS)
Oliveira, F. C.; Denadai, A. M. L.; Fulgêncio, F. H.; Magalhães, W. F.; Alcântara, A. F. C.; Windmöller, D.; Machado, J. C.
2012-06-01
Positronium formation in triphenylphosphine oxide (TPPO), triphenylmethanol (TPM), and systems [TPPO(1-X)ṡTPMX] has been studied. The low probability of positronium formation in complex [TPPO0.5ṡTPM0.5] was attributed to strong hydrogen bond and sixfold phenyl embrace interactions. These strong interactions in complex reduce the possibility of the n- and π-electrons to interact with positrons on the spur and consequently, the probability of positronium formation is lower. The τ3 parameter and free volume (correlated to τ3) were also sensitive to the formation of hydrogen bonds and sixfold phenyl embrace interactions within the complex. For physical mixture the positron annihilation parameters remained unchanged throughout the composition range.
Tanoue, Ryota; Higuchi, Rintaro; Ikebe, Kiryu; Uemura, Shinobu; Kimizuka, Nobuo; Stieg, Adam Z; Gimzewski, James K; Kunitake, Masashi
2012-10-02
Two-dimensional (2D) arrays of π-conjugated aromatic polymers produced by surface-selective Schiff base coupling reactions between an aromatic diamine and an aromatic dialdehyde were investigated in detail using in situ scanning tunneling microscopy. Surface-selective coupling was achieved for almost all diamine/dialdehyde combinations attempted, although several combinations did not proceed even in homogeneous aqueous alkaline solution. Most of the combinations of an aromatic diamine and a dialdehyde, except the combinations of 4,4'-azodianiline with mono/bithiophenedicarboxaldehyde, formed highly ordered π-conjugated polymer arrays on an iodine-modified Au(111) surface in aqueous solution at a suitable pH. The simplest polymer of the various combinations tested, obtained from the combination of 1,4-diaminobenzene with terephthaldicarboxaldehyde, gave a 2D array consisting of linearly connected benzene units. Poly(azomethine) adlayers caused a positive shift in the electrochemical potential of the butterfly shaped oxidative adsorption and reductive desorption of iodine. The acceleration of the reductive desorption of iodine suggests the existence of a weak interaction between the polymer layer and iodine. Not only the first polymer adlayers but also partially adsorbed secondary adlayers with "on-top" epitaxial behavior were frequently observed for all polymer systems. The alignment of the polymer chains in the adlayers possessed a certain regularity in terms of a regular interval between polymer chains because of repulsive interpolymer interactions.
NASA Astrophysics Data System (ADS)
Dong, Peng; Wang, Rong; Yu, Xuegong; Chen, Lin; Ma, Xiangyang; Yang, Deren
2017-07-01
We have quantitatively investigated the formation kinetics of metastable vacancy-dioxygen (VO2) complex in a structure of [VO + Oi], where a VO complex is trapped in a next-neighbor position to an interstitial oxygen atom (Oi). It is found that the VO annihilation is accompanied by the generation of metastable [VO + Oi] complex during annealing in the temperature range of 220-250 °C. The activation energy for [VO + Oi] generation appears at around 0.48 eV, which is much lower than the counterpart of stable VO2 complex. This indicates that the formation of [VO + Oi] complex originates from the reaction between VO and Oi. The ab initio calculations show that the formation energy of [VO + Oi] complex is larger than that of VO2 complex, which means that [VO + Oi] complex is thermodynamically unfavorable as compared to VO2 complex. However, the binding energy of [VO + Oi] complex is positive, indicating that [VO + Oi] complex is stable against decomposition of VO and Oi in silicon. It is believed that [VO + Oi] complex serves as the intermediate for VO to VO2 conversion.
Kudryashova, Elena V; Artemova, Tatiana M; Vinogradov, Alexei A; Gladilin, Alexander K; Mozhaev, Vadim V; Levashov, Andrey V
2003-04-01
Formation of enzyme-oligoamine complexes was suggested as an approach to obtain biocatalysts with enhanced resistance towards inactivation in water-organic media. Complex formation results in broadening (by 20-40% v/v ethanol) of the range of cosolvent concentrations where the enzyme retains its catalytic activity (stabilization effect). At moderate cosolvent concentrations (20-40% v/v) complex formation activates the enzyme (by 3-6 times). The magnitude of activation and stabilization effects increases with the number of possible electrostatic contacts between the protein surface and the molecules of oligoamines (OA). Circular dichroism spectra in the far-UV region show that complex formation stabilizes protein conformation and prevents aggregation in water-organic solvent mixtures. Two populations of the complexes with different thermodynamic stabilities were found in alpha-chymotrypsin (CT)-OA systems depending on the CT/OA ratio. The average dissociation constants and stoichiometries of both low- and high-affinity populations of the complexes were estimated. It appears that it is the low-affinity sites on the CT surface that are responsible for the activation effect.
Application of ion exchange resin in floating drug delivery system.
Upadhye, Abhijeet A; Ambike, Anshuman A; Mahadik, Kakasaheb R; Paradkar, Anant
2008-10-01
The purpose of this study was to explore the application of low-density ion exchange resin (IER) Tulsion(R) 344, for floating drug delivery system (FDDS), and study the effect of its particle size on rate of complexation, water uptake, drug release, and in situ complex formation. Batch method was used for the preparation of complexes, which were characterized by physical methods. Tablet containing resin with high degree of crosslinking showed buoyancy lag time (BLT) of 5-8 min. Decreasing the particle size of resin showed decrease in water uptake and drug release, with no significant effect on the rate of complexation and in situ complex formation for both preformed complexes (PCs) and physical mixtures (PMs). Thus, low-density and high degree of crosslinking of resin and water uptake may be the governing factor for controlling the initial release of tablet containing PMs but not in situ complex formation. However, further sustained release may be due to in situ complex formation.
NASA Astrophysics Data System (ADS)
Saha, Avijit; Mukherjee, Asok K.
2004-07-01
The formation of charge transfer (CT) complexes of 4-acetamidophenol (commonly called 'paracetamol') and a series of quinones (including Vitamin K 3) has been studied spectrophotometrically in ethanol medium. The vertical ionisation potential of paracetamol and the degrees of charge transfer of the complexes in their ground state has been estimated from the trends in the charge transfer bands. The oscillator and transition dipole strengths of the complexes have been determined from the CT absorption spectra at 298 K. The complexes have been found by Job's method of continuous variation to have the uncommon 2:1 (paracetamol:quinone) stoichiometry in each case. The enthalpies and entropies of formation of the complexes have been obtained by determining their formation constants at five different temperatures.
Bacterial formate hydrogenlyase complex.
McDowall, Jennifer S; Murphy, Bonnie J; Haumann, Michael; Palmer, Tracy; Armstrong, Fraser A; Sargent, Frank
2014-09-23
Under anaerobic conditions, Escherichia coli can carry out a mixed-acid fermentation that ultimately produces molecular hydrogen. The enzyme directly responsible for hydrogen production is the membrane-bound formate hydrogenlyase (FHL) complex, which links formate oxidation to proton reduction and has evolutionary links to Complex I, the NADH:quinone oxidoreductase. Although the genetics, maturation, and some biochemistry of FHL are understood, the protein complex has never been isolated in an intact form to allow biochemical analysis. In this work, genetic tools are reported that allow the facile isolation of FHL in a single chromatographic step. The core complex is shown to comprise HycE (a [NiFe] hydrogenase component termed Hyd-3), FdhF (the molybdenum-dependent formate dehydrogenase-H), and three iron-sulfur proteins: HycB, HycF, and HycG. A proportion of this core complex remains associated with HycC and HycD, which are polytopic integral membrane proteins believed to anchor the core complex to the cytoplasmic side of the membrane. As isolated, the FHL complex retains formate hydrogenlyase activity in vitro. Protein film electrochemistry experiments on Hyd-3 demonstrate that it has a unique ability among [NiFe] hydrogenases to catalyze production of H2 even at high partial pressures of H2. Understanding and harnessing the activity of the FHL complex is critical to advancing future biohydrogen research efforts.
Tokunaga, Taisuke; Yatabe, Takeshi; Matsumoto, Takahiro; Ando, Tatsuya; Yoon, Ki-Seok; Ogo, Seiji
2017-01-01
We report the mechanistic investigation of catalytic H 2 evolution from formic acid in water using a formate-bridged dinuclear Ru complex as a formate hydrogen lyase model. The mechanistic study is based on isotope-labeling experiments involving hydrogen isotope exchange reaction.
Ikuta, Naoko; Sugiyama, Hironori; Shimosegawa, Hiroshi; Nakane, Rie; Ishida, Yoshiyuki; Uekaji, Yukiko; Nakata, Daisuke; Pallauf, Kathrin; Rimbach, Gerald; Terao, Keiji; Matsugo, Seiichi
2013-01-01
R(+)-alpha lipoic acid (RALA) is one of the cofactors for mitochondrial enzymes and, therefore, plays a central role in energy metabolism. RALA is unstable when exposed to low pH or heat, and therefore, it is difficult to use enantiopure RALA as a pharma- and nutra-ceutical. In this study, we have aimed to stabilize RALA through complex formation with cyclodextrins (CDs). α-CD, β-CD and γ-CD were used for the formation of these RALA-CD complexes. We confirmed the complex formation using differential scanning calorimetry and showed by using HPLC analysis that complexed RALA is more stable than free RALA when subjected to humidity and high temperature or acidic pH conditions. Scanning electron microscopy studies showed that the particle size and shape differed depending on the cyclodextrin used for complexation. Further, the complexes of CD and RALA showed a different particle size distribution pattern compared with that of CD itself or that of the physical mixture of RALA and CD. PMID:23434662
NASA Astrophysics Data System (ADS)
Lindström, A.; Klintenberg, M.; Sanyal, B.; Mirbt, S.
2015-08-01
The coexistence in Te-rich CdTe of substitutional Cl-dopants, ClTe, which act as donors, and Cd vacancies, VC d - 1 , which act as electron traps, was studied from first principles utilising the HSE06 hybrid functional. We find ClTe to preferably bind to VC d - 1 and to form an acceptor complex, (ClTe-VCd)-1. The complex has a (0,-1) charge transfer level close to the valence band and shows no trap state (deep level) in the band gap. During the complex formation, the defect state of VCd-1 is annihilated and leaves the Cl-doped CdTe bandgap without any trap states (self-purification). We calculate Cl-doped CdTe to be semi-insulating with a Fermi energy close to midgap. We calculate the formation energy of the complex to be sufficiently low to allow for spontanous defect formation upon Cl-doping (self-compensation). In addition, we quantitatively analyse the geometries, DOS, binding energies and formation energies of the (ClTe-VCd) complexes.
NASA Astrophysics Data System (ADS)
Barman, Biraj Kumar; Rajbanshi, Biplab; Yasmin, Ananya; Roy, Mahendra Nath
2018-05-01
The formation of the host-guest inclusion complexes of ionic liquids namely [BMIm]Cl and [HMIm]Cl with α-CD and β-CD were studied by means of physicochemical and spectroscopic methods. Conductivity and surface tension study were in good agreement with the 1H NMR and FT-IR studies which confirm the formation of the inclusion complexes. The Density and viscosity study also supported the formation of the ICs. Further the stoichiometry was determined 1:1 for each case and the association constants and thermodynamic parameters derived supported the most feasible formation of the [BMIm]Cl- β-CD inclusion complex.
Rapamycin-induced oligomer formation system of FRB-FKBP fusion proteins.
Inobe, Tomonao; Nukina, Nobuyuki
2016-07-01
Most proteins form larger protein complexes and perform multiple functions in the cell. Thus, artificial regulation of protein complex formation controls the cellular functions that involve protein complexes. Although several artificial dimerization systems have already been used for numerous applications in biomedical research, cellular protein complexes form not only simple dimers but also larger oligomers. In this study, we showed that fusion proteins comprising the induced heterodimer formation proteins FRB and FKBP formed various oligomers upon addition of rapamycin. By adjusting the configuration of fusion proteins, we succeeded in generating an inducible tetramer formation system. Proteins of interest also formed tetramers by fusing to the inducible tetramer formation system, which exhibits its utility in a broad range of biological applications. Copyright © 2015 The Society for Biotechnology, Japan. Published by Elsevier B.V. All rights reserved.
Study of the formation of soluble complexes of sodium caseinate and xanthan in solution.
Bouhannache, Bouchra; HadjSadok, Abdelkader; Touabet, Abdelkrim
2017-09-01
The main objective of this work was to determinate the optimum conditions for the formation of soluble complexes between sodium caseinate and xanthan in solution at neutral pH, in the presence of the NaCl. The study of the influence of the concentrations of these three substances showed that salt was the most influent factor. It worsens the thermodynamic incompatibility of the two biopolymers in solution, when they are present at large amounts. However, it contributes to soluble complexes formation, when sodium caseinate concentration is below 5.5%. In this case, gels with enhanced rheological properties were obtained. Infrared spectroscopy confirmed that the complexes formation within these gels involves hydrophobic interactions. On the other hand, dynamic light scattering revealed that dilution cause their dissociation. These soluble complexes are promising ingredients to ensure new texturing properties.
Wendland, M F; Stevens, T H; Buttlaire, D H; Everett, G W; Himes, R H
1983-02-15
Using nuclear magnetic resonance techniques, we have measured the internuclear distances separating the nucleotide-bound metal from the carbon and hydrogen nuclei of formate as well as the carbon of methylammonium cation when bound to formyltetrahydrofolate synthetase. Measurements were made of the paramagnetic effect on the spin-lattice relaxation rates (1/T1) of 13C and 1H nuclei arising from the replacement of Mg2+ with Mn2+, which binds to the enzyme in the form of a metal-nucleotide complex. Distances from Mn2+ to the formate carbon and proton were found to be 6.3 and 7.4 A, respectively, in the E . ATP . Mn2+ . formate complex and 6.0 and 7.1 A, respectively, in the E . ADP . Mn2+ . formate complex. When tetrahydrofolate was added to the latter complex, the exchange of formate was greatly reduced and became rate limiting for relaxation. These results are consistent with substantial conformational effects produced by the binding of the cofactor. The distance from Mn2+ to the methylammonium carbon in the E . ADP . Mn2+ . CH3NH+3, E . ADP . Mn2+ . formate . CH3NH3+, and E . ADP . Mn2+ . tetrahydrofolate . CH3NH3+ complexes was estimated to be in the range of 7.4-12 A. However, in the E . ADP . Mn2+ formate . tetrahydrofolate . CH3NH3+ complex, the data suggest that exchange of cation contributes significantly to relaxation. These results, combined with other known features of the enzyme, suggest that there may be a monovalent cation site within the active site of the enzyme.
SEPALLATA3: the 'glue' for MADS box transcription factor complex formation
Immink, Richard GH; Tonaco, Isabella AN; de Folter, Stefan; Shchennikova, Anna; van Dijk, Aalt DJ; Busscher-Lange, Jacqueline; Borst, Jan W; Angenent, Gerco C
2009-01-01
Background Plant MADS box proteins play important roles in a plethora of developmental processes. In order to regulate specific sets of target genes, MADS box proteins dimerize and are thought to assemble into multimeric complexes. In this study a large-scale yeast three-hybrid screen is utilized to provide insight into the higher-order complex formation capacity of the Arabidopsis MADS box family. SEPALLATA3 (SEP3) has been shown to mediate complex formation and, therefore, special attention is paid to this factor in this study. Results In total, 106 multimeric complexes were identified; in more than half of these at least one SEP protein was present. Besides the known complexes involved in determining floral organ identity, various complexes consisting of combinations of proteins known to play a role in floral organ identity specification, and flowering time determination were discovered. The capacity to form this latter type of complex suggests that homeotic factors play essential roles in down-regulation of the MADS box genes involved in floral timing in the flower via negative auto-regulatory loops. Furthermore, various novel complexes were identified that may be important for the direct regulation of the floral transition process. A subsequent detailed analysis of the APETALA3, PISTILLATA, and SEP3 proteins in living plant cells suggests the formation of a multimeric complex in vivo. Conclusions Overall, these results provide strong indications that higher-order complex formation is a general and essential molecular mechanism for plant MADS box protein functioning and attribute a pivotal role to the SEP3 'glue' protein in mediating multimerization. PMID:19243611
A Simple Explanation of Complexation
ERIC Educational Resources Information Center
Elliott, J. Richard
2010-01-01
The topics of solution thermodynamics, activity coefficients, and complex formation are introduced through computational exercises and sample applications. The presentation is designed to be accessible to freshmen in a chemical engineering computations course. The MOSCED model is simplified to explain complex formation in terms of hydrogen…
Hagbani, Turki Al; Nazzal, Sami
2017-03-30
One approach to enhance curcumin (CUR) aqueous solubility is to use cyclodextrins (CDs) to form inclusion complexes where CUR is encapsulated as a guest molecule within the internal cavity of the water-soluble CD. Several methods have been reported for the complexation of CUR with CDs. Limited information, however, is available on the use of the autoclave process (AU) in complex formation. The aims of this work were therefore to (1) investigate and evaluate the AU cycle as a complex formation method to enhance CUR solubility; (2) compare the efficacy of the AU process with the freeze-drying (FD) and evaporation (EV) processes in complex formation; and (3) confirm CUR stability by characterizing CUR:CD complexes by NMR, Raman spectroscopy, DSC, and XRD. Significant differences were found in the saturation solubility of CUR from its complexes with CD when prepared by the three complexation methods. The AU yielded a complex with expected chemical and physical fingerprints for a CUR:CD inclusion complex that maintained the chemical integrity and stability of CUR and provided the highest solubility of CUR in water. Physical and chemical characterizations of the AU complexes confirmed the encapsulated of CUR inside the CD cavity and the transformation of the crystalline CUR:CD inclusion complex to an amorphous form. It was concluded that the autoclave process with its short processing time could be used as an alternate and efficient methods for drug:CD complexation. Copyright © 2017 Elsevier B.V. All rights reserved.
Electrocatalytic Oxidation of Formate by [Ni(P R 2N R' 2) 2(CH 3CN)] 2+ Complexes
DOE Office of Scientific and Technical Information (OSTI.GOV)
Galan, Brandon R.; Schöffel, Julia; Linehan, John C.
2011-08-17
[Ni(P R 2N R' 2) 2(CH 3CN)] 2+ complexes with R = Ph, R' = 4-MeOPh or R = Cy, R' = Ph , and a mixed-ligand [Ni(P R 2N R' 2)(P R" 2N R' 2)(CH 3CN)] 2+ with R = Cy, R' = Ph, R" = Ph, have been synthesized and characterized by single-crystal X-ray crystallography. These and previously reported complexes are shown to be electrocatalysts for the oxidation of formate in solution to produce CO 2, protons, and electrons, with rates that are first-order in catalyst and formate at formate concentrations below ~0.04 M (34 equiv). At concentrationsmore » above ~0.06 M formate (52 equiv), catalytic rates become nearly independent of formate concentration. For the catalysts studied, maximum observed turnover frequencies vary from <1.1 to 15.8 s –1 at room temperature, which are the highest rates yet reported for formate oxidation by homogeneous catalysts. These catalysts are the only base-metal electrocatalysts as well as the only homogeneous electrocatalysts reported to date for the oxidation of formate. An acetate complex demonstrating an η 1-OC(O)CH 3 binding mode to nickel has also been synthesized and characterized by single-crystal X-ray crystallography. Based on this structure and the electrochemical and spectroscopic data, a mechanistic scheme for electrocatalytic formate oxidation is proposed which involves formate binding followed by a rate-limiting proton and two-electron transfer step accompanied by CO 2 liberation. Finally, the pendant amines have been demonstrated to be essential for electrocatalysis, as no activity toward formate oxidation was observed for the similar [Ni(depe) 2] 2+ (depe = 1,2-bis(diethylphosphino)ethane) complex.« less
Electrocatalytic oxidation of formate by [Ni(P(R)2N(R')2)2(CH3CN)]2+ complexes.
Galan, Brandon R; Schöffel, Julia; Linehan, John C; Seu, Candace; Appel, Aaron M; Roberts, John A S; Helm, Monte L; Kilgore, Uriah J; Yang, Jenny Y; DuBois, Daniel L; Kubiak, Clifford P
2011-08-17
[Ni(P(R)(2)N(R')(2))(2)(CH(3)CN)](2+) complexes with R = Ph, R' = 4-MeOPh or R = Cy, R' = Ph , and a mixed-ligand [Ni(P(R)(2)N(R')(2))(P(R''(2))N(R'(2)))(CH(3)CN)](2+) with R = Cy, R' = Ph, R'' = Ph, have been synthesized and characterized by single-crystal X-ray crystallography. These and previously reported complexes are shown to be electrocatalysts for the oxidation of formate in solution to produce CO(2), protons, and electrons, with rates that are first-order in catalyst and formate at formate concentrations below ∼0.04 M (34 equiv). At concentrations above ∼0.06 M formate (52 equiv), catalytic rates become nearly independent of formate concentration. For the catalysts studied, maximum observed turnover frequencies vary from <1.1 to 15.8 s(-1) at room temperature, which are the highest rates yet reported for formate oxidation by homogeneous catalysts. These catalysts are the only base-metal electrocatalysts as well as the only homogeneous electrocatalysts reported to date for the oxidation of formate. An acetate complex demonstrating an η(1)-OC(O)CH(3) binding mode to nickel has also been synthesized and characterized by single-crystal X-ray crystallography. Based on this structure and the electrochemical and spectroscopic data, a mechanistic scheme for electrocatalytic formate oxidation is proposed which involves formate binding followed by a rate-limiting proton and two-electron transfer step accompanied by CO(2) liberation. The pendant amines have been demonstrated to be essential for electrocatalysis, as no activity toward formate oxidation was observed for the similar [Ni(depe)(2)](2+) (depe = 1,2-bis(diethylphosphino)ethane) complex.
Thermodynamics of complexation in an aqueous solution of Tb(III) nitrate at 298 K
NASA Astrophysics Data System (ADS)
Lobacheva, O. L.; Berlinskii, I. V.; Dzhevaga, N. V.
2017-01-01
The pH of the formation of hydroxo complexes and hydrates in an aqueous solution of terbium Tb(III) is determined using combined means of potentiometric and conductometric titration. The stability constants of the hydroxo complexes, the products of hydroxide solubility, and the Gibbs energy of terbium hydroxo complex formation are calculated.
ERIC Educational Resources Information Center
Ibanez, Jorge G.; And Others
1988-01-01
Describes experiments in which students prepare in situ soluble complexes of metal ions with different ligands and observe and estimate the change in formal potential that the ion undergoes upon complexation. Discusses student formation and analysis of soluble complexes of two different metal ions with the same ligand. (CW)
Controlled assembly of artificial protein-protein complexes via DNA duplex formation.
Płoskoń, Eliza; Wagner, Sara C; Ellington, Andrew D; Jewett, Michael C; O'Reilly, Rachel; Booth, Paula J
2015-03-18
DNA-protein conjugates have found a wide range of applications. This study demonstrates the formation of defined, non-native protein-protein complexes via the site specific labeling of two proteins of interest with complementary strands of single-stranded DNA in vitro. This study demonstrates that the affinity of two DNA-protein conjugates for one another may be tuned by the use of variable lengths of DNA allowing reversible control of complex formation.
NASA Astrophysics Data System (ADS)
Korenchenko, Anna E.; Vorontsov, Alexander G.; Gelchinski, Boris R.; Sannikov, Grigorii P.
2018-04-01
We discuss the problem of dimer formation during the homogeneous nucleation of atomic metal vapor in an inert gas environment. We simulated nucleation with molecular dynamics and carried out the statistical analysis of double- and triple-atomic collisions as the two ways of long-lived diatomic complex formation. Close pair of atoms with lifetime greater than the mean time interval between atom-atom collisions is called a long-lived diatomic complex. We found that double- and triple-atomic collisions gave approximately the same probabilities of long-lived diatomic complex formation, but internal energy of the resulted state was essentially lower in the second case. Some diatomic complexes formed in three-particle collisions are stable enough to be a critical nucleus.
Deprotonated Dicarboxylic Acid Homodimers: Hydrogen Bonds and Atmospheric Implications
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hou, Gao-Lei; Valiev, Marat; Wang, Xue-Bin
Dicarboxylic acids represent an important class of water-soluble organic compounds found in the atmosphere. In this work we are studying properties of dicarboxylic acid homodimer complexes (HO 2(CH 2) nCO 2 -[HO 2(CH 2) nCO 2H], n = 0-12), as potentially important intermediates in aerosol formation processes. Our approach is based on experimental data from negative ion photoelectron spectra of the dimer complexes combined with updated measurements of the corresponding monomer species. These results are analyzed with quantum-mechanical calculations, which provide further information about equilibrium structures, thermochemical parameters associated with the complex formation, and evaporation rates. We find that uponmore » formation of the dimer complexes the electron binding energies increase by 1.3–1.7 eV (30.0–39.2 kcal/mol), indicating increased stability of the dimerized complexes. Calculations indicate that these dimer complexes are characterized by the presence of strong intermolecular hydrogen bonds with high binding energies and are thermodynamically favorable to form with low evaporation rates. Comparison with previously studied HSO 4 -[HO 2(CH 2) 2CO 2H] complex (J. Phys. Chem. Lett. 2013, 4, 779-785) shows that HO 2(CH 2) 2CO 2 -[HO 2(CH 2) 2CO 2H] has very similar thermochemical properties. These results imply that dicarboxylic acids not only can contribute to the heterogeneous complexes formation involving sulfuric acid and dicarboxylic acids, but also can promote the formation of homogenous complexes by involving dicarboxylic acids themselves.« less
Darabi Sahneh, Faryad; Scoglio, Caterina; Riviere, Jim
2013-01-01
Nanoparticle-protein corona complex formation involves absorption of protein molecules onto nanoparticle surfaces in a physiological environment. Understanding the corona formation process is crucial in predicting nanoparticle behavior in biological systems, including applications of nanotoxicology and development of nano drug delivery platforms. This paper extends the modeling work in to derive a mathematical model describing the dynamics of nanoparticle corona complex formation from population balance equations. We apply nonlinear dynamics techniques to derive analytical results for the composition of nanoparticle-protein corona complex, and validate our results through numerical simulations. The model presented in this paper exhibits two phases of corona complex dynamics. In the first phase, proteins rapidly bind to the free surface of nanoparticles, leading to a metastable composition. During the second phase, continuous association and dissociation of protein molecules with nanoparticles slowly changes the composition of the corona complex. Given sufficient time, composition of the corona complex reaches an equilibrium state of stable composition. We find analytical approximate formulae for metastable and stable compositions of corona complex. Our formulae are very well-structured to clearly identify important parameters determining corona composition. The dynamics of biocorona formation constitute vital aspect of interactions between nanoparticles and living organisms. Our results further understanding of these dynamics through quantitation of experimental conditions, modeling results for in vitro systems to better predict behavior for in vivo systems. One potential application would involve a single cell culture medium related to a complex protein medium, such as blood or tissue fluid.
Formative feedback and scaffolding for developing complex problem solving and modelling outcomes
NASA Astrophysics Data System (ADS)
Frank, Brian; Simper, Natalie; Kaupp, James
2018-07-01
This paper discusses the use and impact of formative feedback and scaffolding to develop outcomes for complex problem solving in a required first-year course in engineering design and practice at a medium-sized research-intensive Canadian university. In 2010, the course began to use team-based, complex, open-ended contextualised problems to develop problem solving, communications, teamwork, modelling, and professional skills. Since then, formative feedback has been incorporated into: task and process-level feedback on scaffolded tasks in-class, formative assignments, and post-assignment review. Development in complex problem solving and modelling has been assessed through analysis of responses from student surveys, direct criterion-referenced assessment of course outcomes from 2013 to 2015, and an external longitudinal study. The findings suggest that students are improving in outcomes related to complex problem solving over the duration of the course. Most notably, the addition of new feedback and scaffolding coincided with improved student performance.
NASA Astrophysics Data System (ADS)
Sharma, K. P.; Reddi, R. S. B.; Bhattacharya, S.; Rai, R. N.
2012-06-01
The solid-state reaction, which is solvent free and green synthesis, has been adopted to explore the novel compound. The phase diagram of 4-chloroaniline (CA) and 3-hydroxy-4-methoxybenzaldehyde (HMB) system shows the formation of a novel 1:1 molecular complex, and two eutectics on either sides of complex. Thermochemical studies of complex and eutectics have been carried out for various properties such as heat of fusion, entropy of fusion, Jackson's parameters, interfacial energy and excess thermodynamic functions. The formation of molecular complex was also studied by IR, NMR, elemental analysis and UV-Vis absorption spectra. The single crystal of molecular complex was grown and its XRD study confirms the formation of complex and identifies the crystal structure and atomic packing of crystal of complex. Transmission spectra of grown crystal of the complex show 70% transmittance efficiency with cut off wavelength 412 nm. The band gap and refractive index of the crystal of complex have also been studied.
Pinske, Constanze; Jaroschinsky, Monique; Sawers, R Gary
2013-06-01
The membrane-associated formate hydrogenlyase (FHL) complex of bacteria like Escherichia coli is responsible for the disproportionation of formic acid into the gaseous products carbon dioxide and dihydrogen. It comprises minimally seven proteins including FdhF and HycE, the catalytic subunits of formate dehydrogenase H and hydrogenase 3, respectively. Four proteins of the FHL complex have iron-sulphur cluster ([Fe-S]) cofactors. Biosynthesis of [Fe-S] is principally catalysed by the Isc or Suf systems and each comprises proteins for assembly and for delivery of [Fe-S]. This study demonstrates that the Isc system is essential for biosynthesis of an active FHL complex. In the absence of the IscU assembly protein no hydrogen production or activity of FHL subcomponents was detected. A deletion of the iscU gene also resulted in reduced intracellular formate levels partially due to impaired synthesis of pyruvate formate-lyase, which is dependent on the [Fe-S]-containing regulator FNR. This caused reduced expression of the formate-inducible fdhF gene. The A-type carrier (ATC) proteins IscA and ErpA probably deliver [Fe-S] to specific apoprotein components of the FHL complex because mutants lacking either protein exhibited strongly reduced hydrogen production. Neither ATC protein could compensate for the lack of the other, suggesting that they had independent roles in [Fe-S] delivery to complex components. Together, the data indicate that the Isc system modulates FHL complex biosynthesis directly by provision of [Fe-S] as well as indirectly by influencing gene expression through the delivery of [Fe-S] to key regulators and enzymes that ultimately control the generation and oxidation of formate.
Complex organic molecules and star formation
NASA Astrophysics Data System (ADS)
Bacmann, A.; Faure, A.
2014-12-01
Star forming regions are characterised by the presence of a wealth of chemical species. For the past two to three decades, ever more complex organic species have been detected in the hot cores of protostars. The evolution of these molecules in the course of the star forming process is still uncertain, but it is likely that they are partially incorporated into protoplanetary disks and then into planetesimals and the small bodies of planetary systems. The complex organic molecules seen in star forming regions are particularly interesting since they probably make up building blocks for prebiotic chemistry. Recently we showed that these species were also present in the cold gas in prestellar cores, which represent the very first stages of star formation. These detections question the models which were until now accepted to account for the presence of complex organic molecules in star forming regions. In this article, we shortly review our current understanding of complex organic molecule formation in the early stages of star formation, in hot and cold cores alike and present new results on the formation of their likely precursor radicals.
Budnik, Ivan; Shenkman, Boris; Savion, Naphtali
2016-09-01
Effective platelet function requires formation of a physical link between fibrin(ogen), integrin αIIbβ3, and cytoplasmic actin filaments. We investigated the role of the Gαq, Gαi, and Gα12/13 families of heterotrimeric GTP-binding proteins (G proteins) in the assembly of a ligand-αIIbβ3-actin cytoskeleton complex. Selective and combined activation of the G proteins was achieved by using combinations of various platelet agonists and inhibitors. Formation and stability of fibrinogen-αIIbβ3 interaction were evaluated by the extent of platelet aggregation and the rate of eptifibatide-induced platelet disaggregation; association of αIIbβ3 with the cytoskeleton was analyzed by western blot. Formation of the fibrin-αIIbβ3-actin cytoskeleton complex was evaluated by rotational thromboelastometry assay in which clot formation was induced by the mixture of reptilase and factor XIIIa. We demonstrated that involvement of heterotrimeric G proteins in the formation of the ligand-αIIbβ3-cytoskeleton complex depends on whether fibrinogen or fibrin serves as the integrin ligand. Formation of the fibrinogen-αIIbβ3-cytoskeleton complex requires combined activation of at least two G protein pathways while the maximal αIIbβ3-cytoskeleton association and the strongest αIIbβ3-fibrinogen binding supporting irreversible platelet aggregation require combined activation of all three-Gαq, Gαi, and Gα12/13-G protein families. In contrast, formation of the fibrin-αIIbβ3-cytoskeleton complex mediating clot retraction is critically dependent on the activation of the Gαi family, especially on the activation of Gαz.
NASA Astrophysics Data System (ADS)
Usacheva, T. R.; Sharnin, V. A.; Chernov, I. V.; Matteoli, E.; Terekhova, I. V.; Kumeev, R. S.
2012-08-01
The influence of water-ethanol mixture composition on the complex formation between 18-crown-6 ether and L-phenylalanine was studied by titration calorimetry at Т = 298.15 K. The standard thermodynamic parameters (ΔrGо, ΔrHо, ТΔrSо) of formation of [Phe18C6] molecular complex were calculated from data obtained by means of the microcalorimetric system TAM III (TA Instruments, USA) at X(EtOH) = 0.0/0.6 mol fraction. The stability of [Phe18C6] and the mechanism of complexation in water were investigated using the 1Н and 13С NMR spectroscopy. The increase of EtOH concentration results in an increase of the complex stability and of the exothermicity of complexation.
USDA-ARS?s Scientific Manuscript database
Serine acetyltransferase (SAT) catalyzes the limiting reaction in plant and microbial biosynthesis of cysteine. In addition to its enzymatic function, SAT forms a macromolecular complex with O-acetylserine sulfhydrylase (OASS). Formation of the cysteine regulatory complex (CRC) is a critical biochem...
Wang, Shuning; Huang, Haiyan; Kahnt, Jörg; Mueller, Alexander P.; Köpke, Michael
2013-01-01
Flavin-based electron bifurcation is a recently discovered mechanism of coupling endergonic to exergonic redox reactions in the cytoplasm of anaerobic bacteria and archaea. Among the five electron-bifurcating enzyme complexes characterized to date, one is a heteromeric ferredoxin- and NAD-dependent [FeFe]-hydrogenase. We report here a novel electron-bifurcating [FeFe]-hydrogenase that is NADP rather than NAD specific and forms a complex with a formate dehydrogenase. The complex was found in high concentrations (6% of the cytoplasmic proteins) in the acetogenic Clostridium autoethanogenum autotrophically grown on CO, which was fermented to acetate, ethanol, and 2,3-butanediol. The purified complex was composed of seven different subunits. As predicted from the sequence of the encoding clustered genes (fdhA/hytA-E) and from chemical analyses, the 78.8-kDa subunit (FdhA) is a selenocysteine- and tungsten-containing formate dehydrogenase, the 65.5-kDa subunit (HytB) is an iron-sulfur flavin mononucleotide protein harboring the NADP binding site, the 51.4-kDa subunit (HytA) is the [FeFe]-hydrogenase proper, and the 18.1-kDa (HytC), 28.6-kDa (HytD), 19.9-kDa (HytE1), and 20.1-kDa (HytE2) subunits are iron-sulfur proteins. The complex catalyzed both the reversible coupled reduction of ferredoxin and NADP+ with H2 or formate and the reversible formation of H2 and CO2 from formate. We propose the complex to have two functions in vivo, namely, to normally catalyze CO2 reduction to formate with NADPH and reduced ferredoxin in the Wood-Ljungdahl pathway and to catalyze H2 formation from NADPH and reduced ferredoxin when these redox mediators get too reduced during unbalanced growth of C. autoethanogenum on CO (E0′ = −520 mV). PMID:23893107
Wang, Shuning; Huang, Haiyan; Kahnt, Jörg; Mueller, Alexander P; Köpke, Michael; Thauer, Rudolf K
2013-10-01
Flavin-based electron bifurcation is a recently discovered mechanism of coupling endergonic to exergonic redox reactions in the cytoplasm of anaerobic bacteria and archaea. Among the five electron-bifurcating enzyme complexes characterized to date, one is a heteromeric ferredoxin- and NAD-dependent [FeFe]-hydrogenase. We report here a novel electron-bifurcating [FeFe]-hydrogenase that is NADP rather than NAD specific and forms a complex with a formate dehydrogenase. The complex was found in high concentrations (6% of the cytoplasmic proteins) in the acetogenic Clostridium autoethanogenum autotrophically grown on CO, which was fermented to acetate, ethanol, and 2,3-butanediol. The purified complex was composed of seven different subunits. As predicted from the sequence of the encoding clustered genes (fdhA/hytA-E) and from chemical analyses, the 78.8-kDa subunit (FdhA) is a selenocysteine- and tungsten-containing formate dehydrogenase, the 65.5-kDa subunit (HytB) is an iron-sulfur flavin mononucleotide protein harboring the NADP binding site, the 51.4-kDa subunit (HytA) is the [FeFe]-hydrogenase proper, and the 18.1-kDa (HytC), 28.6-kDa (HytD), 19.9-kDa (HytE1), and 20.1-kDa (HytE2) subunits are iron-sulfur proteins. The complex catalyzed both the reversible coupled reduction of ferredoxin and NADP(+) with H2 or formate and the reversible formation of H2 and CO2 from formate. We propose the complex to have two functions in vivo, namely, to normally catalyze CO2 reduction to formate with NADPH and reduced ferredoxin in the Wood-Ljungdahl pathway and to catalyze H2 formation from NADPH and reduced ferredoxin when these redox mediators get too reduced during unbalanced growth of C. autoethanogenum on CO (E0' = -520 mV).
Hennig, Christoph; Ikeda-Ohno, Atsushi; Kraus, Werner; Weiss, Stephan; Pattison, Philip; Emerich, Hermann; Abdala, Paula M; Scheinost, Andreas C
2013-10-21
Cerium(III) and cerium(IV) both form formate complexes. However, their species in aqueous solution and the solid-state structures are surprisingly different. The species in aqueous solutions were investigated with Ce K-edge EXAFS spectroscopy. Ce(III) formate shows only mononuclear complexes, which is in agreement with the predicted mononuclear species of Ce(HCOO)(2+) and Ce(HCOO)2(+). In contrast, Ce(IV) formate forms in aqueous solution a stable hexanuclear complex of [Ce6(μ3-O)4(μ3-OH)4(HCOO)x(NO3)y](12-x-y). The structural differences reflect the different influence of hydrolysis, which is weak for Ce(III) and strong for Ce(IV). Hydrolysis of Ce(IV) ions causes initial polymerization while complexation through HCOO(-) results in 12 chelate rings stabilizing the hexanuclear Ce(IV) complex. Crystals were grown from the above-mentioned solutions. Two crystal structures of Ce(IV) formate were determined. Both form a hexanuclear complex with a [Ce6(μ3-O)4(μ3-OH)4](12+) core in aqueous HNO3/HCOOH solution. The pH titration with NaOH resulted in a structure with the composition [Ce6(μ3-O)4(μ3-OH)4(HCOO)10(NO3)2(H2O)3]·(H2O)9.5, while the pH adjustment with NH3 resulted in [Ce6(μ3-O)4(μ3-OH)4(HCOO)10(NO3)4]·(NO3)3(NH4)5(H2O)5. Furthermore, the crystal structure of Ce(III) formate, Ce(HCOO)3, was determined. The coordination polyhedron is a tricapped trigonal prism which is formed exclusively by nine HCOO(-) ligands. The hexanuclear Ce(IV) formate species from aqueous solution is widely preserved in the crystal structure, whereas the mononuclear solution species of Ce(III) formate undergoes a polymerization during the crystallization process.
Structure-induced switching of interpolymer adhesion at a solid-polymer melt interface.
Jiang, Naisheng; Sen, Mani; Zeng, Wenduo; Chen, Zhizhao; Cheung, Justin M; Morimitsu, Yuma; Endoh, Maya K; Koga, Tadanori; Fukuto, Masafumi; Yuan, Guangcui; Satija, Sushil K; Carrillo, Jan-Michael Y; Sumpter, Bobby G
2018-02-14
Here we report a link between the interfacial structure and adhesive property of homopolymer chains physically adsorbed (i.e., via physisorption) onto solids. Polyethylene oxide (PEO) was used as a model and two different chain conformations of the adsorbed polymer were created on silicon substrates via the well-established Guiselin's approach: "flattened chains" which lie flat on the solid and are densely packed, and "loosely adsorbed polymer chains" which form bridges jointing up nearby empty sites on the solid surface and cover the flattened chains. We investigated the adhesion properties of the two different adsorbed chains using a custom-built adhesion testing device. Bilayers of a thick PEO overlayer on top of the flattened chains or loosely adsorbed chains were subjected to the adhesion test. The results revealed that the flattened chains do not show any adhesion even with the chemically identical free polymer on top, while the loosely adsorbed chains exhibit adhesion. Neutron reflectivity experiments corroborated that the difference in the interfacial adhesion is not attributed to the interfacial brodening at the free polymer-adsorbed polymer interface. Instead, coarse-grained molecular dynamics simulation results suggest that the tail parts of the loosely adsorbed chains act as "connector molecules", bridging the free chains and substrate surface and improving the interfacial adhesion. These findings not only shed light on the structure-property relationship at the interface, but also provide a novel approach for developing sticking/anti-sticking technologies through precise control of the interfacial polymer nanostructures.
Jeong, Jong Cheol; Kim, Ji-Eun; Gu, Ja-Yoon; Yoo, Hyun Ju; Ryu, Ji Won; Kim, Dong Ki; Joo, Kwon Wook; Kim, Hyun Kyung
2016-01-01
Neutrophils can release the DNA-histone complex into circulation following exposure to inflammatory stimuli. This prospective study investigated whether the DNA-histone complex and other biomarkers could predict major cardiovascular adverse events (MACEs) in hemodialysis (HD) patients. The levels of circulating DNA-histone complexes, cell-free DNA, interleukin (IL)-6, and neutrophil elastase were measured in 60 HD patients and 28 healthy controls. MACE was assessed at 24 months. Uremic toxin-induced neutrophil released contents were measured in vitro. Compared with controls, HD patients showed higher levels of DNA-histone complexes and IL-6. The DNA-histone complex level was inversely associated with the Kt/V. In a multivariable Cox analysis, the high level of DNA-histone complexes was a significant independent predictor of MACE. The uremic toxins induced DNA-histone complex formation in normal neutrophils in vitro. The DNA-histone complex is a potentially useful marker to predict MACE in HD patients. Uremic toxins induced DNA-histone complex formation in vitro. © 2015 S. Karger AG, Basel.
Darabi Sahneh, Faryad; Scoglio, Caterina; Riviere, Jim
2013-01-01
Background Nanoparticle-protein corona complex formation involves absorption of protein molecules onto nanoparticle surfaces in a physiological environment. Understanding the corona formation process is crucial in predicting nanoparticle behavior in biological systems, including applications of nanotoxicology and development of nano drug delivery platforms. Method This paper extends the modeling work in to derive a mathematical model describing the dynamics of nanoparticle corona complex formation from population balance equations. We apply nonlinear dynamics techniques to derive analytical results for the composition of nanoparticle-protein corona complex, and validate our results through numerical simulations. Results The model presented in this paper exhibits two phases of corona complex dynamics. In the first phase, proteins rapidly bind to the free surface of nanoparticles, leading to a metastable composition. During the second phase, continuous association and dissociation of protein molecules with nanoparticles slowly changes the composition of the corona complex. Given sufficient time, composition of the corona complex reaches an equilibrium state of stable composition. We find analytical approximate formulae for metastable and stable compositions of corona complex. Our formulae are very well-structured to clearly identify important parameters determining corona composition. Conclusion The dynamics of biocorona formation constitute vital aspect of interactions between nanoparticles and living organisms. Our results further understanding of these dynamics through quantitation of experimental conditions, modeling results for in vitro systems to better predict behavior for in vivo systems. One potential application would involve a single cell culture medium related to a complex protein medium, such as blood or tissue fluid. PMID:23741371
NASA Astrophysics Data System (ADS)
Prabu, Samikannu; Swaminathan, Meenakshisundaram; Sivakumar, Krishnamoorthy; Rajamohan, Rajaram
2015-11-01
The formation through supramolecular interaction of a host-guest inclusion complex of caffeine (CA) with nano-hydrophobic cavity beta-cyclodextrin (β-CD) is achieved by a physical mixture, a kneading method and a co-precipitation method. The formation of the inclusion complex of CA with β-CD in solution state is confirmed by UV-visible spectrophotometer, fluorescence spectrophotometer and time-resolved fluorescence spectrophotometer. The stoichiometry of the inclusion complex is 1:1; the imidazole ring and pyrimidine ring of caffeine is deeply entrapped in the beta-cyclodextrin as confirmed by spectral shifts. The Benesi-Hildebrand plot is used to calculate the binding constant of the inclusion complex of CA with β-CD at room temperature. The Gibbs free energy change of the inclusion complex process is calculated and the process is found to be spontaneous. The thermal stability of the inclusion complex of CA with β-CD is analyzed using differential scanning calorimetry. The crystal structure modification of a solid inclusion complex is confirmed by scanning electron microscopy image analysis. The formation of the inclusion complex of CA with β-CD in the solid phase is also confirmed by FT-IR and XRD. The formation of the inclusion complex between CA and β-CD, as confirmed by molecular docking studies, is in good relationship with the results obtained through different experimental methods.
Liao, Bei-Sih; Liu, Yi-Hung; Peng, Shie-Ming; Reddy, K Rajender; Liu, Shin-Hung; Chou, Pi-Tai; Liu, Shiuh-Tzung
2014-03-07
Thermal reaction of 2,7-bis(2-pyridinyl)-l,8-naphthyridine () with Ru3(CO)12 in the presence of moisture resulted in the formation of a formate-bridged diruthenium complex [(-H3)Ru2(μ-HCOO)(CO)4] (), in which the ligand was partially hydrogenated. Complex was fully characterized by spectroscopic analyses and X-ray single crystal determination. Regarding the partially reduced ligand in , it occurs through a water-gas shift type reduction. The bridging formate ligand can be substituted by other carboxylate ligands. Physical and chemical properties of the newly prepared complexes were investigated.
Takahama, Umeo; Hirota, Sachiko
2011-06-08
During the digestion of starch in foods, starch is mixed with bile in the duodenum. Because fatty acids and some kinds of polyphenols could bind to starch, it was postulated that bile salts might also bind to starch. The purpose of this paper is to study the effects of bile and bile salts on starch/iodine complex formation and pancreatin-induced starch digestion. Bile suppressed starch/iodine complex formation and inhibited pancreatin-induced starch digestion slightly in control buckwheat starch, but did so significantly in buckwheat starch from which fatty acids and polyphenols had been extracted. Such significant suppression and inhibition by bile were also observed in a reagent soluble starch. The effects of cholate and taurocholate on the starch/iodine complex formation and the pancreatin-induced starch digestion were essentially the same as those of bile. Bile, cholate, and taurocholate suppressed amylose/iodine complex formation more significantly than amylopectin/iodine complex formation and inhibited pancreatin-induced amylose digestion more effectively than the digestion of amylopectin. It is concluded from the results that bile salts could bind to starch, especially amylose, the helical structures of which were not occupied by other molecules such as fatty acids and polyphenols, and that the binding resulted in the inhibition of starch digestion by pancreatin. The conclusion suggests that the function of bile salts can be discussed from the point of not only lipid digestion but also starch digestion.
Characteristics of pattern formation and evolution in approximations of Physarum transport networks.
Jones, Jeff
2010-01-01
Most studies of pattern formation place particular emphasis on its role in the development of complex multicellular body plans. In simpler organisms, however, pattern formation is intrinsic to growth and behavior. Inspired by one such organism, the true slime mold Physarum polycephalum, we present examples of complex emergent pattern formation and evolution formed by a population of simple particle-like agents. Using simple local behaviors based on chemotaxis, the mobile agent population spontaneously forms complex and dynamic transport networks. By adjusting simple model parameters, maps of characteristic patterning are obtained. Certain areas of the parameter mapping yield particularly complex long term behaviors, including the circular contraction of network lacunae and bifurcation of network paths to maintain network connectivity. We demonstrate the formation of irregular spots and labyrinthine and reticulated patterns by chemoattraction. Other Turing-like patterning schemes were obtained by using chemorepulsion behaviors, including the self-organization of regular periodic arrays of spots, and striped patterns. We show that complex pattern types can be produced without resorting to the hierarchical coupling of reaction-diffusion mechanisms. We also present network behaviors arising from simple pre-patterning cues, giving simple examples of how the emergent pattern formation processes evolve into networks with functional and quasi-physical properties including tensionlike effects, network minimization behavior, and repair to network damage. The results are interpreted in relation to classical theories of biological pattern formation in natural systems, and we suggest mechanisms by which emergent pattern formation processes may be used as a method for spatially represented unconventional computation.
Ab initio calculations of supramolecular complexes of fullerene C60 with CdTe and CdS
NASA Astrophysics Data System (ADS)
Kvyatkovskii, O. E.; Zakharova, I. B.; Ziminov, V. M.
2014-06-01
This paper presents the results of ab initio quantum-chemical calculations of supramolecular complexes C60CdHal, [C60]4CdHal, and [C60]6CdHal (Hal = S, Te), which simulate the defects forming in fullerite during the absorption or adsorption of cadmium telluride (sulfide). Calculations of the electronic structure of complexes with inclusion of their relaxation to the equilibrium state have been performed in terms of the density functional theory with the B3LYP hybrid functional. The obtained enthalpies of formation of complexes show that their formation leads to the energy gain of the order of 0.5-1.5 eV depending on the complex type. It has been shown that the formation of tetrahedral complexes [C60]4CdTe with the intercalated CdTe molecule is possible only with a considerable distortion of the tetrahedral void. The energy spectrum of low-lying excited electron states for the linear and octahedral complexes has been calculated. It has been found that a decrease in symmetry with the formation of complexes leads to the appearance of excited states of allowed singlet transitions in the electron spectrum, which are forbidden in optical spectra of initial components.
NASA Astrophysics Data System (ADS)
Rafiquee, M. Z. A.; Siddiqui, Masoom R.; Ali, Mohd. Sajid; Al-Lohedan, Hamad A.
The cobalt(II)histidine complex binds molecular oxygen reversibly to form an oxygen adduct complex, μ-dioxytetrakis-(histidinato)dicobalt(II). The molecular oxygen can be released from the oxygenated complex by heating it or by passing N2, He or Ar gas through its solution. μ-Dioxytetrakis-(histidinato)dicobalt(II) complex oxidizes adrenaline into leucoadrenochrome at 25 °C while at higher temperature (>40 °C) adrenochrome with λmax at 490 nm is formed. The rate of formation of leucoadrenochrome was found to be independent of [bis(histidinato)cobalt(II)]. The rate of reaction for the formation of leucoadrenochrome and adrenochrome increased with the increase in [adrenaline] at its lower concentration but become independent at higher concentration. Similarly, the rate of formation of both leucoadrenochrome and adrenochrome was linearly dependent upon [NaOH]. The values of activation parameters i.e. ΔEa, ΔH‡ and ΔS‡ for the formation of leucoadrenochrome are reported.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Luciakova, Katarina, E-mail: katarina.luciakova@savba.sk; Kollarovic, Gabriel; Kretova, Miroslava
2011-08-05
Highlights: {yields} TGF-{beta} induces the formation of unique nuclear NF1/Smad4 complexes that repress expression of the ANT-2 gene. {yields} Repression is mediated through an NF1-dependent repressor element in the promoter. {yields} The formation of NF1/Smad4 complexes and the repression of ANT2 are prevented by inhibitors of p38 kinase and TGF-{beta} RI. {yields} NF1/Smad complexes implicate novel role for NF1 and Smad proteins in the regulation of growth. -- Abstract: We earlier reported the formation of a unique nuclear NF1/Smad complex in serum-restricted fibroblasts that acts as an NF1-dependent repressor of the human adenine nucleotide translocase-2 gene (ANT2) [K. Luciakova, G.more » Kollarovic, P. Barath, B.D. Nelson, Growth-dependent repression of human adenine nucleotide translocator-2 (ANT2) transcription: evidence for the participation of Smad and Sp family proteins in the NF1-dependent repressor complex, Biochem. J. 412 (2008) 123-130]. In the present study, we show that TGF-{beta}, like serum-restriction: (a) induces the formation of NF1/Smad repressor complexes, (b) increases binding of the complexes to the repressor elements (Go elements) in the ANT2 promoter, and (c) inhibits ANT2 expression. Repression of ANT2 by TGF-{beta} is eliminated by mutating the NF1 binding sites in the Go repressor elements. All of the above responses to TGF-{beta} are prevented by inhibitors of TGF-{beta} RI and MAPK p38. These inhibitors also prevent NF1/Smad4 repressor complex formation and repression of ANT2 expression in serum-restricted cells, suggesting that similar signaling pathways are initiated by TGF-{beta} and serum-restriction. The present finding that NF1/Smad4 repressor complexes are formed through TGF-{beta} signaling pathways suggests a new, but much broader, role for these complexes in the initiation or maintenance of the growth-inhibited state.« less
Huard, Sylvain; Morettin, Alan; Fullerton, Morgan D.; Côté, Jocelyn
2017-01-01
Eukaryotic cells form stress granules under a variety of stresses, however the signaling pathways regulating their formation remain largely unknown. We have determined that the Saccharomyces cerevisiae lysine acetyltransferase complex NuA4 is required for stress granule formation upon glucose deprivation but not heat stress. Further, the Tip60 complex, the human homolog of the NuA4 complex, is required for stress granule formation in cancer cell lines. Surprisingly, the impact of NuA4 on glucose-deprived stress granule formation is partially mediated through regulation of acetyl-CoA levels, which are elevated in NuA4 mutants. While elevated acetyl-CoA levels suppress the formation of glucose-deprived stress granules, decreased acetyl-CoA levels enhance stress granule formation upon glucose deprivation. Further our work suggests that NuA4 regulates acetyl-CoA levels through the Acetyl-CoA carboxylase Acc1. Altogether this work establishes both NuA4 and the metabolite acetyl-CoA as critical signaling pathways regulating the formation of glucose-deprived stress granules. PMID:28231279
Analysis of Immune Complex Structure by Statistical Mechanics and Light Scattering Techniques.
NASA Astrophysics Data System (ADS)
Busch, Nathan Adams
1995-01-01
The size and structure of immune complexes determine their behavior in the immune system. The chemical physics of the complex formation is not well understood; this is due in part to inadequate characterization of the proteins involved, and in part by lack of sufficiently well developed theoretical techniques. Understanding the complex formation will permit rational design of strategies for inhibiting tissue deposition of the complexes. A statistical mechanical model of the proteins based upon the theory of associating fluids was developed. The multipole electrostatic potential for each protein used in this study was characterized for net protein charge, dipole moment magnitude, and dipole moment direction. The binding sites, between the model antigen and antibodies, were characterized for their net surface area, energy, and position relative to the dipole moment of the protein. The equilibrium binding graphs generated with the protein statistical mechanical model compares favorably with experimental data obtained from radioimmunoassay results. The isothermal compressibility predicted by the model agrees with results obtained from dynamic light scattering. The statistical mechanics model was used to investigate association between the model antigen and selected pairs of antibodies. It was found that, in accordance to expectations from thermodynamic arguments, the highest total binding energy yielded complex distributions which were skewed to higher complex size. From examination of the simulated formation of ring structures from linear chain complexes, and from the joint shape probability surfaces, it was found that ring configurations were formed by the "folding" of linear chains until the ends are within binding distance. By comparing the single antigen/two antibody system which differ only in their respective binding site locations, it was found that binding site location influences complex size and shape distributions only when ring formation occurs. The internal potential energy of a ring complex is considerably less than that of the non-associating system; therefore the ring complexes are quite stable and show no evidence of breaking, and collapsing into smaller complexes. The ring formation will occur only in systems where the total free energy of each complex may be minimized. Thus, ring formation will occur even though entropically unfavorable conformations result if the total free energy can be minimized by doing so.
Study of charge transfer complexes of menadione (vitamin K 3) with a series of anilines
NASA Astrophysics Data System (ADS)
Pal, Purnendu; Saha, Avijit; Mukherjee, Asok K.; Mukherjee, Dulal C.
2004-01-01
Menadione (vitamin K 3) has been shown to form charge transfer complexes with N, N-dimethyl aniline, N, N-dimethyl p-toluidine and N, N-dimethyl m-toluidine in CCl 4 medium. The CT transition energies are well correlated with the ionisation potentials of the anilines. The formation constants of the complexes have been determined at a number of temperatures from which the enthalpies and entropies of formation have been obtained. The formation constants exhibit a very good linear free energy relationship (Hammett) at all the temperatures studied.
The Smad3/Smad4/CDK9 complex promotes renal fibrosis in mice with unilateral ureteral obstruction.
Qu, Xinli; Jiang, Mengjie; Sun, Yu Bo Yang; Jiang, Xiaoyun; Fu, Ping; Ren, Yi; Wang, Die; Dai, Lie; Caruana, Georgina; Bertram, John F; Nikolic-Paterson, David J; Li, Jinhua
2015-12-01
Transforming growth factor-β1 (TGF-β1)/Smad signaling has a central role in the pathogenesis of renal fibrosis. Smad3 and Smad4 are pro-fibrotic, while Smad2 is anti-fibrotic. However, these Smads form heterogeneous complexes, the functions of which are poorly understood. Here we studied Smad complex function in renal fibrosis using the mouse model of unilateral ureteric obstruction. Mice heterozygous for Smad3/4 (Smad3/4 +/- ) exhibited substantial protection from renal fibrosis through day 7 of obstruction, whereas Smad2/3 +/- and Smad2/4 +/- mice showed only modest protection. Formation of Smad3/Smad4/CDK9 complexes was an early event following obstruction in wild-type mice, which involved nuclear phosphorylation of the linker regions of Smad3. Significantly, Smad3 or Smad4 deficiency decreased the formation of Smad4/CDK9 or Smad3/CDK9 complex, Smad3 linker phosphorylation, and fibrosis but at different degrees. In vitro, TGF-β1 stimulation of collagen I promoter activity involved formation of Smad3/Smad4/CDK9 complexes, and overexpression of each component gave additive increases in collagen promoter activity. Co-administration of a CDK9 inhibitor and Smad3-specific inhibition achieved better protection from TGF-β1-induced fibrotic response in vitro and renal interstitial fibrosis in vivo. Thus formation of Smad3/Smad4/CDK9 complex drives renal fibrosis during ureteral obstruction. Formation of this complex represents a novel target for antifibrotic therapies.
STAR FORMATION ACROSS THE W3 COMPLEX
DOE Office of Scientific and Technical Information (OSTI.GOV)
Román-Zúñiga, Carlos G.; Ybarra, Jason E.; Tapia, Mauricio
We present a multi-wavelength analysis of the history of star formation in the W3 complex. Using deep, near-infrared ground-based images combined with images obtained with Spitzer and Chandra observatories, we identified and classified young embedded sources. We identified the principal clusters in the complex and determined their structure and extension. We constructed extinction-limited samples for five principal clusters and constructed K-band luminosity functions that we compare with those of artificial clusters with varying ages. This analysis provided mean ages and possible age spreads for the clusters. We found that IC 1795, the centermost cluster of the complex, still hosts amore » large fraction of young sources with circumstellar disks. This indicates that star formation was active in IC 1795 as recently as 2 Myr ago, simultaneous to the star-forming activity in the flanking embedded clusters, W3-Main and W3(OH). A comparison with carbon monoxide emission maps indicates strong velocity gradients in the gas clumps hosting W3-Main and W3(OH) and shows small receding clumps of gas at IC 1795, suggestive of rapid gas removal (faster than the T Tauri timescale) in the cluster-forming regions. We discuss one possible scenario for the progression of cluster formation in the W3 complex. We propose that early processes of gas collapse in the main structure of the complex could have defined the progression of cluster formation across the complex with relatively small age differences from one group to another. However, triggering effects could act as catalysts for enhanced efficiency of formation at a local level, in agreement with previous studies.« less
Identification of amino acids that promote specific and rigid TAR RNA-tat protein complex formation.
Edwards, Thomas E; Robinson, Bruce H; Sigurdsson, Snorri Th
2005-03-01
The Tat protein and the transactivation responsive (TAR) RNA form an essential complex in the HIV lifecycle, and mutations in the basic region of the Tat protein alter this RNA-protein molecular recognition. Here, EPR spectroscopy was used to identify amino acids, flanking an essential arginine of the Tat protein, which contribute to specific and rigid TAR-Tat complex formation by monitoring changes in the mobility of nitroxide spin-labeled TAR RNA nucleotides upon binding. Arginine to lysine N-terminal mutations did not affect TAR RNA interfacial dynamics. In contrast, C-terminal point mutations, R56 in particular, affected the mobility of nucleotides U23 and U38, which are involved in a base-triple interaction in the complex. This report highlights the role of dynamics in specific molecular complex formation and demonstrates the ability of EPR spectroscopy to study interfacial dynamics of macromolecular complexes.
Complex coacervates as a foundation for synthetic underwater adhesives
Stewart, Russell J.; Wang, Ching Shuen; Shao, Hui
2011-01-01
Complex coacervation was proposed to play a role in the formation of the underwater bioadhesive of the Sandcastle worm (Phragmatopoma californica) based on the polyacidic and polybasic nature of the glue proteins and the balance of opposite charges at physiological pH. Morphological studies of the secretory system suggested the natural process does not involve complex coacervation as commonly defined. The distinction may not be important because electrostatic interactions likely play an important role in formation of the sandcastle glue. Complex coacervation has also been invoked in the formation of adhesive underwater silk fibers of caddisfly larvae and the adhesive plaques of mussels. A process similar to complex coacervation, that is, condensation and dehydration of biopolyelectrolytes through electrostatic associations, seems plausible for the caddisfly silk. This much is clear, the sandcastle glue complex coacervation model provided a valuable blueprint for the synthesis of a biomimetic, waterborne, underwater adhesive with demonstrated potential for repair of wet tissue. PMID:21081223
alpha-Lactalbumin species variation, HAMLET formation, and tumor cell death.
Pettersson, Jenny; Mossberg, Ann-Kristin; Svanborg, Catharina
2006-06-23
HAMLET (human alpha-lactalbumin made lethal to tumor cells) is a tumoricidal complex of apo alpha-lactalbumin and oleic acid, formed in casein after low pH treatment of human milk. This study examined if HAMLET-like complexes are present in casein from different species and if isolated alpha-lactalbumin from those species can form such complexes with oleic acid. Casein from human, bovine, equine, and porcine milk was separated by ion exchange chromatography and active complexes were only found in human casein. This was not explained by alpha-lactalbumin sequence variation, as purified bovine, equine, porcine, and caprine alpha-lactalbumins formed complexes with oleic acid with biological activity similar to HAMLET. We conclude that structural variation of alpha-lactalbumins does not preclude the formation of HAMLET-like complexes and that natural HAMLET formation in casein was unique to human milk, which also showed the highest oleic acid content.
NASA Astrophysics Data System (ADS)
Roy, Dalim Kumar; Saha, Avijit; Mukherjee, Asok K.
2006-03-01
Cloxacillin sodium has been shown to form a charge transfer complex of 2:1 stoichiometry with riboflavin (Vitamin B 2) in aqueous ethanol medium. The enthalpy and entropy of formation of this complex have been determined by estimating the formation constant spectrophotometrically at five different temperatures in pure water medium. Pronounced effect of dielectric constant of the medium on the magnitude of K has been observed by determining K in aqueous ethanol mixtures of varying composition. This has been rationalized in terms of ionic dissociation of the cloxacillin sodium (D -Na +), hydrolysis of the anion D - and complexation of the free acid, DH with riboflavin.
Studying of kinetics of rear earth ion (REI) nanoscale complex formation by resonant energy transfer
NASA Astrophysics Data System (ADS)
Ignatova, Tetyana; Pristinski, Denis; Rotkin, Slava V.
2011-03-01
We observed formation of nanoscale complexes between multivalent REIs (Tb and Eu) and negatively charged DNA wrapped SWNTs, ionized in the water solution. Foerster Resonance Energy Transfer (FRET) was found to be an ideal method to confirm the complex formation. Because of its high sensitivity and non-destructive characterization approach FRET can be used to trace the kinetics of the complex formation. Strong dependence of SWNT photoluminescence (PL) on the REI concentration was detected and interpreted as a competition between the REI absorption on the SWNTs and subsequent FRET enhanced PL and the SWNT agglomeration followed by PL quenching. We measured the distance between REI and SWNT which appears to be much shorter than the one from their relative concentration in solution. We speculate that Manning condensation of the REIs on the SWNT/DNA surface happens thereby significantly reducing their spacing and making FRET possible.
Geology of the Biwabik Iron Formation and Duluth Complex.
Jirsa, Mark A; Miller, James D; Morey, G B
2008-10-01
The Biwabik Iron Formation is a approximately 1.9 billion year-old sequence of iron-rich sedimentary rocks that was metamorphosed at its eastern-most extent by approximately 1.1 billion year-old intrusions of the Duluth Complex. The metamorphic recrystallization of iron-formation locally produced iron-rich amphiboles and other fibrous iron-silicate minerals. The presence of these minerals in iron-formation along the eastern part of what is known as the Mesabi Iron Range, and their potential liberation by iron mining has raised environmental health concerns. We describe here the geologic setting and mineralogic composition of the Biwabik Iron Formation in and adjacent to the contact metamorphic aureole of the Duluth Complex. The effects of metamorphism are most pronounced within a few kilometers of the contact, and decrease progressively away from it. The contact aureole has been divided into four metamorphic zones-each characterized by the composition and crystal structure of the metamorphic minerals it contains. The recrystallization of iron-formation to iron-rich amphibole minerals (grunerite and cummingtonite) and iron-pyroxene minerals (hedenbergite and ferrohypersthene) is best developed in zones that are most proximal to the Duluth Complex contact.
Geology of the Biwabik Iron Formation and Duluth Complex
Jirsa, M.A.; Miller, J.D.; Morey, G.B.
2008-01-01
The Biwabik Iron Formation is a ???1.9 billion year-old sequence of iron-rich sedimentary rocks that was metamorphosed at its eastern-most extent by ???1.1 billion year-old intrusions of the Duluth Complex. The metamorphic recrystallization of iron-formation locally produced iron-rich amphiboles and other fibrous iron-silicate minerals. The presence of these minerals in iron-formation along the eastern part of what is known as the Mesabi Iron Range, and their potential liberation by iron mining has raised environmental health concerns. We describe here the geologic setting and mineralogic composition of the Biwabik Iron Formation in and adjacent to the contact metamorphic aureole of the Duluth Complex. The effects of metamorphism are most pronounced within a few kilometers of the contact, and decrease progressively away from it. The contact aureole has been divided into four metamorphic zones-each characterized by the composition and crystal structure of the metamorphic minerals it contains. The recrystallization of iron-formation to iron-rich amphibole minerals (grunerite and cummingtonite) and iron-pyroxene minerals (hedenbergite and ferrohypersthene) is best developed in zones that are most proximal to the Duluth Complex contact. ?? 2007 Elsevier Inc. All rights reserved.
Insight into Temperature Dependence of GTPase Activity in Human Guanylate Binding Protein-1
Rahman, Safikur; Deep, Shashank; Sau, Apurba Kumar
2012-01-01
Interferon-γ induced human guanylate binding protein-1(hGBP1) belongs to a family of dynamin related large GTPases. Unlike all other GTPases, hGBP1 hydrolyzes GTP to a mixture of GDP and GMP with GMP being the major product at 37°C but GDP became significant when the hydrolysis reaction was carried out at 15°C. The hydrolysis reaction in hGBP1 is believed to involve with a number of catalytic steps. To investigate the effect of temperature in the product formation and on the different catalytic complexes of hGBP1, we carried out temperature dependent GTPase assays, mutational analysis, chemical and thermal denaturation studies. The Arrhenius plot for both GDP and GMP interestingly showed nonlinear behaviour, suggesting that the product formation from the GTP-bound enzyme complex is associated with at least more than one step. The negative activation energy for GDP formation and GTPase assay with external GDP together indicate that GDP formation occurs through the reversible dissociation of GDP-bound enzyme dimer to monomer, which further reversibly dissociates to give the product. Denaturation studies of different catalytic complexes show that unlike other complexes the free energy of GDP-bound hGBP1 decreases significantly at lower temperature. GDP formation is found to be dependent on the free energy of the GDP-bound enzyme complex. The decrease in the free energy of this complex at low temperature compared to at high is the reason for higher GDP formation at low temperature. Thermal denaturation studies also suggest that the difference in the free energy of the GTP-bound enzyme dimer compared to its monomer plays a crucial role in the product formation; higher stability favours GMP but lower favours GDP. Thus, this study provides the first thermodynamic insight into the effect of temperature in the product formation of hGBP1. PMID:22859948
Ellagic acid inhibits iron-mediated free radical formation
NASA Astrophysics Data System (ADS)
Dalvi, Luana T.; Moreira, Daniel C.; Andrade, Roberto; Ginani, Janini; Alonso, Antonio; Hermes-Lima, Marcelo
2017-02-01
Polyphenols are reported to have some health benefits, which are link to their antioxidant properties. In the case of ellagic acid (EA), there is evidence that it has free radical scavenger properties and that it is able to form complexes with metal ions. However, information on a possible link between the formation of iron-EA complexes and their interference in Haber-Weiss/Fenton reactions was not yet determined. Thus, the present study investigated the in vitro antioxidant mechanism of EA in a system containing ascorbate, Fe(III) and different iron ligands (EDTA, citrate and NTA). Iron-mediated oxidative degradation of 2-deoxyribose was poorly inhibited (by 12%) in the presence of EA (50 μM) and EDTA. When citrate or NTA - which form weak iron complexes - were used, the 2-deoxyribose protection increased to 89-97% and 45%, respectively. EA also presented equivalent inhibitory effects on iron-mediated oxygen uptake and ascorbyl radical formation. Spectral analyses of iron-EA complexes show that EA removes Fe(III) from EDTA within hours, and from citrate within 1 min. This difference in the rate of iron-EA complex formation may explain the antioxidant effects of EA. Furthermore, the EA antioxidant effectiveness was inversely proportional to the Fe(III) concentration, suggesting a competition with EDTA. In conclusion, the results indicate that EA may prevent in vitro free radical formation when it forms a complex with iron ions.
Electrocatalytic Oxidation of Formate by [Ni(P R 2 N R' 2 ) 2 (CH 3 CN)] 2+ Complexes
DOE Office of Scientific and Technical Information (OSTI.GOV)
Galan, Brandon R.; Schöffel, Julia; Linehan, John C.
2011-08-17
New [Ni(P R 2N R` 2) 2+(CH 3CN)] 2+ complexes with R = Ph, R` = 4-MeOPh; R = Cy, R` = Ph and a mixed ligand [Ni(P R 2N R` 2)(P R`` 2N R` 2)] 2+ with R = Cy, R` = Ph, R`` = Ph have been synthesized and characterized by single crystal X-ray crystallography. These complexes are shown to be electrocatalysts for the oxidation of formate in solution to produce CO 2, protons, and electrons with rates which are first order in catalyst and in formate at formate concentrations below approximately 0.05 M. For the catalysts studied,more » maximum observed turnover frequencies vary from <1.1 s -1 to 12.5 s -1 at room temperature, which are the highest rates yet reported for formate oxidation by homogeneous catalysts. A mechanistic scheme is proposed which involves an initial nickel complex bound <1-OC(O)H followed by a rate limiting hydride transfer step. An acetate complex demonstrating the η 1-OC(O)CH 3 binding mode to nickel has also been synthesized and characterized by single crystal X-ray crystallography. The pendant amines have been demonstrated to be essential for this electrocatalytic activity as no activity toward formate was found for the similar [Ni(depe) 2][BF 4] 2+ (depe = diethylphosphinoethane) complex. This work was supported by the US Department of Energy Basic Energy Sciences' Chemical Sciences, Geosciences & Biosciences Division. Pacific Northwest National Laboratory is operated by Battelle for the US Department of Energy.« less
Laboratory complex for simulation of navigation signals of pseudosatellites
NASA Astrophysics Data System (ADS)
Ratushniak, V. N.; Gladyshev, A. B.; Sokolovskiy, A. V.; Mikhov, E. D.
2018-05-01
In the article, features of the organization, structure and questions of formation of navigation signals of pseudosatellites of the short - range navigation system based on the hardware-software complex National Instruments are considered. A software model that performs the formation and management of a pseudo-random sequence of a navigation signal and the formation and management of the format transmitted pseudosatellite navigation information is presented. The variant of constructing the transmitting equipment of the pseudosatellite base stations is provided.
NASA Astrophysics Data System (ADS)
Sachko, A. V.; Zakordonskii, V. P.; Voloshinovskii, A. S.; Golod, T. Yu.
2009-07-01
A complex of physicochemical methods (light scattering, potentiometry, conductometry, viscometry, tensiometry, and fluorescence spectroscopy) were used to show the possibility of formation of intermolecular associates/complexes in systems with likely charged components. The driving forces of such interactions were analyzed and a possible scheme of complex formation between polymethacrylic acid and sodium dodecylbenzenesulfonate was suggested.
Benny, Paul D; Fugate, Glenn A; Barden, Adam O; Morley, Jennifer E; Silva-Lopez, Elsa; Twamley, Brendan
2008-04-07
Reaction of [NEt4]2[ReBr3(CO)3] with 2,4-pentanedione (acac) yields a complex of the type fac-Re(acac)(OH2)(CO)3 (1) under aqueous conditions. 1 was further reacted with a monodentate ligand (pyridine) to yield a fac-Re(acac)(pyridine)(CO)3 complex (2). Complex 1 was found to react with primary amines to generate a Schiff base (imine) in aqueous solutions. When a mixed-nitrogen donor bidentate ligand, 2-(2-aminoethyl)pyridine, that has different coordination affinities for fac-Re(acac)(OH2)(CO)3 was utilized, a unique tridentate ligand was formed in situ utilizing a metal-assisted Schiff base formation to yield a complex fac-Re(CO)3(3[(2-phenylethyl)imino]-2-pentanone) (3). Tridentate ligand formation was found to occur only with the Re-coordinated acac ligand. Reactions of acac with fac-Re(CO)3Br(2-(2-aminoethyl)pyridine) (4) or a mixture of [NEt4]2[ReBr3(CO)3], acac, and 2-(2-aminoethyl)pyridine did not yield the formation of complex 3 in water.
NASA Astrophysics Data System (ADS)
Liptay, Wolfgang; Rehm, Torsten; Wehning, Detlev; Schanne, Lothar; Baumann, Wolfram; Lang, Werner
1982-12-01
The formation of electron-donor-acceptor complexes of hexamethylbenzene (HMB) with tetracyanoethylene (TCNE) was investigated by measurements of the optical absorptions, the densities, the permittivities and the electro-optical absorptions of solutions in CCl4. The careful evaluation of data based on some previously reported models, has shown that the assumption of the formation of the 1: 1 and the 2 : 1 complex agrees with all experimental data, but that the assumption of the formation of only the 1: 1 complex is contradictory to experimental facts even if the activity effects on the equilibrium constant and of the solvent dependences of observed molar quantities are taken into account. The evaluation leads to the molar optical absorption coefficients and the molar volumes of both complexes and to their electric dipole moments in the electronic ground state and the considered excited state. According to these results the complexes are of the sandwich type HMB-TCNE and HMB-TCNE-HMB. In spite of the fact that the 2: 1 complex owns a center of symmetry, at least approximately, there is a rather large electric dipole moment in its excited state. Furthermore, values for the equilibrium constants and for the standard reaction enthalpies of both complex formation reactions are estimated from experimental data.
Burnett, Benjamin J; Altman, Roger B; Ferrao, Ryan; Alejo, Jose L; Kaur, Navdep; Kanji, Joshua; Blanchard, Scott C
2013-05-10
Aminoacyl-tRNA (aa-tRNA) enters the ribosome in a ternary complex with the G-protein elongation factor Tu (EF-Tu) and GTP. EF-Tu·GTP·aa-tRNA ternary complex formation and decay rates are accelerated in the presence of the nucleotide exchange factor elongation factor Ts (EF-Ts). EF-Ts directly facilitates the formation and disassociation of ternary complex. This system demonstrates a novel function of EF-Ts. Aminoacyl-tRNA enters the translating ribosome in a ternary complex with elongation factor Tu (EF-Tu) and GTP. Here, we describe bulk steady state and pre-steady state fluorescence methods that enabled us to quantitatively explore the kinetic features of Escherichia coli ternary complex formation and decay. The data obtained suggest that both processes are controlled by a nucleotide-dependent, rate-determining conformational change in EF-Tu. Unexpectedly, we found that this conformational change is accelerated by elongation factor Ts (EF-Ts), the guanosine nucleotide exchange factor for EF-Tu. Notably, EF-Ts attenuates the affinity of EF-Tu for GTP and destabilizes ternary complex in the presence of non-hydrolyzable GTP analogs. These results suggest that EF-Ts serves an unanticipated role in the cell of actively regulating the abundance and stability of ternary complex in a manner that contributes to rapid and faithful protein synthesis.
Complex Organic Parents during Star-Forming Infall
NASA Astrophysics Data System (ADS)
Drozdovskaya, Maria; Walsh, Catherine; Visser, Ruud; Harsono, Daniel; van Dishoeck, Ewine
2013-07-01
Stars are born upon the gravitation infall of clumps in molecular clouds. Complex organic compounds have been observed to accompany star formation and are also believed to be the simplest ingredients to life. Therefore understanding complex organics under star forming conditions is fundamentally interesting. This work models the formation and distribution of several potential parent species for complex organic compounds, such as formaldehyde (H2CO) and methanol (CH3OH), along trajectories of matter parcels, as they undergo infall from the cold outer envelope towards the hot core region and eventually onto the disk. The code from Visser et al. (2009, 2011) serves as the basis for this research. The gas-phase chemistry network has now been expanded with grain-surface reactions to form CH3OH and, ultimately, larger organics such as methyl formate (HCOOCH3) and dimethyl ether (CH3OCH3). The intention behind this work is to obtain information on complex organic parents in the star formation scenario by means of a physically and chemically robust model. The availability of complex organic compounds will vary depending on where the parent species are abundant, such as in the pre-stellar stage, hot-core, or only in the disk; and where they are available for a sufficient amount of time for the complexity enhancement. Such model-based conclusions can then be used in order to explain the observational data on complex organic compounds.
NASA Astrophysics Data System (ADS)
Yang, Tao; Chen, Xue; Shi, Sheping; Sun, Erkun; Shi, Chen
2018-03-01
We propose a low-complexity and modulation-format-independent carrier phase estimation (CPE) scheme based on two-stage modified blind phase search (MBPS) with linear approximation to compensate the phase noise of arbitrary m-ary quadrature amplitude modulation (m-QAM) signals in elastic optical networks (EONs). Comprehensive numerical simulations are carried out in the case that the highest possible modulation format in EONs is 256-QAM. The simulation results not only verify its advantages of higher estimation accuracy and modulation-format independence, i.e., universality, but also demonstrate that the implementation complexity is significantly reduced by at least one-fourth in comparison with the traditional BPS scheme. In addition, the proposed scheme shows similar laser linewidth tolerance with the traditional BPS scheme. The slightly better OSNR performance of the scheme is also experimentally validated for PM-QPSK and PM-16QAM systems, respectively. The coexistent advantages of low-complexity and modulation-format-independence could make the proposed scheme an attractive candidate for flexible receiver-side DSP unit in EONs.
Li, Zuo-Xi; Zhao, Jiong-Peng; Sañudo, E C; Ma, Hong; Pan, Zhong-Da; Zeng, Yong-Fei; Bu, Xian-He
2009-12-21
Sparked by the strategy of pillared-layer MOFs, three formate coordination polymers, {[Ni(2)(HCO(2))(3)(L)(2)](NO(3)).2H(2)O}(infinity) (1), {[Co(2)(HCO(2))(3)(L)(2)](HCO(2)).2H(2)O}(infinity) (2), and {[Cu(2)(HCO(2))(3)(L)(2)](HCO(2)).2H(2)O}(infinity) (3), have been synthesized by employing the rodlike ligand 4,4'-bis(imidazol-1-yl)biphenyl (L) as the pillar. Structural analysis indicates that the title complexes 1-3 are isostructural compounds, which possess metal-formate 2D layers perpendicularly pillared by the ligand L to afford a 3D open framework. This is an interesting example of a Kagome lattice based on the formate mediator. Moreover, the formate anion of this 2D Kagome layer exhibits various bridging modes: anti-anti, syn-anti, and 3.21 modes. Their magnetic measurements reveals that only complex 1 presents the spin canting phenomenon, while its isostructural Co(II) and Cu(II) complexes are simply paramagnets with antiferromagnetic coupling.
Inhibition of amyloid peptide fibril formation by gold-sulfur complexes.
Wang, Wenji; Zhao, Cong; Zhu, Dengsen; Gong, Gehui; Du, Weihong
2017-06-01
Amyloid-related diseases are characterized by protein conformational change and amyloid fibril deposition. Metal complexes are potential inhibitors of amyloidosis. Nitrogen-coordinated gold complexes have been used to disaggregate prion neuropeptide (PrP106-126) and human islet amyloid polypeptide (hIAPP). However, the roles of metal complexes in peptide fibril formation and related bioactivity require further exploration. In this work, we investigated the interactions of amyloid peptides PrP106-126 and hIAPP with two tetracoordinated gold-sulfur complexes, namely, dichloro diethyl dithiocarbamate gold complex and dichloro pyrrolidine dithiocarbamate gold complex. We also determined the effects of these complexes on peptide-induced cytotoxicity. Thioflavin T assay, morphological characterization, and particle size analysis indicated that the two gold-sulfur complexes effectively inhibited the fibrillation of the amyloid peptides, which led to the formation of nanoscale particles. The complexes reduced the cytotoxicity induced by the amyloid peptides. Intrinsic fluorescence, nuclear magnetic resonance, and mass spectrometry revealed that the complexes interacted with PrP106-126 and hIAPP via metal coordination and hydrophobic interaction, which improved the inhibition and binding of the two gold-sulfur compounds. Our study provided new insights into the use of tetracoordinated gold-sulfur complexes as drug candidates against protein conformational disorders. Copyright © 2017 Elsevier Inc. All rights reserved.
Copper-phospholipid interaction at cell membrane model hydrophobic surfaces.
Mlakar, Marina; Cuculić, Vlado; Frka, Sanja; Gašparović, Blaženka
2018-04-01
Detailed investigation of Cu (II) binding with natural lipid phosphatidylglycerol (PG) in aqueous solution was carried out by voltammetric measurements at the mercury drop electrode, complemented by monolayer studies in a Langmuir trough and electrophoretic measurements, all used as models for hydrophobic cell membranes. Penetration of copper ions into the PG layer was facilitated by the formation of hydrophilic Cu-Phenanthroline (Phen) complex in the subphase, followed by the mixed ligand Cu-Phen-PG complex formation at the hydrophobic interface. Electrophoretic measurements indicated a comparatively low abundance of the formed mixed ligand complex within the PG vesicles, resulting it the zeta potential change of +0.83mV, while monolayer studies confirmed their co-existence at the interface. The Cu-Phen-PG complex was identified in the pH range from 6 to 9. The stoichiometry of the complex ([PhenCuOHPG]), as well as its stability and kinetics of formation, were determined at the mercury drop electrode. Cu-Phen-PG reduces quasireversibly at about -0.7V vs. Ag/AgCl including reactant adsorption, followed by irreversible mixed complex dissociation, indicating a two-electron transfer - chemical reaction (EC mechanism). Consequently, the surface concentration (γ) of the adsorbed [PhenCuOHPG] complex at the hydrophobic electrode surface was calculated to be (3.35±0.67)×10 -11 molcm -2 . Information on the mechanism of Cu (II) - lipid complex formation is a significant contribution to the understanding of complex processes at natural cell membranes. Copyright © 2017 Elsevier B.V. All rights reserved.
Star-formation complexes in the `galaxy-sized' supergiant shell of the galaxy Holmberg I
NASA Astrophysics Data System (ADS)
Egorov, Oleg V.; Lozinskaya, Tatiana A.; Moiseev, Alexei V.; Smirnov-Pinchukov, Grigory V.
2018-05-01
We present the results of observations of the galaxy Holmberg I carried out at the Russian 6-m telescope in the narrow-band imaging, long-slit spectroscopy, and scanning Fabry-Perot interferometer modes. A detailed analysis of gas kinematics, ionization conditions, and metallicity of star-forming regions in the galaxy is presented. The aim of the paper is to analyse the propagation of star formation in the galaxy and to understand the role of the ongoing star formation in the evolution of the central `galaxy-sized' supergiant H I shell (SGS), where all regions of star formation are observed. We show that star formation in the galaxy occurs in large unified complexes rather than in individual giant H II regions. Evidence of the triggered star formation is observed both on scales of individual complexes and of the whole galaxy. We identified two supernova-remnant candidates and one late-type WN star and analysed their spectrum and surrounding-gas kinematics. We provide arguments indicating that the SGS in Holmberg I is destructing by the influence of star formation occurring on its rims.
[Characteristics of marketing complex formation in rendering of sanatorium resort services].
Kemalov, R F
2006-01-01
Basic positions in sanatorium resort marketing and its evolution with description of its main components are considered. Marketing research management in sanatorium resort institutions, marketing theory, analysis of services market, characteristics of marketing complex formation are presented.
NASA Astrophysics Data System (ADS)
Oliveira, F. C.; Denadai, A. M. L.; Guerra, L. D. L.; Fulgêncio, F. H.; Windmöller, D.; Santos, G. C.; Fernandes, N. G.; Yoshida, M. I.; Donnici, C. L.; Magalhães, W. F.; Machado, J. C.
2013-04-01
Hydrogen bond formation in the triphenylphosphine oxide (TPPO), acetanilide (ACN) supramolecular heterosynton system, named [TPPO0.5·ACN0.5], has been studied by Positron Annihilation Lifetime Spectroscopy (PALS) and supported by several analytical techniques. In toluene solution, Isothermal Titration Calorimetry (ITC) presented a 1:1 stoichiometry and indicated that the complexation process is driven by entropy, with low enthalpy contribution. X-ray structure determination showed the existence of a three-dimensional network of hydrogen bonds, allowing also the confirmation of the existence of a 1:1 crystalline molecular complex in solid state. The results of thermal analysis (TGA, DTA and DSC) and FTIR spectroscopy showed that the interactions in the complex are relatively weaker than those found in pure precursors, leading to a higher positronium formation probability at [TPPO0.5·ACN0.5]. These weak interactions in the complex enhance the possibility of the n- and π-electrons to interact with positrons and consequently, the probability of positronium formation is higher. Through the present work is shown that PALS is a sensible powerful tool to investigate intermolecular interactions in solid heterosynton supramolecular systems.
Neighbor effect in complexation of a conjugated polymer.
Sosorev, Andrey; Zapunidi, Sergey
2013-09-19
Charge-transfer complex (CTC) formation between a conjugated polymer and low-molecular-weight organic acceptor is proposed to be driven by the neighbor effect. Formation of a CTC on the polymer chain results in an increased probability of new CTC formation near the existing one. We present an analytical model for CTC distribution considering the neighbor effect, based on the principles of statistical mechanics. This model explains the experimentally observed threshold-like dependence of the CTC concentration on the acceptor content in a polymer:acceptor blend. It also allows us to evaluate binding energies of the complexes.
NASA Astrophysics Data System (ADS)
Ascenso, Joana
The past decade has seen an increase of star formation studies made at the molecular cloud scale, motivated mostly by the deployment of a wealth of sensitive infrared telescopes and instruments. Embedded clusters, long recognised as the basic units of coherent star formation in molecular clouds, are now seen to inhabit preferentially cluster complexes tens of parsecs across. This chapter gives an overview of some important properties of the embedded clusters in these complexes and of the complexes themselves, along with the implications of viewing star formation as a molecular-cloud scale process rather than an isolated process at the scale of clusters.
Control of cell fate by the formation of an architecturally complex bacterial community.
Vlamakis, Hera; Aguilar, Claudio; Losick, Richard; Kolter, Roberto
2008-04-01
Bacteria form architecturally complex communities known as biofilms in which cells are held together by an extracellular matrix. Biofilms harbor multiple cell types, and it has been proposed that within biofilms individual cells follow different developmental pathways, resulting in heterogeneous populations. Here we demonstrate cellular differentiation within biofilms of the spore-forming bacterium Bacillus subtilis, and present evidence that formation of the biofilm governs differentiation. We show that motile, matrix-producing, and sporulating cells localize to distinct regions within the biofilm, and that the localization and percentage of each cell type is dynamic throughout development of the community. Importantly, mutants that do not produce extracellular matrix form unstructured biofilms that are deficient in sporulation. We propose that sporulation is a culminating feature of biofilm formation, and that spore formation is coupled to the formation of an architecturally complex community of cells.
Control of cell fate by the formation of an architecturally complex bacterial community
Vlamakis, Hera; Aguilar, Claudio; Losick, Richard; Kolter, Roberto
2008-01-01
Bacteria form architecturally complex communities known as biofilms in which cells are held together by an extracellular matrix. Biofilms harbor multiple cell types, and it has been proposed that within biofilms individual cells follow different developmental pathways, resulting in heterogeneous populations. Here we demonstrate cellular differentiation within biofilms of the spore-forming bacterium Bacillus subtilis, and present evidence that formation of the biofilm governs differentiation. We show that motile, matrix-producing, and sporulating cells localize to distinct regions within the biofilm, and that the localization and percentage of each cell type is dynamic throughout development of the community. Importantly, mutants that do not produce extracellular matrix form unstructured biofilms that are deficient in sporulation. We propose that sporulation is a culminating feature of biofilm formation, and that spore formation is coupled to the formation of an architecturally complex community of cells. PMID:18381896
Dissection and engineering of the Escherichia coli formate hydrogenlyase complex.
McDowall, Jennifer S; Hjersing, M Charlotte; Palmer, Tracy; Sargent, Frank
2015-10-07
The Escherichia coli formate hydrogenlyase (FHL) complex is produced under fermentative conditions and couples formate oxidation to hydrogen production. In this work, the architecture of FHL has been probed by analysing affinity-tagged complexes from various genetic backgrounds. In a successful attempt to stabilize the complex, a strain encoding a fusion between FdhF and HycB has been engineered and characterised. Finally, site-directed mutagenesis of the hycG gene was performed, which is predicted to encode a hydrogenase subunit important for regulating sensitivity to oxygen. This work helps to define the core components of FHL and provides solutions to improving the stability of the enzyme. Copyright © 2015 Federation of European Biochemical Societies. Published by Elsevier B.V. All rights reserved.
Hanson, Kelsey L.; VandenBrink, Brooke M.; Babu, Kantipudi N.; Allen, Kyle E.; Nelson, Wendel L.
2010-01-01
Three secondary amines desipramine (DES), (S)-fluoxetine [(S)-FLX], and N-desmethyldiltiazem (MA) undergo N-hydroxylation to the corresponding secondary hydroxylamines [N-hydroxydesipramine, (S)-N-hydroxyfluoxetine, and N-hydroxy-N-desmethyldiltiazem] by cytochromes P450 2C11, 2C19, and 3A4, respectively. The expected primary amine products, N-desmethyldesipramine, (S)-norfluoxetine, and N,N-didesmethyldiltiazem, are also observed. The formation of metabolic-intermediate (MI) complexes from these substrates and metabolites was examined. In each example, the initial rates of MI complex accumulation followed the order secondary hydroxylamine > secondary amine ≫ primary amine, suggesting that the primary amine metabolites do not contribute to formation of MI complexes from these secondary amines. Furthermore, the primary amine metabolites, which accumulate in incubations of the secondary amines, inhibit MI complex formation. Mass balance studies provided estimates of the product ratios of N-dealkylation to N-hydroxylation. The ratios were 2.9 (DES-CYP2C11), 3.6 [(S)-FLX-CYP2C19], and 0.8 (MA-CYP3A4), indicating that secondary hydroxylamines are significant metabolites of the P450-mediated metabolism of secondary alkyl amines. Parallel studies with N-methyl-d3-desipramine and CYP2C11 demonstrated significant isotopically sensitive switching from N-demethylation to N-hydroxylation. These findings demonstrate that the major pathway to MI complex formation from these secondary amines arises from N-hydroxylation rather than N-dealkylation and that the primary amines are significant competitive inhibitors of MI complex formation. PMID:20200233
Hanson, Kelsey L; VandenBrink, Brooke M; Babu, Kantipudi N; Allen, Kyle E; Nelson, Wendel L; Kunze, Kent L
2010-06-01
Three secondary amines desipramine (DES), (S)-fluoxetine [(S)-FLX], and N-desmethyldiltiazem (MA) undergo N-hydroxylation to the corresponding secondary hydroxylamines [N-hydroxydesipramine, (S)-N-hydroxyfluoxetine, and N-hydroxy-N-desmethyldiltiazem] by cytochromes P450 2C11, 2C19, and 3A4, respectively. The expected primary amine products, N-desmethyldesipramine, (S)-norfluoxetine, and N,N-didesmethyldiltiazem, are also observed. The formation of metabolic-intermediate (MI) complexes from these substrates and metabolites was examined. In each example, the initial rates of MI complex accumulation followed the order secondary hydroxylamine > secondary amine > primary amine, suggesting that the primary amine metabolites do not contribute to formation of MI complexes from these secondary amines. Furthermore, the primary amine metabolites, which accumulate in incubations of the secondary amines, inhibit MI complex formation. Mass balance studies provided estimates of the product ratios of N-dealkylation to N-hydroxylation. The ratios were 2.9 (DES-CYP2C11), 3.6 [(S)-FLX-CYP2C19], and 0.8 (MA-CYP3A4), indicating that secondary hydroxylamines are significant metabolites of the P450-mediated metabolism of secondary alkyl amines. Parallel studies with N-methyl-d(3)-desipramine and CYP2C11 demonstrated significant isotopically sensitive switching from N-demethylation to N-hydroxylation. These findings demonstrate that the major pathway to MI complex formation from these secondary amines arises from N-hydroxylation rather than N-dealkylation and that the primary amines are significant competitive inhibitors of MI complex formation.
2011-01-01
Knowledge of the relative stabilities of alane (AlH3) complexes with electron donors is essential for identifying hydrogen storage materials for vehicular applications that can be regenerated by off-board methods; however, almost no thermodynamic data are available to make this assessment. To fill this gap, we employed the G4(MP2) method to determine heats of formation, entropies, and Gibbs free energies of formation for 38 alane complexes with NH3−nRn (R = Me, Et; n = 0−3), pyridine, pyrazine, triethylenediamine (TEDA), quinuclidine, OH2−nRn (R = Me, Et; n = 0−2), dioxane, and tetrahydrofuran (THF). Monomer, bis, and selected dimer complex geometries were considered. Using these data, we computed the thermodynamics of the key formation and dehydrogenation reactions that would occur during hydrogen delivery and alane regeneration, from which trends in complex stability were identified. These predictions were tested by synthesizing six amine−alane complexes involving trimethylamine, triethylamine, dimethylethylamine, TEDA, quinuclidine, and hexamine and obtaining upper limits of ΔG° for their formation from metallic aluminum. Combining these computational and experimental results, we establish a criterion for complex stability relevant to hydrogen storage that can be used to assess potential ligands prior to attempting synthesis of the alane complex. On the basis of this, we conclude that only a subset of the tertiary amine complexes considered and none of the ether complexes can be successfully formed by direct reaction with aluminum and regenerated in an alane-based hydrogen storage system. PMID:22962624
Towards a rational design of ruthenium CO2 hydrogenation catalysts by Ab initio metadynamics.
Urakawa, Atsushi; Iannuzzi, Marcella; Hutter, Jürg; Baiker, Alfons
2007-01-01
Complete reaction pathways relevant to CO2 hydrogenation by using a homogeneous ruthenium dihydride catalyst ([Ru(dmpe)2H2], dmpe=Me2PCH2CH2PMe2) have been investigated by ab initio metadynamics. This approach has allowed reaction intermediates to be identified and free-energy profiles to be calculated, which provide new insights into the experimentally observed reaction pathway. Our simulations indicate that CO2 insertion, which leads to the formation of formate complexes, proceeds by a concerted insertion mechanism. It is a rapid and direct process with a relatively low activation barrier, which is in agreement with experimental observations. Subsequent H2 insertion into the formate--Ru complex, which leads to the formation of formic acid, instead occurs via an intermediate [Ru(eta2-H2)] complex in which the molecular hydrogen coordinates to the ruthenium center and interacts weakly with the formate group. This step has been identified as the rate-limiting step. The reaction completes by hydrogen transfer from the [Ru(eta2-H2)] complex to the formate oxygen atom, which forms a dihydrogen-bonded Ru--HHO(CHO) complex. The activation energy for the H2 insertion step is lower for the trans isomer than for the cis isomer. A simple measure of the catalytic activity was proposed based on the structure of the transition state of the identified rate-limiting step. From this measure, the relationship between catalysts with different ligands and their experimental catalytic activities can be explained.
Jung, Chang-Hwa; Choi, Jin-Kyu; Yang, Yoosoo; Koh, Hyun-Ju; Heo, Paul; Yoon, Kee-Jung; Kim, Sehyun; Park, Won-Seok; Shing, Hong-Ju; Kweon, Dae-Hyuk
2012-09-01
Botulinum neurotoxins (BoNTs) are popularly used to treat various diseases and for cosmetic purposes. They act by blocking neurotransmission through specific cleavage of soluble N-ethylmaleimide-sensitive factor attachment protein receptor (SNARE) proteins. Recently, several polyphenols were shown to interfere with SNARE complex formation by wedging into the hydrophobic core interface, thereby leading to reduced neuroexocytosis. In order to find industrially-viable plant extract that functions like BoNT, 71 methanol extracts of flowers were screened and BoNT-like activity of selected extract was evaluated. After evaluating the inhibitory effect of 71 flower methanol extracts on SNARE complex formation, seven candidates were selected and they were subjected to SNARE-driven membrane fusion assay. Neurotransmitter release from neuronal PC12 cells and SNARE complex formation inside the cell was also evaluated. Finally, the effect of one selected extract on muscle contraction and digit abduction score was determined. The extract of Potentilla chinensis Ser. (Rosaceae)(Chinese cinquefoil) flower inhibited neurotransmitter release from neuronal PC12 cells by approximately 90% at a concentration of 10 μg/mL. The extract inhibited neuroexocytosis by interfering with SNARE complex formation inside cells. It reduced muscle contraction of phrenic nerve-hemidiaphragm by approximately 70% in 60 min, which is comparable to the action of the Ca²⁺-channel blocker verapamil and BoNT type A. While BoNT blocks neuroexocytosis by cleaving SNARE proteins, the Potentilla chinensis extract exhibited the same activity by inhibiting SNARE complex formation. The extract paralyzed muscle as efficiently as BoNT, suggesting the potential versatility in cosmetics and therapeutics.
Gülfen, Mustafa; Özdemir, Abdil; Lin, Jung-Lee; Chen, Chung-Hsuan
2017-10-01
In this study, the dissociation and formation equilibrium constants of Na(I)-insulin and K(I)-insulin complexes have been calculated after the quantifying them on ESI mass spectrometer. The ESI-MS spectra of the complexes were measured by using the solvents as 50% MeOH in water and 100% water. The effect of pH on the Na(I)-insulin and K(I)-insulin complex formation were examined. Serial binding of Na(I) and K(I) ions to the insulin molecule were observed in the ESI-MS measurements. The first formation equilibrium constants were calculated as K f1 : 5.48×10 3 1/M for Na(I)-insulin complex and K f1 : 4.87×10 3 1/M for K(I)-insulin in water. The binding capability of Na(I) ions to insulin molecule is higher than the capability of K(I) ions. In case of a comparison together with Ca(II)-insulin and Mg(II)-insulin, the formation equilibrium constants (K f1 ) are in order of Ca(II)-insulin>Mg(II)-insulin>Na(I)-insulin>K(I)-insulin in water. The results showed that Na(I) and K(I) ions are involved in the formation of the non-covalent complexes with insulin molecule, since high extracellular and intracellular concentrations of them in the body. Copyright © 2017 Elsevier B.V. All rights reserved.
Villota, Natalia; Lomas, Jose M; Camarero, Luis M
2017-11-01
Analysis of the kinetics of aqueous phenol oxidation by a sono-Fenton process reveals that the via involving ortho-substituted intermediates prevails: catechol (25.0%), hydroquinone (7.7%) and resorcinol (0.6%). During the oxidation, water rapidly acquires color that reaches its maximum intensity at the maximum concentration of p-benzoquinone. Turbidity formation occurs at a slower rate. Oxidant dosage determines the nature of the intermediates, being trihydroxylated benzenes (pyrogallol, hydroxyhydroquinone) and muconic acid the main precursors causing turbidity. It is found that the concentration of iron species and ultrasonic waves affects the intensity of the turbidity. The pathway of (hydro)peroxo-iron(II) complexes formation is proposed. Operating with 20.0-27.8mgFe 2+ /kW rates leads to formation of (hydro)peroxo-iron(II) complexes, which induce high turbidity levels. These species would dissociate into ZZ-muconic acid and ferrous ions. Applying relationships around 13.9mgFe 2+ /kW, the formation of (hydro)peroxo-iron(III) complexes would occur, which could react with carboxylic acids (2,5-dioxo-3-hexenedioic acid). That reaction induces turbidity slower. This is due to the organic substrate reacting with two molecules of the (hydro)peroxo complex. Therefore, it is necessary to accelerate the iron regeneration, intensifying the ultrasonic irradiation. Afterwards, this complex would dissociate into maleic acid and ferric ions. Copyright © 2017 Elsevier B.V. All rights reserved.
NASA Astrophysics Data System (ADS)
Naumov, V. V.; Kovaleva, Yu. A.; Isaeva, V. A.; Usacheva, T. R.; Sharnin, V. A.
2014-06-01
The heat effects of the complexation reactions of nickel(II) with a glycylglycinate ion in a water-dimethylsulfoxide solvent in a range of compositions of 0.00-0.60 molar parts of dimethylsulfoxide (DMSO) (an ionic strength of 0.1 was maintained using sodium perchlorate) were determined by means of calorimetry at 298.15 K. It is established that the exothermicity of complexation reactions rises by the first two steps and falls upon the addition of a third glycylglycinate anion with an increase in the concentration of DMSO. It is shown that the formation of mono- and bis-glycylglycinate complexes of nickel(II) in a water-DMSO solvent is determined mostly by the enthalpic contribution. It is concluded that the formation of tris-ligand complexes is more associated with the entropic contribution.
Synergistic effect of ATP for RuvA-RuvB-Holliday junction DNA complex formation.
Iwasa, Takuma; Han, Yong-Woon; Hiramatsu, Ryo; Yokota, Hiroaki; Nakao, Kimiko; Yokokawa, Ryuji; Ono, Teruo; Harada, Yoshie
2015-12-14
The Escherichia coli RuvB hexameric ring motor proteins, together with RuvAs, promote branch migration of Holliday junction DNA. Zero mode waveguides (ZMWs) constitute of nanosized holes and enable the visualization of a single fluorescent molecule under micromolar order of the molecules, which is applicable to characterize the formation of RuvA-RuvB-Holliday junction DNA complex. In this study, we used ZMWs and counted the number of RuvBs binding to RuvA-Holliday junction DNA complex. Our data demonstrated that different nucleotide analogs increased the amount of Cy5-RuvBs binding to RuvA-Holliday junction DNA complex in the following order: no nucleotide, ADP, ATPγS, and mixture of ADP and ATPγS. These results suggest that not only ATP binding to RuvB but also ATP hydrolysis by RuvB facilitates a stable RuvA-RuvB-Holliday junction DNA complex formation.
Gold nanoparticles as a factor of influence on doxorubicin-bovine serum albumin complex
NASA Astrophysics Data System (ADS)
Goncharenko, N. A.; Pavlenko, O. L.; Dmytrenko, O. P.; Kulish, M. P.; Lopatynskyi, A. M.; Chegel, V. I.
2018-04-01
The interaction between doxorubicin (Dox) and bovine serum albumin (BSA) complex with gold nanoparticles (AuNPs) was investigated by optical spectroscopy. The optical absorption of Dox and BSA solutions was studied. The formation of Dox-BSA complexes with a binding constant K = 7.56 × 106 M-2 and the number of binding sites n = 2 was found out. With pH 6.9, the concentration of complexes is an order of magnitude lower than the concentration of unbound antibiotic molecules. Optical absorption in solutions of Dox-BSA conjugates in the presence of AuNPs undergoes a significant rearrangement, which manifests the changes in the magnitude of the hydrophobic interaction of BSA with Dox, changes in the conformational state of antibiotic, and, as a consequence, a plasmon-induced change in the mechanism of complex formation. The aggregation of the Dox-AuNPs conjugate depends on the presence and concentration of BSA and in the case of formation of the Dox-BSA complex is minimal.
Smith, Benjamin A; Padrick, Shae B; Doolittle, Lynda K; Daugherty-Clarke, Karen; Corrêa, Ivan R; Xu, Ming-Qun; Goode, Bruce L; Rosen, Michael K; Gelles, Jeff
2013-09-03
During cell locomotion and endocytosis, membrane-tethered WASP proteins stimulate actin filament nucleation by the Arp2/3 complex. This process generates highly branched arrays of filaments that grow toward the membrane to which they are tethered, a conflict that seemingly would restrict filament growth. Using three-color single-molecule imaging in vitro we revealed how the dynamic associations of Arp2/3 complex with mother filament and WASP are temporally coordinated with initiation of daughter filament growth. We found that WASP proteins dissociated from filament-bound Arp2/3 complex prior to new filament growth. Further, mutations that accelerated release of WASP from filament-bound Arp2/3 complex proportionally accelerated branch formation. These data suggest that while WASP promotes formation of pre-nucleation complexes, filament growth cannot occur until it is triggered by WASP release. This provides a mechanism by which membrane-bound WASP proteins can stimulate network growth without restraining it. DOI:http://dx.doi.org/10.7554/eLife.01008.001.
NASA Astrophysics Data System (ADS)
Singh, Neeti; Ahmad, Afaq
2010-08-01
The charge transfer complex of 1-Naphthylamine as a donor with π-acceptor picric acid has been studied spectrophotometrically in different solvents at room temperature. The results indicate that the formation of charge transfer complex is high in less polar solvent. The stoichiometry of the complex was found to be 1:1 by straight line method. The data are analysed in terms of formation constant ( KCT), molar extinction coefficient ( ɛCT), standard free energy (Δ G o), oscillator strength ( ƒ), transition dipole moment ( μ EN), resonance energy ( R N) and ionization potential ( I D). It is concluded that the formation constant ( KCT) of the complex is found to be depends upon the nature of both electron acceptor and donor and also on the polarity of solvents. Further the charge transfer molecular complex between picric acid and 1-Naphthylamine is stabilized by hydrogen bonding.
A Molecular Copper Catalyst for Hydrogenation of CO2 to Formate
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zall, Christopher M.; Linehan, John C.; Appel, Aaron M.
2015-09-04
There is widespread interest in the hydrogenation of CO2 to energy-rich products such as formate. However, first-row transition metal complexes that catalyze the hydrogenation of CO2 to formate remain rare. Copper phosphine complexes are widely used in the reduction of organic substrates but have not previously been used as catalysts for the conversion of H2 and CO2 to formate. Here we demonstrate that the triphosphine-ligated copper(I) complex LCu(MeCN)PF6 is an active catalyst for CO2 hydrogenation in the presence of a suitable base. Screening of bases and studies of catalytic reactions by in operando spectroscopy revealed important and unusual roles formore » the base in promoting H2 activation and turnover.« less
The Biophysics Microgravity Initiative
NASA Technical Reports Server (NTRS)
Gorti, S.
2016-01-01
Biophysical microgravity research on the International Space Station using biological materials has been ongoing for several decades. The well-documented substantive effects of long duration microgravity include the facilitation of the assembly of biological macromolecules into large structures, e.g., formation of large protein crystals under micro-gravity. NASA is invested not only in understanding the possible physical mechanisms of crystal growth, but also promoting two flight investigations to determine the influence of µ-gravity on protein crystal quality. In addition to crystal growth, flight investigations to determine the effects of shear on nucleation and subsequent formation of complex structures (e.g., crystals, fibrils, etc.) are also supported. It is now considered that long duration microgravity research aboard the ISS could also make possible the formation of large complex biological and biomimetic materials. Investigations of various materials undergoing complex structure formation in microgravity will not only strengthen NASA science programs, but may also provide invaluable insight towards the construction of large complex tissues, organs, or biomimetic materials on Earth.
Zimmermann, Philipp; Hoof, Santina; Braun-Cula, Beatrice; Herwig, Christian; Limberg, Christian
2018-04-10
Reduced CO 2 species are key intermediates in a variety of natural and synthetic processes. In the majority of systems, however, they elude isolation or characterisation owing to high reactivity or limited accessibility (heterogeneous systems), and their formulations thus often remain uncertain or are based on calculations only. We herein report on a Ni-CO 2 2- complex that is unique in many ways. While its structural and electronic features help understand the CO 2 -bound state in Ni,Fe carbon monoxide dehydrogenases, its reactivity sheds light on how CO 2 can be converted into CO/CO 3 2- by nickel complexes. In addition, the complex was generated by a rare example of formate β-deprotonation, a mechanistic step relevant to the nickel-catalysed conversion of H x CO y z- at electrodes and formate oxidation in formate dehydrogenases. © 2018 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.
Blanes-Mira, Clara; Merino, Jaime M; Valera, Elvira; Fernández-Ballester, Gregorio; Gutiérrez, Luis M; Viniegra, Salvador; Pérez-Payá, Enrique; Ferrer-Montiel, Antonio
2004-01-01
Synthetic peptides patterned after the C-terminus of synaptosomal associated protein of 25 kDa (SNAP25) efficiently abrogate regulated exocytosis. In contrast, the use of SNAP25 N-terminal-derived peptides to modulate SNAP receptors (SNARE) complex assembly and neurosecretion has not been explored. Here, we show that the N-terminus of SNAP25, specially the segment that encompasses 22Ala-44Ile, is essential for the formation of the SNARE complex. Peptides patterned after this protein domain are potent inhibitors of SNARE complex formation. The inhibitory activity correlated with their propensity to adopt an alpha-helical secondary structure. These peptides abrogated SNARE complex formation only when added previous to the onset of aggregate assembly. Analysis of the mechanism of action revealed that these peptides disrupted the binary complex formed by SNAP25 and syntaxin. The identified peptides inhibited Ca2+-dependent exocytosis from detergent-permeabilized excitable cells. Noteworthy, these amino acid sequences markedly protected intact hippocampal neurones against hypoglycaemia-induced, glutamate-mediated excitotoxicity with a potency that rivalled that displayed by botulinum neurotoxins. Our findings indicate that peptides patterned after the N-terminus of SNAP25 are potent inhibitors of SNARE complex formation and neuronal exocytosis. Because of their activity in intact neurones, these cell permeable peptides may be hits for antispasmodic and analgesic drug development.
Yoo, Hyun Ju; Kim, Ji-Eun; Gu, Ja Yoon; Lee, Sae Bom; Lee, Hyun Joo; Hwang, Ho Young; Hwang, Yoohwa; Kim, Young Tae; Kim, Hyun Kyung
2016-11-01
Neutrophils play a role in xenograft rejection. When neutrophils are stimulated, they eject the DNA-histone complex into the extracellular space, called neutrophil extracellular traps (NET). We investigated whether NET formation actively occurs in the xenograft and contributes to coagulation and endothelial activation. Human whole blood was incubated with porcine aortic endothelial cells (pEC) from wild-type or α1,3-galactosyltransferase gene-knockout (GTKO) pigs. In the supernatant plasma from human blood, the level of the DNA-histone complex was measured by ELISA, and thrombin generation was measured using a calibrated automated thrombogram. Histone-induced tissue factor and adhesion molecule expression were measured by flow cytometry. pEC from both wild-type and GTKO pigs significantly induced DNA-histone complex formation in human whole blood. The DNA-histone complex produced shortened the thrombin generation time and clotting time. Histone alone dose-dependently induced tissue factor and adhesion molecule expression in pEC. Aurintricarboxylic acid pretreatment partially inhibited pEC-induced DNA-histone complex formation. DNA-histone complex actively generated upon xenotransplantation is a novel target to inhibit coagulation and endothelial activation. To prevent tissue factor and adhesion molecule expression, a strategy to block soluble histone may be required in xenotransplantation. © 2016 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.
Do supercontinents introvert or extrovert?: Sm-Nd isotope evidence
NASA Astrophysics Data System (ADS)
Brendan Murphy, J.; Damian Nance, R.
2003-10-01
In recent years, two end-member models for the formation of supercontinents have emerged. In the classical Wilson cycle, oceanic crust generated during supercontinent breakup (the interior ocean) is consumed during subsequent amalgamation so that the supercontinent turns “inside in” (introversion). Alternatively, following supercontinent breakup, the exterior margins of the dispersing continental fragments collide during reassembly so that the supercontinent turns “outside in” (extroversion). These end-member models can be distinguished by comparing the Sm-Nd crust-formation ages of accreted mafic complexes (e.g., ophiolites) in the collisional orogens formed during supercontinent assembly with the breakup age of the previous supercontinent. For supercontinents generated by introversion, these crust-formation ages postdate rifting of the previous supercontinent. For supercontinents generated by extroversion, the oceanic lithosphere consumed during reassembly predates breakup of the previous supercontinent, so that crust-formation ages of accreted mafic complexes are older than the age of rifting. In the Paleozoic Appalachian-Caledonide-Variscan orogen, a key collisional orogen in the assembly of Pangea, crust-formation ages of accretionary mafic complexes postdate the formation of the Iapetus Ocean (i.e., are younger than ca. 0.6 Ga), suggesting supercontinent reassembly by introversion. By contrast, the Neoproterozoic East African and Brasiliano orogens, which formed during the amalgamation of Gondwana, are characterized by mafic complexes with crust-formation ages (ca. 0.75 1.2 Ga) that predate the ca. 750 Ma breakup of Rodinia. Hence, these complexes must have formed from lithosphere in the exterior ocean that surrounded Rodinia, implying that this ocean was consumed during the amalgamation of Gondwana. These data indicate that Pangea and Gondwana were formed by introversion and extroversion, respectively, implying that supercontinents can be assembled by fundamentally distinct geodynamic processes.
Absorption spectroscopic studies of Np(IV) complexes
DOE Office of Scientific and Technical Information (OSTI.GOV)
Reed, D. T.
2004-01-01
The complexation of neptunium (IV) with selected inorganic and organic ligands was studied as part of an investigation to establish key subsurface interactions between neptunium and biological systems. The prevalence of reducing environments in most subsurface migation scenarios, which are in many cases induced by biological activity, has increased the role and importance of Np(IV) as a key subsurface neptunium oxidation state. The biodegradation of larger organics that often coexist with actinides in the subsurface leads to the formation of many organic acids as transient products that, by complexation, play a key role in defining the fate and speciation ofmore » neptunium in biologically active systems. These often compete with inorganic complexes e.g. hydrolysis and phosphate. Herein we report the results of a series of complexation studies based on new band formation of the characteristic 960 nm band for Np(IV). Formation constants for Np(IV) complexes with phosphate, hydrolysis, succinate, acetohydroxamic acid, and acetate were determined. These results show the 960 nm absorption band to be very amenable to these types of complexation studies.« less
Optoelectronic properties of dicyanofluorene-based n-type polymers.
Vijayakumar, Chakkooth; Saeki, Akinori; Seki, Shu
2012-08-01
Three new donor-acceptor-type copolymers (P1-P3) consisting of dicyanofluorene as acceptor and various donor moieties were designed and synthesized. Optoelectronic properties were studied in detail by means of UV-visible absorption and fluorescence spectroscopy, cyclic voltammetry, space-charge-limited current (SCLC), flash-photolysis time-resolved microwave conductivity (FP-TRMC), and density functional theory (DFT). All polymers showed strong absorption in the UV-visible region and the absorption maximum undergoes redshift with an increasing number of thiophene units in the polymer backbone. SCLC analysis showed that the electron mobilities of the polymers in the bulk state were 1 to 2 orders higher than that of the corresponding hole mobilities, which indicated the n-type nature of the materials. By using FP-TRMC, the intrapolymer charge-carrier mobility was assessed and compared with the interpolymer mobility obtained by SCLC. The polymers exhibited good electron-accepting properties sufficiently high enough to oxidize the excited states of regioregular poly(3-hexylthiophene) (P3HT (donor)), as evident from the FP-TRMC analysis. The P3 polymer exhibited the highest FP-TRMC transients in the pristine form as well as when blended with P3HT. Use of these polymers as n-type materials in all-polymer organic solar cells was also explored in combination with P3HT. In accordance with the TRMC results, P3 exhibited superior electron-transport and photovoltaic properties to the other two polymers, which is explained by the distribution of the energy levels of the polymers by using DFT calculations. Copyright © 2012 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Structure-induced switching of interpolymer adhesion at a solid–polymer melt interface
Jiang, Naisheng; Sen, Mani; Zeng, Wenduo; ...
2018-01-11
In this paper, we report a link between the interfacial structure and adhesive property of homopolymer chains physically adsorbed (i.e., via physisorption) onto solids. Polyethylene oxide (PEO) was used as a model and two different chain conformations of the adsorbed polymer were created on silicon substrates via the well-established Guiselin's approach: “flattened chains” which lie flat on the solid and are densely packed, and “loosely adsorbed polymer chains” which form bridges jointing up nearby empty sites on the solid surface and cover the flattened chains. We investigated the adhesion properties of the two different adsorbed chains using a custom-built adhesionmore » testing device. Bilayers of a thick PEO overlayer on top of the flattened chains or loosely adsorbed chains were subjected to the adhesion test. The results revealed that the flattened chains do not show any adhesion even with the chemically identical free polymer on top, while the loosely adsorbed chains exhibit adhesion. Neutron reflectivity experiments corroborated that the difference in the interfacial adhesion is not attributed to the interfacial brodening at the free polymer–adsorbed polymer interface. Instead, coarse-grained molecular dynamics simulation results suggest that the tail parts of the loosely adsorbed chains act as “connector molecules”, bridging the free chains and substrate surface and improving the interfacial adhesion. Finally, these findings not only shed light on the structure–property relationship at the interface, but also provide a novel approach for developing sticking/anti-sticking technologies through precise control of the interfacial polymer nanostructures.« less
Dynamic cross-correlations between entangled biofilaments as they diffuse
Tsang, Boyce; Dell, Zachary E.; Jiang, Lingxiang; Schweizer, Kenneth S.; Granick, Steve
2017-01-01
Entanglement in polymer and biological physics involves a state in which linear interthreaded macromolecules in isotropic liquids diffuse in a spatially anisotropic manner beyond a characteristic mesoscopic time and length scale (tube diameter). The physical reason is that linear macromolecules become transiently localized in directions transverse to their backbone but diffuse with relative ease parallel to it. Within the resulting broad spectrum of relaxation times there is an extended period before the longest relaxation time when filaments occupy a time-averaged cylindrical space of near-constant density. Here we show its implication with experiments based on fluorescence tracking of dilutely labeled macromolecules. The entangled pairs of aqueous F-actin biofilaments diffuse with separation-dependent dynamic cross-correlations that exceed those expected from continuum hydrodynamics up to strikingly large spatial distances of ≈15 µm, which is more than 104 times the size of the solvent water molecules in which they are dissolved, and is more than 50 times the dynamic tube diameter, but is almost equal to the filament length. Modeling this entangled system as a collection of rigid rods, we present a statistical mechanical theory that predicts these long-range dynamic correlations as an emergent consequence of an effective long-range interpolymer repulsion due to the de Gennes correlation hole, which is a combined consequence of chain connectivity and uncrossability. The key physical assumption needed to make theory and experiment agree is that solutions of entangled biofilaments localized in tubes that are effectively dynamically incompressible over the relevant intermediate time and length scales. PMID:28283664
Sunlight assisted direct amide formation via a charge-transfer complex.
Cohen, Irit; Mishra, Abhaya K; Parvari, Galit; Edrei, Rachel; Dantus, Mauricio; Eichen, Yoav; Szpilman, Alex M
2017-09-12
We report on the use of charge-transfer complexes between amines and carbon tetrachloride, as a novel way to activate the amine for photochemical reactions. This principle is demonstrated in a mild, transition metal free, visible light assisted, dealkylative amide formation from feedstock carboxylic acids and amines. The low absorption coefficient of the complex allows deep light penetration and thus scale up to a gram scale.
Li, Yun; Wang, Shen; Li, Tianzhi; Zhu, Le; Xu, Yuanyuan; Ma, Cong
2017-01-01
The Ca2+ sensor synaptotagmin-1 (Syt1) plays an essential function in synaptic exocytosis. Recently, Syt1 has been implicated in synaptic vesicle priming, a maturation step prior to Ca2+-triggered membrane fusion that is believed to involve formation of the ternary SNARE complex and require priming proteins Munc18-1 and Munc13-1. However, the mechanisms of Syt1 in synaptic vesicle priming are still unclear. In this study, we found that Syt1 stimulates the transition from the Munc18-1/syntaxin-1 complex to the ternary SNARE complex catalyzed by Munc13-1. This stimulation can be further enhanced in a membrane-containing environment. Further, we showed that Syt1, together with Munc18-1 and Munc13-1, stimulates trans ternary SNARE complex formation on membranes in a manner resistant to disassembly factors NSF and α-SNAP. Disruption of a proposed Syt1/SNARE binding interface strongly abrogated the stimulation function of Syt1. Our results suggest that binding of Syt1 to an intermediate SNARE assembly with Munc18-1 and Munc13-1 is critical for the stimulation function of Syt1 in ternary SNARE complex formation, and this stimulation may underlie the priming function of Syt1 in synaptic exocytosis. PMID:28860966
Ternary complex formation of Eu(III) with o-phthalate in aqueous solutions.
Park, K K; Jung, E C; Cho, H-R; Kim, W H
2009-08-15
Ternary hydroxo complex formation of Eu(III) with o-phthalate was investigated by potentiometry and fluorescence spectrophotometry. Curves of the equilibrium pH versus the amount of NaOH added showed that the pH value starting to form a Eu(III) precipitate was decreased due to the formation of a ternary hydroxo complex, EuOHL(s) (L = phthalate). The formation of EuOHL(s) was qualitatively confirmed by the enhancement of the fluorescence intensity of Eu(III) in the precipitate with the light absorbed by phthalate, and was quantitatively confirmed by the measurement of the amounts of Eu(III), OH(-) and phthalate included in the precipitate. The solubility product of EuOHL(s) was determined as pK(sp)(0) = 15.6+/-0.4. Characteristic features in the fluorescence spectra and the solubility product of the Eu(III)-phthalate complex were compared with those of the Eu(III)-PDA (PDA = pyridine-2,6-dicarboxylate) complex. The fluorescence intensity of the EuL(+) complex of L = PDA was about 11 times stronger than that of L = phthalate. The origin of the difference in the fluorescence intensity is discussed based on the intramolecular energy transfer effect from the lowest triplet energy level of the ligand to the resonance energy level of Eu(III).
Cusick, M E
1992-12-29
A novel approach is described to purify potential ribonucleoproteins (RNP) of yeast. The method assays a yeast RNP complex, assembled in vitro on actin pre-mRNA, by low-ionic strength acrylamide gel electrophoresis. The minimal protein components of this RNP complex were three proteins, one of 30 kDa and two at 42-44 kDa, defined by formation of the complex on biotinylated-RNA, binding of this complex to avidin-agarose, and salt elution of the protein in the biotinylated-RNP complex. Using the assay for RNP complex formation, an RNP protein was purified to homogeneity on the basis of its affinity towards single-stranded DNA and RNA. This RNP protein turned out to be identical to a known RNP protein, the single-stranded binding protein 1 (ssb1) of yeast, on the basis of identical gel electrophoretic migration, antibody cross-reactivity, and identical properties on the gel complex formation assay. In vitro mRNA splicing was normal in extracts made from a yeast strain missing ssb1 (ssb1- strain). Addition of anti-ssb1 antibody to splicing extracts made from a wild type strain did not inhibit or diminish splicing. Instead, mRNA splicing was reproducibly stimulated several fold, indicating competition between ssb1 and splicing factors for binding to single-stranded RNA in the extracts. RNP complexes still formed in the ssb1- strain, demonstrating that it would be possible to purify other RNP proteins from this strain using the gel complex formation assay.
Structural evaluation of crystalline ternary γ-cyclodextrin complex.
Higashi, Kenjirou; Ideura, Saori; Waraya, Haruka; Moribe, Kunikazu; Yamamoto, Keiji
2011-01-01
The structure of a crystalline γ-cyclodextrin (γ-CD) ternary complex containing salicylic acid (SA) and flurbiprofen (FBP) prepared by sealed heating was investigated. FBP/γ-CD inclusion complex was prepared by coprecipitation; its molar ratio was determined as 1/1. Powder X-ray diffraction measurements showed that the molecular packing of γ-CD changed from hexagonal to monoclinic columnar form by sealed heating of SA with dried FBP/γ-CD inclusion complex, indicating ternary complex formation. The stoichiometry of SA/FBP/γ-CD was estimated as 2/1/1. Solid-state transformation of γ-CD molecular packing upon water vapor adsorption and desorption was irreversible for this ternary complex, in contrast to the reversible transition for the FBP/γ-CD inclusion complex. The ternary complex contained one FBP molecule in the cavity of γ-CD and two SA molecules in the intermolecular space between neighboring γ-CD column stacks. Infrared and (13) C solid-state NMR spectroscopies revealed that the molecular states of SA and FBP changed upon ternary complex formation. In the complex, dimer FBP molecules were sandwiched between two γ-CD molecules whereas each monomer SA molecule was present in the intermolecular space of γ-CD. Ternary complex formation was also observed for other drug-guest systems using naproxen and ketoprofen. Thus, the complex can be used to formulate variety of drugs. Copyright © 2010 Wiley-Liss, Inc. and the American Pharmacists Association
NASA Astrophysics Data System (ADS)
Pyreu, D. F.; Gridchin, S. N.
2018-05-01
The formation of mixed-ligand complexes in the M(II)-Nta, Ida-L (M = Cu(II), Ni, Zn, Co(II), L = Ser, Thr, Asp, Arg, Asn) systems, where Ida and Nta are the residues of iminodiacetic and nitrilotriacetic acids, respectively, is studied using pH measurements, calorimetry and spectrophotometry. The thermodynamic parameters (log K, Δr G 0, Δr H, Δr S) of their formation at 298.15 K and ionic strength I = 0.5 (KNO3) are determined. The most likely scenario of amino acid residue coordination in the composition of mixed complexes is discussed.
Our Galactic Neighbor Hosts Complex Organic Molecules
NASA Astrophysics Data System (ADS)
Hensley, Kerry
2018-03-01
For the first time, data from the Atacama Large Millimeter/submillimeter Array (ALMA) reveal the presence of methyl formate and dimethyl ether in a star-forming region outside our galaxy. This discovery has important implications for the formation and survival of complex organic compounds importantfor the formation of life in low-metallicity galaxies bothyoung and old.No Simple Picture of Complex Molecule FormationALMA, pictured here with the Magellanic Clouds above, has observed organic molecules in our Milky Way Galaxy and beyond. [ESO/C. Malin]Complex organic molecules (those with at least six atoms, one or more of which must be carbon) are the precursors to the building blocks of life. Knowing how and where complex organic molecules can form is a key part of understanding how life came to be on Earth and how it might arise elsewhere in the universe. From exoplanet atmospheres to interstellar space, complex organic molecules are ubiquitous in the Milky Way.In our galaxy, complex organic molecules are often found in the intense environments of hot cores clumps of dense molecular gas surrounding the sites of star formation. However, its not yet fully understood how the complex organic molecules found in hot cores come to be. One possibility is that the compounds condense onto cold dust grains long before the young stars begin heating their natal shrouds. Alternatively, they might assemble themselves from the hot, dense gas surrounding the blazing protostars.Composite infrared and optical image of the N 113 star-forming region in the LMC. The ALMA coverage is indicated by the gray line. Click to enlarge. [Sewio et al. 2018]Detecting Complexity, a Galaxy AwayUsing ALMA, a team of researchers led by Marta Sewio (NASA Goddard Space Flight Center) recently detected two complex organic molecules methyl formate and dimethyl ether for the first time in our neighboring galaxy, the Large Magellanic Cloud (LMC). Previous searches for organic molecules in the LMC detected small amounts of methanol, the parentmolecule of the two newly-discovered compounds. By revealing the spectral signatures of dimethyl ether and methyl formate, Sewio and collaboratorsfurther prove thatorganic chemistry is hard at work in hot cores in the LMC.This discovery is momentous because dwarf galaxies like theLMC tend to have a lower abundance of the heavy elements that make up complex organic molecules most importantly, oxygen, carbon, and nitrogen. Beyond lacking the raw materials necessary to create complex molecules, the gas of low-metallicity galaxies does a poorer job preventing the penetration of high-energy photons. The impinging photons warm dust grains, resulting in a lower probability of forming and maintaining complex organic molecules. Despite this, organic molecules appear to beable todevelop and persist which has exciting implications for organic chemistry in low-metallicity environments.ALMA observation of emission by methyl formate in a hot core in the LMC.[Adapted from Sewio et al. 2018]A Lens into the PastIn the early universe, before the budding galaxies have had time to upcycle their abundant hydrogen into heavier elements, organic chemistry is thought to proceed slowly or not at all. The discovery of complex organic molecules in a nearby low-metallicity galaxy upends this theory and propels us toward a better understanding of the organic chemistry in the early universe.CitationMarta Sewio et al 2018ApJL853L19. doi:10.3847/2041-8213/aaa079
Anaerobic Formate and Hydrogen Metabolism.
Pinske, Constanze; Sawers, R Gary
2016-10-01
Numerous recent developments in the biochemistry, molecular biology, and physiology of formate and H2 metabolism and of the [NiFe]-hydrogenase (Hyd) cofactor biosynthetic machinery are highlighted. Formate export and import by the aquaporin-like pentameric formate channel FocA is governed by interaction with pyruvate formate-lyase, the enzyme that generates formate. Formate is disproportionated by the reversible formate hydrogenlyase (FHL) complex, which has been isolated, allowing biochemical dissection of evolutionary parallels with complex I of the respiratory chain. A recently identified sulfido-ligand attached to Mo in the active site of formate dehydrogenases led to the proposal of a modified catalytic mechanism. Structural analysis of the homologous, H2-oxidizing Hyd-1 and Hyd-5 identified a novel proximal [4Fe-3S] cluster in the small subunit involved in conferring oxygen tolerance to the enzymes. Synthesis of Salmonella Typhimurium Hyd-5 occurs aerobically, which is novel for an enterobacterial Hyd. The O2-sensitive Hyd-2 enzyme has been shown to be reversible: it presumably acts as a conformational proton pump in the H2-oxidizing mode and is capable of coupling reverse electron transport to drive H2 release. The structural characterization of all the Hyp maturation proteins has given new impulse to studies on the biosynthesis of the Fe(CN)2CO moiety of the [NiFe] cofactor. It is synthesized on a Hyp-scaffold complex, mainly comprising HypC and HypD, before insertion into the apo-large subunit. Finally, clear evidence now exists indicating that Escherichia coli can mature Hyd enzymes differentially, depending on metal ion availability and the prevailing metabolic state. Notably, Hyd-3 of the FHL complex takes precedence over the H2-oxidizing enzymes.
Zhang, Na; Yang, Li; Luo, Sha; Wang, Xutong; Wang, Wei; Cheng, Yuxin; Tian, Hainan; Zheng, Kaijie; Cai, Ling; Wang, Shucai
2018-04-13
Trichome formation in Arabidopsis is regulated by a MBW complex formed by MYB, bHLH and WD40 transcriptional factors, which can activate GLABRA2 (GL2) and the R3 MYB transcription factor genes. GL2 promotes trichome formation, whereas R3 MYBs are able to block the formation of the MBW complex. It has been reported that the C2H2 transcription factor GIS (GLABROUS INFLORESCENCE STEMS) functions upstream of the MBW activator complex to regulate trichome formation, and that the expression of TCL1 is not regulated by the MBW complex. However, gis and the R3 MYB gene mutant tcl1 (trichomeless 1) have opposite inflorescence trichome phenotypes, but their relationship in regulating trichome formation remained unknown. By generating and characterization of the gis tcl1 double mutant, we found that trichome formation in the gis tcl1double and the tcl1 single mutants were largely indistinguishable, but the trichome formation in the 35S:TCL1/gis transgenic plant was similar to that in the gis mutant. By using quantitative RT-PCR analysis, we showed that expression level of GIS was increased in the triple mutant tcl1 try cpc, but the expression level of TCL1 was not affected in the gis mutant. On the other hand, trichome morphology in both gis tcl1 and 35S:TCL1/gis plants was similar to that in the gis mutant. In summary, our results indicate that GIS may work downstream of TCL1 to regulate trichome formation, and GIS has a dominant role in controlling trichome morphology.
Dereven'kov, Ilia A; Hannibal, Luciana; Makarov, Sergei V; Makarova, Anna S; Molodtsov, Pavel A; Koifman, Oskar I
2018-05-02
Serum albumin binds to a variety of endogenous ligands and drugs. Human serum albumin (HSA) binds to heme via hydrophobic interactions and axial coordination of the iron center by protein residue Tyr161. Human serum albumin binds to another tetrapyrrole, cobalamin (Cbl), but the structural and functional properties of this complex are poorly understood. Herein, we investigate the reaction between aquacobalamin (H 2 OCbl) and bovine serum albumin (BSA, the bovine counterpart of HSA) using Ultraviolet-Visible and fluorescent spectroscopy, and electron paramagnetic resonance. The reaction between H 2 OCbl and BSA led to the formation of a BSA-Cbl(III) complex consistent with N-axial ligation (amino). Prior to the formation of this complex, the reactants participate in an additional binding event that has been examined by fluorescence spectroscopy. Binding of BSA to Cbl(III) reduced complex formation between the bound cobalamin and free cyanide to form cyanocobalamin (CNCbl), suggesting that the β-axial position of the cobalamin may be occupied by an amino acid residue from the protein. Reaction of BSA containing reduced disulfide bonds with H 2 OCbl produces cob(II)alamin and disulfide with intermediate formation of thiolate Cbl(III)-BSA complex and its decomposition. Finally, in vitro studies showed that cobalamin binds to BSA only in the presence of an excess of protein, which is in contrast to heme binding to BSA that involves a 1:1 stoichiometry. In vitro formation of BSA-Cbl(III) complex does not preclude subsequent heme binding, which occurs without displacement of H 2 OCbl bound to BSA. These data suggest that the two tetrapyrroles interact with BSA in different binding pockets.
NASA Technical Reports Server (NTRS)
Peterson, K. J.; Irvine, S. Q.; Cameron, R. A.; Davidson, E. H.
2000-01-01
A prediction from the set-aside theory of bilaterian origins is that pattern formation processes such as those controlled by the Hox cluster genes are required specifically for adult body plan formation. This prediction can be tested in animals that use maximal indirect development, in which the embryonic formation of the larva and the postembryonic formation of the adult body plan are temporally and spatially distinct. To this end, we quantitatively measured the amount of transcripts for five Hox genes in embryos of a lophotrochozoan, the polychaete annelid Chaetopterus sp. The polychaete Hox complex is shown not to be expressed during embryogenesis, but transcripts of all measured Hox complex genes are detected at significant levels during the initial stages of adult body plan formation. Temporal colinearity in the sequence of their activation is observed, so that activation follows the 3'-5' arrangement of the genes. Moreover, Hox gene expression is spatially localized to the region of teloblastic set-aside cells of the later-stage embryos. This study shows that an indirectly developing lophotrochozoan shares with an indirectly developing deuterostome, the sea urchin, a common mode of Hox complex utilization: construction of the larva, whether a trochophore or dipleurula, does not involve Hox cluster expression, but in both forms the complex is expressed in the set-aside cells from which the adult body plan derives.
NASA Astrophysics Data System (ADS)
Datta, Asim Sagar; (Chattaraj), Seema Bagchi; Chakrabortty, Ashutosh; Lahiri, Sujit Chandra
2015-07-01
Spectrophotometric, FTIR and theoretical studies of the charge-transfer complexes between mild narcotic drug papaverine and the acceptors chloranilic acid (Cl-A), 2,3-dichloro-5,6-dicyano-p-benzoquinone (DDQ) and tetracyanoethylene (TCNE) in acetonitrile, their association constants, thermodynamic (ΔG0, ΔH0 and ΔS0) and other related properties had been described. Papaverine was found to form colored charge-transfer complexes with Cl-A, DDQ and TCNE in acetonitrile. The absorption maxima of the complexes were 518.5, 584.0 and 464.0 nm for Cl-A complex, DDQ complex, and TCNE complex respectively. The compositions of the papaverine complexes were determined to be 1:1 from Job's method of continuous variation. Solid complexes formed between papaverine and the acceptors were isolated. Comparison of the FTIR spectra of the solid complexes between papaverine and the acceptors and their constituents showed considerable shift in absorption peaks, changes in intensities of the peaks and formation of the new bands on complexation. However, no attempt has been made to purify the complexes and study the detailed spectra both theoretically and experimentally. The energies hνCT of the charge-transfer complexes were compared with the theoretical values of hνCT of the complexes obtained from HOMO and LUMO of the donor and the acceptors. The reasons for the differences in hνCT values were explained. Density function theory was used for calculation. hνCT (experimental) values of the transition energies of the complexes in acetonitrile differed from hνCT (theoretical) values. IDV value of papaverine was calculated. Charge-transfer complexes were assumed to be partial electrovalent compounds with organic dative ions D+ and A- (in the excited state) and attempts had been made to correlate the energy changes for the formation of the complexes with the energy changes for the formation of electrovalent compounds between M+ and X- ions.
Formation of complex bacterial colonies via self-generated vortices
NASA Astrophysics Data System (ADS)
Czirók, András; Ben-Jacob, Eshel; Cohen, Inon; Vicsek, Tamás
1996-08-01
Depending on the environmental conditions bacterial colonies growing on agar surfaces can exhibit complex colony formation and various types of collective motion. Experimental results are presented concerning the hydrodynamics (vortices, migration of bacteria in clusters) and colony formation of a morphotype of Bacillus subtilis. Some of these features are not specific to this morphotype but also have been observed in several other bacterial strains, suggesting the presence of universal effects. A simple model of self-propelled particles is proposed, which is capable of describing the hydrodynamics on the intermediate level, including the experimentally observed rotating disks of bacteria. The colony formation is captured by a complex generic model taking into account nutrient diffusion, reproduction, and sporulation of bacteria, extracellular slime deposition, chemoregulation, and inhomogeneous population. Our model also sheds light on some possible biological benefits of this ``multicellular behavior.''
Making More-Complex Molecules Using Superthermal Atom/Molecule Collisions
NASA Technical Reports Server (NTRS)
Shortt, Brian; Chutjian, Ara; Orient, Otto
2008-01-01
A method of making more-complex molecules from simpler ones has emerged as a by-product of an experimental study in outer-space atom/surface collision physics. The subject of the study was the formation of CO2 molecules as a result of impingement of O atoms at controlled kinetic energies upon cold surfaces onto which CO molecules had been adsorbed. In this study, the O/CO system served as a laboratory model, not only for the formation of CO2 but also for the formation of other compounds through impingement of rapidly moving atoms upon molecules adsorbed on such cold interstellar surfaces as those of dust grains or comets. By contributing to the formation of increasingly complex molecules, including organic ones, this study and related other studies may eventually contribute to understanding of the origins of life.
Say again? How complexity and format of air traffic control instructions affect pilot recall
DOT National Transportation Integrated Search
1999-01-01
This study compared the recall of ATC information presented in cither grouped or sequential format : in a part-task simulation. It also tested the effect of complexity of ATC clearances on recall, that is, : how many pieces of information a single tr...
ERIC Educational Resources Information Center
Fienup, Daniel M.; Wright, Nicole A.; Fields, Lanny
2015-01-01
Two experiments evaluated the effects of the simple-to-complex and simultaneous training protocols on the formation of academically relevant equivalence classes. The simple-to-complex protocol intersperses derived relations probes with training baseline relations. The simultaneous protocol conducts all training trials and test trials in separate…
STUDY USING A THREE-DIMENSIONAL SMOG FORMATION MODEL UNDER CONDITIONS OF COMPLEX FLOW
To clarify the photochemical smog formation mechanisms under conditions of complex flow, the SAI Urban Airshed Model was evaluated using a 1981 field observed data base. In the Tokyo Metropolitan Area higher O3 concentrations are usually observed near the shore in the morning. As...
NASA Technical Reports Server (NTRS)
Dressler, B. O.; Weiser, T.; Brockmeyer, P.
1996-01-01
The origin of the Sudbury Structure and of the associated heterolithic breccias of the Onaping Formation and the Sudbury Igneous Complex have been controversial. While an impact origin of the structure has gained wide acceptance over the last 15 years, the origin of the recrystallized Onaping Formation glasses and of the igneous complex is still being debated. Recently the interpretation of the breccias of the Onaping Formation as suevitic fall-back impact breccias has been challenged. The igneous complex is interpreted either as a differentiated impact melt sheet or as a combination of an upper impact melt represented by the granophyre, and a lower, impact-triggered magmatic body consisting of the norite-sublayer formations. The Onaping Formation contains glasses as fluidal and nonfluidal fragments of various shapes and sizes. They are recrystallized, and our research indicates that they are petrographically heterogeneous and span a wide range of chemical compositions. These characteristics are not known from glasses of volcanic deposits. This suggests an origin by shock vitrification, an interpretation consistent with their association with numerous and varied country rock clasts that exhibit microscopic shock metamorphic features. The recrystallized glass fragments represent individual solid-state and liquid-state vitrified rocks or relatively small melt pods. The basal member lies beneath the Gray and Black members of the Onaping Formation and, where not metamorphic, has an igneous matrix. Igneous-textured melt bodies occur in the upper two members and above the Basal Member. A comparison of the chemical compositions of recrystallized glasses and of the matrices of the Basal Member and the melt bodies with the components and the bulk composition of the igneous complex is inconclusive as to the origin of the igneous complex. Basal Member matrix and Melt Bodies, on average, are chemically similar to the granophyre of the Sudbury Igneous Complex, suggesting that they are genetically related. Our chemical results allow interpretation of the entire igneous complex as a differentiated impact melt. However, they are also consistent with the granophyre alone being the impact melt and the nofite and quartz gabbro beneath it representing an impact-triggered magmatic body. This interpretation is preferred, as it is consistent with a number of field observations. A re-evaluation and extension of structural field studies and of geochemical data, as well as a systematic study of the contact relationships of the various igneous phases of the igneous complex, are needed to establish a Sudbury impact model consistent with all data and observations
The Formation of Formaldehyde on Interstellar Carbonaceous Grain Analogs by O/H Atom Addition
NASA Astrophysics Data System (ADS)
Potapov, Alexey; Jäger, Cornelia; Henning, Thomas; Jonusas, Mindaugas; Krim, Lahouari
2017-09-01
An understanding of possible scenarios for the formation of astrophysically relevant molecules, particularly complex organic molecules, will bring us one step closer to the understanding of our astrochemical heritage. In this context, formaldehyde is an important molecule as a precursor of methanol, which in turn is a starting point for the formation of more complex organic species. In the present experiments, for the first time, following the synthesis of CO, formaldehyde has been produced on the surface of interstellar grain analogs, hydrogenated fullerene-like carbon grains, by O and H atom bombardment. The formation of H2CO is an indication for a possible methanol formation route in such systems.
Zheng, Mengge; Chao, Chen; Yu, Jinglin; Copeland, Les; Wang, Shuo; Wang, Shujun
2018-02-28
The effects of chain length and degree of unsaturation of fatty acids (FAs) on structure and in vitro digestibility of starch-protein-FA complexes were investigated in model systems. Studies with the rapid visco analyzer (RVA) showed that the formation of ternary complex resulted in higher viscosities than those of binary complex during the cooling and holding stages. The results of differential scanning calorimetry (DSC), Raman, and X-ray diffraction (XRD) showed that the structural differences for ternary complexes were much less than those for binary complexes. Starch-protein-FA complexes presented lower in vitro enzymatic digestibility compared with starch-FAs complexes. We conclude that shorter chain and lower unsaturation FAs favor the formation of ternary complexes but decrease the thermal stability of these complexes. FAs had a smaller effect on the ordered structures of ternary complexes than on those of binary complexes and little effect on enzymatic digestibility of both binary and ternary complexes.
Lee, Jun-Yeop; Yun, Jong-Il
2013-07-21
The chemical behavior of ternary Ca-UO2-CO3 complexes was investigated by using time-resolved laser fluorescence spectroscopy (TRLFS) in combination with EDTA complexation at pH 7-9. A novel TRLFS revealed two distinct fluorescence lifetimes of 12.7 ± 0.2 ns and 29.2 ± 0.4 ns for uranyl complexes which were formed increasingly dependent upon the calcium ion concentration, even though nearly indistinguishable fluorescence peak shapes and positions were measured for both Ca-UO2-CO3 complexes. For identifying the stoichiometric number of complexed calcium ions, slope analysis in terms of relative fluorescence intensity versus calcium concentration was employed in a combination with the complexation reaction of CaEDTA(2-) by adding EDTA. The formation of CaUO2(CO3)3(2-) and Ca2UO2(CO3)3(aq) was identified under given conditions and their formation constants were determined at I = 0.1 M Na/HClO4 medium, and extrapolated to infinitely dilute solution using specific ion interaction theory (SIT). As a result, the formation constants for CaUO2(CO3)3(2-) and Ca2UO2(CO3)3(aq) were found to be log β113(0) = 27.27 ± 0.14 and log β213(0) = 29.81 ± 0.19, respectively, providing that the ternary Ca-UO2-CO3 complexes were predominant uranium(vi) species at neutral to weakly alkaline pH in the presence of Ca(2+) and CO3(2-) ions.
NASA Astrophysics Data System (ADS)
Rubinstein, A.; Sabirianov, R. F.; Mei, W. N.; Namavar, F.; Khoynezhad, A.
2010-08-01
Using a nonlocal electrostatic approach that incorporates the short-range structure of the contacting media, we evaluated the electrostatic contribution to the energy of the complex formation of two model proteins. In this study, we have demonstrated that the existence of an ordered interfacial water layer at the protein-solvent interface reduces the charging energy of the proteins in the aqueous solvent, and consequently increases the electrostatic contribution to the protein binding (change in free energy upon the complex formation of two proteins). This is in contrast with the finding of the continuum electrostatic model, which suggests that electrostatic interactions are not strong enough to compensate for the unfavorable desolvation effects.
Rubinstein, A; Sabirianov, R F; Mei, W N; Namavar, F; Khoynezhad, A
2010-08-01
Using a nonlocal electrostatic approach that incorporates the short-range structure of the contacting media, we evaluated the electrostatic contribution to the energy of the complex formation of two model proteins. In this study, we have demonstrated that the existence of an ordered interfacial water layer at the protein-solvent interface reduces the charging energy of the proteins in the aqueous solvent, and consequently increases the electrostatic contribution to the protein binding (change in free energy upon the complex formation of two proteins). This is in contrast with the finding of the continuum electrostatic model, which suggests that electrostatic interactions are not strong enough to compensate for the unfavorable desolvation effects.
Stegmann, Cora; Abdellatif, Mohamed E. A.; Laib Sampaio, Kerstin; Walther, Paul
2016-01-01
ABSTRACT The glycoprotein O (gO) is betaherpesvirus specific. Together with the viral glycoproteins H and L, gO forms a covalent trimeric complex that is part of the viral envelope. This trimer is crucial for cell-free infectivity of human cytomegalovirus (HCMV) but dispensable for cell-associated spread. We hypothesized that the amino acids that are conserved among gOs of different cytomegaloviruses are important for the formation of the trimeric complex and hence for efficient virus spread. In a mutational approach, nine peptide sites, containing all 13 highly conserved amino acids, were analyzed in the context of HCMV strain TB40-BAC4 with regard to infection efficiency and formation of the gH/gL/gO complex. Mutation of amino acids (aa) 181 to 186 or aa 193 to 198 resulted in the loss of the trimer and a complete small-plaque phenotype, whereas mutation of aa 108 or aa 249 to 254 caused an intermediate phenotype. While individual mutations of the five conserved cysteines had little impact, their relevance was revealed in a combined mutation, which abrogated both complex formation and cell-free infectivity. C343 was unique, as it was sufficient and necessary for covalent binding of gO to gH/gL. Remarkably, however, C218 together with C167 rescued infectivity in the absence of detectable covalent complex formation. We conclude that all highly conserved amino acids contribute to the function of gO to some extent but that aa 181 to 198 and cysteines 343, 218, and 167 are particularly relevant. Surprisingly, covalent binding of gO to gH/gL is required neither for its incorporation into virions nor for proper function in cell-free infection. IMPORTANCE Like all herpesviruses, the widespread human pathogen HCMV depends on glycoproteins gB, gH, and gL for entry into target cells. Additionally, gH and gL have to bind gO in a trimeric complex for efficient cell-free infection. Homologs of gO are shared by all cytomegaloviruses, with 13 amino acids being highly conserved. In a mutational approach we analyzed these amino acids to elucidate their role in the function of gO. All conserved amino acids contributed either to formation of the trimeric complex or to cell-free infection. Notably, these two phenotypes were not inevitably linked as the mutation of a charged cluster in the center of gO abrogated cell-free infection while trimeric complexes were still being formed. Cysteine 343 was essential for covalent binding of gO to gH/gL; however, noncovalent complex formation in the absence of cysteine 343 also allowed for cell-free infectivity. PMID:27795411
Hicken, Alexandra; White, Andrew J P; Crimmin, Mark R
2017-11-20
A series of heterobimetallic complexes containing three-center, two-electron Au-H-Cu bonds have been prepared from addition of a parent gold hydride to a bent d 10 copper(I) fragment. These highly unusual heterobimetallic complexes represent a missing link in the widely investigated series of neutral and cationic coinage metal hydride complexes containing Cu-H-Cu and M-H-M + moieties (M=Cu, Ag). The well-defined heterobimetallic hydride complexes act as precatalysts for the conversion of CO 2 into HCO 2 Bpin with HBpin as the reductant. The selectivity of the heterobimetallic complexes for the catalytic production of a formate equivalent surpasses that of the parent monomeric Group 11 complexes. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.
Smith, Benjamin A; Padrick, Shae B; Doolittle, Lynda K; Daugherty-Clarke, Karen; Corrêa, Ivan R; Xu, Ming-Qun; Goode, Bruce L; Rosen, Michael K; Gelles, Jeff
2013-01-01
During cell locomotion and endocytosis, membrane-tethered WASP proteins stimulate actin filament nucleation by the Arp2/3 complex. This process generates highly branched arrays of filaments that grow toward the membrane to which they are tethered, a conflict that seemingly would restrict filament growth. Using three-color single-molecule imaging in vitro we revealed how the dynamic associations of Arp2/3 complex with mother filament and WASP are temporally coordinated with initiation of daughter filament growth. We found that WASP proteins dissociated from filament-bound Arp2/3 complex prior to new filament growth. Further, mutations that accelerated release of WASP from filament-bound Arp2/3 complex proportionally accelerated branch formation. These data suggest that while WASP promotes formation of pre-nucleation complexes, filament growth cannot occur until it is triggered by WASP release. This provides a mechanism by which membrane-bound WASP proteins can stimulate network growth without restraining it. DOI: http://dx.doi.org/10.7554/eLife.01008.001 PMID:24015360
Chemically engineered papain as artificial formate dehydrogenase for NAD(P)H regeneration.
Haquette, Pierre; Talbi, Barisa; Barilleau, Laure; Madern, Nathalie; Fosse, Céline; Salmain, Michèle
2011-08-21
Organometallic complexes of the general formula [(η(6)-arene)Ru(N⁁N)Cl](+) and [(η(5)-Cp*)Rh(N⁁N)Cl](+) where N⁁N is a 2,2'-dipyridylamine (DPA) derivative carrying a thiol-targeted maleimide group, 2,2'-bispyridyl (bpy), 1,10-phenanthroline (phen) or ethylenediamine (en) and arene is benzene, 2-chloro-N-[2-(phenyl)ethyl]acetamide or p-cymene were identified as catalysts for the stereoselective reduction of the enzyme cofactors NAD(P)(+) into NAD(P)H with formate as a hydride donor. A thorough comparison of their effectiveness towards NAD(+) (expressed as TOF) revealed that the Rh(III) complexes were much more potent catalysts than the Ru(II) complexes. Within the Ru(II) complex series, both the N⁁N and arene ligands forming the coordination sphere had a noticeable influence on the activity of the complexes. Covalent anchoring of the maleimide-functionalized Ru(II) and Rh(III) complexes to the cysteine endoproteinase papain yielded hybrid metalloproteins, some of them displaying formate dehydrogenase activity with potentially interesting kinetic parameters.
Charge-transfer complexes of sulfamethoxazole drug with different classes of acceptors
NASA Astrophysics Data System (ADS)
Refat, Moamen S.; El-Korashy, Sabry A.; El-Deen, Ibrahim M.; El-Sayed, Shaima M.
2010-09-01
The charge-transfer complexes of the donor sulfamethoxazole (SZ) with iodine (I 2), 2,3-dichloro-5,6-dicyano-1,4-benzoquinone (DDQ), p-chloranil (CHL) and picric acid (PA) have been studied spectrophotometrically in chloroform or methanol at room temperature using absorption spectrophotometer. The results indicate that formation of CT-complexes in case of four acceptors. The stoichiometry of the complexes was found to be 1:1 ratio by molar ratio method between donor and acceptor with maximum absorption bands (CT band). The data are discussed in terms of formation constant ( KCT), molar extinction coefficient ( ɛCT), standard free energy (Δ G°), oscillator strength (ƒ), transition dipole moment ( μ), resonance energy ( RN) and ionization potential ( ID). The results indicate that the formation constant ( KCT) for the complexes were shown to be dependent upon the nature of electron acceptor, donor and polarity of solvents which were used. IR, 1H NMR, mass spectra, UV-Vis techniques, elemental analyses (CHN) and TG-DTG investigation were used to characterize the four sulfamethoxazole charge-transfer complexes.
THE BORON-CURCUMIN COMPLEX IN TRACE BORON DETERMINATIONS
DOE Office of Scientific and Technical Information (OSTI.GOV)
Heyes, M.R.; Metcalfe, J.
1963-01-01
A simple and robust method for the formation of the complex of boron with curcumin is described. The sensitivity of the method is 6.6 x 10/sup -5/ g/cm/sup 2/. Formation of the complex is believed to be quantitative under the conditions used and some evidence is given for a 1: 3 boron; curcumin ratio. Methods are outlined for the determination of boron in a number of metals, compounds, and organic materials. (auth)
Why can a gold salt react as a base?
Anania, Mariarosa; Jašíková, Lucie; Jašík, Juraj; Roithová, Jana
2017-09-26
This study shows that gold salts [(L)AuX] (L = PMe 3 , PPh 3 , JohnPhos, IPr; X = SbF 6 , PF 6 , BF 4 , TfO, Tf 2 N) act as bases in aqueous solutions and can transform acetone to digold acetonyl complexes [(L) 2 Au 2 (CH 2 COCH 3 )] + without any additional base present in solution. The key step is the formation of digold hydroxide complexes [(L) 2 Au 2 (OH)] + . The kinetics of the formation of the digold complexes and their mutual transformation is studied by electrospray ionization mass spectrometry and the delayed reactant labelling method. We show that the formation of digold hydroxide is the essential first step towards the formation of the digold acetonyl complex, the reaction is favoured by more polar solvents, and the effect of counter ions is negligible. DFT calculations suggest that digold hydroxide and digold acetonyl complexes can exist in solution only due to the stabilization by the interaction with two gold atoms. The reaction between the digold hydroxide and acetone proceeds towards the dimer {[(L)Au(OH)]·[(L)Au(CH 3 COCH 3 )] + }. The monomeric units interact at the gold atoms in the perpendicular arrangement typical of the gold clusters bound by the aurophilic interaction. The hydrogen is transferred within the dimer and the reaction continues towards the digold acetonyl complex and water.
Clark, Kevin D.; Strand, Michael R.
2013-01-01
The phenoloxidase (PO) cascade regulates the melanization of blood (hemolymph) in insects and other arthropods. Most studies indicate that microbial elicitors activate the PO cascade, which results in processing of the zymogen PPO to PO. PO is then thought to oxidize tyrosine and o-diphenols to quinones, which leads to melanin. However, different lines of investigation raise questions as to whether these views are fully correct. Here we report that hemolymph from the silkmoth, Bombyx mori, rapidly melanizes after collection from a wound site. Prior studies indicated that in vitro activated PPO hydroxylates Tyr inefficiently. Measurement of in vivo substrate titers, however, suggested that Tyr was the only PO substrate initially present in B. mori plasma and that it is rapidly metabolized by PO. Fractionation of plasma by gel filtration chromatography followed by bioassays indicated that melanization activity was primarily associated with a high mass complex (∼670 kDa) that contained PO. The prophenoloxidase-activating protease inhibitor Egf1.0 blocked formation of this complex and Tyr metabolism, but the addition of phenylthiourea to plasma before fractionation enhanced complex formation and Tyr metabolism. Mass spectrometry analysis indicated that the complex contained PO plus other proteins. Taken together, our results indicate that wounding alone activates the PO cascade in B. mori. They also suggest that complex formation is required for efficient use of Tyr as a substrate. PMID:23553628
NASA Astrophysics Data System (ADS)
Faizan, Mohd; Afroz, Ziya; Alam, Mohammad Jane; Bhat, Sheeraz Ahmad; Ahmad, Shabbir; Ahmad, Afaq
2018-05-01
The intermolecular interactions in complex formation between 2-amino-4-hydroxy-6-methylpyrimidine (AHMP) and 2,3-pyrazinedicarboxylicacid (PDCA) have been explored using density functional theory calculations. The isolated 1:1 molecular geometry of proton transfer (PT) complex between AHMP and PDCA has been optimized on a counterpoise corrected potential energy surface (PES) at DFT-B3LYP/6-31G(d,p) level of theory in the gaseous phase. Further, the formation of hydrogen bonded charge transfer (HBCT) complex between PDCA and AHMP has been also discussed. PT energy barrier between two extremes is calculated using potential energy surface (PES) scan by varying bond length. The intermolecular interactions have been analyzed from theoretical perspective of natural bond orbital (NBO) analysis. In addition, the interaction energy between molecular fragments involved in the complex formation has been also computed by counterpoise procedure at same level of theory.
NASA Astrophysics Data System (ADS)
Sharma, S. S.; Kadia, M. V.
2014-12-01
The complexation of lanthanide ions (Y3+, La3+, Ce3+, Pr3+, Nd3+, Sm3+, Gd3+, Tb3+, and Dy3+) with 3-[(1 R)-1-hydroxy-2-(methylamino)ethyl]phenol hydrochloride was studied at different temperatures and different ionic strengths in aqueous solutions by Irving-Rossotti pH titration technique. Stepwise calculation, PKAS and BEST Fortran IV computer programs were used for determination of proton-ligand and metal-ligand stability constants. The formation of species like MA, MA2, and MA(OH) is considered in SPEPLOT. Thermodynamic parameters of complex formation (Δ G, Δ H, and Δ S) are also evaluated. Negative Δ G and Δ H values indicate that complex formation is favourable in these experimental conditions. The stability of complexes is also studied at in different solvent-aqueous (vol/vol). The stability series of lanthanide complexes has shown to have the "gadolinium break." Stability of complexes decreases with increase in ionic strength and temperature. Effect of systematic errors like effect of dissolved carbon dioxide, concentration of alkali, concentration of acid, concentration of ligand and concentration of metal have also been explained.
Zein/caseinate/pectin complex nanoparticles: Formation and characterization.
Chang, Chao; Wang, Taoran; Hu, Qiaobin; Luo, Yangchao
2017-11-01
In this study, pectin was used as coating material to form zein/caseinate/pectin complex nanoparticles through pH adjustment and heating treatment for potential oral delivery applications. The preparation conditions were studied by applying heating treatment at different pHs, either the isoelectric point of zein (pH 6.2) or caseinate (pH 4.6), or consecutively at both pHs. The particulate characteristics, including particle size, polydispersity index, and zeta potential were monitored for complex nanoparticles formed under different preparation conditions. The complex nanoparticles generally exhibited particle size smaller than 200nm with narrow distribution, spherical shape, and strong negative charge. Fourier transform infrared and fluorescence spectroscopy revealed that hydrophobic interactions and hydrogen bonds were involved in the formation of complex nanoparticles, in addition to electrostatic interactions. Fresh colloidal dispersion and freeze-dried powders varied in their morphology, depending on their preparation conditions. Our results suggested that heating pH and sequence significantly affected the morphology of complex nanoparticles, and pectin coating exerted stabilization effect under simulated gastrointestinal conditions. The present study provides insight into the formation of protein/polysaccharide complex nanoparticles under different preparation conditions. Copyright © 2017 Elsevier B.V. All rights reserved.
Park, Ga Young; Deepalatha, Subramanian; Puiu, Simona C; Lee, Dong-Heon; Mondal, Biplab; Narducci Sarjeant, Amy A; del Rio, Diego; Pau, Monita Y M; Solomon, Edward I; Karlin, Kenneth D
2009-11-01
Reaction of nitrogen monoxide with a copper(I) complex possessing a tridentate alkylamine ligand gives a Cu(I)-(*NO) adduct, which when exposed to dioxygen generates a peroxynitrite (O=NOO(-))-Cu(II) species. This undergoes thermal transformation to produce a copper(II) nitrito (NO(2) (-)) complex and 0.5 mol equiv O(2). In the presence of a substituted phenol, the peroxynitrite complex effects oxidative coupling, whereas addition of chloride ion to dissociate the peroxynitrite moiety instead leads to phenol ortho nitration. Discussions include the structures (including electronic description) of the copper-nitrosyl and copper-peroxynitrite complexes and the formation of the latter, based on density functional theory calculations and accompanying spectroscopic data.
High-frequency promoter firing links THO complex function to heavy chromatin formation.
Mouaikel, John; Causse, Sébastien Z; Rougemaille, Mathieu; Daubenton-Carafa, Yves; Blugeon, Corinne; Lemoine, Sophie; Devaux, Frédéric; Darzacq, Xavier; Libri, Domenico
2013-11-27
The THO complex is involved in transcription, genome stability, and messenger ribonucleoprotein (mRNP) formation, but its precise molecular function remains enigmatic. Under heat shock conditions, THO mutants accumulate large protein-DNA complexes that alter the chromatin density of target genes (heavy chromatin), defining a specific biochemical facet of THO function and a powerful tool of analysis. Here, we show that heavy chromatin distribution is dictated by gene boundaries and that the gene promoter is necessary and sufficient to convey THO sensitivity in these conditions. Single-molecule fluorescence in situ hybridization measurements show that heavy chromatin formation correlates with an unusually high firing pace of the promoter with more than 20 transcription events per minute. Heavy chromatin formation closely follows the modulation of promoter firing and strongly correlates with polymerase occupancy genome wide. We propose that the THO complex is required for tuning the dynamic of gene-nuclear pore association and mRNP release to the same high pace of transcription initiation. Copyright © 2013 The Authors. Published by Elsevier Inc. All rights reserved.
Single-stranded nucleic acids promote SAMHD1 complex formation.
Tüngler, Victoria; Staroske, Wolfgang; Kind, Barbara; Dobrick, Manuela; Kretschmer, Stefanie; Schmidt, Franziska; Krug, Claudia; Lorenz, Mike; Chara, Osvaldo; Schwille, Petra; Lee-Kirsch, Min Ae
2013-06-01
SAM domain and HD domain-containing protein 1 (SAMHD1) is a dGTP-dependent triphosphohydrolase that degrades deoxyribonucleoside triphosphates (dNTPs) thereby limiting the intracellular dNTP pool. Mutations in SAMHD1 cause Aicardi-Goutières syndrome (AGS), an inflammatory encephalopathy that mimics congenital viral infection and that phenotypically overlaps with the autoimmune disease systemic lupus erythematosus. Both disorders are characterized by activation of the antiviral cytokine interferon-α initiated by immune recognition of self nucleic acids. Here we provide first direct evidence that SAMHD1 associates with endogenous nucleic acids in situ. Using fluorescence cross-correlation spectroscopy, we demonstrate that SAMHD1 specifically interacts with ssRNA and ssDNA and establish that nucleic acid-binding and formation of SAMHD1 complexes are mutually dependent. Interaction with nucleic acids and complex formation do not require the SAM domain, but are dependent on the HD domain and the C-terminal region of SAMHD1. We finally demonstrate that mutations associated with AGS exhibit both impaired nucleic acid-binding and complex formation implicating that interaction with nucleic acids is an integral aspect of SAMHD1 function.
Experimental Investigation of the Formation of Complex Craters
NASA Astrophysics Data System (ADS)
Martellato, E.; Dörfler, M. A.; Schuster, B.; Wünnemman, K.; Kenkmann, T.
2017-09-01
The formation of complex impact craters is still poorly understood, because standard material models fail to explain the gravity-driven collapse at the observed size-range of a bowl-shaped transient crater into a flat-floored crater structure with a central peak or ring and terraced rim. To explain such a collapse the so-called Acoustic Fluidization (AF) model has been proposed. The AF assumes that heavily fractured target rocks surrounding the transient crater are temporarily softened by an acoustic field in the wake of an expanding shock wave generated upon impact. The AF has been successfully employed in numerous modeling studies of complex crater formation; however, there is no clear relationship between model parameters and observables. In this study, we present preliminary results of laboratory experiments aiming at relating the AF parameters to observables such as the grain size, average wave length of the acoustic field and its decay time τ relative to the crater formation time.
Zhuge, Qunbi; Morsy-Osman, Mohamed; Chagnon, Mathieu; Xu, Xian; Qiu, Meng; Plant, David V
2014-02-10
In this paper, we propose a low-complexity format-transparent digital signal processing (DSP) scheme for next generation flexible and energy-efficient transceiver. It employs QPSK symbols as the training and pilot symbols for the initialization and tracking stage of the receiver-side DSP, respectively, for various modulation formats. The performance is numerically and experimentally evaluated in a dual polarization (DP) 11 Gbaud 64QAM system. Employing the proposed DSP scheme, we conduct a system-level study of Tb/s bandwidth-adaptive superchannel transmissions with flexible modulation formats including QPSK, 8QAM and 16QAM. The spectrum bandwidth allocation is realized in the digital domain instead of turning on/off sub-channels, which improves the performance of higher order QAM. Various transmission distances ranging from 240 km to 6240 km are demonstrated with a colorless detection for hardware complexity reduction.
Paquet, Chantal; Lacelle, Thomas; Liu, Xiangyang; Deore, Bhavana; Kell, Arnold J; Lafrenière, Sylvie; Malenfant, Patrick R L
2018-04-19
Copper formate complexes with various primary amines, secondary amines and pyridines were prepared, and their decomposition into conductive films was characterized. A comparison of the various complexes reveals that the temperature of thermolysis depends on the number of hydrogen bonds that can be formed between the amine and formate ligands. The particle size resulting from sintering of the copper complexes is shown to depend on the fraction of amine ligand released during the thermolysis reaction. The particle size in turn is shown to govern the electrical properties of the copper films. Correlations between the properties of the amines, such as boiling point and coordination strength, with the morphology and electrical performance of the copper films were established and provide a basis for the molecular design of copper formate molecular inks.
Artesani, Alessia; Gherardi, Francesca; Nevin, Austin; Valentini, Gianluca; Comelli, Daniela
2017-01-01
It is known that oil paintings containing zinc white are subject to rapid degradation. This is caused by the interaction between the active groups of binder and the metal ions of the pigment, which gives rise to the formation of new zinc complexes (metal soaps). Ongoing studies on zinc white paints have been limited to the chemical mechanisms that lead to the formation of zinc complexes. On the contrary, little is known of the photo-physical changes induced in the zinc oxide crystal structure following this interaction. Time-resolved photoluminescence spectroscopy has been applied to follow modifications in the luminescent zinc white pigment when mixed with binder. Significant changes in trap state photoluminescence emissions have been detected: the enhancement of a blue emission combined with a change of the decay kinetic of the well-known green emission. Complementary data from molecular analysis of paints using Fourier transform infrared spectroscopy confirms the formation of zinc carboxylates and corroborates the mechanism for zinc complexes formation. We support the hypothesis that zinc ions migrate into binder creating novel vacancies, affecting the photoluminescence intensity and lifetime properties of zinc oxide. Here, we further demonstrate the advantages of a time-resolved photoluminescence approach for studying defects in semiconductor pigments. PMID:28772700
Fitzgibbon, Jessica; Beck, Martina; Zhou, Ji; Faulkner, Christine; Robatzek, Silke; Oparka, Karl
2013-01-01
Plasmodesmata (PD) form tubular connections that function as intercellular communication channels. They are essential for transporting nutrients and for coordinating development. During cytokinesis, simple PDs are inserted into the developing cell plate, while during wall extension, more complex (branched) forms of PD are laid down. We show that complex PDs are derived from existing simple PDs in a pattern that is accelerated when leaves undergo the sink–source transition. Complex PDs are inserted initially at the three-way junctions between epidermal cells but develop most rapidly in the anisocytic complexes around stomata. For a quantitative analysis of complex PD formation, we established a high-throughput imaging platform and constructed PDQUANT, a custom algorithm that detected cell boundaries and PD numbers in different wall faces. For anticlinal walls, the number of complex PDs increased with increasing cell size, while for periclinal walls, the number of PDs decreased. Complex PD insertion was accelerated by up to threefold in response to salicylic acid treatment and challenges with mannitol. In a single 30-min run, we could derive data for up to 11k PDs from 3k epidermal cells. This facile approach opens the door to a large-scale analysis of the endogenous and exogenous factors that influence PD formation. PMID:23371949
NASA Technical Reports Server (NTRS)
Francis, A. J.; Dodge, C. J.
1993-01-01
A process has been developed at Brookhaven National Laboratory (BNL) for the removal of metals and radionuclides from contaminated materials, soils, and waste sites. In this process, citric acid, a naturally occurring organic complexing agent, is used to extract metals such as Ba, Cd, Cr, Ni, Zn, and radionuclides Co, Sr, Th, and U from solid wastes by formation of water soluble, metal-citrate complexes. Citric acid forms different types of complexes with the transition metals and actinides, and may involve formation of a bidentate, tridentate, binuclear, or polynuclear complex species. The extract containing radionuclide/metal complex is then subjected to microbiological degradation followed by photochemical degradation under aerobic conditions. Several metal citrate complexes are biodegraded, and the metals are recovered in a concentrated form with the bacterial biomass. Uranium forms binuclear complex with citric acid and is not biodegraded. The supernatant containing uranium citrate complex is separated and upon exposure to light, undergoes rapid degradation resulting in the formation of an insoluble, stable polymeric form of uranium. Uranium is recovered as a precipitate (polyuranate) in a concentrated form for recycling or for appropriate disposal. This treatment process, unlike others which use caustic reagents, does not create additional hazardous wastes for disposal and causes little damage to soil which can then be returned to normal use.
Nishida, T
1968-09-01
The effect of phospholipase A on the interaction of low density lipoproteins of the S(f) 0-10 class with dextran sulfate was studied in phosphate buffer of pH 7.4, ionic strength 0.1, by chemical, spectrophotometric, and centrifugal methods. When low density lipoproteins that had been treated with phospholipase A were substituted for untreated lipoproteins, the amount of insoluble dextran sulfate-lipoprotein complex formed was greatly reduced. Hydrolysis of over 20% of the lecithin and phosphatidyl ethanolamine constituents of the lipoproteins prevented the formation of insoluble complex. However, even the lipoproteins in which almost all the phosphoglycerides were hydrolyzed produced soluble complex, which was converted to insoluble complex upon addition of magnesium sulfate. It is apparent that the lipoproteins altered extensively by treatment with phospholipase A retain many characteristic properties of native low density lipoproteins. Fatty acids, but not lysolecithin, released by the action of phospholipase A interfered with the formation of insoluble complex; this interference was due to association of the fatty acids with the lipoproteins. With increases in the concentration of the associated fatty acids, the amounts of magnesium ion required for the conversion of soluble complex to insoluble complex increased progressively. Charge interaction is evidently of paramount importance in the formation of sulfated polysaccharide-lipoprotein complexes.
The Formation of Formaldehyde on Interstellar Carbonaceous Grain Analogs by O/H Atom Addition
DOE Office of Scientific and Technical Information (OSTI.GOV)
Potapov, Alexey; Jäger, Cornelia; Henning, Thomas
An understanding of possible scenarios for the formation of astrophysically relevant molecules, particularly complex organic molecules, will bring us one step closer to the understanding of our astrochemical heritage. In this context, formaldehyde is an important molecule as a precursor of methanol, which in turn is a starting point for the formation of more complex organic species. In the present experiments, for the first time, following the synthesis of CO, formaldehyde has been produced on the surface of interstellar grain analogs, hydrogenated fullerene-like carbon grains, by O and H atom bombardment. The formation of H{sub 2}CO is an indication formore » a possible methanol formation route in such systems.« less
NASA Astrophysics Data System (ADS)
Malone, J. R.; Nance, R. D.; Keppie, J. D.; Dostal, J.
2002-10-01
The Paleozoic Acatlán Complex of southern Mexico comprises polydeformed metasedimentary, granitoid, and mafic-ultramafic rocks variously interpreted as recording the closure of the Iapetus, Rheic, and Ouachitan Oceans. The complex is tectonically juxtaposed on its eastern margin against Grenville-age gneisses (Oaxacan Complex) that are unconformably overlain by Lower Paleozoic strata containing fossils of Gondwanan affinity. A thick siliciclastic unit (Chazumba and Cosoltepec Formations) at the base of the complex is considered part of a Lower Paleozoic accretionary prism with a provenance that isotopically resembles the Oaxacan Complex. This unit is tectonically overridden by a locally eclogitic mafic-ultramafic unit interpreted as a westward-obducted ophiolite, the emplacement of which was synchronous with mylonitic granitoid intrusion at ca. 440 Ma. Both units are unconformably overlain by a deformed volcano-sedimentary sequence (Tecomate Formation) attributed to a volcanic arc of presumed Devonian age. Deformed granitoids in contact with this sequence have been dated at ca. 371 (La Noria granite) and 287 Ma (Totoltepec pluton). Three phases of penetrative deformation (D 1-3) affect the Cosoltepec Formation; the last two correlate with two penetrative deformational phases that affect the Tecomate Formation. D 1 is of unknown kinematics but predates deposition of the Tecomate Formation and likely records obduction at ca. 440 Ma (Acatecan orogeny). A folded foliation in the Totoltepec pluton appears to record both deformational phases in the Tecomate Formation, bracketing D 2 and D 3 between 287 Ma and the deposition of the nonconformably overlying Leonardian Matzitzi Formation. D 2 records north-south dextral transpression and south-vergent thrusting and is attributed to the collision of Gondwana and southern Laurentia (Ouachitan orogeny) at ca. 290 Ma, the kinematics being consistent with the northward motion of Mexico that is required by most continental reconstructions for the final assembly of Pangea. D 3, which produced broadly north-south, upright folds, is also attributed to this collision and likely followed D 2 closely in the latest Paleozoic.
Zhang, Hong; Andrews, Susan A
2013-11-01
This study investigated the effects of corrosion products of copper, a metal commonly employed in household plumbing systems, on N-nitrosodimethylamine (NDMA) formation from a known NDMA precursor, dimethylamine (DMA). Copper-catalyzed NDMA formation increased with increasing copper concentrations, DMA concentrations, alkalinity and hardness, but decreased with increasing natural organic matter (NOM) concentration. pH influenced the speciation of chloramine and the interactions of copper with DMA. The transformation of monochloramine (NH2Cl) to dichloramine and complexation of copper with DMA were involved in elevating the formation of NDMA by copper at pH 7.0. The inhibiting effect of NOM on copper catalysis was attributed to the rapid consumption of NH2Cl by NOM and/or the competitive complexation of NOM with copper to limit the formation of DMA-copper complexes. Hardness ions, as represented by Ca(2+), also competed with copper for binding sites on NOM, thereby weakening the inhibitory effect of NOM on NDMA formation. Common copper corrosion products also participated in these reactions but in different ways. Aqueous copper released from malachite [Cu2CO3(OH)2] was shown to promote NDMA formation while NDMA formation decreased in the presence of CuO, most likely due to the adsorption of DMA. Copyright © 2013 Elsevier Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Gorboletova, G. G.; Metlin, A. A.; Bychkova, S. A.
2018-05-01
Thermal effects of reactions of the formation of complexes between Ni(II) and triglycine are determined via direct calorimetry in aqueous solutions at 298.15 K and ionic strengths of 0.2, 0.5, and 1.0 (KNO3). Standard thermodynamic characteristics (Δr H°, Δr G°, Δr S°) of complexing processes in the investigated systems are calculated. The structures of triglycinate complexes NiL+, NiH-1L, NiL2, NiH-2L2- 2, NiL- 3, and NiH-3L4- 3 are introduced to compare the obtained values and data on the thermodynamics of triglycinate complexes of Ni(II).
Hitzenberger, Jakob Felix; Dammann, Claudia; Lang, Nina; Lungerich, Dominik; García-Iglesias, Miguel; Bottari, Giovanni; Torres, Tomás; Jux, Norbert; Drewello, Thomas
2016-02-21
A protocol is developed for the coordination of the formate anion (HCOO(-)) to neutral metalloporphyrins (Pors) and -phthalocyanines (Pcs) containing divalent metals as a means to improve their ion formation in electrospray ionization (ESI). This method is particularly useful when the oxidation of the neutral metallomacrocycle fails. While focusing on Zn(II)Pors and Zn(II)Pcs, we show that formate is also readily attached to Mn(II), Mg(II) and Co(II)Pcs. However, for the Co(II)Pc secondary reactions can be observed. Upon collision-induced dissociation (CID), Zn(II)Por/Pc·formate supramolecular complexes can undergo the loss of CO2 in combination with transfer of a hydride anion (H(-)) to the zinc metal center. Further dissociation leads to electron transfer and hydrogen atom loss, generating a route to the radical anion of the Zn(II)Por/Pc without the need for electrochemical reduction, although the Zn(II)Por/Pc may have a too low electron affinity to allow electron transfer directly from the formate anion. In addition to single Por molecules, multi Por arrays were successfully analyzed by this method. In this case, multiple addition of formate occurs, giving rise to multiply charged species. In these multi Por arrays, complexation of the formate anion occurs by two surrounding Por units (sandwich). Therefore, the maximum attainment of formate anions in these arrays corresponds to the number of such sandwich complexes rather than the number of porphyrin moieties. The same bonding motif leads to dimers of the composition [(Zn(II)Por/Pc)2·HCOO](-). In these, the formate anion can act as a structural probe, allowing the distinction of isomeric ions with the formate bridging two macrocycles or being attached to a dimer of directly connected macrocycles.
Transfer hydrogenation catalysis in cells as a new approach to anticancer drug design
Soldevila-Barreda, Joan J.; Romero-Canelón, Isolda; Habtemariam, Abraha; Sadler, Peter J.
2015-01-01
Organometallic complexes are effective hydrogenation catalysts for organic reactions. For example, Noyori-type ruthenium complexes catalyse reduction of ketones by transfer of hydride from formate. Here we show that such catalytic reactions can be achieved in cancer cells, offering a new strategy for the design of safe metal-based anticancer drugs. The activity of ruthenium(II) sulfonamido ethyleneamine complexes towards human ovarian cancer cells is enhanced by up to 50 × in the presence of low non-toxic doses of formate. The extent of conversion of coenzyme NAD+ to NADH in cells is dependent on formate concentration. This novel reductive stress mechanism of cell death does not involve apoptosis or perturbation of mitochondrial membrane potentials. In contrast, iridium cyclopentadienyl catalysts cause cancer cell death by oxidative stress. Organometallic complexes therefore have an extraordinary ability to modulate the redox status of cancer cells. PMID:25791197
Thermodynamic studies of iron chelation with doxycycline in acidic medium
NASA Astrophysics Data System (ADS)
Javed, Javeria; Zahir, Erum
2017-06-01
Doxycycline (DOX) is a broad-spectrum tetracycline antibiotic synthetically derived from oxytetracycline. The complex formation of this drug with iron(III) was studied using spectrophotometry. The thermodynamic parameters of the systems were calculated using the changes in the absorption spectra which occur due to hydrogen bond or complex formation. Thermodynamic parameters of the formation of iron(III) complex with doxycycline (Δ H, Δ G, Δ S, and stability constants) were determined spectrophotometrically at a wavelength corresponding to absorption maximum (374.5 nm) at three different temperatures (22, 35, and 45°C). The obtained data show that the complex has metal to ligand molar ratio of 1: 2 at pH 2-3. The stability constants were calculated to be 13.99 × 106, 7.06 × 105, and 1.29 × 106 by mole ratio method at 22, 35, and 45°C, respectively.
Garrigosa, Anna Maria; Gusmão, Rui; Ariño, Cristina; Díaz-Cruz, José Manuel; Esteban, Miquel
2007-10-15
The use of phase sensitive alternating current polarography (ACP) for the evaluation of complex formation constants of systems where electrodic adsorption is present has been proposed. The applicability of the technique implies the previous selection of the phase angle where contribution of capacitive current is minimized. This is made using Multivariate Curve Resolution by Alternating Least Squares (MCR-ALS) in the analysis of ACP measurements at different phase angles. The method is checked by the study of the complexation of Cd by polymethacrylic (PMA) and polygalacturonic (PGA) acids, and the optimal phase angles have been ca. -10 degrees for Cd-PMA and ca. -15 degrees for Cd-PGA systems. The goodness of phase sensitive ACP has been demonstrated comparing the determined complex formation constants with those obtained by reverse pulse polarography, a technique that minimizes the electrode adsorption effects on the measured currents.
Role of IκB kinase β in regulating the remodeling of the CARMA1-Bcl10-MALT1 complex.
Karim, Zubair A; Hensch, Nicole R; Qasim, Hanan; Alshbool, Fatima Z; Khasawneh, Fadi T
2018-06-02
The current work investigates the notion that inducible clustering of signaling mediators of the IKK pathway is important for platelet activation. Thus, while the CARMA1, Bcl10, and MALT1 (CBM) complex is essential for triggering IKK/NF-κB activation upon platelet stimulation, the signals that elicit its formation and downstream effector activation remain elusive. We demonstrate herein that IKKβ is involved in membrane fusion, and serves as a critical protein kinase required for initial formation and the regulation of the CARMA1/MALT1/Bcl10/CBM complex in platelets. We also show that IKKβ regulates these processes via modulation of phosphorylation of Bcl10 and IKKγ polyubiquitination. Collectively, our data demonstrate that IKKβ regulates membrane fusion and the remodeling of the CBM complex formation. Copyright © 2018 Elsevier Inc. All rights reserved.
NASA Astrophysics Data System (ADS)
Singh, Neeti; Khan, Ishaat M.; Ahmad, Afaq
2010-04-01
The charge transfer complexes of the donor p-toluidine with π-acceptor picric acid have been studied spectrophotometrically in various solvents such as carbon tetrachloride, chloroform, dichloromethane acetone, ethanol, and methanol at room temperature using absorption spectrophotometer. The results indicate that formation of CTC in non-polar solvent is high. The stoichiometry of the complex was found to be 1:1 ratio by straight-line method between donor and acceptor with maximum absorption bands. The data are discussed in terms of formation constant ( KCT), molar extinction coefficient ( ɛCT), standard free energy (Δ Go), oscillator strength ( f), transition dipole moment ( μEN), resonance energy ( RN) and ionization potential ( ID). The results indicate that the formation constant ( KCT) for the complex was shown to be dependent upon the nature of electron acceptor, donor and polarity of solvents that were used.
NASA Astrophysics Data System (ADS)
Singh, Neeti; Ahmad, Afaq
2010-04-01
The charge transfer complexes of the donor p-toluidine with π-acceptor picric acid have been studied spectrophotometrically in various solvents such as acetone, ethanol, and methanol at room temperature using absorption spectrophotometer. The results indicate that formation of CTC in less polar solvent is high. The stoichiometry of the complex was found to be 1: 1 ratio by straight line method between donor and acceptor with maximum absorption bands. The data are discussed in terms of formation constant ( K CT), molar extinction coefficient (ɛCT), standard free energy (Δ G°), oscillator strength ( f), transition dipole moment (μEN), resonance energy ( R N) and ionization potential ( I D). The results indicate that the formation constant ( K CT) for the complex were shown to be dependent upon the nature of electron acceptor, donor and polarity of solvents which were used.
Exploring the Role of Carbonate in the Formation of an Organomanganese Tetramer.
Kadassery, Karthika J; Dey, Suman Kr; Friedman, Alan E; Lacy, David C
2017-08-07
The formation of metal-oxygen clusters is an important chemical transformation in biology and catalysis. For example, the biosynthesis of the oxygen-evolving complex in the enzyme photosystem II is a complicated stepwise process that assembles a catalytically active cluster. Herein we describe the role that carbonato ligands have in the formation of the known tetrameric complex [Mn(CO) 3 (μ 3 -OH)] 4 (1). Complex 1 is synthesized in one step via the treatment of Mn 2 (CO) 10 with excess Me 3 NO·2H 2 O. Alternatively, when anhydrous Me 3 NO is used, an OH-free synthetic intermediate (2) with carbonato ligands is produced. Complex 2 produces carbon dioxide, Me 3 NO·2H 2 O, and 1 when treated with water. Labeling studies reveal that the μ 3 -OH ligands in 1 are derived from the water and possibly the carbonato ligands in 2.
Bandyopadhyay, Prasun; Ghosh, Amit K; Ghosh, Chandrasekhar
2012-06-01
Tea and coffee are widely consumed beverages across the world and they are rich sources of various polyphenols. Polyphenols are responsible for the bitterness and astringency of beverages and are also well known to impart antioxidant properties which is beneficial against several oxidative stress related diseases like cancer, cardiovascular diseases, and aging. On the other hand, proteins are also known to display many important roles in several physiological activities. Polyphenols can interact with proteins through hydrophobic or hydrophilic interactions, leading to the formation of soluble or insoluble complexes. According to recent studies, this complex formation can affect the bioavailability and beneficiary properties of both the individual components, in either way. For example, polyphenol-protein complex formation can reduce or enhance the antioxidant activity of polyphenols; similarly it can also affect the digestion ability of several digestive enzymes present in our body. Surprisingly, no review article has been published recently which has focused on the progress in this area, despite numerous articles having appeared in this field. This review summarizes the recent trends and patterns (2005 onwards) in polyphenol-protein interaction studies focusing on the characterization of the complex, the effect of this complex formation on tea and coffee taste, antioxidant properties and the digestive system.
Hertig, C M; Butz, S; Koch, S; Eppenberger-Eberhardt, M; Kemler, R; Eppenberger, H M
1996-01-01
The spatio-temporal appearance and distribution of proteins forming the intercalated disc were investigated in adult rat cardiomyocytes (ARC). The 'redifferentiation model' of ARC involves extensive remodelling of the plasma membrane and of the myofibrillar apparatus. It represents a valuable system to elucidate the formation of cell-cell contact between cardiomyocytes and to assess the mechanisms by which different proteins involved in the cell-cell adhesion process are sorted in a precise manner to the sites of function. Appearance of N-cadherin, the catenins and connexin43 within newly formed adherens and gap junctions was studied. Here first evidence is provided for a formation of two distinct and separable N-cadherin/catenin complexes in cardiomyocytes. Both complexes are composed of N-cadherin and alpha-catenin which bind to either beta-catenin or plakoglobin in a mutually exclusive manner. The two N-cadherin/catenin complexes are assumed to be functionally involved in the formation of cell-cell contacts in ARC; however, the differential appearance and localization of the two types of complexes may also point to a specific role during ARC differentiation. The newly synthesized beta-catenin containing complex is more abundant during the first stages in culture after ARC isolation, while the newly synthesized plakoglobin containing complex progressively accumulates during the morphological changes of ARC. ARC formed a tissue-like pattern in culture whereby the new cell-cell contacts could be dissolved through Ca2+ depletion. Presence of cAMP and replenishment of Ca2+ content in the culture medium not only allowed reformation of cell-cell contacts but also affected the relative protein ratio between the two N-cadherin/catenin complexes, increasing the relative amount of newly synthesized beta-catenin over plakoglobin at a particular stage of ARC differentiation. The clustered N-cadherin/catenin complexes at the plasma membrane appear to be a prerequisite for the following gap junction formation; a temporal sequence of the appearance of adherens junction proteins and of gap junctions forming connexin-43 is suggested.
Zhang, Zhicheng; Parker, Bernard F.; Lohrey, Trevor D.; ...
2018-01-01
Glutaroimide-dioxime forms strong complexes with Np( iv ) and Th( iv ) in aqueous solution and in crystals. The formation of Np( iv ) complexes from initial Np( v ) is interpreted by a complexation-assisted reduction mechanism.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zhang, Zhicheng; Parker, Bernard F.; Lohrey, Trevor D.
Glutaroimide-dioxime forms strong complexes with Np( iv ) and Th( iv ) in aqueous solution and in crystals. The formation of Np( iv ) complexes from initial Np( v ) is interpreted by a complexation-assisted reduction mechanism.
Fröhlich, Daniel R; Kremleva, Alena; Rossberg, André; Skerencak-Frech, Andrej; Koke, Carsten; Krüger, Sven; Rösch, Notker; Panak, Petra J
2017-06-19
The complexation of Am(III) with formate in aqueous solution is studied as a function of the pH value using a combination of extended X-ray absorption fine structure (EXAFS) spectroscopy, iterative transformation factor analysis (ITFA), and quantum chemical calculations. The Am L III -edge EXAFS spectra are analyzed to determine the molecular structure (coordination numbers; Am-O and Am-C distances) of the formed Am(III)-formate species and to track the shift of the Am(III) speciation with increasing pH. The experimental data are compared to predictions from density functional calculations. The results indicate that formate binds to Am(III) in a monodentate fashion, in agreement with crystal structures of lanthanide formates. Furthermore, the investigations are complemented by thermodynamic speciation calculations to verify further the results obtained.
THE BORON-CURCUMIN COMPLEX IN THE DETERMINATION OF TRACE AMOUNTS OF BORON
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hayes, M.R.; Metcalfe, J.
1962-12-01
A simple and robust method is described for the formation of the complex of boron with curcumin. The sensitivity of the method is 8.0 to 8.5 x 10/sup -5/ mu g per sq. cm by Sandell's definition. Formation of the complex is believed to be quartitative under the conditions used, and some evidence is given for a ratio of boron to curcumin of 1 to 3. Methods are outlined for determining boron in some metals, compounds, and organic materials. (auth)
What drives the formation of massive stars and clusters?
NASA Astrophysics Data System (ADS)
Ochsendorf, Bram; Meixner, Margaret; Roman-Duval, Julia; Evans, Neal J., II; Rahman, Mubdi; Zinnecker, Hans; Nayak, Omnarayani; Bally, John; Jones, Olivia C.; Indebetouw, Remy
2018-01-01
Galaxy-wide surveys allow to study star formation in unprecedented ways. In this talk, I will discuss our analysis of the Large Magellanic Cloud (LMC) and the Milky Way, and illustrate how studying both the large and small scale structure of galaxies are critical in addressing the question: what drives the formation of massive stars and clusters?I will show that ‘turbulence-regulated’ star formation models do not reproduce massive star formation properties of GMCs in the LMC and Milky Way: this suggests that theory currently does not capture the full complexity of star formation on small scales. I will also report on the discovery of a massive star forming complex in the LMC, which in many ways manifests itself as an embedded twin of 30 Doradus: this may shed light on the formation of R136 and 'Super Star Clusters' in general. Finally, I will highlight what we can expect in the next years in the field of star formation with large-scale sky surveys, ALMA, and our JWST-GTO program.
Self, W T; Hasona, A; Shanmugam, K T
2001-11-01
The formate hydrogenlyase complex of Escherichia coli catalyses the cleavage of formate to CO2 and H2 and consists of a molybdoenzyme formate dehydrogenase-H, hydrogenase 3 and intermediate electron carriers. The structural genes of this enzyme complex are activated by the FhlA protein in the presence of both formate and molybdate; ModE-Mo serves as a secondary activator. Mutational analysis of the FhlA protein established that the unique N-terminal region of this protein was responsible for formate- and molybdenum-dependent transcriptional control of the hyc operon. Analysis of the N-terminal sequence of the FhlA protein revealed a unique motif (amino acids 7-37), which is also found in ATPases associated with several members of the ABC-type transporter family. A deletion derivative of FhlA lacking these amino acids (FhlA9-2) failed to activate the hyc operon in vivo, although the FhlA9-2 did bind to hyc promoter DNA in vitro. The ATPase activity of the FhlA9-2-DNA-formate complex was at least three times higher than that of the native protein-DNA-formate complex, and this degree of activity was achieved at a lower formate level. Extending the deletion to amino acid 117 (FhlA167) not only reversed the FhlA(-) phenotype of FhlA9-2, but also led to both molybdenum- and formate-independence. Deleting the entire N-terminal domain (between amino acids 5 and 374 of the 692 amino acid protein) also led to an effector-independent transcriptional activator (FhlA165), which had a twofold higher level of hyc operon expression than the native protein. Both FhlA165 and FhlA167 still required ModE-Mo as a secondary activator for an optimal level of hyc-lac expression. The FhlA165 protein also had a twofold higher affinity to hyc promoter DNA than the native FhlA protein, while the FhlA167 protein had a significantly lower affinity for hyc promoter DNA in vitro. Although the ATPase activity of the native protein was increased by formate, the ATPase activity of neither FhlA165 or FhlA167 responded to formate. Removal of the first 117 amino acids of the FhlA protein appears to result in a constitutive, effector-independent activation of transcription of the genes encoding the components of the formate hydrogenlyase complex. The sequence similarity to ABC-ATPases, combined with the properties of the FhlA deletion proteins, led to the proposal that the N-terminal region of the native FhlA protein interacts with formate transport proteins, both as a formate transport facilitator and as a cytoplasmic acceptor.
Adams, Nathan B. P.; Vasilev, Cvetelin; Brindley, Amanda A.; ...
2016-04-30
In chlorophyll biosynthesis, the magnesium chelatase enzyme complex catalyzes the insertion of a Mg 2+ ion into protoporphyrin IX. Prior to this event, two of the three subunits, the AAA + proteins ChlI and ChlD, form a ChlID–MgATP complex. We used microscale thermophoresis to directly determine dissociation constants for the I-D subunits from Synechocystis, and to show that the formation of a ChlID–MgADP complex, mediated by the arginine finger and the sensor II domain on ChlD, is necessary for the assembly of the catalytically active ChlHID–MgATP complex. The N-terminal AAA + domain of ChlD is essential for complex formation, butmore » some stability is preserved in the absence of the C-terminal integrin domain of ChlD, particularly if the intervening polyproline linker region is retained. Single molecule force spectroscopy (SMFS) was used to determine the factors that stabilize formation of the ChlID–MgADP complex at the single molecule level; ChlD was attached to an atomic force microscope (AFM) probe in two different orientations, and the ChlI subunits were tethered to a silica surface; the probability of subunits interacting more than doubled in the presence of MgADP, and we show that the N-terminal AAA + domain of ChlD mediates this process, in agreement with the microscale thermophoresis data. Analysis of the unbinding data revealed a most probable interaction force of around 109 pN for formation of single ChlID–MgADP complexes. Finally, these experiments provide a quantitative basis for understanding the assembly and function of the Mg chelatase complex.« less
NASA Astrophysics Data System (ADS)
Remijan, Anthony John
2015-08-01
The formation and distribution of complex organic material in astronomical environments continues to be a focused research area in astrochemistry. For several decades now, emphasis has been placed on the millimeter/submillimeter regime of the radio spectrum for trying to detect new molecular species and to constrain the chemical formation route of complex molecules by comparing and contrasting their relative distributions towards varying astronomical environments. This effort has been extremely laborious as millimeter/submillimeter facilities have been only able to detect and map the distribution of the strongest transition(s) of the simplest organic molecules. Even then, these single transition "chemical maps" have been very low spatial resolution because early millimeter/submillimeter facilities did not have access to broadband spectral coverage or the imaging capabilities to truly ascertain the morphology of the molecular emission. In the era of ALMA, these limitations have been greatly lifted. Broadband spectral line surveys now hold the key to uncovering the full molecular complexity in astronomical environments. In addition, searches for complex organic material is no longer limited to investigating the strongest lines of the simplest molecules toward the strongest sources of emission in the Galaxy. ALMA is issuing a new era of exploration as the search for complex molecules will now be available to an increased suite of sources in the Galaxy and our understanding of the formation of this complex material will be greatly increased as a result. This presentation will highlight the current and future ALMA capabilities in the search for complex molecules towards astronomical environments, highlight the recent searches that ALMA scientists have conducted from the start of ALMA Early Science and provide the motivation for the next suite of astronomical searches to investigate our pre-biotic origins in the universe.
Planning and Realization of Complex Intentions in Traumatic Brain Injury and Normal Aging
ERIC Educational Resources Information Center
Kliegel, Matthias; Eschen, Anne; Thone-Otto, Angelika I. T.
2004-01-01
The realization of delayed intentions (i.e., prospective memory) is a highly complex process composed of four phases: intention formation, retention, re-instantiation, and execution. The aim of this study was to investigate if executive functioning impairments are related to problems in the formation, re-instantiation, and execution of a delayed…
NASA Astrophysics Data System (ADS)
Rubinstein, Alexander; Sabirianov, Renat
2011-03-01
Using a non-local electrostatic approach that incorporates the short-range structure of the contacting media, we evaluated the electrostatic contribution to the energy of the complex formation of two model proteins. In this study, we have demonstrated that the existence of an low-dielectric interfacial water layer at the protein-solvent interface reduces the charging energy of the proteins in the aqueous solvent, and consequently increases the electrostatic contribution to the protein binding (change in free energy upon the complex formation of two proteins). This is in contrast with the finding of the continuum electrostatic model, which suggests that electrostatic interactions are not strong enough to compensate for the unfavorable desolvation effects.
Pattern formation based on complex coupling mechanism in dielectric barrier discharge
DOE Office of Scientific and Technical Information (OSTI.GOV)
Liu, Weibo; College of Aeronautical Engineering, Binzhou University, Binzhou 256603; Dong, Lifang, E-mail: donglfhbu@163.com, E-mail: pyy1616@163.com
2016-08-15
The pattern formation of cinque-dice square superlattice pattern (CDSSP) is investigated based on the complex coupling mechanism in a dielectric barrier discharge (DBD) system. The spatio-temporal structure of CDSSP obtained by using an intensified-charge coupled device indicates that CDSSP is an interleaving of two kinds of subpatterns (mixture of rectangle and square, and dot-line square) which discharge twice in one half voltage, respectively. Selected by the complex coupling of two subpatterns, the CDSSP can be formed and shows good stability. This investigation based on gas discharge theory together with nonlinear theory may provide a deeper understanding for the nonlinear characteristicsmore » and even the formation mechanism of patterns in DBD.« less
Yancheva, Elena; Paneva, Dilyana; Maximova, Vera; Mespouille, Laetitia; Dubois, Philippe; Manolova, Nevena; Rashkov, Iliya
2007-03-01
Novel polyelectrolyte complexes (PECs) between N-carboxyethylchitosan (CECh) and well-defined (quaternized) poly[2-(dimethylamino)ethyl methacrylate] (PDMAEMA) have been obtained. The modification of chitosan into CECh allows the preparation of PECs in a pH range in which chitosan cannot form complexes. The CECh/PDMAEMA complex is formed in a narrow pH range around 7. The quaternization of the tertiary amino groups of PDMAEMA enables complex formation with CECh both in neutral and in alkaline medium. Cross-linked CECh is also capable of forming complexes with (quaternized) PDMAEMA. The antibacterial activity of (cross-linked) CECh, (quaternized) PDMAEMA, and their complexes against Escherichia coli has been evaluated. In contrast to (quaternized) PDMAEMA, (cross-linked) CECh exhibits no antibacterial activity. The complex formation between cross-linked CECh and (quaternized) PDMAEMA results in a loss of the inherent antibacterial activity of the latter in neutral medium. In acidic medium, the complexes exhibit strong antibacterial activity due to complex disintegration and release of (quaternized) PDMAEMA.
Fujita, Masaaki; Takada, Yoko K.; Takada, Yoshikazu
2013-01-01
Integrin αvβ3 plays a role in insulin-like growth factor 1 (IGF1) signaling (integrin-IGF1 receptor (IGF1R) cross-talk) in non-transformed cells in anchorage-dependent conditions. We reported previously that IGF1 directly binds to αvβ3 and induces αvβ3-IGF1-IGF1R ternary complex formation in these conditions. The integrin-binding defective IGF1 mutant (R36E/R37E) is defective in inducing ternary complex formation and IGF signaling, whereas it still binds to IGF1R. We studied if IGF1 can induce signaling in anchorage-independent conditions in transformed Chinese hamster ovary cells that express αvβ3 (β3-CHO) cells. Here we describe that IGF1 signals were more clearly detectable in anchorage-independent conditions (polyHEMA-coated plates) than in anchorage-dependent conditions. This suggests that IGF signaling is masked by signals from cell-matrix interaction in anchorage-dependent conditions. IGF signaling required αvβ3 expression, and R36E/R37E was defective in inducing signals in polyHEMA-coated plates. These results suggest that αvβ3-IGF1 interaction, not αvβ3-extracellular matrix interaction, is essential for IGF signaling. Inhibitors of IGF1R, Src, AKT, and ERK1/2 did not suppress αvβ3-IGF-IGF1R ternary complex formation, suggesting that activation of these kinases are not required for ternary complex formation. Also, mutations of the β3 cytoplasmic tail (Y747F and Y759F) that block β3 tyrosine phosphorylation did not affect IGF1R phosphorylation or AKT activation. We propose a model in which IGF1 binding to IGF1R induces recruitment of integrin αvβ3 to the IGF-IGF1R complex and then β3 and IGF1R are phosphorylated. It is likely that αvβ3 should be together with the IGF1-IGF1R complex for triggering IGF signaling. PMID:23243309
NASA Astrophysics Data System (ADS)
Shoukry, Mohamed M.; Hassan, Safaa S.
2014-01-01
The formation equilibria for the binary complexes of Cu(II) with 1-aminocyclopropane carboxylic acid (ACC) and 3,3-bis(1-methylimidazol-2-yl)propionic acid (BIMP) were investigated. ACC and BIMP form the complexes 1 1 0, 1 2 0 and 1 1 -1. The ternary complexes of Cu(II) with BIMP and biorelevant ligands as some selected amino acids, peptides and DNA constituents are formed in a stepwise mechanism. The stability constants of the complexes formed were determined and their distribution diagrams were evaluated. The kinetics of hydrolysis of glycine methyl ester in presence of [Cu(BIMP)]+ was investigated by pH-stat technique and the mechanism was discussed.
ERIC Educational Resources Information Center
Tykodi, R. J.
1990-01-01
The use of the thiosulfate ion in teaching the concepts of gas formation, precipitate formation, complex formation, acid-base interaction, redox interaction, time evolution of chemical processes, catalysis, and stoichiometry is discussed. Several demonstrations and activities are detailed. (CW)
Development of polyphenolic nanoparticles for biomedical applications
NASA Astrophysics Data System (ADS)
Cheng, Huaitzung Andrew
Polymeric nanoparticles have a wide range of applications, particularly as drug delivery and diagnostic agents, and tannins have been regarded as a promising building block for redox and pH responsive systems. Tannins are a class of naturally occurring polyphenols commonly produced by plants and are found in many of our consumables like teas, spices, fresh fruits, and vegetables. Many of the health benefits associated with these foods are a result of their high tannin contents and the many different types of tannins found in various plants have demonstrated therapeutic potentials for conditions ranging from cardiovascular disease and diabetes to ulcers and cancer. Diets rich in tannins have been associated with lower blood pressure in patients with hypertension. The plurality of phenols in tannins also makes them powerful antioxidants and as a result, there is a lot of interest in taking advantage of their self-assembling abilities to make redox and pH responsive drug delivery systems. However, the benefit of natural tannins is limited by their instability in physiological conditions. Furthermore, there is limited control over molecular weight and reactivity of the phenolic content of plant extracts. Herein we report the novel synthesis of pseudotannins with control over molecular weight and reactivity of phenolic moieties. These pseudotannins have can form nanoscale interpolymer complexes under physiological conditions and have demonstrated antioxidative potential. Furthermore, pseudotannin IPCs have been shown to be responsive to physiologically relevant oxidation as well as the ability to easily incorporate cell targeting peptides, fluorescent tags, and MRI contrast agents. The work presented here describes how pseudotannins would be ideally suited to minimally invasive techniques for diagnosing atherosclerotic plaques and targeting triple negative breast cancer. We demonstrate that pseudotannin can very easily and quickly form nanoscale particles that are small enough to be uptaken into mammalian cells. Furthermore, by self-assembling with gadolinium, pseudotannins can effectively attenuate the signal of gadolinium based MRI contrast agents. This in conjunction with oxidation responsive decomplexation could be a viable option for diagnosing the severity and risk of rupture of atherosclerotic plaques. Also, we demonstrate that pegylated compounds can easily be incorporated into pseudotannin nanoparticles to impart cell targeting functionality. The subsequent uptake of pseudotannin nanoparticles into breast cancer cells demonstrated the ability to increase their sensitivity to UV radiation. The creation of synthetic tannin-like polymers leads to directly to making a variety of self-assembling, stimuli responsive, and bioactive nanoparticles well-suited for various biomedical applications.
NASA Astrophysics Data System (ADS)
Rivilla, V. M.; Beltrán, M. T.; Martín-Pintado, J.; Fontani, F.; Caselli, P.; Cesaroni, R.
2017-03-01
Context. In recent years, the detection of organic molecules with increasing complexity and potential biological relevance is opening the possibility to understand the formation of the building blocks of life in the interstellar medium. One of the families of molecules of substantial astrobiological interest are the esters. The simplest ester, methyl formate (CH3OCHO), is rather abundant in star-forming regions. The next step in the chemical complexity of esters is ethyl formate, C2H5OCHO. Despite the increase in sensitivity of current telescopes, the detection of complex molecules with more than ten atoms such as C2H5OCHO is still a challenge. Only two detections of this species have been reported so far, which strongly limits our understanding of how complex molecules are formed in the interstellar medium. New detections towards additional sources with a wide range of physical conditions are crucial to differentiate between competing chemical models based on dust grain surface and gas-phase chemistry. Aims: We have searched for ethyl formate towards the W51 e2 hot molecular core, one of the most chemically rich sources in the Galaxy and one of the most promising regions to study prebiotic chemistry, especially after the recent discovery of the P-O bond, key in the formation of DNA. Methods: We have analyzed a spectral line survey towards the W51 e2 hot molecular core, which covers 44 GHz in the 1, 2 and 3 mm bands, carried out with the IRAM 30 m telescope. Results: We report the detection of the trans and gauche conformers of ethyl formate. A local thermodynamic equilibrium analysis indicates that the excitation temperature is 78 ± 10 K and that the two conformers have similar source-averaged column densities of (2.0 ± 0.3) × 10-16 cm-2 and an abundance of 10-8. We compare for the first time the observed molecular abundances of ethyl formate with different competing chemical models based on grain surface and gas-phase chemistry. Conclusions: We propose that grain-surface chemistry may have a dominant role in the formation of ethyl formate (and other complex organic molecules) in hot molecular cores, rather than reactions in the gas phase. Based on observations carried out with the IRAM 30 m Telescope. IRAM is supported by INSU/CNRS (France), MPG (Germany) and IGN (Spain).
Okumus, Bahar Nur; Tacer-Caba, Zeynep; Kahraman, Kevser; Nilufer-Erdil, Dilara
2018-02-01
This study aimed to characterize the brown lentil (Lens culinaris Medikus) starch and investigate the formation of amylose-lipid complexes (Resistant Starch Type V) by the addition of different lipids/fatty acids (10%, w/w) to both raw and cooked starch samples. Resistant starch content (measured by the official method of AACCI (Method 32-40), using the resistant starch assay kit) of raw brown lentil starch (BLS) increased significantly by the additions of lipids/fatty acids, starch sample complexed with HSO (hydrogenated sunflower oil) (14.1±0.4%) being the highest. For the cooked starch/lipid complexes, more profound effect was evident (22.2-67.7%). Peak, breakdown and trough viscosity values of the amylose-lipid complexed starches were significantly lower than that of BLS (p<0.05), while significant decreases in the setback and final viscosities were only detected in oil samples, but not in fatty acids. Each lipid in concern exerted different effects on the digestibility of starch and amylose-lipid complex formation while having no substantial differential effects on the thermal properties of starch depicted by differential scanning calorimetry (DSC). Amylose-lipid complex formation with suitable fatty acids/lipids seems a promising way of increasing resistant starch content of food formulations. Although the applications being quite uncommon yet, brown lentil seems to have potential both as a starch and also as a resistant starch source. Copyright © 2017 Elsevier Ltd. All rights reserved.
RIPK3 regulates p62-LC3 complex formation via the caspase-8-dependent cleavage of p62.
Matsuzawa, Yu; Oshima, Shigeru; Nibe, Yoichi; Kobayashi, Masanori; Maeyashiki, Chiaki; Nemoto, Yasuhiro; Nagaishi, Takashi; Okamoto, Ryuichi; Tsuchiya, Kiichiro; Nakamura, Tetsuya; Watanabe, Mamoru
2015-01-02
RIPK3 is a key molecule for necroptosis, initially characterized by necrotic cell death morphology and the activation of autophagy. Cell death and autophagic signaling are believed to tightly regulate each other. However, the associated recruitment of signaling proteins remains poorly understood. p62/sequestosome-1 is a selective autophagy substrate and a selective receptor for ubiquitinated proteins. In this study, we illustrated that both mouse and human RIPK3 mediate p62 cleavage and that RIPK3 interacts with p62, resulting in complex formation. In addition, RIPK3-dependent p62 cleavage is restricted by the inhibition of caspases, especially caspase-8. Moreover, overexpression of A20, a ubiquitin-editing enzyme and an inhibitor of caspase-8 activity, inhibits RIPK3-dependent p62 cleavage. To further investigate the potential role of RIPK3 in selective autophagy, we analyzed p62-LC3 complex formation, revealing that RIPK3 prevents the localization of LC3 and ubiquitinated proteins to the p62 complex. In addition, RIPK3-dependent p62-LC3 complex disruption is regulated by caspase inhibition. Taken together, these results demonstrated that RIPK3 interacts with p62 and regulates p62-LC3 complex formation. These findings suggested that RIPK3 serves as a negative regulator of selective autophagy and provides new insights into the mechanism by which RIPK3 regulates autophagic signaling. Copyright © 2014 Elsevier Inc. All rights reserved.
NASA Astrophysics Data System (ADS)
Setiyanto, Henry; Muhida, Rifki; Kishi, Tomoya; Rahman, Md. Mahmudur; Dipojono, Hermawan K.; Diño, Wilson A.; Matsumoto, Shigeno; Kasai, Hideaki
Analytical chemistry in the perspective of ab initio molecular orbital calculation is introduced by investigating the chemical reaction between transition metals Cr and Fe with sodium diethyldithiocarbamate (NaDDC), a complexing agent to detect and extract Cr in human blood sample. Using density functional theory—based calculations, we determine the stable structure of the Cr-DDC and Fe-DDC complexes and obtain its dissociation energies. We found dissociation energy values of -3.24 and -2.67 eV for Cr and Fe complexes, respectively; and hence the formation of the former complex is more favorable than the formation of the latter.
Perez-Camps, Mireia; Tian, Jing; Chng, Serene C; Sem, Kai Pin; Sudhaharan, Thankiah; Teh, Cathleen; Wachsmuth, Malte; Korzh, Vladimir; Ahmed, Sohail; Reversade, Bruno
2016-01-01
Formation of the three embryonic germ layers is a fundamental developmental process that initiates differentiation. How the zebrafish pluripotency factor Pou5f3 (homologous to mammalian Oct4) drives lineage commitment is unclear. Here, we introduce fluorescence lifetime imaging microscopy and fluorescence correlation spectroscopy to assess the formation of Pou5f3 complexes with other transcription factors in real-time in gastrulating zebrafish embryos. We show, at single-cell resolution in vivo, that Pou5f3 complexes with Nanog to pattern mesendoderm differentiation at the blastula stage. Later, during gastrulation, Sox32 restricts Pou5f3–Nanog complexes to the ventrolateral mesendoderm by binding Pou5f3 or Nanog in prospective dorsal endoderm. In the ventrolateral endoderm, the Elabela / Aplnr pathway limits Sox32 levels, allowing the formation of Pou5f3–Nanog complexes and the activation of downstream BMP signaling. This quantitative model shows that a balance in the spatiotemporal distribution of Pou5f3–Nanog complexes, modulated by Sox32, regulates mesendoderm specification along the dorsoventral axis. DOI: http://dx.doi.org/10.7554/eLife.11475.001 PMID:27684073
NASA Astrophysics Data System (ADS)
Refat, Moamen S.; Saad, Hosam A.; Adam, Abdel Majid A.
2011-08-01
A two new charge transfer complexes formed from the interactions between o-tolidine (o-TOL) and picric (PA) or chloranilic (CA) acids, with the compositions, [(o-TOL)(PA) 2] and [(o-TOL)(CA) 2] have been prepared. The 13C NMR, 1H NMR, 1H-Cosy, and IR show that the charge-transfer chelation occurs via the formation of chain structures O-H⋯N intermolecular hydrogen bond between 2NH 2 groups of o-TOL molecule and OH group in each PA or CA units. Photometric titration measurements concerning the two reactions in methanol were performed and the measurements show that the donor-acceptor molar ratio was found to be 1:2 using the modified Benesi-Hildebrand equation. The spectroscopic data were discussed in terms of formation constant, molar extinction coefficient, oscillator strength, dipole moment, standard free energy, and ionization potential. Thermal behavior of both charge transfer complexes showed that the complexes were more stable than their parents. The thermodynamic parameters were estimated from the differential thermogravimetric curves. The results indicated that the formation of molecular charge transfer complexes is spontaneous and endothermic.
Refat, Moamen S; Saad, Hosam A; Adam, Abdel Majid A
2011-08-01
A two new charge transfer complexes formed from the interactions between o-tolidine (o-TOL) and picric (PA) or chloranilic (CA) acids, with the compositions, [(o-TOL)(PA)(2)] and [(o-TOL)(CA)(2)] have been prepared. The (13)C NMR, (1)H NMR, (1)H-Cosy, and IR show that the charge-transfer chelation occurs via the formation of chain structures O-H⋯N intermolecular hydrogen bond between 2NH(2) groups of o-TOL molecule and OH group in each PA or CA units. Photometric titration measurements concerning the two reactions in methanol were performed and the measurements show that the donor-acceptor molar ratio was found to be 1:2 using the modified Benesi-Hildebrand equation. The spectroscopic data were discussed in terms of formation constant, molar extinction coefficient, oscillator strength, dipole moment, standard free energy, and ionization potential. Thermal behavior of both charge transfer complexes showed that the complexes were more stable than their parents. The thermodynamic parameters were estimated from the differential thermogravimetric curves. The results indicated that the formation of molecular charge transfer complexes is spontaneous and endothermic. Copyright © 2011 Elsevier B.V. All rights reserved.
Halpenny, Darragh F; McEvoy, Sinead; Li, Angela; Hayan, Sumar; Capanu, Marinela; Zheng, Junting; Riely, Gregory; Ginsberg, Michelle S
2017-04-01
Treatment with the ALK inhibitor crizotinib has been associated with complex renal cyst formation in patients with non-small cell lung cancer (NSCLC). Using patients treated with crizotinib, we aimed to evaluate the incidence of renal cyst formation, to identify risk factors for cyst formation and to provide a radiological description of cyst characteristics. Patients with ALK-positive NSCLC treated with crizotinib were retrospectively identified from an institutional database. Computed tomography (CT) imaging performed prior to and during crizotinib treatment was retrospectively reviewed to assess the size and complexity of pre-existing cysts, new cysts, and enlarging cysts. Demographic data including age, sex, ethnicity, smoking history and length of treatment were also recorded. Data from 60 patients with NSCLC treated with crizotinib at our institution between 6/5/2009 and 7/1/2015 were collected. 57 had CT imaging before and during treatment. Mean length of imaging follow-up was 18 months. 9 (16%) patients had cysts which enlarged or developed de novo during treatment. 2 (4%) patients developed complex renal cysts (1 of these patients also developed complex hepatic cysts). Female gender (p=0.008) and the presence of renal cysts on baseline scans (p=0.044) were significantly associated with cyst formation or growth. Renal cyst formation or growth occurred in 16% of crizotinib-treated patients. Women and those with pre-existing cysts were at greatest risk. Although the potential causal relationship between crizotinib use and renal cyst formation has yet to be fully defined, it is important for radiologists and clinicians to be aware of this finding. Copyright © 2017. Published by Elsevier B.V.
A molecular view of the role of chirality in charge-driven polypeptide complexation
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hoffmann, K. Q.; Perry, S. L.; Leon, L.
Polyelectrolyte molecules of opposite charge are known to form stable complexes in solution. Depending on the system conditions, such complexes can be solid or liquid. The latter are known as complex coacervates, and they appear as a second liquid phase in equilibrium with a polymer-dilute aqueous phase. This work considers the complexation between poly(glutamic acid) and poly(lysine), which is of particular interest because it enables examination of the role of chirality in ionic complexation, without changes to the overall chemical composition. Systematic atomic-level simulations are carried out for chains of poly(glutamic acid) and poly(lysine) with varying combinations of chirality alongmore » the backbone. Achiral chains form unstructured complexes. In contrast, homochiral chains lead to formation of stable beta-sheets between molecules of opposite charge, and experiments indicate that beta-sheet formation is correlated with the formation of solid precipitates. Changes in chirality along the peptide backbone are found to cause "kinks" in the beta-sheets. These are energetically unfavorable and result in irregular structures that are more difficult to pack together. Taken together, these results provide new insights that may be of use for the development of simple yet strong bioinspired materials consisting of beta-rich domains and amorphous regions.« less
Rode, T; Frauen, M; Müller, B W; Düsing, H J; Schönrock, U; Mundt, C; Wenck, H
2003-03-01
The main objective of this study was to devise novel methods for improving the solubility of the anti-inflammatory triterpenoid sericoside, the main component of Terminalia sericea extract, thus enabling its incorporation into topical formulations. Sericoside was stabilized by complex formation with hydrophilic derivatives of beta- and gamma-cyclodextrins in a molar ratio of 1.0:1.1. The complex of extract and cyclodextrin was equilibrated in water at 25 degrees C for approximately 24 h. The dehydrated complexes of T. sericea extract and cyclodextrin were characterized by differential scanning calorimetry, thermogravimetry analysis and X-ray diffraction. Complex formation with beta-cyclodextrin as well as gamma-cyclodextrin derivatives was detectable using these three analytical tools; however, only complexes with gamma-cyclodextrin derivatives showed stability upon storage after incorporation into topical o/w or w/o formulations. Furthermore, a T. sericea extract/gamma-cyclodextrin complex incorporated in an o/w formulation resulted in a 2.6-fold higher percutaneous penetration of sericoside in in vitro excised pig skin as compared to pure T. sericea extract. For the first time, the virtually insoluble anti-inflammatory active sericoside was incorporated into a topical emulsion based formulation in a stable manner, resulting in efficient skin penetration. Copyright 2003 Elsevier Science B.V.
Hierarchical star formation across the grand-design spiral NGC 1566
NASA Astrophysics Data System (ADS)
Gouliermis, Dimitrios A.; Elmegreen, Bruce G.; Elmegreen, Debra M.; Calzetti, Daniela; Cignoni, Michele; Gallagher, John S., III; Kennicutt, Robert C.; Klessen, Ralf S.; Sabbi, Elena; Thilker, David; Ubeda, Leonardo; Aloisi, Alessandra; Adamo, Angela; Cook, David O.; Dale, Daniel; Grasha, Kathryn; Grebel, Eva K.; Johnson, Kelsey E.; Sacchi, Elena; Shabani, Fayezeh; Smith, Linda J.; Wofford, Aida
2017-06-01
We investigate how star formation is spatially organized in the grand-design spiral NGC 1566 from deep Hubble Space Telescope photometry with the Legacy ExtraGalactic UV Survey. Our contour-based clustering analysis reveals 890 distinct stellar conglomerations at various levels of significance. These star-forming complexes are organized in a hierarchical fashion with the larger congregations consisting of smaller structures, which themselves fragment into even smaller and more compact stellar groupings. Their size distribution, covering a wide range in length-scales, shows a power law as expected from scale-free processes. We explain this shape with a simple 'fragmentation and enrichment' model. The hierarchical morphology of the complexes is confirmed by their mass-size relation that can be represented by a power law with a fractional exponent, analogous to that determined for fractal molecular clouds. The surface stellar density distribution of the complexes shows a lognormal shape similar to that for supersonic non-gravitating turbulent gas. Between 50 and 65 per cent of the recently formed stars, as well as about 90 per cent of the young star clusters, are found inside the stellar complexes, located along the spiral arms. We find an age difference between young stars inside the complexes and those in their direct vicinity in the arms of at least 10 Myr. This time-scale may relate to the minimum time for stellar evaporation, although we cannot exclude the in situ formation of stars. As expected, star formation preferentially occurs in spiral arms. Our findings reveal turbulent-driven hierarchical star formation along the arms of a grand-design galaxy.
NASA Astrophysics Data System (ADS)
Hassan, Hesham Galal
This thesis explores the proper principles and rules for creating excellent infographics that communicate information successfully and effectively. Not only does this thesis examine the creation of Infographics, it also tries to answer which format, Static or Animated Infographics, is the most effective when used as a teaching-aid framework for complex science subjects, and if compelling Infographics in the preferred format facilitate the learning experience. The methodology includes the creation of infographic using two formats (Static and Animated) of a fairly complex science subject (Phases Of The Moon), which were then tested for their efficacy as a whole, and the two formats were compared in terms of information comprehension and retention. My hypothesis predicts that the creation of an infographic using the animated format would be more effective in communicating a complex science subject (Phases Of The Moon), specifically when using 3D computer animation to visualize the topic. This would also help different types of learners to easily comprehend science subjects. Most of the animated infographics produced nowadays are created for marketing and business purposes and do not implement the analytical design principles required for creating excellent information design. I believe that science learners are still in need of more variety in their methods of learning information, and that infographics can be of great assistance. The results of this thesis study suggests that using properly designed infographics would be of great help in teaching complex science subjects that involve spatial and temporal data. This could facilitate learning science subjects and consequently impact the interest of young learners in STEM.
Takahashi, Kazuhide; Suzuki, Katsuo
2009-05-01
Membrane transport of WAVE2 that leads to lamellipodia formation requires a small GTPase Rac1, the motor protein kinesin, and microtubules. Here we explore the possibility of whether the Rac1-dependent and kinesin-mediated WAVE2 transport along microtubules is regulated by a p21-activated kinase Pak as a downstream effector of Rac1. We find that Pak1 constitutively binds to WAVE2 and is transported with WAVE2 to the leading edge by stimulation with hepatocyte growth factor (HGF). Concomitantly, phosphorylation of tubulin-bound stathmin/Op18 at serine 25 (Ser25) and Ser38, microtubule growth, and stathmin/Op18 binding to kinesin-WAVE2 complex were induced. The HGF-induced WAVE2 transport, lamellipodia formation, stathmin/Op18 phosphorylation at Ser38 and binding to kinesin-WAVE2 complex, but not stathmin/Op18 phosphorylation at Ser25 and microtubule growth, were abrogated by Pak1 inhibitor IPA-3 and Pak1 depletion with small interfering RNA (siRNA). Moreover, stathmin/Op18 depletion with siRNA caused significant inhibition of HGF-induced WAVE2 transport and lamellipodia formation, with HGF-independent promotion of microtubule growth. Collectively, it is suggested that Pak1 plays a critical role in HGF-induced WAVE2 transport and lamellipodia formation by directing Pak1-WAVE2-kinesin complex toward the ends of growing microtubules through phosphorylation and recruitment of tubulin-bound stathmin/Op18 to the complex.
Fox, B G; Liu, Y; Dege, J E; Lipscomb, J D
1991-01-05
Kinetic, spectroscopic, and chemical evidence for the formation of specific catalytically essential complexes between the three protein components of the soluble form of methane monooxygenase from Methylosinus trichosporium OB3b is reported. The effects of the concentrations of the reductase and component B on the hydroxylation activity of the reconstituted enzyme system has been numerically simulated based on a kinetic model which assumes formation of multiple high affinity complexes with the hydroxylase component during catalysis. The formation of several of these complexes has been directly demonstrated. By using EPR spectroscopy, the binding of approximately 2 mol of component B/mol of hydroxylase (subunit structure (alpha beta gamma)2) is shown to significantly change the electronic environment of the mu-(H/R)-oxo-bridged binuclear iron cluster of the hydroxylase in both the mixed valent (Fe(II).Fe(III)) and fully reduced (Fe(II).Fe(II)) states. Protein-protein complexes between the reductase and component B as well as between the reductase and hydroxylase have been shown to form by monitoring quenching of the tryptophan fluorescence spectrum of either the component B (KD approximately 0.4 microM) or hydroxylase (two binding sites, KDa approximately 10 nM, KDb approximately 8 microM). The observed KD values are in agreement with the best fit values from the kinetic simulation. Through the use of the covalent zero length cross-linking reagent 1-ethyl-3-(3-dimethylaminopropyl)-carbodiimide (EDC), the binding sites of the component B and reductase were shown to be on the hydroxylase alpha and beta subunits, respectively. The alpha and beta subunits of the hydroxylase are cross-linked by EDC suggesting that they are juxtaposed. EDC also caused the rapid loss of the ability of the monomeric component B to stimulate the hydroxylation reaction suggesting that cross-linking of reactive groups on the protein surface had occurred. This effect was inhibited by the presence of hydroxylase and was accompanied by a loss of the ability of the component B to bind to the hydroxylase. Thus, formation of a component B-hydroxylase complex is apparently required for effective catalysis linked to NADH oxidation. When present in concentrations greater than required to saturate the initial hydroxylase complex, component B inhibited both the rate of the enzymic reaction and the cross-linking of the reductase to the hydroxylase. This suggests that a second complex involving component B can form that negatively regulates catalysis by preventing formation of the reductase-hydroxylase complex.
Nup155 regulates nuclear envelope and nuclear pore complex formation in nematodes and vertebrates
Franz, Cerstin; Askjaer, Peter; Antonin, Wolfram; Iglesias, Carmen López; Haselmann, Uta; Schelder, Malgorzata; de Marco, Ario; Wilm, Matthias; Antony, Claude; Mattaj, Iain W
2005-01-01
Nuclear envelope (NE) formation during cell division in multicellular organisms is a central yet poorly understood biological process. We report that the conserved nucleoporin Nup155 has an essential function in NE formation in Caenorhabditis elegans embryos and in Xenopus laevis egg extracts. In vivo depletion of Nup155 led to failure of nuclear lamina formation and defects in chromosome segregation at anaphase. Nup155 depletion inhibited accumulation of nucleoporins at the nuclear periphery, including those recruited to chromatin early in NE formation. Electron microscopy analysis revealed that Nup155 is also required for the formation of a continuous nuclear membrane in vivo and in vitro. Time-course experiments indicated that Nup155 is recruited to chromatin at the time of NE sealing, suggesting that nuclear pore complex assembly has to progress to a relatively late stage before NE membrane assembly occurs. PMID:16193066
In situ formation of heterobimetallic salen complexes containing titanium and/or vanadium ions.
Belokon, Yuri N; Harrington, Ross W; North, Michael; Young, Carl
2008-05-05
A combination of high-resolution electrospray mass spectrometry and (1)H NMR spectroscopy has been used to prove that when a mixture of [(salen)TiO]2 complexes containing two different salen ligands (salen and salen') is formed, an equilibrium is established between the homodimers and the heterodimer [(salen)TiO2Ti(salen')]. Depending upon the structure and stereochemistry of the two salen ligands, the equilibrium may favor either the homodimers or the heterodimer. Extension of this process to mixtures of titanium(salen) complexes [(salen)TiO]2 and vanadium (V)(salen') complexes [(salen')VO] (+)Cl (-) allowed the in situ formation of the heterobimetallic complex [(salen)TiO2V(salen')] (+)X (-) to be confirmed for all combinations of salen ligands studied except when the salen ligand attached to titanium contained highly electron-withdrawing nitro-groups. The rate of equilibration between heterobimetallic complexes is faster than that between two titanium complexes as determined by line broadening in the (1)H NMR spectra. These structural results explain the strong rate-inhibiting effect of vanadium (V)(salen) complexes in asymmetric cyanohydrin synthesis catalyzed by [(salen)TiO]2 complexes. It has also been demonstrated for the first time that the titanium and vanadium complexes can undergo exchange of salen ligands and that this is catalyzed by protic solvents. However, the ligand exchange is relatively slow (occurring on a time scale of days at room temperature) and so does not complicate studies aimed at using heterobimetallic titanium and vanadium salen complexes as asymmetric catalysts. Attempts to obtain a crystal structure of a heterobimetallic salen complex led instead to the isolation of a trinuclear titanium(salen) complex, the formation of which is also consistent with the catalytic results obtained previously.
El-Sherif, Ahmed A; Shehata, Mohamed R; Shoukry, Mohamed M; Barakat, Mohammad H
2012-01-01
Thermodynamic parameters for protonation of 1,4-bis(3-aminopropyl)-piperazine (BAPP) and its metal complexation with some divalent metal ions were determined in aqueous solution at constant ionic strength (0.1 M NaNO(3)) using a potentiometric technique. The order of -ΔG(0) and -ΔH(0) was found to obey Co(2+) < Ni(2+) < Cu(2+) > Zn(2+), in accordance with the Irving-Williams order. The formation equilibria of zinc (II) complexes and the ternary complexes Zn(BAPP)L, where L = amino acid, amides, or DNA constituents), have been investigated. Ternary complexes are formed by a simultaneous mechanism. The concentration distribution of the complexes in solution was evaluated as a function of pH. Stoichiometry and stability constants for the complexes formed are reported and discussed. The stability of ternary complexes was quantitatively compared with their corresponding binary complexes in terms of the parameter Δlog K.
El-Sherif, Ahmed A.; Shehata, Mohamed R.; Shoukry, Mohamed M.; Barakat, Mohammad H.
2012-01-01
Thermodynamic parameters for protonation of 1,4-bis(3-aminopropyl)-piperazine (BAPP) and its metal complexation with some divalent metal ions were determined in aqueous solution at constant ionic strength (0.1 M NaNO3) using a potentiometric technique. The order of –ΔG0 and –ΔH0 was found to obey Co2+ < Ni2+ < Cu2+ > Zn2+, in accordance with the Irving-Williams order. The formation equilibria of zinc (II) complexes and the ternary complexes Zn(BAPP)L, where L = amino acid, amides, or DNA constituents), have been investigated. Ternary complexes are formed by a simultaneous mechanism. The concentration distribution of the complexes in solution was evaluated as a function of pH. Stoichiometry and stability constants for the complexes formed are reported and discussed. The stability of ternary complexes was quantitatively compared with their corresponding binary complexes in terms of the parameter Δlog K. PMID:23226992
Zhao, Jiong-Peng; Hu, Bo-Wen; Lloret, Francesc; Tao, Jun; Yang, Qian; Zhang, Xiao-Feng; Bu, Xian-He
2010-11-15
By changing template cation but introducing trivalent iron ions in the known niccolite structural metal formate frameworks, three complexes formulated [NH(2)(CH(3))(2)][Fe(III)M(II)(HCOO)(6)] (M = Fe for 1, Mn for 2, and Co for 3) were synthesized and magnetically characterized. The variation in the compositions of the complexes leads to three different complexes: mixed-valent complex 1, heterometallic but with the same spin state complex 2, and heterometallic heterospin complex 3. The magnetic behaviors are closely related to the divalent metal ions used. Complex 1 exhibits negative magnetization assigned as Néel N-Type ferrimagnet, with an asymmetric magnetization reversal in the hysteresis loop, and complex 2 is an antiferromagnet with small spin canting (α(canting) ≈ 0.06° and T(canting) = 35 K), while complex 3 is a ferrimagnet with T(N) = 32 K.
NASA Astrophysics Data System (ADS)
Chaudhari, J. J.; Joshi, U. S.
2018-05-01
In this study kesterite Cu2ZnSnS4 (CZTS) thin films suitable for absorber layer in thin film solar cells (TFSCs) were successfully fabricated on glass substrate by sol-gel method. The effects of complexing agent on formation of CZTS thin films have been investigated. X-ray diffraction (XRD) analysis confirms formation of polycrystalline CZTS thin films with single phase kesterite structure. XRD and Raman spectroscopy analysis of CZTS thin films with optimized concentration of complexing agent confirmed formation of kesterite phase in CZTS thin films. The direct optical band gap energy of CZTS thin films is found to decrease from 1.82 to 1.50 eV with increase of concentration of complexing agent triethanolamine. Morphological analysis of CZTS thin films shows smooth, uniform and densely packed CZTS grains and increase in the grain size with increase of concentration of complexing agent. Hall measurements revealed that concentration of charge carrier increases and resistivity decreases in CZTS thin films as amount of complexing agent increases.
Structural basis of agrin-LRP4-MuSK signaling
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zong, Yinong; Zhang, Bin; Gu, Shenyan
Synapses are the fundamental units of neural circuits that enable complex behaviors. The neuromuscular junction (NMJ), a synapse formed between a motoneuron and a muscle fiber, has contributed greatly to understanding of the general principles of synaptogenesis as well as of neuromuscular disorders. NMJ formation requires neural agrin, a motoneuron-derived protein, which interacts with LRP4 (low-density lipoprotein receptor-related protein 4) to activate the receptor tyrosine kinase MuSK (muscle-specific kinase). However, little is known of how signals are transduced from agrin to MuSK. Here, we present the first crystal structure of an agrin-LRP4 complex, consisting of two agrin-LRP4 heterodimers. Formation ofmore » the initial binary complex requires the z8 loop that is specifically present in neuronal, but not muscle, agrin and that promotes the synergistic formation of the tetramer through two additional interfaces. We show that the tetrameric complex is essential for neuronal agrin-induced acetylcholine receptor (AChR) clustering. Collectively, these results provide new insight into the agrin-LRP4-MuSK signaling cascade and NMJ formation and represent a novel mechanism for activation of receptor tyrosine kinases.« less
NASA Technical Reports Server (NTRS)
Broeze, R. J.; Pope, D. H.
1978-01-01
The inhibition of translation which is observed after shifting Escherichia coli to low temperature was investigated. 70 S ribosomes were isolated from E. coli 8 hours after a shift to 5 C synthesized protein in the absence of added mRNA (i.e., endogenous protein synthesis by 70 S monosomes) at a rate which was three times greater than the rate of endogenous protein synthesis by 70 S ribosomes which were isolated at the time of the shift to 5 C. Calculations based on the rates of endogenous protein synthesis and polyphenylalanine synthesis indicate that 70 S monosomes comprise only 0.1% of the total E. coli 70 S ribosome population after 8 hours at 5 c. Experiments designed to test initiation complex formation on ApUpG or formaldehyde treated MS-2 viral RNA demonstrated that, although the rate of formation of 30 S initiation complexes was not inhibited, the rate of formation of active 70 S initiation complexes, able to react with puromycin, was inhibited to a great extent at 5 C. A model depicting the effects of low temperature on the E. coli translation system is proposed.
Epithelial junction formation requires confinement of Cdc42 activity by a novel SH3BP1 complex
Elbediwy, Ahmed; Zihni, Ceniz; Terry, Stephen J.; Clark, Peter
2012-01-01
Epithelial cell–cell adhesion and morphogenesis require dynamic control of actin-driven membrane remodeling. The Rho guanosine triphosphatase (GTPase) Cdc42 regulates sequential molecular processes during cell–cell junction formation; hence, mechanisms must exist that inactivate Cdc42 in a temporally and spatially controlled manner. In this paper, we identify SH3BP1, a GTPase-activating protein for Cdc42 and Rac, as a regulator of junction assembly and epithelial morphogenesis using a functional small interfering ribonucleic acid screen. Depletion of SH3BP1 resulted in loss of spatial control of Cdc42 activity, stalled membrane remodeling, and enhanced growth of filopodia. SH3BP1 formed a complex with JACOP/paracingulin, a junctional adaptor, and CD2AP, a scaffolding protein; both were required for normal Cdc42 signaling and junction formation. The filamentous actin–capping protein CapZ also associated with the SH3BP1 complex and was required for control of actin remodeling. Epithelial junction formation and morphogenesis thus require a dual activity complex, containing SH3BP1 and CapZ, that is recruited to sites of active membrane remodeling to guide Cdc42 signaling and cytoskeletal dynamics. PMID:22891260
The Dynamics of Coalition Formation on Complex Networks
NASA Astrophysics Data System (ADS)
Auer, S.; Heitzig, J.; Kornek, U.; Schöll, E.; Kurths, J.
2015-08-01
Complex networks describe the structure of many socio-economic systems. However, in studies of decision-making processes the evolution of the underlying social relations are disregarded. In this report, we aim to understand the formation of self-organizing domains of cooperation (“coalitions”) on an acquaintance network. We include both the network’s influence on the formation of coalitions and vice versa how the network adapts to the current coalition structure, thus forming a social feedback loop. We increase complexity from simple opinion adaptation processes studied in earlier research to more complex decision-making determined by costs and benefits, and from bilateral to multilateral cooperation. We show how phase transitions emerge from such coevolutionary dynamics, which can be interpreted as processes of great transformations. If the network adaptation rate is high, the social dynamics prevent the formation of a grand coalition and therefore full cooperation. We find some empirical support for our main results: Our model develops a bimodal coalition size distribution over time similar to those found in social structures. Our detection and distinguishing of phase transitions may be exemplary for other models of socio-economic systems with low agent numbers and therefore strong finite-size effects.
Correlations between Community Structure and Link Formation in Complex Networks
Liu, Zhen; He, Jia-Lin; Kapoor, Komal; Srivastava, Jaideep
2013-01-01
Background Links in complex networks commonly represent specific ties between pairs of nodes, such as protein-protein interactions in biological networks or friendships in social networks. However, understanding the mechanism of link formation in complex networks is a long standing challenge for network analysis and data mining. Methodology/Principal Findings Links in complex networks have a tendency to cluster locally and form so-called communities. This widely existed phenomenon reflects some underlying mechanism of link formation. To study the correlations between community structure and link formation, we present a general computational framework including a theory for network partitioning and link probability estimation. Our approach enables us to accurately identify missing links in partially observed networks in an efficient way. The links having high connection likelihoods in the communities reveal that links are formed preferentially to create cliques and accordingly promote the clustering level of the communities. The experimental results verify that such a mechanism can be well captured by our approach. Conclusions/Significance Our findings provide a new insight into understanding how links are created in the communities. The computational framework opens a wide range of possibilities to develop new approaches and applications, such as community detection and missing link prediction. PMID:24039818
Kapoor, Vidushi; Rai, Rajanikant; Thiyagarajan, Durairaj; Mukherjee, Sandipan; Das, Gopal; Ramesh, Aiyagari
2017-08-04
Zinc-complexing ligands are prospective anti-biofilm agents because of the pivotal role of zinc in the formation of Staphylococcus aureus biofilm. Accordingly, the potential of a thiosemicarbazone (compound C1) and a benzothiazole-based ligand (compound C4) in the prevention of S. aureus biofilm formation was assessed. Compound C1 displayed a bimodal activity, hindering biofilm formation only at low concentrations and promoting biofilm growth at higher concentrations. In the case of C4, a dose-dependent inhibition of S. aureus biofilm growth was observed. Atomic force microscopy analysis suggested that at higher concentrations C1 formed globular aggregates, which perhaps formed a substratum that favored adhesion of cells and biofilm formation. In the case of C4, zinc supplementation experiments validated zinc complexation as a plausible mechanism of inhibition of S. aureus biofilm. Interestingly, C4 was nontoxic to cultured HeLa cells and thus has promise as a therapeutic anti-biofilm agent. The essential understanding of the structure-driven implications of zinc-complexing ligands acquired in this study might assist future screening regimes for identification of potent anti-biofilm agents. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.
Li, Junye; Li, Xiaoyan; Wang, Lin; Hu, Qingping; Sun, Hongjian
2014-05-14
A benzyne cobalt complex, Co(η(2)-C6Cl4)(PMe3)3 (2), was generated from the reaction of hexachlorobenzene with 2 equiv. of Co(PMe3)4 through selective activation of two C-Cl bonds of hexachlorobenzene. Meanwhile, the byproduct CoCl2(PMe3)3 was also confirmed by IR spectra. The cobalt(II) complex, CoCl(C6Cl5)(PMe3)3 (1), as an intermediate in the formation of aryne complex 2, was also isolated by the reaction of hexachlorobenzene with the stoichiometric amount of Co(PMe3)4. Complex 2 could be obtained by the reaction of 1 with Co(PMe3)4. Under similar reaction conditions, the reaction of Ni(PMe3)4 with hexachlorobenzene afforded only a mono-(C-Cl) bond activation nickel(II) complex, NiCl(C6H5)(PMe3)2 (5). The expected benzyne nickel complex was not formed. The structures of complexes 2 and 5 were determined by X-ray single crystal diffraction. Successful selective hydrodechlorinations of hexachlorobenzene were studied and in the presence of Co(PMe3)4 or Ni(PMe3)4 as catalysts and sodium formate as a reducing agent pentachlorobenzene and 1,2,4,5-tetrachlorobenzene were obtained. The catalytic hydrodechlorination mechanism is proposed and discussed.
NASA Astrophysics Data System (ADS)
Mallaekeh, Hassan; Shams, Alireza; Shaker, Mohammad; Bahramzadeh, Ehsan; Arefi, Donya
2014-12-01
In this paper the complexation reaction of the 5,5'-(2 E,2' E)-2,2'-(ethane-1,2-diylidene)bis(hydrazine-1-yl-2-ylidene)bis(4-amino-4H-1,2,4-triazole-3-thiol) ligand (HYT) with Cd2+ education was studied in some binary mixtures of methanol (MeOH), n-propanol (PrOH) and dimethyl-formamide (DMF) at different temperatures using the conductometry and spectrophotometry. The stability constants of the complex was determined using a GENPLOT computer program. The conductance data and absorbance-mole ratio plots show that in all solvent systems, the stoichiometry of the complex formed between (HYT) and Cd2+ cation is 1: 1. The obtained results show that the stability of (HYT)-Cd complex is sensitive to the mixed solvents composition. The values of thermodynamic parameters (Δ G ∘, Δ H ∘, and Δ S ∘) for formation of (HYT)-Cd complex were obtained from temperature dependence of the stability constant using the van't Hoff plots. The results show that in most cases, the complex are enthalpy destabilized but entropy stabilized and the complex formation is affected by pH, time, temperature and the nature of the solvent.
NASA Astrophysics Data System (ADS)
Gaballa, Akmal S.; Wagner, Christoph; Teleb, Said M.; Nour, El-Metwally; Elmosallamy, M. A. F.; Kaluđerović, Goran N.; Schmidt, Harry; Steinborn, Dirk
2008-03-01
Charge-transfer (CT) complexes formed in the reactions of 2,9-dimethyl-1,10-phenanthroline (Me 2phen) with some acceptors such as chloranil (Chl), picric acid (HPA) and chloranilic acid (H 2CA) have been studied in the defined solvent at room temperature. Based on elemental analysis and infrared spectra of the solid CT-complexes along with the photometric titration curves for the reactions, obtained data indicate the formation of 1:1 charge-transfer complexes [(Me 2phen)(Chl)] ( 1), [(Me 2phenH)(PA)] ( 2) and [(Me 2phenH)(HCA)] ( 3), respectively, was proposed. In the three complexes, infrared and 1H NMR spectroscopic data indicate a charge-transfer interaction and as far as complexes 2 and 3 are concerned this interaction is associated with a hydrogen bonding. The formation constants for the complexes ( KC) were shown to be dependent upon the nature of the electron acceptors used. The X-ray structure of complex 3 indicate the formation of dimeric units [Me 2phenH] 2[(HCA) 2] in which the two anions (HCA) - are connected by two O-H⋯O hydrogen bonds whereas the cations and anions are joined together by strong three-center (bifurcated) N-H⋯O hydrogen bonds. Furthermore, the cations are arranged in a π-π stacking.
Interactions of Enolizable Barbiturate Dyes.
Schade, Alexander; Schreiter, Katja; Rüffer, Tobias; Lang, Heinrich; Spange, Stefan
2016-04-11
The specific barbituric acid dyes 1-n-butyl-5-(2,4-dinitro-phenyl) barbituric acid and 1-n-butyl-5-{4-[(1,3-dioxo-1H-inden-(3 H)-ylidene)methyl]phenyl}barbituric acid were used to study complex formation with nucleobase derivatives and related model compounds. The enol form of both compounds shows a strong bathochromic shift of the UV/Vis absorption band compared to the rarely coloured keto form. The keto-enol equilibria of the five studied dyes are strongly dependent on the properties of the environment as shown by solvatochromic studies in ionic liquids and a set of organic solvents. Enol form development of the barbituric acid dyes is also associated with alteration of the hydrogen bonding pattern from the ADA to the DDA type (A=hydrogen bond acceptor site, D=donor site). Receptor-induced altering of ADA towards DDA hydrogen bonding patterns of the chromophores are utilised to study supramolecular complex formation. As complementary receptors 9-ethyladenine, 1-n-butylcytosine, 1-n-butylthymine, 9-ethylguanidine and 2,6-diacetamidopiridine were used. The UV/Vis spectroscopic response of acid-base reaction compared to supramolecular complex formation is evaluated by (1)H NMR titration experiments and X-ray crystal structure analyses. An increased acidity of the barbituric acid derivative promotes genuine salt formation. In contrast, supramolecular complex formation is preferred for the weaker acidic barbituric acid. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Wang, Chen; Xiang, Li; Yang, Yan; Fang, Jian; Maron, Laurent; Leng, Xuebing; Chen, Yaofeng
2018-04-11
Alkylidene-bridged scandium-copper/silver heterobimetallic complexes were synthesized and structurally characterized. The complexes contain different Sc-C and M-C (M=Cu I , Ag I ) bonds. The reactivity of the scandium-copper heterobimetallic complex was also studied, which reveals that the heterobimetallic complex is a reaction intermediate for the transmetalation of akylidene group from Sc III to Cu I . The scandium-copper heterobimetallic complex also undergoes an addition reaction with CO, resulting in the formation of a new C=C double bond. DFT calculations were used to study the bonding and the subsequent reactivity with CO of the scandium-copper heterobimetallic complex. It clearly demonstrates a cooperative effect between the two metal centers through the formation of a direct Sc⋅⋅⋅Cu interaction that drives the reactivity with CO. © 2018 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.
Spectral Studies of Iron Coordination in Hemeprotein Complexes
Brill, Arthur S.; Sandberg, Howard E.
1968-01-01
In order to evaluate the feasibility of observing the spectral behavior of protein groups in the coordination sphere of the iron in hemeproteins, criteria are developed to determine whether or not the application of difference absorption spectroscopy to the study of complex formation will be successful. Absolute absorption spectra, 300-1100 mμ, from bacterial catalase complexes are displayed, and the infrared bands correlated with magnetic susceptibility values of similar complexes of other hemeproteins. Dissociation constants for the formation of cyanide and azide complexes of metmyoglobin, methemoglobin, bacterial catalase, and horseradish peroxidase are given. Difference spectra, 210-280 mμ, are displayed for cyanide and azide complexes of these hemeproteins. A band at 235-241 mμ is found in the difference spectra of all low-spin vs. high-spin complexes. The factors which favor the assignment of this band to a transition involving a histidine residue are presented. PMID:5699802
Single and double C-Cl-activation of methylene chloride by P,N-ligand coordinated rhodium complexes.
Blank, Benoît; Glatz, Germund; Kempe, Rhett
2009-02-02
Two in one: The simultaneous formation of bimetallic mu-methylene bridged Rh(III) complexes as well as dimeric Rh(III) complexes with terminal chloromethyl groups is observed for P,N-ligand stabilized Rh(I) complexes by C-Cl bond activation of methylene chloride. A mechanistic proposal for the formation of both activation products is also discussed. The synthesis of Rh(I) complexes with P-functionalized aminopyridine ligands is reported as well as the first simultaneous observation of a single and double activation of C-Cl bonds of methylene chloride affording both a dimeric Rh(III) complex bearing terminal CH(2)Cl groups in addition to a binuclear Rh(III) complex with a bridging mu-CH(2) group. The structures of the oxidative addition products were obtained by X-ray diffraction studies and NMR experiments were performed to elucidate some aspects of the reaction pathway.
Ultrasonic and spectral studies on charge transfer complexes of anisole and certain aromatic amines
NASA Astrophysics Data System (ADS)
Rajesh, R.; Raj Muhamed, R.; Justin Adaikala Baskar, A.; Kannappan, V.
2016-10-01
Stability constants of two complexes of anisole with aniline and N-methylaniline (NMA) are determined from the measured ultrasonic velocity in n-hexane medium at four different temperatures. Acoustic and excess thermo acoustic parameters [excess ultrasonic velocity (uE), excess molar volume (VE), excess internal pressure (πiE)] are reported for these systems at four different temperatures. The trend in acoustic and excess parameters with concentration in the two systems establishes the formation of hydrogen bonded complexes between anisole and the two amines. Thermodynamic properties are computed for the two complexes from the variation in K with temperature. The formation of these complexes is also established by UV spectral method and their spectral characteristics and stability constants are determined. K values of these complexes obtained by ultrasonic and UV spectroscopic techniques agree well. Aniline forms more stable complex than N-methylaniline with anisole in n-hexane medium.
Sun, Yintao; Wollenberg, Alexander L; O'Shea, Timothy Mark; Cui, Yanxiang; Zhou, Z Hong; Sofroniew, Michael V; Deming, Timothy J
2017-10-25
Synthetic diblock copolypeptides were designed to incorporate oppositely charged ionic segments that form β-sheet-structured hydrogel assemblies via polyion complexation when mixed in aqueous media. The observed chain conformation directed assembly was found to be required for efficient hydrogel formation and provided distinct and useful properties to these hydrogels, including self-healing after deformation, microporous architecture, and stability against dilution in aqueous media. While many promising self-assembled materials have been prepared using disordered or liquid coacervate polyion complex (PIC) assemblies, the use of ordered chain conformations in PIC assemblies to direct formation of new supramolecular morphologies is unprecedented. The promising attributes and unique features of the β-sheet-structured PIC hydrogels described here highlight the potential of harnessing conformational order derived from PIC assembly to create new supramolecular materials.
Simulating the dynamics of complex plasmas.
Schwabe, M; Graves, D B
2013-08-01
Complex plasmas are low-temperature plasmas that contain micrometer-size particles in addition to the neutral gas particles and the ions and electrons that make up the plasma. The microparticles interact strongly and display a wealth of collective effects. Here we report on linked numerical simulations that reproduce many of the experimental results of complex plasmas. We model a capacitively coupled plasma with a fluid code written for the commercial package comsol. The output of this model is used to calculate forces on microparticles. The microparticles are modeled using the molecular dynamics package lammps, which we extended to include the forces from the plasma. Using this method, we are able to reproduce void formation, the separation of particles of different sizes into layers, lane formation, vortex formation, and other effects.
Tanaka, Hiromasa; Arashiba, Kazuya; Kuriyama, Shogo; Sasada, Akira; Nakajima, Kazunari; Yoshizawa, Kazunari; Nishibayashi, Yoshiaki
2014-04-28
It is vital to design effective nitrogen fixation systems that operate under mild conditions, and to this end we recently reported an example of the catalytic formation of ammonia using a dinitrogen-bridged dimolybdenum complex bearing a pincer ligand, where up to twenty three equivalents of ammonia were produced based on the catalyst. Here we study the origin of the catalytic behaviour of the dinitrogen-bridged dimolybdenum complex bearing the pincer ligand with density functional theory calculations, based on stoichiometric and catalytic formation of ammonia from molecular dinitrogen under ambient conditions. Comparison of di- and mono-molybdenum systems shows that the dinitrogen-bridged dimolybdenum core structure plays a critical role in the protonation of the coordinated molecular dinitrogen in the catalytic cycle.
Precedent approach to the formation of programs for cyclic objects control
NASA Astrophysics Data System (ADS)
Kulakov, S. M.; Trofimov, V. B.; Dobrynin, A. S.; Taraborina, E. N.
2018-05-01
The idea and procedure for formalizing the precedent method of formation of complex control solutions (complex control programs) is discussed with respect to technological or organizational objects, the operation of which is organized cyclically. A typical functional structure of the system of precedent control by complex technological unit is developed, including a subsystem of retrospective optimization of actually implemented control programs. As an example, the problem of constructing replaceable planograms for the operation of the link of a heading-and-winning machine on the basis of precedents is considered.
Temperature Dependence of Positron Annihilation in beta-Cyclodextrin and beta-Cyclodextrin Complexes
NASA Astrophysics Data System (ADS)
Hu, Y.; Hsu Hadley, F. H., Jr.; Trinh, T.
1996-11-01
The effects of temperature on positron annihilation in beta-cyclodextrin and beta-cyclodextrin complexed with benzyl salicylate, benzyl acetate, ethyl salicylate, geraniol, linalool and nerol were studied. Samples were prepared by slurry, air-dried and freeze-dried methods. Lifetime spectra were measured as a function of temperature for each sample. Comparison of the annihilation rate and intensity of the longer-lived component showed that positronium formation was affected by guest molecules, preparation methods and temperature variations. Results can be used to explain beta-cyclodextrin complex formation with different guest molecules.
Jian, Chongshu; Xu, Fengli; Hou, Tingting; Sun, Tao; Li, Jinghang; Cheng, Heping; Wang, Xianhua
2017-08-01
Prohibitins (PHBs; prohibitin 1, PHB1 or PHB, and prohibitin 2, PHB2) are evolutionarily conserved and ubiquitously expressed mitochondrial proteins. PHBs form multimeric ring complexes acting as scaffolds in the inner mitochondrial membrane. Mitochondrial flashes (mitoflashes) are newly discovered mitochondrial signaling events that reflect electrical and chemical excitations of the organelle. Here, we investigate the possible roles of PHBs in the regulation of mitoflash signaling. Downregulation of PHBs increases mitoflash frequency by up to 5.4-fold due to elevated basal reactive oxygen species (ROS) production in the mitochondria. Mechanistically, PHB deficiency impairs the formation of mitochondrial respiratory supercomplexes (RSCs) without altering the abundance of individual respiratory complex subunits. These impairments induced by PHB deficiency are effectively rescued by co-expression of PHB1 and PHB2, indicating that the multimeric PHB complex acts as the functional unit. Furthermore, downregulating other RSC assembly factors, including SCAFI (also known as COX7A2L), RCF1a (HIGD1A), RCF1b (HIGD2A), UQCC3 and SLP2 (STOML2), all activate mitoflashes through elevating mitochondrial ROS production. Our findings identify the PHB complex as a new regulator of RSC formation and mitoflash signaling, and delineate a general relationship among RSC formation, basal ROS production and mitoflash biogenesis. © 2017. Published by The Company of Biologists Ltd.
Vallelian, Florence; Garcia-Rubio, Ines; Puglia, Michele; Kahraman, Abdullah; Deuel, Jeremy W; Engelsberger, Wolfgang R; Mason, Ronald P; Buehler, Paul W; Schaer, Dominik J
2015-08-01
Extracellular or free hemoglobin (Hb) accumulates during hemolysis, tissue damage, and inflammation. Heme-triggered oxidative reactions can lead to diverse structural modifications of lipids and proteins, which contribute to the propagation of tissue damage. One important target of Hb׳s peroxidase reactivity is its own globin structure. Amino acid oxidation and crosslinking events destabilize the protein and ultimately cause accumulation of proinflammatory and cytotoxic Hb degradation products. The Hb scavenger haptoglobin (Hp) attenuates oxidation-induced Hb degradation. In this study we show that in the presence of hydrogen peroxide (H2O2), Hb and the Hb:Hp complex share comparable peroxidative reactivity and free radical generation. While oxidation of both free Hb and Hb:Hp complex generates a common tyrosine-based free radical, the spin-trapping reaction with 5,5-dimethyl-1-pyrroline N-oxide (DMPO) yields dissimilar paramagnetic products in Hb and Hb:Hp, suggesting that radicals are differently redistributed within the complex before reacting with the spin trap. With LC-MS(2) mass spectrometry we assigned multiple known and novel DMPO adduct sites. Quantification of these adducts suggested that the Hb:Hp complex formation causes extensive delocalization of accessible free radicals with drastic reduction of the major tryptophan and cysteine modifications in the β-globin chain of the Hb:Hp complex, including decreased βCys93 DMPO adduction. In contrast, the quantitative changes in DMPO adduct formation on Hb:Hp complex formation were less pronounced in the Hb α-globin chain. In contrast to earlier speculations, we found no evidence that free Hb radicals are delocalized to the Hp chain of the complex. The observation that Hb:Hp complex formation alters free radical distribution in Hb may help to better understand the structural basis for Hp as an antioxidant protein. Copyright © 2015 Elsevier Inc. All rights reserved.
Cheng, Chen; Kim, Bong Gon; Guironnet, Damien; Brookhart, Maurice; Guan, Changjian; Wang, David Y; Krogh-Jespersen, Karsten; Goldman, Alan S
2014-05-07
New carbazolide-based iridium pincer complexes ((carb)PNP)Ir(C2H4), 3a, and ((carb)PNP)Ir(H)2, 3b, have been prepared and characterized. The dihydride, 3b, reacts with ethylene to yield the cis-dihydride ethylene complex cis-((carb)PNP)Ir(C2H4)(H)2. Under ethylene this complex reacts slowly at 70 °C to yield ethane and the ethylene complex, 3a. Kinetic analysis establishes that the reaction rate is dependent on ethylene concentration and labeling studies show reversible migratory insertion to form an ethyl hydride complex prior to formation of 3a. Exposure of cis-((carb)PNP)Ir(C2H4)(H)2 to hydrogen results in very rapid formation of ethane and dihydride, 3b. DFT analysis suggests that ethane elimination from the ethyl hydride complex is assisted by ethylene through formation of ((carb)PNP)Ir(H)(Et)(C2H4) and by H2 through formation of ((carb)PNP)Ir(H)(Et)(H2). Elimination of ethane from Ir(III) complex ((carb)PNP)Ir(H)(Et)(H2) is calculated to proceed through an Ir(V) complex ((carb)PNP)Ir(H)3(Et) which reductively eliminates ethane with a very low barrier to return to the Ir(III) dihydride, 3b. Under catalytic hydrogenation conditions (C2H4/H2), cis-((carb)PNP)Ir(C2H4)(H)2 is the catalyst resting state, and the catalysis proceeds via an Ir(III)/Ir(V)/Ir(III) cycle. This is in sharp contrast to isoelectronic (PCP)Ir systems in which hydrogenation proceeds through an Ir(III)/Ir(I)/Ir(III) cycle. The basis for this remarkable difference is discussed.
Formation of Stable Cationic Lipid/DNA Complexes for Gene Transfer
NASA Astrophysics Data System (ADS)
Hofland, Hans E. J.; Shephard, Lee; Sullivan, Sean M.
1996-07-01
Stable cationic lipid/DNA complexes were formed by solubilizing cationic liposomes with 1% octylglucoside and complexing a DNA plasmid with the lipid in the presence of detergent. Removal of the detergent by dialysis yielded a lipid/DNA suspension that was able to transfect tissue culture cells up to 90 days after formation with no loss in activity. Similar levels of gene transfer were obtained by mixing the cationic lipid in a liposome form with DNA just prior to cell addition. However, expression was completely lost 24 hr after mixing. The transfection efficiency of the stable complex in 15% fetal calf serum was 30% of that obtained in the absence of serum, whereas the transient complex was completely inactivated with 2% fetal calf serum. A 90-day stability study comparing various storage conditions showed that the stable complex could be stored frozen or as a suspension at 4 degrees C with no loss in transfection efficiency. Centrifugation of the stable complex produced a pellet that contained approximately 90% of the DNA and 10% of the lipid. Transfection of cells with the resuspended pellet and the supernatant showed that the majority of the transfection activity was in the pellet and all the toxicity was in the supernatant. Formation of a stable cationic lipid/DNA complex has produced a transfection vehicle that can be stored indefinitely, can be concentrated with no loss in transfection efficiency, and the toxicity levels can be greatly reduced when the active complex is isolated from the uncomplexed lipid.
NASA Astrophysics Data System (ADS)
Kustov, A. V.; Smirnova, N. L.; Berezin, B. D.; Trostin, V. N.
2010-04-01
The thermal effects of mixing of aqueous calcium chloride with sodium citrate and ethylenedi-aminetetraacetate in the absence and presence of sodium oxalate have been measured at 25°C. The thermal effects of dilution of aqueous calcium chloride solutions were determined. The thermal effects of calcium oxalate precipitation and formation of calcium complexes with citrate and ethylenediaminetetraacetate ions were calculated. The 1% solution of sodium citrate inhibited the formation of CaC2O4 (s); in a 1% solution of sodium ethylenediaminetetraacetate with [Ca2+][C2O{4/2-}] > 10-5, the endothermal formation of the [CaEdta]2- complex quickly changed to exothermal precipitation. The 3 and 5% solutions of complexons showed a pronounced inhibiting effect on the formation of urinary stones even when the concentration of calcium and oxalate ions in solution exceeded the product of solubility of CaC2O4 by four and more orders of magnitude.
Ranade-Kharkar, Pallavi; Norlin, Chuck; Del Fiol, Guilherme
2017-01-01
Complex and chronic conditions in pediatric patients with special needs often result in large and diverse patient care teams. Having a comprehensive view of the care teams is crucial to achieving effective and efficient care coordination for these vulnerable patients. In this study, we iteratively design and develop two alternative user interfaces (graphical and tabular) of a prototype of a tool for visualizing and managing care teams and conduct a formative assessment of the usability, usefulness, and efficiency of the tool. The median time to task completion for the 21 study participants was less than 7 seconds for 19 out of the 22 usability tasks. While both the prototype formats were well-liked in terms of usability and usefulness, the tabular format was rated higher for usefulness (p=0.02). Inclusion of CareNexus-like tools in electronic and personal health records has the potential to facilitate care coordination in complex pediatric patients. PMID:29854215
Deciphering Front-Side Complex Formation in SN2 Reactions via Dynamics Mapping.
Szabó, István; Olasz, Balázs; Czakó, Gábor
2017-07-06
Due to their importance in organic chemistry, the atomistic understanding of bimolecular nucleophilic substitution (S N 2) reactions shows exponentially growing interest. In this publication, the effect of front-side complex (FSC) formation is uncovered via quasi-classical trajectory computations combined with a novel analysis method called trajectory orthogonal projection (TOP). For both F - + CH 3 Y [Y = Cl,I] reactions, the lifetime distributions of the F - ···YCH 3 front-side complex revealed weakly trapped nucleophiles (F - ). However, only the F - + CH 3 I reaction features strongly trapped nucleophiles in the front-side region of the prereaction well. Interestingly, both back-side and front-side attack show propensity to long-lived FSC formation. Spatial distributions of the nucleophile demonstrate more prominent FSC formation in case of the F - + CH 3 I reaction compared to F - + CH 3 Cl. The presence of front-side intermediates and the broad spatial distribution in the back-side region may explain the indirect nature of the F - + CH 3 I reaction.
Complexes of horseradish peroxidase with formate, acetate, and carbon monoxide.
Carlsson, Gunilla H; Nicholls, Peter; Svistunenko, Dimitri; Berglund, Gunnar I; Hajdu, Janos
2005-01-18
Carbon monoxide, formate, and acetate interact with horseradish peroxidase (HRP) by binding to subsites within the active site. These ligands also bind to catalases, but their interactions are different in the two types of enzymes. Formate (notionally the "hydrated" form of carbon monoxide) is oxidized to carbon dioxide by compound I in catalase, while no such reaction is reported to occur in HRP, and the CO complex of ferrocatalase can only be obtained indirectly. Here we describe high-resolution crystal structures for HRP in its complexes with carbon monoxide and with formate, and compare these with the previously determined HRP-acetate structure [Berglund, G. I., et al. (2002) Nature 417, 463-468]. A multicrystal X-ray data collection strategy preserved the correct oxidation state of the iron during the experiments. Absorption spectra of the crystals and electron paramagnetic resonance data for the acetate and formate complexes in solution correlate electronic states with the structural results. Formate in ferric HRP and CO in ferrous HRP bind directly to the heme iron with iron-ligand distances of 2.3 and 1.8 A, respectively. CO does not bind to the ferric iron in the crystal. Acetate bound to ferric HRP stacks parallel with the heme plane with its carboxylate group 3.6 A from the heme iron, and without an intervening solvent molecule between the iron and acetate. The positions of the oxygen atoms in the bound ligands outline a potential access route for hydrogen peroxide to the iron. We propose that interactions in this channel ensure deprotonation of the proximal oxygen before binding to the heme iron.
NASA Astrophysics Data System (ADS)
Polat, Ali; Frei, Robert; Longstaffe, Fred J.; Woods, Ryan
2018-04-01
The Neoarchean (ca. 2728 Ma) anorthosite-bearing Doré Lake Complex in the northeastern Abitibi subprovince, Quebec, was emplaced into an association of intra-oceanic tholeiitic basalts and gabbros known as the Obatogamau Formation. The Obatogamau Formation constitutes the lower part of the Roy Group, which is composed of two cycles of tholeiitic-to-calc-alkaline volcanic and volcaniclastic rocks, siliciclastic and chemical sedimentary rocks, and layered mafic-to-ultramafic sills. In this study, we report major and trace element results, and Nd, Sr, Pb and O isotope data for anorthosites, leucogabbros, gabbros and mafic dykes from the Doré Lake Complex and spatially associated basalts and gabbros of the Obatogamau Formation to assess their petrogenetic origin and geodynamic setting. Field and petrographic observations indicate that the Doré Lake Complex and associated volcanic rocks underwent extensive metamorphic alteration under greenschist facies conditions, resulting in widespread epidotization (20-40%) and chloritization (10-40%) of many rock types. Plagioclase recrystallized mainly to anorthite and albite endmembers, erasing intermediate compositions. Metamorphic alteration also led to the mobilization of many elements (e.g., LILE and transition metals) and to significant disturbance of the Rb-Sr and U-Pb isotope systems, resulting in 1935 ± 150 and 3326 ± 270 Ma errorchron ages, respectively. The Sm-Nd isotope system was less disturbed, yielding an errorchron age of 2624 ± 160 Ma. On many binary major and trace element diagrams, the least altered anorthosites and leucogabbros, and the gabbros and mafic dykes of the Doré Lake Complex plot in separate fields, signifying the presence of two distinct magma types in the complex. The gabbros and mafic dykes in the Doré Lake Complex share the geochemical characteristics of tholeiitic basalts and gabbros in the Obatogamau Formation, suggesting a possible genetic link between the two rock associations. Initial ɛNd (+2.6 to +5.0) and δ18O (+6.1 to +7.9‰) values for the Doré Lake Complex and gabbros of the Obatogamau Formation (ɛNd = +2.8 to +4.0; δ18O = +7.3 to 8.0‰) are consistent with depleted mantle sources. All rock types in the Doré Lake Complex and the Roy Group share the trace element characteristics of modern arc magmas, suggesting a suprasubduction zone setting for these two lithological associations. On the basis of regional geology and geochemical data, we suggest that the Doré Lake Complex and the Obatogamau Formation represent a dismembered fragment of a suture zone, like many Phanerozoic ophiolites, resulting from closure of a back-arc basin between 2703 and 2690 Ma.
Peys, Nick; Adriaensens, Peter; Van Doorslaer, Sabine; Gielis, Sven; Peeters, Ellen; De Dobbelaere, Christopher; De Gendt, Stefan; Hardy, An; Van Bael, Marlies K
2014-09-07
An aqueous precursor solution, containing citrato-VO(2+) complexes, is synthesized for the formation of monoclinic VO2. With regard to the decomposition of the VO(2+) complexes towards vanadium oxide formation, it is important to gain insights into the chemical structure and transformations of the precursor during synthesis and thermal treatment. Hence, the conversion of the cyclic [V4O12](4-) ion to the VO(2+) ion in aqueous solution, using oxalic acid as an acidifier and a reducing agent, is studied by (51)Vanadium nuclear magnetic resonance spectroscopy. The citrate complexation of this VO(2+) ion and the differentiation between a solution containing citrato-oxalato-VO(2+) and citrato-VO(2+) complexes are studied by electron paramagnetic resonance and Fourier transform infra-red spectroscopy. In both solutions, the VO(2+) containing complex is mononuclear and has a distorted octahedral geometry with a fourfold R-CO2(-) ligation at the equatorial positions and likely a fifth R-CO2(-) ligation at the axial position. Small differences in the thermal decomposition pathway between the gel containing citrato-oxalato-VO(2+) complexes and the oxalate-free gel containing citrato-VO(2+) complexes are observed between 150 and 200 °C in air and are assigned to the presence of (NH4)2C2O4 in the citrato-oxalato-VO(2+) solution. Both precursor solutions are successfully used for the formation of crystalline vanadium oxide nanostructures on SiO2, after thermal annealing at 500 °C in a 0.1% O2 atmosphere. However, the citrato-oxalato-VO(2+) and the oxalate-free citrato-VO(2+) solution result in the formation of monoclinic V6O13 and monoclinic VO2, respectively.
Volumetric analysis of formation of the complex of G-quadruplex DNA with hemin using high pressure.
Takahashi, Shuntaro; Bhowmik, Sudipta; Sugimoto, Naoki
2017-01-01
DNA guanine-quadruplexes (G-quadruplexes) complexed with the Fe-containing porphyrin, hemin (iron(III)-protoporphyrin IX), can catalyze oxidation reactions. This so-called DNAzyme has been widely used in the field of DNA nanotechnology. To improve DNAzyme properties, we sought to elucidate the interaction mechanism between G-quadruplex DNA and hemin. Here, we performed volumetric analyses of formation of the complex between an oligonucleotide with the sequence of human telomeric DNA (h-telo) and hemin. The G-quadruplex DNA alone and the G-quadruplex DNA-hemin complex were destabilized with increasing pressure in Na + buffer. The pressure required to destabilize the h-telo-hemin complex was less in K + -containing buffer than in buffer with Na + , which indicates that there was a smaller volumetric change upon h-telo formation in K + buffer than in Na + buffer. The calculated change in h-telo-hemin binding volume (∆V b ) in the Na + buffer was 2.5mLmol -1 , whereas it was -41.7 in mLmol -1 the K + buffer. The DNAzyme activity in the K + buffer was higher than that in the Na + buffer at atmospheric pressure. Interestingly, the pressure effect on the destabilization of the h-telo-hemin complex in the presence of poly(ethylene glycol)200 (PEG200) was repressed compared to that in the absence of PEG200. These results suggest that differences in volumetric parameters reflect different mechanisms of interaction between hemin and h-telo due to differences in both the fit of hemin into the h-telo structure and hydration. Thus, the pressure-based thermodynamic analysis provided important information about complex formation and could be a useful index to improve function of DNAzymes. Copyright © 2016 Elsevier Inc. All rights reserved.
Promotion of chlamydoconidium formation in Candida albicans by corn meal broth incubation.
Nakamoto, S
1998-04-01
Chlamydoconidium formation can be used as a tool for the identification of Candida albicans. While chlamydoconidia are known to be inducible on corn meal agar, this report demonstrates that testing in liquid media supplemented with milk or serum enhances chlamydoconidium formation and the formation of complex mycelial clusters.
Two-dimensional infrared spectroscopy reveals the complex behaviour of an amyloid fibril inhibitor
NASA Astrophysics Data System (ADS)
Middleton, Chris T.; Marek, Peter; Cao, Ping; Chiu, Chi-Cheng; Singh, Sadanand; Woys, Ann Marie; de Pablo, Juan J.; Raleigh, Daniel P.; Zanni, Martin T.
2012-05-01
Amyloid formation has been implicated in the pathology of over 20 human diseases, but the rational design of amyloid inhibitors is hampered by a lack of structural information about amyloid-inhibitor complexes. We use isotope labelling and two-dimensional infrared spectroscopy to obtain a residue-specific structure for the complex of human amylin (the peptide responsible for islet amyloid formation in type 2 diabetes) with a known inhibitor (rat amylin). Based on its sequence, rat amylin should block formation of the C-terminal β-sheet, but at 8 h after mixing, rat amylin blocks the N-terminal β-sheet instead. At 24 h after mixing, rat amylin blocks neither β-sheet and forms its own β-sheet, most probably on the outside of the human fibrils. This is striking, because rat amylin is natively disordered and not previously known to form amyloid β-sheets. The results show that even seemingly intuitive inhibitors may function by unforeseen and complex structural processes.
Insulin stimulates syntaxin4 SNARE complex assembly via a novel regulatory mechanism.
Kioumourtzoglou, Dimitrios; Gould, Gwyn W; Bryant, Nia J
2014-04-01
Insulin stimulates glucose transport into fat and muscle cells by increasing the exocytic trafficking rate of the GLUT4 facilitative glucose transporter from intracellular stores to the plasma membrane. Delivery of GLUT4 to the plasma membrane is mediated by formation of functional SNARE complexes containing syntaxin4, SNAP23, and VAMP2. Here we have used an in situ proximity ligation assay to integrate these two observations by demonstrating for the first time that insulin stimulation causes an increase in syntaxin4-containing SNARE complex formation in adipocytes. Furthermore, we demonstrate that insulin brings about this increase in SNARE complex formation by mobilizing a pool of syntaxin4 held in an inactive state under basal conditions. Finally, we have identified phosphorylation of the regulatory protein Munc18c, a direct target of the insulin receptor, as a molecular switch to coordinate this process. Hence, this report provides molecular detail of how the cell alters membrane traffic in response to an external stimulus, in this case, insulin.
Singh, Neeti; Khan, Ishaat M; Ahmad, Afaq
2010-04-01
The charge transfer complexes of the donor p-toluidine with pi-acceptor picric acid have been studied spectrophotometrically in various solvents such as carbon tetrachloride, chloroform, dichloromethane acetone, ethanol, and methanol at room temperature using absorption spectrophotometer. The results indicate that formation of CTC in non-polar solvent is high. The stoichiometry of the complex was found to be 1:1 ratio by straight-line method between donor and acceptor with maximum absorption bands. The data are discussed in terms of formation constant (K(CT)), molar extinction coefficient (epsilon(CT)), standard free energy (DeltaG(o)), oscillator strength (f), transition dipole moment (mu(EN)), resonance energy (R(N)) and ionization potential (I(D)). The results indicate that the formation constant (K(CT)) for the complex was shown to be dependent upon the nature of electron acceptor, donor and polarity of solvents that were used. Copyright 2010 Elsevier B.V. All rights reserved.
K. Heckman; A.S. Grandy; X. Gao; M. Keiluweit; K. Wickings; K. Carpenter; J. Chorover; C. Rasmussen
2013-01-01
Solid and aqueous phase Al species are recognized to affect organic matter (OM) stabilization in forest soils. However, little is known about the dynamics of formation, composition and dissolution of organo-Al hydroxide complexes in microbially-active soil systems, where plant litter is subject to microbial decomposition in close proximity to mineral weathering...
Computer analysis of potentiometric data of complexes formation in the solution
NASA Astrophysics Data System (ADS)
Jastrzab, Renata; Kaczmarek, Małgorzata T.; Tylkowski, Bartosz; Odani, Akira
2018-02-01
The determination of equilibrium constants is an important process for many branches of chemistry. In this review we provide the readers with a discussion on computer methods which have been applied for elaboration of potentiometric experimental data generated during complexes formation in solution. The review describes both: general basis of modeling tools and examples of the use of calculated stability constants.
Root Uptake Of Lipophilic Zinc-Rhamnolipid Complexes
This study investigated the formation and plant uptake of lipophilic metal-rhamnolipid complexes. Monorhamnosyl and dirhamnosyl rhamnolipids formed lipophilic complexes with copper (Cu), manganese (Mn), and zinc (Zn). Rhamnolipids significantly increased Zn absorption by Bra...
Nephrin phosphorylation regulates podocyte adhesion through the PINCH-1-ILK-α-parvin complex
Zha, Dongqing; Chen, Cheng; Liang, Wei; Chen, Xinghua; Ma, Tean; Yang, Hongxia; van Goor, Harry; Ding, Guohua
2013-01-01
Nephrin, a structural molecule, is also a signaling molecule after phosphorylation. Inhibition of nephrin phosphorylation is correlated with podocyte injury. The PINCH-1-ILK-α-parvin (PIP) complex plays a crucial role in cell adhesion and cytoskeleton formation. We hypothesized that nephrin phosphorylation influenced cytoskeleton and cell adhesion in podocytes by regulating the PIP complex. The nephrin phosphorylation, PIP complex formation, and F-actin in Wistar rats intraperitoneally injected with puromycin aminonucleoside were gradually decreased but increased with time, coinciding with the recovery from glomerular/podocyte injury and proteinuria. In cultured podocytes, PIP complex knockdown resulted in cytoskeleton reorganization and decreased cell adhesion and spreading. Nephrin and its phosphorylation were unaffected after PIP complex knockdown. Furthermore, inhibition of nephrin phosphorylation suppressed PIP complex expression, disorganized podocyte cytoskeleton, and decreased cell adhesion and spreading. These findings indicate that alterations in nephrin phosphorylation disorganize podocyte cytoskeleton and decrease cell adhesion through a PIP complex-dependent mechanism. [BMB Reports 2013; 46(4): 230-235] PMID:23615266
Influencing of resorption and side-effects of salicylic acid by complexing with beta-cyclodextrin.
Szejtli, J; Gerlóczy, A; Sebestyén, G; Fónagy, A
1981-04-01
After oral administration of 14C-labelled salicylic acid and its beta-cyclodextrin complex to rats, the blood radioactivity-level increases in the first 2 h than decreases. The blood level obtained with the inclusion complex is somewhat but not significantly lower than with free acid. Since the resorption of cyclodextrin is a considerably slower process, it is very likely that the resorption of salicylic acid take place in the form of free acid after dissociation of the complex. The urinary excretion cumulative curves show that the free salicylic acid is completely excreted, while about 10% of the salicylic acid administered in the form of complex is lost. The cyclodextrin complex formation increases the pK value of all hydroxy-benzoic acids. Direct observations reveals that complex formation decreases the stomach-irritating effect of salicylic acid. The ratio of radioactivity was nearly the same in the organs of animals treated by both free salicylic and cyclodextrin complex.
Enhanced Respiratory Chain Supercomplex Formation in Response to Exercise in Human Skeletal Muscle.
Greggio, Chiara; Jha, Pooja; Kulkarni, Sameer S; Lagarrigue, Sylviane; Broskey, Nicholas T; Boutant, Marie; Wang, Xu; Conde Alonso, Sonia; Ofori, Emmanuel; Auwerx, Johan; Cantó, Carles; Amati, Francesca
2017-02-07
Mitochondrial dysfunction is a hallmark of multiple metabolic complications. Physical activity is known to increase mitochondrial content in skeletal muscle, counteracting age-related decline in muscle function and protecting against metabolic and cardiovascular complications. Here, we investigated the effect of 4 months of exercise training on skeletal muscle mitochondria electron transport chain complexes and supercomplexes in 26 healthy, sedentary older adults. Exercise differentially modulated respiratory complexes. Complex I was the most upregulated complex and not stoichiometrically associated to the other complexes. In contrast to the other complexes, complex I was almost exclusively found assembled in supercomplexes in muscle mitochondria. Overall, supercomplex content was increased after exercise. In particular, complexes I, III, and IV were redistributed to supercomplexes in the form of I+III 2 +IV. Taken together, our results provide the first evidence that exercise affects the stoichiometry of supercomplex formation in humans and thus reveal a novel adaptive mechanism for increased energy demand. Copyright © 2017 Elsevier Inc. All rights reserved.
Rieger, Paul-Gerhard; Sinnwell, Volker; Preuß, Andrea; Francke, Wittko; Knackmuss, Hans-Joachim
1999-01-01
Biodegradation of 2,4,6-trinitrophenol (picric acid) by Rhodococcus erythropolis HLPM-1 proceeds via initial hydrogenation of the aromatic ring system. Here we present evidence for the formation of a hydride-Meisenheimer complex (anionic ς-complex) of picric acid and its protonated form under physiological conditions. These complexes are key intermediates of denitration and productive microbial degradation of picric acid. For comparative spectroscopic identification of the hydride complex, it was necessary to synthesize this complex for the first time. Spectroscopic data revealed the initial addition of a hydride ion at position 3 of picric acid. This hydride complex readily picks up a proton at position 2, thus forming a reactive species for the elimination of nitrite. Cell extracts of R. erythropolis HLPM-1 transform the chemically synthesized hydride complex into 2,4-dinitrophenol. Picric acid is used as the sole carbon, nitrogen, and energy source by R. erythropolis HLPM-1. PMID:9973345
Mechanisms Underlying the Formation of Complexes between Maize Starch and Lipids.
Chao, Chen; Yu, Jinglin; Wang, Shuo; Copeland, Les; Wang, Shujun
2018-01-10
This study aimed to reveal the mechanism of formation of complexes between native maize starch (NMS) and different types of lipids, namely palmitic acid (PA), monopalmitate glycerol (MPG), dipalmitate glycerol (DPG), and tripalmitate glycerol (TPG). The complexing index followed the order of MPG (96.3%) > PA (41.8%) > TPG (8.3%) > DPG (1.1%), indicating that MPG formed more complexes with NMS than PA, and that few complexes were formed between NMS and DPG and TPG. The NMS-PA complex presented higher thermal transition temperatures and lower enthalpy change than the NMS-MPG complex, indicating that although MPG formed more starch complexes, they had less stable crystalline structures than the complex between NMS and PA. X-ray diffraction (XRD) and Raman spectroscopy showed that both MPG and PA formed V-type crystalline structures with NMS, and confirmed that no complexes were formed between NMS and DPG and TPG. We conclude that the monoglyceride formed more starch-lipid complex with maize starch than PA, but that the monoglyceride complex had a less stable structure than that formed with PA. The di- and triglycerides did not form complexes with maize starch.
Hybrid copper complex-derived conductive patterns printed on polyimide substrates
NASA Astrophysics Data System (ADS)
Lee, Byoungyoon; Jeong, Sooncheol; Kim, Yoonhyun; Jeong, Inbum; Woo, Kyoohee; Moon, Jooho
2012-06-01
We synthesized new copper complexes that can be readily converted into highly conductive Cu film. Mechanochemical milling of copper (I) oxide suspended in formic acid resulted in the submicron-sized Cu formate together Cu nanoparticles. The submicrometer-sized Cu formates are reactive toward inter-particle sintering and metallic Cu seeds present in the Cu complexes assist their decomposition and the nucleation of Cu. The hybrid copper complex film printed on polyimide substrate is decomposed into dense and uniform Cu layer after annealing at 250 °C for 30 min under nitrogen atmosphere. The resulting Cu film exhibited a low resistivity of 8.2 μΩ·cm and good adhesion characteristics.
Al-Hashimi, Nessreen A; Hussein, Yasser H A
2010-01-01
The charge transfer (CT) interaction between iodine and 2,3-diaminopyridine (DAPY) has been thoroughly investigated via theoretical calculations. A Hartree-Fock, 3-21G level of theory was used to optimize and calculate the Mullican charge distribution scheme as well as the vibrational frequencies of DAPY alone and both its CT complexes with one and two iodine molecules. A very good agreement was found between experiment and theory. New illustrations were concluded with a deep analysis and description for the vibrational frequencies of the formed CT complexes. The two-step CT complex formation mechanism published earlier was supported. Copyright 2009 Elsevier B.V. All rights reserved.
NASA Astrophysics Data System (ADS)
Kunsági-Máté, Sándor; Ortmann, Erika; Kollár, László; Nikfardjam, Martin Pour
2008-09-01
The complex formation of malvidin-3- O-glucoside with several polyphenols, the so-called "copigmentation" phenomenon, was studied in aqueous solutions. To simulate the copigmentation process during fermentation, the stability of the formed complexes was examined in dependence of the ethanol content of the aqueous solution. Results indicate that stronger and larger complexes are formed, when the ethanol content exceeds a critical margin of 8 vol.% However, the size of complexes of malvidin/procyanidin and malvidin/epicatechin is drastically reduced above this critical concentration. Fluorescence lifetime and solvent relaxation measurements give insight into the particular processes at molecular level and will help us comprehend the first important steps during winemaking in order to recommend an optimized winemaking technology to ensure extraordinary colour stability in red wines.
Reagent Anions for Charge Inversion of Polypeptide/Protein Cations in the Gas Phase
He, Min; Emory, Joshua F.; McLuckey, Scott A.
2005-01-01
Various reagent anions capable of converting polypeptide cations to anions via ion/ion reactions have been investigated. The major charge inversion reaction channels include multiple proton transfer and adduct formation. Dianions composed of sulfonate groups as the negative charge carriers show essentially exclusive adduct formation in converting protonated peptides and proteins to anions. Dianions composed of carboxylate groups, on the other hand, show far more charge inversion via multiple proton transfer, with the degree of adduct formation dependent upon both the size of the polypeptide and the spacings between carboxylate groups in the dianion. More highly charged carboxylate-containing anions, such as those derived from carboxylate-terminated polyamidoamine half-generation dendrimers show charge inversion to give anion charges as high in magnitude as −4, with the degree of adduct formation being inversely related to dendrimer generation. All observations can be interpreted on the basis of charge inversion taking place via a long-lived chemical complex. The lifetime of this complex is related to the strengths and numbers of the interactions of the reactants in the complex. Calculations with model systems are fully consistent with sulfonate groups giving rise to more stable complexes. The kinetic stability of the complex can also be affected by the presence of electrostatic repulsion if it is multiply charged. In general, this situation destabilizes the complex and reduces the likelihood for observation of adducts. The findings highlight the characteristics of multiply charged anions that play roles in determining the nature of charge inversion products associated with protonated peptides and proteins. PMID:15889906
DOE Office of Scientific and Technical Information (OSTI.GOV)
Mugridge, Jeffrey; Fiedler, Dorothea; Raymond, Kenneth
A ferrocene-based biscatecholamide ligand was prepared and investigated for the formation of metal-ligand supramolecular assemblies with different metals. Reaction with Ge(IV) resulted in the formation of a variety of Ge{sub n}L{sub m} coordination complexes, including [Ge{sub 2}L{sub 3}]{sup 4-} and [Ge{sub 2}L{sub 2}({mu}-OMe){sub 2}]{sup 2-}. The ligand's ability to swivel about the ferrocenyl linker and adopt different conformations accounts for formation of many different Ge{sub n}L{sub m} species. This study demonstrates why conformational ligand rigidity is essential in the rational design and directed self-assembly of supramolecular complexes.
Demixing-stimulated lane formation in binary complex plasma
DOE Office of Scientific and Technical Information (OSTI.GOV)
Du, C.-R.; Jiang, K.; Suetterlin, K. R.
2011-11-29
Recently lane formation and phase separation have been reported for experiments with binary complex plasmas in the PK3-Plus laboratory onboard the International Space Station (ISS). Positive non-additivity of particle interactions is known to stimulate phase separation (demixing), but its effect on lane formation is unknown. In this work, we used Langevin dynamics (LD) simulation to probe the role of non-additivity interactions on lane formation. The competition between laning and demixing leads to thicker lanes. Analysis based on anisotropic scaling indices reveals a crossover from normal laning mode to a demixing-stimulated laning mode. Extensive numerical simulations enabled us to identify amore » critical value of the non-additivity parameter {Delta} for the crossover.« less
Loss of Drosophila Vps16A enhances autophagosome formation through reduced Tor activity.
Takáts, Szabolcs; Varga, Ágnes; Pircs, Karolina; Juhász, Gábor
2015-01-01
The HOPS tethering complex facilitates autophagosome-lysosome fusion by binding to Syx17 (Syntaxin 17), the autophagosomal SNARE. Here we show that loss of the core HOPS complex subunit Vps16A enhances autophagosome formation and slows down Drosophila development. Mechanistically, Tor kinase is less active in Vps16A mutants likely due to impaired endocytic and biosynthetic transport to the lysosome, a site of its activation. Tor reactivation by overexpression of Rheb suppresses autophagosome formation and restores growth and developmental timing in these animals. Thus, Vps16A reduces autophagosome numbers both by indirectly restricting their formation rate and by directly promoting their clearance. In contrast, the loss of Syx17 blocks autophagic flux without affecting the induction step in Drosophila.
Moriwaki, Kenta; Shinzaki, Shinichiro; Miyoshi, Eiji
2011-01-01
Tumor necrosis factor-related apoptosis-inducing ligand (TRAIL) induces apoptosis through binding to TRAIL receptors, death receptor 4 (DR4), and DR5. TRAIL has potential therapeutic value against cancer because of its selective cytotoxic effects on several transformed cell types. Fucosylation of proteins and lipids on the cell surface is a very important posttranslational modification that is involved in many cellular events. Recently, we found that a deficiency in GDP-mannose-4,6-dehydratase (GMDS) rendered colon cancer cells resistant to TRAIL-induced apoptosis, resulting in tumor development and metastasis by escape from tumor immune surveillance. GMDS is an indispensable regulator of cellular fucosylation. In this study, we investigated the molecular mechanism of inhibition of TRAIL signaling by GMDS deficiency. DR4, but not DR5, was found to be fucosylated; however, GMDS deficiency inhibited both DR4- and DR5-mediated apoptosis despite the absence of fucosylation on DR5. In addition, GMDS deficiency also inhibited CD95-mediated apoptosis but not the intrinsic apoptosis pathway induced by anti-cancer drugs. Binding of TRAIL and CD95 ligand to their cognate receptors primarily leads to formation of a complex comprising the receptor, FADD, and caspase-8, referred to as the death-inducing signaling complex (DISC). GMDS deficiency did not affect formation of the primary DISC or recruitment to and activation of caspase-8 on the DISC. However, formation of secondary FADD-dependent complex II, comprising caspase-8 and cFLIP, was significantly inhibited by GMDS deficiency. These results indicate that GMDS regulates the formation of secondary complex II from the primary DISC independent of direct fucosylation of death receptors. PMID:22027835
14-3-3 Regulates Actin Filament Formation in the Deep-Branching Eukaryote Giardia lamblia
Xu, Jennifer; Steele-Ogus, Melissa; Alas, Germain C. M.
2017-01-01
ABSTRACT The phosphoserine/phosphothreonine-binding protein 14-3-3 is known to regulate actin; this function has been previously attributed to sequestration of phosphorylated cofilin. 14-3-3 was identified as an actin-associated protein in the deep-branching eukaryote Giardia lamblia; however, Giardia lacks cofilin and all other canonical actin-binding proteins (ABPs). Thus, the role of G. lamblia 14-3-3 (Gl-14-3-3) in actin regulation was unknown. Gl-14-3-3 depletion resulted in an overall disruption of actin organization characterized by ectopically distributed short actin filaments. Using phosphatase and kinase inhibitors, we demonstrated that actin phosphorylation correlated with destabilization of the actin network and increased complex formation with 14-3-3, while blocking actin phosphorylation stabilized actin filaments and attenuated complex formation. Giardia’s sole Rho family GTPase, Gl-Rac, modulates Gl-14-3-3’s association with actin, providing the first connection between Gl-Rac and the actin cytoskeleton in Giardia. Giardia actin (Gl-actin) contains two putative 14-3-3 binding motifs, one of which (S330) is conserved in mammalian actin. Mutation of these sites reduced, but did not completely disrupt, the association with 14-3-3. Native gels and overlay assays indicate that intermediate proteins are required to support complex formation between 14-3-3 and actin. Overall, our results support a role for 14-3-3 as a regulator of actin; however, the presence of multiple 14-3-3–actin complexes suggests a more complex regulatory relationship than might be expected for a minimalistic parasite. IMPORTANCE Giardia lacks canonical actin-binding proteins. Gl-14-3-3 was identified as an actin interactor, but the significance of this interaction was unknown. Loss of Gl-14-3-3 results in ectopic short actin filaments, indicating that Gl-14-3-3 is an important regulator of the actin cytoskeleton in Giardia. Drug studies indicate that Gl-14-3-3 complex formation is in part phospho-regulated. We demonstrate that complex formation is downstream of Giardia’s sole Rho family GTPase, Gl-Rac. This result provides the first mechanistic connection between Gl-Rac and Gl-actin in Giardia. Native gels and overlay assays indicate intermediate proteins are required to support the interaction between Gl-14-3-3 and Gl-actin, suggesting that Gl-14-3-3 is regulating multiple Gl-actin complexes. PMID:28932813
Pinske, Constanze
2018-01-01
Formate dehydrogenase H (FDH-H) and [NiFe]-hydrogenase 3 (Hyd-3) form the catalytic components of the hydrogen-producing formate hydrogenlyase (FHL) complex, which disproportionates formate to H 2 and CO 2 during mixed acid fermentation in enterobacteria. FHL comprises minimally seven proteins and little is understood about how this complex is assembled. Early studies identified a ferredoxin-like protein, HydN, as being involved in FDH-H assembly into the FHL complex. In order to understand how FDH-H and its small subunit HycB, which is also a ferredoxin-like protein, attach to the FHL complex, the possible roles of HydN and its paralogue, YsaA, in FHL complex stability and assembly were investigated. Deletion of the hycB gene reduced redox dye-mediated FDH-H activity to approximately 10%, abolished FHL-dependent H 2 -production, and reduced Hyd-3 activity. These data are consistent with HycB being an essential electron transfer component of the FHL complex. The FDH-H activity of the hydN and the ysaA deletion strains was reduced to 59 and 57% of the parental, while the double deletion reduced activity of FDH-H to 28% and the triple deletion with hycB to 1%. Remarkably, and in contrast to the hycB deletion, the absence of HydN and YsaA was without significant effect on FHL-dependent H 2 -production or total Hyd-3 activity; FDH-H protein levels were also unaltered. This is the first description of a phenotype for the E. coli ysaA deletion strain and identifies it as a novel factor required for optimal redox dye-linked FDH-H activity. A ysaA deletion strain could be complemented for FDH-H activity by hydN and ysaA , but the hydN deletion strain could not be complemented. Introduction of these plasmids did not affect H 2 production. Bacterial two-hybrid interactions showed that YsaA, HydN, and HycB interact with each other and with the FDH-H protein. Further novel anaerobic cross-interactions of 10 ferredoxin-like proteins in E. coli were also discovered and described. Together, these data indicate that FDH-H activity measured with the redox dye benzyl viologen is the sum of the FDH-H protein interacting with three independent small subunits and suggest that FDH-H can associate with different redox-protein complexes in the anaerobic cell to supply electrons from formate oxidation.
Wu, Rentian; Wang, Jiafeng; Liang, Chun
2012-01-01
Regulation of DNA replication initiation is essential for the faithful inheritance of genetic information. Replication initiation is a multi-step process involving many factors including ORC, Cdt1p, Mcm2-7p and other proteins that bind to replication origins to form a pre-replicative complex (pre-RC). As a prerequisite for pre-RC assembly, Cdt1p and the Mcm2-7p heterohexameric complex accumulate in the nucleus in G1 phase in an interdependent manner in budding yeast. However, the nature of this interdependence is not clear, nor is it known whether Cdt1p is required for the assembly of the MCM complex. In this study, we provide the first evidence that Cdt1p, through its interaction with Mcm6p with the C-terminal regions of the two proteins, is crucial for the formation of the MCM complex in both the cytoplasm and nucleoplasm. We demonstrate that disruption of the interaction between Cdt1p and Mcm6p prevents the formation of the MCM complex, excludes Mcm2-7p from the nucleus, and inhibits pre-RC assembly and DNA replication. Our findings suggest a function for Cdt1p in promoting the assembly of the MCM complex and maintaining its integrity by interacting with Mcm6p.
Passananti, Monica; Vinatier, Virginie; Delort, Anne-Marie; Mailhot, Gilles; Brigante, Marcello
2016-09-06
In the present work, the photoreactivity of a mixture of iron(III)–pyoverdin (Fe(III)–Pyo) complexes was investigated under simulated cloud conditions. Pyoverdins are expected to complex ferric ions naturally present in cloudwater, thus modifying their availability and photoreactivity. The spectroscopic properties and photoreactivity of Fe(III)-Pyo were investigated, with particular attention to their fate under solar irradiation, also studied through simulations. The photolysis of the Fe(III)–Pyo complex leads to the generation of Fe(II), with rates of formation (RFe(II)f) of 6.98 and 3.96 × 10–9 M s–1 at pH 4.0 and 6.0, respectively. Interestingly, acetate formation was observed during the iron-complex photolysis, suggesting that fragmentation can occur after the ligand-to-metal charge transfer (LMCT) via a complex reaction mechanism. Moreover, photogenerated Fe(II) represent an important source of hydroxyl radical via the Fenton reaction in cloudwater. This reactivity might be relevant for the estimation of the rates of formation and steady-state concentrations of the hydroxyl radical by cloud chemistry models and for organic matter speciation in the cloud aqueous phase. In fact, the conventional models, which describe the iron photoreactivity in terms of iron–aqua and oxalate complexes, are not in accordance with our results.
Kowalska, M Anna; Krishnaswamy, Sriram; Rauova, Lubica; Zhai, Li; Hayes, Vincent; Amirikian, Karine; Esko, Jeffrey D; Bougie, Daniel W; Aster, Richard H; Cines, Douglas B; Poncz, Mortimer
2011-09-08
Heparin-induced thrombocytopenia (HIT) is caused by antibodies that recognize complexes between platelet factor 4 (PF4) and heparin or glycosaminoglycan side chains. These antibodies can lead to a limb- and life-threatening prothrombotic state. We now show that HIT antibodies are able to inhibit generation of activated protein C (aPC) by thrombin/thrombomodulin (IIa/TM) in the presence of PF4. Tetrameric PF4 potentiates aPC generation by formation of complexes with chondroitin sulfate (CS) on TM. Formation of these complexes occurs at a specific molar ratio of PF4 to glycosaminoglycan. This observation and the finding that the effect of heparin on aPC generation depends on the concentration of PF4 suggest similarity between PF4/CS complexes and those that bind HIT antibodies. HIT antibodies reduced the ability of PF4 to augment aPC formation. Cationic protamine sulfate, which forms similar complexes with heparin, also enhanced aPC generation, but its activity was not blocked by HIT antibodies. Our studies provide evidence that complexes formed between PF4 and TM's CS may play a physiologic role in potentiating aPC generation. Recognition of these complexes by HIT antibodies reverses the PF4-dependent enhancement in aPC generation and may contribute to the prothrombotic nature of HIT.
Rubinstein, Alexander I; Sabirianov, Renat F; Namavar, Fereydoon
2016-10-14
The rapid development of nanoscience and nanotechnology has raised many fundamental questions that significantly impede progress in these fields. In particular, understanding the physicochemical processes at the interface in aqueous solvents requires the development and application of efficient and accurate methods. In the present work we evaluate the electrostatic contribution to the energy of model protein-ceramic complex formation in an aqueous solvent. We apply a non-local (NL) electrostatic approach that accounts for the effects of the short-range structure of the solvent on the electrostatic interactions of the interfacial systems. In this approach the aqueous solvent is considered as a non-ionic liquid, with the rigid and strongly correlated dipoles of the water molecules. We have found that an ordered interfacial aqueous solvent layer at the protein- and ceramic-solvent interfaces reduces the charging energy of both the ceramic and the protein in the solvent, and significantly increases the electrostatic contribution to their association into a complex. This contribution in the presented NL approach was found to be significantly shifted with respect to the classical model at any dielectric constant value of the ceramics. This implies a significant increase of the adsorption energy in the protein-ceramic complex formation for any ceramic material. We show that for several biocompatible ceramics (for example HfO2, ZrO2, and Ta2O5) the above effect predicts electrostatically induced protein-ceramic complex formation. However, in the framework of the classical continuum electrostatic model (the aqueous solvent as a uniform dielectric medium with a high dielectric constant ∼80) the above ceramics cannot be considered as suitable for electrostatically induced complex formation. Our results also show that the protein-ceramic electrostatic interactions can be strong enough to compensate for the unfavorable desolvation effect in the process of protein-ceramic complex formation.
NASA Astrophysics Data System (ADS)
Rubinstein, Alexander I.; Sabirianov, Renat F.; Namavar, Fereydoon
2016-10-01
The rapid development of nanoscience and nanotechnology has raised many fundamental questions that significantly impede progress in these fields. In particular, understanding the physicochemical processes at the interface in aqueous solvents requires the development and application of efficient and accurate methods. In the present work we evaluate the electrostatic contribution to the energy of model protein-ceramic complex formation in an aqueous solvent. We apply a non-local (NL) electrostatic approach that accounts for the effects of the short-range structure of the solvent on the electrostatic interactions of the interfacial systems. In this approach the aqueous solvent is considered as a non-ionic liquid, with the rigid and strongly correlated dipoles of the water molecules. We have found that an ordered interfacial aqueous solvent layer at the protein- and ceramic-solvent interfaces reduces the charging energy of both the ceramic and the protein in the solvent, and significantly increases the electrostatic contribution to their association into a complex. This contribution in the presented NL approach was found to be significantly shifted with respect to the classical model at any dielectric constant value of the ceramics. This implies a significant increase of the adsorption energy in the protein-ceramic complex formation for any ceramic material. We show that for several biocompatible ceramics (for example HfO2, ZrO2, and Ta2O5) the above effect predicts electrostatically induced protein-ceramic complex formation. However, in the framework of the classical continuum electrostatic model (the aqueous solvent as a uniform dielectric medium with a high dielectric constant ˜80) the above ceramics cannot be considered as suitable for electrostatically induced complex formation. Our results also show that the protein-ceramic electrostatic interactions can be strong enough to compensate for the unfavorable desolvation effect in the process of protein-ceramic complex formation.
Rungsardthong Ruktanonchai, Uracha; Srinuanchai, Wanwisa; Saesoo, Somsak; Sramala, Issara; Puttipipatkhachorn, Satit; Soottitantawat, Apinan
2011-01-01
The complexation between two isomers of citral in lemongrass oil and varying types of cyclodextrins (CDs), α-CD, β-CD, and HP-β-CD, were studied by molecular modeling and physicochemical characterization. The results obtained revealed that the most favorable complex formation governing between citrals in lemongrass oil and CDs were found at a 1:2 mole ratio for all CDs. Complex formation between E-citral and CD was more favorable than between Z-citral and CD. The thermal stability of the inclusion complex was observed compared to the citral in the lemongrass oil. The release time course of citral from the inclusion complex was the diffusion control, and it correlated well with Avrami's equation. The release rate constants of the E- and Z-citral inclusion complexes at 50 °C, 50% RH were observed at 1.32×10(-2) h(-1) and 1.43×10(-2) h(-1) respectively.
Yokoyama, Atsutoshi; Cho, Kyung-Bin
2013-01-01
The reaction of an end-on Cr(III)-superoxo complex bearing a 14-membered tetraazamacrocyclic TMC ligand, [CrIII(14-TMC)(O2)(Cl)]+, with nitric oxide (NO) resulted in the generation of a stable Cr(IV)-oxo species, [CrIV(14-TMC)(O)(Cl)]+, via the formation of a Cr(III)-peroxynitrite intermediate and homolytic O-O bond cleavage of the peroxynitrite ligand. Evidence for the latter comes from EPR spectroscopy, computational chemistry, and the observation of phenol nitration chemistry. The Cr(IV)-oxo complex does not react with nitrogen dioxide (NO2), but reacts with NO to afford a Cr(III)-nitrito complex, [CrIII(14-TMC)(NO2)(Cl)]+. The Cr(IV)-oxo and Cr(III)-nitrito complexes were also characterized spectroscopically and/or structurally. PMID:24066924
First principles molecular dynamics study of nitrogen vacancy complexes in boronitrene
NASA Astrophysics Data System (ADS)
Ukpong, A. M.; Chetty, N.
2012-07-01
We present the results of first principles molecular dynamics simulations of nitrogen vacancy complexes in monolayer hexagonal boron nitride. The threshold for local structure reconstruction is found to be sensitive to the presence of a substitutional carbon impurity. We show that activated nitrogen dynamics triggers the annihilation of defects in the layer through formation of Stone-Wales-type structures. The lowest energy state of nitrogen vacancy complexes is negatively charged and spin polarized. Using the divacancy complex, we show that their formation induces spontaneous magnetic moments, which is tunable by electron or hole injection. The Fermi level s-resonant defect state is identified as a unique signature of the ground state of the divacancy complex. Due to their ability to enhance structural cohesion, only the divacancy and the nitrogen vacancy carbon-antisite complexes are able to suppress the Fermi level resonant defect state to open a gap between the conduction and valence bands.
NASA Astrophysics Data System (ADS)
Ulagendran, V.; Balu, P.; Kannappan, V.; Kumar, R.; Jayakumar, S.
2017-08-01
The charge transfer (CT) interaction between two fused heterocyclic compounds with basic pyrrole group as donors, viz., indole (IND) and carbazole (CAR), and iodine (acceptor) in DMSO medium is investigated by ultrasonic and UV-visible spectral methods at 303 K. The formation of CT complex in these systems is established from the trend in acoustical and excess thermo acoustical properties with molar concentration. The frequency acoustic spectra (FAS) is also carried out on these two systems for two fixed concentrations 0.002 M and 0.02 M, and in the frequency range 1 MHz-10 MHz to justify the frequency chosen for ultrasonic study. The absorption coefficient values in solution are computed and discussed. The formation constants of these complexes are determined using Kannappan equation in ultrasonic method. The formation of 1:1 complexes between iodine and IND, CAR was established by the theory of Benesi - Hildebrand in the UV-visible spectroscopic method. The stability constants of the CT complexes determined by spectroscopic and ultrasonic methods show a similar trend. These values also indicate that the presence of fused aromatic ring influences significantly when compared with K values of similar CT complexes of parent five membered heterocyclic compound (pyrrole) reported by us earlier.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Chakraborty, Kaushik; Sinha, Sudipta Kumar; Bandyopadhyay, Sanjoy, E-mail: sanjoy@chem.iitkgp.ernet.in
The noncovalent interaction between protein and DNA is responsible for regulating the genetic activities in living organisms. The most critical issue in this problem is to understand the underlying driving force for the formation and stability of the complex. To address this issue, we have performed atomistic molecular dynamics simulations of two DNA binding K homology (KH) domains (KH3 and KH4) of the far upstream element binding protein (FBP) complexed with two single-stranded DNA (ss-DNA) oligomers in aqueous media. Attempts have been made to calculate the individual components of the net entropy change for the complexation process by adopting suitablemore » statistical mechanical approaches. Our calculations reveal that translational, rotational, and configurational entropy changes of the protein and the DNA components have unfavourable contributions for this protein-DNA association process and such entropy lost is compensated by the entropy gained due to the release of hydration layer water molecules. The free energy change corresponding to the association process has also been calculated using the Free Energy Perturbation (FEP) method. The free energy gain associated with the KH4–DNA complex formation has been found to be noticeably higher than that involving the formation of the KH3–DNA complex.« less
Jang, M H; Scrutton, N S; Hille, R
2000-04-28
The electron-transferring flavoprotein (ETF) from Methylophilus methylotrophus (sp. W(3)A(1)) exhibits unusual oxidation-reduction properties and can only be reduced to the level of the semiquinone under most circumstances (including turnover with its physiological reductant, trimethylamine dehydrogenase (TMADH), or reaction with strong reducing reagents such as sodium dithionite). In the present study, we demonstrate that ETF can be reduced fully to its hydroquinone form both enzymatically and chemically when it is in complex with TMADH. Quantitative titration of the TMADH x ETF protein complex with sodium dithionite shows that a total of five electrons are taken up by the system, indicating that full reduction of ETF occurs within the complex. The results indicate that the oxidation-reduction properties of ETF are perturbed upon binding to TMADH, a conclusion further supported by the observation of a spectral change upon formation of the TMADH x ETF complex that is due to a change in the environment of the FAD of ETF. The results are discussed in the context of ETF undergoing a conformational change during formation of the TMADH x ETF electron transfer complex, which modulates the spectral and oxidation-reduction properties of ETF such that full reduction of the protein can take place.
NASA Astrophysics Data System (ADS)
Miyan, Lal; Zulkarnain; Ahmad, Afaq
2017-04-01
The molecular interaction between 1, 2-dimethylimidazole (DMI) and 3,5-dinitrobenzoic acid (DNBA) has been investigated in methanol at room temperature. The stoichiometry of the synthesized CT complex was found to be 1:1 using the straight line method of Benesi-Hildebrand equation. The structure of the resulting CT complex was isolating and characterized using X-ray crystallography, FTIR and 1H NMR spectroscopic techniques. The thermal composition and stability of the CT complex were analyzed using thermogravimetric and differential thermal analysis (TGA and DTA). UV-visible spectrophotometric technique was used to the determine the various important physical parameters such as formation constant (KCT), molar extinction coefficient (εCT), energy of interaction (ECT), ionization potential (ID), resonance energy (RN), free energy (ΔG°), oscillator strength (ƒ) and transition dipole moment (μN). The effect of polarity of the solvent and concentration of acceptor on these parameters have been investigated. The results indicate that charge transfer complex (CTC) is more stable in less polar solvent due to the high value of the formation constant. A polymeric network through hydrogen bonding interaction between neighboring moieties was observed. This has also been attributed to the formation of 1:1 type CT complex.
NASA Technical Reports Server (NTRS)
Gupta, A.; Loew, G. H.; Lawless, J.
1983-01-01
A semiempirical molecular orbital method is used to characterize the binding of amino acids to hexahydrated Cu(2+) and Ni(2+), a process presumed to occur when they are adsorbed in the interlamellar space of homoionic smectite clays. Five alpha-amino acids, beta-alanine, and gamma-aminobutyric acid were used to investigate the metal ion and amino acid specificity in binding. It was assumed that the alpha, beta, and gamma-amino acids would bind as bidentate anionic ligands, forming either 1:1 or 1:2 six-coordinated five, six, and seven-membered-ring chelate complexes, respectively. Energies of complex formation, optimized geometries, and electron and spin distribution were determined; and steric constraints of binding of the amino acids to the ion-exchanged cations in the interlamellar spacing of a clay were examined. Results indicate that hexahydrated Cu(2+) forms more stable complexes than hexahydrated Ni(2+) with all the amino acids studied. However, among these amino acids, complex formation does not favor the adsorption of the biological subset. Calculated energetics of complex formation and steric constraints are shown to predict that 1:1 rather than 1:2 metal-amino acid complexes are generally favored in the clay.
Mizuse, Kenta; Suzuki, Yuta; Mikami, Naohiko; Fujii, Asuka
2011-10-20
Structures of the [C(6)H(6)-(CH(3)OH)(2)](+) cluster cation are investigated with infrared (IR) spectroscopy. While the noncovalent type structure has been confirmed for the n = 1 cluster of [C(6)H(6)-(CH(3)OH)(n)](+), only contradictory interpretations have been given for the spectra of n = 2, in which significant changes have been observed with the Ar tagging. In the present study, we revisit IR spectroscopy of the n = 2 cluster from the viewpoint of the σ-complex structure, which includes a covalent bond formation between the benzene and methanol moieties. The observed spectral range is extended to the lower-frequency region, and the spectrum is measured with and without Ar and N(2) tagging. A strongly hydrogen-bonded OH stretch band, which is characteristic to the σ-complex structure, is newly found with the tagging. The remarkable spectral changes with the tagging are interpreted by the competition between the σ-complex and noncovalent complex structures in the [C(6)H(6)-(CH(3)OH)(2)](+) system. This result shows that the microsolvation only with one methanol molecule can induce the σ-complex structure formation.
Fredrick, Chase M; Lin, Guangyun; Johnson, Eric A
2017-07-01
Botulinum neurotoxin (BoNT), produced by neurotoxigenic clostridia, is the most potent biological toxin known and the causative agent of the paralytic disease botulism. The nutritional, environmental, and genetic regulation of BoNT synthesis, activation, stability, and toxin complex (TC) formation is not well studied. Previous studies indicated that growth and BoNT formation were affected by arginine and glucose in Clostridium botulinum types A and B. In the present study, C. botulinum ATCC 3502 was grown in toxin production medium (TPM) with different levels of arginine and glucose and of three products of arginine metabolism, citrulline, proline, and ornithine. Cultures were analyzed for growth (optical density at 600 nm [OD 600 ]), spore formation, and BoNT and TC formation by Western blotting and immunoprecipitation and for BoNT activity by mouse bioassay. A high level of arginine (20 g/liter) repressed BoNT production approximately 1,000-fold, enhanced growth, slowed lysis, and reduced endospore production by greater than 1,000-fold. Similar effects on toxin production were seen with equivalent levels of citrulline but not ornithine or proline. In TPM lacking glucose, levels of formation of BoNT/A1 and TC were significantly decreased, and extracellular BoNT and TC proteins were partially inactivated after the first day of culture. An understanding of the regulation of C. botulinum growth and BoNT and TC formation should be valuable in defining requirements for BoNT formation in foods and clinical samples, improving the quality of BoNT for pharmaceutical preparations, and elucidating the biological functions of BoNTs for the bacterium. IMPORTANCE Botulinum neurotoxin (BoNT) is a major food safety and bioterrorism concern and is also an important pharmaceutical, and yet the regulation of its synthesis, activation, and stability in culture media, foods, and clinical samples is not well understood. This paper provides insights into the effects of critical nutrients on growth, lysis, spore formation, BoNT and TC production, and stability of BoNTs of C. botulinum We show that for C. botulinum ATCC 3502 cultured in a complex medium, a high level of arginine repressed BoNT expression by ca. 1,000-fold and also strongly reduced sporulation. Arginine stimulated growth and compensated for a lack of glucose. BoNT and toxin complex proteins were partially inactivated in a complex medium lacking glucose. This work should aid in optimizing BoNT production for pharmaceutical uses, and furthermore, an understanding of the nutritional regulation of growth and BoNT formation may provide insights into growth and BoNT formation in foods and clinical samples and into the enigmatic function of BoNTs in nature. Copyright © 2017 American Society for Microbiology.
[Energetics of complex formation of the DNA hairpin structure d(GCGAAGC) with aromatic ligands].
Kostiukov, V V
2011-01-01
The energy contributions of various physical interactions to the total Gibbs energy of complex formation of the biologically important DNA hairpin d(GCGAAGC) with aromatic antitumor antibiotics daunomycin and novantron and the mutagens ethidium and proflavine have been calculated. It has been shown that the relatively small value of the total energy of binding of the ligands to the hairpin is the sum of components great in absolute value and different in sign. The contributions of van der Waals interactions and both intra- and intermolecular hydrogen bonds and bonds with aqueous environment have been studied. According to the calculations, the hydrophobic and van der Waals components are energetically favorable in complex formation of the ligands with the DNA pairpin d(GCGAAGC), whereas the electrostatic (with consideration of hydrogen bonds) and entropic components are unfavorable.
Zheng, Kaijie; Tian, Hainan; Hu, Qingnan; Guo, Hongyan; Yang, Li; Cai, Ling; Wang, Xutong; Liu, Bao; Wang, Shucai
2016-01-01
In Arabidopsis, a MYB-bHLH-WD40 (MBW) transcriptional activator complex activates the homeodomain protein gene GLABRA2 (GL2), leading to the promotion of trichome formation and inhibition of root hair formation. The same MBW complex also activates single-repeat R3 MYB genes. R3 MYBs in turn, play a negative feedback role by competing with R2R3 MYB proteins for binding bHLH proteins, thus blocking the formation of the MBW complex. By BLASTing the rice (Oryza sativa) protein database using the entire amino acid sequence of Arabidopsis R3 MYB transcription factor TRICHOMELESS1 (TCL1), we found that there are two genes in rice genome encoding R3 MYB transcription factors, namely Oryza sativa TRICHOMELESS1 (OsTCL1) and OsTCL2. Expressing OsTCL1 in Arabidopsis inhibited trichome formation and promoted root hair formation, and OsTCL1 interacted with GL3 when tested in Arabidopsis protoplasts. Consistent with these observations, expression levels of GL2, R2R3 MYB transcription factor gene GLABRA1 (GL1) and several R3 MYB genes were greatly reduced, indicating that OsTCL1 is functional R3 MYB. However, trichome and root hair formation in transgenic rice plants overexpressing OsTCL1 remained largely unchanged, and elevated expression of OsGL2 was observed in the transgenic rice plants, indicating that rice may use different mechanisms to regulate trichome formation. PMID:26758286
Costa, Kyle C; Wong, Phoebe M; Wang, Tiansong; Lie, Thomas J; Dodsworth, Jeremy A; Swanson, Ingrid; Burn, June A; Hackett, Murray; Leigh, John A
2010-06-15
In methanogenic Archaea, the final step of methanogenesis generates methane and a heterodisulfide of coenzyme M and coenzyme B (CoM-S-S-CoB). Reduction of this heterodisulfide by heterodisulfide reductase to regenerate HS-CoM and HS-CoB is an exergonic process. Thauer et al. [Thauer, et al. 2008 Nat Rev Microbiol 6:579-591] recently suggested that in hydrogenotrophic methanogens the energy of heterodisulfide reduction powers the most endergonic reaction in the pathway, catalyzed by the formylmethanofuran dehydrogenase, via flavin-based electron bifurcation. Here we present evidence that these two steps in methanogenesis are physically linked. We identify a protein complex from the hydrogenotrophic methanogen, Methanococcus maripaludis, that contains heterodisulfide reductase, formylmethanofuran dehydrogenase, F(420)-nonreducing hydrogenase, and formate dehydrogenase. In addition to establishing a physical basis for the electron-bifurcation model of energy conservation, the composition of the complex also suggests that either H(2) or formate (two alternative electron donors for methanogenesis) can donate electrons to the heterodisulfide-H(2) via F(420)-nonreducing hydrogenase or formate via formate dehydrogenase. Electron flow from formate to the heterodisulfide rather than the use of H(2) as an intermediate represents a previously unknown path of electron flow in methanogenesis. We further tested whether this path occurs by constructing a mutant lacking F(420)-nonreducing hydrogenase. The mutant displayed growth equal to wild-type with formate but markedly slower growth with hydrogen. The results support the model of electron bifurcation and suggest that formate, like H(2), is closely integrated into the methanogenic pathway.
Distinguishing Grenvillian basement from pre-Taconian cover rocks in the Northern Appalachians
Karabinos, P.; Aleinikoff, J.N.; Fanning, C.M.
1999-01-01
Distinguishing Grenvillian basement rocks from pre-Taconian cover sequences in the Appalachians is a first-order problem essential for accurate structural interpretations. The Cavendish Formation in southeastern Vermont presents a classic example of this problem. Doll and others (1961) showed the Cavendish Formation as younger than the Middle Proterozoic Mount Holly Complex but older than the lithologically similar Cambrian Tyson and Hoosac Formations. More recently, the name Cavendish Formation has been informally abandoned, and its metasedimentary units have been mapped as the Tyson and Hoosac Formations of Late Proterozoic to Cambrian age. In a radical departure from these interpretations, Ratcliffe and others (1997) reassigned metasedimentary rocks of the Cavendish Formation to the Mount Holly Complex based on an inferred intrusive relationship between them and a 1.42 Ga tonalite. This new age assignment, if correct, requires a completely new structural interpretation of the region. SHRIMP and Pb evaporation ages of detrital zircons extracted from a quartzite layer from Cavendish Gorge near the proposed intrusive contact with the tonalite constrain the time of deposition of the Cavendish Formation. Grain shapes of the zircons vary from euhedral to nearly spherical. Virtually all the grains have pitted surfaces and show at least some rounding of edges and terminations; grains exhibit oscillatory zoning typical of zircons that crystallized from a magma. Single-grain Pb evaporation analyses of ten zircons and SHRIMP analyses of 15 zircons all yield ages less than 1.42 Ga. Seven of the grains are consistent with derivation from the Bull Hill Gneiss that postdates the Grenville orogenic cycle and predates deposition of the Cavendish Formation. Thus, the metasedimentary units of the Cavendish Formation should not be assigned to the Mount Holly Complex.
Formation and Recondensation of Complex Organic Molecules During Protostellar Luminosity Outbursts
NASA Technical Reports Server (NTRS)
Taquet, Vianney; Wirstrom, Eva S.; Charnley, Steven B.
2016-01-01
During the formation of stars, the accretion of surrounding material toward the central object is thought to undergo strong luminosity outbursts followed by long periods of relative quiescence, even at the early stages of star formation when the protostar is still embedded in a large envelope. We investigated the gas-phase formation and recondensation of the complex organic molecules (COMs) di-methyl ether and methyl formate, induced by sudden ice evaporation processes occurring during luminosity outbursts of different amplitudes in protostellar envelopes. For this purpose, we updated a gas-phase chemical network forming COMs in which ammonia plays a key role. The model calculations presented here demonstrate that ion-molecule reactions alone could account for the observed presence of di-methyl ether and methyl formate in a large fraction of protostellar cores without recourse to grain-surface chemistry, although they depend on uncertain ice abundances and gas-phase reaction branching ratios. In spite of the short outburst timescales of about 100 years, abundance ratios of the considered species higher than 10% with respect to methanol are predicted during outbursts due to their low binding energies relative to water and methanol which delay their recondensation during cooling. Although the current luminosity of most embedded protostars would be too low to produce complex organics in the hot-core regions that are observable with current sub-millimetric interferometers, previous luminosity outburst events would induce the formation of COMs in extended regions of protostellar envelopes with sizes increasing by up to one order of magnitude.
Formation and Recondensation of Complex Organic Molecules during Protostellar Luminosity Outbursts
NASA Astrophysics Data System (ADS)
Taquet, Vianney; Wirström, Eva S.; Charnley, Steven B.
2016-04-01
During the formation of stars, the accretion of surrounding material toward the central object is thought to undergo strong luminosity outbursts followed by long periods of relative quiescence, even at the early stages of star formation when the protostar is still embedded in a large envelope. We investigated the gas-phase formation and recondensation of the complex organic molecules (COMs) di-methyl ether and methyl formate, induced by sudden ice evaporation processes occurring during luminosity outbursts of different amplitudes in protostellar envelopes. For this purpose, we updated a gas-phase chemical network forming COMs in which ammonia plays a key role. The model calculations presented here demonstrate that ion-molecule reactions alone could account for the observed presence of di-methyl ether and methyl formate in a large fraction of protostellar cores without recourse to grain-surface chemistry, although they depend on uncertain ice abundances and gas-phase reaction branching ratios. In spite of the short outburst timescales of about 100 years, abundance ratios of the considered species higher than 10% with respect to methanol are predicted during outbursts due to their low binding energies relative to water and methanol which delay their recondensation during cooling. Although the current luminosity of most embedded protostars would be too low to produce complex organics in the hot-core regions that are observable with current sub-millimetric interferometers, previous luminosity outburst events would induce the formation of COMs in extended regions of protostellar envelopes with sizes increasing by up to one order of magnitude.
Fukumura, Takuma; Makino, Fumiaki; Dietsche, Tobias; Kinoshita, Miki; Kato, Takayuki; Wagner, Samuel; Namba, Keiichi; Imada, Katsumi; Minamino, Tohru
2017-08-01
The bacterial flagellar type III export apparatus, which is required for flagellar assembly beyond the cell membranes, consists of a transmembrane export gate complex and a cytoplasmic ATPase complex. FlhA, FlhB, FliP, FliQ, and FliR form the gate complex inside the basal body MS ring, although FliO is required for efficient export gate formation in Salmonella enterica. However, it remains unknown how they form the gate complex. Here we report that FliP forms a homohexameric ring with a diameter of 10 nm. Alanine substitutions of conserved Phe-137, Phe-150, and Glu-178 residues in the periplasmic domain of FliP (FliPP) inhibited FliP6 ring formation, suppressing flagellar protein export. FliO formed a 5-nm ring structure with 3 clamp-like structures that bind to the FliP6 ring. The crystal structure of FliPP derived from Thermotoga maritia, and structure-based photo-crosslinking experiments revealed that Phe-150 and Ser-156 of FliPP are involved in the FliP-FliP interactions and that Phe-150, Arg-152, Ser-156, and Pro-158 are responsible for the FliP-FliO interactions. Overexpression of FliP restored motility of a ∆fliO mutant to the wild-type level, suggesting that the FliP6 ring is a functional unit in the export gate complex and that FliO is not part of the final gate structure. Copurification assays revealed that FlhA, FlhB, FliQ, and FliR are associated with the FliO/FliP complex. We propose that the assembly of the export gate complex begins with FliP6 ring formation with the help of the FliO scaffold, followed by FliQ, FliR, and FlhB and finally FlhA during MS ring formation.
Fukumura, Takuma; Makino, Fumiaki; Dietsche, Tobias; Kinoshita, Miki; Kato, Takayuki; Wagner, Samuel; Namba, Keiichi; Imada, Katsumi
2017-01-01
The bacterial flagellar type III export apparatus, which is required for flagellar assembly beyond the cell membranes, consists of a transmembrane export gate complex and a cytoplasmic ATPase complex. FlhA, FlhB, FliP, FliQ, and FliR form the gate complex inside the basal body MS ring, although FliO is required for efficient export gate formation in Salmonella enterica. However, it remains unknown how they form the gate complex. Here we report that FliP forms a homohexameric ring with a diameter of 10 nm. Alanine substitutions of conserved Phe-137, Phe-150, and Glu-178 residues in the periplasmic domain of FliP (FliPP) inhibited FliP6 ring formation, suppressing flagellar protein export. FliO formed a 5-nm ring structure with 3 clamp-like structures that bind to the FliP6 ring. The crystal structure of FliPP derived from Thermotoga maritia, and structure-based photo-crosslinking experiments revealed that Phe-150 and Ser-156 of FliPP are involved in the FliP–FliP interactions and that Phe-150, Arg-152, Ser-156, and Pro-158 are responsible for the FliP–FliO interactions. Overexpression of FliP restored motility of a ∆fliO mutant to the wild-type level, suggesting that the FliP6 ring is a functional unit in the export gate complex and that FliO is not part of the final gate structure. Copurification assays revealed that FlhA, FlhB, FliQ, and FliR are associated with the FliO/FliP complex. We propose that the assembly of the export gate complex begins with FliP6 ring formation with the help of the FliO scaffold, followed by FliQ, FliR, and FlhB and finally FlhA during MS ring formation. PMID:28771466
Naleskina, L A
1985-01-01
Analysis of the topography peculiarities and distribution of oxidized melanine and its precursors (DOPA-oxide activity and catecholamine) in pigment nevuses and malignant melanomas of skin shows that the studied peculiarities are a complex of intersupplementary markers of melanine formation, correlate with the quality and the degree of proliferative process expression in tumours of this genesis and may be used for their malignancy rating.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lee, Hye Sun; Department of Materials Science and Engineering, Yonsei University, Seoul 120-749; Kim, Won Hee
2012-01-15
Highly ordered mesoporous silica nanoparticles with tunable morphology and pore-size are prepared by the use of a transition metal-chelating surfactant micelle complex using Co{sup 2+}, Ni{sup 2+}, Cu{sup 2+}, and Zn{sup 2+} ions. These metal ions formed a metal-P123 micelle complex in an aqueous solution, while the metal ions are chelated to the hydrophilic domain such as the poly(ethylene oxide) group of a P123 surfactant. The different complexation abilities of the utilized transition metal ions play an important role in determining the formation of nano-sized ordered MSNs due to the different stabilization constant of the metal-P123 complex. Consequently, from amore » particle length of 1700 nm in the original mesoporous silica materials, the particle length of ordered MSNs through the metal-chelating P123 micelle templates can be reduced to a range of 180-800 nm. Furthermore, the variation of pore size shows a slight change from 8.8 to 6.6 nm. In particular, the Cu{sup 2+}-chelated MSNs show only decreased particle size to 180 nm. The stability constants for the metal-P123 complex are calculated on the basis of molar conductance measurements in order to elucidate the formation mechanism of MSNs by the metal-chelating P123 complex templates. In addition, solid-state {sup 29}Si, {sup 13}C-NMR and ICP-OES measurements are used for quantitative characterization reveal that the utilized metal ions affect only the formation of a metal-P123 complex in a micelle as a template. - Graphical abstract: Metal-chelating surfactant micelle templates support a simple and facile preparations of size-tunable ordered MSNs. Black-Small-Square Highlights: Black-Right-Pointing-Pointer Facile preparation of mesoporous silica nanoparticles (MSNs) was achieved by metal-chelating surfactant micelle complex using Co{sup 2+}, Ni{sup 2+}, Cu{sup 2+}, and Zn{sup 2+} ions. Black-Right-Pointing-Pointer Different complexation of metal ions plays an important role in determining the formation of nano-sized ordered MSNs. Black-Right-Pointing-Pointer Systematic characterization of the synthesized materials was achieved by solid-state {sup 29}Si and {sup 13}C-NMR techniques, BET, FT-IR, and XPS. Black-Right-Pointing-Pointer Stability constants for the metal-P123 complex are calculated on the basis of molar conductance measurements in order to elucidate the formation mechanism.« less
Tsai, Chi-Chun; Zhang, Wen-Bin; Wang, Chien-Lung; Van Horn, Ryan M; Graham, Matthew J; Huang, Jing; Chen, Yongming; Guo, Mingming; Cheng, Stephen Z D
2010-05-28
A series of inclusion complexes of poly(ethylene oxide)-block-poly(propylene oxide)-block-poly(ethylene oxide) (PEO-b-PPO-b-PEO) with beta-cyclodextrin (beta-CD) was prepared. Their formation, structure, and dynamics were investigated by solution two-dimensional rotating-frame Overhauser effect spectroscopy (2D ROESY) and one-dimensional (1D) and 2D solid-state (13)C NMR. The inclusion complexes between the PEO-b-PPO-b-PEO copolymers and the beta-CDs were formed in aqueous solution and detected by 2D ROESY. The high efficiency of cross polarization and spin diffusion experiments in (13)C solid-state NMR showed that the mobility of the PPO blocks dramatically decreases after beta-CD complexation, indicating that they are selectively incorporated onto the PPO blocks. The hydrophobic cavities of beta-CD restrict the PPO block mobility, which is evidence of the formation of inclusion complexes in the solid state. The 2D wide-line separation NMR experiments suggested that beta-CDs only thread onto the PPO blocks while forming the inclusion complexes. The stoichiometry of inclusion complexes was studied using (1)H NMR, and a 3:1 (PO unit to beta-CD) was found for all inclusion complexes, which indicated that the number of threaded beta-CDs was only dependent on the molecular weight of the PPO blocks. 1D wide angle x-ray diffraction studies demonstrated that the beta-CD in the inclusion complex formed a channel-like structure that is different from the pure beta-CD crystal structure.
NASA Astrophysics Data System (ADS)
Tsai, Chi-Chun; Zhang, Wen-Bin; Wang, Chien-Lung; Van Horn, Ryan M.; Graham, Matthew J.; Huang, Jing; Chen, Yongming; Guo, Mingming; Cheng, Stephen Z. D.
2010-05-01
A series of inclusion complexes of poly(ethylene oxide)-block-poly(propylene oxide)-block-poly(ethylene oxide) (PEO-b-PPO-b-PEO) with β-cyclodextrin (β-CD) was prepared. Their formation, structure, and dynamics were investigated by solution two-dimensional rotating-frame Overhauser effect spectroscopy (2D ROESY) and one-dimensional (1D) and 2D solid-state C13 NMR. The inclusion complexes between the PEO-b-PPO-b-PEO copolymers and the β-CDs were formed in aqueous solution and detected by 2D ROESY. The high efficiency of cross polarization and spin diffusion experiments in C13 solid-state NMR showed that the mobility of the PPO blocks dramatically decreases after β-CD complexation, indicating that they are selectively incorporated onto the PPO blocks. The hydrophobic cavities of β-CD restrict the PPO block mobility, which is evidence of the formation of inclusion complexes in the solid state. The 2D wide-line separation NMR experiments suggested that β-CDs only thread onto the PPO blocks while forming the inclusion complexes. The stoichiometry of inclusion complexes was studied using H1 NMR, and a 3:1 (PO unit to β-CD) was found for all inclusion complexes, which indicated that the number of threaded β-CDs was only dependent on the molecular weight of the PPO blocks. 1D wide angle x-ray diffraction studies demonstrated that the β-CD in the inclusion complex formed a channel-like structure that is different from the pure β-CD crystal structure.
Hydrogen-bond formation between isoindolo[2,1-a]indol-6-one and aliphatic alcohols in n-hexane.
Demeter, Attila; Bérces, Tibor
2005-03-17
The spectroscopic, kinetic, and equilibrium properties of isoindolo[2,1-a]indol-6-one (I) were studied in n-hexane in the presence and absence of alcohols (X). Hydrogen-bonded-complex formation was found to occur between the alcohol and the ground state as well as the excited state of the I molecule. The spectra of I and its singly complexed derivative (IX) are similar; however, that of IX is red shifted. The extent of red shift increases with the hydrogen-bonding ability of the alcohol. Equilibrium constant measurements were made to determine the hydrogen-bond basicity (beta(2)(H)) for I and the singlet excited (1)I. The beta(2)(H) value for (1)I is found to be about twice that of the ground-state I. Time-resolved fluorescence decay measurements indicate that the reaction of singlet excited I with fluorinated alcohols is diffusion controlled, while the rate of complexation with nonfluorinated (weaker hydrogen bonding) aliphatic alcohols depends on the Gibbs energy change in the complexation reaction. The quantitative correlation between the rate coefficient of complexation of (1)I with alcohols and the Gibbs energy change in the complexation process allowed us to estimate the rate coefficient for the complexation of the ground-state I with alcohols. The formation of the singlet excited hydrogen-bonded complex is irreversible; (1)IX disappears in a first order and an alcohol induced second order reaction. The first order decay is predominantly due to internal conversion to the ground state, the rate of which depends on the ionization energy of the complexing alcohol.
Encapsulating fatty acid esters of bioactive compounds in starch
NASA Astrophysics Data System (ADS)
Lay Ma, Ursula Vanesa
Interest in the use of many bioactive compounds in foods is growing in large part because of the apparent health benefits of these molecules. However, many of these compounds can be easily degraded during processing, storage, or their passage through the gastrointestinal tract before reaching the target site. In addition, they can be bitter, acrid, or astringent, which may negatively affect the sensory properties of the product. Encapsulation of these molecules may increase their stability during processing, storage, and in the gastrointestinal tract, while providing controlled release properties. The ability of amylose to form inclusion complexes and spherulites while entrapping certain compounds has been suggested as a potential method for encapsulation of certain molecules. However, complex formation and spherulitic crystallization are greatly affected by the type of inclusion molecules, type of starch, and processing conditions. The objectives of the present investigation were to: (a) study the effect of amylose, amylopectin, and intermediate material on spherulite formation and its microstructure; (b) investigate the formation of amylose and high amylose starch inclusion complexes with ascorbyl palmitate, retinyl palmitate, and phytosterol esters; (c) evaluate the ability of spherulites to form in the presence of fatty acid esters and to entrap ascorbyl palmitate, retinyl palmitate, and phytosterol esters; and (d) evaluate the effect of processing conditions on spherulite formation and fatty acid ester entrapment. Higher ratios of linear to branched molecules resulted in the formation of more and rounder spherulites with higher heat stability. In addition to the presence of branches, it appears that spherulitic crystallization is also affected by other factors, such as degree of branching, chain length, and chain length distribution. Amylose and Hylon VII starch formed inclusion complexes with fatty acid esters of ascorbic acid, retinol, or phytosterols. However, only retinyl palmitate formed a complex with amylopectin. In general, ascorbyl palmitate resulted in the highest complexation, followed by retinyl palmitate and phytosterol ester. The presence of native lipids in Hylon VII starch did not inhibit complex formation. On the contrary, native lipids appear to increase the complexation yield and thermal stability of the starch-fatty acid ester inclusion complexes, possibly due to the formation of ternary complexes. From the three fatty acid esters studied, only ascorbyl palmitate was entrapped in starch spherulites. Various structures including round spherulites, various sizes of torus-shape spherulites, non-spherulitic birefringent and non-birefringent particles, "balloon" morphologies, and gel-like material were formed depending on processing conditions. However, only the torus-shape spherulites, and some non-spherulitic birefringent and non-birefringent particles showed ascorbyl palmitate entrapment. The % yield of the precipitate increased with higher % of added Hylon VII, and decreased with higher heating temperature and faster cooling rates. The amount of entrapped ascorbyl palmitate in the starch precipitate seems to be governed by the amount of this compound added during processing. This study showed that starch can form inclusion complexes with fatty acid esters which may be used for the delivery of certain bioactive molecules. In addition, encapsulation of fatty acid esters in starch spherulites may be a good potential delivery system for water soluble bioactive molecules. However, further research is necessary to gain a better understanding of the type of molecules that can be entrapped in starch spherulites, and the factors affecting spherulitic crystallization and bioactive compound entrapment.
Wang, Tongxin; Cölfen, Helmut
2006-10-10
Simple solution analysis of the formation mechanism of complex BaSO(4) fiber bundles in the presence of polyacrylate sodium salt, via a bioinspired approach, is reported. Titration of the polyacrylate solution with Ba(2+) revealed complex formation and the optimum ratio of Ba(2+) to polyacrylate for a slow polymer-controlled mineralization process. This is a much simpler and faster method to determine the appropriate additive/mineral concentration pairs as opposed to more common crystallization experiments in which the additive/mineral concentration is varied. Time-dependent pH measurements were carried out to determine the concentration of solution species from which BaSO(4) supersaturation throughout the fiber formation process can be calculated and the second-order kinetics of the Ba(2+) concentration in solution can be identified. Conductivity measurements, pH measurements, and analytical ultracentrifugation revealed the first formed species to be Ba-polyacrylate complexes. A combination of the solution analysis results and optical microscopic images allows a detailed picture of the complex precipitation and self-organization process, a particle-mediated process involving mesoscopic transformations, to be revealed.
Martínez-Júlvez, Marta; Medina, Milagros; Velázquez-Campoy, Adrián
2009-01-01
Abstract The thermodynamics of the formation of binary and ternary complexes between Anabaena PCC 7119 FNR and its substrates, NADP+ and Fd, or Fld, has been studied by ITC. Despite structural dissimilarities, the main difference between Fd and Fld binding to FNR relates to hydrophobicity, reflected in different binding heat capacity and number of water molecules released from the interface. At pH 8, the formation of the binary complexes is both enthalpically and entropically driven, accompanied by the protonation of at least one ionizable group. His299 FNR has been identified as the main responsible for the proton exchange observed. However, at pH 10, where no protonation occurs and intrinsic binding parameters can be obtained, the formation of the binary complexes is entropically driven, with negligible enthalpic contribution. Absence of the FMN cofactor in Fld does not alter significantly the strength of the interaction, but considerably modifies the enthalpic and entropic contributions, suggesting a different binding mode. Ternary complexes show negative cooperativity (6-fold and 11-fold reduction in binding affinity, respectively), and an increase in the enthalpic contribution (more favorable) and a decrease in the entropic contribution (less favorable), with regard to the binary complexes energetics. PMID:19527656
Nanoparticle-protein complexes mimicking corona formation in ocular environment.
Jo, Dong Hyun; Kim, Jin Hyoung; Son, Jin Gyeong; Dan, Ki Soon; Song, Sang Hoon; Lee, Tae Geol; Kim, Jeong Hun
2016-12-01
Nanoparticles adsorb biomolecules to form corona upon entering the biological environment. In this study, tissue-specific corona formation is provided as a way of controlling protein interaction with nanoparticles in vivo. In the vitreous, the composition of the corona was determined by the electrostatic and hydrophobic properties of the associated proteins, regardless of the material (gold and silica) or size (20- and 100-nm diameter) of the nanoparticles. To control protein adsorption, we pre-incubate 20-nm gold nanoparticles with 5 selectively enriched proteins from the corona, formed in the vitreous, to produce nanoparticle-protein complexes. Compared to bare nanoparticles, nanoparticle-protein complexes demonstrate improved binding to vascular endothelial growth factor (VEGF) in the vitreous. Furthermore, nanoparticle-protein complexes retain in vitro anti-angiogenic properties of bare nanoparticles. In particular, priming the nanoparticles (gold and silica) with tissue-specific corona proteins allows nanoparticle-protein complexes to exert better in vivo therapeutic effects by higher binding to VEGF than bare nanoparticles. These results suggest that controlled corona formation that mimics in vivo processes may be useful in the therapeutic use of nanomaterials in local environment. Copyright © 2016 Elsevier Ltd. All rights reserved.
DOE Office of Scientific and Technical Information (OSTI.GOV)
MacDonald, Margaret G.; Palmer, Michael R.; Suchomel, Matthew R.
To investigate soap formation in drying oils in historic paints, the reaction between metal acetates (K +, Zn 2+, Pb 2+) and ethyl linoleate (EL) was studied using optical microscopy, X-ray powder diffraction, and electron microscopy. Pb(II) and Zn(II) react rapidly with EL to form highly structured, spherulitic, luminescent crystallites that aggregate. Evidence from Fourier transform infrared (FTIR) and scanning electron microscopy/energy dispersive X-ray analysis and high-resolution synchrotron powder X-ray diffraction indicates that these are organic-inorganic hybrid complexes or coordination polymers. FTIR absorbance peaks at ca. 1540 cm -1 for Pb(II) and ca. 1580 cm -1 for Zn(II) are consistentmore » with the formation of carboxylate complexes. The complexes formed offer insight into the degradation processes observed in oil paint films, suggesting that soap formation is rapid when metal ions are solubilized and can occur with unsaturated fatty acids that are present in fresh oils. Finally, these complexes may account for the atypical luminescence observed in lead-containing cured oil paint films.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
MacDonald, Margaret G.; Palmer, Michael R.; Suchomel, Matthew R.
To investigate soap formation in drying oils in historic paints, the reaction between metal acetates (K +, Zn 2+, Pb 2+) and ethyl linoleate (EL) was studied using optical microscopy, X-ray powder diffraction, and electron microscopy. Pb(II) and Zn(II) react rapidly with EL to form highly structured, spherulitic, luminescent crystallites that aggregate. Evidence from Fourier transform infrared (FTIR) and scanning electron microscopy/energy dispersive X-ray analysis and high-resolution synchrotron powder X-ray diffraction indicates that these are organic–inorganic hybrid complexes or coordination polymers. FTIR absorbance peaks at ca. 1540 cm –1 for Pb(II) and ca. 1580 cm –1 for Zn(II) are consistentmore » with the formation of carboxylate complexes. The complexes formed offer insight into the degradation processes observed in oil paint films, suggesting that soap formation is rapid when metal ions are solubilized and can occur with unsaturated fatty acids that are present in fresh oils. These complexes may account for the atypical luminescence observed in lead-containing cured oil paint films.« less
Eshita, Yuki; Higashihara, Junko; Onishi, Masayasu; Mizuno, Masaaki; Yoshida, Jun; Takasaki, Tomohiko; Kubota, Naoji; Onishi, Yasuhiko
2009-07-23
Comparative investigations were carried out regarding the efficiency of introduction of exogenous genes into cultured cells using a cationic polysaccharide DEAE-dextran-MMA (methyl methacrylate ester) graft copolymer (2-diethylaminoethyl-dextran-methyl methacrylate graft copolymer; DDMC) as a nonviral carrier for gene introduction. The results confirmed that the gene introduction efficiency was improved with DDMC relative to DEAE-dextran. Comparative investigations were carried out using various concentrations of DDMC and DNA in the introduction of DNA encoding luciferase (pGL3 control vector; Promega) into COS-7 cells derived from African green monkey kidney cells. The complex formation reaction is thought to be directly proportional to the transformation rate, but the complex formation reaction between DDMC and DNA is significantly influenced by hydrophobic bonding strength along with hydrogen bonding strength and Coulomb forces due to the hydrophobicity of the grafted MMA sections. It is thought that the reaction is a Michaelis-Menten type complex formation reaction described by the following equation: Complex amount = K1 (DNA concentration)(DDMC concentration). In support of this equation, it was confirmed that the amount of formed complex was proportional to the RLU value.
MacDonald, Margaret G.; Palmer, Michael R.; Suchomel, Matthew R.; ...
2016-09-07
To investigate soap formation in drying oils in historic paints, the reaction between metal acetates (K +, Zn 2+, Pb 2+) and ethyl linoleate (EL) was studied using optical microscopy, X-ray powder diffraction, and electron microscopy. Pb(II) and Zn(II) react rapidly with EL to form highly structured, spherulitic, luminescent crystallites that aggregate. Evidence from Fourier transform infrared (FTIR) and scanning electron microscopy/energy dispersive X-ray analysis and high-resolution synchrotron powder X-ray diffraction indicates that these are organic-inorganic hybrid complexes or coordination polymers. FTIR absorbance peaks at ca. 1540 cm -1 for Pb(II) and ca. 1580 cm -1 for Zn(II) are consistentmore » with the formation of carboxylate complexes. The complexes formed offer insight into the degradation processes observed in oil paint films, suggesting that soap formation is rapid when metal ions are solubilized and can occur with unsaturated fatty acids that are present in fresh oils. Finally, these complexes may account for the atypical luminescence observed in lead-containing cured oil paint films.« less
Cranswick, Matthew A; Meier, Katlyn K; Shan, Xiaopeng; Stubna, Audria; Kaizer, Jószef; Mehn, Mark P; Münck, Eckard; Que, Lawrence
2012-10-01
Oxygenation of a diiron(II) complex, [Fe(II)(2)(μ-OH)(2)(BnBQA)(2)(NCMe)(2)](2+) [2, where BnBQA is N-benzyl-N,N-bis(2-quinolinylmethyl)amine], results in the formation of a metastable peroxodiferric intermediate, 3. The treatment of 3 with strong acid affords its conjugate acid, 4, in which the (μ-oxo)(μ-1,2-peroxo)diiron(III) core of 3 is protonated at the oxo bridge. The core structures of 3 and 4 are characterized in detail by UV-vis, Mössbauer, resonance Raman, and X-ray absorption spectroscopies. Complex 4 is shorter-lived than 3 and decays to generate in ~20% yield of a diiron(III/IV) species 5, which can be identified by electron paramagnetic resonance and Mössbauer spectroscopies. This reaction sequence demonstrates for the first time that protonation of the oxo bridge of a (μ-oxo)(μ-1,2-peroxo)diiron(III) complex leads to cleavage of the peroxo O-O bond and formation of a high-valent diiron complex, thereby mimicking the steps involved in the formation of intermediate X in the activation cycle of ribonucleotide reductase.
Walz, Felix H; Gibis, Monika; Schrey, Pia; Herrmann, Kurt; Reichert, Corina L; Hinrichs, Jörg; Weiss, Jochen
2017-10-01
This study aimed to prevent the phenomena of efflorescence formation on the surface of dry fermented sausages due to the complexation of efflorescence forming cations with phosphates. Efflorescence formation is a critical issue constituting a major quality defect, especially of dry fermented sausages. Different phosphates (di- and hexametaphosphate) were added (3.0g/kg) to the sausage batter. As a hypothesis, these additives should complex with one of the main efflorescence-causing substances such as magnesium. The formation of efflorescences was determined for dry fermented sausages without phosphate addition, with diphosphate, or hexametaphosphate addition during 8weeks of storage under modified atmosphere. The visual analyses of the sausage surface revealed high amounts of efflorescences for the control (42.2%) and for the sausages with added diphosphate (40.9%), whereas the sausages containing hexametaphosphate had significantly reduced amounts of efflorescence formation, showing only 11.9% efflorescences after 8weeks of storage. This inhibition was a result of strong complexation of hexametaphosphate with magnesium ions, thus preventing the diffusion of magnesium towards the sausage surface. This can be explained by the magnesium content on the sausage surface that increased by 163.9, 127.8, and 52.8% for the sausages without phosphate, diphosphate, and hexametaphosphate addition, respectively. The mass transport of lactate and creatine was not affected by phosphate addition. Isothermal titration calorimetry confirmed that, theoretically, 4.5g/kg of diphosphate or 2.8g/kg hexametaphosphate are required to complex 0.2g/kg magnesium ions naturally occurring in dry fermented sausages and, thus, the chosen overall phosphate concentration of 3.0g/kg was enough when adding hexametaphosphate, but not for diphosphate, to inhibit the efflorescence formation. Copyright © 2017 Elsevier Ltd. All rights reserved.
Elimination of formate production in Clostridium thermocellum.
Rydzak, Thomas; Lynd, Lee R; Guss, Adam M
2015-09-01
The ability of Clostridium thermocellum to rapidly degrade cellulose and ferment resulting hydrolysis products into ethanol makes it a promising platform organism for cellulosic biofuel production via consolidated bioprocessing. Currently, however, ethanol yield is far below theoretical maximum due to branched product pathways that divert carbon and electrons towards formate, H2, lactate, acetate, and secreted amino acids. To redirect carbon and electron flux away from formate, genes encoding pyruvate:formate lyase (pflB) and PFL-activating enzyme (pflA) were deleted. Formate production in the resulting Δpfl strain was eliminated and acetate production decreased by 50 % on both complex and defined medium. The growth rate of the Δpfl strain decreased by 2.9-fold on defined medium and biphasic growth was observed on complex medium. Supplementation of defined medium with 2 mM formate restored Δpfl growth rate to 80 % of the parent strain. The role of pfl in metabolic engineering strategies and C1 metabolism is discussed.
Elimination of formate production in Clostridium thermocellum
Rydzak, Thomas; Lynd, Lee R.; Guss, Adam M.
2015-07-11
We study the ability of Clostridium thermocellum to rapidly degrade cellulose and ferment resulting hydrolysis products into ethanol makes it a promising platform organism for cellulosic biofuel production via consolidated bioprocessing. Currently, however, ethanol yield are far below theoretical maximum due to branched product pathways that divert carbon and electrons towards formate, H 2, lactate, acetate, and secreted amino acids. To redirect carbon and electron flux away from formate, pyruvate:formate lyase (pfl) and respective PFL-activating enzyme were deleted. Formate production in the resulting Δpfl strain was eliminated and acetate production decreased by 50% on both complex and defined medium. Growthmore » rate of Δpfl decreased by 2.9-fold on defined medium and diauxic growth was observed on complex medium. Supplementation of defined medium with 2 mM formate restored Δpfl growth rate to 80% of the parent strain. Finally, we discuss the role of pfl in metabolic engineering strategies and C 1 metabolism.« less
NASA Astrophysics Data System (ADS)
Kim, Jae-Min; Yoo, Seung-Jun; Moon, Chang-Ki; Sim, Bomi; Lee, Jae-Hyun; Lim, Heeseon; Kim, Jeong Won; Kim, Jang-Joo
2016-09-01
Electrical doping is an important method in organic electronics to enhance device efficiency by controlling Fermi level, increasing conductivity, and reducing injection barrier from electrode. To understand the charge generation process of dopant in doped organic semiconductors, it is important to analyze the charge transfer complex (CTC) formation and dissociation into free charge carrier. In this paper, we correlate charge generation efficiency with the CTC formation and dissociation efficiency of n-dopant in organic semiconductors (OSs). The CTC formation efficiency of Rb2CO3 linearly decreases from 82.8% to 47.0% as the doping concentration increases from 2.5 mol% to 20 mol%. The CTC formation efficiency and its linear decrease with doping concentration are analytically correlated with the concentration-dependent size and number of dopant agglomerates by introducing the degree of reduced CTC formation. Lastly, the behavior of dissociation efficiency is discussed based on the picture of the statistical semiconductor theory and the frontier orbital hybridization model.
Zhang, Ning; Chan, Cecilia W S; Sanchez-Guerrero, Estella; Khachigian, Levon M
2012-06-01
Wound healing is a complex dynamic process involving a variety of cell types, including fibroblasts that express and respond to cytokines and growth factors in the local microenvironment. The mechanisms controlling gene expression after injury at a transcriptional level are poorly understood. Here we show that decreased expression of a key receptor, PDGF-receptor (R)-α, after fibroblast injury is due to the release and paracrine activity of TNF-α. TNF-α inhibits PDGF-R-α expression and this involves formation of a c-Fos-Yin Yang 1 (YY1) complex and histone deacetylase (HDAC) activity. c-Fos, induced by TNF-α, negatively regulates PDGF-R-α transcription. Small interfering RNA (siRNA) targeting c-Fos or the zinc finger transcription factor YY1 inhibits TNF-α suppression of PDGF-R-α expression. Coimmunoprecipitation studies show that TNF-α stimulates the formation of a complex between c-Fos with YY1. Furthermore, chromatin immunoprecipitation (ChIP) analysis reveals the enrichment of c-Fos, YY1, and HDAC-1 at the PDGF-R-α promoter in cells exposed to TNF-α. With suberoylanilide hydroxamic acid (SAHA) and HDAC-1 siRNA, we demonstrate that HDAC mediates TNF-α repression of PDGF-R-α. These findings demonstrate that transcriptional repression of PDGF-R-α after fibroblast injury involves paracrine activity of endogenous TNF-α, the formation of a c-Fos-YY1 complex, and negative regulatory activity by HDAC.
Antonini, E; Ascenzi, P; Bolognesi, M; Menegatti, E; Guarneri, M
1983-04-25
The formation of the bovine beta-trypsin-bovine basic pancreatic trypsin inhibitor (Kunitz) (BPTI) complex was monitored, making use of three different signals: proflavine displacement, optical density changes in the ultraviolet region, and the loss of the catalytic activity. The rates of the reactions indicated by the three different signals were similar at neutral pH, but diverged at low pH. At pH 3.50, proflavine displacement precedes the optical density changes in the ultraviolet and the loss of enzyme activity by several orders of magnitude in time (Antonini, E., Ascenzi, P., Menegatti, E., and Guarneri, M. (1983) Biopolymers 22, 363-375). These data indicated that the bovine beta-trypsin-BPTI complex formation is a multistage process and led to the prediction that, at pH 3.50, BPTI addition to the bovine beta-trypsin-proflavine complex would remove proflavine inhibition and the enzyme would recover transiently its catalytic activity before being irreversibly inhibited by completion of BPTI binding. The kinetic evidences, by completion of BPTI binding. The kinetic evidences, here shown, verified this prediction, indicating that during the bovine beta-trypsin-BPTI complex formation one transient intermediate occurs, which is not able to bind proflavine but may bind and hydrolyze the substrate. Thus, the observed peculiar catalytic behavior is in line with the proposed reaction mechanism for the bovine beta-trypsin-BPTI complex formation, which postulates a sequence of distinct polar and apolar interactions at the contact area.
Mechanism-based inhibition of C5-cytosine DNA methyltransferases by 2-H pyrimidinone.
Hurd, P J; Whitmarsh, A J; Baldwin, G S; Kelly, S M; Waltho, J P; Price, N C; Connolly, B A; Hornby, D P
1999-02-19
DNA duplexes in which the target cytosine base is replaced by 2-H pyrimidinone have previously been shown to bind with a significantly greater affinity to C5-cytosine DNA methyltransferases than unmodified DNA. Here, it is shown that 2-H pyrimidinone, when incorporated into DNA duplexes containing the recognition sites for M.HgaI-2 and M.MspI, elicits the formation of inhibitory covalent nucleoprotein complexes. We have found that although covalent complexes are formed between 2-H pyrimidinone-modified DNA and both M.HgaI-2 and M.MspI, the kinetics of complex formation are quite distinct in each case. Moreover, the formation of a covalent complex is still observed between 2-H pyrimidinone DNA and M.MspI in which the active-site cysteine residue is replaced by serine or threonine. Covalent complex formation between M.MspI and 2-H pyrimidinone occurs as a direct result of nucleophilic attack by the residue at the catalytic position, which is enhanced by the absence of the 4-amino function in the base. The substitution of the catalytic cysteine residue by tyrosine or chemical modification of the wild-type enzyme with N-ethylmaleimide, abolishes covalent interaction. Nevertheless the 2-H pyrimidinone-substituted duplex still binds to M.MspI with a greater affinity than a standard cognate duplex, since the 2-H pyrimidinone base is mis-paired with guanine. Copyright 1999 Academic Press.
Synthesis, characterization, spectroscopic and antioxidation studies of Cu(II)-morin complex
NASA Astrophysics Data System (ADS)
Panhwar, Qadeer Khan; Memon, Shahabuddin; Bhanger, M. I.
2010-04-01
Complex formation between copper (II) sulfate and morin (3,5,7,2',4'-pentahydroxyflavone) have been studied in methanol. Structure of the complex was determined through various analytical techniques including UV-vis, IR, 1H NMR, thermal, gravimetric and elemental analyses. The stoichiometric ratio for the reaction between the flavonoid and the metal ion in methanol has been determined by Job's method and elemental analysis for metal content of complex by titration with EDTA, which confirm that morin forms a 1:1 metal:ligand complex. 1H NMR study reveals that, 3OH and 4CO groups of morin take part in complexation with a copper ion. Individual stress was given to the site of central ion and composition of the complex. Antioxidant activity of the complex was evaluated by using 1,1-diphenyl-2-picrylhydrazyl (DPPH) radical scavenging method, which showed that the antioxidant activity of complexed morin has higher value as compared to the free morin. Moreover, it was observed that the metal complex is sufficiently stable as well as the data indicates the spontaneous formation of complex (-Δ G) that is exothermic in nature (-Δ H) and entropically unfavourable (-Δ S).
Formate and its role in hydrogen production in Escherichia coli.
Sawers, R G
2005-02-01
The production of dihydrogen by Escherichia coli and other members of the Enterobacteriaceae is one of the classic features of mixed-acid fermentation. Synthesis of the multicomponent, membrane-associated FHL (formate hydrogenlyase) enzyme complex, which disproportionates formate into CO(2) and H(2), has an absolute requirement for formate. Formate, therefore, represents a signature molecule in the fermenting E. coli cell and factors that determine formate metabolism control FHL synthesis and consequently dihydrogen evolution.
NASA Astrophysics Data System (ADS)
Teleb, Said M.; Gaballa, Akmal S.
2005-11-01
Charge-transfer (CT) complexes formed on the reaction of 2,2'-bipyridine with some acceptors such as picric acid (HPA) and chloranilic acid (H 2CA) have been studied in CHCl 3 and MeOH at room temperature. Based on elemental analysis and IR spectra of the solid CT complexes along with the photometric titration curves for the reactions, the data obtained indicate the formation of 1:1 charge-transfer complexes [(bpyH)(PA)] and [(bpyH 2)(CA)], respectively. The infrared and 1H NMR spectroscopic data indicate a charge-transfer interaction associated with a proton migration from the acceptor to the donor followed by intramolecular hydrogen bonding. The formation constants ( KC) for the complexes were shown to be dependent on the structure of the electron acceptors used.
Teleb, Said M; Gaballa, Akmal S
2005-11-01
Charge-transfer (CT) complexes formed on the reaction of 2,2'-bipyridine with some acceptors such as picric acid (HPA) and chloranilic acid (H(2)CA) have been studied in CHCl(3) and MeOH at room temperature. Based on elemental analysis and IR spectra of the solid CT complexes along with the photometric titration curves for the reactions, the data obtained indicate the formation of 1:1 charge-transfer complexes [(bpyH)(PA)] and [(bpyH(2))(CA)], respectively. The infrared and (1)H NMR spectroscopic data indicate a charge-transfer interaction associated with a proton migration from the acceptor to the donor followed by intramolecular hydrogen bonding. The formation constants (K(C)) for the complexes were shown to be dependent on the structure of the electron acceptors used.
Topchieva, I N; Sorokina, E M; Kurganov, B I; Zhulin, V M; Makarova, Z G
1996-06-01
A new method of formation of non-covalent adducts based on an amphiphilic diblock copolymer of ethylene and propylene oxides with molecular mass of 2 kDa and alpha-chymotrypsin (ChT) under high pressure, has been developed. The composition of the complexes corresponds to seven polymer molecules per one ChT molecule in the pressure range of 1.1 to 400 MPa. The complexes fully retain the catalytic activity. Kinetic constants (Km and kcat) for enzymatic hydrolysis of N-benzoyl-L-tyrosine ethyl ester catalyzed by the complexes are identical with the corresponding values for native ChT. Analysis of kinetics of thermal inactivation of the complexes revealed that the constant of the rate of the slow inactivation step is markedly lower than for ChT.
Designing Crowdcritique Systems for Formative Feedback
ERIC Educational Resources Information Center
Easterday, Matthew W.; Rees Lewis, Daniel; Gerber, Elizabeth M.
2017-01-01
Intelligent tutors based on expert systems often struggle to provide formative feedback on complex, ill-defined problems where answers are unknown. Hybrid crowdsourcing systems that combine the intelligence of multiple novices in face-to-face settings might provide an alternate approach for providing intelligent formative feedback. The purpose of…
Reaction with cyanide of hydroxylamine oxidoreductase of Nitrosomonas europaea.
Logan, M S; Balny, C; Hooper, A B
1995-07-18
Hydroxylamine oxidoreductase (HAO) catalyzes the reaction NH2OH+H2O-->HNO2+4e- + 4H+, a step in the energy-generating oxidation of ammonia to nitrite by the bacterium Nitrosomonas europaea. Each subunit of HAO contains 7 c-hemes and 1 heme P460. The latter, c-heme cross-linked from a methylene carbon to the ring of a protein tyrosine, forms part of the active site. The iron of heme P460 is probably linked by a bridging ligand to the iron of a c-heme. Here, the reaction of cyanide with ferric HAO was studied by optical, transient, and steady state kinetic techniques. The molecules, F-, Cl-, Br-, N3-, SCN-, and OCN- did not react with HAO. A single molecule of cyanide bound with high affinity to heme P460 of HAO. The optical and kinetic characteristics of formation of the monocyano complex of HAO resembled those of cyanide derivatives of other heme proteins. Cyanide, in the monocyano complex, was a noncompetitive inhibitor and remained bound during turnover. HAO was found in two forms. The most common form, HAO-A, formed only the monocyano derivative of heme P460, whereas the other, HAO-B, formed a mono- and dicyano complex. The optical properties and kinetics of formation of the mono- and dicyano complexes were different enough to easily allow independent analysis. The optical and kinetic characteristics of formation of the monocyano complex of heme P460 of HAO A and B were very similar. The dicyano complex of HAO-B appeared to result from the addition of a second molecule of cyanide to heme P460. The rate of conversion of the monocyano to the dicyano complex was stimulated 100-fold by the binding of substrate. Formation of the monoheme complex inhibited enzyme activity. The kinetic constants for the first-order formation of the monocyano derivative and the inhibition of substrate oxidation (under either transient or steady-state conditions) were different. The apparent discrepancy could be resolved by the hypothesis that HAO is functionally a dimer in which electrons rapidly equilibrate between the c-hemes of each subunit but not between oligomers. The results form the basis for the use of cyanide as a probe of the active site of HAO.
Synthesis, characterization and catalytic activity of nanosized Ni complexed aminoclay
NASA Astrophysics Data System (ADS)
Ranchani, A. Amala Jeya; Parthasarathy, V.; Devi, A. Anitha; Meenarathi, B.; Anbarasan, R.
2017-11-01
A novel Ni complexed aminoclay (AC) catalyst was prepared by complexation method followed by reduction reaction. Various analytical techniques such as FTIR spectroscopy, UV-visible spectroscopy, DSC, TGA, SEM, HRTEM, EDX, XPS and WCA measurement are used to characterize the synthesized material. The AC-Ni catalyst system exhibited improved thermal stability and fiber-like morphology. The XPS results declared the formation of Ni nanoparticles. Thus, synthesized catalyst was tested towards the Schiff base formation reaction between various bio-medical polymers and aniline under air atmosphere at 85 °C for 24 h. The catalytic activity of the catalyst was studied by varying the % weight loading of the AC-Ni system towards the Schiff base formation. The Schiff base formation was quantitatively calculated by the 1H-NMR spectroscopy. While increasing the % weight loading of the AC-Ni catalyst, the % yield of Schiff base was also increased. The k app and Ti values were determined for the reduction of indole and α-terpineol in the presence of AC-Ni catalyst system. The experimental results were compared with the literature report.
Yasaka, Yoshiro; Saito, Yuma; Kimura, Yoshifumi
2018-04-24
The mechanism of CO 2 absorption by a formate ionic liquid, [P 4444 ]HCOO, was studied by Raman spectroscopy. The band area for the symmetric CO 2 stretching of the formate anion linearly decreases with the CO 2 loading. From the slope of the decrease, 1 : 1 stoichiometry is proven between CO 2 and the formate anion. The result favors the mechanism we proposed in a preceding work [J. Chem. Eng. Data 61, 837 (2016)]: HCOO - +CO 2 +H 2 O→HCOOH+HCO 3 - →[HCOOH…HCO 3 - ]. Further support for the mechanism is obtained by the observation of antisymmetric vibration of CO for the proposed hydrogen-bonded complex between HCOOH and HCO 3 - . The bands appeared as a doublet (1677 and 1730 cm -1 ) as this complex has two carbonyl groups. Based on DFT calculations, the [HCOOH…HCO 3 - ] complex is supposed to be the most abundant form of chemisorbed CO 2 . © 2018 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.
Early Permian conodont fauna and stratigraphy of the Garden Valley Formation, Eureka County, Nevada
Wardlaw, Bruce R.; Gallegos, Dora M.; Chernykh, Valery V.; Snyder, Walter S.
2015-01-01
The lower Part of the Garden Valley Formation yields two distinct conodont faunas. One of late Asselian age dominated by Mesogondolella and Streptognathodus and one of Artinskian age dominated by Sweetognathus with Mesogondolella. The Asselian fauna contains the same species as those found in the type area of the Asselian in the southern Urals including Mesogondolella dentiseparata, described for the first time outside of the Urals. Apparatuses for Sweetognathus whitei, Diplognathodus stevensi, and Idioprioniodus sp. are described. The Garden Valley Formation represents a marine pro-delta basin and platform, and marine and shore fan delta complex deposition. The fan-delta complex was most likely deposited from late Artinskian to lateWordian. The Garden Valley Formation records tremendous swings in depositional setting from shallow-water to basin to shore.
Early Permian conodont fauna and stratigraphy of the Garden Valley Formation, Eureka County, Nevada
Wardlaw, Bruce R.; Gallegos, Dora M.; Chernykh, Valery V.; Snyder, Walter S.
2015-01-01
The lower part of the Garden Valley Formation yields two distinct conodont faunas. One of late Asselian age dominated by Mesogondolella and Streptognathodus and one of Artinskian age dominated by Sweetognathus with Mesogondolella. The Asselian fauna contains the same species as those found in the type area of the Asselian in the southern Urals including Mesogondolella dentiseparata, described for the first time outside of the Urals. Apparatuses for Sweetognathus whitei, Diplognathodus stevensi, and Idioprioniodus sp. are described. The Garden Valley Formation represents a marine pro-delta basin and platform, and marine and shore fan delta complex deposition. The fan-delta complex was most likely deposited from late Artinskian to late Wordian. The Garden Valley Formation records tremendous swings in depositional setting from shallow-water to basin to shore.
Catalytic effects of glycine on prebiotic divaline and diproline formation.
Plankensteiner, Kristof; Reiner, Hannes; Rode, Bernd M
2005-07-01
The catalytic effects of the simple amino acid glycine on the formation of diproline and divaline in the prebiotically relevant salt-induced peptide formation (SIPF) reaction was investigated in systems of different amino acid starting concentrations and using the two enantiomeric forms of the respective amino acid. Results show an improved applicability of the SIPF reaction to prebiotic conditions, especially at low amino acid concentrations, as presumably present in a primordial scenario, and indicate excellent conditions and resources for chemical evolution of peptides and proteins on the early earth. For valine, furthermore differences in catalytic yield increase are found indicating a chiral selectivity of the active copper complex of the reaction and showing a connection to previously found enantiomeric differences in complex formation constants with amino acids.
ERIC Educational Resources Information Center
Larsen, Erik; Eriksen, J.
1975-01-01
Describes an experiment wherein the student can demonstrate the existence of all the thiocyanato chromium complexes, estimate the stepwise formation constants, demonstrate the robustness of chromium III complexes, and show the principles of paper electrophoresis. (GS)
Chernia, Zelig; Tsori, Yoav
2018-03-14
Phase separation in substituted pyridines in water is usually described as an interplay between temperature-driven breakage of hydrogen bonds and the associating interaction of the van der Waals force. In previous quantum-chemical studies, the strength of hydrogen bonding between one water and one pyridine molecules (the 1:1 complex) was assigned a pivotal role. It was accepted that the disassembly of the 1:1 complex at a critical temperature leads to phase separation and formation of the miscibility gap. Yet, for over two decades, notable empirical data and theoretical arguments were presented against that view, thus revealing the need in a revised quantum-mechanical description. In the present study, pyridine-water and 2,6-dimethylpyridine-water systems at different complexation stages are calculated using high level Kohn-Sham theory. The hydrophobic-hydrophilic properties are accounted for by the polarizable continuum solvation model. Inclusion of solvation in free energy of formation calculations reveals that 1:1 complexes are abundant in the organically rich solvents but higher level oligomers (i.e., 2:1 dimers with two pyridines and one water molecule) are the only feasible stable products in the more polar media. At the critical temperature, the dissolution of the external hydrogen bonds between the 2:1 dimer and the surrounding water molecules induces the demixing process. The 1:1 complex acts as a precursor in the formation of the dimers but is not directly involved in the demixing mechanism. The existence of the miscibility gap in one pyridine-water system and the lack of it in another is explained by the ability of the former to maintain stable dimerization. Free energy of formation of several reaction paths producing the 2:1 dimers is calculated and critically analyzed.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Joulin, Y.; Delaforge, M.; Hoellinger, H.
1990-01-01
p-125I-amphetamine (I-Amp) is retained significantly in liver and lung during brain tomoscintigraphy. To attempt to explain this clinical observation, we have investigated the interaction of I-Amp with rat liver and lung microsomal proteins. Studies using spectral shift technique indicate that low concentration of I-Amp gives a type I complex and high concentration appears very stable type II complex with cytochrome P-450 Fe III. In the presence of NADPH, I-Amp gives rise to a 455 nm absorbing complex with similar properties to the Fe-RNO complexes. This complex formation was greatly enhanced with phenobarbital treated liver microsomes. The in vitro binding studymore » shows that I-Amp and/or its metabolites was covalently bound to macromolecules in the presence of the molecular oxygen and NADPH-generating system. Incubation in the presence of glutathione, cystein and radical scavengers decreases binding. Mixed function oxydase (MFO) inhibitors diminish the amount of covalent binding and alter the extent of metabolite formation. The total covalent binding level increased with liver microsomes from PB pretreated rats as it was observed with the 455nm complex formation. The radioactivity distribution on microsomal proteins was examinated with SDS polyacrylamide gel electrophoresis and autoradiography. This experiment proves that the radiolabelled compounds are bound on the cytochrome P-450. The radioactivity bound increased when the PB induced rat liver microsomes were used. All these results indicate that I-Amp was activated by an oxydative process dependent on the MFO system which suggests a N-oxydation of I-Amp and the formation of reactive entities which covalently bind to proteins.« less
Involvement of DPP-IV catalytic residues in enzyme–saxagliptin complex formation
Metzler, William J.; Yanchunas, Joseph; Weigelt, Carolyn; Kish, Kevin; Klei, Herbert E.; Xie, Dianlin; Zhang, Yaqun; Corbett, Martin; Tamura, James K.; He, Bin; Hamann, Lawrence G.; Kirby, Mark S.; Marcinkeviciene, Jovita
2008-01-01
The inhibition of DPP-IV by saxagliptin has been proposed to occur through formation of a covalent but reversible complex. To evaluate further the mechanism of inhibition, we determined the X-ray crystal structure of the DPP-IV:saxagliptin complex. This structure reveals covalent attachment between S630 and the inhibitor nitrile carbon (C–O distance <1.3 Å). To investigate whether this serine addition is assisted by the catalytic His-Asp dyad, we generated two mutants of DPP-IV, S630A and H740Q, and assayed them for ability to bind inhibitor. DPP-IVH740Q bound saxagliptin with an ∼1000-fold reduction in affinity relative to DPP-IVWT, while DPP-IVS630A showed no evidence for binding inhibitor. An analog of saxagliptin lacking the nitrile group showed unchanged binding properties to the both mutant proteins, highlighting the essential role S630 and H740 play in covalent bond formation between S630 and saxagliptin. Further supporting mechanism-based inhibition by saxagliptin, NMR spectra of enzyme–saxagliptin complexes revealed the presence of three downfield resonances with low fractionation factors characteristic of short and strong hydrogen bonds (SSHB). Comparison of the NMR spectra of various wild-type and mutant DPP-IV:ligand complexes enabled assignment of a resonance at ∼14 ppm to H740. Two additional DPP-IV mutants, Y547F and Y547Q, generated to probe potential stabilization of the enzyme–inhibitor complex by this residue, did not show any differences in inhibitor binding either by ITC or NMR. Together with the previously published enzymatic data, the structural and binding data presented here strongly support a histidine-assisted covalent bond formation between S630 hydroxyl oxygen and the nitrile group of saxagliptin. PMID:18227430
Involvement of DPP-IV Catalytic Residues in Enzyme-Saxagliptin Complex Formation
DOE Office of Scientific and Technical Information (OSTI.GOV)
Metzler,W.; Yanchunas, J.; Weigelt, C.
The inhibition of DPP-IV by saxagliptin has been proposed to occur through formation of a covalent but reversible complex. To evaluate further the mechanism of inhibition, we determined the X-ray crystal structure of the DPP-IV:saxagliptin complex. This structure reveals covalent attachment between S630 and the inhibitor nitrile carbon (C-O distance <1.3 Angstroms). To investigate whether this serine addition is assisted by the catalytic His-Asp dyad, we generated two mutants of DPP-IV, S630A and H740Q, and assayed them for ability to bind inhibitor. DPP-IVH740Q bound saxagliptin with an {approx}1000-fold reduction in affinity relative to DPP-IVWT, while DPP-IVS630A showed no evidence formore » binding inhibitor. An analog of saxagliptin lacking the nitrile group showed unchanged binding properties to the both mutant proteins, highlighting the essential role S630 and H740 play in covalent bond formation between S630 and saxagliptin. Further supporting mechanism-based inhibition by saxagliptin, NMR spectra of enzyme-saxagliptin complexes revealed the presence of three downfield resonances with low fractionation factors characteristic of short and strong hydrogen bonds (SSHB). Comparison of the NMR spectra of various wild-type and mutant DPP-IV:ligand complexes enabled assignment of a resonance at {approx}14 ppm to H740. Two additional DPP-IV mutants, Y547F and Y547Q, generated to probe potential stabilization of the enzyme-inhibitor complex by this residue, did not show any differences in inhibitor binding either by ITC or NMR. Together with the previously published enzymatic data, the structural and binding data presented here strongly support a histidine-assisted covalent bond formation between S630 hydroxyl oxygen and the nitrile group of saxagliptin.« less
NASA Astrophysics Data System (ADS)
Chernia, Zelig; Tsori, Yoav
2018-03-01
Phase separation in substituted pyridines in water is usually described as an interplay between temperature-driven breakage of hydrogen bonds and the associating interaction of the van der Waals force. In previous quantum-chemical studies, the strength of hydrogen bonding between one water and one pyridine molecules (the 1:1 complex) was assigned a pivotal role. It was accepted that the disassembly of the 1:1 complex at a critical temperature leads to phase separation and formation of the miscibility gap. Yet, for over two decades, notable empirical data and theoretical arguments were presented against that view, thus revealing the need in a revised quantum-mechanical description. In the present study, pyridine-water and 2,6-dimethylpyridine-water systems at different complexation stages are calculated using high level Kohn-Sham theory. The hydrophobic-hydrophilic properties are accounted for by the polarizable continuum solvation model. Inclusion of solvation in free energy of formation calculations reveals that 1:1 complexes are abundant in the organically rich solvents but higher level oligomers (i.e., 2:1 dimers with two pyridines and one water molecule) are the only feasible stable products in the more polar media. At the critical temperature, the dissolution of the external hydrogen bonds between the 2:1 dimer and the surrounding water molecules induces the demixing process. The 1:1 complex acts as a precursor in the formation of the dimers but is not directly involved in the demixing mechanism. The existence of the miscibility gap in one pyridine-water system and the lack of it in another is explained by the ability of the former to maintain stable dimerization. Free energy of formation of several reaction paths producing the 2:1 dimers is calculated and critically analyzed.
Kajiwara, Mari; Ito, Yoshio N; Miyazaki, Yoshinobu; Fujimori, Takao; Takehara, Kô; Yoshimura, Kazuhisa
2015-02-14
The ternary system of boric acid, salicylaldehyde (SA) and H-acid (HA) was voltammetrically studied from kinetic and equilibrium points of view. The effect of the SA substituents was also studied by using two analogs, 5-fluorosalicylaldehyde (F-SA) and 5-methylsalicylaldehyde (Me-SA). The three cathodic peaks of Azomethine H (AzH), Azomethine H-boric acid complex (AzB), and free SA were observed in the solution containing boric acid, SA and HA. The peak potentials of AzH and SA were shifted to negative potentials with increasing pH, while the peak potential of AzB was pH-independent. This difference indicates that a proton participates in the charge-transfer steps of the AzH and SA reductions, but not in that of the AzB reduction. The formation constants for the AzB complexation were similar among all the examined analogs. In the kinetic study, the reaction rate was higher in an acidic condition for the AzH formation, but in a neutral condition for the AzB formation. The rate constants for the AzB complexes were in the order of F-SA > SA ≈ Me-SA, indicating that the fluoro group accelerates the F-AzB complexation. The AzB complexation mechanism is considered to consist of more than three steps, i.e., the pre-equilibrium of the salicylaldehyde-boric acid complex (SA-B) formation, the nucleophilic attack of HA on SA-B, and the remaining some steps to form AzB. Based on these results, the voltammetric determination method of boron using F-SA was optimized, which allowed the boron concentration to be determined within only 5 min with a 0.03 mg B dm(-3) detection limit.
NASA Astrophysics Data System (ADS)
Satriani, W. H.; Redjeki, S.; Kartinah, N. T.
2017-08-01
Increased neuroplasticity induced by complex aerobic physical exercise is associated with improved cognitive function in adult mice. Increased cognitive function is assumed to be based on increased synapse formation. One of the regions of the brain that is important in cognitive function is the hippocampus, which plays a role in memory formation. Post synaptic density-95 (PSD-95) is an adhesion protein of the post-synaptic density scaffolding that is essential to synaptic stabilization. As we age, the PSD-95 molecule matures the synapses needed for the formation of the basic circuitry of the nervous system in the brain. However, during the growth period, synapse elimination is higher than its formation. This study aims to determine whether complex aerobic exercise can improve cognitive function and PSD-95 levels in the hippocampus of juvenile mice during their growth stage. The mice performed complex aerobic exercise starting at five weeks of age and continuing for seven weeks with a gradual increase of 8 m/min. At eight weeks it was increased to 10 m/min. The exercise was done for five days of each week. The subjects of the study were tested for cognition one week before being sacrificed (at 12 weeks). The PSD-95 in the hippocampus was measured with ELISA. The results showed that there was a significant difference in cognitive function, where p < 0.05, between the group that was given complex aerobic exercise and a control group that did not. However, the PSD-95 levels did not differ significantly between the two groups. The results of this study indicate that early complex aerobic exercise can improve cognitive ability in adulthood but does not increase the levels of PSD-95 in adults.
Ranoa, Diana Rose E.; Kelley, Stacy L.; Tapping, Richard I.
2013-01-01
Bacterial lipoproteins are the most potent microbial agonists for the Toll-like receptor 2 (TLR2) subfamily, and this pattern recognition event induces cellular activation, leading to host immune responses. Triacylated bacterial lipoproteins coordinately bind TLR1 and TLR2, resulting in a stable ternary complex that drives intracellular signaling. The sensitivity of TLR-expressing cells to lipoproteins is greatly enhanced by two lipid-binding serum proteins known as lipopolysaccharide-binding protein (LBP) and soluble CD14 (sCD14); however, the physical mechanism that underlies this increased sensitivity is not known. To address this, we measured the ability of LBP and sCD14 to drive ternary complex formation between soluble extracellular domains of TLR1 and TLR2 and a synthetic triacylated lipopeptide agonist. Importantly, addition of substoichiometric amounts of either LBP or sCD14 significantly enhanced formation of a TLR1·TLR2 lipopeptide ternary complex as measured by size exclusion chromatography. However, neither LBP nor sCD14 was physically associated with the final ternary complex. Similar results were obtained using outer surface protein A (OspA), a naturally occurring triacylated lipoprotein agonist from Borrelia burgdorferi. Activation studies revealed that either LBP or sCD14 sensitized TLR-expressing cells to nanogram levels of either the synthetic lipopeptide or OspA lipoprotein agonist. Together, our results show that either LBP or sCD14 can drive ternary complex formation and TLR activation by acting as mobile carriers of triacylated lipopeptides or lipoproteins. PMID:23430250
Mujika, Jon I; Dalla Torre, Gabriele; Lopez, Xabier
2018-06-13
The pro-oxidant ability of aluminum is behind many of the potential toxic effects of this exogenous element in the human organism. Although the overall process is still far from being understood at the molecular level, the well known ability of aluminum to promote the Fenton reaction is mediated through the formation of stable aluminum-superoxide radical complexes. However, the properties of metal complexes are highly influenced by the speciation of the metal. In this paper, we investigate the effect that speciation could have on the pro-oxidant activity of aluminum. We choose citrate as a test case, because it is the main low-molecular-mass chelator of aluminum in blood serum, forming very stable aluminum-citrate complexes. The influence of citrate in the interaction of aluminum with the superoxide radical is investigated, determining how the formation of aluminum-citrate complexes affects the promotion of the Fenton reaction. The results indicate that citrate increases the stability of the aluminum-superoxide complexes through the formation of ternary compounds, and that the Fenton reaction is even more favorable when aluminum is chelated to citrate. Nevertheless, our results demonstrate that overall, citrate may prevent the pro-oxidant activity of aluminum: on one hand, in an excess of citrate, the formation of 1 : 2 aluminum-citrate complexes is expected. On the other hand, the chelation of iron by citrate makes the reduction of iron thermodynamically unfavorable. In summary, the results suggest that citrate can have both a promotion and protective role, depending on subtle factors, such as initial concentration, non-equilibrium behavior and the exchange rate of ligands in the first shell of the metals.
Cao, Yan Jun; Wang, Qiong; Zheng, Xing Xing; Cheng, Ying; Zhang, Yan
2018-08-01
Prenatal stress (PS) exposure can cause depression-like behavior in offspring, and maladaptive responses including physiological and neurobiological changes. Glutamate neurotransmission is implicated in effects of PS and in antidepressant mechanisms; however, the mechanisms underlying its involvement remain unclear. In the synapse, the formation of the soluble N-ethylmaleimide-sensitive factor attachment protein receptor (SNARE) complex is essential for vesicular docking and neurotransmitter release. To explore effects of PS on the SNARE complex, pregnant rats were assigned to a control or PS group. Both male and female offspring in each group were used in this study. PS rats were exposed to restraint stress three times daily for 45 min on days 14-20 of pregnancy. In the PS offspring, the expression of the SNARE protein SNAP-25, vesicle-associated membrane protein (VAMP)-2, and Syntaxin 1a was significantly increased in the hippocampus and prefrontal cortex. These observations were associated with increased levels of proteins that chaperone SNARE complex formation, including Munc-18, α-synuclein, CSPα, complexin1, and complexin2. Immunoblotting of hippocampal and prefrontal cortex homogenates revealed significantly increased SNARE complex formation. vGluT1 protein expression was also significantly increased in the offspring. Additionally, PS was associated with increased mRNA expression of VAMP1, VAMP2, SNAP25, Syntaxin1a, and Syntaxin1b in the hippocampus and prefrontal cortex. Increased monomeric SNARE proteins, SNARE complex formation, vesicle-associated proteins, and vGluT1 may explain the increase in glutamate and its downstream excitotoxicity. These results support the hypothesis that glutamate release and vesicular glutamate transporters play a role in PS-induced depression-like behavior of rat offspring. Copyright © 2018. Published by Elsevier B.V.
Molecular engineering of polymersome surface topology
Ruiz-Pérez, Lorena; Messager, Lea; Gaitzsch, Jens; Joseph, Adrian; Sutto, Ludovico; Gervasio, Francesco Luigi; Battaglia, Giuseppe
2016-01-01
Biological systems exploit self-assembly to create complex structures whose arrangements are finely controlled from the molecular to mesoscopic level. We report an example of using fully synthetic systems that mimic two levels of self-assembly. We show the formation of vesicles using amphiphilic copolymers whose chemical nature is chosen to control both membrane formation and membrane-confined interactions. We report polymersomes with patterns that emerge by engineering interfacial tension within the polymersome surface. This allows the formation of domains whose topology is tailored by chemical synthesis, paving the avenue to complex supramolecular designs functionally similar to those found in viruses and trafficking vesicles. PMID:27152331
Mössbauer and NMR study of novel Tin(IV)-lactames
NASA Astrophysics Data System (ADS)
Kuzmann, Erno; Szalay, Roland; Homonnay, Zoltan; Nagy, Sandor
2012-03-01
N-tributylstannylated 2-pyrrolidinone was reacted with tributyltin triflate in different molar ratios and the complex formation monitored using 1H-NMR, 13C-NMR and 119Sn Mössbauer spectroscopy. Comparing the carbon NMR and tin Mössbauer results, a reaction scheme is suggested for the complexation which assumes the formation of a simultaneously O- and N-tributylstannylated pyrrolidinone cation. The formation of the only O-stannylated pyrrolidinone is also assumed to account for the non-constant Mössbauer parameters of the two tin environments in the distannylated pyrrolidinone cation when the ratio of tributyltin triflate is increased in the reaction.
Squarylium-based chromogenic anion sensors
NASA Astrophysics Data System (ADS)
Lee, Eun-Mi; Gwon, Seon-Yeong; Son, Young-A.; Kim, Sung-Hoon
2012-09-01
A squarylium (SQ) dye was synthesized by the reaction between squaric acid and 2,3,3-trimethylindolenine and its anion sensing properties were investigated using absorption and emission spectroscopy. This chemosensor exhibited high selectivity for CN- as compared with F-, CHCO2-, Br-, HPO4-, Cl-, and NO3- in acetonitrile, which was attributed to the formation of a 1:1 squarylium:CN- coordination complex, the formation of which was supported by the calculated geometry of the complex.
ERIC Educational Resources Information Center
Zakrzewski, Robert; Skowron, Monika; Ciesielski, Witold; Rembisz, Zaneta
2016-01-01
The laboratory experiment challenges students to determine 6-propyl-2-thiouracil (PTU) based on Prussian blue complex formation. Prussian blue is formed by ferricyanide and Fe(II) ions which are generated in situ from Fe(III) ions reduced by PTU. The absorbance of this product was measured at a wavelength of 840 nm, after a reaction time of 30…
Jones, Owen G; McClements, David Julian
2011-09-14
Functional biopolymer nanoparticles or microparticles can be formed by heat treatment of globular protein-ionic polysaccharide electrostatic complexes under appropriate solution conditions. These biopolymer particles can be used as encapsulation and delivery systems, fat mimetics, lightening agents, or texture modifiers. This review highlights recent progress in the design and fabrication of biopolymer particles based on heating globular protein-ionic polysaccharide complexes above the thermal denaturation temperature of the proteins. The influence of biopolymer type, protein-polysaccharide ratio, pH, ionic strength, and thermal history on the characteristics of the biopolymer particles formed is reviewed. Our current understanding of the underlying physicochemical mechanisms of particle formation and properties is given. The information provided in this review should facilitate the rational design of biopolymer particles with specific physicochemical and functional attributes, as well as stimulate further research in identifying the physicochemical origin of particle formation. Copyright © 2010 Elsevier B.V. All rights reserved.
NASA Astrophysics Data System (ADS)
Loh, C. W.
1980-03-01
A method was developed for determining equilibrium constants, heat of reaction, and change in free energy and entropy during a 1:1 complex formation in solutions. The measurements were carried out on ternary systems containing two interacting solutes in an inert solvent. The procedures was applied to the investigation of hydrogen bond complex formations in two mixtures systems, phenol and pyridine in carbon tetrachloride, and 4, 5, 6, 7-tetrachloro-2-trifluoromethylbenzimidazole (TTFB) and alkyl acetate in styrene. The first mixture system was studied in order to compare the results with those obtained by other methods. Results for the second mixture system indicated strong association between molecules of TTFB and alkyl acetate and suggested that the blocking of valinomycin-mediated bilayer membrane conductance by substituted benzimidazoles was due to competition for a limited number of adsorption sites on the membrane surface.
Gel phase formation in dilute triblock copolyelectrolyte complexes
DOE Office of Scientific and Technical Information (OSTI.GOV)
Srivastava, Samanvaya; Andreev, Marat; Levi, Adam E.
Assembly of oppositely charged triblock copolyelectrolytes into phase-separated gels at low polymer concentrations (<1% by mass) has been observed in scattering experiments and molecular dynamics simulations. Here we show that in contrast to uncharged, amphiphilic block copolymers that form discrete micelles at low concentrations and enter a phase of strongly interacting micelles in a gradual manner with increasing concentration, the formation of a dilute phase of individual micelles is prevented in polyelectrolyte complexation-driven assembly of triblock copolyelectrolytes. Gel phases form and phase separate almost instantaneously on solvation of the copolymers. Furthermore, molecular models of self-assembly demonstrate the presence of oligo-chainmore » aggregates in early stages of copolyelectrolyte assembly, at experimentally unobservable polymer concentrations. Our discoveries contribute to the fundamental understanding of the structure and pathways of complexation-driven assemblies, and raise intriguing prospects for gel formation at extraordinarily low concentrations, with applications in tissue engineering, agriculture, water purification and theranostics.« less
Gel phase formation in dilute triblock copolyelectrolyte complexes
DOE Office of Scientific and Technical Information (OSTI.GOV)
Srivastava, Samanvaya; Andreev, Marat; Levi, Adam E.
Assembly of oppositely charged triblock copolyelectrolytes into phase-separated gels at low polymer concentrations (<1% by mass) has been observed in scattering experiments and molecular dynamics simulations. Here we show that in contrast to uncharged, amphiphilic block copolymers that form discrete micelles at low concentrations and enter a phase of strongly interacting micelles in a gradual manner with increasing concentration, the formation of a dilute phase of individual micelles is prevented in polyelectrolyte complexation-driven assembly of triblock copolyelectrolytes. Gel phases form and phase separate almost instantaneously on solvation of the copolymers. Furthermore, molecular models of self-assembly demonstrate the presence of oligo-chainmore » aggregates in early stages of copolyelectrolyte assembly, at experimentally unobservable polymer concentrations. Finally, our discoveries contribute to the fundamental understanding of the structure and pathways of complexation-driven assemblies, and raise intriguing prospects for gel formation at extraordinarily low concentrations, with applications in tissue engineering, agriculture, water purification and theranostics.« less
Gel phase formation in dilute triblock copolyelectrolyte complexes
Srivastava, Samanvaya; Andreev, Marat; Levi, Adam E.; ...
2017-02-23
Assembly of oppositely charged triblock copolyelectrolytes into phase-separated gels at low polymer concentrations (<1% by mass) has been observed in scattering experiments and molecular dynamics simulations. Here we show that in contrast to uncharged, amphiphilic block copolymers that form discrete micelles at low concentrations and enter a phase of strongly interacting micelles in a gradual manner with increasing concentration, the formation of a dilute phase of individual micelles is prevented in polyelectrolyte complexation-driven assembly of triblock copolyelectrolytes. Gel phases form and phase separate almost instantaneously on solvation of the copolymers. Furthermore, molecular models of self-assembly demonstrate the presence of oligo-chainmore » aggregates in early stages of copolyelectrolyte assembly, at experimentally unobservable polymer concentrations. Finally, our discoveries contribute to the fundamental understanding of the structure and pathways of complexation-driven assemblies, and raise intriguing prospects for gel formation at extraordinarily low concentrations, with applications in tissue engineering, agriculture, water purification and theranostics.« less
Spatial Complexity Due to Bulk Electronic Liquid Crystals in Superconducting Dy-Bi2212
NASA Astrophysics Data System (ADS)
Carlson, Erica; Phillabaum, Benjamin; Dahmen, Karin
2012-02-01
Surface probes such as scanning tunneling microscopy (STM) have detected complex electronic patterns at the nanoscale in many high temperature superconductors. In cuprates, the pattern formation is associated with the pseudogap phase, a precursor to the high temperature superconducting state. Rotational symmetry breaking of the host crystal (i.e. from C4 to C2) in the form of electronic nematicity has recently been proposed as a unifying theme of the pseudogap phase [Lawler Nature 2010]. However, the fundamental physics governing the nanoscale pattern formation has not yet been identified. Here we use universal cluster properties extracted from STM studies of cuprate superconductors to identify the funda- mental physics controlling the complex pattern formation. We find that due to a delicate balance between disorder, interactions, and material anisotropy, the rotational symmetry breaking is fractal in nature, and that the electronic liquid crystal extends throughout the bulk of the material.
Green synthesis of ZnO nanoparticles via complex formation by using Curcuma longa extract
DOE Office of Scientific and Technical Information (OSTI.GOV)
Fatimah, Is, E-mail: isfatimah@uii.ac.id; Yudha, Septian P.; Mutiara, Nur Afisa Lintang
Synthesis of ZnO nanoparticles(NPs) were conducted via Zn(II) complex formation by using Curcuma longa extract as template. Curcuma longa extract has the ability to form zinc ions complex with curcumin as ligating agent. Study on synthesis was conducted by monitoring thermal degradation of the material. Successful formation of zinc oxide nanoparticles was confirmed by employing x-ray diffraction, surface area analysis and transmission electron microscopy(TEM) studies. From the XRD analysis it is denoted that ZnO in hexagonal wurtzite phase was formed and particle size was varied as varied temperature. The data are also confirmed by TEM analysis which shows the particlemore » sie at the range 20-80nm. The NPs exhibited excelent photocatalytic activity for methylene blue degradation and also significant antibacterial activity for Eschericia coli. The activity in methylene blue degradation was also confirmed from fast chemical oxygen demand (COD) reduction.« less
Gel Phase Formation in Dilute Triblock Copolyelectrolyte Complexes
NASA Astrophysics Data System (ADS)
Srivastava, Samanvaya; Andreev, Marat; Prabhu, Vivek; de Pablo, Juan; Tirrell, Matthew
Assembly of oppositely charged triblock copolyelectrolytes into phase-separated gels at extremely low polymer concentrations (<1 % by mass) has been observed in scattering experiments and molecular dynamics simulations. In contrast to uncharged, amphiphilic block copolymers that form discrete micelles at low concentrations and enter a phase of strongly interacting micelles in a gradual manner with increasing polymer concentrations, the formation of a dilute phase of individual micelles is prevented in polyelectrolyte complexation-driven assemblies of triblock copolyelectrolytes. Gel phases form and phase separate almost instantaneously upon solvation of the copolymers. Furthermore, molecular models of self-assembly demonstrate the presence of oligo-chain aggregates in early stages of triblock copolyelectrolyte assembly, at experimentally unobservable polymer concentrations. Our discoveries not only contribute to our fundamental understanding of the structure and pathways of complexation driven assemblies, but also raise intriguing prospects for formation of gel structures at extraordinarily low concentrations, with applications in tissue engineering, agriculture, water purification and theranostics.
Gel phase formation in dilute triblock copolyelectrolyte complexes
NASA Astrophysics Data System (ADS)
Srivastava, Samanvaya; Andreev, Marat; Levi, Adam E.; Goldfeld, David J.; Mao, Jun; Heller, William T.; Prabhu, Vivek M.; de Pablo, Juan J.; Tirrell, Matthew V.
2017-02-01
Assembly of oppositely charged triblock copolyelectrolytes into phase-separated gels at low polymer concentrations (<1% by mass) has been observed in scattering experiments and molecular dynamics simulations. Here we show that in contrast to uncharged, amphiphilic block copolymers that form discrete micelles at low concentrations and enter a phase of strongly interacting micelles in a gradual manner with increasing concentration, the formation of a dilute phase of individual micelles is prevented in polyelectrolyte complexation-driven assembly of triblock copolyelectrolytes. Gel phases form and phase separate almost instantaneously on solvation of the copolymers. Furthermore, molecular models of self-assembly demonstrate the presence of oligo-chain aggregates in early stages of copolyelectrolyte assembly, at experimentally unobservable polymer concentrations. Our discoveries contribute to the fundamental understanding of the structure and pathways of complexation-driven assemblies, and raise intriguing prospects for gel formation at extraordinarily low concentrations, with applications in tissue engineering, agriculture, water purification and theranostics.
Green synthesis of ZnO nanoparticles via complex formation by using Curcuma longa extract
NASA Astrophysics Data System (ADS)
Fatimah, Is; Yudha, Septian P.; Mutiara, Nur Afisa Lintang
2016-02-01
Synthesis of ZnO nanoparticles(NPs) were conducted via Zn(II) complex formation by using Curcuma longa extract as template. Curcuma longa extract has the ability to form zinc ions complex with curcumin as ligating agent. Study on synthesis was conducted by monitoring thermal degradation of the material. Successful formation of zinc oxide nanoparticles was confirmed by employing x-ray diffraction, surface area analysis and transmission electron microscopy(TEM) studies. From the XRD analysis it is denoted that ZnO in hexagonal wurtzite phase was formed and particle size was varied as varied temperature. The data are also confirmed by TEM analysis which shows the particle sie at the range 20-80nm. The NPs exhibited excelent photocatalytic activity for methylene blue degradation and also significant antibacterial activity for Eschericia coli. The activity in methylene blue degradation was also confirmed from fast chemical oxygen demand (COD) reduction.
Young, Tessa R; Wedd, Anthony G; Xiao, Zhiguang
2018-01-24
The extracellular domain E2 of the amyloid precursor protein (APP) features a His-rich metal-binding site (denoted as the M1 site). In conjunction with surrounding basic residues, the site participates in interactions with components of the extracellular matrix including heparins, a class of negatively charged polysaccharide molecules of varying length. This work studied the chemistry of Cu(i) binding to APP E2 with the probe ligands Bcs, Bca, Fz and Fs. APP E2 forms a stable Cu(i)-mediated ternary complex with each of these anionic ligands. The complex with Bca was selected for isolation and characterization and was demonstrated, by native ESI-MS analysis, to have the stoichiometry E2 : Cu(i) : Bca = 1 : 1 : 1. Formation of these ternary complexes is specific for the APP E2 domain and requires Cu(i) coordination to the M1 site. Mutation of the M1 site was consistent with the His ligands being part of the E2 ligand set. It is likely that interactions between the negatively charged probe ligands and a positively charged patch on the surface of APP E2 are one aspect of the generation of the stable ternary complexes. Their formation prevented meaningful quantification of the affinity of Cu(i) binding to the M1 site with these probe ligands. However, the ternary complexes are disrupted by heparin, allowing reliable determination of a picomolar Cu(i) affinity for the E2/heparin complex with the Fz or Bca probe ligands. This is the first documented example of the formation of stable ternary complexes between a Cu(i) binding protein and a probe ligand. The ready disruption of the complexes by heparin identified clear 'tell-tale' signs for diagnosis of ternary complex formation and allowed a systematic review of conditions and criteria for reliable determination of affinities for metal binding via ligand competition. This study also provides new insights into a potential correlation of APP functions regulated by copper binding and heparin interaction.
Asteroidal-meteoric complexes.
NASA Astrophysics Data System (ADS)
Shestaka, I. S.
1994-12-01
Fourteen asteroidal-meteoric complexes were identified by means of the criterion of similarity of quasistationary parameters μ, ν and Tisserand's invariant Ti. Each of these complexes consists of several meteor swarms and one or several asteroids. The existence of such complexes confirms the possibility of formation of meteor swarms by means of disintegration of asteroids and their fragments.
NASA Astrophysics Data System (ADS)
Wang, Hui; Sun, Hongyuan; He, Jieyu
2017-12-01
The effects of degree of esterification, pectin/chitosan ratio and pH on the formation of polyelectrolyte complex colloid particles between chitosan (CS) and pectin (PE) were investigated. Low methoxyl pectin (LPE) was achieved by de-esterifying high methoxyl pectin (HPE) with pectin methyl esterase. Turbidity titration and colorimetric method was used to determine the stability of complex colloid particles. The structure and morphology of complex particles were characterized by FTIR and TEM. When pectin solution was dropped into chitosan solution, complex colloidal dispersion was stable as PE/CS mass ratio was no more than 3:2. Colloidal particles of HPE-CS complex coagulated at larger ratio of PE/CS than LPE-CS. The maximum complex occurred at pH 6.1 for HPE-CS and pH 5.7 for LPE-CS, and decreasing pH leaded to the dissociation of complex particles. Electrostatic interactions between carboxyl groups on pectin and amino groups on chitosan were confirmed by FTIR. Colloidal particle sizes ranged from about 100 nm to 400 nm with spherical shape.
Pathway of actin filament branch formation by Arp2/3 complex revealed by single-molecule imaging
Smith, Benjamin A.; Daugherty-Clarke, Karen; Goode, Bruce L.; Gelles, Jeff
2013-01-01
Actin filament nucleation by actin-related protein (Arp) 2/3 complex is a critical process in cell motility and endocytosis, yet key aspects of its mechanism are unknown due to a lack of real-time observations of Arp2/3 complex through the nucleation process. Triggered by the verprolin homology, central, and acidic (VCA) region of proteins in the Wiskott-Aldrich syndrome protein (WASp) family, Arp2/3 complex produces new (daughter) filaments as branches from the sides of preexisting (mother) filaments. We visualized individual fluorescently labeled Arp2/3 complexes dynamically interacting with and producing branches on growing actin filaments in vitro. Branch formation was strikingly inefficient, even in the presence of VCA: only ∼1% of filament-bound Arp2/3 complexes yielded a daughter filament. VCA acted at multiple steps, increasing both the association rate of Arp2/3 complexes with mother filament and the fraction of filament-bound complexes that nucleated a daughter. The results lead to a quantitative kinetic mechanism for branched actin assembly, revealing the steps that can be stimulated by additional cellular factors. PMID:23292935
Nixtamalization Process Affects Resistant Starch Formation and Glycemic Index of Tamales.
Mariscal-Moreno, Rosa María; de Dios Figueroa Cárdenas, Juan; Santiago-Ramos, David; Rayas-Duarte, Patricia; Veles-Medina, José Juan; Martínez-Flores, Héctor Eduardo
2017-05-01
Tamales were prepared with 3 nixtamalization processes (traditional, ecological, and classic) and evaluated for chemical composition, starch properties, and glycemic index. Resistant starch (RS) in tamales increased 1.6 to 3.7 times compared to raw maize. This increment was due to the starch retrogradation (RS3) and amylose-lipid complexes (RS5) formation. Tamales elaborated with classic and ecological nixtamalization processes exhibited the highest total, soluble and insoluble dietary fiber content, and the highest RS content and lower in vivo glycemic index compared to tamales elaborated with traditional nixtamalization process. Thermal properties of tamales showed 3 endotherms: amylopectin retrogradation (42.7 to 66.6 °C), melting of amylose lipid complex type I (78.8 to 105.4), and melting of amylose-lipid complex type II (110.7 to 129.7). Raw maize exhibited X-ray diffraction pattern type A, after nixtamalization and cooking of tamales it changed to V-type polymorph structure, due to amylose-lipid complexes formation. Tamales from ecological nixtamalization processes could represent potential health benefits associated with the reduction on blood glucose response after consumption. © 2017 Institute of Food Technologists®.
Volod'ko, A V; Davydova, V N; Glazunov, V P; Likhatskaya, G N; Yermak, I M
2016-03-01
The polyelectrolyte complexes (PEC) of carrageenans (CG)-κ-, κ/β-, λ-and x-CG with chitosan were obtained. The formation of PEC was detected by Fourier-transform infrared (FTIR) spectroscopy and by centrifugation in a Percoll gradient. The influence of the structural peculiarities of CG on its interaction with chitosan was studied. The results of centrifugation showed that x-CG with a high degree of sulphation (SD) was completely bound to chitosan, unlike low SD κ-CG and κ/β-CG. Binding constant values showed there was a high affinity of CG for chitosan. CG with flexible macromolecule conformation and high SD exhibited the greatest binding affinity for chitosan. The full-atomic 3D-structures of the PEC κ-CG: chitosan in solution have been obtained by the experiments in silico for the first time. The amino groups of chitosan make the largest contribution to the energy of the complex formation by means of hydrogen and ionic bonds. The most probable complexes have stoichiometries of 1:1 and 1:1.5. Copyright © 2015 Elsevier B.V. All rights reserved.
Drop formation, pinch-off dynamics and liquid transfer of simple and complex fluids
NASA Astrophysics Data System (ADS)
Dinic, Jelena; Sharma, Vivek
Liquid transfer and drop formation processes underlying jetting, spraying, coating, and printing - inkjet, screen, roller-coating, gravure, nanoimprint hot embossing, 3D - often involve formation of unstable columnar necks. Capillary-driven thinning of such necks and their pinchoff dynamics are determined by a complex interplay of inertial, viscous and capillary stresses for simple, Newtonian fluids. Micro-structural changes in response to extensional flow field that arises within the thinning neck give rise to additional viscoelastic stresses in complex, non- Newtonian fluids. Using FLOW-3D, we simulate flows realized in prototypical geometries (dripping and liquid bridge stretched between two parallel plates) used for studying pinch-off dynamics and influence of microstructure and viscoelasticity. In contrast with often-used 1D or 2D models, FLOW-3D allows a robust evaluation of the magnitude of the underlying stresses and extensional flow field (both uniformity and magnitude). We find that the simulated radius evolution profiles match the pinch-off dynamics that are experimentally-observed and theoretically-predicted for model Newtonian fluids and complex fluids.
CAPS drives trans-SNARE complex formation and membrane fusion through syntaxin interactions.
James, Declan J; Kowalchyk, Judith; Daily, Neil; Petrie, Matt; Martin, Thomas F J
2009-10-13
Ca(2+)-dependent activator protein for secretion (CAPS) is an essential factor for regulated vesicle exocytosis that functions in priming reactions before Ca(2+)-triggered fusion of vesicles with the plasma membrane. However, the precise events that CAPS regulates to promote vesicle fusion are unclear. In the current work, we reconstituted CAPS function in a SNARE-dependent liposome fusion assay using VAMP2-containing donor and syntaxin-1/SNAP-25-containing acceptor liposomes. The CAPS stimulation of fusion required PI(4,5)P(2) in acceptor liposomes and was independent of Ca(2+), but Ca(2+) dependence was restored by inclusion of synaptotagmin. CAPS stimulated trans-SNARE complex formation concomitant with the stimulation of full membrane fusion at physiological SNARE densities. CAPS bound syntaxin-1, and CAPS truncations that competitively inhibited syntaxin-1 binding also inhibited CAPS-dependent fusion. The results revealed an unexpected activity of a priming protein to accelerate fusion by efficiently promoting trans-SNARE complex formation. CAPS may function in priming by organizing SNARE complexes on the plasma membrane.
Iuliano, Rodolfo; Raso, Cinzia; Quintiero, Alfina; Pera, Ilaria Le; Pichiorri, Flavia; Palumbo, Tiziana; Palmieri, Dario; Pattarozzi, Alessandra; Florio, Tullio; Viglietto, Giuseppe; Trapasso, Francesco; Croce, Carlo Maria; Fusco, Alfredo
2009-03-01
Regulation of receptor-type phosphatases can involve the formation of higher-order structures, but the exact role played in this process by protein domains is not well understood. In this study we show the formation of different higher-order structures of the receptor-type phosphatase PTPRJ, detected in HEK293A cells transfected with different PTPRJ expression constructs. In the plasma membrane PTPRJ forms dimers detectable by treatment with the cross-linking reagent BS(3) (bis[sulfosuccinimidyl]suberate). However, other PTPRJ complexes, dependent on the formation of disulfide bonds, are detected by treatment with the oxidant agent H(2)O(2) or by a mutation Asp872Cys, located in the eighth fibronectin type III domain of PTPRJ. A deletion in the eighth fibronectin domain of PTPRJ impairs its dimerization in the plasma membrane and increases the formation of PTPRJ complexes dependent on disulfide bonds that remain trapped in the cytoplasm. The deletion mutant maintains the catalytic activity but is unable to carry out inhibition of proliferation on HeLa cells, achieved by the wild type form, since it does not reach the plasma membrane. Therefore, the intact structure of the eighth fibronectin domain of PTPRJ is critical for its localization in plasma membrane and biological function.
Delage, Elise; Cervantes, Diégo Cordero; Pénard, Esthel; Schmitt, Christine; Syan, Sylvie; Disanza, Andrea; Scita, Giorgio; Zurzolo, Chiara
2016-12-23
Tunneling Nanotubes (TNTs) are actin enriched filopodia-like protrusions that play a pivotal role in long-range intercellular communication. Different pathogens use TNT-like structures as "freeways" to propagate across cells. TNTs are also implicated in cancer and neurodegenerative diseases, making them promising therapeutic targets. Understanding the mechanism of their formation, and their relation with filopodia is of fundamental importance to uncover their physiological function, particularly since filopodia, differently from TNTs, are not able to mediate transfer of cargo between distant cells. Here we studied different regulatory complexes of actin, which play a role in the formation of both these structures. We demonstrate that the filopodia-promoting CDC42/IRSp53/VASP network negatively regulates TNT formation and impairs TNT-mediated intercellular vesicle transfer. Conversely, elevation of Eps8, an actin regulatory protein that inhibits the extension of filopodia in neurons, increases TNT formation. Notably, Eps8-mediated TNT induction requires Eps8 bundling but not its capping activity. Thus, despite their structural similarities, filopodia and TNTs form through distinct molecular mechanisms. Our results further suggest that a switch in the molecular composition in common actin regulatory complexes is critical in driving the formation of either type of membrane protrusion.
Tâme Parreira, Renato Luis; Galembeck, Sérgio Emanuel; Hobza, Pavel
2007-01-08
Complexes between formic acid or formate anion and various proton donors (HF, H(2)O, NH(3), and CH(4)) are studied by the MP2 and B3LYP methods with the 6-311++G(3df,3pd) basis set. Formation of a complex is characterized by electron-density transfer from electron donor to ligands. This transfer is much larger with the formate anion, for which it exceeds 0.1 e. Electron-density transfer from electron lone pairs of the electron donor is directed into sigma* antibonding orbitals of X--H bonds of the electron acceptor and leads to elongation of the bond and a red shift of the X--H stretching frequency (standard H-bonding). However, pronounced electron-density transfer from electron lone pairs of the electron donor also leads to reorganization of the electron density in the electron donor, which results in changes in geometry and vibrational frequency. These changes are largest for the C--H bonds of formic acid and formate anion, which do not participate in H-bonding. The resulting blue shift of this stretching frequency is substantial and amounts to almost 35 and 170 cm(-1), respectively.
NASA Astrophysics Data System (ADS)
Gnanasekar, Sharon Priya; Goubet, Manuel; Arunan, Elangannan; Georges, Robert; Soulard, Pascale; Asselin, Pierre; Huet, T. R.; Pirali, Olivier
2015-06-01
The H2O-CH3F complex could have two geometries, one with a hydrogen bond and one with the newly proposed carbon bond. While in general carbon bonds are weaker than hydrogen bonds, this complex appears to have comparable energies for the two structures. Infrared (IR) and microwave (MW) spectroscopic measurements using, respectively, the Jet-AILES apparatus and the FTMW spectrometer at the PhLAM laboratory, have been carried out to determine the structure of this complex. The IR spectrum shows the formation of the CH3F- H2O hydrogen bonded complex and small red-shifts in OH frequency most probably due to (CH3F)m-(H2O)n clusters. Noticeably, addition of CH_3F in the mixture promotes the formation of small water clusters. Preliminary MW spectroscopic measurements indicate the formation of the hydrogen bonded complex. So far, we have no experimental evidence for the carbon bonded structure. However, calculations of the Ar-CH3F complex show three energetically equivalent structures: a T-shape, a "fluorine" bond and a carbon bond. The MW spectrum of the (Ar)n-CH3F complexes is currently under analysis. Mani, D; Arunan, E. Phys. Chem. Chem. Phys. 2013, 15, 14377. Cirtog, M; Asselin, P; Soulard, P; Tremblay, B; Madebene, B; Alikhani, M. E; Georges, R; Moudens, A; Goubet, M; Huet, T.R; Pirali, O; Roy, P. J. Phys. Chem. A. 2011, 115, 2523 Kassi, S; Petitprez, D; Wlodarczak, G. J. Mol. Struct. 2000, 517-518, 375
DOE Office of Scientific and Technical Information (OSTI.GOV)
Weisenberg, C.W.
1979-01-01
The Feather River Ultramafic Complex is a partially serpentinized body of metamorphosed alpine peridotite and gabbro that lies along the northern part of the Melones fault zone, a NNW trending belt in the Northern Sierra Nevada. The complex was studied in the area of Red Hill, near the canyon of the North Fork, Feather River. The complex is separated from the Calaveras Terrain and Arlington Formation country rocks by steep faults; the Melones Fault on the east and the Rich Bar Fault on the west. Units recognized within the complex include Rich Bar metamorphic rocks, peridotite, metaperidotite, tremolite-olivine schist, hornblendemore » schist, and layered metagabbro. The Rich Bar metamorphic rocks are tectonic slices of amphibolite grade hornblende schist, mica schist, and quartzite found along the Rich Bar Fault. The complex shows evidence of 4 major events. E-1 (Pennsylvania-Permian) was formation of the peridotite-gabbro complex. E-2 (Permo-Triassic) consisted of pervasive shearing parallel to the Rich Bar Fault associated with initial emplacement within the Sierra Nevada. E-3 is believed to be compression and metamorphism (serpentinization) associated with the Nevadan orogeny. E-4 was associated with intrusion of nearby plutons. The regional association of the complex with late paleozoic arc volcanics of the Taylorsville area suggest formation near or under an island arc. Metamorphism during emplacement indicates association with the arc at that time. Left-lateral shear during emplacement along the Rich Bar Fault indicates NW directed thrusting when the layering in metagabbro is rotated to horizontal.« less
A new metalation complex for organic synthesis and polymerization reactions
NASA Technical Reports Server (NTRS)
Hirshfield, S. M.
1971-01-01
Organometallic complex of N,N,N',N' tetramethyl ethylene diamine /TMEDA/ and lithium acts as metalation intermediate for controlled systhesis of aromatic organic compounds and polymer formation. Complex of TMEDA and lithium aids in preparation of various organic lithium compounds.
Srihari, Sriganesh; Yong, Chern Han; Patil, Ashwini; Wong, Limsoon
2015-09-14
Complexes of physically interacting proteins constitute fundamental functional units responsible for driving biological processes within cells. A faithful reconstruction of the entire set of complexes is therefore essential to understand the functional organisation of cells. In this review, we discuss the key contributions of computational methods developed till date (approximately between 2003 and 2015) for identifying complexes from the network of interacting proteins (PPI network). We evaluate in depth the performance of these methods on PPI datasets from yeast, and highlight their limitations and challenges, in particular at detecting sparse and small or sub-complexes and discerning overlapping complexes. We describe methods for integrating diverse information including expression profiles and 3D structures of proteins with PPI networks to understand the dynamics of complex formation, for instance, of time-based assembly of complex subunits and formation of fuzzy complexes from intrinsically disordered proteins. Finally, we discuss methods for identifying dysfunctional complexes in human diseases, an application that is proving invaluable to understand disease mechanisms and to discover novel therapeutic targets. We hope this review aptly commemorates a decade of research on computational prediction of complexes and constitutes a valuable reference for further advancements in this exciting area. Copyright © 2015 Federation of European Biochemical Societies. Published by Elsevier B.V. All rights reserved.
NASA Astrophysics Data System (ADS)
Khan, N. A.; Carroll, K. C.
2016-12-01
Recalcitrant emerging contaminants in groundwater, such as 1,4-dioxane, require strong oxidants for complete mineralization, whereas strong oxidant efficacy for in-situ chemical oxidation (ISCO) is limited by oxidant decay, reactivity, and non-specificity. Hydroxypropyl-β-cyclodextrin (HPβCD) was examined for its ability to stabilize aqueous phase ozone (O3) and prolong oxidation potential through inclusion complex formation. Partial transformation of HPβCD by O3 was observed but HPβCD proved to be sufficiently resilient and only partially degraded in the presence of O3. The formation of a HPβCD:O3 inclusion clathrate complex was observed, and multiple methods for binding constant measurements carried out and compared for HPβCD complexes with O3 and multiple contaminants. The presence of HPβCD increased the O3 half-life linearly with increasing HPβCD:O3 molar ratio. The O3 half-life in solutions increased by as much as 40-fold relative to HPβCD-free O3 solutions, and complexation reversibility was confirmed. Decay rate coefficients increased for 1,4-dioxane, trichloroethene, and trichloroethane likely due to the formation of HPβCD-O3-contaminant ternary complexes. These results suggest that the use of clathrate stabilizers, such as HPβCD, can support the development of a facilitated-transport enabled ISCO for the O3 treatment of groundwater impacted by recalcitrant emerging contaminants.
First-principles study of stability of helium-vacancy complexes below tungsten surfaces
NASA Astrophysics Data System (ADS)
Yang, L.; Bergstrom, Z. J.; Wirth, B. D.
2018-05-01
Density function theory calculations have been performed to study the stability of small helium-vacancy (He-V) complexes near tungsten (W) surfaces of different orientations. The results show that the stability of vacancies and He-V complexes near W surfaces depends on surface orientation. However, as the depth below the surface increased beyond about 0.65-0.8 nm, the stability of He-V complexes is similar to the bulk. The formation energies of single vacancies and di-vacancies at depths less than 0.2 nm below the W(110) surface are higher than for W(100) or W(111) surfaces, but have lower energies at depths between 0.2 and 0.65 nm. The formation energies of He-V complexes below W surfaces are sensitive to the geometric orientation of the He and vacancy, especially below the W(111) surface. Within about 0.2 nm of the top layer of the three W surfaces, neither a vacancy nor a di-vacancy can trap He. Because of the lower formation energy of He-V complexes and higher He binding energy to vacancies below the W(110) surface, the He desorption from the W(110) surface is less likely to occur than from the W(100) and W(111) surfaces. Our results provide fundamental insight into the differences in surface morphology changes observed in single W crystals with different surface orientations under He plasma exposure.
Wang, Yong; Zhu, Ruirui; Ni, Yongnian; Kokot, Serge
2014-04-05
Interactions between the anti-carcinogens, bendamustine (BDM) and dexamethasone (DXM), with bovine serum albumin (BSA) were investigated with the use of fluorescence and UV-vis spectroscopies under pseudo-physiological conditions (Tris-HCl buffer, pH 7.4). The static mechanism was responsible for the fluorescence quenching during the interactions; the binding formation constant of the BSA-BDM complex and the binding number were 5.14×10(5)Lmol(-1) and 1.0, respectively. Spectroscopic studies for the formation of BDM-BSA complex were interpreted with the use of multivariate curve resolution - alternating least squares (MCR-ALS), which supported the complex formation. The BSA samples treated with site markers (warfarin - site I and ibuprofen - site II) were reacted separately with BDM and DXM; while both anti-carcinogens bound to site I, the binding constants suggested that DXM formed a more stable complex. Relative concentration profiles and the fluorescence spectra associated with BDM, DXM and BSA, were recovered simultaneously from the full fluorescence excitation-emission data with the use of the parallel factor analysis (PARAFAC) method. The results confirmed that on addition of DXM to the BDM-BSA complex, the BDM was replaced and the DXM-BSA complex formed; free BDM was released. This finding may have consequences for the transport of these drugs during any anti-cancer treatment. Copyright © 2013 Elsevier B.V. All rights reserved.
Seo, Jinho; Lee, Eun-Woo; Shin, Jihye; Seong, Daehyeon; Nam, Young Woo; Jeong, Manhyung; Lee, Seon-Hyeong; Lee, Cheolju; Song, Jaewhan
2018-05-23
Fas-associated death domain (FADD) is an adaptor protein recruiting complexes of caspase 8 to death ligand receptors to induce extrinsic apoptotic cell death in response to a TNF superfamily member. Although, formation of the complex of FADD and caspase 8 upon death stimuli has been studied in detail, posttranslational modifications fine-tuning these processes have yet to be identified. Here we revealed that K6-linked polyubiquitylation of FADD on lysines 149 and 153 mediated by C terminus HSC70-interacting protein (CHIP) plays an important role in preventing formation of the death inducing signaling complex (DISC), thus leading to the suppression of cell death. Cells depleted of CHIP showed higher sensitivity toward death ligands such as FasL and TRAIL, leading to upregulation of DISC formation composed of a death receptor, FADD, and caspase 8. CHIP was able to bind to FADD, induce K6-linked polyubiquitylation of FADD, and suppress DISC formation. By mass spectrometry, lysines 149 and 153 of FADD were found to be responsible for CHIP-mediated FADD ubiquitylation. FADD mutated at these sites was capable of more potent cell death induction as compared with the wild type and was no longer suppressed by CHIP. On the other hand, CHIP deficient in E3 ligase activity was not capable of suppressing FADD function and of FADD ubiquitylation. CHIP depletion in ME-180 cells induced significant sensitization of these cells toward TRAIL in xenograft analyses. These results imply that K6-linked ubiquitylation of FADD by CHIP is a crucial checkpoint in cytokine-dependent extrinsic apoptosis.
The Formation of Glycine in Hot Cores: New Gas-grain Chemical Simulations of Star-forming Regions
NASA Astrophysics Data System (ADS)
Garrod, Robin
2012-07-01
Organic molecules of increasing complexity have been detected in the warm envelopes of star-forming cores, commonly referred to as "hot cores". Spectroscopic searches at mm/sub-mm wavelengths have uncovered both amines and carboxylic acids in these regions, as well as a range of other compounds including alcohols, ethers, esters, and nitriles. However, the simplest amino acid, glycine (NH2CH2COOH), has not yet been reliably detected in the ISM. There has been much interest in this molecule, due to its importance to the formation of proteins, and to life, while the positive identification of interstellar molecules of similar or greater complexity suggests that its existence in star-forming regions is plausible. I will present the results of recent models of hot-core chemistry that simulate the formation of both simple and complex molecules on the surfaces or within the ice mantles of dust grains. I will also present results from the first gas-grain astrochemical model to approach the question of amino-acid formation in hot cores. The formation of glycine in moderate abundance is found to be as efficient as that for similarly complex species, while its sublimation from the grains occurs at somewhat higher temperatures. However, simulated emission spectra based on the model results show that the degree of compactness of high-abundance regions, and the density and temperature profiles of the cores may be the key variables affecting the future detection of glycine, as well as other amino acids, and may explain its non-detection to date.
NASA Astrophysics Data System (ADS)
Bekki, Kenji
2017-05-01
Most old globular clusters (GCs) in the Galaxy are observed to have internal chemical abundance spreads in light elements. We discuss a new GC formation scenario based on hierarchical star formation within fractal molecular clouds. In the new scenario, a cluster of bound and unbound star clusters ('star cluster complex', SCC) that have a power-law cluster mass function with a slope (β) of 2 is first formed from a massive gas clump developed in a dwarf galaxy. Such cluster complexes and β = 2 are observed and expected from hierarchical star formation. The most massive star cluster ('main cluster'), which is the progenitor of a GC, can accrete gas ejected from asymptotic giant branch (AGB) stars initially in the cluster and other low-mass clusters before the clusters are tidally stripped or destroyed to become field stars in the dwarf. The SCC is initially embedded in a giant gas hole created by numerous supernovae of the SCC so that cold gas outside the hole can be accreted on to the main cluster later. New stars formed from the accreted gas have chemical abundances that are different from those of the original SCC. Using hydrodynamical simulations of GC formation based on this scenario, we show that the main cluster with the initial mass as large as [2-5] × 105 M⊙ can accrete more than 105 M⊙ gas from AGB stars of the SCC. We suggest that merging of hierarchical SSCs can play key roles in stellar halo formation around GCs and self-enrichment processes in the early phase of GC formation.
FORMATION AND RECONDENSATION OF COMPLEX ORGANIC MOLECULES DURING PROTOSTELLAR LUMINOSITY OUTBURSTS
DOE Office of Scientific and Technical Information (OSTI.GOV)
Taquet, Vianney; Wirström, Eva S.; Charnley, Steven B.
2016-04-10
During the formation of stars, the accretion of surrounding material toward the central object is thought to undergo strong luminosity outbursts followed by long periods of relative quiescence, even at the early stages of star formation when the protostar is still embedded in a large envelope. We investigated the gas-phase formation and recondensation of the complex organic molecules (COMs) di-methyl ether and methyl formate, induced by sudden ice evaporation processes occurring during luminosity outbursts of different amplitudes in protostellar envelopes. For this purpose, we updated a gas-phase chemical network forming COMs in which ammonia plays a key role. The modelmore » calculations presented here demonstrate that ion–molecule reactions alone could account for the observed presence of di-methyl ether and methyl formate in a large fraction of protostellar cores without recourse to grain-surface chemistry, although they depend on uncertain ice abundances and gas-phase reaction branching ratios. In spite of the short outburst timescales of about 100 years, abundance ratios of the considered species higher than 10% with respect to methanol are predicted during outbursts due to their low binding energies relative to water and methanol which delay their recondensation during cooling. Although the current luminosity of most embedded protostars would be too low to produce complex organics in the hot-core regions that are observable with current sub-millimetric interferometers, previous luminosity outburst events would induce the formation of COMs in extended regions of protostellar envelopes with sizes increasing by up to one order of magnitude.« less
Mukai, Kazuo; Kohno, Yutaro; Ouchi, Aya; Nagaoka, Shin-ichi
2012-08-02
The measurements of the UV-vis absorption spectra of α-, β-, γ-, and δ-tocopheroxyl (α-, β-, γ-, and δ-Toc(•)) radicals were performed by reacting aroxyl (ArO(•)) radical with α-, β-, γ-, and δ-tocopherol (α-, β-, γ-, and δ-TocH), respectively, in acetonitrile solution including three kinds of alkali and alkaline earth metal salts (LiClO(4), NaClO(4), and Mg(ClO(4))(2)) (MX or MX(2)), using stopped-flow spectrophotometry. The maximum wavelengths (λ(max)) of the absorption spectra of the α-, β-, γ-, and δ-Toc(•) located at 425-428 nm without metal salts increased with increasing concentrations of metal salts (0-0.500 M) in acetonitrile and approached some constant values, suggesting (Toc(•)···M(+) (or M(2+))) complex formations. Similarly, the values of the apparent molar extinction coefficient (ε(max)) increased drastically with increasing concentrations of metal salts in acetonitrile and approached some constant values. The result suggests that the formations of Toc(•) dimers were suppressed by the metal ion complex formations of Toc(•) radicals. The stability constants (K) were determined for Li(+), Na(+), and Mg(2+) complexes of α-, β-, γ-, and δ-Toc(•). The K values increased in the order of NaClO(4) < LiClO(4) < Mg(ClO(4))(2), being independent of the kinds of Toc(•) radicals. Furthermore, the K values increased in the order of δ- < γ- < β- < α-Toc(•) radicals for each metal salt. The alkali and alkaline earth metal salts having a smaller ionic radius of the cation and a larger charge of the cation gave a larger shift of the λ(max) value, a larger ε(max) value, and a larger K value. The result of the DFT molecular orbital calculations indicated that the α-, β-, γ-, and δ-Toc(•) radicals were stabilized by the (1:1) complex formation with metal cations (Li(+), Na(+), and Mg(2+)). Stabilization energy (E(S)) due to the complex formation increased in the order of Na(+) < Li(+) < Mg(2+) complexes, being independent of the kinds of Toc(•) radicals. The calculated result also indicated that the metal cations coordinate to the O atom at the sixth position of α-, β-, γ-, and δ-Toc(•) radicals.
Novel calix[4]pyrrole assembly: Punctilious recognition of F- and Cu+2 ions
NASA Astrophysics Data System (ADS)
Bhatt, Keyur D.; Shah, Hemangini; Modi, Krunal M.; Kongor, Anita; Panchal, Manthan; Jain, Vinod K.
2017-12-01
A new tetra hydroxyl methoxy substituted calix[4]pyrrole (HMCP) has been synthesized and found to form stable complex with F- ions and Cu+2 ions. The red-shift in absorption band of HMCP was observed due to the presence of both cation (Cu+2) and anion (F-). These results displayed that formation of the complex is mainly attributed to the charge-transfer interactions between HMCP with electron deficient pyrrole rings and the electron-rich guest ions. Molecular dynamics simulation predicts intermolecular H-bonds and van der Waals types of interaction for the complex formation of HMCP-Cu+2 and HMCP-F-.
Schindler, Corinna S; Carreira, Erick M
2009-11-01
This critical review showcases examples of rapid formation of complexity in total syntheses starting from 7-oxabicyclo[2.2.1]hept-5-ene derivatives. An overview of methods allowing synthetic access to these building blocks is provided and their application in recently developed synthetic transformations to structurally complex systems is illustrated. In addition, the facile access to a novel oxabicyclo[2.2.1]heptene derived building block is presented which significantly enlarges the possibilities of previously known chemical transformations and is highlighted in the enantioselective route to the core of the banyaside and suomilide natural products (107 references).
NASA Astrophysics Data System (ADS)
Haryani, S.; Kurniawan, C.; Kasmui
2018-04-01
Synthesis of complex compound is one field of research which intensively studied. Metal-dithiocarbamate complexes find wide-ranging applications in nanomaterial and metal separation science, and have potential use as chemotherapeutic, pesticides, and as additives to lubricants. However, the information about is reaction kinetic and mechanism are very much lacking. The research and analyzes results show that reaction synthesis ligand DBDTC and complex compounds Cu-DBDTC. Optimum reaction condition of formation of complex compounds Cu with DBDTC at pH=3, [DBDTC] = 4.10-3 M, and the time of reaction 5 minutes. Based the analysis varian reaction of complex compounds at pH 3 and 4, diffrence significance at the other pH: 5; 5,5; 6; 6,5 ; 7; and 8. The various of mole with reactants comosition difference sigbificance, those the time reaction for 5 and 6 minutes diffrence by significance with the other time, it is 3,4,8, and 10 minutes. The great product to at condition pH 6, the time optimum at 5 minutes and molar ratio of logam: ligand = 1:2. The reaction kinetic equation of complex compound Cu with chelathing ligand DBDTC is V=0.917106 [Cu2+]0.87921 [DBDTC]2.03021. Based on the kinetic data, and formed complex compounds estimation, the mechanism explaining by 2 stages. In the first stage formation of [Cu(DBDTC)], and then [Cu(DBDTC)2] with the last structure geomethry planar rectangle. The result of this research will be more useful if an effort is being done in reaction mechanism by chemical computation method for obtain intermediate, and for constant “k” in same stage, k1.k2. and compound complex constanta (β).
Nematollahi, Lily A.; Garza-Garcia, Acely; Bechara, Chérine; Esposito, Diego; Morgner, Nina; Robinson, Carol V.; Driscoll, Paul C.
2015-01-01
Homotypic death domain (DD)–DD interactions are important in the assembly of oligomeric signaling complexes such as the PIDDosome that acts as a platform for activation of caspase-2-dependent apoptotic signaling. The structure of the PIDDosome core complex exhibits an asymmetric three-layered arrangement containing five PIDD-DDs in one layer, five RAIDD-DDs in a second layer and an additional two RAIDD-DDs. We addressed complex formation between PIDD-DD and RAIDD-DD in solution using heteronuclear nuclear magnetic resonance (NMR) spectroscopy, nanoflow electrospray ionization mass spectrometry and size-exclusion chromatography with multi-angle light scattering. The DDs assemble into complexes displaying molecular masses in the range 130–158 kDa and RAIDD-DD:PIDD-DD stoichiometries of 5:5, 6:5 and 7:5. These data suggest that the crystal structure is representative of only the heaviest species in solution and that two RAIDD-DDs are loosely attached to the 5:5 core. Two-dimensional 1H,15N-NMR experiments exhibited signal loss upon complexation consistent with the formation of high-molecular-weight species. 13C-Methyl-transverse relaxation optimized spectroscopy measurements of the PIDDosome core exhibit signs of differential line broadening, cross-peak splitting and chemical shift heterogeneity that reflect the presence of non-equivalent sites at interfaces within an asymmetric complex. Experiments using a mutant RAIDD-DD that forms a monodisperse 5:5 complex with PIDD-DD show that the spectroscopic signature derives from the quasi- but non-exact equivalent environments of each DD. Since this characteristic was previously demonstrated for the complex between the DDs of CD95 and FADD, the NMR data for this system are consistent with the formation of a structure homologous to the PIDDosome core. PMID:25528640
Braia, Mauricio Javier; Loureiro, Dana Belén; Tubio, Gisela; Romanini, Diana
2015-12-01
Protein-polyelectrolyte complexes are very interesting systems since they can be applied in many long-established and emerging areas of biotechnology. From nanotechnology to industrial processing, these complexes are used for many purposes: to build multilayer particles for biosensors; to entrap and deliver proteins for pharmaceutical applications; to isolate and immobilize proteins. The enteric copolymer poly(methacrylic acid-co-methyl methacrylate) 1:2 (MMA) has been designed for drug delivery although its chemical properties allow to use it for other applications. Understanding the interaction between trypsin and this polymer is very important in order to optimize the mechanism of formation of this complex for different biotechnological applications.The formation of the trypsin-MMA complex was studied by spectroscopy and isothermal titration calorimetry. Structural analysis of trypsin was carried out by catalytic activity assays, circular dichroism and differential scanning calorimetry. Isothermal titration calorimetry experiments showed that the insoluble complex contains 12 trypsin molecules per MMA molecule at pH 5 and they interact with high affinity to form insoluble complexes. Both electrostatic and hydrophobic forces are involved in the formation of the complex. The structure of trypsin is not affected by the presence of MMA, although it interacts with some domains of trypsin affecting its thermal denaturation as seen in the differential scanning calorimetry experiments. Its catalytic activity is not altered. Dynamic light scattering demonstrated the presence of a soluble trypsin-copolymer complex at pH 5 and 8. Turbidimetric assays show that the insoluble complex can be dissolved by low ionic strength and/or pH in order to obtain free native trypsin. Copyright © 2015 Elsevier B.V. All rights reserved.
The kinetics of lanthanide complexation by EDTA and DTPA in lactate media.
Nash, K L; Brigham, D; Shehee, T C; Martin, A
2012-12-28
The interaction of trivalent lanthanide and actinide cations with polyaminopolycarboxylic acid complexing agents in lactic acid buffer systems is an important feature of the chemistry of the TALSPEAK process for the separation of trivalent actinides from lanthanides. To improve understanding of metal ion coordination chemistry in this process, the results of an investigation of the kinetics of lanthanide complexation by ethylenediamine-N,N,N',N'-tetraacetic acid (EDTA) and diethylenetriamine-N,N,N',N'',N''-pentaacetic acid (DTPA) in 0.3 M lactic acid/0.3 M ionic strength solution are reported. Progress of the reaction was monitored using the distinctive visible spectral changes attendant to lanthanide complexation by the colorimetric indicator ligand Arsenazo III, which enables the experiment but plays no mechanistic role. Under the conditions of these experiments, the reactions occur in a time regime suitable for study by stopped-flow spectrophotometric techniques. Experiments have been conducted as a function of EDTA/DTPA ligand concentration, total lactic acid concentration, and pH. The equilibrium perturbation reaction proceeds as a first order approach to equilibrium over a wide range of conditions, allowing the simultaneous determination of complex formation and dissociation rate constants. The rate of the complexation reaction has been determined for the entire lanthanide series (except Pm(3+)). The predominant pathway for lanthanide-EDTA and lanthanide-DTPA dissociation is inversely dependent on the total lactate concentration; the complex formation reaction demonstrates a direct dependence on [H(+)]. Unexpectedly, the rate of the complex formation reaction is seen in both ligand systems to be fastest for Gd(3+). Correlation of these results indicates that in 0.3 M lactate solutions the exchange of lanthanide ions between lactate complexes and the polyaminopolycarboxylate govern the process.
Chudobova, Dagmar; Nejdl, Lukas; Gumulec, Jaromir; Krystofova, Olga; Rodrigo, Miguel Angel Merlos; Kynicky, Jindrich; Ruttkay-Nedecky, Branislav; Kopel, Pavel; Babula, Petr; Adam, Vojtech; Kizek, Rene
2013-06-28
Polymers are currently widely used to replace a variety of natural materials with respect to their favourable physical and chemical properties, and due to their economic advantage. One of the most important branches of application of polymers is the production of different products for medical use. In this case, it is necessary to face a significant disadvantage of polymer products due to possible and very common colonization of the surface by various microorganisms that can pose a potential danger to the patient. One of the possible solutions is to prepare polymer with antibacterial/antimicrobial properties that is resistant to bacterial colonization. The aim of this study was to contribute to the development of antimicrobial polymeric material ideal for covering vascular implants with subsequent use in transplant surgery. Therefore, the complexes of polymeric substances (hyaluronic acid and chitosan) with silver nitrate or silver phosphate nanoparticles were created, and their effects on gram-positive bacterial culture of Staphylococcus aureus were monitored. Stages of formation of complexes of silver nitrate and silver phosphate nanoparticles with polymeric compounds were characterized using electrochemical and spectrophotometric methods. Furthermore, the antimicrobial activity of complexes was determined using the methods of determination of growth curves and zones of inhibition. The results of this study revealed that the complex of chitosan, with silver phosphate nanoparticles, was the most suitable in order to have an antibacterial effect on bacterial culture of Staphylococcus aureus. Formation of this complex was under way at low concentrations of chitosan. The results of electrochemical determination corresponded with the results of spectrophotometric methods and verified good interaction and formation of the complex. The complex has an outstanding antibacterial effect and this effect was of several orders higher compared to other investigated complexes.
Chudobova, Dagmar; Nejdl, Lukas; Gumulec, Jaromir; Krystofova, Olga; Rodrigo, Miguel Angel Merlos; Kynicky, Jindrich; Ruttkay-Nedecky, Branislav; Kopel, Pavel; Babula, Petr; Adam, Vojtech; Kizek, Rene
2013-01-01
Polymers are currently widely used to replace a variety of natural materials with respect to their favourable physical and chemical properties, and due to their economic advantage. One of the most important branches of application of polymers is the production of different products for medical use. In this case, it is necessary to face a significant disadvantage of polymer products due to possible and very common colonization of the surface by various microorganisms that can pose a potential danger to the patient. One of the possible solutions is to prepare polymer with antibacterial/antimicrobial properties that is resistant to bacterial colonization. The aim of this study was to contribute to the development of antimicrobial polymeric material ideal for covering vascular implants with subsequent use in transplant surgery. Therefore, the complexes of polymeric substances (hyaluronic acid and chitosan) with silver nitrate or silver phosphate nanoparticles were created, and their effects on gram-positive bacterial culture of Staphylococcus aureus were monitored. Stages of formation of complexes of silver nitrate and silver phosphate nanoparticles with polymeric compounds were characterized using electrochemical and spectrophotometric methods. Furthermore, the antimicrobial activity of complexes was determined using the methods of determination of growth curves and zones of inhibition. The results of this study revealed that the complex of chitosan, with silver phosphate nanoparticles, was the most suitable in order to have an antibacterial effect on bacterial culture of Staphylococcus aureus. Formation of this complex was under way at low concentrations of chitosan. The results of electrochemical determination corresponded with the results of spectrophotometric methods and verified good interaction and formation of the complex. The complex has an outstanding antibacterial effect and this effect was of several orders higher compared to other investigated complexes. PMID:23812079
Zhang, Liwen; Xu, Hua; Chen, Chwen-Lih; Green-Church, Kari B.; Freitas, Michael A.; Chen, Yeong-Renn
2008-01-01
Protein thiols with regulatory functions play a critical role in maintaining the homeostasis of the redox state in mitochondria. One major host of regulatory cysteines in mitochondria is complex I, with the thiols primarily located on its 51 kDa FMN-binding subunit. In response to oxidative stress, these thiols are expected to form intra-molecular disulfide bridges as one of their oxidative post-translational modifications. Here, to test this hypothesis and gain insights into the molecular pattern of disulfide in complex I, the isolated bovine complex I was prepared. Superoxide (O2•−) is generated by complex I under the conditions of enzyme turnover. O2•−-induced intra-molecular disulfide formation at the 51 kDa subunit was determined by tandem mass spectrometry and database searching, with the latter accomplished by adaptation of the in-house developed database search engine, MassMatrix [Xu H., et. al J. Proteome Res. (2008) 7, 138–44]. LC/MS/MS analysis of tryptic/chymotryptic digests of the 51 kDa subunit from alkylated complex I revealed that four specific cysteines (C125, C142, C187, and C206) of the 51 kDa subunit were involved in the formation of mixed intra-molecular disulfide linkages. In all, three cysteine pairs were observed: C125/C142, C187/C206, and C142/C206. The formation of disulfide bond was subsequently inhibited by superoxide dismutase, indicating the involvement of O2•−. These results elucidated by mass spectrometry indicates that the residues of C125, C142, C187, and C206 are the specific regulatory cysteines of complex I, and they participate in the oxidative modification with disulfide formation under the physiological or pathophysiological conditions of oxidative stress. PMID:18789718
The Impact of Presentation Format on Younger and Older Adults' Self-Regulated Learning.
Price, Jodi
2017-01-01
Background/Study Context: Self-regulated learning involves deciding what to study and for how long. Debate surrounds whether individuals' selections are influenced more by item complexity, point values, or if instead people select in a left-to-right reading order, ignoring item complexity and value. The present study manipulated whether point values and presentation format favored selection of simple or complex Chinese-English pairs to assess the impact on younger and older adults' selection behaviors. One hundred and five younger (M age = 20.26, SD = 2.38) and 102 older adults (M age = 70.28, SD = 6.37) participated in the experiment. Participants studied four different 3 × 3 grids (two per trial), each containing three simple, three medium, and three complex Chinese-English vocabulary pairs presented in either a simple-first or complex-first order, depending on condition. Point values were assigned in either a 2-4-8 or 8-4-2 order so that either simple or complex items were favored. Points did not influence the order in which either age group selected items, whereas presentation format did. Younger and older adults selected more simple or complex items when they appeared in the first column. However, older adults selected and allocated more time to simpler items but recalled less overall than did younger adults. Memory beliefs and working memory capacity predicted study time allocation, but not item selection, behaviors. Presentation format must be considered when evaluating which theory of self-regulated learning best accounts for younger and older adults' study behaviors and whether there are age-related differences in self-regulated learning. The results of the present study combine with others to support the importance of also considering the role of external factors (e.g., working memory capacity and memory beliefs) in each age group's self-regulated learning decisions.
Soldevila-Barreda, Joan J; Habtemariam, Abraha; Romero-Canelón, Isolda; Sadler, Peter J
2015-12-01
Organometallic complexes have the potential to behave as catalytic drugs. We investigate here Rh(III) complexes of general formula [(Cp(x))Rh(N,N')(Cl)], where N,N' is ethylenediamine (en), 2,2'-bipyridine (bpy), 1,10-phenanthroline (phen) or N-(2-aminoethyl)-4-(trifluoromethyl)benzenesulfonamide (TfEn), and Cp(x) is pentamethylcyclopentadienyl (Cp*), 1-phenyl-2,3,4,5-tetramethylcyclopentadienyl (Cp(xPh)) or 1-biphenyl-2,3,4,5-tetramethyl cyclopentadienyl (Cp(xPhPh)). These complexes can reduce NAD(+) to NADH using formate as a hydride source under biologically-relevant conditions. The catalytic activity decreased in the order of N,N-chelated ligand bpy > phen > en with Cp* as the η(5)-donor. The en complexes (1-3) became more active with extension to the Cp(X) ring, whereas the activity of the phen (7-9) and bpy (4-6) compounds decreased. [Cp*Rh(bpy)Cl](+) (4) showed the highest catalytic activity, with a TOF of 37.4±2h(-1). Fast hydrolysis of the chlorido complexes 1-10 was observed by (1)H NMR (<10min at 310K). The pKa* values for the aqua adducts were determined to be ca. 8-10. Complexes 1-9 also catalysed the reduction of pyruvate to lactate using formate as the hydride donor. The efficiency of the transfer hydrogenation reactions was highly dependent on the nature of the chelating ligand and the Cp(x) ring. Competition reactions between NAD(+) and pyruvate for reduction by formate catalysed by 4 showed a preference for reduction of NAD(+). The antiproliferative activity of complex 3 towards A2780 human ovarian cancer cells increased by up to 50% when administered in combination with non-toxic doses of formate, suggesting that transfer hydrogenation can induce reductive stress in cancer cells. Copyright © 2015 The Authors. Published by Elsevier Inc. All rights reserved.
Synthesis and Spectral Evaluation of Some Unsymmetrical Mesoporphyrinic Complexes
Boscencu, Rica; Oliveira, Anabela Sousa; Ferreira, Diana P.; Ferreira, Luís Filipe Vieira
2012-01-01
Synthesis and spectral evaluation of new zinc and copper unsymmetrical mesoporphyrinic complexes are reported. Zn(II)-5-(4-acetoxy-3-methoxyphenyl)-10,15,20- tris-(4-carboxymethylphenyl)porphyrin, Zn(II)-5-[(3,4-methylenedioxy)phenyl]-10,15,20- tris-(4-carboxymethylphenyl)porphyrin, Cu(II)-5-(4-acetoxy-3-methoxyphenyl)-10,15,20- tris-(4-carboxymethylphenyl)porphyrin and Cu(II)-5-[(3,4-methylenedioxy)phenyl]-10,15,20- tris-(4-carboxymethylphenyl)porphyrin were synthesized using microwave-assisted synthesis. The complexes were characterized by elemental analysis, FT-IR, UV-Vis, EPR and NMR spectroscopy, which fully confirmed their structure. The spectral absorption properties of the porphyrinic complexes were studied in solvents with different polarities. Fluorescence emission and singlet oxygen formation quantum yields were evaluated for the compounds under study, revealing high yields for the zinc derivatives. The copper complexes are not emissive and only display residual capacity for singlet oxygen formation. PMID:22942693
Zheng, Junrong; Fayer, Michael D.
2008-01-01
Weak π hydrogen bonded solute-solvent complexes are studied with ultrafast two dimensional infrared (2D-IR) vibrational echo chemical exchange spectroscopy, temperature dependent IR absorption spectroscopy, and density functional theory calculations. Eight solute-solvent complexes composed of a number of phenol derivatives and various benzene derivatives are investigated. The complexes are formed between the phenol derivative (solute) in a mixed solvent of the benzene derivative and CCl4. The time dependence of the 2D-IR vibrational echo spectra of the phenol hydroxyl stretch is used to directly determine the dissociation and formation rates of the hydrogen bonded complexes. The dissociation rates of the weak hydrogen bonds are found to be strongly correlated with their formation enthalpies. The correlation can be described with an equation similar to the Arrhenius equation. The results are discussed in terms of transition state theory. PMID:17373792
Infrared and density functional theory studies of isoprene-water complexes in noble gas matrices
NASA Astrophysics Data System (ADS)
Ito, Fumiyuki
2017-11-01
The interaction of 2-methyl-1,3-butadiene (isoprene) with a H2O molecule in low-temperature noble gas matrices (Ar or Kr) was investigated using infrared absorption spectroscopy. Vibrational peaks arising from 1:1 isoprene-H2O adducts were assigned and compared with the results of quantum chemical calculations. The comparison led to the conclusion that the H2O molecule in the complex preferentially H-bonds to one of the two unsaturated Cdbnd C bonds, and that the binding energy of the complex is comparable to that of the C6H6-H2O complex. The present study suggests that the change in the charge distribution of isoprene due to the formation of a complex with H2O may lead to alteration of the reactivity with respect to the insertion of OH radicals, thereby influencing the formation of aerosols in the atmosphere.
Gels of sodium alginate‒chitosan interpolyelectrolyte complexes
NASA Astrophysics Data System (ADS)
Brovko, O. S.; Palamarchuk, I. A.; Val'chuk, N. A.; Chukhchin, D. G.; Bogolitsyn, K. G.; Boitsova, T. A.
2017-08-01
Aspects of the formation of gels of interpolyelectrolyte complexes (IPECs) based on sodium alginate (NaAlg) and chitosan are studied. The effect the conditions of synthesis and complex composition have on the morphological structure and functional properties of these complexes is examined. It is established that complexation in this system proceeds according to a mechanism of electrostatic interaction between the oppositely charged carboxylic groups of the L-hyaluronic acid pyranose cycles of NaAlg proximal polymer chains and chitosan's amino groups, along with a multitude of hydrogen bonds and dispersion forces. We show that the mechanism of IPEC formation is strongly influenced by the conformational state of a lyophilizing component that is present in the system in excess. The inner surfaces of cryogels based on NaAlg‒chitosan IPECs is found to be strongly influenced by the degree of conversion between the parental polyelectrolytes. The most developed mesoporous structure is obtained when a denser gel forms in the system.
ERIC Educational Resources Information Center
Gromova, Chulpan R.; Saitova, Lira R.
2016-01-01
The relevance of research problem is due to the need for music teacher with a high level of formation of professional competence determination of the content and principles of an interdisciplinary approach to its formation. The aim of the article lies in development and testing of complex of the pedagogical conditions in formation of professional…
Orai1 as New Therapeutic Target for Inhibiting Breast Tumor Metastasis
2009-09-01
includes focal adhesion assembly (formation of focal complex) and focal adhesion disassembly, we used live - cell imaging to quantify the rates of assembly...A and B) Live cell imaging of paxillin-GFP transfected MEF cells in the absence (A) or presence (B) of SKF96365. Scale bar: 10 µm. (C and D...includes focal adhesion assembly (formation of focal complexes) and focal adhesion disassembly, we used live - cell imaging to quantify the rates of focal
Inflammasome Assembly in the Chorioamniotic Membranes during Spontaneous Labor at Term
Gomez-Lopez, Nardhy; Romero, Roberto; Xu, Yi; Garcia-Flores, Valeria; Leng, Yaozhu; Panaitescu, Bogdan; Miller, Derek; Abrahams, Vikki M.; Hassan, Sonia S.
2017-01-01
Problem Inflammasome activation requires two steps: priming and assembly of the multimeric complex. The second step includes assembly of the sensor molecule and adaptor protein ASC (an apoptosis-associated speck-like protein containing a CARD), which results in ASC speck formation and the recruitment of caspase (CASP)-1. Herein, we investigated whether there is inflammasome assembly in the chorioamniotic membranes and choriodecidual leukocytes from women who underwent spontaneous labor at term. Method of Study Using in situ proximity ligation assays, ASC/CASP-1 complexes were determined in the chorioamniotic membranes from women who delivered at term without labor or underwent spontaneous labor at term with or without acute histologic chorioamnionitis (n=10–11 each). Also, ASC speck formation was determined by flow cytometry in the choriodecidual leukocytes isolated from women who delivered at term with or without spontaneous labor (n=9–12 each). Results 1) ASC/CASP-1 complexes were detected in the chorioamniotic membranes; 2) ASC/CASP-1 complexes were greater in the chorioamniotic membranes from women who underwent spontaneous labor at term than in those without labor; 3) ASC/CASP-1 complexes were even more abundant in the chorioamniotic membranes from women who underwent spontaneous labor at term with acute histologic chorioamnionitis than in those without this placental lesion; 4) ASC speck formation was detected in the choriodecidual leukocytes; and 5) ASC speck formation was greater in the choriodecidual leukocytes isolated from women who underwent spontaneous labor at term than in those without labor. Conclusion There is inflammasome assembly in the chorioamniotic membranes and choriodecidual leukocytes during spontaneous labor at term. PMID:28233423
Zhang, Xuzhu; Poniewierski, Andrzej; Jelińska, Aldona; Zagożdżon, Anna; Wisniewska, Agnieszka; Hou, Sen; Hołyst, Robert
2016-10-04
The equilibrium and rate constants of molecular complex formation are of great interest both in the field of chemistry and biology. Here, we use fluorescence correlation spectroscopy (FCS), supplemented by dynamic light scattering (DLS) and Taylor dispersion analysis (TDA), to study the complex formation in model systems of dye-micelle interactions. In our case, dyes rhodamine 110 and ATTO-488 interact with three differently charged surfactant micelles: octaethylene glycol monododecyl ether C 12 E 8 (neutral), cetyltrimethylammonium chloride CTAC (positive) and sodium dodecyl sulfate SDS (negative). To determine the rate constants for the dye-micelle complex formation we fit the experimental data obtained by FCS with a new form of the autocorrelation function, derived in the accompanying paper. Our results show that the association rate constants for the model systems are roughly two orders of magnitude smaller than those in the case of the diffusion-controlled limit. Because the complex stability is determined by the dissociation rate constant, a two-step reaction mechanism, including the diffusion-controlled and reaction-controlled rates, is used to explain the dye-micelle interaction. In the limit of fast reaction, we apply FCS to determine the equilibrium constant from the effective diffusion coefficient of the fluorescent components. Depending on the value of the equilibrium constant, we distinguish three types of interaction in the studied systems: weak, intermediate and strong. The values of the equilibrium constant obtained from the FCS and TDA experiments are very close to each other, which supports the theoretical model used to interpret the FCS data.
Pierce, Sarah E.; Wang, Junmei; Jayawickramarajah, Janarthanan; Hamilton, Andrew D.; Brodbelt, Jennifer S.
2010-01-01
Isoguanine (2-oxo-6-amino-guanine), a natural but non-standard base, exhibits unique self-association properties compared to its isomer, guanine, and results in formation of different higher order DNA structures. In this work, the higher order structures formed by oligonucleotides containing guanine repeats or isoguanine repeats after annealing in solutions containing various cations are evaluated by electrospray ionization mass spectrometry (ESI-MS) and circular dichroism (CD) spectroscopy. The guanine-containing strand (G9) consistently formed quadruplexes upon annealing, whereas the isoguanine strand (Ig9) formed both pentaplexes and quadruplexes depending on the annealing cation. Quadruplex formation with G9 showed some dependence on the identity of the cation present during annealing with high relative quadruplex formation detected with six of ten cations. Analogous annealing experiments with Ig9 resulted in complex formation with all ten cations, and the majority of the resulting complexes were pentaplexes. CD results indicated most of the original complexes survived the desalting process necessary for ESI-MS analysis. In addition, several complexes, especially the pentaplexes, were found to be capable of cation exchange with ammonium ions. Ab initio calculations were conducted for isoguanine tetrads and pentads coordinated with all ten cations to predict the most energetically stable structures of the complexes in the gas phase. The observed preference of forming quadruplexes versus pentaplexes as a function of the coordinated cation can be interpreted by the calculated reaction energies of both the tetrads and pentads in combination with the distortion energies of tetrads. PMID:19746468
NASA Astrophysics Data System (ADS)
Hossan, Aisha S. M.; Abou-Melha, Hanaa M.; Refat, Moamen S.
2011-08-01
Electron donor acceptor complexes (EDA) of the 1,4,7,10,13,16-hexaoxacyclooctadecane (18-crown-6) as a rich donor were spectrophotometrically discussed and synthesized in solid form according the interactions with different nine of usual π-acceptors like 2,3,5,6-tetrachlorocyclohexa-2,5-diene-1,4-dione (p-chloranil; p-CHL), tetrachloro-1,2-benzoquinone (o-chloranil; o-CHL), 2,3-dichloro-5,6-dicyano-1,4-benzoquinone (DDQ), tetracyanoquinodimethane (TCNQ), 2,6-dichloroquinone-4-chloroimide (DCQ), 2,6-dibromoquinone-4-chloroimide (DBQ), 2,5-dichloro-3,6-dihydroxy-1,4-benzoquinone (chloranilic acid; CLA), N-bromosuccinimide (NBS), 2,4,6-trinitrophenol (picric acid; PA). Spectroscopic and physical data such as formation constant ( KCT), molar extinction coefficient ( ɛCT), standard free energy (Δ G°), oscillator strength ( f), transition dipole moment ( μ), resonance energy ( RN) and ionization potential ( Ip) were estimated in chloroform or methanol at 25 °C. Based on the elemental analysis and photometric titrations the CT-complexes were formed indicated the formation of 1:1 charge-transfer complexes for the o-CHL, TCNQ, DCQ, DBQ and NBS acceptors but 1:3 ratio for p-CHL, DDQ, CLA and PA, respectively. The charge-transfer interactions were interpretative according to the formation of dative ion pairs [18C6 rad +, A rad -], where A is acceptor. All of the resulting charge transfer complexes were isolated in amorphous form and the complexes formations on IR and 1H NMR spectra were discussed.
NASA Astrophysics Data System (ADS)
Pandeeswaran, M.; Elango, K. P.
2010-05-01
Spectroscopic studies revealed that the interaction of cimetidine drug with electron acceptors iodine and 2,3-dichloro-5,6-dicyano-1,4-benzoquinone (DDQ) resulted through the initial formation of ionic intermediate to charge transfer (CT) complex. The CT-complexes of the interactions have been characterized using UV-vis, 1H NMR, FT-IR and GC-MS techniques. The formation of triiodide ion, I 3-, is further confirmed by the observation of the characteristic bands in the far IR spectrum for non-linear I 3- ion with C s symmetry at 156 and 131 cm -1 assigned to νas(I-I) and νs(I-I) of the I-I bond and at 73 cm -1 due to bending δ(I 3-). The rate of formation of the CT-complexes has been measured and discussed as a function of relative permittivity of solvent and temperature. The influence of relative permittivity of the medium on the rate indicated that the intermediate is more polar than the reactants and this observation was further supported by spectral studies. Based on the spectroscopic results plausible mechanisms for the interaction of the drug with the chosen acceptors were proposed and discussed and the point of attachment of the multifunctional cimetidine drug with these acceptors during the formation of CT-complex has been established.
Stone, S R; Morrison, J F
1983-06-29
Binding theory has been developed for the reaction of an ionizing enzyme with an ionizing ligand. Consideration has been given to the most general scheme in which all possible reactions and interconversions occur as well as to schemes in which certain interactions do not take place. Equations have been derived in terms of the variation of the apparent dissociation constant (Kiapp) as a function of pH. These equations indicate that plots of pKiapp against pH can be wave-, half-bell- or bell-shaped according to the reactions involved. A wave is obtained whenever there is formation of the enzyme-ligand complexes, ionized enzyme . ionized ligand and protonated enzyme . protonated ligand. The additional formation of singly protonated enzyme-ligand complexes does not affect the wave form of the plot, but can influence the shape of the overall curve. The formation of either ionized enzyme . ionized ligand or protonated enzyme . protonated ligand, with or without singly protonated enzyme-ligand species, gives rise to a half-bell-shaped plot. If only singly protonated enzyme-ligand complexes are formed the plots are bell-shaped, but it is not possible to deduce the ionic forms of the reactants that participate in complex formation. Depending on the reaction pathways, true values for the ionization and dissociation constants may or may not be determined.
Kühbacher, Andreas; Emmenlauer, Mario; Rämo, Pauli; Kafai, Natasha; Dehio, Christoph
2015-01-01
ABSTRACT Listeria monocytogenes enters nonphagocytic cells by a receptor-mediated mechanism that is dependent on a clathrin-based molecular machinery and actin rearrangements. Bacterial intra- and intercellular movements are also actin dependent and rely on the actin nucleating Arp2/3 complex, which is activated by host-derived nucleation-promoting factors downstream of the cell receptor Met during entry and by the bacterial nucleation-promoting factor ActA during comet tail formation. By genome-wide small interfering RNA (siRNA) screening for host factors involved in bacterial infection, we identified diverse cellular signaling networks and protein complexes that support or limit these processes. In addition, we could precise previously described molecular pathways involved in Listeria invasion. In particular our results show that the requirements for actin nucleators during Listeria entry and actin comet tail formation are different. Knockdown of several actin nucleators, including SPIRE2, reduced bacterial invasion while not affecting the generation of comet tails. Most interestingly, we observed that in contrast to our expectations, not all of the seven subunits of the Arp2/3 complex are required for Listeria entry into cells or actin tail formation and that the subunit requirements for each of these processes differ, highlighting a previously unsuspected versatility in Arp2/3 complex composition and function. PMID:25991686
Effect of alkali ions (Na+, K+, Cs+) on reaction mechanism of CZTS nano-particles synthesis
NASA Astrophysics Data System (ADS)
Kumar, Suresh; Altosaar, Mare; Grossberg, Maarja; Mikli, Valdek
2018-04-01
The control of morphology, elemental composition and phase composition of Cu2ZnSnS4 (CZTS) nano-crystals depends on the control of complex formation and surface stabilization of nano-particles in solution-based synthesis in oleylamine. At temperatures ≥280 °C, the control of nano-crystal's morphology and homogenous growth is difficult because of fast poly-nuclear growth occurring at higher temperatures. In the present work the effect of oleylamine complex formation with different alkali ions (Na+, K+ and Cs+) on nano-crystals growth at synthesis temperature of 280 °C was studied. It was found that nano-powders synthesized in the presence of Na+ and K+ ions showed the formation of crystals of different sizes - small nano-particles (18 nm-30 nm), large aggregated crystals (few nm to 1 μm) and large single crystals (1 μm - 4 μm). The presence of Cs+ ions in the nano-powder synthesis in oleylamine-metal precursor-CsOH solution promoted growth of nano-crystals of homogenous size. It is proposed that the formed oleylamine-Cs complexes a) enhance the formation and stabilization of oleylamine-metal (Cu, Zn and Sn) complexes before the injection of sulphur precursor into the oleylamine-metal precursor solution and b) after addition of sulphur stabilize the fast nucleated nano-particles and promote diffusion limited growth.
NASA Astrophysics Data System (ADS)
Usacheva, T. R.; Kuzmina, I. A.; Sharnin, V. A.; Chernov, I. V.; Matteoli, E.
2012-07-01
Standard thermodynamic parameters (log K o, Δr H o, TΔr S o) of complexing 18-crown-6 ether (18C6) with D,L-alanine (Ala) in mixed water-dimethysulfoxide (H2O-DMSO) solvents are calculated on the basis of calorimetric titration results. A rise in the DMSO concentration in mixed solvent is found to increase stability and increase the exothermicity of the formation of [Ala-18C6] molecular complex. Changes in the reaction energetic are shown to be determined by changes in the solvation state of 18C6 that is the characteristic of the reactions of molecular complex formation between 18C6 and D,L-alanine or glycine in water-organic solvents.
Mosunov, A A; Kostiukov, V V; Evstigneev, M P
2012-01-01
The analysis of heteroassociation of antibiotic topotecan (TPT) with aromatic biologically active compounds (BAC): caffeine, mutagens ethidium bromide and proflavine, antibiotic daunomycin, vitamins flavin-mononucleotide and nicotinamide, has been carried out in the work using 1H NMR spectroscopy data. The equilibrium constants of heteroassociation and induced chemical shifts of the protons have been obtained in the complexes with BAC. It is found that the complex formation TPT-BAC has the nature of stacking of the chromophores, additionally stabilized in the case of proflavine by intermolecular hydrogen bond. Calculation of the basic components of the Gibbs free energy of the complexation reactions is carried out, and the factors which stabilize and destabilize the heterocomplexes of molecules are revealed.
LINC Complexes Form by Binding of Three KASH Peptides to Domain Interfaces of Trimeric SUN Proteins
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sosa, Brian A.; Rothballer, Andrea; Kutay, Ulrike
Linker of nucleoskeleton and cytoskeleton (LINC) complexes span the nuclear envelope and are composed of KASH and SUN proteins residing in the outer and inner nuclear membrane, respectively. LINC formation relies on direct binding of KASH and SUN in the perinuclear space. Thereby, molecular tethers are formed that can transmit forces for chromosome movements, nuclear migration, and anchorage. We present crystal structures of the human SUN2-KASH1/2 complex, the core of the LINC complex. The SUN2 domain is rigidly attached to a trimeric coiled coil that prepositions it to bind three KASH peptides. The peptides bind in three deep and expansivemore » grooves formed between adjacent SUN domains, effectively acting as molecular glue. In addition, a disulfide between conserved cysteines on SUN and KASH covalently links both proteins. The structure provides the basis of LINC complex formation and suggests a model for how LINC complexes might arrange into higher-order clusters to enhance force-coupling.« less
Typological diversity of tall buildings and complexes in relation to their functional structure
NASA Astrophysics Data System (ADS)
Generalov, Viktor P.; Generalova, Elena M.; Kalinkina, Nadezhda A.; Zhdanova, Irina V.
2018-03-01
The paper focuses on peculiarities of tall buildings and complexes, their typology and its formation in relation to their functional structure. The research is based on the analysis of tall buildings and complexes and identifies the following main functional elements of their formation: residential, administrative (office), hotel elements. The paper also considers the following services as «disseminated» in the space-planning structure: shops, medicine, entertainment, kids and sports facilities, etc., their location in the structure of the total bulk of the building and their impact on typological diversity. Research results include suggestions to add such concepts as «single-function tall buildings» and «mixed-use tall buildings and complexes» into the classification of tall buildings. In addition, if a single-function building or complex performs serving functions, it is proposed to add such concepts as «a residential tall building (complex) with provision of services», «an administrative (public) tall building (complex) with provision of services» into the classification of tall buildings. For mixed-use buildings and complexes the following terms are suggested: «a mixed-use tall building with provision of services», «a mixed-use tall complex with provision of services».
The Cobalt cyclo‐P4 Sandwich Complex and Its Role in the Formation of Polyphosphorus Compounds
Dielmann, Fabian; Timoshkin, Alexey; Piesch, Martin; Balázs, Gábor
2017-01-01
Abstract A synthetic approach to the sandwich complex [Cp′′′Co(η4‐P4)] (2) containing a cyclo‐P4 ligand as an end‐deck was developed. Complex 2 is the missing homologue in the series of first‐row cyclo‐Pn sandwich complexes, and shows a unique tendency to dimerize in solution to form two isomeric P8 complexes [(Cp′′′Co)2(μ,η4:η2:η1‐P8)] (3 and 4). Reactivity studies indicate that 2 and 3 react with further [Cp′′′Co] fragments to give [(Cp′′′Co)2(μ,η2:η2‐P2)2] (5) and [(Cp′′′Co)3P8] (6), respectively. Furthermore, complexes 2, 3, and 4 thermally decompose forming 5, 6, and the P12 complex [(Cp′′′Co)3P12] (7). DFT calculations on the P4 activation process suggest a η3‐P4 Co complex as the key intermediate in the synthesis of 2 as well as in the formation of larger polyphosphorus complexes via a unique oligomerization pathway. PMID:28078794
NASA Astrophysics Data System (ADS)
Dumpala, Rama Mohana Rao; Rawat, Neetika; Boda, Anil; Ali, Sk. Musharaf; Tomar, B. S.
2018-02-01
The mononuclear complexes formed by Eu(III) with three isomeric pyridine monocarboxylate-N-oxides namely picolinic acid-N-oxide (PANO), nicotinic acid-N-oxide (NANO) and isonicotinic acid-N-oxide (IANO) in aqueous solutions were studied by potentiometry, luminescence spectroscopy and isothermal titration calorimetry (ITC) to determine the speciation, coordination, luminescence properties and thermodynamic parameters of the complexes formed during the course of the reaction. More stable six membered chelate complexes with stoichiometry (MLi, i = 1-4) are formed by Eu(III) with PANO while non chelating ML and ML2 complexes are formed by NANO and IANO. The stability of Eu(III) complexes follow the order PANO > IANO > NANO. The ITC studies inferred an endothermic and innersphere complex formation of Eu(III)-PANO and Eu(III)-IANO whereas an exothermic and outer-sphere complex formation for Eu(III)-NANO. The luminescence life time data further supported the ITC results. Density functional theoretical calculations were carried out to optimize geometries of the complexes and to estimate the energies, structural parameters (bond distances, bond angles) and charges on individual atoms of the same. Theoretical approximations are found to be in good agreement with the experimental observations.
Architecture and ssDNA interaction of the Timeless-Tipin-RPA complex
Witosch, Justine; Wolf, Eva; Mizuno, Naoko
2014-01-01
The Timeless-Tipin (Tim-Tipin) complex, also referred to as the fork protection complex, is involved in coordination of DNA replication. Tim-Tipin is suggested to be recruited to replication forks via Replication Protein A (RPA) but details of the interaction are unknown. Here, using cryo-EM and biochemical methods, we characterized complex formation of Tim-Tipin, RPA and single-stranded DNA (ssDNA). Tim-Tipin and RPA form a 258 kDa complex with a 1:1:1 stoichiometry. The cryo-EM 3D reconstruction revealed a globular architecture of the Tim-Tipin-RPA complex with a ring-like and a U-shaped domain covered by a RPA lid. Interestingly, RPA in the complex adopts a horse shoe-like shape resembling its conformation in the presence of long ssDNA (>30 nucleotides). Furthermore, the recruitment of the Tim-Tipin-RPA complex to ssDNA is modulated by the RPA conformation and requires RPA to be in the more compact 30 nt ssDNA binding mode. The dynamic formation and disruption of the Tim-Tipin-RPA-ssDNA complex implicates the RPA-based recruitment of Tim-Tipin to the replication fork. PMID:25348395
Prebiotic molecules formation through the gas-phase reaction between HNO and CH2CHOH2+
NASA Astrophysics Data System (ADS)
Redondo, Pilar; Martínez, Henar; Largo, Antonio; Barrientos, Carmen
2017-07-01
Context. Knowing how the molecules that are present in the ISM can evolve to more complex ones is an interesting topic in interstellar chemistry. The study of possible reactions between detected species can help to understand the evolution in complexity of the interstellar matter and also allows knowing the formation of new molecules which could be candidates to be detected. We focus our attention on two molecules detected in space, vinyl alcohol (CH2CHOH) and azanone (HNO). Aims: We aim to carry out a theoretical study of the ion-molecule reaction between protonated vinyl alcohol and azanone. The viability of formation of complex organic molecules (COMs) from these reactants is expected to provide some insight into the formation of prebiotic species through gas phase reactions. Methods: The reaction of protonated vinyl alcohol with azanone has been theoretically studied by using ab initio methods. Stationary points on the potential energy surface (PES) were characterized at the second-order Moller-Plesset level in conjunction with the aug-cc-pVTZ (correlation-consistent polarized valence triple-zeta) basis set. In addition, the electronic energies were refined by means of single-point calculations at the CCSD(T) level (coupled cluster single and double excitation model augmented with a non-iterative treatment of triple excitations) with the same basis set. Results: From a thermodynamic point of view, twelve products, composed of carbon, oxygen, nitrogen, and hydrogen which could be precursors in the formation of more complex biological molecules, can be obtained from this reaction. Among these, we focus especially on ionized glycine and two of its isomers. The analysis of the PES shows that only formation of cis- and trans-O-protonated imine acetaldehyde, CH2NHCOH+ and, CHNHCHOH+, are viable under interstellar conditions. Conclusions: The reaction of protonated vinyl alcohol with azanone can evolve in the interstellar medium to more complex organic molecules of prebiotic interest. Our results suggest that imine acetaldehyde could be a feasible candidate molecule to be searched for in space.
Molecular brake pad hypothesis: pulling off the brakes for emotional memory
Vogel-Ciernia, Annie
2015-01-01
Under basal conditions histone deacetylases (HDACs) and their associated co-repressor complexes serve as molecular ‘brake pads’ to prevent the gene expression required for long-term memory formation. Following a learning event, HDACs and their co-repressor complexes are removed from a subset of specific gene promoters, allowing the histone acetylation and active gene expression required for long-term memory formation. Inhibition of HDACs increases histone acetylation, extends gene expression profiles, and allows for the formation of persistent long-term memories for training events that are otherwise forgotten. We propose that emotionally salient experiences have utilized this system to form strong and persistent memories for behaviorally significant events. Consequently, the presence or absence of HDACs at a selection of specific gene promoters could serve as a critical barrier for permitting the formation of long-term memories. PMID:23096102
Eĭdel'man, Iu A; Slanina, S V; Sal'nikov, I V; Andreev, S G
2012-12-01
The knowledge of radiation-induced chromosomal aberration (CA) mechanisms is required in many fields of radiation genetics, radiation biology, biodosimetry, etc. However, these mechanisms are yet to be quantitatively characterised. One of the reasons is that the relationships between primary lesions of DNA/chromatin/chromosomes and dose-response curves for CA are unknown because the pathways of lesion interactions in an interphase nucleus are currently inaccessible for direct experimental observation. This article aims for the comparative analysis of two principally different scenarios of formation of simple and complex interchromosomal exchange aberrations: by lesion interactions at chromosome territories' surface vs. in the whole space of the nucleus. The analysis was based on quantitative mechanistic modelling of different levels of structures and processes involved in CA formation: chromosome structure in an interphase nucleus, induction, repair and interactions of DNA lesions. It was shown that the restricted diffusion of chromosomal loci, predicted by computational modelling of chromosome organization, results in lesion interactions in the whole space of the nucleus being impossible. At the same time, predicted features of subchromosomal dynamics agrees well with in vivo observations and does not contradict the mechanism of CA formation at the surface of chromosome territories. On the other hand, the "surface mechanism" of CA formation, despite having certain qualities, proved to be insufficient to explain high frequency of complex exchange aberrations observed by mFISH technique. The alternative mechanism, CA formation on nuclear centres is expected to be sufficient to explain frequent complex exchanges.
Roberts, Kenneth M.; Pavon, Jorge Alex; Fitzpatrick, Paul F.
2013-01-01
Phenylalanine hydroxylase (PheH) catalyzes the key step in the catabolism of dietary phenylalanine, its hydroxylation to tyrosine using tetrahydrobiopterin (BH4) and O2. A complete kinetic mechanism for PheH was determined by global analysis of single turnover data in the reaction of PheHΔ117, a truncated form of the enzyme lacking the N-terminal regulatory domain. Formation of the productive PheHΔ117-BH4-phenylalanine complex begins with the rapid binding of BH4 (Kd = 65 µM). Subsequent addition of phenylalanine to the binary complex to form the productive ternary complex (Kd = 130 µM) is approximately ten-fold slower. Both substrates can also bind to the free enzyme to form inhibitory binary complexes. O2 rapidly binds to the productive ternary complex; this is followed by formation of an unidentified intermediate, detectable as a decrease in absorbance at 340 nm, with a rate constant of 140 s−1. Formation of the 4a-hydroxypterin and Fe(IV)O intermediates is ten-fold slower and is followed by the rapid hydroxylation of the amino acid. Product release is the rate-determining step and largely determines kcat. Similar reactions using 6-methyltetrahydropterin indicate a preference for the physiological pterin during hydroxylation. PMID:23327364
Hayes, Thomas R; Bottorff, Shalina C; Slocumb, Winston S; Barnes, Charles L; Clark, Aurora E; Benny, Paul D
2017-01-24
In the last two decades, a number of chelate strategies have been proposed for the fac-[M I (CO) 3 ] + (M = Re, 99m Tc) core in radiopharmaceutical applications. However, the development of new ligands/complexes with improved function and in vivo performance has been limited in recent years. Expanding on our previous studies using the 2 + 1 labeling strategy, a series of bidentate ligands (neutral vs. anionic) containing an aromatic amine in combination with monodentate pyridine analogs or imidazole were explored to determine the influence of the bidentate and monodentate ligands on the formation and stability of the respective complexes. The 2 + 1 complexes with Re and 99m Tc were synthesized in two steps and characterized by standard radio/chemical methods. X-ray characterization and density functional theory analysis of the Re 2 + 1 complexes with the complete bidentate series with 4-dimethylaminopyridine were conducted, indicating enhanced ligand binding energies of the neutral over anionic ligands. In the 99m Tc studies, anionic bidentate ligands had significantly higher formation yields of the 2 + 1 product, but neutral ligands appear to have increased stability in an amino acid challenge assay. Both bidentate series exhibited improved stability by increasing the basicity of the pyridine ligands.
Hayes, Thomas R.; Bottorff, Shalina C.; Slocumb, Winston S.; Barnes, Charles L.; Clark, Aurora E.; Benny, Paul D.
2017-01-01
In the last two decades, a number of chelate strategies have been proposed for the fac-[MI(CO)3]+ (M = Re, 99mTc) core in radiopharmaceutical applications. However, the development of new ligands/complexes with improved function and in vivo performance has been limited in recent years. Expanding on our previous studies using the 2+1 labeling strategy, a series of bidentate ligands (neutral vs. anionic) containing an aromatic amine in combination with monodentate pyridine analogs or imidazole were explored to determine the influence of the bidentate and monodentate ligands on the formation and stability of the respective complexes. The 2+1 complexes with Re and 99mTc were synthesized in two steps and characterized by standard radio/chemical methods. X-ray characterization and density functional theory analysis of the Re 2+1 complexes with the complete bidentate series with 4-dimethylaminopyridine were conducted, indicating enhanced ligand binding energies of the neutral over anionic ligands. In the 99mTc studies, anionic bidentate ligands had significantly higher formation yields of the 2+1 product, but neutral ligands appear to have increased stability in an amino acid challenge assay. Both bidentate series exhibited improved stability by increasing the basicity of the pyridine ligands. PMID:28045466
Regulation of SMN Protein Stability▿ †
Burnett, Barrington G.; Muñoz, Eric; Tandon, Animesh; Kwon, Deborah Y.; Sumner, Charlotte J.; Fischbeck, Kenneth H.
2009-01-01
Spinal muscular atrophy (SMA) is caused by mutations of the survival of motor neuron (SMN1) gene and deficiency of full-length SMN protein (FL-SMN). All SMA patients retain one or more copies of the SMN2 gene, but the principal protein product of SMN2 lacks exon 7 (SMNΔ7) and is unable to compensate for a deficiency of FL-SMN. SMN is known to oligomerize and form a multimeric protein complex; however, the mechanisms regulating stability and degradation of FL-SMN and SMNΔ7 proteins have been largely unexplored. Using pulse-chase analysis, we characterized SMN protein turnover and confirmed that SMN was ubiquitinated and degraded by the ubiquitin proteasome system (UPS). The SMNΔ7 protein had a twofold shorter half-life than FL-SMN in cells despite similar intrinsic rates of turnover by the UPS in a cell-free assay. Mutations that inhibited SMN oligomerization and complex formation reduced the FL-SMN half-life. Furthermore, recruitment of SMN into large macromolecular complexes as well as increased association with several Gemin proteins was regulated in part by protein kinase A. Together, our data indicate that SMN protein stability is modulated by complex formation. Promotion of the SMN complex formation may be an important novel therapeutic strategy for SMA. PMID:19103745
Lacy, Eilyn R; Nguyen, Binh; Le, Minh; Cox, Kari K; OHare, Caroline; Hartley, John A; Lee, Moses; Wilson, W David
2004-01-01
To complement available structure and binding results and to develop a detailed understanding of the basis for selective molecular recognition of T.G mismatches in DNA by imidazole containing polyamides, a full thermodynamic profile for formation of the T.G-polyamide complex has been determined. The amide-linked heterocycles f-ImImIm and f-PyImIm (where f is formamido group, Im is imidazole and Py is pyrrole) were studied by using biosensor-surface plasmon resonance (SPR) and isothermal titration calorimetry (ITC) with a T.G mismatch containing DNA hairpin duplex and a similar DNA with only Watson-Crick base pairs. Large negative binding enthalpies for all of the polyamide-DNA complexes indicate that the interactions are enthalpically driven. SPR results show slower complex formation and stronger binding of f-ImImIm to the T.G than to the match site. The thermodynamic analysis indicates that the enhanced binding to the T.G site is the result of better entropic contributions. Negative heat capacity changes for the complex are correlated with calculated solvent accessible surface area changes and indicate hydrophobic contributions to complex formation. DNase I footprinting analysis in a long DNA sequence provided supporting evidence that f-ImImIm binds selectively to T.G mismatch sites.
Lacy, Eilyn R.; Nguyen, Binh; Le, Minh; Cox, Kari K.; O'Hare, Caroline; Hartley, John A.; Lee, Moses; Wilson, W. David
2004-01-01
To complement available structure and binding results and to develop a detailed understanding of the basis for selective molecular recognition of T·G mismatches in DNA by imidazole containing polyamides, a full thermodynamic profile for formation of the T·G–polyamide complex has been determined. The amide-linked heterocycles f-ImImIm and f-PyImIm (where f is formamido group, Im is imidazole and Py is pyrrole) were studied by using biosensor-surface plasmon resonance (SPR) and isothermal titration calorimetry (ITC) with a T·G mismatch containing DNA hairpin duplex and a similar DNA with only Watson–Crick base pairs. Large negative binding enthalpies for all of the polyamide–DNA complexes indicate that the interactions are enthalpically driven. SPR results show slower complex formation and stronger binding of f-ImImIm to the T·G than to the match site. The thermodynamic analysis indicates that the enhanced binding to the T·G site is the result of better entropic contributions. Negative heat capacity changes for the complex are correlated with calculated solvent accessible surface area changes and indicate hydrophobic contributions to complex formation. DNase I footprinting analysis in a long DNA sequence provided supporting evidence that f-ImImIm binds selectively to T·G mismatch sites. PMID:15064359
Mononuclear Copper Complex Catalyzed Four-Electron Reduction of Oxygen
Fukuzumi, Shunichi; Kotani, Hiroaki; Lucas, Heather R.; Doi, Kaoru; Suenobu, Tomoyoshi; Peterson, Ryan L.; Karlin, Kenneth D.
2010-01-01
A mononuclear CuII complex acts as an efficient catalyst for four-electron reduction of O2 to H2O by a ferrocene derivative via formation of the dinuclear CuII peroxo complex that is further reduced in the presence of protons by a ferrocene derivative to regenerate the CuII complex. PMID:20443560
Saha, Abhijit; Manna, Swarup; Nandi, Arun K
2007-12-18
The riboflavin (R) and melamine (M) supramolecular complex in the mole ratio of 3:1 (RM31) produces a thermoreversible gel in aqueous medium. The gelation mechanism has been elucidated from morphological investigations using optical, electron, and atomic force microscopy together with time-dependent circular dichroism (CD) and photoluminescence (PL) spectroscopy. Optical microscopy indicates spherulitic morphology at lower gelation temperature (
Does Formative Assessment Improve Student Learning and Performance in Soil Science?
ERIC Educational Resources Information Center
Kopittke, Peter M.; Wehr, J. Bernhard; Menzies, Neal W.
2012-01-01
Soil science students are required to apply knowledge from a range of disciplines to unfamiliar scenarios to solve complex problems. To encourage deep learning (with student performance an indicator of learning), a formative assessment exercise was introduced to a second-year soil science subject. For the formative assessment exercise, students…
Lammert, Eckhard; Axnick, Jennifer
2012-04-01
The vascular system developed early in evolution. It is required in large multicellular organisms for the transport of nutrients, oxygen, and waste products to and from tissues. The vascular system is composed of hollow tubes, which have a high level of complexity in vertebrates. Vasculogenesis describes the de novo formation of blood vessels, e.g., aorta formation in vertebrate embryogenesis. In contrast, angiogenesis is the formation of blood vessels from preexisting ones, e.g., sprouting of intersomitic blood vessels from the aorta. Importantly, the lumen of all blood vessels in vertebrates is lined and formed by endothelial cells. In both vasculogenesis and angiogenesis, lumen formation takes place in a cord of endothelial cells. It involves a complex molecular mechanism composed of endothelial cell repulsion at the cell-cell contacts within the endothelial cell cords, junctional rearrangement, and endothelial cell shape change. As the vascular system also participates in the course of many diseases, such as cancer, stroke, and myocardial infarction, it is important to understand and make use of the molecular mechanisms of blood vessel formation to better understand and manipulate the pathomechanisms involved.
Transthyretin Sequesters Amyloid β Protein and Prevents Amyloid Formation
NASA Astrophysics Data System (ADS)
Schwarzman, Alexander L.; Gregori, Luisa; Vitek, Michael P.; Lyubski, Sergey; Strittmatter, Warren J.; Enghilde, Jan J.; Bhasin, Ramaninder; Silverman, Josh; Weisgraber, Karl H.; Coyle, Patricia K.; Zagorski, Michael G.; Talafous, Joseph; Eisenberg, Moises; Saunders, Ann M.; Roses, Allen D.; Goldgaber, Dmitry
1994-08-01
The cardinal pathological features of Alzheimer disease are depositions of aggregated amyloid β protein (Aβ) in the brain and cerebrovasculature. However, the Aβ is found in a soluble form in cerebrospinal fluid in healthy individuals and patients with Alzheimer disease. We postulate that sequestration of Aβ precludes amyloid formation. Failure to sequester Aβ in Alzheimer disease may result in amyloidosis. When we added Aβ to cerebrospinal fluid of patients and controls it was rapidly sequestered into stable complexes with transthyretin. Complexes with apolipoprotein E, which has been shown to bind Aβ in vitro, were not observed in cerebrospinal fluid. Additional in vitro studies showed that both purified transthyretin and apolipoprotein E prevent amyloid formation.
NASA Astrophysics Data System (ADS)
Thebault, P.; Haghighipour, N.
Spurred by the discovery of numerous exoplanets in multiple systems, binaries have become in recent years one of the main topics in planet formation research. Numerous studies have investigated to what extent the presence of a stellar companion can affect the planet formation process. Such studies have implications that can reach beyond the sole context of binaries, as they allow to test certain aspects of the planet formation scenario by submitting them to extreme environments. We review here the current understanding on this complex problem. We show in particular how each of the different stages of the planet-formation process is affected differently by binary perturbations. We focus especially on the intermediate stage of kilometre-sized planetesimal accretion, which has proven to be the most sensitive to binarity and for which the presence of some exoplanets observed in tight binaries is difficult to explain by in-situ formation following the "standard" planet-formation scenario. Some tentative solutions to this apparent paradox are presented. The last part of our review presents a thorough description of the problem of planet habitability, for which the binary environment creates a complex situation because of the presence of two irradation sources of varying distance.
Gabrienko, Anton A; Ewing, Andrew V; Chibiryaev, Andrey M; Agafontsev, Alexander M; Dubkov, Konstantin A; Kazarian, Sergei G
2016-03-07
This work reports new physical insights of the thermodynamic parameters and mechanisms of possible interactions occurring in polymers subjected to high-pressure CO2. ATR-FTIR spectroscopy has been used in situ to determine the thermodynamic parameters of the intermolecular interactions between CO2 and different functional groups of the polymers capable of specific interactions with sorbed CO2 molecules. Based on the measured ATR-FTIR spectra of the polymer samples subjected to high-pressure CO2 (30 bar) at different temperatures (300-340 K), it was possible to characterize polymer-polymer and CO2-polymer interactions. Particularly, the enthalpy and entropy of the formation of the specific non-covalent complexes between CO2 and the hydroxy (-OH), carbonyl (C[double bond, length as m-dash]O) and hydroxyimino ([double bond, length as m-dash]N-OH) functional groups of the polymer samples have been measured. Furthermore, the obtained spectroscopic results have provided an opportunity for the structure of these complexes to be proposed. An interesting phenomenon regarding the behavior of CO2/polymer systems has also been observed. It has been found that only for the polyketone, the value of enthalpy was negative indicating an exothermic process during the formation of the CO2-polymer non-covalent complexes. Conversely, for the polyoxime and polyalcohol samples there is a positive enthalpy determined. This is a result of the initial polymer-polymer interactions requiring more energy to break than is released during the formation of the CO2-polymer complex. The effect of increasing temperature to facilitate the breaking of the polymer-polymer interactions has also been observed. Hence, a mechanism for the formation of CO2-polymer complexes was suggested based on these results, which occurs via a two-step process: (1) the breaking of the existing polymer-polymer interactions followed by (2) the formation of new CO2-polymer non-covalent interactions.
Hung, Kuang-Chen; Lin, Meng-Liang; Hsu, Shih-Wei; Lee, Chuan-Chun; Huang, Ren-Yu; Wu, Tian-Shung; Chen, Shih-Shun
2018-06-15
Targeting cell cycle regulators has been a suggested mechanism for therapeutic cancer strategies. We report here that the bichalcone analog TSWU-CD4 induces S phase arrest of human cancer cells by inhibiting the formation of cyclin A-phospho (p)-cyclin-dependent kinase 2 (CDK2, threonine [Thr] 39) complexes, independent of mutant p53 expression. Ectopic expression of CDK2 (T39E), which mimics phosphorylation of the Thr 39 residue of CDK2, partially rescues the cells from TSWU-CD4-induced S phase arrest, whereas phosphorylation-deficient CDK2 (T39A) expression regulates cell growth with significant S phase arrest and enhances TSWU-CD4-triggered S phase arrest. Decreased histone deacetylase 3 (HDAC3) expression after TSWU-CD4 treatment was demonstrated, and TSWU-CD4 induced S phase arrest and inhibitory effects on cyclin A expression and CDK2 Thr 39 phosphorylation, while cyclin A-p-CDK2 (Thr 39) complex formation was suppressed by ectopic wild-type HDAC3 expression. The co-transfection of CDK2 (T39E) along with HDAC3 completely restored cyclin A expression, Thr 39-phosphorylated CDK2, cyclin A-p-CDK2 (Thr 39) complex formation, and the S phase population to normal levels. Protein kinase B (Akt) inactivation was required for TSWU-CD4-induced S phase cell cycle arrest, because constitutively active Akt1 blocks the induction of S phase arrest and the suppression of cyclin A and HDAC3 expression, CDK2 Thr 39 phosphorylation, and cyclin A-p-CDK2 (Thr 39) complex formation by TSWU-CD4. Taken together, our results indicate that TSWU-CD4 induces S phase arrest by inhibiting Akt-mediated HDAC3 expression and CDK2 Thr 39 phosphorylation to suppress the formation of cyclin A-p-CDK2 (Thr 39) complexes. Copyright © 2018 Elsevier B.V. All rights reserved.
Wang, Bao-Guo; Ren, Fu-de; Shi, Wen-Jing
2015-11-01
Changes in N-NO2 bond strength, ring strain energy and electrostatic potential upon formation of intermolecular H-bonds between HF and the nitro group in nitrogen heterocyclic rings C n H2n N-NO2 (n = 2-5), RDX and HMX were investigated using DFT-B3LYP and MP2(full) methods with the 6-311++G(2df,2p) and aug-cc-pVTZ basis sets. Analysis of electron density shifts was also carried out. The results indicate that H-bonding energy correlates well with the increment of ring strain energy. Upon complex formation, the strength of the N-NO2 trigger-bond is enhanced, suggesting reduced sensitivity, while judged by the increased ring strain energy, sensitivity is increased. However, some features of the molecular surface electrostatic potential, such as a local maximum above the N-NO2 bond and ring, σ + (2) and electrostatic balance parameter ν, remain essentially unchanged upon complex formation, and only a small change in the impact sensitivity h 50 is suggested. It is not sufficient to determine sensitivity solely on the basis of trigger bond or ring strain; as a global feature of a molecule, the molecular surface electrostatic potential is available to help judge the change of sensitivity in H-bonded complexes. Graphical Abstract The strengthened N-NO2 bond suggests reduced sensitivity, while it is reverse by theincreased ring strain energy upon the complex formation. However, the molecular surfaceelectrostatic potential (V S) shows the little change of h 50. The V S should be taken into accountin the analysis of explosive sensitivity in the H-bonded complex.
Estalayo-Adrián, S; Garnir, K; Moucheron, C
2018-01-04
Ru II polyazaaromatic complexes have been studied with the aim of developing molecular tools for DNA and oligonucleotides. In this context, Ru II -TAP (TAP = 1,4,5,8-tetraazaphenanthrene) complexes have been developed as specific photoreagents targeting the genetic material. The advantage of such compounds is due to the formation of photo-addition products between the Ru-TAP complex and the biomolecule, originating from a photo-induced electron transfer process that takes place between the excited Ru-TAP complex and guanine (G) bases of DNA. This photo-addition has been more recently extended to amino acids in view of applications involving peptides, such as inhibition or photocontrol of proteins. More particularly, tryptophan (Trp) and Trp-containing peptides are also able to be photo-oxidized by Ru II -TAP complexes, leading to the formation of photo-addition products. This mini review focuses on recent advances in the search for Ru II polyazaaromatic photo-oxidizing complexes of interest as molecular tools and photoreagents for Trp-containing peptides and proteins. Different possible future directions in this field are also discussed.
Stellar complexes in spiral arms of galaxies
NASA Astrophysics Data System (ADS)
Efremov, Yu. N.
The history of the introduction and development of the star complexes conception is briefly described. These large groups of stars were picked out and named as such ones in our Galaxy with argumentation and evidence for their physical unity (using the Cepheid variables the distances and ages of which are easy determined from their periods); anyway earlier the complexes were noted along the spiral arms of the Andromeda galaxy, but were not recognized as a new kind of star group. The chains of complexes along the spiral arms are observed quite rarely; their origin is explained by magneto- gravitational or purely gravitational instability developing along the arm. It is not clear why these chains are quite a rare phenomenon - and more so why sometimes the regular chain of complexes are observed in one arm only. Probably intergalactic magnetic field participated in formation of such chains. Apart from the complexes located along the arms, there are isolated giant complexes known (up to 700 pc in diameter) which look like super-gigantic but rather rarefied globular clusters. Until now only two of these formations are studied, in NGC 6946 and M51.
Starch-lipid inclusion complexes for aerogel formation
USDA-ARS?s Scientific Manuscript database
Recently we reported that aqueous slurries of starch can be excess steam jet-cooked and blended with aqueous solutions of fatty acid salts to produce inclusion complexes between amylose and the fatty acid salt. These complexes can be simply prepared on large scale using commercially available steam ...
Lim, Jae Kyu; Mayer, Florian; Kang, Sung Gyun; Müller, Volker
2014-01-01
Thermococcus onnurineus NA1 is known to grow by the anaerobic oxidation of formate to CO2 and H2, a reaction that operates near thermodynamic equilibrium. Here we demonstrate that this reaction is coupled to ATP synthesis by a transmembrane ion current. Formate oxidation leads to H+ translocation across the cytoplasmic membrane that then drives Na+ translocation. The ion-translocating electron transfer system is rather simple, consisting of only a formate dehydrogenase module, a membrane-bound hydrogenase module, and a multisubunit Na+/H+ antiporter module. The electrochemical Na+ gradient established then drives ATP synthesis. These data give a mechanistic explanation for chemiosmotic energy conservation coupled to formate oxidation to CO2 and H2. Because it is discussed that the membrane-bound hydrogenase with the Na+/H+ antiporter module are ancestors of complex I of mitochondrial and bacterial electron transport these data also shed light on the evolution of ion transport in complex I-like electron transport chains. PMID:25049407
Lim, Jae Kyu; Mayer, Florian; Kang, Sung Gyun; Müller, Volker
2014-08-05
Thermococcus onnurineus NA1 is known to grow by the anaerobic oxidation of formate to CO2 and H2, a reaction that operates near thermodynamic equilibrium. Here we demonstrate that this reaction is coupled to ATP synthesis by a transmembrane ion current. Formate oxidation leads to H(+) translocation across the cytoplasmic membrane that then drives Na(+) translocation. The ion-translocating electron transfer system is rather simple, consisting of only a formate dehydrogenase module, a membrane-bound hydrogenase module, and a multisubunit Na(+)/H(+) antiporter module. The electrochemical Na(+) gradient established then drives ATP synthesis. These data give a mechanistic explanation for chemiosmotic energy conservation coupled to formate oxidation to CO2 and H2. Because it is discussed that the membrane-bound hydrogenase with the Na(+)/H(+) antiporter module are ancestors of complex I of mitochondrial and bacterial electron transport these data also shed light on the evolution of ion transport in complex I-like electron transport chains.
Dijksterhuis, Marja G K; Schuwirth, Lambert W T; Braat, Didi D M; Teunissen, Pim W; Scheele, Fedde
2013-08-01
Recent changes in postgraduate medical training curricula usually encompass a shift towards more formative assessment, or assessment for learning. However, though theoretically well suited to postgraduate training, evidence is emerging that engaging in formative assessment in daily clinical practice is complex. We aimed to explore trainees' and supervisors' perceptions of what factors determine active engagement in formative assessment. Focus group study with postgraduate trainees and supervisors in obstetrics and gynaecology. Three higher order themes emerged: individual perspectives on feedback, supportiveness of the learning environment and the credibility of feedback and/or feedback giver. Engaging in formative assessment with a genuine impact on learning is complex and quite a challenge to both trainees and supervisors. Individual perspectives on feedback, a supportive learning environment and credibility of feedback are all important in this process. Every one of these should be taken into account when the utility of formative assessment in postgraduate medical training is evaluated.
cAMP prevents TNF-induced apoptosis through inhibiting DISC complex formation in rat hepatocytes
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bhattacharjee, Rajesh; Xiang, Wenpei; Family Planning Research Institute, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, People's Republic of China
2012-06-22
Highlights: Black-Right-Pointing-Pointer cAMP blocks cell death induced by TNF and actinomycin D in cultured hepatocytes. Black-Right-Pointing-Pointer cAMP blocks NF-{kappa}B activation induced by TNF and actinomycin D. Black-Right-Pointing-Pointer cAMP blocks DISC formation following TNF and actinomycin D exposure. Black-Right-Pointing-Pointer cAMP blocks TNF signaling at a proximal step. -- Abstract: Tumor necrosis factor {alpha} (TNF) is a pleiotropic proinflammatory cytokine that plays a role in immunity and the control of cell proliferation, cell differentiation, and apoptosis. The pleiotropic nature of TNF is due to the formation of different signaling complexes upon the binding of TNF to its receptor, TNF receptor type 1more » (TNFR1). TNF induces apoptosis in various mammalian cells when the cells are co-treated with a transcription inhibitor like actinomycin D (ActD). When TNFR1 is activated, it recruits an adaptor protein, TNF receptor-associated protein with death domain (TRADD), through its cytoplasmic death effector domain (DED). TRADD, in turn, recruits other signaling proteins, including TNF receptor-associated protein 2 (TRAF2) and receptor-associated protein kinase (RIPK) 1, to form a complex. Subsequently, this complex combines with FADD and procaspase-8, converts into a death-inducing signaling complex (DISC) to induce apoptosis. Cyclic AMP (cAMP) is a second messenger that regulates various cellular processes such as cell proliferation, gene expression, and apoptosis. cAMP analogues are reported to act as anti-apoptotic agents in various cell types, including hepatocytes. We found that a cAMP analogue, dibutyryl cAMP (db-cAMP), inhibits TNF + ActD-induced apoptosis in rat hepatocytes. The protein kinase A (PKA) inhibitor KT-5720 reverses this inhibitory effect of cAMP on apoptosis. Cytoprotection by cAMP involves down-regulation of various apoptotic signal regulators like TRADD and FADD and inhibition of caspase-8 and caspase-3 cleavage. We also found that cAMP exerts its affect at the proximal level of TNF signaling by inhibiting the formation of the DISC complex upon the binding of TNF to TNFR1. In conclusion, our study shows that cAMP prevents TNF + ActD-induced apoptosis in rat hepatocytes by inhibiting DISC complex formation.« less
48 CFR 15.204-3 - Part II-Contract Clauses.
Code of Federal Regulations, 2010 CFR
2010-10-01
... include in this section the clauses required by law or by this part and any additional clauses expected to... uniform contract format. An index may be inserted if this section's format is particularly complex. ...
Pyyromethene-BF2 Complexes as Laser Dyes
1990-05-24
pyrromethene S1 state via exciplex formation, a pro- cess well known for polyamines [20], was not incompatible with the available information... exciplex formation [21]. Strong fluorescence in a bidentate BF 2 complex with nitrogen and/or oxygen atoms as ligand term’ini was afforded by P-BF2...M. Gordon and W. R. Ware, Eds., "The Exciplex ," Academic Press, New York, 1975. [21] M. E. Huston, K. W. Haider, and A. W. Czarnik, J. Amer. Chem. Soc
1992-08-12
AD-A254 538 OFFICE OF NAVAL RESEARCH FINAL REPORT FCR Contract N00014-87-K-0465 R&T Code 413j006 "Transition Organometallic Heterobimetallic ix...ransition Organometallic Heterobimetallic P-Carbon Dioxide and p-FormateComplexes in Homogeneous Carbon Dioxide Fixation 12. PERSONAL AUTHOR(S) Alan R...J. L. Shibley, and A. R. Cutler, J. Organomet. Chem. 1989,378, 421.* "Characterization of the Heterobimetallic ±(r011-C: T12 -O,O’) Carbon Dioxide
Austin, S; Dixon, R
1992-01-01
The prokaryotic activator protein NTRC binds to enhancer-like elements and activates transcription in response to nitrogen limitation by catalysing open complex formation by sigma 54 RNA polymerase holoenzyme. Formation of open complexes requires the phosphorylated form of NTRC and the reaction is ATP dependent. We find that NTRC has an ATPase activity which is activated by phosphorylation and is strongly stimulated by the presence of DNA containing specific NTRC binding sites. Images PMID:1534752
NASA Astrophysics Data System (ADS)
Zhang, Yongbin; Chao, Jianbin; Zhao, Shuhui; Xu, Penghao; Wang, Hongfang; Guo, Zhiqiang; Liu, Diansheng
2014-11-01
The inclusion behaviors of 4-Sulfonatocalix[n]arenes (SCXn) (n = 4, 6, 8) with 1-(4-nitrophenyl)piperazine (NPP) were investigated by UV spectroscopy and fluorescence spectroscopy at different pH values (pH = 3.05, 6.50, 8.40). The UV absorption and fluorescence intensity of NPP remarkably increased in presence of SCXn revealing formation of the inclusion complexes between NPP and SCXn. Moreover, the formation constants (K) of inclusion complexes were also determined by the non-linear fitting method, and the obtained data showed that the formation constants decreased gradually with the increasing of the pH value. When the pH value was 3.05, the formation constant of NPP with SCX8 reached a maximum of 1.7 × 107 L mol-1. The stoichiometric ratio was verified to be 1:1 by the continuous variation method. Meanwhile FT-IR and DSC analysis also indicated that NPP could form the inclusion complex with SCXn. In order to explore the inclusion mechanism of NPP with SCXn, 1H NMR and molecular modeling studies were carried out and experimental results showed that the part of benzene ring of NPP penetrated into the hydrophobic cavity of SCXn.
Bacsi, Attila; Woodberry, Mitchell; Widger, William; Papaconstantinou, John; Mitra, Sankar; Peterson, Johnny W.; Boldogh, Istvan
2011-01-01
3-Nitropropionic acid (3-NPA), an inhibitor of succinate dehydrogenase (SDH) at complex II of the mitochondrial electron transport chain induces cellular energy deficit and oxidative stress-related neurotoxicity. In the present study, we identified the site of reactive oxygen species production in mitochondria. 3-NPA increased O2•− generation in mitochondria respiring on the complex I substrates pyruvate + malate, an effect fully inhibited by rotenone. Antimycin A increased O2•− production in the presence of complex I and/or II substrates. Addition of 3-NPA markedly increased antimycin A-induced O2•− production by mitochondria incubated with complex I substrates, but 3-NPA inhibited O2•− formation driven with the complex II substrate succinate. At 0.6 μM, myxothiazol inhibits complex III, but only partially decreases complex I activity, and allowed 3-NPA-induced O2•− formation; however, at 40 μM myxothiazol (which completely inhibits both complexes I and III) eliminated O2•− production from mitochondria respiring via complex I substrates. These results indicate that in the presence of 3-NPA, mitochondria generate O2•− from a site between the ubiquinol pool and the 3-NPA block in the respiratory complex II. PMID:17011837
Denadai, Angelo M L; Santoro, Marcelo M; Lopes, Miriam T P; Chenna, Angélica; de Sousa, Frederico B; Avelar, Gabriela M; Gomes, Marco R Túlio; Guzman, Fanny; Salas, Carlos E; Sinisterra, Rubén D
2006-01-01
Cyclodextrins are suitable drug delivery systems because of their ability to subtly modify the physical, chemical, and biological properties of guest molecules through labile interactions by formation of inclusion and/or association complexes. Plant cysteine proteinases from Caricaceae and Bromeliaceae are the subject of therapeutic interest, because of their anti-inflammatory, antitumoral, immunogenic, and wound-healing properties. In this study, we analyzed the association between beta-cyclodextrin (betaCD) and fraction P1G10 containing the bioactive proteinases from Carica candamarcensis, and described the physicochemical nature of the solid-state self-assembled complexes by Fourier transform infrared (FTIR) spectroscopy, thermogravimetry (TG), differential scanning calorimetry (DSC), X-ray powder diffraction (XRD), and nuclear magnetic resonance (NMR), as well as in solution by circular dichroism (CD), isothermal titration calorimetry (ITC), and amidase activity. The physicochemical analyses suggest the formation of a complex between P1G10 and betaCD. Higher secondary interactions, namely hydrophobic interactions, hydrogen bonding and van der Waals forces were observed at higher P1G10 : betaCD mass ratios. These results provide evidence of the occurrence of strong solid-state supramolecular non-covalent interactions between P1G10 and betaCD. Microcalorimetric analysis demonstrates that complexation results in a favorable enthalpic contribution, as has already been described during formation of similar betaCD inclusion compounds. The amidase activity of the complex shows that the enzyme activity is not readily available at 24 hours after dissolution of the complex in aqueous buffer; the proteinase becomes biologically active by the second day and remains stable until day 16, when a gradual decrease occurs, with basal activity attained by day 29. The reported results underscore the potential for betaCDs as candidates for complexing cysteine proteinases, resulting in supramolecular arrays with sustained proteolytic activity.
Interaction of d(10) metal ions with thioether ligands: a thermodynamic and theoretical study.
Melchior, Andrea; Peralta, Elena; Valiente, Manuel; Tavagnacco, Claudio; Endrizzi, Francesco; Tolazzi, Marilena
2013-05-07
Thermodynamic parameters of complex formation between d(10) metal ions, such as Zn(2+), Cd(2+), Hg(2+) and Ag(+), and the macrocyclic thioether 1,4,7-trithiacyclononane ([9]AneS3) or the monodentate diethylsulfide (Et(2)S), in acetonitrile (AN) at 298.15 K, were studied by a systematic methodology including potentiometry, calorimetry and polarography. [9]AneS3 is able to form complexes with all the target cations, Et(2)S only reacts with Hg(2+) and Ag(+). Mononuclear ML(j) (j = 1, 2) complexes are formed with all the metal ions investigated, where the affinity order is Hg(2+) > Ag(+) > Cd(2+) ≈ Zn(2+) when L = [9]AneS3 and Hg(2+) > Ag(+) when L = Et(2)S. Enthalpy and entropy values are generally negative, as a consequence of both metal ion interactions with neutral ligands, the reagents' loss of degrees of freedom and the release of solvating molecules. DFT calculations on the complexes formed with [9]AneS3 in vacuum and in AN are also carried out, to correlate experimental and theoretical thermodynamic values and to highlight the interplay between the direct metal-thioether interaction and the solvation effects. Trends obtained for the stability constants and enthalpies of the 1 : 1 and 1 : 2 complexes in solvent well reproduce the experimental ones for all the divalent metal ion complexes with [9]AneS3 and indicate the release of 3 AN molecules in the formation of each consecutive octahedral complex. In addition, calculated and experimental values for Ag(+) complex formation in solution suggest that in AgL(2) species [9]AneS3 ligands are not both tridentate.
Shibata, Yuri; Tokunaga, Fuminori; Goto, Eiji; Komatsu, Ginga; Gohda, Jin; Saeki, Yasushi; Tanaka, Keiji; Takahashi, Hirotaka; Sawasaki, Tatsuya; Inoue, Satoshi; Oshiumi, Hiroyuki; Seya, Tsukasa; Nakano, Hiroyasu; Tanaka, Yuetsu; Iwai, Kazuhiro; Inoue, Jun-Ichiro
2017-01-01
The Tax protein of human T-cell leukemia virus type 1 (HTLV-1) is crucial for the development of adult T-cell leukemia (ATL), a highly malignant CD4+ T cell neoplasm. Among the multiple aberrant Tax-induced effects on cellular processes, persistent activation of transcription factor NF-κB, which is activated only transiently upon physiological stimulation, is essential for leukemogenesis. We and others have shown that Tax induces activation of the IκB kinase (IKK) complex, which is a critical step in NF-κB activation, by generating Lys63-linked polyubiquitin chains. However, the molecular mechanism underlying Tax-induced IKK activation is controversial and not fully understood. Here, we demonstrate that Tax recruits linear (Met1-linked) ubiquitin chain assembly complex (LUBAC) to the IKK complex and that Tax fails to induce IKK activation in cells that lack LUBAC activity. Mass spectrometric analyses revealed that both Lys63-linked and Met1-linked polyubiquitin chains are associated with the IKK complex. Furthermore, treatment of the IKK-associated polyubiquitin chains with Met1-linked-chain-specific deubiquitinase (OTULIN) resulted in the reduction of high molecular weight polyubiquitin chains and the generation of short Lys63-linked ubiquitin chains, indicating that Tax can induce the generation of Lys63- and Met1-linked hybrid polyubiquitin chains. We also demonstrate that Tax induces formation of the active macromolecular IKK complex and that the blocking of Tax-induced polyubiquitin chain synthesis inhibited formation of the macromolecular complex. Taken together, these results lead us to propose a novel model in which the hybrid-chain-dependent oligomerization of the IKK complex triggered by Tax leads to trans-autophosphorylation-mediated IKK activation.
Tokunaga, Fuminori; Goto, Eiji; Komatsu, Ginga; Saeki, Yasushi; Tanaka, Keiji; Takahashi, Hirotaka; Sawasaki, Tatsuya; Inoue, Satoshi; Oshiumi, Hiroyuki; Seya, Tsukasa; Nakano, Hiroyasu; Tanaka, Yuetsu; Iwai, Kazuhiro
2017-01-01
The Tax protein of human T-cell leukemia virus type 1 (HTLV-1) is crucial for the development of adult T-cell leukemia (ATL), a highly malignant CD4+ T cell neoplasm. Among the multiple aberrant Tax-induced effects on cellular processes, persistent activation of transcription factor NF-κB, which is activated only transiently upon physiological stimulation, is essential for leukemogenesis. We and others have shown that Tax induces activation of the IκB kinase (IKK) complex, which is a critical step in NF-κB activation, by generating Lys63-linked polyubiquitin chains. However, the molecular mechanism underlying Tax-induced IKK activation is controversial and not fully understood. Here, we demonstrate that Tax recruits linear (Met1-linked) ubiquitin chain assembly complex (LUBAC) to the IKK complex and that Tax fails to induce IKK activation in cells that lack LUBAC activity. Mass spectrometric analyses revealed that both Lys63-linked and Met1-linked polyubiquitin chains are associated with the IKK complex. Furthermore, treatment of the IKK-associated polyubiquitin chains with Met1-linked-chain-specific deubiquitinase (OTULIN) resulted in the reduction of high molecular weight polyubiquitin chains and the generation of short Lys63-linked ubiquitin chains, indicating that Tax can induce the generation of Lys63- and Met1-linked hybrid polyubiquitin chains. We also demonstrate that Tax induces formation of the active macromolecular IKK complex and that the blocking of Tax-induced polyubiquitin chain synthesis inhibited formation of the macromolecular complex. Taken together, these results lead us to propose a novel model in which the hybrid-chain-dependent oligomerization of the IKK complex triggered by Tax leads to trans-autophosphorylation-mediated IKK activation. PMID:28103322
Cross-activating c-Met/β1 integrin complex drives metastasis and invasive resistance in cancer
Jahangiri, Arman; Nguyen, Alan; Sidorov, Maxim K.; Yagnik, Garima; Rick, Jonathan; Han, Sung Won; Chen, William; Flanigan, Patrick M.; Schneidman-Duhovny, Dina; Mascharak, Smita; De Lay, Michael; Imber, Brandon; Park, Catherine C.; Matsumoto, Kunio; Lu, Kan; Bergers, Gabriele; Sali, Andrej; Weiss, William A.
2017-01-01
The molecular underpinnings of invasion, a hallmark of cancer, have been defined in terms of individual mediators but crucial interactions between these mediators remain undefined. In xenograft models and patient specimens, we identified a c-Met/β1 integrin complex that formed during significant invasive oncologic processes: breast cancer metastases and glioblastoma invasive resistance to antiangiogenic VEGF neutralizing antibody, bevacizumab. Inducing c-Met/β1 complex formation through an engineered inducible heterodimerization system promoted features crucial to overcoming stressors during metastases or antiangiogenic therapy: migration in the primary site, survival under hypoxia, and extravasation out of circulation. c-Met/β1 complex formation was up-regulated by hypoxia, while VEGF binding VEGFR2 sequestered c-Met and β1 integrin, preventing their binding. Complex formation promoted ligand-independent receptor activation, with integrin-linked kinase phosphorylating c-Met and crystallography revealing the c-Met/β1 complex to maintain the high-affinity β1 integrin conformation. Site-directed mutagenesis verified the necessity for c-Met/β1 binding of amino acids predicted by crystallography to mediate their extracellular interaction. Far-Western blotting and sequential immunoprecipitation revealed that c-Met displaced α5 integrin from β1 integrin, creating a complex with much greater affinity for fibronectin (FN) than α5β1. Thus, tumor cells adapt to microenvironmental stressors induced by metastases or bevacizumab by coopting receptors, which normally promote both cell migration modes: chemotaxis, movement toward concentrations of environmental chemoattractants, and haptotaxis, movement controlled by the relative strengths of peripheral adhesions. Tumor cells then redirect these receptors away from their conventional binding partners, forming a powerful structural c-Met/β1 complex whose ligand-independent cross-activation and robust affinity for FN drive invasive oncologic processes. PMID:28973887
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kellner, Markus; Rohrmoser, Michaela; Forné, Ignasi
PeBoW, a trimeric complex consisting of pescadillo (Pes1), block of proliferation (Bop1), and the WD repeat protein 12 (WDR12), is essential for processing and maturation of mammalian 5.8S and 28S ribosomal RNAs. Applying a mass spectrometric analysis, we identified the DEAD-box helicase DDX27 as stably associated factor of the PeBoW-complex. DDX27 interacts with the PeBoW-complex via an evolutionary conserved F×F motif in the N-terminal domain and is recruited to the nucleolus via its basic C-terminal domain. This recruitment is RNA-dependent and occurs independently of the PeBoW-complex. Interestingly, knockdown of DDX27, but not of Pes1, induces the accumulation of an extendedmore » form of the primary 47S rRNA. We conclude that DDX27 can interact specifically with the Pes1 and Bop1 but fulfils critical function(s) for proper 3′ end formation of 47S rRNA independently of the PeBoW-complex. - Highlights: • DEAD-box helicase DDX27 is a new constituent of the PeBoW-complex. • The N-terminal F×F motif of DDX27 interacts with the PeBoW components Pes1 and Bop1. • Nucleolar anchoring of DDX27 via its basic C-terminal domain is RNA dependent. • Knockdown of DDX27 induces a specific defect in 3′ end formation of 47S rRNA.« less
USDA-ARS?s Scientific Manuscript database
Amylose can form inclusion complexes with guest molecules and represents an interesting approach to deliver bioactive molecules. However, ferulic acid has been shown not to form single helical inclusion complexes with amylose. To overcome this problem a ferulic acid ester, octadecyl ferulate, posses...
NASA Astrophysics Data System (ADS)
Fedoseev, G.; Ioppolo, S.; Lamberts, T.; Zhen, J. F.; Cuppen, H. M.; Linnartz, H.
2012-08-01
Hydroxylamine (NH2OH) is one of the potential precursors of complex pre-biotic species in space. Here, we present a detailed experimental study of hydroxylamine formation through nitric oxide (NO) surface hydrogenation for astronomically relevant conditions. The aim of this work is to investigate hydroxylamine formation efficiencies in polar (water-rich) and non-polar (carbon monoxide-rich) interstellar ice analogues. A complex reaction network involving both final (N2O, NH2OH) and intermediate (HNO, NH2O., etc.) products is discussed. The main conclusion is that hydroxyl-amine formation takes place via a fast and barrierless mechanism and it is found to be even more abundantly formed in a water-rich environment at lower temperatures. In parallel, we experimentally verify the non-formation of hydroxylamine upon UV photolysis of NO ice at cryogenic temperatures as well as the non-detection of NC- and NCO-bond bearing species after UV processing of NO in carbon monoxide-rich ices. Our results are implemented into an astrochemical reaction model, which shows that NH2OH is abundant in the solid phase under dark molecular cloud conditions. Once NH2OH desorbs from the ice grains, it becomes available to form more complex species (e.g., glycine and β-alanine) in gas phase reaction schemes.
NASA Astrophysics Data System (ADS)
Kozakov, I. K.; Kuznetsov, A. B.; Erdenegargal, Ch.; Salnikova, E. B.; Anisimova, I. V.; Plotkina, Ju. V.; Fedoseenko, A. M.
2017-09-01
The formation stages of high-grade metamorphic complexes and the related granitoids of the Dzabkhan terrane basement are considered. The age data (U-Pb method, TIMS) of zircons from the trondhjemite block of the eastern part of the Dzabkhan terrane, which is directly overlain by the dolomite sequence of the Tsagaan Oloom Formation, are given. Trondhjemites yield the U-Pb zircon age of 862 ± 3 Ma. In their structural position, they are assigned to typical postmetamorphic formations that determine the formation and cratonization of rocks of the host block. The geochronological study of trondhjemites gives grounds to distinguish fragments of the continental crust in the Dzabkhan terrane basement, the formation of which occurred at different periods of time: ˜860 and ˜790 Ma. Geological-geochronological and Sm‒Nd isotope-geochemical studies indicate that the Dzabkhan terrane basement is not a single block of the Early Precambrian continental crust, but a composite terrane, comprising Neoproterozoic ensialic and island-arc structural and compositional complexes. Correlation of Sr isotopic characteristics with the 87Sr/86Sr variation curve in the Neoproterozoic and Cambrian seawater shows that carbonate deposits accumulated at the eastern margin of the Dzabkhan terrane near the end of the Neoproterozoic, 700-550 Ma, and in the central part of the terrane in the Early Cambrian, 540-530 Ma.
Sato, Shunsuke; Arai, Takeo; Morikawa, Takeshi; Uemura, Keiko; Suzuki, Tomiko M; Tanaka, Hiromitsu; Kajino, Tsutomu
2011-10-05
Photoelectrochemical reduction of CO(2) to HCOO(-) (formate) over p-type InP/Ru complex polymer hybrid photocatalyst was highly enhanced by introducing an anchoring complex into the polymer. By functionally combining the hybrid photocatalyst with TiO(2) for water oxidation, selective photoreduction of CO(2) to HCOO(-) was achieved in aqueous media, in which H(2)O was used as both an electron donor and a proton source. The so-called Z-scheme (or two-step photoexcitation) system operated with no external electrical bias. The selectivity for HCOO(-) production was >70%, and the conversion efficiency of solar energy to chemical energy was 0.03-0.04%.
Formation of multiple focal spots using a high NA lens with a complex spiral phase mask
NASA Astrophysics Data System (ADS)
Lalithambigai, K.; Anbarasan, P. M.; Rajesh, K. B.
2014-07-01
The formation of a transversally polarized beam by transmitting a tightly focused double-ring-shaped azimuthally polarized beam through a complex spiral phase mask and high numerical aperture lens is presented based on vector diffraction theory. The generation of transversally polarized focal spot segment splitting and multiple focal spots is illustrated numerically. Moreover, we found that a properly designed complex spiral phase mask can move the focal spots along the optical axis in the z direction. Therefore, one can achieve a focal segment of two, three or multiple completely transversely polarized focal spots, which finds applications in optical trapping and in material processing technologies.
The History and Rate of Star Formation within the G305 Complex
NASA Astrophysics Data System (ADS)
Faimali, Alessandro Daniele
2013-07-01
Within this thesis, we present an extended multiwavelength analysis of the rich massive Galactic star-forming complex G305. We have focused our attention on studying the both the embedded massive star-forming population within G305, while also identifying the intermediate-, to lowmass content of the region also. Though massive stars play an important role in the shaping and evolution of their host galaxies, the physics of their formation still remains unclear. We have therefore set out to studying the nature of star formation within this complex, and also identify the impact that such a population has on the evolution of G305. We firstly present a Herschel far-infrared study towards G305, utilising PACS 70, 160 micron and SPIRE 250, 350, and 500 micron observations from the Hi-GAL survey of the Galactic plane. The focus of this study is to identify the embedded massive star-forming population within G305, by combining far-infrared data with radio continuum, H2O maser, methanol maser, MIPS, and Red MSX Source survey data available from previous studies. From this sample we identify some 16 candidate associations are identified as embedded massive star-forming regions, and derive a two-selection colour criterion from this sample of log(F70/F500) >= 1 and log(F160/F350) >= 1.6 to identify an additional 31 embedded massive star candidates with no associated star-formation tracers. Using this result, we are able to derive a star formation rate (SFR) of 0.01 - 0.02 Msun/yr. Comparing this resolved star formation rate, to extragalactic star formation rate tracers (based on the Kennicutt-Schmidt relation), we find the star formation activity is underestimated by a factor of >=2 in comparison to the SFR derived from the YSO population. By next combining data available from 2MASS and VVV, Spitzer GLIMPSE and MIPSGAL, MSX, and Herschel Hi-GAL, we are able to identify the low-, to intermediate-mass YSOs present within the complex. Employing a series of stringent colour selection criteria and fitting reddened stellar atmosphere models, we are able remove a significant amount of contaminating sources from our sample, leaving us with a highly reliable sample of some 599 candidate YSOs. From this sample, we derive a present-day SFR of 0.005±0.001 Msun/yr, and find the YSO mass function (YMF) of G305 to be significantly steeper than the standard Salpeter-Kroupa IMF. We find evidence of mass segregation towards G305, with a significant variation of the YMF both with the active star-forming region, and the outer region. The spatial distribution, and age gradient, of our 601 candidate YSOs also seem to rule out the scenario of propagating star formation within G305, with a more likely scenario of punctuated star formation over the lifetime of the complex.
Kinetics of DSB rejoining and formation of simple chromosome exchange aberrations
NASA Technical Reports Server (NTRS)
Cucinotta, F. A.; Nikjoo, H.; O'Neill, P.; Goodhead, D. T.
2000-01-01
PURPOSE: To investigate the role of kinetics in the processing of DNA double strand breaks (DSB), and the formation of simple chromosome exchange aberrations following X-ray exposures to mammalian cells based on an enzymatic approach. METHODS: Using computer simulations based on a biochemical approach, rate-equations that describe the processing of DSB through the formation of a DNA-enzyme complex were formulated. A second model that allows for competition between two processing pathways was also formulated. The formation of simple exchange aberrations was modelled as misrepair during the recombination of single DSB with undamaged DNA. Non-linear coupled differential equations corresponding to biochemical pathways were solved numerically by fitting to experimental data. RESULTS: When mediated by a DSB repair enzyme complex, the processing of single DSB showed a complex behaviour that gives the appearance of fast and slow components of rejoining. This is due to the time-delay caused by the action time of enzymes in biomolecular reactions. It is shown that the kinetic- and dose-responses of simple chromosome exchange aberrations are well described by a recombination model of DSB interacting with undamaged DNA when aberration formation increases with linear dose-dependence. Competition between two or more recombination processes is shown to lead to the formation of simple exchange aberrations with a dose-dependence similar to that of a linear quadratic model. CONCLUSIONS: Using a minimal number of assumptions, the kinetics and dose response observed experimentally for DSB rejoining and the formation of simple chromosome exchange aberrations are shown to be consistent with kinetic models based on enzymatic reaction approaches. A non-linear dose response for simple exchange aberrations is possible in a model of recombination of DNA containing a DSB with undamaged DNA when two or more pathways compete for DSB repair.
NASA Astrophysics Data System (ADS)
Bischoff, Addi; Wurm, Gerhard; Chaussidon, Marc; Horstmann, Marian; Metzler, Knut; Weyrauch, Mona; Weinauer, Julia
2017-05-01
In Allende, a very complex compound chondrule (Allende compound chondrule; ACC) was found consisting of at least 16 subchondrules (14 siblings and 2 independents). Its overall texture can roughly be described as a barred olivine object (BO). The BO texture is similar in all siblings, but does not exist in the two independents, which appear as relatively compact olivine-rich units. Because of secondary alteration of pristine Allende components and the ACC in particular, only limited predictions can be made concerning the original compositions of the colliding melt droplets. Based on textural and mineralogical characteristics, the siblings must have been formed on a very short time scale in a dense, local environment. This is also supported by oxygen isotope systematics showing similar compositions for all 16 subchondrules. Furthermore, the ACC subchondrules are isotopically distinct from typical Allende chondrules, indicating formation in or reaction with a more 16O-poor reservoir. We modeled constraints on the particle density required at the ACC formation location, using textural, mineral-chemical, and isotopic observations on this multicompound chondrule to define melt droplet collision conditions. In this context, we discuss the possible relationship between the formation of complex chondrules and the formation of macrochondrules and cluster chondrites. While macrochondrules may have formed under similar or related conditions as complex chondrules, cluster chondrites certainly require different formation conditions. Cluster chondrites represent a mixture of viscously deformed, seemingly young chondrules of different chemical and textural types and a population of older chondrules. Concerning the formation of ACC calculations suggest the existence of very local, kilometer-sized, and super-dense chondrule-forming regions with extremely high solid-to-gas mass ratios of 1000 or more.
Bjørnsgaard Aas, Anders; Davey, Marie Louise; Kauserud, Håvard
2017-07-01
The formation of chimeric sequences can create significant methodological bias in PCR-based DNA metabarcoding analyses. During mixed-template amplification of barcoding regions, chimera formation is frequent and well documented. However, profiling of fungal communities typically uses the more variable rDNA region ITS. Due to a larger research community, tools for chimera detection have been developed mainly for the 16S/18S markers. However, these tools are widely applied to the ITS region without verification of their performance. We examined the rate of chimera formation during amplification and 454 sequencing of the ITS2 region from fungal mock communities of different complexities. We evaluated the chimera detecting ability of two common chimera-checking algorithms: perseus and uchime. Large proportions of the chimeras reported were false positives. No false negatives were found in the data set. Verified chimeras accounted for only 0.2% of the total ITS2 reads, which is considerably less than what is typically reported in 16S and 18S metabarcoding analyses. Verified chimeric 'parent sequences' had significantly higher per cent identity to one another than to random members of the mock communities. Community complexity increased the rate of chimera formation. GC content was higher around the verified chimeric break points, potentially facilitating chimera formation through base pair mismatching in the neighbouring regions of high similarity in the chimeric region. We conclude that the hypervariable nature of the ITS region seems to buffer the rate of chimera formation in comparison with other, less variable barcoding regions, due to shorter regions of high sequence similarity. © 2016 John Wiley & Sons Ltd.
Mohammed, Noorullah Naqvi; Pandey, Pankaj; Khan, Nayaab S; Elokely, Khaled M; Liu, Haining; Doerksen, Robert J; Repka, Michael A
2016-08-01
Clotrimazole (CT) is a poorly soluble antifungal drug that is most commonly employed as a topical treatment in the management of vaginal candidiasis. The present work focuses on a formulation approach to enhance the solubility of CT using cyclodextrin (CD) complexation. A CT-CD complex was prepared by a co-precipitation method. Various characterization techniques such as differential scanning calorimetry, infrared (IR) and X-ray spectroscopy, scanning electron microscopy and nuclear magnetic resonance (NMR) spectroscopy were performed to evaluate the complex formation and to understand the interactions between CT and CD. Computational molecular modeling was performed using the Schrödinger suite and Gaussian 09 program to understand structural conformations of the complex. The phase solubility curve followed an AL-type curve, indicating formation of a 1:1 complex. Molecular docking studies supported the data obtained through NMR and IR studies. Enthalpy changes confirmed that complexation was an exothermic and enthalpically favorable phenomenon. The CT-CD complexes were formulated in a gel and evaluated for release and antifungal activity. The in vitro release studies performed using gels demonstrated a sustained release of CT from the CT-CD complex with the complex exhibiting improved release relative to the un-complexed CT. Complexed CT-CD exhibited better fungistatic activity toward different Candida species than un-complexed CT.
NASA Astrophysics Data System (ADS)
Gaballa, Akmal S.; Amin, Alaa S.
2015-06-01
The reactions of electron acceptors such as picric acid (HPA) and 7,7‧,8,8‧-tetracyano-p-quinodimethane (TCNQ) with 2-hydroxypyridine (HPyO) have been investigated in EtOH at room temperature. Based on elemental analysis and IR spectra of the solid CT-complexes along with the photometric titration curves for the reactions, the data obtained indicate the formation of 1:1 charge transfer complexes [(H2PyO)(PA)] and [(PyO)(HTCNQ)], respectively. The infrared and 1H NMR spectroscopic data indicate a charge transfer interaction associated with a proton migration from the acceptor to the donor followed by intramolecular hydrogen bonding in [(H2PyO)(PA)] complex. Another charge transfer interaction was observed in [(PyO)(HTCNQ)] complex. The formation constants (KCT) for the CT-complexes are shown to be strongly dependent on the type and structure of the electron acceptors. Factors affecting the CT-processes and the kinetics of thermal decomposition of the complexes have been studied. The CT complexes were screened for their antibacterial activities against selected bacterial strains.
Gaballa, Akmal S; Amin, Alaa S
2015-06-15
The reactions of electron acceptors such as picric acid (HPA) and 7,7',8,8'-tetracyano-p-quinodimethane (TCNQ) with 2-hydroxypyridine (HPyO) have been investigated in EtOH at room temperature. Based on elemental analysis and IR spectra of the solid CT-complexes along with the photometric titration curves for the reactions, the data obtained indicate the formation of 1:1 charge transfer complexes [(H2PyO)(PA)] and [(PyO)(HTCNQ)], respectively. The infrared and (1)H NMR spectroscopic data indicate a charge transfer interaction associated with a proton migration from the acceptor to the donor followed by intramolecular hydrogen bonding in [(H2PyO)(PA)] complex. Another charge transfer interaction was observed in [(PyO)(HTCNQ)] complex. The formation constants (KCT) for the CT-complexes are shown to be strongly dependent on the type and structure of the electron acceptors. Factors affecting the CT-processes and the kinetics of thermal decomposition of the complexes have been studied. The CT complexes were screened for their antibacterial activities against selected bacterial strains. Copyright © 2015 Elsevier B.V. All rights reserved.
Budnik, Ivan; Shenkman, Boris; Savion, Naphtali
2015-01-01
Thrombus formation in the injured vessel wall is a highly complex process involving various blood-born components that go through specific temporal and spatial changes as observed by intravital videomicroscopy. Platelets bind transiently to the developing thrombus and may either become stably incorporated into or disengage from the thrombus. The aim of the present study was to reveal the processes involved in the formation of a stable thrombus. Platelet-rich plasma and washed platelets were studied by the aggregometer. The aggregate stability was challenged by eptifibatide. Platelet Triton-insoluble fraction was prepared and the actin and αIIb content in the cytoskeleton was analyzed by western blot. Maximal actin polymerization is achieved 1min after platelet activation while maximal αIIbβ3-actin cytoskeleton association requires 5 to 10min of activation and fibrinogen-mediated platelet-to-platelet bridging. Thus, actin polymerization is dependent on platelet activation and requires neither αIIbβ3 integrin occupation nor platelet aggregation. Formation of a stable aggregate requires platelet activation for more than 1min, complete increase in actin cytoskeleton fraction and partial association of αIIbβ3 with the actin cytoskeleton. However, direct αIIbβ3 activation is not sufficient for cytoskeleton complex formation. Thus, stable αIIbβ3-fibrinogen interaction, representing stable aggregate, is achieved after more than 1min agonist activation, involving inside-out and outside-in signaling but not after direct integrin activation, involving only outside-in signaling. Formation of a stable fibrinogen-αIIbβ3-actin cytoskeleton complex is the result of the combined effect of platelet stimulation by soluble agonists, activation of αIIbβ3, fibrinogen binding and platelet-to-platelet bridging. Copyright © 2014 Elsevier Ltd. All rights reserved.
Acharya, Amitabha; Ramanujam, Balaji; Mitra, Atanu; Rao, Chebrolu P
2010-07-27
This paper deals with the self-assembly of the 1:1 complex of two different amphiphiles, namely, a glucosyl-salicyl-imino conjugate (L) and phenylalanine (Phe), forming nanofibers over a period of time through pi...pi interactions. Significant enhancement observed in the fluorescence intensity of L at approximately 423 nm band and the significant decrease observed in the absorbance of the approximately 215 nm band are some characteristics of this self-assembly. Matrix-assisted laser desorption ionization/time of flight titration carried out at different time intervals supports the formation of higher aggregates. Atomic force microscopy (AFM), transmission electron microscopy, and scanning electron miscroscopy results showed the formation of nanofibers for the solutions of L with phenylalanine. In dynamic light scattering measurements, the distribution of the particles extends to a higher diameter range over time, indicating a slow kinetic process of assembly. Similar spectral and microscopy studies carried out with the control molecules support the role of the amino acid moiety over the simple -COOH moiety as well as the side chain phenyl moiety in association with the amino acid, in the formation of these fibers. All these observations support the presence of pi...pi interactions between the initially formed 1:1 complexes leading to the fiber formation. The aggregation of 1:1 complexes leading to fibers followed by the formation of bundles has been modeled by molecular mechanics studies. Thus the fiber formation with L is limited to phenylalanine and not to any other naturally occurring amino acid and hence a polymer composed of two different biocompatible amphiphiles. AFM studies carried out between the fiber forming mixture and proteins resulted in the observation that only BSA selectively adheres to the fiber among the three alpha-helical and two beta-sheet proteins studied and hence may be of use in some medical applications.
Mardyukov, Artur; Crespo-Otero, Rachel; Sanchez-Garcia, Elsa; Sander, Wolfram
2010-08-02
The reaction of the phenyl radical 1 with water has been investigated by using matrix isolation spectroscopy and quantum chemical calculations. The primary thermal product of the reaction between 1 and water is a weakly bound complex stabilized by an OH...pi interaction. This complex is photolabile, and visible-light irradiation (lambda>420 nm) results in hydrogen atom transfer from water to radical 1 and the formation of a highly labile complex between benzene and the OH radical. This complex is stable under the conditions of matrix isolation, however, continuous irradiation with lambda>420 nm light results in the complete destruction of the aromatic system and formation of an acylic unsaturated ketene. The mechanisms of all reaction steps are discussed in the light of ab initio and DFT calculations.
NASA Astrophysics Data System (ADS)
Nowicki, Waldemar; Gąsowska, Anna; Kirszensztejn, Piotr
2016-05-01
UV-vis spectroscopy measurements confirmed the reaction in heterogeneous system between Pt(II) ions and ethylenediamine type ligand, n-(2-aminoethyl)-3-aminopropyl-trimethoxysilane, immobilized at the silica surface. The formation of complexes is a consequence of interaction between the amine groups from the ligand grafted onto SiO2 and ions of platinum. A potentiometric titration technique was to determine the stability constants of complexes of Pt(II) with immobilized insoluble ligand (SG-L), on the silica gel. The results show the formation of three surface complexes of the same type (PtHSG-L, Pt(HSG-L)2, PtSG-L) with SG-L ligand, in a wide range of pH for different Debye length. The concentration distribution of the complexes in a heterogeneous system is evaluated.
Schiffmann, D A; White, J H; Cooper, A; Nutley, M A; Harding, S E; Jumel, K; Solari, R; Ray, K P; Gay, N J
1999-09-07
In Drosophila, the Toll receptor signaling pathway is required for embryonic dorso-ventral patterning and at later developmental stages for innate immune responses. It is thought that dimerization of the receptor by binding of the ligand spätzle causes the formation of a postreceptor activation complex at the cytoplasmic surface of the membrane. Two components of this complex are the adaptor tube and protein kinase pelle. These proteins both have "death domains", protein interaction motifs found in a number of signaling pathways, particularly those involved in apoptotic cell death. It is thought that pelle is bound by tube during formation of the activation complexes, and that this interaction is mediated by the death domains. In this paper, we show using the yeast two-hybrid system that the wild-type tube and pelle death domains bind together. Mutant tube proteins which do not support signaling in the embryo are also unable to bind pelle in the 2-hybrid assay. We have purified proteins corresponding to the death domains of tube and pelle and show that these form corresponding heterodimeric complexes in vitro. Partial proteolysis reveals a smaller core consisting of the minimal death domain sequences. We have studied the tube/pelle interaction with the techniques of surface plasmon resonance, analytical ultracentrifugation and isothermal titration calorimetry. These measurements produce a value of K(d) for the complex of about 0.5 microM.
Reaction mechanism of Ru(II) piano-stool complexes: umbrella sampling QM/MM MD study.
Futera, Zdeněk; Burda, Jaroslav V
2014-07-15
Biologically relevant interactions of piano-stool ruthenium(II) complexes with ds-DNA are studied in this article by hybrid quantum mechanics-molecular mechanics (QM/MM) computational technique. The whole reaction mechanism is divided into three phases: (i) hydration of the [Ru(II) (η(6) -benzene)(en)Cl](+) complex, (ii) monoadduct formation between the resulting aqua-Ru(II) complex and N7 position of one of the guanines in the ds-DNA oligomer, and (iii) formation of the intrastrand Ru(II) bridge (cross-link) between two adjacent guanines. Free energy profiles of all the reactions are explored by QM/MM MD umbrella sampling approach where the Ru(II) complex and two guanines represent a quantum core, which is described by density functional theory methods. The combined QM/MM scheme is realized by our own software, which was developed to couple several quantum chemical programs (in this study Gaussian 09) and Amber 11 package. Calculated free energy barriers of the both ruthenium hydration and Ru(II)-N7(G) DNA binding process are in good agreement with experimentally measured rate constants. Then, this method was used to study the possibility of cross-link formation. One feasible pathway leading to Ru(II) guanine-guanine cross-link with synchronous releasing of the benzene ligand is predicted. The cross-linking is an exergonic process with the energy barrier lower than for the monoadduct reaction of Ru(II) complex with ds-DNA. Copyright © 2014 Wiley Periodicals, Inc.
Zhu, Fei-Die; Choo, Kwang-Ho; Chang, Hyun-Shik; Lee, Byunghwan
2012-05-01
The fate of endocrine disrupting chemicals (EDCs) in natural and engineered systems is complicated due to their interactions with various water constituents. This study investigated the interaction of bisphenol A (BPA) with dissolved organic matter (DOM) and colloids present in surface water and secondary effluent as well as its adsorptive removal by powdered activated carbons. The solid phase micro-extraction (SPME) method followed by thermal desorption and gas chromatography-mass spectrometry (GC-MS) was utilized for determining the distribution of BPA molecules in water. The BPA removal by SPME decreased with the increased DOM content, where the formation of BPA-DOM complexes in an aqueous matrix was responsible for the reduced extraction of BPA. Colloidal particles in water samples sorbed BPA leading to the marked reduction of liquid phase BPA. BPA-DOM complexes had a negative impact on the adsorptive removal of BPA by powered activated carbons. The complex formation was characterized based on Fourier transform infrared (FTIR) and ultraviolet-visible (UV-Vis) spectroscopy, along with the calculation of molecular interactions between BPA and functional groups in DOM. It was found that the hydrogen bonding between DOM and BPA would be preferred over aromatic interactions. A pseudo-equilibrium molecular coordination model for the complexation between a BPA molecule and a hydroxyl group of the DOM was developed, which enabled estimation of the maximum sorption site and complex formation constant as well as prediction of organic complexes at various DOM levels. Copyright © 2012 Elsevier Ltd. All rights reserved.
Characterization of Fe-leonardite complexes as novel natural iron fertilizers.
Kovács, Krisztina; Czech, Viktória; Fodor, Ferenc; Solti, Adam; Lucena, Juan J; Santos-Rosell, Sheila; Hernández-Apaolaza, Lourdes
2013-12-18
Water-soluble humic substances (denoted by LN) extracted at alkaline pH from leonardite are proposed to be used as complexing agents to overcome micronutrient deficiencies in plants such as iron chlorosis. LN presents oxidized functional groups that can bind Fe(2+) and Fe(3+). The knowledge of the environment of Fe in the Fe-LN complexes is a key point in the studies on their efficacy as Fe fertilizers. The aim of this work was to study the Fe(2+)/Fe(3+) species formed in Fe-LN complexes with (57)Fe Mössbauer spectroscopy under different experimental conditions in relation to the Fe-complexing capacities, chemical characteristics, and efficiency to provide iron in hydroponics. A high oxidation rate of Fe(2+) to Fe(3+) was found when samples were prepared with Fe(2+), although no well-crystalline magnetically ordered ferric oxide formation could be observed in slightly acidic or neutral media. It seems to be the case that the formation of Fe(3+)-LN compounds is favored over Fe(2+)-LN compounds, although at acidic pH no complex formation between Fe(3+) and LN occurred. The Fe(2+)/Fe(3+) speciation provided by the Mössbauer data showed that Fe(2+)-LN could be efficient in hydroponics while Fe(3+)-LN is suggested to be used more effectively under calcareous soil conditions. However, according to the biological assay, Fe(3+)-LN proved to be effective as a chlorosis corrector applied to iron-deficient cucumber in nutrient solution.
Hosler, Erik R; Herbst, Robert W; Maroney, Michael J; Chohan, Balwant S
2012-01-21
A study of the step-wise oxidation of a Ni(II) diaminodithiolate complex through the formation of sulfate, the ultimate sulfur oxygenate, is reported. Controlled oxygenations or peroxidations of a neutral, planar, tetracoordinate, low-spin Ni(II) complex of a N(2)S(2)-donor ligand, (N,N'-dimethyl-N-N'-bis(2-mecaptoethyl)-1,3-propanediaminato) nickel(ii) (1), led to a series of sulfur oxygenates that have been isolated and characterized by ESI-MS and single-crystal X-ray diffraction. A monosulfenate complex (2) was detected by ESI-MS as a product of oxidation with one equivalent of H(2)O(2). However, this complex proved too unstable to isolate. Reaction of the dithiolate (1) with two equivalents of H(2)O(2) or one O(2) molecule leads to the formation of a monosulfinate complex (3), which was isolated and fully characterized by crystallography. The oxidation product of the monosulfinate (3) produced with either O(2) or H(2)O(2) is an interesting dimeric complex containing both sulfonate and thiolate ligands (4), this complex was fully characterized by crystallography, details of which were reported earlier by us. A disulfonate complex (7) is produced by reaction of 1 in the presence of O(2) or by reaction with exactly six equivalents of H(2)O(2). This complex was isolated and also fully characterized by crystallography. Possible intermediates in the conversion of the monosulfinate complex (3) to the disulfonate complex (7) include complexes with mixed sulfonate/sulfenate (5) or sulfonate/sulfinate (6) ligands. Complex 5, a four-oxygen adduct of 1, was not detected, but the sulfonate/sulfinate complex (6) was isolated and characterized. The oxidation chemistry of 1 is very different from that reported for other planar cis-N(2)S(2) Ni(ii) complexes including N,N'-dimethyl-N-N'-bis(2-mecaptoethyl)-1,3-ethylenediaminato) nickel(II), (8), and N,N'-bis(mercaptoethyl)-1,5-diazacyclooctane nickel(II). To address the structural aspects of the reactivity differences, the crystal structure of 8 was also determined. A comparison of the structures of planar Ni(II) complexes containing cis-dithiolate ligands, strongly suggests that the differences in reactivity are determined in part by the degree of flexibility that is allowed by the NN' chelate ring.
Criteria for Formation of Active Personal Position of Schoolchildren
ERIC Educational Resources Information Center
Kunanbayeva, Magziya Sh.
2016-01-01
The article considers the problem and the importance of formation of the active personal position of schoolchildren. Active personal position is a complex concept, which includes the ability to a problem solution, the ability to work in a team, the ability to express his or her views. The formation of an active personal position at school is…
ERIC Educational Resources Information Center
Steif, Paul S.; Fu, Luoting; Kara, Levent Burak
2016-01-01
Problems faced by engineering students involve multiple pathways to solution. Students rarely receive effective formative feedback on handwritten homework. This paper examines the potential for computer-based formative assessment of student solutions to multipath engineering problems. In particular, an intelligent tutor approach is adopted and…
Lin, C H; Patel, D J
1997-11-01
Structural studies by nuclear magnetic resonance (NMR) of RNA and DNA aptamer complexes identified through in vitro selection and amplification have provided a wealth of information on RNA and DNA tertiary structure and molecular recognition in solution. The RNA and DNA aptamers that target ATP (and AMP) with micromolar affinity exhibit distinct binding site sequences and secondary structures. We report below on the tertiary structure of the AMP-DNA aptamer complex in solution and compare it with the previously reported tertiary structure of the AMP-RNA aptamer complex in solution. The solution structure of the AMP-DNA aptamer complex shows, surprisingly, that two AMP molecules are intercalated at adjacent sites within a rectangular widened minor groove. Complex formation involves adaptive binding where the asymmetric internal bubble of the free DNA aptamer zippers up through formation of a continuous six-base mismatch segment which includes a pair of adjacent three-base platforms. The AMP molecules pair through their Watson-Crick edges with the minor groove edges of guanine residues. These recognition G.A mismatches are flanked by sheared G.A and reversed Hoogsteen G.G mismatch pairs. The AMP-DNA aptamer and AMP-RNA aptamer complexes have distinct tertiary structures and binding stoichiometries. Nevertheless, both complexes have similar structural features and recognition alignments in their binding pockets. Specifically, AMP targets both DNA and RNA aptamers by intercalating between purine bases and through identical G.A mismatch formation. The recognition G.A mismatch stacks with a reversed Hoogsteen G.G mismatch in one direction and with an adenine base in the other direction in both complexes. It is striking that DNA and RNA aptamers selected independently from libraries of 10(14) molecules in each case utilize identical mismatch alignments for molecular recognition with micromolar affinity within binding-site pockets containing common structural elements.
Castillo, Virginia; Ventura, Salvador
2009-01-01
Protein aggregation underlies a wide range of human disorders. The polypeptides involved in these pathologies might be intrinsically unstructured or display a defined 3D-structure. Little is known about how globular proteins aggregate into toxic assemblies under physiological conditions, where they display an initially folded conformation. Protein aggregation is, however, always initiated by the establishment of anomalous protein-protein interactions. Therefore, in the present work, we have explored the extent to which protein interaction surfaces and aggregation-prone regions overlap in globular proteins associated with conformational diseases. Computational analysis of the native complexes formed by these proteins shows that aggregation-prone regions do frequently overlap with protein interfaces. The spatial coincidence of interaction sites and aggregating regions suggests that the formation of functional complexes and the aggregation of their individual subunits might compete in the cell. Accordingly, single mutations affecting complex interface or stability usually result in the formation of toxic aggregates. It is suggested that the stabilization of existing interfaces in multimeric proteins or the formation of new complexes in monomeric polypeptides might become effective strategies to prevent disease-linked aggregation of globular proteins. PMID:19696882
The plant cell cycle: Pre-Replication complex formation and controls
Brasil, Juliana Nogueira; Costa, Carinne N. Monteiro; Cabral, Luiz Mors; Ferreira, Paulo C. G.; Hemerly, Adriana S.
2017-01-01
Abstract The multiplication of cells in all living organisms requires a tight regulation of DNA replication. Several mechanisms take place to ensure that the DNA is replicated faithfully and just once per cell cycle in order to originate through mitoses two new daughter cells that contain exactly the same information from the previous one. A key control mechanism that occurs before cells enter S phase is the formation of a pre-replication complex (pre-RC) that is assembled at replication origins by the sequential association of the origin recognition complex, followed by Cdt1, Cdc6 and finally MCMs, licensing DNA to start replication. The identification of pre-RC members in all animal and plant species shows that this complex is conserved in eukaryotes and, more importantly, the differences between kingdoms might reflect their divergence in strategies on cell cycle regulation, as it must be integrated and adapted to the niche, ecosystem, and the organism peculiarities. Here, we provide an overview of the knowledge generated so far on the formation and the developmental controls of the pre-RC mechanism in plants, analyzing some particular aspects in comparison to other eukaryotes. PMID:28304073
Formation Mechanism of Oxide-Sulfide Complex Inclusions in High-Sulfur-Containing Steel Melts
NASA Astrophysics Data System (ADS)
Shin, Jae Hong; Park, Joo Hyun
2018-02-01
The [S] content in resulfurized steel is controlled in the range of 200 to 800 ppm to ensure good machinability and workability. It is well known that "MgAl2O4(spinel)+CaS" complex inclusions are formed in molten steel during the ladle refining process, and these cause nozzle clogging during continuous casting. Thus, in the present study, the "Refractory-Slag-Metal-Inclusions (ReSMI)" multiphase reaction model was employed in conjunction with experiments to investigate the influence of slag composition and [S] content in the steel on the formation of oxide-sulfide complex inclusions. The critical [S] and [Al] contents necessary for the precipitation of CaS in the CaO-Al2O3-MgO-SiO2 (CAMS) oxide inclusions were predicted from the composition of the liquid inclusions, as observed by scanning electron microscopy-electron dispersive spectrometry (SEM-EDS) and calculated using the ReSMI multiphase reaction model. The critical [S] content increases with increasing content of SiO2 in the slag at a given [Al] content. Formation mechanisms for spinel+CaS and spinel+MnS complex inclusions were also proposed.
NASA Astrophysics Data System (ADS)
Wolk, Arron B.; Fournier, Joseph A.; Wolke, Conrad T.; Johnson, Mark A.
2013-06-01
Transition metal-based organometallic catalysts are a promising means of converting CO_{2} to transportable fuels. Ni(cyclam)^{2+}(cyclam = 1,4,8,11-tetraazacyclotetradecane), a Ni^{II} complex ligated by four nitrogen centers, has shown promise as a catalyst selective for CO_{2} reduction in aqueous solutions. The cyclam ligand has four NH hydrogen bond donors that can adopt five conformations, each offering distinct binding motifs for coordination of CO_{2} close to the metal center. To probe the ligand conformation and the role of hydrogen bonding in adduct binding, we extract Ni(cyclam)^{2+} complexes with the formate anion and some of its analogs from solution using electrospray ionization, and characterize their structures using cryogenic ion vibrational predissociation spectroscopy. Using the signature vibrational features of the embedded carboxylate anion and the NH groups as reporters, we compare the binding motifs of oxalate, benzoate, and formate anions to the Ni(cyclam)^{2+} framework. Finally, we comment on possible routes to generate the singly charged Ni(cyclam)^{+} complex, a key intermediate that has been invoked in the catalytic CO_{2} reduction cycle, but has never been isolated through ion processing techniques.
RacGAP50C is sufficient to signal cleavage furrow formation during cytokinesis.
D'Avino, Pier Paolo; Savoian, Matthew S; Capalbo, Luisa; Glover, David M
2006-11-01
Several studies indicate that spindle microtubules determine the position of the cleavage plane at the end of cell division, but their exact role in triggering the formation and ingression of the cleavage furrow is still unclear. Here we show that in Drosophila depletion of either the GAP (GTPase-activating protein) or the kinesin-like subunit of the evolutionary conserved centralspindlin complex prevents furrowing without affecting the association of astral microtubules with the cell cortex. Moreover, time-lapse imaging indicates that astral microtubules serve to deliver the centralspindlin complex to the equatorial cortex just before furrow formation. However, when the GAP-signaling component was mislocalized around the entire cortex using a membrane-tethering motif, this caused ectopic furrowing even in the absence of its motor partner. Thus, the GAP component of centralspindlin is both necessary and sufficient for furrow formation and ingression and astral microtubules provide a route for its delivery to the cleavage site.
Es'kov, A K
2013-01-01
Species composition of epiphytic communities within different formations of Phú Quôc Island (Southern Vietnam) is studied. The dependence of species composition and structural complexity of epiphytic communities on formation quality is demonstrated. Representatives of different families differ notably in their sensitivity to disturbances. Most vulnerable are Orchidaceae which represent the dominant group in epiphytic community of rain forest and which drop out almost completely under anthropogenic impacts. In less disturbed forests, epiphyte species diversity increases mainly at the expense of "lower" synusias and directly depends on the formation layering. Diminishing of layering numbers leads to dropping out of species belonging to "lower" synusias. Among epiphytes, the indicators of disturbed communities can be detected, namely species of ruderal strategy (explerents). In primal rain forest, they are absent or barely noticeable. An index is proposed for estimation of epiphytic communitiy complexity.
Cox, Nicholas; Retegan, Marius; Neese, Frank; Pantazis, Dimitrios A; Boussac, Alain; Lubitz, Wolfgang
2014-08-15
The photosynthetic protein complex photosystem II oxidizes water to molecular oxygen at an embedded tetramanganese-calcium cluster. Resolving the geometric and electronic structure of this cluster in its highest metastable catalytic state (designated S3) is a prerequisite for understanding the mechanism of O-O bond formation. Here, multifrequency, multidimensional magnetic resonance spectroscopy reveals that all four manganese ions of the catalyst are structurally and electronically similar immediately before the final oxygen evolution step; they all exhibit a 4+ formal oxidation state and octahedral local geometry. Only one structural model derived from quantum chemical modeling is consistent with all magnetic resonance data; its formation requires the binding of an additional water molecule. O-O bond formation would then proceed by the coupling of two proximal manganese-bound oxygens in the transition state of the cofactor. Copyright © 2014, American Association for the Advancement of Science.
Formate-induced inhibition of the water-oxidizing complex of photosystem II studied by EPR.
Feyziev, Y M; Yoneda, D; Yoshii, T; Katsuta, N; Kawamori, A; Watanabe, Y
2000-04-04
The effects of various formate concentrations on both the donor and the acceptor sides in oxygen-evolving PS II membranes (BBY particles) were examined. EPR, oxygen evolution and variable chlorophyll fluorescence have been observed. It was found that formate inhibits the formation of the S(2) state multiline signal concomitant with stimulation of the Q(A)(-)Fe(2+) signal at g = 1.82. The decrease and the increase in intensities of the multiline and Q(A)(-)Fe(2+) signals, respectively, had a linear relation for formate concentrations between 5 and 500 mM. The g = 4.1 signal formation measured in the absence of methanol was not inhibited by formate up to 250 mM in the buffer. In the presence of 3% methanol the g = 4.1 signal evolved as formate concentration increased. The evolved signal could be ascribed to the inhibited centers. Oxygen evolution measured in the presence of an electron acceptor, phenyl-p-benzoquinone, was also inhibited by formate proportionally to the decrease in the multiline signal intensity. The inhibition seemed to be due to a retarded electron transfer from the water-oxidizing complex to Y(Z)(+), which was observed in the decay kinetics of the Y(Z)(+) signal induced by illumination above 250 K. These results show that formate induces inhibition of water oxidation reactions as well as electron transfer on the PS II acceptor side. The inhibition effects of formate in PS II were found to be reversible, indicating no destructive effect on the reaction center induced by formate.
López, Carlos; Lejeune, Marylène; Escrivà, Patricia; Bosch, Ramón; Salvadó, Maria Teresa; Pons, Lluis E.; Baucells, Jordi; Cugat, Xavier; Álvaro, Tomás; Jaén, Joaquín
2008-01-01
This study investigates the effects of digital image compression on automatic quantification of immunohistochemical nuclear markers. We examined 188 images with a previously validated computer-assisted analysis system. A first group was composed of 47 images captured in TIFF format, and other three contained the same images converted from TIFF to JPEG format with 3×, 23× and 46× compression. Counts of TIFF format images were compared with the other three groups. Overall, differences in the count of the images increased with the percentage of compression. Low-complexity images (≤100 cells/field, without clusters or with small-area clusters) had small differences (<5 cells/field in 95–100% of cases) and high-complexity images showed substantial differences (<35–50 cells/field in 95–100% of cases). Compression does not compromise the accuracy of immunohistochemical nuclear marker counts obtained by computer-assisted analysis systems for digital images with low complexity and could be an efficient method for storing these images. PMID:18755997
Preparation of microcapsules by complex coacervation of gum Arabic and chitosan.
Butstraen, Chloé; Salaün, Fabien
2014-01-01
Gum Arabic-chitosan microcapsules containing a commercially available blend of triglycerides (Miglyol 812 N) as core phase were synthesized by complex coacervation. This study was conducted to clarify the influence of different parameters on the encapsulation process, i.e. during the emulsion formation steps and during the shell formation, using conductometry, zeta potential, surface and interface tension measurement and Fourier-transform infrared spectroscopy. By carefully analyzing the influencing factors including phase volume ratio, stirring rate and time, pH, reaction time, biopolymer ratio and crosslinking effect, the optimum synthetic conditions were found out. For the emulsion step, the optimum phase volume ratio chosen was 0.10 and an emulsion time of 15 min at 11,000 rpm was selected. The results also indicated that the optimum formation of these complexes appears at a pH value of 3.6 and a weight ratio of chitosan to gum Arabic mixtures of 0.25. Copyright © 2013 Elsevier Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Uedono, A.; Yamashita, Y.; Tsutsui, T.; Dordi, Y.; Li, S.; Oshima, N.; Suzuki, R.
2012-05-01
Positron annihilation was used to probe vacancy-type defects in electroless deposited copper films. For as-deposited films, two different types of vacancy-type defects were found to coexist; these were identified as vacancy aggregates (V3-V4) and larger vacancy clusters (˜V10). After annealing at about 200 °C, the defects started to diffuse toward the surface and aggregate. The same tendency has been observed for sulfur only, suggesting the formation of complexes between sulfur and vacancies. The defect concentration near the Cu/barrier-metal interface was high even after annealing above 600 °C, and this was attributed to an accumulation of vacancy-impurity complexes. The observed defect reactions were attributed to suppression of the vacancy diffusion to sinks through the formation of impurity-vacancy complexes. It was shown that electroless plating has a high potential to suppress the formation of voids/hillocks caused by defect migration.
Opinion diversity and community formation in adaptive networks
NASA Astrophysics Data System (ADS)
Yu, Y.; Xiao, G.; Li, G.; Tay, W. P.; Teoh, H. F.
2017-10-01
It is interesting and of significant importance to investigate how network structures co-evolve with opinions. In this article, we show that, a simple model integrating consensus formation, link rewiring, and opinion change allows complex system dynamics to emerge, driving the system into a dynamic equilibrium with the co-existence of diversified opinions. Specifically, similar opinion holders may form into communities yet with no strict community consensus; and rather than being separated into disconnected communities, different communities are connected by a non-trivial proportion of inter-community links. More importantly, we show that the complex dynamics may lead to different numbers of communities at the steady state with a given tolerance between different opinion holders. We construct a framework for theoretically analyzing the co-evolution process. Theoretical analysis and extensive simulation results reveal some useful insights into the complex co-evolution process, including the formation of dynamic equilibrium, the transition between different steady states with different numbers of communities, and the dynamics between opinion distribution and network modularity.
Vanysacker, L.; Denis, C.; Declerck, P.; Piasecka, A.; Vankelecom, I. F. J.
2013-01-01
Since many years, membrane biofouling has been described as the Achilles heel of membrane fouling. In the present study, an ecological assay was performed using model systems with increasing complexity: a monospecies assay using Pseudomonas aeruginosa or Escherichia coli separately, a duospecies assay using both microorganisms, and a multispecies assay using activated sludge with or without spiked P. aeruginosa. The microbial adhesion and biofilm formation were evaluated in terms of bacterial cell densities, species richness, and bacterial community composition on polyvinyldifluoride, polyethylene, and polysulfone membranes. The data show that biofouling formation was strongly influenced by the kind of microorganism, the interactions between the organisms, and the changes in environmental conditions whereas the membrane effect was less important. The findings obtained in this study suggest that more knowledge in species composition and microbial interactions is needed in order to understand the complex biofouling process. This is the first report describing the microbial interactions with a membrane during the biofouling development. PMID:23986906
Influence of Structure, Charge, and Concentration on the Pectin-Calcium-Surfactant Complexes.
Joshi, Nidhi; Rawat, Kamla; Bohidar, H B
2016-05-12
Polymer-surfactant complex formation of pectin with different types of surfactants, cationic (cetyltrimethylammonium bromide, CTAB and dodecyl trimethylammonium bromide, DTAB), anionic (sodium dodecyl sulfate, SDS), and neutral (Triton X-100, TX-100), was investigated at room temperature in the presence and absence of cross-linker calcium chloride using light scattering, zeta potential, rheology, and UV-vis spectroscopic measurements where the surfactant concentration was maintained below their critical micellar concentration (CMC). Results indicated that the interaction of cationic surfactant with pectin in the presence and absence of calcium chloride was much stronger compared to anionic and neutral surfactants. The neutral surfactant showed identifiable interaction despite the absence of any charged headgroup, while anionic surfactant showed feeble or very weak interaction with the polymer. The pectin-CTAB or DTAB complex formation was attributed to associative electrostatic and hydrophobic interactions. On comparison between the cationic surfactants, it was found that CTAB interacts strongly with pectin because of its long hydrocarbon chain. The morphology of complexes formed exhibited random coil structures while at higher concentration of surfactant, rod-like or extended random coil structures were noticed. Thus, functional characteristics of the complex could be tuned by varying the type of surfactant (charge and structure) and its concentration. The differential network rigidity (pectin-CTAB versus pectin-DTAB gels) obtained from rheology measurements showed that addition of a very small amount of surfactant (concentration ≪ CMC) was required for enhancing network strength, while the presence of a large amount of surfactant resulted in the formation of fragile gels. No gel formation occurred when the surfactant concentration was close to their CMC values. Considering the importance of pectin in food and pharmaceutical industry, this study is relevant.
Inflammasome assembly in the chorioamniotic membranes during spontaneous labor at term.
Gomez-Lopez, Nardhy; Romero, Roberto; Xu, Yi; Garcia-Flores, Valeria; Leng, Yaozhu; Panaitescu, Bogdan; Miller, Derek; Abrahams, Vikki M; Hassan, Sonia S
2017-05-01
Inflammasome activation requires two steps: priming and assembly of the multimeric complex. The second step includes assembly of the sensor molecule and adaptor protein ASC (an apoptosis-associated speck-like protein containing a CARD), which results in ASC speck formation and the recruitment of caspase (CASP)-1. Herein, we investigated whether there is inflammasome assembly in the chorioamniotic membranes and choriodecidual leukocytes from women who underwent spontaneous labor at term. Using in situ proximity ligation assays, ASC/CASP-1 complexes were determined in the chorioamniotic membranes from women who delivered at term without labor or underwent spontaneous labor at term with or without acute histologic chorioamnionitis (n=10-11 each). Also, ASC speck formation was determined by flow cytometry in the choriodecidual leukocytes isolated from women who delivered at term with or without spontaneous labor (n=9-12 each). (i) ASC/CASP-1 complexes were detected in the chorioamniotic membranes; (ii) ASC/CASP-1 complexes were greater in the chorioamniotic membranes from women who underwent spontaneous labor at term than in those without labor; (iii) ASC/CASP-1 complexes were even more abundant in the chorioamniotic membranes from women who underwent spontaneous labor at term with acute histologic chorioamnionitis than in those without this placental lesion; (iv) ASC speck formation was detected in the choriodecidual leukocytes; and (v) ASC speck formation was greater in the choriodecidual leukocytes isolated from women who underwent spontaneous labor at term than in those without labor. There is inflammasome assembly in the chorioamniotic membranes and choriodecidual leukocytes during spontaneous labor at term. Published 2017. This article is a U.S. Government work and is in the public domain in the USA.
Mitani, Takakazu; Minami, Masato; Harada, Naoki; Ashida, Hitoshi; Yamaji, Ryoichi
2015-10-01
Prostate cancer grows under hypoxic conditions. Hypoxia decreases androgen receptor (AR) protein levels. However, the molecular mechanism remains unclear. Here, we report that p62-mediated autophagy degrades AR protein and suppresses apoptosis in prostate cancer LNCaP cells in hypoxia. In LNCaP cells, hypoxia decreased AR at the protein level, but not at the mRNA level. Hypoxia-induced AR degradation was inhibited not only by knockdown of LC3, a key component of the autophagy machinery, but also by knockdown of p62. Depletion of p62 enhanced hypoxia-induced poly(ADP-ribose) polymerase cleavage and caspase-3 cleavage, markers of apoptosis, whereas simultaneous knockdown of p62 and AR suppressed hypoxia-induced apoptosis. Hypoxia increased the formation of a cytosolic p62-AR complex and enhanced sequestration of AR from the nucleus. Formation of this complex was promoted by the increased phosphorylation of serine 403 in the ubiquitin-associated domain of p62 during hypoxia. An antioxidant and an AMP-activated protein kinase (AMPK) inhibitor reduced hypoxia-induced p62 phosphorylation at serine 403 and suppressed hypoxia-induced complex formation between AR and p62. These results demonstrate that hypoxia enhances the complex formation between p62 and AR by promoting phosphorylation of p62 at serine 403, probably through activating AMPK, and that p62-mediated autophagy degrades AR protein for cell survival in hypoxia. Copyright © 2015 Elsevier Inc. All rights reserved.
Characteristics of alpha-glycerophosphate-evoked H2O2 generation in brain mitochondria.
Tretter, Laszlo; Takacs, Katalin; Hegedus, Vera; Adam-Vizi, Vera
2007-02-01
Characteristics of reactive oxygen species (ROS) production in isolated guinea-pig brain mitochondria respiring on alpha-glycerophosphate (alpha-GP) were investigated and compared with those supported by succinate. Mitochondria established a membrane potential (DeltaPsi(m)) and released H(2)O(2) in parallel with an increase in NAD(P)H fluorescence in the presence of alpha-GP (5-40 mm). H(2)O(2) formation and the increase in NAD(P)H level were inhibited by rotenone, ADP or FCCP, respectively, being consistent with a reverse electron transfer (RET). The residual H(2)O(2) formation in the presence of FCCP was stimulated by myxothiazol in mitochondria supported by alpha-GP, but not by succinate. ROS under these conditions are most likely to be derived from alpha-GP-dehydrogenase. In addition, huge ROS formation could be provoked by antimycin in alpha-GP-supported mitochondria, which was prevented by myxothiazol, pointing to the generation of ROS at the quinol-oxidizing center (Q(o)) site of complex III. FCCP further stimulated the production of ROS to the highest rate that we observed in this study. We suggest that the metabolism of alpha-GP leads to ROS generation primarily by complex I in RET, and in addition a significant ROS formation could be ascribed to alpha-GP-dehydrogenase in mammalian brain mitochondria. ROS generation by alpha-GP at complex III is evident only when this complex is inhibited by antimycin.
Formation of heterobimetallic zirconium/cobalt diimido complexes via a four-electron transformation.
Wu, Bing; Hernández Sánchez, Raúl; Bezpalko, Mark W; Foxman, Bruce M; Thomas, Christine M
2014-10-06
The reactivity of the reduced heterobimetallic complex Zr((i)PrNP(i)Pr2)3CoN2 (1) toward aryl azides was examined, revealing a four-electron redox transformation to afford unusual heterobimetallic zirconium/cobalt diimido complexes. In the case of p-tolyl azide, the diamagnetic C3-symmetric bis(terminal imido) complex 3 is formed, but mesityl azide instead leads to asymmetric complex 4 featuring a bridging imido fragment.
Lu, Meng-Yao; Lin, Ting-Hao; Chiang, Po-Hung; Kuo, Pei-Hsin; Wang, Ning; Wu, Wen-Hsin; Lin, Kai-Hsin; Wu, Tzu-Hua
2017-04-01
β-Thalassemia major patients with higher total drug levels [deferasirox (DEFR) plus its iron complex] do not yield better serum ferritin (SF) control. This study aimed to determine the concentrations of DEFR and its iron complex (Fe-[DEFR]2) in thalassemia patients to predict the chelation efficacy in terms of SF and cardiac T2* values. Patients' steady-state drug levels at trough (Ctrough) and 2 hours postdose (C2h) were determined. Because iron deposition may cause changes in the hepatic metabolism of amino acids, the concentrations of 40 amino acids in plasma were also assayed at 2 hours postdose. A total of 28 patients either dosing daily or twice daily were recruited. After a 1-month DEFR maintenance therapy, 38.8% and 30% of patients from groups of once-daily and twice-daily, respectively, had a plasma DEFR-iron complex formation ratio higher than 0.05 [High Chelation Ratio, (HCR)]. After a 6-month follow-up, those patients who had a HCR (n = 10) at C2h showed more favorable median changes in SF and cardiac T2* values (-388.0, +10.1) than those with a low DEFR-iron complex formation ratio (Low Chelation Ratio; n = 18; +10.5; +4.5) compared with the baseline. The levels of plasma L-arginine, L-alanine, L-glycine, L-norleucine, and L-serine were significantly lower in patients with the low Chelation Ratio condition than the levels in HCR patients. This therapeutic drug monitoring study revealed that a DEFR-iron complex formation ratio at C2h might be an applicable indicator of the efficacy of long-term DEFR iron chelation therapy. A better iron-control response to DEFR was observed in the patients with HCRs. The trends for the ratio might have value in dose-setting and need to be validated in a larger cohort.
NASA Astrophysics Data System (ADS)
Goenawan, Joshua; Trisanti, P. N.; Sumarno
2015-12-01
This work studies the relation between dissolved H2O content in supercritical carbon dioxide (SC-CO2) with the formation of ketoprofen (KP)/β-cyclodextrin(CD) inclusion complexes. The process involves a physical mixture of these two compounds into contact with the supercritical carbon dioxide which had been previously saturated with H2O over a certain duration. The pressure used for saturation process is 130 bar and saturation temperature was ranged between 30 °C to 50 °C. The inclusion process was achieved by keeping it for 2 hours at 160 bar and 200 bar with inclusion temperature of 50 °C. The results enable us to suggest explanations for the inclusion formation. The inclusion complexes can be formed by contacting the dissolved H2O in SC-CO2 to the physical mixture of KP and CD. An increase in the temperature of saturation process resulted in an increase of dissolved H2O content in the supercritical carbon dioxide. The increasing levels of this water soluble resulted an increase in the inclusion complexes that has been formed. The formation of inclusion complexes includes the water molecules enhancing the emptying of the CD cavities and being replaced by KP, towards a more stable energy state. The drug release used for analyzing the dissolution rate of the KP/CD complexes. The results vary from 79,85% to 99,98% after 45 minutes which is above the rate that has been assigned by Farmakope Indonesia at 70% dissolution rate for KP. The use of SC-CO2 offers a new methods for increasing the rate of dissolution of drugs that are hydrophobic such as KP. CO2 used as a supercritical fluid because of its relatively low cost, easily obtainable supercritical conditions, and lack of toxicity. The material samples were characterized by DSC and Spectrophotometer UV-vis technique.
Constraining the Abundances of Complex Organics in the Inner Regions of Solar-Type Protostars
NASA Astrophysics Data System (ADS)
López-Sepulcre, A.; Taquet, V.; Ceccarelli, C.; Neri, R.; Kahane, C.; Charnley, S. B.
2015-12-01
We present arcsecond-resolution observations, obtained with the IRAM Plateau de Bure interferometer, of multiple complex organic molecules in two hot corino protostars: IRAS 2A and IRAS 4A, in the NGC 1333 star-forming region. The distribution of the line emission is very compact, indicating the presence of COMs is mostly concentrated in the inner hot corino regions. A comparison of the COMs abundances with astrochemical models favours a gas-phase formation route for CH3OCH3, and a grain formation of C2H5OH, C2H5CN, and HCOCH2OH. The high abundances of methyl formate (HCOOCH3) remain underpredicted by an order of magnitude.
Rogue waves in multiple-solitons-inelastic collisions — The complex Sharma-Tasso-Olver equation
NASA Astrophysics Data System (ADS)
Abdel-Gawad, H. I.; Tantawy, M.
2018-03-01
Very recently, a mechanism to the formation of rogue waves (RWs) has been proposed by the authors. In this paper, the formation of RWs in case of the complex Sharma-Tasso-Olver (STO) equation is studied. In the STO equation, one, two and three-soliton solutions are obtained. Due to the inelastic collisions, these soliton waves are fused to one. Under the free parameters constraint this behavior do occurs. The mechanism of formation of RWs is due to the collisions of solitons and multi-periodic waves (like spectral band). These RWs as giant waves, which may be very sharp or chaotic are similar to RWs in laser. The work is done here by using the generalized unified method (GUM).
A Low-Complexity Subgroup Formation with QoS-Aware for Enhancing Multicast Services in LTE Networks
NASA Astrophysics Data System (ADS)
Algharem, M.; Omar, M. H.; Rahmat, R. F.; Budiarto, R.
2018-03-01
The high demand of Multimedia services on in Long Term Evolution (LTE) and beyond networks forces the networks operators to find a solution that can handle the huge traffic. Along with this, subgroup formation techniques are introduced to overcome the limitations of the Conventional Multicast Scheme (CMS) by splitting the multicast users into several subgroups based on the users’ channels quality signal. However, finding the best subgroup configuration with low complexity is need more investigations. In this paper, an efficient and simple subgroup formation mechanisms are proposed. The proposed mechanisms take the transmitter MAC queue in account. The effectiveness of the proposed mechanisms is evaluated and compared with CMS in terms of throughput, fairness, delay, Block Error Rate (BLER).
NASA Astrophysics Data System (ADS)
Shoji, Mitsuo; Isobe, Hiroshi; Shigeta, Yasuteru; Nakajima, Takahito; Yamaguchi, Kizashi
2018-04-01
The reaction mechanism of the O2 formation in the S4 state of the oxygen-evolving complex of photosystem II was clarified at the quantum mechanics/molecular mechanics (QM/MM) level. After the Yz (Y161) oxidation and the following proton transfer in the S3 state, five reaction steps are required to produce the molecular dioxygen. The highest barrier step is the first proton transfer reaction (0 → 1). The following reactions involving electron transfers were precisely analyzed in terms of their energies, structures and spin densities. We found that the one-electron transfer from the Mn4Ca cluster to Y161 triggers the O-O sigma bond formation.