Science.gov

Sample records for interpreting impact crater

  1. Interpretation of Lunar Topography: Impact Cratering and Surface Roughness

    NASA Astrophysics Data System (ADS)

    Rosenburg, Margaret A.

    This work seeks to understand past and present surface conditions on the Moon using two different but complementary approaches: topographic analysis using high-resolution elevation data from recent spacecraft missions and forward modeling of the dominant agent of lunar surface modification, impact cratering. The first investigation focuses on global surface roughness of the Moon, using a variety of statistical parameters to explore slopes at different scales and their relation to competing geological processes. We find that highlands topography behaves as a nearly self-similar fractal system on scales of order 100 meters, and there is a distinct change in this behavior above and below approximately 1 km. Chapter 2 focuses this analysis on two localized regions: the lunar south pole, including Shackleton crater, and the large mare-filled basins on the nearside of the Moon. In particular, we find that differential slope, a statistical measure of roughness related to the curvature of a topographic profile, is extremely useful in distinguishing between geologic units. Chapter 3 introduces a numerical model that simulates a cratered terrain by emplacing features of characteristic shape geometrically, allowing for tracking of both the topography and surviving rim fragments over time. The power spectral density of cratered terrains is estimated numerically from model results and benchmarked against a 1-dimensional analytic model. The power spectral slope is observed to vary predictably with the size-frequency distribution of craters, as well as the crater shape. The final chapter employs the rim-tracking feature of the cratered terrain model to analyze the evolving size-frequency distribution of craters under different criteria for identifying "visible" craters from surviving rim fragments. A geometric bias exists that systematically over counts large or small craters, depending on the rim fraction required to count a given feature as either visible or erased.

  2. The rayed crater Zunil and interpretations of small impact craters on Mars

    NASA Astrophysics Data System (ADS)

    McEwen, Alfred S.; Preblich, Brandon S.; Turtle, Elizabeth P.; Artemieva, Natalia A.; Golombek, Matthew P.; Hurst, Michelle; Kirk, Randolph L.; Burr, Devon M.; Christensen, Philip R.

    2005-08-01

    A 10-km diameter crater named Zunil in the Cerberus Plains of Mars created ˜10 secondary craters 10 to 200 m in diameter. Many of these secondary craters are concentrated in radial streaks that extend up to 1600 km from the primary crater, identical to lunar rays. Most of the larger Zunil secondaries are distinctive in both visible and thermal infrared imaging. MOC images of the secondary craters show sharp rims and bright ejecta and rays, but the craters are shallow and often noncircular, as expected for relatively low-velocity impacts. About 80% of the impact craters superimposed over the youngest surfaces in the Cerberus Plains, such as Athabasca Valles, have the distinctive characteristics of Zunil secondaries. We have not identified any other large (⩾10 km diameter) impact crater on Mars with such distinctive rays of young secondary craters, so the age of the crater may be less than a few Ma. Zunil formed in the apparently youngest (least cratered) large-scale lava plains on Mars, and may be an excellent example of how spallation of a competent surface layer can produce high-velocity ejecta (Melosh, 1984, Impact ejection, spallation, and the origin of meteorites, Icarus 59, 234-260). It could be the source crater for some of the basaltic shergottites, consistent with their crystallization and ejection ages, composition, and the fact that Zunil produced abundant high-velocity ejecta fragments. A 3D hydrodynamic simulation of the impact event produced 10 10 rock fragments ⩾10 cm diameter, leading to up to 10 9 secondary craters ⩾10 m diameter. Nearly all of the simulated secondary craters larger than 50 m are within 800 km of the impact site but the more abundant smaller (10-50 m) craters extend out to 3500 km. If Zunil is representative of large impact events on Mars, then secondaries should be more abundant than primaries at diameters a factor of ˜1000 smaller than that of the largest primary crater that contributed secondaries. As a result, most small

  3. Enhancing Magnetic Interpretation Towards Meteorite Impact Crater at Bukit Bunuh, Perak, Malaysia

    NASA Astrophysics Data System (ADS)

    Nur Amalina, M. K. A.; Nordiana, M. M.; Saad, Rosli; Saidin, Mokhtar

    2017-04-01

    Bukit Bunuh is the most popular area of suspected meteorite impact crater. In the history of meteorite impact hitting the earth, Bukit Bunuh has complex crater of a rebound zone of positive magnetic anomaly value. This study area was located at Lenggong, Perak of peninsular Malaysia. The crater rim extended 5 km outwards with a clear subdued zone and immediately surround by a positive magnetic residual crater rim zone. A recent study was done to enhance the magnetic interpretation towards meteorite impact crater on this study area. The result obtained is being correlated with boreholes data to determine the range of local magnetic value. For the magnetic survey, the equipment used is Geometric G-856 Proton Precision magnetometers with the aids of other tools such as compass and GPS. In advance, the using of proton precision magnetometer causes it able in measures the magnetic fields separately within interval of second. Also, 18 boreholes are accumulated at study area to enhance the interpretation. The additional boreholes data had successfully described the structure of the impact crater at Bukit Bunuh in detailed where it is an eroded impact crater. Correlations with borehole records enlighten the results acquired from magnetic methods to be more reliable. A better insight of magnetic interpretation of Bukit Bunuh impact crater was done with the aid of geotechnical methods.

  4. Impact Crater

    NASA Image and Video Library

    2003-01-15

    The relatively flat floor and terrace walls of this impact crater imaged by NASA Mars Odyssey spacecraft suggest the crater was partly infilled with sediment and subsequently eroded to its present day form.

  5. Impact Craters

    NASA Image and Video Library

    2003-03-22

    The fluidized impact crater ejecta and flat crater floors observed in this image from NASA Mars Odyssey spacecraft suggest near-surface volatiles once played an important role in modifying the Martian surface.

  6. Impact Crater

    NASA Technical Reports Server (NTRS)

    2002-01-01

    [figure removed for brevity, see original site]

    Today marks the 45th anniversary of the dawn of the Space Age (October 4, 1957). On this date the former Soviet Union launched the world's first satellite, Sputnik 1. Sputnik means fellow traveler. For comparison Sputnik 1 weighed only 83.6 kg (184 pounds) while Mars Odyssey weighs in at 758 kg (1,671 pounds).

    This scene shows several interesting geologic features associated with impact craters on Mars. The continuous lobes of material that make up the ejecta blanket of the large impact crater are evidence that the crater ejecta were fluidized upon impact of the meteor that formed the crater. Volatiles within the surface mixed with the ejecta upon impact thus creating the fluidized form. Several smaller impact craters are also observed within the ejecta blanket of the larger impact crater giving a relative timing of events. Layering of geologic units is also observed within the large impact crater walls and floor and may represent different compositional units that erode at variable rates. Cliff faces, dissected gullies, and heavily eroded impact craters are observed in the bottom half of the image at the terminus of a flat-topped plateau.

    Note: this THEMIS visual image has not been radiometrically nor geometrically calibrated for this preliminary release. An empirical correction has been performed to remove instrumental effects. A linear shift has been applied in the cross-track and down-track direction to approximate spacecraft and planetary motion. Fully calibrated and geometrically projected images will be released through the Planetary Data System in accordance with Project policies at a later time.

    NASA's Jet Propulsion Laboratory manages the 2001 Mars Odyssey mission for NASA's Office of Space Science, Washington, D.C. The Thermal Emission Imaging System (THEMIS) was developed by Arizona State University, Tempe, in collaboration with Raytheon Santa Barbara Remote Sensing. The THEMIS

  7. Impact Craters

    NASA Technical Reports Server (NTRS)

    2003-01-01

    [figure removed for brevity, see original site]

    The fluidized impact crater ejecta and flat crater floors observed in this THEMIS image suggest near surface volatiles once played an important role in modifying the martian surface. Gullies observed in crater walls could possibly point to more recent volatile-rock interactions.

    Note: this THEMIS visual image has not been radiometrically nor geometrically calibrated for this preliminary release. An empirical correction has been performed to remove instrumental effects. A linear shift has been applied in the cross-track and down-track direction to approximate spacecraft and planetary motion. Fully calibrated and geometrically projected images will be released through the Planetary Data System in accordance with Project policies at a later time.

    NASA's Jet Propulsion Laboratory manages the 2001 Mars Odyssey mission for NASA's Office of Space Science, Washington, D.C. The Thermal Emission Imaging System (THEMIS) was developed by Arizona State University, Tempe, in collaboration with Raytheon Santa Barbara Remote Sensing. The THEMIS investigation is led by Dr. Philip Christensen at Arizona State University. Lockheed Martin Astronautics, Denver, is the prime contractor for the Odyssey project, and developed and built the orbiter. Mission operations are conducted jointly from Lockheed Martin and from JPL, a division of the California Institute of Technology in Pasadena.

    Image information: VIS instrument. Latitude 13.9, Longitude 297.3 East (62.7 West). 19 meter/pixel resolution.

  8. Impact Crater

    NASA Technical Reports Server (NTRS)

    2003-01-01

    [figure removed for brevity, see original site]

    The relatively flat floor and terrace walls of this impact crater suggest the crater was partly infilled with sediment and subsequently eroded to its present day form. This type of observation is evidence for environmental change throughout the geologic history of Mars.

    Note: this THEMIS visual image has not been radiometrically nor geometrically calibrated for this preliminary release. An empirical correction has been performed to remove instrumental effects. A linear shift has been applied in the cross-track and down-track direction to approximate spacecraft and planetary motion. Fully calibrated and geometrically projected images will be released through the Planetary Data System in accordance with Project policies at a later time.

    NASA's Jet Propulsion Laboratory manages the 2001 Mars Odyssey mission for NASA's Office of Space Science, Washington, D.C. The Thermal Emission Imaging System (THEMIS) was developed by Arizona State University, Tempe, in collaboration with Raytheon Santa Barbara Remote Sensing. The THEMIS investigation is led by Dr. Philip Christensen at Arizona State University. Lockheed Martin Astronautics, Denver, is the prime contractor for the Odyssey project, and developed and built the orbiter. Mission operations are conducted jointly from Lockheed Martin and from JPL, a division of the California Institute of Technology in Pasadena.

    Image information: VIS instrument. Latitude 18.1, Longitude 136.3 East (223.7 West). 19 meter/pixel resolution.

  9. Centrifuge impact cratering experiment 5

    NASA Technical Reports Server (NTRS)

    1984-01-01

    Transient crates motions, cratering flow fields, crates dynamics, determining impact conditions from total crater welt, centrifuge quarter-space cratering, and impact cratering mechanics research is documented.

  10. Impact Crater

    NASA Technical Reports Server (NTRS)

    2002-01-01

    [figure removed for brevity, see original site]

    The irregularly shaped rim of this bowl shaped impact crater is most likely due to erosion and the subsequent infilling of sediment.

    Note: this THEMIS visual image has not been radiometrically nor geometrically calibrated for this preliminary release. An empirical correction has been performed to remove instrumental effects. A linear shift has been applied in the cross-track and down-track direction to approximate spacecraft and planetary motion. Fully calibrated and geometrically projected images will be released through the Planetary Data System in accordance with Project policies at a later time.

    NASA's Jet Propulsion Laboratory manages the 2001 Mars Odyssey mission for NASA's Office of Space Science, Washington, D.C. The Thermal Emission Imaging System (THEMIS) was developed by Arizona State University, Tempe, in collaboration with Raytheon Santa Barbara Remote Sensing. The THEMIS investigation is led by Dr. Philip Christensen at Arizona State University. Lockheed Martin Astronautics, Denver, is the prime contractor for the Odyssey project, and developed and built the orbiter. Mission operations are conducted jointly from Lockheed Martin and from JPL, a division of the California Institute of Technology in Pasadena.

  11. Venus - Impact Crater Isabella

    NASA Image and Video Library

    1996-11-26

    Crater Isabella is seen in this radar image from NASA Magellan spacecraft. The second largest impact crater on Venus, the crater is named in honor of the 15th Century queen of Spain, Isabella of Castile.

  12. 3d morphometric analysis of lunar impact craters: a tool for degradation estimates and interpretation of maria stratigraphy

    NASA Astrophysics Data System (ADS)

    Vivaldi, Valerio; Massironi, Matteo; Ninfo, Andrea; Cremonese, Gabriele

    2015-04-01

    In this study we have applied 3D morphometric analysis of impact craters on the Moon by means of high resolution DTMs derived from LROC (Lunar Reconnaissance Orbiter Camera) NAC (Narrow Angle Camera) (0.5 to 1.5 m/pixel). The objective is twofold: i) evaluating crater degradation and ii) exploring the potential of this approach for Maria stratigraphic interpretation. In relation to the first objective we have considered several craters with different diameters representative of the four classes of degradation being C1 the freshest and C4 the most degraded ones (Arthur et al., 1963; Wilhelms, 1987). DTMs of these craters were elaborated according to a multiscalar approach (Wood, 1996) by testing different ranges of kernel sizes (e.g. 15-35-50-75-100), in order to retrieve morphometric variables such as slope, curvatures and openness. In particular, curvatures were calculated along different planes (e.g. profile curvature and plan curvature) and used to characterize the different sectors of a crater (rim crest, floor, internal slope and related boundaries) enabling us to evaluate its degradation. The gradient of the internal slope of different craters representative of the four classes shows a decrease of the slope mean value from C1 to C4 in relation to crater age and diameter. Indeed degradation is influenced by gravitational processes (landslides, dry flows), as well as space weathering that induces both smoothing effects on the morphologies and infilling processes within the crater, with the main results of lowering and enlarging the rim crest, and shallowing the crater depth. As far as the stratigraphic application is concerned, morphometric analysis was applied to recognize morphologic features within some simple craters, in order to understand the stratigraphic relationships among different lava layers within Mare Serenitatis. A clear-cut rheological boundary at a depth of 200 m within the small fresh Linnè crater (diameter: 2.22 km), firstly hypothesized

  13. Analytical Scanning and Transmission Electron Microscopy of Laboratory Impacts on Stardust Aluminium Foils: Interpreting Impact Crater Morphology and the Composition of Impact Residues.

    SciTech Connect

    Kearsley, A T; Graham, G A; Burchell, M J; Cole, M J; Dai, Z R; Teslich, N; Chater, R; Wozniakiewicz, P A; Spratt, J; Jones, G

    2006-10-19

    The known encounter velocity (6.1kms{sup -1}) between the Stardust spacecraft and the dust emanating from the nucleus of comet Wild 2 has allowed realistic simulation of dust collection in laboratory experiments designed to validate analytical methods for the interpretation of dust impacts on the aluminium foil components of the Stardust collector. In this report we present information on crater gross morphology, the pre-existing major and trace element composition of the foil, geometrical issues for energy dispersive X-ray analysis of the impact residues in scanning electron microscopes, and the modification of dust chemical composition during creation of impact craters as revealed by analytical transmission electron microscopy. Together, these observations help to underpin the interpretation of size, density and composition for particles impacted upon the Stardust aluminium foils.

  14. Paleontological interpretations of crater processes and infilling of synimpact sediments from the Chesapeake Bay impact structure

    USGS Publications Warehouse

    Self-Trail, Jean M.; Edwards, Lucy E.; Litwin, Ronald J.

    2009-01-01

    Biostratigraphic analysis of sedimentary breccias and diamictons in the Chesapeake Bay impact structure provides information regarding the timing and processes of late-stage gravitational crater collapse and ocean resurge. Studies of calcareous nannofossil and palynomorph assemblages in the International Continental Scientific Drilling Program (ICDP)–U.S. Geological Survey (USGS) Eyreville A and B cores show the mixed-age, mixed-preservation microfossil assemblages that are typical of deposits from the upper part of the Chesapeake Bay impact structure. Sparse, poorly preserved, possibly thermally altered pollen is present within a gravelly sand interval below the granite slab at 1392 m in Eyreville core B, an interval that is otherwise barren of calcareous nannofossils and dinocysts. Gravitational collapse of water- saturated sediments from the transient crater wall resulted in the deposition of sediment clasts primarily derived from the nonmarine Cretaceous Potomac Formation. Collapse occurred before the arrival of resurge. Low pollen Thermal Alteration Index (TAI) values suggest that these sediments were not thermally altered by contact with the melt sheet. The arrival of resurge sedimentation is identified based on the presence of diamicton zones and stringers rich in glauconite and marine microfossils at 866.7 m. This horizon can be traced across the crater and can be used to identify gravitational collapse versus ocean-resurge sedimentation. Glauconitic quartz sand diamicton dominates the sediments above 618.2 m. Calcareous nannofossil and dino-flagellate data from this interval suggest that the earliest arriving resurge from the west contained little or no Cretaceous marine input, but later resurge pulses mined Cretaceous sediments east of the Watkins core in the annular trough. Additionally, the increased distance traveled by resurge to the central crater in turbulent flow conditions resulted in the disaggregation of Paleogene unconsolidated sediments. As

  15. Paleontological interpretations of crater processes and infilling of synimpact sediments from the Chesapeake Bay impact structure

    USGS Publications Warehouse

    ,; Edwards, L.E.; Litwin, R.J.

    2009-01-01

    Biostratigraphic analysis of sedimentary breccias and diamictons in the Chesapeake Bay impact structure provides information regarding the timing and processes of late-stage gravitational crater collapse and ocean resurge. Studies of calcareous nannofossil and palynomorph assemblages in the International Continental Scientific Drilling Program (ICDP)-U.S. Geological Survey (USGS) Eyreville A and B cores show the mixed-age, mixed-preservation microfossil assemblages that are typical of deposits from the upper part of the Chesapeake Bay impact structure. Sparse, poorly preserved, possibly thermally altered pollen is present within a gravelly sand interval below the granite slab at 1392 m in Eyreville core B, an interval that is otherwise barren of calcareous nannofossils and dinocysts. Gravitational collapse of watersaturated sediments from the transient crater wall resulted in the deposition of sediment clasts primarily derived from the nonmarine Cretaceous Potomac Formation. Collapse occurred before the arrival of resurge. Low pollen Thermal Alteration Index (TAI) values suggest that these sediments were not thermally altered by contact with the melt sheet. The arrival of resurge sedimentation is identified based on the presence of diamicton zones and stringers rich in glauconite and marine microfossils at 866.7 m. This horizon can be traced across the crater and can be used to identify gravitational collapse versus ocean-resurge sedimentation. Glauconitic quartz sand diamicton dominates the sediments above 618.2 m. Calcareous nannofossil and dinoflagellate data from this interval suggest that the earliest arriving resurge from the west contained little or no Cretaceous marine input, but later resurge pulses mined Cretaceous sediments east of the Watkins core in the annular trough. Additionally, the increased distance traveled by resurge to the central crater in turbulent flow conditions resulted in the disaggregation of Paleogene unconsolidated sediments. As a

  16. Impact craters on Titan

    USGS Publications Warehouse

    Wood, C.A.; Lorenz, R.; Kirk, R.; Lopes, R.; Mitchell, Ken; Stofan, E.

    2010-01-01

    Five certain impact craters and 44 additional nearly certain and probable ones have been identified on the 22% of Titan's surface imaged by Cassini's high-resolution radar through December 2007. The certain craters have morphologies similar to impact craters on rocky planets, as well as two with radar bright, jagged rims. The less certain craters often appear to be eroded versions of the certain ones. Titan's craters are modified by a variety of processes including fluvial erosion, mass wasting, burial by dunes and submergence in seas, but there is no compelling evidence of isostatic adjustments as on other icy moons, nor draping by thick atmospheric deposits. The paucity of craters implies that Titan's surface is quite young, but the modeled age depends on which published crater production rate is assumed. Using the model of Artemieva and Lunine (2005) suggests that craters with diameters smaller than about 35 km are younger than 200 million years old, and larger craters are older. Craters are not distributed uniformly; Xanadu has a crater density 2-9 times greater than the rest of Titan, and the density on equatorial dune areas is much lower than average. There is a small excess of craters on the leading hemisphere, and craters are deficient in the north polar region compared to the rest of the world. The youthful age of Titan overall, and the various erosional states of its likely impact craters, demonstrate that dynamic processes have destroyed most of the early history of the moon, and that multiple processes continue to strongly modify its surface. The existence of 24 possible impact craters with diameters less than 20 km appears consistent with the Ivanov, Basilevsky and Neukum (1997) model of the effectiveness of Titan's atmosphere in destroying most but not all small projectiles. ?? 2009 Elsevier Inc.

  17. Impact craters on Titan

    USGS Publications Warehouse

    Wood, Charles A.; Lorenz, Ralph; Kirk, Randy; Lopes, Rosaly; Mitchell, Karl; Stofan, Ellen; ,

    2010-01-01

    Five certain impact craters and 44 additional nearly certain and probable ones have been identified on the 22% of Titan's surface imaged by Cassini's high-resolution radar through December 2007. The certain craters have morphologies similar to impact craters on rocky planets, as well as two with radar bright, jagged rims. The less certain craters often appear to be eroded versions of the certain ones. Titan's craters are modified by a variety of processes including fluvial erosion, mass wasting, burial by dunes and submergence in seas, but there is no compelling evidence of isostatic adjustments as on other icy moons, nor draping by thick atmospheric deposits. The paucity of craters implies that Titan's surface is quite young, but the modeled age depends on which published crater production rate is assumed. Using the model of Artemieva and Lunine (2005) suggests that craters with diameters smaller than about 35 km are younger than 200 million years old, and larger craters are older. Craters are not distributed uniformly; Xanadu has a crater density 2-9 times greater than the rest of Titan, and the density on equatorial dune areas is much lower than average. There is a small excess of craters on the leading hemisphere, and craters are deficient in the north polar region compared to the rest of the world. The youthful age of Titan overall, and the various erosional states of its likely impact craters, demonstrate that dynamic processes have destroyed most of the early history of the moon, and that multiple processes continue to strongly modify its surface. The existence of 24 possible impact craters with diameters less than 20 km appears consistent with the Ivanov, Basilevsky and Neukum (1997) model of the effectiveness of Titan's atmosphere in destroying most but not all small projectiles.

  18. Impact Crater Collapse

    NASA Astrophysics Data System (ADS)

    Melosh, H. J.; Ivanov, B. A.

    The detailed morphology of impact craters is now believed to be mainly caused by the collapse of a geometrically simple, bowl-shaped "transient crater." The transient crater forms immediately after the impact. In small craters, those less than approximately 15 km diameter on the Moon, the steepest part of the rim collapses into the crater bowl to produce a lens of broken rock in an otherwise unmodified transient crater. Such craters are called "simple" and have a depth-to-diameter ratio near 1:5. Large craters collapse more spectacularly, giving rise to central peaks, wall terraces, and internal rings in still larger craters. These are called "complex" craters. The transition between simple and complex craters depends on 1/g, suggesting that the collapse occurs when a strength threshold is exceeded. The apparent strength, however, is very low: only a few bars, and with little or no internal friction. This behavior requires a mechanism for temporary strength degradation in the rocks surrounding the impact site. Several models for this process, including acoustic fluidization and shock weakening, have been considered by recent investigations. Acoustic fluidization, in particular, appears to produce results in good agreement with observations, although better understanding is still needed.

  19. Impact cratering on slopes

    NASA Astrophysics Data System (ADS)

    Aschauer, Johannes; Kenkmann, Thomas

    2017-07-01

    The majority of impact craters have circular outlines and axially symmetric morphologies. Deviation from crater circularity is caused by either target heterogeneity, a very oblique impact incidence, post-impact deformation, or by topography. Here, we investigate the effect of topography on crater formation and systematically study impact cratering processes on inclined hillsides up to 25° slope utilizing analogue experiments. A spring-driven air gun mounted in a vertical position shoots into three different types of granular bulk solids (two sorts of glass beads, quartz sand) to emulate impact cratering on slopes. In all, 170 experiments were conducted. The transient crater develops roughly symmetrically perpendicular to the slope plane, resulting in higher ejection angles uphill than downhill when measured with respect to a horizontal plane. Craters become increasingly elliptical with increasing slope angle. At slope angles close to angle of repose of the respective bulk solids, aspect ratios of the craters reach ∼1.7. Uphill-downhill cross sections become increasingly asymmetric, the depth-diameter ratio of the craters decreases, and the deepest point shifts downhill with increasing slope angle. Mass wasting is initiated both in the uphill and downhill sectors of the crater rim. For steep slopes the landslides that emanate from the uphill rim can overshoot the crater cavity and superpose the downhill crater rim in a narrow tongue. Mass wasting initiated at the downhill sector forms broader and shallower tongues and is triggered by the deposition of ejecta on the inclined slope. Our experiments help to explain asymmetric crater morphologies observed on asteroids such as Ceres, Vesta, Lutetia, and also on Mars.

  20. Centrifuge Impact Cratering Experiments

    NASA Technical Reports Server (NTRS)

    Schmidt, R. M.; Housen, K. R.; Bjorkman, M. D.

    1985-01-01

    The kinematics of crater growth, impact induced target flow fields and the generation of impact melt were determined. The feasibility of using scaling relationships for impact melt and crater dimensions to determine impactor size and velocity was studied. It is concluded that a coupling parameter determines both the quantity of melt and the crater dimensions for impact velocities greater than 10km/s. As a result impactor radius, a, or velocity, U cannot be determined individually, but only as a product in the form of a coupling parameter, delta U micron. The melt volume and crater volume scaling relations were applied to Brent crater. The transport of melt and the validity of the melt volume scaling relations are examined.

  1. Impact cratering: A geologic process

    NASA Technical Reports Server (NTRS)

    Melosh, H. J.

    1989-01-01

    The mechanisms involved in the formation of impact craters are examined theoretically, reviewing the results of recent investigations. Topics addressed include crater morphology, stress waves in solids, the contact and compression stage, the excavation stage, and ejecta deposits. Consideration is given to the scaling of crater dimensions, the crater modification stage, multiring basins, cratered landscapes, atmospheric interactions, and the implications of impact cratering for planetary evolution. Extensive diagrams, graphs, tables, and images of typical craters are provided.

  2. Impact cratering: A geologic process

    NASA Astrophysics Data System (ADS)

    Melosh, H. J.

    The mechanisms involved in the formation of impact craters are examined theoretically, reviewing the results of recent investigations. Topics addressed include crater morphology, stress waves in solids, the contact and compression stage, the excavation stage, and ejecta deposits. Consideration is given to the scaling of crater dimensions, the crater modification stage, multiring basins, cratered landscapes, atmospheric interactions, and the implications of impact cratering for planetary evolution. Extensive diagrams, graphs, tables, and images of typical craters are provided.

  3. Problems in the interpretation of lunar mare stratigraphy and relative ages indicated by ejecta from small impact craters

    NASA Technical Reports Server (NTRS)

    Young, R. A.; Brennan, W. J.; Nichols, D. J.

    1974-01-01

    The numbers of large ejecta blocks in excess of several meters in diameter ('blockiness') around the rims of small craters in southeastern Mare Serenitatis exceed those around similar craters in southern Mare Imbrium (and some other regions) at all but the final stages of crater degradation. Terrestrial explosion crater analogs, studies of impact processes, and a layered mare model suggest that the nature of the layering in the subsurface, including lavas, ejecta and buried regolith horizons, could account for the variable blockiness of crater ejecta and, possibly, for some variation in crater size-frequency distributions. Such effects would limit the reliability and utility of counting postmare craters for the purpose of estimating the relative ages of mare surfaces. Similarly, comparisons of the effects of progressive degradation on small impact craters to determine relative or absolute ages of individual craters may be limited by the influence of stratigraphy on ejecta fragment size distributions, which would in turn affect micrometeorite erosion rates and regolith production models.

  4. Venus - Impact Crater 'Jeanne

    NASA Technical Reports Server (NTRS)

    1991-01-01

    This Magellan full-resolution image shows Jeanne crater, a 19.5 kilometer (12 mile) diameter impact crater. Jeanne crater is located at 40.0 degrees north latitude and 331.4 degrees longitude. The distinctive triangular shape of the ejecta indicates that the impacting body probably hit obliquely, traveling from southwest to northeast. The crater is surrounded by dark material of two types. The dark area on the southwest side of the crater is covered by smooth (radar-dark) lava flows which have a strongly digitate contact with surrounding brighter flows. The very dark area on the northeast side of the crater is probably covered by smooth material such as fine-grained sediment. This dark halo is asymmetric, mimicking the asymmetric shape of the ejecta blanket. The dark halo may have been caused by an atmospheric shock or pressure wave produced by the incoming body. Jeanne crater also displays several outflow lobes on the northwest side. These flow-like features may have formed by fine-grained ejecta transported by a hot, turbulent flow created by the arrival of the impacting object. Alternatively, they may have formed by flow of impact melt.

  5. Venus - Impact Crater Jeanne

    NASA Image and Video Library

    1996-11-20

    This full-resolution image from NASA Magellan spacecraft shows Jeanne crater, a 19.5 kilometer (12 mile) diameter impact crater. Jeanne crater is located at 40.0 degrees north latitude and 331.4 degrees longitude. The distinctive triangular shape of the ejecta indicates that the impacting body probably hit obliquely, traveling from southwest to northeast. The crater is surrounded by dark material of two types. The dark area on the southwest side of the crater is covered by smooth (radar-dark) lava flows which have a strongly digitate contact with surrounding brighter flows. The very dark area on the northeast side of the crater is probably covered by smooth material such as fine-grained sediment. This dark halo is asymmetric, mimicking the asymmetric shape of the ejecta blanket. The dark halo may have been caused by an atmospheric shock or pressure wave produced by the incoming body. Jeanne crater also displays several outflow lobes on the northwest side. These flow-like features may have formed by fine-grained ejecta transported by a hot, turbulent flow created by the arrival of the impacting object. Alternatively, they may have formed by flow of impact melt. http://photojournal.jpl.nasa.gov/catalog/PIA00472

  6. Impact Crater with Smoothed Rim

    NASA Image and Video Library

    2012-03-01

    This image from NASA Dawn spacecraft of asteroid Vesta shows hows a large impact crater whose rim is rather smoothed and degraded. There are many smaller, younger craters surrounding and inside of this crater and these have sharper, fresher rims.

  7. Spatial distribution of impact craters on Deimos

    NASA Astrophysics Data System (ADS)

    Hirata, Naoyuki

    2017-05-01

    Deimos, one of the Martian moons, has numerous impact craters. However, it is unclear whether crater saturation has been reached on this satellite. To address this issue, we apply a statistical test known as nearest-neighbor analysis to analyze the crater distribution of Deimos. When a planetary surface such as the Moon is saturated with impact craters, the spatial distribution of craters is generally changed from random to more ordered. We measured impact craters on Deimos from Viking and HiRISE images and found (1) that the power law of the size-frequency distribution of the craters is approximately -1.7, which is significantly shallower than those of potential impactors, and (2) that the spatial distribution of craters over 30 m in diameter cannot be statistically distinguished from completely random distribution, which indicates that the surface of Deimos is inconsistent with a surface saturated with impact craters. Although a crater size-frequency distribution curve with a slope of -2 is generally interpreted as indicating saturation equilibrium, it is here proposed that two competing mechanisms, seismic shaking and ejecta emplacement, have played a major role in erasing craters on Deimos and are therefore responsible for the shallow slope of this curve. The observed crater density may have reached steady state owing to the obliterations induced by the two competing mechanisms. Such an occurrence indicates that the surface is saturated with impact craters despite the random distribution of craters on Deimos. Therefore, this work proposes that the age determined by the current craters on Deimos reflects neither the age of Deimos itself nor that of the formation of the large concavity centered at its south pole because craters should be removed by later impacts. However, a few of the largest craters on Deimos may be indicative of the age of the south pole event.

  8. Impact Crater with Peak

    NASA Technical Reports Server (NTRS)

    2002-01-01

    (Released 14 June 2002) The Science This THEMIS visible image shows a classic example of a martian impact crater with a central peak. Central peaks are common in large, fresh craters on both Mars and the Moon. This peak formed during the extremely high-energy impact cratering event. In many martian craters the central peak has been either eroded or buried by later sedimentary processes, so the presence of a peak in this crater indicates that the crater is relatively young and has experienced little degradation. Observations of large craters on the Earth and the Moon, as well as computer modeling of the impact process, show that the central peak contains material brought from deep beneath the surface. The material exposed in these peaks will provide an excellent opportunity to study the composition of the martian interior using THEMIS multi-spectral infrared observations. The ejecta material around the crater can is well preserved, again indicating relatively little modification of this landform since its initial creation. The inner walls of this approximately 18 km diameter crater show complex slumping that likely occurred during the impact event. Since that time there has been some downslope movement of material to form the small chutes and gullies that can be seen on the inner crater wall. Small (50-100 m) mega-ripples composed of mobile material can be seen on the floor of the crater. Much of this material may have come from the walls of the crater itself, or may have been blown into the crater by the wind. The Story When a meteor smacked into the surface of Mars with extremely high energy, pow! Not only did it punch an 11-mile-wide crater in the smoother terrain, it created a central peak in the middle of the crater. This peak forms kind of on the 'rebound.' You can see this same effect if you drop a single drop of milk into a glass of milk. With craters, in the heat and fury of the impact, some of the land material can even liquefy. Central peaks like the one

  9. Impact Crater with Peak

    NASA Technical Reports Server (NTRS)

    2002-01-01

    (Released 14 June 2002) The Science This THEMIS visible image shows a classic example of a martian impact crater with a central peak. Central peaks are common in large, fresh craters on both Mars and the Moon. This peak formed during the extremely high-energy impact cratering event. In many martian craters the central peak has been either eroded or buried by later sedimentary processes, so the presence of a peak in this crater indicates that the crater is relatively young and has experienced little degradation. Observations of large craters on the Earth and the Moon, as well as computer modeling of the impact process, show that the central peak contains material brought from deep beneath the surface. The material exposed in these peaks will provide an excellent opportunity to study the composition of the martian interior using THEMIS multi-spectral infrared observations. The ejecta material around the crater can is well preserved, again indicating relatively little modification of this landform since its initial creation. The inner walls of this approximately 18 km diameter crater show complex slumping that likely occurred during the impact event. Since that time there has been some downslope movement of material to form the small chutes and gullies that can be seen on the inner crater wall. Small (50-100 m) mega-ripples composed of mobile material can be seen on the floor of the crater. Much of this material may have come from the walls of the crater itself, or may have been blown into the crater by the wind. The Story When a meteor smacked into the surface of Mars with extremely high energy, pow! Not only did it punch an 11-mile-wide crater in the smoother terrain, it created a central peak in the middle of the crater. This peak forms kind of on the 'rebound.' You can see this same effect if you drop a single drop of milk into a glass of milk. With craters, in the heat and fury of the impact, some of the land material can even liquefy. Central peaks like the one

  10. Hypervelocity impact cratering calculations

    NASA Technical Reports Server (NTRS)

    Maxwell, D. E.; Moises, H.

    1971-01-01

    A summary is presented of prediction calculations on the mechanisms involved in hypervelocity impact cratering and response of earth media. Considered are: (1) a one-gram lithium-magnesium alloys impacting basalt normally at 6.4 km/sec, and (2) a large terrestrial impact corresponding to that of Sierra Madera.

  11. Small Impact Crater

    NASA Technical Reports Server (NTRS)

    2005-01-01

    22 June 2005 This Mars Global Surveyor (MGS) Mars Orbiter Camera (MOC) image shows a small impact crater with a 'butterfly' ejecta pattern. The butterfly pattern results from an oblique impact. Not all oblique impacts result in an elliptical crater, but they can result in a non-radial pattern of ejecta distribution. The two-toned nature of the ejecta -- with dark material near the crater and brighter material further away -- might indicate the nature of subsurface materials. Below the surface, there may be a layer of lighter-toned material, underlain by a layer of darker material. The impact throws these materials out in a pattern that reflects the nature of the underlying layers.

    Location near: 3.7oN, 348.2oW Image width: 3 km (1.9 mi) Illumination from: lower left Season: Northern Autumn

  12. Visualization and Interpretation in 3D Virtual Reality of Topographic and Geophysical Data from the Chicxulub Impact Crater

    NASA Astrophysics Data System (ADS)

    Rosen, J.; Kinsland, G. L.; Borst, C.

    2011-12-01

    We have assembled Shuttle Radar Topography Mission (SRTM) data (Borst and Kinsland, 2005), gravity data (Bedard, 1977), horizontal gravity gradient data (Hildebrand et al., 1995), magnetic data (Pilkington et al., 2000) and GPS topography data (Borst and Kinsland, 2005) from the Chicxulub Impact Crater buried on the Yucatan Peninsula of Mexico. These data sets are imaged as gridded surfaces and are all georegistered, within an interactive 3D virtual reality (3DVR) visualization and interpretation system created and maintained in the Center for Advanced Computer Studies at the University of Louisiana at Lafayette. We are able to view and interpret the data sets individually or together and to scale and move the data or to move our physical head position so as to achieve the best viewing perspective for interpretation. A feature which is especially valuable for understanding the relationships between the various data sets is our ability to "interlace" the 3D images. "Interlacing" is a technique we have developed whereby the data surfaces are moved along a common axis so that they interpenetrate. This technique leads to rapid and positive identification of spatially corresponding features in the various data sets. We present several images from the 3D system, which demonstrate spatial relationships amongst the features in the data sets. Some of the anomalies in gravity are very nearly coincident with anomalies in the magnetic data as one might suspect if the causal bodies are the same. Other gravity and magnetic anomalies are not spatially coincident indicating different causal bodies. Topographic anomalies display a strong spatial correspondence with many gravity anomalies. In some cases small gravity anomalies and topographic valleys are caused by shallow dissolution within the Tertiary cover along faults or fractures propagated upward from the buried structure. In other cases the sources of the gravity anomalies are in the more deeply buried structure from which

  13. Impact cratering calculations

    NASA Technical Reports Server (NTRS)

    Ahrens, Thomas J.; Okeefe, J. D.; Smither, C.; Takata, T.

    1991-01-01

    In the course of carrying out finite difference calculations, it was discovered that for large craters, a previously unrecognized type of crater (diameter) growth occurred which was called lip wave propagation. This type of growth is illustrated for an impact of a 1000 km (2a) silicate bolide at 12 km/sec (U) onto a silicate half-space at earth gravity (1 g). The von Misses crustal strength is 2.4 kbar. The motion at the crater lip associated with this wave type phenomena is up, outward, and then down, similar to the particle motion of a surface wave. It is shown that the crater diameter has grown d/a of approximately 25 to d/a of approximately 4 via lip propagation from Ut/a = 5.56 to 17.0 during the time when rebound occurs. A new code is being used to study partitioning of energy and momentum and cratering efficiency with self gravity for finite-sized objects rather than the previously discussed planetary half-space problems. These are important and fundamental subjects which can be addressed with smoothed particle hydrodynamic (SPH) codes. The SPH method was used to model various problems in astrophysics and planetary physics. The initial work demonstrates that the energy budget for normal and oblique impacts are distinctly different than earlier calculations for silicate projectile impact on a silicate half space. Motivated by the first striking radar images of Venus obtained by Magellan, the effect of the atmosphere on impact cratering was studied. In order the further quantify the processes of meteor break-up and trajectory scattering upon break-up, the reentry physics of meteors striking Venus' atmosphere versus that of the Earth were studied.

  14. Impact cratering record of Fennoscandia

    NASA Technical Reports Server (NTRS)

    Pesonen, L. J.; Henkel, H.

    1992-01-01

    A compilation of circular topographic, morphological, or geophysical structures in Fennoscandia and adjacent areas reveals 62 craterform structures of which 15 appear to be of extraterrestrial origin due to meteorite impact. The majority of the structures are probable and possible impact craters for which there is not yet sufficient proof for impact origin. Four of the proven impact craters contain large volumes of impact melt and many other features of intense shock metamorphism. The age of recognized impact craters vary from prehistoric to late Precambrian. We review the Fennoscandian impact cratering record giving examples of geophysical signatures of impact craters.

  15. Impact Cratering Calculations

    NASA Technical Reports Server (NTRS)

    Ahrens, Thomas J.

    2002-01-01

    Many Martian craters are surrounded by ejecta blankets which appear to have been fluidized forming lobate and layered deposits terminated by one or more continuous distal scarps, or ramparts. One of the first hypotheses for the formation of so-called rampart ejecta features was shock-melting of subsurface ice, entrainment of liquid water into the ejecta blanket, and subsequent fluidized flow. Our work quantifies this concept. Rampart ejecta found on all but the youngest volcanic and polar regions, and the different rampart ejecta morphologies are correlated with crater size and terrain. In addition, the minimum diameter of craters with rampart features decreases with increasing latitude indicating that ice laden crust resides closer to the surface as one goes poleward on Mars. Our second goal in was to determine what strength model(s) reproduce the faults and complex features found in large scale gravity driven craters. Collapse features found in large scale craters require that the rock strength weaken as a result of the shock processing of rock and the later cratering shear flows. In addition to the presence of molten silicate in the intensely shocked region, the presence of water, either ambient, or the result of shock melting of ice weakens rock. There are several other mechanisms for the reduction of strength in geologic materials including dynamic tensile and shear induced fracturing. Fracturing is a mechanism for large reductions in strength. We found that by incorporating damage into the models that we could in a single integrated impact calculation, starting in the atmosphere produce final crater profiles having the major features found in the field measurements (central uplifts, inner ring, terracing and faulting). This was accomplished with undamaged surface strengths (0.1 GPa) and in depth strengths (1.0 GPa).

  16. Impact Cratering Calculations

    NASA Technical Reports Server (NTRS)

    Ahrens, Thomas J.

    1997-01-01

    Understanding the physical processes of impact cratering on planetary surfaces and atmospheres as well as collisions of finite-size self-gravitating objects is vitally important to planetary science. The observation has often been made that craters are the most ubiquitous landform on the solid planets and the satellites. The density of craters is used to date surfaces on planets and satellites. For large ringed basin craters (e.g. Chicxulub), the issue of identification of exactly what 'diameter' transient crater is associated with this structure is exemplified by the arguments of Sharpton et al. (1993) versus those of Hildebrand et al. (1995). The size of a transient crater, such as the K/T extinction crater at Yucatan, Mexico, which is thought to be the source of SO,-induced sulfuric acid aerosol that globally acidified surface waters as the result of massive vaporization of CASO, in the target rock, is addressed by our present project. The impact process excavates samples of planetary interiors. The degree to which this occurs (e.g. how deeply does excavation occur for a given crater diameter) has been of interest, both with regard to exposing mantle rocks in crater floors, as well as launching samples into space which become part of the terrestrial meteorite collection (e.g. lunar meteorites, SNC's from Mars). Only in the case of the Earth can we test calculations in the laboratory and field. Previous calculations predict, independent of diameter, that the depth of excavation, normalized by crater diameter, is d(sub ex)/D = 0.085 (O'Keefe and Ahrens, 1993). For Comet Shoemaker-Levy 9 (SL9) fragments impacting Jupiter, predicted excavation depths of different gas-rich layers in the atmosphere, were much larger. The trajectory and fate of highly shocked material from a large impact on the Earth, such as the K/T bolide is of interest. Melosh et al. (1990) proposed that the condensed material from the impact upon reentering the Earth's atmosphere induced. radiative

  17. Interpreting statistics of small lunar craters

    NASA Technical Reports Server (NTRS)

    Schultz, P. H.; Gault, D.; Greeley, R.

    1977-01-01

    Some of the wide variations in the crater-size distributions in lunar photography and in the resulting statistics were interpreted as different degradation rates on different surfaces, different scaling laws in different targets, and a possible population of endogenic craters. These possibilities are reexamined for statistics of 26 different regions. In contrast to most other studies, crater diameters as small as 5 m were measured from enlarged Lunar Orbiter framelets. According to the results of the reported analysis, the different crater distribution types appear to be most consistent with the hypotheses of differential degradation and a superposed crater population. Differential degradation can account for the low level of equilibrium in incompetent materials such as ejecta deposits, mantle deposits, and deep regoliths where scaling law changes and catastrophic processes introduce contradictions with other observations.

  18. Interpreting statistics of small lunar craters

    NASA Technical Reports Server (NTRS)

    Schultz, P. H.; Gault, D.; Greeley, R.

    1977-01-01

    Some of the wide variations in the crater-size distributions in lunar photography and in the resulting statistics were interpreted as different degradation rates on different surfaces, different scaling laws in different targets, and a possible population of endogenic craters. These possibilities are reexamined for statistics of 26 different regions. In contrast to most other studies, crater diameters as small as 5 m were measured from enlarged Lunar Orbiter framelets. According to the results of the reported analysis, the different crater distribution types appear to be most consistent with the hypotheses of differential degradation and a superposed crater population. Differential degradation can account for the low level of equilibrium in incompetent materials such as ejecta deposits, mantle deposits, and deep regoliths where scaling law changes and catastrophic processes introduce contradictions with other observations.

  19. Impact Cratering Calculations

    NASA Technical Reports Server (NTRS)

    Ahrens, Thomas J.

    2001-01-01

    We examined the von Mises and Mohr-Coulomb strength models with and without damage effects and developed a model for dilatancy. The models and results are given in O'Keefe et al. We found that by incorporating damage into the models that we could in a single integrated impact calculation, starting with the bolide in the atmosphere produce final crater profiles having the major features found in the field measurements. These features included a central uplift, an inner ring, circular terracing and faulting. This was accomplished with undamaged surface strengths of approximately 0.1 GPa and at depth strengths of approximately 1.0 GPa. We modeled the damage in geologic materials using a phenomenological approach, which coupled the Johnson-Cook damage model with the CTH code geologic strength model. The objective here was not to determine the distribution of fragment sizes, but rather to determine the effect of brecciated and comminuted material on the crater evolution, fault production, ejecta distribution, and final crater morphology.

  20. Locating the LCROSS Impact Craters

    NASA Technical Reports Server (NTRS)

    Marshall, William; Shirley, Mark; Moratto, Zachary; Colaprete, Anthony; Neumann, Gregory A.; Smith, David E.; Hensley, Scott; Wilson, Barbara; Slade, Martin; Kennedy, Brian; Gurrola, Eric; Harcke, Leif

    2012-01-01

    The Lunar CRater Observations and Sensing Satellite (LCROSS) mission impacted a spent Centaur rocket stage into a permanently shadowed region near the lunar south pole. The Sheperding Spacecraft (SSC) separated approx. 9 hours before impact and performed a small braking maneuver in order to observe the Centaur impact plume, looking for evidence of water and other volatiles, before impacting itself. This paper describes the registration of imagery of the LCROSS impact region from the mid- and near-infrared cameras onboard the SSC, as well as from the Goldstone radar. We compare the Centaur impact features, positively identified in the first two, and with a consistent feature in the third, which are interpreted as a 20 m diameter crater surrounded by a 160 m diameter ejecta region. The images are registered to Lunar Reconnaisance Orbiter (LRO) topographical data which allows determination of the impact location. This location is compared with the impact location derived from ground-based tracking and propagation of the spacecraft's trajectory and with locations derived from two hybrid imagery/trajectory methods. The four methods give a weighted average Centaur impact location of -84.6796 deg, -48.7093 deg, with a 1s uncertainty of 115 m along latitude, and 44 m along longitude, just 146 m from the target impact site. Meanwhile, the trajectory-derived SSC impact location is -84.719 deg, -49.61 deg, with a 1 alpha uncertainty of 3 m along the Earth vector and 75 m orthogonal to that, 766 m from the target location and 2.803 km south-west of the Centaur impact. We also detail the Centaur impact angle and SSC instrument pointing errors. Six high-level LCROSS mission requirements are shown to be met by wide margins. We hope that these results facilitate further analyses of the LCROSS experiment data and follow-up observations of the impact region

  1. The Martian impact cratering record

    NASA Technical Reports Server (NTRS)

    Strom, Robert G.; Croft, Steven K.; Barlow, Nadine G.

    1992-01-01

    A detailed analysis of the Martian impact cratering record is presented. The major differences in impact crater morphology and morphometry between Mars and the moon and Mercury are argued to be largely the result of subsurface volatiles on Mars. In general, the depth to these volatiles may decrease with increasing latitude in the southern hemisphere, but the base of this layer may be at a more or less constant depth. The Martial crustal dichotomy could have been the result of a very large impact near the end of the accretion of Mars. Monte Carlo computer simulations suggest that such an impact was not only possible, but likely. The Martian highland cratering record shows a marked paucity of craters less than about 30 km in diameter relative to the lunar highlands. This paucity of craters was probably the result of the obliteration of craters by an early period of intense erosion and deposition by aeolian, fluvial, and glacial processes.

  2. The Martian impact cratering record

    NASA Technical Reports Server (NTRS)

    Strom, Robert G.; Croft, Steven K.; Barlow, Nadine G.

    1992-01-01

    A detailed analysis of the Martian impact cratering record is presented. The major differences in impact crater morphology and morphometry between Mars and the moon and Mercury are argued to be largely the result of subsurface volatiles on Mars. In general, the depth to these volatiles may decrease with increasing latitude in the southern hemisphere, but the base of this layer may be at a more or less constant depth. The Martial crustal dichotomy could have been the result of a very large impact near the end of the accretion of Mars. Monte Carlo computer simulations suggest that such an impact was not only possible, but likely. The Martian highland cratering record shows a marked paucity of craters less than about 30 km in diameter relative to the lunar highlands. This paucity of craters was probably the result of the obliteration of craters by an early period of intense erosion and deposition by aeolian, fluvial, and glacial processes.

  3. The Martian impact cratering record

    NASA Astrophysics Data System (ADS)

    Strom, Robert G.; Croft, Steven K.; Barlow, Nadine G.

    A detailed analysis of the Martian impact cratering record is presented. The major differences in impact crater morphology and morphometry between Mars and the moon and Mercury are argued to be largely the result of subsurface volatiles on Mars. In general, the depth to these volatiles may decrease with increasing latitude in the southern hemisphere, but the base of this layer may be at a more or less constant depth. The Martial crustal dichotomy could have been the result of a very large impact near the end of the accretion of Mars. Monte Carlo computer simulations suggest that such an impact was not only possible, but likely. The Martian highland cratering record shows a marked paucity of craters less than about 30 km in diameter relative to the lunar highlands. This paucity of craters was probably the result of the obliteration of craters by an early period of intense erosion and deposition by aeolian, fluvial, and glacial processes.

  4. Crater Impacts on Vesta

    NASA Image and Video Library

    2012-05-10

    This graphic shows the global distribution of craters that hit the giant asteroid Vesta, based on data from NASA Dawn mission. The yellow circles indicate craters of 2 miles or wider, with the size of the circles indicating the size of the crater.

  5. Meteor Crater (Barringer Meteorite Crater), Arizona: Summary of Impact Conditions

    NASA Astrophysics Data System (ADS)

    Roddy, D. J.; Shoemaker, E. M.

    1995-09-01

    Meteor Crater in northern Arizona represents the most abundant type of impact feature in our Solar System, i.e., the simple bowl-shaped crater. Excellent exposures and preservation of this large crater and its ejecta blanket have made it a critical data set in both terrestrial and planetary cratering research. Recognition of the value of the crater was initiated in the early 1900's by Daniel Moreau Barringer, whose 27 years of exploration championed its impact origin [1]. In 1960, Shoemaker presented information that conclusively demonstrated that Meteor Crater was formed by hypervelocity impact [2]. This led the U.S. Geological Survey to use the crater extensively in the 1960-70's as a prime training site for the Apollo astronauts. Today, Meteor Crater continues to serve as an important research site for the international science community, as well as an educational site for over 300,000 visitors per year. Since the late 1950's, studies of this crater have presented an increasingly clearer view of this impact and its effects and have provided an improved view of impact cratering in general. To expand on this data set, we are preparing an upgraded summary on the Meteor Crater event following the format in [3], including information and interpretations on: 1) Inferred origin and age of the impacting body, 2) Inferred ablation and deceleration history in Earth's atmosphere, 3) Estimated speed, trajectory, angle of impact, and bow shock conditions, 4) Estimated coherence, density, size, and mass of impacting body, 5) Composition of impacting body (Canyon Diablo meteorite), 6) Estimated kinetic energy coupled to target rocks and atmosphere, 7) Terrain conditions at time of impact and age of impact, 8) Estimated impact dynamics, such as pressures in air, meteorite, and rocks, 9) Inferred and estimated material partitioning into vapor, melt, and fragments, 10) Crater and near-field ejecta parameters, 11) Rock unit distributions in ejecta blanket, 12) Estimated far

  6. Degradation studies of Martian impact craters

    NASA Technical Reports Server (NTRS)

    Barlow, N. G.

    1991-01-01

    The amount of obliteration suffered by Martian impact craters is quantified by comparing measurable attributes of the current crater shape to those values expected for a fresh crater of identical size. Crater diameters are measured from profiles obtained using photoclinometry across the structure. The relationship between the diameter of a fresh crater and a crater depth, floor width, rim height, central peak height, etc. was determined by empirical studies performed on fresh Martian impact craters. We utilized the changes in crater depth and rim height to judge the degree of obliteration suffered by Martian impact craters.

  7. Venus - Multiple-Floored, Irregular Impact Crater

    NASA Image and Video Library

    1996-09-26

    NASA' sMagellan imaged this multiple-floored, irregular impact crater at latitude 16.4 degrees north, longitude 352.1 degrees east, during orbits 481 and 482 on 27 September 1990. This crater, about 9.2 kilometers in maximum diameter, was formed on what appears to be a slightly fractured, radar-dark (smooth) plain. The abundant, low viscosity flows associated with this cratering event have, however, filled local, fault-controlled troughs (called graben). These shallow graben are well portrayed on this Magellan image but would be unrecognizable but for their coincidental infilling by the radar-bright crater flows. This fortuitous enhancement by the crater flows of fault structures that are below the resolution of the Magellan synthetic aperture radar is providing the Magellan Science Team with valuable geologic information. The flow deposits from the craters are thought to consist primarily of shock melted rock and fragmented debris resulting from the nearly simultaneous impacts of two projectile fragments into the hot (800 degrees Fahrenheit) surface rocks of Venus. The presence of the various floors of this irregular crater is interpreted to be the result of crushing, fragmentation, and eventual aerodynamic dispersion of a single entry projectile during passage through the dense Venusian atmosphere. http://photojournal.jpl.nasa.gov/catalog/PIA00462

  8. Largest impact craters on Venus

    NASA Technical Reports Server (NTRS)

    Ivanov, B. A.; Weitz, C. M.; Basilevsky, A. T.

    1992-01-01

    High-resolution radar images from the Magellan spacecraft have allowed us to perform a detailed study on 25 large impact craters on Venus with diameters from 70 to 280 km. The dimension of these large craters is comparable with the characteristic thickness of the venusian lithosphere and the atmospheric scale height. Some physical parameters for the largest impact craters on Venus (LICV), such as depth, ring/diameter ratio, and range of ballistic ejecta deposits, have been obtained from the SAR images and the altimetry dataset produced by MIT. Data related to each of these parameters is discussed.

  9. The Noachian Impact Cratering Record Revisited

    NASA Astrophysics Data System (ADS)

    Barlow, N. G.

    2017-10-01

    New image and topographic data are being used to revised the author's Catalog of Large Martian Impact Craters. Additional craters have been identified, which adjusts the crater size-frequency distribution curves of Noachian terrains.

  10. Craters! A Multi-Science Approach to Cratering and Impacts.

    ERIC Educational Resources Information Center

    Hartmann, William K.; Cain, Joe

    This book provides a complete Scope Sequence and Coordination teaching module. First, craters are introduced as a generally observable phenomena. Then, by making craters and by investigating the results, students gain close-up, hands-on experience with impact events and their products. Real crater examples from the Moon and elsewhere are included…

  11. Craters! A Multi-Science Approach to Cratering and Impacts.

    ERIC Educational Resources Information Center

    Hartmann, William K.; Cain, Joe

    This book provides a complete Scope Sequence and Coordination teaching module. First, craters are introduced as a generally observable phenomena. Then, by making craters and by investigating the results, students gain close-up, hands-on experience with impact events and their products. Real crater examples from the Moon and elsewhere are included…

  12. Expanding Enceladus' Impact Crater Database

    NASA Astrophysics Data System (ADS)

    Kirchoff, M. R.; Schenk, P.

    2016-12-01

    Enceladus is a mid-sized, icy satellite of Saturn with a diameter of 500 km. Most of its surface has been modified by the formation of tectonic grooves and ridges throughout Enceladus' history and only a relatively small area of ancient cratered terrain remains - mostly in the northern latitudes. Examining impact crater density variations is currently the only way to constrain how old the cratered terrains are and when tectonic activity occurred. Analyzing crater distributions also provides insight into other types of activity modifying craters, such as viscous relaxation due to increased heat flow and burial by plume material [e.g., 1,2]. Since the original release of our Enceladus crater database in [1], which only covered the trailing hemisphere, there have been several new images from the Cassini Imaging Science Subsystem cameras at pixel scales of 100 m/pixel or better, including complete coverage of the leading hemisphere. Therefore, we are recording the diameter and location of craters 1 km and larger in these new images to expand the areal coverage of the database. We are also aligning the original database to the new coordinate system [3], which has changed by a few degrees longitude and also has a minor latitude shift. Finally, we are adding the following information for all craters: crater morphology, crater degradation (or preservation) class, observer confidence that the feature is a crater, and if the crater is cut by tectonic features. This additional information will increase the scientific usefulness of the crater database. We report on progress and similarity/differences to crater distributions derived in previous work [1,4-6].References: [1] Kirchoff, M. R. & P. Schenk. Icarus 202 (2009): 656-68. [2] Bland, M. T., et al. GRL 39 (2012): L17204, doi:10.1029/2012GL052736. [3] Roatsch, Th., et al. PSS 77 (2013): 118-25. [4] Plescia, J. B. & J. M. Boyce. Nature 301 (1983): 666-70. [5] Pozio, S. & J. S. Kargel. LPSC XXI (1990): 975-76. [6] Kinczyk, M

  13. Unlocking an Impact Crater Clues

    NASA Image and Video Library

    2017-02-09

    Mars is a dynamic planet. HiRISE has witnessed many surface changes over the past ten years, including hundreds of new craters formed by ongoing impacts. Most of these impacts are likely caused by asteroids that have strayed into collision courses with Mars. The planet's much thinner atmosphere compared to Earth makes small asteroids less likely to burn up prior to hitting the Martian surface. This new crater, which formed explosively at the point of impact, has a diameter of roughly 8 meters (about 25 feet), but its surrounding blast zone and ejecta extend over a kilometer (about one mile) beyond the crater itself. The materials exposed nearest the crater have distinctive yellowish and lighter grey appearances, while more distant ejected materials range from dark brown to bright bluish in an enhanced-color view. These varied materials may have originated from different layers penetrated by the impact. This new impact was discovered using the lower-resolution Context Camera (CTX), also on board Mars Reconnaissance Orbiter. An older CTX image of this region from May 2012 shows a uniformly dust-covered surface, while a newer CTX image from September 2016 reveals the crater's dark blast zone. New craters on Mars are easiest to locate in such dust-coated terrains, where they provide opportunistic "road cuts" that allow scientists to see beneath the dust blanket and determine the underlying rock compositions and textures. This particular crater formed about 300 kilometers (roughly 200 miles) east of the Spirit rover's final resting spot in Gusev Crater. The map is projected here at a scale of 25 centimeters (9.8 inches) per pixel. [The original image scale is 26.2 centimeters (10.3 inches) per pixel (with 1 x 1 binning); objects on the order of 79 centimeters (31 inches) across are resolved.] North is up. http://photojournal.jpl.nasa.gov/catalog/PIA21451

  14. Impact Crater in Coastal Patagonia

    NASA Technical Reports Server (NTRS)

    D'Antoni, Hector L; Lasta, Carlos A.; Condon, Estelle (Technical Monitor)

    2000-01-01

    Impact craters are geological structures attributed to the impact of a meteoroid on the Earth's (or other planet's) surface (Koeberl and Sharpton. 1999). The inner planets of the solar system as well as other bodies such as our moon show extensive meteoroid impacts (Gallant 1964, French 1998). Because of its size and gravity, we may assume that the Earth has been heavily bombarded but weathering and erosion have erased or masked most of these features. In the 1920's, a meteor crater (Mark 1987) was identified in Arizona and to this first finding the identification of a large number of impact structures on Earth followed (Hodge 1994). Shock metamorphic effects are associated with meteorite impact craters. Due to extremely high pressures, shatter cones are produced as well as planar features in quartz and feldspar grains, diaplectic glass and high-pressure mineral phases such as stishovite (French 1998).

  15. Impact cratering through geologic time

    USGS Publications Warehouse

    Shoemaker, E.M.; Shoemaker, C.S.

    1998-01-01

    New data on lunar craters and recent discoveries about craters on Earth permit a reassessment of the bombardment history of Earth over the last 3.2 billion years. The combined lunar and terrestrial crater records suggest that the long-term average rate of production of craters larger than 20 km in diameter has increased, perhaps by as much as 60%, in the last 100 to 200 million years. Production of craters larger than 70 km in diameter may have increased, in the same time interval, by a factor of five or more over the average for the preceding three billion years. A large increase in the flux of long-period comets appears to be the most likely explanation for such a long-term increase in the cratering rate. Two large craters, in particular, appear to be associated with a comet shower that occurred about 35.5 million years ago. The infall of cosmic dust, as traced by 3He in deep sea sediments, and the ages of large craters, impact glass horizons, and other stratigraphic markers of large impacts seem to be approximately correlated with the estimated times of passage of the Sun through the galactic plane, at least for the last 65 million years. Those are predicted times for an increased near-Earth flux of comets from the Oort Cloud induced by the combined effects of galactic tidal perturbations and encounters of the Sun with passing stars. Long-term changes in the average comet flux may be related to changes in the amplitude of the z-motion of the Sun perpendicular to the galactic plane or to stripping of the outer Oort cloud by encounters with large passing stars, followed by restoration from the inner Oort cloud reservoir.

  16. Geology of five small Australian impact craters

    USGS Publications Warehouse

    Shoemaker, E.M.; Macdonald, F.A.; Shoemaker, C.S.

    2005-01-01

    Here we present detailed geological maps and cross-sections of Liverpool, Wolfe Creek, Boxhole, Veevers and Dalgaranga craters. Liverpool crater and Wolfe Creek Meteorite Crater are classic bowlshaped, Barringer-type craters, Liverpool was likely formed during the Neoproterozoic and was filled and covered with sediments soon thereafter. In the Cenozoic, this cover was exhumed exposing the crater's brecciated wall rocks. Wolfe Creek Meteorite Crater displays many striking features, including well-bedded ejecta units, crater-floor faults and sinkholes, a ringed aeromagnetic anomaly, rim-skirting dunes, and numerous iron-rich shale balls. Boxhole Meteorite Crater, Veevers Meteorite Crater and Dalgaranga crater are smaller, Odessa-type craters without fully developed, steep, overturned rims. Boxhole and Dalgaranga craters are developed in highly follated Precambrian basement rocks with a veneer of Holocene colluvium. The pre-existing structure at these two sites complicates structural analyses of the craters, and may have influenced target deformation during impact. Veevers Meteorite Crater is formed in Cenozoic laterites, and is one of the best-preserved impact craters on Earth. The craters discussed herein were formed in different target materials, ranging from crystalline rocks to loosely consolidated sediments, containing evidence that the impactors struck at an array of angles and velocities. This facilitates a comparative study of the influence of these factors on the structural and topographic form of small impact craters. ?? Geological Society of Australia.

  17. Characterization of Boulders Ejected from Small Impact Craters

    NASA Astrophysics Data System (ADS)

    Bart, G. D.; Melosh, H. J.; Strom, R. G.

    2004-11-01

    When an asteroid or comet impacts the surface of a solid body, some of the surface material is often ejected from the crater in the form of blocks. We are characterizing the size and location of such blocks around craters on the Moon and Mars. The lunar craters were observed in Lunar Orbiter III images from P-12 and S-18. The Mars crater was observed in Mars Global Surveyor (MGS) Mars Orbiter Camera (MOC) Release No. MOC2-712. The craters range in size from 300 m to 3 km diameter. We measured the diameters of boulders observed around the craters, and also measured the distance between the boulder and the crater center. We then calculate the ejection velocity of each boulder based on how far the block was from the crater. The data indicate that larger boulders are more frequently found close to the crater rim rather than far away. The size of the ejecta drops off as a power law with distance from the crater. Our results are consistent with studies by Vickery (1986, 1987), which indirectly found the distribution of ejecta sizes from large craters by analyzing the size and distribution of their secondary craters. Our work characterizes the other end of the ejecta spectrum --- low velocity boulders ejected from small craters. We have also constructed R-plots of the boulder diameters for each crater. We found that the R-plot for the boulders has a dependence remarkably similar to an R-plot of the diameters of secondary craters. This similarity supports the already accepted idea that the impactors that produce secondaries are blocks ejected from larger craters. It is also consistent with the interpretation that the upturn of the cratering curve at small diameters on the terrestrial planets is due to secondary impacts rather than a primary population as some have proposed.

  18. The Chicxulub Impact Crater and Oblique Impact

    NASA Astrophysics Data System (ADS)

    McDonald, M.; Gulick, S.; Melosh, H.; Christeson, G.

    2007-05-01

    Determining whether or not the Chicxulub impact was oblique (<45 degrees) will aid in our understanding of the environmental consequences 65 Ma. Planetary impact events, and impact simulations in the laboratory, show that oblique impacts have clear asymmetric ejecta distributions. However, the subsurface structures of the resultant craters are not well understood. In 2005, we acquired 1822 km of seismic reflection data onboard the R/V Maurice Ewing imaging the massive (200+ km) Chicxulub impact crater. The seismic profiles show that pre- crater stratigraphy outside the central basin of the Chicxulub impact crater is offset downward into the crater marking the post-impact slumping and formation of the terrace zone. The inward collapse of the Chicxulub terrace zone coincides with the outward collapse of the central uplift to form the peak ring. Chicxulub's peak ring is offset to the southeast, away from the deepest terrace zone mapped in the seismic data, suggesting that its peak ring was offset toward a more gradual wall of the transient cavity. Peak ring offsets, relative to crater center, of Venusian craters from radar images in the Magellan data set allow us to determine whether there are systematic variations in peak ring offset due to oblique impact. Ten pristine Venusian peak ring craters formed by oblique impact show that peak rings are offset both uprange and downrange, suggesting that peak ring position, and related subsurface asymmetries in the terrace zone, do not provide information about impact obliquity. This analysis supports the idea that Chicxulub's peak ring offset is a consequence of target properties and pre-impact structure and independent of impact trajectory.

  19. Shape of impact craters in granular media.

    PubMed

    de Vet, Simon J; de Bruyn, John R

    2007-10-01

    We present the results of experiments studying the shape of craters formed by the normal impact of a solid spherical projectile into a deep noncohesive granular bed at low energies. The resultant impact crater surfaces are accurately digitized using laser profilometry, allowing for the detailed investigation of the crater shape. We find that these impact craters are very nearly hyperbolic in profile. Crater radii and depths are dependent on impact energy, as well as the projectile density and size. The precise crater shape is a function of the crater aspect ratio. While the dimensions of the crater are highly dependent on the impact energy, we show that the energy required to excavate the crater is only a tiny fraction (0.1%-0.5%) of the kinetic energy of the projectile.

  20. Structural and Geological Interpretation of Posidonius Crater on the Moon

    NASA Astrophysics Data System (ADS)

    Ishihara, Y.; Chiba, T.; Haruyama, J.; Otake, H.; Ohtake, M.

    2015-12-01

    Posidonius crater locates on northeastern rim parts of the Serenitatis basin and is a typical floor-fractured crater. Because of Posidonius is located lunar central nearside and easily observed by ground-base telescope, the complex texture of crater floor attracted planetary scientist attention from before lunar exportation era. However, origin or formation histories of floor fractures are not fully resolved yet. In this study, we try to estimate geologic histories of Posidonius crater based on topographic data and multiband image data obtained by Terrain Camera (TC) and Multiband Imager (MI) onboard Kaguya. A part of crater floor of Posidonius is flooded by mare basalt. Previous studies interpreted that the source of mare basalt is located somewhere at Mare Serenitatis and flooded into Posidonius crater, then sinuous rill (Rimae Posidonius) is the resulting structure of flooded basalt flow. However, based on TC topographic data, sinuous rill feature indicate opposite flow direction to previous interpretations. Based on TC topographic data, we could interpret topographic features as follows; Rimare Posidonius flow from volcanic vent located at northern edge of Posidonius crater floor and flow out to Mare Serenitatis at western rim, the central part of crater floor slightly leaned to west and broken in several regions. From band depth of MI data, eastern part of crater floor is mostly consisted by highland materials and complex rills are basically not showing the basaltic feature. Combined both analysis results, we interpret the cause of complex structure of Posidonius crater is as follows; after crater formation, large sill intruded below crater floor and uppermost layer of crater floor is delaminated from the basement then floats on basaltic intrusion as "otoshibuta" (Japanese style lid for stew). Complex fracture was probably formed delamination and flotation stage by mechanical stress.

  1. Density of impact craters on tessera, Venus

    NASA Technical Reports Server (NTRS)

    Ivanov, M. A.; Basilevsky, A. T.

    1993-01-01

    After the plains, tessera is the most abundant terrain on Venus. It occupies about 10 percent of the Venusian surface, forming the continent-like blocks and small islands above the adjacent plains. Tessera is a result of tectonic deformations of some precursor terrain. However, the nature of that precursor, as well as the causes and mechanisms of its formations, are under debate. Any models considering tessera terrain involve estimation of tessera age, either relative or absolute. It is well known that the important information on the age of a planetary surface comes from impact crater statistics. The Magellan global overview of Venus with improved resolution provides an opportunity to gather data on impact craters in amounts large enough for statistically reliable estimations of crater density for different terrains. Our study of impact crater density on tesserae compared to the surrounding terrains has a goal to determine whether it is higher, lower, or the same and to interpret it in terms of the tessera age and processes involved.

  2. Oblique impact cratering experiments in brittle targets: Implications for elliptical craters on the Moon

    NASA Astrophysics Data System (ADS)

    Michikami, Tatsuhiro; Hagermann, Axel; Morota, Tomokatsu; Haruyama, Junichi; Hasegawa, Sunao

    2017-01-01

    Most impact craters observed on planetary bodies are the results of oblique impacts of meteoroids. To date, however, there have only been very few laboratory oblique impact experiments for analogue targets relevant to the surfaces of extraterrestrial bodies. In particular, there is a lack of laboratory oblique impact experiments into brittle targets with a material strength on the order of 1 MPa, with the exception of ice. A strength on the order of 1 MPa is considered to be the corresponding material strength for the formation of craters in the 100 m size range on the Moon. Impact craters are elliptical if the meteoroid's trajectory is below a certain threshold angle of incidence, and it is known that the threshold angle depends largely on the material strength. Therefore, we examined the threshold angle required to produce elliptical craters in laboratory impact experiments into brittle targets. This work aims to constrain current interpretations of lunar elliptical craters and pit craters with sizes below a hundred meters. We produced mortar targets with compressive strength of 3.2 MPa. A spherical nylon projectile (diameter 7.14 mm) was shot into the target surface at a nominal velocity of 2.3 km/s, with an impact angle of 5°-90° from horizontal. The threshold angle of this experiment ranges from 15° to 20°. We confirmed that our experimental data agree with previous empirical equations in terms of the cratering efficiency and the threshold impact angle. In addition, in order to simulate the relatively large lunar pit craters related to underground cavities, we conducted a second series of experiments under similar impact conditions using targets with an underground rectangular cavity. Size and outline of craters that created a hole are similar to those of craters without a hole. Moreover, when observed from an oblique angle, a crater with a hole has a topography that resembles the lunar pit craters. The relation between the impact velocity of meteoroids on

  3. Venusian impact basins and cratered terrains

    NASA Technical Reports Server (NTRS)

    Hamilton, Warren B.

    1992-01-01

    The consensus regarding interpretation of Magellan radar imagery assigns Venus a young volcanic surface subjected in many areas to moderate crustal shortening. I infer that, on the contrary, ancient densely cratered terrain and large impact basins may be preserved over more than half the planet and that crustal shortening has been much overestimated. I see wind erosion and deposition as far more effective in modifying old structures. Integration with lunar chronology suggests that most of the surface of Venus may be older than 3.0 Ga and much may be older than 3.8 Ga. Broad volcanos, hug volcanic domes, plains preserving lobate flow patterns, and numerous lesser volcanic features, pocked sparsely by impact craters, are indeed obvious on Magellan imagery. Some of these postvolcanic impact craters have been slightly extended, but only a small portion has been flooded by still younger lavas. Relative ages of the young craters are indicated by the varying eolian removal of their forms and ejecta blankets and flow lobes, and the oldest are much subdued. If these young impact craters, maximum diameter 275 km, include all preserved impact structures, then their quantity and distribution indicate that Venus was largely resurfaced by volcanism approx. 0.5 Ga, subsequent eruptions having been at a much reduced rate. Away from the approx. 0.5 Ga volcanic features, much of Venus is, however, dominated by circular and subcircular features, 50-2000 km in diameter, many of them multiring, that may be mostly older impact and impact-melt structures substantially modified by wind action. Eolian erosion scoured to bedrock old ridges and uplands, including those that may be cratered terrains and the rims and outer-ring depressions of large impact basins, and removed all surficial deposits to the limits of resolution of the imagery. The complementary eolian deposits form not only dunes, wind streaks, and small plains, but also broad radar-dark plains, commonly assumed to be volcanic

  4. Impact Melt in Small Lunar Highlands Craters

    NASA Technical Reports Server (NTRS)

    Plescia, J. B.; Cintala, M. J.; Robinson, M. S.; Barnouin, O.; Hawke, B. R.

    2011-01-01

    Impact-melt deposits are a typical characteristic of complex impact craters, occurring as thick pools on the crater floor, ponds on wall terraces, veneers on the walls, and flows outside and inside the rim. Studies of the distribution of impact melt suggested that such deposits are rare to absent in and around small (km to sub-km), simple impact craters. noted that the smallest lunar crater observed with impact melt was approximately 750 m in diameter. Similarly, theoretical models suggest that the amount of melt formed is a tiny fraction (<1%) of the total crater volume and thus significant deposits would not be expected for small lunar craters. LRO LROC images show that impact-melt deposits can be recognized associated with many simple craters to diameters down to approximately 200 m. The melt forms pools on the crater floor, veneer on the crater walls or ejecta outside the crater. Such melt deposits are relatively rare, and can be recognized only in some fresh craters. These observations indicate that identifiable quantities of impact melt can be produced in small impacts and the presence of such deposits shows that the material can be aggregated into recognizable deposits. Further, the present of such melt indicates that small craters could be reliably radiometrically dated helping to constrain the recent impact flux.

  5. Is that an Impact Crater?

    NASA Image and Video Library

    2017-04-04

    This image was acquired to take a closer look at a circular feature that might be an impact structure on the South Polar layered deposits. Measuring the sizes and frequency of impact craters provides a constraint on the age of the landscape. However, craters in icy terrain are modified by processes that flatten and change them in such a manner that it is hard to say for sure if it had an impact origin. The map is projected here at a scale of 50 centimeters (19.7 inches) per pixel. [The original image scale is 49.8 centimeters (19.6 inches) per pixel (with 2 x 2 binning); objects on the order of 150 centimeters (59 inches) across are resolved.] North is up. https://photojournal.jpl.nasa.gov/catalog/PIA21576

  6. Why do complex impact craters have elevated crater rims?

    NASA Astrophysics Data System (ADS)

    Kenkmann, Thomas; Sturm, Sebastian; Krueger, Tim

    2014-05-01

    Most of the complex impact craters on the Moon and on Mars have elevated crater rims like their simple counterparts. The raised rim of simple craters is the result of (i) the deposition of a coherent proximal ejecta blanket at the edge of the transient cavity (overturned flap) and (ii) a structural uplift of the pre-impact surface near the transient cavity rim during the excavation stage of cratering [1]. The latter occurs either by plastic thickening or localized buckling of target rocks, as well as by the emplacement of interthrust wedges [2] or by the injection of dike material. Ejecta and the structural uplift contribute equally to the total elevation of simple crater rims. The cause of elevated crater rims of large complex craters [3] is less obvious, but still, the rim height scales with the final crater diameter. Depending on crater size, gravity, and target rheology, the final crater rim of complex craters can be situated up to 1.5-2.0 transient crater radii distance from the crater center. Here the thickness of the ejecta blanket is only a fraction of that occurring at the rim of simple craters, e.g. [4], and thus cannot account for a strong elevation. Likewise, plastic thickening including dike injection of the underlying target may not play a significant role at this distance any more. We started to systematically investigate the structural uplift and ejecta thickness along the rim of complex impact craters to understand the cause of their elevation. Our studies of two lunar craters (Bessel, 16 km diameter and Euler, 28 km diameter) [5] and one unnamed complex martian crater (16 km diameter) [6] showed that the structural uplift at the final crater rim makes 56-67% of the total rim elevation while the ejecta thickness contributes 33-44%. Thus with increasing distance from the transient cavity rim, the structural uplift seems to dominate. As dike injection and plastic thickening are unlikely at such a distance from the transient cavity, we propose that

  7. The Explorer's Guide to Impact Craters

    NASA Technical Reports Server (NTRS)

    Chuang, F.; Pierazzo, E.; Osinski, G.

    2005-01-01

    Impact cratering is a fundamental geologic process of our solar system. It competes with other processes, such as plate tectonics, volcanism, fluvial, glacial and eolian activity, in shaping the surfaces of planetary bodies. In some cases, like the Moon and Mercury, impact craters are the dominant landform. On other planetary bodies impact craters are being continuously erased by the action of other geological processes, like volcanism on Io, erosion and plate tectonics on the Earth, tectonic and volcanic resurfacing on Venus, or ancient erosion periods on Mars. The study of crater populations is one of the principal tools for understanding the geologic history of a planetary surface. Among the general public, impact cratering has drawn wide attention through its portrayal in several Hollywood movies. Questions that are raised after watching these movies include: How do scientists learn about impact cratering? , and What information do impact craters provide in understanding the evolution of a planetary surface? Fundamental approaches used by scientists to learn about impact cratering include field work at known terrestrial craters, remote sensing studies of craters on various solid surfaces of solar system bodies, and theoretical and laboratory studies using the known physics of impact cratering.

  8. Locating the K/T boundary impact crater(s)

    NASA Astrophysics Data System (ADS)

    Bush, Susan M.

    Stratigraphic, mineralogical, chemical and isotopic evidence have led to the large (˜10-km) asteroid or comet impact theory as the cause of the Cretaceous period coming to an end. However, a suitable crater has not yet been found. Although the crater may have been destroyed because half of what was then the ocean floor has since been subducted, researchers are still hot on the trail of the impact site(s).A. R. Hildebrand and W. V. Boynton, Department of Planetary Sciences, University of Arizona, Tucson, believe that locating the original crater(s) would resolve the volcanism versus impact debate over what ended the Cretaceous period. Based on a large concentration of shocked mineral grains and the largest grains occurring in North America, and impact-wave deposits at the K/T boundary only from the Caribbean and southern North America, they suggest that the K/T boundary impact occurred between North and South America. They suggest the 300-km-diameter buried basement structure in the Columbia Basin as a possible K/T impact crater. The location of impact-wave deposits and possibly seismically triggered slumps also helped the two decide that impact(s) musthave occurred in the Caribbean region.

  9. The general indications of an impact crater using integrated geophysical methods

    NASA Astrophysics Data System (ADS)

    Kiu, Y. C.; Rosli, S.; Azwin, I. N.; Mokhtar, S.

    2017-07-01

    The study area located at the tropical region which may induced a deeply eroded structure over a complex subsurface. Therefore, the geophysical methods were applied to estimate crater dimension and study the signature of an impact crater. Commonly, an impact crater is characterized with the aid of potential field method which can cover larger area and cost effective. The application of seismic measurements is to complement the potential fields' method for better data interpretation. This study emphasized on utilizing integrated study of geophysical methods which include potential field method (ground magnetic) and seismic for bedrock delineation on impact crater structure characterization. The results induced a positive signs of impact crater which associate with a few indications on crater type and its structures. The integration of ground magnetic and seismic refraction reveal the Bukit Bunuh impact crater is a complex crater. Both of the geophysical methods agreed with the notable size impact crater of 5 km with central uplift at the Bukit Bunuh area.

  10. Noachian and more recent phyllosilicates in impact craters on Mars.

    PubMed

    Fairén, Alberto G; Chevrier, Vincent; Abramov, Oleg; Marzo, Giuseppe A; Gavin, Patricia; Davila, Alfonso F; Tornabene, Livio L; Bishop, Janice L; Roush, Ted L; Gross, Christoph; Kneissl, Thomas; Uceda, Esther R; Dohm, James M; Schulze-Makuch, Dirk; Rodríguez, J Alexis P; Amils, Ricardo; McKay, Christopher P

    2010-07-06

    Hundreds of impact craters on Mars contain diverse phyllosilicates, interpreted as excavation products of preexisting subsurface deposits following impact and crater formation. This has been used to argue that the conditions conducive to phyllosilicate synthesis, which require the presence of abundant and long-lasting liquid water, were only met early in the history of the planet, during the Noachian period (> 3.6 Gy ago), and that aqueous environments were widespread then. Here we test this hypothesis by examining the excavation process of hydrated minerals by impact events on Mars and analyzing the stability of phyllosilicates against the impact-induced thermal shock. To do so, we first compare the infrared spectra of thermally altered phyllosilicates with those of hydrated minerals known to occur in craters on Mars and then analyze the postshock temperatures reached during impact crater excavation. Our results show that phyllosilicates can resist the postshock temperatures almost everywhere in the crater, except under particular conditions in a central area in and near the point of impact. We conclude that most phyllosilicates detected inside impact craters on Mars are consistent with excavated preexisting sediments, supporting the hypothesis of a primeval and long-lasting global aqueous environment. When our analyses are applied to specific impact craters on Mars, we are able to identify both pre- and postimpact phyllosilicates, therefore extending the time of local phyllosilicate synthesis to post-Noachian times.

  11. Noachian and more recent phyllosilicates in impact craters on Mars

    PubMed Central

    Fairén, Alberto G.; Chevrier, Vincent; Abramov, Oleg; Marzo, Giuseppe A.; Gavin, Patricia; Davila, Alfonso F.; Tornabene, Livio L.; Bishop, Janice L.; Roush, Ted L.; Gross, Christoph; Kneissl, Thomas; Uceda, Esther R.; Dohm, James M.; Schulze-Makuch, Dirk; Rodríguez, J. Alexis P.; Amils, Ricardo; McKay, Christopher P.

    2010-01-01

    Hundreds of impact craters on Mars contain diverse phyllosilicates, interpreted as excavation products of preexisting subsurface deposits following impact and crater formation. This has been used to argue that the conditions conducive to phyllosilicate synthesis, which require the presence of abundant and long-lasting liquid water, were only met early in the history of the planet, during the Noachian period (> 3.6 Gy ago), and that aqueous environments were widespread then. Here we test this hypothesis by examining the excavation process of hydrated minerals by impact events on Mars and analyzing the stability of phyllosilicates against the impact-induced thermal shock. To do so, we first compare the infrared spectra of thermally altered phyllosilicates with those of hydrated minerals known to occur in craters on Mars and then analyze the postshock temperatures reached during impact crater excavation. Our results show that phyllosilicates can resist the postshock temperatures almost everywhere in the crater, except under particular conditions in a central area in and near the point of impact. We conclude that most phyllosilicates detected inside impact craters on Mars are consistent with excavated preexisting sediments, supporting the hypothesis of a primeval and long-lasting global aqueous environment. When our analyses are applied to specific impact craters on Mars, we are able to identify both pre- and postimpact phyllosilicates, therefore extending the time of local phyllosilicate synthesis to post-Noachian times. PMID:20616087

  12. Impact crater outflows on Venus: Morphology and emplacement mechanisms

    USGS Publications Warehouse

    Chadwick, D. John; Schaber, Gerald G.

    1993-01-01

    Many of the 932 impact craters discovered by the Magellan spacecraft at Venus are associated with lobate flows that originate at or near the crater rim. They extend for several to several hundred kilometers from the crater, and they commonly have a strong radar backscatter. A morphologic study of all identifiable crater outflows on Venus has revealed that many individual flows each consist of two areas, defined by distinct morphologic features. These two areas appear to represent two stages of deposition for each flow. The part of the flow that is generally deposited closest to the crater tends to be on the downrange side of the crater, flows in the downrange direction, and it is interpreted to be a late-stage ejecta. In many cases, this proximal part of the flow is too thin to completely bury the large blocks in subjacent ejecta deposits. Dendritic channels, present in many proximal flows, appear to have drained liquid from the proximal part in the downhill direction, and they debouch to feed the outer part of the flows. This distal part flows downhill, fills small grabens, and is ponded by ridges, behavior that mimics that of volcanic lava flows. The meandering and dendritic channels and the relation of the distal flows to topography strongly suggest that the distal portion is the result of coalescence and slow drainage of impact melt from the proximal portion. Impact melt forms a lining to the transient crater and mixes turbulently with solid clasts, and part of this mixture may be ejected to form the proximal part of the flow during the excavation stage of crater development. A statistical study of the Venusian craters has revealed that, in general, large craters produced by impacts with relatively low incidence angles to the surface are more likely to produce flows than small craters produced by higher-angle impacts. The greater flow production and downrange focusing of the proximal flows with decreasing incidence angle indicate a strong control of the flows

  13. Low-emissivity impact craters on Venus

    NASA Technical Reports Server (NTRS)

    Weitz, C. M.; Elachi, C.; Moore, H. J.; Basilevsky, A. T.; Ivanov, B. A.; Schaber, G. G.

    1992-01-01

    An analysis of 144 impact craters on Venus has shown that 11 of these have floors with average emissivities lower than 0.8. The remaining craters have emissivities between 0.8 and 0.9, independent of the specific backscatter cross section of the crater floors. These 144 impact craters were chosen from a possible 164 craters with diameters greater than 30 km as identified by researchers for 89 percent of the surface of Venus. We have only looked at craters below 6053.5 km altitude because a mineralogical change causes high reflectivity/low emissivity above the altitude. We have also excluded all craters with diameters smaller than 30 km because the emissivity footprint at periapsis is 16 x 24 km and becomes larger at the poles.

  14. Colorful Impact Ejecta from Hargraves Crater

    NASA Image and Video Library

    2017-05-08

    The collision that created Hargraves Crater impacted into diverse bedrock lithologies of ancient Mars; the impact ejecta is a rich mix of rock types with different colors and textures, as seen by NASA Mars Reconnaissance Orbiter. The crater is named after Robert Hargraves who discovered and studied meteorite impacts on the Earth. https://photojournal.jpl.nasa.gov/catalog/PIA21609

  15. The Explorer's Guide to Impact Craters

    NASA Astrophysics Data System (ADS)

    Pierazzo, E.; Osinski, G.; Chuang, F.

    2004-12-01

    Impact cratering is a fundamental geologic process of our solar system. It competes with other processes, such as plate tectonics, volcanism, or fluvial, glacial and eolian activity, in shaping the surfaces of planetary bodies. In some cases, like the Moon and Mercury, impact craters are the dominant landform. On other planetary bodies impact craters are being continuously erased by the action of other geological processes, like volcanism on Io, erosion and plate tectonics on the Earth, tectonic and volcanic resurfacing on Venus, or ancient erosion periods on Mars. The study of crater populations is one of the principal tools for understanding the geologic history of a planetary surface. Among the general public, impact cratering has drawn wide attention through its portrayal in several Hollywood movies. Questions that are raised after watching these movies include: ``How do scientists learn about impact cratering?'', and ``What information do impact craters provide in understanding the evolution of a planetary surface?'' Fundamental approaches used by scientists to learn about impact cratering include field work at known terrestrial craters, remote sensing studies of craters on various solid surfaces of solar system bodies, and theoretical and laboratory studies using the known physics of impact cratering. We will provide students, science teachers, and the general public an opportunity to experience the scientific endeavor of understanding and exploring impact craters through a multi-level approach including images, videos, and rock samples. This type of interactive learning can also be made available to the general public in the form of a website, which can be addressed worldwide at any time.

  16. Impact melt in small lunar highland craters

    NASA Astrophysics Data System (ADS)

    Plescia, J. B.; Cintala, M. J.

    2012-03-01

    Impact melt deposits have been identified in small, simple impact craters within the lunar highlands. Such deposits are rare, but have been observed in craters as small as 170 m diameter. The melt occurs as well-defined pools on the crater floor, as well as veneers on the inner crater wall and stringers of material extending over the rim and away from the crater. Model calculations indicate that the amount of melt formed in craters 100-2000 m diameter would amount to a few to ˜106 m3, representing <1% of the crater volume. Thus, significant, visible impact melt deposits would not be expected in such small craters as most of the melt material that was formed would be ejected. Variations in the properties of the projectile or the target cannot account for the amount of observed melt; the amount of melt produced is largely insensitive to such variations. Rather, we suggest that these small melt-containing craters represent near-vertical impacts in which the axes of melting and melt motion are essentially straight down, toward the base of the transient cavity. For a given event energy under vertical impact conditions, the volume of melt produced would be greater than in an oblique impact and the momentum of the material would be directed vertically downward with minimal lateral momentum such that most of the melt is retained within the crater interior. Since vertical impacts are relatively rare, such small craters with visible, interior melt deposits are rare. While we focus here on the highlands, such craters also occur on the maria.

  17. Crater formation during raindrop impact on sand

    NASA Astrophysics Data System (ADS)

    de Jong, Rianne; Zhao, Song-Chuan; van der Meer, Devaraj

    2017-04-01

    After a raindrop impacts on a granular bed, a crater is formed as both drop and target deform. After an initial, transient, phase in which the maximum crater depth is reached, the crater broadens outwards until a final steady shape is attained. By varying the impact velocity of the drop and the packing density of the bed, we find that avalanches of grains are important in the second phase and hence affect the final crater shape. In a previous paper, we introduced an estimate of the impact energy going solely into sand deformation and here we show that both the transient and final crater diameter collapse with this quantity for various packing densities. The aspect ratio of the transient crater is however altered by changes in the packing fraction.

  18. Crater formation during raindrop impact on sand.

    PubMed

    de Jong, Rianne; Zhao, Song-Chuan; van der Meer, Devaraj

    2017-04-01

    After a raindrop impacts on a granular bed, a crater is formed as both drop and target deform. After an initial, transient, phase in which the maximum crater depth is reached, the crater broadens outwards until a final steady shape is attained. By varying the impact velocity of the drop and the packing density of the bed, we find that avalanches of grains are important in the second phase and hence affect the final crater shape. In a previous paper, we introduced an estimate of the impact energy going solely into sand deformation and here we show that both the transient and final crater diameter collapse with this quantity for various packing densities. The aspect ratio of the transient crater is however altered by changes in the packing fraction.

  19. The LCROSS Impact Cratering Experiment

    NASA Astrophysics Data System (ADS)

    Schultz, P. H.; Hermalyn, B.; Ernst, C. M.; Colaprete, A.

    2009-12-01

    The large Earth-Departure-Upper Stage (the “EDUS”) and the LCROSS Shepherding Spacecraft (SSc) will both slam into the permanently shadowed regions near the lunar south pole on October 9, 2009. The goal of this mission is to excavate possible ice buried below the surface, thereby providing a measure of potential reservoirs of water for future human exploration. Impact experiments at the NASA Ames Vertical Gun Range (AVGR) have contributed to the mission design and planning. These experiments have included predictions for target selection (Schultz, 2006), a re-assessment of excavation at early times (Hermalyn and Schultz, 2009), and excavation depths (this study). Such predictions are critical for designing instrument sensitivity/selection for the SSc and earth-based telescopic observing campaigns. Because the EDUS has an effective low density (with concentrations at two ends), we have explored the effects of impactor density and configuration (hollow, solid) on the early-stage cratering process, including excavation depths. Most ejecta scaling studies use loose quartz or flint-shot sand in order to track late-stage excavation scaling. This approach does not work well at earlier stages, which comprise a greater fraction of growth at larger scales (see Hermalyn and Schultz, 2009; Hermalyn and Schultz, this volume). Experiments using solid and hollow aluminum spheres impacted a variety of target types (fine and coarse sand, fine pumice, and JSC-1a) in order to assess their effect on this earlier stage of crater growth. Tracers were placed at different depths allowed tracking of excavation. Results have direct implications to the LCROSS experiment and observations (after appropriate scaling). First, the effective low-density impactor significantly reduces excavation depths to a projectile diameter or less, even in sand. This becomes more important for regolith-like targets since the hollow projectile collapses and target compression prevents deep penetration

  20. Boulders Ejected From Small Impact Craters

    NASA Astrophysics Data System (ADS)

    Bart, Gwendolyn D.; Melosh, H. J.

    2006-09-01

    We investigate the distribution of boulders ejected from lunar craters by analyzing high resolution Lunar Orbiter images. Our previous study (DPS 2004) of four small craters indicated that larger boulders are more frequently found close to the crater rim rather than far away, and that the size of the ejecta drops off as a power law with distance from the crater. Our current study adds more than ten new bouldery craters that range in size from 200 m to several kilometers and are found on a variety of terrain (mare, highlands, and the Copernicus ejecta blanket.) For each crater we plot the boulder diameter as a function of the ejection velocity of the boulder. We compare this size-velocity distribution with the size-velocity distribution of ejecta from large craters (Vickery 1986, 1987) to ascertain the mechanism of fracture of the substrate in the impact. We also make cumulative plots of the boulders, indicating the number of boulders of each size present around the crater. The cumulative plots allow us to compare our boulder distributions with the distributions of secondary craters from large impacts. Material thrown from a several-hundred-meter diameter crater may land intact as boulders, but material thrown from a tens-of-kilometers diameter crater will travel at a significantly higher velocity, and will form a secondary crater when it impacts the surface. Our data helps elucidate whether the upturn, at small diameters, of the cratering curve of the terrestrial planets is due to secondary impacts or to the primary population. This work is funded by NASA PGG grant NNG05GK40G.

  1. Stratigraphy Exposed by an Impact Crater

    NASA Image and Video Library

    2017-05-10

    Geologists love roadcuts because they reveal the bedrock stratigraphy (layering). Until we have highways on Mars, we can get the same information from fresh impact craters as shown in this image from NASA's Mars Reconnaissance Orbiter. This image reveals these layers filling a larger crater, perhaps a combination of lava, impact ejecta, and sediments. https://photojournal.jpl.nasa.gov/catalog/PIA21631

  2. Dimensional scaling for impact cratering and perforation

    NASA Technical Reports Server (NTRS)

    Watts, Alan; Atkinson, Dale; Rieco, Steve

    1993-01-01

    This report summarizes the development of two physics-based scaling laws for describing crater depths and diameters caused by normal incidence impacts into aluminum and TFE Teflon. The report then describes equations for perforations in aluminum and TFE Teflon for normal impacts. Lastly, this report also studies the effects of non-normal incidence on cratering and perforation.

  3. Hydrothermal Processes in Impact Craters on Mars: Implications From Lonar Crater, India, and Other Craters.

    NASA Astrophysics Data System (ADS)

    Newsom, H. E.; Nelson, M. J.; Shearer, C. K.; Misra, S.

    2004-12-01

    Impact craters played an important role in aqueous and geochemical processes in the near-surface environment of Mars, including chemical transport and soil formation. The formation of large craters on Mars resulted in hydrothermal systems that lasted for tens to hundreds of thousands of years and probably resulted in the mobilization of salts onto the surface of Mars. We have been carrying out extensive studies of impact deposits from several terrestrial analog craters, including Mistastin, Lonar, and Chicxulub using SIMS, XRF, XRD and EMP techniques. Even small craters may have been important for surface processes on Mars based on our recent work at the Lonar, India crater. The relatively small Lonar crater (1.8 km diameter) is one of only two known terrestrial craters to be emplaced in basaltic target rock [1], and our work has led to a new model for the rock component of the martian soil involving a component of hydrothermally altered basalt [2]. Based on the work of Hagerty and Newsom [1], this crater is the smallest known crater with a substantial post-impact hydrothermal system. Our work on the nature of hydrothermal alteration in drill cores from the crater floor of Lonar and Chicxulub includes mobilization of trace elements, such as lithium, beryllium, and boron, based on our new SIMS analyses. In January of 2004 during fieldwork at the Lonar crater we discovered previously unknown alteration zones in the ejecta blanket around the rim of the crater. The ejecta blanket at Lonar extends beyond 1350 m from the rim with discontinuous patches as far as 3000 m. These consist of areas in the ejecta blanket on the order of 20 to 50 meters in extent that are moderately to highly altered. Preliminary analysis shows a depletion of K2O, Na2O and Fe2O3 in the material from the altered zones compared to the fresher basalt blocks. The recent fieldwork at the crater and examination of drill core material from the ejecta blanket suggests that the ejecta blanket is far more

  4. Impact Crater Size and Evolution: Expectations for Deep Impact

    NASA Technical Reports Server (NTRS)

    Schultz, P. H.; Anderson, J. L. B.; Heineck, J. T.

    2002-01-01

    Deep Impact will involve a unique cratering experiment designed to probe below the surface of a comet. Laboratory experiments provide critical data for crater scaling and evolution of the ejecta curtain. Additional information is contained in the original extended abstract.

  5. How many impact craters exist in Romania?

    NASA Astrophysics Data System (ADS)

    Gaina, Alex

    2015-06-01

    The author is discussing the occureness of impact craters in large areas of Southern Europe, particularly in Balkans. He is contrasting the results available with very prodigious results for Ukraine. What are the explanations for such a great dispersion of results? As a hypothesis, the author is discussing the site of Orheiul Vechi (in Bessarabia, near the city of Orkhey, 47Deg 20' North Lat, 28 Deg 50' East Long) as a possible impact crater. Another legendary informations refer to the city of Oradea, where a possible impact crater was formed in the site "Oraselul copiilor" and was covered in 1960.

  6. Venus - Impact Crater in Guinevere Planitia

    NASA Technical Reports Server (NTRS)

    1990-01-01

    This is a Magellan image mosaic of an impact crater located in Guinevere Planitia on Venus with a rim diameter of 12.5 kilometers (7.8 miles). The area mosaiced is located at 6 degrees north latitude, 335 degrees east longitude and is from orbits 376 and 377 obtained on Sept. 15, 1990. The image is of an area about 37 km (23 miles) wide and 80 km (48 miles) long. Material thrown out from the impact forms a bright ejecta blanket surrounding most of the crater. The object that formed this crater was probably moving toward the north (top of the picture) at a shallow angle to the surface when it hit. The two lines of evidence that support this view are the 'missing ejecta' on the south and the small secondary craters seen to the north. The secondary craters are formed by large blocks thrown out of the primary crater. Most of the larger blocks landed close to the crater rim, while finer material traveled farther, creating a radial pattern. The inside of the crater shows terracing caused by slumping of the inner wall. A complex central peak is also seen; it was formed by uplift of the ground when it rebounded following impact. Resolution of the Magellan data is about 120 meters (400 feet).

  7. Endogenic modification of impact craters on Mercury

    NASA Technical Reports Server (NTRS)

    Schultz, P. H.

    1977-01-01

    The presence of internally modified impact craters on Mercury's surface may be used to evaluate the possibility of Mercurian volcanism. Such craters are similar to the floor-fractured and mare-filled craters observed on the moon. Mariner-10 images show that most such craters occur, as on the moon, near plains-filled basins. Color-ratio images have indicated that some Mercurian craters manifest red plains materials on their floors. These features may be associated with lava analogous to mare basalts in some lunar craters, or with compositionally distinct subsurface material preserved within the impact crater. Several basins manifest photometric contrasts between basin exteriors and basin-filling plains. Dark haloes are observed around some impact craters superimposed on the interior plains. This suggests the excavation of compositionally distinct material. Some possible endogenic features are discerned, despite the poor surface resolution, such as irregular rimless depressions. It is felt that volcanism may have occurred on Mercury, and that in some areas it may be similar to that of the lunar Mare Australe region.

  8. Gale Crater: An Amazonian Impact Crater Lake at the Plateau/Plain Boundary

    NASA Technical Reports Server (NTRS)

    Cabrol, N. A.; Grin, E. A.

    1998-01-01

    Gale is a 140-km diameter impact crater located at the plateau/plain boundary in the Aeolis Northeast subquadrangle of Mars (5S/223W). The crater is bordered in the northward direction by the Elysium Basin, and in eastward direction by Hesperian channels and the Aeolis Mensae 2. The crater displays a rim with two distinct erosion stages: (a) though eroded, the south rim of Gale has an apparent crest line visible from the north to the southwest (b) the west and northwest rims are characterized by a strong erosion that, in some places, partially destroyed the rampart, leaving remnant pits embayed in smooth-like deposits. The same type of deposits is observed north, outside Gale, it also borders the Aeolis Mensae, covers the bottom of the plateau scarp, and the crater floor. The central part of Gale shows a 6400 km2 subround and asymmetrical deposit: (a) the south part is composed of smooth material, (b) the north part shows spectacular terraces, streamlines, and channels. The transition between the two parts of the deposit is characterized by a scarp ranging from 200 to 2000 in high. The highest point of the scarp is at the center of the crater, and probably corresponds to a central peak. Gale crater does not show a major channel directly inflowing. However, several large fluvi systems are bordering the crater, and could be at the origin of the flooding of the crater, or have contributed to. One fluvial system is entering the crater by the southwest rim but cannot be accounted alone for the volume of sediment deposited in the crater. This channel erodes the crater floor deposit, and ends in a irregular-shaped and dark albedo feature. Gale crater shows the morphology of a crater filled during sedimentation episodes, and then eroded Part of the lower sediment deposition contained in Gale might be ancient and not only aqueous in origin. According to the regional geologic history, the sedimentary deposit could be a mixture of aeolian and pyroclastic material, and aqueous

  9. Gale Crater: An Amazonian Impact Crater Lake at the Plateau/Plain Boundary

    NASA Technical Reports Server (NTRS)

    Cabrol, N. A.; Grin, E. A.

    1998-01-01

    Gale is a 140-km diameter impact crater located at the plateau/plain boundary in the Aeolis Northeast subquadrangle of Mars (5S/223W). The crater is bordered in the northward direction by the Elysium Basin, and in eastward direction by Hesperian channels and the Aeolis Mensae 2. The crater displays a rim with two distinct erosion stages: (a) though eroded, the south rim of Gale has an apparent crest line visible from the north to the southwest (b) the west and northwest rims are characterized by a strong erosion that, in some places, partially destroyed the rampart, leaving remnant pits embayed in smooth-like deposits. The same type of deposits is observed north, outside Gale, it also borders the Aeolis Mensae, covers the bottom of the plateau scarp, and the crater floor. The central part of Gale shows a 6400 km2 subround and asymmetrical deposit: (a) the south part is composed of smooth material, (b) the north part shows spectacular terraces, streamlines, and channels. The transition between the two parts of the deposit is characterized by a scarp ranging from 200 to 2000 in high. The highest point of the scarp is at the center of the crater, and probably corresponds to a central peak. Gale crater does not show a major channel directly inflowing. However, several large fluvi systems are bordering the crater, and could be at the origin of the flooding of the crater, or have contributed to. One fluvial system is entering the crater by the southwest rim but cannot be accounted alone for the volume of sediment deposited in the crater. This channel erodes the crater floor deposit, and ends in a irregular-shaped and dark albedo feature. Gale crater shows the morphology of a crater filled during sedimentation episodes, and then eroded Part of the lower sediment deposition contained in Gale might be ancient and not only aqueous in origin. According to the regional geologic history, the sedimentary deposit could be a mixture of aeolian and pyroclastic material, and aqueous

  10. Icy Satellites of Saturn: Impact Cratering and Age Determination

    NASA Technical Reports Server (NTRS)

    Dones, L.; Chapman, C. R.; McKinnon, William B.; Melosh, H. J.; Kirchoff, M. R.; Neukum, G.; Zahnle, K. J.

    2009-01-01

    Saturn is the first giant planet to be visited by an orbiting spacecraft that can transmit large amounts of data to Earth. Crater counts on satellites from Phoebe inward to the regular satellites and ring moons are providing unprecedented insights into the origin and time histories of the impacting populations. Many Voyager-era scientists concluded that the satellites had been struck by at least two populations of impactors. In this view, the Population I impactors, which were generally judged to be comets orbiting the Sun, formed most of the larger and older craters, while Population II impactors, interpreted as Saturn-orbiting ejecta from impacts on satellites, produced most of the smaller and younger craters. Voyager data also implied that all of the ring moons, and probably some of the midsized classical moons, had been catastrophically disrupted and reaccreted since they formed. We examine models of the primary impactor populations in the Saturn system. At the present time, ecliptic comets, which likely originate in the Kuiper belt/scattered disk, are predicted to dominate impacts on the regular satellites and ring moons, but the models require extrapolations in size (from the observed Kuiper belt objects to the much smaller bodies that produce the craters) or in distance (from the known active Jupiter family comets to 9.5 AU). Phoebe, Iapetus, and perhaps even moons closer to Saturn have been struck by irregular satellites as well. We describe the Nice model, which provides a plausible mechanism by which the entire Solar System might have experienced an era of heavy bombardment long after the planets formed. We then discuss the three cratering chronologies, including one based upon the Nice model, that have been used to infer surface ages from crater densities on the saturnian satellites. After reviewing scaling relations between the properties of impactors and the craters they produce, we provide model estimates of the present-day rate at which comets impact

  11. Icy Satellites of Saturn: Impact Cratering and Age Determination

    NASA Technical Reports Server (NTRS)

    Dones, L.; Chapman, C. R.; McKinnon, William B.; Melosh, H. J.; Kirchoff, M. R.; Neukum, G.; Zahnle, K. J.

    2009-01-01

    Saturn is the first giant planet to be visited by an orbiting spacecraft that can transmit large amounts of data to Earth. Crater counts on satellites from Phoebe inward to the regular satellites and ring moons are providing unprecedented insights into the origin and time histories of the impacting populations. Many Voyager-era scientists concluded that the satellites had been struck by at least two populations of impactors. In this view, the Population I impactors, which were generally judged to be comets orbiting the Sun, formed most of the larger and older craters, while Population II impactors, interpreted as Saturn-orbiting ejecta from impacts on satellites, produced most of the smaller and younger craters. Voyager data also implied that all of the ring moons, and probably some of the midsized classical moons, had been catastrophically disrupted and reaccreted since they formed. We examine models of the primary impactor populations in the Saturn system. At the present time, ecliptic comets, which likely originate in the Kuiper belt/scattered disk, are predicted to dominate impacts on the regular satellites and ring moons, but the models require extrapolations in size (from the observed Kuiper belt objects to the much smaller bodies that produce the craters) or in distance (from the known active Jupiter family comets to 9.5 AU). Phoebe, Iapetus, and perhaps even moons closer to Saturn have been struck by irregular satellites as well. We describe the Nice model, which provides a plausible mechanism by which the entire Solar System might have experienced an era of heavy bombardment long after the planets formed. We then discuss the three cratering chronologies, including one based upon the Nice model, that have been used to infer surface ages from crater densities on the saturnian satellites. After reviewing scaling relations between the properties of impactors and the craters they produce, we provide model estimates of the present-day rate at which comets impact

  12. Machine cataloging of impact craters on Mars

    NASA Astrophysics Data System (ADS)

    Stepinski, Tomasz F.; Mendenhall, Michael P.; Bue, Brian D.

    2009-09-01

    This study presents an automated system for cataloging impact craters using the MOLA 128 pixels/degree digital elevation model of Mars. Craters are detected by a two-step algorithm that first identifies round and symmetric topographic depressions as crater candidates and then selects craters using a machine-learning technique. The system is robust with respect to surface types; craters are identified with similar accuracy from all different types of martian surfaces without adjusting input parameters. By using a large training set in its final selection step, the system produces virtually no false detections. Finally, the system provides a seamless integration of crater detection with its characterization. Of particular interest is the ability of our algorithm to calculate crater depths. The system is described and its application is demonstrated on eight large sites representing all major types of martian surfaces. An evaluation of its performance and prospects for its utilization for global surveys are given by means of detailed comparison of obtained results to the manually-derived Catalog of Large Martian Impact Craters. We use the results from the test sites to construct local depth-diameter relationships based on a large number of craters. In general, obtained relationships are in agreement with what was inferred on the basis of manual measurements. However, we have found that, in Terra Cimmeria, the depth/diameter ratio has an abrupt decrease at ˜38°S regardless of crater size. If shallowing of craters is attributed to presence of sub-surface ice, a sudden change in its spatial distribution is suggested by our findings.

  13. Some implications of large impact craters and basins on Venus for terrestrial ringed craters and planetary evolution

    NASA Technical Reports Server (NTRS)

    Mckinnon, W. B.; Alexopoulos, J. S.

    1994-01-01

    Approximately 950 impact craters have been identified on the surface of Venus, mainly in Magellan radar images. From a combination of Earth-based Arecibo, Venera 15/1, and Magellan radar images, we have interpreted 72 as unequivocal peak-ring craters and four as multiringed basins. The morphological and structural preservation of these craters is high owing to the low level of geologic activity on the venusian surface (which is in some ways similar to the terrestrial benthic environment). Thus these craters should prove crucial to understanding the mechanics of ringed crater formation. They are also the most direct analogs for craters formed on the Earth in Phanerozoic time, such as Chicxulub. We summarize our findings to date concerning these structures.

  14. A Buried Precambrian Impact Crater in Scotland

    NASA Astrophysics Data System (ADS)

    Simms, M. J.

    2016-08-01

    Field evidence indicates that the source of the Stac Fada impact deposit (Mesoproterozoic) in NW Scotland was to the east, and that the now buried crater is represented by the 40+ km diameter Lairg Gravity Low.

  15. Ganymede - Ancient Impact Craters in Galileo Regio

    NASA Image and Video Library

    1997-09-07

    Ancient impact craters shown in this image of Jupiter moon Ganymede taken by NASA Galileo spacecraft testify to the great age of the terrain, dating back several billion years. http://photojournal.jpl.nasa.gov/catalog/PIA00279

  16. Impact Structures: What Does Crater Diameter Mean?

    NASA Astrophysics Data System (ADS)

    Turtle, E. P.; Pierazzo, E.; Collins, G. S.; Osinski, G. R.; Melosh, H. J.; Morgan, J. V.; Reimold, W. U.; Spray, J. G.

    2004-03-01

    Crater diameter is an important parameter in energy scaling and impact simulations. However, disparate types of data make the use of consistent metrics difficult. We suggest a consistent terminology and discuss it in the context of several examples.

  17. Impact Craters in North America

    NASA Astrophysics Data System (ADS)

    Grieve, R. A. F.; Wood, C. A.; Garvin, J. B.; McLaughlin, G.; McHone, J. F.

    1988-03-01

    Meteor Crater Upheaval Dome Sierra Madera Middlesboro Pilot Lake Carswell Gow Lake Deep Bay Nicholson Lake West Hawk Lake Haughton Sudbury Wanapitei Brent Lac Couture New Quebec Clearwater Lakes Manicouagan Charlevoix Lac La Moinerie Mistastin

  18. The missing large impact craters on Ceres

    NASA Astrophysics Data System (ADS)

    Marchi, S.; Ermakov, A. I.; Raymond, C. A.; Fu, R. R.; O'Brien, D. P.; Bland, M. T.; Ammannito, E.; de Sanctis, M. C.; Bowling, T.; Schenk, P.; Scully, J. E. C.; Buczkowski, D. L.; Williams, D. A.; Hiesinger, H.; Russell, C. T.

    2016-07-01

    Asteroids provide fundamental clues to the formation and evolution of planetesimals. Collisional models based on the depletion of the primordial main belt of asteroids predict 10-15 craters >400 km should have formed on Ceres, the largest object between Mars and Jupiter, over the last 4.55 Gyr. Likewise, an extrapolation from the asteroid Vesta would require at least 6-7 such basins. However, Ceres' surface appears devoid of impact craters >~280 km. Here, we show a significant depletion of cerean craters down to 100-150 km in diameter. The overall scarcity of recognizable large craters is incompatible with collisional models, even in the case of a late implantation of Ceres in the main belt, a possibility raised by the presence of ammoniated phyllosilicates. Our results indicate that a significant population of large craters has been obliterated, implying that long-wavelength topography viscously relaxed or that Ceres experienced protracted widespread resurfacing.

  19. Limb of Copernicus Impact Crater

    NASA Technical Reports Server (NTRS)

    1991-01-01

    Copernicus is 93 km wide and is located within the Mare Imbrium Basin, northern nearside of the Moon (10 degrees N., 20 degrees W.). Image shows crater floor, floor mounds, rim, and rayed ejecta. Rays from the ejecta are superposed on all other surrounding terrains which places the crater in its namesake age group: the Copernican system, established as the youngest assemblage of rocks on the Moon (Shoemaker and Hackman, 1962, The Moon: London, Academic Press, p.289- 300).

  20. Crater and cavity depth in hypervelocity impact

    NASA Astrophysics Data System (ADS)

    Kadono, T.; Fujiwara, A.

    2003-04-01

    Hypervelocity impact experiments with low-density mediums (e.g., foams) have been so far carried out to develop the instruments for intact capture of interplanetary dust particles. The results show that the impact leads a "cavity", a cylindrical or carrot (spindle) shaped vestige. Its shape depends on the condition of projectiles; when impact velocity is so low that projectiles are intact, the depth increases with impact velocity, while it decreases or is constant with impact velocity when the impact velocity is so high that projectiles are broken (e.g., Kadono, Planet. Space Sci. 47, 305--318, 1999). On the other hand, as described by Summers (NASA TN D-94, 1959), crater shape with high density targets (comparable to projectile density) also changes with impact velocity. At low velocities, the strength of projectile's materials is greater than the dynamic impact pressure and the projectile penetrates the target intact. The crater produced is deep and narrow. With increase in impact velocity, a point is reached at which the impact pressure is sufficient to cause the projectile to fragment into a few large pieces at impact. Then as the impact velocity is increased further, the projectile shatters into numerous small pieces and the penetration actually decreases. Finally a velocity is reached at which the typical fluid impact occurs, the crater formed is nearly hemispherical in shape. It appears that the situation in cavity formation with low density targets is quite similar to that in cratering with high density targets at low impact velocity. This similarity allows us to discuss cavity formation and cratering in a unified view. As described above, the previous experiments clearly suggest that the condition of projectiles plays important roles in both cratering and cavity formation. Hence here, by introducing a parameter that characterizes the condition of projectiles at the instance of impact, cratering processes such as projectile penetration and shock wave

  1. A Chain of Impact Craters on Callisto

    NASA Image and Video Library

    1997-12-18

    A portion of a chain of impact craters on Jupiter's moon Callisto is seen in this image taken by the Galileo spacecraft on November 4, 1996. This crater chain on Callisto is believed to result from the impact of a split object, similar to the fragments of Comet Shoemaker-Levy 9 which smashed into Jupiter's atmosphere in July of 1994. This high-resolution view, taken by Galileo's solid state imaging television camera during its third orbit around Jupiter, is of Callisto's northern hemisphere at 35 degrees north, 46 degrees west, and covers an area of about eight miles (13 kilometers) across. The smallest visible crater is about 140 yards (130 meters) across. The image was taken at a range of 974 miles (1,567 kilometers). On a global scale, Callisto is heavily cratered, indicating the great age of its surface. At the scale of this image, it was anticipated that the surface would be heavily cratered as well; however, there is a surprising lack of small craters, suggesting that one or more processes have obliterated these and other small-scale features. For example, downslope movement of ice-rich debris could bury small craters. The bright slopes visible in this picture represent places where downslope movement has taken place, exposing fresh ice surfaces. http://photojournal.jpl.nasa.gov/catalog/PIA00514

  2. Impact mechanics at Meteor Crater, Arizona

    USGS Publications Warehouse

    Shoemaker, Eugene Merle

    1959-01-01

    Meteor Crator is a bowl-shaped depression encompassed by a rim composed chiefly of debris stacked in layers of different composition. Original bedrock stratigraphy is preserved, inverted, in the debris. The debris rests on older disturbed strata, which are turned up at moderate to steep angles in the wall of the crater and are locally overturned near the contact with the debris. These features of Meteor Crater correspond closely to those of a crater produced by nuclear explosion where depth of burial of the device was about 1/5 the diameter of the resultant crater. Studies of craters formed by detonation of nuclear devices show that structures of the crater rims are sensitive to the depth of explosion scaled to the yield of the device. The structure of Meteor Crater is such as would be produced by a very strong shock originating about at the level of the present crater floor, 400 feet below the original surface. At supersonic to hypersonic velocity an impacting meteorite penetrates the ground by a complex mechanism that includes compression of the target rocks and the meteorite by shock as well as hydrodynamic flow of the compressed material under high pressure and temperature. The depth of penetration of the meteorite, before it loses its integrity as a single body, is a function primarily of the velocity and shape of the meteorite and the densities and equations of state of the meteorite and target. The intensely compressed material then becomes dispersed in a large volume of breccia formed in the expanding shock wave. An impact velocity of about 15 km/sec is consonant with the geology of Meteor Crater in light of the experimental equation of state of iron and inferred compressibility of the target rocks. The kinetic energy of the meteorite is estimated by scaling to have been from 1.4 to 1.7 megatons TNT equivalent.

  3. Raman spectroscopy of shocked gypsum from a meteorite impact crater

    NASA Astrophysics Data System (ADS)

    Brolly, Connor; Parnell, John; Bowden, Stephen

    2017-07-01

    Impact craters and associated hydrothermal systems are regarded as sites within which life could originate on Earth, and on Mars. The Haughton impact crater, one of the most well preserved craters on Earth, is abundant in Ca-sulphates. Selenite, a transparent form of gypsum, has been colonized by viable cyanobacteria. Basement rocks, which have been shocked, are more abundant in endolithic organisms, when compared with un-shocked basement. We infer that selenitic and shocked gypsum are more suitable for microbial colonization and have enhanced habitability. This is analogous to many Martian craters, such as Gale Crater, which has sulphate deposits in a central layered mound, thought to be formed by post-impact hydrothermal springs. In preparation for the 2020 ExoMars mission, experiments were conducted to determine whether Raman spectroscopy can distinguish between gypsum with different degrees of habitability. Ca-sulphates were analysed using Raman spectroscopy and results show no significant statistical difference between gypsum that has experienced shock by meteorite impact and gypsum, which has been dissolved and re-precipitated as an evaporitic crust. Raman spectroscopy is able to distinguish between selenite and unaltered gypsum. This shows that Raman spectroscopy can identify more habitable forms of gypsum, and demonstrates the current capabilities of Raman spectroscopy for the interpretation of gypsum habitability.

  4. Structure of the Chesapeake Bay Impact Crater from Wide-Angle Seismic Waveform Tomography

    NASA Astrophysics Data System (ADS)

    Lester, W. R.; Hole, J. A.; Catchings, R. D.; Bleibinhaus, F.

    2006-12-01

    The 35 million year old Chesapeake Bay impact structure is one of the largest and most well preserved meteor/comet impact structures on Earth. As a marine impact on a continental shelf, its morphology consists of a deep inner crater penetrating pre-existing crystalline basement surrounded by a much wider, shallower crater within the overlying sediments. In 2004, the U.S. Geological Survey conducted a combined refraction and low-fold reflection seismic survey across the northern part of the inner crater with the goals of constraining crater structure and identifying an ideal drill site for a deep borehole. Waveform inversion was applied to the seismic data to produce a high-resolution seismic velocity model of the inner crater. This significantly improved the spatial resolution over previous images based on travel times. Under the northeastern part of the outer crater, eastward-sloping, relatively intact crystalline basement is at a depth of ~1.5 km. The edge of the inner crater is at ~17 km radius and slopes gradually inward to penetrate pre-existing crystalline basement. The top of crystalline rock on the central uplift is about 0.8 km higher than its surroundings. Seismic velocity of crystalline rocks under the inner crater is much lower than under the outer crater, suggesting strong fracturing/brecciation of the inner crater floor and even stronger brecciation of the central uplift. A basement uplift and lateral change of basement velocity occurs at a radius of ~12 km and is interpreted as possibly indicating the edge of the transient crater caused by impact excavation prior to collapse. Assuming a 24 km diameter transient crater, scaling laws based on extraterrestrial craters and numerical models predict the observed inner crater diameter, central uplift diameter, and inner crater depth. This suggests that the crater collapse processes that created the inner crater in crystalline rocks were unaffected by the much weaker rheology of the overlying sediments.

  5. Impact Cratering on Small Asteroids and into Coarse Regoliths

    NASA Astrophysics Data System (ADS)

    Durda, D. D.

    2012-12-01

    Impact cratering on the smallest asteroids can result in crater and other associated impact scar morphologies that we do not usually see exhibited in imagery of larger main-belt asteroids and airless moons. The NEAR-Shoemaker spacecraft at (433) Eros and the Hayabusa spacecraft at (25143) Itokawa showed the surfaces of these near-Earth asteroids to be relatively depleted in smaller craters. 'Armoring' of the surface by the presence of boulders larger than the size of the projectiles needed to form the missing craters has been proposed as one possible contributing factor in the observed depletion. Indeed, a number of bright spots observed on the surfaces of some boulders on Itokawa appear to have a size distribution consistent with small projectiles and have been interpreted as impact scars - an extreme end member example of the armoring hypothesis. Several research teams have conducted a number of laboratory impact experiments focusing on the range of morphological expression of craters formed in coarse regoliths where the impacting projectiles are comparable in size to the regolith grains. The results of these experiments suggest that craters become less well defined and more irregular in shape as soon as the regolith target grains are larger than the projectiles. I will give an overview of the range of visual appearance of impact features on small asteroids, review the results of some previous laboratory experiments relevant to the armoring hypothesis, and present results of our own new impact experiments conducted at the Ames Vertical Gun Range to examine the range of morphological expression of impacts onto blocks on and in the regolith of small airless bodies.

  6. Limb of Copernicus Impact Crater

    NASA Image and Video Library

    1998-06-03

    Copernicus is 93 km wide and is located within the Mare Imbrium Basin, northern nearside of the Moon 10 degrees N., 20 degrees W.. This image from NASA's Lunar Orbiter shows crater floor, floor mounds, rim, and rayed ejecta. http://photojournal.jpl.nasa.gov/catalog/PIA00094

  7. Atmospheric Entry Studies and the Smallest Impact Craters on Mars

    NASA Technical Reports Server (NTRS)

    Hoerz, F.; Cintala, M. J.; Rochelle, W. C.; Mitchell, C. M.; Smith, R. N.; Dobarco-Otero, J.; Finch, B. K.; See, T. H.

    2004-01-01

    High-resolution images from the Mars Orbiter Camera reveal impact craters as small as 10 m [1], and still smaller craters (< 0.5 m) have been inferred from surface boulders at the Pathfinder landing site [2]. Any small-scale impact environment at scales of meters or smaller would obviously be a potent contributor to erosive processes on Mars, to the small-scale evolution of its surface, and to mineralogic/ compositional alterations of its surface materials. It is not very clear from the analysis of Viking and Pathfinder images, however, what the smallest craters are on Mars. As a consequence, it might be informative to consult atmospheric-entry calculations that specify the smallest meteoroid able to survive passage through the present martian atmosphere. We conducted such calculations and perceive them as providing useful constraints for understanding small-scale surface processes on Mars and as possible guides for the interpretation of surface images from past and future lander missions.

  8. Calculational investigation of impact cratering dynamics - Early time material motions

    NASA Technical Reports Server (NTRS)

    Thomsen, J. M.; Austin, M. G.; Ruhl, S. F.; Schultz, P. H.; Orphal, D. L.

    1979-01-01

    Early time two-dimensional finite difference calculations of laboratory-scale hypervelocity (6 km/sec) impact of 0.3 g spherical 2024 aluminum projectiles into homogeneous plasticene clay targets were performed and the resulting material motions analyzed. Results show that the initial jetting of vaporized target material is qualitatively similar to experimental observation. The velocity flow field developed within the target is shown to have features quite similar to those found in calculations of near-surface explosion cratering. Specific application of Maxwell's analytic Z-Model (developed to interpret the flow fields of near-surface explosion cratering calculations), shows that this model can be used to describe the flow fields resulting from the impact cratering calculations, provided that the flow field center is located beneath the target surface, and that application of the model is made late enough in time that most of the projectile momentum has been dissipated.

  9. Ewing Structure: A Possible Abyssal Impact Crater

    NASA Astrophysics Data System (ADS)

    Abbott, D. H.; Burckle, L.; Goldin, T.; Hays, J.

    2001-12-01

    We discovered a possible abyssal impact crater about 150 km in diameter that we call the Ewing structure. It lies between the Clarion and Clipperton fracture zones and is about the age of the late/middle Miocene boundary, a prominent mass extinction event. The Ewing structure has a weak topographic expression, but 6 cm to over 850-cm thick layers with high magnetic susceptibilities that contain impact spherules are found on all sides of the structure. There are also apparent secondary impact craters located between one and two (crater) diameters from the rim of the Ewing structure. Inside the structure, there are two topographic lows with very large magnetic anomalies, up to 380 nT, that may be due to ponded impact melt. These large magnetic anomalies are not seafloor spreading related, as the basement formed at the Eocene equator. The impact spherules from the high susceptibility layers are up to 200 microns in diameter, consistent with a source crater that is at least 55 km in diameter. The impact spherules have very high K contents and relatively modest Si contents, consistent with an origin as impact melts derived from seamount crust. We argue that the weak topographic expression of the Ewing structure is due to two factors: the excavation of a pre-existing seamount and the excavation of a hole in the water by the impactor. Underwater impact craters have resurge gullies on their rims that are produced by the return of water into the crater. The spacing between gullies is about equal to the water depth, 3.8 km in the case of the Ewing structure. The rapid movement of the resurge waters into the Ewing structure erodes large quantities of abyssal sediments, which then resettle to the bottom. These sediment deposits fill the impact crater and form distal impact turbidites. Because turbidity currents move from shallow to deep water, the thickest impact turbidite layers are in local topographic lows. This idea explains why the thickness of impact layers is mainly a

  10. Cometary Dust Characteristics: Comparison of Stardust Craters with Laboratory Impacts

    NASA Technical Reports Server (NTRS)

    Kearsley, A. T.; Burchell, M. J.; Graham, G. A.; Horz, F.; Wozniakiewicz, P. A.; Cole, M. J.

    2007-01-01

    Aluminium foils exposed to impact during the passage of the Stardust spacecraft through the coma of comet Wild 2 have preserved a record of a wide range of dust particle sizes. The encounter velocity and dust incidence direction are well constrained and can be simulated by laboratory shots. A crater size calibration programme based upon buckshot firings of tightly constrained sizes (monodispersive) of glass, polymer and metal beads has yielded a suite of scaling factors for interpretation of the original impacting grain dimensions. We have now extended our study to include recognition of particle density for better matching of crater to impactor diameter. A novel application of stereometric crater shape measurement, using paired scanning electron microscope (SEM) images has shown that impactors of differing density yield different crater depth/diameter ratios. Comparison of the three-dimensional gross morphology of our experimental craters with those from Stardust reveals that most of the larger Stardust impacts were produced by grains of low internal porosity.

  11. Impact Craters on Titan? Cassini RADAR View

    NASA Technical Reports Server (NTRS)

    Wood, Charles A.; Lopes, Rosaly; Stofan, Ellen R.; Paganelli, Flora; Elachi, Charles

    2005-01-01

    Titan is a planet-size (diameter of 5,150 km) satellite of Saturn that is currently being investigated by the Cassini spacecraft. Thus far only one flyby (Oct. 26, 2004; Ta) has occurred when radar images were obtained. In February, 2005, and approximately 20 more times in the next four years, additional radar swaths will be acquired. Each full swath images about 1% of Titan s surface at 13.78 GHz (Ku-band) with a maximum resolution of 400 m. The Ta radar pass [1] demonstrated that Titan has a solid surface with multiple types of landforms. However, there is no compelling detection of impact craters in this first radar swath. Dione, Tethys and other satellites of Saturn are intensely cratered, there is no way that Titan could have escaped a similar impact cratering past; thus there must be ongoing dynamic surface processes that erase impact craters (and other landforms) on Titan. The surface of Titan must be very young and the resurfacing rate must be significantly higher than the impact cratering rate.

  12. Impact craters: An ice study on Rhea

    NASA Astrophysics Data System (ADS)

    Dalle Ore, Cristina M.; Cruikshank, Dale P.; Mastrapa, Rachel M. E.; Lewis, Emma; White, Oliver L.

    2015-11-01

    The goal of this project is to study the properties of H2O ice in the environment of the Saturn satellites and in particular to measure the relative amounts of crystalline and amorphous H2O ice in and around two craters on Rhea. The craters are remnants of cataclysmic events that, by raising the local temperature, melted the ice, which subsequently crystallized. Based on laboratory experiments it is expected that, when exposed to ion bombardment at the temperatures typical of the Saturn satellites, the crystalline structure of the ice will be broken, resulting in the disordered, amorphous phase. We therefore expect the ice in and around the craters to be partially crystalline and partially amorphous. We have designed a technique that estimates the relative amounts of crystalline and amorphous H2O ice based on measurements of the distortion of the 2-μm spectral absorption band. The technique is best suited for planetary surfaces that are predominantly icy, but works also for surfaces slightly contaminated with other ices and non-ice components. We apply the tool to two areas around the Inktomi and the Obatala craters. The first is a young impact crater on the leading hemisphere of Rhea, the second is an older one on the trailing hemisphere. For each crater we obtain maps of the fraction of crystalline ice, which were overlain onto Imaging Science Subsystem (ISS) images of the satellite searching for correlations between crystallinity and geography. For both craters the largest fractions of crystalline ice are in the center, as would be intuitively expected since the 'ground zero' areas should be most affected by the effects of the impact. The overall distribution of the crystalline ice fraction maps the shape of the crater and, in the case of Inktomi, of the rays. The Inktomi crater ranges between a maximum fraction of 67% crystalline ice to a minimum of 39%. The Obatala crater varies between a maximum of 51% and a minimum of 33%. Based on simplifying assumptions

  13. Impact and Aqueous Strata in Holden Crater, Mars

    NASA Astrophysics Data System (ADS)

    Grant, J. A.; Irwin, R. P.; Grotzinger, J. P.; Milliken, R. E.; Tornabene, L. L.; McEwen, A. S.

    2007-12-01

    Images from the High Resolution Imaging Science Experiment (HiRISE) on the Mars Reconnaissance Orbiter (MRO) at 26-52 cm/pixel scales reveal a sequence of exposed impact megabreccia and sedimentary units in the Noachian-aged Holden crater in Margaritifer Terra, Mars (26S, 326E, 154 km diameter). Formation of Holden crater interrupted the previously through-flowing Uzboi-Ladon-Margaritifer (ULM) outflow channel system and excavated sediments deposited by ULM within the pre-existing (Early Noachian) Holden impact basin. Crater walls display variably rounded, poorly sorted, chaotically arranged, and variably bright blocks up to 50 m across residing within a finer matrix. These characteristics suggest a possible origin for many blocks as sedimentary materials excavated from the pre-impact Holden basin and these materials are interpreted as coarse, impact- fragmented megabreccia. At least 150 m of sedimentary facies partially fill the crater and were emplaced during two wet phases during the Noachian. Early prolonged erosion of crater walls and basin deposition in a quiescent distal alluvial or lacustrine setting resulted in a lower light-toned unit displaying meter- to submeter-scale bedding traceable for up to kilometers and containing phyllosilicates, but with few resolvable blocks. The lower unit is topographically restricted and capped by a thin, dark-toned layer commonly exhibiting 4-5-m-diameter polygonal fractures that may record a terminal playa phase. Later-Noachian high-magnitude flooding of the crater occurred as an impounded Uzboi Vallis lake overtopped the crater rim and rapidly emplaced a topographically restricted darker- toned, more crudely bedded deposit that drapes unconformably over antecedent relief and envelops large blocks (up to 100 m across) of material eroded from the lower unit. The upper unit exhibits alluvial morphology near the crater rim breach, but grades distally an upwards into more continuously bedded, possible lacustrine facies that

  14. Impact Materials of Takamatsu Crater in Japan

    NASA Astrophysics Data System (ADS)

    Miura, Y.; Okamoto, M.; Fukuchi, T.

    1995-09-01

    Shocked quartz materials have been found in Japanese K.T boundary (Hokkaido) and mountains of middle main-islands of Japan, though there are few direct evidence of "natural circular structure" on the surface in Japan. However circular structure has been recently found as a buried crater(up to 150m deep) [1] which is ca. 4km in diameter with -10 mgal of Bouguer gravity anomaly from surrounding Rhyoke granitic region of the southern part of Takamatsu City, Kagawa Prefecture, northeast Shikoku, Japan [1,2,3]. Two boring cores of 300m deep near small mountains inside the crater could not reach the bottom of the crater so far. From model calculation of the negative gravity anomaly, the Takamatsu crater shows deep basin structure up to 1.4km. If the Takamatsu crater is considered to be only impact crater, it is difficult to discuss only surface materials on the crater. But anomalous minerals are found only around small volcanic intrusions inside the crater, which the mixed minerals are clearly different with those of other volcanic intrusions of the Yashima and Goshikidai outside the crater [1,2,3]. The small volcanic intrusions are not origin of large Takamatsu crater, because the small volcanic intrusions are found on whole areas of Kagawa Prefecture. Major different activity of the small intrusions inside the crater is to bring the brecciated materials of the interior (esp. crater sediments). The xenolith materials around only volcanic intrusion of andesite are divided into the following four major mineral materials:(a) round pebble fragments from the Rhyoke granitic basement (Sampling No.15), (b) rock fragments from intruded biotite andesites (Nos. 2,15), (c) impact-induced fragments of shocked Quartz grains (Nos. 2,3,6,15), diaplectic feldspars (Nos. 2,3,6,15), silica glasses (Nos. 2,15) and small Fe-Ni metallic grains (No.15), and (d) small sedimentary fragments of halite and mordenite, as listed in Table 1. Table I, showing the characterization of surface samples

  15. The Lake Bosumtwi impact crater, Ghana

    USGS Publications Warehouse

    Jones, William B.; Bacon, Michael; Hastings, David A.

    1981-01-01

    Analogy with better-known craters suggests that Bosumtwi has a central uplift rising to 200 m beneath the lake floor. An aeromagnetic anomaly of amplitude 50 nanotesla (nT) over the northern half of the lake is interpreted as due to a layer of magnetized fallback breccia beneath the lake sediments. The normal polarity of the breccia shows that the crater was formed during the normal Jaramillo event of 0.97 to 0.85 m.y. ago, which agrees with the magnetic stratigraphy of the related Ivory Coast microtektites. A regional gravity survey indicates a negative Bouguer anomaly over the crater. There is some geochemical evidence that the meteorite was an iron, and its mass and energy are suggested as about 108 tons and 3 × 1019 joules or 7.3 × 103 megatons.

  16. Cratering on a Comet: Expectations for Deep Impact

    NASA Astrophysics Data System (ADS)

    Schultz, P. H.

    2001-11-01

    In 2005, the Deep Impact Mission will witness the collision of a 350kg impactor into Comet P-Temple 1. Laboratory impact experiments provide scaling laws that relate impactor mass to crater diameter and depth for various target and impactor properties. A series of experiments have been performed at the NASA Ames Vertical Gun Range in order to assess the effects of the density and impedance ratio between target and impactor, target compressibility, target porosity, and impact angle. Although the maximum velocity achievable in the laboratory is below that for Deep Impact (7km/sec versus 10.3 km/sec), varying impactor diameter and velocity allows extrapolating beyond this range, for certain assumptions. This approach has been used for various particulate targets including pumice (1.1 to 1.5 g/cc, sand (1.7g/cc), vermiculite (0.09 g/cc), and micro-spheres (0.05g/cc), which provide the maximum possible diameter produced on Temple 1. Smaller sizes are expected if strength, rather than gravity, controls limits of crater growth or if internal energy losses (e.g., pore-space collapse) reduce the coupling efficiency. Crater size also can be augmented through back pressures created by vapor expansion within the crater cavity. The maximum predicted crater diameters (without back pressure) for the DI impact into a 0.3 g/cc porous target are: 89 m (pumice), 124 m (fine sand), 98m (fine sand with compaction losses). Formation times approach 200 seconds. Crater size, plume evolution (size and photometry), formation time, ejection (curtain) angle, and the ejecta deposit will all contribute to meaningful interpretations of the near-surface properties.

  17. Martian cratering. II - Asteroid impact history.

    NASA Technical Reports Server (NTRS)

    Hartmann, W. K.

    1971-01-01

    This paper considers the extent to which Martian craters can be explained by considering asteroidal impact. Sections I, II, and III of this paper derive the diameter distribution of hypothetical asteroidal craters on Mars from recent Palomar-Leiden asteroid statistics and show that the observed Martian craters correspond to a bombardment by roughly 100 times the present number of Mars-crossing asteroids. Section IV discusses the early bombardment history of Mars, based on the capture theory of Opik and probable orbital parameters of early planetesimals. These results show that the visible craters and surface of Mars should not be identified with the initial, accreted surface. A backward extrapolation of the impact rates based on surviving Mars-crossing asteroids can account for the majority of Mars craters over an interval of several aeons, indicating that we see back in time no further than part-way into a period of intense bombardment. An early period of erosion and deposition is thus suggested. Section V presents a comparison with results and terminology of other authors.

  18. Martian cratering. II - Asteroid impact history.

    NASA Technical Reports Server (NTRS)

    Hartmann, W. K.

    1971-01-01

    This paper considers the extent to which Martian craters can be explained by considering asteroidal impact. Sections I, II, and III of this paper derive the diameter distribution of hypothetical asteroidal craters on Mars from recent Palomar-Leiden asteroid statistics and show that the observed Martian craters correspond to a bombardment by roughly 100 times the present number of Mars-crossing asteroids. Section IV discusses the early bombardment history of Mars, based on the capture theory of Opik and probable orbital parameters of early planetesimals. These results show that the visible craters and surface of Mars should not be identified with the initial, accreted surface. A backward extrapolation of the impact rates based on surviving Mars-crossing asteroids can account for the majority of Mars craters over an interval of several aeons, indicating that we see back in time no further than part-way into a period of intense bombardment. An early period of erosion and deposition is thus suggested. Section V presents a comparison with results and terminology of other authors.

  19. Small Impact Craters with Dark Ejecta Deposits

    NASA Technical Reports Server (NTRS)

    1999-01-01

    When a meteor impacts a planetary surface, it creates a blast very much like a bomb explosion. Shown here are two excellent examples of small impact craters on the martian surface. Each has a dark-toned deposit of material that was blown out of the crater (that is, ejected) during the impact. Materials comprising these deposits are called ejecta. The ejecta here is darker than the surrounding substrate because each crater-forming blast broke through the upper, brighter surface material and penetrated to a layer of darker material beneath. This darker material was then blown out onto the surface in the radial pattern seen here.

    The fact that impact craters can penetrate and expose material from beneath the upper surface of a planet is very useful for geologists trying to determine the nature and composition of the martian subsurface. The scene shown here is illuminated from the upper left and covers an area 1.1 km (0.7 mi) wide by 1.4 km (0.9 mi). The larger crater has a diameter of about 89 meters (97 yards), the smaller crater is about 36 meters (39 yards) across. The picture is located in Terra Meridiani and was taken by the Mars Global Surveyor Mars Orbiter Camera.

    Malin Space Science Systems and the California Institute of Technology built the MOC using spare hardware from the Mars Observer mission. MSSS operates the camera from its facilities in San Diego, CA. The Jet Propulsion Laboratory's Mars Surveyor Operations Project operates the Mars Global Surveyor spacecraft with its industrial partner, Lockheed Martin Astronautics, from facilities in Pasadena, CA and Denver, CO.

  20. Impact cratering in viscous targets - Laboratory experiments

    NASA Technical Reports Server (NTRS)

    Greeley, R.; Fink, J.; Snyder, D. B.; Gault, D. E.; Guest, J. E.; Schultz, P. H.

    1980-01-01

    To determine the effects of target yield strength and viscosity on the formation and morphology of Martian multilobed, slosh and rampart-type impact craters, 75 experiments in which target properties and impact energies were varied were carried out for high-speed motion picture observation in keeping with the following sequence: (1) projectile initial impact; (2) crater excavation and rise of ejecta plume; (3) formation of a transient central mound which generates a surge of material upon collapse that can partly override the plume deposit; and (4) oscillation of the central mound with progressively smaller surges of material leaving the crater. A dimensional analysis of the experimental results indicates that the dimensions of the central mound are proportional to (1) the energy of the impacting projectile and (2) to the inverse of both the yield strength and viscosity of the target material, and it is determined that extrapolation of these results to large Martian craters requires an effective surface layer viscosity of less than 10 to the 10th poise. These results may also be applicable to impacts on outer planet satellites composed of ice-silicate mixtures.

  1. Impact Craters as Habitats for Life on Early Mars

    NASA Astrophysics Data System (ADS)

    Osinski, G. R.; Tornabene, L. L.; Banerjee, N. R.; Cockell, C. S.; Flemming, R.; Izawa, M. R. M.; McCutcheon, J.; Pontefract, A.; Parnell, J.; Sapers, H.; Southam, G.

    2012-05-01

    In this contribution we present a case that impact craters on Early Mars would have represented prime habitats for life, and potentially for its origin, and that impact craters, therefore, should be prime exploration targets for future missions.

  2. Global Geometric Properties of Martian Impact Craters

    NASA Technical Reports Server (NTRS)

    Garvin, J. B.; Sakimoto, S. E. H.; Frawley, J. J.; Schnetzler, C.

    2002-01-01

    We present impact crater geometric properties for more than 5000 fresh martian features using high resolution Mars Orbiter Laser Altimeter digital elevation models and topographic profiles. We discuss global results and significant regional variations. Additional information is contained in the original extended abstract.

  3. Damage areas due to impact craters on LDEF aluminum panels

    NASA Technical Reports Server (NTRS)

    Coombs, Cassandra R.; Atkinson, Dale R.; Allbrooks, Martha; Wagner, J. D.

    1992-01-01

    Because of its exposure time and total exposed surface area, the LDEF provides a unique opportunity to analyze the effects of the natural and man-made particle populations in low earth orbit (LEO). This study concentrated on collecting and analyzing measurements of impact craters from seven painted aluminum surfaces at different locations on the satellite. These data are being used to: (1) update the current theoretical micrometeoroid and debris models for LEO; (2) characterize the effects of the LEO micrometeoroid and debris environment of satellite components and designs; (3) help assess the probability of collision between spacecraft in LEO and already resident debris and the survivability of those spacecraft that must travel through, or reside in, LEO; and (4) help define and evaluate future debris mitigation and disposal methods. Measurements were collected from one aluminum experiment tray cover (Bay C-12), two aluminum grapple plates (Bays C-01, C-10), and four aluminum experiment sun-shields (Bay E-09), all of which were coated with thermal paint. These measurements were taken at the Facility for Optical Interpretation of Large Surfaces (FOILS) Lab at JSC. Virtually all features greater than 0.2 mm in diameter possessed a spall zone in which all of the paint was removed from the aluminum surface, and which varied in size from 2-5 crater diameters. The actual craters vary from central pits without raised rims to morphologies more typical of craters formed in aluminum under hypervelocity impact conditions for larger features. Most craters exhibit a shock zone that varies in size from approximately 1-20 crater diameters. In general, only the outermost layer of paint was affected by this impact-related phenomenon, with several impacts possessing ridge-like structures encircling the area in which this outer-most paint layer was removed. Overall, there were no noticeable penetrations or bulges on the underside of the trays. One tray from the E-09 bay exhibited a

  4. Damage areas due to impact craters on LDEF aluminum panels

    NASA Astrophysics Data System (ADS)

    Coombs, Cassandra R.; Atkinson, Dale R.; Allbrooks, Martha; Wagner, J. D.

    1992-06-01

    Because of its exposure time and total exposed surface area, the LDEF provides a unique opportunity to analyze the effects of the natural and man-made particle populations in low earth orbit (LEO). This study concentrated on collecting and analyzing measurements of impact craters from seven painted aluminum surfaces at different locations on the satellite. These data are being used to: (1) update the current theoretical micrometeoroid and debris models for LEO; (2) characterize the effects of the LEO micrometeoroid and debris environment of satellite components and designs; (3) help assess the probability of collision between spacecraft in LEO and already resident debris and the survivability of those spacecraft that must travel through, or reside in, LEO; and (4) help define and evaluate future debris mitigation and disposal methods. Measurements were collected from one aluminum experiment tray cover (Bay C-12), two aluminum grapple plates (Bays C-01, C-10), and four aluminum experiment sun-shields (Bay E-09), all of which were coated with thermal paint. These measurements were taken at the Facility for Optical Interpretation of Large Surfaces (FOILS) Lab at JSC. Virtually all features greater than 0.2 mm in diameter possessed a spall zone in which all of the paint was removed from the aluminum surface, and which varied in size from 2-5 crater diameters. The actual craters vary from central pits without raised rims to morphologies more typical of craters formed in aluminum under hypervelocity impact conditions for larger features. Most craters exhibit a shock zone that varies in size from approximately 1-20 crater diameters. In general, only the outermost layer of paint was affected by this impact-related phenomenon, with several impacts possessing ridge-like structures encircling the area in which this outer-most paint layer was removed. Overall, there were no noticeable penetrations or bulges on the underside of the trays. One tray from the E-09 bay exhibited a

  5. Interpretation of Wild 2 Dust Fine Structure: Comparison of Stardust Aluminium Foil Craters to the Three-Dimensional Shape of Experimental Impacts by Artificial Aggregate Particles and Meteorite Powders

    SciTech Connect

    Kearsley, A T; Burchell, M J; Price, M C; Graham, G A; Wozniakiewicz, P J; Cole, M J; Foster, N J; Teslich, N

    2009-12-10

    New experimental results show that Stardust crater morphology is consistent with interpretation of many larger Wild 2 dust grains being aggregates, albeit most of low porosity and therefore relatively high density. The majority of large Stardust grains (i.e. those carrying most of the cometary dust mass) probably had density of 2.4 g cm{sup -3} (similar to soda-lime glass used in earlier calibration experiments) or greater, and porosity of 25% or less, akin to consolidated carbonaceous chondrite meteorites, and much lower than the 80% suggested for fractal dust aggregates. Although better size calibration is required for interpretation of the very smallest impacting grains, we suggest that aggregates could have dense components dominated by {micro}m-scale and smaller sub-grains. If porosity of the Wild 2 nucleus is high, with similar bulk density to other comets, much of the pore-space may be at a scale of tens of micrometers, between coarser, denser grains. Successful demonstration of aggregate projectile impacts in the laboratory now opens the possibility of experiments to further constrain the conditions for creation of bulbous (Type C) tracks in aerogel, which we have observed in recent shots. We are also using mixed mineral aggregates to document differential survival of pristine composition and crystalline structure in diverse fine-grained components of aggregate cometary dust analogues, impacted onto both foil and aerogel under Stardust encounter conditions.

  6. The missing large impact craters on Ceres

    USGS Publications Warehouse

    Marchi, S.; Ermakov, A.; Raymond, C.A.; Fu, R.R.; O'Brien, D.P.; Bland, Michael; Ammannito, E.; De Sanctis, M.C.; Bowling, Tim; Schenk, P.; Scully, J.E.C.; Buczkowski, D.L.; Williams, D.A.; Hiesinger, H.; Russell, C.T.

    2016-01-01

    Asteroids provide fundamental clues to the formation and evolution of planetesimals. Collisional models based on the depletion of the primordial main belt of asteroids predict 10–15 craters >400 km should have formed on Ceres, the largest object between Mars and Jupiter, over the last 4.55 Gyr. Likewise, an extrapolation from the asteroid Vesta would require at least 6–7 such basins. However, Ceres’ surface appears devoid of impact craters >~280 km. Here, we show a significant depletion of cerean craters down to 100–150 km in diameter. The overall scarcity of recognizable large craters is incompatible with collisional models, even in the case of a late implantation of Ceres in the main belt, a possibility raised by the presence of ammoniated phyllosilicates. Our results indicate that a significant population of large craters has been obliterated, implying that long-wavelength topography viscously relaxed or that Ceres experienced protracted widespread resurfacing.

  7. The missing large impact craters on Ceres.

    PubMed

    Marchi, S; Ermakov, A I; Raymond, C A; Fu, R R; O'Brien, D P; Bland, M T; Ammannito, E; De Sanctis, M C; Bowling, T; Schenk, P; Scully, J E C; Buczkowski, D L; Williams, D A; Hiesinger, H; Russell, C T

    2016-07-26

    Asteroids provide fundamental clues to the formation and evolution of planetesimals. Collisional models based on the depletion of the primordial main belt of asteroids predict 10-15 craters >400 km should have formed on Ceres, the largest object between Mars and Jupiter, over the last 4.55 Gyr. Likewise, an extrapolation from the asteroid Vesta would require at least 6-7 such basins. However, Ceres' surface appears devoid of impact craters >∼280 km. Here, we show a significant depletion of cerean craters down to 100-150 km in diameter. The overall scarcity of recognizable large craters is incompatible with collisional models, even in the case of a late implantation of Ceres in the main belt, a possibility raised by the presence of ammoniated phyllosilicates. Our results indicate that a significant population of large craters has been obliterated, implying that long-wavelength topography viscously relaxed or that Ceres experienced protracted widespread resurfacing.

  8. The missing large impact craters on Ceres

    PubMed Central

    Marchi, S.; Ermakov, A. I.; Raymond, C. A.; Fu, R. R.; O'Brien, D. P.; Bland, M. T.; Ammannito, E.; De Sanctis, M. C.; Bowling, T.; Schenk, P.; Scully, J. E. C.; Buczkowski, D. L.; Williams, D. A.; Hiesinger, H.; Russell, C. T.

    2016-01-01

    Asteroids provide fundamental clues to the formation and evolution of planetesimals. Collisional models based on the depletion of the primordial main belt of asteroids predict 10–15 craters >400 km should have formed on Ceres, the largest object between Mars and Jupiter, over the last 4.55 Gyr. Likewise, an extrapolation from the asteroid Vesta would require at least 6–7 such basins. However, Ceres' surface appears devoid of impact craters >∼280 km. Here, we show a significant depletion of cerean craters down to 100–150 km in diameter. The overall scarcity of recognizable large craters is incompatible with collisional models, even in the case of a late implantation of Ceres in the main belt, a possibility raised by the presence of ammoniated phyllosilicates. Our results indicate that a significant population of large craters has been obliterated, implying that long-wavelength topography viscously relaxed or that Ceres experienced protracted widespread resurfacing. PMID:27459197

  9. Meteoritic material at five large impact craters

    NASA Technical Reports Server (NTRS)

    Palme, H.; Janssens, M.-J.; Takahashi, H.; Anders, E.; Hertogen, J.

    1978-01-01

    The paper analyzes the meteoritic material at five multikilometer craters: Clearwater (Lac a l'Eau Claire) East and West (22 and 32 km), Manicouagan (70 km) and Mistastin (28 km), all in Canada; and Lake Bosumtwi (10.5 km), Ghana, which is associated with Ivory Coast tektites. Radiochemical neutron activation analysis is applied to 16 crater samples for the siderophile trace elements Ir, Os, Pd, Ni, Ge, and Re, which are depleted to varying degrees in the earth's crust but are abundant in all meteorites except achondrites. It is found that only two samples, both from Clearwater, exhibit a strong meteoritic signal. The remaining ones fall within or slightly above the range for terrestrial rocks, and therefore at best contain only small meteoritic components. Clearwater East is the first terrestrial impact crater to be associated with a stony meteorite (a C1 or C2 chondrite).

  10. The Wabar impact craters, Saudi Arabia, revisited

    NASA Astrophysics Data System (ADS)

    Gnos, E.; Hofmann, B. A.; Halawani, M. A.; Tarabulsi, Y.; Hakeem, M.; Al Shanti, M.; Greber, N. D.; Holm, S.; Alwmark, C.; Greenwood, R. C.; Ramseyer, K.

    2013-10-01

    The very young Wabar craters formed by impact of an iron meteorite and are known to the scientific community since 1933. We describe field observations made during a visit to the Wabar impact site, provide analytical data on the material collected, and combine these data with poorly known information discovered during the recovery of the largest meteorites. During our visit in March 2008, only two craters (Philby-B and 11 m) were visible; Philby-A was completely covered by sand. Mapping of the ejecta field showed that the outcrops are strongly changing over time. Combining information from different visitors with our own and satellite images, we estimate that the large seif dunes over the impact site migrate by approximately 1.0-2.0 m yr-1 southward. Shock lithification took place even at the smallest, 11 m crater, but planar fractures (PFs) and undecorated planar deformation features (PDFs), as well as coesite and stishovite, have only been found in shock-lithified material from the two larger craters. Shock-lithified dune sand material shows perfectly preserved sedimentary structures including cross-bedding and animal burrows as well as postimpact structures such as open fractures perpendicular to the bedding, slickensides, and radiating striation resembling shatter cones. The composition of all impact melt glasses can be explained as mixtures of aeolian sand and iron meteorite. We observed a partial decoupling of Fe and Ni in the black impact glass, probably due to partitioning of Ni into unoxidized metal droplets. The absence of a Ca-enriched component demonstrates that the craters did not penetrate the bedrock below the sand sheet, which has an estimated thickness of 20-30 m.

  11. Chesapeake Bay impact structure: Morphology, crater fill, and relevance for impact structures on Mars

    USGS Publications Warehouse

    Horton, J.W.; Ormo, J.; Powars, D.S.; Gohn, G.S.

    2006-01-01

    The late Eocene Chesapeake Bay impact structure (CBIS) on the Atlantic margin of Virginia is one of the largest and best-preserved "wet-target" craters on Earth. It provides an accessible analog for studying impact processes in layered and wet targets on volatile-rich planets. The CBIS formed in a layered target of water, weak clastic sediments, and hard crystalline rock. The buried structure consists of a deep, filled central crater, 38 km in width, surrounded by a shallower brim known as the annular trough. The annular trough formed partly by collapse of weak sediments, which expanded the structure to ???85 km in diameter. Such extensive collapse, in addition to excavation processes, can explain the "inverted sombrero" morphology observed at some craters in layered targets. The distribution of crater-fill materials i n the CBIS is related to the morphology. Suevitic breccia, including pre-resurge fallback deposits, is found in the central crater. Impact-modified sediments, formed by fluidization and collapse of water-saturated sand and silt-clay, occur in the annular trough. Allogenic sediment-clast breccia, interpreted as ocean-resurge deposits, overlies the other impactites and covers the entire crater beneath a blanket of postimpact sediments. The formation of chaotic terrains on Mars is attributed to collapse due to the release of volatiles from thick layered deposits. Some flat-floored rimless depressions with chaotic infill in these terrains are impact craters that expanded by collapse farther than expected for similar-sized complex craters in solid targets. Studies of crater materials in the CBIS provide insights into processes of crater expansion on Mars and their links to volatiles. ?? The Meteoritical Society, 2006.

  12. Coring the Chesapeake Bay impact crater

    USGS Publications Warehouse

    Poag, C.W.

    2004-01-01

    In July 1983, the shipboard scientists of Deep Sea Drilling Project Leg 95 found an unexpected bonus in a core taken 150 kilometers east of Atlantic City, N.J. At Site 612, the scientists recovered a 10-centimeter-thick layer of late Eocene debris ejected from an impact about 36 million years ago. Microfossils and argon isotope ratios from the same layer reveal that the ejecta were part of a broad North American impact debris field, previously known primarily from the Gulf of Mexico and Caribbean Sea. Since that serendipitous beginning, years of seismic reflection profiling, gravity measurements and core drilling have confirmed the source of that strewn field - the Chesapeake Bay impact crater, the largest structure of its kind in the United States, and the sixth-largest impact crater on Earth.

  13. Roter Kamm Impact Crater in Namibia

    NASA Image and Video Library

    1996-11-13

    This space radar image shows the Roter Kamm impact crater in southwest Namibia. The crater rim is seen in the lower center of the image as a radar-bright, circular feature. Geologists believe the crater was formed by a meteorite that collided with Earth approximately 5 million years ago. The data were acquired by the Spaceborne Imaging Radar-C/X-Band Synthetic Aperture Radar (SIR-C/X-SAR) instrument onboard space shuttle Endeavour on April 14, 1994. The area is located at 27.8 degrees south latitude and 16.2 degrees east longitude in southern Africa. The colors in this image were obtained using the following radar channels: red represents the L-band (horizontally transmitted and received); green represents the L-band (horizontally transmitted and vertically received); and blue represents the C-band (horizontally transmitted and vertically received). The area shown is approximately 25.5 kilometers (15.8 miles) by 36.4 kilometers (22.5 miles), with north toward the lower right. The bright white irregular feature in the lower left corner is a small hill of exposed rock outcrop. Roter Kamm is a moderate sized impact crater, 2.5 kilometers (1.5 miles) in diameter rim to rim, and is 130 meters (400 feet) deep. However, its original floor is covered by sand deposits at least 100 meters (300 feet) thick. In a conventional aerial photograph, the brightly colored surfaces immediately surrounding the crater cannot be seen because they are covered by sand. The faint blue surfaces adjacent to the rim may indicate the presence of a layer of rocks ejected from the crater during the impact. The darkest areas are thick windblown sand deposits which form dunes and sand sheets. The sand surface is smooth relative to the surrounding granite and limestone rock outcrops and appears dark in radar image. The green tones are related primarily to larger vegetation growing on sand soil, and the reddish tones are associated with thinly mantled limestone outcrops. Studies of impact craters on

  14. Impact cratering at geologic stage boundaries

    NASA Technical Reports Server (NTRS)

    Stothers, Richard B.

    1993-01-01

    The largest known Cenozoic impact craters with the most accurately measured ages are found to correlate very closely with geologic stage boundaries. The level of confidence in this result is 98-99 percent even under the most pessimistic assumptions concerning dating errors. One or more large impacts may have led, in at least some cases, to the extinctions and first appearances of biotic species that mark many of the geologic stage boundaries.

  15. Hydrothermal Alteration at Lonar Crater, India and Elemental Variations in Impact Crater Clays

    NASA Technical Reports Server (NTRS)

    Newsom, H. E.; Nelson, M. J.; Shearer, C. K.; Misra, S.; Narasimham, V.

    2005-01-01

    The role of hydrothermal alteration and chemical transport involving impact craters could have occurred on Mars, the poles of Mercury and the Moon, and other small bodies. We are studying terrestrial craters of various sizes in different environments to better understand aqueous alteration and chemical transport processes. The Lonar crater in India (1.8 km diameter) is particularly interesting being the only impact crater in basalt. In January of 2004, during fieldwork in the ejecta blanket around the rim of the Lonar crater we discovered alteration zones not previously described at this crater. The alteration of the ejecta blanket could represent evidence of localized hydrothermal activity. Such activity is consistent with the presence of large amounts of impact melt in the ejecta blanket. Map of one area on the north rim of the crater containing highly altered zones at least 3 m deep is shown.

  16. Shock metamorphism and impact melting in small impact craters on Earth: Evidence from Kamil crater, Egypt

    NASA Astrophysics Data System (ADS)

    Fazio, Agnese; Folco, Luigi; D'Orazio, Massimo; Frezzotti, Maria Luce; Cordier, Carole

    2014-12-01

    Kamil is a 45 m diameter impact crater identified in 2008 in southern Egypt. It was generated by the hypervelocity impact of the Gebel Kamil iron meteorite on a sedimentary target, namely layered sandstones with subhorizontal bedding. We have carried out a petrographic study of samples from the crater wall and ejecta deposits collected during our first geophysical campaign (February 2010) in order to investigate shock effects recorded in these rocks. Ejecta samples reveal a wide range of shock features common in quartz-rich target rocks. They have been divided into two categories, as a function of their abundance at thin section scale: (1) pervasive shock features (the most abundant), including fracturing, planar deformation features, and impact melt lapilli and bombs, and (2) localized shock features (the least abundant) including high-pressure phases and localized impact melting in the form of intergranular melt, melt veins, and melt films in shatter cones. In particular, Kamil crater is the smallest impact crater where shatter cones, coesite, stishovite, diamond, and melt veins have been reported. Based on experimental calibrations reported in the literature, pervasive shock features suggest that the maximum shock pressure was between 30 and 60 GPa. Using the planar impact approximation, we calculate a vertical component of the impact velocity of at least 3.5 km s-1. The wide range of shock features and their freshness make Kamil a natural laboratory for studying impact cratering and shock deformation processes in small impact structures.

  17. Impact and Cratering History of the Pluto System

    NASA Astrophysics Data System (ADS)

    Greenstreet, Sarah; Gladman, Brett; McKinnon, William B.

    2014-11-01

    The observational opportunity of the New Horizons spacecraft fly-through of the Pluto system in July 2015 requires a current understanding of the Kuiper belt dynamical sub-populations to accurately interpret the cratering history of the surfaces of Pluto and its satellites. We use an Opik-style collision probability code to compute impact rates and impact velocity distributions onto Pluto and its binary companion Charon from the Canada-France Ecliptic Plane Survey (CFEPS) model of classical and resonant Kuiper belt populations (Petit et al., 2011; Gladman et al., 2012) and the scattering model of Kaib et al. (2011) calibrated to Shankman et al. (2013). Due to the uncertainty in how the well-characterized size distribution for Kuiper belt objects (with diameter d>100 km) connects to smaller objects, we compute cratering rates using three simple impactor size distribution extrapolations (a single power-law, a power-law with a knee, and a power-law with a divot) as well as the "curvy" impactor size distributions from Minton et al. (2012) and Schlichting et al. (2013). Current size distribution uncertainties cause absolute ages computed for Pluto surfaces to be entirely dependent on the extrapolation to small sizes and thus uncertain to a factor of approximately 6. We illustrate the relative importance of each Kuiper belt sub-population to Pluto's cratering rate, both now and integrated into the past, and provide crater retention ages for several cases. We find there is only a small chance a crater with diameter D>200 km has been created on Pluto in the past 4 Gyr. The 2015 New Horizons fly-through coupled with telescope surveys that cover objects with diameters d=10-100 km should eventually drop current crater retention age uncertainties on Pluto to <30%. In addition, we compute the "disruption timescale" (to a factor of three accuracy) for Pluto's smaller satellites: Styx, Nix, Kerberos, and Hydra.

  18. Impact craters and Venus resurfacing history

    NASA Technical Reports Server (NTRS)

    Phillips, Roger J.; Raubertas, Richard F.; Arvidson, Raymond E.; Sarkar, Ila C.; Herrick, Robert R.; Izenberg, Noam; Grimm, Robert E.

    1992-01-01

    The history of resurfacing by tectonism and volcanism on Venus is reconstructed by means of an analysis of Venusian impact crater size-frequency distributions, locations, and preservation states. An atmospheric transit model for meteoroids demonstrates that for craters larger than about 30 km, the size-frequency distribution is close to the atmosphere-free case. An age of cessation of rapid resurfacing of about 500 Ma is obtained. It is inferred that a range of surface ages are recorded by the impact crater population; e.g., the Aphrodite zone is relatively young. An end-member model is developed to quantify resurfacing scenarios. It is argued that Venus has been resurfacing at an average rate of about 1 sq km/yr. Numerical simulations of resurfacing showed that there are two solution branches that satisfy the completely spatially random location restraint for Venusian craters: a is less than 0.0003 (4 deg diameter circle) and a is greater than 0.1 (74 deg diameter circle).

  19. Debris and meteoroid proportions deduced from impact crater residue analysis

    NASA Technical Reports Server (NTRS)

    Berthoud, Lucinda; Mandeville, Jean-Claude; Durin, Christian; Borg, Janet

    1995-01-01

    This study is a further investigation of space-exposed samples recovered from the LDEF satellite and the Franco-Russian 'Aragatz' dust collection experiment on the Mir Space Station. Impact craters with diameters ranging from 1 to 900 micron were found on the retrieved samples. Elemental analysis of residues found in the impact craters was carried out using Energy Dispersive X-ray spectrometry (EDX). The analyses show evidence of micrometeoroid and orbital debris origins for the impacts. The proportions of these two components vary according to particle size and experimental position with respect to the leading edge of the spacecraft. On the LDEF leading edge 17 percent of the impacts were apparently caused by micrometeoroids and 11 percent by debris; on the LDEF trailing edge 23 percent of the impacts are apparently caused by micrometeoroids and 4 percent consist of debris particles - mostly larger than 3 micron in diameter - in elliptical orbits around the Earth. For Mir, the analyses indicate that micrometeoroids form 23 percent of impacts and debris 9 percent. However, we note that 60-70 percent of the craters are unidentifiable, so the definitive proportions of natural v. man-made particles are yet to be determined. Experiments carried out using a light gas gun to accelerate glass spheres and fragments demonstrate the influence of particle shape on crater morphology. The experiments also show that it is more difficult to analyze the residues produced by an irregular fragment than those produced by a spherical projectile. If the particle is travelling above a certain velocity, it vaporizes upon impact and no residues are left. Simulation experiments carried out with an electrostatic accelerator indicate that this limit is about 14 km/s for Fe particles impacting Al targets. This chemical analysis cut-off may bias interpretations of the relative populations of meteoroid and orbital debris. Oblique impacts and multiple foil detectors provide a higher likelihood

  20. Impact and cratering rates onto Pluto

    NASA Astrophysics Data System (ADS)

    Greenstreet, Sarah; Gladman, Brett; McKinnon, William B.

    2015-09-01

    The New Horizons spacecraft fly-through of the Pluto system in July 2015 will provide humanity's first data for the crater populations on Pluto and its binary companion, Charon. In principle, these surfaces could be dated in an absolute sense, using the observed surface crater density (# craters/km2 larger than some threshold crater diameter D). Success, however, requires an understanding of both the cratering physics and absolute impactor flux. The Canada-France Ecliptic Plane Survey (CFEPS) L7 synthetic model of classical and resonant Kuiper belt populations (Petit, J.M. et al. [2011]. Astron. J. 142, 131-155; Gladman, B. et al. [2012]. Astron. J. 144, 23-47) and the scattering object model of Kaib et al. (Kaib, N., Roškar, R., Quinn, T. [2011]. Icarus 215, 491-507) calibrated by Shankman et al. (Shankman, C. et al. [2013]. Astrophys. J. 764, L2-L5) provide such impact fluxes and thus current primary cratering rates for each dynamical sub-population. We find that four sub-populations (the q < 42AU hot and stirred main classicals, the classical outers, and the plutinos) dominate Pluto's impact flux, each providing ≈ 15- 25 % of the total rate. Due to the uncertainty in how the well-characterized size distribution for Kuiper belt objects (with impactor diameter d > 100km) connects to smaller projectiles, we compute cratering rates using five model impactor size distributions: a single power-law, a power-law with a knee, a power-law with a divot, as well as the "wavy" size distributions described in Minton et al. (Minton, D.A. et al. [2012]. Asteroids Comets Meteors Conf. 1667, 6348) and Schlichting et al. (Schlichting, H.E., Fuentes, C.I., Trilling, D.E. [2013]. Astron. J. 146, 36-42). We find that there is only a small chance that Pluto has been hit in the past 4 Gyr by even one impactor with a diameter larger than the known break in the projectile size distribution (d ≈ 100km) which would create a basin on Pluto (D ⩾ 400km in diameter). We show that due to

  1. The Complicated Geologic Histories of Large Venusian Impact Craters

    NASA Astrophysics Data System (ADS)

    Rumpf, M. E.; Herrick, R.; Gregg, T. K.

    2005-12-01

    One of the more surprising discoveries from the Magellan imaging campaign was that the impact craters have a spatial distribution closely consistent with a random pattern. First impressions of most craters were that they are also well preserved. These observations led to an initial post-Magellan consensus that the planet is nearly geologically inactive and that activity rapidly ceased a few hundred million years ago. Early mapping efforts were mostly interpreted in terms of a rapid, linear, globally uniform stratigraphic evolution in the nature of volcanism and deformation. A number of challenges to this view have been made as detailed study of the Magellan data has progressed, and several researchers now advocate a more uniformitarian view of the planet. A valuable research tool has been topography derived from Magellan stereo imagery; it provides an order of magnitude improvement in horizontal resolution over the altimetry data (1 km vs. 10 km). Previous studies utilizing the stereo-derived topography have shown that impact craters with radar-dark floors (most of the population) are shallow and probably partially filled with post-impact lavas, and detailed mapping of Mead impact basin (the planet's largest impact structure) has revealed post-impact volcanic embayment. We have recently performed detailed photogeologic mapping, aided by stereo-derived topography, of several 50-100 km diameter impact craters. Most of these craters are not at the top of the stratigraphic column, and in some cases there is a complex, multi-event post-emplacement history. The combined histories of these craters are not consistent with a rapid cessation of geologic activity, and we are still synthesizing the individual histories to evaluate the hypothesis of a linear global stratigraphic evolution. Although the stereo-derived topography greatly aided interpretation, in many cases geologic contacts were ambiguous, individual volcanic flows could not be distinguished, source vents could

  2. Lonar Lake, India: An impact Crater in basalt

    USGS Publications Warehouse

    Fredriksson, K.; Dube, A.; Milton, D.J.; Balasundaram, M.S.

    1973-01-01

    Discovery of shock-metamorphosed material establishes the impact origin of Lonar Crater. Coarse breccia with shatter coning and microbreccia with moderately shocked fragments containing maskelynite were found in drill holes through the crater floor. Trenches on the rim yield strongly shocked fragments in which plagioclase has melted and vesiculated, and bombs and spherules of homogeneous rock melt. As the only known terrestrial impact crater in basalt, Lonar Crater provides unique opportunities for comparison with lunar craters. In particular, microbreccias and glass spherules from Lonar Crater have close analogs among the Apollo specimens.

  3. Vesta Surface at High Resolution: Dominated by Impact Craters

    NASA Image and Video Library

    2012-02-13

    This image from NASA Dawn spacecraft shows a large number of craters, formed by collisions into the surface of asteroid Vesta. The relatively large circular depressions in this image are older, heavily degraded impact craters.

  4. Preliminary Chicxulub Crater Peak Ring Interpretation on 2-D Seismic Reflection Profiles From R/V Maurice Ewing 2005 Survey.

    NASA Astrophysics Data System (ADS)

    Mendoza-Cervantes, K.; Gulick, S. S.; Urrutia-Fucugauchi, J.; McDonald, M.; Barton, P.; Christeson, G.; Morgan, J.; Warner, M.; Melosh, J.

    2005-12-01

    Chicxulub crater was formed 65 my ago as a result of a meteorite impacting Earth on what nowadays is the Yucatan Peninsula in Mexico. This crater, located half offshore, is the only large-diameter (>150 km) impact structure on Earth that is well preserved due to surrounding weather and tectonic conditions and being subsequently buried by 1 km of carbonates. Since second half of 20th century, Chicxulub impact crater has been surveyed using different geophysical methods to try to define its major characteristics. The most recent seismic survey was carried out during January and February, 2005 aboard the R/V Maurice Ewing. During this experiment marine and land seismic data were acquired. A 24 line grid and 3 radial profiles located in between old 1996 seismic lines provide new images to aid definition of the offshore crater. Previous studies on the Chicxulub impact crater structure interpreted a topographic peak ring at different distances from crater center according to the method used. This recognizable feature in large impact craters is thought to be formed mainly by gravitational forces acting on central uplift material that collapses outward while rim material collapses inward. Preliminary results of processing 2-D seismic reflection profiles from the 2005 survey indicates the outer extent of this peak ring ~40 km distance from center of the crater and could be interpreted as a 10-20 km wide ring in the lines analyzed. Chicxulub peak ring is imaged at a depth range of 500-900 ms two-way-travel time as a deformation of pre-impact lithology. Other major features like slump blocks and the inner and outer ring can also be recognized on the processed reflection seismic data

  5. Impact cratering experiments in brittle targets with variable thickness: Implications for deep pit craters on Mars

    NASA Astrophysics Data System (ADS)

    Michikami, T.; Hagermann, A.; Miyamoto, H.; Miura, S.; Haruyama, J.; Lykawka, P. S.

    2014-06-01

    High-resolution images reveal that numerous pit craters exist on the surface of Mars. For some pit craters, the depth-to-diameter ratios are much greater than for ordinary craters. Such deep pit craters are generally considered to be the results of material drainage into a subsurface void space, which might be formed by a lava tube, dike injection, extensional fracturing, and dilational normal faulting. Morphological studies indicate that the formation of a pit crater might be triggered by the impact event, and followed by collapse of the ceiling. To test this hypothesis, we carried out laboratory experiments of impact cratering into brittle targets with variable roof thickness. In particular, the effect of the target thickness on the crater formation is studied to understand the penetration process by an impact. For this purpose, we produced mortar targets with roof thickness of 1-6 cm, and a bulk density of 1550 kg/m3 by using a mixture of cement, water and sand (0.2 mm) in the ratio of 1:1:10, by weight. The compressive strength of the resulting targets is 3.2±0.9 MPa. A spherical nylon projectile (diameter 7 mm) is shot perpendicularly into the target surface at the nominal velocity of 1.2 km/s, using a two-stage light-gas gun. Craters are formed on the opposite side of the impact even when no target penetration occurs. Penetration of the target is achieved when craters on the opposite sides of the target connect with each other. In this case, the cross section of crater somehow attains a flat hourglass-like shape. We also find that the crater diameter on the opposite side is larger than that on the impact side, and more fragments are ejected from the crater on the opposite side than from the crater on the impact side. This result gives a qualitative explanation for the observation that the Martian deep pit craters lack a raised rim and have the ejecta deposit on their floor instead. Craters are formed on the opposite impact side even when no penetration

  6. Debris and meteoroid proportions deduced from impact crater residue analysis

    SciTech Connect

    Berthoud, L.; Mandeville, J.C.; Durin, C.; Borg, J. |

    1995-02-01

    This study is a further investigation of space-exposed samples recovered from the LDEF satellite and the Franco-Russian `Aragatz` dust collection experiment on the Mir Space Station. Impact craters with diameters ranging from 1 to 900 micron were found on the retrieved samples. Elemental analysis of residues found in the impact craters was carried out using Energy Dispersive X-ray spectrometry (EDX). The analyses show evidence of micrometeoroid and orbital debris origins for the impacts. The proportions of these two components vary according to particle size and experimental position with respect to the leading edge of the spacecraft. On the LDEF leading edge 17 percent of the impacts were apparently caused by micrometeoroids and 11 percent by debris; on the LDEF trailing edge 23 percent of the impacts are apparently caused by micrometeoroids and 4 percent consist of debris particles - mostly larger than 3 micron in diameter - in elliptical orbits around the Earth. For Mir, the analyses indicate that micrometeoroids form 23 percent of impacts and debris 9 percent. However, the authors note that 60-70 percent of the craters are unidentifiable, so the definitive proportions of natural vs. man-made particles are yet to be determined. Experiments carried out using a light gas gun to accelerate glass spheres and fragments demonstrate the influence of particle shape on crater morphology. The experiments also show that it is more difficult to analyze the residues produced by an irregular fragment than those produced by a spherical projectile. If the particle is travelling above a certain velocity, it vaporizes upon impact and no residues are left. Simulation experiments carried out with an electrostatic accelerator indicate that this limit is about 14 km/s for Fe particles impacting Al targets. This chemical analysis cut-off may bias interpretations of the relative populations of meteoroid and orbital debris.

  7. High-explosive cratering analogs for bowl-shaped, central uplift, and multiring impact craters

    NASA Technical Reports Server (NTRS)

    Roddy, D. J.

    1976-01-01

    The paper describes six experimental explosion craters in terms of their basic morphology, subsurface structural deformation, and surrounding ejecta blanket. These craters exhibit one or more of the following features: bowl shapes with underlying breccia lens, central uplifts, multirings, terraced walls, rim strata, zones of concentric rim deformation, inner continuous ground cover of ejecta blankets formed by overturned flaps, secondary cratering, and fused alluvium. These craters were formed by large shock wave energy transfers at or near zero heights-of-burst, and it is possible that impact craters with analogous morphologic and structural features may have formed under similar surface energy transfer conditions.

  8. Interpretation of Cometary Dust Size, Structure and Composition From Imagery and Analysis of Stardust Foil Craters and Their Laboratory Analogues.

    NASA Astrophysics Data System (ADS)

    Kearsley, A.; Burchell, M.; Graham, G.; Wozniakiewicz, P.; Bridges, J.; Borg, J.; Horz, F.

    2006-12-01

    Passage of the Stardust spacecraft through the coma of comet Wild 2 in 2004 resulted in capture of numerous particles in the low density silica aerogel collection medium, and many impacts onto exposed aluminum foil strips. The abundant craters on the aluminum Al1100 can be interpreted in terms of impacting particle size, density and mass, with some information concerning particle shape, internal structure and chemical composition. The tightly constrained impact velocity (6.1 km s-1 and trajectory (perpendicular to the collection surface) for dust impinging on Stardust provide conditions that can be duplicated in impact simulations by light gas guns using flight-spare aerogel and foil as targets. We can have much greater confidence in the direct comparison of the experiments with Stardust's impact features than is possible for craters formed by hypervelocity impact in low Earth orbit, where individual particle velocities and trajectories are unknown but certainly vary widely, and include much higher speeds. For Stardust foils, we have performed an extensive suite of calibration experiments to determine the crater top-lip diameter dependence on impacting particle dimensions, the role of particle density in creation of recognizable crater shapes, and the modification of particle composition during the impact process for a wide range of minerals that might be found in cometary dust. During the preliminary evaluation phase of Stardust we have used scanning electron microscopy on the aluminum foils to measure the diameters of large numbers of craters for particle size determination, have created three dimensional digital models of crater shapes and depth profiles for density estimation, and have acquired dozens of energy dispersive X-ray maps of crater impact residues, and thousands of analytical spectra to infer particle composition and, in some cases, mineralogy. In this paper we will reveal results for a suite of Stardust craters spanning a size range from sub

  9. Impact fragmentation of Lonar Crater, India: Implications for impact cratering processes in basalt

    NASA Astrophysics Data System (ADS)

    Senthil Kumar, P.; Prasanna Lakshmi, K. J.; Krishna, N.; Menon, R.; Sruthi, U.; Keerthi, V.; Senthil Kumar, A.; Mysaiah, D.; Seshunarayana, T.; Sen, M. K.

    2014-09-01

    Impact fragmentation is an energetic process that has affected all planetary bodies. To understand its effects in basalt, we studied Lonar Crater, which is a rare terrestrial simple impact crater in basalt and analogues to kilometer-scale simple craters on Mars. The Lonar ejecta consists of basaltic fragments with sizes ranging from silt to boulder. The cumulative size and mass frequency distributions of these fragments show variation of power index for different size ranges, suggesting simple and complex fragmentation. The general shape of the fragments is compact, platy, bladed, and elongated with an average edge angle of 100°. The size distribution of cobble- to boulder-sized fragments is similar to the fracture spacing distribution in the upper crater wall, indicating the provenance of those large fragments. Its consistency with a theoretical spallation model suggests that the large fragments were ejected from near surface of the target, whereas the small fragments from deeper level. The petrophysical properties of the ejecta fragments reflect the geophysical heterogeneity in the target basalt that significantly reduced the original size of spall fragments. The presence of Fe/Mg phyllosilicates (smectites) both in the ejecta and wall indicates the role of impact in excavating the phyllosilicates from the interior of basaltic target affected by aqueous alteration. The seismic images reveal a thickness variation in the ejecta blanket, segregation of boulders, fractures, and faults in the bedrock beneath the crater rim. The fracturing, fragmentation, and fluvial degradation of Lonar Crater have important implications for Mars.

  10. Geological Mapping of Impact Melt Deposits at Lunar Complex Craters: New Insights into Morphological Diversity, Distribution and the Cratering Process

    NASA Astrophysics Data System (ADS)

    Dhingra, D.; Head, J. W., III; Pieters, C. M.

    2014-12-01

    We have completed high resolution geological mapping of impact melt deposits at the young lunar complex craters (<1 billion years) Copernicus, Jackson and Tycho using data from recent missions. Crater floors being the largest repository of impact melt, we have mapped their morphological diversity expressed in terms of varied surface texture, albedo, character and occurrence of boulder units as well as relative differences in floor elevation. Examples of wall and rim impact melt units and their relation to floor units have also been mapped. Among the distinctive features of these impact melt deposits are: 1) Impact Melt Wave Fronts: These are extensive (sometimes several kilometers in length) and we have documented their occurrence and distribution in different parts of the crater floor at Jackson and Tycho. These features emphasize melt mobility and style of emplacement during the modification stage of the craters. 2) Variations in Floor Elevations: Spatially extensive and coherent sections of crater floors have different elevations at all the three craters. The observed elevation differences could be caused by subsidence due to cooling of melt and/or structural failure, together with a contribution from regional slope. 3) Melt-Covered Megablocks: We also observe large blocks/rock-fragments (megablocks) covered in impact melt, which could be sections of collapsed wall or in some cases, subdued sections of central peaks. 4) Melt-Covered Central Peaks: Impact melt has also been mapped on the central peaks but varies in spatial extent among the craters. The presence of melt on peaks must be taken into account when interpreting peak mineralogy as exposures of deeper crust. 5) Boulder Distribution: Interesting trends are observed in the distribution of boulder units of various sizes; some impact melt units have spatially extensive boulders, while boulder distribution is very scarce in other units on the floor. We interpret these distributions to be influenced by a) the

  11. Projectile interactions in granular impact cratering.

    PubMed

    Nelson, E L; Katsuragi, H; Mayor, P; Durian, D J

    2008-08-08

    We present evidence for the interactions between a ball and the container boundaries, as well as between two balls, that are mediated by the granular medium during impact cratering. The presence of the bottom boundary affects the final penetration depth only for low drop heights with shallow filling, in which case, surprisingly, the penetration becomes deeper. By contrast the presence of the sidewall causes less penetration and also an effective repulsion. Repulsion is also found for two balls dropped side by side.

  12. Venus - Impact Crater in Eastern Navka Region

    NASA Technical Reports Server (NTRS)

    1991-01-01

    This Magellan image, which is 50 kilometers (31 miles) in width and 80 kilometers (50 miles) in length, is centered at 11.9 degrees latitude, 352 degrees longitude in the eastern Navka Region of Venus. The crater, which is approximately 8 kilometers (5 miles) in diameter, displays a butterfly symmetry pattern. The ejecta pattern most likely results from an oblique impact, where the impactor came from the south and ejected material to the north.

  13. Venus - Impact Crater in Eastern Navka Region

    NASA Technical Reports Server (NTRS)

    1991-01-01

    This Magellan image, which is 50 kilometers (31 miles) in width and 80 kilometers (50 miles) in length, is centered at 11.9 degrees latitude, 352 degrees longitude in the eastern Navka Region of Venus. The crater, which is approximately 8 kilometers (5 miles) in diameter, displays a butterfly symmetry pattern. The ejecta pattern most likely results from an oblique impact, where the impactor came from the south and ejected material to the north.

  14. Meteoritic material at four Canadian impact craters

    NASA Astrophysics Data System (ADS)

    Wolf, R.; Woodrow, A.; Grieve, R. A. F.

    1980-07-01

    Eleven impact melt and six basement rock samples from four craters were analyzed by neutron activation for Au, Co, Cr, Fe, Ge, Ir, Ni, Os, Pd, Re and Se. Wanapitei Lake, Ontario: the impact melts show uniform enrichments corresponding to 1-2% C1-chondrite material. Interelement ratios (Co/Cr, Ni/Cr, Ni/Ir) suggest that the impacting body was a C1-, C2-, or LL-chondrite. Nicholson Lake, North West Territory: Ni, Cr and Co are distinctly more enriched than Ir and Au which tentatively suggests an olivine-rich achondrite (nakhlite or ureilite). Gow Lake, Saskatchewan and Mistastin, Labrador: small enrichments in Ir and Ni; both the low Ir/Ni ratios and low Cr content suggest iron meteorites, but the signals are too weak for conclusive identification. A tentative comparison of meteoritic signatures at 10 large, greater than or equal to 4 km craters and their presumed celestial counterparts (13 Apollo and Amor asteroids) shows more irons and achondrites among known projectile types, and a preponderance of S-type objects, having no known meteoritic equivalent, among asteroids. It is not yet clear that these differences are significant, in view of the tentative nature of the crater identifications and the limited statistics.

  15. Meteoritic material at four Canadian impact craters

    NASA Technical Reports Server (NTRS)

    Wolf, R.; Woodrow, A. B.; Grieve, R. A. F.

    1980-01-01

    Eleven impact melt and six basement rock samples from four craters were analyzed by neutron activation for Au, Co, Cr, Fe, Ge, Ir, Ni, Os, Pd, Re and Se. Wanapitei Lake, Ontario: the impact melts show uniform enrichments corresponding to 1-2% C1-chondrite material. Interelement ratios (Co/Cr, Ni/Cr, Ni/Ir) suggest that the impacting body was a C1-, C2-, or LL-chondrite. Nicholson Lake, North West Territory: Ni, Cr and Co are distinctly more enriched than Ir and Au which tentatively suggests an olivine-rich achondrite (nakhlite or ureilite). Gow Lake, Saskatchewan and Mistastin, Labrador: small enrichments in Ir and Ni; both the low Ir/Ni ratios and low Cr content suggest iron meteorites, but the signals are too weak for conclusive identification. A tentative comparison of meteoritic signatures at 10 large, greater than or equal to 4 km craters and their presumed celestial counterparts (13 Apollo and Amor asteroids) shows more irons and achondrites among known projectile types, and a preponderance of S-type objects, having no known meteoritic equivalent, among asteroids. It is not yet clear that these differences are significant, in view of the tentative nature of the crater identifications and the limited statistics.

  16. Dynamics of impact cratering in shallow sand layers.

    PubMed

    Boudet, J F; Amarouchene, Y; Kellay, H

    2006-04-21

    When a solid sphere impacts a shallow layer of sand deposited on a solid surface, a crater can be obtained. The dynamics of the opening of the crater can be followed accurately. During this opening, the radius of the crater can be conveniently modeled by an exponential saturation with a well-defined time constant. The crater then closes up partially once the opening phase is over as the sand avalanches down the slope of the crater. We here present a detailed study of the full dynamics of the crater formation as well as the dynamics of the corrola formed during this process. A simple model accounts for most of our observations.

  17. Martian impact crater degradation studies: Implications for localized obliteration episodes

    NASA Technical Reports Server (NTRS)

    Barlow, N. G.

    1992-01-01

    Early spacecraft missions to Mars revealed that impact craters display a range of degradational states, but full appreciation of the range of preservational characteristics was not revealed until the Mariner 9 and Viking missions in the 1970's. Many studies have described the spatial and temporal distribution of obliteration episodes based on qualitative descriptions of crater degradation. Recent advances in photoclinometric techniques have led to improved estimates of crater morphometric characteristics. The present study is using photoclinometry to determine crater profiles and is comparing these results with the crater geometry expected for pristine craters of identical size. The result is an estimate of the degree of degradation suffered by Martian impact craters in selected regions of the planet. Size-frequency distribution analyses of craters displaying similar degrees of degradation within localized regions of the planet may provide information about the timing of obliteration episodes in these regions.

  18. Impact cratering and spall failure of gabbro

    NASA Technical Reports Server (NTRS)

    Lange, M. A.; Ahrens, T. J.; Boslough, M. B.

    1984-01-01

    Both hypervelocity impact and dynamic spall experiments were carried out on a series of well-indurated samples of gabbro. The impact experiments carried out with 0.04 to 0.2 g, 5-6 km/sec projectiles produced deci-centimeter-sized craters and demonstrated crater efficiencies of 6/10 to the -9 g/erg, and order of magnitude greater than in metal and some two to three times that of previous experiments on less strong igneous rocks. Most of the crater volume (some 60 to 80 percent) is due to spall failure. Distribution of cumulative fragment number, as a function of mass of fragments with masses greater than 0.1 gram yield values of b = d(log10N sub f)dlog10(m) of -0.5 to -0.6, where N sub f is the cumulate number of fragments and m is the mass of fragments. These values are in agreement or slightly higher than those obtained for less strong rocks and indicate that a large fraction of the ejecta resides in a few large fragments.

  19. Impact cratering and spall failure at gabbro

    NASA Technical Reports Server (NTRS)

    Lange, M. A.; Ahrens, T. J.; Boslough, M. B.

    1983-01-01

    Both hypervelocity impact and dynamic spall experiments were carried out on a series of well-indurated samples of gabbro. The impact experiments carried out with 0.04 to 0.2g, 5-6 km/sec projectiles produced deci-centimeter-sized craters and demonstrated crater efficiencies of 6/10 to the - 9 g/erg, and order of magnitude greater than in metal and some two to three times that of previous experiments on less strong igneous rocks. Most of the crater volume (some 60 to 80%) is due to spall failure. Distribution of cumulative fragment number, as a function of mass of fragments with masses greater than 0.1 gram yield values of b = d(log10N sub f)dlog10(m)of -0.5 to -0.6, where N sub f is the cumulate number of fragments and m is the mass of fragments. These values are in agreement or slightly higher than those obtained for less strong rocks and indicate that a large fraction of the ejectra resides in a few large fragments.

  20. Impact Crater Deposits in the Martian Highlands

    NASA Technical Reports Server (NTRS)

    Mest, S. C.; Crown, D. a.

    2005-01-01

    The martian highlands of Noachis Terra (20-30 deg S, 20-50 deg E), Tyrrhena Terra (0-30 deg S, 50- 100 deg E) and Terra Cimmeria (0-60 deg S, 120-170 deg E) preserve long and complex histories of degradation, but the relative effects of such factors as fluvial, eolian, and mass wasting processes have not been well constrained. The effects of this degradation are best observed on large (D greater than 10 km) impact craters that characterize the ancient highlands. Some craters exhibit distinct interior deposits, but precise origins of these deposits are enigmatic; infilling may occur by sedimentary (e.g., fluvial, lacustrine, eolian), mass wasting and (or) volcanic processes.

  1. The Microstructure of Lunar Micrometeorite Impact Craters

    NASA Technical Reports Server (NTRS)

    Noble, S. K.; Keller, L. P.; Christoffersen, R.; Rahman, Z.

    2016-01-01

    The peak of the mass flux of impactors striking the lunar surface is made up of objects approximately 200 micrometers in diameter that erode rocks, comminute regolith grains, and produce agglutinates. The effects of these micro-scale impacts are still not fully understood. Much effort has focused on evaluating the physical and optical effects of micrometeorite impacts on lunar and meteoritic material using pulsed lasers to simulate the energy deposited into a substrate in a typical hypervelocity impact. Here we characterize the physical and chemical changes that accompany natural micrometeorite impacts into lunar rocks with long surface exposure to the space environment (12075 and 76015). Transmission electron microscope (TEM) observations were obtained from cross-sections of approximately 10-20 micrometers diameter craters that revealed important micro-structural details of micrometeorite impact processes, including the creation of npFe (sup 0) in the melt, and extensive deformation around the impact site.

  2. Standardizing the nomenclature of Martian impact crater ejecta morphologies

    USGS Publications Warehouse

    Barlow, Nadine G.; Boyce, Joseph M.; Costard, Francois M.; Craddock, Robert A.; Garvin, James B.; Sakimoto, Susan E.H.; Kuzmin, Ruslan O.; Roddy, David J.; Soderblom, Laurence A.

    2000-01-01

    The Mars Crater Morphology Consortium recommends the use of a standardized nomenclature system when discussing Martian impact crater ejecta morphologies. The system utilizes nongenetic descriptors to identify the various ejecta morphologies seen on Mars. This system is designed to facilitate communication and collaboration between researchers. Crater morphology databases will be archived through the U.S. Geological Survey in Flagstaff, where a comprehensive catalog of Martian crater morphologic information will be maintained.

  3. Roter Kamm Impact Crater in Namibia

    NASA Technical Reports Server (NTRS)

    1995-01-01

    This space radar image shows the Roter Kamm impact crater in southwest Namibia. The crater rim is seen in the lower center of the image as a radar-bright, circular feature. Geologists believe the crater was formed by a meteorite that collided with Earth approximately 5 million years ago. The data were acquired by the Spaceborne Imaging Radar-C/X-Band Synthetic Aperture Radar (SIR-C/X-SAR) instrument onboard space shuttle Endeavour on April 14, 1994. The area is located at 27.8 degrees south latitude and 16.2 degrees east longitude in southern Africa. The colors in this image were obtained using the following radar channels: red represents the L-band (horizontally transmitted and received); green represents the L-band (horizontally transmitted and vertically received); and blue represents the C-band (horizontally transmitted and vertically received). The area shown is approximately 25.5 kilometers (15.8 miles) by 36.4 kilometers (22.5 miles), with north toward the lower right. The bright white irregular feature in the lower left corner is a small hill of exposed rock outcrop. Roter Kamm is a moderate sized impact crater, 2.5 kilometers (1.5 miles) in diameter rim to rim, and is 130 meters (400 feet) deep. However, its original floor is covered by sand deposits at least 100 meters (300 feet) thick. In a conventional aerial photograph, the brightly colored surfaces immediately surrounding the crater cannot be seen because they are covered by sand. The faint blue surfaces adjacent to the rim may indicate the presence of a layer of rocks ejected from the crater during the impact. The darkest areas are thick windblown sand deposits which form dunes and sand sheets. The sand surface is smooth relative to the surrounding granite and limestone rock outcrops and appears dark in radar image. The green tones are related primarily to larger vegetation growing on sand soil, and the reddish tones are associated with thinly mantled limestone outcrops. Studies of impact craters on

  4. Roter Kamm Impact Crater in Namibia

    NASA Technical Reports Server (NTRS)

    1995-01-01

    This space radar image shows the Roter Kamm impact crater in southwest Namibia. The crater rim is seen in the lower center of the image as a radar-bright, circular feature. Geologists believe the crater was formed by a meteorite that collided with Earth approximately 5 million years ago. The data were acquired by the Spaceborne Imaging Radar-C/X-Band Synthetic Aperture Radar (SIR-C/X-SAR) instrument onboard space shuttle Endeavour on April 14, 1994. The area is located at 27.8 degrees south latitude and 16.2 degrees east longitude in southern Africa. The colors in this image were obtained using the following radar channels: red represents the L-band (horizontally transmitted and received); green represents the L-band (horizontally transmitted and vertically received); and blue represents the C-band (horizontally transmitted and vertically received). The area shown is approximately 25.5 kilometers (15.8 miles) by 36.4 kilometers (22.5 miles), with north toward the lower right. The bright white irregular feature in the lower left corner is a small hill of exposed rock outcrop. Roter Kamm is a moderate sized impact crater, 2.5 kilometers (1.5 miles) in diameter rim to rim, and is 130 meters (400 feet) deep. However, its original floor is covered by sand deposits at least 100 meters (300 feet) thick. In a conventional aerial photograph, the brightly colored surfaces immediately surrounding the crater cannot be seen because they are covered by sand. The faint blue surfaces adjacent to the rim may indicate the presence of a layer of rocks ejected from the crater during the impact. The darkest areas are thick windblown sand deposits which form dunes and sand sheets. The sand surface is smooth relative to the surrounding granite and limestone rock outcrops and appears dark in radar image. The green tones are related primarily to larger vegetation growing on sand soil, and the reddish tones are associated with thinly mantled limestone outcrops. Studies of impact craters on

  5. Impact spallation processes on the Moon: A case study from the size and shape analysis of ejecta boulders and secondary craters of Censorinus crater

    NASA Astrophysics Data System (ADS)

    Krishna, N.; Kumar, P. Senthil

    2016-01-01

    have subdued ejecta (rayless craters), while some possess bright-rayed ejecta (bright-rayed craters). The CSFD of rayless craters show a steep power-law slope with a b-value of -4.0, similar to the secondary craters produced by the impact of ejecta from primary craters. We therefore interpret the rayless craters as the secondary craters of Censorinus. On the other hand, the CSFD of bright-rayed craters have smaller power-law slope (b value -2.7) which is a characteristic of primary craters, and thus provide 3 Ma age for Censorinus crater. When the characteristics of Censorinus boulders are compared with the theoretical spallation models that are sensitive to the petrophysical properties of the target (lunar highland), the models generally agree with the Censorinus boulders. However, the observed shape and size characteristics of the Censorinus boulders are found to be more complex than the theoretical spallation models. The ejecta boulders suffered more complex fragmentation and asymmetric distribution in response to the oblique impact. The spallation models accounting oblique impacts have not yet been developed. Therefore, our Censorinus boulder observations can be used to develop and validate the new theoretical spallation models for the effects of oblique impacts.

  6. Timing of the faulting on the Wispy Terrain of Dione based on stratigraphic relationships with impact craters

    NASA Astrophysics Data System (ADS)

    Hirata, Naoyuki

    2016-11-01

    The trailing hemisphere of Dione is characterized by the Wispy Terrain, where it exhibits a hemispheric-scale network of extensional tectonic faults superposed on the moon's cratered surface. The faults likely reflect past endogenic activity and Dione's interior thermal history. Although fresh exposures of pristine scarps indicate that the timing of the faulting is relatively recent, the absolute age of the faulting remains uncertain. To estimate the timing of the faulting, we investigated stratigraphic relationships between impact craters and faults. Using high-resolution images obtained by the ISS camera onboard the Cassini spacecraft, we investigated craters with diameters exceeding or equal to 10 km that coincide spatially with the faults and classified the craters as crosscut craters or superposed craters. As a result, at least 82% of the craters were interpreted as clear examples of crosscut craters and 12% of the craters were interpreted to be candidates of superposed craters, although stratigraphic relationships are often ambiguous. The paucity of superposed craters and a predicted cratering rate indicate that the faulting of the Wispy Terrain is 0.30-0.79 Ga. If 12-18% of the craters are assumed to be superposed, the timing of the faulting could be in the range 0.30-0.79 Ga. However, it is possible that the faulting of the Wispy Terrain is still ongoing.

  7. Interpreting the Elliptical Crater Populations on Mars, Venus, and the Moon

    NASA Astrophysics Data System (ADS)

    Bottke, William F.; Love, Stanley G.; Tytell, David; Glotch, Timothy

    2000-05-01

    Asteroids or comets striking a planetary surface at very shallow angles produce elliptical-shaped craters. According to laboratory impact experiments (D. E. Gault and J. A. Wedekind 1978, Proc. Lunar Planet. Sci. Conf. 9th, 3843-3875), elliptical craters result from impact angles within ˜5° of horizontal and less than 1% of projectiles with isotropic impact trajectories create elliptical craters. This result disagrees with survey results which suggest that approximately 5% of all kilometer-sized craters formed on Mars, Venus, and the Moon have elliptical shapes. To explain this discrepancy, we examined the threshold incidence angle necessary to produce elliptical craters in laboratory impact experiments. Recent experiments show that aluminum targets produce elongated craters at much steeper impact angles than sand targets. This suggests that target properties are as important as the projectile's impact angle in determining the eventual ellipticity of the crater. Creating a model which interpolates between impact data produced using sand and aluminum targets, we derive a new elliptical crater threshold angle of 12° from horizontal for Mars, Venus, and the Moon. This leads to a predicted proportion of elliptical craters that matches observations within uncertainty given a random projectile population. We conclude that the observed proportion of elliptical craters on these bodies is a natural by-product of projectiles striking at random angles, and that no additional formation mechanisms are needed.

  8. Reinterpreting the Impact Craters of the North Polar Layered Deposits, Mars

    NASA Astrophysics Data System (ADS)

    Landis, Margaret E.; Byrne, Shane; Daubar, Ingrid J.; Herkenhoff, Kenneth E.; Dundas, Colin M.

    2014-11-01

    The North Polar Layered Deposits (NPLD) of Mars contain a complex stratigraphy that has been proposed to contain a record of eccentricity- and obliquity-forced climatic variations. Obtaining the age of the surface of the overlying residual cap will allow for more stringent constraints on overall NPLD age and accumulation rates. This work utilizes a crater population previously identified on the NPLD (Banks et al. 2010). We expanded the High Resolution Imaging Science Experiment (HiRISE) image coverage of these impact craters to refine their diameter measurements and use the new crater production function reported by Daubar et al. (2013) to interpret their population statistics. Eighty-five impact sites have been measured in our study, which represents a statistically complete catalog of craters >30m in diameter on the North Pole residual cap. The largest crater in the region of interest is ~350m in diameter. These craters exhibit a range of degradation states, from having a depth/diameter ratio typical of fresh simple craters and a well defined to rim to “ghost” craters where only a degraded rim remains, leading us to conclude that they are predominantly primary impacts. Several impact sites are comprised of clusters of impact craters, identified because all the impact structures were within a few crater diameters of each other. These were included in the population statistics as a single impact with an effective diameter of (ΣD3)1/3). Using a differential size-frequency distribution plot, we found the isochron from Daubar et al. (2013) that best fit the data was ~900yr, a significant revision downward from the Banks et al. (2010) interpretation of a maximum age of ~20Kyr. The diameters of small impact craters on Mars are affected by the material strength of the target material, and this icy target differs from regolith or bedrock. To evaluate the resulting difference between observed NPLD craters and the craters used to calculate the production function, we

  9. Search for Lunar Water Ice in Cometary Impact Craters

    DTIC Science & Technology

    1993-08-01

    excavation, and filling of a crater over time scales on the order of one minute, long compared to the initial impact time scales, The work of H.J. Melosh ...is the mean impact velocity which is difficult to know accurately ( Melosh , 1989). The time development of the completed crater is defined as Tf...34Fast Track to Mars." Aerospace America. Aug 1991: 36-41. Melosh , H.J. Impact Cratering : A Geological Process. New York: Oxford University Press, 1989

  10. The meteorology of Gale Crater as determined from Rover Environmental Monitoring Station observations and numerical modeling. Part II: Interpretation

    NASA Astrophysics Data System (ADS)

    Rafkin, Scot C. R.; Pla-Garcia, Jorge; Kahre, Melinda; Gomez-Elvira, Javier; Hamilton, Victoria E.; Marín, Mercedes; Navarro, Sara; Torres, Josefina; Vasavada, Ashwin

    2016-12-01

    Numerical modeling results from the Mars Regional Atmospheric Modeling System are used to interpret the landed meteorological data from the Rover Environmental Monitoring Station onboard the Mars Science Laboratory rover Curiosity. In order to characterize seasonal changes throughout the Martian year, simulations are conducted at Ls 0, 90, 180 and 270. Two additional simulations at Ls 225 and 315 are explored to better understand the unique meteorological setting centered on Ls 270. The synergistic combination of model and observations reveals a complex meteorological environment within the crater. Seasonal planetary circulations, the thermal tide, slope flows along the topographic dichotomy, mesoscale waves, slope flows along the crater slopes and Mt. Sharp, and turbulent motions all interact in nonlinear ways to produce the observed weather. Ls 270 is shown to be an anomalous season when air within and outside the crater is well mixed by strong, flushing northerly flow and large amplitude, breaking mountain waves. At other seasons, the air in the crater is more isolated from the surrounding environment. The potential impact of the partially isolated crater air mass on the dust, water, noncondensable and methane cycles is also considered. In contrast to previous studies, the large amplitude diurnal pressure signal is attributed primarily to necessary hydrostatic adjustments associated with topography of different elevations, with contributions of less than 25% to the diurnal amplitude from the crater circulation itself. The crater circulation is shown to induce a suppressed boundary layer.

  11. Impact crater and basin control of igneous processes on Mars

    NASA Technical Reports Server (NTRS)

    Schultz, P. H.; Glicken, H.

    1979-01-01

    The possible role of impact craters in controlling local Martian endogenic activity is reviewed. Martian impact craters exhibiting evidence for endogenic modification are considered, including the style of modification. In addition, the cooling history of a mafic body intruded beneath impact craters of different sizes which contain water-ice deposits are examined, and results are related to modified Martian craters. This analysis is extended to basin-sized structures, and evidence for impact basin control of major volcanic and tectonic provinces is considered.

  12. Comparisons of fresh complex impact craters on Mercury and the Moon: Implications for controlling factors in impact excavation processes

    NASA Astrophysics Data System (ADS)

    Xiao, Zhiyong; Strom, Robert G.; Chapman, Clark R.; Head, James W.; Klimczak, Christian; Ostrach, Lillian R.; Helbert, Jörn; D'Incecco, Piero

    2014-01-01

    The impact cratering process is usually divided into the coupling, excavation, and modification stages, where each stage is controlled by a combination of different factors. Although recognized as the main factors governing impact processes on airless bodies, the relative importance of gravity, target and projectile properties, and impact velocity in each stage is not well understood. We focus on the excavation stage to place better constraints on its controlling factors by comparing the morphology and scale of crater-exterior structures for similar-sized fresh complex craters on the Moon and Mercury. We find that the ratios of continuous ejecta deposits, continuous secondaries facies, and the largest secondary craters on the continuous secondaries facies between same-sized mercurian and lunar craters are consistent with predictions from gravity-regime crater scaling laws. Our observations support that gravity is a major controlling factor on the excavation stage of the formation of complex impact craters on the Moon and Mercury. On the other hand, similar-sized craters with identical background terrains on Mercury have different spatial densities of secondaries on the continuous secondaries facies, suggesting that impactor velocity may also be important during the excavation stage as larger impactor velocity may also cause greater ejection velocities. Moreover, some craters on Mercury have more circular and less clustered secondaries on the continuous secondaries facies than other craters on Mercury or the Moon. This morphological difference appears not to have been caused by the larger surface gravity or the larger median impact velocity on Mercury. A possible interpretation is that at some places on Mercury, the target material might have unique properties causing larger ejection angles during the impact excavation stage. We conclude that gravity is the major controlling factor on the impact excavation stage of complex craters, while impact velocity and target

  13. The two Suvasvesi impact structures, Finland: Argon isotopic evidence for a "false" impact crater doublet

    NASA Astrophysics Data System (ADS)

    Schmieder, Martin; Schwarz, Winfried H.; Trieloff, Mario; Buchner, Elmar; Hopp, Jens; Tohver, Eric; Pesonen, Lauri J.; Lehtinen, Martti; Moilanen, Jarmo; Werner, Stephanie C.; Öhman, Teemu

    2016-05-01

    The two neighboring Suvasvesi North and South impact structures in central-east Finland have been discussed as a possible impact crater doublet produced by the impact of a binary asteroid. This study presents 40Ar/39Ar geochronologic data for impact melt rocks recovered from the drilling into the center of the Suvasvesi North impact structure and melt rock from glacially transported boulders linked to Suvasvesi South. 40Ar/39Ar step-heating analysis yielded two essentially flat age spectra indicating a Late Cretaceous age of ~85 Ma for the Suvasvesi North melt rock, whereas the Suvasvesi South melt sample gave a Neoproterozoic minimum (alteration) age of ~710 Ma. Although the statistical likelihood for two independent meteorite strikes in close proximity to each other is rather low, the remarkable difference in 40Ar/39Ar ages of >600 Myr for the two Suvasvesi impact melt samples is interpreted as evidence for two temporally separate, but geographically closely spaced, impacts into the Fennoscandian Shield. The Suvasvesi North and South impact structures are, thus, interpreted as a "false" crater doublet, similar to the larger East and West Clearwater Lake impact structures in Québec, Canada, recently shown to be unrelated. Our findings have implications for the reliable recognition of impact crater doublets and the apparent rate of binary asteroid impacts on Earth and other planetary bodies in the inner solar system.

  14. Venus - Impact Crater in Eastern Navka Region

    NASA Image and Video Library

    1996-11-20

    This Magellan image, which is 50 kilometers (31 miles) in width and 80 kilometers (50 miles) in length, is centered at 11.9 degrees latitude, 352 degrees longitude in the eastern Navka Region of Venus. The crater, which is approximately 8 kilometers (5 miles) in diameter, displays a butterfly symmetry pattern. The ejecta pattern most likely results from an oblique impact, where the impactor came from the south and ejected material to the north. http://photojournal.jpl.nasa.gov/catalog/PIA00474

  15. Basis for interpretation regarding the ages of the Serenitatis, Imbrium and Orientale events. [lunar cratering

    NASA Technical Reports Server (NTRS)

    Chao, E. C. T.

    1977-01-01

    One of the most important objectives of lunar study is to relate the lunar sample data to important lunar events. This paper utilizes as the basis of interpretation consideration of the following: (1) photogeologic data, (2) the choice of a cratering model, (3) estimates of temperature of impact ejecta and shock-induced heating, (4) petrologic data of lunar breccias and their thermal and shock history, and (5) meaningful age measurements. Both the author's interpretations and alternative views are discussed. The age of the Serenitatis event is not yet known. The interpreted age of the Imbrium event is between 3.90 and 3.84 Ga. The age of the Orientale event is 3.84 Ga.

  16. Pristine impact crater morphology on Pluto - Expectations for New Horizons

    NASA Astrophysics Data System (ADS)

    Bray, Veronica J.; Schenk, Paul M.

    2015-01-01

    This paper combines previous cratering studies and numerical modeling of the impact process at different impact velocities to predict crater morphology on Pluto. As an icy body, Pluto's craters are expected to be similar in morphology to those on the icy satellites: lesser depth-diameter ratios (d/D), shallower wall slopes and the development of central uplifts in craters of smaller rim-to-rim diameter than craters on rocky bodies of similar gravity. The low impact velocity of the Pluto system (∼2 km s-1) might cause deviation from this generalization as the simulations presented in this work suggest that decreasing impact velocity from 10 km s-1 to 2 km s-1 results in deeper craters (larger d/D) and a simple-to-complex transition diameter at larger crater sizes than predicted based on gravity scaling alone (D > 6 km). Conversely, decreasing impact velocity from 2 km s-1 to 300 m s-1 produced smaller d/D, akin to the lower d/D noted for secondary craters. This complex relationship between impact velocity and d/D suggests that there might be a larger range of 'pristine' simple crater depths on Pluto than on bodies with higher mean impact velocity. The low impact velocities and correspondingly low volumes of impact melt generated at Pluto might prevent the occurrence, or limit the size, of floor-pits if their formation involves impact melt water. The presence, or not, of central floor-pit craters on Pluto will thus provide a valuable test of floor-pit formation theories. The presence of summit-pits or concentric craters on Pluto is plausible and would indicate the presence of layering in the near sub-surface. Palimpsests, multi-ring basins and other crater morphologies associated with high heat flow are not expected and would have important implications for Pluto's thermal history if observed by New Horizons.

  17. Impact Cratering Physics al Large Planetary Scales

    NASA Astrophysics Data System (ADS)

    Ahrens, Thomas J.

    2007-06-01

    Present understanding of the physics controlling formation of ˜10^3 km diameter, multi-ringed impact structures on planets were derived from the ideas of Scripps oceanographer, W. Van Dorn, University of London's, W, Murray, and, Caltech's, D. O'Keefe who modeled the vertical oscillations (gravity and elasticity restoring forces) of shock-induced melt and damaged rock within the transient crater immediately after the downward propagating hemispheric shock has processed rock (both lining, and substantially below, the transient cavity crater). The resulting very large surface wave displacements produce the characteristic concentric, multi-ringed basins, as stored energy is radiated away and also dissipated upon inducing further cracking. Initial calculational description, of the above oscillation scenario, has focused upon on properly predicting the resulting density of cracks, and, their orientations. A new numerical version of the Ashby--Sammis crack damage model is coupled to an existing shock hydrodynamics code to predict impact induced damage distributions in a series of 15--70 cm rock targets from high speed impact experiments for a range of impactor type and velocity. These are compared to results of crack damage distributions induced in crustal rocks with small arms impactors and mapped ultrasonically in recent Caltech experiments (Ai and Ahrens, 2006).

  18. Complex Impact Craters Morphologies Created by Granular Projectiles

    NASA Astrophysics Data System (ADS)

    Bartali, R.; Rodriguez-Liñan, G.; Nahmad-Molinari, Y.; Ruiz-Suarez, C.; Sarocchi, D.

    2012-12-01

    Most, high and low energy, experiments, devoted to reproduce impact crater morphologies as those observed on planets and satellites, are done smashing solid projectiles on solid or granular targets. Our experiments, instead, are aimed to understand the behavior of granular projectiles impacting on granular targets. This approach is a by-product of the improvements in astronomical instrumentation and data processing capabilities, made during the past few years, which allowed the recognition of the granular structure of several asteroids. Planetary surfaces are also covered by regolith, produced by the fragmentation of impacting bodies, giving them, also, a granular structure. Comparing our experimental results with impact craters on the moon, mars and satellites, we can show that the different morphologies of complex impact craters are reproduced more faithfully by using granular materials for both the projectile and the target. C) Experimental central dome crater D) Un-named central dome crater on Mars E) Experimental central peak crater F) Tycho crater, Moon, central peak G) Experimental ray crater H) Kepler crater, Moon, ray crater

  19. Large craters on the meteoroid and space debris impact experiment

    NASA Technical Reports Server (NTRS)

    Humes, Donald H.

    1991-01-01

    The distribution around the Long Duration Exposure Facility (LDEF) of 532 large craters in the Al plates from the Meteoroid and Space Debris Impact Experiment (S0001) is discussed along with 74 additional large craters in Al plates donated to the Meteoroid and Debris Special Investigation Group by other LDEF experimenters. The craters are 0.5 mm in diameter and larger. Crater shape is discussed. The number of craters and their distribution around the spacecraft are compared with values predicted with models of the meteoroid environment and the manmade orbital debris environment.

  20. Large craters on the meteoroid and space debris impact experiment

    NASA Technical Reports Server (NTRS)

    Humes, Donald H.

    1991-01-01

    The distribution around the Long Duration Exposure Facility (LDEF) of 532 large craters in the Al plates from the Meteoroid and Space Debris Impact Experiment (S0001) is discussed along with 74 additional large craters in Al plates donated to the Meteoroid and Debris Special Investigation Group by other LDEF experimenters. The craters are 0.5 mm in diameter and larger. Crater shape is discussed. The number of craters and their distribution around the spacecraft are compared with values predicted with models of the meteoroid environment and the manmade orbital debris environment.

  1. Manicouagan and the Moon: Reassessing Impact Melt - Crater Affiliations

    NASA Astrophysics Data System (ADS)

    Spray, J. G.; Thompson, L. M.; O'Connell-Cooper, C.

    2009-05-01

    When Apollo samples were first returned to Earth, comparisons were made with several terrestrial impact melt sheets to aid in the interpretation of the samples. Manicouagan was considered representative of a 60 to 100 km size complex crater with a supposedly undifferentiated, chemically homogeneous, although somewhat texturally heterogeneous, impact-melt sheet. Based on the belief that craters in the size range of Manicouagan produced chemically homogeneous melt sheets, Simonds et al. (1976) identified four distinct compositions of lunar melt in Apollo 16 breccia samples, attributing each to four different impact-melt sheets formed during discrete cratering events. However, recent drilling activities at Manicouagan, combined with surface sampling and geochemical analysis, have revealed that its impact-melt sheet is not of uniform composition as suggested by past field work. This calls into question previously held assumptions regarding the identification and interpretation of lunar impact melts. Drilling has revealed an unexpectedly varied topography to the melt sheet-basement contact in the centre of the structure at Manicouagan. An elongate, impact-melt filled, N-S trough extending at least 8 km from the southern flanks of the uplifted Mont de Babel anorthosite has been identified. The trough varies in depth from 600 m at the northern and southern extremes, to 1430 m in the middle, resulting in substantially thicker melt sections than previously identified by field work, which estimated current impact-melt sheet thickness to be 200 to 300 m. Our geochemical analysis of 88 core and field impact melt samples reveal that the more typical 300 m thick sections and the newly discovered 600 m thick sections intersected within the central trough in drill holes MAN0501 and 0511, exhibit a homogeneous, quartz monzodiorite composition comparable with previous average impact melt compositions. In contrast, the 1100 m clast-free melt sequence encountered in the centre of the

  2. Geological mapping of impact melt deposits at lunar complex craters Jackson and Tycho: Morphologic and topographic diversity and relation to the cratering process

    NASA Astrophysics Data System (ADS)

    Dhingra, Deepak; Head, James W.; Pieters, Carle M.

    2017-02-01

    High resolution geological mapping, aided by imagery and elevation data from the lunar reconnaissance orbiter (LRO) and Kaguya missions, has revealed the scientifically rich character of impact melt deposits at two young complex craters: Jackson (71 km) and Tycho (85 km). The morphology and distribution of mapped impact melt units provide several insights into the cratering process. We report elevation differences (>200 m) among large, coherent floor sections within a single crater and interpret them to be caused by crater wall collapse and/or large scale structural failure of the floor region. Clast-poor, smooth melt deposits are correlated with floor sections at lower elevations and likely represent ponded deposits sourced from higher elevation regions (viz. crater walls). In addition, these deposits are also located in the inferred downrange direction of the impact. Melt-coated large blocks spanning several kilometers are common on the crater floors and may represent collapsed wall sections or in some cases, subdued sections of the central peaks. Spatial trends in the mapped impact melt units at the two craters provide clues to decipher the conditions during each impact event and subsequent evolution of the crater floor.

  3. Martian Cratering 10. Progress in use of crater counts to interpret geological processes: Examples from two debris aprons

    NASA Astrophysics Data System (ADS)

    Hartmann, William K.; Werner, Stephanie C.

    2010-06-01

    Recent controversies about systems of crater-count dating have been largely resolved, and with continuing refinements, crater counts will offer a fundamental geological tool to interpret not only ages, but also the nature of geological processes altering the surface of Mars. As an example of the latter technique, we present data on two debris aprons east of Hellas. The aprons show much shorter survival times of small craters than do the nearby contiguous plains. The order-of-magnitude depths of layers involved in the loss process can be judged from the depths of the affected craters. We infer that ice-rich layers in the top tens of meters of both aprons have lost crater topography within the last few 10 8 yr, probably due to flow or sublimation of ice-rich materials. Mantling by ice-rich deposits, associated with climate change cycles of obliquity change, has probably also affected both the aprons and the plains. The crater-count tool thus adds chronological and vertical dimensional information to purely morphological studies.

  4. Modeling Low Velocity Impacts: Predicting Crater Depth on Pluto

    NASA Astrophysics Data System (ADS)

    Bray, V. J.; Schenk, P.

    2014-12-01

    The New Horizons mission is due to fly-by the Pluto system in Summer 2015 and provides the first opportunity to image the Pluto surface in detail, allowing both the appearance and number of its crater population to be studied for the first time. Bray and Schenk (2014) combined previous cratering studies and numerical modeling of the impact process to predict crater morphology on Pluto based on current understanding of Pluto's composition, structure and surrounding impactor population. Predictions of how the low mean impact velocity (~2km/s) of the Pluto system will influence crater formation is a complex issue. Observations of secondary cratering (low velocity, high angle) and laboratory experiments of impact at low velocity are at odds regarding how velocity controls depth-diameter ratios: Observations of secondary craters show that these low velocity craters are shallower than would be expected for a hyper-velocity primary. Conversely, gas gun work has shown that relative crater depth increases as impact velocity decreases. We have investigated the influence of impact velocity further with iSALE hydrocode modeling of comet impact into Pluto. With increasing impact velocity, a projectile will produce wider and deeper craters. The depth-diameter ratio (d/D) however has a more complex progression with increasing impact velocity: impacts faster than 2km/s lead to smaller d/D ratios as impact velocity increases, in agreement with gas-gun studies. However, decreasing impact velocity from 2km/s to 300 m/s produced smaller d/D as impact velocity was decreased. This suggests that on Pluto the deepest craters would be produced by ~ 2km/s impacts, with shallower craters produced by velocities either side of this critical point. Further simulations to investigate whether this effect is connected to the sound speed of the target material are ongoing. The complex relationship between impact velocity and crater depth for impacts occurring between 300m/s and 10 km/s suggests

  5. Modification of premare impact craters by volcanism and tectonism

    NASA Technical Reports Server (NTRS)

    Brennan, W. J.

    1975-01-01

    Many lunar craters greater than 10 km in diameter exhibit a variety of morphological characteristics which are not produced by meteorite impact or meteorite erosion. Most such craters are located in or near the margins of the maria. Although some could have resulted from processes such as cauldron resurgence, caldera formation, or ring dike emplacement, most have formed by modification of impact craters by endogenic processes including erosion by flowing lava, fissure volcanism, plutonism, and uplift of crater floors along ring fractures of impact origin.

  6. The distribution and modes of occurrence of impact melt at lunar craters

    NASA Technical Reports Server (NTRS)

    Hawke, B. Ray; Head, J. W.

    1992-01-01

    Numerous studies of the returned lunar samples as well as geologic and remote-sensing investigations have emphasized the importance of impact melts on the surface of the Moon. Information concerning the distribution and relative volumes is important for (1) an improved understanding of cratering processes, (2) kinetic energy estimates and energy partitioning studies, (3) the proper interpretation of melt-bearing lunar samples, and (4) comparative planetology studies. The identification of major flows of fluidized material associated with impact craters on the surface of Venus has increased interest in impact melt flows on the other terrestrial planets. For a number of years, we have been investigating the distribution, modes of occurrence, and relative and absolute amounts of impact melt associated with lunar craters as well as the manner in which melt volumes vary as a function of crater size, morphology, and target characteristics. The results of this effort are presented.

  7. Impact cratering and ejection of material on porous asteroids

    NASA Astrophysics Data System (ADS)

    Housen, K.; Sweet, W.

    2014-07-01

    The manner in which an impact crater and its ejecta blanket are created involves an interplay between gravity and the strength properties of the target material. Gravity is important because the overburden stress at depth in an asteroid determines the material shear strength, which affects the mechanics of crater and ejecta formation. This has important implications when attempting to use lab experiments to simulate large-crater formation on asteroids. The only way to perform small-scale experimental simulations of cratering events on asteroids is to adjust the ambient ''gravity'', g, such that the experiment has the same product of gL as the actual impact event being simulated, where L is an important length scale, such as the projectile or crater size [1]. In this way, the lab crater has the same overburden stress (and shear strength) and ejecta ballistics as a much larger cratering event on an asteroid. Even though asteroids have weak gravity fields, the overburden stress of a multiple-km crater is larger than can be reproduced in the lab at 1 G. Therefore, simulation of large impacts on asteroids requires that the ''gravity'' of the experiment is greater than 1 G. Here we report on a series of impact experiments conducted at elevated gravity on a geotechnical centrifuge. These experimental craters are subscale replicas of the much larger craters they simulate; larger G-levels simulate larger craters. Using the Boeing 600-G centrifuge, we directly simulate the formation of asteroid (g˜0.001 G) craters as large as several tens of km. The target materials are cohesionless with porosity ranging from 35 % to 95 %. Cratering experiments in soils with small or moderate porosity (<30 %) show a decrease in cratering efficiency (crater volume/impactor volume) with increasing size scale or, equivalently, increasing G in a centrifuge experiment. This well-known gravity-regime behavior is due to the fact that the shear strength of the target material goes up due to the

  8. Calculational investigation of impact cratering dynamics - Material motions during the crater growth period

    NASA Technical Reports Server (NTRS)

    Austin, M. G.; Thomsen, J. M.; Ruhl, S. F.; Orphal, D. L.; Schultz, P. H.

    1980-01-01

    The considered investigation was conducted in connection with studies which are to provide a better understanding of the detailed dynamics of impact cratering processes. Such an understanding is vital for a comprehension of planetary surfaces. The investigation is the continuation of a study of impact dynamics in a uniform, nongeologic material at impact velocities achievable in laboratory-scale experiments conducted by Thomsen et al. (1979). A calculation of a 6 km/sec impact of a 0.3 g spherical 2024 aluminum projectile into low strength (50 kPa) homogeneous plasticene clay has been continued from 18 microseconds to past 600 microseconds. The cratering flow field, defined as the material flow field in the target beyond the transient cavity but well behind the outgoing shock wave, has been analyzed in detail to see how applicable the Maxwell Z-Model, developed from analysis of near-surface explosion cratering calculations, is to impact cratering

  9. Calculational investigation of impact cratering dynamics - Material motions during the crater growth period

    NASA Technical Reports Server (NTRS)

    Austin, M. G.; Thomsen, J. M.; Ruhl, S. F.; Orphal, D. L.; Schultz, P. H.

    1980-01-01

    The considered investigation was conducted in connection with studies which are to provide a better understanding of the detailed dynamics of impact cratering processes. Such an understanding is vital for a comprehension of planetary surfaces. The investigation is the continuation of a study of impact dynamics in a uniform, nongeologic material at impact velocities achievable in laboratory-scale experiments conducted by Thomsen et al. (1979). A calculation of a 6 km/sec impact of a 0.3 g spherical 2024 aluminum projectile into low strength (50 kPa) homogeneous plasticene clay has been continued from 18 microseconds to past 600 microseconds. The cratering flow field, defined as the material flow field in the target beyond the transient cavity but well behind the outgoing shock wave, has been analyzed in detail to see how applicable the Maxwell Z-Model, developed from analysis of near-surface explosion cratering calculations, is to impact cratering

  10. Analysis of impact crater populations and the geochronology of planetary surfaces in the inner solar system

    NASA Astrophysics Data System (ADS)

    Fassett, Caleb I.

    2016-10-01

    Analyzing the density of impact craters on planetary surfaces is the only known technique for learning their ages remotely. As a result, crater statistics have been widely analyzed on the terrestrial planets, since the timing and rates of activity are critical to understanding geologic process and history. On the Moon, the samples obtained by the Apollo and Luna missions provide critical calibration points for cratering chronology. On Mercury, Venus, and Mars, there are no similarly firm anchors for cratering rates, but chronology models have been established by extrapolating from the lunar record or by estimating their impactor fluxes in other ways. This review provides a current perspective on crater population measurements and their chronological interpretation. Emphasis is placed on how ages derived from crater statistics may be contingent on assumptions that need to be considered critically. In addition, ages estimated from crater populations are somewhat different than ages from more familiar geochronology tools (e.g., radiometric dating). Resurfacing processes that remove craters from the observed population are particularly challenging to account for, since they can introduce geologic uncertainty into results or destroy information about the formation age of a surface. Regardless of these challenges, crater statistics measurements have resulted in successful predictions later verified by other techniques, including the age of the lunar maria, the existence of a period of heavy bombardment in the Moon's first billion years, and young volcanism on Mars.

  11. Robust Automated Identification of Martian Impact Craters

    NASA Astrophysics Data System (ADS)

    Stepinski, T. F.; Mendenhall, M. P.; Bue, B. D.

    2007-03-01

    Robust automatic identification of martian craters is achieved by a computer algorithm acting on topographic data. The algorithm outperforms manual counts; derived crater sizes and depths are comparable to those measured manually.

  12. Seismic interpretation of the sedimentation systems, structural geology and stratigraphic of the Chicxulub crater, carbonate platform of Yucatan, Mexico.

    NASA Astrophysics Data System (ADS)

    Iza, Canales-Garcia; Jaime, Urrutia-Fucugauchi; Joaquin Eduardo, Aguayo-Camargo; Angel, Alatorre-Mendieta Miguel

    2016-04-01

    In order to describe the structural and stratigraphic features of the Chicxulub crater, was performed the present work of seismic interpretation, seismic attributes and generation of 3D surfaces. Load data it was performed in SEG-Y format, to display a total of 19 seismic reflection profiles were worked at domain time; the corresponding interpretation was carried out by separating five packages with textural differences, for this separation were used five horizons with seismic response representing the base of these packages, the correlation of horizons was made for all lines, creating composed lines so that all profiles were interpret together at intersections for form a grid. Multiple fault zones, were interpreted with the help of seismic attributes, like RMS amplitude, complex trace analysis, gradient of the trace and cosine phase. Was obtained the structural and stratigraphic interpretation , 3D models of the surfaces interpreted with which it is possible to observe the morphology of the base of the basin, it is controlled by the effect of the impact that formed the crater, has the features as a multi-ring crater. Shallower horizons shows that the topography of the base of the crater continues to affect the upper relief, which tends to be horizontal as it approaches the surface but is modeled by themselves sedimentary processes of the carbonate platform of Yucatán; packages below the base of the crater show the characteristics that own carbonated breccia, product the rupture of the material at impact, the material was deposited in a chaotic way, at this level we found the faults and fractures zone.

  13. Mexican site for K/T impact crater?

    NASA Technical Reports Server (NTRS)

    Pope, Kevin O.; Ocampo, Adriana C.; Duller, Charles E.

    1991-01-01

    Research throughout the Caribbean suggests that the geophysical anomalies in the Yucatan first noted by Penfield and Camargo (1981) and called the Chicxulub crater could be the site of the impact purported to have caused the K/T extinctions. A semicircular ring of sink holes, known locally as cenotes, which correlates with the geophysical anomalies has been identified, and it is argued that the origin of the cenote ring is related to postimpact subsidence of the Chicxulub crater rim. If there is indeed a crater, the region within the cenote ring corresponds to its floor and the crater rim diameter is probably larger than 200 km. If confirmed as a site of impact, the Chicxulub crater would be the largest terrestrial impact crater known, which is consistent with the uniqueness of the K/T global catastrophe.

  14. Mexican site for K/T impact crater?

    NASA Technical Reports Server (NTRS)

    Pope, Kevin O.; Ocampo, Adriana C.; Duller, Charles E.

    1991-01-01

    Research throughout the Caribbean suggests that the geophysical anomalies in the Yucatan first noted by Penfield and Camargo (1981) and called the Chicxulub crater could be the site of the impact purported to have caused the K/T extinctions. A semicircular ring of sink holes, known locally as cenotes, which correlates with the geophysical anomalies has been identified, and it is argued that the origin of the cenote ring is related to postimpact subsidence of the Chicxulub crater rim. If there is indeed a crater, the region within the cenote ring corresponds to its floor and the crater rim diameter is probably larger than 200 km. If confirmed as a site of impact, the Chicxulub crater would be the largest terrestrial impact crater known, which is consistent with the uniqueness of the K/T global catastrophe.

  15. The origin of lunar craters

    NASA Technical Reports Server (NTRS)

    Wegener, A.

    1975-01-01

    A review is presented of four hypotheses concerning the origin of lunar craters, taking into account the bubble hypothesis, the tide hypothesis, the volcanic hypothesis, and the impact hypothesis. A description is given of a series of experiments on impact craters and studies of a meteorite crater in Arizona are considered. It is concluded that the typical lunar craters can best be interpreted as impact craters.

  16. Implications of a global survey of venusian impact craters

    NASA Technical Reports Server (NTRS)

    Herrick, Robert R.; Phillips, Roger J.

    1994-01-01

    We present a global survey of the areal distribution, size-frequency distribution, and morphometric properties of the venusian impact cratering record. We explore the resurfacing history of Venus, crater degradation, ejecta emplacement, and cratering mechanics. The number of volcanically embayed and tectonically deformed craters from 0.5 to 1.0 km above mean planetary radius is disproportionately high for an otherwise crater-deficient elevation range. More resurfacing occurred in this range, an elevation range dominated by volcanic rises, rifts, and coronae, than elsewhere on Venus. Although the majority of craters appear to be relatively undisturbed and have intact ejecta blankets, some craters appear particularly `fresh' because thay have radar-bright floors, a radar-dark halo surrounding the ejecta blanket, and a west facing parabola of low radar return; 20, 35, and 8%, respectively, of craters with diameters greater than 22.6 km have these features. Characteristics of ejecta deposits for venusian craters change substantially with size, particularly at 20 km crater diameter, which marks the transition at which the boundaries of ejecta blankets go from ragged to lobate and the slope of the ejecta distance vs diameter curve steepens. Secondary craters are a ubiquitous part of the ejecta blanket for craters over 50 km but occur infrequently as isolated rays about smaller craters. Comparison of complex craters found on Venus with those of other planets gave results that were consistent with the idea that interplanetary differences in complex crater shape are controlled by interplanetary differences in gravity and crustal strength. The interplanetary comparison indicates that Venus, the Moon, and Mercury appear to have stronger crusts than do Mars and Ganymede/Callisto.

  17. Implications of a global survey of venusian impact craters

    NASA Technical Reports Server (NTRS)

    Herrick, Robert R.; Phillips, Roger J.

    1994-01-01

    We present a global survey of the areal distribution, size-frequency distribution, and morphometric properties of the venusian impact cratering record. We explore the resurfacing history of Venus, crater degradation, ejecta emplacement, and cratering mechanics. The number of volcanically embayed and tectonically deformed craters from 0.5 to 1.0 km above mean planetary radius is disproportionately high for an otherwise crater-deficient elevation range. More resurfacing occurred in this range, an elevation range dominated by volcanic rises, rifts, and coronae, than elsewhere on Venus. Although the majority of craters appear to be relatively undisturbed and have intact ejecta blankets, some craters appear particularly `fresh' because thay have radar-bright floors, a radar-dark halo surrounding the ejecta blanket, and a west facing parabola of low radar return; 20, 35, and 8%, respectively, of craters with diameters greater than 22.6 km have these features. Characteristics of ejecta deposits for venusian craters change substantially with size, particularly at 20 km crater diameter, which marks the transition at which the boundaries of ejecta blankets go from ragged to lobate and the slope of the ejecta distance vs diameter curve steepens. Secondary craters are a ubiquitous part of the ejecta blanket for craters over 50 km but occur infrequently as isolated rays about smaller craters. Comparison of complex craters found on Venus with those of other planets gave results that were consistent with the idea that interplanetary differences in complex crater shape are controlled by interplanetary differences in gravity and crustal strength. The interplanetary comparison indicates that Venus, the Moon, and Mercury appear to have stronger crusts than do Mars and Ganymede/Callisto.

  18. Titan's Impact Cratering Record: Erosion of Ganymedean (and other) Craters on a Wet Icy Landscape

    NASA Astrophysics Data System (ADS)

    Schenk, P.; Moore, J.; Howard, A.

    2012-04-01

    We examine the cratering record of Titan from the perspective of icy satellites undergoing persistent landscape erosion. First we evaluate whether Ganymede (and Callisto) or the smaller low-gravity neighboring icy satellites of Saturn are the proper reference standard for evaluating Titan’s impact crater morphologies, using topographic and morphometric measurements (Schenk, 2002; Schenk et al. (2004) and unpublished data). The special case of Titan’s largest crater, Minrva, is addressed through analysis of large impact basins such as Gilgamesh, Lofn, Odysseus and Turgis. Second, we employ a sophisticated landscape evolution and modification model developed for study of martian and other planetary landforms (e.g., Howard, 2007). This technique applies mass redistribution principles due to erosion by impact, fluvial and hydrological processes to a planetary landscape. The primary advantage of our technique is the possession of a limited but crucial body of areal digital elevation models (DEMs) of Ganymede (and Callisto) impact craters as well as global DEM mapping of Saturn’s midsize icy satellites, in combination with the ability to simulate rainfall and redeposition of granular material to determine whether Ganymede craters can be eroded to resemble Titan craters and the degree of erosion required. References: Howard, A. D., “Simulating the development of martian highland landscapes through the interaction of impact cratering, fluvial erosion, and variable hydrologic forcing”, Geomorphology, 91, 332-363, 2007. Schenk, P. "Thickness constraints on the icy shells of the galilean satellites from impact crater shapes". Nature, 417, 419-421, 2002. Schenk, P.M., et al. "Ages and interiors: the cratering record of the Galilean satellites". In: Jupiter: The Planet, Satellites, and Magnetosphere, Cambridge University Press, Cambridge, UK, pp. 427-456, 2004.

  19. Ringed impact craters on Venus: An analysis from Magellan images

    NASA Technical Reports Server (NTRS)

    Alexopoulos, Jim S.; Mckinnon, William B.

    1992-01-01

    We have analyzed cycle 1 Magellan images covering approximately 90 percent of the venusian surface and have identified 55 unequivocal peak-ring craters and multiringed impact basins. This comprehensive study (52 peak-ring craters and at least 3 multiringed impact basins) complements our earlier independent analysis of Arecibo and Venera images and initial Magellan data and that of the Magellan team.

  20. Numerical Modeling of Shatter Cones Development in Impact Craters

    NASA Astrophysics Data System (ADS)

    Baratoux, D.; Melosh, H. J.

    2003-03-01

    We present a new model for the formation of shatter cones in impact craters. Our model has been tested by means of numerical simulations. Our results are consistent with the observations of shatter cones in natural impact craters and explosions experiments.

  1. Mapping and interpretation of Sinlap crater on Titan using Cassini VIMS and RADAR data

    USGS Publications Warehouse

    Le, Mouelic S.; Paillou, P.; Janssen, M.A.; Barnes, J.W.; Rodriguez, S.; Sotin, C.; Brown, R.H.; Baines, K.H.; Buratti, B.J.; Clark, R.N.; Crapeau, M.; Encrenaz, P.J.; Jaumann, R.; Geudtner, D.; Paganelli, F.; Soderblom, L.; Tobie, G.; Wall, S.

    2008-01-01

    Only a few impact craters have been unambiguously detected on Titan by the Cassini-Huygens mission. Among these, Sinlap is the only one that has been observed both by the RADAR and VIMS instruments. This paper describes observations at centimeter and infrared wavelengths which provide complementary information about the composition, topography, and surface roughness. Several units appear in VIMS false color composites of band ratios in the Sinlap area, suggesting compositional heterogeneities. A bright pixel possibly related to a central peak does not show significant spectral variations, indicating either that the impact site was vertically homogeneous, or that this area has been recovered by homogeneous deposits. Both VIMS ratio images and dielectric constant measurements suggest the presence of an area enriched in water ice around the main ejecta blanket. Since the Ku-band SAR may see subsurface structures at the meter scale, the difference between infrared and SAR observations can be explained by the presence of a thin layer transparent to the radar. An analogy with terrestrial craters in Libya supports this interpretation. Finally, a tentative model describes the geological history of this area prior, during, and after the impact. It involves mainly the creation of ballistic ejecta and an expanding plume of vapor triggered by the impact, followed by the redeposition of icy spherules recondensed from this vapor plume blown downwind. Subsequent evolution is then driven by erosional processes and aeolian deposition. Copyright 2008 by the American Geophysical Union.

  2. Martian impact craters - Correlations of ejecta and interior morphologies with diameter, latitude, and terrain

    NASA Technical Reports Server (NTRS)

    Barlow, Nadine G.; Bradley, Tracy L.

    1990-01-01

    An effort is made to establish the ability of a correlation between crater morphology and latitude, diameter, and terrain, to discriminate among the effects of impact energy, atmosphere, and subsurface volatiles in 3819 larger-than-8 km diameter craters distributed over the Martian surface. It is noted that changes in ejecta and interior morphology correlate with increases in crater diameter, and that while many of the interior structures exhibit distributions interpretable as terrain-dependent, central peak and peak ring interior morphologies exhibit minimal relationships with planetary properties.

  3. Ancient Impact and Aqueous Processes at Endeavour Crater, Mars

    NASA Astrophysics Data System (ADS)

    Squyres, S. W.; Arvidson, R. E.; Bell, J. F.; Calef, F.; Clark, B. C.; Cohen, B. A.; Crumpler, L. A.; de Souza, P. A.; Farrand, W. H.; Gellert, R.; Grant, J.; Herkenhoff, K. E.; Hurowitz, J. A.; Johnson, J. R.; Jolliff, B. L.; Knoll, A. H.; Li, R.; McLennan, S. M.; Ming, D. W.; Mittlefehldt, D. W.; Parker, T. J.; Paulsen, G.; Rice, M. S.; Ruff, S. W.; Schröder, C.; Yen, A. S.; Zacny, K.

    2012-05-01

    The rover Opportunity has investigated the rim of Endeavour Crater, a large ancient impact crater on Mars. Basaltic breccias produced by the impact form the rim deposits, with stratigraphy similar to that observed at similar-sized craters on Earth. Highly localized zinc enrichments in some breccia materials suggest hydrothermal alteration of rim deposits. Gypsum-rich veins cut sedimentary rocks adjacent to the crater rim. The gypsum was precipitated from low-temperature aqueous fluids flowing upward from the ancient materials of the rim, leading temporarily to potentially habitable conditions and providing some of the waters involved in formation of the ubiquitous sulfate-rich sandstones of the Meridiani region.

  4. Ancient impact and aqueous processes at Endeavour Crater, Mars.

    PubMed

    Squyres, S W; Arvidson, R E; Bell, J F; Calef, F; Clark, B C; Cohen, B A; Crumpler, L A; de Souza, P A; Farrand, W H; Gellert, R; Grant, J; Herkenhoff, K E; Hurowitz, J A; Johnson, J R; Jolliff, B L; Knoll, A H; Li, R; McLennan, S M; Ming, D W; Mittlefehldt, D W; Parker, T J; Paulsen, G; Rice, M S; Ruff, S W; Schröder, C; Yen, A S; Zacny, K

    2012-05-04

    The rover Opportunity has investigated the rim of Endeavour Crater, a large ancient impact crater on Mars. Basaltic breccias produced by the impact form the rim deposits, with stratigraphy similar to that observed at similar-sized craters on Earth. Highly localized zinc enrichments in some breccia materials suggest hydrothermal alteration of rim deposits. Gypsum-rich veins cut sedimentary rocks adjacent to the crater rim. The gypsum was precipitated from low-temperature aqueous fluids flowing upward from the ancient materials of the rim, leading temporarily to potentially habitable conditions and providing some of the waters involved in formation of the ubiquitous sulfate-rich sandstones of the Meridiani region.

  5. Fresh lunar impact craters - Review of variations with size

    NASA Technical Reports Server (NTRS)

    Howard, K. A.

    1974-01-01

    Thirty-three morphologic characteristics are reviewed for fresh lunar impact craters wider than 1 km. Bar graphs express the way each characteristic varies with crater size. The features are grouped as crater structure, ejecta, and downhill flow features. Major structural transitions occur at diameters of about 15 and 200 km. Details of the ejecta blanket, which include several kinds of lineations, dunelike ridges, troughs, and lobes, reflect different transport regimes in the ejecta. Some materials at larger craters flowed downhill in lavalike fashion after the ejecta was deposited; the lavalike materials are probably impact melt.

  6. Ancient impact and aqueous processes at Endeavour Crater, Mars

    USGS Publications Warehouse

    Squyres, S. W.; Arvidson, R. E.; Bell, J.F.; Calef, F.J.; Clark, B. C.; Cohen, B. A.; Crumpler, L.A.; de Souza, P. A.; Farrand, W. H.; Gellert, Ralf; Grant, J.; Herkenhoff, K. E.; Hurowitz, J.A.; Johnson, J. R.; Jolliff, B.L.; Knoll, A.H.; Li, R.; McLennan, S.M.; Ming, D. W.; Mittlefehldt, D. W.; Parker, T.J.; Paulsen, G.; Rice, M.S.; Ruff, S.W.; Schröder, C.; Yen, A. S.; Zacny, K.

    2012-01-01

    The rover Opportunity has investigated the rim of Endeavour Crater, a large ancient impact crater on Mars. Basaltic breccias produced by the impact form the rim deposits, with stratigraphy similar to that observed at similar-sized craters on Earth. Highly localized zinc enrichments in some breccia materials suggest hydrothermal alteration of rim deposits. Gypsum-rich veins cut sedimentary rocks adjacent to the crater rim. The gypsum was precipitated from low-temperature aqueous fluids flowing upward from the ancient materials of the rim, leading temporarily to potentially habitable conditions and providing some of the waters involved in formation of the ubiquitous sulfate-rich sandstones of the Meridiani region.

  7. Projectile Remnants in Central Peaks of Lunar Impact Craters

    NASA Astrophysics Data System (ADS)

    Johnson, B.; Yue, Z.; Minton, D.; Melosh, H. J.; Di, K.; Hu, W.; Liu, Y.

    2012-12-01

    It is generally assumed that during the formation of a large impact crater the projectile is largely melted or vaporized and that only traces remain in the final crater. However, using the finite difference hydrocode iSALE, we show that at impact velocities below about 12 km/sec the projectile, while crushed and strongly deformed, may largely survive the impact. In small craters the projectile is nevertheless widely dispersed across the crater floor. But in complex craters much of the projectile debris is swept back into the central peak area by the collapse flow. Furthermore, on the Moon approximately 30% of asteroid impacts occur at velocities less than 12 km/sec, so that the central peaks of many lunar craters should retain a recognizable signature of the projectile. This observation may explain recent observations of exotic Mg-rich spinels and olivine in the central peaks of craters too small to have excavated the deep crust or mantle of the Moon. Similar conclusions apply to central peaks of complex craters on Mars and Rheasilvia crater on Vesta.

  8. The depths of the largest impact craters on Venus

    NASA Technical Reports Server (NTRS)

    Ivanov, B. A.; Ford, P. G.

    1993-01-01

    The largest impact craters on Venus may be used as evidence of various geological processes within the Venusian crust. We are continuing to construct a data base for the further investigation of large craters on Venus (LCV). We hope to find evidence of crater relaxation that might constrain the thickness and thermal gradient of the crust, as was proposed in an earlier work. The current work concentrates on 27 impact craters with diameters (d) larger than 70 km, i.e., large enough that the footprint of the Magellan altimeter has a good chance of sampling the true crater bottom. All altimeter echoes from points located within (d/2)+70 km from the crater center have been inspected.

  9. Correlation of the Largest Craters, Stratigraphic Impact Signatures, and Extinction Events Over the Past 250 Myr

    NASA Technical Reports Server (NTRS)

    Rampino, Michael R.; Caldeira, Ken

    2017-01-01

    The six largest known impact craters of the last 250 Myr (greater than or equal to 70 km in diameter), which are capable of causing significant environmental damage, coincide with four times of recognized extinction events at 36 (with 2 craters), 66, and 145 Myr ago, and possibly with two provisional extinction events at 168 and 215 Myr ago. These impact cratering events are accompanied by layers in the geologic record interpreted as impact ejecta. Chance occurrences of impacts and extinctions can be rejected at confidence levels of 99.96 percent (for 4 impact/extinctions) to 99.99 percent (for 6 impact/extinctions). These results argue that several extinction events over the last 250 Myr may be related to the effects of large-body impacts.

  10. Scaling of liquid-drop impact craters in granular media

    NASA Astrophysics Data System (ADS)

    Zhao, Runchen; Zhang, Qianyun; Tjugito, Hendro; Gao, Ming; Cheng, Xiang

    Granular impact cratering by liquid drops is a ubiquitous phenomenon, directly relevant to many important natural and industrial processes such as soil erosion, drip irrigation, and dispersion of micro-organisms in soil. Here, by combining the high-speed photography with high precision laser profilometry, we investigate the liquid-drop impact dynamics on granular surfaces and monitor the morphology of resulting craters. Our experiments reveal novel scaling relations between the size of granular impact craters and important control parameters including the impact energy, the size of impinging drops and the degree of liquid saturation in a granular bed. Interestingly, we find that the scaling for liquid-drop impact cratering in dry granular media can be quantitatively described by the Schmidt-Holsapple scaling originally proposed for asteroid impact cratering. On the other hand, the scaling for impact craters in wet granular media can be understood by balancing the inertia of impinging drops and the strength of impacted surface. Our study sheds light on the mechanism governing liquid-drop impacts on dry/wet granular surfaces and reveals a remarkable analogy between familiar phenomena of raining and catastrophic asteroid strikes. Scaling of liquid-drop impact craters in granular media.

  11. Low-velocity impact cratering experiments in granular slopes

    NASA Astrophysics Data System (ADS)

    Hayashi, Kosuke; Sumita, Ikuro

    2017-07-01

    Low-velocity impact cratering experiments are conducted in sloped granular targets to study the effect of the slope angle θ on the crater shape and its scales. We use two types of granular matter, sand and glass beads, former of which has a larger friction coefficient μs = tanθr , where θr is the angle of repose. Experiments show that as θ increases, the crater becomes shallower and elongated in the direction of the slope. Furthermore the crater floor steepens in the upslope side and a thick rim forms in the downslope side, thus forming an asymmetric profile. High-speed images show that these features are results of ejecta being dispersed farther towards the downslope side and the subsequent avalanche which buries much of the crater floor. Such asymmetric ejecta dispersal can be explained by combining the Z-model and a ballistic model. Using the topographic maps of the craters, we classify crater shape regimes I-III, which transition with increasing θ : a full-rim crater (I), a broken-rim crater (II), and a depression (III). The critical θ for the regime transitions are larger for sand compared to glass beads, but collapse to close values when we use a normalized slope θ^ = tanθ / tanθr . Similarly we derive θ^-dependences of the scaled crater depth, length, width and their ratios which collapse the results for different targets and impact energies. We compare the crater profiles formed in our experiments with deep craters on asteroid Vesta and find that some of the scaled profiles nearly overlap and many have similar depth / length ratios. This suggests that these Vestan craters may also have formed in the gravity regime and that the formation process can be approximated by a granular flow with a similar effective friction coefficient.

  12. Ages of large lunar impact craters and implications for bombardment during the Moon's middle age

    NASA Astrophysics Data System (ADS)

    Kirchoff, Michelle R.; Chapman, Clark R.; Marchi, Simone; Curtis, Kristen M.; Enke, Brian; Bottke, William F.

    2013-07-01

    Standard lunar chronologies, based on combining lunar sample radiometric ages with impact crater densities of inferred associated units, have lately been questioned about the robustness of their interpretations of the temporal dependance of the lunar impact flux. In particular, there has been increasing focus on the "middle age" of lunar bombardment, from the end of the Late Heavy Bombardment (˜3.8 Ga) until comparatively recent times (˜1 Ga). To gain a better understanding of impact flux in this time period, we determined and analyzed the cratering ages of selected terrains on the Moon. We required distinct terrains with random locations and areas large enough to achieve good statistics for the small, superposed crater size-frequency distributions to be compiled. Therefore, we selected 40 lunar craters with diameter ˜90 km and determined the model ages of their floors by measuring the density of superposed craters using the Lunar Reconnaissance Orbiter Wide Angle Camera mosaic. Absolute model ages were computed using the Model Production Function of Marchi et al. (Marchi, S., Mottola, S., Cremonese, G., Massironi, M., Martellato, E. [2009]. Astron. J. 137, 4936-4948). We find that a majority (36 of 40) of our superposed crater size-frequency distributions are consistent with the Model Production Function. A histogram of the original crater floor model ages indicates the bombardment rate decreased gradually from ˜3.8 Ga until ˜3.0 Ga, implying an extended tail to the Late Heavy Bombardment. For large craters, it also preliminarily suggests that between ˜3.0 and 1.0 Ga bombardment may be characterized by long periods (>600 Myr) of relatively few impacts ("lulls") broken by a short duration (˜200 Myr) of relatively more impacts ("spike"). While measuring superposed craters, we also noted if they were part of a cluster or chain (named "obvious secondary"), and analyzed these craters separately. Interestingly, we observe a wide variety of slopes to the

  13. Dimensional scaling for impact cratering and perforation

    NASA Technical Reports Server (NTRS)

    Watts, Alan J.; Atkinson, Dale

    1995-01-01

    POD Associates have revisited the issue of generic scaling laws able to adequately predict (within better than 20 percent) cratering in semi-infinite targets and perforations through finite thickness targets. The approach used was to apply physical logic for hydrodynamics in a consistent manner able to account for chunky-body impacts such that the only variables needed are those directly related to known material properties for both the impactor and target. The analyses were compared and verified versus CTH hydrodynamic code calculations and existing data. Comparisons with previous scaling laws were also performed to identify which (if any) were good for generic purposes. This paper is a short synopsis of the full report available through the NASA Langley Research Center, LDEF Science Office.

  14. Determining long-term regional erosion rates using impact craters

    NASA Astrophysics Data System (ADS)

    Hergarten, Stefan; Kenkmann, Thomas

    2015-04-01

    More than 300,000 impact craters have been found on Mars, while the surface of Moon's highlands is even saturated with craters. In contrast, only 184 impact craters have been confirmed on Earth so far with only 125 of them exposed at the surface. The spatial distribution of these impact craters is highly inhomogeneous. Beside the large variation in the age of the crust, consumption of craters by erosion and burial by sediments are the main actors being responsible for the quite small and inhomogeneous crater record. In this study we present a novel approach to infer long-term average erosion rates at regional scales from the terrestrial crater inventory. The basic idea behind this approach is a dynamic equilibrium between the production of new craters and their consumption by erosion. It is assumed that each crater remains detectable until the total erosion after the impact exceeds a characteristic depth depending on the crater's diameter. Combining this model with the terrestrial crater production rate, i.e., the number of craters per unit area and time as a function of their diameter, allows for a prediction of the expected number of craters in a given region as a function of the erosion rate. Using the real crater inventory, this relationship can be inverted to determine the regional long-term erosion rate and its statistical uncertainty. A limitation by the finite age of the crust can also be taken into account. Applying the method to the Colorado Plateau and the Deccan Traps, both being regions with a distinct geological history, yields erosion rates in excellent agreement with those obtained by other, more laborious methods. However, these rates are formally exposed to large statistical uncertainties due to the small number of impact craters. As higher crater densities are related to lower erosion rates, smaller statistical errors can be expected when large regions in old parts of the crust are considered. Very low long-term erosion rates of less than 4

  15. Large impact crater histories of Mars: The effect of different model crater age techniques

    NASA Astrophysics Data System (ADS)

    Robbins, Stuart J.; Hynek, Brian M.; Lillis, Robert J.; Bottke, William F.

    2013-07-01

    Impact events that produce large craters primarily occurred early in the Solar System's history because the largest bolides were remnants from planetary formation. Determining when large impacts occurred on a planetary surface such as Mars can yield clues to the flux of material in the early inner Solar System which, in turn, can constrain other planetary processes such as the timing and magnitude of resurfacing and the history of the martian core dynamo. We have used a large, global planetary database in conjunction with geomorphologic mapping to identify craters superposed on the rims of 78 larger craters with diameters D ⩾ 150 km on Mars, ≈78% of which have not been previously dated in this manner. The densities of superposed craters with diameters larger than 10, 16, 25, and 50 km, as well as isochron fits were used to derive model crater ages of these larger craters and basins from which we derived an impact flux. In discussing these ages, we point out several internal inconsistencies of crater-age modeling techniques and chronology systems and, all told, we explain why we think isochron-fitting is the most reliable indicator of an age. Our results point to a mostly obliterated crater record prior to ˜4.0 Ga with the oldest preserved mappable craters on Mars dating to ˜4.3-4.35 Ga. We have used our results to constrain the cessation time of the martian core dynamo which we found to have occurred between the formation of Ladon and Prometheus basins, approximately 4.06-4.09 Ga. We also show that, overall, surfaces on Mars older than ˜4.0-4.1 Ga have experienced >1 km of resurfacing, while those younger than ˜3.8-3.9 Ga have experienced significantly less.

  16. Impact Ejecta Modeling of the Bunte Breccia Deposits of the Ries Impact Crater, Southern Germany

    NASA Astrophysics Data System (ADS)

    Sturm, S.; Wulf, G.; Jung, D.; Kenkmann, T.

    2012-03-01

    Here we present new impact ejecta modeling results of the paleo-surface and Bunte breccia ejecta outside the Ries impact crater that provide morphology and thickness variations of the Bunte breccia with increasing distance from the crater center.

  17. The Deep Impact Experiment and the Physics of Impact Cratering

    NASA Astrophysics Data System (ADS)

    Richardson, J. E.; Melosh, H. J.; Deep Impact Science Team

    2005-08-01

    On July 4, 2005 the Deep Impact experiment produced an impact event on the surface of Comet 9P Tempel 1, using a 360 kg (primarily copper) impactor striking the comet at a velocity of 10.2 km/sec. In addition to images taken from the flyby spacecraft (500 km closest approach distance), images of the target were also returned from the impactor spacecraft, which show that the impactor hit the comet's surface at an oblique angle of roughly 60 degrees from the surface normal. The impactor struck the comet at an ideal location for viewing the cratering process by the flyby spacecraft both during the 800 second long post-impact imaging phase and during the ``look-back" imaging phase (beginning ˜ 45 minutes after impact). Within a fraction of a second of impact, an incandescent vapor plume emerged from the impact site, cooling rapidly and moving away from the comet at a speed of ˜ 5 km/sec. This vapor emission was followed by the emergence and rapid growth of a prominent, conical ejecta plume, indicating crater excavation flow. This ejecta plume was more opaque (composed of finer material) than predicted, obscuring clear observations of the impact crater itself (extraction efforts continue). However, the behavior of the plume during both it's growth and fallback stages is consistent with a gravity-scaled cratering event into a very weak (post-shock) target material. The expansion state of the plume during the look-back phase will also allow us to place constraints on the comet's gravity field (and by extension mass and density).

  18. Acoustic fluidization and the scale dependence of impact crater morphology.

    NASA Astrophysics Data System (ADS)

    Melosh, H. J.; Gaffney, E. S.

    1983-02-01

    A phenomenological Bingham plastic model has previously been shown to provide an adequate description of the collapse of impact craters. This paper demonstrates that the Bingham parameters may be derived from a model in which acoustic energy generated during excavation fluidizes the rock debris surrounding the crater. Experimental support for the theoretical flow law is presented. The Bingham viscosity is derived from a simple argument which shows that it increases as the 3/2 power of crater diameter, consistent with observation. Crater collapse may occur in material with internal dissipation Q as low as 100, comparable to laboratory observations of dissipation in granular materials.

  19. Crater

    NASA Image and Video Library

    2015-02-13

    This image captured by NASA 2001 Mars Odyssey spacecraft shows an example of a central peak crater. This unnamed crater is located on the floor of Newton Crater in Terra Sirenum. Orbit Number: 57962 Latitude: -42.1211 Longitude: 201.814 Instrument: VIS Captured: 2015-01-07 07:47 photojournal.jpl.nasa.gov/catalog/PIA19200

  20. Martian subsurface properties and crater formation processes inferred from fresh impact crater geometries

    NASA Astrophysics Data System (ADS)

    Stewart, Sarah T.; Valiant, Gregory J.

    2006-10-01

    The geometry of simple impact craters reflects the properties of the target materials, and the diverse range of fluidized morphologies observed in Martian ejecta blankets are controlled by the near-surface composition and the climate at the time of impact. Using the Mars Orbiter Laser Altimeter (MOLA) data set, quantitative information about the strength of the upper crust and the dynamics of Martian ejecta blankets may be derived from crater geometry measurements. Here, we present the results from geometrical measurements of fresh craters 3-50 km in rim diameter in selected highland (Lunae and Solis Plana) and lowland (Acidalia, Isidis, and Utopia Planitiae) terrains. We find large, resolved differences between the geometrical properties of the freshest highland and lowland craters. Simple lowland craters are 1.5-2.0 times deeper (≥5σo difference) with >50% larger cavities (≥2σo) compared to highland craters of the same diameter. Rim heights and the volume of material above the preimpact surface are slightly greater in the lowlands over most of the size range studied. The different shapes of simple highland and lowland craters indicate that the upper ˜6.5 km of the lowland study regions are significantly stronger than the upper crust of the highland plateaus. Lowland craters collapse to final volumes of 45-70% of their transient cavity volumes, while highland craters preserve only 25-50%. The effective yield strength of the upper crust in the lowland regions falls in the range of competent rock, approximately 9-12 MPa, and the highland plateaus may be weaker by a factor of 2 or more, consistent with heavily fractured Noachian layered deposits. The measured volumes of continuous ejecta blankets and uplifted surface materials exceed the predictions from standard crater scaling relationships and Maxwell's Z model of crater excavation by a factor of 3. The excess volume of fluidized ejecta blankets on Mars cannot be explained by concentration of ejecta through

  1. Impact craters on Venus - Initial analysis from Magellan

    NASA Technical Reports Server (NTRS)

    Phillips, Roger J.; Arvidson, Raymond E.; Boyce, Joseph M.; Campbell, Donald B.; Guest, John E.

    1991-01-01

    The general features of impact craters are described emphasizing two aspects: the effect of the atmosphere on crater and ejecta morphology and the implications of the distribution and appearance of the craters for the volcanic and tectonic resurfacing history of Venus. Magellan radar images reveal 135 craters about 15 km in diameter containing central peaks, multiple central peaks, and peak rings. Craters smaller than 15 km exhibit multiple floors or appear in clusters. Surface flows of material initially entrained in the atmosphere are characterized. Zones of low radar albedo originated from deformation of the surface by the shock or pressure wave associated with the incoming meteoroid surround many craters. A spectrum of surface ages on Venus ranging from 0 to 800 million years indicates that Venus must be a geologically active planet.

  2. Robust System for Automated Identification of Martian Impact Craters

    NASA Astrophysics Data System (ADS)

    Stepinski, T. F.; Mendenhall, M. P.

    2006-12-01

    Detailed analysis of the number and morphology of impact craters on Mars provides the worth of information about the geologic history of its surface. Global catalogs of Martian craters have been compiled (for example, the Barlow catalog) but they are not comprehensive, especially for small craters. Existing methods for machine detection of craters from images suffer from low efficiency and are not practical for global surveys. We have developed a robust two-stage system for an automated cataloging of craters from digital topography data (DEM). In the first stage an innovative crater-finding transform is performed on a DEM to identify centers of potential craters, their extents, and their basic characteristics. This stage produces a preliminary catalog. In the second stage a machine learning methods are employed to eliminate false positives. Using the MOLA derived DEMs with resolution of 1/128 degrees/pixel, we have applied our system to six ~ 106 km2 sites. The system has identified 3217 craters, 43% more than are present in the Barlow catalog. The extra finds are predominantly small craters that are most difficult to account for in manual surveys. Because our automated survey is DEM-based, the resulting catalog lists craters' depths in addition to their positions, sizes, and measures of shape. This feature significantly increases the scientific utility of any catalog generated using our system. Our initial calculations yield a training set that will be used to identify craters over the entire Martian surface with estimated accuracy of 95%. Moreover, because our method is pixel-based and scale- independent, the present training set may be used to identify craters in higher resolution DEMs derived from Mars Express HRSC images. It also can be applied to future topography data from Mars and other planets. For example, it may be utilized to catalog craters on Mercury and the Moon using altimetry data to be gathered by Messenger and Lunar Reconnaissance Orbiter

  3. Geologic Mapping of the Martian Impact Crater Tooting

    NASA Technical Reports Server (NTRS)

    Mouginis-Mark, Peter; Boyce, Joseph M.

    2008-01-01

    Tooting crater is approximately 29 km in diameters, is located at 23.4 deg N, 207.5 deg E and is classified as a multi-layered ejecta crater. Tooting crater is a very young crater, with an estimated age of 700,000 to 2M years. The crater formed on virtually flat lava flows within Amazonis Planitia where there appears to have been no major topographic features prior to the impact, so that we can measure ejecta thickness and cavity volume. In the past 12 months, the authors have: published their first detailed analysis of the geometry of the crater cavity and the distribution of the ejecta layers; refined the geologic map of the interior of Tooting crater through mapping of the cavity at a scale of 1:1100K; and continued the analysis of an increasing number of high resolution images obtained by the CTX and HiRISE instruments. Currently the authors seek to resolve several science issues that have been identified during this mapping, including: what is the origin of the lobate flows on the NW and SW rims of the crater?; how did the ejecta curtain break apart during the formation of the crater, and how uniform was the emplacement process for the ejecta layers; and, can we infer physical characteristics about the ejecta? Future study plans include the completion of a draft geologic map of Tooting crater and submission of it to the U.S. Geological survey for a preliminary review, publishing a second research paper on the detailed geology of the crater cavity and the distribution of the flows on the crater rim, and completing the map text for the 1:100K geologic map description of units at Tooting crater.

  4. Near-infrared spectroscopy of probable impact melt from three large lunar highland craters

    NASA Astrophysics Data System (ADS)

    Smrekar, S.; Pieters, C. M.

    1985-09-01

    The composition of small areas within three large lunar highland craters are compared using near-infrared, Earth-based telescopic data. Spectra from many areas in the walls and central peaks of the craters indicate the presence of crystalline components which include olivine, two types of pyroxene, and sometimes Fe-bearing feldspar. Spectra from other regions suspected of being impact melt deposits, located on the floors and walls of the three craters, have remarkably similar, yet anomalous features. These features are interpreted to indicate the presence of pyroxene, Fe-bearing glass, and Fe-bearing feldspar. Pyroxene and feldspar are believed to occur primarily in the form of lithic clasts and rapidly recrystallized impact melt. The Fe-bearing glass is interpreted as impact melt glass.

  5. Introducing and discussing a novel diagrammatic representation of impact crater dimensions

    NASA Astrophysics Data System (ADS)

    Caprarelli, Graziella

    2014-07-01

    Impact craters on the surface of Mars are degraded by erosion and infilling due to combinations of geological processes. These result in modifications of relative crater dimensions, including diameter increase and reduction of rim-floor depths. In principle, the longer a crater is exposed to geological processes, the more pronounced the modifications. Visualization and analysis of these effects are achieved by plotting the measured depths (M) of impact craters vs the corresponding theoretical depths (predicted: P) calculated from the crater diameters using depth/Diameter power laws. This type of diagram is referred to as MPD (measured depth vs predicted depth diagram). The advantage of using the MPD representation consists in the fact that the data plot along linear regressions, more easily interpreted than standard depth vs diameter diagrams. As an example of application of the method, the MPD was used to discriminate different generations of impact craters in Terra Sabaea into four groups: T0 (fresh craters), T1, T2 and T3 (from younger to older), all located on the most ancient geological unit in the area (Npld). Other units in the area are Hpl3 and Hr, impacted only by craters belonging to group T0, suggesting that these units are stratigraphically correlated. The data of 5 craters in superposition relationships with the eastern reaches of Evros Vallis, one of the major valley networks in the area, were plotted in the diagram and assigned each to a regression depending on the location of their data points in relation to the prediction bands of the regressions. The craters superposed to the valley all belonged to T0, indicating that Evros Vallis has the same relative age of units Hpl3 and Hr. A conceptual discussion of the results demonstrates that MPD statistics (a) are unaffected by the procedures used to acquire depths and diameters of impact craters and by the power laws used, and (b) can be interpreted irrespective of the sequence or combination of

  6. Colorful Bedrock in the Central Uplift of an Impact Crater

    NASA Image and Video Library

    2016-07-15

    Large impact craters rebound from the initial shock, raising deep bedrock to the surface in the central uplift of the crater. Often this bedrock has greater compositional diversity than the surface layers, because they are from greater depths, older, jumbled, and altered, and very diverse. http://photojournal.jpl.nasa.gov/catalog/PIA20814

  7. Liquid drop impact cratering on a granular layer

    NASA Astrophysics Data System (ADS)

    Katsuragi, H.

    2010-12-01

    Granular impact cratering has been studied both in terms of planetary science and fundamental granular physics. Recent studies have revealed morphological scaling and dynamics of the granular impact cratering phenomenon. In all these studies, solid impactors have been used. However, the actual geophysical scale impactors might be melt. To mimic what happens when the impactor is melt, we performed simple drop granular impact experiment. A small (millimeter scale) water drop was dropped onto a granular layer (abrasives of micrometer grain size) at low impact speed (about meter/second). Then, various kinds of novel crater shapes were discovered depending on the experimental conditions. For instance, "sink type", "flat type", "ring type", and "bump type" craters were observed. We measured the characteristic time scale and length scale of the cratering, using a high speed camera and a laser profilometry system. From the experimental data, a simple scaling of the crater radius is proposed. The obtained scaling exponent is same as that of usual solid impact cratering. In the solid impactor case, the scaling exponent is derived from energy balance between impactor and ejecta. However, we found that the liquid drop deformation determines the scaling exponent in this experiment. We have also used glycerol and ethanol and their aqueous solutions, in order to examine the effect of viscosity and capillary force of liquid drops. A picture of the impacting drop is shown below. A water drop impacting onto a layer of abrasive.

  8. Characterizing the geomorphology of fresh impact craters on Mercury

    NASA Astrophysics Data System (ADS)

    Barnouin, O. S.; Ernst, C. M.; Neumann, G. A.; Chabot, N. L.; Murchie, S. L.; Smith, D. E.; Zuber, M. T.; Solomon, S. C.

    2011-12-01

    Topographic data acquired by the Mercury Laser Altimeter (MLA) and images from the Mercury Dual Imaging System (MDIS) on the MErcury Surface, Space ENvironment, GEochemistry, and Ranging (MESSENGER) spacecraft are used to investigate the geomorphology of several fresh impact craters on Mercury. This analysis expands on previous efforts with Mariner 10 data to understand how craters on Mercury compare to similarly sized craters on other planets and moons. In particular, comparisons to craters on Mars, which has a surface gravitational acceleration nearly identical to that of Mercury, yield insights into the effects of surface properties, especially target strength, on crater morphology. Establishing the geomorphology of typical fresh craters on Mercury also will provide a baseline for assessing the modification of less well-preserved craters by volcanism, tectonics, and subsequent impacts. Hokusai crater, whose rays envelop much of the planet, is one of the freshest on the surface of Mercury. High-resolution MDIS images (~36 m/pixel) reveal few superposed craters on this 100-km-diameter crater, and several MLA profiles that pass through its center indicate that it is ~2 km deep from rim crest to crater floor, making it extremely deep for a crater of its diameter on Mercury. Impact melt fills the interior of Hokusai this crater, embaying a semi-circular central peak structure. The melt possesses small cracks that are likely due to cooling. Small variations in brightness seen in the melt deposit seem to be associated with small undulations in the topography as measured by MLA, possibly due to the underlying terrain. Some of the impact melt lies in local depressions within the terraces of the crater wall, and some in patches located throughout the crater ejecta. Hokusai crater also possesses intriguing topographic features in its near-rim ejecta field. The MLA data indicate that the thickness of ejecta beyond the crater rim is not well modeled by a power-law function

  9. IS THE LARGE CRATER ON THE ASTEROID (2867) STEINS REALLY AN IMPACT CRATER?

    SciTech Connect

    Morris, A. J. W.; Price, M. C.; Burchell, M. J.

    2013-09-01

    The large crater on the asteroid (2867) Steins attracted much attention when it was first observed by the Rosetta spacecraft in 2008. Initially, it was widely thought to be unusually large compared to the size of the asteroid. It was quickly realized that this was not the case and there are other examples of similar (or larger) craters on small bodies in the same size range; however, it is still widely accepted that it is a crater arising from an impact onto the body which occurred after its formation. The asteroid (2867) Steins also has an equatorial bulge, usually considered to have arisen from redistribution of mass due to spin-up of the body caused by the YORP effect. Conversely, it is shown here that, based on catastrophic disruption experiments in laboratory impact studies, a similarly shaped body to the asteroid Steins can arise from the break-up of a parent in a catastrophic disruption event; this includes the presence of a large crater-like feature and equatorial bulge. This suggests that the large crater-like feature on Steins may not be a crater from a subsequent impact, but may have arisen directly from the fragmentation process of a larger, catastrophically disrupted parent.

  10. Low-velocity impact cratering experiments in a wet sand target.

    PubMed

    Takita, Haruna; Sumita, Ikuro

    2013-08-01

    Low-velocity impact cratering experiments were conducted in a wet sand target. With the addition of interstitial water, the sand stiffens and the yield stress σ(y) increases by a factor of 10 and we observe a significant change in the resulting crater shape. A small water saturation (S~0.02) is sufficient to inhibit the crater wall collapse, which causes the crater diameter d to decrease and the crater depth to increase, and results in the steepening of the crater wall. With a further addition of water (S~0.04), the collapse is completely inhibited such that cylindrical craters form and the impactor penetration depth δ and ejecta dispersal are suppressed. However, for S>0.7, the wet sand becomes fluidized such that both d and δ increase thereafter. Comparing the relevant stresses, we find that cylindrical craters form when the yield stress is more than about three times larger than the gravitational stress such that it can withstand collapse. Experiments with different impactor sizes D and velocities indicate that for S≤0.02, gravity-regime scaling applies for d. However, the scaling gradually fails as S increases. In contrast, we find that δ/D can be scaled by the inertial stress normalized by the yield stress, for a wide range of S. This difference in the scaling is interpreted as arising from d being affected by whether or not the crater wall collapses, whereas δ is determined by the penetration process that occurs prior to collapse. The experimental parameter space in terms of dimensionless numbers indicates that our experiments may correspond to impact cratering in small asteroids.

  11. Impact cratering experiments in Bingham materials and the morphology of craters on Mars and Ganymede

    NASA Technical Reports Server (NTRS)

    Fink, J. H.; Greeley, R.; Gault, D. E.

    1982-01-01

    Results from a series of laboratory impacts into clay slurry targets are compared with photographs of impact craters on Mars and Ganymede. The interior and ejecta lobe morphology of rampart-type craters, as well as the progression of crater forms seen with increasing diameter on both Mars and Ganymede, are equalitatively explained by a model for impact into Bingham materials. For increasing impact energies and constant target rheology, laboratory craters exhibit a morphologic progression from bowl-shaped forms that are typical of dry planetary surfaces to craters with ejecta flow lobes and decreasing interior relief, characteristic of more volatile-rich planets. A similar sequence is seen for uniform impact energy in slurries of decreasing yield strength. The planetary progressions are explained by assuming that volatile-rich or icy planetary surfaces behave locally in the same way as Bingham materials and produce ejecta slurries with yield strenghs and viscosities comparable to terrestrial debris flows. Hypothetical impact into Mars and Ganymede are compared, and it is concluded that less ejecta would be produced on Ganymede owing to its lower gravitational acceleration, surface temperature, and density of surface materials.

  12. Scaling Impact-Melt and Crater Dimensions: Implications for the Lunar Cratering Record

    NASA Technical Reports Server (NTRS)

    Cintala , Mark J.; Grieve, Richard A. F.

    1997-01-01

    The consequences of impact on the solid bodies of the solar system are manifest and legion. Although the visible effects on planetary surfaces, such as the Moon's, are the most obvious testimony to the spatial and temporal importance of impacts, less dramatic chemical and petrographic characteristics of materials affected by shock abound. Both the morphologic and petrologic aspects of impact cratering are important in deciphering lunar history, and, ideally, each should complement the other. In practice, however, a gap has persisted in relating large-scale cratering processes to petrologic and geochemical data obtained from lunar samples. While this is due in no small part to the fact that no Apollo mission unambiguously sampled deposits of a large crater, it can also be attributed to the general state of our knowledge of cratering phenomena, particularly those accompanying large events. The most common shock-metamorphosed lunar samples are breccias, but a substantial number are impact-melt rocks. Indeed, numerous workers have called attention to the importance of impact-melt rocks spanning a wide range of ages in the lunar sample collection. Photogeologic studies also have demonstrated the widespread occurrence of impact-melt lithologies in and around lunar craters. Thus, it is clear that impact melting has been a fundamental process operating throughout lunar history, at scales ranging from pits formed on individual regolith grains to the largest impact basins. This contribution examines the potential relationship between impact melting on the Moon and the interior morphologies of large craters and peaking basins. It then examines some of the implications of impact melting at such large scales for lunar-sample provenance and evolution of the lunar crust.

  13. A Chronology Of Mars Climatic Evolution From Impact Crater Degradation

    NASA Astrophysics Data System (ADS)

    Mangold, N.; Adeli, S.; Conway, S.; Ansan, V.; Langlais, B.

    2012-04-01

    Impact crater degradation provides a powerful tool to analyze past Martian hydrological evolution. Degraded craters are one of the main lines of evidence for a warmer climate on early Mars. Global altimetry and recent high resolution imagery enable us to revisit previous studies. In particular it allowed us to identify preserved impact ejecta, which is strong evidence for limited degradation, and fluvial landforms on rims. These details were particularly pertinent in the case of the craters with alluvial fans. We distinguished only three classes, using two main parameters: the presence of preserved ejecta and of fluvial activity: Type I: Craters with fluvial erosion on walls and rim but lacking an ejecta blanket. Type II: Craters with fluvial erosion on walls and rim and a preserved ejecta blanket. Type III: Fresh craters lacking any fluvial erosion on rim with a preserved ejecta blanket. Type II craters are those containing alluvial fans. A total of 283 craters in two main regions were able to be classified according to our scheme. We have extracted parameters such as diameter, depth, slope and concavity. Type III, which are the youngest craters have the deepest depths for a given diameter, and type I, the shallowest depths. Type II craters lay in-between these two other types. The fact that type II craters lay between types I and III, shows that this crater type is intermediate in the degradation series and therefore implies that this crater type is inter-mediate in age. The chronology of all the craters in this region can be performed using classical isochrons. All the craters together gives an isochron at 4.00±0.03 Gy, which corresponds to the age of the basement. The transition between type I and type II craters occurs at 3.70±0.06 Gy, an age corresponding to the middle of the Early Hesperian period in this model age system. This age pinpoints the period during which the strong fluvial degradation of Early Mars stopped. The transition between type II and

  14. Hf isotope evidence for effective impact melt homogenisation at the Sudbury impact crater, Ontario, Canada

    NASA Astrophysics Data System (ADS)

    Kenny, Gavin G.; Petrus, Joseph A.; Whitehouse, Martin J.; Daly, J. Stephen; Kamber, Balz S.

    2017-10-01

    We report on the first zircon hafnium-oxygen isotope and trace element study of a transect through one of the largest terrestrial impact melt sheets. The differentiated melt sheet at the 1.85 Ga, originally ca. 200 km in diameter Sudbury impact crater, Ontario, Canada, yields a tight range of uniform zircon Hf isotope compositions (εHf(1850) of ca. -9 to -12). This is consistent with its well-established crustal origin and indicates differentiation from a single melt that was initially efficiently homogenised. We propose that the heterogeneity in other isotopic systems, such as Pb, in early-emplaced impact melt at Sudbury is associated with volatility-related depletion during the impact cratering process. This depletion leaves the isotopic systems of more volatile elements more susceptible to contamination during post-impact assimilation of country rock, whereas the systems of more refractory elements preserve initial homogeneities. Zircon oxygen isotope compositions in the melt sheet are also restricted in range relative to those in the impacted target rocks. However, they display a marked offset approximately one-third up the melt sheet stratigraphy that is interpreted to be a result of post-impact assimilation of 18O-enirched rocks into the base of the cooling impact melt. Given that impact cratering was a more dominant process in the early history of the inner Solar System than it is today, and the possibility that impact melt sheets were sources of ex situ Hadean zircon grains, these findings may have significance for the interpretation of the early zircon Hf record. We speculate that apparent εHf-time arrays observed in the oldest terrestrial and lunar zircon datasets may be related to impact melting homogenising previously more diverse crust. We also show that spatially restricted partial melting of rocks buried beneath the superheated impact melt at Sudbury provided a zircon crystallising environment distinct to the impact melt sheet itself.

  15. Impact cratering and regolith dynamics. [on moon

    NASA Technical Reports Server (NTRS)

    Hoerz, F.

    1977-01-01

    The most recent models concerning mechanical aspects of lunar regolith dynamics related to impact cratering use probabilistic approaches to account for the randomness of the meteorite environment in both space and time. Accordingly the absolute regolith thickness is strictly a function of total bombardment intensity and absolute regolith growth rate in nonlinear through geologic time. Regoliths of increasing median thickness will have larger and larger proportions of more and more deep seated materials. An especially active zone of reworking on the lunar surface of about 1 mm depth has been established. With increasing depth, the probability of excavation and regolith turnover decreases very rapidly. Thus small scale stratigraphy - observable in lunar core materials - is perfectly compatible with regolith gardening, though it is also demonstrated that any such stratigraphy does not necessarily present a complete record of the regolith's depositional history. At present, the lifetimes of exposed lunar rocks against comminution by impact processes can be modeled; it appears that catastrophic rupture dominates over single particle abrasion.

  16. The role of strength defects in shaping impact crater planforms

    NASA Astrophysics Data System (ADS)

    Watters, W. A.; Geiger, L. M.; Fendrock, M.; Gibson, R.; Hundal, C. B.

    2017-04-01

    High-resolution imagery and digital elevation models (DEMs) were used to measure the planimetric shapes of well-preserved impact craters. These measurements were used to characterize the size-dependent scaling of the departure from circular symmetry, which provides useful insights into the processes of crater growth and modification. For example, we characterized the dependence of the standard deviation of radius (σR) on crater diameter (D) as σR ∼ Dm. For complex craters on the Moon and Mars, m ranges from 0.9 to 1.2 among strong and weak target materials. For the martian simple craters in our data set, m varies from 0.5 to 0.8. The value of m tends toward larger values in weak materials and modified craters, and toward smaller values in relatively unmodified craters as well as craters in high-strength targets, such as young lava plains. We hypothesize that m ≈ 1 for planforms shaped by modification processes (slumping and collapse), whereas m tends toward ∼ 1/2 for planforms shaped by an excavation flow that was influenced by strength anisotropies. Additional morphometric parameters were computed to characterize the following planform properties: the planform aspect ratio or ellipticity, the deviation from a fitted ellipse, and the deviation from a convex shape. We also measured the distribution of crater shapes using Fourier decomposition of the planform, finding a similar distribution for simple and complex craters. By comparing the strength of small and large circular harmonics, we confirmed that lunar and martian complex craters are more polygonal at small sizes. Finally, we have used physical and geometrical principles to motivate scaling arguments and simple Monte Carlo models for generating synthetic planforms, which depend on a characteristic length scale of target strength defects. One of these models can be used to generate populations of synthetic planforms which are very similar to the measured population of well-preserved simple craters on

  17. Using lunar boulders to distinguish primary from distant secondary impact craters

    NASA Astrophysics Data System (ADS)

    Bart, Gwendolyn D.; Melosh, H. J.

    2007-04-01

    A high-resolution study of 18 lunar craters, including both primary and distant secondary craters, shows that the secondary craters produce larger ejecta fragments at a given crater size than do the primary craters. The maximum boulder diameter (B) increases with crater size (D) according to the power law B = KD 2/3; for primary craters, when B and D are in meters, K is 0.29, whereas for secondary craters, we find that K is 0.46 (60% larger). Next we show that impact fracture theory predicts that secondary craters, because of their lower impact velocity, will produce larger ejecta fragments than primary craters. This result provides an opportunity for distinguishing between primary and secondary craters in high resolution planetary images. The ability to identify distant secondary craters will help constrain primary production rates of small craters and improve surface age determination of small areas based on small crater counts.

  18. Experimental investigation of the relationship between impact crater morphology and impacting particle velocity and direction

    NASA Technical Reports Server (NTRS)

    Mackay, N. G.; Green, S. F.; Gardner, D. J.; Mcdonnell, J. A. M.

    1995-01-01

    Interpretation of the wealth of impact data available from the Long Duration Exposure Facility, in terms of the absolute and relative populations of space debris and natural micrometeoroids, requires three dimensional models of the distribution of impact directions, velocities and masses of such particles, as well as understanding of the impact processes. Although the stabilized orbit of LDEF provides limited directional information, it is possible to determine more accurate impact directions from detailed crater morphology. The applicability of this technique has already been demonstrated but the relationship between crater shape and impactor direction and velocity has not been derived in detail. We present the results of impact experiments and simulations: (1) impacts at micron dimensions using the Unit's 2MV Van de Graaff accelerator; (2) impacts at mm dimensions using a Light Gas Gun; and (3) computer simulations using AUTODYN-3D from which an empirical relationship between crater shape and impactor velocity, direction and particle properties we aim to derive. Such a relationship can be applied to any surface exposed to space debris or micrometeoroid particles for which a detailed pointing history is available.

  19. Experimental investigation of the relationship between impact crater morphology and impacting particle velocity and direction

    SciTech Connect

    Mackay, N.G.; Green, S.F.; Gardner, D.J.; Mcdonnell, J.A.M.

    1995-02-01

    Interpretation of the wealth of impact data available from the Long Duration Exposure Facility, in terms of the absolute and relative populations of space debris and natural micrometeoroids, requires three dimensional models of the distribution of impact directions, velocities and masses of such particles, as well as understanding of the impact processes. Although the stabilized orbit of LDEF provides limited directional information, it is possible to determine more accurate impact directions from detailed crater morphology. The applicability of this technique has already been demonstrated but the relationship between crater shape and impactor direction and velocity has not been derived in detail. The authors present the results of impact experiments and simulations: (1) impacts at micron dimensions using the Unit`s 2MV Van de Graaff accelerator; (2) impacts at mm dimensions using a Light Gas Gun; and (3) computer simulations using AUTODYN-3D from which they hope to derive an empirical relationship between crater shape and impactor velocity, direction and particle properties. Such a relationship can be applied to any surface exposed to space debris or micrometeoroid particles for which a detailed pointing history is available.

  20. Searching for impact craters using space shuttle photography

    NASA Technical Reports Server (NTRS)

    Wood, C. A.; Dailey, C.; Daley, W.; Wells, G.

    1984-01-01

    Extrapolation of impact cratering rates derived from Canada and Europe suggests that in the cratonic regions of Australia, India, Africa, and Brazil, 14-15 impact craters 20 km diameter should have formed during the last 120 my, and survived erosional erasure. In fact, in these areas, only 2 craters are known that approximately qualify: (1) Gosses Bluff, 22 km, 130 + or - 6 my old, and; Strangways, 24 km and 150 + or - 70 my old. It is therefore likely that about a dozen relatively large and preserved impact craters await discovery in these less explored cratons. A larger number of younger and smaller craters must also exist. An informal search is reported for impact craters using photographs obtained by Shuttle astronauts. Photographs taken with the 250 mm lens on Hassalblad cameras have a resolution of 25 m and cover a nominal area of 50x60 sq km. A larger format Linhof camera with similar resolution but 4 times larger area was flown March 1984, and will fly again in the future. Shuttle imagery has numerous advantages in looking for impact craters and for other types of Earth observations.

  1. Theoretical interpretation of infrared measurements at Deimos in the framework of crater radiation

    SciTech Connect

    Giese, B.; Kuehrt, E. )

    1990-12-01

    A cratered surface model is presently used to interpret the high observed fluxes of Veeder et al. (1987) for Deimos, taking surface heat conduction and the ellipsoidal shape of Deimos into account. The best match emerges from a combination of semispherical craters and a crater density of about 0.9, in conjunction with a lunarlike regolithic heat-conduction coefficient. The calculated fluxes are approximately within the error bounds of the measured values; such discrepancies as remain between theory and observation may be due to the unreliability of measurements at 4.8 microns, as well as global shape effects. 17 refs.

  2. 3-D Tomographic Imaging of the Chicxulub Impact Crater: Preliminary Results From EW#0501

    NASA Astrophysics Data System (ADS)

    Surendra, A. T.; Barton, P. J.; Vermeesch, P. M.; Morgan, J. V.; Warner, M. R.; Gulick, S. P.; Christeson, G. L.; Urrutia-Fucugauchi, J.; Rebolledo-Vieyra, M.; Melosh, H. J.; McDonald, M. A.; Goldin, T.; Mendoza, K.

    2005-05-01

    The Chicxulub impact structure provides a unique opportunity to investigate the sub-surface morphology of large craters on Earth and other planets. The structure of the crater interior is still poorly known and there is much uncertainty over the sequence of events by which these large craters form and the magnitude of the subsequent catastrophic environmental effects. In early 2005, a reflection-refraction survey aboard the R/V Maurice Ewing imaged the deep structure of the Chicxulub impact. We present wide-angle data collected by a 3-D grid of 50 ocean bottom seismometers (OBSs), 86 three-component land stations and a 6 km long hydrophone streamer. The OBS grid, designed to image the peak ring and underlying structure of the northwestern quadrant of the crater, recorded shots from several seismic profiles in various orientations. Many of these profiles extended past the crater rim imaging to the base of the crust. Travel-time picks from this dataset, combined with existing 1996 data, will be inverted using the JIVE3-D tomographic inversion program to create a fully 3-D velocity model of the crater interior. The interpretation of the velocity model will focus on the morphology of the peak ring and the central uplift, and the distribution of breccia and suevite (an impact related breccia/melt) in the centre of the crater. We will calculate the Poisson's ratio for different areas of the crater using both the P-wave velocity model and S-wave arrivals, including those from the 1996 land station data. Comparisons of these values with measurements on the Yaxcopoil-1 core taken from within the crater provide ground-truth for our tomographic model. The contrast in Poisson's ratio between areas of suevite and the surrounding rock further constrain the distribution of breccia and suevite.

  3. Projectile remnants in central peaks of lunar impact craters

    NASA Astrophysics Data System (ADS)

    Yue, Z.; Johnson, B. C.; Minton, D. A.; Melosh, H. J.; di, K.; Hu, W.; Liu, Y.

    2013-06-01

    The projectiles responsible for the formation of large impact craters are often assumed to melt or vaporize during the impact, so that only geochemical traces or small fragments remain in the final crater. In high-speed oblique impacts, some projectile material may survive, but this material is scattered far down-range from the impact site. Unusual minerals, such as magnesium-rich spinel and olivine, observed in the central peaks of many lunar craters are therefore attributed to the excavation of layers below the lunar surface. Yet these minerals are abundant in many asteroids, meteorites and chondrules. Here we use a numerical model to simulate the formation of impact craters and to trace the fate of the projectile material. We find that for vertical impact velocities below about 12kms-1, the projectile may both survive the impact and be swept back into the central peak of the final crater as it collapses, although it would be fragmented and strongly deformed. We conclude that some unusual minerals observed in the central peaks of many lunar impact craters could be exogenic in origin and may not be indigenous to the Moon.

  4. Impact craters on Venus: Initial analysis from Magellan

    USGS Publications Warehouse

    Phillips, R.J.; Arvidson, R. E.; Boyce, J.M.; Campbell, D.B.; Guest, J.E.; Schaber, G.G.; Soderblom, L.A.

    1991-01-01

    Magellan radar images of 15 percent of the planet show 135 craters of probable impact origin. Craters more than 15 km across tend to contain central peaks, multiple central peaks, and peak rings. Many craters smaller than 15 km exhibit multiple floors or appear in clusters; these phenomena are attributed to atmospheric breakup of incoming meteoroids. Additionally, the atmosphere appears to have prevented the formation of primary impact craters smaller than about 3 km and produced a deficiency in the number of craters smaller than about 25 km across. Ejecta is found at greater distances than that predicted by simple ballistic emplacement, and the distal ends of some ejecta deposits are lobate. These characteristics may represent surface flows of material initially entrained in the atmosphere. Many craters are surrounded by zones of low radar albedo whose origin may have been deformation of the surface by the shock or pressure wave associated with the incoming meteoroid. Craters are absent from several large areas such as a 5 million square kilometer region around Sappho Patera, where the most likely explanation for the dearth of craters is volcanic resurfacing, There is apparently a spectrum of surface ages on Venus ranging approximately from 0 to 800 million years, and therefore Venus must be a geologically active planet.

  5. Breccia dikes and crater-related faults in impact craters on Mars: Erosion and exposure on the floor of a crater 75 km in diameter at the dichotomy boundary

    NASA Astrophysics Data System (ADS)

    Head, James W.; Mustard, John F.

    2006-10-01

    Environmental conditions on Mars are conducive to the modification and erosion of impact craters, potentially revealing the nature of their substructure. On Earth, postimpact erosion of complex craters in a wide range of target rocks has revealed the nature and distribution of crater-related fault structures and a complex array of breccia and pseudotachylyte dikes, which range up to tens of meters in width and tens of kilometers in length. We review the characteristics of fault structures, breccia dikes, and pseudotachylyte dikes on Earth, showing that they occur in complex network-like patterns and are often offset along late-stage crater-related faults. Individual faults and dikes can undulate in width and can branch and bifurcate along strike. Detailed geological analyses of terrestrial craters show that faults and breccia dikes form during each of the major stages of the impact-cratering process (compression, excavation, and modification). We report here on the discovery of prominent, lattice-like ridge networks occurring on the floor of a highly modified impact crater 75 km in diameter near the dichotomy boundary of the northern lowland and southern upland. Interior fill and crater-floor units have been exhumed by fluvial and eolian processes to reveal a unit below the crater floor containing a distinctive set of linear ridges of broadly similar width and forming a lattice-like pattern. Ridge exposures range from ˜1-4 km in length and ˜65-120 m in width, are broadly parallel, straight to slightly curving, and are cross-cut by near-orthogonal ridges, forming a box or lattice-like pattern. Ridges are exposed on the exhumed crater floor, extending from the base of the wall toward the center. On the basis of the strong similarities of these features to terrestrial crater-related fault structures and breccia dikes, we interpret these ridges to be faults and breccia dikes formed below the floor of the crater during the excavation and modification stages of the

  6. Predicted and observed magnetic signatures of martian (de)magnetized impact craters

    NASA Astrophysics Data System (ADS)

    Langlais, Benoit; Thébault, Erwan

    2011-04-01

    The current morphology of the martian lithospheric magnetic field results from magnetization and demagnetization processes, both of which shaped the planet. The largest martian impact craters, Hellas, Argyre, Isidis and Utopia, are not associated with intense magnetic fields at spacecraft altitude. This is usually interpreted as locally non- or de-magnetized areas, as large impactors may have reset the magnetization of the pre-impact material. We study the effects of impacts on the magnetic field. First, a careful analysis is performed to compute the impact demagnetization effects. We assume that the pre-impact lithosphere acquired its magnetization while cooling in the presence of a global, centered and mainly dipolar magnetic field, and that the subsequent demagnetization is restricted to the excavation area created by large craters, between 50- and 500-km diameter. Depth-to-diameter ratio of the transient craters is set to 0.1, consistent with observed telluric bodies. Associated magnetic field is computed between 100- and 500-km altitude. For a single-impact event, the maximum magnetic field anomaly associated with a crater located over the magnetic pole is maximum above the crater. A 200-km diameter crater presents a close-to-1-nT magnetic field anomaly at 400-km altitude, while a 100-km diameter crater has a similar signature at 200-km altitude. Second, we statistically study the 400-km altitude Mars Global Surveyor magnetic measurements modelled locally over the visible impact craters. This approach offers a local estimate of the confidence to which the magnetic field can be computed from real measurements. We conclude that currently craters down to a diameter of 200 km can be characterized. There is a slight anti-correlation of -0.23 between magnetic field intensity and impact crater diameters, although we show that this result may be fortuitous. A complete low-altitude magnetic field mapping is needed. New data will allow predicted weak anomalies above

  7. Planetary science: Meteor Crater formed by low-velocity impact.

    PubMed

    Melosh, H J; Collins, G S

    2005-03-10

    Meteor Crater in Arizona was the first terrestrial structure to be widely recognized as a meteorite impact scar and has probably been more intensively studied than any other impact crater on Earth. We have discovered something surprising about its mode of formation--namely that the surface-impact velocity of the iron meteorite that created Meteor Crater was only about 12 km s(-1). This is close to the 9.4 km s(-1) minimum originally proposed but far short of the 15-20 km s(-1) that has been widely assumed--a realization that clears up a long-standing puzzle about why the crater does not contain large volumes of rock melted by the impact.

  8. Planetary science: Meteor Crater formed by low-velocity impact

    NASA Astrophysics Data System (ADS)

    Melosh, H. J.; Collins, G. S.

    2005-03-01

    Meteor Crater in Arizona was the first terrestrial structure to be widely recognized as a meteorite impact scar and has probably been more intensively studied than any other impact crater on Earth. We have discovered something surprising about its mode of formation - namely that the surface-impact velocity of the iron meteorite that created Meteor Crater was only about 12 km s-1. This is close to the 9.4 km s-1 minimum originally proposed but far short of the 15-20 km s-1 that has been widely assumed - a realization that clears up a long-standing puzzle about why the crater does not contain large volumes of rock melted by the impact.

  9. The age of the Pretoria Saltpan impact crater, South Africa

    NASA Technical Reports Server (NTRS)

    Storzer, Dieter; Koeberl, Christian; Reimold, Wolf Uwe

    1993-01-01

    The Pretoria Saltpan impact crater, situated about 40 km NNW of Pretoria, South Africa, has a diameter of about 1.13 km. The structure was formed in 2.05 Ga Nebo granite of the Bushveld Complex. The impact origin of the crater was recently established by the discovery of characteristic shock-metamorphic features in breccias found in drill cores at depths greater than 90 m. Impact glass fragments were recovered by standard magnetic separation techniques and handpicking from the melt breccias. As no reliable crater age was known so far, several hundred sub-millimeter-sized glass fragments were studied for fission tracks. The results show that the Saltpan impact crater has an age of 220 +/- 52 ka. This is in agreement with field geological observations.

  10. Bilateral symmetry elements of the Zhamanshin impact crater

    NASA Technical Reports Server (NTRS)

    Masaytis, V. L.

    1988-01-01

    The internal structure of the Zhamanshin impact structure and the nature of rocks developed within it are studied to establish the impact structure parameters. It is found that the diameter of the visible crater is about 13 km. The small annular structures observed are found to not be secondary craters, and no correlation is found between the asymmetrical distribution of ejecta material and the arrangement of these annular forms.

  11. Bilateral symmetry elements of the Zhamanshin impact crater

    NASA Technical Reports Server (NTRS)

    Masaytis, V. L.

    1988-01-01

    The internal structure of the Zhamanshin impact structure and the nature of rocks developed within it are studied to establish the impact structure parameters. It is found that the diameter of the visible crater is about 13 km. The small annular structures observed are found to not be secondary craters, and no correlation is found between the asymmetrical distribution of ejecta material and the arrangement of these annular forms.

  12. The impact cratering rate in recent time

    NASA Astrophysics Data System (ADS)

    Grieve, R. A.

    1984-02-01

    The terrestrial data base for crater structures with diameters over 20 km on the North American and European cratons has been investigated for variations in the rate with time. The variation in the degree of preservation of highly eroded complex structures on the two cratons suggests that, if no contrasts exist between near-surface and uplifted lithologies, a 20 km-sized crater may be rendered virtually unrecognizable in 34 to 300 m.y. If lithological contrasts are present, it may be still recognizable as an anomalous structure for 79 to 630 m.y. It is unlikely that a significant number of craters with diameters greater than 20 km and ages in the range 0-117 m.y. are unrecognizable because of erosion. The relatively slower rate of increase in the number of craters with time for the 180-360 m.y. population may reflect a recognition problem.

  13. Topography of the Martian Impact Crater Tooting

    NASA Technical Reports Server (NTRS)

    Mouginis-Mark, P. J.; Garbeil, H.; Boyce, J. M.

    2009-01-01

    Tooting crater is approx.29 km in diameter, is located at 23.4degN, 207.5degE, and is classified as a multi-layered ejecta crater [1]. Our mapping last year identified several challenges that can now be addressed with HiRISE and CTX images, but specifically the third dimension of units. To address the distribution of ponded sediments, lobate flows, and volatile-bearing units within the crater cavity, we have focused this year on creating digital elevation models (DEMs) for the crater and ejecta blanket from stereo CTX and HiRISE images. These DEMs have a spatial resolution of approx.50 m for CTX data, and 2 m for HiRISE data. Each DEM is referenced to all of the available individual MOLA data points within an image, which number approx.5,000 and 800 respectively for the two data types

  14. Anisotropic Impact Cratering on the Moon Observed in the Lunar Cold Spot Crater Population

    NASA Astrophysics Data System (ADS)

    Williams, J. P.; Bandfield, J.; Ghent, R. R.; Greenhagen, B. T.; Paige, D. A.

    2016-12-01

    Observations of nighttime regolith temperatures of the Moon by the Diviner Lunar Radiometer aboard LRO reveal anomalously cold surface temperatures correlated with recently formed impact craters indicating the impacts modified the thermal properties of the surrounding regolith to distances of 10-100 crater radii [1]. These "cold spots" appear to be common to all recent impacts and thus provide a way to identify the population of the most recent craters. A survey of the over 2000 craters associated with a cold spot using LROC images yields a size-frequency distribution of crater diameters that is consistent with the Neukum crater production function [2] with an inferred model retention-age 200,000 years. The density of craters is enhanced at longitudes corresponding to the apex of motion by a factor of 2 relative to longitudes centered at the antapex with an approximately sinusoidal decrease in crater density with angular distance from the apex. This distribution is likely the result of the systematic difference in impactor encounter velocities between the leading and trailing hemispheres of the Moon in synchronous rotation [3, 4] and is similarly observed in the population of bright rayed craters at larger sizes [5]. Contrary to this distribution, the largest cold spot craters (diameters > 800 m) appear to cluster on the far side of the trailing hemisphere between longitudes 110° to 180° E. Statistical analysis using the Rayleigh z test [6] indicates strong unimodal longitudinal directionality in the distribution with a 4% chance it occurred randomly. This may indicate the Moon was struck by a cluster of 100 m-scale impactors within the last 200 ka. [1] Bandfield, J., et al. (2011) JGR 116, E00H02. [2] Neukum, G., et al. (2001) SSR 96, 55-86. [3] Zahnle K et al. (2001) Icarus 153, 111-129. [4] Le Fleuvre, M., and Wieczorek, M. A. (2011) Icarus 214, 1-20. [5] Morota, T. and Furumoto, M. (2003) EPSL 206, 315-323. [6] Fisher, N. I. (1993) Statistical analysis of

  15. A Method of Estimating Transient-Cavity Diameters for Impact Craters Formed in Dry Sand

    NASA Technical Reports Server (NTRS)

    Cintala, M. J.; Barnouin-Jha, O. S.; Hoerz, F.

    2003-01-01

    Analyses of impact craters formed in laboratory experiments historically have been the source of many fundamental observations and interpretations of the impact-cratering process itself. Due to its ready availability, ease of handling, and lack of strength, dry sand of various types has been the target material of choice in the majority of such experiments. A consequence of its lack of intrinsic strength, however, is dry sand's inability to maintain slopes above its angle of repose. Evidence from field observations of simple terrestrial craters and laboratory craters formed in more cohesive granular media suggests that transient cavities are similar to paraboloids in shape. Cross-sections of craters formed in dry sand, however, are nearly conical with the wall slopes at or near the angle of repose, indicating that the original crater form has been modified by one or more processes, among which is simple slope failure. Because the dimensions and shape of the transient cavity reflect the detailed conditions of a given impact event, its characterization has long been a desired goal in experimentation. A means of estimating the position of the transient cavity's rim is suggested below, relying on determination of velocities of material ejected from the growing cavity.

  16. Acoustic fluidization and the scale dependence of impact crater morphology

    NASA Technical Reports Server (NTRS)

    Melosh, H. J.; Gaffney, E. S.

    1983-01-01

    A phenomenological Bingham plastic model has previously been shown to provide an adequate description of the collapse of impact craters. This paper demonstrates that the Bingham parameters may be derived from a model in which acoustic energy generated during excavation fluidizes the rock debris surrounding the crater. Experimental support for the theoretical flow law is presented. Although the Bingham yield stress cannot be computed without detailed knowledge of the initial acoustic field, the Bingham viscosity is derived from a simple argument which shows that it increases as the 3/2 power of crater diameter, consistent with observation. Crater collapse may occur in material with internal dissipation Q as low as 100, comparable to laboratory observations of dissipation in granular materials. Crater collapse thus does not require that the acoustic field be regenerated during flow.

  17. Acoustic fluidization and the scale dependence of impact crater morphology

    NASA Astrophysics Data System (ADS)

    Melosh, H. J.; Gaffney, E. S.

    1983-11-01

    A phenomenological Bingham plastic model has previously been shown to provide an adequate description of the collapse of impact craters. This paper demonstrates that the Bingham parameters may be derived from a model in which acoustic energy generated during excavation fluidizes the rock debris surrounding the crater. Experimental support for the theoretical flow law is presented. Although the Bingham yield stress cannot be computed without detailed knowledge of the initial acoustic field, the Bingham viscosity is derived from a simple argument which shows that it increases as the 3/2 power of crater diameter, consistent with observation. Crater collapse may occur in material with internal dissipation Q as low as 100, comparable to laboratory observations of dissipation in granular materials. Crater collapse thus does not require that the acoustic field be regenerated during flow.

  18. Impact ejecta and carbonate sequence in the eastern sector of the Chicxulub crater

    NASA Astrophysics Data System (ADS)

    Urrutia-Fucugauchi, Jaime; Chavez-Aguirre, Jose Maria; Pérez-Cruz, Ligia; De la Rosa, Jose Luis

    2008-12-01

    The Chicxulub 200 km diameter crater located in the Yucatan platform of the Gulf of Mexico formed 65 Myr ago and has since been covered by Tertiary post-impact carbonates. The sediment cover and absence of significant volcanic and tectonic activity in the carbonate platform have protected the crater from erosion and deformation, making Chicxulub the only large multi-ring crater in which ejecta is well preserved. Ejecta deposits have been studied by drilling/coring in the southern crater sector and at outcrops in Belize, Quintana Roo and Campeche; little information is available from other sectors. Here, we report on the drilling/coring of a section of ˜34 m of carbonate breccias at 250 m depth in the Valladolid area (120 km away from crater center), which are interpreted as Chicxulub proximal ejecta deposits. The Valladolid breccias correlate with the carbonate breccias cored in the Peto and Tekax boreholes to the south and at similar radial distance. This constitutes the first report of breccias in the eastern sector close to the crater rim. Thickness of the Valladolid breccias is less than that at the other sites, which may indicate erosion of the ejecta deposits before reestablishment of carbonate deposition. The region east of the crater rim appears different from regions to the south and west, characterized by high density and scattered distribution of sinkholes.

  19. Olivine Deposits Associated with Impact Basins and Craters on Mars

    NASA Astrophysics Data System (ADS)

    Ody, A.; Poulet, F.; Langevin, Y.; Gondet, B.; Bibring, J.; Carter, J.

    2011-12-01

    An analysis of the 1μm olivine spectral signature applied to the entire and final OMEGA dataset [1] shows numerous olivine-bearing deposits in the 3 main basins of Mars (Argyre, Isidis and Hellas). These signatures are among the strongest of Mars, which suggests compositions with higher iron content and/or larger grain size and/or larger abundance than the ones of widespread olivine-bearing deposits observed on large parts of the southern highlands [1]. A spectral modeling based on a radiative transfer model [2] indicates that their compositions are still close to the forsterite one with abundance in the range of [15,40%] and grain sizes of a few hundreds of μm. These deposits are exclusively localized on Noachian terrains. Distribution of these deposits around Argyre basin clearly takes the form of discontinuous patches of olivine-bearing rocks on the basin terrace, which strongly suggest that their formation is related to the basin formation event. Recent numerical simulations of basin formation show that impact that formed the Argyre basin could have excavated upper mantle materials and emplaced discontinuous patches of melted mantle on the basin terraces [3]. The observed olivine deposits in Argyre are thus interpreted as olivine-bearing material excavated from the upper mantle during the impact. Olivine deposits distribution around the Hellas basin is not as clear as for Argyre because of young resurfacing processes that strongly affected its region. Olivine deposits are fewer and mainly localized on the northern terrace of Hellas. Most of them are detected in crater ejecta, while a few similar to Argyre olivine discontinuous patches are also observed suggesting that a mantle origin as for Argyre is possible. Olivine has been detected by several datasets in the Nili Fossae region and in the south of Isidis basin. The spectral modeling of OMEGA spectra indicates an olivine abundance of about 40% and megacrysts of several millimeters for the region of Nili

  20. Formation (and dating) of small impact craters on Earth as an analogue for Mars (Ilumetsa Craters Estonia)

    NASA Astrophysics Data System (ADS)

    Losiak, Anna; Jõeleht, Argo; Plado, Juri; Szyszka, Mateusz; Wild, Eva Maria; Bronikowska, Malgorzata; Belcher, Claire; Kirsimäe, Kalle; Steier, Peter

    2017-04-01

    Crater-strewn-fields are present on planetary bodies with an atmosphere such as Earth and Mars, but the process of their formation is still not fully understood. For example, a recent discovery of small pieces of impact-produced-charcoal within the ejecta blanket of 100 m in diameter Kaali crater (Losiak et al. 2016) may suggest existence of very local ( 10 cm thick layer in the distance of 10 m from the rim), short lived ( hours) thermal anomalies ( 300°C) in the ejecta blanket of even small craters. Ilumetsa in SE Estonia is an atypical example of crater-strewn-field consisting of only two relatively large, rimmed structures with diameters of 75-80 m (Ilumetsa Large: IL) and 50 m (Ilumetsa Small: IS) with true depths of about 8 and 3.5 m, respectively (Plado 2012 MAPS). Structures were previously dated by the 14C analysis of gyttja from the bottom of IL (Liiva et al. 1979 Eesti Loodus) to be 7170-6660 cal. BP. About 600 years older age (7570-7320 cal. BC: Raukas et al. 2001, MAPS) was proposed based on dated layer of peat in which glassy spherules, interpreted as dissipated melt or condensed vapor (however their chemical composition was not reported). Ilumetsa is listed as a proven meteorite impact in the Earth Impact Database, but neither remnants of the projectile nor other identification criteria (e.g., PDFs) have been found up to this point. The aim of this study was to search for possible impact related charcoals in order to determine the size and extend of thermal anomalies around small impact craters, as well as to determine how this atypical strew field was formed. Additionally, we hoped to determine/confirm the age of those structures. We have found charcoal in a similar geological setting as in Kaali Main crater in both Ilumetsa structures. The calibrated (95,4% probability) time ranges of four dated samples from IL and one sample of IS span the time interval from 7670-6950 cal. BP (consistent with previous dating). One sample from IS is younger (4830

  1. Fluvial erosion of impact craters: Earth and Mars

    NASA Technical Reports Server (NTRS)

    Baker, V. R.

    1984-01-01

    Geomorphic studies of impact structures in central Australia are being used to understand the complexities of fluvial dissection in the heavily cratered terrains of Mars. At Henbury, Northern Territory, approximately 12 small meteorite craters have interacted with a semiarid drainage system. The detailed mapping of the geologic and structural features at Henbury allowed this study to concentrate on degradational landforms. The breaching of crater rims by gullies was facilitated by the northward movement of sheetwash along an extensive pediment surface extending from the Bacon Range. South-facing crater rims have been preferentially breached because gullies on those sides were able to tap the largest amounts of runoff. At crater 6 a probable rim-gully system has captured the headward reaches of a pre-impact stream channel. The interactive history of impacts and drainage development is critical to understanding the relationships in the heavily cratered uplands of Mars. Whereas Henbury craters are younger than 4700 yrs. B.P., the Gosses Bluff structure formed about 130 million years ago. The bluff is essentially an etched central peak composed of resistant sandstone units. Fluvial erosion of this structure is also discussed.

  2. Hydrothermal Processes and Mobile Element Transport in Martian Impact Craters - Evidence from Terrestrial Analogue Craters

    NASA Technical Reports Server (NTRS)

    Newsom, H. E.; Nelson, M. J.; Shearer, C. K.; Dressler, B. L.

    2005-01-01

    Hydrothermal alteration and chemical transport involving impact craters probably occurred on Mars throughout its history. Our studies of alteration products and mobile element transport in ejecta blanket and drill core samples from impact craters show that these processes may have contributed to the surface composition of Mars. Recent work on the Chicxulub Yaxcopoil-1 drill core has provided important information on the relative mobility of many elements that may be relevant to Mars. The Chicxulub impact structure in the Yucatan Peninsula of Mexico and offshore in the Gulf of Mexico is one of the largest impact craters identified on the Earth, has a diameter of 180-200 km, and is associated with the mass extinctions at the K/T boundary. The Yax-1 hole was drilled in 2001 and 2002 on the Yaxcopoil hacienda near Merida on the Yucatan Peninsula. Yax-1 is located just outside of the transient cavity, which explains some of the unusual characteristics of the core stratigraphy. No typical impact melt sheet was encountered in the hole and most of the Yax-1 impactites are breccias. In particular, the impact melt and breccias are only 100 m thick which is surprising taking into account the considerably thicker breccia accumulations towards the center of the structure and farther outside the transient crater encountered by other drill holes.

  3. Reconstruction of hypervelocity impact crater progenitors utilising experimental data and hydrocode modelling at micron-scales

    NASA Astrophysics Data System (ADS)

    Price, Mark C.; Kearsley, Anton T.; Burchell, Mark J.

    2009-06-01

    We have used the Ansys Inc. AUTODYN software to hydrodynamically model small particle impacts into aluminium foil under the conditions of the Stardust encounter with comet 81P/Wild 2 (i.e., normal incidence, 6.1 km s-1). We compare results of impact models, based on carefully defined particle structures inferred from experimental data, with three-dimensional crater shapes reported from Stardust. This allows us to assess the extent to which the particle's structure (and composition) is reflected in the resulting impact feature. Our aim is to improve interpretation of comet Wild 2's dust characteristics, especially sub-grain dimensions, internal porosity and overall grain density. Here we present a simulation of the formation of a complex crater seen on Stardust foil C029W,1 and demonstrate that a reasonably simple model for the impactor results in a simulated crater morphology very consistent with the measured morphology.

  4. 100 New Impact Crater Sites Found on Mars

    NASA Astrophysics Data System (ADS)

    Kennedy, M. R.; Malin, M. C.

    2009-12-01

    Recent observations constrain the formation of 100 new impact sites on Mars over the past decade; 19 of these were found using the Mars Global Surveyor Mars Orbiter Camera (MOC), and the other 81 have been identified since 2006 using the Mars Reconnaissance Orbiter Context Camera (CTX). Every 6 meter/pixel CTX image is examined upon receipt and, where they overlap images of 0.3-240 m/pixel scale acquired by the same or other Mars-orbiting spacecraft, we look for features that may have changed. New impact sites are initially identified by the presence of a new dark spot or cluster of dark spots in a CTX image. Such spots may be new impact craters, or result from the effect of impact blasts on the dusty surface. In some (generally rare) cases, the crater is sufficiently large to be resolved in the CTX image. In most cases, however, the crater(s) cannot be seen. These are tentatively designated as “candidate” new impact sites, and the CTX team then creates an opportunity for the MRO spacecraft to point its cameras off-nadir and requests that the High Resolution Imaging Science Experiment (HiRISE) team obtain an image of ~0.3 m/pixel to confirm whether a crater or crater cluster is present. It is clear even from cursory examination that the CTX observations are areographically biased to dusty, higher albedo areas on Mars. All but 3 of the 100 new impact sites occur on surfaces with Lambert albedo values in excess of 23.5%. Our initial study of MOC images greatly benefited from the initial global observations made in one month in 1999, creating a baseline date from which we could start counting new craters. The global coverage by MRO Mars Color Imager is more than a factor of 4 poorer in resolution than the MOC Wide Angle camera and does not offer the opportunity for global analysis. Instead, we must rely on partial global coverage and global coverage that has taken years to accumulate; thus we can only treat impact rates statistically. We subdivide the total data

  5. Viscous relaxation of Ganymede's impact craters: Constraints on heat flux

    USGS Publications Warehouse

    Bland, Michael; Singer, Kelsi N.; McKinnon, William B.; Schenk, Paul M.

    2017-01-01

    Measurement of crater depths in Ganymede’s dark terrain have revealed substantial numbers of unusually shallow craters indicative of viscous relaxation [see companion paper: Singer, K.N., Schenk, P. M., Bland, M.T., McKinnon, W.B., (2017). Relaxed impact craters on Ganymede: Regional variations and high heat flow. Icarus, submitted]. These viscously relaxed craters provide insight into the thermal history of the dark terrain: the rate of relaxation depends on the size of the crater and the thermal structure of the lithosphere. Here we use finite element simulations of crater relaxation to constrain the heat flux within the dark terrain when relaxation occurred. We show that the degree of viscous relaxation observed cannot be achieved through radiogenic heating alone, even if all of the relaxed craters are ancient and experienced the high radiogenic fluxes present early in the satellite’s history. For craters with diameter ≥ 10 km, heat fluxes of 40–50 mW m-2−2"> can reproduce the observed crater depths, but only if the fluxes are sustained for ∼1 Gyr. These craters can also be explained by shorter-lived “heat pulses” with magnitudes of ∼100 mW m-2−2"> and timescales of 10–100 Myr. At small crater diameters (4 km) the observed shallow depths are difficult to achieve even when heat fluxes as high as 150 mW m-2−2"> are sustained for 1 Gyr. The extreme thermal conditions required to viscously relax small craters may indicate that mechanisms other than viscous relaxation, such as topographic degradation, are also in play at small crater diameters. The timing of the relaxation event(s) is poorly constrained due to the sparsity of adequate topographic information, though it likely occurred in Ganymede’s middle history (neither recently, nor shortly after satellite formation). The consistency between the timing and magnitude of the heat fluxes derived here and those inferred from other tectonic features suggests that a single event

  6. Martian Polar Impact Craters: A Preliminary Assessment Using Mars Orbiter Laser Altimeter (MOLA)

    NASA Technical Reports Server (NTRS)

    Sakimoto, S. E. H.; Garvin, J. B.

    1999-01-01

    Our knowledge of the age of the layered polar deposits and their activity in the volatile cycling and climate history of Mars is based to a large extent on their apparent ages as determined from crater counts. Interpretation of the polar stratigraphy (in terms of climate change) is complicated by reported differences in the ages of the northern and southern layered deposits. The north polar residual ice deposits are thought to be relatively young, based on the reported lack of any fresh impact craters in Viking Orbiter Images. Herkenhoff et al., report no craters at all on the North polar layered deposits or ice cap, and placed an upper bound on the surface age (or, alternatively, the vertical resurfacing rate) of 100 thousand years to 10 million years, suggesting that the north polar region is an active resurfacing site. In contrast, the southern polar region was found to have at least 15 impact craters in the layered deposits and cap. Plaut et al, concluded that the surface was less than or = 120 million years old. This reported age difference factor of 100 to 1000 increases complexity in climate and volatile modeling. Recent MOLA results for the topography of the northern polar cap document a handful or more of possible craters, which could result in revised age or resurfacing estimates for the northern cap. This study is a preliminary look at putative craters in both polar caps. Additional information is contained in the original extended abstract.

  7. The thermal engine of Venus: Implications from the impact crater distribution

    NASA Technical Reports Server (NTRS)

    Phillips, Roger J.

    1992-01-01

    Questions concerning the state of Venus' volcanological activity are currently under investigation. These questions were raised by the imaging radar and altimetric data obtained by the Magellan spacecraft, which began mapping Venus in Sept. 1990. Clues about the answers to these questions are provided by the nature and distribution of impact craters on the surface of Venus. Statistical tests show that the distribution of craters on Venus cannot be distinguished from a completely spatially random population. Further, the majority of craters look relatively pristine; only about 5 percent of the observed craters appear to be embayed or flooded by lavas. The simplest interpretation of these observations is a model in which the impact craters lie on a surface that has been undisturbed by volcanological and tectonic processes since the time the surface was formed. Counting up the number of craters and estimating the rate at which meteoroids strike the surface then gives an age for the venusian surface of 500 million years; in this model the volcanic activity since that time has been essentially nil. This scenario is described as a 'production' model, or perhaps more appropriately, a 'catastrophic' model.

  8. Crater size estimates for large-body terrestrial impact

    NASA Technical Reports Server (NTRS)

    Schmidt, Robert M.; Housen, Kevin R.

    1988-01-01

    Calculating the effects of impacts leading to global catastrophes requires knowledge of the impact process at very large size scales. This information cannot be obtained directly but must be inferred from subscale physical simulations, numerical simulations, and scaling laws. Schmidt and Holsapple presented scaling laws based upon laboratory-scale impact experiments performed on a centrifuge (Schmidt, 1980 and Schmidt and Holsapple, 1980). These experiments were used to develop scaling laws which were among the first to include gravity dependence associated with increasing event size. At that time using the results of experiments in dry sand and in water to provide bounds on crater size, they recognized that more precise bounds on large-body impact crater formation could be obtained with additional centrifuge experiments conducted in other geological media. In that previous work, simple power-law formulae were developed to relate final crater diameter to impactor size and velocity. In addition, Schmidt (1980) and Holsapple and Schmidt (1982) recognized that the energy scaling exponent is not a universal constant but depends upon the target media. Recently, Holsapple and Schmidt (1987) includes results for non-porous materials and provides a basis for estimating crater formation kinematics and final crater size. A revised set of scaling relationships for all crater parameters of interest are presented. These include results for various target media and include the kinematics of formation. Particular attention is given to possible limits brought about by very large impactors.

  9. Recognition of Terrestrial Impact Craters with COSMO-SkyMed

    NASA Astrophysics Data System (ADS)

    Virelli, M.; Staffieri, S.; Battagliere, M. L.; Komatsu, G.; Di Martino, M.; Flamini, E.; Coletta, A.

    2016-08-01

    All bodies having a solid surface, without distinction, show, with greater or lesser evidence, the marks left by the geological processes they undergone during their evolution. There is a geomorphological feature that is evident in all the images obtained by the probes sent to explore our planetary system: impact craters.Craters formed by the impact of small cosmic bodies have dimensions ranging from some meters to hundreds of kilometers. However, for example on the Lunar regolith particles, have been observed also sub- millimeter craters caused by dust impacts. The kinetic energy of the impactor, which velocity is in general of the order of tens km/s, is released in fractions of a second, generally in a explosive way, generating complex phenomena that transform not only the morphology of the surface involved by the impact, but also the mineralogy and crystallography of the impacted material. Even our planet is not immune to these impacts. At present, more than 180 geological structures recognized as of impact origin are known on Earth.In this article, we aim to show how these impact structures on Earth's surface are observed from space. To do this, we used the images obtained by the COSMO-SkyMed satellite constellation.Starting from 2013, ASI proposed, in collaboration with the Astrophysical Observatory of Turin and University D'Annunzio of Chieti, the realization of an Encyclopedic Atlas of Terrestrial Impact Craters using COSMO-SkyMed data that will become the first atlas of all recognized terrestrial impact craters based on images acquired by a X band radar. To observe these impact craters all radar sensor modes have been used, according to the size of the analyzed crater.The project includes research of any new features that could be classified as impact craters and, for the sites whereby it is considered necessary, the implementation of a geological survey on site to validate the observations.In this paper an overview of the Atlas of Terrestrial Impact

  10. A Sharper View of Impact Craters from Clementine Data

    NASA Astrophysics Data System (ADS)

    Pieters, C. M.; Staid, M. I.; Fischer, E. M.; Tompkins, S.; He, G.

    1994-12-01

    The ultraviolet-visible camera on the Clementine spacecraft obtained high-spatial resolution images of the moon in five spectral channels. Impact craters mapped with these multispectral images show a scale of lithologic diversity that varies with crater size and target stratigraphy. Prominent lithologic variations (feldspathic versus basaltic) occur within the south wall of Copernicus (93 kilometers in diameter) on the scale of 1 to 2 kilometers. Lithologic diversity at Tycho (85 kilometers in diameter) is less apparent at this scale, although the impact melt of these two large craters is remarkably similar in this spectral range. The lunar surface within and around the smaller crater Giordano Bruno (22 kilometers in diameter) is largely dominated by the mixing of freshly excavated material with surrounding older soils derived from a generally similar feldspathic lithology.

  11. The 1992 drill core from the Kalkkop impact crater, Eastern Cape Province, South Africa: stratigraphy, petrography, geochemistry and age

    NASA Astrophysics Data System (ADS)

    Reimold, Wolf Uwe; Koeberl, Christian; Reddering, Jacobus S. V.

    1998-05-01

    New drill core data are provided which support earlier interpretations that the Kalkkop structure, a 600-630 m wide, near-circular feature south-southwest of Graaff-Reinet in the Eastern Cape Province of South Africa, is a meteorite impact crater. Shock metamorphosed clasts in suevitic crater fill and ReOs isotope data of this breccia indicate the presence of a minor (0.05%) meteoritic component in the suevite. The new data come from a 1992 borehole, which transected the complete crater fill and extended from about 160 to 380 m depth into the sedimentary basement belonging to the Koonap Formation of the Beaufort Group (Karoo Supergroup). Dyke breccias were found in the otherwise coherent Beaufort Group sediments forming the floor to the Kalkkop Crater. Mostly narrow zones of different breccia types, including injections of lithic impact breccia, a possible pseudotachylite veinlet and cataclasite occur predominantly in an approximately 65 m wide zone below the crater floor, with a few other cataclasite occurrences found lower down in the basement. Stratigraphical crater constraints provide information for the depth-diameter scaling and breccia volumes associated with such small, bowl-shaped impact craters formed in sedimentary targets. UTh series dating of limestone samples from near the top and the bottom of the crater sediment fill constraints the age of the Kalkkop impact event to about 250 ± 50 ka, similar to the age of the Pretoria Saltpan impact crater, also located in South Africa. The variety of different breccia types (polymict and monomict impact breccias; local formations of pseudotachylitic and cataclastic breccias) observed in the crater fill of the Kalkkop Crater indicates the need to carefully distinguish different breccia types in order to assess the respective importance of each formation.

  12. Mars Exploration Rover Field Observations of Impact Craters at Gusev Crater and Meridiani Planum and Implications for Climate Change

    NASA Technical Reports Server (NTRS)

    Golombek, M.; Grant, J. A.; Crumpler, L. S.

    2005-01-01

    The Mars Exploration Rovers have provided a field geologist's perspective of impact craters in various states of degradation along their traverses at Gusev crater and Meridiani Planum. This abstract will describe the craters observed and changes to the craters that constrain the erosion rates and the climate [l]. Changes to craters on the plains of Gusev argue for a dry and desiccating environment since the Late Hesperian in contrast to the wet and likely warm environment in the Late Noachian at Meridiani in which the sulfate evaporites were deposited in salt-water playas or sabkhas.

  13. Surficial geology of the Chicxulub impact crater, Yucatan, Mexico

    NASA Technical Reports Server (NTRS)

    Pope, Kevin O.; Ocampo, Adriana C.; Duller, Charles E.

    1993-01-01

    The Chicxulub impact crater in northwestern Yucatan, Mexico is the primary candidate for the proposed impact that caused mass extinctions at the end of the Cretaceous Period. The crater is buried by up to a kilometer of Tertiary sediment and the most prominent surface expression is a ring of sink holes, known locally as cenotes, mapped with Landsat imagery. This 165 +/- 5 km diameter Cenote Ring demarcates a boundary between unfractured limestones inside the ring, and fractured limestones outside. The boundary forms a barrier to lateral ground water migration, resulting in increased flows, dissolution, and collapse thus forming the cenotes. The subsurface geology indicates that the fracturing that created the Cenote Ring is related to slumping in the rim of the buried crater, differential thicknesses in the rocks overlying the crater, or solution collapse within porous impact deposits. The Cenote Ring provides the most accurate position of the Chicxulub crater's center, and the associated faults, fractures, and stratigraphy indicate that the crater may be approximately 240 km in diameter.

  14. Surficial Geology of the Chicxulub Impact Crater, Yucatan, Mexico

    NASA Technical Reports Server (NTRS)

    Pope, Kevin O.; Ocampo, Adriana C.; Duller, Charles E.

    1993-01-01

    The Chicxulub impact crater in northwestern Yucatan, Mexico is the primary candidate for the proposed impact that caused mass extinctions at the end of the Cretaceous Period. The crater is buried by up to a kilometer of Tertiary sediment and the most prominent surface expression is a ring of sink holes, known locally as cenotes, mapped with Landsat imagery. This 165 +/- 5 km diameter Cenote Ring demarcates a boundary between unfractured limestones inside the ring, and fractured limestones outside. The boundary forms a barrier to lateral ground water migration, resulting in increased flows, dissolution, and collapse thus forming the cenotes. The subsurface geology indicates that the fracturing that created the Cenote Ring is related to slumping in the rim of the buried crater, differential thicknesses in the rocks overlying the crater, or solution collapse within porous impact deposits. The Cenote Ring provides the most accurate position of the Chicxulub crater's center, and the associated faults, fractures, and stratigraphy indicate that the crater may be approx. 240 km in diameter.

  15. Surficial geology of the Chicxulub impact crater, Yucatan, Mexico

    NASA Technical Reports Server (NTRS)

    Pope, Kevin O.; Ocampo, Adriana C.; Duller, Charles E.

    1993-01-01

    The Chicxulub impact crater in northwestern Yucatan, Mexico is the primary candidate for the proposed impact that caused mass extinctions at the end of the Cretaceous Period. The crater is buried by up to a kilometer of Tertiary sediment and the most prominent surface expression is a ring of sink holes, known locally as cenotes, mapped with Landsat imagery. This 165 +/- 5 km diameter Cenote Ring demarcates a boundary between unfractured limestones inside the ring, and fractured limestones outside. The boundary forms a barrier to lateral ground water migration, resulting in increased flows, dissolution, and collapse thus forming the cenotes. The subsurface geology indicates that the fracturing that created the Cenote Ring is related to slumping in the rim of the buried crater, differential thicknesses in the rocks overlying the crater, or solution collapse within porous impact deposits. The Cenote Ring provides the most accurate position of the Chicxulub crater's center, and the associated faults, fractures, and stratigraphy indicate that the crater may be approximately 240 km in diameter.

  16. Surficial geology of the Chicxulub impact crater, Yucatan, Mexico.

    PubMed

    Pope, K O; Ocampo, A C; Duller, C E

    1993-01-01

    The Chicxulub impact crater in northwestern Yucatan, Mexico is the primary candidate for the proposed impact that caused mass extinctions at the end of the Cretaceous Period. The crater is buried by up to a kilometer of Tertiary sediment and the most prominent surface expression is a ring of sink holes, known locally as cenotes, mapped with Landsat imagery. This 165 +/- 5 km diameter Cenote Ring demarcates a boundary between unfractured limestones inside the ring, and fractured limestones outside. The boundary forms a barrier to lateral ground water migration, resulting in increased flows, dissolution, and collapse thus forming the cenotes. The subsurface geology indicates that the fracturing that created the Cenote Ring is related to slumping in the rim of the buried crater, differential thicknesses in the rocks overlying the crater, or solution collapse within porous impact deposits. The Cenote Ring provides the most accurate position of the Chicxulub crater's center, and the associated faults, fractures, and stratigraphy indicate that the crater may be approximately 240 km in diameter.

  17. A discussion of 'Anomalous quartz from the Roter Kamm impact crater, Namibia - Evidence for post-impact hydrothermal activity?'

    NASA Technical Reports Server (NTRS)

    Roedder, Edwin

    1990-01-01

    This paper presents arguments against the statement made by Koeberl et al. (1989) to the effect that various differences between the quartz of the three quartz pebbles from the Roter Kamm impact crater (Namibia) and the quartz of the pegmatites present in the basement rocks of this crater can be best interpreted as evidence that the pebbles were formed (or 'recrystallized') by a post-impact hydrothermal system. Arguments are presented that suggest that the three quartz pebbles are, most likely, fragments of a preimpact vein quartz of hydrothermal origin.

  18. A Numerical Investigation into Low-Speed Impact Cratering Events

    NASA Astrophysics Data System (ADS)

    Schwartz, Stephen; Richardson, D. C.; Michel, P.

    2012-10-01

    Impact craters are the geological features most commonly observed on the surface of solid Solar System bodies. Crater shapes and features are crucial sources of information regarding past and present surface environments, and can provide indirect information about the internal structures of these bodies. In this study, we consider the effects of low-speed impacts into granular material. Studies of low-speed impact events are suitable for understanding the cratering process leading, for instance, to secondary craters. In addition, upcoming asteroid sample return missions will employ surface sampling strategies that use impacts into the surface by a projectile. An understanding of the process can lead to better sampling strategies. We use our implementation of the Soft-Sphere Discrete Element Method (SSDEM) (Schwartz et al. 2012, Granular Matter 14, 363-380) into the parallel N-body code PKDGRAV (cf. Richardson et al. 2011, Icarus 212, 427-437) to model the impact cratering process into granular material. We consider the effects of boundary conditions on the ejecta velocity profile and discuss how results relate to the Maxwell Z-Model during the crater growth phase. Cratering simulations are compared to those of Wada et al. 2006 (Icarus 180, 528-545) and to impact experiments performed in conjunction with Hayabusa 2. This work is supported in part by grants from the National Science Foundation under grant number AST1009579 and from the Office of Space Science of NASA under grant number NNX08AM39G. Part of this study resulted from discussions with the International Team (#202) sponsored by ISSI in Bern (Switzerland). Some simulations were performed on the YORP cluster administered by the Center for Theory and Computation of the Department of Astronomy at the University of Maryland in College Park and on the SIGGAM computer cluster hosted by the Côte d'Azur Observatory in Nice (France).

  19. Mechanical and Geological Effects of Impact Cratering on Ida

    NASA Astrophysics Data System (ADS)

    Asphaug, Erik; Moore, Jeffrey M.; Morrison, David; Benz, Willy; Nolan, Michael C.; Sullivan, Robert J.

    1996-03-01

    Asteroids respond to impact stresses differently from either laboratory specimens or large planets. Gravity is typically so small that seismic disturbances of a few cm s-1can devastate unconsolidated topography. Yet the presence of regolith and the likelihood that many asteroids are gravitational assemblages tell us that gravity cannot generally be ignored. We use numerical models for impact fracture in solids to examine the initial stage of crater formation on asteroid 243 Ida, up to the cessation of fracture and the establishment of the cratering flow; at this stage we can infer final crater diameters but not profiles. We find that a modified strength scaling applies for craters up to a few 100 m in diameter forming in rock subject to Ida's gravity, and that gravity controls all craters larger than ∼1 km. “Bright annuli” around a number of intermediate craters may be the result of low-velocity surface disturbances, rather than bright proximal ejecta deposits. We also consider large impactors, to which Ida presents a curved, finite target surface with irregular gravity. These can excavate asymmetrical concavities. Stresses from large events can refocus and cause fracture far from the crater; using the shape of Ida as a basis for 3D hydrocode simulations, we show that impact genesis of the Vienna Regio concavity can cause fracture in Pola Regio, where grooves are observed in spacecraft images. Other simulations indicate that the formation of the ∼10 km crater Azzurra might have reopened these fractures, which may account for their fresh appearance. This mechanism of groove formation requires an interior which coherently transmits elastic stress. While this precludes a classic “rubble pile” asteroid, it does allow well-joined fault planes, and welded blocks or pores smaller than the stress pulse.

  20. Space Radar Image of the Yucatan Impact Crater Site

    NASA Image and Video Library

    1999-01-27

    This is a radar image of the southwest portion of the buried Chicxulub impact crater in the Yucatan Peninsula, Mexico. The radar image was acquired on orbit 81 of space shuttle Endeavour on April 14, 1994 by the Spaceborne Imaging Radar C/X-Band Synthetic Aperture Radar (SIR-C/X-SAR). The image is centered at 20 degrees north latitude and 90 degrees west longitude. Scientists believe the crater was formed by an asteroid or comet which slammed into the Earth more than 65 million years ago. It is this impact crater that has been linked to a major biological catastrophe where more than 50 percent of the Earth's species, including the dinosaurs, became extinct. The 180-to 300-kilometer-diameter (110- to 180-mile) crater is buried by 300 to 1,000 meters (1,000 to 3,000 feet) of limestone. The exact size of the crater is currently being debated by scientists. This is a total power radar image with L-band in red, C-band in green, and the difference between C-band L-band in blue. The 10-kilometer-wide (6-mile) band of yellow and pink with blue patches along the top left (northwestern side) of the image is a mangrove swamp. The blue patches are islands of tropical forests created by freshwater springs that emerge through fractures in the limestone bedrock and are most abundant in the vicinity of the buried crater rim. The fracture patterns and wetland hydrology in this region are controlled by the structure of the buried crater. Scientists are using the SIR-C/X-SAR imagery to study wetland ecology and help determine the exact size of the impact crater. http://photojournal.jpl.nasa.gov/catalog/PIA01723

  1. Kalkkop crater, Eastern Cape: A new impact crater in South Africa

    NASA Technical Reports Server (NTRS)

    Reimold, W. U.; Leroux, F. G.; Koeberl, C.; Shirey, S. B.

    1993-01-01

    Reimold et al. suggested that the 640 m diameter Kalkkop crater, at 32 deg 43 min S/24 deg 34 min E in the Eastern Cape Province (South Africa), could possibly be of impact origin. This idea was based on the circularity of this structure, its regional uniqueness, lack of recent igneous activity in the region, and descriptions of drillcore indicating that the crater is not underlain by a salt dome and is partially filled with a breccia layer of a thickness which would agree with the dimensions expected for an impact structure of this size. Unfortunately the old drillcore was no longer available for detailed study, and in the absence of sufficient surface exposure only drilling could provide the evidence needed to solve the problem of the origin of Kalkkop. For this reason and to study the crater fill from a paleoenvironmental point of view, the S. African Geological Survey decided to sponsor a new research drilling project at the Kalkkop site. First petrographic and isotopic results from Kalkkop drill core studies confirming, without doubt, that this crater is of impact origin are presented.

  2. The biology of impact craters--a review.

    PubMed

    Cockell, Charles S; Lee, Pascal

    2002-08-01

    Impact craters contain ecosystems that are often very different from the ecosystems that surround them. On Earth over 150 impact craters have been identified in a wide diversity of biomes. All natural events that can cause localized disruption of ecosystems have quite distinct patterns of rccovery. Impact events are unique in that they are the only extraterrestrial mechanism capable of disrupting an ecosystem locally in space and time. Thus, elucidating the chronological sequence of change at the sites of impacts is of ecological interest. In this synthetic review we use the existing literature, coupled with our own observations at the Haughton impact structure, Devon Island, Nunavut, Canada to consider the patterns of biological recovery at the site of impact craters and the ecological characteristics of impact craters. Three phases of recovery are suggested. The Phase of Thermal Biology, a phase associated with the localized, ephemeral thermal anomaly generated by an impact event. The Phase of Impact Succession and Climax, a phase marked by multiple primary and secondary succession events both in the aquatic realm (impact crater-lakes) and terrestrial realm (colonization of paleolacustrine deposits and impact-generated substrata) that are followed by periods of climax ecology. In the case of large-scale impact events (> 10(4) Mt), this latter phase may also be influenced by successional changes in the global environment. Finally, during the Phase of Ecological Assimilation, the disappearance of the surface geological expression of an impact structure results in a concomitant loss of ecological distinctiveness. In extreme cases, the impact structure is buried. Impact succession displays similarities and differences to succession following other agents of ecological disturbance, particularly volcanism.

  3. Martian impact craters: Continuing analysis of lobate ejecta sinuosity

    NASA Technical Reports Server (NTRS)

    Barlow, Nadine G.

    1990-01-01

    The lobate ejecta morphology surrounding most fresh Martian impact craters can be quantitatively analyzed to determine variations in ejecta sinuosity with diameter, latitude, longitude, and terrain. The results of such studies provide another clue to the question of how these morphologies formed: are they the results of vaporization of subsurface volatiles or caused by ejecta entrainment in atmospheric gases. Kargel provided a simple expression to determine the degree of non-circularity of an ejecta blanket. This measure of sinuosity, called 'lobateness', is given by the ratio of the ejecta perimeter to the perimeter of a circle with the same area as that of the ejecta. The Kargel study of 538 rampart craters in selected areas of Mars led to the suggestion that lobateness increased with increasing diameter, decreased at higher latitude, and showed no dependence on elevation or geologic unit. Major problems with the Kargel analysis are the limited size and distribution of the data set and the lack of discrimination among the different types of lobate ejecta morphologies. Bridges and Barlow undertook a new lobateness study of 1582 single lobe (SL) and 251 double lobe (DL) craters. The results are summarized. These results agree with the finding of Kargel that lobateness increases with increasing diameter, but found no indication of a latitude dependence for SL craters. The Bridges and Barlow study has now been extended to multiple lobe (ML) craters. Three hundred and eighty ML craters located across the entire Martian surface were studied. ML craters provide more complications to lobateness studies than do SL and DL craters - in particular, the ejecta lobes surrounding the crater are often incomplete. Since the lobateness formula compares the perimeter of the ejecta lobe to that of a circle, the analysis was restricted only to complete lobes. The lobes are defined sequentially starting with the outermost lobe and moving inward.

  4. Thickness of a Europan ice shell from impact crater simulations.

    PubMed

    Turtle, E P; Pierazzo, E

    2001-11-09

    Several impact craters on Jupiter's satellite Europa exhibit central peaks. On the terrestrial planets, central peaks consist of fractured but competent rock uplifted during cratering. Therefore, the observation of central peaks on Europa indicates that an ice layer must be sufficiently thick that the impact events did not completely penetrate it. We conducted numerical simulations of vapor and melt production during cratering of water ice layers overlying liquid water to estimate the thickness of Europa's icy crust. Because impacts disrupt material well beyond the zone of partial melting, our simulations put a lower limit on ice thickness at the locations and times of impact. We conclude that the ice must be more than 3 to 4 kilometers thick.

  5. A Nine Kilometer Impact Crater and Its Central Peak

    NASA Image and Video Library

    2017-02-08

    found across the Martian surface. Each impact crater on Mars possesses a unique origin and composition, which makes the HiRISE team very interested in sampling as many of them as possible! Like the impact of a droplet into fluid, once an impact has occurred on the surface of Mars, an ejecta curtain forms immediately after, contributing to the raised rim visible at the top of the crater's walls. After the formation of the initial crater, if it is large enough, then a central peak appears as the surface rebounds. These central peaks can expose rocks that were previously deeply buried beneath the Martian surface. The blue and red colors in this enhanced-contrast image reflect the effects of post-impact sedimentation and weathering over time. http://photojournal.jpl.nasa.gov/catalog/PIA08395

  6. Impact Craters on Earth: Lessons for Understanding Martian Geological Materials and Processes

    NASA Astrophysics Data System (ADS)

    Osinski, G. R.

    2015-12-01

    Impact cratering is one of the most ubiquitous geological processes in the Solar System and has had a significant influence on the geological evolution of Mars. Unlike the Moon and Mercury, the Martian impact cratering record is notably diverse, which is interpreted to reflect interactions during the impact process with target volatiles and/or the atmosphere. The Earth also possesses a volatile-rich crust and an atmosphere and so is one of the best analogues for understanding the effects of impact cratering on Mars. Furthermore, fieldwork at terrestrial craters and analysis of samples is critical to ground-truth observations made based on remote sensing data from Martian orbiters, landers, and rovers. In recent years, the effect of target lithology on various aspects of the impact cratering process has emerged as a major research topic. On Mars, volatiles have been invoked to be the primary factor influencing the morphology of ejecta deposits - e.g., the formation of single-, double- and multiple-layered ejecta deposits - and central uplifts - e.g., the formation of so-called "central pit" craters. Studies of craters on Earth have also shown that volatiles complicate the identification of impactites - i.e., rocks produced and/or affected by impact cratering. Identifying impactites on Earth is challenging, often requiring intensive and multi-technique laboratory analysis of hand specimens. As such, it is even more challenging to recognize such materials in remote datasets. Here, observations from the Haughton (d = 23 km; Canada), Ries (d = 24 km; Germany), Mistastin (d = 28 km; Canada), Tunnunik, (d = 28 km; Canada), and West Clearwater Lake (d = 36 km; Canada) impact structures are presented. First, it is shown that some impactites mimic intrusive, volcanic, volcanoclastic and in some cases sedimentary clastic rocks. Care should, therefore, be taken in the identification of seemingly unusual igneous rocks at rover landing sites as they may represent impact melt

  7. MGS Mars Orbiter Laser Altimeter Topographic Profile of Impact Crater

    NASA Technical Reports Server (NTRS)

    1997-01-01

    Among the myriad of interesting landforms sampled by MOLA on its first traverse across the Red Planet on 15 September 1997 is this 13-mile (21-kilometer) diameter impact crater located at 48oN. The figure shows the topography, the computed position of the spacecraft groundtrack (solid line) and the track adjusted to correct for image location error (dashed line). The topographic profile provides some of the first indications of how landscape modification has operated in Martian geologic history. The relief of the crater rim, in combination with the steepness (over 20o) of the inner crater wall, are intriguing in that most craters of this size are much more subdued. The shape of the outer ejecta blanket of the crater likely indicates impact into an H2O rich crust. Issues concerning how craters such as this can be used to understand the properties of the uppermost crust of Mars in regions where the role of water and other volatiles may be important can be addressed with the high spatial and vertical resolution topographic profiles that will be acquired by MOLA once it starts its detailed mapping of the Red Planet in March of 1998.

  8. Low-velocity impact craters in ice and ice-saturated sand with implications for Martian crater count ages

    NASA Technical Reports Server (NTRS)

    Croft, S. K.; Kieffer, S. W.; Ahrens, T. J.

    1979-01-01

    The paper reports on a series of low-velocity impact experiments performed in ice and ice-saturated sand. It is found that crater diameters in ice-saturated sand were about 2 times larger than in the same energy and velocity range in competent blocks of granite, basalt and cement, while craters in ice were 3 times larger. It is shown that if this dependence of crater size on strength persists to large hypervelocity impact craters, then surface of geologic units composed of ice or ice-saturated soil would have greater crater count ages than rocky surfaces with identical influx histories. Among the conclusions are that Martian impact crater energy versus diameter scaling may also be a function of latitude.

  9. Investigation of impact crater processes using experimental and numerical techniques

    NASA Astrophysics Data System (ADS)

    Baldwin, Emily Clare

    2008-12-01

    Impact events throughout the history of the Solar System have occurred at all scales, from craters produced by the hypervelocity impact of cosmic dust observed on lunar return samples, to the giant planet-sculpting impacts that have shaped the solid bodies of the Solar System. Investigating the impact process in the laboratory allows us to understand crater formation at a small scale where strength effects dominate however, it is difficult to scale directly to planetary sized impacts because gravity governs the cratering process at this large scale. Through computer modeling, it is possible to bridge the gap from small to large scale impact events. The influence of target porosity, saturation and an overlying water layer on crater morphology is investigated in the laboratory using a two-stage light gas gun to fire 1 mm diameter stainless steel projectiles at 5 km s"1 into sandstone targets. Larger craters were formed in the higher porosity targets and saturated targets. A critical water depth of 11.6 0.5 times the projectile diameter was required to prevent cratering in an unsaturated target, compared with 12.7 0.6 for saturated targets. The sensitivity of this critical water depth to impact velocity, projectile diameter and density is examined through use of the AUTODYN numerical code, for both laboratory and planetary scale impact events. Projectile survivability into water and sand targets is investigated in the lab for stainless steel and shale projectiles impacting at 2-5 km s"1 up to 30% of the projectile is found to survive. AUTODYN simulations show that basalt or sandstone meteorites impacting a simulated lunar surface survive the impact at velocities < 5 km s"1 and at a range of angles, which has positive implications for detecting terrestrial meteorites on the Moon. Groundwork has also been laid for the modelling of the deliberate collision of the SMART-1 spacecraft into the Moon. Finally, lunar and terrestrial impact events are simulated in order to

  10. Melting and its relationship to impact crater morphology

    NASA Technical Reports Server (NTRS)

    Okeefe, John D.; Ahrens, Thomas J.

    1992-01-01

    Shock-melting features occur on planets at scales that range from micrometers to megameters. It is the objective of this study to determine the extent of thickness, volume geometry of the melt, and relationship with crater morphology. The variation in impact crater morphology on planets is influenced by a broad range of parameters: e.g., planetary density, thermal state, strength, impact velocity, gravitational acceleration. We modeled the normal impact of spherical projectiles on a semi-infinite planet over a broad range of conditions using numerical techniques.

  11. Large Crater Clustering tool

    NASA Astrophysics Data System (ADS)

    Laura, Jason; Skinner, James A.; Hunter, Marc A.

    2017-08-01

    In this paper we present the Large Crater Clustering (LCC) tool set, an ArcGIS plugin that supports the quantitative approximation of a primary impact location from user-identified locations of possible secondary impact craters or the long-axes of clustered secondary craters. The identification of primary impact craters directly supports planetary geologic mapping and topical science studies where the chronostratigraphic age of some geologic units may be known, but more distant features have questionable geologic ages. Previous works (e.g., McEwen et al., 2005; Dundas and McEwen, 2007) have shown that the source of secondary impact craters can be estimated from secondary impact craters. This work adapts those methods into a statistically robust tool set. We describe the four individual tools within the LCC tool set to support: (1) processing individually digitized point observations (craters), (2) estimating the directional distribution of a clustered set of craters, back projecting the potential flight paths (crater clusters or linearly approximated catenae or lineaments), (3) intersecting projected paths, and (4) intersecting back-projected trajectories to approximate the local of potential source primary craters. We present two case studies using secondary impact features mapped in two regions of Mars. We demonstrate that the tool is able to quantitatively identify primary impacts and supports the improved qualitative interpretation of potential secondary crater flight trajectories.

  12. Ejecta Thickness of the Martian Impact Crater Tooting

    NASA Astrophysics Data System (ADS)

    Mouginis-Mark, P. J.; Garbeil, H.

    2006-12-01

    We have used MOLA topographic data to study the multi-layered ejecta blanket of a remarkably fresh Martian impact crater ~28 km in diameter, with the provisional I.A.U. name Tooting Crater. Tooting Crater is located just west of the Olympus Mons aureole at 23.4°N, 207.5°E. This crater is very young, as demonstrated by large amounts of impact melt preserved on the walls and floor, a extensive secondary crater field, almost no superposed primary impact craters, and higher than average thermal inertia values on the distal ramparts and crater walls. Tooting Crater formed on virtually flat lava flows within Amazonis Planitia far away from other topographic features, so that the thickness of the ejecta blanket can be determined by subtracting an elevation of -3,872 m from the MOLA measurements. Thus, for the first time, it is possible to determine absolute ejecta thicknesses for an impact crater on Mars as a function of radial distance away from the rim crest. This study therefore serves as a reference point against which to study the ejecta of more eroded multi-layered ejecta craters of similar size; knowledge of the radial distribution of ejecta for craters in the southern highlands may be particularly important for assessing erosion rates at different periods of the history of Mars (e.g., Forsberg-Taylor et al. 2004, JGR 109 E05002 doi: 10.1029/2004JE002242). A total of 24,201 MOLA shots lie on the ejecta blanket beyond the rim crest of Tooting Crater to a radial distance of 66.5 km. MOLA data show that the crater cavity volume is ~380 km3 and the volume of materials above the elevation of the pre-impact terrain is ~455 km3. Given no losses in the ejecta due to erosion, this implies a bulking of ~14.4% in the material that now forms the ejecta blanket. Maximum ejecta thickness is ~800 m at the rim, that decreases to <30 m within 35% of the maximum ejecta range. Remarkably, the ejecta layers are <5 m thick in some locations within the ejecta blanket, particularly at

  13. Vapor plumes: A neglected aspect of impact cratering

    NASA Astrophysics Data System (ADS)

    Melosh, H. J.

    1991-06-01

    When a meteorite or comet strikes the surface of the planet or satellite at typical interplanetary velocities of 10-40 km/sec, the projectile and a quantity of the target body vaporize and expand out of the growing crater at high speed. The crater continues to grow after the vapor plume has formed and the series of ejecta deposits is laid down ballistically while the crater collapses into its final morphology. Although the vapor plume leaves little evidence of its existence in the crater structure of surface deposits, it may play a major role in a number of impact-related processes. The vapor plume expanding away from the site of an impact carries 25-50 percent of the total impact energy. Although the plume's total mass is only a few times the mass of the projectile, its high specific energy content means that it is the fastest and most highly shocked material in the cratering event. The mean velocity of expansion can easily exceed the escape velocity of the target plane, so that the net effect of a sufficiently high-speed impact is to erode material from the planet.

  14. Vapor plumes: A neglected aspect of impact cratering

    NASA Technical Reports Server (NTRS)

    Melosh, H. J.

    1991-01-01

    When a meteorite or comet strikes the surface of the planet or satellite at typical interplanetary velocities of 10-40 km/sec, the projectile and a quantity of the target body vaporize and expand out of the growing crater at high speed. The crater continues to grow after the vapor plume has formed and the series of ejecta deposits is laid down ballistically while the crater collapses into its final morphology. Although the vapor plume leaves little evidence of its existence in the crater structure of surface deposits, it may play a major role in a number of impact-related processes. The vapor plume expanding away from the site of an impact carries 25-50 percent of the total impact energy. Although the plume's total mass is only a few times the mass of the projectile, its high specific energy content means that it is the fastest and most highly shocked material in the cratering event. The mean velocity of expansion can easily exceed the escape velocity of the target plane, so that the net effect of a sufficiently high-speed impact is to erode material from the planet.

  15. Impact Crater Environments as Potential Sources of Hadean Detrital Zircons

    NASA Astrophysics Data System (ADS)

    Kenny, G. G.; Whitehouse, M. J.; Kamber, B. S.

    2016-08-01

    Here we show that contrary to previous suggestions, there is no reason to rule out impact melt sheets as major sources of Hadean detrital zircons. We then explore the potential of other impact crater-related environments in which zircons crystallise.

  16. The Vichada Impact Crater in Northwestern South America and its Potential for Economic Deposits

    NASA Astrophysics Data System (ADS)

    Hernandez, O.; von Frese, R. R.

    2008-05-01

    A prominent positive free-air gravity anomaly mapped over a roughly 50-km diameter basin is consistent with a mascon centered on (4o30`N, -69o15`W) in the Vichada Department, Colombia, South America. The inferred large impact crater is nearly one third the size of the Chicxulub crater. It must have formed recently, in the last 30 m.a. because it controls the partially eroded and jungle-covered path of the Vichada River. No antipodal relationship has been detected. Thick sedimentary cover, erosional processes and dense vegetation greatly limit direct geological testing of the inferred impact basin. However, EGM-96 gravity data together with ground gravity and magnetic profiles support the interpretation of the impact crater structure. The impact extensively thinned and disrupted the Precambrian cratonic crust and may be associated with mineral and hydrocarbon deposits. A combined EM and magnetic airborne program is being developed to resolve additional crustal properties of the inferred Vichada impact basin Keywords: Impact crater, economic deposits, free-air gravity anomalies

  17. Fractal dimensions of rampart impact craters on Mars

    NASA Technical Reports Server (NTRS)

    Ching, Delwyn; Taylor, G. Jeffrey; Mouginis-Mark, Peter; Bruno, Barbara C.

    1993-01-01

    Ejecta blanket morphologies of Martian rampart craters may yield important clues to the atmospheric densities during impact, and the nature of target materials (e.g., hard rock, fine-grained sediments, presence of volatiles). In general, the morphologies of such craters suggest emplacement by a fluidized, ground hugging flow instead of ballistic emplacement by dry ejecta. We have quantitatively characterized the shape of the margins of the ejecta blankets of 15 rampart craters using fractal geometry. Our preliminary results suggest that the craters are fractals and are self-similar over scales of approximately 0.1 km to 30 km. Fractal dimensions (a measure of the extent to which a line fills a plane) range from 1.06 to 1.31. No correlations of fractal dimension with target type, elevation, or crater size were observed, though the data base is small. The range in fractal dimension and lack of correlation may be due to a complex interplay of target properties (grain size, volatile content), atmospheric pressure, and crater size. The mere fact that the ejecta margins are fractals, however, indicates that viscosity and yield strength of the ejecta were at least as low as those of basalts, because silicic lava flows are not generally fractals.

  18. Genesis and fluid source in Arabia crater mounds: mapping, fractal analysis, and impact simulations

    NASA Astrophysics Data System (ADS)

    Pozzobon, R.; Mazzarini, F.; Rossi, A.; Lucchetti, A.; Pondrelli, M.; Marinangeli, L.; Martellato, E.; Cremonese, G.; Massironi, M.

    2013-12-01

    Arabia Terra is dominated by heavily cratered terrains, and some peculiar landforms can be found mostly in craters interior. With high-resolution images from HiRISE (25 cm/px) and CTX (6 m/px) cameras pitted cones, mounds and knobs can be easily recognized. Those mounds are interpreted to have worked as pathways for subsurface fluid. It is commonly hypothesized that Arabia Terra is an area of past fluid activity, being crater central bulges a place of sulfate precipitation. In this work we investigate the presence, origin and timing of their formation as well as the the depth of the mounds fluid source. The spatial distribution of monogenic eruptive structures within volcanic areas on Earth has been linked to fracture systems that allowed an efficient hydraulic connection between surface and crustal or subcrustal magma reservoirs. Self-similarity in vent distribution is described by a power law distribution with fractal exponent D and defined over a range of lengths comprised between a lower limit (lower cutoff, Lco) and an upper limit (upper cutoff, Uco). On Earth, volcanic vents as well as mud volcanoes have shown that the Uco of their fractal distribution scales with the depth of pressurized fluid reservoirs. The same approach has been this applied to mounds mapped at Firsoff and Crommelin craters. 431 mounds were mapped on Firsoff Crater's floor, and 160 on Crommelin Crater's floor. The reslulting Uco for both craters are similar giving a source depth of 2.3 ×0.3 km from Firsoff Crater's ground floor and 2.6 ×0.5 km from Crommelin's floor. Hence it is possible to hypothesize a common regional-scale pressurized fluid level at 2.5 km of depth from craters floor. Morphogic and stratigraphical analyses of the high-resolution imagery and topography of those mounds allowed us to discern from actual mud volcano candidates and stratigraphic erosional remnants. We also studied the craters formation by simulating the impact with the hydrocode. We used iSALE shock code

  19. Unravelling the Earth's geological history from space using impact craters

    NASA Astrophysics Data System (ADS)

    Chicarro, Agustin; Michael, Greg; Marchetti, Pier-Giorgio; Costantini, Mario; di Stadio, Franco; di Martino, Mario

    2003-05-01

    The terrestrial cratering record is unique in providing a detailed picture of the history of our Solar System over the last few billion years, as well as its celestial environment. The search for the scars of ancient cosmic impacts is therefore of fundamental importance from both the astronomical and geophysical points of view. Firstly, we can obtain an estimate of the flux and size distribution of the impactors - meteoroids, asteroids, comets - that have hit Earth during the last few billion years. Secondly, the identification of impact craters can improve our detailed geological knowledge of the Earth's surface.

  20. Crater

    NASA Image and Video Library

    2015-09-03

    This relatively young crater is located on the northern plains of Arcadia Planitia. Orbit Number: 60388 Latitude: 61.6777 Longitude: 228.91 Instrument: VIS Captured: 2015-07-26 03:01 http://photojournal.jpl.nasa.gov/catalog/PIA19766

  1. Geologic signatures of atmospheric effects on impact cratering on Venus

    NASA Technical Reports Server (NTRS)

    1996-01-01

    Highlights of the research include geologic signatures of impact energy and atmospheric response to crater formation. Laboratory experiments were performed at the NASA Ames Vertical Gun Range (AVGR) to assess the interaction between disrupted impactor and atmosphere during entry, and to assess the energy coupling between impacts and the surrounding atmosphere. The Schlieren imaging at the AVGR was used in combination with Magellan imaging and theoretical studies to study the evolution of the impactor following impact. The Schlieren imaging documented the downrange blast front created by vaporization during oblique impacts. Laboratory experiments allowed assessing the effect of impact angle on coupling efficiency with an atmosphere. And the impact angle's effect on surface blasts and run-out flows allowed the distinction of crater clusters created by simultaneous impacts from those created by isolated regions of older age.

  2. Fluid mechanical scaling of impact craters in unconsolidated granular materials

    NASA Astrophysics Data System (ADS)

    Miranda, Colin S.; Dowling, David R.

    2015-11-01

    A single scaling law is proposed for the diameter of simple low- and high-speed impact craters in unconsolidated granular materials where spall is not apparent. The scaling law is based on the assumption that gravity- and shock-wave effects set crater size, and is formulated in terms of a dimensionless crater diameter, and an empirical combination of Froude and Mach numbers. The scaling law involves the kinetic energy and speed of the impactor, the acceleration of gravity, and the density and speed of sound in the target material. The size of the impactor enters the formulation but divides out of the final empirical result. The scaling law achieves a 98% correlation with available measurements from drop tests, ballistic tests, missile impacts, and centrifugally-enhanced gravity impacts for a variety of target materials (sand, alluvium, granulated sugar, and expanded perlite). The available measurements cover more than 10 orders of magnitude in impact energy. For subsonic and supersonic impacts, the crater diameter is found to scale with the 1/4- and 1/6-power, respectively, of the impactor kinetic energy with the exponent crossover occurring near a Mach number of unity. The final empirical formula provides insight into how impact energy partitioning depends on Mach number.

  3. Karakul: a young complex impact crater in the Pamir, Tajikistan

    NASA Astrophysics Data System (ADS)

    Bouley, S.; Baratoux, D.; Baratoux, L.; Colas, F.; Dauvergne, J.; Losiak, A.; Vaubaillon, J.; Bourdeille, C.; Jullien, A.; Ibadinov, K.

    2011-12-01

    A fascinating controversy has been recently renewed about the origin of the Karakul depression in the Pamir (Tajikistan, 39°1'N, 73°27'E), about 4000 m above sea level. Based on the work of E. Gurov reporting breccia and shock features in minerals, the circular depression was mentioned in the Earth Impact Database as one of the largest complex craters, about 50 km in diameter. However, recent studies have suggested that the basin is actually a NW-SE extensional rift. We report the preliminary results of a new expedition in the Karakul area that successfully took place in June 2011. Different types of rocks have been observed, including metamorphosed sediments, granite, limestone, and rare occurrence. The granite appears to be the youngest rock predating the crater, with an age of 230-190 My2. The most exciting preliminary result is the finding of shatter cones in metamorphosed sediments in the northern part of the peninsula. Breccias (not necessary impact-breccia) occur as floats on the central island, and were also found in the northern part of the rim. Thin sections are in preparation at the time of writing, and the report on the search for shock features in granite and breccias will be presented at the conference. The age of the crater is unknown, but is necessarily younger than the India-Asia collision, 55 - 60 My ago. On the basis of the oldest sediments filling the depression, the crater has been tentatively attributed to Neogene, or Pliocene, and would be then younger than 23 My. Consequences of the formation of a large complex crater in the recent geological history of the Pamir have yet to be explored. In a context of elevated convergence rate and rapid exhumation, the site offers the possibility to investigate the possible interactions between impact cratering and tectonic activity. The formation of a 50 km crater has considerable effects on the environment, at least at the regional scale, suggesting the search for such effects in the sediment record

  4. Formation of complex impact craters - Evidence from Mars and other planets

    NASA Technical Reports Server (NTRS)

    Pike, R. J.

    1980-01-01

    An analysis of the depth vs diameter data of Arthur (1980), is given along with geomorphic data for 73 Martian craters. The implications for the formation of complex impact craters on solid planets is discussed. The analysis integrates detailed morphological observations on planetary craters with geologic data from terrestrial meteorite and explosion craters. The simple to complex transition for impact craters on Mars appears at diameters in the range of 3 to 8 km. Five features appear sequentially with increasing crater size, flat floors, central peaks and shallower depths, scalloped rims, and terraced walls. This order suggests that a shallow depth of excavation and a rebound mechanism have produced the central peaks, not centripetal collapse and deep sliding. Simple craters are relatively uniform in shape from planet to planet, but complex craters vary considerably. Both the average onset diameter for complex impact craters on Mars and the average depth of complex craters vary inversely with gravitational acceleration on four planets.

  5. The fractured Moon: Production and saturation of porosity in the lunar highlands from impact cratering

    NASA Astrophysics Data System (ADS)

    Soderblom, Jason M.; Evans, Alexander J.; Johnson, Brandon C.; Melosh, H. Jay; Miljković, Katarina; Phillips, Roger J.; Andrews-Hanna, Jeffrey C.; Bierson, Carver J.; Head, James W.; Milbury, Colleen; Neumann, Gregory A.; Nimmo, Francis; Smith, David E.; Solomon, Sean C.; Sori, Michael M.; Wieczorek, Mark A.; Zuber, Maria T.

    2015-09-01

    We have analyzed the Bouguer anomaly (BA) of ~1200 complex craters in the lunar highlands from Gravity Recovery and Interior Laboratory observations. The BA of these craters is generally negative, though positive BA values are observed, particularly for smaller craters. Crater BA values scale inversely with crater diameter, quantifying how larger impacts produce more extensive fracturing and dilatant bulking. The Bouguer anomaly of craters larger than 93-19+47 km in diameter is independent of crater size, indicating that there is a limiting depth to impact-generated porosity, presumably from pore collapse associated with either overburden pressure or viscous flow. Impact-generated porosity of the bulk lunar crust is likely in a state of equilibrium for craters smaller than ~30 km in diameter, consistent with an ~8 km thick lunar megaregolith, whereas the gravity signature of larger craters is still preserved and provides new insight into the cratering record of even the oldest lunar surfaces.

  6. Crater-ray formation by impact-induced ejecta particles

    NASA Astrophysics Data System (ADS)

    Kadono, T.; Suzuki, A. I.; Wada, K.; Mitani, N. K.; Yamamoto, S.; Arakawa, M.; Sugita, S.; Haruyama, J.; Nakamura, A. M.

    2015-04-01

    We performed impact experiments with granular targets to reveal the formation process of crater "rays", the non-uniform ejecta distributions around some fresh craters on the Moon and planets. We found mesh patterns, loosely woven with spaces like a net, as ejecta. A characteristic length of spaces between meshes was evaluated, and an angle, defined as the ratio of the characteristic length to the distance from the ejection point, was obtained as ∼a few degrees. These features are similar to the results of the analyses of the ray patterns around two lunar craters, Glushko and Kepler. Numerical simulations of granular material showed that clear mesh pattern appeared at lower coefficients of restitution between particles but was less clear at larger one, suggesting that the inelastic collisions between particles cause the clear mesh-pattern formation of impact ejecta.

  7. New impact craters and meteoroid densities on Mars

    NASA Astrophysics Data System (ADS)

    Ivanov, B.; Melosh, H. J.; McEwen, A.

    2011-10-01

    Repetitive high-resolution imaging of Mars revealed new small impact craters with known dates of formation (see [1, 2] and references in [2]). After ~2006 the discovery rate became a linear function of time, so we can use the discovery rate as a proxy for the modern bombardment rate. The low-mass Martian atmosphere is dense enough to shatter roughly half of the meteoroids, resulting in the crater clusters. Separation distances in these clusters put some constraints on the density and strength of meteoroids. The atmospheric deceleration and breakup of meteoroids complicate the Mars/Moon comparison and attempts to verify the crater related timescale (e.g. [3]). At the same time observations of impact sites with known formation dates allow us to analyze the rate of modern surface changes due to wind/dust interaction.

  8. Venus - Large Impact Crater in the Eistla Region

    NASA Technical Reports Server (NTRS)

    1991-01-01

    This Magellan image shows an impact crater in the central Eistla Region of the equatorial highlands of Venus. It is centered at 15 degrees north latitude and 5 degrees east longitude. The image is 76.8 kilometers (48 miles) wide. The crater is slightly irregular in planform and approximately 6 kilometers (4 miles) in diameter. The walls appear terraced. Five or six lobes of radar-bright ejecta radiate up to 13.2 kilometers (8 miles) from the crater rim. These lobes are up to 3.5 kilometers (2 miles) in width and form a 'starfish' pattern against the underlying radar-dark plains. The asymmetric pattern of the ejecta suggests the angle of impact was oblique. The alignment of two of the ejecta lobes along fractures in the underlying plains is apparently coincidental.

  9. Lessons from studies of impact crater hydrothermal processes in terrestrial analogs and their implications for impact craters on Mars

    NASA Astrophysics Data System (ADS)

    Newsom, H. E.

    2011-12-01

    Studying hydrothermal processes in terrestrial impact craters as martian analogs has sometimes been fraught with objections, including the Earth's greater abundance of water, the neutral instead of acidic aqueous environments and the composition of the targets. Although recent discoveries have dispelled many objections, some misconceptions remain. For example, the relevance of the Chicxulub crater as a martian analog is sometimes questioned because the target was covered with sediments, including carbonates and sulfates. However the impactites at the Yaxcopoil-1 drill site are derived from the underlying silicate basement. Comparisons can also be difficult because of scale issues, as many terrestrial craters with evidence of hydrothermal activity, e.g. Lonar, Haughton, Ries etc., are smaller than the Martian craters with phyllosilicate signatures (Ehlmann et al., 2010). Summarizing, the results of many studies of terrestrial craters show that: 1) Most terrestrial craters larger than 1.8 km diameter have at least some evidence of aqueous or hydrothermal processes in the form of alteration minerals (e.g., Naumov, 2005). 2) Impact melts in crater fill and ejecta blankets provide heat that can produce hydrothermal alteration if water is available (Newsom, 1980). 3) The uplifted geothermal gradient can be as important a heat source as shock effects. 4) Mineralogical evidence for high-temperature fluids (> 350 oC) is present in the central uplift of the Manson structure, and in the ejecta from the Chicxulub impact, where precipitation of phyllosilicates from hydrothermal fluids has also been described (Newsom et al., 2010). 5) Impact deposits begin hot, but have an extended cooling period during which alteration phases can back react to low temperature phases with corresponding stable isotope signatures. 5) Hydrothermal fluids can travel long distances from their sources (e.g., Chicxulub, Yaxcopoil site) and are often localized to faults or porous breccias (e.g. Sudbury

  10. Sub-Surface Excavation of Transient Craters in Porous Targets: Explaining the Impact Delay

    NASA Astrophysics Data System (ADS)

    Bowling, T. J.; Melosh, H. J.

    2012-03-01

    We numerically investigate the subsurface excavation of the transient crater in the earliest moments after the Deep Impact event. At high target porosities the crater remains hidden from observation long enough to explain the "impact delay."

  11. Earth's Largest Meteorite Impact Craters discovered in South America?

    NASA Astrophysics Data System (ADS)

    Kellndorfer, J. M.; Schmidt-Falkenberg, H.

    2014-12-01

    Novel analysis of high resolution InSAR-based digital elevation data from the year 2001 Shuttle Radar Topography Mission combined with a recently produced dataset of pan-tropical vegetation height from ALOS-1 SAR and IceSAT/GLAS Lidar estimates led to the quasi-bald-Earth discovery of four sizable near-perfect circle arcs in South America under dense tropical forests ranging in length from 216 km to 441 km. Terrain elevation profiles of cross-sections across the arcs show a distinct vertical rising and falling in elevations of hundreds of meters over a horizontal distance of tens of kilometers. It is hypothesized that these sizable arcs and associated rim-like topographic terrain features are remnants of huge meteorite impact craters with diameters ranging from 770 km to 1,310 km, thus forming potentially the largest known impact carter structures discovered on Earth today. The potential impact crater rim structures are located north of the eastern Amazon River, in the coastal region of Recife and Natal, and in the Brazilian, Bolivian and Paraguayan border region encompassing the Pantanal. Elevation profiles, hillshades and gray-shaded elevation maps were produced to support the geomorphologic analysis. It is also speculated whether in three of the four potential impact craters, central uplift domes or peaks, which are typical for complex impact crater structures can be identified. The worlds largest iron ore mining area of Carajás in Para, Brazil, falls exactly in the center of the largest hypothesized circular impact crater showing topographic elevations similar to the rim structure discovered 655 km to the north-north-west. Based on the topographic/geomorphologic driven hypothesis, geologic exploration of these topographic features is needed to test whether indeed meteorite impact craters could be verified, what the more exact ellipsoidal shapes of the potential impact craters might be, and to determine when during geologic times the impacts would have taken

  12. Fourier analysis of planimetric lunar crater shape - Possible guide to impact history and lunar geology

    NASA Technical Reports Server (NTRS)

    Eppler, D. T.; Nummedal, D.; Ehrlich, R.

    1977-01-01

    If the lithology of lunar crust influences impact crater morphology, a method of analysis that is sensitive to small-scale changes in crater shape is required. In the present paper, it is shown that Fourier analysis in closed form can provide detailed information regarding planimetric crater shape. Preliminary analysis of the rim crest outline of 247 nearside lunar craters (larger than 18 km in diam) led to the following information: Imbrian and pre-Imbrian craters are more elongate than younger craters, possibly as a result of widespread crustal deformation early in the moon's history. Crater size does not affect the planimetric shape of craters. Highland craters are less circular than mare craters, probably due to the greater structural and lithologic complexity of the highland crust. Craters comprising each shape family of the eleventh harmonic typically are located in the same general geographic region of the moon.

  13. Impact cratering on granular beds: from the impact of raindrops to the strike of hailstones

    NASA Astrophysics Data System (ADS)

    Gordillo, Leonardo; Wang, Junping; Japardi, Fred; Teddy, Warren; Cheng, Xiang

    2016-11-01

    The craters generated by the impact of a spherical object onto a granular bed strongly depend on the material properties of impactors. As an example, impact cratering by liquid drops and by solid spheres exhibit qualitatively different power-law scalings for the size of resulting impact craters. While the basic energy conservation and dimensional analysis provide simple guiding rules, the detailed dynamics governing the relation between these power-law scalings are still far from clear. To analyze the transition between liquid-drop and solid-sphere impact cratering, we investigate impact cratering by liquid drops in a wide range of impact energies, viscosities, surface tensions and drop sizes. Using high-speed photography and laser profilometry to survey more than 8000 laboratory-controlled impact cratering events, we fully delineate the solid-to-liquid transition and unveil a rich set of regimes with different scaling laws and crater morphologies. Our research provides a unified framework for understanding the scaling relations in granular impact cratering-a phenomenon ubiquitous in nature ranging from daily-life raindrop and hailstone impacts on sandy surfaces to catastrophic asteroids strikes on planetary bodies. Research funded by the National Science Foundation. LG is supported by Conicyt/Becas Chile de Postdoctorado 74150032.

  14. Impact craters at falling of large asteroids in Ukraine

    NASA Astrophysics Data System (ADS)

    Vidmachenko, A. P.

    2016-05-01

    Catastrophes of different scale that are associated with the fall of celestial bodies to the Earth - occurred repeatedly in its history. But direct evidence of such catastrophes has been discovered recently. Thus, in the late 1970s studies of terrestrial rocks showed that in layers of the earth's crust that corresponded to the period of 65 million years before the present, marked by the mass extinction of some species of living creatures, and the beginning of the rapid development of others. It was then - a large body crashed to Earth in the Gulf of Mexico in Central America. The consequence of this is the Chicxulub crater with a diameter of ~170 km on Yucatan Peninsula. Modern Earth's surface retains many traces of collisions with large cosmic bodies. To indicate the craters with a diameter of more than 2 km using the name "astrobleme". Today, it found more than 230. The largest astroblems sizes exceeding 200 km. Ukraine also has some own astroblems. In Ukraine, been found nine large impact craters. Ukrainian crystalline shield, because of its stability for a long time (more than 1.5 billion years), has the highest density of large astroblems on the Earth's surface. The largest of the Ukrainian astroblems is Manevytska. It has a diameter of 45 km. There are also Ilyinetskyi (7 km), Boltysh (25 km), Obolon' (20 km), Ternivka (12-15 km), Bilylivskyi (6 km), Rotmystrivka (3 km) craters. Zelenohayska astrobleme founded near the village Zelenyi Gay in Kirovograd region and consists of two craters: larger with diameter 2.5-3.5 km and smaller - with diameter of 800 m. The presence of graphite, which was the basis for the research of the impact diamond in astroblems of this region. As a result, the diamonds have been found in rocks of Ilyinetskyi crater; later it have been found in rocks in the Bilylivska, Obolon' and other impact structures. The most detailed was studied the geological structure and the presence of diamonds in Bilylivska astrobleme

  15. Impact Cratering: Bridging the Gap Between Modeling and Observations

    NASA Technical Reports Server (NTRS)

    2003-01-01

    This volume contains abstracts that have been accepted for presentation at the workshop on Impact Cratering: Bridging the Gap Between Modeling and Observations, February 7-9, 2003, in Houston, Texas. Logistics, onsite administration, and publications for this workshop were provided by the staff of the Publications and Program Services Department at the Lunar and Planetary Institute.

  16. The role of impact cratering for Mars sample return

    NASA Technical Reports Server (NTRS)

    Schultz, P. H.

    1988-01-01

    The preserved cratering record of Mars indicates that impacts play an important role in deciphering Martian geologic history, whether as a mechanism to modify the lithosphere and atmosphere or as a tool to sample the planet. The various roles of impact cratering in adding a broader understanding of Mars through returned samples are examined. Five broad roles include impact craters as: (1) a process in response to a different planetary localizer environment; (2) a probe for excavating crustal/mantle materials; (3) a possible localizer of magmatic and hydrothermal processes; (4) a chronicle of changes in the volcanic, sedimentary, atmospheric, and cosmic flux history; and (5) a chronometer for extending the geologic time scale to unsampled regions. The evidence for Earth-like processes and very nonlunar styles of volcanism and tectonism may shift the emphasis of a sampling strategy away from equally fundamental issues including crustal composition, unit ages, and climate history. Impact cratering not only played an important active role in the early Martian geologic history, it also provides an important tool for addressing such issues.

  17. Impact Crater Experiments for Introductory Physics and Astronomy Laboratories

    ERIC Educational Resources Information Center

    Claycomb, J. R.

    2009-01-01

    Activity-based collisional analysis is developed for introductory physics and astronomy laboratory experiments. Crushable floral foam is used to investigate the physics of projectiles undergoing completely inelastic collisions with a low-density solid forming impact craters. Simple drop experiments enable determination of the average acceleration,…

  18. Results of Prospecting of Impact Craters in Morocco

    NASA Astrophysics Data System (ADS)

    Chaabout, S.; Chennaoui Aoudjehane, H.; Reimold, W. U.; Baratoux, D.

    2014-09-01

    This work is based to use satellite images of Google Earth and Yahoo-Maps scenes; we examined the surface of our country to be able to locate the structures that have a circular morphology such as impact craters, which potentially could be.

  19. Impact Crater Experiments for Introductory Physics and Astronomy Laboratories

    ERIC Educational Resources Information Center

    Claycomb, J. R.

    2009-01-01

    Activity-based collisional analysis is developed for introductory physics and astronomy laboratory experiments. Crushable floral foam is used to investigate the physics of projectiles undergoing completely inelastic collisions with a low-density solid forming impact craters. Simple drop experiments enable determination of the average acceleration,…

  20. Structural effects of meteorite impact on basalt: Evidence from Lonar crater, India

    NASA Astrophysics Data System (ADS)

    Kumar, P. Senthil

    2005-12-01

    Lonar crater is a simple, bowl-shaped, near-circular impact crater in the ˜65 Myr old Deccan Volcanic Province in India. As Lonar crater is a rare terrestrial crater formed entirely in basalt, it provides an excellent opportunity to study the impact deformation in target basalt, which is common on the surfaces of other terrestrial planets and their satellites. The present study aims at documenting the impact deformational structures in the massive basalt well exposed on the upper crater wall, where the basalt shows upward turning of the flow sequence, resulting in a circular deformation pattern. Three fracture systems (radial, concentric, and conical fractures) are exposed on the inner crater wall. On the fracture planes, plumose structures are common. Uplift and tilting of the basalt sequence and formation of the fractures inside the crater are clearly related to the impact event and are different from the preimpact structures such as cooling-related columnar joints and fractures of possible tectonic origin, which are observed outside the crater. Slumping is common throughout the inner wall, and listric faulting displaces the flows in the northeastern inner wall. The impact structures of Lonar crater are broadly similar to those at other simple terrestrial craters in granites and clastic sedimentary rocks and even small-scale experimental craters formed in gabbro targets. As Lonar crater is similar to the strength-controlled laboratory craters, impact parameters could be modeled for this crater, provided maximum depth of fracture formation would be known.

  1. Morphology correlation of craters formed by hypervelocity impacts

    NASA Technical Reports Server (NTRS)

    Crawford, Gary D.; Rose, M. Frank; Zee, Ralph H.

    1993-01-01

    Dust-sized olivine particles were fired at a copper plate using the Space Power Institute hypervelocity facility, simulating micrometeoroid damage from natural debris to spacecraft in low-Earth orbit (LEO). Techniques were developed for measuring crater volume, particle volume, and particle velocity, with the particle velocities ranging from 5.6 to 8.7 km/s. A roughly linear correlation was found between crater volume and particle energy which suggested that micrometeoroids follow standard hypervelocity relationships. The residual debris analysis showed that for olivine impacts of up to 8.7 km/s, particle residue is found in the crater. By using the Space Power Institute hypervelocity facility, micrometeoroid damage to satellites can be accurately modeled.

  2. Distributions of Superposed Impact Craters on Lunar Basins

    NASA Astrophysics Data System (ADS)

    Kirchoff, M. R.; Sherman, K. M.; Chapman, C. R.

    2010-12-01

    Determining the distribution of impact craters on the Moon is vital for understanding inner solar system impactor populations and their evolution. The Moon is such an important keystone for this area of research because the crater distribution, especially from early solar system history, is readily observed and has not been heavily modified like it has been on the Earth. Furthermore, radiometric dating of Apollo samples provide the only extraterrestrial set of absolute ages for specifically identified planetary surfaces. Therefore the Moon is the only place in the solar system that provides a calibrated absolute crater chronology for a large fraction of solar system history [e.g., 1-4]. These chronologies, however, assume that the impactor distribution has not changed significantly over time (possibilities include the Late Heavy Bombardment [5] and asteroid break-ups [6]). In addition, crater counts on many areas of the Moon have not been performed for at least 30 years. In order to further constrain lunar impactor populations and their temporal evolution, we have begun measuring craters superposed on lunar basins from different eras and regions of the Moon (e.g., Birkhoff, Imbrium and Orientale). Currently, we are utilizing newly digitized Lunar Orbiter (LO) images [7]. The LO-IV and -V missions collected many valuable images of the near and far side at resolutions useful for compiling crater databases with a large dynamic range: 30-80 m/pixel, which converts to a minimum measurable diameter (D) of ~ 200 m up to several tens of kilometers. These resolutions are also comparable to the resolutions of Lunar Reconnaissance Orbiter Wide Angel Camera (LRO-WAC). When rectified LRO-WAC images become available, we will use them to compare with results from LO images and examine new regions. LRO-WAC images have better dynamic range and coverage, and lack the image blemishes of LO images. Preliminary results from Birkhoff basin (center = 59°N, 147°S, D = 325 km, [8

  3. Hypervelocity impact study: The effect of impact angle on crater morphology

    NASA Technical Reports Server (NTRS)

    Crawford, Gary; Hill, David; Rose, Frank E.; Zee, Ralph; Best, Steve; Crumpler, Mike

    1993-01-01

    The Space Power Institute (SPI) of Auburn University has conducted preliminary tests on the effects of impact angle on crater morphology for hypervelocity impacts. Copper target plates were set at angles of 30 deg and 60 deg from the particle flight path. For the 30 deg impact, the craters looked almost identical to earlier normal incidence impacts. The only difference found was in the apparent distribution of particle residue within the crater, and further research is needed to verify this. The 60 deg impacts showed marked differences in crater symmetry, crater lip shape, and particle residue distribution. Further research on angle effects is planned, because the particle velocities for these shots were relatively slow (7 km/s or less).

  4. Photogeologic analysis of impact melt-rich lithologies in Kepler crater that could be sampled by future missions

    NASA Astrophysics Data System (ADS)

    Öhman, Teemu; Kring, David A.

    2012-02-01

    Kepler is a 31 km diameter Copernican age complex impact crater located on the nearside maria of the Moon. We used Lunar Reconnaissance Orbiter imagery and topographic data in combination with Kaguya terrain camera and other image data sets to construct a new geomorphologic sketch map of the Kepler crater, with a focus on impact melt-rich lithologies. Most of the interior melt rocks are preserved in smooth and hummocky floor materials. Smaller volumes of impact melt were deposited in rim veneer, interior and exterior ponds, and lobe-like overlapping flows on the upper crater wall. Based on shadow lengths, typical flows of melt-rich material on crater walls and the western rim flank are ˜1-5 m thick, and have yield strengths of ˜1-10 kPa. The melt rock distribution is notably asymmetric, with interior and exterior melt-rich deposits concentrated north and west of the crater center. This melt distribution and the similarly asymmetric ray distribution imply a slightly less than 45° impact trajectory from the southeast. The exposed wall of Kepler displays distinct layering, with individual layers having typical thicknesses of ˜3-5 m. These are interpreted as flows of Procellarum mare basalts in the impact target. From the point of view of exploration, numerous fractures and pits in the melt-rich floor materials not only enable detailed studies of melt-related processes of impact crater formation, but also provide potential shelters for longer duration manned lunar missions.

  5. The Effect of Material Properties on the Impact Cratering Process

    NASA Astrophysics Data System (ADS)

    Pierazzo, E.; Ivanov, B.; Artemieva, N.

    2007-12-01

    The cratering process is strongly affected by the physical and chemical properties of target material, including porosity, volatile content and natural mixtures of diverse rocks. On Earth craters in water-saturated sediments are larger than their energy-equivalents in dry soils, which, in turn, are larger than their energy-equivalents in crystalline rocks. On Mars, the distinctly lobate outer boundary (and sometimes several overlapping sets of flow lobes) of impact crater ejecta blankets suggests mobilization of subsurface volatiles, in contrast to evidence from the much drier Moon and Mercury, where craters are surrounded by ballistically emplaced ejecta. A thorough understanding of the behavior and influence of material characteristics on the impact process is crucial for using impact cratering as a tool to better understand the physical, geological, and biogeochemical processes on a given planetary body. The presence of volatiles, namely water, in the target may affect shock propagation and consequently target melting and the final crater morphology. When the target is a mixture of materials with very different impedance, as is the case for rocks and water, the shock wave propagation may be affected by the interaction of the original shock wave with shocks reflected at material boundaries. Single- and multiple-shocked materials experiencing the same peak shock pressure will reach substantially different thermodynamic states, with the multiple-shocked material having lower shock temperature and shock entropy. As a result, for mixtures of materials with very different impedances the maximum shock pressure alone may not be the best criterion for estimating melting and vaporization. Water vaporization may also influence the ejection process by affecting the amount and dispersion of shocked ejecta. We carried out a series of numerical studies to investigate the effect of water and/or ice in the target on the cratering process. Initial results indicate that there is

  6. Foraminiferal repopulation of the late Eocene Chesapeake Bay impact crater

    USGS Publications Warehouse

    Poag, C. Wylie

    2012-01-01

    The Chickahominy Formation is the initial postimpact deposit in the 85km-diameter Chesapeake Bay impact crater, which is centered under the town of Cape Charles, Virginia, USA. The formation comprises dominantly microfossil-rich, silty, marine clay, which accumulated during the final ~1.6myr of late Eocene time. At cored sites, the Chickahominy Formation is 16.8-93.7m thick, and fills a series of small troughs and subbasins, which subdivide the larger Chickahominy basin. Nine coreholes drilled through the Chickahominy Formation (five inside the crater, two near the crater margin, and two ~3km outside the crater) record the stratigraphic and paleoecologic succession of 301 indigenous species of benthic foraminifera, as well as associated planktonic foraminifera and bolboformids. Two hundred twenty of these benthic species are described herein, and illustrated with scanning electron photomicrographs. Absence of key planktonic foraminiferal and Bolboforma species in early Chickahominy sediments indicates that detrimental effects of the impact also disturbed the upper oceanic water column for at least 80-100kyr postimpact. After an average of ~73kyr of stressed, rapidly fluctuating paleoenvironments, which were destabilized by after-effects of the impact, most of the cored Chickahominy subbasins maintained stable, nutrient-rich, low-oxygen bottom waters and interstitial microhabitats for the remaining ~1.3myr of late Eocene time.

  7. Impact craters as biospheric microenvironments, Lawn Hill Structure, Northern Australia.

    PubMed

    Lindsay, John; Brasier, Martin

    2006-04-01

    Impact craters on Mars act as traps for eolian sediment and in the past may have provided suitable microenvironments that could have supported and preserved a stressed biosphere. If this is so, terrestrial impact structures such as the 18-km-diameter Lawn Hill Structure, in northern Australia, may prove useful as martian analogs. We sampled outcrop and drill core from the carbonate fill of the Lawn Hill Structure and recorded its gamma-log signature. Facies data along with whole rock geochemistry and stable isotope signatures show that the crater fill is an outlier of the Georgina Basin and was formed by impact at, or shortly before, approximately 509-506 million years ago. Subsequently, it was rapidly engulfed by the Middle Cambrian marine transgression, which filled it with shallow marine carbonates and evaporites. The crater formed a protected but restricted microenvironment in which sediments four times the thickness of the nearby basinal succession accumulated. Similar structures, common on the martian surface, may well have acted as biospheric refuges as the planet's water resources declined. Low-pH aqueous environments on Earth similar to those on Mars, while extreme, support diverse ecologies. The architecture of the eolian crater fill would have been defined by long-term ground water cycles resulting from intermittent precipitation in an extremely arid climate. Nutrient recycling, critical to a closed lacustrine sub-ice biosphere, could be provided by eolian transport onto the frozen water surface.

  8. Chesapeake Bay Crater, Virginia: Confirmation of Impact Origin

    NASA Astrophysics Data System (ADS)

    Koeberl, C.; Reimold, W. U.; Brandt, D.; Poag, C. W.

    1995-09-01

    Poag et al. [1] identified a late Eocene boulder bed in drill cores from southeast Virginia, and interpreted it as an impact-generated tsunami deposit. Seismic studies and other geophysical evidence indicated the existence of a possible impact structure centered at Chesapeake Bay (37 degrees x 15' N and 76 degrees x 04' W), which may be 85-90 km in diameter [2]. Four drill cores have penetrated into the breccia, although none is available from the center of the structure, or reaches basement. A central peak-ring of crystalline rocks with about 25 km diameter is surrounded by a 30 km-wide annular trough and terrace terrane. The trough is filled with polymictic breccia composed mainly of autochthonous sedimentary clasts in a sandy matrix with some angular clasts of granitic and metasedimentary basement rocks [2]. The Chesapeake Bay crater is of special interest, because it is close to the region identified as the possible source region for the North American tektites, is of about the expected size, and has an age identical to that of the tektites [3]. While the source craters for the Central European and Ivory Coast tektite strewn fields are known, the source crater of the North American tektites has remained elusive. A variety of locations were suggested, including Popigai (Siberia), Wanapitei (Canada), Mistastin (Canada), and Bee Bluff (Texas), but all were later discounted. The distribution of the tektites and microtektites in the strewn field suggests that the North American tektite source crater is likely to be located at or near the eastern coast of the North American continent, maybe underwater [4,5]. The location of the Chesapeake Bay structure is in agreement with the area suggested before [4,5]. We have started a petrological and geochemical study of target rocks and breccias from the Chesapeake Bay structure. We analyzed the major and trace element composition of 17 mainly sedimentary samples, for comparison with North American tektite values. 14 of these

  9. An Impact Crater in Palm Valley, Central Australia?

    NASA Astrophysics Data System (ADS)

    Hamacher, Duane W.; Buchel, Andrew; O'Neill, Craig; Britton, Tui R.

    2011-05-01

    We explore the origin of a 280 m wide, heavily eroded circular depression in Palm Valley, Northern Territory, Australia using gravity, morphological, and mineralogical data collected from a field survey in September 2009. From the analysis of the survey, we debate probable formation processes, namely erosion and impact, as no evidence of volcanism is found in the region or reported in the literature. We argue that the depression was not formed by erosion and consider an impact origin, although we acknowledge that diagnostics required to identify it as such (e.g. meteorite fragments, shatter cones, shocked quartz) are lacking, leaving the formation process uncertain. We encourage further discussion of the depression's origin and stress a need to develop recognition criteria that can help identify small, ancient impact craters. We also encourage systematic searches for impact craters in Central Australia as it is probable that many more remain to be discovered.

  10. Impact Cratering Theory and Modeling for the Deep Impact Mission: From Mission Planning to Data Analysis

    NASA Astrophysics Data System (ADS)

    Richardson, James E.; Melosh, H. Jay; Artemeiva, Natasha A.; Pierazzo, Elisabetta

    2005-03-01

    The cratering event produced by the Deep Impact mission is a unique experimental opportunity, beyond the capability of Earth-based laboratories with regard to the impacting energy, target material, space environment, and extremely low-gravity field. Consequently, impact cratering theory and modeling play an important role in this mission, from initial inception to final data analysis. Experimentally derived impact cratering scaling laws provide us with our best estimates for the crater diameter, depth, and formation time: critical in the mission planning stage for producing the flight plan and instrument specifications. Cratering theory has strongly influenced the impactor design, producing a probe that should produce the largest possible crater on the surface of Tempel 1 under a wide range of scenarios. Numerical hydrocode modeling allows us to estimate the volume and thermodynamic characteristics of the material vaporized in the early stages of the impact. Hydrocode modeling will also aid us in understanding the observed crater excavation process, especially in the area of impacts into porous materials. Finally, experimentally derived ejecta scaling laws and modeling provide us with a means to predict and analyze the observed behavior of the material launched from the comet during crater excavation, and may provide us with a unique means of estimating the magnitude of the comet’s gravity field and by extension the mass and density of comet Tempel 1.

  11. Zumba crater, Daedalia Planum, Mars: Geologic investigation of a young, rayed impact crater and its secondary field

    NASA Astrophysics Data System (ADS)

    Chuang, Frank C.; Crown, David A.; Tornabene, Livio L.

    2016-05-01

    Zumba is a ∼2.9 km diameter rayed crater on Mars located on extensive lava plains in Daedalia Planum to the southwest of Arsia Mons. It is a well-preserved young crater with large ejecta rays that extend for hundreds of kilometers from the impact site. The rays are thermally distinct from the background lava flows in THEMIS daytime and nighttime thermal infrared data, a unique characteristic among martian rayed craters. Concentrated within the rays are solitary or dense clusters of secondary craters with associated diffuse dark-toned deposits along with fewer secondary craters lacking dark-toned deposits. Using CTX images, we have mapped secondary craters with dark-toned deposits, collectively termed ;secondary fields;, to investigate their distribution as a function of distance from the impact site. The mapped secondary field was then used to investigate various aspects of the crater-forming event such as the surface angle and direction of the projectile, the effect of secondary craters on surface age estimates, and the number of secondary craters produced by the impact event. From our mapping, a total of 13,064 secondary fields were documented out to a 200 km radial distance beyond a 15 km-wide non-secondary zone around Zumba crater. Results show that the highest areal coverage of secondary fields occurs within 100 km of Zumba and within its rays, decreasing radially with distance to a background scattering of small secondary fields that are <10 km2 in size (∼91.9% of the total population). The strong east-west asymmetry of crater rays and low areal coverage of fields to the south of Zumba correlate well with studies of Zumba impact melt deposits, indicating a moderately oblique impact projectile coming from the south. Using primary craters in a ∼101 km2 sample region and all craters (primaries and secondaries) from 43 select secondary fields in two map sectors in the study area, we obtain ages of ∼580 ± 100 Ma and ∼650 ± 70 Ma, respectively, for the

  12. Impact Cratering Processes as Understood Through Martian and Terrestrial Analog Studies

    NASA Astrophysics Data System (ADS)

    Caudill, C. M.; Osinski, G. R.; Tornabene, L. L.

    2016-12-01

    Impact ejecta deposits allow an understanding of subsurface lithologies, volatile content, and other compositional and physical properties of a planetary crust, yet development and emplacement of these deposits on terrestrial bodies throughout the solar system is still widely debated. Relating relatively well-preserved Martian ejecta to terrestrial impact deposits is an area of active research. In this study, we report on the mapping and geologic interpretation of 150-km diameter Bakhuysen Crater, Mars, which is likely large enough to have produced a significant volume of melt, and has uniquely preserved ejecta deposits. Our mapping supports the current formation hypothesis for Martian crater-related pitted material, where pits are likened to collapsed degassing features identified at the Ries and Haughton terrestrial impact structures. As hot impact melt-bearing ejecta deposits are emplaced over volatile-saturated material during crater formation, a rapid degassing of the underlying layer results in lapilli-like fluid and gas flow pipes which may eventually lead to collapse features on the surface. At the Haughton impact structure, degassing pipes are related to crater fracture and fault systems; this is analogous to structure and collapse pits mapped in Bakhuysen Crater. Based on stratigraphic superposition, surface and flow texture, and morphological and thermophysical mapping of Bakhuysen, we interpret the top-most ejecta unit to be likely melt-bearing and analogous to terrestrial impact deposits (e.g., Ries suevites). Furthermore, we suggest that Chicxulub is an apt terrestrial comparison based on its final diameter and the evidence of a ballistically-emplaced and volatile-entrained initial ejecta. This is significant as Bakhuysen ejecta deposits may provide insight into larger impact structures where limited exposures make studies difficult. This supports previous work which suggests that given similarities in volatile content and subsurface stratigraphy

  13. Geomechanical models of impact cratering: Puchezh-Katunki structure

    NASA Technical Reports Server (NTRS)

    Ivanov, B. A.

    1992-01-01

    Impact cratering is a complex natural phenomenon that involves various physical and mechanical processes. Simulating these processes may be improved using the data obtained during the deep drilling at the central mound of the Puchezh-Katunki impact structure. A research deep drillhole (named Vorotilovskaya) has been drilled in the Puchezh-Katunki impact structure (European Russia, 57 deg 06 min N, 43 deg 35 min E). The age of the structure is estimated at about 180 to 200 m.y. The initial rim crater diameter is estimated at about 40 km. The central uplift is composed of large blocks of crystalline basement rocks. Preliminary study of the core shows that crystalline rocks are shock metamorphosed by shock pressure from 45 GPa near the surface to 15-20 GPa at a depth of about 5 km. The drill core allows the possibility of investigating many previously poorly studied cratering processes in the central part of the impact structure. As a first step one can use the estimates of energy for the homogeneous rock target. The diameter of the crater rim may be estimated as 40 km. The models elaborated earlier show that such a crater may be formed after collapse of a transient cavity with a radius of 10 km. The most probable range of impact velocities from 11.2 to 30 km/s may be inferred for the asteroidal impactor. For the density of a projectile of 2 g/cu cm the energy of the impact is estimated as 1E28 to 3E28 erg. In the case of vertical impact, the diameter of an asteroidal projectile is from 1.5 to 3 km for the velocity range from 11 to 30 km/s. For the most probable impact angle of 45 deg, the estimated diameter of an asteroid is slightly larger: from 2 to 4 km. Numerical simulation of the transient crater collapse has been done using several models of rock rheology during collapse. Results show that the column at the final position beneath the central mound is about 5 km in length. This value is close to the shock-pressure decay observed along the drill core. Further

  14. Impact cratering as a major process in planet formation: Projectile identification of meteorite craters

    NASA Astrophysics Data System (ADS)

    Schmidt, G.; Kratz, K.

    2009-12-01

    Ancient surfaces of solid planets show that impact cratering is a major process in planet formation. Understanding origin and influence of impactors on the chemical composition of planets (core, mantle and crust) it is important to know the relative abundances of highly siderophile elements (Os, Ir, Ru, Pt, Rh, Pd) in the silicate mantle and crust of planets and meteorites. Refractory highly siderophile elements, such as Os and Ir, are abundant in most meteorites but depleted in crustal rocks (low target/meteorite ratios) and thus the most reliable elements for projectile identification. However, target/meteorite ratios are high if target rocks consist of mantle rocks. In such cases elements are enriched in impactites due to relatively high abundances (ng/g level) in target rocks to make the identification of projectile types difficult (e.g., Gardnos impact structure in Norway). The Ru/Ir ratio is the most reliable key ratio that rules out Earth primitive upper mantle (PUM) derived refractory highly siderophile element components in impactites. The well established Ru/Ir ratio of the Earth mantle of 2.0 ± 0.1 (e.g. Schmidt and Kratz 2004) is significantly above the chondritic ratios varying from 1.4 to 1.6. On Earth Rh/Ir, Ru/Ir, Pd/Ir, and Pt/Os derived from PUM match the ratios of group IV irons with fractionated trace element patterns. The question raise if HSE in mantle rocks are added to the accreting Earth by a late bombardment of pre-differentiated objects or the cores of these objects (magmatic iron meteorites as remnants of the first planetesimals, e.g. Kleine et al. 2009) or some unsampled inner solar system materials from the Mercury-Venus formation region, not sampled through meteorite collections (Schmidt 2009). The PGE and Ni systematics of the upper continental crust (UCC) closely resembles group IIIAB iron meteorites with highly fractionated refractory trace element patterns, pallasites, and the evolved suite of Martian meteorites (representing

  15. The Chesapeake Bay Impact Crater: An Educational Investigation for Students into the Planetary Impact Process and its Environmental Consequences

    NASA Technical Reports Server (NTRS)

    Levine, Arlene S.

    2008-01-01

    , VDEQ, HRPDC and WM on the principles of geology, the formation of impact craters, the consequences of the impacting body on the atmosphere, ocean, surface and sub-surface, the geological, chemical and biological analyses of the core and the cataloguing and storage of the core segments, etc. After the briefings, the Girl Scouts visited the drilling site where they inspected the core drilling rig, examined the core samples and discussed the drilling procedures, cores and interpretation of the cores with scientists and educators from the organizations conducting the core drilling. Demonstrations at the drilling site included demonstrations of impacting objects hitting multi-colored layered mud targets at different angles of entry. The multi-colored layers of mud were instructive in mapping out the distribution of impact-ejected material around the impact crater. The presentation will include a series of photographs of the Girl Scout participating in activities at the Chesapeake Bay Impact Crater drill site, including retrieving cores from the drilling rig, inspecting the core samples and participating in the impact-crater formation demonstrations.

  16. Impact and explosion crater ejecta, fragment size, and velocity

    NASA Technical Reports Server (NTRS)

    Okeefe, J. D.; Ahrens, T. J.

    1983-01-01

    A model was developed for the mass distribution of fragments that are ejected at a given velocity for impact and explosion craters. The model is semi-empirical in nature and is derived from (1) numerical calculations of cratering and the resultant mass versus ejection velocity, (2) observed ejecta blanket particle size distributions, (3) an empirical relationship between maximum ejecta fragment size and crater diameter and an assumption on the functional form for the distribution of fragements ejected at a given velocity. This model implies that for planetary impacts into competent rock, the distribution of fragments ejected at a given velocity are nearly monodisperse, e.g., 20% of the mass of the ejecta at a given velocity contain fragments having a mass less than 0.1 times a mass of the largest fragment moving at that velocity. Using this model, the largest fragment that can be ejected from asteroids, the moon, Mars, and Earth is calculated as a function of crater diameter. In addition, the internal energy of ejecta versus ejecta velocity is found. The internal energy of fragments having velocities exceeding the escape velocity of the moon will exceed the energy required for incipient melting for solid silicates and thus, constrains the maximum ejected solid fragment size.

  17. The Chykcha Impact Crater, Taymyr Peninsula: A Heavily Eroded Astrobleme of (K2-Pg1)? Age

    NASA Astrophysics Data System (ADS)

    Vishnevsky, S. A.

    1995-09-01

    1. There is a deep topographic depression in the Northern Taymyr (the basin of Chykcha R.), centered at lat=75 degrees 42'N and lon=97 degrees 48'E. Its geological setting is made up of Rf3-O1 basement (terrigene-carbonaceous rocks which had been intensively dislocated to form complex syncline + anticline structures of NE strike; this strata was intruded by Rf1, Rf2 and Pz3 gabbro-granitic complexes) and Mz-Cz sedimentary cover which is partially preserved in the depressions; Q4 sediments are also broadly widespread. 2. The Chykcha depression is a rounded crater-like basin ~ 6 km in diameter, with step (6-9 degrees) slopes, flat bottom and central mount ~1 km in diameter and ~ 30 m in height.The visible depth of the depression is up to 200-220 m in respect to its borders and table mount relics of paleogenic planation; its full depth in the basement, without N2Q2 filling (up to 100 m in thickness) is ~300-320 m. Detailed geophysical data is absent for the depression. 3. No intensive brecciation and fracturing has been found on the slopes of the depression, but the central mount is made up of chaotic mixture of target rock megabreccia and klippes. Together with the intensive brecciation, the cleavage fracturing of the rocks as well as flat and glisten faces of perfect cleavage in quartz are also observed; last two features are believed to be the macroscopic evidence of shock damage. Under the microscope, PF (along {1011} and {3253} mainly), and PDF (along {1013} and {1012} mainly) have been found in this quartz, interpreted as the traces of weak shock metamorphism at pressures ~3.5-7 GPa. No traces of shatter cones are present. 4. The crater-like morphology and a clear superimposed position of the depression as well as megabreccia body and the traces of shock metamorphism indicate this basin to be a complex impact crater ~6 km in diameter, with the central mount. The parameters of the Chykcha impact event are estimated to be the next: energy of impact ~1,060 Mt TNT

  18. The Zhamanshin impact feature: A new class of complex crater?

    NASA Technical Reports Server (NTRS)

    Garvin, J. B.; Schnetzler, C. C.

    1992-01-01

    The record of 10-km-scale impact events of Quaternary age includes only two 'proven' impact structures: the Zhamanshin Impact Feature (ZIF) and the Bosumtwi Impact Crater (BIC). What makes these impact landforms interesting from the standpoint of recent Earth history is their almost total lack of morphologic similarity, in spite of similar absolute ages and dimensions. The BIC resembles pristine complex craters on the Moon to first order (i.e., 'U'-shaped topographic cross section with preserved rim), while the ZIF displays virtually none of the typical morphologic elements of a 13- to 14-km-diameter complex crater. Indeed, this apparent lack of a craterlike surficial topographic expression initially led Soviet geologists to conclude that the structure was only 5.5 to 6 km in diameter and at least 4.5 Ma in age. However, more recent drilling and geophysical observations at the ZIF have indicated that its pre-erosional diameter is at least 13.5 km, and that its age is most probably 0.87 Ma. Why the present topographic expression of a 13.5-km complex impact crater less than 1 m.y. old most closely resembles heavily degraded Mesozoic shield craters such as Lappajarvi is a question of considerable debate. Hypotheses for the lack of a clearly defined craterlike form at the ZIF include a highly oblique impact, a low-strength 'cometary' projectile, weak or water-saturated target materials, and anomalous erosion patterns. The problem remains unresolved because typical erosion rates within the arid sedimentary platform environment of central Kazakhstan in which the ZIF is located are typically low; it would require at least a factor of 10 greater erosion at the ZIF in order to degrade the near-rim ejecta typical of a 13.5-km complex crater by hundreds of meters in only 0.87 Ma, and to partially infill an inner cavity with 27 cu km (an equivalent uniform thickness of infill of 166 m). Our analysis of the degree of erosion and infill at the ZIF calls for rates in the 0.19 to

  19. The Zhamanshin impact feature: A new class of complex crater?

    NASA Astrophysics Data System (ADS)

    Garvin, J. B.; Schnetzler, C. C.

    1992-09-01

    The record of 10-km-scale impact events of Quaternary age includes only two 'proven' impact structures: the Zhamanshin Impact Feature (ZIF) and the Bosumtwi Impact Crater (BIC). What makes these impact landforms interesting from the standpoint of recent Earth history is their almost total lack of morphologic similarity, in spite of similar absolute ages and dimensions. The BIC resembles pristine complex craters on the Moon to first order (i.e., 'U'-shaped topographic cross section with preserved rim), while the ZIF displays virtually none of the typical morphologic elements of a 13- to 14-km-diameter complex crater. Indeed, this apparent lack of a craterlike surficial topographic expression initially led Soviet geologists to conclude that the structure was only 5.5 to 6 km in diameter and at least 4.5 Ma in age. However, more recent drilling and geophysical observations at the ZIF have indicated that its pre-erosional diameter is at least 13.5 km, and that its age is most probably 0.87 Ma. Why the present topographic expression of a 13.5-km complex impact crater less than 1 m.y. old most closely resembles heavily degraded Mesozoic shield craters such as Lappajarvi is a question of considerable debate. Hypotheses for the lack of a clearly defined craterlike form at the ZIF include a highly oblique impact, a low-strength 'cometary' projectile, weak or water-saturated target materials, and anomalous erosion patterns. The problem remains unresolved because typical erosion rates within the arid sedimentary platform environment of central Kazakhstan in which the ZIF is located are typically low; it would require at least a factor of 10 greater erosion at the ZIF in order to degrade the near-rim ejecta typical of a 13.5-km complex crater by hundreds of meters in only 0.87 Ma, and to partially infill an inner cavity with 27 cu km (an equivalent uniform thickness of infill of 166 m). Our analysis of the degree of erosion and infill at the ZIF calls for rates in the 0.19 to

  20. The Cretaceous-Tertiary (K/T) impact: One or more source craters?

    NASA Technical Reports Server (NTRS)

    Koeberl, Christian

    1992-01-01

    The Cretaceous-Tertiary (K/T) boundary is marked by signs of a worldwide catastrophe, marking the demise of more than 50 percent of all living species. Ever since Alvarez et al. found an enrichment of IR and other siderophile elements in rocks marking the K/T boundary and interpreted it as the mark of a giant asteroid (or comet) impact, scientists have tried to understand the complexities of the K/T boundary event. The impact theory received a critical boost by the discovery of shocked minerals that have so far been found only in association with impact craters. One of the problems of the K/T impact theory was, and still is, the lack of an adequate large crater that is close to the maximum abundance of shocked grains in K/T boundary sections, which was found to occur in sections in Northern America. The recent discovery of impact glasses from a K/T section in Haiti has been crucial in establishing a connection with documented impact processes. The location of the impact-glass findings and the continental nature of detritus found in all K/T sections supports at least one impact site near the North American continent. The Manson Impact Structure is the largest recognized in the United States, 35 km in diameter, and has a radiometric age indistinguishable from that of the Cretaceous-Tertiary (K/T) boundary. Although the Manson structure may be too small, it may be considered at least one element of the events that led to the catastrophic loss of life and extinction of many species at that time. A second candidate for the K/T boundary crater is the Chicxulub structure, which was first suggested to be an impact crater more than a decade ago. Only recently, geophysical studies and petrological (as well as limited chemical) analyses have indicated that this buried structure may in fact be of impact origin. At present we can conclude that the Manson crater is the only confirmed crater of K/T age, but Chicxulub is becoming a strong contender; however, detailed geochemical

  1. The formation of peak rings in large impact craters

    NASA Astrophysics Data System (ADS)

    Morgan, Joanna V.; Gulick, Sean P. S.; Bralower, Timothy; Chenot, Elise; Christeson, Gail; Claeys, Philippe; Cockell, Charles; Collins, Gareth S.; Coolen, Marco J. L.; Ferrière, Ludovic; Gebhardt, Catalina; Goto, Kazuhisa; Jones, Heather; Kring, David A.; Le Ber, Erwan; Lofi, Johanna; Long, Xiao; Lowery, Christopher; Mellett, Claire; Ocampo-Torres, Rubén; Osinski, Gordon R.; Perez-Cruz, Ligia; Pickersgill, Annemarie; Poelchau, Michael; Rae, Auriol; Rasmussen, Cornelia; Rebolledo-Vieyra, Mario; Riller, Ulrich; Sato, Honami; Schmitt, Douglas R.; Smit, Jan; Tikoo, Sonia; Tomioka, Naotaka; Urrutia-Fucugauchi, Jaime; Whalen, Michael; Wittmann, Axel; Yamaguchi, Kosei E.; Zylberman, William

    2016-11-01

    Large impacts provide a mechanism for resurfacing planets through mixing near-surface rocks with deeper material. Central peaks are formed from the dynamic uplift of rocks during crater formation. As crater size increases, central peaks transition to peak rings. Without samples, debate surrounds the mechanics of peak-ring formation and their depth of origin. Chicxulub is the only known impact structure on Earth with an unequivocal peak ring, but it is buried and only accessible through drilling. Expedition 364 sampled the Chicxulub peak ring, which we found was formed from uplifted, fractured, shocked, felsic basement rocks. The peak-ring rocks are cross-cut by dikes and shear zones and have an unusually low density and seismic velocity. Large impacts therefore generate vertical fluxes and increase porosity in planetary crust.

  2. The formation of peak rings in large impact craters.

    PubMed

    Morgan, Joanna V; Gulick, Sean P S; Bralower, Timothy; Chenot, Elise; Christeson, Gail; Claeys, Philippe; Cockell, Charles; Collins, Gareth S; Coolen, Marco J L; Ferrière, Ludovic; Gebhardt, Catalina; Goto, Kazuhisa; Jones, Heather; Kring, David A; Le Ber, Erwan; Lofi, Johanna; Long, Xiao; Lowery, Christopher; Mellett, Claire; Ocampo-Torres, Rubén; Osinski, Gordon R; Perez-Cruz, Ligia; Pickersgill, Annemarie; Poelchau, Michael; Rae, Auriol; Rasmussen, Cornelia; Rebolledo-Vieyra, Mario; Riller, Ulrich; Sato, Honami; Schmitt, Douglas R; Smit, Jan; Tikoo, Sonia; Tomioka, Naotaka; Urrutia-Fucugauchi, Jaime; Whalen, Michael; Wittmann, Axel; Yamaguchi, Kosei E; Zylberman, William

    2016-11-18

    Large impacts provide a mechanism for resurfacing planets through mixing near-surface rocks with deeper material. Central peaks are formed from the dynamic uplift of rocks during crater formation. As crater size increases, central peaks transition to peak rings. Without samples, debate surrounds the mechanics of peak-ring formation and their depth of origin. Chicxulub is the only known impact structure on Earth with an unequivocal peak ring, but it is buried and only accessible through drilling. Expedition 364 sampled the Chicxulub peak ring, which we found was formed from uplifted, fractured, shocked, felsic basement rocks. The peak-ring rocks are cross-cut by dikes and shear zones and have an unusually low density and seismic velocity. Large impacts therefore generate vertical fluxes and increase porosity in planetary crust. Copyright © 2016, American Association for the Advancement of Science.

  3. Mars cratering chronology: new estimates

    NASA Astrophysics Data System (ADS)

    Ivanov, B.

    Many interpretations of Mars geologic evolution is making with the cratering chronology technique (e.g. Hartmann and Neukum, Space Sci. Rev. 96, 165-194, 2001). The core idea of the technique is that older planetary surfaces accumulate more impact craters of a given size than younger surfaces. Two issues are important for the cratering chronology: (i) the estimate of the Moon/Mars cratering ratio to transfer the absolute time scale form the Moon, studied with return sample missions, and (2) the relative importance of secondary impact craters in the interpretation of the available crater counts. In this presentation I describe a progress in both topics listed above. Modern impact rates on planets are defined by orbital evolution of small bodies under weak gravity and non-gravity forces, including resonances with large planets and effects of solar irradiation. In parallel with the celestial mechanics modeling we use the database of observed asteroids, converted into a planetary impact rate. The test of this technique is done for the Earth/moon cratering rate comparison with an independent verification with observed terrestrial atmospheric bursts of bolides and fireballs. For small craters (D<300 m) and young lunar surfaces (age < 100 Ma) the independent measurements of the lunar cratering rate and modern terrestrial bolide/fireball flux match pretty well, giving more confidence for the approach. However, for larger craters (300 m < D <3 km) one should assume the porous-like scaling law for lunar craters to match the astronomically estimated impact rate. This fact demands a reconsideration of Mars/moon cratering rate ratio, as the porosity of upper 1 km under Martian surface may be quite different from the lunar one due to larger Martian gravity and possible filling of porous space with ice/brine. The problem of secondary crater share among crater counts used for surface dating is analyzed by size-frequency distribution (SFD) of secondary and primary craters. The

  4. Analysis of a crater-forming meteorite impact in Peru

    NASA Astrophysics Data System (ADS)

    Brown, P.; ReVelle, D. O.; Silber, E. A.; Edwards, W. N.; Arrowsmith, S.; Jackson, L. E.; Tancredi, G.; Eaton, D.

    2008-09-01

    The fireball producing a crater-forming meteorite fall near Carancas, Peru, on 15 September 2007 has been analyzed using eyewitness, seismic, and infrasound records. The meteorite impact, which produced a crater of 13.5 m diameter, is found to have released of order 1010 J of energy, equivalent to ~2-3 tons of TNT high explosives based on infrasonic measurements. Our best fit trajectory solution places the fireball radiant at an azimuth of 82° relative to the crater, with an entry angle from the horizontal of 63°. From entry modeling and infrasonic energetics constraints, we find an initial energy for the fireball to be in the 0.06-0.32 kton TNT equivalent. The initial velocity for the meteoroid is restricted to be below 17 km/s from orbit considerations alone, while modeling suggests an even lower best fit velocity close to 12 km/s. The initial mass of the meteoroid is in the range of 3-9 tons. At impact, modeling suggests a final end mass of order a few metric tons and impact velocity in the 1.5-4 km/s range. We suggest that the formation of such a substantial crater from a chondritic mass was the result of the unusually high strength (and corresponding low degree of fragmentation in the atmosphere) of the meteoritic body. Additionally, the high altitude of the impact site (3800 m.a.s.l) resulted in an almost one order of magnitude higher impact speed than would have been the case for the same body impacting close to sea level.

  5. Low-speed impact cratering in loose granular media

    NASA Astrophysics Data System (ADS)

    Durian, Douglas

    2005-03-01

    In this talk I shall describe the penetration of projectiles dropped into noncohesive granular media, and how the results vary with the properties of both the projectile and the medium. In contrast to wide assumption, the penetration depth and crater diameter represent two distinct length scales. The diameter scales as the 1/4 power of projectile energy, but curiously the depth is not a simple function of either the projectile energy or momentum at impact. Rather, it scales as the 1/2 power of density, the 2/3 power of projectile diameter, and the 1/3 power of total drop distance. This same result also holds for cylinders with a variety of tips, and so is not an accident of projectile shape. It is crucial to understand the penetration depth because it is directly related to the mechanics of impact, namely the average stopping force acting between projectile and medium. In addition to this discussion, I shall also present new data on the dynamics of impact. All experiments were constructed and carried out at UCLA by undergraduate physics majors: Jun Uehara, Katie Newhall, Chris Santore, and Mike Ambroso.[1] J.S. Uehara, M.A. Ambroso, R.P. Ojha, and D.J. Durian, ``Low-Speed Impact Craters in Loose Granular Media,'' Phys. Rev. Lett. 90, 194301 (2003).[2] K.A. Newhall and D.J. Durian, ``Projectile-shape dependence of impact craters in loose granular media,'' Phys. Rev. E 68, 06030R (2003).[3] M.A. Ambroso, C.R. Santore, A.R. Abate, and D.J. Durian, ``Penetration depth for shallow impact cratering,'' cond-mat/0411231 (2004).

  6. UNAM Scientific Drilling Program of Chicxulub Impact Structure-Evidence for a 300 kilometer crater diameter

    NASA Astrophysics Data System (ADS)

    Urrutia-Fucugauchi, J.; Marin, L.; Trejo-Garcia, A.

    As part of the UNAM drilling program at the Chicxulub structure, two 700 m deep continuously cored boreholes were completed between April and July, 1995. The Peto UNAM-6 and Tekax UNAM-7 drilling sites are ˜150 km and 125 km, respectively, SSE of Chicxulub Puerto, near the crater's center. Core samples from both sites show a sequence of post-crater carbonates on top of a thick impact breccia pile covering the disturbed Mesozoic platform rocks. At UNAM-7, two impact breccia units were encountered: (1) an upper breccia, mean magnetic susceptibility is high (˜55 × 10-6 SI units), indicating a large component of silicate basement has been incorporated into this breccia, and (2) an evaporite-rich, low susceptibility impact breccia similar in character to the evaporite-rich breccias observed at the PEMEX drill sites further out. The upper breccia was encountered at ˜226 m below the surface and is ˜125 m thick; the lower breccia is immediately subjacent and is >240 m thick. This two-breccia sequence is typical of the suevite-Bunte breccia sequence found within other well preserved impact craters. The suevitic upper unit is not present at UNAM-6. Instead, a >240 m thick evaporite-rich breccia unit, similar to the lower breccia at UNAM-7, was encountered at a depth of ˜280 m. The absence of an upper breccia equivalent at UNAM-6 suggests some portion of the breccia sequence has been removed by erosion. This is consistent with interpretations that place the high-standing crater rim at 130-150 km from the center. Consequently, the stratigraphic observations and magnetic susceptibiity records on the upper and lower breccias (depth and thickness) support a ˜300 km diameter crater model.

  7. Ice Deposition and Loss in an Impact Crater in Utopia Basin

    NASA Image and Video Library

    2013-07-24

    This image captured by NASA Mars Reconnaissance Orbiter spans from wall to wall across the center area of an impact crater. From what we see, a lot has happened to modify the appearance of the crater since it was formed.

  8. Properties of Ejecta Blanket Deposits Surrounding Morasko Meteorite Impact Craters (Poland)

    NASA Astrophysics Data System (ADS)

    Szokaluk, M.; Muszyński, A.; Jagodziński, R.; Szczuciński, W.

    2016-08-01

    Morasko impact craters are a record of the fall of a meteorite into the soft sediments. The presented results illustrate the geological structure of the area around the crater as well as providing evidence of the occurrence of ejecta blanket.

  9. Fragment shapes in impact experiments ranging from cratering to catastrophic disruption

    NASA Astrophysics Data System (ADS)

    Michikami, Tatsuhiro; Hagermann, Axel; Kadokawa, Tokiyuki; Yoshida, Akifumi; Shimada, Akira; Hasegawa, Sunao; Tsuchiyama, Akira

    2016-01-01

    Laboratory impact experiments have found that impact fragments tend to be elongated. Their shapes, as defined by axes a, b and c, these being the maximum dimensions of the fragment in three mutually orthogonal planes (a ⩾ b ⩾ c), are distributed around mean values of the axial ratios b/a ∼ 0.7 and c/a ∼ 0.5. This corresponds to a:b:c in the simple proportion 2:√2:1. The shape distributions of some boulders on Asteroid Eros, the small- and fast-rotating asteroids (diameter <200 m and rotation period <1 h), and asteroids in young families, are similar to those of laboratory fragments created in catastrophic disruptions. Catastrophic disruption is, however, a process that is different from impact cratering. In order to systematically investigate the shapes of fragments in the range from impact cratering to catastrophic disruption, impact experiments for basalt targets 5-15 cm in size were performed. A total of 28 impact experiments were carried out by firing a spherical nylon projectile (diameter 7.14 mm) perpendicularly into the target surface at velocities of 1.60-7.13 km/s. More than 12,700 fragments with b ⩾ 4 mm generated in the impact experiments were measured. We found that the mean value of c/a in each impact decreases with decreasing impact energy per unit target mass. For instance, the mean value of c/a in an impact cratering event is nearly 0.2, which is considerably smaller than c/a in a catastrophic disruption (∼0.5). The data presented here can provide important evidence to interpret the shapes of asteroids and boulders on asteroid surfaces, and can constrain current interpretations of asteroid formation. As an example, by applying our experimental results to the boulder shapes on Asteroid Itokawa's surface, we can infer that Itokawa's parent body must have experienced a catastrophic disruption.

  10. Secondary Craters

    NASA Image and Video Library

    2016-12-21

    This image of a southern mid-latitude crater was intended to investigate the lineated material on the crater floor. At the higher resolution of HiRISE, the image reveals a landscape peppered by small impact craters. These craters range from about 30 meters in diameter down to the resolution limit (about 2 meter diameter in this image acquired by averaging 2x2 picture elements). Such dense clusters of small craters are frequently formed by secondary craters, caused by the impact of material that was excavated and ejected from the surface of Mars during the creation of a larger nearby crater by the impact of a comet or an asteroid. Secondary impact craters are both interesting and vexing. They are interesting because they show the trajectories of the material that was ejected from the primary impact with the greatest speeds, typically material from near the surface of the blast zone. Secondary craters are often found along the traces of crater rays, linear features that extend radially from fresh impact craters and can reach many crater diameters in length. Secondary craters can be useful when crater rays are visible and the small craters can be associated with a particular primary impact crater. They can be used to constrain the age of the surface where they fell, since the surface must be older than the impact event. The age of the crater can be approximately estimated from the probability of an impact that produced a crater of such a size within a given area of Mars over a given time period. But these secondary craters can also be perplexing when no crater rays are preserved and a source crater is not easily identifiable, as is the case here. The impact that formed these secondary craters took place long enough ago that their association with a particular crater has been erased. They do not appear along the trace of a crater ray that is still apparent in visible or thermal infrared observations. These secondary craters complicate the task of estimating the age of

  11. The Ries impact crater described as an analogue for a Martian double-layered ejecta crater on Earth

    NASA Astrophysics Data System (ADS)

    Sturm, Sebastian; Wulf, Gerwin; Jung, Dietmar; Kenkmann, Thomas

    2014-05-01

    The Ries impact crater (~26 km-diameter) is described as a relatively pristine, complex impact crater in southern Germany. The oblique impact occurred during the Miocene (14.9 Ma) and hit into a two-layered target material that consists of ~650 m partly water-saturated and subhorizontally layered sediments (limestones, sandstones, shales) of Triassic to Tertiary ages underlain by crystalline basement rocks (mainly gneisses, granites and amphibolites) [1, 2, 3, 4]. The continuous and well-preserved ejecta blanket reaches up to a distance of 45 km from the crater center. It is built up by so called Bunte Breccia material that is described as a polymict lithic breccia. Bunte Breccia mainly consists of unshocked to weakly shocked sedimentary target clasts including a minority of crystalline basement clasts and reworked surfical sediments (e.g., Upper Freshwater Molasses or Upper Seawater Molasses) [5, 6]. Here we present our final interpolation results of the morphology of the paleo-surface and the thickness variations of the continuous ejecta blanket (Bunte Breccia) with radial range outside of the Ries impact crater. Our results were then compared with ejecta distribution characteristics of Martian complex double-layered ejecta craters (DLE) [7]. We combined digital elevation data (ASTER DEM) and geologic information of the recent geologic map [8], in addition with nine NASA Drillings [6], and up to 40 Bavarian Environment Agency drillings in ArcGIS (ESRI) and RockWorks14 (RockWare) to interpolate the elevation of the lower contact plane ("paleo-surface") and the contact between the Bunte breccia and the overlain Suevite deposits to reconstruct the Bunte Breccia thickness variation outside of the Ries impact crater [7]. Our final interpolation results of the paleo-surface and Bunte Breccia top surface provide an increasing Bunte breccia thickness with increasing distance from the crater center. The ejecta thickness distribution clearly deviates from a steady decrease

  12. Identification of buried lunar impact craters from GRAIL data and implications for the nearside maria

    NASA Astrophysics Data System (ADS)

    Evans, Alexander J.; Soderblom, Jason M.; Andrews-Hanna, Jeffrey C.; Solomon, Sean C.; Zuber, Maria T.

    2016-03-01

    Gravity observations from the dual Gravity Recovery and Interior Laboratory (GRAIL) spacecraft have revealed more than 100 quasi-circular mass anomalies, 26-300 km in diameter, on the lunar nearside. These anomalies are interpreted to be impact craters filled primarily by mare deposits, and their characteristics are consistent with those of impact structures that formed prior to, and during, intervals of flooding of feldspathic terrane by mare basalt lavas. We determine that mare deposits have an average density contrast of 850-200+300 kg m-3 relative to the surrounding crust. The presence of a large population of volcanically buried craters with minimal topographic expression and diameters up to 300 km requires an average nearside mare thickness of at least 1.5 km and local lenses of mare basalt as thick as ~7 km.

  13. Ice-Associated Impact Craters on Mars: Implications from MOLA Observations

    NASA Technical Reports Server (NTRS)

    Garvin, J. B.; Sakimoto, S. E. H.

    1998-01-01

    Impact features adjacent to the permanent North Polar Cap on Mars provide a unique perspective on the crater formation and modification process. Little attention has been previously paid to the dozen's of ice-associated or 'frost-filled' craters north of 70N on Mars. We have examined Mars Orbiter Laser Altimeter (MOLA) cross-sections of 13 of these features between 7ON and 82N in an effort to understand cavity modification processes potentially associated with the advance and retreat of the North Polar ice cap. Here we treat the general geometric properties of these impact features and focus attention on one almost entirely filled example (i.e., 32 km diameter, located at 77N, 89E) for which high resolution Viking Orbiter images (50 m per pixel) provide key constraints for interpreting MOLA's meter-precision topographic measurements.

  14. Pwyll Impact Crater: Perspective View of Topographic Model

    NASA Technical Reports Server (NTRS)

    1998-01-01

    This computer-generated perspective view of the Pwyll impact crater on Jupiter's moon Europa was created using images taken by NASA's Galileo spacecraft camera when the spacecraft flew past that moon on Feb. 20 and Dec. 16, 1997 during its 6th and 12th orbits of Jupiter. Images of the crater taken from different angles on the different orbits have been combined to generate a model of the topography of Pwyll and its surroundings. This simulated view is from the southwest at a 45 degree angle, with the vertical exaggerated four times the natural size. The colors represent different elevation levels with blue being the lowest and red the highest. Pwyll, about 26 kilometers (16 miles) across, is unusual among craters in the solar system, because its floor is at about the same elevation as the surrounding terrain. Moreover, its central peak, standing approximately 600 meters (almost 2,000 feet) above the floor, is much higher than its rim. This may indicate that the crater was modified shortly after its formation by the flow of underlying warm ice.

    The Jet Propulsion Laboratory, Pasadena, CA manages the Galileo mission for NASA's Office of Space Science, Washington, DC. JPL is an operating division of California Institute of Technology (Caltech).

    This image and other images and data received from Galileo are posted on the World Wide Web, on the Galileo mission home page at URL http://www.jpl.nasa.gov/ galileo.

  15. The topography of impact craters in 'softened' terrain on Mars

    NASA Technical Reports Server (NTRS)

    Jankowski, David G.; Squyres, Steven W.

    1992-01-01

    The technique of photoclinometry is applied here to Viking orbiter images of Mars in order to derive topographic profiles across Martian craters on both softened and unsoftened terrain. The results demonstrate that craters on the two kinds of terrain are in fact topographically distinct. Both simple and complex softened craters are characterized by more convex-upward crater walls than are unsoftened craters, and both simple and complex softened craters have rounder crater rims. Softened complex craters have modestly smaller crater depths than unsoftened complex craters. Both the rim heights and bowl depths are reduced, with the rim heights reduced more. Softened simple craters have much smaller crater depths than unsoftened simple craters. Both the rim heights and bowl depths are reduced, with the bowl depths reduced more.

  16. EVIDENCE IN CRATER AGES FOR PERIODIC IMPACTS ON THE EARTH

    SciTech Connect

    Alvarez, W.; Muller, R.A.

    1984-01-01

    Recent evidence has indicated that the impact of a comet or asteroid may have been responsible for mass extinction at the ends of both the Cretaceous and the Eocene. Quantitative analysis by Raup and Sepkoski showed that mass extinctions occur with a 26-Myr period, similar to the period seen in qualitative pelagic records by Fischer and Arthur. To account for the possibility of periodic comet showers, Davis et al. proposed that such showers could be triggered by an unseen solar companion star as it passes through perihelion on a moderately eccentric orbit. To test a prediction implicit in this model we examined records of large impact craters on the Earth. We report here that most of the craters occur in a 28.4-Myr cycle. Within measurement errors, this period and its phase are the same as those found in the fossil mass extinctions. The probability that such agreement is accidental is 1 in 10.

  17. Impact cratering calculations. Part 1: Early time results

    NASA Technical Reports Server (NTRS)

    Thomsen, J. M.; Sauer, F. N.; Austin, M. G.; Ruhl, S. F.; Shultz, P. H.; Orphal, D. L.

    1979-01-01

    Early time two dimensional finite difference calculations of laboratory scale hypervelocity impact of 0.3 g spherical 2024 aluminum projectiles into homogeneous plasticene clay targets were performed. Analysis of resulting material motions showed that energy and momentum were coupled quickly from the aluminum projectile to the target material. In the process of coupling, some of the plasticene clay target was vaporized while the projectile become severely deformed. The velocity flow field developed within the target was shown to have features similar to those found in calculations of near surface explosion cratering. Specific application of Maxwell's analytic Z-Model showed that this model can be used to describe the early time flow fields resulting from the impact cratering calculations as well, provided the flow field centers are located beneath the target surface and most of the projectile momentum is dissipated before the model is applied.

  18. Importance of pre-impact crustal structure for the asymmetry of the Chicxulub impact crater

    NASA Astrophysics Data System (ADS)

    Gulick, Sean P. S.; Barton, Penny J.; Christeson, Gail L.; Morgan, Joanna V.; McDonald, Matthew; Mendoza-Cervantes, Keren; Pearson, Zulmacristina F.; Surendra, Anusha; Urrutia-Fucugauchi, Jaime; Vermeesch, Peggy M.; Warner, Mike R.

    2008-02-01

    Impact craters are observed on the surfaces of all rocky planets and satellites in our Solar System; some impacts on Earth, such as the Cretaceous/Tertiary one that formed the Chicxulub impact crater, have been implicated in mass extinctions. The direction and angle of the impact-or its trajectory-is an important determinant of the severity of the consequent environmental damage, both in the downrange direction (direction bolide travels) and in the amount of material that enters the plume of material vaporized on impact. The trajectory of the Chicxulub impact has previously been inferred largely from asymmetries in the gravity anomalies over the crater. Here, we use seismic data to image the Chicxulub crater in three dimensions and demonstrate that the strong asymmetry of its subsurface correlates with significant pre-existing undulations on the end-Cretaceous continental shelf that was the site of this impact. These results suggest that for rocky planets, geological and geomorphological heterogeneities at the target site may play an important role in determining impact crater structure, in addition to impact trajectories. In those cases where heterogeneous targets are inferred, deciphering impact trajectories from final crater geometries alone may be difficult and require further data such as the distribution of ejecta.

  19. Space Radar of Image Aorounga Impact Crater, Chad

    NASA Technical Reports Server (NTRS)

    1994-01-01

    The impact of an asteroid or comet several hundred million years ago left scars in the landscape that are still visible in this spaceborne radar image of an area in the Sahara Desert of northern Chad. The concentric ring structure is the Aorounga impact crater, with a diameter of about 17 kilometers (10.5 miles). The original crater was buried by sediments, which were then partially eroded to reveal the current ring-like appearance. The dark streaks are deposits of windblown sand that migrate along valleys cut by thousands of years of wind erosion. The dark band in the upper right of the image is a portion of a proposed second crater. Scientists are using radar images to investigate the possibility that Aorounga is one of a string of impact craters formed by multiple impacts. Radar imaging is a valuable tool for the study of desert regions because the radar waves can penetrate thin layers of dry sand to reveal details of geologic structure that are invisible to other sensors. The image was acquired by the Spaceborne Imaging Radar-C/X-band Synthetic Aperture Radar (SIR-C/X-SAR) on April 18 and 19, 1994, onboard the space shuttle Endeavour. The area shown is 22 kilometers by 28 kilometers (14 miles by 17 miles) and is centered at 19.1 degrees north latitude, 19.3 degrees east longitude. North is toward the upper right. The colors are assigned to different radar frequencies and polarizations as follows: red is L-band, horizontally transmitted and received; green is C-band, horizontally transmitted and received; and blue is C-band, horizontally transmitted, vertically received. SIR-C/X-SAR, a joint mission of the German, Italian and United States space agencies, is part of NASA's Mission to Planet Earth program.

  20. Space Radar of Image Aorounga Impact Crater, Chad

    NASA Technical Reports Server (NTRS)

    1994-01-01

    The impact of an asteroid or comet several hundred million years ago left scars in the landscape that are still visible in this spaceborne radar image of an area in the Sahara Desert of northern Chad. The concentric ring structure is the Aorounga impact crater, with a diameter of about 17 kilometers (10.5 miles). The original crater was buried by sediments, which were then partially eroded to reveal the current ring-like appearance. The dark streaks are deposits of windblown sand that migrate along valleys cut by thousands of years of wind erosion. The dark band in the upper right of the image is a portion of a proposed second crater. Scientists are using radar images to investigate the possibility that Aorounga is one of a string of impact craters formed by multiple impacts. Radar imaging is a valuable tool for the study of desert regions because the radar waves can penetrate thin layers of dry sand to reveal details of geologic structure that are invisible to other sensors. The image was acquired by the Spaceborne Imaging Radar-C/X-band Synthetic Aperture Radar (SIR-C/X-SAR) on April 18 and 19, 1994, onboard the space shuttle Endeavour. The area shown is 22 kilometers by 28 kilometers (14 miles by 17 miles) and is centered at 19.1 degrees north latitude, 19.3 degrees east longitude. North is toward the upper right. The colors are assigned to different radar frequencies and polarizations as follows: red is L-band, horizontally transmitted and received; green is C-band, horizontally transmitted and received; and blue is C-band, horizontally transmitted, vertically received. SIR-C/X-SAR, a joint mission of the German, Italian and United States space agencies, is part of NASA's Mission to Planet Earth program.

  1. Geometric interpretation of the ratio of overall diameter to rim crest diameter for lunar and terrestrial craters.

    NASA Technical Reports Server (NTRS)

    Siegal, B. S.; Wickman, F. E.

    1973-01-01

    An empirical linear relationship has been established by Pike (1967) between the overall diameter and the rim crest diameter for rimmed, flat-floored as well as bowl-shaped, lunar and terrestrial craters formed by impact and explosion. A similar relationship for experimentally formed fluidization craters has been established by Siegal (1971). This relationship is examined in terms of the geometry of the crater and the slope angles of loose materials. The parameter varies from 1.40 to 1.65 and is found to be dependent on mean interior flat floor radius, exterior and interior rim slope angles, angle of aperture of the crater cone, and the volume fraction of crater void accounted for in the rim. The range of the observed parameter can be understood in terms of simple crater geometry by realistic values of the five parameters.

  2. Thermoluminescence dating of the Kamil impact crater (Egypt)

    NASA Astrophysics Data System (ADS)

    Sighinolfi, Gian Paolo; Sibilia, Emanuela; Contini, Gabriele; Martini, Marco

    2015-02-01

    Thermoluminescence (TL) dating has been used to determine the age of the meteorite impact crater at Gebel Kamil (Egyptian Sahara). Previous studies suggested that the 45 m diameter structure was produced by a fall in recent times (less than 5000 years ago) of an iron meteorite impactor into quartz-arenites and siltstones belonging to the Lower Cretaceous Gilf Kebir Formation. The impact caused the complete fragmentation of the impactor, and the formation of a variety of impactites (e.g., partially vitrified dark and light materials) present as ejecta within the crater and in the surrounding area. After a series of tests to evaluate the TL properties of different materials including shocked intra-crater target rocks and different types of ejecta, we selected a suite of light-colored ejecta that showed evidence of strong thermal shock effects (e.g., partial vitrification and the presence of high-temperature and -pressure silica phases). The abundance of quartz in the target rocks, including the vitrified impactites, allowed TL dating to be undertaken. The variability of radioactivity of the intracrateric target rocks and the lack of direct in situ dosimetric evaluations prevented precise dating; it was, however, possible to constrain the impact in the 2000 BC-500 AD range. If, as we believe, the radioactivity measured in the fallback deposits is a reliable estimate of the mean radioactivity of the site, the narrower range 1600-400 BC (at the 2σ confidence level) can be realistically proposed.

  3. Impact-generated Hydrothermal Activity at the Chicxulub Crater

    NASA Astrophysics Data System (ADS)

    Kring, D. A.; Zurcher, L.; Abramov, O.

    2007-05-01

    Borehole samples recovered from PEMEX exploration boreholes and an ICDP scientific borehole indicate the Chicxulub impact event generated hydrothermal alteration throughout a large volume of the Maya Block beneath the crater floor and extending across the bulk of the ~180 km diameter crater. The first indications of hydrothermal alteration were observed in the crater discovery samples from the Yucatan-6 borehole and manifest itself in the form of anhydrite and quartz veins. Continuous core from the Yaxcopoil-1 borehole reveal a more complex and temporally extensive alteration sequence: following a brief period at high temperatures, impact- melt-bearing polymict breccias and a thin, underlying unit of impact melt were subjected to metasomatism, producing alkali feldspar, sphene, apatite, and magnetite. As the system continued to cool, smectite-series phyllosilicates appeared. A saline solution was involved. Stable isotopes suggest the fluid was dominated by a basinal brine created mostly from existing groundwater of the Yucatan Peninsula, although contributions from down-welling water also occurred in some parts of the system. Numerical modeling of the hydrothermal system suggests circulation occurred for 1.5 to 2.3 Myr, depending on the permeability of the system. Our understanding of the hydrothermal system, however, is still crude. Additional core recovery projects, particularly into the central melt sheet, are needed to better evaluate the extent and duration of hydrothermal alteration.

  4. Impact cratering on granular beds: From the impact of raindrops to the strike of hailstones

    NASA Astrophysics Data System (ADS)

    Gordillo, Leonardo; Wang, Junping; Japardi, Fred; Teddy, Warren; Gao, Ming; Cheng, Xiang

    Impact craters generated by the impact of a spherical object onto a granular bed strongly depend on the material properties of impactors. As an example, impact cratering by liquid drops and by solid spheres exhibits qualitatively different power-law scalings for the size of resulting impact craters. While the basic energy conservation and dimensional analysis provide simple guiding rules, the detailed dynamics governing the relation between these power-law scalings is still far from clear. To analyze the transition between liquid-drop and solid-sphere impact cratering, we investigate impact cratering by liquid drops for a wide range of viscosities over 7 decades. Using high-speed photography and laser profilometry, we delineate the liquid-to-solid transition and show the emergence of the two asymptotic behaviors and their respective power laws. We find that granular avalanches triggered by impacts are crucial in understanding the energy partition between impacted surfaces and impactors, which directly determines the observed scaling relations. A simple model is constructed for the initial stage of the impact that explains the energy partition during crater formation. We ackowledge the support of NSF CAREER DMR-1452180. LG acknowledges fundings from CONICYT/BECAS CHILE 74160007.

  5. Delineating Bukit Bunuh impact crater boundary by geophysical and geotechnical investigation

    SciTech Connect

    Azwin, I. N. Rosli, S.; Nordiana, M. M.; Ragu, R. R.; Mark, J.; Mokhtar, S.

    2015-03-30

    Evidences of crater morphology and shock metamorphism in Bukit Bunuh, Lenggong, Malaysia were found during the archaeological research conducted by the Centre for Global Archaeological Research Malaysia, Universiti Sains Malaysia. In order to register Bukit Bunuh as one of the world meteorite impact site, detailed studies are needed to verify the boundary of the crater accordingly. Geophysical study was conducted utilising the seismic refraction and 2-D electrical resistivity method. Seismic refraction survey was done using ABEM MK8 24 channel seismograph with 14Hz geophones and 40kg weight drop while 2-D electrical resistivity survey was performed using ABEM SAS4000 Terrameter and ES10-64C electrode selector with pole-dipole array. Bedrock depths were digitized from the sections obtained. The produced bedrock topography map shows that there is low bedrock level circulated by high elevated bedrock and interpreted as crater and rim respectively with diameter approximately 8km. There are also few spots of high elevated bedrock appear at the centre of the crater which interpreted as rebounds zone. Generally, the research area is divided into two layers where the first layer with velocity 400-1100 m/s and resistivity value of 10-800 Om predominantly consists of alluvium mix with gravel and boulders. Second layer represents granitic bedrock with depth of 5-50m having velocity >2100 m/s and resistivity value of >1500 Om. This research is strengthen by good correlation between geophysical data and geotechnical borehole records executed inside and outside of the crater, on the rim, as well as at the rebound area.

  6. Delineating Bukit Bunuh impact crater boundary by geophysical and geotechnical investigation

    NASA Astrophysics Data System (ADS)

    Azwin, I. N.; Rosli, S.; Mokhtar, S.; Nordiana, M. M.; Ragu, R. R.; Mark, J.

    2015-03-01

    Evidences of crater morphology and shock metamorphism in Bukit Bunuh, Lenggong, Malaysia were found during the archaeological research conducted by the Centre for Global Archaeological Research Malaysia, Universiti Sains Malaysia. In order to register Bukit Bunuh as one of the world meteorite impact site, detailed studies are needed to verify the boundary of the crater accordingly. Geophysical study was conducted utilising the seismic refraction and 2-D electrical resistivity method. Seismic refraction survey was done using ABEM MK8 24 channel seismograph with 14Hz geophones and 40kg weight drop while 2-D electrical resistivity survey was performed using ABEM SAS4000 Terrameter and ES10-64C electrode selector with pole-dipole array. Bedrock depths were digitized from the sections obtained. The produced bedrock topography map shows that there is low bedrock level circulated by high elevated bedrock and interpreted as crater and rim respectively with diameter approximately 8km. There are also few spots of high elevated bedrock appear at the centre of the crater which interpreted as rebounds zone. Generally, the research area is divided into two layers where the first layer with velocity 400-1100 m/s and resistivity value of 10-800 Om predominantly consists of alluvium mix with gravel and boulders. Second layer represents granitic bedrock with depth of 5-50m having velocity >2100 m/s and resistivity value of >1500 Om. This research is strengthen by good correlation between geophysical data and geotechnical borehole records executed inside and outside of the crater, on the rim, as well as at the rebound area.

  7. Parametric Studies of the Effect of Bolides Impacts on Earth or Their Near-Surface Airbursts on Cratering

    NASA Astrophysics Data System (ADS)

    Ezzedine, S. M.; Miller, P. L.; Dearborn, D. S. P.

    2015-07-01

    We have conducted numerical simulations of cratering formation due to impact on ground and ocean. Cratering scaling laws have been derived for both cases. A sensitivity analysis has been conducted to identify key parameters for cratering formation.

  8. Spall velocity measurements from laboratory impact craters

    NASA Astrophysics Data System (ADS)

    Polanskey, Carol A.; Ahrens, Thomas J.

    Spall velocities were measured for a series of impacts into San Marcos gabbro. Impact velocities ranged from 1 to 6.5 km/sec. Projectiles varied in material and size with a maximum mass of 4g for a lead bullet to a minimum of 0.04 g for an aluminum sphere. The spall velocities were calculated both from measurements taken from films of the events and from estimates based on range measurements of the spall fragments. The maximum spall velocity observed was 27 m/sec, or 0.5 percent of the impact velocity. The measured spall velocities were within the range predicted by the Melosh (1984) spallation model for the given experimental parameters. The compatability between the Melosh model for large planetary impacts and the results of these small scale experiments is considered in detail. The targets were also bisected to observe the internal fractures. A series of fractures were observed whose location coincided with the boundary of the theoretical near surface zone predicted by Melosh. Above this boundary the target material should receive reduced levels of compressive stress as compared to the more highly shocked region below.

  9. Spall velocity measurements from laboratory impact craters

    NASA Technical Reports Server (NTRS)

    Polanskey, Carol A.; Ahrens, Thomas J.

    1986-01-01

    Spall velocities were measured for a series of impacts into San Marcos gabbro. Impact velocities ranged from 1 to 6.5 km/sec. Projectiles varied in material and size with a maximum mass of 4g for a lead bullet to a minimum of 0.04 g for an aluminum sphere. The spall velocities were calculated both from measurements taken from films of the events and from estimates based on range measurements of the spall fragments. The maximum spall velocity observed was 27 m/sec, or 0.5 percent of the impact velocity. The measured spall velocities were within the range predicted by the Melosh (1984) spallation model for the given experimental parameters. The compatability between the Melosh model for large planetary impacts and the results of these small scale experiments is considered in detail. The targets were also bisected to observe the internal fractures. A series of fractures were observed whose location coincided with the boundary of the theoretical near surface zone predicted by Melosh. Above this boundary the target material should receive reduced levels of compressive stress as compared to the more highly shocked region below.

  10. Shock-induced damage in rocks: Application to impact cratering

    NASA Astrophysics Data System (ADS)

    Ai, Huirong

    Shock-induced damage beneath impact craters is studied in this work. Two representative terrestrial rocks, San Marcos granite and Bedford limestone, are chosen as test target. Impacts into the rock targets with different combinations of projectile material, size, impact angle, and impact velocity are carried out at cm scale in the laboratory. Shock-induced damage and fracturing would cause large-scale compressional wave velocity reduction in the recovered target beneath the impact crater. The shock-induced damage is measured by mapping the compressional wave velocity reduction in the recovered target. A cm scale nondestructive tomography technique is developed for this purpose. This technique is proved to be effective in mapping the damage in San Marcos granite, and the inverted velocity profile is in very good agreement with the result from dicing method and cut open directly. Both compressional velocity and attenuation are measured in three orthogonal directions on cubes prepared from one granite target impacted by a lead bullet at 1200 m/s. Anisotropy is observed from both results, but the attenuation seems to be a more useful parameter than acoustic velocity in studying orientation of cracks. Our experiments indicate that the shock-induced damage is a function of impact conditions including projectile type and size, impact velocity, and target properties. Combined with other crater phenomena such as crater diameter, depth, ejecta, etc., shock-induced damage would be used as an important yet not well recognized constraint for impact history. The shock-induced damage is also calculated numerically to be compared with the experiments for a few representative shots. The Johnson-Holmquist strength and failure model, initially developed for ceramics, is applied to geological materials. Strength is a complicated function of pressure, strain, strain rate, and damage. The JH model, coupled with a crack softening model, is used to describe both the inelastic response of

  11. Space Radar Image of the Yucatan Impact Crater Site

    NASA Technical Reports Server (NTRS)

    1999-01-01

    This is a radar image of the southwest portion of the buried Chicxulub impact crater in the Yucatan Peninsula, Mexico. The radar image was acquired on orbit 81 of space shuttle Endeavour on April 14, 1994 by the Spaceborne Imaging Radar C/X-Band Synthetic Aperture Radar (SIR-C/X-SAR). The image is centered at 20 degrees north latitude and 90 degrees west longitude. Scientists believe the crater was formed by an asteroid or comet which slammed into the Earth more than 65 million years ago. It is this impact crater that has been linked to a major biological catastrophe where more than 50 percent of the Earth's species, including the dinosaurs, became extinct. The 180-to 300-kilometer-diameter (110- to 180-mile)crater is buried by 300 to 1,000 meters (1,000 to 3,000 feet) of limestone. The exact size of the crater is currently being debated by scientists. This is a total power radar image with L-band in red, C-band in green, and the difference between C-band L-band in blue. The 10-kilometer-wide (6-mile) band of yellow and pink with blue patches along the top left (northwestern side) of the image is a mangrove swamp. The blue patches are islands of tropical forests created by freshwater springs that emerge through fractures in the limestone bedrock and are most abundant in the vicinity of the buried crater rim. The fracture patterns and wetland hydrology in this region are controlled by the structure of the buried crater. Scientists are using the SIR-C/X-SAR imagery to study wetland ecology and help determine the exact size of the impact crater. Spaceborne Imaging Radar-C and X-band Synthetic Aperture Radar (SIR-C/X-SAR) is part of NASA's Mission to Planet Earth. The radars illuminate Earth with microwaves allowing detailed observations at any time, regardless of weather or sunlight conditions. SIR-C/X-SAR uses three microwave wavelengths: L-band (24 cm), C-band (6 cm) and X-band (3 cm). The multi-frequency data will be used by the international scientific community

  12. Space Radar Image of the Yucatan Impact Crater Site

    NASA Technical Reports Server (NTRS)

    1999-01-01

    This is a radar image of the southwest portion of the buried Chicxulub impact crater in the Yucatan Peninsula, Mexico. The radar image was acquired on orbit 81 of space shuttle Endeavour on April 14, 1994 by the Spaceborne Imaging Radar C/X-Band Synthetic Aperture Radar (SIR-C/X-SAR). The image is centered at 20 degrees north latitude and 90 degrees west longitude. Scientists believe the crater was formed by an asteroid or comet which slammed into the Earth more than 65 million years ago. It is this impact crater that has been linked to a major biological catastrophe where more than 50 percent of the Earth's species, including the dinosaurs, became extinct. The 180-to 300-kilometer-diameter (110- to 180-mile)crater is buried by 300 to 1,000 meters (1,000 to 3,000 feet) of limestone. The exact size of the crater is currently being debated by scientists. This is a total power radar image with L-band in red, C-band in green, and the difference between C-band L-band in blue. The 10-kilometer-wide (6-mile) band of yellow and pink with blue patches along the top left (northwestern side) of the image is a mangrove swamp. The blue patches are islands of tropical forests created by freshwater springs that emerge through fractures in the limestone bedrock and are most abundant in the vicinity of the buried crater rim. The fracture patterns and wetland hydrology in this region are controlled by the structure of the buried crater. Scientists are using the SIR-C/X-SAR imagery to study wetland ecology and help determine the exact size of the impact crater. Spaceborne Imaging Radar-C and X-band Synthetic Aperture Radar (SIR-C/X-SAR) is part of NASA's Mission to Planet Earth. The radars illuminate Earth with microwaves allowing detailed observations at any time, regardless of weather or sunlight conditions. SIR-C/X-SAR uses three microwave wavelengths: L-band (24 cm), C-band (6 cm) and X-band (3 cm). The multi-frequency data will be used by the international scientific community

  13. Venus - Large Impact Crater in the Eistla Region

    NASA Image and Video Library

    1996-09-26

    This image from NASA Magellan spacecraft shows the central Eistla Region of the equatorial highlands of Venus. It is centered at 15 degrees north latitude and 5 degrees east longitude. The image is 76.8 kilometers (48 miles) wide. The crater is slightly irregular in platform and approximately 6 kilometers (4 miles) in diameter. The walls appear terraced. Five or six lobes of radar-bright ejecta radiate up to 13.2 kilometers (8 miles) from the crater rim. These lobes are up to 3.5 kilometers (2 miles) in width and form a "starfish" pattern against the underlying radar-dark plains. The asymmetric pattern of the ejecta suggests the angle of impact was oblique. The alignment of two of the ejecta lobes along fractures in the underlying plains is apparently coincidental. http://photojournal.jpl.nasa.gov/catalog/PIA00466

  14. Morphometry of impact craters on Mercury from MESSENGER altimetry and imaging

    NASA Astrophysics Data System (ADS)

    Susorney, Hannah C. M.; Barnouin, Olivier S.; Ernst, Carolyn M.; Johnson, Catherine L.

    2016-06-01

    Data acquired by the Mercury Laser Altimeter and the Mercury Dual Imaging System on the MESSENGER spacecraft in orbit about Mercury provide a means to measure the geometry of many of the impact craters in Mercury's northern hemisphere in detail for the first time. The combination of topographic and imaging data permit a systematic evaluation of impact crater morphometry on Mercury, a new calculation of the diameter Dt at which craters transition with increasing diameter from simple to complex forms, and an exploration of the role of target properties and impact velocity on final crater size and shape. Measurements of impact crater depth on Mercury confirm results from previous studies, with the exception that the depths of large complex craters are typically shallower at a given diameter than reported from Mariner 10 data. Secondary craters on Mercury are generally shallower than primary craters of the same diameter. No significant differences are observed between the depths of craters within heavily cratered terrain and those of craters within smooth plains. The morphological attributes of craters that reflect the transition from simple to complex craters do not appear at the same diameter; instead flat floors first appear with increasing diameter in craters at the smallest diameters, followed with increasing diameter by reduced crater depth and rim height, and then collapse and terracing of crater walls. Differences reported by others in Dt between Mercury and Mars (despite the similar surface gravitational acceleration on the two bodies) are confirmed in this study. The variations in Dt between Mercury and Mars cannot be adequately attributed to differences in either surface properties or mean projectile velocity.

  15. Cleopatra crater on Venus - Venera 15/16 data and impact/volcanic origin controversy

    NASA Astrophysics Data System (ADS)

    Basilevsky, A. T.; Ivanov, B. A.

    1990-02-01

    The morphology and morphometry of the 100-km diameter, 2.4-km deep Cleopatra crater on Venus are examined using Venera 15/16 images. The Cleopatra crater is compared to circular structures on Venus, Mercury, Mars, the earth and the moon. Consideration is given to the possible causes for the genesis of the Cleopatra crater. It is concluded that Cleopatra has a clear impact basin morphology with an anomalous crater depth.

  16. A newly discovered impact crater in Titan's Senkyo: Cassini VIMS observations and comparison with other impact features

    USGS Publications Warehouse

    Buratti, B.J.; Sotin, Christophe; Lawrence, K.; Brown, R.H.; Le, Mouelic S.; Soderblom, J.M.; Barnes, J.; Clark, R.N.; Baines, K.H.; Nicholson, P.D.

    2012-01-01

    Senkyo is an equatorial plain on Titan filled with dunes and surrounded by hummocky plateaus. During the Titan targeted flyby T61 on August 25, 2009, the Cassini Visual and Infrared Mapping Spectrometer (VIMS) onboard the Cassini spacecraft observed a circular feature, centered at 5.4?? N and 341??W, that superimposes the dune fields and a bright plateau. This circular feature, which has been named Paxsi by the International Astronomical Union, is 120??10 km in diameter (measured from the outer edge of the crater rim) and exhibits a central bright area that can be interpreted as the central peak or pit of an impact crater. Although there are only a handful of certain impact craters on Titan, there are two other craters that are of similar size to this newly discovered feature and that have been studied by VIMS: Sinlap (Le Mou??lic et al, 2008) and Selk (Soderblom et al, 2010). Sinlap is associated with a large downwind, fan-like feature that may have been formed from an impact plume that rapidly expanded and deposited icy particles onto the surface. Although much of the surrounding region is covered with dunes, the plume region is devoid of dunes. The formation process of Selk also appears to have removed (or covered up) dunes from parts of the adjacent dune-filled terrain. The circular feature on Senkyo is quite different: there is no evidence of an ejecta blanket and the crater itself appears to be infilled with dune material. The rim of the crater appears to be eroded by fluvial processes; at one point the rim is breached. The rim is unusually narrow, which may be due to mass wasting on its inside and subsequent infill by dunes. Based on these observations, we interpret this newly discovered feature to be a more eroded crater than both Sinlap and Selk. Paxsi may have formed during a period when Titan was warmer and more ductile than it is currently. ?? 2011 Elsevier Ltd. All rights reserved.

  17. Impact Crater of the Australasian Tektites, Southern Laos

    NASA Astrophysics Data System (ADS)

    Sieh, K.; Herrin, J. S.; Wiwegwin, W.; Charusiri, P.; Singer, B. S.; Singsomboun, K.; Jicha, B. R.

    2015-12-01

    The Australasian strewn field, a horizon of glassy clasts formed of molten ejecta from the impact of a bolide about 770,000 years ago, covers about a tenth of the Earth - from Indochina to Australia and from the Indian to western Pacific oceans. The distribution of chemical and physical characteristics of these tektites implies a very large impact somewhere in central Indochina. A half-century of unsuccessful searching for the impact crater implies obscuration by either erosion or burial. Geomorphological and stratigraphic evidence suggests that the crater lies buried beneath lavas and cinder cones of a 100-km wide volcanic shield centered atop the Bolaven Plateau of southern Laos. One critical test of this hypothesis, using precise 40Ar/39Ar dating, is now in progress - are these highly weathered basalts younger than the tektites? Although volcanic rocks cover most of the area proximal to our purported impact site, a thick, crudely bedded, bouldery to pebbly breccia that crops out southeast of the obscured crater rim appears to be part of an ejecta blanket. The basal unit of this fining-upward sequence comprises large boulders of late-Mesozoic sandstone bedrock that display in situ shattering. This implies emplacement ballistically rather than by debris-flow. Old surfaces in the surrounding region (as others have noted) and on the Plateau have a mantle of pebbly, detrital lateritic debris that in its upper 15 cm contains angular tektite fragments. We hypothesize that this debris is a proximal fall bed produced by shock-induced comminution and ejection of a lateritic soil that covered the Plateau bedrock. Deposition was nearly complete when sparse tektite fragments ejected from nearer the center of the impact began to land. At many sites this pebbly, lateritic bed is overlain by a thick silty bed that others have associated with aeolian erosion of a barren, incinerated tropical landscape. See Herrin et al (this meeting) for more on the volcanic rocks.

  18. Fractal Fragmentation triggered by meteor impact: The Ries Crater (Germany)

    NASA Astrophysics Data System (ADS)

    Paredes Marino, Joali; Perugini, Diego; Rossi, Stefano; Kueppers, Ulrich

    2015-04-01

    FRACTAL FRAGMENTATION TRIGGERED BY METEOR IMPACT: THE RIES CRATER (GERMANY) Joali Paredes (1), Stefano Rossi (1), Diego Perugini (1), Ulrich Kueppers (2) 1. Department of Physics and Geology, University of Perugia, Italy 2. Department of Earth and Environmental Sciences, University of Munich, Germany The Nördlinger Ries is a large circular depression in western Bavaria, Germany. The depression was caused by a meteor impact, which occurred about 14.3 million-14.5 million years ago. The original crater rim had an estimated diameter of 24 kilometers. Computer modeling of the impact event indicates that the impact or probably had diameters of about 1.5 kilometers and impacted the target area at an angle around 30 to 50 degrees from the surface in a west- southwest to east-northeast direction. The impact velocity is thought to have been about 20 km/s. The meteor impact generated extensive fragmentation of preexisting rocks. In addition, melting of these rocks also occurred. The impact melt was ejected at high speed provoking its extensive fragmentation. Quenched melt fragments are ubiquitous in the outcrops. Here we study melt fragment size distributions with the aim of understanding the style of melt fragmentation during ejection and to constrain the rheological properties of such melts. Digital images of suevite (i.e. the rock generated after deposition and diagenesis of ash and fragments produced by the meteor impact) were obtained using a high-resolution optical scanner. Successively, melt fragments were traced by image analysis and the images segmented in order to obtain binary images on which impact melt fragments are in black color, embedded on a white background. Hence, the size of fragments was determined by image analysis. Fractal fragmentation theory has been applied to fragment size distributions of melt fragments in the Ries crater. Results indicate that melt fragments follow fractal distributions indicating that fragmentation of melt generated by the

  19. The impact crater as a habitat: effects of impact processing of target materials.

    PubMed

    Cockell, Charles S; Osinski, Gordon R; Lee, Pascal

    2003-01-01

    Impact structures are a rare habitat on Earth. However, where they do occur they can potentially have an important influence on the local ecology. Some of the types of habitat created in the immediate post-impact environment are not specific to the impact phenomenon, such as hydrothermal systems and crater lakes that can be found, for instance, in post-volcanic environments, albeit with different thermal characteristics than those associated with impact. However, some of the habitats created are specifically linked to processes of impact processing. Two examples of how impact processing of target materials has created novel habitats that improve the opportunities for colonization are found in the Haughton impact structure in the Canadian High Arctic. Impact-shocked rocks have become a habitat for endolithic microorganisms, and large, impact-shattered blocks of rock are used as resting sites by avifauna. However, some materials produced by an impact, such as melt sheet rocks, can make craters more biologically depauperate than the area surrounding them. Although there are no recent craters with which to study immediate post-impact colonization, these data yield insights into generalized mechanisms of how impact processing can influence post-impact succession. Because impact events are one of a number of processes that can bring localized destruction to ecosystems, understanding the manner in which impact structures are recolonized is of ecological interest. Impact craters are a universal phenomenon on solid planetary surfaces, and so they are of potential biological relevance on other planetary surfaces, particularly Mars.

  20. The impact crater as a habitat: effects of impact processing of target materials

    NASA Technical Reports Server (NTRS)

    Cockell, Charles S.; Osinski, Gordon R.; Lee, Pascal

    2003-01-01

    Impact structures are a rare habitat on Earth. However, where they do occur they can potentially have an important influence on the local ecology. Some of the types of habitat created in the immediate post-impact environment are not specific to the impact phenomenon, such as hydrothermal systems and crater lakes that can be found, for instance, in post-volcanic environments, albeit with different thermal characteristics than those associated with impact. However, some of the habitats created are specifically linked to processes of impact processing. Two examples of how impact processing of target materials has created novel habitats that improve the opportunities for colonization are found in the Haughton impact structure in the Canadian High Arctic. Impact-shocked rocks have become a habitat for endolithic microorganisms, and large, impact-shattered blocks of rock are used as resting sites by avifauna. However, some materials produced by an impact, such as melt sheet rocks, can make craters more biologically depauperate than the area surrounding them. Although there are no recent craters with which to study immediate post-impact colonization, these data yield insights into generalized mechanisms of how impact processing can influence post-impact succession. Because impact events are one of a number of processes that can bring localized destruction to ecosystems, understanding the manner in which impact structures are recolonized is of ecological interest. Impact craters are a universal phenomenon on solid planetary surfaces, and so they are of potential biological relevance on other planetary surfaces, particularly Mars.

  1. The impact crater as a habitat: effects of impact processing of target materials

    NASA Technical Reports Server (NTRS)

    Cockell, Charles S.; Osinski, Gordon R.; Lee, Pascal

    2003-01-01

    Impact structures are a rare habitat on Earth. However, where they do occur they can potentially have an important influence on the local ecology. Some of the types of habitat created in the immediate post-impact environment are not specific to the impact phenomenon, such as hydrothermal systems and crater lakes that can be found, for instance, in post-volcanic environments, albeit with different thermal characteristics than those associated with impact. However, some of the habitats created are specifically linked to processes of impact processing. Two examples of how impact processing of target materials has created novel habitats that improve the opportunities for colonization are found in the Haughton impact structure in the Canadian High Arctic. Impact-shocked rocks have become a habitat for endolithic microorganisms, and large, impact-shattered blocks of rock are used as resting sites by avifauna. However, some materials produced by an impact, such as melt sheet rocks, can make craters more biologically depauperate than the area surrounding them. Although there are no recent craters with which to study immediate post-impact colonization, these data yield insights into generalized mechanisms of how impact processing can influence post-impact succession. Because impact events are one of a number of processes that can bring localized destruction to ecosystems, understanding the manner in which impact structures are recolonized is of ecological interest. Impact craters are a universal phenomenon on solid planetary surfaces, and so they are of potential biological relevance on other planetary surfaces, particularly Mars.

  2. The Impact Crater as a Habitat: Effects of Impact Processing of Target Materials

    NASA Astrophysics Data System (ADS)

    Cockell, Charles S.; Osinski, Gordon R.; Lee, Pascal

    2003-01-01

    Impact structures are a rare habitat on Earth. However, where they do occur they can potentially have an important influence on the local ecology. Some of the types of habitat created in the immediate post-impact environment are not specific to the impact phenomenon, such as hydrothermal systems and crater lakes that can be found, for instance, in post-volcanic environments, albeit with different thermal characteristics than those associated with impact. However, some of the habitats created are specifically linked to processes of impact processing. Two examples of how impact processing of target materials has created novel habitats that improve the opportunities for colonization are found in the Haughton impact structure in the Canadian High Arctic. Impact-shocked rocks have become a habitat for endolithic microorganisms, and large, impact-shattered blocks of rock are used as resting sites by avifauna. However, some materials produced by an impact, such as melt sheet rocks, can make craters more biologically depauperate than the area surrounding them. Although there are no recent craters with which to study immediate post-impact colonization, these data yield insights into generalized mechanisms of how impact processing can influence post-impact succession. Because impact events are one of a number of processes that can bring localized destruction to ecosystems, understanding the manner in which impact structures are recolonized is of ecological interest. Impact craters are a universal phenomenon on solid planetary surfaces, and so they are of potential biological relevance on other planetary surfaces, particularly Mars.

  3. Crater features diagnostic of oblique impacts: The size and position of the central peak

    NASA Astrophysics Data System (ADS)

    Ekholm, Andreas G.; Melosh, H. Jay

    Using Magellan data, we investigated two crater characteristics that have been cited as diagnostic of oblique impacts: an uprange offset of the central peak in complex craters, and an increasing central peak diameter relative to crater diameter with decreasing impact angle. We find that the offset distribution is random and very similar to that for high-angle impacts, and that there is no correlation between central peak diameter and impact angle. Accordingly, these two crater characteristics cannot be used to infer the impact angle or direction.

  4. Shape of boulders ejected from small lunar impact craters

    NASA Astrophysics Data System (ADS)

    Li, Yuan; Basilevsky, A. T.; Xie, Minggang; Ip, Wing-Huen

    2017-10-01

    The shape of ejecta boulders from 7 lunar impact craters <1 km in diameter of known absolute age was measured to explore whether it correlates with the crater age and the boulder size. The boulders were mapped and then measured by rectangular fitting and the shape was represented by the axial ratio or aspect ratio (A) of the rectangle. The main conclusions from the analysis of our measurement results are: 1) the percentages of the number of boulders of studied craters decrease with the increase of the axial ratio. Most (∼90%) of the boulders have the axial ratio in the range of 1-2; no boulder with axial ratio larger than 4 was found. 2) the axial ratios of mare ejecta boulders decrease with their exposure time, whereas that for highland ones show unchanged trend. This difference may be probably due to target properties. 3) The shape of ejecta boulders are influenced by mechanical strength of bedrocks and space erosion. 4) surface peak stresses caused by thermal fatigue maybe play a significant erosion role in the shape of boulders of various diameter.

  5. Magellan 3D view of Venus impact craters

    NASA Image and Video Library

    1991-11-07

    Three impact craters in three-dimensional perspective located approximately 27 degrees south latitude, 339 degrees east longitude in the northwestern portion of Lavinia Planitia. The viewpoint is located southwest of Howe Crater which appears centered in the lower portion of the image. Howe has a diameter of 37.3 kilometers (23.1 miles) located at 28.6 degrees south latitude, 337.1 degrees east longitude. Danilova, a crater with a diameter of 47.6 kilometers (29.5 miles) and located at 26.35 degrees south latitude and 337.5 east longitude, appears above and to the left of Howe in the image. Aglaonice, a crater with a diameter of 62.7 kilometers (38.9 miles) and located at 26.5 degrees south latitude and 340 degrees east longitude is on the right of Danilova. Magellan synthetic aperture radar data is combined with radar altimetry to develop a 3D map of the surface. Rays cast in a computer intersect the surface to create a 3D view. Simulated color and a digital elevation map developed by the United States (U.S.) Geological Survey is used to enhance small-scale structure. The simulated hues are based on color images recorded by the Soviet Venera 13 and 14 spacecraft. The image was processed at the Jet Propulsion Laboratory (JPL) Multimission Image Processing Laboratory and is a single frame from a video released at the JPL news conference 05-29-91. View provided by JPL with alternate number P-39146.

  6. WIRGO in TIC's? [What (on Earth) is Really Going On in Terrestrial Impact Craters?

    NASA Astrophysics Data System (ADS)

    Dence, Michael R.

    2003-02-01

    Canada is well endowed with impact craters formed in crystalline rocks with relatively homogeneous physical properties. They exhibit all the main morphological-structural variations with crater size seen in craters on other rocky planets, from small simple bowl to large peak and ring forms. Lacking stratigraphy, analysis is based on the imprint of shock melting and metamorphism, the position of the GPL (limit of initial Grady-Kipp fracturing due to shock wave reverberations) relative to shock level, the geometry of late stage shears and breccias and the volume of shocked material beyond the GPL. Simple craters, exemplified by Brent (D = 3.7 km) allow direct comparison with models and experimental data. Results of interest include: 1. The central pool of impact melt and underlying breccia at the base of the crater fill is interpreted as the remnant of the transient crater lining; 2. The overlying main mass of breccias filling the final apparent crater results from latestage slumping of large slabs bounded by a primary shear surface that conforms to a sphere segment of radius, rs approx. = 2dtc, where dtc is the transient crater depth; 3. The foot of the primary shear intersects above the GPL at the centre of the melt pool and the rapid emplacement of slumped slabs produces further brecciation while suppressing any tendency for the centre to rise. In the autochthonous breccias below the melt and in the underlying para-allochthone below the GPL, shock metamorphism weakens with depth. The apparent attenuation of the shock pulse can be compared with experimentally derived rates of attenuation to give a measure of displacements down axis and estimates of the size of a nominal bolide of given velocity, the volume of impact melt and the energy released on impact. In larger complex craters (e.g. Charlevoix, D = 52 km) apparent shock attenuation is low near the centre but is higher towards the margin. The inflection point marks the change from uplift of deep material in the

  7. Geologic mapping and distribution of impact melt pools of the lunar crater Tycho

    NASA Astrophysics Data System (ADS)

    Krüger, Tim; Hiesinger, Harald; Howes van der Bogert, Carolyn

    2013-04-01

    ) = 6.16 x 10-5) [e.g.,4,5], thus being significantly older. The absolute model age for the crater floor is 25.7 ± 5.3 Ma (Ncum(D ≥ 1 km) = 2.15 x 10-5). However, the impact melt pools and ejecta blanket should have formed at about the same time [e.g., 7]. One interpretation of the different model ages of melt pools and the ejecta blanket is, that they have different target properties, i.e., the melt could be less porous and stronger [4,5], hence forming smaller craters for a given projectile size and impact velocity. Such an effect would result in younger ages of the melt pools compared to the ejecta blanket. Self-secondary cratering might also cause differences in CSFDs [8,9,10]. References [1] Schultz, P.H. (1976), Moon Morphology, p. 641. [2] Morris, A.R. et al. (2000), LPSC XXXI, #1828. [3] Hawke, B.R., & Head, J.W., (1977), Impact melt on lunar crater rims, pp. 815-841. [4] van der Bogert, C.H. et al. (2010), LPSC XLI, #2165. [5] Hiesinger, H. et al. (2012), JGR, doi:10.1029/2011JE003935. [6] Melosh, H. J. (1989), Impact cratering; a geologic process, Oxford Monographs on Geology and Geophysics, 11. [7] Osinski, G.R. (2004), EPSL, vol. 226, p. 529-543. [8] Shoemaker, E.M. et al. (1968), Surveyor 7 Mission Report. Part 2 - Science Results, Tech. Rep. 32-1264, pp. 9-76. [9] Plescia, J.B. et al. (2011), LPSC XLII, #1839. [10] Zanetti, M. et al. (2012), LPSC XLIII, #2131.

  8. Fullerenes in an impact crater on the LDEF spacecraft

    NASA Technical Reports Server (NTRS)

    Radicati di Brozolo, F.; Bunch, T. E.; Fleming, R. H.; Macklin, J.

    1994-01-01

    The fullerenes C60 and C70 have been found to occur naturally on Earth and have also been invoked to explain features in the absorption spectra of interstellar clouds. But no definitive spectroscopic evidence exists for fullerenes in space and attempts to find fullerenes in carbonaceous chondrites have been unsuccessful. Here we report the observation of fullerenes associated with carbonaceous impact residue in a crater on the Long Duration Exposure Facility (LDEF) spacecraft. Laser ionization mass spectrometry and Raman spectroscopy indicate the presence of fullerenes in the crater and in adjacent ejecta. Man-made fullerenes survive experimental hypervelocity (approximately 6.1 km s-1) impacts into aluminium targets, suggesting that space fullerenes contained in a carbonaceous micrometeorite could have survived the LDEF impact at velocities towards the lower end of the natural particle encounter range (<13 km s-1). We also demonstrate that the fullerenes were unlikely to have formed as instrumental artefacts, nor are they present as contaminants. Although we cannot specify the origin of the fullerenes with certainty, the most plausible source is the chondritic impactor. If, alternatively, the impact produced the fullerenes in situ on LDEF, then this suggests a viable mechanism for fullerene production in space.

  9. Fullerenes in an impact crater on the LDEF spacecraft.

    PubMed

    Radicati di Brozolo, F; Bunch, T E; Fleming, R H; Macklin, J

    1994-05-05

    The fullerenes C60 and C70 have been found to occur naturally on Earth and have also been invoked to explain features in the absorption spectra of interstellar clouds. But no definitive spectroscopic evidence exists for fullerenes in space and attempts to find fullerenes in carbonaceous chondrites have been unsuccessful. Here we report the observation of fullerenes associated with carbonaceous impact residue in a crater on the Long Duration Exposure Facility (LDEF) spacecraft. Laser ionization mass spectrometry and Raman spectroscopy indicate the presence of fullerenes in the crater and in adjacent ejecta. Man-made fullerenes survive experimental hypervelocity (approximately 6.1 km s-1) impacts into aluminium targets, suggesting that space fullerenes contained in a carbonaceous micrometeorite could have survived the LDEF impact at velocities towards the lower end of the natural particle encounter range (<13 km s-1). We also demonstrate that the fullerenes were unlikely to have formed as instrumental artefacts, nor are they present as contaminants. Although we cannot specify the origin of the fullerenes with certainty, the most plausible source is the chondritic impactor. If, alternatively, the impact produced the fullerenes in situ on LDEF, then this suggests a viable mechanism for fullerene production in space.

  10. Fullerenes in an impact crater on the LDEF spacecraft

    NASA Technical Reports Server (NTRS)

    Radicati di Brozolo, F.; Bunch, T. E.; Fleming, R. H.; Macklin, J.

    1994-01-01

    The fullerenes C60 and C70 have been found to occur naturally on Earth and have also been invoked to explain features in the absorption spectra of interstellar clouds. But no definitive spectroscopic evidence exists for fullerenes in space and attempts to find fullerenes in carbonaceous chondrites have been unsuccessful. Here we report the observation of fullerenes associated with carbonaceous impact residue in a crater on the Long Duration Exposure Facility (LDEF) spacecraft. Laser ionization mass spectrometry and Raman spectroscopy indicate the presence of fullerenes in the crater and in adjacent ejecta. Man-made fullerenes survive experimental hypervelocity (approximately 6.1 km s-1) impacts into aluminium targets, suggesting that space fullerenes contained in a carbonaceous micrometeorite could have survived the LDEF impact at velocities towards the lower end of the natural particle encounter range (<13 km s-1). We also demonstrate that the fullerenes were unlikely to have formed as instrumental artefacts, nor are they present as contaminants. Although we cannot specify the origin of the fullerenes with certainty, the most plausible source is the chondritic impactor. If, alternatively, the impact produced the fullerenes in situ on LDEF, then this suggests a viable mechanism for fullerene production in space.

  11. Large-scale impact cratering on the terrestrial planets

    SciTech Connect

    Grieve, R.A.F.

    1982-01-01

    The crater densities on the earth and moon form the basis for a standard flux-time curve that can be used in dating unsampled planetary surfaces and constraining the temporal history of endogenic geologic processes. Abundant evidence is seen not only that impact cratering was an important surface process in planetary history but also that large imapact events produced effects that were crucial in scale. By way of example, it is noted that the formation of multiring basins on the early moon was as important in defining the planetary tectonic framework as plate tectonics is on the earth. Evidence from several planets suggests that the effects of very-large-scale impacts go beyond the simple formation of an impact structure and serve to localize increased endogenic activity over an extended period of geologic time. Even though no longer occurring with the frequency and magnitude of early solar system history, it is noted that large scale impact events continue to affect the local geology of the planets. 92 references.

  12. Morphometry of small recent impact craters on Mars: Size and terrain dependence, short-term modification

    NASA Astrophysics Data System (ADS)

    Watters, W. A.; Geiger, L. M.; Fendrock, M.; Gibson, R.

    2015-02-01

    Most recent studies of crater morphometry on Mars have addressed large craters (D>5 km) using elevation models derived from laser altimetry. In the present work, we examine a global population of small (25 m ≤D≤5 km), relatively well-preserved simple impact craters using HiRISE stereo-derived elevation models. We find that scaling laws from prior studies of large simple craters generally overestimate the depth and volume at small diameters. We show that crater rim curvature exhibits a strong diameter dependence that is well-described by scaling laws for D<1 km. Above this diameter, upper rim slopes begin to exceed typical repose angles and crater rims sharpen significantly. This transition is likely the result of gravity-driven collapse of the upper cavity walls during crater formation or short-term modification. In addition, we identify a tendency for small craters (D<500m) to be more conical than large craters, and we show that the average cavity cross section is well-described by a power law with exponent ˜1.75 (neither conical nor paraboloidal). We also conduct a statistical comparison of crater subpopulations to illuminate trends with increasing modification and target strength. These results have important implications for describing the "initial condition" of simple crater shape as a function of diameter and geological setting and for understanding how impact craters are modified on the Martian surface over time.

  13. Raindrop impact on sand: a dynamic explanation of crater morphologies.

    PubMed

    Zhao, Song-Chuan; de Jong, Rianne; van der Meer, Devaraj

    2015-09-07

    As a droplet impacts upon a granular substrate, both the intruder and the target undergo deformation, during which the liquid may penetrate into the substrate. These three aspects together distinguish it from other impact phenomena in the literature. We perform high-speed, double-laser profilometry measurements and disentangle the dynamics into three aspects: the deformation of the substrate during the impact, the maximum spreading diameter of the droplet, and the penetration of the liquid into the substrate. By systematically varying the impact speed and the packing fraction of the substrate, (i) the substrate deformation indicates a critical packing fraction ϕ* ≈ 0.585; (ii) the maximum droplet spreading diameter is found to scale with a Weber number corrected by the substrate deformation; and (iii) a model of the liquid penetration is established and is used to explain the observed crater morphology transition.

  14. Scientific Drilling of Impact Craters - Well Logging and Core Analyses Using Magnetic Methods (Invited)

    NASA Astrophysics Data System (ADS)

    Fucugauchi, J. U.; Perez-Cruz, L. L.; Velasco-Villarreal, M.

    2013-12-01

    Drilling projects of impact structures provide data on the structure and stratigraphy of target, impact and post-impact lithologies, providing insight on the impact dynamics and cratering. Studies have successfully included magnetic well logging and analyses in core and cuttings, directed to characterize the subsurface stratigraphy and structure at depth. There are 170-180 impact craters documented in the terrestrial record, which is a small proportion compared to expectations derived from what is observed on the Moon, Mars and other bodies of the solar system. Knowledge of the internal 3-D deep structure of craters, critical for understanding impacts and crater formation, can best be studied by geophysics and drilling. On Earth, few craters have yet been investigated by drilling. Craters have been drilled as part of industry surveys and/or academic projects, including notably Chicxulub, Sudbury, Ries, Vredefort, Manson and many other craters. As part of the Continental ICDP program, drilling projects have been conducted on the Chicxulub, Bosumtwi, Chesapeake, Ries and El gygytgyn craters. Inclusion of continuous core recovery expanded the range of paleomagnetic and rock magnetic applications, with direct core laboratory measurements, which are part of the tools available in the ocean and continental drilling programs. Drilling studies are here briefly reviewed, with emphasis on the Chicxulub crater formed by an asteroid impact 66 Ma ago at the Cretaceous/Paleogene boundary. Chicxulub crater has no surface expression, covered by a kilometer of Cenozoic sediments, thus making drilling an essential tool. As part of our studies we have drilled eleven wells with continuous core recovery. Magnetic susceptibility logging, magnetostratigraphic, rock magnetic and fabric studies have been carried out and results used for lateral correlation, dating, formation evaluation, azimuthal core orientation and physical property contrasts. Contributions of magnetic studies on impact

  15. Evidence for Impact-induced Hydrothermal Alteration at the Lonar Crater, India, and Mistastin Lake, Canada

    NASA Technical Reports Server (NTRS)

    Newsom, H. E.; Hagerty, J. J.

    2003-01-01

    The 50,000 year old, 1.8km diameter Lonar crater is located in Maharashtra, India. This relatively small crater is of particular interest because of its unique morphological and mineralogical properties, which make it a valid analogue for similar craters on the surface of Mars. We show that even in this relatively small crater, substantial hydrothermal alteration of shocked breccias in the floor of the crater has occurred, probably due to the thermal effects of the impact event. The 38 my old, 28 km diameter, Mistastin crater contains an 80 m thick impact melt sheet. We have also documented the presence of alteration phases in the material from this larger crater.

  16. Wildfires Caused by Formation of Small Impact Craters: A Kaali Crater Case

    NASA Astrophysics Data System (ADS)

    Losiak, Anna; Belcher, Claire; Hudspith, Victoria; Zhu, Menghua; Bronikowska, Malgorzata; Jõeleht, Argo; Plado, Juri

    2016-04-01

    Formation of ~200-km Chicxulub 65 Ma ago was associated with release of significant amount of thermal energy [1,2,3] which was sufficient to start wildfires that had either regional [4] or global [5] range. The evidence for wildfires caused by impacts smaller than Chicxulub is inconclusive. On one hand, no signs of fires are associated with the formation of 24-km Ries crater [6]. On the other hand, the Tunguska site was burned after the impact and the numerical models of the bolide-produced thermal radiation suggest that the Tunguska-like event would produce a thermal flux to the surface that is sufficient to ignite pine needles [7]. However, in case of Tunguska the only proof for the bolide starting the fire comes from an eyewitness description collected many years after the event. Some authors [8] suggest that this fire might have been caused "normaly" later during the same year, induced on dead trees killed by the Tunguska fall. More recently it was observed that the Chelyabinsk meteor [9] - smaller than Tunguska event - did not produced a fire. In order to explore this apparent relationship in more detail, we have studied the proximal ejecta from a 100-m in diameter, ~3500 years old [10] Kaali crater (Estonia) within which we find pieces of charred organic material. Those pieces appear to have been produced during the impact, according to their stratigraphic location and following 14C analysis [19] as opposed to pre- or post-impact forest fires. In order to determine the most probable formation mechanism of the charred organic material found within Kaali proximal ejecta blanket, we: 1) Analyzed charcoal under SEM to identify the charred plants and determine properties of the charcoal related to the temperature of its formation [11]. Detected homogenization of cell walls suggests that at least some pieces of charcoal were formed at >300 °C [11]. 2) Analyzed the reflectance properties of the charred particles in order to determine the intensity with which

  17. Melt production in large-scale impact events: Calculations of impact-melt volumes and crater scaling

    NASA Technical Reports Server (NTRS)

    Cintala, Mark J.; Grieve, Richard A. F.

    1992-01-01

    Along with an apparent convergence in estimates of impact-melt volumes produced during planetary impact events, intensive efforts at deriving scaling relationships for crater dimensions have also yielded results. It is now possible to examine a variety of phenomena associated with impact-melt production during large cratering events and apply them to planetary problems. This contribution describes a method of combining calculations of impact-melt production with crater scaling to investigate the relationship between the two.

  18. The Phanerozoic Impact Cratering Rate: Evidence from the Farside of the Moon

    NASA Technical Reports Server (NTRS)

    McEwen, Alfred S.; Moore, Jeffrey M.; Shoemaker, Eugene M.

    1997-01-01

    The relatively recent (< 1 b.y.) flux of asteroids and comets forming large craters on the Earth and Moon may be accurately recorded by craters with bright rays on the Moon's farside. Many previously unknown farside rayed craters are clearly distinguished in the low-phase-angle images returned by the Clementine spacecraft. Some large rayed craters on the lunar nearside are probably significantly older than 1 Ga; rays remain visible over the maria due to compositional contrasts long after soils have reached optical maturity. Most of the farside crust has a more homogeneous composition and only immature rays are visible. The size-frequency distribution of farside rayed craters is similar to that measured for Eratosthenian craters (up to 3.2 b.y.) at diameters larger than 15 km. The areal density of farside rayed craters matches that of a corrected tabulation of nearside Copernican craters. Hence the presence of bright rays due to immature soils around large craters provides a consistent time-stratigraphic basis for defining the base of the Copernican System. The density of large craters less than approximately 3.2 b.y. old is approximately 3.2 times higher than that of large farside rayed craters alone. This observation can be interpreted in two ways: (1) the average cratering rate has been constant over the past 3.2 b.y. and the base of the Copernican is approximately 1 Ga, or (2) the cratering rate has increased in recent geologic time and the base of the Copernican is less than 1 Ga. We favor the latter interpretation because the rays of Copernicus (800-850 m.y. old) appear to be very close to optical maturity, suggesting that the average Copernican cratering rate was approximately 35% higher than the average Eratosthenian rate. Other lines of evidence for an increase in the Phanerozoic (545 Ga) cratering rate are (1) the densities of small craters superimposed on Copernicus and Apollo landing sites, (2) the rates estimated from well-dated terrestrial craters

  19. The Phanerozoic Impact Cratering Rate: Evidence from the Farside of the Moon

    NASA Technical Reports Server (NTRS)

    McEwen, Alfred S.; Moore, Jeffrey M.; Shoemaker, Eugene M.

    1997-01-01

    The relatively recent (< 1 b.y.) flux of asteroids and comets forming large craters on the Earth and Moon may be accurately recorded by craters with bright rays on the Moon's farside. Many previously unknown farside rayed craters are clearly distinguished in the low-phase-angle images returned by the Clementine spacecraft. Some large rayed craters on the lunar nearside are probably significantly older than 1 Ga; rays remain visible over the maria due to compositional contrasts long after soils have reached optical maturity. Most of the farside crust has a more homogeneous composition and only immature rays are visible. The size-frequency distribution of farside rayed craters is similar to that measured for Eratosthenian craters (up to 3.2 b.y.) at diameters larger than 15 km. The areal density of farside rayed craters matches that of a corrected tabulation of nearside Copernican craters. Hence the presence of bright rays due to immature soils around large craters provides a consistent time-stratigraphic basis for defining the base of the Copernican System. The density of large craters less than approximately 3.2 b.y. old is approximately 3.2 times higher than that of large farside rayed craters alone. This observation can be interpreted in two ways: (1) the average cratering rate has been constant over the past 3.2 b.y. and the base of the Copernican is approximately 1 Ga, or (2) the cratering rate has increased in recent geologic time and the base of the Copernican is less than 1 Ga. We favor the latter interpretation because the rays of Copernicus (800-850 m.y. old) appear to be very close to optical maturity, suggesting that the average Copernican cratering rate was approximately 35% higher than the average Eratosthenian rate. Other lines of evidence for an increase in the Phanerozoic (545 Ga) cratering rate are (1) the densities of small craters superimposed on Copernicus and Apollo landing sites, (2) the rates estimated from well-dated terrestrial craters

  20. The phanerozoic impact cratering rate: Evidence from the farside of the Moon

    USGS Publications Warehouse

    McEwen, A.S.; Moore, Johnnie N.; Shoemaker, E.M.

    1997-01-01

    The relatively recent (< 1 b.y.) flux of asteroids and comets forming large craters on the Earth and Moon may be accurately recorded by craters with bright rays on the Moon's farside. Many previously unknown farside rayed craters are clearly distinguished in the low-phase-angle images returned by the Clementine spacecraft. Some large rayed craters on the lunar nearside are probably significantly older than 1 Ga; rays remain visible over the maria due to compositional contrasts long after soils have reached optical maturity. Most of the farside crust has a more homogeneous composition and only immature rays are visible. The size-frequency distribution of farside rayed craters is similar to that measured for Eratosthenian craters (up to 3.2 b.y.) at diameters larger than 15 km. The areal density of farside rayed craters matches that of a corrected tabulation of nearside Copernican craters. Hence the presence of bright rays due to immature soils around large craters provides a consistent time-stratigraphic basis for defining the base of the Copernican System. The density of large craters less than ???3.2 b.y. old is ???3.2 times higher than that of large farside rayed craters alone. This observation can be interpreted in two ways: (1) the average cratering rate has been constant over the past 3.2 b.y. and the base of the Copernican is ???1 Ga, or (2) the cratering rate has increased in recent geologic time and the base of the Copernican is less than 1 Ga. We favor the latter interpretation because the rays of Copernicus (800-850 m.y. old) appear to be very close to optical maturity, suggesting that the average Copernican cratering rate was ???35% higher than the average Eratosthenian rate. Other lines of evidence for an increase in the Phanerozoic (545 Ga) cratering rate are (1) the densities of small craters superimposed on Copernicus and Apollo landing sites, (2) the rates estimated from well-dated terrestrial craters (??? 120 m.y.) and from present-day astronomical

  1. Mid-Latitude versus Polar-Latitude Transitional Impact Craters: Geometric Properties from Mars Orbiter Laser Altimeter (MOLA) Observations and Viking Images

    NASA Technical Reports Server (NTRS)

    Matias, A.; Garvin, J. B.; Sakimoto, S. E. H.

    1998-01-01

    One intriguing aspect of martian impact crater morphology is the change of crater cavity and ejecta characteristics from the mid-latitudes to the polar regions. This is thought to reflect differences in target properties such as an increasing presence of ice in the polar regions. Previous image-based efforts concerning martian crater morphology has documented some aspects of this, but has been hampered by the lack of adequate topography data. Recent Mars Orbiter Laser Altimeter (MOLA) topographic profiles provide a quantitative perspective for interpreting the detailed morphologies of martian crater cavities and ejecta morphology. This study is a preliminary effort to quantify the latitude-dependent differences in morphology with the goal of identifying target-dependent and crater modification effects from the combined of images and MOLA topography. We combine the available MOLA profiles and the corresponding Viking Mars Digital Image Mosaics (MDIMS), and high resolution Viking Orbiter images to focus on two transitional craters; one on the mid-latitudes, and one in the North Polar region. One MOLA pass (MGS Orbit 34) traverses the center of a 15.9 km diameter fresh complex crater located at 12.8degN 83.8degE on the Hesperian ridge plains unit (Hvr). Viking images, as well as MOLA data, show that this crater has well developed wall terraces and a central peak with 429 m of relative relief. Three MOLA passes have been acquired for a second impact crater, which is located at 69.5degN 41degE on the Vastitas Borealis Formation. This fresh rampart crater lacks terraces and central peak structures and it has a depth af 579 m. Correlation between images and MOLA topographic profiles allows us to construct basic facies maps of the craters. Eight main units were identified, four of which are common on both craters.

  2. Effect of impact angle on central-peak/peak-ring formation and crater collapse on Venus

    NASA Technical Reports Server (NTRS)

    Schultz, Peter H.

    1992-01-01

    Although asymmetry in ejecta patterns and craters shape-in-plan are commonly cited as diagnostic features of impact angle, the early-time transfer of energy from impactor to target also creates distinctive asymmetries in crater profile with the greatest depth uprange. In order to simulate gravity-controlled crater-growth, laboratory experiments use loose particulate targets as analogs for low-strength material properties following passage of the shock. As a result, impact crater diameter D in laboratory experiments generally is many times greater than the impactor diameter 2r (factor of 40), and early-time asymmetries in energy transfer from oblique impacts are consumed by subsequent symmetrical crater growth, except at the lowest angles (less than 25 deg). Such asymmetry is evident for oblique (less than 60 deg from horizontal) impacts into aluminum where D/2r is only 2 to 4. Because cratering efficiency decreases with increasing crater size and decreasing impact angle, large scale planetary craters (4080 km) should have transient excavation diameters only 6-10 times larger than the impactor. At basin scales, D/2r is predicted to be only 3-5, i.e., approaching values for impacts into aluminum in laboratory experiments. As a result, evidence for early-time asymmetry in impactor energy transfer should become evident on planetary surfaces, yet craters generally retain a circular outline for all but the lowest impact angles.

  3. The role of volatiles and lithology in the impact cratering process.

    USGS Publications Warehouse

    Werner, Kieffer S.; Simonds, C.H.

    1980-01-01

    A survey of published descriptions of 32 of the largest, least eroded terrestrial impact structures reveals that the amount of melt at craters in crystalline rocks is approximately 2 orders of magnitude greater than at craters in sedimentary rocks. In this paper we present a model for the impact process; calculations show that the volume of material shocked to pressures sufficient for melting should not be significantly different in sedimentary and crystalline rocks. We conclude that shock melt is formed in the early stages of the cratering process by impacts into rocks rich in volatiles but is destroyed by the cratering process. -from Authors

  4. Lunar Crustal Properties: Insights from the GRAIL Gravity Signatures of Lunar Impact Craters

    NASA Astrophysics Data System (ADS)

    Soderblom, J. M.; Andrews-Hanna, J. C.; Evans, A. J.; Johnson, B. C.; Melosh, J., IV; Milbury, C.; Miljkovic, K.; Nimmo, F.; Phillips, R. J.; Smith, D. E.; Solomon, S. C.; Wieczorek, M. A.; Zuber, M. T.

    2014-12-01

    Impact cratering is a violent process, shattering and melting rock and excavating deep-seated material. The resulting scars are apparent on every planetary surface across our Solar System. Subsurface density variations associated with the resulting impact structures contain clues to aid in unlocking the details of this process. High-resolution gravity fields, such as those derived from the Gravity Recovery and Interior Laboratory (GRAIL) mission, are ideal for investigating these density variations. With gravity measurements from GRAIL and topography from the Lunar Orbiter Laser Altimeter (LOLA), we derived high-resolution Bouguer gravity fields (i.e., the gravity field after the contribution from topography is removed) that we correlated with craters mapped from LOLA data. We found that the mass deficit beneath lunar impact craters relates directly to crater size, up to diameter ~130 km, whereas craters larger than this diameter display no further systematic change. This observation, coupled with the greater depth of impact damage expected beneath larger craters, indicates that some process is affecting the production and/or preservation of porosity at depth or otherwise altering the mean density beneath the larger craters (note, measurable mantle uplift is observed for craters larger than ~184-km diameter). The observed crater gravity anomalies, however, exhibit considerable variation about these mean trends, suggesting that other factors are also important in determining the bulk density of impact crater structures. Milbury et al. (this conference) have demonstrated that pre-impact crustal porosity strongly influences the resulting density contrast between the impact damage zone beneath a crater and its surroundings. Herein, we extend these studies using the same GRAIL- and LOLA-derived maps to further investigate the effects that crustal properties have on the bulk density of the rock beneath lunar impact features. We focus, in particular, on the processes that

  5. Delimitation of terrestrial impact craters by way of pseudotachylytic rock distribution

    NASA Technical Reports Server (NTRS)

    Spray, John G.

    1993-01-01

    The determination of the shape and size of terrestrial impact craters is problematic, yet is critical to understanding cratering mechanics and for scaling bolide mass, volume, and impact velocity with crater size and target response. The problem is particularly difficult in older geological terrains (e.g. Precambrian) which are more likely to have suffered post-impact deformation and hence distortion of the original structure and/or where weathering may have partly removed or obscured its original shape. Traditionally, a number of features are used to assist us in determining the shape and size of an impact structure. These include the following: (1) the occurrence of faults, especially those disposed concentrically relative to the crater--the outermost ring faults being interpreted as indicating a viable minimum diameter; and (2) the development of so-called breccias, some of which are also associated with faults (e.g. the Sudbury Breccia developed within the target rocks of the Sudbury Structure of Onta rio, Canada). 'Breccia' is not a satisfactory term because a number of breccia-types exist at impact sites (e.g. fall-back breccias and in-situ brecciated target material). Of relevance to crater diameter determination is the recognition of discrete zones and fault- and shock-related pseudotachylyte. Pseudotachylyte is a rock type comprising a fine-grained, usually dark matrix containing clasts of minerals and/or rock derived from the country rock target material. It origin is normally attributed to high-speed slip (including vibration) along a slip surface (i.e. fault) or to the passage of a shock wave through the host material. The clasts can occur as angular fragments (i.e. like a breccia), but are more commonly developed as rounded to sub-rounded fragments. Significantly, the scale of these pseudotachylytes can range from sub-millimeter thick veinlets to dyke-like bodies up to 1 km or more thick. It is the latter, larger occurrence which has been referred to

  6. Potential for observing and discriminating impact craters and comparable volcanic landforms on Magellan radar images

    NASA Technical Reports Server (NTRS)

    Ford, J. P.

    1989-01-01

    Observations of small terrestrial craters by Seasat synthetic aperture radar (SAR) at high resolution (approx. 25 m) and of comparatively large Venusian craters by Venera 15/16 images at low resolution (1000 to 2000 m) and shorter wavelength show similarities in the radar responses to crater morphology. At low incidence angles, the responses are dominated by large scale slope effects on the order of meters; consequently it is difficult to locate the precise position of crater rims on the images. Abrupt contrasts in radar response to changing slope (hence incidence angle) across a crater produce sharp tonal boundaries normal to the illumination. Crater morphology that is radially symmetrical appears on images to have bilateral symmetry parallel to the illumination vector. Craters are compressed in the distal sector and drawn out in the proximal sector. At higher incidence angles obtained with the viewing geometry of SIR-A, crater morphology appears less compressed on the images. At any radar incidence angle, the distortion of a crater outline is minimal across the medial sector, in a direction normal to the illumination. Radar bright halos surround some craters imaged by SIR-A and Venera 15 and 16. The brightness probably denotes the radar response to small scale surface roughness of the surrounding ejecta blankets. Similarities in the radar responses of small terrestrial impact craters and volcanic craters of comparable dimensions emphasize the difficulties in discriminating an impact origin from a volcanic origin in the images. Similar difficulties will probably apply in discriminating the origin of small Venusian craters, if they exist. Because of orbital considerations, the nominal incidence angel of Magellan radar at the center of the imaging swath will vary from about 45 deg at 10 deg N latitude to about 16 deg at the north pole and at 70 deg S latitude. Impact craters and comparable volcanic landforms will show bilateral symmetry parallel to the illumination

  7. Impact craters and landslide volume distribution in Valles Marineris, Mars

    NASA Astrophysics Data System (ADS)

    De Blasio, Fabio

    2014-05-01

    The landslides in the wide gorge system of Valles Marineris (Mars) exhibit volumes of the or-der of several hundred 1,000 km3 and runouts often in the excess of 80 km. Most landslides have occurred at the borders of the valleys, where the unbalanced weight of the 5-8 km high headwalls has been evidently sufficient to cause instability. Previous analysis has shown that the mechanical conditions of instability would not have been reached without external triggering fac-tors, if the wallslope consisted of intact rock. Among the factors that have likely promoted instability, we are currently analyzing: i) the possibility of rock weakening due to weathering; ii) the alternation of weak layers within more massive rock; weak layers might for example due to evaporites, the possible presence of ice table at some depth, or water; iii) weakening due to impact damage prior to the formation of Valles Marineris; studies of impact craters on Earth show that the volumes of damaged rock extends much deeper than the crater itself; iv) direct triggering of a landslide due to the seismic waves generated by a large meteoroid impact in the vicinity, and v) direct triggering of a landslide con-sequent to impact at the headwall, with impulsive release of momentum and short but intense increase of the triggering force. We gathered a large database for about 3000 Martian landslides that allow us to infer some of their statistical properties supporting our analyses, and especially to discriminate among some of the above listed predisposing and triggering factors. In particular, we analyse in this contribution the frequency distribution of landslide volumes starting from the assumption that these events are controlled by the extent of the shock damage zones. Relative position of the impact point and damage zones with respect to the Valles Marineris slopes could in fact control the released volumes. We perform 3D slope stability analy-sis under different geometrical constraints (e.g. crater

  8. Tomography Study of Shock-Induced Damage Beneath Craters by Normal and Oblique Impacts

    NASA Astrophysics Data System (ADS)

    Ai, H.; Ahrens, T.

    2004-12-01

    Comparisons of laboratory impact craters produced in rock and planetary-scale impact structures, indicate that the observed reductions in elastic wave velocities by shock-induced damage of rock beneath impact craters can be used to constrain the impact history. A series of small-scale normal and oblique impact experiments were conducted on 20x20x15 cm samples of San Marcos granite by a 1.2 km/s, 2 kJ impactor. The resulting largely circular (8 cm in diameter) crater dimensions agrees closely with previous data. By conducting a multiple source-receiver ultrasonic survey of the shocked rock beneath laboratory craters (sampled by 290 ray paths beneath the crater) we have tomographically mapped the in-situ P-wave velocity beneath craters and find measurable damage, as defined by > 0.1 km/s velocity reduction, are induced to depths of 7 cm beneath the crater for normal impacts. However, oblique impacts produce shallower damage zone ( ˜ 3 cm deep) that are asymmetric along the plane containing the impact trajectory. The downrange shows more damage than the uprange. Since the extent of the shock-damage region depends on impact velocity and impact energy, the extent of damage in our laboratory impact structures , and we presume also planetary scale impact structures, carries both impact velocity and direction of impact information not previously recognized or sought. Hence damage zone dimensions are expected to constrain planetary impacts parameters. Oblique impacts, where the tracjectory is ≥ 15° relative to the impacted surface, yields approximately circular craters, can in principle, provide information on impactor trajectory. For planetary impacts, the damage profile, as measured by seismic velocity deficit, beneath craters allow some statistical constraint on impacts produced by low-inclination orbit objects (asteroids and Jupiter-family comets), versus, high-inclination orbit objects (long-period and new comets).

  9. Cratering in glasses impacted by debris or micrometeorites

    NASA Technical Reports Server (NTRS)

    Wiedlocher, David E.; Kinser, Donald L.

    1993-01-01

    Mechanical strength measurements on five glasses and one glass-ceramic exposed on LDEF revealed no damage exceeding experimental limits of error. The measurement technique subjected less than 5 percent of the sample surface area to stresses above 90 percent of the failure strength. Seven micrometeorite or space debris impacts occurred at locations which were not in that portion of the sample subjected to greater than 90 percent of the applied stress. As a result of this, the impact events on the sample were not detected in the mechanical strength measurements. The physical form and structure of the impact sites was carefully examined to determine the influence of those events upon stress concentration associated with the impact and the resulting mechanical strength. The size of the impact site, insofar as it determines flaw size for fracture purposes, was examined. Surface topography of the impacts reveals that six of the seven sites display impact melting. The classical melt crater structure is surrounded by a zone of fractured glass. Residual stresses arising from shock compression and from cooling of the fused zone cannot be included in the fracture mechanics analyses based on simple flaw size measurements. Strategies for refining estimates of mechanical strength degradation by impact events are presented.

  10. Gradational evolution of young, simple impact craters on the Earth

    NASA Technical Reports Server (NTRS)

    Grant, J. A.; Schultz, P. H.

    1991-01-01

    From these three craters, a first order gradational evolutionary sequence can be proposed. As crater rims are reduced by backwasting and downwasting through fluvial and mass wasting processes, craters are enlarged by approx. 10 pct. Enlargement of drainages inside the crater eventually forms rim breaches, thereby capturing headward portions of exterior drainages. At the same time, the relative importance of gradational processes may reverse on the ejecta: aeolian activity may supersede fluvial incisement and fan formation at late stages of modification. Despite actual high drainage densities on the crater exterior during early stages of gradation, the subtle scale of these systems results in low density estimates from air photos and satellite images. Because signatures developed on surfaces around all three craters appear to be mostly gradient dependent, they may not be unique to simple crater morphologies. Similar signatures may develop on portions of complex craters as well; however, important differences may also occur.

  11. Focused Ion Beam Recovery of Hypervelocity Impact Residue in Experimental Craters on Metallic Foils

    NASA Technical Reports Server (NTRS)

    Graham, G. A.; Teslich, N.; Dai, Z. R.; Bradley, J. P.; Kearsley, A. T.; Horz, F.

    2006-01-01

    The Stardust sample return capsule will return to Earth in January 2006 with primitive debris collected from Comet 81P/Wild-2 during the fly-by encounter in 2004. In addition to the cometary particles embedded in low-density silica aerogel, there will be microcraters preserved in the Al foils (1100 series; 100 micrometers thick) that are wrapped around the sample tray assembly. Soda lime spheres (approximately 49 m in diameter) have been accelerated with a light-gas-gun into flight-grade Al foils at 6.35 km s(sup -1) to simulate the potential capture of cometary debris. The preserved crater penetrations have been analyzed using scanning electron microscopy (SEM) and x-ray energy dispersive spectroscopy (EDX) to locate and characterize remnants of the projectile material remaining within the craters. In addition, ion beam induced secondary electron imaging has proven particularly useful in identifying areas within the craters that contain residue material. Finally, high-precision focused ion beam (FIB) milling has been used to isolate and then extract an individual melt residue droplet from the interior wall of an impact penetration. This enabled further detailed elemental characterization, free from the background contamination of the Al foil substrate. The ability to recover pure melt residues using FIB will significantly extend the interpretations of the residue chemistry preserved in the Al foils returned by Stardust.

  12. Focused Ion Beam Recovery of Hypervelocity Impact Residue in Experimental Craters on Metallic Foils.

    SciTech Connect

    Graham, G A; Teslich, N; Dai, Z R; Bradley, J P; Kearsley, A T; Horz, F

    2005-11-04

    The Stardust sample return capsule will return to Earth in January 2006 with primitive debris collected from Comet 81P/Wild-2 during the fly-by encounter in 2004. In addition to the cometary particles embedded in low-density silica aerogel, there will be microcraters preserved in the Al foils (1100 series; 100 {micro}m thick) that are wrapped around the sample tray assembly. Soda lime spheres ({approx}49 {micro}m in diameter) have been accelerated with a Light Gas Gun into flight-grade Al foils at 6.35 km s{sup -1} to simulate the capture of cometary debris. The experimental craters have been analyzed using scanning electron microscopy (SEM) and x-ray energy dispersive spectroscopy (EDX) to locate and characterize remnants of the projectile material remaining within the craters. In addition, ion beam induced secondary electron imaging has proven particularly useful in identifying areas within the craters that contain residue material. Finally, high-precision focused ion beam (FIB) milling has been used to isolate and then extract an individual melt residue droplet from the interior wall of an impact. This enabled further detailed elemental characterization, free from the background contamination of the Al foil substrate. The ability to recover ''pure'' melt residues using FIB will significantly extend the interpretations of the residue chemistry preserved in the Al foils returned by Stardust.

  13. The cratering record at Uranus: Implications for satellite evolution and the origin of impacting objects

    NASA Technical Reports Server (NTRS)

    Strom, Robert G.

    1987-01-01

    The crater size/frequency distributions on the major Uranian satellites show two distinctly different crater populations of different ages. Any hypothesis on the origin of the objects responsible for the period of heavy bombardment must account for the occurrence of different crater populations (size/frequency distributions) in different parts of the solar system. A computerized simulation using short-period comet impact velocities and a modified Holsapple-Schmidt crater scaling law was used to recover the size distribution of cometary nuclei from the observed cratering record. The most likely explanation for the cratering record is that the period of heavy bombardment was caused by different families of accretional remnants indigenous to the system in which the different crater populations occurred.

  14. The 1993 Zimbabwe impact crater and meteorite expedition

    NASA Astrophysics Data System (ADS)

    Reimold, W. U.; Master, S.; Koeberl, C.; Robertson, D.

    1994-07-01

    In September 1993 our expedition visited four strucutres in Zimbabwe that had been selected because of circular outlines or because of unusual aeromagnetic anomalies. The first one, the 1.1-km-diameter Thuli structure was identified as a well-preserved volcanic caldera formed by a series of basaltic, gabbroic, and dioritic instrusions. Preliminary results of magnetic traverses are consistent with the model of a volcanic pipe. The 600- and 800-m-wide Save craters near the Mozambican border closely resemble young, well-preserved impact craters such as the Pretoria Saltpan crater in South Africa. However, detailed geological traverses revealed only volcanic rocks intruded into sandstone forming the sharp rim crests. The Mucheka region is the site of the most prominent aeromagnetic anomaly in Zimbabwe. In the absence of any exposures other than Archean basement, the cause of this anomaly is still unknown. None of the basement rock specimens obtained yielded any evidence for shock metamorphism. In 1985 German geologists reportedly noted a circular structure in the Highbury area on Landsat images. An approximately 25-km-wide circular structure is visible on a SPOT satellite image as well. The regional geological map revealed the presence of a slight elevation near the center of this otherwise flat area. The flat floor of this structure is formed by fertile soils overlying locally exposed Deweras arkose and metadolomites, in turn surrounded by hills of Lomagundi sandstones and slates. Near the geographical center a small hill of sandstone and quartzite was indeed detected. Reconnaissance sampling in 'rim' and 'central uplift' provided several specimens with significant numbers of quartz grains with single or multiple sets of planar deformation features (PDFs). A strongly hematized sample from the 'central uplift' contains shocked quartz and relics of glass.

  15. The effect of impact angle on craters formed by hypervelocity particles

    NASA Technical Reports Server (NTRS)

    Hill, David C.; Rose, M. Frank; Best, Steve R.; Crumpler, Michael S.; Crawford, Gary D.; Zee, Ralph H.-C.; Bozack, Michael J.

    1995-01-01

    The Space Power Institute (SPI) at Auburn University has conducted experiments on the effects of impact angle on crater morphology and impactor residue retention for hypervelocity impacts. Copper target plates were set at angles of 30 deg, 45 deg, 60 deg, and 75 deg from the particle flight path. For the 30 deg and 45 deg impacts, in the velocity regime greater than 8 km s(exp -1) the resultant craters are almost identical to normal incidence impacts. The only difference found was in the apparent distribution of particle residue within the crater, and further research is needed to verify this. The 60 deg and 75 deg impacts showed marked differences in crater symmetry, crater lip shape, and particle residue distribution in the same velocity regime. Impactor residue shock fractionation effects have been quantified in first-order. It is concluded that a combination of analysis techniques can yield further information on impact velocity, direction, and angle of incidence.

  16. Dating a Small Impact Crater: An Age of Kaali Crater (Estonia) Based on Charcoal Emplaced Within Proximal Ejecta

    NASA Astrophysics Data System (ADS)

    Losiak, A.; Wild, E. M.; Geppert, W. D.; Huber, M. S.; Jõeleht, A.; Kriiska, A.; Kulkov, A.; Paavel, K.; Pirkovic, I.; Plado, J.; Steier, P.; Välja, R.; Wilk, J.; Wisniowski, T.; Zanetti, M.

    2015-09-01

    The Kaali crater was formed shortly after (tpq) 1530-1455 BC (3237 ± 10 14C yr BP). This age is based on dating charcoal within the ejecta blanket that makes it directly related to the impact, and not susceptible to potential reservoir effects.

  17. Hydrothermal activity recorded in post Noachian-aged impact craters on Mars

    NASA Astrophysics Data System (ADS)

    Turner, Stuart M. R.; Bridges, John C.; Grebby, Stephen; Ehlmann, Bethany L.

    2016-04-01

    Hydrothermal systems have previously been reported in ancient Noachian and Hesperian-aged craters on Mars using CRISM but not in Amazonian-aged impact craters. However, the nakhlite meteorites do provide evidence of Amazonian hydrothermal activity. This study uses CRISM data of 144 impact craters of ≥7 km diameter and 14 smaller craters (3-7 km diameter) within terrain mapped as Amazonian to search for minerals that may have formed as a result of impact-induced hydrothermal alteration or show excavation of ancient altered crust. No evidence indicating the presence of hydrated minerals was found in the 3-7 km impact craters. Hydrated minerals were identified in three complex impact craters, located at 52.42°N, 39.86°E in the Ismenius Lacus quadrangle, at 8.93°N, 141.28°E in Elysium, and within the previously studied Stokes crater. These three craters have diameters 20 km, 62 km, and 51 km. The locations of the hydrated mineral outcrops and their associated morphology indicate that two of these three impact craters—the unnamed Ismenius Lacus Crater and Stokes Crater—possibly hosted impact-induced hydrothermal systems, as they contain alteration assemblages on their central uplifts that are not apparent in their ejecta. Chlorite and Fe serpentine are identified within alluvial fans in the central uplift and rim of the Ismenius Lacus crater, whereas Stokes crater contains a host of Fe/Mg/Al phyllosilicates. However, excavation origin cannot be precluded. Our work suggests that impact-induced hydrothermalism was rare in the Amazonian and/or that impact-induced hydrothermal alteration was not sufficiently pervasive or spatially widespread for detection by CRISM.

  18. Location and sampling of aqueous and hydrothermal deposits in martian impact craters.

    PubMed

    Newsom, H E; Hagerty, J J; Thorsos, I E

    2001-01-01

    Do large craters on Mars represent sites that contain aqueous and hydrothermal deposits that provide clues to astrobiological processes? Are these materials available for sampling in large craters? Several lines of evidence strongly support the exploration of large impact craters to study deposits important for astrobiology. The great depth of impact craters, up to several kilometers relative to the surrounding terrain, can allow the breaching of local aquifers, providing a source of water for lakes and hydrothermal systems. Craters can also be filled with water from outflow channels and valley networks to form large lakes with accompanying sedimentation. Impact melt and uplifted basement heat sources in craters > 50 km in diameter should be sufficient to drive substantial hydrothermal activity and keep crater lakes from freezing for thousands of years, even under cold climatic conditions. Fluid flow in hydrothermal systems is focused at the edges of large planar impact melt sheets, suggesting that the edge of the melt sheets will have experienced substantial hydrothermal alteration and mineral deposition. Hydrothermal deposits, fine-grained lacustrine sediments, and playa evaporite deposits may preserve evidence for biogeochemical processes that occurred in the aquifers and craters. Therefore, large craters may represent giant Petri dishes for culturing preexisting life on Mars and promoting biogeochemical processes. Landing sites must be identified in craters where access to the buried lacustrine sediments and impact melt deposits is provided by processes such as erosion from outflow channels, faulting, aeolian erosion, or excavation by later superimposed cratering events. Very recent gully formation and small impacts within craters may allow surface sampling of organic materials exposed only recently to the harsh oxidizing surface environment.

  19. The Interaction of Impact Melt, Impact-Derived Sediment, and Volatiles at Crater Tooting, Mars

    NASA Technical Reports Server (NTRS)

    Mouginis-Mark, P.; Boyce, J.

    2010-01-01

    We are producing a 1:200K geologic map of Tooting crater, Mars. This work has shown that an incredible amount of information can be gleaned from mapping at even larger scales (1:10K 1:25K) using CTX and HiRISE data. We have produced two new science papers (Morris et al., 2010; Mouginis-Mark and Boyce, 2010) from this mapping, and additional science questions continue to arise from our on-going analysis of Tooting crater: 1) What was the interplay of impact melt and volatile-rich sediments that, presumably, were created during the impact? Kieffer and Simonds [1980] predicted that melt would have been destroyed during impacts on Mars because of the volatiles present within the target we seek to understand if this is indeed the case at Tooting crater. We have identified pitted and fractured terrain that formed during crater modification, but the timing of the formation of these materials in different parts of the crater remains to be resolved. Stratigraphic relationships between these units and the central peak may reveal deformation features as well as overlapping relationships. 2) Morris et al. [2010] identified several lobate flows on the inner and outer walls of Tooting crater. It is not yet clear what the physical characteristics of the source areas of these flows really are; e.g., what are the sizes of the source areas, what elevations are they located at relative to the floor of the crater, are they interconnected, and are they on horizontal or tilted surfaces? 3) What were the details of dewatering of the inner wall of Tooting crater (Fig. 1)? We find evidence within Tooting crater of channels carved by water release, and the remobilization of sediment (which is inferred to have formed during the impact event). Sapping can be identified along the crest of unit 8 near the floor of the crater (Fig. 2a, 2b). This unit displays amphitheater-headed canyons that elsewhere on Mars are typically attributed to water leaking from the substrate [Laity and Malin, 1985

  20. Doublet Crater

    NASA Image and Video Library

    2010-12-22

    This image from NASA Mars Odyssey is of a doublet crater located in Utopia Planitia, near the Elysium Volcanic region. Doublet craters are formed by simultaneous impact of a meteor that broke into two pieces prior to hitting the surface.

  1. Crater Ejecta

    NASA Image and Video Library

    2012-06-05

    This image from NASA 2001 Mars Odyssey spacecraft contains a relatively young crater and its ejecta. Layering in the ejecta is visible and relates to the shock waves from the impact. This unnamed crater is located in Arabia Terra.

  2. FIB-TEM Anatomy of a Sub-Micrometer Impact Crater on a Hayabusa Grain

    NASA Astrophysics Data System (ADS)

    Harries, D.; Yakame, S.; Uesugi, M.; Langenhorst, F.

    2015-07-01

    We investigated Hayabusa grain RA-QD02-0265, which was found to contain a cluster of sub-micrometer-sized crater-like features. The cluster of craters is most likely due to secondary impacts of particles generated by an nearby (micro-)impact event.

  3. Characterization of the Morphometry of Impact Craters Hosting Polar Deposits in Mercury's North Polar Region

    NASA Technical Reports Server (NTRS)

    Talpe Matthieu; Zuber, Maria T.; Yang, Di; Neumann, Gregory A.; Solomon, Sean C.; Mazarico, Erwan; Vilas, Faith

    2012-01-01

    Earth-based radar images of Mercury show radar-bright material inside impact craters near the planet s poles. A previous study indicated that the polar-deposit-hosting craters (PDCs) at Mercury s north pole are shallower than craters that lack such deposits. We use data acquired by the Mercury Laser Altimeter on the MESSENGER spacecraft during 11 months of orbital observations to revisit the depths of craters at high northern latitudes on Mercury. We measured the depth and diameter of 537 craters located poleward of 45 N, evaluated the slopes of the northern and southern walls of 30 PDCs, and assessed the floor roughness of 94 craters, including nine PDCs. We find that the PDCs appear to have a fresher crater morphology than the non-PDCs and that the radar-bright material has no detectable influence on crater depths, wall slopes, or floor roughness. The statistical similarity of crater depth-diameter relations for the PDC and non-PDC populations places an upper limit on the thickness of the radar-bright material (< 170 m for a crater 11 km in diameter) that can be refined by future detailed analysis. Results of the current study are consistent with the view that the radar-bright material constitutes a relatively thin layer emplaced preferentially in comparatively young craters.

  4. Morphology of large impact craters and basins on Venus: Implications for ring formation

    NASA Astrophysics Data System (ADS)

    Alexopoulos, Jim S.; McKinnon, William B.

    1993-03-01

    A nearly complete examination of the Magellan radar data for the Venusian surface reveals 72 unequivocal peak-ring craters and 4 larger structures that we interpret to be multiringed. This report updates our earlier studies and that of the Magellan team. The general morphology of peak-ring craters, decreasing ring diameter ratio trends with increasing crater diameter, and the general size-morphology progression from complex central-peak crater to peak-ring crater on Venus and the terrestrial planets suggest similar processes of peak-ring formation. Observations are consistent with a model of dynamic collapse, downward and outward, of an unstable central peak to form a ring. We interpret the four larger ringed structures (Klenova, Lise Meitner, Mead, and Isabella) to be morphologically similar to the Orientale Basin on the Moon, and thus, true multiringed basins.

  5. Morphology of large impact craters and basins on Venus: Implications for ring formation

    NASA Technical Reports Server (NTRS)

    Alexopoulos, Jim S.; Mckinnon, William B.

    1993-01-01

    A nearly complete examination of the Magellan radar data for the Venusian surface reveals 72 unequivocal peak-ring craters and 4 larger structures that we interpret to be multiringed. This report updates our earlier studies and that of the Magellan team. The general morphology of peak-ring craters, decreasing ring diameter ratio trends with increasing crater diameter, and the general size-morphology progression from complex central-peak crater to peak-ring crater on Venus and the terrestrial planets suggest similar processes of peak-ring formation. Observations are consistent with a model of dynamic collapse, downward and outward, of an unstable central peak to form a ring. We interpret the four larger ringed structures (Klenova, Lise Meitner, Mead, and Isabella) to be morphologically similar to the Orientale Basin on the Moon, and thus, true multiringed basins.

  6. Morphology of large impact craters and basins on Venus: Implications for ring formation

    NASA Technical Reports Server (NTRS)

    Alexopoulos, Jim S.; Mckinnon, William B.

    1993-01-01

    A nearly complete examination of the Magellan radar data for the Venusian surface reveals 72 unequivocal peak-ring craters and 4 larger structures that we interpret to be multiringed. This report updates our earlier studies and that of the Magellan team. The general morphology of peak-ring craters, decreasing ring diameter ratio trends with increasing crater diameter, and the general size-morphology progression from complex central-peak crater to peak-ring crater on Venus and the terrestrial planets suggest similar processes of peak-ring formation. Observations are consistent with a model of dynamic collapse, downward and outward, of an unstable central peak to form a ring. We interpret the four larger ringed structures (Klenova, Lise Meitner, Mead, and Isabella) to be morphologically similar to the Orientale Basin on the Moon, and thus, true multiringed basins.

  7. Migration of the Cratering Flow-Field Center with Implications for Scaling Oblique Impacts

    NASA Technical Reports Server (NTRS)

    Anderson, J. L. B.; Schultz, P. H.; Heineck, J. T.

    2004-01-01

    Crater-scaling relationships are used to predict many cratering phenomena such as final crater diameter and ejection speeds. Such nondimensional relationships are commonly determined from experimental impact and explosion data. Almost without exception, these crater-scaling relationships have used data from vertical impacts (90 deg. to the horizontal). The majority of impact craters, however, form by impacts at angles near 45 deg. to the horizontal. While even low impact angles result in relatively circular craters in sand targets, the effects of impact angle have been shown to extend well into the excavation stage of crater growth. Thus, the scaling of oblique impacts needs to be investigated more thoroughly in order to quantify fully how impact angle affects ejection speed and angle. In this study, ejection parameters from vertical (90 deg.) and 30 deg. oblique impacts are measured using three-dimensional particle image velocimetry (3D PIV) at the NASA Ames Vertical Gun Range (AVGR). The primary goal is to determine the horizontal migration of the cratering flow-field center (FFC). The location of the FFC at the time of ejection controls the scaling of oblique impacts. For vertical impacts the FFC coincides with the impact point (IP) and the crater center (CC). Oblique impacts reflect a more complex, horizontally migrating flow-field. A single, stationary point-source model cannot be used accurately to describe the evolution of the ejection angles from oblique impacts. The ejection speeds for oblique impacts also do not follow standard scaling relationships. The migration of the FFC needs to be understood and incorporated into any revised scaling relationships.

  8. Degradation of selected terrestrial and Martian impact craters

    NASA Astrophysics Data System (ADS)

    Grant, J. A.; Schultz, P. H.

    1993-06-01

    The history of degradation of 50,000-yr-old 1.2-km-diam Meteor Crater in Arizona is defined using field mapping, and the degradation states of the progressively more degraded 68,000-yr-old 1.8-km-diam Lonar Crater in Indiana and 0.5-3.0 Myr old 1.75-km-diam Talemzane Crater in Algeria are assessed using air photos. The results on these terrestrial craters are then compared with the gradational morphology associated with craters in southern Ismenius Lacus on Mars, in order to develop first-order constraints on gradational activity. Common degradation signatures associated with craters on both planets are described. These signatures are used to assemble a first-order degradational sequence for the terrestrial craters that is then compared with the Martian degradational signatures to infer past processes and climate.

  9. Geophysical signature of the Pretoria Saltpan impact structure and a possible satellite crater

    NASA Astrophysics Data System (ADS)

    Brandt, Dion; Reimold, Wolf Uwe; Durrheim, Raymond J.

    1994-05-01

    The genesis of the 1.13-km-diameter Pretoria Saltpan crater has long been the focus of a controversy. Its origin has been explained by either meteorite impact or 'crytoexplosive' volcanic activity, but it was recently confirmed, through detailed petrographic and chemical analysis of a breccia layer forming part of the crater fill, that the crater was formed by impact. As the limited previous geophysical work failed to support an impact origin, a more detailed gravity and magnetic study was conducted. A possible 400-m-diameter circular crater located 3 km to the southwest of the main crater was also investigated with geophysical methods, including resistivity, seismics and ground-probing radar. The gravity signature of the main crater is compatible with that of a simple impact crater and the magnetic signature (no magnetic anomaly could be detected) rules out the possibility of a central magnetic volcanic body below the crater-fill sediments. The results for the possible twin or satellite crater are inconclusive. As it is the only such feature in the entire region, it should not be overlooked. A drilling program may reveal interesting results.

  10. The melt rocks of the Boltysh impact crater, Ukraine, USSR

    NASA Astrophysics Data System (ADS)

    Grieve, R. A. F.; Reny, G.; Gurov, E. P.; Ryabenko, V. A.

    1987-05-01

    The 100±12 m.y., 25 km diameter Boltysh impact crater was formed in Precambrian granites and granite gneisses of the Ukrainian Shield. The crater deposits have undergone minimal post-impact erosion and it is possible to study a complete vertical section of the underlying ˜200 m thick melt sheet. The melt rocks, as sampled in two drill holes, can be subdivided into two major textural classes: microcrystalline and glassy. The microcrystalline melt rocks form an uppermost and two lowermost units, with the glassy variety occupying the middle of the melt sheet. The microcrystalline units contain ˜25% zoned plagioclase phenocrysts set in a microcrystalline matrix of intergrown alkali feldspar and quartz. Pyroxene has been replaced by sheet-silicates. Mineral and lithic clasts make up 5 15% and show varying degrees of shock and resorption. The glassy melt rocks are characterized by 10 30% zoned plagioclase and 5 10% orthopyroxene set in a fresh to partially devitrified glassy matrix. Clast content is <5%. Chemically, the melt rocks are relatively homogeneous and correspond to a mixture of Kirovograd granites and gneisses in the ratio of 5 to 1, with Ni, Ir and Cr showing slight enrichments over the target rocks. There are minor differences in the Fe2O3/FeO ratio and the alkalis between the microcrystalline and glassy varieties. The increase in matrix crystallinity at the upper and lower contacts is contrary to observations at other impact melt sheets, where greater matrix crystallinity occurs in the interiors of the melt sheets. One possible explanation is that the melt matrix was originally glassy throughout, due to its high SiO2 content, and the microcrystalline matrix is the result of extensive devitrification involving minor alkali exchange with circulating ground-waters.

  11. Paleomagnetic and Magnetostratigraphic Studies in Drilling Projects of Impact Craters - Recent Studies, Challenges and Perspectives

    NASA Astrophysics Data System (ADS)

    Fucugauchi, J. U.; Velasco-Villarreal, M.; Perez-Cruz, L. L.

    2013-05-01

    Paleomagnetic studies have long been successfully carried out in drilling projects, to characterize the borehole columns and to investigate the subsurface structure and stratigraphy. Magnetic susceptibility logging and magnetostratigraphic studies provide data for lateral correlation, formation evaluation, azimuthal core orientation, physical properties, etc., and are part of the tools available in the ocean and continental drilling programs. The inclusion of continuous core recovery in scientific drilling projects have greatly expanded the range of potential applications of paleomagnetic and rock magnetic studies, by allowing laboratory measurements on core samples. For this presentation, we concentrate on drilling studies of impact structures and their usefulness for documenting the structure, stratigraphy and physical properties at depth. There are about 170-180 impact craters documented in the terrestrial record, which is a small number compared to what is observed in the Moon, Mars, Venus and other bodies of the solar system. Of the terrestrial impact craters, only a few have been studied by drilling. Some craters have been drilled as part of industry exploration surveys and/or academic projects, including notably the Sudbury, Ries, Vredefort, Manson and many other craters. As part of the Continental ICDP program, drilling projects have been conducted on the Chicxulub, Bosumtwi, Chesapeake and El gygytgyn craters. Drilling of terrestrial craters has proved important in documenting the shallow stratigraphy and structure, providing insight on the cratering and impact dynamics. Questions include several that can only be addressed by retrieving core samples and laboratory analyses. Paleomagnetic, rock magnetic and fabric studies have been conducted in the various craters, which are here summarized with emphasis on the Chicxulub crater and Yucatan carbonate platform. Chicxulub is buried under a kilometer of younger sediments, making drilling an essential tool. Oil

  12. Geomorphic analysis of small rayed craters on Mars: Examining primary versus secondary impacts

    NASA Astrophysics Data System (ADS)

    Calef, Fred J.; Herrick, Robert R.; Sharpton, Virgil L.

    2009-10-01

    Twenty confirmed impacts over a 7-year time period on Mars were qualitatively and statistically compared to 287 secondary craters believed to originate from Zunil, an ˜500 ka, 10-km diameter, primary crater. Our goal was to establish criteria to distinguish secondaries from primaries in the general crater population on the basis of their horizontal planforms. Recent primary impacts have extensive “air blast” zones, distal ray systems (>100 crater radii, R), and ephemeral ejecta. Recent primaries formed clusters of craters from atmospheric fragmentation of the meteoroid body. Secondary craters have ejecta blankets with shorter rays that are consistent with emplacement by low-impact velocities (near 1 km/s). The mean extent of the continuous ejecta blankets was less distal for secondaries (5.38 ± 1.57R) versus primaries (18.07 ± 7.01R), though primary ejecta were less fractal (Fractal Dimension Index (FD I ) < 1.30) and more circular on average (Circularity Ratio (C R ) = 0.55 ± 0.25 versus 0.27 ± 0.13 for secondaries). Crater rims were remarkably circular (primaries C R = 0.97 ± 0.02, secondaries at 0.94 ± 0.05), though secondaries have the lowest values (C R < 0.9). Secondary crater rims were elongated toward or orthogonal to their primary of origin. Uprange source directions for most secondaries, determined by ejecta planform and crater rim ellipticity, point toward Zunil, although contamination from other primaries is considered in some areas. Ejecta blanket discrepancies between recent primaries and Zunil secondaries are attributable to differences in impact velocity and retention age. After removal of the ejecta blanket, crater rims are generally not diagnostic for determining crater origin. Fragmentation of primaries may play some role in steepening the size-frequency distribution of crater diameters in the 5 m < D < 30 m range.

  13. Martian Impact Craters Modified by Post-impact Processes in the Greater Hellas Region

    NASA Astrophysics Data System (ADS)

    Raitala, J.; Kostama, V.-P.; Aittola, M.; Lahtela, H.

    2003-04-01

    The appearance of the impact craters on the Martian surface depends on numerous factors beginning from the size, mass, velocity, type, and impact angle of the approaching projectile [1]. These all have affected on the impact energy delivered into the surface. The bedrock properties have then resulted in additional effects. Besides some major phenomena (Pre-existing faults and fractures, permafrost-saturated layers) there may have been numerous more delicate variations due to local projectile-bedrock combinations. Various post-impact deformation processes may then have changed the appearance of an impact crater to the extent that it is difficult to identify any original crater characteristics in great details. The changes in the crater appearances can, however, be looked in a positive way to provide crucial information on the local surface geology, bedrock properties and, more generally, on the whole post-impact geological evolution of the area studied [2,3,4]. We have characterized and studied the various crater deformation types found from within the large Hellas area. As it is one of the possible previous water body areas on Mars and lies also close to the southern permafrost and the south-pole environment, many craters locating within the greater Hellas Basin area have undergone substantial fluvial processes. Still, many of their surviving geologic features are enough well preserved. The good state of preservation is due partly to the relative youth of the craters and/or partly to Martian relative dryness. The absence of permanent water cover limits the weathering of surface materials, while it optimizes the site's exposure for geologic surveys by remote-sensing. This allows to estimate that the effects related to permafrost, water, erosion and sedimentation have been far more important within the greater Hellas area than what was earlier assumed using the previous data sets which have had defects either in resolution or in areal coverage. The still

  14. Seismically Imaged Architecture of the Chicxulub Impact Crater: Preliminary Results From the Last Cruise of the R/V Maurice Ewing

    NASA Astrophysics Data System (ADS)

    Gulick, S. S.; Barton, P. J.; Christeson, G.; Morgan, J. V.; Warner, M. R.; Urrutia-Fucugauchi, J.; Melosh, H. J.; Rebolledo-Vieyra, M.; McDonald, M.; Vermeesch, P. M.; Surendra, A. T.; Goldin, T.; Mendoza, K.; Sears, T. J.

    2005-05-01

    A new suite of multi-channel seismic reflection lines image key structural elements of the 195 km wide Chicxulub Impact Crater, the best preserved, large impact crater on Earth. The seismic transects, acquired using the R/V Maurice Ewing in January and February 2005, include regional radial lines (dip-oriented), a regional constant-radius profile (strike-oriented), and a dense grid of lines spaced 2 km by 5 km apart near the center of the crater. The radial lines image, from the exterior to interior, the crater rings, crater rim, slump blocks, and peak ring providing an enhanced look at the 3-D architecture of Chicxulub. The constant-radius profile, together with the radial lines, was designed to study any radial variations in deformation, or possibly ejecta, which may lend insight into impact angle and direction. The grid of lines near the crater center examine the structural relationships between the slump blocks, peak ring, and central uplift which according to impact modeling all formed within minutes of the Cretaceous-Tertiary impact. The regional lines, both radial and the constant radius profile, largely confirm the observations of the regional seismic lines collected in 1996. Both datasets show the existence of at least one ring outside of the crater rim and an elevated crater rim with as much as 500 m of offset between the top of the crater rim and the KT boundary within the crater that was subsequently buried by ~1 km of Tertiary sediments. Our preliminary interpretations from the seismic grid near the crater center yield a general architecture of the central crater that includes a 10-15 km wide, doughnut-shaped peak ring that lies ~25 km from the crater center. Underlying the peak ring are sediments with inconsistent reflectivity (possibly breccia), underlain by inward slumped blocks of varying widths, and underlain by ~10 km thick package of reflective lower crust ending with the Moho. The slump blocks, where imaged, underlie the peak ring suggesting

  15. Investigations of Martian Impact Crater Morphologies and Morphometries

    NASA Technical Reports Server (NTRS)

    Barlow, Nadine G.

    2002-01-01

    We have made substantial progress towards completion of the original objectives and are continuing to include new data from the Mars Global Surveyor MOC and TES instruments as they become available (the MOLA instrument has ceased operation as of 2002). The project funding has been used to provide salary support to the PI and several undergraduate students, cover publication charges for two papers, reimburse travel expenses to conferences and workshops incurred by the PI and students, and cover a number of other expenses such as software upgrades and production costs of slides and color prints. This study is revising the PI's Catalog of Large Martian Impact Craters with information obtained from MGS and is utilizing data in the revised Catalog to investigate which planetary factors (such as location, elevation, terrain type, etc.) primarily affect the formation of specific ejecta morphologies and morphometries.

  16. Large impact basins on Mercury and relative crater production rates

    NASA Technical Reports Server (NTRS)

    Frey, H.; Lowry, B. L.

    1979-01-01

    Mariner 10 revealed evidence for 40 impact basins having diameters greater than or equal to 200 km on the portion of Mercury imaged at sufficient resolution. A log (cumulative number/unit area) vs. log (diameter) plot for the mercurian basins has a least squares slope of -2. Mercury has (in cumulative number/unit area) only 37 percent as many basins as does the Moon over the entire range of diameters greater than or equal to 300 km. If both the Moon and Mercury have had similar preservation times for craters and if common populations of impactors are involved, then Mars crossers may have been a dominant contribution to the basin forming objects.

  17. Microstructural Study of Micron-Sized Craters Simulating Stardust Impacts in Aluminum 1100 Targets

    NASA Technical Reports Server (NTRS)

    Leroux, Hugues; Borg, Janet; Troadec, David; Djouadi, Zahia; Horz, Friedrich

    2006-01-01

    Various microscopic techniques were used to characterize experimental micro- craters in aluminium foils to prepare for the comprehensive analysis of the cometary and interstellar particle impacts in aluminium foils to be returned by the Stardust mission. First, SEM (Scanning Electron Microscopy) and EDS (Energy Dispersive X-ray Spectroscopy) were used to study the morphology of the impact craters and the bulk composition of the residues left by soda-lime glass impactors. A more detailed structural and compositional study of impactor remnants was then performed using TEM (Transmission Electron Microscopy), EDS, and electron diffraction methods. The TEM samples were prepared by Focused Ion Beam (FIB) methods. This technique proved to be especially valuable in studying impact crater residues and impact crater morphology. Finally, we also showed that InfraRed microscopy (IR) can be a quick and reliable tool for such investigations. The combination of all of these tools enables a complete microscopic characterization of the craters.

  18. Impact Craters on Asteroids: Does Gravity or Strength Control Their Size?

    NASA Astrophysics Data System (ADS)

    Nolan, Michael C.; Asphaug, Erik; Melosh, H. Jay; Greenberg, Richard

    1996-12-01

    The formation of kilometer-size craters on asteroids is qualitatively different from the formation of meter-size (laboratory- and weapons-scale) craters on Earth. A numerical hydrocode model is used to examine the outcomes of various-size cratering impacts into spheres and half-spaces. A shock wave fractures the target in advance of the crater excavation flow; thus, for impactors larger than 100 m, impacting at typical asteroid impact velocities, target tensile strength is irrelevant to the impact outcome. This result holds whether the target is initially intact or a “rubble pile,” even ignoring the effects of gravity. Because of the shock-induced fracture, crater excavation is controlled by gravity at smaller sizes than would otherwise be predicted. Determining the strength-gravity transition by comparing the physical strength of the material to the force of gravity will not work, because strength is eliminated by the shock wave.

  19. El'gygytgyn impact crater, Chukotka, Arctic Russia: Impact cratering aspects of the 2009 ICDP drilling project

    PubMed Central

    Koeberl, Christian; Pittarello, Lidia; Reimold, Wolf Uwe; Raschke, Ulli; Brigham-Grette, Julie; Melles, Martin; Minyuk, Pavel; Spray, John

    2013-01-01

    The El'gygytgyn impact structure in Chukutka, Arctic Russia, is the only impact crater currently known on Earth that was formed in mostly acid volcanic rocks (mainly of rhyolitic, with some andesitic and dacitic, compositions). In addition, because of its depth, it has provided an excellent sediment trap that records paleoclimatic information for the 3.6 Myr since its formation. For these two main reasons, because of the importance for impact and paleoclimate research, El'gygytgyn was the subject of an International Continental Scientific Drilling Program (ICDP) drilling project in 2009. During this project, which, due to its logistical and financial challenges, took almost a decade to come to fruition, a total of 642.3 m of drill core was recovered at two sites, from four holes. The obtained material included sedimentary and impactite rocks. In terms of impactites, which were recovered from 316.08 to 517.30 m depth below lake bottom (mblb), three main parts of that core segment were identified: from 316 to 390 mblb polymict lithic impact breccia, mostly suevite, with volcanic and impact melt clasts that locally contain shocked minerals, in a fine-grained clastic matrix; from 385 to 423 mblb, a brecciated sequence of volcanic rocks including both felsic and mafic (basalt) members; and from 423 to 517 mblb, a greenish rhyodacitic ignimbrite (mostly monomict breccia). The uppermost impactite (316–328 mblb) contains lacustrine sediment mixed with impact-affected components. Over the whole length of the impactite core, the abundance of shock features decreases rapidly from the top to the bottom of the studied core section. The distinction between original volcanic melt fragments and those that formed later as the result of the impact event posed major problems in the study of these rocks. The sequence that contains fairly unambiguous evidence of impact melt (which is not very abundant anyway, usually less than a few volume%) is only about 75 m thick. The reason for

  20. El'gygytgyn impact crater, Chukotka, Arctic Russia: Impact cratering aspects of the 2009 ICDP drilling project

    NASA Astrophysics Data System (ADS)

    Koeberl, Christian; Pittarello, Lidia; Reimold, Wolf Uwe; Raschke, Ulli; Brigham-Grette, Julie; Melles, Martin; Minyuk, Pavel

    2013-07-01

    The El'gygytgyn impact structure in Chukutka, Arctic Russia, is the only impact crater currently known on Earth that was formed in mostly acid volcanic rocks (mainly of rhyolitic, with some andesitic and dacitic, compositions). In addition, because of its depth, it has provided an excellent sediment trap that records paleoclimatic information for the 3.6 Myr since its formation. For these two main reasons, because of the importance for impact and paleoclimate research, El'gygytgyn was the subject of an International Continental Scientific Drilling Program (ICDP) drilling project in 2009. During this project, which, due to its logistical and financial challenges, took almost a decade to come to fruition, a total of 642.3 m of drill core was recovered at two sites, from four holes. The obtained material included sedimentary and impactite rocks. In terms of impactites, which were recovered from 316.08 to 517.30 m depth below lake bottom (mblb), three main parts of that core segment were identified: from 316 to 390 mblb polymict lithic impact breccia, mostly suevite, with volcanic and impact melt clasts that locally contain shocked minerals, in a fine-grained clastic matrix; from 385 to 423 mblb, a brecciated sequence of volcanic rocks including both felsic and mafic (basalt) members; and from 423 to 517 mblb, a greenish rhyodacitic ignimbrite (mostly monomict breccia). The uppermost impactite (316-328 mblb) contains lacustrine sediment mixed with impact-affected components. Over the whole length of the impactite core, the abundance of shock features decreases rapidly from the top to the bottom of the studied core section. The distinction between original volcanic melt fragments and those that formed later as the result of the impact event posed major problems in the study of these rocks. The sequence that contains fairly unambiguous evidence of impact melt (which is not very abundant anyway, usually less than a few volume%) is only about 75 m thick. The reason for

  1. El'gygytgyn impact crater, Chukotka, Arctic Russia: Impact cratering aspects of the 2009 ICDP drilling project.

    PubMed

    Koeberl, Christian; Pittarello, Lidia; Reimold, Wolf Uwe; Raschke, Ulli; Brigham-Grette, Julie; Melles, Martin; Minyuk,