ERIC Educational Resources Information Center
Mahajan, Ritika; Agrawal, Rajat; Sharma, Vinay; Nangia, Vinay
2016-01-01
Purpose: The purpose of this paper is to identify challenges for management education in India and explain their nature, significance and interrelations using total interpretive structural modelling (TISM), an innovative version of Warfield's interpretive structural modelling (ISM). Design/methodology/approach: The challenges have been drawn from…
ERIC Educational Resources Information Center
Georgakopoulos, Alexia
2009-01-01
This study challenges narrow definitions of teacher effectiveness and uses a systems approach to investigate teacher effectiveness as a multi-dimensional, holistic phenomenon. The methods of Nominal Group Technique and Interpretive Structural Modeling were used to assist U.S. and Japanese students separately construct influence structures during…
Uncertainty in structural interpretation: Lessons to be learnt
NASA Astrophysics Data System (ADS)
Bond, Clare E.
2015-05-01
Uncertainty in the interpretation of geological data is an inherent element of geology. Datasets from different sources: remotely sensed seismic imagery, field data and borehole data, are often combined and interpreted to create a geological model of the sub-surface. The data have limited resolution and spatial distribution that results in uncertainty in the interpretation of the data and in the subsequent geological model(s) created. Methods to determine the extent of interpretational uncertainty of a dataset, how to capture and express that uncertainty, and consideration of uncertainties in terms of risk have been investigated. Here I review the work that has taken place and discuss best practice in accounting for uncertainties in structural interpretation workflows. Barriers to best practice are reflected on, including the use of software packages for interpretation. Experimental evidence suggests that minimising interpretation error through the use of geological reasoning and rules can help decrease interpretation uncertainty; through identification of inadmissible interpretations and in highlighting areas of uncertainty. Understanding expert thought processes and reasoning, including the use of visuospatial skills, during interpretation may aid in the identification of uncertainties, and in the education of new geoscientists.
Modeling the mesozoic-cenozoic structural evolution of east texas
Pearson, Ofori N.; Rowan, Elisabeth L.; Miller, John J.
2012-01-01
The U.S. Geological Survey (USGS) recently assessed the undiscovered technically recoverable oil and gas resources within Jurassic and Cretaceous strata of the onshore coastal plain and State waters of the U.S. Gulf Coast. Regional 2D seismic lines for key parts of the Gulf Coast basin were interpreted in order to examine the evolution of structural traps and the burial history of petroleum source rocks. Interpretation and structural modeling of seismic lines from eastern Texas provide insights into the structural evolution of this part of the Gulf of Mexico basin. Since completing the assessment, the USGS has acquired additional regional seismic lines in east Texas; interpretation of these new lines, which extend from the Texas-Oklahoma state line to the Gulf Coast shoreline, show how some of the region's prominent structural elements (e.g., the Talco and Mount Enterprise fault zones, the East Texas salt basin, and the Houston diapir province) vary along strike. The interpretations also indicate that unexplored structures may lie beneath the current drilling floor. Structural restorations based upon interpretation of these lines illustrate the evolution of key structures and show the genetic relation between structural growth and movement of the Jurassic Louann Salt. 1D thermal models that integrate kinetics and burial histories were also created for the region's two primary petroleum source rocks, the Oxfordian Smackover Formation and the Cenomanian-Turonian Eagle Ford Shale. Integrating results from the thermal models with the structural restorations provides insights into the distribution and timing of petroleum expulsion from the Smackover Formation and Eagle Ford Shale in eastern Texas.
NASA Astrophysics Data System (ADS)
Amrina, E.; Yulianto, A.
2018-03-01
Sustainable maintenance is a new challenge for manufacturing companies to realize sustainable development. In this paper, an interpretive structural model is developed to evaluate sustainable maintenance in the rubber industry. The initial key performance indicators (KPIs) is identified and derived from literature and then validated by academic and industry experts. As a result, three factors of economic, social, and environmental dividing into a total of thirteen indicators are proposed as the KPIs for sustainable maintenance evaluation in rubber industry. Interpretive structural modeling (ISM) methodology is applied to develop a network structure model of the KPIs consisting of three levels. The results show the economic factor is regarded as the basic factor, the social factor as the intermediate factor, while the environmental factor indicated to be the leading factor. Two indicators of social factor i.e. labor relationship, and training and education have both high driver and dependence power, thus categorized as the unstable indicators which need further attention. All the indicators of environmental factor and one indicator of social factor are indicated as the most influencing indicator. The interpretive structural model hoped can aid the rubber companies in evaluating sustainable maintenance performance.
Webb, Samuel J; Hanser, Thierry; Howlin, Brendan; Krause, Paul; Vessey, Jonathan D
2014-03-25
A new algorithm has been developed to enable the interpretation of black box models. The developed algorithm is agnostic to learning algorithm and open to all structural based descriptors such as fragments, keys and hashed fingerprints. The algorithm has provided meaningful interpretation of Ames mutagenicity predictions from both random forest and support vector machine models built on a variety of structural fingerprints.A fragmentation algorithm is utilised to investigate the model's behaviour on specific substructures present in the query. An output is formulated summarising causes of activation and deactivation. The algorithm is able to identify multiple causes of activation or deactivation in addition to identifying localised deactivations where the prediction for the query is active overall. No loss in performance is seen as there is no change in the prediction; the interpretation is produced directly on the model's behaviour for the specific query. Models have been built using multiple learning algorithms including support vector machine and random forest. The models were built on public Ames mutagenicity data and a variety of fingerprint descriptors were used. These models produced a good performance in both internal and external validation with accuracies around 82%. The models were used to evaluate the interpretation algorithm. Interpretation was revealed that links closely with understood mechanisms for Ames mutagenicity. This methodology allows for a greater utilisation of the predictions made by black box models and can expedite further study based on the output for a (quantitative) structure activity model. Additionally the algorithm could be utilised for chemical dataset investigation and knowledge extraction/human SAR development.
Some Esoteric Aspects of SEM that Its Practitioners Should Want to Know
ERIC Educational Resources Information Center
Rozeboom, William W.
2009-01-01
The topic of this article is the interpretation of structural equation modeling (SEM) solutions. Its purpose is to augment structural modeling's metatheoretic resources while enhancing awareness of how problematic is the causal significance of SEM-parameter solutions. Part I focuses on the nonuniqueness and consequent dubious interpretability of…
Understanding molecular structure from molecular mechanics.
Allinger, Norman L
2011-04-01
Molecular mechanics gives us a well known model of molecular structure. It is less widely recognized that valence bond theory gives us structures which offer a direct interpretation of molecular mechanics formulations and parameters. The electronic effects well-known in physical organic chemistry can be directly interpreted in terms of valence bond structures, and hence quantitatively calculated and understood. The basic theory is outlined in this paper, and examples of the effects, and their interpretation in illustrative examples is presented.
The Communication Model Perspective of Oral Interpretation.
ERIC Educational Resources Information Center
Peterson, Eric E.
Communication models suggest that oral interpretation is a communicative process, that this process may be represented by specification of implicit and explicit content and structure, and that the models themselves are useful. This paper examines these assumptions through a comparative analysis of communication models employed by oral…
Identifying structural styles in Colombia
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wilson, W.P.; Van Nieuwenhuise, R.E.; Steuer, M.R.
1996-08-01
Much of our understanding of the Earth is from the study of surface geology and seismic, but many surface structures are responses to deformation which occurred below sedimentary layers. The practice within the petroleum industry is to use top-down processes of analyzing the surface to understand the subsurface, and observed surface structural styles tend to influence seismic interpretations. Yet many conditions which influenced the structural styles seen at the surface are different at depth. Since seismic is a time representation of the Earth, many interpretation pitfalls may exist within areas of complex geology. Also, its reliability decreases with depth andmore » with increasing geologic complexity. Forward modeling and pre-stack depth migration technologies are used to provide true depth images of the seismic data. Even with these advances in seismic imaging technology, the interpreter needs to incorporate additional data into the interpretation. Accurate structural identification requires the interpreter to integrate seismic with surface geology, remote sensing, gravity, magnetic data, geochemistry, fault-plane solutions from earthquakes, and regional tectonic studies. Incorporating these types of data into the interpretation will help us learn how basement is involved in the deformation of overlying sediments. A study of the Eastern Cordillera of Colombia shows the deformation to be dominantly transpressional in style. Euler deconvolution of the areomagnetic data shows a highly fractured basement, steep fault lineaments, en echelon structures, and complex fault patterns, all of which would be typical of wrench-type deformation. Available surface geology, regional studies, earthquake data, and forward modeling support this interpretation.« less
ERIC Educational Resources Information Center
Maslowsky, Julie; Jager, Justin; Hemken, Douglas
2015-01-01
Latent variables are common in psychological research. Research questions involving the interaction of two variables are likewise quite common. Methods for estimating and interpreting interactions between latent variables within a structural equation modeling framework have recently become available. The latent moderated structural equations (LMS)…
Zhou, Peng; Wang, Congcong; Tian, Feifei; Ren, Yanrong; Yang, Chao; Huang, Jian
2013-01-01
Quantitative structure-activity relationship (QSAR), a regression modeling methodology that establishes statistical correlation between structure feature and apparent behavior for a series of congeneric molecules quantitatively, has been widely used to evaluate the activity, toxicity and property of various small-molecule compounds such as drugs, toxicants and surfactants. However, it is surprising to see that such useful technique has only very limited applications to biomacromolecules, albeit the solved 3D atom-resolution structures of proteins, nucleic acids and their complexes have accumulated rapidly in past decades. Here, we present a proof-of-concept paradigm for the modeling, prediction and interpretation of the binding affinity of 144 sequence-nonredundant, structure-available and affinity-known protein complexes (Kastritis et al. Protein Sci 20:482-491, 2011) using a biomacromolecular QSAR (BioQSAR) scheme. We demonstrate that the modeling performance and predictive power of BioQSAR are comparable to or even better than that of traditional knowledge-based strategies, mechanism-type methods and empirical scoring algorithms, while BioQSAR possesses certain additional features compared to the traditional methods, such as adaptability, interpretability, deep-validation and high-efficiency. The BioQSAR scheme could be readily modified to infer the biological behavior and functions of other biomacromolecules, if their X-ray crystal structures, NMR conformation assemblies or computationally modeled structures are available.
You are lost without a map: Navigating the sea of protein structures.
Lamb, Audrey L; Kappock, T Joseph; Silvaggi, Nicholas R
2015-04-01
X-ray crystal structures propel biochemistry research like no other experimental method, since they answer many questions directly and inspire new hypotheses. Unfortunately, many users of crystallographic models mistake them for actual experimental data. Crystallographic models are interpretations, several steps removed from the experimental measurements, making it difficult for nonspecialists to assess the quality of the underlying data. Crystallographers mainly rely on "global" measures of data and model quality to build models. Robust validation procedures based on global measures now largely ensure that structures in the Protein Data Bank (PDB) are largely correct. However, global measures do not allow users of crystallographic models to judge the reliability of "local" features in a region of interest. Refinement of a model to fit into an electron density map requires interpretation of the data to produce a single "best" overall model. This process requires inclusion of most probable conformations in areas of poor density. Users who misunderstand this can be misled, especially in regions of the structure that are mobile, including active sites, surface residues, and especially ligands. This article aims to equip users of macromolecular models with tools to critically assess local model quality. Structure users should always check the agreement of the electron density map and the derived model in all areas of interest, even if the global statistics are good. We provide illustrated examples of interpreted electron density as a guide for those unaccustomed to viewing electron density. Copyright © 2014 Elsevier B.V. All rights reserved.
Why style matters - uncertainty and structural interpretation in thrust belts.
NASA Astrophysics Data System (ADS)
Butler, Rob; Bond, Clare; Watkins, Hannah
2016-04-01
Structural complexity together with challenging seismic imaging make for significant uncertainty in developing geometric interpretations of fold and thrust belts. Here we examine these issues and develop more realistic approaches to building interpretations. At all scales, the best tests of the internal consistency of individual interpretations come from structural restoration (section balancing), provided allowance is made for heterogeneity in stratigraphy and strain. However, many existing balancing approaches give misleading perceptions of interpretational risk - both on the scale of individual fold-thrust (trap) structures and in regional cross-sections. At the trap-scale, idealised models are widely cited - fault-bend-fold, fault-propagation folding and trishear. These make entirely arbitrary choices for fault localisation and layer-by-layer deformation: precise relationships between faults and fold geometry are generally invalidated by real-world conditions of stratigraphic variation and distributed strain. Furthermore, subsurface predictions made using these idealisations for hydrocarbon exploration commonly fail the test of drilling. Rarely acknowledged, the geometric reliability of seismic images depends on the assigned seismic velocity model, which in turn relies on geological interpretation. Thus iterative approaches are required between geology and geophysics. The portfolio of commonly cited outcrop analogues is strongly biased to examples that simply conform to idealised models - apparently abnormal structures are rarely described - or even photographed! Insight can come from gravity-driven deep-water fold-belts where part of the spectrum of fold-thrust complexity is resolved through seismic imaging. This imagery shows deformation complexity in fold forelimbs and backlimbs. However, the applicability of these, weakly lithified systems to well-lithified successions (e.g. carbonates) of many foreland thrust belts remains conjectural. Examples of lithified systems will be drawn from the foothills of the Colombian Andes and the Papuan fold-belt. These show major forelimb structures with segmented steep-limbs containing substantial oil-columns, suggesting forelimb complexity in lithified sections maybe more common than predicted by idealised models. As with individual fold-thrust structures, regional cross-sections are commonly open to multiple interpretations. To date the over-reliance on comparative approaches with a narrow range of published studies (e.g. Canadian cordilleran foothills) has biased global interpretations of thrust systems. Perhaps the most significant issues relate to establishing a depth to detachment - specifically the involvement of basement at depth - especially the role of pre-existing (rift-originated) faults and their inversion. Not only do these choices impact on the local interpretation, the inferred shortening values, obtained by comparing restored section-lengths, can be radically different. Further issues arise for emergent, syn-depositional thrust systems where sedimentation prohibits flat-on-flat thrusting in favour of continuously ramping thrust trajectories. Inappropriate adoption of geometries gathered from buried (duplex) systems can create geometric interpretations that are tectono-stratigraphically invalid. This presentation illustrates these topics using a variety of thrust systems with the aim of promoting discussion on developing better interpretative strategies than those adopted hitherto.
NASA Astrophysics Data System (ADS)
Dolžan, Erazem; Vrabec, Marko
2015-04-01
From the earliest days of geological science, mountainous terrains with their extreme topographic relief and sparse to non-existent vegetation were utilized to a great advantage for gaining 3D insight into geological structure. But whereas Alpine vistas may offer perfect panoramic views of geology, the steep mountain slopes and vertical cliffs make it very time-consuming and difficult (if not impossible) to acquire quantitative mapping data such as precisely georeferenced traces of geological boundaries and attitudes of structural planes. We faced this problem in mapping the central Kamnik Alps of northern Slovenia, which are built up from Mid to Late Triassic succession of carbonate rocks. Polyphase brittle tectonic evolution, monotonous lithology and the presence of temporally and spatially irregular facies boundary between bedded platform carbonates and massive reef limestones considerably complicate the structural interpretation of otherwise perfectly exposed, but hardly accessible massif. We used Agisoft Photoscan Structure-from-Motion photogrammetric software to process a series of overlapping high-resolution (~0.25 m ground resolution) vertical aerial photographs originally acquired by the Geodetic Authority of the Republic of Slovenia for surveying purposes, to derive very detailed 3D triangular mesh models of terrain and associated photographic textures. Phototextures are crucial for geological interpretation of the models as they provide additional levels of detail and lithological information which is not resolvable from geometrical mesh models alone. We then exported the models to Paradigm Gocad software to refine and optimize the meshing. Structural interpretation of the models, including mapping of traces and surfaces of faults and stratigraphic boundaries and determining dips of structural planes, was performed in MVE Move suite which offers a range of useful tools for digital mapping and interpretation. Photogrammetric model was complemented by georeferenced geological field data acquired along mountain trail transects, mainly using the MVE Field Move software application. In our experience, vertical aerophotos were sufficient to generate precise surface models in all but the steepest mountain cliffs. Therefore, using existing vertical photoimagery (where available) is a very cost-effective alternative to organizing shooting campaigns with rented aircraft. For handling reasonably large models (cca 3 x 3 km, up to 10 million triangles), a low-end computer workstation with mid-range professional 3D graphic card is sufficient. The biggest bottleneck is the photogrammetric processing step which is time-consuming (10s of hrs) and has large RAM requirements, although those can be offset by dividing models into smaller parts. The major problem with geological modeling software like Gocad or Move is that it at present does not handle well projecting of phototextures. Whereas Photoscan-generated orthophotos can be vertically projected onto mesh models, this results in unacceptable distortions and gaps in subvertical or overhanging parts of the mountain cliff models. A real 3D UV texture mapping method, such as implemented in Photoscan, would be required to realistically model such areas. This limitations notwithstanding, digital geological mapping of photogrammetric models of mountains is a very promising, cost- and time-effective method for rapid structural interpretation and mapping of barren mountainous terrains, particularly when it is complemented by field measurements and observations.
Geoelectrical characterization by joint inversion of VES/TEM in Paraná basin, Brazil
NASA Astrophysics Data System (ADS)
Bortolozo, C. A.; Couto, M. A.; Almeida, E. R.; Porsani, J. L.; Santos, F. M.
2012-12-01
For many years electrical (DC) and transient electromagnetic (TEM) soundings have been used in a great number of environmental, hydrological and mining exploration studies. The data of both methods are interpreted usually by individual 1D models resulting in many cases in ambiguous models. This can be explained by how the two different methodologies sample the subsurface. The vertical electrical sounding (VES) is good on marking very resistive structures, while the transient electromagnetic sounding (TEM) is very sensitive to map conductive structures. Another characteristic is that VES is more sensitive to shallow structures, while TEM soundings can reach deeper structures. A Matlab program for joint inversion of VES and TEM soundings, by using CRS algorithm was developed aiming explore the best of the both methods. Initially, the algorithm was tested with synthetic data and after it was used to invert experimental data from Paraná sedimentary basin. We present the results of a re-interpretation of 46 VES/TEM soundings data set acquired in Bebedouro region in São Paulo State - Brazil. The previous interpretation was based in geoelectrical models obtained by single inversion of the VES and TEM soundings. In this work we present the results with single inversion of VES and TEM sounding inverted by the Curupira Program and a new interpretation based in the joint inversion of both methodologies. The goal is increase the accuracy in determining the underground structures. As a result a new geoelectrical model of the region is obtained.
Constraints on interpretations structural trap in 4 dimensions
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kelsch, K.D.; Kowalik, W.S.; Kluth, C.F.
1995-04-01
Interpretation of the geometry of the structural hydrocarbon trap continues to be one of the fundamental risks in exploration for, and production of, hydrocarbons. New geometric and computer tools are being developed to improve those interpretations by allowing the incremental restoration of structures in three dimensions. This adds powerful constraints on the structural interpretation because it requires that the interpretation be rational and consistent not only for the structure in the line of one cross section at the present time, but also for all moments during its development in 3 dimensions. It is possible to gather information, such as juxtapositionmore » of different reservoir units through time to evaluate the development of seals or leaks with respect to trap formation and to maturation and migration of hydrocarbons. In addition, software is available to produce interactive 3D images of the data that allow the interpreter to see the 4D restoration as it proceeds, but also to change the viewing orientation. This allows the interpreter to {open_quotes}move{close_quotes} through the restoration and examine areas critical for the interpretation as the restoration proceeds while viewing in 3D. While some of these tools are still under development, we have applied them successfully to model and real data sets.« less
Three-dimensional geologic model of the southeastern Espanola Basin, Santa Fe County, New Mexico
Pantea, Michael P.; Hudson, Mark R.; Grauch, V.J.S.; Minor, Scott A.
2011-01-01
This multimedia model and report show and describe digital three-dimensional faulted surfaces and volumes of lithologic units that confine and constrain the basin-fill aquifers within the Espanola Basin of north-central New Mexico. These aquifers are the primary groundwater resource for the cities of Santa Fe and Espanola, six Pueblo nations, and the surrounding areas. The model presented in this report is a synthesis of geologic information that includes (1) aeromagnetic and gravity data and seismic cross sections; (2) lithologic descriptions, interpretations, and geophysical logs from selected drill holes; (3) geologic maps, geologic cross sections, and interpretations; and (4) mapped faults and interpreted faults from geophysical data. Modeled faults individually or collectively affect the continuity of the rocks that contain the basin aquifers; they also help define the form of this rift basin. Structure, trend, and dip data not previously published were added; these structures are derived from interpretations of geophysical information and recent field observations. Where possible, data were compared and validated and reflect the complex relations of structures in this part of the Rio Grande rift. This interactive geologic framework model can be used as a tool to visually explore and study geologic structures within the Espanola Basin, to show the connectivity of geologic units of high and low permeability between and across faults, and to show approximate dips of the lithologic units. The viewing software can be used to display other data and information, such as drill-hole data, within this geologic framework model in three-dimensional space.
Theoretical interpretation of the nuclear structure of 88Se within the ACM and the QPM models.
NASA Astrophysics Data System (ADS)
Gratchev, I. N.; Thiamova, G.; Alexa, P.; Simpson, G. S.; Ramdhane, M.
2018-02-01
The four-parameter algebraic collective model (ACM) Hamiltonian is used to describe the nuclear structure of 88Se. It is shown that the ACM is capable of providing a reasonable description of the excitation energies and relative positions of the ground-state band and γ band. The most probable interpretation of the nuclear structure of 88Se is that of a transitional nucleus. The Quasiparticle-plus-Phonon Model (QPM) was also applied to describe the nuclear motion in 88Se. Preliminarily calculations show that the collectivity of second excited state {2}2+ is weak and that this state contains a strong two-quasiparticle component.
NASA Astrophysics Data System (ADS)
Kamiński, Mirosław
2017-11-01
The purpose of the study was the assessment of the viability of selected geophysical methods and the Airborne Laser Scanning (ALS) for the identification and interpretation of the geological structure. The studied area is covered with a dense forest. For this reason, the ALS numerical terrain model was applied for the analysis of the topography. Three geophysical methods were used: gravimetric, in the form of a semi-detailed gravimetric photograph, Vertical Electrical Sounding (VES), and Electrical Resistivity Tomography (ERT). The numerical terrain model enabled the identification of Jurassic limestone outcrops and interpretation of the directions of the faults network. The geological interpretation of the digitally processed gravimetric data enabled the determination of the spatial orientation of the synclines and anticlines axes and of the course directions of main faults. Vertical Electrical Sounding carried along the section line perpendicular to the Gościeradów anticline axis enabled the interpretation of the lithology of this structure and identification of its complex tectonic structure. The shallow geophysical surveys using the ERT method enabled the estimation of the thickness of Quaternary formations deposited unconformably on the highly eroded Jurassic limestone outcrop. The lithology of Quaternary, Cretaceous and Jurassic rocks was also interpreted.
NASA Astrophysics Data System (ADS)
Pei, Yangwen; Paton, Douglas A.; Wu, Kongyou; Xie, Liujuan
2017-08-01
The application of trishear algorithm, in which deformation occurs in a triangle zone in front of a propagating fault tip, is often used to understand fault related folding. In comparison to kink-band methods, a key characteristic of trishear algorithm is that non-uniform deformation within the triangle zone allows the layer thickness and horizon length to change during deformation, which is commonly observed in natural structures. An example from the Lenghu5 fold-and-thrust belt (Qaidam Basin, Northern Tibetan Plateau) is interpreted to help understand how to employ trishear forward modelling to improve the accuracy of seismic interpretation. High resolution fieldwork data, including high-angle dips, 'dragging structures', thinning hanging-wall and thickening footwall, are used to determined best-fit trishear model to explain the deformation happened to the Lenghu5 fold-and-thrust belt. We also consider the factors that increase the complexity of trishear models, including: (a) fault-dip changes and (b) pre-existing faults. We integrate fault dip change and pre-existing faults to predict subsurface structures that are apparently under seismic resolution. The analogue analysis by trishear models indicates that the Lenghu5 fold-and-thrust belt is controlled by an upward-steepening reverse fault above a pre-existing opposite-thrusting fault in deeper subsurface. The validity of the trishear model is confirmed by the high accordance between the model and the high-resolution fieldwork. The validated trishear forward model provides geometric constraints to the faults and horizons in the seismic section, e.g., fault cutoffs and fault tip position, faults' intersecting relationship and horizon/fault cross-cutting relationship. The subsurface prediction using trishear algorithm can significantly increase the accuracy of seismic interpretation, particularly in seismic sections with low signal/noise ratio.
An Automated, High-Throughput Method for Interpreting the Tandem Mass Spectra of Glycosaminoglycans
NASA Astrophysics Data System (ADS)
Duan, Jiana; Jonathan Amster, I.
2018-05-01
The biological interactions between glycosaminoglycans (GAGs) and other biomolecules are heavily influenced by structural features of the glycan. The structure of GAGs can be assigned using tandem mass spectrometry (MS2), but analysis of these data, to date, requires manually interpretation, a slow process that presents a bottleneck to the broader deployment of this approach to solving biologically relevant problems. Automated interpretation remains a challenge, as GAG biosynthesis is not template-driven, and therefore, one cannot predict structures from genomic data, as is done with proteins. The lack of a structure database, a consequence of the non-template biosynthesis, requires a de novo approach to interpretation of the mass spectral data. We propose a model for rapid, high-throughput GAG analysis by using an approach in which candidate structures are scored for the likelihood that they would produce the features observed in the mass spectrum. To make this approach tractable, a genetic algorithm is used to greatly reduce the search-space of isomeric structures that are considered. The time required for analysis is significantly reduced compared to an approach in which every possible isomer is considered and scored. The model is coded in a software package using the MATLAB environment. This approach was tested on tandem mass spectrometry data for long-chain, moderately sulfated chondroitin sulfate oligomers that were derived from the proteoglycan bikunin. The bikunin data was previously interpreted manually. Our approach examines glycosidic fragments to localize SO3 modifications to specific residues and yields the same structures reported in literature, only much more quickly.
Jacques, David A; Guss, Jules Mitchell; Trewhella, Jill
2012-05-17
Small-angle scattering is becoming an increasingly popular tool for the study of bio-molecular structures in solution. The large number of publications with 3D-structural models generated from small-angle solution scattering data has led to a growing consensus for the need to establish a standard reporting framework for their publication. The International Union of Crystallography recently established a set of guidelines for the necessary information required for the publication of such structural models. Here we describe the rationale for these guidelines and the importance of standardising the way in which small-angle scattering data from bio-molecules and associated structural interpretations are reported.
Wiley, Edward O.; Fuiten, Allison M.; Doosey, Michael H.; Lohman, Brian K.; Merkes, Christopher; Azuma, Mizuki
2016-01-01
The structure of the caudal skeleton of extant teleost fishes has been interpreted in two different ways. In a diural interpretation, a caudal skeleton is composed of two centra articulated with one to six hypurals. Most subsequent authors have followed this interpretation. In contrast, a polyural interpretation considers the teleost fin to be derived from a fully metameristic ancestral bauplan originally composed of a one-to-one relationship between neural arches, centra (when present), and hypurals. Three different interpretations of the identity and homology of skeletal components of the caudal skeleton of the teleost fish Danio rerio have been proposed, two from a diural perspective and one from a polyural perspective. We examine each caudal skeletal component of Danio rerio from both a developmental and phylogenetic perspective. We propose that a polyural interpretation of structures is consistent with the current interpretation of the basal neopterygian caudal fin for this model organism rather than the older diural interpretation that does not take into account the metamerism observed in caudal structures during development. The polyural interpretation suggests several shared evolutionary innovations of major clades that would remain undiscovered under the older diural naming paradigm and makes the terminology of the parts of the caudal fin of Danio rerio strictly comparable to more basal fishes. PMID:28250540
NASA Astrophysics Data System (ADS)
Sainz-Maza, S.; Montesinos, F. G.; Martí, J.; Arnoso, J.; Calvo, M.; Borreguero, A.
2017-08-01
Recent volcanism in El Hierro Island is mostly concentrated along three elongated and narrow zones which converge at the center of the island. These zones with extensive volcanism have been identified as rift zones. The presence of similar structures is common in many volcanic oceanic islands, so understanding their origin, dynamics and structure is important to conduct hazard assessment in such environments. There is still not consensus on the origin of the El Hierro rift zones, having been associated with mantle uplift or interpreted as resulting from gravitational spreading and flank instability. To further understand the internal structure and origin of the El Hierro rift systems, starting from the previous gravity studies, we developed a new 3D gravity inversion model for its shallower layers, gathering a detailed picture of this part of the island, which has permitted a new interpretation about these rifts. Previous models already identified a main central magma accumulation zone and several shallower high density bodies. The new model allows a better resolution of the pathways that connect both levels and the surface. Our results do not point to any correspondence between the upper parts of these pathways and the rift identified at the surface. Non-clear evidence of progression toward deeper parts into the volcanic system is shown, so we interpret them as very shallow structures, probably originated by local extensional stresses derived from gravitational loading and flank instability, which are used to facilitate the lateral transport of magma when it arrives close to the surface.
A local structure model for network analysis
Casleton, Emily; Nordman, Daniel; Kaiser, Mark
2017-04-01
The statistical analysis of networks is a popular research topic with ever widening applications. Exponential random graph models (ERGMs), which specify a model through interpretable, global network features, are common for this purpose. In this study we introduce a new class of models for network analysis, called local structure graph models (LSGMs). In contrast to an ERGM, a LSGM specifies a network model through local features and allows for an interpretable and controllable local dependence structure. In particular, LSGMs are formulated by a set of full conditional distributions for each network edge, e.g., the probability of edge presence/absence, depending onmore » neighborhoods of other edges. Additional model features are introduced to aid in specification and to help alleviate a common issue (occurring also with ERGMs) of model degeneracy. Finally, the proposed models are demonstrated on a network of tornadoes in Arkansas where a LSGM is shown to perform significantly better than a model without local dependence.« less
A local structure model for network analysis
DOE Office of Scientific and Technical Information (OSTI.GOV)
Casleton, Emily; Nordman, Daniel; Kaiser, Mark
The statistical analysis of networks is a popular research topic with ever widening applications. Exponential random graph models (ERGMs), which specify a model through interpretable, global network features, are common for this purpose. In this study we introduce a new class of models for network analysis, called local structure graph models (LSGMs). In contrast to an ERGM, a LSGM specifies a network model through local features and allows for an interpretable and controllable local dependence structure. In particular, LSGMs are formulated by a set of full conditional distributions for each network edge, e.g., the probability of edge presence/absence, depending onmore » neighborhoods of other edges. Additional model features are introduced to aid in specification and to help alleviate a common issue (occurring also with ERGMs) of model degeneracy. Finally, the proposed models are demonstrated on a network of tornadoes in Arkansas where a LSGM is shown to perform significantly better than a model without local dependence.« less
NASA Astrophysics Data System (ADS)
Masterton, S. M.; Markwick, P.; Bailiff, R.; Campanile, D.; Edgecombe, E.; Eue, D.; Galsworthy, A.; Wilson, K.
2012-04-01
Our understanding of lithospheric evolution and global plate motions throughout the Earth's history is based largely upon detailed knowledge of plate boundary structures, inferences about tectonic regimes, ocean isochrons and palaeomagnetic data. Most currently available plate models are either regionally restricted or do not consider palaeogeographies in their construction. Here, we present an integrated methodology in which derived hypotheses have been further refined using global and regional palaeogeographic, palaeotopological and palaeobathymetric maps. Iteration between our self-consistent and structurally constrained global plate model and palaeogeographic interpretations which are built on these reconstructions, allows for greater testing and refinement of results. Our initial structural and tectonic interpretations are based largely on analysis of our extensive global database of gravity and magnetic potential field data, and are further constrained by seismic, SRTM and Landsat data. This has been used as the basis for detailed interpretations that have allowed us to compile a new global map and database of structures, crustal types, plate boundaries and basin definitions. Our structural database is used in the identification of major tectonic terranes and their relative motions, from which we have developed our global plate model. It is subject to an ongoing process of regional evaluation and revisions in an effort to incorporate and reflect new tectonic and geologic interpretations. A major element of this programme is the extension of our existing plate model (GETECH Global Plate Model V1) back to the Neoproterozic. Our plate model forms the critical framework upon which palaeogeographic and palaeotopographic reconstructions have been made for every time stage in the Cretaceous and Cenozoic. Generating palaeogeographies involves integration of a variety of data, such as regional geology, palaeoclimate analyses, lithology, sea-level estimates, thermo-mechanical events and regional tectonics. These data are interpreted to constrain depositional systems and tectonophysiographic terranes. Palaeotopography and palaeobathymetry are derived from these tectonophysiographic terranes and depositional systems, and are further constrained using geological relationships, thermochronometric data, palaeoaltimetry indicators and modern analogues. Throughout this process, our plate model is iteratively tested against our palaeogeographies and their environmental consequences. Both the plate model and the palaeogeographies are refined until we have obtained a consistent and scientifically robust result. In this presentation we show an example from Southeast Asia, where the plate model complexity and wide variation in hypotheses has huge implications for the palaeogeographic interpretation, which can then be tested using geological observations from well and seismic data. For example, the Khorat Plateau Basin, Northeastern Thailand, comprises a succession of fluvial clastics during the Cretaceous, which include the evaporites of the Maha Sarakham Formation. These have been variously interpreted as indicative of saline lake or marine incursion depositional environments. We show how the feasibility of these different hypotheses is dependent on the regional palaeogeography (whether a marine link is possible), which in turn depends on the underlying plate model. We show two models with widely different environmental consequences. A more robust model that takes into account all these consequences, as well as data, can be defined by iterating through the consequences of the plate model and geological observations.
Ding, Jiarui; Condon, Anne; Shah, Sohrab P
2018-05-21
Single-cell RNA-sequencing has great potential to discover cell types, identify cell states, trace development lineages, and reconstruct the spatial organization of cells. However, dimension reduction to interpret structure in single-cell sequencing data remains a challenge. Existing algorithms are either not able to uncover the clustering structures in the data or lose global information such as groups of clusters that are close to each other. We present a robust statistical model, scvis, to capture and visualize the low-dimensional structures in single-cell gene expression data. Simulation results demonstrate that low-dimensional representations learned by scvis preserve both the local and global neighbor structures in the data. In addition, scvis is robust to the number of data points and learns a probabilistic parametric mapping function to add new data points to an existing embedding. We then use scvis to analyze four single-cell RNA-sequencing datasets, exemplifying interpretable two-dimensional representations of the high-dimensional single-cell RNA-sequencing data.
Conifer ovulate cones accumulate pollen principally by simple impaction.
Cresswell, James E; Henning, Kevin; Pennel, Christophe; Lahoubi, Mohamed; Patrick, Michael A; Young, Phillipe G; Tabor, Gavin R
2007-11-13
In many pine species (Family Pinaceae), ovulate cones structurally resemble a turbine, which has been widely interpreted as an adaptation for improving pollination by producing complex aerodynamic effects. We tested the turbine interpretation by quantifying patterns of pollen accumulation on ovulate cones in a wind tunnel and by using simulation models based on computational fluid dynamics. We used computer-aided design and computed tomography to create computational fluid dynamics model cones. We studied three species: Pinus radiata, Pinus sylvestris, and Cedrus libani. Irrespective of the approach or species studied, we found no evidence that turbine-like aerodynamics made a significant contribution to pollen accumulation, which instead occurred primarily by simple impaction. Consequently, we suggest alternative adaptive interpretations for the structure of ovulate cones.
Conifer ovulate cones accumulate pollen principally by simple impaction
Cresswell, James E.; Henning, Kevin; Pennel, Christophe; Lahoubi, Mohamed; Patrick, Michael A.; Young, Phillipe G.; Tabor, Gavin R.
2007-01-01
In many pine species (Family Pinaceae), ovulate cones structurally resemble a turbine, which has been widely interpreted as an adaptation for improving pollination by producing complex aerodynamic effects. We tested the turbine interpretation by quantifying patterns of pollen accumulation on ovulate cones in a wind tunnel and by using simulation models based on computational fluid dynamics. We used computer-aided design and computed tomography to create computational fluid dynamics model cones. We studied three species: Pinus radiata, Pinus sylvestris, and Cedrus libani. Irrespective of the approach or species studied, we found no evidence that turbine-like aerodynamics made a significant contribution to pollen accumulation, which instead occurred primarily by simple impaction. Consequently, we suggest alternative adaptive interpretations for the structure of ovulate cones. PMID:17986613
NASA Astrophysics Data System (ADS)
Leslie, A.; Gorman, A. R.
2004-12-01
The interpretation of seismic reflection data in non-sedimentary environments is problematic. In the Macraes Flat region near Dunedin (South Island, New Zealand), ongoing mining of mineralized schist has prompted the development of a seismic interpretation scheme that is capable of imaging a gold-bearing shear zone and associated mineralized structures accurately to the meter scale. The anisotropic and complex structural nature of this geological environment necessitates a cost-effective computer-based modeling technique that can provide information on the physical characteristics of the schist. Such a method has been tested on seismic data acquired in 1993 over a region that has since been excavated and logged. Correlation to measured structural data permits a direct comparison between the seismic data and the actual geology. Synthetic modeling utilizes a 2D visco-elastic finite difference routine to constrain the interpretation of observed seismic characteristics, including the velocity, anisotropy, and contrast, of the shear zone structures. Iterative refinements of the model result in a more representative synthetic model that most closely matches the seismic response. The comparison between the actual and synthetic seismic sections provides promising results that will be tested by new data acquisition over the summer of 2004/2005 to identify structures and zones of potential mineralization. As a downstream benefit, this research could also contribute to earthquake risk assessment analyses at active faults with similar characteristics.
An interactive graphics system to facilitate finite element structural analysis
NASA Technical Reports Server (NTRS)
Burk, R. C.; Held, F. H.
1973-01-01
The characteristics of an interactive graphics systems to facilitate the finite element method of structural analysis are described. The finite element model analysis consists of three phases: (1) preprocessing (model generation), (2) problem solution, and (3) postprocessing (interpretation of results). The advantages of interactive graphics to finite element structural analysis are defined.
ERIC Educational Resources Information Center
Steed, Teneka C.
2013-01-01
Evaluating the psychometric properties of a newly developed instrument is critical to understanding how well an instrument measures what it intends to measure, and ensuring proposed use and interpretation of questionnaire scores are valid. The current study uses Structural Equation Modeling (SEM) techniques to examine the factorial structure and…
Bollen, Kenneth A
2007-06-01
R. D. Howell, E. Breivik, and J. B. Wilcox (2007) have argued that causal (formative) indicators are inherently subject to interpretational confounding. That is, they have argued that using causal (formative) indicators leads the empirical meaning of a latent variable to be other than that assigned to it by a researcher. Their critique of causal (formative) indicators rests on several claims: (a) A latent variable exists apart from the model when there are effect (reflective) indicators but not when there are causal (formative) indicators, (b) causal (formative) indicators need not have the same consequences, (c) causal (formative) indicators are inherently subject to interpretational confounding, and (d) a researcher cannot detect interpretational confounding when using causal (formative) indicators. This article shows that each claim is false. Rather, interpretational confounding is more a problem of structural misspecification of a model combined with an underidentified model that leaves these misspecifications undetected. Interpretational confounding does not occur if the model is correctly specified whether a researcher has causal (formative) or effect (reflective) indicators. It is the validity of a model not the type of indicator that determines the potential for interpretational confounding. Copyright 2007 APA, all rights reserved.
1990-12-01
was determined from the difference between the 24-state matrix product, HtP (t’)HT, and the six-state matrix product, HfPf (tT)HT’. For this...The true position for node 7, which represents the rigid body position of the structure, is not damped and can be interpreted as a rigid body...application, considering the same issues as explored in this research. Continue with a physical interpretation of the structure positions for determining the
Menzerath-Altmann Law: Statistical Mechanical Interpretation as Applied to a Linguistic Organization
NASA Astrophysics Data System (ADS)
Eroglu, Sertac
2014-10-01
The distribution behavior described by the empirical Menzerath-Altmann law is frequently encountered during the self-organization of linguistic and non-linguistic natural organizations at various structural levels. This study presents a statistical mechanical derivation of the law based on the analogy between the classical particles of a statistical mechanical organization and the distinct words of a textual organization. The derived model, a transformed (generalized) form of the Menzerath-Altmann model, was termed as the statistical mechanical Menzerath-Altmann model. The derived model allows interpreting the model parameters in terms of physical concepts. We also propose that many organizations presenting the Menzerath-Altmann law behavior, whether linguistic or not, can be methodically examined by the transformed distribution model through the properly defined structure-dependent parameter and the energy associated states.
Modeling and Circumventing the Effect of Sediments and Water Column on Receiver Functions
NASA Astrophysics Data System (ADS)
Audet, P.
2017-12-01
Teleseismic P-wave receiver functions are routinely used to resolve crust and mantle structure in various geologic settings. Receiver functions are approximations to the Earth's Green's functions and are composed of various scattered phase arrivals, depending on the complexity of the underlying Earth structure. For simple structure, the dominant arrivals (converted and back-scattered P-to-S phases) are well separated in time and can be reliably used in estimating crustal velocity structure. In the presence of sedimentary layers, strong reverberations typically produce high-amplitude oscillations that contaminate the early part of the wave train and receiver functions can be difficult to interpret in terms of underlying structure. The effect of a water column also limits the interpretability of under-water receiver functions due to the additional acoustic wave propagating within the water column that can contaminate structural arrivals. We perform numerical modeling of teleseismic Green's functions and receiver functions using a reflectivity technique for a range of Earth models that include thin sedimentary layers and overlying water column. These modeling results indicate that, as expected, receiver functions are difficult to interpret in the presence of sediments, but the contaminating effect of the water column is dependent on the thickness of the water layer. To circumvent these effects and recover source-side structure, we propose using an approach based on transfer function modeling that bypasses receiver functions altogether and estimates crustal properties directly from the waveforms (Frederiksen and Delayney, 2015). Using this approach, reasonable assumptions about the properties of the sedimentary layer can be included in forward calculations of the Green's functions that are convolved with radial waveforms to predict vertical waveforms. Exploration of model space using Monte Carlo-style search and least-square waveform misfits can be performed to estimate any model parameter of interest, including those of the sedimentary or water layer. We show how this method can be applied to OBS data using broadband stations from the Cascadia Initiative to recover oceanic plate structure.
Mantle structure and tectonic history of SE Asia
NASA Astrophysics Data System (ADS)
Hall, Robert; Spakman, Wim
2015-09-01
Seismic travel-time tomography of the mantle under SE Asia reveals patterns of subduction-related seismic P-wave velocity anomalies that are of great value in helping to understand the region's tectonic development. We discuss tomography and tectonic interpretations of an area centred on Indonesia and including Malaysia, parts of the Philippines, New Guinea and northern Australia. We begin with an explanation of seismic tomography and causes of velocity anomalies in the mantle, and discuss assessment of model quality for tomographic models created from P-wave travel times. We then introduce the global P-wave velocity anomaly model UU-P07 and the tectonic model used in this paper and give an overview of previous interpretations of mantle structure. The slab-related velocity anomalies we identify in the upper and lower mantle based on the UU-P07 model are interpreted in terms of the tectonic model and illustrated with figures and movies. Finally, we discuss where tomographic and tectonic models for SE Asia converge or diverge, and identify the most important conclusions concerning the history of the region. The tomographic images of the mantle record subduction beneath the SE Asian region to depths of approximately 1600 km. In the upper mantle anomalies mainly record subduction during the last 10 to 25 Ma, depending on the region considered. We interpret a vertical slab tear crossing the entire upper mantle north of west Sumatra where there is a strong lateral kink in slab morphology, slab holes between c.200-400 km below East Java and Sumbawa, and offer a new three-slab explanation for subduction in the North Sulawesi region. There is a different structure in the lower mantle compared to the upper mantle and the deep structure changes from west to east. What was imaged in earlier models as a broad and deep anomaly below SE Asia has a clear internal structure and we argue that many features can be identified as older subduction zones. We identify remnants of slabs that detached in the Early Miocene such as the Sula slab, now found in the lower mantle north of Lombok, and the Proto-South China Sea slab now at depths below 700 km curving from northern Borneo to the Philippines. Based on our tectonic model we interpret virtually all features seen in upper mantle and lower mantle to depths of at least 1200 km to be the result of Cenozoic subduction.
Graph-based urban scene analysis using symbolic data
NASA Astrophysics Data System (ADS)
Moissinac, Henri; Maitre, Henri; Bloch, Isabelle
1995-07-01
A framework is presented for the interpretation of a urban landscape based on the analysis of aerial pictures. This method has been designed for the use of a priori knowledge provided by a geographic map in order to improve the image analysis stage. A coherent final interpretation of the studied area is proposed. It relies on a graph based data structure to modelize the urban landscape, and on a global uncertainty management to evaluate the final confidence we can have in the results presented. This structure and uncertainty management tend to reflect the hierarchy of the available data and the interpretation levels.
ERIC Educational Resources Information Center
Stamovlasis, D.; Kypraios, N.; Papageorgiou, G.
2015-01-01
In this study, structural equation modeling (SEM) is applied to an instrument assessing students' understanding of chemical change. The instrument comprised items on understanding the structure of substances, chemical changes and their interpretation. The structural relationships among particular groups of items are investigated and analyzed using…
A Structural Evaluation of a Large-Scale Quasi-Experimental Microfinance Initiative.
Kaboski, Joseph P; Townsend, Robert M
2011-09-01
This paper uses a structural model to understand, predict, and evaluate the impact of an exogenous microcredit intervention program, the Thai Million Baht Village Fund program. We model household decisions in the face of borrowing constraints, income uncertainty, and high-yield indivisible investment opportunities. After estimation of parameters using pre-program data, we evaluate the model's ability to predict and interpret the impact of the village fund intervention. Simulations from the model mirror the data in yielding a greater increase in consumption than credit, which is interpreted as evidence of credit constraints. A cost-benefit analysis using the model indicates that some households value the program much more than its per household cost, but overall the program costs 20 percent more than the sum of these benefits.
Hammarström, Anne; Lundman, Berit; Ahlgren, Christina; Wiklund, Maria
2015-01-01
The aim of our paper was to explore expressions of life choices and life chances (aspects of agency within structures) related to power and experiences of health among early unemployed adolescent young men during the transition period to adulthood. These expressions of agency within structure were interpreted in the light of Cockerham's Health Lifestyles Theory. Furthermore, social constructions of masculinities were addressed in our analysis. Repeated interviews with ten young men in a cohort of school leavers were analyzed with qualitative content analysis. Cockerham's model was useful for interpreting our findings and we found disposition to act to be a crucial theoretical tool to capture the will and intentions of participants in relation to health. We developed the model in the following ways: structure and socialization were visualized as surrounding the whole model. Analyses of what enhances or restricts power are important. In addition to practices of health lifestyles, we added experiences of health as outcome as well as emotional aspects in disposition to act. We interpret our findings as constructions of masculinities within certain structures, in relation to choices, habitus and practices. Qualitative research could contribute to develop the understanding of the agency within structure relationships. Future studies need to pay attention to experiences of health among young people at the margin of the labor market in various milieus--and to analyze these in relation to gender constructions and within the frame-work of agency within structure.
Effects of sources on time-domain finite difference models.
Botts, Jonathan; Savioja, Lauri
2014-07-01
Recent work on excitation mechanisms in acoustic finite difference models focuses primarily on physical interpretations of observed phenomena. This paper offers an alternative view by examining the properties of models from the perspectives of linear algebra and signal processing. Interpretation of a simulation as matrix exponentiation clarifies the separate roles of sources as boundaries and signals. Boundary conditions modify the matrix and thus its modal structure, and initial conditions or source signals shape the solution, but not the modal structure. Low-frequency artifacts are shown to follow from eigenvalues and eigenvectors of the matrix, and previously reported artifacts are predicted from eigenvalue estimates. The role of source signals is also briefly discussed.
A systems framework for identifying candidate microbial assemblages for disease management
USDA-ARS?s Scientific Manuscript database
Network models of soil and plant microbiomes present new opportunities for enhancing disease management, but also challenges for interpretation. We present a framework for interpreting microbiome networks, illustrating how the observed structure of networks can be used to generate testable hypothese...
Litho-structural analysis of eastern part of Ilesha schist belt, Southwestern Nigeria
NASA Astrophysics Data System (ADS)
Fagbohun, Babatunde Joseph; Adeoti, Blessing; Aladejana, Olabanji Odunayo
2017-09-01
The Ilesha schist belt is an excellent example of high strain shear belt within basement complex of southwestern Nigeria which is part of the larger West African Shield. The Ilesha schist belt is characterised by metasediment-metavolcanic, migmatite-gneiss and older granite rocks and the occurrence of a Shear zone which has been traced to and correlated with the central Hoggar Neoproterozoic shear zone as part of the Trans-Saharan Belt. Although the area is interesting in terms of geologic-tectonic setting, however, detailed geological assessment and structural interpretation of features in this area is lacking due accessibility problem. For these reasons we applied principal component analysis (PCA) and band ratio (BR) techniques on Landsat 8 OLI data for lithological discrimination while for structural interpretation, filtering techniques of edge enhancement and edge detection was applied on digital elevation model (DEM) acquired by shuttle radar topographic mission (SRTM) sensor. The PCA outperform BR for discrimination between quartzite and granite which are the most exposed rock units in the area. For structural interpretation, DEM was used to generate shaded relief model and edge maps which enable detailed structural interpretation. Geologic fieldwork was further conducted to validate structures and units identified from image processing. Based image interpretation, three deformation events were identified. The first event (D1) which is majorly a ductile deformation produced foliations and folds whose axial planes trend in NNE-SSW. The second event (D2) resulted in reactivation and rotation of the D1 structures particularly the folds in the NE-SW. The third event (D3) produced a transgressive deformation starting with the ductile deformation resulting in the development of sigmoidal structures oriented in NE-SW to E-W direction and the brittle deformation occurring at later stages producing fractures oriented in the E-W to NE-SW directions. These results have important implications in terms of regional tectonics and geological mapping as well as in land-use planning and other areas such as hydrogeology or geotechnics.
Anderson, M.; Matti, J.; Jachens, R.
2004-01-01
The San Bernardino basin is an area of Quaternary extension between the San Jacinto and San Andreas Fault zones in southern California. New gravity data are combined with aeromagnetic data to produce two- and three-dimensional models of the basin floor. These models are used to identify specific faults that have normal displacements. In addition, aeromagnetic maps of the basin constrain strike-slip offset on many faults. Relocated seismicity, focal mechanisms, and a seismic reflection profile for the basin area support interpretations of the gravity and magnetic anomalies. The shape of the basin revealed by our interpretations is different from past interpretations, broadening its areal extent while confining the deepest parts to an area along the modern San Jacinto fault, west of the city of San Bernardino. Through these geophysical observations and related geologic information, we propose a model for the development of the basin. The San Jacinto fault-related strike-slip displacements started on fault strands in the basin having a stepping geometry thus forming a pull-apart graben, and finally cut through the graben in a simpler, bending geometry. In this model, the San Bernardino strand of the San Andreas Fault has little influence on the formation of the basin. The deep, central part of the basin resembles classic pull-apart structures and our model describes a high level of detail for this structure that can be compared to other pull-apart structures as well as analog and numerical models in order to better understand timing and kinematics of pull-apart basin formation. Copyright 2004 by the American Geophysical Union.
NASA Astrophysics Data System (ADS)
Anderson, Megan; Matti, Jonathan; Jachens, Robert
2004-04-01
The San Bernardino basin is an area of Quaternary extension between the San Jacinto and San Andreas Fault zones in southern California. New gravity data are combined with aeromagnetic data to produce two- and three-dimensional models of the basin floor. These models are used to identify specific faults that have normal displacements. In addition, aeromagnetic maps of the basin constrain strike-slip offset on many faults. Relocated seismicity, focal mechanisms, and a seismic reflection profile for the basin area support interpretations of the gravity and magnetic anomalies. The shape of the basin revealed by our interpretations is different from past interpretations, broadening its areal extent while confining the deepest parts to an area along the modern San Jacinto fault, west of the city of San Bernardino. Through these geophysical observations and related geologic information, we propose a model for the development of the basin. The San Jacinto fault-related strike-slip displacements started on fault strands in the basin having a stepping geometry thus forming a pull-apart graben, and finally cut through the graben in a simpler, bending geometry. In this model, the San Bernardino strand of the San Andreas Fault has little influence on the formation of the basin. The deep, central part of the basin resembles classic pull-apart structures and our model describes a high level of detail for this structure that can be compared to other pull-apart structures as well as analog and numerical models in order to better understand timing and kinematics of pull-apart basin formation.
Shallow Refraction and Rg Analysis at the Source Physics Experiment Site
NASA Astrophysics Data System (ADS)
Rowe, C. A.; Carmichael, J. D.; Patton, H. J.; Snelson, C. M.; Coblentz, D. D.; Larmat, C. S.; Yang, X.
2014-12-01
We present analyses of the two-dimensional (2D) seismic structure beneath Source Physics Experiments (SPE) geophone lines that extended 100 to 2000 m from the source borehole with 100 m spacing. With seismic sources provided only at one end of the geophone lines, standard refraction profiling methods are unable to resolve the seismic velocity structures unambiguously. In previous work we have shown overall agreement between body-wave refraction modeling and Rg dispersion curves for the least complex of the five lines, Line 2, leading us to offer a simplified1D model for this line. A more detailed inspection of Line 2 supports a 2D re-interpretation of the structure on this line. We observe variation along the length of the line, as evidenced by abrupt and consistent changes in the behavior of surface waves at higher frequencies. We interpret this as a manifestation of significant material or structural heterogeneity in the shallowest strata. This interpretation is consistent with P-wave and Rg attenuation observations. Planned additional sources, both at the distal ends of the profiles and intermittently within their lengths, will provide significant enhancement to our ability to resolve this complicated shallow structure.
3D seismic attribute expressions of deep offshore Niger Delta
NASA Astrophysics Data System (ADS)
Anyiam, Uzonna Okenna
Structural and stratigraphic interpretation of 3D seismic data for reservoir characterization in an area affected by dense faulting, such as the Niger Delta, is typically difficult and strongly model driven because of problems with imaging. In the Freeman field, located about 120km offshore southwestern Niger Delta at about 1300m water depth, 3D seismic attribute-based analogs, and structural and stratigraphic based geometric models are combined to help enhance and constrain the interpretation. The objectives being to show how 3D seismic attribute analysis enhances seismic interpretation, develop structural style and stratigraphic architecture models and identify trap mechanisms in the study area; with the main purpose of producing structural and stratigraphic framework analogs to aid exploration and production companies, as well as researchers in better understanding the structural style, stratigraphic framework and trap mechanism of the Miocene to Pliocene Agbada Formation reservoirs in the deep Offshore Niger Delta Basin. A multidisciplinary approach which involved analyses of calculated variance-based coherence cube, spectral decomposition box probe and root-mean-square amplitude attributes, sequence stratigraphy based well correlation, and structural modeling; were undertaken to achieve these objectives. Studies reveal a massive northwest-southeast trending shale cored detachment fold anticline, with associated normal faults; interpreted to have been folded and faulted by localized compression resulting from a combination of differential loading on the deep-seated overpressured-ductile-undercompacted-marine Akata shale, and gravitational collapse of the Niger delta continental slope due to influx of sediments. Crestal extension resulting from this localized compression, is believed to have given rise to the synthetic, antithetic and newly observed crossing conjugate normal faults in the study area. This structure is unique to the existing types of principal oil field structures in the Niger Delta. Stratigraphic results show that the Mid-Miocene to Pliocene Agbada Formation reservoirs of the Freeman field occur as part of a channelized fan system; mostly deposited as turbidites in an unconfined distributary environment; except one that occurs as channel sand within a submarine canyon that came across and eroded previously deposited distributary fan complex, at the time. Hence, prospective area for hydrocarbon exploration is suggested southwest of the Freeman field.
Residuals and the Residual-Based Statistic for Testing Goodness of Fit of Structural Equation Models
ERIC Educational Resources Information Center
Foldnes, Njal; Foss, Tron; Olsson, Ulf Henning
2012-01-01
The residuals obtained from fitting a structural equation model are crucial ingredients in obtaining chi-square goodness-of-fit statistics for the model. The authors present a didactic discussion of the residuals, obtaining a geometrical interpretation by recognizing the residuals as the result of oblique projections. This sheds light on the…
Interpreting linear support vector machine models with heat map molecule coloring
2011-01-01
Background Model-based virtual screening plays an important role in the early drug discovery stage. The outcomes of high-throughput screenings are a valuable source for machine learning algorithms to infer such models. Besides a strong performance, the interpretability of a machine learning model is a desired property to guide the optimization of a compound in later drug discovery stages. Linear support vector machines showed to have a convincing performance on large-scale data sets. The goal of this study is to present a heat map molecule coloring technique to interpret linear support vector machine models. Based on the weights of a linear model, the visualization approach colors each atom and bond of a compound according to its importance for activity. Results We evaluated our approach on a toxicity data set, a chromosome aberration data set, and the maximum unbiased validation data sets. The experiments show that our method sensibly visualizes structure-property and structure-activity relationships of a linear support vector machine model. The coloring of ligands in the binding pocket of several crystal structures of a maximum unbiased validation data set target indicates that our approach assists to determine the correct ligand orientation in the binding pocket. Additionally, the heat map coloring enables the identification of substructures important for the binding of an inhibitor. Conclusions In combination with heat map coloring, linear support vector machine models can help to guide the modification of a compound in later stages of drug discovery. Particularly substructures identified as important by our method might be a starting point for optimization of a lead compound. The heat map coloring should be considered as complementary to structure based modeling approaches. As such, it helps to get a better understanding of the binding mode of an inhibitor. PMID:21439031
Structural relationships of pre-Tertiary rocks in the Nevada Test Site region, southern Nevada
Cole, James C.; Cashman, Patricia Hughes
1999-01-01
This report contains a synthesis and interpretation of structural and stratigraphic data for pre-Tertiary rocks in a large area of southern Nevada within and near the Nevada Test Site. Its presents descriptive and interpretive information from discontinuously exposed localities in the context of a regional model that integrates stratigraphy, sedimentology, crustal structure, and deformational style and timing. Evidence is given for substantial strike-slip faults, for modest excursion on low-angle faults, and for pre-Oligocene formation of the regional oroclinal flexure in neighboring mountain ranges.
Micro- and meso-scale pore structure in mortar in relation to aggregate content
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gao, Yun, E-mail: yun.gao@ugent.be; De Schutter, Geert; Ye, Guang
2013-10-15
Mortar is often viewed as a three-phase composite consisting of aggregate, bulk paste, and an interfacial transition zone (ITZ). However, this description is inconsistent with experimental findings because of the basic assumption that larger pores are only present within the ITZ. In this paper, we use backscattered electron (BSE) imaging to investigate the micro- and meso-scale structure of mortar with varying aggregate content. The results indicate that larger pores are present not only within the ITZ but also within areas far from aggregates. This phenomenon is discussed in detail based on a series of analytical calculations, such as the effectivemore » water binder ratio and the inter-aggregate spacing. We developed a modified computer model that includes a two-phase structure for bulk paste. This model interprets previous mercury intrusion porosimetry data very well. -- Highlights: •Based on BSE, we examine the HCSS model. •We develop the HCSS-DBLB model. •We use the modified model to interpret the MIP data.« less
NASA Astrophysics Data System (ADS)
Hayward, N.
2017-12-01
The structure of the western margin of the North American craton (Laurentia) in the northern Canadian Cordillera and its role in the development of the Neoproterozoic-Early Paleozoic Selwyn Basin are reassessed through 3D inversion of a new compilation of aeromagnetic data and archival Bouguer gravity data. The region's tectonic history is obscured by partial burial beneath Selwyn Basin, and a tectonic overprint that includes terrane accretion, regional plutonism, and strike-slip faults with displacements of 100s and perhaps 1000s of kilometers. Despite the implied complexity, preliminary geological and geophysical based interpretations of the structure of the western margin of Laurentia, have been adopted with few refinements in over two decades. Regionally continuous, NE-trending, crustal lineaments, including the Fort Norman line and Leith Ridge fault, were interpreted as having had long-standing influence on the craton development, its western margin, and overlapping sedimentary basin. New results reveal limited evidence for the regional continuity of the NE-trending lineaments. Instead, models suggest that the structure of the Laurentian margin is characterised by segmentation on numerous shorter structures of varied strike. The western margin of the craton and its structures are bound by a NW-trending structure that connects with the Richardson Trough to the north and may have been active during rifting of the Misty Creek embayment. This boundary also marks the easternmost limit of both granitic intrusions in Selwyn Basin, which gravity models suggest are of greater extent than reflected on geological maps, and SEDEX occurrences. An ENE-trending structure beneath northern Selwyn Basin is interpreted as marking the southern edge of a previously unidentified cratonic promontory, akin to the Liard line that marks a transfer fault that bounds the promontory of the Macdonald Platform, south of Selwyn Basin. The ENE-trending structure is traced from the Tintina fault in the west to near to the Great Bear magmatic zone. The structure's regional continuity also limits the interpretation of a post-Cretaceous structure, inboard of the Tintina fault that could be responsible for 1000's km of dextral strike-slip ascribed to the Baja-BC terrane translation model.
Exploring the Subtleties of Inverse Probability Weighting and Marginal Structural Models.
Breskin, Alexander; Cole, Stephen R; Westreich, Daniel
2018-05-01
Since being introduced to epidemiology in 2000, marginal structural models have become a commonly used method for causal inference in a wide range of epidemiologic settings. In this brief report, we aim to explore three subtleties of marginal structural models. First, we distinguish marginal structural models from the inverse probability weighting estimator, and we emphasize that marginal structural models are not only for longitudinal exposures. Second, we explore the meaning of the word "marginal" in "marginal structural model." Finally, we show that the specification of a marginal structural model can have important implications for the interpretation of its parameters. Each of these concepts have important implications for the use and understanding of marginal structural models, and thus providing detailed explanations of them may lead to better practices for the field of epidemiology.
Marchese Robinson, Richard L; Palczewska, Anna; Palczewski, Jan; Kidley, Nathan
2017-08-28
The ability to interpret the predictions made by quantitative structure-activity relationships (QSARs) offers a number of advantages. While QSARs built using nonlinear modeling approaches, such as the popular Random Forest algorithm, might sometimes be more predictive than those built using linear modeling approaches, their predictions have been perceived as difficult to interpret. However, a growing number of approaches have been proposed for interpreting nonlinear QSAR models in general and Random Forest in particular. In the current work, we compare the performance of Random Forest to those of two widely used linear modeling approaches: linear Support Vector Machines (SVMs) (or Support Vector Regression (SVR)) and partial least-squares (PLS). We compare their performance in terms of their predictivity as well as the chemical interpretability of the predictions using novel scoring schemes for assessing heat map images of substructural contributions. We critically assess different approaches for interpreting Random Forest models as well as for obtaining predictions from the forest. We assess the models on a large number of widely employed public-domain benchmark data sets corresponding to regression and binary classification problems of relevance to hit identification and toxicology. We conclude that Random Forest typically yields comparable or possibly better predictive performance than the linear modeling approaches and that its predictions may also be interpreted in a chemically and biologically meaningful way. In contrast to earlier work looking at interpretation of nonlinear QSAR models, we directly compare two methodologically distinct approaches for interpreting Random Forest models. The approaches for interpreting Random Forest assessed in our article were implemented using open-source programs that we have made available to the community. These programs are the rfFC package ( https://r-forge.r-project.org/R/?group_id=1725 ) for the R statistical programming language and the Python program HeatMapWrapper [ https://doi.org/10.5281/zenodo.495163 ] for heat map generation.
A Structural Evaluation of a Large-Scale Quasi-Experimental Microfinance Initiative
Kaboski, Joseph P.; Townsend, Robert M.
2010-01-01
This paper uses a structural model to understand, predict, and evaluate the impact of an exogenous microcredit intervention program, the Thai Million Baht Village Fund program. We model household decisions in the face of borrowing constraints, income uncertainty, and high-yield indivisible investment opportunities. After estimation of parameters using pre-program data, we evaluate the model’s ability to predict and interpret the impact of the village fund intervention. Simulations from the model mirror the data in yielding a greater increase in consumption than credit, which is interpreted as evidence of credit constraints. A cost-benefit analysis using the model indicates that some households value the program much more than its per household cost, but overall the program costs 20 percent more than the sum of these benefits. PMID:22162594
Seismic images of a tectonic subdivision of the Greenville Orogen beneath lakes Ontario and Erie
Forsyth, D. A.; Milkereit, B.; Davidson, A.; Hanmer, S.; Hutchinson, Deborah R.; Hinze, W. J.; Mereu, R.F.
1994-01-01
New seismic data from marine air-gun and Vibroseis profiles in Lake Ontario and Lake Erie provide images of subhorizontal Phanerozoic sediments underlain by a remarkable series of easterly dipping reflections that extends from the crystalline basement to the lower crust. These reflections are interpreted as structural features of crustal-scale subdivisions within the Grenville Orogen. Broadly deformed, imbricated, and overlapping thrust sheets within the western Central Metasedimentary Belt are succeeded to the west by a complex zone of easterly dipping, apparent thrust faults that are interpreted as a southwest subsurface extension of the boundary zone between the Central Metasedimentary Belt and the Central Gneiss Belt. The interpreted Central Metasedimentary Belt boundary zone has a characteristic magnetic anomaly that provides a link from the adjacent ends of lakes Ontario and Erie to structures exposed 150 km to the north. Less reflective, west-dipping events are interpreted as structures within the eastern Central Gneiss Belt. The seismic interpretation augments current tectonic models that suggest the exposed ductile structures formed at depth as a result of crustal shortening along northwest-verging thrust faults. Relatively shallow reflections across the boundary region suggest local, Late Proterozoic extensional troughs containing post-Grenville sediments, preserved possibly as a result of pre-Paleozoic reactivation of basement structures.
Health Monitoring for Airframe Structural Characterization
NASA Technical Reports Server (NTRS)
Munns, Thomas E.; Kent, Renee M.; Bartolini, Antony; Gause, Charles B.; Borinski, Jason W.; Dietz, Jason; Elster, Jennifer L.; Boyd, Clark; Vicari, Larry; Ray, Asok;
2002-01-01
This study established requirements for structural health monitoring systems, identified and characterized a prototype structural sensor system, developed sensor interpretation algorithms, and demonstrated the sensor systems on operationally realistic test articles. Fiber-optic corrosion sensors (i.e., moisture and metal ion sensors) and low-cycle fatigue sensors (i.e., strain and acoustic emission sensors) were evaluated to validate their suitability for monitoring aging degradation; characterize the sensor performance in aircraft environments; and demonstrate placement processes and multiplexing schemes. In addition, a unique micromachined multimeasure and sensor concept was developed and demonstrated. The results show that structural degradation of aircraft materials could be effectively detected and characterized using available and emerging sensors. A key component of the structural health monitoring capability is the ability to interpret the information provided by sensor system in order to characterize the structural condition. Novel deterministic and stochastic fatigue damage development and growth models were developed for this program. These models enable real time characterization and assessment of structural fatigue damage.
Interpreting Data: The Hybrid Mind
ERIC Educational Resources Information Center
Heisterkamp, Kimberly; Talanquer, Vicente
2015-01-01
The central goal of this study was to characterize major patterns of reasoning exhibited by college chemistry students when analyzing and interpreting chemical data. Using a case study approach, we investigated how a representative student used chemical models to explain patterns in the data based on structure-property relationships. Our results…
Basil Bernstein: Agency, Structure and Linguistic Conception of Class
ERIC Educational Resources Information Center
Best, Shaun
2007-01-01
The paper outlines an interpretation of Bernstein's contribution to the sociology of education that stands in contrast to the common interpretations of Bernstein's work. It is commonly assumed that Bernstein constructed a simplistic "deficit model" of educational failure, or alternatively, that Bernstein was a structuralist who did not give any…
NASA Astrophysics Data System (ADS)
Bo, Zhang; Jinjiang, Zhang; Shuyu, Yan; Jiang, Liu; Jinhai, Zhang; Zhongpei, Zhang
2010-05-01
The phenomenon of Kink banding is well known throughout the engineering and geophysical sciences. Associated with layered structures compressed in a layer-parallel direction, it arises for example in stratified geological systems under tectonic compression. Our work documented it is also possible to develop super large-scale kink-bands in sedimentary sequences. We interpret the Bachu fold uplift belt of the central Tarim basin in western China to be composed of detachment folds flanked by megascopic-scale kink-bands. Those previous principal fold models for the Bachu uplift belt incorporated components of large-scale thrust faulting, such as the imbricate fault-related fold model and the high-angle, reverse-faulted detachment fold model. Based on our observations in the outcrops and on the two-dimension seismic profiles, we interpret that first-order structures in the region are kink-band style detachment folds to accommodate regional shortening, and thrust faulting can be a second-order deformation style occurring on the limb of the detachment folds or at the cores of some folds to accommodate the further strain of these folds. The belt mainly consists of detachment folds overlying a ductile decollement layer. The crests of the detachment folds are bounded by large-scale kink-bands, which are zones of angularly folded strata. These low-signal-tonoise, low-reflectivity zones observed on seismic profiles across the Bachu belt are poorly imaged sections, which resulted from steeply dipping bedding in the kink-bands. The substantial width (beyond 200m) of these low-reflectivity zones, their sub-parallel edges in cross section, and their orientations at a high angle to layering between 50 and 60 degrees, as well as their conjugate geometry, support a kink-band interpretation. The kink-band interpretation model is based on the Maximum Effective Moment Criteria for continuous deformation, rather than Mohr-Column Criteria for brittle fracture. Seismic modeling is done to identify the characteristics and natures of seismic waves within the kink-band and its fold structure, which supplies the further evidences for the kink-band interpretation in the region.
NASA Technical Reports Server (NTRS)
Perry, S. K.; Schamel, S.
1985-01-01
Tectonic extension within continental crust creates a variety of major features best classed as extensional orogens. These features have come under increasing attention in recent years, with the welding of field observation and theoretical concepts. Most recent advances have come from the Basin and Range Province of the southwestern United States and from the North Sea. Application of these geometric and isostatic concepts, in combination with seismic interpretation, to the southern Gulf of Suez, an active extensional orogen, allows generation of detailed structural maps and geometrically balanced sections which suggest a regional structural model. Geometric models which should prove to be a valuable adjunct to numerical and thermal models for the rifting process are discussed.
ERIC Educational Resources Information Center
Elrod, Terry; Haubl, Gerald; Tipps, Steven W.
2012-01-01
Recent research reflects a growing awareness of the value of using structural equation models to analyze repeated measures data. However, such data, particularly in the presence of covariates, often lead to models that either fit the data poorly, are exceedingly general and hard to interpret, or are specified in a manner that is highly data…
NASA Astrophysics Data System (ADS)
Chang, Yu-Chun; Shih, Ruey-Chyuan; Wang, Chien-Ying; Kuo, Hsuan-Yu; Chen, Wen-Shan
2016-04-01
A prototype deep geothermal power plant is to be constructed at the Ilan plain in northeastern Taiwan. The site will be chosen from one of the two potential areas, one in the west and the other in the eastern side of the plain. The triangle-shaped Ilan plane is bounded by two mountain ranges at the northwest and the south, with argillite and slate outcrops exposed, respectively. The Ilan plane is believed situating in a structure extending area at the southwestern end of the Okinawa Trough. Many studies about subsurface structure of the plain have been conducted for years. The results showed that the thickest sediments, around 900 m, is located at the eastern coast of the plain, at north of the largest river in the plain, the Lanyang river, and then became shallower to the edges of the plain. Since the plane is covered by thick sediments, formations and structures beneath the sediments are barely known. However, the observed high geothermal gradient and the abundant hot spring in the Ilan area indicate that this area is having a high potential of geothermal energy. In order to build up a conceptual model for tracing the possible paths of geothermal water and search for a suitable site for the geothermal well, we used the seismic reflection method to delineate the subsurface structure. The seismic profiles showed a clear unconformity separating the sediments and the metamorphic bedrock, and some events dipping to the east in the bedrock. Seismic images above the unconformity are clear; however, seismic signals in the metamorphic bedrock are sort of ambiguous. There were two models interpreted by using around 10 seismic images that collected by us in the past 3 years by using two mini-vibrators (EnviroVibe) and a 360-channel seismic data acquisition system. In the first model, seismic signals in the bedrock were interpreted as layer boundaries, and a fractured metamorphic layer down the depth of 1200m was thought as the source of geothermal water reservoir. In the other model, a northwestern dipping normal faults system was interpreted, and the normal faults were the paths for guiding the geothermal energy from the depth. Although both models were possible for obtaining a promising geothermal energy in the study area, a clear conceptual structure model is needed for future development of the geothermal energy in this area. Our interpretation favorites the fault dominant structure model; however, since the bedrock was slate or argillite still needed to be identified, more data from core borings and other geophysical, geologic data are needed. In this paper, we will illustrate a 3 dimensional suburface structure model by using the seismic images and integrate with results obtained from other studies to show the possibility of the proposed fault dominant structure model.
Fjodorova, Natalja; Novič, Marjana
2012-01-01
The knowledge-based Toxtree expert system (SAR approach) was integrated with the statistically based counter propagation artificial neural network (CP ANN) model (QSAR approach) to contribute to a better mechanistic understanding of a carcinogenicity model for non-congeneric chemicals using Dragon descriptors and carcinogenic potency for rats as a response. The transparency of the CP ANN algorithm was demonstrated using intrinsic mapping technique specifically Kohonen maps. Chemical structures were represented by Dragon descriptors that express the structural and electronic features of molecules such as their shape and electronic surrounding related to reactivity of molecules. It was illustrated how the descriptors are correlated with particular structural alerts (SAs) for carcinogenicity with recognized mechanistic link to carcinogenic activity. Moreover, the Kohonen mapping technique enables one to examine the separation of carcinogens and non-carcinogens (for rats) within a family of chemicals with a particular SA for carcinogenicity. The mechanistic interpretation of models is important for the evaluation of safety of chemicals. PMID:24688639
Factor Structure of the Quality of Life Scale for Mental Disorders in Patients With Schizophrenia.
Chiu, En-Chi; Lee, Shu-Chun
2018-06-01
The Quality of Life for Mental Disorders (QOLMD) scale was designed to measure health-related quality of life (HRQOL) in patients with mental illness, especially schizophrenia. The QOLMD contains 45 items, which are divided into eight domains. However, the factor structure of the QOLMD has not been evaluated, which restricts the interpretations of the results of this scale. The purpose of this study was to evaluate the factor structures (i.e., unidimensionality, eight-factor structure, and second-order model) of the QOLMD in patients with schizophrenia. Two hundred thirty-eight outpatients with schizophrenia participated. We first conducted confirmatory factor analysis to evaluate the unidimensionality of each domain. After the unidimensionality of the eight individual domains was supported, we examined the eight-factor structure and second-order model. The results of unidimensionality showed sufficient model fit in all of the domains with the exception of the autonomy domain. A good model fit was confirmed for the autonomy domain after deleting two of the original items. The eight-factor structure for the 43-item QOLMD showed an acceptable model fit, although the second-order model showed poor model fit. Our results supported the unidimensionality and eight-factor structure of the 43-item QOLMD. The sum score for each of the domains may be used to reflect its domain-specific function. We recommend using the 43-item QOLMD to capture the multiple domains of HRQOL. However, the second-order model showed an unsatisfactory model fit. Furthermore, caution is advised when interpreting overall HRQOL using the total score for the eight domains.
Seismic modeling of Earth's 3D structure: Recent advancements
NASA Astrophysics Data System (ADS)
Ritsema, J.
2008-12-01
Global models of Earth's seismic structure continue to improve due to the growth of seismic data sets, implementation of advanced wave propagations theories, and increased computational power. In my presentation, I will summarize seismic tomography results from the past 5-10 years. I will compare the most recent P and S velocity models, discuss model resolution and model interpretation, and present an, admittedly biased, list of research directions required to develop the next generation 3D models.
Equivalent circuit models for interpreting impedance perturbation spectroscopy data
NASA Astrophysics Data System (ADS)
Smith, R. Lowell
2004-07-01
As in-situ structural integrity monitoring disciplines mature, there is a growing need to process sensor/actuator data efficiently in real time. Although smaller, faster embedded processors will contribute to this, it is also important to develop straightforward, robust methods to reduce the overall computational burden for practical applications of interest. This paper addresses the use of equivalent circuit modeling techniques for inferring structure attributes monitored using impedance perturbation spectroscopy. In pioneering work about ten years ago significant progress was associated with the development of simple impedance models derived from the piezoelectric equations. Using mathematical modeling tools currently available from research in ultrasonics and impedance spectroscopy is expected to provide additional synergistic benefits. For purposes of structural health monitoring the objective is to use impedance spectroscopy data to infer the physical condition of structures to which small piezoelectric actuators are bonded. Features of interest include stiffness changes, mass loading, and damping or mechanical losses. Equivalent circuit models are typically simple enough to facilitate the development of practical analytical models of the actuator-structure interaction. This type of parametric structure model allows raw impedance/admittance data to be interpreted optimally using standard multiple, nonlinear regression analysis. One potential long-term outcome is the possibility of cataloging measured viscoelastic properties of the mechanical subsystems of interest as simple lists of attributes and their statistical uncertainties, whose evolution can be followed in time. Equivalent circuit models are well suited for addressing calibration and self-consistency issues such as temperature corrections, Poisson mode coupling, and distributed relaxation processes.
Modeling and Crustal Structure in the Future Reservoir of Jequitaí, Brazil
NASA Astrophysics Data System (ADS)
Teixeira, C. D.; Von Huelsen, M. G.; Chemale, F., Jr.; Nascimento, A. V. D. S., Sr.; do Sacramento, V., Sr.; Garcia, V. B. P., Sr.
2017-12-01
Integrated geophysical and geological data analysis in the state of Minas Gerais, Brazil, allowed the modeling of the subsurface framework in a region where a reservoir - the Jequitaí reservoir - will be constructed. Studies of this nature during the previous stages of the construction of large hydroelectric projects are highly important, because the regional geology understanding associated with geophysical data interpretation can help to prevent damage in the physical structure of the dam, which will aid in its preservation. The use of gravity and magnetic data in a 2D crustal model provided information on a possible framework of the area and revealed features not mapped until now, which may be useful for further studies and can contribute to the understanding of this portion of the crust. The results show the presence of high gravity anomalies in the southern part of the study area, besides extensive lineaments that cross the whole area, interpreted as possible faults and dykes. Depth estimation techniques, such as Euler deconvolution and radially averaged power spectrum, allowed the identification of continuous structures up to 400 m depth, and showed differences in the basement depth in the northern and southern portions of the study area. Inversion of the gravity data along a profile crossing a gravity anomaly yielded to information about the depth, thickness and shape of a possible intrusive body. The geological-geophysical model was consistent with the interpretations based on surface geology and in the gravity and magnetic signal, because the section could be modeled respecting the geophysical data and the pre-existing structural proposals.
The future of crystallography in drug discovery
Zheng, Heping; Hou, Jing; Zimmerman, Matthew D; Wlodawer, Alexander; Minor, Wladek
2014-01-01
Introduction X-ray crystallography plays an important role in structure-based drug design (SBDD), and accurate analysis of crystal structures of target macromolecules and macromolecule–ligand complexes is critical at all stages. However, whereas there has been significant progress in improving methods of structural biology, particularly in X-ray crystallography, corresponding progress in the development of computational methods (such as in silico high-throughput screening) is still on the horizon. Crystal structures can be overinterpreted and thus bias hypotheses and follow-up experiments. As in any experimental science, the models of macromolecular structures derived from X-ray diffraction data have their limitations, which need to be critically evaluated and well understood for structure-based drug discovery. Areas covered This review describes how the validity, accuracy and precision of a protein or nucleic acid structure determined by X-ray crystallography can be evaluated from three different perspectives: i) the nature of the diffraction experiment; ii) the interpretation of an electron density map; and iii) the interpretation of the structural model in terms of function and mechanism. The strategies to optimally exploit a macromolecular structure are also discussed in the context of ‘Big Data’ analysis, biochemical experimental design and structure-based drug discovery. Expert opinion Although X-ray crystallography is one of the most detailed ‘microscopes’ available today for examining macromolecular structures, the authors would like to re-emphasize that such structures are only simplified models of the target macromolecules. The authors also wish to reinforce the idea that a structure should not be thought of as a set of precise coordinates but rather as a framework for generating hypotheses to be explored. Numerous biochemical and biophysical experiments, including new diffraction experiments, can and should be performed to verify or falsify these hypotheses. X-ray crystallography will find its future application in drug discovery by the development of specific tools that would allow realistic interpretation of the outcome coordinates and/or support testing of these hypotheses. PMID:24372145
NASA Astrophysics Data System (ADS)
Nielsen, Lars Henrik; Sparre Andersen, Morten; Balling, Niels; Boldreel, Lars Ole; Fuchs, Sven; Leth Hjuler, Morten; Kristensen, Lars; Mathiesen, Anders; Olivarius, Mette; Weibel, Rikke
2017-04-01
Knowledge of structural, hydraulic and thermal conditions of the subsurface is fundamental for the planning and use of hydrothermal energy. In the framework of a project under the Danish Research program 'Sustainable Energy and Environment' funded by the 'Danish Agency for Science, Technology and Innovation', fundamental geological and geophysical information of importance for the utilization of geothermal energy in Denmark was compiled, analyzed and re-interpreted. A 3D geological model was constructed and used as structural basis for the development of a national subsurface temperature model. In that frame, all available reflection seismic data were interpreted, quality controlled and integrated to improve the regional structural understanding. The analyses and interpretation of available relevant data (i.e. old and new seismic profiles, core and well-log data, literature data) and a new time-depth conversion allowed a consistent correlation of seismic surfaces for whole Denmark and across tectonic features. On this basis, new topologically consistent depth and thickness maps for 16 geological units from the top pre-Zechstein to the surface were drawn. A new 3D structural geological model was developed with special emphasis on potential geothermal reservoirs. The interpretation of petrophysical data (core data and well-logs) allows to evaluate the hydraulic and thermal properties of potential geothermal reservoirs and to develop a parameterized numerical 3D conductive subsurface temperature model. Reservoir properties and quality were estimated by integrating petrography and diagenesis studies with porosity-permeability data. Detailed interpretation of the reservoir quality of the geological formations was made by estimating net reservoir sandstone thickness based on well-log analysis, determination of mineralogy including sediment provenance analysis, and burial history data. New local surface heat-flow values (range: 64-84 mW/m2) were determined for the Danish Basin and predicted temperatures were calibrated and validated by borehole temperature observations. Finally, new temperature maps for major geological reservoir formations (Frederikshavn, Haldager Sand, Gassum and Bunter Sandstone/Skagerrak formations) and selected constant depth intervals (1 km, 2 km, etc.) were compiled. In the future, geothermal energy is likely to be a key component in Denmark's supply of energy and integrated into the district heating infrastructures. A new 3-year project (GEOTHERM) under the Innovation Fund Denmark will focus on addressing and removing remaining geological, technical and commercial obstacles. The presented 3D geothermal model will be an important component in more precise assessments of the geothermal resource, production capacity and thermal lifecycle.
Enhancing CIDOC-CRM and compatible models with the concept of multiple interpretation
NASA Astrophysics Data System (ADS)
Van Ruymbeke, M.; Hallot, P.; Billen, R.
2017-08-01
Modelling cultural heritage and archaeological objects is used as much for management as for research purposes. To ensure the sustainable benefit of digital data, models benefit from taking the data specificities of historical and archaeological domains into account. Starting from a conceptual model tailored to storing these specificities, we present, in this paper, an extended mapping to CIDOC-CRM and its compatible models. Offering an ideal framework to structure and highlight the best modelling practices, these ontologies are essentially dedicated to storing semantic data which provides information about cultural heritage objects. Based on this standard, our proposal focuses on multiple interpretation and sequential reality.
Stereopsis, vertical disparity and relief transformations.
Gårding, J; Porrill, J; Mayhew, J E; Frisby, J P
1995-03-01
The pattern of retinal binocular disparities acquired by a fixating visual system depends on both the depth structure of the scene and the viewing geometry. This paper treats the problem of interpreting the disparity pattern in terms of scene structure without relying on estimates of fixation position from eye movement control and proprioception mechanisms. We propose a sequential decomposition of this interpretation process into disparity correction, which is used to compute three-dimensional structure up to a relief transformation, and disparity normalization, which is used to resolve the relief ambiguity to obtain metric structure. We point out that the disparity normalization stage can often be omitted, since relief transformations preserve important properties such as depth ordering and coplanarity. Based on this framework we analyse three previously proposed computational models of disparity processing; the Mayhew and Longuet-Higgins model, the deformation model and the polar angle disparity model. We show how these models are related, and argue that none of them can account satisfactorily for available psychophysical data. We therefore propose an alternative model, regional disparity correction. Using this model we derive predictions for a number of experiments based on vertical disparity manipulations, and compare them to available experimental data. The paper is concluded with a summary and a discussion of the possible architectures and mechanisms underling stereopsis in the human visual system.
NASA Astrophysics Data System (ADS)
Kuvich, Gary
2004-08-01
Vision is only a part of a system that converts visual information into knowledge structures. These structures drive the vision process, resolving ambiguity and uncertainty via feedback, and provide image understanding, which is an interpretation of visual information in terms of these knowledge models. These mechanisms provide a reliable recognition if the object is occluded or cannot be recognized as a whole. It is hard to split the entire system apart, and reliable solutions to the target recognition problems are possible only within the solution of a more generic Image Understanding Problem. Brain reduces informational and computational complexities, using implicit symbolic coding of features, hierarchical compression, and selective processing of visual information. Biologically inspired Network-Symbolic representation, where both systematic structural/logical methods and neural/statistical methods are parts of a single mechanism, is the most feasible for such models. It converts visual information into relational Network-Symbolic structures, avoiding artificial precise computations of 3-dimensional models. Network-Symbolic Transformations derive abstract structures, which allows for invariant recognition of an object as exemplar of a class. Active vision helps creating consistent models. Attention, separation of figure from ground and perceptual grouping are special kinds of network-symbolic transformations. Such Image/Video Understanding Systems will be reliably recognizing targets.
Novel interpretation of the mean structure of feroxyhyte
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sestu, Matteo, E-mail: msestu@unica.it; Carta, Daniela; Casula, Maria F.
2015-05-15
The structure of the iron oxyhydroxide called feroxyhyte (δ-FeOOH), which shows an elusive X-ray powder diffraction pattern, has been represented so far using models describing a mean structure based on the crystalline network of the iron(III) oxide hematite (α-Fe{sub 2}O{sub 3}). In this paper, a novel description of the mean structure of feroxyhyte is presented, which is based on the structure of the thermodynamically stable iron oxyhydroxide goethite. Starting from different local arrangements present in the goethite network, a mean structural model is determined which shows an X-ray powder diffraction pattern almost coincident with previous studies. This outcome enables tomore » integrate the structure of feroxyhyte among those of other well characterized iron oxyhydroxides. - Graphical abstract: The structure of the iron oxy-hydroxide feroxyhyte can be described by local arrangements present in the goethite network. - Highlights: • The structure of feroxyhyte (δ-FeOOH) proposed in literature is discussed. • The structure of goethite (α-FeOOH) is analyzed. • A structural relationship between feroxyhyte and goethite is found. • New interpretation of the mean structure of δ-FeOOH is given.« less
NASA Astrophysics Data System (ADS)
Bellerby, Tim
2014-05-01
Model Integration System (MIST) is open-source environmental modelling programming language that directly incorporates data parallelism. The language is designed to enable straightforward programming structures, such as nested loops and conditional statements to be directly translated into sequences of whole-array (or more generally whole data-structure) operations. MIST thus enables the programmer to use well-understood constructs, directly relating to the mathematical structure of the model, without having to explicitly vectorize code or worry about details of parallelization. A range of common modelling operations are supported by dedicated language structures operating on cell neighbourhoods rather than individual cells (e.g.: the 3x3 local neighbourhood needed to implement an averaging image filter can be simply accessed from within a simple loop traversing all image pixels). This facility hides details of inter-process communication behind more mathematically relevant descriptions of model dynamics. The MIST automatic vectorization/parallelization process serves both to distribute work among available nodes and separately to control storage requirements for intermediate expressions - enabling operations on very large domains for which memory availability may be an issue. MIST is designed to facilitate efficient interpreter based implementations. A prototype open source interpreter is available, coded in standard FORTRAN 95, with tools to rapidly integrate existing FORTRAN 77 or 95 code libraries. The language is formally specified and thus not limited to FORTRAN implementation or to an interpreter-based approach. A MIST to FORTRAN compiler is under development and volunteers are sought to create an ANSI-C implementation. Parallel processing is currently implemented using OpenMP. However, parallelization code is fully modularised and could be replaced with implementations using other libraries. GPU implementation is potentially possible.
NASA Astrophysics Data System (ADS)
Campanya, J. L.; Ogaya, X.; Jones, A. G.; Rath, V.; McConnell, B.; Haughton, P.; Prada, M.
2016-12-01
The Science Foundation Ireland funded project IRECCSEM project (www.ireccsem.ie) aims to evaluate Ireland's potential for onshore carbon sequestration in saline aquifers by integrating new electromagnetic geophysical data with existing geophysical and geological data. One of the objectives of this component of IRECCSEM is to characterise the subsurface beneath the Loop Head Peninsula (part of Clare Basin, Co. Clare, Ireland), and identify major electrical resistivity structures that can guide an interpretation of the carbon sequestration potential of this area. During the summer of 2014, a magnetotelluric (MT) survey was carried out on the Loop Head Peninsula, and data from a total of 140 sites were acquired, including audio-magnetotelluric (AMT), and broadband magnetotelluric (BBMT). The dataset was used to generate shallow three-dimensional (3-D) electrical resistivity models constraining the subsurface to depths of up to 3.5 km. The three-dimensional (3-D) joint inversions were performed using three different types of electromagnetic data: MT impedance tensor (Z), geomagnetic transfer functions (T), and inter-station horizontal magnetic transfer-functions (H). The interpretation of the results was complemented with second-derivative models of the resulting electrical resistivity models, and a quantitative comparison with borehole data using multivariate statistical methods. Second-derivative models were used to define the main interfaces between the geoelectrical structures, facilitating superior comparison with geological and seismic results, and also reducing the influence of the colour scale when interpreting the results. Specific analysis was performed to compare the extant borehole data with the electrical resistivity model, identifying those structures that are better characterised by the resistivity model. Finally, the electrical resistivity model was also used to propagate some of the physical properties measured in the borehole, when a good relation was possible between the different types of data. The final results were compared with independent geological and geophysical data for a high-quality interpretation.
ERIC Educational Resources Information Center
Oh, Hyeon-Joo; Glutting, Joseph J.; Watkins, Marley W.; Youngstrom, Eric A.; McDermott, Paul A.
2004-01-01
In this study, the authors used structural equation modeling to investigate relationships between ability constructs from the "Wechsler Intelligence Scale for Children-Third Edition" (WISC-III; Wechsler, 1991) in explaining reading and mathematics achievement constructs on the "Wechsler Individual Achievement Test" (WIAT;…
Toward an Optimum Decision-Making Structure in Colleges: A Literature Review and Interpretation
ERIC Educational Resources Information Center
Helsabeck, Robert E.
1972-01-01
It seems that what is indicated for policies affecting student participation in campus governance is a mixed model, involving both communitarian structures for some decisions and a separation of powers for others. (Author)
NASA Astrophysics Data System (ADS)
Cobden, L. J.
2017-12-01
Mineral physics provides the essential link between seismic observations of the Earth's interior, and laboratory (or computer-simulated) measurements of rock properties. In this presentation I will outline the procedure for quantitative conversion from thermochemical structure to seismic structure (and vice versa) using the latest datasets from seismology and mineralogy. I will show examples of how this method can allow us to infer major chemical and dynamic properties of the deep mantle. I will also indicate where uncertainties and limitations in the data require us to exercise caution, in order not to "over-interpret" seismic observations. Understanding and modelling these uncertainties serves as a useful guide for mineralogists to ascertain which mineral parameters are most useful in seismic interpretation, and enables seismologists to optimise their data assembly and inversions for quantitative interpretations.
An introductory review on gravitational-deformation induced structures, fabrics and modeling
NASA Astrophysics Data System (ADS)
Jaboyedoff, Michel; Penna, Ivanna; Pedrazzini, Andrea; Baroň, Ivo; Crosta, Giovanni B.
2013-10-01
Recent studies have pointed out a similarity between tectonics and slope tectonic-induced structures. Numerous studies have demonstrated that structures and fabrics previously interpreted as of purely geodynamical origin are instead the result of large slope deformation, and this led in the past to erroneous interpretations. Nevertheless, their limit seems not clearly defined, but it is somehow transitional. Some studies point out continuity between failures developing at surface with upper crust movements. In this contribution, the main studies which examine the link between rock structures and slope movements are reviewed. The aspects regarding model and scale of observation are discussed together with the role of pre-existing weaknesses in the rock mass. As slope failures can develop through progressive failure, structures and their changes in time and space can be recognized. Furthermore, recognition of the origin of these structures can help in avoiding misinterpretations of regional geology. This also suggests the importance of integrating different slope movement classifications based on distribution and pattern of deformation and the application of structural geology techniques. A structural geology approach in the landslide community is a tool that can greatly support the hazard quantification and related risks, because most of the physical parameters, which are used for landslide modeling, are derived from geotechnical tests or the emerging geophysical approaches.
Electromagnetically Inferred Structure of the Caja del Rio Plateau, New Mexico
NASA Astrophysics Data System (ADS)
Layton, M. E.; Speed, C.; Shukla, M.; Vila, A.; Chon, E.; Kitamikado, C.; Feucht, D. W.; Bedrosian, P.; Pellerin, L.
2016-12-01
Magnetotelluric (MT) and transient electromagnetic (TEM) data were acquired by students from the Summer of Applied Geophysical Experience (SAGE) to construct structural models in and around the Caja del Rio Plateau, New Mexico. The Caja del Rio is located on the La Bajada-Jemez constriction that separates the Española and Santa Domingo basins in the Rio Grande Rift. The Rio Grande Rift, the result of tectonic extensional forces, extends approximately north-south across northern New Mexico. MT data collected in 2016 were merged with that from previous years to make up an 11 km north line and a 16 km south line extending from the west side of the Caja Del Rio to the east off the plateau in the Old Buckman Road area. The resistivity distributions revealed in one-dimensional (1-D) and two-dimensional (2-D) inverse models show some robust features. Models of the north are interpreted as a top resistive layer (<500m) of Tertiary volcanoclastic rock, to a central conductive layer (600-200m) of Mesozoic and Paleozoic sediments of the Santa Fe group to crystalline basement rock. Models for the south line show low resistivity for the first 3 to 5 km and then transitions into higher resistivity values consistent with the models for the north line. At a period of 100 seconds induction arrows (Parkinson's convention) point in the northwest direction towards the conductive Valles Caldera. The MT models are consistent with geologic interpretations of the stratigraphic units. In addition, models disclose an additional conductive layer below the basement that we interpret as the mid-crustal conductor. Transient electromagnetic (TEM) data were collected in seven locations atop the Caja del Rio plateau in an attempt to identify the basal contact of the Cerros del Rio volcanic field, which, in turn, allow for the thickness of these basaltic and andesitic deposits to be mapped across the plateau. One-dimensional inverse models produced from the TEM data were aligned and interpreted geologically. A resistive ( 1000 ohm-m) unit, interpreted to represent the Cerros del Rio volcanics, thickens from 70m to 175m from southeast to northwest. The volcanics are overlain by a thin conductor, interpreted as weathered material. The resistive body is underlain by a thicker conductor, interpreted as sedimentary rocks of the Tertiary-aged Santa Fe Group.
Kohonen and counterpropagation neural networks applied for mapping and interpretation of IR spectra.
Novic, Marjana
2008-01-01
The principles of learning strategy of Kohonen and counterpropagation neural networks are introduced. The advantages of unsupervised learning are discussed. The self-organizing maps produced in both methods are suitable for a wide range of applications. Here, we present an example of Kohonen and counterpropagation neural networks used for mapping, interpretation, and simulation of infrared (IR) spectra. The artificial neural network models were trained for prediction of structural fragments of an unknown compound from its infrared spectrum. The training set contained over 3,200 IR spectra of diverse compounds of known chemical structure. The structure-spectra relationship was encompassed by the counterpropagation neural network, which assigned structural fragments to individual compounds within certain probability limits, assessed from the predictions of test compounds. The counterpropagation neural network model for prediction of fragments of chemical structure is reversible, which means that, for a given structural domain, limited to the training data set in the study, it can be used to simulate the IR spectrum of a chemical defined with a set of structural fragments.
Han, Lin Wei; Fu, Xiao; Yan, Yan; Wang, Chen Xing; Wu, Gang
2017-05-18
In order to determine the cumulative eco-environmental effect of coal-electricity integration, we selected 29 eco-environmental factors including different development and construction activities of coal-electricity integration, soil, water, atmospheric conditions, biology, landscape, and ecology. Literature survey, expert questionnaire and interview were conducted to analyze the interactive relationships between different factors. The structure and correlations between the eco-environmental factors influenced by coal-electricity integration activities were analyzed using interpretive structural modeling (ISM) and the cumulative eco-environment effect of development and construction activities was determined. A research and evaluation framework for the cumulative eco-environmental effect was introduced in addition to specific evaluation and management needs. The results of this study would provide a theoretical and technical basis for planning and management of coal-electricity integration development activities.
Developments in the CCP4 molecular-graphics project.
Potterton, Liz; McNicholas, Stuart; Krissinel, Eugene; Gruber, Jan; Cowtan, Kevin; Emsley, Paul; Murshudov, Garib N; Cohen, Serge; Perrakis, Anastassis; Noble, Martin
2004-12-01
Progress towards structure determination that is both high-throughput and high-value is dependent on the development of integrated and automatic tools for electron-density map interpretation and for the analysis of the resulting atomic models. Advances in map-interpretation algorithms are extending the resolution regime in which fully automatic tools can work reliably, but at present human intervention is required to interpret poor regions of macromolecular electron density, particularly where crystallographic data is only available to modest resolution [for example, I/sigma(I) < 2.0 for minimum resolution 2.5 A]. In such cases, a set of manual and semi-manual model-building molecular-graphics tools is needed. At the same time, converting the knowledge encapsulated in a molecular structure into understanding is dependent upon visualization tools, which must be able to communicate that understanding to others by means of both static and dynamic representations. CCP4 mg is a program designed to meet these needs in a way that is closely integrated with the ongoing development of CCP4 as a program suite suitable for both low- and high-intervention computational structural biology. As well as providing a carefully designed user interface to advanced algorithms of model building and analysis, CCP4 mg is intended to present a graphical toolkit to developers of novel algorithms in these fields.
Who is "Daddy" Revisited: The Status of Two-Year-Olds' Over-Extended Words in Use and Comprehension
ERIC Educational Resources Information Center
Thomson, Jean R.; Chapman, Robin S.
1977-01-01
Diary observations of two-year-olds' over-extended word use have been interpreted as arising from the word's underlying semantic feature structure. This interpretation was rejected after a study of five children. The need to construct models of early word meaning reflecting certain early language development patterns is discussed. (CHK)
Golay, Philippe; Reverte, Isabelle; Rossier, Jérôme; Favez, Nicolas; Lecerf, Thierry
2013-06-01
The interpretation of the Wechsler Intelligence Scale for Children--Fourth Edition (WISC-IV) is based on a 4-factor model, which is only partially compatible with the mainstream Cattell-Horn-Carroll (CHC) model of intelligence measurement. The structure of cognitive batteries is frequently analyzed via exploratory factor analysis and/or confirmatory factor analysis. With classical confirmatory factor analysis, almost all cross-loadings between latent variables and measures are fixed to zero in order to allow the model to be identified. However, inappropriate zero cross-loadings can contribute to poor model fit, distorted factors, and biased factor correlations; most important, they do not necessarily faithfully reflect theory. To deal with these methodological and theoretical limitations, we used a new statistical approach, Bayesian structural equation modeling (BSEM), among a sample of 249 French-speaking Swiss children (8-12 years). With BSEM, zero-fixed cross-loadings between latent variables and measures are replaced by approximate zeros, based on informative, small-variance priors. Results indicated that a direct hierarchical CHC-based model with 5 factors plus a general intelligence factor better represented the structure of the WISC-IV than did the 4-factor structure and the higher order models. Because a direct hierarchical CHC model was more adequate, it was concluded that the general factor should be considered as a breadth rather than a superordinate factor. Because it was possible for us to estimate the influence of each of the latent variables on the 15 subtest scores, BSEM allowed improvement of the understanding of the structure of intelligence tests and the clinical interpretation of the subtest scores. PsycINFO Database Record (c) 2013 APA, all rights reserved.
Relative arrival-time upper-mantle tomography and the elusive background mean
NASA Astrophysics Data System (ADS)
Bastow, Ian D.
2012-08-01
The interpretation of seismic tomographic images of upper-mantle seismic wave speed structure is often a matter of considerable debate because the observations can usually be explained by a range of hypotheses, including variable temperature, composition, anisotropy, and the presence of partial melt. An additional problem, often overlooked in tomographic studies using relative as opposed to absolute arrival-times, is the issue of the resulting velocity model's zero mean. In shield areas, for example, relative arrival-time analysis strips off a background mean velocity structure that is markedly fast compared to the global average. Conversely, in active areas, the background mean is often markedly slow compared to the global average. Appreciation of this issue is vital when interpreting seismic tomographic images: 'high' and 'low' velocity anomalies should not necessarily be interpreted, respectively, as 'fast' and 'slow' compared to 'normal mantle'. This issue has been discussed in the seismological literature in detail over the years, yet subsequent tomography studies have still fallen into the trap of mis-interpreting their velocity models. I highlight here some recent examples of this and provide a simple strategy to address the problem using constraints from a recent global tomographic model, and insights from catalogues of absolute traveltime anomalies. Consultation of such absolute measures of seismic wave speed should be routine during regional tomographic studies, if only for the benefit of the broader Earth Science community, who readily follow the red = hot and slow, blue = cold and fast rule of thumb when interpreting the images for themselves.
Common quandaries and their practical solutions in Bayesian network modeling
Bruce G. Marcot
2017-01-01
Use and popularity of Bayesian network (BN) modeling has greatly expanded in recent years, but many common problems remain. Here, I summarize key problems in BN model construction and interpretation,along with suggested practical solutions. Problems in BN model construction include parameterizing probability values, variable definition, complex network structures,...
Langwara, H; Laier, P; Hecht, R
2002-10-01
The submitted model of working time transposes and interprets german industrial law. The result of this interpretation is a high level of acceptance of the employees, a fast education that is high qualified with costs that are still affordable. The advantage of this model compared with the shift-model that runs after the EuGH-decision is obvious if you look at the reality of our health care system. This is why it is important to have an efficient interpretation of the existing law. Of course it will be a necessity also in the future to create new models of working time and to adapt these models in a way that it fits into the structure of a hospital. It would be the wrong way to force a juridical and political decision, how it was done by the german government that gave a deadline to put the EuGH decision into operation, without the possibility of an interpretation that fulfils the demand of the hospital.
Structural hierarchy of autism spectrum disorder symptoms: an integrative framework.
Kim, Hyunsik; Keifer, Cara M; Rodriguez-Seijas, Craig; Eaton, Nicholas R; Lerner, Matthew D; Gadow, Kenneth D
2018-01-01
In an attempt to resolve questions regarding the symptom classification of autism spectrum disorder (ASD), previous research generally aimed to demonstrate superiority of one model over another. Rather than adjudicating which model may be optimal, we propose an alternative approach that integrates competing models using Goldberg's bass-ackwards method, providing a comprehensive understanding of the underlying symptom structure of ASD. The study sample comprised 3,825 individuals, consecutive referrals to a university hospital developmental disabilities specialty clinic or a child psychiatry outpatient clinic. This study analyzed DSM-IV-referenced ASD symptom statements from parent and teacher versions of the Child and Adolescent Symptom Inventory-4R. A series of exploratory structural equation models was conducted in order to produce interpretable latent factors that account for multivariate covariance. Results indicated that ASD symptoms were structured into an interpretable hierarchy across multiple informants. This hierarchy includes five levels; key features of ASD bifurcate into different constructs with increasing specificity. This is the first study to examine an underlying structural hierarchy of ASD symptomatology using the bass-ackwards method. This hierarchy demonstrates how core features of ASD relate at differing levels of resolution, providing a model for conceptualizing ASD heterogeneity and a structure for integrating divergent theories of cognitive processes and behavioral features that define the disorder. These findings suggest that a more coherent and complete understanding of the structure of ASD symptoms may be reflected in a metastructure rather than at one level of resolution. © 2017 Association for Child and Adolescent Mental Health.
Poppenga, Sandra K.; Worstell, Bruce B.
2016-01-01
Elevation data derived from light detection and ranging present challenges for hydrologic modeling as the elevation surface includes bridge decks and elevated road features overlaying culvert drainage structures. In reality, water is carried through these structures; however, in the elevation surface these features impede modeled overland surface flow. Thus, a hydrologically-enforced elevation surface is needed for hydrodynamic modeling. In the Delaware River Basin, hydrologic-enforcement techniques were used to modify elevations to simulate how constructed drainage structures allow overland surface flow. By calculating residuals between unfilled and filled elevation surfaces, artificially pooled depressions that formed upstream of constructed drainage structure features were defined, and elevation values were adjusted by generating transects at the location of the drainage structures. An assessment of each hydrologically-enforced drainage structure was conducted using field-surveyed culvert and bridge coordinates obtained from numerous public agencies, but it was discovered the disparate drainage structure datasets were not comprehensive enough to assess all remotely located depressions in need of hydrologic-enforcement. Alternatively, orthoimagery was interpreted to define drainage structures near each depression, and these locations were used as reference points for a quantitative hydrologic-enforcement assessment. The orthoimagery-interpreted reference points resulted in a larger corresponding sample size than the assessment between hydrologic-enforced transects and field-surveyed data. This assessment demonstrates the viability of rules-based hydrologic-enforcement that is needed to achieve hydrologic connectivity, which is valuable for hydrodynamic models in sensitive coastal regions. Hydrologic-enforced elevation data are also essential for merging with topographic/bathymetric elevation data that extend over vulnerable urbanized areas and dynamic coastal regions.
Hierarchical Model for the Analysis of Scattering Data of Complex Materials
Oyedele, Akinola; Mcnutt, Nicholas W.; Rios, Orlando; ...
2016-05-16
Interpreting the results of scattering data for complex materials with a hierarchical structure in which at least one phase is amorphous presents a significant challenge. Often the interpretation relies on the use of large-scale molecular dynamics (MD) simulations, in which a structure is hypothesized and from which a radial distribution function (RDF) can be extracted and directly compared against an experimental RDF. This computationally intensive approach presents a bottleneck in the efficient characterization of the atomic structure of new materials. Here, we propose and demonstrate an approach for a hierarchical decomposition of the RDF in which MD simulations are replacedmore » by a combination of tractable models and theory at the atomic scale and the mesoscale, which when combined yield the RDF. We apply the procedure to a carbon composite, in which graphitic nanocrystallites are distributed in an amorphous domain. We compare the model with the RDF from both MD simulation and neutron scattering data. Ultimately, this procedure is applicable for understanding the fundamental processing-structure-property relationships in complex magnetic materials.« less
A reporting protocol for thermochronologic modeling illustrated with data from the Grand Canyon
NASA Astrophysics Data System (ADS)
Flowers, Rebecca M.; Farley, Kenneth A.; Ketcham, Richard A.
2015-12-01
Apatite (U-Th)/He and fission-track dates, as well as 4He/3He and fission-track length data, provide rich thermal history information. However, numerous choices and assumptions are required on the long road from raw data and observations to potentially complex geologic interpretations. This paper outlines a conceptual framework for this path, with the aim of promoting a broader understanding of how thermochronologic conclusions are derived. The tiered structure consists of thermal history model inputs at Level 1, thermal history model outputs at Level 2, and geologic interpretations at Level 3. Because inverse thermal history modeling is at the heart of converting thermochronologic data to interpretation, for others to evaluate and reproduce conclusions derived from thermochronologic results it is necessary to publish all data required for modeling, report all model inputs, and clearly and completely depict model outputs. Here we suggest a generalized template for a model input table with which to arrange, report and explain the choice of inputs to thermal history models. Model inputs include the thermochronologic data, additional geologic information, and system- and model-specific parameters. As an example we show how the origin of discrepant thermochronologic interpretations in the Grand Canyon can be better understood by using this disciplined approach.
Processing (Non)Compositional Expressions: Mistakes and Recovery
ERIC Educational Resources Information Center
Holsinger, Edward; Kaiser, Elsi
2013-01-01
Current models of idiom representation and processing differ with respect to the role of literal processing during the interpretation of idiomatic expressions. Word-like models (Bobrow & Bell, 1973; Swinney & Cutler, 1979) propose that idiomatic meaning can be accessed directly, whereas structural models (Cacciari & Tabossi, 1988;…
The Information a Test Provides on an Ability Parameter. Research Report. ETS RR-07-18
ERIC Educational Resources Information Center
Haberman, Shelby J.
2007-01-01
In item-response theory, if a latent-structure model has an ability variable, then elementary information theory may be employed to provide a criterion for evaluation of the information the test provides concerning ability. This criterion may be considered even in cases in which the latent-structure model is not valid, although interpretation of…
ERIC Educational Resources Information Center
McGill, Ryan J.
2017-01-01
The present study examined the factor structure of the Luria interpretive model for the Kaufman Assessment Battery for Children-Second Edition (KABC-II) with normative sample participants aged 7-18 (N = 2,025) using confirmatory factor analysis with maximum-likelihood estimation. For the eight subtest Luria configuration, an alternative…
NASA Astrophysics Data System (ADS)
Angelis, Dimitrios; Tsourlos, Panagiotis; Tsokas, Gregory; Vargemezis, George; Zacharopoulou, Georgia; Power, Christopher
2018-05-01
Non-destructive investigation of monuments can be an extremely valuable tool to evaluate potential structural defects and assist in developing any restoration plans. In this work, both Ground Penetrating Radar (GPR) and Electrical Resistivity Tomography (ERT) techniques were applied to a tower wall of the Heptapyrgion fortress located in Thessaloniki, Greece, which was facing significant moisture problems. GPR cross sections, mainly obtained with a 500 MHz centre frequency antenna, and ERT profiles were collected along the same survey grid on the tower wall. The gprMax numerical solver was used for the GPR forward modelling. In addition, an auxiliary program was used to design and import into gprMax complicated structures and this allowed to simulate more realistically the wall defects and moisture. The GPR simulator was used to assess and optimize the field data acquisition and processing parameters, and to assist in interpreting the GPR cross sections. The ERT sections were inverted as individual 2D lines and also, as a full 3D dataset. The final GPR and ERT data were jointly interpreted in view of the studied problem as results of both methods are highly correlated. A high moisture content area at the eastern part of the wall was identified in both GPR and ERT data, along with the interface between different phases of construction. Through the GPR data we were also able to delineate possible structural defects (cracks, small voids) which was not possible with just using the ERT data. Furthermore, a very good matching was evident between the simulated GPR modelling results incorporating field-interpreted features, and the actual field GPR results, thereby validating the proposed data interpretation. The overall survey and modelling approach produces results that are in a very good agreement between them and proved very useful in accessing the wall structure.
Customer involvement in greening the supply chain: an interpretive structural modeling methodology
NASA Astrophysics Data System (ADS)
Kumar, Sanjay; Luthra, Sunil; Haleem, Abid
2013-04-01
The role of customers in green supply chain management needs to be identified and recognized as an important research area. This paper is an attempt to explore the involvement aspect of customers towards greening of the supply chain (SC). An empirical research approach has been used to collect primary data to rank different variables for effective customer involvement in green concept implementation in SC. An interpretive structural-based model has been presented, and variables have been classified using matrice d' impacts croises- multiplication appliqué a un classement analysis. Contextual relationships among variables have been established using experts' opinions. The research may help practicing managers to understand the interaction among variables affecting customer involvement. Further, this understanding may be helpful in framing the policies and strategies to green SC. Analyzing interaction among variables for effective customer involvement in greening SC to develop the structural model in the Indian perspective is an effort towards promoting environment consciousness.
NASA Astrophysics Data System (ADS)
Biswas, A.; Sharma, S. P.
2012-12-01
Self-Potential anomaly is an important geophysical technique that measures the electrical potential due natural source of current in the Earth's subsurface. An inclined sheet type model is a very familiar structure associated with mineralization, fault plane, groundwater flow and many other geological features which exhibits self potential anomaly. A number of linearized and global inversion approaches have been developed for the interpretation of SP anomaly over different structures for various purposes. Mathematical expression to compute the forward response over a two-dimensional dipping sheet type structures can be described in three different ways using five variables in each case. Complexities in the inversion using three different forward approaches are different. Interpretation of self-potential anomaly using very fast simulated annealing global optimization has been developed in the present study which yielded a new insight about the uncertainty and equivalence in model parameters. Interpretation of the measured data yields the location of the causative body, depth to the top, extension, dip and quality of the causative body. In the present study, a comparative performance of three different forward approaches in the interpretation of self-potential anomaly is performed to assess the efficacy of the each approach in resolving the possible ambiguity. Even though each forward formulation yields the same forward response but optimization of different sets of variable using different forward problems poses different kinds of ambiguity in the interpretation. Performance of the three approaches in optimization has been compared and it is observed that out of three methods, one approach is best and suitable for this kind of study. Our VFSA approach has been tested on synthetic, noisy and field data for three different methods to show the efficacy and suitability of the best method. It is important to use the forward problem in the optimization that yields the best result without any ambiguity and smaller uncertainty. Keywords: SP anomaly, inclined sheet, 2D structure, forward problems, VFSA Optimization,
Multi-cut solutions in Chern-Simons matrix models
NASA Astrophysics Data System (ADS)
Morita, Takeshi; Sugiyama, Kento
2018-04-01
We elaborate the Chern-Simons (CS) matrix models at large N. The saddle point equations of these matrix models have a curious structure which cannot be seen in the ordinary one matrix models. Thanks to this structure, an infinite number of multi-cut solutions exist in the CS matrix models. Particularly we exactly derive the two-cut solutions at finite 't Hooft coupling in the pure CS matrix model. In the ABJM matrix model, we argue that some of multi-cut solutions might be interpreted as a condensation of the D2-brane instantons.
Validation of Clay Modeling as a Learning Tool for the Periventricular Structures of the Human Brain
ERIC Educational Resources Information Center
Akle, Veronica; Peña-Silva, Ricardo A.; Valencia, Diego M.; Rincón-Perez, Carlos W.
2018-01-01
Visualizing anatomical structures and functional processes in three dimensions (3D) are important skills for medical students. However, contemplating 3D structures mentally and interpreting biomedical images can be challenging. This study examines the impact of a new pedagogical approach to teaching neuroanatomy, specifically how building a…
NASA Astrophysics Data System (ADS)
Saif, S.; Brownlee, S. J.
2017-12-01
Compositional and structural heterogeneity in the continental crust are factors that contribute to the complex expression of crustal seismic anisotropy. Understanding deformation and flow in the crust using seismic anisotropy has thus proven difficult. Seismic anisotropy is affected by rock microstructure and mineralogy, and a number of studies have begun to characterize the full elastic tensors of crustal rocks in an attempt to increase our understanding of these intrinsic factors. However, there is still a large gap in length-scale between laboratory characterization on the scale of centimeters and seismic wavelengths on the order of kilometers. To address this length-scale gap we are developing a 3D crustal model that will help us determine the effects of rotating laboratory-scale elastic tensors into field-scale structures. The Chester gneiss dome in southeast Vermont is our primary focus. The model combines over 2000 structural data points from field measurements and published USGS structural data with elastic tensors of Chester dome rocks derived from electron backscatter diffraction data. We created a uniformly spaced grid by averaging structural measurements together in equally spaced grid boxes. The surface measurements are then projected into the third dimension using existing subsurface interpretations. A measured elastic tensor for the specific rock type is rotated according to its unique structural input at each point in the model. The goal is to use this model to generate artificial seismograms using existing numerical wave propagation codes. Once completed, the model input can be varied to examine the effects of different subsurface structure interpretations, as well as heterogeneity in rock composition and elastic tensors. Our goal is to be able to make predictions for how specific structures will appear in seismic data, and how that appearance changes with variations in rock composition.
Models of protein–ligand crystal structures: trust, but verify
Deller, Marc C.
2015-01-01
X-ray crystallography provides the most accurate models of protein–ligand structures. These models serve as the foundation of many computational methods including structure prediction, molecular modelling, and structure-based drug design. The success of these computational methods ultimately depends on the quality of the underlying protein–ligand models. X-ray crystallography offers the unparalleled advantage of a clear mathematical formalism relating the experimental data to the protein–ligand model. In the case of X-ray crystallography, the primary experimental evidence is the electron density of the molecules forming the crystal. The first step in the generation of an accurate and precise crystallographic model is the interpretation of the electron density of the crystal, typically carried out by construction of an atomic model. The atomic model must then be validated for fit to the experimental electron density and also for agreement with prior expectations of stereochemistry. Stringent validation of protein–ligand models has become possible as a result of the mandatory deposition of primary diffraction data, and many computational tools are now available to aid in the validation process. Validation of protein–ligand complexes has revealed some instances of overenthusiastic interpretation of ligand density. Fundamental concepts and metrics of protein–ligand quality validation are discussed and we highlight software tools to assist in this process. It is essential that end users select high quality protein–ligand models for their computational and biological studies, and we provide an overview of how this can be achieved. PMID:25665575
Models of protein-ligand crystal structures: trust, but verify.
Deller, Marc C; Rupp, Bernhard
2015-09-01
X-ray crystallography provides the most accurate models of protein-ligand structures. These models serve as the foundation of many computational methods including structure prediction, molecular modelling, and structure-based drug design. The success of these computational methods ultimately depends on the quality of the underlying protein-ligand models. X-ray crystallography offers the unparalleled advantage of a clear mathematical formalism relating the experimental data to the protein-ligand model. In the case of X-ray crystallography, the primary experimental evidence is the electron density of the molecules forming the crystal. The first step in the generation of an accurate and precise crystallographic model is the interpretation of the electron density of the crystal, typically carried out by construction of an atomic model. The atomic model must then be validated for fit to the experimental electron density and also for agreement with prior expectations of stereochemistry. Stringent validation of protein-ligand models has become possible as a result of the mandatory deposition of primary diffraction data, and many computational tools are now available to aid in the validation process. Validation of protein-ligand complexes has revealed some instances of overenthusiastic interpretation of ligand density. Fundamental concepts and metrics of protein-ligand quality validation are discussed and we highlight software tools to assist in this process. It is essential that end users select high quality protein-ligand models for their computational and biological studies, and we provide an overview of how this can be achieved.
Modeling Temporal Behavior in Large Networks: A Dynamic Mixed-Membership Model
DOE Office of Scientific and Technical Information (OSTI.GOV)
Rossi, R; Gallagher, B; Neville, J
Given a large time-evolving network, how can we model and characterize the temporal behaviors of individual nodes (and network states)? How can we model the behavioral transition patterns of nodes? We propose a temporal behavior model that captures the 'roles' of nodes in the graph and how they evolve over time. The proposed dynamic behavioral mixed-membership model (DBMM) is scalable, fully automatic (no user-defined parameters), non-parametric/data-driven (no specific functional form or parameterization), interpretable (identifies explainable patterns), and flexible (applicable to dynamic and streaming networks). Moreover, the interpretable behavioral roles are generalizable, computationally efficient, and natively supports attributes. We applied ourmore » model for (a) identifying patterns and trends of nodes and network states based on the temporal behavior, (b) predicting future structural changes, and (c) detecting unusual temporal behavior transitions. We use eight large real-world datasets from different time-evolving settings (dynamic and streaming). In particular, we model the evolving mixed-memberships and the corresponding behavioral transitions of Twitter, Facebook, IP-Traces, Email (University), Internet AS, Enron, Reality, and IMDB. The experiments demonstrate the scalability, flexibility, and effectiveness of our model for identifying interesting patterns, detecting unusual structural transitions, and predicting the future structural changes of the network and individual nodes.« less
NASA Astrophysics Data System (ADS)
Arregui, Iñigo; Oliver, Ramón; Ballester, José Luis
2018-04-01
Prominences are intriguing, but poorly understood, magnetic structures of the solar corona. The dynamics of solar prominences has been the subject of a large number of studies, and of particular interest is the study of prominence oscillations. Ground- and space-based observations have confirmed the presence of oscillatory motions in prominences and they have been interpreted in terms of magnetohydrodynamic waves. This interpretation opens the door to perform prominence seismology, whose main aim is to determine physical parameters in magnetic and plasma structures (prominences) that are difficult to measure by direct means. Here, we review the observational information gathered about prominence oscillations as well as the theoretical models developed to interpret small and large amplitude oscillations and their temporal and spatial attenuation. Finally, several prominence seismology applications are presented.
NASA Technical Reports Server (NTRS)
Lee, K. (Principal Investigator); Sawatzky, D. L.
1974-01-01
The author has identified the following significant results. Shadow enhancement of topographic linears in photographic or scanner images is a valuable tool for interpretation of geologic structures. Whether linears will be enhanced or subdued depends on sun angle and azimuth. The relationship of the sun's attitude to topographic slopes determines which trends are available for interpretation in existing imagery, and it can be used to select the time of day, surface properties, and film and filter characteristics in planning aircraft flights or satellite orbital passes. The technique of selective shadow enhancement can be applied to all photographic or imaging experiments, but its best for snow-covered scenes, side-looking radar images, and painted relief models.
A Generic Approach for Pen-Based User Interface Development
NASA Astrophysics Data System (ADS)
Macé, Sébastien; Anquetil, Éric
Pen-based interaction is an intuitive way to realize hand drawn structured documents, but few applications take advantage of it. Indeed, the interpretation of the user hand drawn strokes in the context of document is a complex problem. In this paper, we propose a new generic approach to develop such systems based on three independent components. The first one is a set of graphical and editing functions adapted to pen interaction. The second one is a rule-based formalism that models structured document composition and the corresponding interpretation process. The last one is a hand drawn stroke analyzer that is able to interpret strokes progressively, directly while the user is drawing. We highlight in particular the human-computer interaction induced from this progressive interpretation process. Thanks to this generic approach, three pen-based system prototypes have already been developed, for musical score editing, for graph editing, and for UML class diagram editing
ssHMM: extracting intuitive sequence-structure motifs from high-throughput RNA-binding protein data
Krestel, Ralf; Ohler, Uwe; Vingron, Martin; Marsico, Annalisa
2017-01-01
Abstract RNA-binding proteins (RBPs) play an important role in RNA post-transcriptional regulation and recognize target RNAs via sequence-structure motifs. The extent to which RNA structure influences protein binding in the presence or absence of a sequence motif is still poorly understood. Existing RNA motif finders either take the structure of the RNA only partially into account, or employ models which are not directly interpretable as sequence-structure motifs. We developed ssHMM, an RNA motif finder based on a hidden Markov model (HMM) and Gibbs sampling which fully captures the relationship between RNA sequence and secondary structure preference of a given RBP. Compared to previous methods which output separate logos for sequence and structure, it directly produces a combined sequence-structure motif when trained on a large set of sequences. ssHMM’s model is visualized intuitively as a graph and facilitates biological interpretation. ssHMM can be used to find novel bona fide sequence-structure motifs of uncharacterized RBPs, such as the one presented here for the YY1 protein. ssHMM reaches a high motif recovery rate on synthetic data, it recovers known RBP motifs from CLIP-Seq data, and scales linearly on the input size, being considerably faster than MEMERIS and RNAcontext on large datasets while being on par with GraphProt. It is freely available on Github and as a Docker image. PMID:28977546
NASA Astrophysics Data System (ADS)
Lenhart, Antje; Jackson, Christopher A.-L.; Bell, Rebecca E.; Duffy, Oliver B.; Fossen, Haakon; Gawthorpe, Robert L.
2016-04-01
Numerous rifts form above crystalline basement containing pervasive faults and shear zones. However, the compositional and mechanical heterogeneity within crystalline basement and the geometry and kinematics of discrete and pervasive basement fabrics are poorly understood. Furthermore, the interpretation of intra-crustal structures beneath sedimentary basins is often complicated by limitations in the depth of conventional seismic imaging, the commonly acoustically transparent nature of basement, limited well penetrations, and complex overprinting of multiple tectonic events. Yet, a detailed knowledge of the structural and lithological complexity of crystalline basement rocks is crucial to improve our understanding of how rifts evolve. Potential field methods are a powerful but perhaps underutilised regional tool that can decrease interpretational uncertainty based solely on seismic reflection data. We use petrophysical data, high-resolution 3D reflection seismic volumes, gridded gravity and magnetic data, and 2D gravity and magnetic modelling to constrain the structure of crystalline basement offshore western Norway. Intra-basement structures are well-imaged on seismic data due to relatively shallow burial of the basement beneath a thin (<3.5 km) sedimentary cover. Variations in basement composition were interpreted from detailed seismic facies analysis and mapping of discrete intra-basement reflections. A variety of data filtering and isolation techniques were applied to the original gravity and magnetic data in order to enhance small-scale field variations, to accentuate formation boundaries and discrete linear trends, and to isolate shallow and deep crustal anomalies. In addition, 2D gravity and magnetic data modelling was used to verify the seismic interpretation and to further constrain the configuration of the upper and lower crust. Our analysis shows that the basement offshore western Norway is predominantly composed of Caledonian allochthonous nappes overlying large-scale anticlines of Proterozoic rocks of the Western Gneiss Region. Major Devonian extensional brittle faults, detachments and shear zones transect those tectono-stratigraphic units. Results from structural analysis of enhanced gravity and magnetic data indicate the presence of distinct intra-basement bodies and structural lineaments at different scales and depth levels which correlate with our seismic data interpretation and can be linked to their onshore counterparts exposed on mainland Norway. 2D forward models of gravity and magnetic data further support our interpretation and quantitatively constrain variations in magnetic and density properties of principal basement units. We conclude that: i) enhanced gravity and magnetic data are a powerful tool to constrain the geometry of individual intra-basement bodies and to detect structural lineaments not imaged in seismic data; ii) insights from this study can be used to evaluate the role of pre-existing basement structures on the evolution of rift basins; and iii) the integration of a range of geophysical datasets is crucial to improve our understanding of the deep subsurface.
Visualizing ligand molecules in twilight electron density
Weichenberger, Christian X.; Pozharski, Edwin; Rupp, Bernhard
2013-01-01
Three-dimensional models of protein structures determined by X-ray crystallography are based on the interpretation of experimentally derived electron-density maps. The real-space correlation coefficient (RSCC) provides an easily comprehensible, objective measure of the residue-based fit of atom coordinates to electron density. Among protein structure models, protein–ligand complexes are of special interest, given their contribution to understanding the molecular underpinnings of biological activity and to drug design. For consumers of such models, it is not trivial to determine the degree to which ligand-structure modelling is biased by subjective electron-density interpretation. A standalone script, Twilight, is presented for the analysis, visualization and annotation of a pre-filtered set of 2815 protein–ligand complexes deposited with the PDB as of 15 January 2012 with ligand RSCC values that are below a threshold of 0.6. It also provides simplified access to the visualization of any protein–ligand complex available from the PDB and annotated by the Uppsala Electron Density Server. The script runs on various platforms and is available for download at http://www.ruppweb.org/twilight/. PMID:23385767
Visualizing ligand molecules in Twilight electron density.
Weichenberger, Christian X; Pozharski, Edwin; Rupp, Bernhard
2013-02-01
Three-dimensional models of protein structures determined by X-ray crystallography are based on the interpretation of experimentally derived electron-density maps. The real-space correlation coefficient (RSCC) provides an easily comprehensible, objective measure of the residue-based fit of atom coordinates to electron density. Among protein structure models, protein-ligand complexes are of special interest, given their contribution to understanding the molecular underpinnings of biological activity and to drug design. For consumers of such models, it is not trivial to determine the degree to which ligand-structure modelling is biased by subjective electron-density interpretation. A standalone script, Twilight, is presented for the analysis, visualization and annotation of a pre-filtered set of 2815 protein-ligand complexes deposited with the PDB as of 15 January 2012 with ligand RSCC values that are below a threshold of 0.6. It also provides simplified access to the visualization of any protein-ligand complex available from the PDB and annotated by the Uppsala Electron Density Server. The script runs on various platforms and is available for download at http://www.ruppweb.org/twilight/.
Lenderking, William R; Wyrwich, Kathleen W; Stolar, Marilyn; Howard, Kellee A; Leibman, Chris; Buchanan, Jacqui; Lacey, Loretto; Kopp, Zoe; Stern, Yaakov
2013-12-01
The Dependence Scale (DS) was designed to measure dependence on others among patients with Alzheimer's disease (AD). The objectives of this research were primarily to strengthen the psychometric evidence for the use of the DS in AD studies. Patients with mild to moderately severe AD were examined in 3 study databases. Within each data set, internal consistency, validity, and responsiveness were examined, and structural equation models were fit. The DS has strong psychometric properties. The DS scores differed significantly across known groups and demonstrated moderate to strong correlations with measures hypothesized to be related to dependence (|r| ≥ .31). Structural equation modeling supported the validity of the DS concept. An anchor-based DS responder definition to interpret a treatment benefit over time was identified. The DS is a reliable, valid, and interpretable measure of dependence associated with AD and is shown to be related to--but provides information distinct from--cognition, functioning, and behavior.
3D gravimetric investigation of the Cerro do Jarau structure, Rio Grande do Sul, Brazil
NASA Astrophysics Data System (ADS)
Giacomini, Bruno B.; Leite, Emilson P.; Crósta, Alvaro P.
2017-04-01
The Cerro do Jarau structure is possibly the third Brazilian basaltic crater formed in continental flood basalt of the Serra Geral Formation, Paraná Basin, a large igneous province (LIP) in southern Brazil. It is a nearly circular landform with a diameter of approximately 13 km that rises 200 m above the plains of the "pampas" in southern Brazil. In this work, Bouguer anomalies were calculated from gravity accelerations measured on the area of this structure. The residual Bouguer map shows a strong positive anomaly trending NE-SW, located in the northeastern part of the structure, a feature not commonly associated with impact structures. However, the negative anomaly present in its center and the circular positive anomaly surrounding the central portion are typical of impact structures. The residual Bouguer anomaly varies from -2 mGal to 8 mGal. The positive circular anomaly is not spatially coincident with the rim of the structure. Based on the interpretation of our gravimetric data, the estimated diameter of the structure is 12 km and the central portion has a diameter of approximately 5 km, both slightly smaller than previously suggested. The Bouguer anomaly map was inverted into a 3D density model using a constrained inversion method with a maximum density contrast of 0.5 g cm-3. This model was interpreted to associate densities with rock types, resulting in a geological model. This geological model is in accordance with the meteorite impact nature of Cerro do Jarau.
Towards molecular design using 2D-molecular contour maps obtained from PLS regression coefficients
NASA Astrophysics Data System (ADS)
Borges, Cleber N.; Barigye, Stephen J.; Freitas, Matheus P.
2017-12-01
The multivariate image analysis descriptors used in quantitative structure-activity relationships are direct representations of chemical structures as they are simply numerical decodifications of pixels forming the 2D chemical images. These MDs have found great utility in the modeling of diverse properties of organic molecules. Given the multicollinearity and high dimensionality of the data matrices generated with the MIA-QSAR approach, modeling techniques that involve the projection of the data space onto orthogonal components e.g. Partial Least Squares (PLS) have been generally used. However, the chemical interpretation of the PLS-based MIA-QSAR models, in terms of the structural moieties affecting the modeled bioactivity has not been straightforward. This work describes the 2D-contour maps based on the PLS regression coefficients, as a means of assessing the relevance of single MIA predictors to the response variable, and thus allowing for the structural, electronic and physicochemical interpretation of the MIA-QSAR models. A sample study to demonstrate the utility of the 2D-contour maps to design novel drug-like molecules is performed using a dataset of some anti-HIV-1 2-amino-6-arylsulfonylbenzonitriles and derivatives, and the inferences obtained are consistent with other reports in the literature. In addition, the different schemes for encoding atomic properties in molecules are discussed and evaluated.
Soft Tissue Structure Modelling for Use in Orthopaedic Applications and Musculoskeletal Biomechanics
NASA Astrophysics Data System (ADS)
Audenaert, E. A.; Mahieu, P.; van Hoof, T.; Pattyn, C.
2009-12-01
We present our methodology for the three-dimensional anatomical and geometrical description of soft tissues, relevant for orthopaedic surgical applications and musculoskeletal biomechanics. The technique involves the segmentation and geometrical description of muscles and neurovascular structures from high-resolution computer tomography scanning for the reconstruction of generic anatomical models. These models can be used for quantitative interpretation of anatomical and biomechanical aspects of different soft tissue structures. This approach should allow the use of these data in other application fields, such as musculoskeletal modelling, simulations for radiation therapy, and databases for use in minimally invasive, navigated and robotic surgery.
Cole, James C.; Harris, Anita G.; Wahl, Ronald R.
1997-01-01
This map displays interpreted structural and stratigraphic relations among the Paleozoic and older rocks of the Nevada Test Site region beneath the Miocene volcanic rocks and younger alluvium in the Yucca Flat and northern Frenchman Flat basins. These interpretations are based on a comprehensive examination and review of data for more than 77 drillholes that penetrated part of the pre-Tertiary basement beneath these post-middle Miocene structural basins. Biostratigraphic data from conodont fossils were newly obtained for 31 of these holes, and a thorough review of all prior microfossil paleontologic data is incorporated in the analysis. Subsurface relationships are interpreted in light of a revised regional geologic framework synthesized from detailed geologic mapping in the ranges surrounding Yucca Flat, from comprehensive stratigraphic studies in the region, and from additional detailed field studies on and around the Nevada Test Site.All available data indicate the subsurface geology of Yucca Flat is considerably more complicated than previous interpretations have suggested. The western part of the basin, in particular, is underlain by relics of the eastward-vergent Belted Range thrust system that are folded back toward the west and thrust by local, west-vergent contractional structures of the CP thrust system. Field evidence from the ranges surrounding the north end of Yucca Flat indicate that two significant strike-slip faults track southward beneath the post-middle Miocene basin fill, but their subsurface traces cannot be closely defined from the available evidence. In contrast, the eastern part of the Yucca Flat basin is interpreted to be underlain by a fairly simple north-trending, broad syncline in the pre-Tertiary units. Far fewer data are available for the northern Frenchman Flat basin, but regional analysis indicates the pre- Tertiary structure there should also be relatively simple and not affected by thrusting.This new interpretation has implications for ground water flow through pre-Tertiary rocks beneath the Yucca Flat and northern Frenchman Flat areas, and has consequences for ground water modeling and model validation. Our data indicate that the Mississippian Chainman Shale is not a laterally extensive confining unit in the western part of the basin because it is folded back onto itself by the convergent structures of the Belted Range and CP thrust systems. Early and Middle Paleozoic limestone and dolomite are present beneath most of both basins and, regardless of structural complications, are interpreted to form a laterally continuous and extensive carbonate aquifer. Structural culmination that marks the French Peak accommodation zone along the topographic divide between the two basins provides a lateral pathway through highly fractured rock between the volcanic aquifers of Yucca Flat and the regional carbonate aquifer. This pathway may accelerate the migration of ground-water contaminants introduced by underground nuclear testing toward discharge areas beyond the Nevada Test Site boundaries. Predictive three-dimensional models of hydrostratigraphic units and ground-water flow in the pre-Tertiary rocks of subsurface Yucca Flat are likely to be unrealistic due to the extreme structural complexities. The interpretation of hydrologic and geochemical data obtained from monitoring wells will be difficult to extrapolate through the flow system until more is known about the continuity of hydrostratigraphic units.
[Hierarchy structuring for mammography technique by interpretive structural modeling method].
Kudo, Nozomi; Kurowarabi, Kunio; Terashita, Takayoshi; Nishimoto, Naoki; Ogasawara, Katsuhiko
2009-10-20
Participation in screening mammography is currently desired in Japan because of the increase in breast cancer morbidity. However, the pain and discomfort of mammography is recognized as a significant deterrent for women considering this examination. Thus quick procedures, sufficient experience, and advanced skills are required for radiologic technologists. The aim of this study was to make the point of imaging techniques explicit and to help understand the complicated procedure. We interviewed 3 technologists who were highly skilled in mammography, and 14 factors were retrieved by using brainstorming and the KJ method. We then applied Interpretive Structural Modeling (ISM) to the factors and developed a hierarchical concept structure. The result showed a six-layer hierarchy whose top node was explanation of the entire procedure on mammography. Male technologists were related to as a negative factor. Factors concerned with explanation were at the upper node. We gave attention to X-ray techniques and considerations. The findings will help beginners improve their skills.
The Model-Based View of Scientific Theories and the Structuring of School Science Programmes
ERIC Educational Resources Information Center
Develaki, Maria
2007-01-01
Model theory in contemporary philosophy of science interprets scientific theories as sets of models, and contributes significantly to the understanding of the relation between theories, models, and the real world. The clarification of this relation is fundamental for the understanding of the nature of scientific methods and scientific knowledge…
The Gtr-Model a Universal Framework for Quantum-Like Measurements
NASA Astrophysics Data System (ADS)
Aerts, Diederik; Bianchi, Massimiliano Sassoli De
We present a very general geometrico-dynamical description of physical or more abstract entities, called the general tension-reduction (GTR) model, where not only states, but also measurement-interactions can be represented, and the associated outcome probabilities calculated. Underlying the model is the hypothesis that indeterminism manifests as a consequence of unavoidable uctuations in the experimental context, in accordance with the hidden-measurements interpretation of quantum mechanics. When the structure of the state space is Hilbertian, and measurements are of the universal kind, i.e., are the result of an average over all possible ways of selecting an outcome, the GTR-model provides the same predictions of the Born rule, and therefore provides a natural completed version of quantum mechanics. However, when the structure of the state space is non-Hilbertian and/or not all possible ways of selecting an outcome are available to be actualized, the predictions of the model generally differ from the quantum ones, especially when sequential measurements are considered. Some paradigmatic examples will be discussed, taken from physics and human cognition. Particular attention will be given to some known psychological effects, like question order effects and response replicability, which we show are able to generate non-Hilbertian statistics. We also suggest a realistic interpretation of the GTR-model, when applied to human cognition and decision, which we think could become the generally adopted interpretative framework in quantum cognition research.
Mathematical Modeling: A Structured Process
ERIC Educational Resources Information Center
Anhalt, Cynthia Oropesa; Cortez, Ricardo
2015-01-01
Mathematical modeling, in which students use mathematics to explain or interpret physical, social, or scientific phenomena, is an essential component of the high school curriculum. The Common Core State Standards for Mathematics (CCSSM) classify modeling as a K-12 standard for mathematical practice and as a conceptual category for high school…
Nonlinear Growth Models in M"plus" and SAS
ERIC Educational Resources Information Center
Grimm, Kevin J.; Ram, Nilam
2009-01-01
Nonlinear growth curves or growth curves that follow a specified nonlinear function in time enable researchers to model complex developmental patterns with parameters that are easily interpretable. In this article we describe how a variety of sigmoid curves can be fit using the M"plus" structural modeling program and the nonlinear…
Chen, Gang; Glen, Daniel R.; Saad, Ziad S.; Hamilton, J. Paul; Thomason, Moriah E.; Gotlib, Ian H.; Cox, Robert W.
2011-01-01
Vector autoregression (VAR) and structural equation modeling (SEM) are two popular brain-network modeling tools. VAR, which is a data-driven approach, assumes that connected regions exert time-lagged influences on one another. In contrast, the hypothesis-driven SEM is used to validate an existing connectivity model where connected regions have contemporaneous interactions among them. We present the two models in detail and discuss their applicability to FMRI data, and interpretational limits. We also propose a unified approach that models both lagged and contemporaneous effects. The unifying model, structural vector autoregression (SVAR), may improve statistical and explanatory power, and avoids some prevalent pitfalls that can occur when VAR and SEM are utilized separately. PMID:21975109
NASA Astrophysics Data System (ADS)
Ketcham, R. A.; Mora, A.; Almendral, A.; Parra-Amezquita, M.; Casallas, W.; Robles, W.
2013-12-01
We present two new tools for interpreting thermochronometric data that facilitate the joint use of multiple samples to better constrain thermal history, and demonstrate their utilization in the Colombian Eastern Cordillera. The first, Fetkin, is a finite element solver that takes as input a series of detailed balanced cross sections created using dedicated software such as (2D)Move, and solves the heat flow equation in 2D along with predicted thermochronometric ages which can be compared against measured data. It also performs an independent analysis of the cross sections and flags aspects that are structurally out of balance. It is distinguished from similar tools in 2D and 3D principally by providing a level of detail that allows for investigation of samples in very specific and complex structural contexts, and a workflow that allows the interpreter to engage in successive refinements of the structural model using the inferences provided by thermochronometric data. The second tool is a new set of functionality in HeFTy for inverse modeling of thermochronometric data that allows for simultaneous modeling of samples down a well or borehole. This extension forces attention on issues that have previously been relatively neglected in such modeling, in particular that of multiple provenance. It is axiomatic that mineral grains in different strata may have come from different regions and have different inherited thermal histories. Interpreting such data in a realistic geological context thus requires allowing for different inherited populations within and between samples. The rewards in doing so include more robust modeling and interpretation and, in some cases, insights concerning the unroofing histories of the source rocks that contributed to a given sedimentary unit. Similarly, the mutual constraints imposed by modeling multiple samples with known or constrained depositional and structural context considerably amplifies the resolving power of thermochronometric data. The usefulness of these tools is demonstrated in our studies of the development and unroofing history of the Colombian Eastern Cordillera. Example insights gained using Fetkin include the degree of acceleration of thrust-induced unroofing along the eastern range-bounding faults, and the times at which potential petroleum source rocks were in the oil generation window. Multi-sample modeling in HeFTy results in considerably refined thermal reconstructions, and a possible division between quickly-unroofed and slowly-unroofed apatite populations contributing to different stratigraphic horizons.
The Structure of Intellect, Its Interpretations and Uses.
ERIC Educational Resources Information Center
Meeker, Mary Nacol
Using Guilford's model, the text reviews the structure of the intellect (SOI) and its operations, contents, and products. Those operations and components are further described, including the factors of cognition, memory, evaluation, convergent-production, and divergent-production. For each factor, the figural, symbolic, and semantic dimensions are…
A Neuro-Oncology Workstation for Structuring, Modeling, and Visualizing Patient Records
Hsu, William; Arnold, Corey W.; Taira, Ricky K.
2016-01-01
The patient medical record contains a wealth of information consisting of prior observations, interpretations, and interventions that need to be interpreted and applied towards decisions regarding current patient care. Given the time constraints and the large—often extraneous—amount of data available, clinicians are tasked with the challenge of performing a comprehensive review of how a disease progresses in individual patients. To facilitate this process, we demonstrate a neuro-oncology workstation that assists in structuring and visualizing medical data to promote an evidence-based approach for understanding a patient’s record. The workstation consists of three components: 1) a structuring tool that incorporates natural language processing to assist with the extraction of problems, findings, and attributes for structuring observations, events, and inferences stated within medical reports; 2) a data modeling tool that provides a comprehensive and consistent representation of concepts for the disease-specific domain; and 3) a visual workbench for visualizing, navigating, and querying the structured data to enable retrieval of relevant portions of the patient record. We discuss this workstation in the context of reviewing cases of glioblastoma multiforme patients. PMID:27583308
A Neuro-Oncology Workstation for Structuring, Modeling, and Visualizing Patient Records.
Hsu, William; Arnold, Corey W; Taira, Ricky K
2010-11-01
The patient medical record contains a wealth of information consisting of prior observations, interpretations, and interventions that need to be interpreted and applied towards decisions regarding current patient care. Given the time constraints and the large-often extraneous-amount of data available, clinicians are tasked with the challenge of performing a comprehensive review of how a disease progresses in individual patients. To facilitate this process, we demonstrate a neuro-oncology workstation that assists in structuring and visualizing medical data to promote an evidence-based approach for understanding a patient's record. The workstation consists of three components: 1) a structuring tool that incorporates natural language processing to assist with the extraction of problems, findings, and attributes for structuring observations, events, and inferences stated within medical reports; 2) a data modeling tool that provides a comprehensive and consistent representation of concepts for the disease-specific domain; and 3) a visual workbench for visualizing, navigating, and querying the structured data to enable retrieval of relevant portions of the patient record. We discuss this workstation in the context of reviewing cases of glioblastoma multiforme patients.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sola, M.; Haakon Nordby, L.; Dailey, D.V.
High resolution 3-D visualization of horizon interpretation and seismic attributes from large 3-D seismic surveys in deepwater Nigeria has greatly enhanced the exploration team`s ability to quickly recognize prospective segments of subregional and prospect specific scale areas. Integrated workstation generated structure, isopach and extracted horizon consistent, interval and windowed attributes are particularly useful in illustrating the complex structural and stratigraphical prospectivity of deepwater Nigeria. Large 3-D seismic volumes acquired over 750 square kilometers can be manipulated within the visualization system with attribute tracking capability that allows for real time data interrogation and interpretation. As in classical seismic stratigraphic studies, patternmore » recognition is fundamental to effective depositions facies interpretation and reservoir model construction. The 3-D perspective enhances the data interpretation through clear representation of relative scale, spatial distribution and magnitude of attributes. In deepwater Nigeria, many prospective traps rely on an interplay between syndepositional structure and slope turbidite depositional systems. Reservoir systems in many prospects appear to be dominated by unconfined to moderately focused slope feeder channel facies. These units have spatially complex facies architecture with feeder channel axes separated by extensive interchannel areas. Structural culminations generally have a history of initial compressional folding with late in extensional collapse and accommodation faulting. The resulting complex trap configurations often have stacked reservoirs over intervals as thick as 1500 meters. Exploration, appraisal and development scenarios in these settings can be optimized by taking full advantage of integrating high resolution 3-D visualization and seismic workstation interpretation.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sola, M.; Haakon Nordby, L.; Dailey, D.V.
High resolution 3-D visualization of horizon interpretation and seismic attributes from large 3-D seismic surveys in deepwater Nigeria has greatly enhanced the exploration team's ability to quickly recognize prospective segments of subregional and prospect specific scale areas. Integrated workstation generated structure, isopach and extracted horizon consistent, interval and windowed attributes are particularly useful in illustrating the complex structural and stratigraphical prospectivity of deepwater Nigeria. Large 3-D seismic volumes acquired over 750 square kilometers can be manipulated within the visualization system with attribute tracking capability that allows for real time data interrogation and interpretation. As in classical seismic stratigraphic studies, patternmore » recognition is fundamental to effective depositions facies interpretation and reservoir model construction. The 3-D perspective enhances the data interpretation through clear representation of relative scale, spatial distribution and magnitude of attributes. In deepwater Nigeria, many prospective traps rely on an interplay between syndepositional structure and slope turbidite depositional systems. Reservoir systems in many prospects appear to be dominated by unconfined to moderately focused slope feeder channel facies. These units have spatially complex facies architecture with feeder channel axes separated by extensive interchannel areas. Structural culminations generally have a history of initial compressional folding with late in extensional collapse and accommodation faulting. The resulting complex trap configurations often have stacked reservoirs over intervals as thick as 1500 meters. Exploration, appraisal and development scenarios in these settings can be optimized by taking full advantage of integrating high resolution 3-D visualization and seismic workstation interpretation.« less
Spatial Offsets in Flare-CME Current Sheets
DOE Office of Scientific and Technical Information (OSTI.GOV)
Raymond, John C.; Giordano, Silvio; Ciaravella, Angela, E-mail: jraymond@cfa.harvard.edu
Magnetic reconnection plays an integral part in nearly all models of solar flares and coronal mass ejections (CMEs). The reconnection heats and accelerates the plasma, produces energetic electrons and ions, and changes the magnetic topology to form magnetic flux ropes and to allow CMEs to escape. Structures that appear between flare loops and CME cores in optical, UV, EUV, and X-ray observations have been identified as current sheets and have been interpreted in terms of the nature of the reconnection process and the energetics of the events. Many of these studies have used UV spectral observations of high temperature emissionmore » features in the [Fe xviii] and Si xii lines. In this paper, we discuss several surprising cases in which the [Fe xviii] and Si xii emission peaks are spatially offset from each other. We discuss interpretations based on asymmetric reconnection, on a thin reconnection region within a broader streamer-like structure, and on projection effects. Some events seem to be easily interpreted as the projection of a sheet that is extended along the line of sight that is viewed an angle, but a physical interpretation in terms of asymmetric reconnection is also plausible. Other events favor an interpretation as a thin current sheet embedded in a streamer-like structure.« less
From intuition to statistics in building subsurface structural models
Brandenburg, J.P.; Alpak, F.O.; Naruk, S.; Solum, J.
2011-01-01
Experts associated with the oil and gas exploration industry suggest that combining forward trishear models with stochastic global optimization algorithms allows a quantitative assessment of the uncertainty associated with a given structural model. The methodology is applied to incompletely imaged structures related to deepwater hydrocarbon reservoirs and results are compared to prior manual palinspastic restorations and borehole data. This methodology is also useful for extending structural interpretations into other areas of limited resolution, such as subsalt in addition to extrapolating existing data into seismic data gaps. This technique can be used for rapid reservoir appraisal and potentially have other applications for seismic processing, well planning, and borehole stability analysis.
Supra Arcade Downflows with XRT Informed by Dipolarization Fronts with THEMIS
NASA Technical Reports Server (NTRS)
Kobelski, Adam; Savage, Sabrina Leah; Malaspina, David
2016-01-01
Magnetic reconnection can rapidly reconfigure the magnetic field of the corona, accelerating plasma through the site of reconnection. Ambiguities due to the nature of remote sensing have complicated the interpretation of observations of the inflowing and outflowing plasma in reconnecting regions. In particular, the interpretation of sunward moving density depletions above flare arcades (known as Supra Arcade Downflows - SADs) is still debated. Hinode/XRT has provided a wealth of observations for SADs and helped inform our current understanding of these structures. SADs have been interpreted as wakes behind newly reconnected and outflowing loops (Supra Arcade Downflowing Loops - SADLs). Models have shown the plausibility of this interpretation, though this interpretation has not yet been fully accepted. We present here observations of newly reconnected outflowing loops observed via in situ instruments in the magnetosphere. These observations, provided by five THEMIS spacecraft, show that around retracting loops (dipolarization fronts in this context) similar dynamic temperature and density structures are found as seen in SADs. We compare data from multiple SADs and dipolarization fronts to show that the observational signatures implied in the corona can be directly observed in similar plasma regimes in the magnetosphere, strongly favoring the interpretation of SADs as wakes behind retracting loops.
God image and happiness in chronic pain patients: the mediating role of disease interpretation.
Dezutter, Jessie; Luyckx, Koen; Schaap-Jonker, Hanneke; Büssing, Arndt; Corveleyn, Jozef; Hutsebaut, Dirk
2010-05-01
The present study explored the role of the emotional experience of God (i.e., positive and negative God images) in the happiness of chronic pain (CP) patients. Framed in the transactional model of stress, we tested a model in which God images would influence happiness partially through its influence on disease interpretation as a mediating mechanism. We expected God images to have both a direct and an indirect (through the interpretation of disease) effect on happiness. A cross-sectional questionnaire design was adopted in order to measure demographics, pain condition, God images, disease interpretation, and happiness. One hundred thirty-six CP patients, all members of a national patients' association, completed the questionnaires. Correlational analyses showed meaningful associations among God images, disease interpretation, and happiness. Path analyses from a structural equation modeling approach indicated that positive God images seemed to influence happiness, both directly and indirectly through the pathway of positive interpretation of the disease. Ancillary analyses showed that the negative influence of angry God images on happiness disappeared after controlling for pain severity. The results indicated that one's emotional experience of God has an influence on happiness in CP patients, both directly and indirectly through the pathway of positive disease interpretation. These findings can be framed within the transactional theory of stress and can stimulate further pain research investigating the possible effects of religion in the adaptation to CP.
Structures of Mid-Polish Trough in the light of regional magnetotelluric survey
NASA Astrophysics Data System (ADS)
Stefaniuk, M.; Pokorski, J.; Wojdyla, M.; Klitynski, W.
2009-04-01
Introduction The magnetotelluric survey at three long regional profiles crossing the Mid-Polish Trough in north-western part of Poland was made during 2005-2008 period. Two of the profiles pass across the Pomeranian section of the Trough and the third one cuts its Kujawy section. The task of the survey was to recognize the geological structure of the contact zone of Precambrian East European Craton and Paleozoic Platform of Western Europe. The profiles crossed major geological structures of central and north-western Poland, including the Variscan Externides and Varscian Foredeep, the Transeuropean Suture Zone and the marginal zone of the East European Craton. The main objectives of the project included evaluation of resistivity distribution and identification of structures of sub-Zechstein sedimentary and metamorphic complexes.The screening of seismic energy by high reflective Zechstein evaporates is the main problem in identifying the sub-Zechstein complexes in the Polish Lowlands area. Since evaporates do not screen the electromagnetic waves, the magnetotelluric method can be advantageously applied. The sub-Zechstein complexes and structures are commonly considered as hydrocarbon prospective. A lot of gas deposits have been discovered in Rotliegend sediments in central and Western Europe. A number offshore and onshore oil fields were found in Cambrian sandstones in the Baltic Sea area. Techniques and methodology of surveys Magnetotelluric measurements were taken with the use of MT-1 system of Electromagnetic Instruments Incorporation (EMI), Richmond, California, USA and System 2000.net based on V8 receiver of Phoenix Geophysics Ltd., Ottawa, Canada. An average spacing of sounding sites was about 4 km. The components of natural electromagnetic field were recorded over a broad range of frequencies, ranging from 0.0003 Hz to 575 Hz (MT-1) and 0,0003 HZ to 10 000,0 HZ (System 2000.net). This frequency band allowed information on the geology from a depth range of a few dozen meters to approximately 100 km to be obtained. A remote reference site was located at a distance of over 100 km of the study area. Data processing and interpretation Processing of the recorded data included the estimation of the components of impedance tensor (Zxx, Zxy, Zyx and Zyy ), with the use of robust procedures. The components of the impedance tensor enabled calculation of field curves for two orientations of the measurement system and additional parameters of the medium like skew, strike, pole diagrams etc. Recording of the vertical component of electromagnetic field (Hz) enabled the tipper parameter, T, to be calculated. Geophysical interpretation of MT sounding data along profiles was based on 1D inversion and 2D inversion. The upper part of the geological section is built of relatively flat layers; hence a 1D interpretation model could be effectively applied. Starting models for 1D inversion were constructed based on results of electromagnetic well-logging data. Some well-documented seismic horizons were taken as constraints in 1D inversion. The first step in 2D MT inversion was the calculation of inverse model with stabilized parameters of the upper part of geological section over the top of Zechstein complex. The starting model was obtained with the use of available geological cross-sections interpreted based on borehole and reflection seismic data. Results of inversion for the lower part of the section with constrained its upper part made some misfits between calculated and post-processed magnetotelluric curves. The second step in geophysical interpretation was 2D inversion with no constraints, which was finished when the misfit was small. Results of the first step of 2D inversion were applied as a starting model. Depending on inversion parameters, final resistivity distribution model along profiles was obtained. Geological interpretation was made based on resistivity cross-sections and borehole and reflection seismic data. Of great interest is varied resistivity of the formation resting below the Zechstein evaporate complex. As a result of data interpretation geophysical and geological sections were constructed. Conclusions As a result of magnetotelluric data interpretation, a tectonic model along measurement profiles with fault zones was constructed and lithology differentiation of sub-Zechstein complex was determined. Deep magnetotelluric cross-sections with interpretation of sub-Zechstein structures across the Polish Lowlands help to understand geodynamic processes in the area. Acknowledgments. This paper was based on results of investigations carried out by the PBG Geophysical Exploration Company Ltd. financed by Ministry of Environment trough National Fund for Environment Protection and Water Resources. The authors used also results of statutory research of Department of General Geology, Environment Protection and Geotourism, UST AGH, financed by the Minister of Science and Higher Education (project no 11.11.140.447). Interpretation was carried out using software by EMI, and Geosystem WingLinkTM.
Rights, Jason D; Sterba, Sonya K
2016-11-01
Multilevel data structures are common in the social sciences. Often, such nested data are analysed with multilevel models (MLMs) in which heterogeneity between clusters is modelled by continuously distributed random intercepts and/or slopes. Alternatively, the non-parametric multilevel regression mixture model (NPMM) can accommodate the same nested data structures through discrete latent class variation. The purpose of this article is to delineate analytic relationships between NPMM and MLM parameters that are useful for understanding the indirect interpretation of the NPMM as a non-parametric approximation of the MLM, with relaxed distributional assumptions. We define how seven standard and non-standard MLM specifications can be indirectly approximated by particular NPMM specifications. We provide formulas showing how the NPMM can serve as an approximation of the MLM in terms of intraclass correlation, random coefficient means and (co)variances, heteroscedasticity of residuals at level 1, and heteroscedasticity of residuals at level 2. Further, we discuss how these relationships can be useful in practice. The specific relationships are illustrated with simulated graphical demonstrations, and direct and indirect interpretations of NPMM classes are contrasted. We provide an R function to aid in implementing and visualizing an indirect interpretation of NPMM classes. An empirical example is presented and future directions are discussed. © 2016 The British Psychological Society.
New Interpretations of the Rayn Anticlines in the Arabian Basin Inferred from Gravity Modelling
NASA Astrophysics Data System (ADS)
AlMogren, S. M.; Mukhopadhyay, M.
2014-12-01
The Ryan Anticlines comprise of a regularly-spaced set of super-giant anticlines oriented NNW, developed due to E-W compression in the Arabian Basin. Most prominent of these being: the Ghawar Anticline, followed by the Summan, Khurais Anticlines and Qatar Arch. Gravity anomaly is largely characteristic for both Ryan Anticlines and its smaller size version the Jinadriah Anticline in the Riyadh Salt Basin. It displays a bipolar gravity field - a zone of gravity high running along the fold axis that is flanked by asymmetric gravity lows. Available structural models commonly infer structural uplift for the median gravity high but ignore the flanking lows. Here we interpret the bipolar gravity anomaly due primarily to such anticline structures, while, the flanking gravity lows are due to greater sediment thickness largely compacted and deformed over the basement depressions. Further complexities are created due to the salt layer and its migration at the lower horizons of sediment strata. Such diagnostic gravity anomaly pattern is taken here as an evidence for basement tectonics due to prevailing crustal dynamics in the Arabian Basin. Density inversion provides details on the subsurface density variation due to the folding and structural configuration for the sediment layers, including the salt layer, affected by basement deformation. This interpretation is largely supported by gravity forward and inversion models given in the present study what is partly constrained by the available seismic, MT and deep resistivity lines and surface geologic mapping. Most of the oil-gas fields in this part of the Arabian Basin are further known for salt diapirism. In this study the gravity interpretation help in identification of salt diapirism directly overlying the basement is firstly given here for Jinadriah Anticline; that is next extended to a regional geologic cross-section traversing the Ryan Anticlines to infer probable subsurface continuation of salt diapirs directly overlying the metamorphosed basement, sediment deformation pattern skirting the anticlines as well as their relationship of faulting to basement tectonics.
On the generation of climate model ensembles
NASA Astrophysics Data System (ADS)
Haughton, Ned; Abramowitz, Gab; Pitman, Andy; Phipps, Steven J.
2014-10-01
Climate model ensembles are used to estimate uncertainty in future projections, typically by interpreting the ensemble distribution for a particular variable probabilistically. There are, however, different ways to produce climate model ensembles that yield different results, and therefore different probabilities for a future change in a variable. Perhaps equally importantly, there are different approaches to interpreting the ensemble distribution that lead to different conclusions. Here we use a reduced-resolution climate system model to compare three common ways to generate ensembles: initial conditions perturbation, physical parameter perturbation, and structural changes. Despite these three approaches conceptually representing very different categories of uncertainty within a modelling system, when comparing simulations to observations of surface air temperature they can be very difficult to separate. Using the twentieth century CMIP5 ensemble for comparison, we show that initial conditions ensembles, in theory representing internal variability, significantly underestimate observed variance. Structural ensembles, perhaps less surprisingly, exhibit over-dispersion in simulated variance. We argue that future climate model ensembles may need to include parameter or structural perturbation members in addition to perturbed initial conditions members to ensure that they sample uncertainty due to internal variability more completely. We note that where ensembles are over- or under-dispersive, such as for the CMIP5 ensemble, estimates of uncertainty need to be treated with care.
Monroe, Scott; Cai, Li
2015-01-01
This research is concerned with two topics in assessing model fit for categorical data analysis. The first topic involves the application of a limited-information overall test, introduced in the item response theory literature, to structural equation modeling (SEM) of categorical outcome variables. Most popular SEM test statistics assess how well the model reproduces estimated polychoric correlations. In contrast, limited-information test statistics assess how well the underlying categorical data are reproduced. Here, the recently introduced C2 statistic of Cai and Monroe (2014) is applied. The second topic concerns how the root mean square error of approximation (RMSEA) fit index can be affected by the number of categories in the outcome variable. This relationship creates challenges for interpreting RMSEA. While the two topics initially appear unrelated, they may conveniently be studied in tandem since RMSEA is based on an overall test statistic, such as C2. The results are illustrated with an empirical application to data from a large-scale educational survey.
NASA Astrophysics Data System (ADS)
Nguyen, T. L. T.; Tran, T. T.; Huynh, T. P.; Ho, T. K. D.; Le, A. T.; Do, T. K. H.
2018-04-01
One of the sectors which contributes importantly to the development of Vietnam economy is fishery industry. However, during recent year, it has been witnessed many difficulties on managing the performance of the fishery supply chain operations as a whole. In this paper, a framework for supply chain risk management (SCRM) is proposed. Initially, all the activities are mapped by using Supply Chain Operations Reference (SCOR) model. Next, the risk ranking is analyzed in House of Risk. Furthermore, interpretive structural modeling (ISM) is used to identify inter-relationships among supply chain risks and to visualize the risks according to their levels. For illustration, the model has been tested in several case studies with fishery companies in Can Tho, Mekong Delta. This study identifies 22 risk events and 20 risk agents through the supply chain. Also, the risk priority could be used for further House of Risk with proactive actions in future studies.
Unraveling the "Model Minority" Stereotype: Listening to Asian American Youth.
ERIC Educational Resources Information Center
Lee, Stacey J.
The model minority image of Asian Americans authorizes the flat denial of racism and structures of racial dominance and silences those who are not economically successful. This book explores how young people incorporate, interpret, and make meaning of the "model minority" stereotype in the context of their lived experience in school and…
Comparing Latent Structures of the Grade of Membership, Rasch, and Latent Class Models
ERIC Educational Resources Information Center
Erosheva, Elena A.
2005-01-01
This paper focuses on model interpretation issues and employs a geometric approach to compare the potential value of using the Grade of Membership (GoM) model in representing population heterogeneity. We consider population heterogeneity manifolds generated by letting subject specific parameters vary over their natural range, while keeping other…
ERIC Educational Resources Information Center
Bruno, Sam J., Ed.; Pettit, John D., Jr., Ed.
These conference proceedings contain the following 23 presentations: "Development of a Communication Skill Model Using Interpretive Structural Modeling" (Karen S. Nantz and Linda Gammill); "The Coincidence of Needs: An Inventional Model for Audience Analysis" (Gina Burchard); "A Computer Algorithm for Measuring Readability" (Terry D. Lundgren);…
Memory mechanisms supporting syntactic comprehension.
Caplan, David; Waters, Gloria
2013-04-01
Efforts to characterize the memory system that supports sentence comprehension have historically drawn extensively on short-term memory as a source of mechanisms that might apply to sentences. The focus of these efforts has changed significantly in the past decade. As a result of changes in models of short-term working memory (ST-WM) and developments in models of sentence comprehension, the effort to relate entire components of an ST-WM system, such as those in the model developed by Baddeley (Nature Reviews Neuroscience 4: 829-839, 2003) to sentence comprehension has largely been replaced by an effort to relate more specific mechanisms found in modern models of ST-WM to memory processes that support one aspect of sentence comprehension--the assignment of syntactic structure (parsing) and its use in determining sentence meaning (interpretation) during sentence comprehension. In this article, we present the historical background to recent studies of the memory mechanisms that support parsing and interpretation and review recent research into this relation. We argue that the results of this research do not converge on a set of mechanisms derived from ST-WM that apply to parsing and interpretation. We argue that the memory mechanisms supporting parsing and interpretation have features that characterize another memory system that has been postulated to account for skilled performance-long-term working memory. We propose a model of the relation of different aspects of parsing and interpretation to ST-WM and long-term working memory.
The Role of Human Error in Design, Construction, and Reliability of Marine Structures.
1994-10-01
The 1979 Three Mile Island nuclear plant accident was largely a result of a failure to properly sort out and recognize critically important information...determinating the goals and objectives of the program and by evaluating and interpreting the results in terms of structural design, construction, and...67 Checking Models in Structural Design ....................................... 69 Nuclear Power Plants
NASA Astrophysics Data System (ADS)
Best, John A.; Barazangi, Muawia; Al-Saad, Damen; Sawaf, Tarif; Gebran, Ali
1990-12-01
This study examines the crustal structure of the Palmyrides and the northern Arabian platform in Syria by two- and three-dimensional modeling of the Bouguer gravity anomalies. Results of the gravity modeling indicate that (1) western Syria is composed of at least two different crustal blocks, (2) the southern crustal block is penetrated by a series of crustal-scale, high-density intrusive complexes, and (3) short-wavelength gravity anomalies in the southwest part of the mountain belt are clearly related to basement structure. The crustal thickness in Syria, as modeled on the gravity profiles, is approximately 40 ±4 km, which is similar to crustal thicknesses interpreted from refraction data in Jordan and Saudi Arabia. The different crustal blocks and large-scale mafic intrusions are best explained, though not uniquely, by Proterozoic convergence and suturing and early Paleozoic rifting, as interpreted in the exposed rocks of the Arabian shield. These two processes, combined with documented Mesozoic rifting and Cenozoic transpression, compose the crustal evolution of the northern Arabian platform beneath Syria.
Visualization of RNA structure models within the Integrative Genomics Viewer.
Busan, Steven; Weeks, Kevin M
2017-07-01
Analyses of the interrelationships between RNA structure and function are increasingly important components of genomic studies. The SHAPE-MaP strategy enables accurate RNA structure probing and realistic structure modeling of kilobase-length noncoding RNAs and mRNAs. Existing tools for visualizing RNA structure models are not suitable for efficient analysis of long, structurally heterogeneous RNAs. In addition, structure models are often advantageously interpreted in the context of other experimental data and gene annotation information, for which few tools currently exist. We have developed a module within the widely used and well supported open-source Integrative Genomics Viewer (IGV) that allows visualization of SHAPE and other chemical probing data, including raw reactivities, data-driven structural entropies, and data-constrained base-pair secondary structure models, in context with linear genomic data tracks. We illustrate the usefulness of visualizing RNA structure in the IGV by exploring structure models for a large viral RNA genome, comparing bacterial mRNA structure in cells with its structure under cell- and protein-free conditions, and comparing a noncoding RNA structure modeled using SHAPE data with a base-pairing model inferred through sequence covariation analysis. © 2017 Busan and Weeks; Published by Cold Spring Harbor Laboratory Press for the RNA Society.
Yielding physically-interpretable emulators - A Sparse PCA approach
NASA Astrophysics Data System (ADS)
Galelli, S.; Alsahaf, A.; Giuliani, M.; Castelletti, A.
2015-12-01
Projection-based techniques, such as Principal Orthogonal Decomposition (POD), are a common approach to surrogate high-fidelity process-based models by lower order dynamic emulators. With POD, the dimensionality reduction is achieved by using observations, or 'snapshots' - generated with the high-fidelity model -, to project the entire set of input and state variables of this model onto a smaller set of basis functions that account for most of the variability in the data. While reduction efficiency and variance control of POD techniques are usually very high, the resulting emulators are structurally highly complex and can hardly be given a physically meaningful interpretation as each basis is a projection of the entire set of inputs and states. In this work, we propose a novel approach based on Sparse Principal Component Analysis (SPCA) that combines the several assets of POD methods with the potential for ex-post interpretation of the emulator structure. SPCA reduces the number of non-zero coefficients in the basis functions by identifying a sparse matrix of coefficients. While the resulting set of basis functions may retain less variance of the snapshots, the presence of a few non-zero coefficients assists in the interpretation of the underlying physical processes. The SPCA approach is tested on the reduction of a 1D hydro-ecological model (DYRESM-CAEDYM) used to describe the main ecological and hydrodynamic processes in Tono Dam, Japan. An experimental comparison against a standard POD approach shows that SPCA achieves the same accuracy in emulating a given output variable - for the same level of dimensionality reduction - while yielding better insights of the main process dynamics.
NASA Astrophysics Data System (ADS)
Peyronel, Fernanda; Quinn, Bonnie; Marangoni, Alejandro G.; Pink, David A.
2015-01-01
We have characterized the surfaces of grain boundaries in edible oils with high solid fat content by combining ultra-small angle x-ray scattering (USAXS) with theoretical modelling and computer simulation. Our results will lead to understand the solid structures formed at the time of manufacturing fats like confectionery fats as well as pave the way for the engineering of innovative fat products. Edible fats are complex semi-solid materials where a solid structure entraps liquid oil. It was not until USAXS combined with modelling was used that the nano- to meso-structures for systems with less than 20% solids were understood. The interpretation of those results utilized models of crystalline nanoplatelets represented by rigid close-packed flat aggregates made of spheres and was allowed to aggregate using the Metropolis Monte Carlo technique. Here, we report on systems containing between 50% and 90% solids. We modelled the solid phase as being formed from seeds onto which solids condensed thereby giving rise to oil-filled nanospaces. The models predicted that the system (a) exhibits structures with fractal dimensions approximately 2, (b) a broad peak somewhat masking that slope, and (c) for smaller values of q, indications that the structures with fractal dimension approximately 2 are uniformly distributed in space. The interpretation of the experimental data was completely driven by these results. The computer simulation predictions were used in conjunction with the USAXS observations to conclude that the systems studied scattered from oil-cavities with sizes between ˜800 and ˜16 000 Å and possessed rough 2-dimensional walls.
The PDS4 Metadata Management System
NASA Astrophysics Data System (ADS)
Raugh, A. C.; Hughes, J. S.
2018-04-01
We present the key features of the Planetary Data System (PDS) PDS4 Information Model as an extendable metadata management system for planetary metadata related to data structure, analysis/interpretation, and provenance.
Know the Network, Knit the Network: Applying SNA to N2C2 Maturity Model Experiments
2010-06-01
Networks (COINS) 2009. Procedia - Social and Behavioral Sciences (2009). Snijders, Tom A.B., Christian E. G. Steglich and Michael Schweinberger...8217 patterning that create social structures. As an interdisciplinary behavioural science specialty, SNA defends that social actors are interdependent...production of social science data involve a process of interpretation. To carry out such interpretation robustly it is understood that it is imperative to
Dogsa, Iztok; Cerar, Jure; Jamnik, Andrej; Tomšič, Matija
2017-09-15
A detailed data analysis utilizing the string-of-beads model was performed on experimental small-angle X-ray scattering (SAXS) curves in a targeted structural study of three, very important, industrial polysaccharides. The results demonstrate the quality of performance for this model on three polymers with quite different thermal structural behavior. Furthermore, they show the advantages of the model used by way of excellent fits in the ranges where the classic approach to the small-angle scattering data interpretation fails and an additional 3D visualization of the model's molecular conformations and anticipated polysaccharide supramolecular structure. The importance of this study is twofold: firstly, the methodology used and, secondly, the structural details of important biopolymers that are widely applicable in practice. Copyright © 2017 Elsevier Ltd. All rights reserved.
A structural model for surface-enhanced stabilization in some metallic glass formers
NASA Astrophysics Data System (ADS)
Levchenko, Elena V.; Evteev, Alexander V.; Yavari, Alain R.; Louzguine-Luzgin, Dmitri V.; Belova, Irina V.; Murch, Graeme E.
2013-01-01
A structural model for surface-enhanced stabilization in some metallic glass formers is proposed. In this model, the alloy surface structure is represented by five-layer Kagomé-net-based lateral ordering. Such surface structure has intrinsic abilities to stabilize icosahedral-like short-range order in the bulk, acting as 'a cloak of liquidity'. In particular, recent experimental observations of surface-induced lateral ordering and a very high glass forming ability of the liquid alloy Au49Ag5.5Pd2.3Cu26.9Si16.3 can be united using this structural model. This model may be useful for the interpretation of surface structure of other liquid alloys with a high glass forming ability. In addition, it suggests the possibility of guiding the design of the surface coating of solid containers for the stabilization of undercooled liquids.
NASA Astrophysics Data System (ADS)
Bonini, Lorenzo; Toscani, Giovanni; Seno, Silvio
2016-10-01
Carannante et al. (2015) proposed an original seismotectonic interpretation of the Ferrara arc in the Po Plain (Italy) based on an accurate hypocenter relocation of the 2012 Emilia earthquake sequence and on structural analyses of sub-surface data. They contend that the causative faults of the 2012 sequence do not belong to the fold-and-thrusts system comprising the Ferrara Arc but in fact are located in the underlying basement. In our view this interpretation does not agree with observations, including: 1) the structural interpretation of the seismic reflection lines, that contrasts with some of the available data, e.g. the stratigraphy inferred from deep wells; 2) the seismotectonic setting, that is based exclusively on the correlation between inferred structural features and the location of late aftershocks; and 3) the inconsistency of the proposed seismogenic sources with the elevation changes caused by the sequence. All these points compromise the Carannante et al.'s interpretation and, as a consequence, previously proposed seismotectonic models are still valid.
NASA Astrophysics Data System (ADS)
Nair, Nisha; Pandey, Dhananjai K.
2018-02-01
Interpretation of multichannel seismic reflection data along the Mumbai Offshore Basin (MOB) revealed the tectonic processes that led to the development of sedimentary basins during Cenozoic evolution. Structural interpretation along three selected MCS profiles from MOB revealed seven major sedimentary sequences (∼3.0 s TWT, thick) and the associated complex fault patterns. These stratigraphic sequences are interpreted to host detritus of syn- to post rift events during rift-drift process. The acoustic basement appeared to be faulted with interspaced intrusive bodies. The sections also depicted the presence of slumping of sediments, subsidence, marginal basins, rollover anticlines, mud diapirs etc accompanied by normal to thrust faults related to recent tectonics. Presence of upthrusts in the slope region marks the locations of local compression during collision. Forward gravity modeling constrained with results from seismic and drill results, revealed that the crustal structure beneath the MOB has undergone an extensional type tectonics intruded with intrusive bodies. Results from the seismo-gravity modeling in association with litholog data from drilled wells from the western continental margin of India (WCMI) are presented here.
Multi-quasiparticle excitations in 145Tb
NASA Astrophysics Data System (ADS)
Zheng, Y.; Zhou, X. H.; Zhang, Y. H.; Hayakawa, T.; Oshima, M.; Toh, Y.; Shizuma, T.; Katakura, J.; Hatsukawa, Y.; Matsuda, M.; Kusakari, H.; Sugawara, M.; Furuno, K.; Komatsubara, T.
2004-04-01
High-spin states in 145Tb have been investigated by means of in-beam ggr-ray spectroscopy techniques with the 118Sn(32S, 1p4n) reaction. Excitation functions, X-ggr-t and ggr-ggr-t coincidences and ggr-ray anisotropies were measured. A level scheme of 145Tb was established up to Exap 7 MeV. The level structure shows characteristics of a spherical nucleus. Based on the systematics of level structure in the odd-A N = 80 isotones, the level structure below 2 MeV excitation is interpreted by coupling an h11/2 proton to the excitations in the even-even 144Gd core. Above 2 MeV excitation, most of the yrast levels are interpreted with multi-quasiparticle shell-model configurations.
Geometries of geoelectrical structures in central Tibetan Plateau from INDEPTH magnetotelluric data
NASA Astrophysics Data System (ADS)
Vozar, J.; Jones, A. G.; Le Pape, F.
2012-12-01
Magnetotelluric (MT) data collected on N-S profiles crossing the Banggong-Nujiang Suture (BNS), which separates the Qiangtang and Lhasa Terranes in central Tibet, as a part of InterNational DEep Profiling of Tibet and the Himalaya project (INDEPTH) are modeled by 2D, 3D inversion codes and 1D petro-physical package LitMod. The modeling exhibits regional resistive and conductive structures correlated with ShuangHu Suture, Tanggula Mountains and strike-slip faults like BengCo-Jiali fault in the south. The BNS is not manifested in the geoelectrical models as a strong crustal regional structure. The strike direction azimuth of mid and lower crustal structures estimated from horizontal slices from 3D modeling (N110°E) is slightly different from one estimated by 2D strike analysis (N100°E). Orientation of crustal structures is perpendicular to convergence direction in this area. The deepest lower crustal conductors are correlated to areas with maximum Moho depth obtained from satellite gravity data. The anisotropic 2D modeling reveals that lower crustal conductor in Lhasa Terrane is anisotropic. This anisotropy can be interpreted as a proof for crustal channel flow below Lhasa Terrane. But same Lhasa lower crust conductor from isotropic 3D modeling can be interpreted more likely as 3D lower Indian crust structure, located to the east from line 500, than geoelectrical anisotropic crustal flow. From deep electromagnetic sounding, supported by independent integrated petro-physical investigation, we can estimate the next upper-mantle conductive layer at depths from 200 km to 250 km below the Lhasa Terrane and less resistive Tibetan lithosphere below the Qiangtang Terrane with conductive upper-mantle in depths about 120 km.
Coherent structure diffusivity in the edge region of Reversed Field Pinch experiments
NASA Astrophysics Data System (ADS)
Spolaore, M.; Antoni, V.; Spada, E.; Bergsåker, H.; Cavazzana, R.; Drake, J. R.; Martines, E.; Regnoli, G.; Serianni, G.; Vianello, N.
2005-01-01
Coherent structures emerging from the background turbulence have been detected by electrostatic measurements in the edge region of two Reversed Field Pinch experiments, RFX (Padua) and Extrap-T2R (Stockholm). Measurements have been performed by arrays of Langmuir probes which allowed simultaneous measurements of temperature, potential and density to be carried out. These structures have been interpreted as a dynamic balance of dipolar and monopolar vortices, whose relative population are found to depend on the local mean E × B flow shear. The contribution to the anomalous transport of these structures has been investigated and it has been found that the corresponding diffusion coeffcient accounts up to 50% of the total diffusivity. The experimental findings indicate that the diffusion coeffcient associated to the coherent structures depends on the relative population of the two types of vortices and is minimum when the two populations are equal. An interpretative model is proposed to explain this feature.
Precast concrete unit assessment through GPR survey and FDTD modelling
NASA Astrophysics Data System (ADS)
Campo, Davide
2017-04-01
Precast concrete elements are widely used within United Kingdom house building offering ease in assembly and added values as structural integrity, sound and thermal insulation; most common concrete components include walls, beams, floors, panels, lintels, stairs, etc. The lack of respect of the manufacturer instruction during assembling, however, may induce cracking and short/long term loss of bearing capacity. GPR is a well-established not destructive technique employed in the assessment of structural elements because of real-time imaging, quickness of data collecting and ability to discriminate finest structural details. In this work, GPR has been used to investigate two different precast elements: precast reinforced concrete planks constituting the roof slab of a school and precast wood-cement blocks with insulation material pre-fitted used to build a perimeter wall of a private building. Visible cracks affected both constructions. For the assessment surveys, a GSSI 2.0 GHz GPR antenna has been used because of the high resolution required and the small size of the antenna case (155 by 90 by 105mm) enabling scanning up to 45mm from any obstruction. Finite Difference Time Domain (FDTD) numerical modelling was also performed to build a scenario of the expected GPR signal response for a preliminary real-time interpretation and to help solve uncertainties due to complex reflection patterns: simulated radargrams were built using Reflex Software v. 8.2, reproducing the same GPR pulse used for the surveys in terms of wavelet, nominal frequency, sample frequency and time window. Model geometries were derived from the design projects available both for the planks and the blocks; the electromagnetic properties of the materials (concrete, reinforcing bars, air-filled void, insulation and wooden concrete) were inferred from both values reported in literature and a preliminary interpretation of radargrams where internal layer interfaces were clearly recognizable and univocally interpretable. Simulated and real radargrams comparison demonstrated that, in both cases, manufacturer instructions were not fully respected and confirmed GPR as a fast and effective structural assessment technique with the support of FDTD modelling as data interpretation validating method when complex reflection patterns are observed. GPR findings will be then used to address the intrusive coring necessary to evaluate the compressive strength of the concrete and, in synergy with the intrusive survey results, to plan properly corrective actions to ensure the stability of the structures and guarantee the usability.
Opposite Effects of Context on Immediate Structural and Lexical Processing.
ERIC Educational Resources Information Center
Harris, John W.
The testing of a number of hypotheses about the effect of hearing a prior context sentence on immediate processing of a subsequent target sentence is described. According to the standard deep structure model, higher level processing (e.g. semantic interpretation, integration of context-tarqet information) does not occur immediately as speech is…
Amazon forest structure generates diurnal and seasonal variability in light utilization
Douglas C. Morton; Jeremy Rubio; Bruce D. Cook; Jean-Philippe Gastellu-Etchegorry; Marcos Longo; Hyeungu Choi; Maria Hunter; Michael Keller
2016-01-01
The complex three-dimensional (3-D) structure of tropical forests generates a diversity of light environments for canopy and understory trees. Understanding diurnal and seasonal changes in light availability is critical for interpreting measurements of net ecosystem exchange and improving ecosystem models. Here, we used the Discrete Anisotropic Radiative Transfer (DART...
A User-Friendly DNA Modeling Software for the Interpretation of Cryo-Electron Microscopy Data.
Larivière, Damien; Galindo-Murillo, Rodrigo; Fourmentin, Eric; Hornus, Samuel; Lévy, Bruno; Papillon, Julie; Ménétret, Jean-François; Lamour, Valérie
2017-01-01
The structural modeling of a macromolecular machine is like a "Lego" approach that is challenged when blocks, like proteins imported from the Protein Data Bank, are to be assembled with an element adopting a serpentine shape, such as DNA templates. DNA must then be built ex nihilo, but modeling approaches are either not user-friendly or very long and fastidious. In this method chapter we show how to use GraphiteLifeExplorer, a software with a simple graphical user interface that enables the sketching of free forms of DNA, of any length, at the atomic scale, as fast as drawing a line on a sheet of paper. We took as an example the nucleoprotein complex of DNA gyrase, a bacterial topoisomerase whose structure has been determined using cryo-electron microscopy (Cryo-EM). Using GraphiteLifeExplorer, we could model in one go a 155 bp long and twisted DNA duplex that wraps around DNA gyrase in the cryo-EM map, improving the quality and interpretation of the final model compared to the initially published data.
Thermodynamics and the evolution of a city: a tale of how ...
Cities are complex organized systems, similar to biological and ecological systems in the way that they are structured and function. These systems are subject to the laws of thermodynamics and the principles of Energy Systems Theory (EST). Like other systems, cities experience larger scale drivers of change in resources. Unlike other ecosystems, cities react through socio-economic responses.Important contributions towards an integrated understanding of urban dynamics can be gained when their structures, functions and developments are interpreted within EST contexts.We have constructed a systems dynamics model that simulates some structural and functional aspects of Chicago in space and over time and we interpret model outcomes using EST. The purposes of the model are twofold, a knowledge base for integrating historical information, and for scenario modeling. Our history of Chicago starts in 1830 as a narrative, on the economic development and human population growth. Illustrated by a series of conceptual Energy Systems Models, it describes changes in trade, land tenure, and transportation as a result of increased access to nonlocal resources. Our simulation model, covers the post-World War II period to the present, and examines changes in population and its distribution on the landscape, material and energy flows, alterations of fresh water flows and management of wastewater. Scenario modeling is performed using a platform that estimates the potential impli
Mantle shear-wave tomography and the fate of subducted slabs.
Grand, Steven P
2002-11-15
A new seismic model of the three-dimensional variation in shear velocity throughout the Earth's mantle is presented. The model is derived entirely from shear bodywave travel times. Multibounce shear waves, core-reflected waves and SKS and SKKS waves that travel through the core are used in the analysis. A unique aspect of the dataset used in this study is the use of bodywaves that turn at shallow depths in the mantle, some of which are triplicated. The new model is compared with other global shear models. Although competing models show significant variations, several large-scale structures are common to most of the models. The high-velocity anomalies are mostly associated with subduction zones. In some regions the anomalies only extend into the shallow lower mantle, whereas in other regions tabular high-velocity structures seem to extend to the deepest mantle. The base of the mantle shows long-wavelength high-velocity zones also associated with subduction zones. The heterogeneity seen in global tomography models is difficult to interpret in terms of mantle flow due to variations in structure from one subduction zone to another. The simplest interpretation of the seismic images is that slabs in general penetrate to the deepest mantle, although the flow is likely to be sporadic. The interruption in slab sinking is likely to be associated with the 660 km discontinuity.
MT+, integrating magnetotellurics to determine earth structure, physical state, and processes
Bedrosian, P.A.
2007-01-01
As one of the few deep-earth imaging techniques, magnetotellurics provides information on both the structure and physical state of the crust and upper mantle. Magnetotellurics is sensitive to electrical conductivity, which varies within the earth by many orders of magnitude and is modified by a range of earth processes. As with all geophysical techniques, magnetotellurics has a non-unique inverse problem and has limitations in resolution and sensitivity. As such, an integrated approach, either via the joint interpretation of independent geophysical models, or through the simultaneous inversion of independent data sets is valuable, and at times essential to an accurate interpretation. Magnetotelluric data and models are increasingly integrated with geological, geophysical and geochemical information. This review considers recent studies that illustrate the ways in which such information is combined, from qualitative comparisons to statistical correlation studies to multi-property inversions. Also emphasized are the range of problems addressed by these integrated approaches, and their value in elucidating earth structure, physical state, and processes. ?? Springer Science+Business Media B.V. 2007.
Pahranagat Shear System, Lincoln County, Nevada
NASA Technical Reports Server (NTRS)
Liggett, M. A. (Principal Investigator); Ehrenspreck, H. E.
1974-01-01
The author has identified the following significant results. A structural model which relates strike-slip deformation to Basin Range extensional tectonics was formulated on the basis of analysis and interpreatation of ERTS-1 MSS imagery over southern Lincoln County, Nevada. Study of published geologic data and field reconnaissance of key areas has been conducted to support the ERTS-1 data interpretation. The structural model suggests that a left-lateral strike-slip fault zone, called the Pahranagat Shear System, formed as a transform fault separating two areas of east-west structural extension.
NASA Astrophysics Data System (ADS)
Jadhav, J. R.; Mantha, S. S.; Rane, S. B.
2015-09-01
`Survival of the fittest' is the reality in modern global competition. Organizations around the globe are adopting or willing to embrace just-in-time (JIT) production to reinforce the competitiveness. Even though JIT is the most powerful inventory management methodologies it is not free from barriers. Barriers derail the implementation of JIT production system. One of the most significant tasks of top management is to identify and understand the relationship between the barriers to JIT production for alleviating its bad effects. The aims of this paper are to study the barriers hampering the implementation of successful JIT production and analysing the interactions among the barriers using interpretive structural modelling technique. Twelve barriers have been identified after reviewing literature. This paper offers a roadmap for preparing an action plan to tackle the barriers in successful implementation of JIT production.
Seismic Wave Propagation in South America,
1995-08-14
Baby, P., B. Guiller, J . Oller , G. Herail, G. Montemurro D. 371 Zubietta and M. Specht (1993). Structural synthesis of the Bolivian Subandean zone...Bueno, E., A. Chirinos, J . Pinto and J . Moreno (1993). Structural interpretation of Ceuta Field, Lake Maracaibo, Venezuela. In Andean Geodynamics...on a lithospheric model. J . Geophys. Res. 98, 9825-9844. Drake, L.A. (1989). Love and Rayleigh waves in irregular structures. In Observatory
Testing the Structure of Hydrological Models using Genetic Programming
NASA Astrophysics Data System (ADS)
Selle, B.; Muttil, N.
2009-04-01
Genetic Programming is able to systematically explore many alternative model structures of different complexity from available input and response data. We hypothesised that genetic programming can be used to test the structure hydrological models and to identify dominant processes in hydrological systems. To test this, genetic programming was used to analyse a data set from a lysimeter experiment in southeastern Australia. The lysimeter experiment was conducted to quantify the deep percolation response under surface irrigated pasture to different soil types, water table depths and water ponding times during surface irrigation. Using genetic programming, a simple model of deep percolation was consistently evolved in multiple model runs. This simple and interpretable model confirmed the dominant process contributing to deep percolation represented in a conceptual model that was published earlier. Thus, this study shows that genetic programming can be used to evaluate the structure of hydrological models and to gain insight about the dominant processes in hydrological systems.
A Composite Model for Employees' Performance Appraisal and Improvement
ERIC Educational Resources Information Center
Manoharan, T. R.; Muralidharan, C.; Deshmukh, S. G.
2012-01-01
Purpose: The purpose of this paper is to develop an innovative method of performance appraisal that will be useful for designing a structured training programme. Design/methodology/approach: Employees' performance appraisals are conducted using new approaches, namely data envelopment analysis and an integrated fuzzy model. Interpretive structural…
Unidimensional Interpretations for Multidimensional Test Items
ERIC Educational Resources Information Center
Kahraman, Nilufer
2013-01-01
This article considers potential problems that can arise in estimating a unidimensional item response theory (IRT) model when some test items are multidimensional (i.e., show a complex factorial structure). More specifically, this study examines (1) the consequences of model misfit on IRT item parameter estimates due to unintended minor item-level…
Structural Equations and Path Analysis for Discrete Data.
ERIC Educational Resources Information Center
Winship, Christopher; Mare, Robert D.
1983-01-01
Presented is an approach to causal models in which some or all variables are discretely measured, showing that path analytic methods permit quantification of causal relationships among variables with the same flexibility and power of interpretation as is feasible in models including only continuous variables. Examples are provided. (Author/IS)
The Impact of Noninvariant Intercepts in Latent Means Models
ERIC Educational Resources Information Center
Whittaker, Tiffany A.
2013-01-01
Latent means methods such as multiple-indicator multiple-cause (MIMIC) and structured means modeling (SMM) allow researchers to determine whether or not a significant difference exists between groups' factor means. Strong invariance is typically recommended when interpreting latent mean differences. The extent of the impact of noninvariant…
Geophysical Characterization and Structural Model of the Santa ROSALÍA Aquifer, Sonora, MÉXICO
NASA Astrophysics Data System (ADS)
Martínez-Retama, S.; Montaño-Del Cid, M. A.
2017-12-01
The main objective of this work was to determine the morphology and depth of the basement, as well as the elaboration of a structural model for the Santa Rosalía aquifer, from the processing and interpretation of gravimetric and aeromagnetic data and its correlation with the Geology of the area. The study area is located in the central portion of the State of Sonora, Mexico. In general, the geology of the site is characterized by sedimentary, igneous and metamorphic rocks whose ages vary from the Precambrian to Recent. Chronologically, the geology of the study area consists of igneous and metamorphic rocks of Precambrian age, considered as a metamorphic complex. The Paleozoic is represented by a sequence of prebatolytic rocks. This sequence is intruded by rocks of the Upper Cretaceous. The Triassic-Jurassic periods consist of arenaceous units of the Barranca Group. The Cretaceous is constituted by the Tarahumara Formation, as well as granite bodies. The Quaternary is composed of alluvial deposits, which are overlain by sediments of Recent. In this work a gravimetric survey was performed, registering a total of 7 profiles. In addition, measured data from the National Institute of Statistics and Geography (INEGI) were used. The aeromagnetic study was carried out with data from the Mexican Geological Service (SGM). In order to reduce the ambiguity in the modeling process, a rock sampling was taken from the study area and its density and magnetic susceptibility were measured. Finally, two-dimensional models of gravimetric and magnetic profiles were made to obtain the structural model of the study area. The geological-structural models obtained show gravimetric anomalies (low)associated with sedimentary basins with depths of 800 m to 1,500 m., indicating the most susceptible áreas to water storage. The basement is represented by volcanic and granite rocks that are in contact with Paleozoic sedimentary rocks (Limestone) and in some areas with volcanic rocks of the Tarahumara Formation. In these models two types of sliding tectonic events were interpreted. In the first one a system of low-angle normal faulting related to the distensive event Basin and Range was interpreted. In the second, a series of high- angle normal faults, which form Horst and Grabens structures related to the opening of the Gulf of California were modeled.
Magnetically Controlled Upper Ionosphere of Mars
NASA Astrophysics Data System (ADS)
Majeed, T.; Al Aryani, O.; Al Mutawa, S.; Bougher, S. W.; Haider, S. A.
2017-12-01
The electron density (Ne) profiles measured by the Mars Express spacecraft over regions of strong crustal magnetic fields have shown anomalous characteristics of the topside plasma distribution with variable scale heights. One of such Ne profiles is located at 82oS and 180oE whose topside ionosphere is extended up to an altitude of 700 km. The crustal magnetic field at this southern site is nearly vertical and open to the access of solar wind plasma through magnetic reconnection with the interplanetary magnetic field. This can lead to the acceleration of electrons and ions during the daytime ionosphere. The downward accelerated electrons with energies >200 eV can penetrate deep into the Martian upper ionosphere along vertical magnetic field lines and cause heating, excitation and ionization of the background atmosphere. The upward acceleration of ions resulting from energy input by precipitating electrons can lead to enhance ion escape rate and modify scale heights of the topside ionosphere. We have developed a 1-D chemical diffusive model from 100 km to 400 km to interpret the Martian ionospheric structure at 82oS latitude. The primary source of ionization in the model is due to solar EUV radiation. An extra ionization source due to precipitating electrons of 0.25 keV, peaking near an altitude of 145 km is added in the model to reasonably reproduce the measured ionospheric structure below an altitude of 180 km. The behavior of the topside ionosphere can be interpreted by the vertical plasma transport caused by precipitating electrons. The vertical transport of plasma in our model is simulated by vertical ion velocities, whose values can be interpreted as drift velocities along magnetic field lines. We find that the variation of the topside Ne scale heights is sensitive to the magnitudes of upward and downward drifts with an imposed outward flux boundary condition at the top of the model. The model requires an upward flux of more than 107 ions cm-2 s-1 for both O2+ and O+, and drift speeds of 200 m/s to interpret the measured topside ionospheric structure for altitudes >180 km. The magnitudes of outward ion fluxes and drift velocities are compared with those simulated by existing models. The model results will be presented in comparison with the measured electron density profile. This work is supported by MBRSC, Dubai, UAE.
Pang, Siu-Kwong
2017-03-30
Quantum chemical methods and molecular mechanics approaches face a lot of challenges in drug metabolism study because of their either insufficient accuracy or huge computational cost, or lack of clear molecular level pictures for building computational models. Low-cost QSAR methods can often be carried out even though molecular level pictures are not well defined; however, they show difficulty in identifying the mechanisms of drug metabolism and delineating the effects of chemical structures on drug toxicity because a certain amount of molecular descriptors are difficult to be interpreted. In order to make a breakthrough, it was proposed that mechanistically interpretable molecular descriptors were used to correlate with biological activity to establish structure-activity plots. The mechanistically interpretable molecular descriptors used in this study include electrophilicity and the mathematical function in the London formula for dispersion interaction, and they were calculated using quantum chemical methods. The biological activity is the lethality of anthracycline anticancer antibiotics denoted as log LD50, which were obtained by intraperitoneal injection into mice. The results reveal that the plots for electrophilicity, which can be interpreted as redox reactivity of anthracyclines, can describe oxidative degradation for detoxification and reductive bioactivation for toxicity induction. The plots for the dispersion interaction function, which represent the attraction between anthracyclines and biomolecules, can describe efflux from and influx into target cells of toxicity. The plots can also identify three structural scaffolds of anthracyclines that have different metabolic pathways, resulting in their different toxicity behavior. This structure-dependent toxicity behavior revealed in the plots can provide perspectives on design of anthracycline anticancer antibiotics. Copyright© Bentham Science Publishers; For any queries, please email at epub@benthamscience.org.
Method and system for automated on-chip material and structural certification of MEMS devices
Sinclair, Michael B.; DeBoer, Maarten P.; Smith, Norman F.; Jensen, Brian D.; Miller, Samuel L.
2003-05-20
A new approach toward MEMS quality control and materials characterization is provided by a combined test structure measurement and mechanical response modeling approach. Simple test structures are cofabricated with the MEMS devices being produced. These test structures are designed to isolate certain types of physical response, so that measurement of their behavior under applied stress can be easily interpreted as quality control and material properties information.
Structural interpretation of seismic data and inherent uncertainties
NASA Astrophysics Data System (ADS)
Bond, Clare
2013-04-01
Geoscience is perhaps unique in its reliance on incomplete datasets and building knowledge from their interpretation. This interpretation basis for the science is fundamental at all levels; from creation of a geological map to interpretation of remotely sensed data. To teach and understand better the uncertainties in dealing with incomplete data we need to understand the strategies individual practitioners deploy that make them effective interpreters. The nature of interpretation is such that the interpreter needs to use their cognitive ability in the analysis of the data to propose a sensible solution in their final output that is both consistent not only with the original data but also with other knowledge and understanding. In a series of experiments Bond et al. (2007, 2008, 2011, 2012) investigated the strategies and pitfalls of expert and non-expert interpretation of seismic images. These studies focused on large numbers of participants to provide a statistically sound basis for analysis of the results. The outcome of these experiments showed that a wide variety of conceptual models were applied to single seismic datasets. Highlighting not only spatial variations in fault placements, but whether interpreters thought they existed at all, or had the same sense of movement. Further, statistical analysis suggests that the strategies an interpreter employs are more important than expert knowledge per se in developing successful interpretations. Experts are successful because of their application of these techniques. In a new set of experiments a small number of experts are focused on to determine how they use their cognitive and reasoning skills, in the interpretation of 2D seismic profiles. Live video and practitioner commentary were used to track the evolving interpretation and to gain insight on their decision processes. The outputs of the study allow us to create an educational resource of expert interpretation through online video footage and commentary with associated further interpretation and analysis of the techniques and strategies employed. This resource will be of use to undergraduate, post-graduate, industry and academic professionals seeking to improve their seismic interpretation skills, develop reasoning strategies for dealing with incomplete datasets, and for assessing the uncertainty in these interpretations. Bond, C.E. et al. (2012). 'What makes an expert effective at interpreting seismic images?' Geology, 40, 75-78. Bond, C. E. et al. (2011). 'When there isn't a right answer: interpretation and reasoning, key skills for 21st century geoscience'. International Journal of Science Education, 33, 629-652. Bond, C. E. et al. (2008). 'Structural models: Optimizing risk analysis by understanding conceptual uncertainty'. First Break, 26, 65-71. Bond, C. E. et al., (2007). 'What do you think this is?: "Conceptual uncertainty" In geoscience interpretation'. GSA Today, 17, 4-10.
D'Andreta, Daniela; Scarbrough, Harry; Evans, Sarah
2013-10-01
We contribute to existing knowledge translation (KT) literature by developing the notion of 'enactment' and illustrate this through an interpretative, comparative case-study analysis of three Collaborations for Leadership in Applied Health Research and Care (CLAHRC) initiatives. We argue for a focus on the way in which the CLAHRC model has been 'enacted' as central to the different KT challenges and capabilities encountered. A comparative, mixed method study created a typology of enactments (Classical, Home-grown and Imported) using qualitative analysis and social network analysis. We identify systematic differences in the enactment of the CLAHRC model. The sources of these different enactments are subsequently related to variation in formative interpretations and leadership styles, the implementation of different governance structures, and the relative epistemic differences between the professional groups involved. Enactment concerns the creative agency of individuals and groups in constituting a particular context for their work through their local interpretation of a particular KT model. Our theory of enactment goes beyond highlighting variation between CLAHRCs, to explore the mechanisms that influence the way a particular model is interpreted and acted upon. We thus encourage less focus on conceptual models and more on the formative role played by leaders of KT initiatives.
Green, Julie M.; Wilcke, Jeffrey R.; Abbott, Jonathon; Rees, Loren P.
2006-01-01
Objective: This study evaluated an existing SNOMED-CT® model for structured recording of heart murmur findings and compared it to a concept-dependent attributes model using content from SNOMED-CT. Methods: The authors developed a model for recording heart murmur findings as an alternative to SNOMED-CT's use of Interprets and Has interpretation. A micro-nomenclature was then created to support each model using subset and extension mechanisms described for SNOMED-CT. Each micro-nomenclature included a partonomy of cardiac cycle timing values. A mechanism for handling ranges of values was also devised. One hundred clinical heart murmurs were recorded using purpose-built recording software based on both models. Results: Each micro-nomenclature was extended through the addition of the same list of concepts. SNOMED role grouping was required in both models. All 100 clinical murmurs were described using each model. The only major differences between the two models were the number of relationship rows required for storage and the hierarchical assignments of concepts within the micro-nomenclatures. Conclusion: The authors were able to capture 100 clinical heart murmurs with both models. Requirements for implementing the two models were virtually identical. In fact, data stored using these models could be easily interconverted. There is no apparent penalty for implementing either approach. PMID:16501179
Applications of three-dimensional modeling in electromagnetic exploration
NASA Astrophysics Data System (ADS)
Pellerin, Louise Donna
Numerical modeling is used in geophysical exploration to understand physical mechanisms of a geophysical method, compare different exploration techniques, and interpret field data. Exploring the physics of a geophysical response enhances the geophysicist's insight, resulting in better survey design and interpretation. Comparing exploration methods numerically can eliminate the use of a technique that cannot resolve the exploration target. Interpreting field data to determine the structure of the earth is the ultimate goal of the exploration geophysicist. Applications of three-dimensional (3-D) electromagnetic (EM) modeling in mining, geothermal and environmental exploration demonstrate the importance of numerical modeling as a geophysical tool. Detection of a confined, conductive target with a vertical electric source (VES) can be an effective technique if properly used. The vertical magnetic field response is due solely to multi-dimensional structures, and current channeling is the dominant mechanism. A VES is deployed in a bore hole, hence the orientation of the hole is critical to the response. A deviation of more than a degree from the vertical can result in a host response that overwhelms the target response. Only the in-phase response at low frequencies can be corrected to a purely vertical response. The geothermal system studied consists of a near-surface clay cap and a deep reservoir. The magnetotelluric (MT), controlled-source audio magnetotelluric (CSAMT), long-offset time-domain electromagnetic (LOTEM) and central-loop transient electromagnetic (TEM) methods are appraised for their ability to detect the reservoir and delineate the cap. The reservoir anomaly is supported by boundary charges and therefore is detectable only with deep sounding electric field measurement MT and LOTEM. The cap is easily delineated with all techniques. For interpretation I developed an approximate 3-D inversion that refines a 1-D interpretation by removing lateral distortions. An iterative inverse procedure invokes EM reciprocity while operating on a localized portion of the survey area thereby greatly reducing the computational requirements. The scheme is illustrated with three synthetic data sets representative of problems in environmental geophysics.
Topographic attributes as a guide for automated detection or highlighting of geological features
NASA Astrophysics Data System (ADS)
Viseur, Sophie; Le Men, Thibaud; Guglielmi, Yves
2015-04-01
Photogrammetry or LIDAR technology combined with photography allow geoscientists to obtain 3D high-resolution numerical representations of outcrops, generally termed as Digital Outcrop Models (DOM). For over a decade, these 3D numerical outcrops serve as support for precise and accurate interpretations of geological features such as fracture traces or plans, strata, facies mapping, etc. These interpretations have the benefit to be directly georeferenced and embedded into the 3D space. They are then easily integrated into GIS or geomodeler softwares for modelling in 3D the subsurface geological structures. However, numerical outcrops generally represent huge data sets that are heavy to manipulate and hence to interpret. This may be particularly tedious as soon as several scales of geological features must be investigated or as geological features are very dense and imbricated. Automated tools for interpreting geological features from DOMs would be then a significant help to process these kinds of data. Such technologies are commonly used for interpreting seismic or medical data. However, it may be noticed that even if many efforts have been devoted to easily and accurately acquire 3D topographic point clouds and photos and to visualize accurate 3D textured DOMs, few attentions have been paid to the development of algorithms for automated detection of the geological structures from DOMs. The automatic detection of objects on numerical data generally assumes that signals or attributes computed from this data allows the recognition of the targeted object boundaries. The first step consists then in defining attributes that highlight the objects or their boundaries. For DOM interpretations, some authors proposed to use differential operators computed on the surface such as normal or curvatures. These methods generally extract polylines corresponding to fracture traces or bed limits. Other approaches rely on the PCA technology to segregate different topographic plans. This approach assume that structural or sedimentary features coincide with topographic surface parts. In this work, several topographic attributes are proposed to highlight geological features on outcrops. Among them, differential operators are used but also combined and processed to display particular topographic shapes. Moreover, two kinds of attributes are used: unsupervised and supervised attributes. The supervised attributes integrate an a priori knowledge about the objects to extract (e.g.: a preferential orientation of fracture surfaces, etc.). This strategy may be compared to the one used for seismic interpretation. Indeed, many seismic attributes have been proposed to highlight geological structures hardly observable due to data noise. The same issue exist with topographic data: plants, erosions, etc. generate noise that make interpretation sometimes hard. The proposed approach has been applied on real case studies to show how it could help the interpretation of geological features. The obtained 'topographic attributes' are shown and discussed.
Electromagnetic studies of global geodynamic processes
NASA Astrophysics Data System (ADS)
Tarits, Pascal
1994-03-01
The deep electromagnetic sounding (DES) technique is one of the few geophysical methods, along with seismology, gravity, heat flow, which may be use to probe the structure of the Earth's mantle directly. The interpretation of the DESs may provide electrical conductivity profiles down to the upper part of the lower mantle. The electrical conductivity is extremely sensitive to most of the thermodynamic processes we believe are acting in the Earth's mantle (temperature increases, partial melting, phase transition and to a lesser extent pressure). Therefore, in principle, results from DES along with laboratory measurements could be used to constrain models of these processes. The DES technique is reviewed in the light of recent results obtained in a variety of domains: data acquisition and analysis, global induction modeling and data inversion and interpretation. The mechanisms and the importance of surface distortions of the DES data are reviewed and techniques to model them are discussed. The recent results in terms of the conductivity distribution in the mantle from local and global DES are presented and a tentative synthesis is proposed. The geodynamic interpretations of the deep conductivity structures are reviewed. The existence of mantle lateral heterogeneities in conductivity at all scales and depths for which electromagnetic data are available is now well documented. A comparison with global results from seismology is presented.
Model-based local density sharpening of cryo-EM maps
Jakobi, Arjen J; Wilmanns, Matthias
2017-01-01
Atomic models based on high-resolution density maps are the ultimate result of the cryo-EM structure determination process. Here, we introduce a general procedure for local sharpening of cryo-EM density maps based on prior knowledge of an atomic reference structure. The procedure optimizes contrast of cryo-EM densities by amplitude scaling against the radially averaged local falloff estimated from a windowed reference model. By testing the procedure using six cryo-EM structures of TRPV1, β-galactosidase, γ-secretase, ribosome-EF-Tu complex, 20S proteasome and RNA polymerase III, we illustrate how local sharpening can increase interpretability of density maps in particular in cases of resolution variation and facilitates model building and atomic model refinement. PMID:29058676
d∗(2380) Resonance in a Chiral SU(3) Constituent Quark Model
NASA Astrophysics Data System (ADS)
Dong, Yubing; Shen, Pengnian; Huang, Fei; Zhang, Zongye
Recent studies on the newly observed resonance d∗(2380)(I(JP) = 0(3+)) with a compact structure in a chiral SU(3) constituent quark model are briefly reported. the overall properties, including the mass, the partial decay widths in various decay modes, and the total width, comparing with the experimental data, show that a compact hexaquark dominated structure might be a reasonable interpretation for this state. Moreover, the charge distribution of d∗ is also discussed.
Memory mechanisms supporting syntactic comprehension
Waters, Gloria
2013-01-01
Efforts to characterize the memory system that supports sentence comprehension have historically drawn extensively on short-term memory as a source of mechanisms that might apply to sentences. The focus of these efforts has changed significantly in the past decade. As a result of changes in models of short-term working memory (ST-WM) and developments in models of sentence comprehension, the effort to relate entire components of an ST-WM system, such as those in the model developed by Baddeley (Nature Reviews Neuroscience 4: 829–839, 2003) to sentence comprehension has largely been replaced by an effort to relate more specific mechanisms found in modern models of ST-WM to memory processes that support one aspect of sentence comprehension—the assignment of syntactic structure (parsing) and its use in determining sentence meaning (interpretation) during sentence comprehension. In this article, we present the historical background to recent studies of the memory mechanisms that support parsing and interpretation and review recent research into this relation. We argue that the results of this research do not converge on a set of mechanisms derived from ST-WM that apply to parsing and interpretation. We argue that the memory mechanisms supporting parsing and interpretation have features that characterize another memory system that has been postulated to account for skilled performance—long-term working memory. We propose a model of the relation of different aspects of parsing and interpretation to ST-WM and long-term working memory. PMID:23319178
Canivez, Gary L; Watkins, Marley W; Dombrowski, Stefan C
2017-04-01
The factor structure of the Wechsler Intelligence Scale for Children-Fifth Edition (WISC-V; Wechsler, 2014a) standardization sample (N = 2,200) was examined using confirmatory factor analyses (CFA) with maximum likelihood estimation for all reported models from the WISC-V Technical and Interpretation Manual (Wechsler, 2014b). Additionally, alternative bifactor models were examined and variance estimates and model-based reliability estimates (ω coefficients) were provided. Results from analyses of the 16 primary and secondary WISC-V subtests found that all higher-order CFA models with 5 group factors (VC, VS, FR, WM, and PS) produced model specification errors where the Fluid Reasoning factor produced negative variance and were thus judged inadequate. Of the 16 models tested, the bifactor model containing 4 group factors (VC, PR, WM, and PS) produced the best fit. Results from analyses of the 10 primary WISC-V subtests also found the bifactor model with 4 group factors (VC, PR, WM, and PS) produced the best fit. Variance estimates from both 16 and 10 subtest based bifactor models found dominance of general intelligence (g) in accounting for subtest variance (except for PS subtests) and large ω-hierarchical coefficients supporting general intelligence interpretation. The small portions of variance uniquely captured by the 4 group factors and low ω-hierarchical subscale coefficients likely render the group factors of questionable interpretive value independent of g (except perhaps for PS). Present CFA results confirm the EFA results reported by Canivez, Watkins, and Dombrowski (2015); Dombrowski, Canivez, Watkins, and Beaujean (2015); and Canivez, Dombrowski, and Watkins (2015). (PsycINFO Database Record (c) 2017 APA, all rights reserved).
On the role of minicomputers in structural design
NASA Technical Reports Server (NTRS)
Storaasli, O. O.
1977-01-01
Results are presented of exploratory studies on the use of a minicomputer in conjunction with large-scale computers to perform structural design tasks, including data and program management, use of interactive graphics, and computations for structural analysis and design. An assessment is made of minicomputer use for the structural model definition and checking and for interpreting results. Included are results of computational experiments demonstrating the advantages of using both a minicomputer and a large computer to solve a large aircraft structural design problem.
OpenSeesPy: Python library for the OpenSees finite element framework
NASA Astrophysics Data System (ADS)
Zhu, Minjie; McKenna, Frank; Scott, Michael H.
2018-01-01
OpenSees, an open source finite element software framework, has been used broadly in the earthquake engineering community for simulating the seismic response of structural and geotechnical systems. The framework allows users to perform finite element analysis with a scripting language and for developers to create both serial and parallel finite element computer applications as interpreters. For the last 15 years, Tcl has been the primary scripting language to which the model building and analysis modules of OpenSees are linked. To provide users with different scripting language options, particularly Python, the OpenSees interpreter interface was refactored to provide multi-interpreter capabilities. This refactoring, resulting in the creation of OpenSeesPy as a Python module, is accomplished through an abstract interface for interpreter calls with concrete implementations for different scripting languages. Through this approach, users are able to develop applications that utilize the unique features of several scripting languages while taking advantage of advanced finite element analysis models and algorithms.
NASA Astrophysics Data System (ADS)
Xie, Tian; Grossman, Jeffrey C.
2018-04-01
The use of machine learning methods for accelerating the design of crystalline materials usually requires manually constructed feature vectors or complex transformation of atom coordinates to input the crystal structure, which either constrains the model to certain crystal types or makes it difficult to provide chemical insights. Here, we develop a crystal graph convolutional neural networks framework to directly learn material properties from the connection of atoms in the crystal, providing a universal and interpretable representation of crystalline materials. Our method provides a highly accurate prediction of density functional theory calculated properties for eight different properties of crystals with various structure types and compositions after being trained with 1 04 data points. Further, our framework is interpretable because one can extract the contributions from local chemical environments to global properties. Using an example of perovskites, we show how this information can be utilized to discover empirical rules for materials design.
Model reduction for Space Station Freedom
NASA Technical Reports Server (NTRS)
Williams, Trevor
1992-01-01
Model reduction is an important practical problem in the control of flexible spacecraft, and a considerable amount of work has been carried out on this topic. Two of the best known methods developed are modal truncation and internal balancing. Modal truncation is simple to implement but can give poor results when the structure possesses clustered natural frequencies, as often occurs in practice. Balancing avoids this problem but has the disadvantages of high computational cost, possible numerical sensitivity problems, and no physical interpretation for the resulting balanced 'modes'. The purpose of this work is to examine the performance of the subsystem balancing technique developed by the investigator when tested on a realistic flexible space structure, in this case a model of the Permanently Manned Configuration (PMC) of Space Station Freedom. This method retains the desirable properties of standard balancing while overcoming the three difficulties listed above. It achieves this by first decomposing the structural model into subsystems of highly correlated modes. Each subsystem is approximately uncorrelated from all others, so balancing them separately and then combining yields comparable results to balancing the entire structure directly. The operation count reduction obtained by the new technique is considerable: a factor of roughly r(exp 2) if the system decomposes into r equal subsystems. Numerical accuracy is also improved significantly, as the matrices being operated on are of reduced dimension, and the modes of the reduced-order model now have a clear physical interpretation; they are, to first order, linear combinations of repeated-frequency modes.
Chen, Haoyuan; Piccirilli, Joseph A.; Harris, Michael E.; York, Darrin M.
2016-01-01
Divalent metal ions, due to their ability to stabilize high concentrations of negative charge, are important for RNA folding and catalysis. Detailed models derived from the structures and kinetics of enzymes and from computational simulations have been developed. However, in most cases the specific catalytic modes involving metal ions and their mechanistic roles and effects on transition state structures remains controversial. Valuable information about the nature of the transition state is provided by measurement of kinetic isotope effects (KIEs). However, KIEs reflect changes in all bond vibrational modes that differ between the ground state and transition state. QM calculations are therefore essential for developing structural models of the transition state and evaluating mechanistic alternatives. Herein, we present computational models for Zn2+ binding to RNA 2′O-transphosphorylation reaction models that aid in the interpretation of KIE experiments. Different Zn2+ binding modes produce distinct KIE signatures, and one binding mode involving two zinc ions is in close agreement with KIEs measured for non-enzymatic catalysis by Zn2+ aquo ions alone. Interestingly, the KIE signatures in this specific model are also very close to those in RNase A catalysis. These results allow a quantitative connection to be made between experimental KIE measurements and transition state structure and bonding, and provide insight into RNA 2′O-transphosphorylation reactions catalyzed by metal ions and enzymes. PMID:25812974
I Am Sure There May Be a Planet There: Student Articulation of Uncertainty in Argumentation Tasks
ERIC Educational Resources Information Center
Buck, Zoë E.; Lee, Hee-Sun; Flores, Joanna
2014-01-01
We investigated how students articulate uncertainty when they are engaged in structured scientific argumentation tasks where they generate, examine, and interpret data to determine the existence of exoplanets. In this study, 302 high school students completed 4 structured scientific arguments that followed a series of computer-model-based…
Finite element modelling and updating of a lively footbridge: The complete process
NASA Astrophysics Data System (ADS)
Živanović, Stana; Pavic, Aleksandar; Reynolds, Paul
2007-03-01
The finite element (FE) model updating technology was originally developed in the aerospace and mechanical engineering disciplines to automatically update numerical models of structures to match their experimentally measured counterparts. The process of updating identifies the drawbacks in the FE modelling and the updated FE model could be used to produce more reliable results in further dynamic analysis. In the last decade, the updating technology has been introduced into civil structural engineering. It can serve as an advanced tool for getting reliable modal properties of large structures. The updating process has four key phases: initial FE modelling, modal testing, manual model tuning and automatic updating (conducted using specialist software). However, the published literature does not connect well these phases, although this is crucial when implementing the updating technology. This paper therefore aims to clarify the importance of this linking and to describe the complete model updating process as applicable in civil structural engineering. The complete process consisting the four phases is outlined and brief theory is presented as appropriate. Then, the procedure is implemented on a lively steel box girder footbridge. It was found that even a very detailed initial FE model underestimated the natural frequencies of all seven experimentally identified modes of vibration, with the maximum error being almost 30%. Manual FE model tuning by trial and error found that flexible supports in the longitudinal direction should be introduced at the girder ends to improve correlation between the measured and FE-calculated modes. This significantly reduced the maximum frequency error to only 4%. It was demonstrated that only then could the FE model be automatically updated in a meaningful way. The automatic updating was successfully conducted by updating 22 uncertain structural parameters. Finally, a physical interpretation of all parameter changes is discussed. This interpretation is often missing in the published literature. It was found that the composite slabs were less stiff than originally assumed and that the asphalt layer contributed considerably to the deck stiffness.
Studies of planetary upper atmospheres through occultations
NASA Technical Reports Server (NTRS)
Elliot, J. L.
1982-01-01
The structure, composition, dynamics and energy balance of planetary upper atmospheres through interpretation of steller occultation data from Uranus is discussed. The wave-optical problem of modelling strong scintillation for arbitrary turbulent atmospheres is studied, as well as influence of turbulence. It was concluded that quasi-global features of atmospheric structure are accurately determined by numerical inversion. Horizontally inhomogeneous structures are filtered out and have little effect on temperature profiles.
Das, Rudra Narayan; Roy, Kunal; Popelier, Paul L A
2015-11-01
The present study explores the chemical attributes of diverse ionic liquids responsible for their cytotoxicity in a rat leukemia cell line (IPC-81) by developing predictive classification as well as regression-based mathematical models. Simple and interpretable descriptors derived from a two-dimensional representation of the chemical structures along with quantum topological molecular similarity indices have been used for model development, employing unambiguous modeling strategies that strictly obey the guidelines of the Organization for Economic Co-operation and Development (OECD) for quantitative structure-activity relationship (QSAR) analysis. The structure-toxicity relationships that emerged from both classification and regression-based models were in accordance with the findings of some previous studies. The models suggested that the cytotoxicity of ionic liquids is dependent on the cationic surfactant action, long alkyl side chains, cationic lipophilicity as well as aromaticity, the presence of a dialkylamino substituent at the 4-position of the pyridinium nucleus and a bulky anionic moiety. The models have been transparently presented in the form of equations, thus allowing their easy transferability in accordance with the OECD guidelines. The models have also been subjected to rigorous validation tests proving their predictive potential and can hence be used for designing novel and "greener" ionic liquids. The major strength of the present study lies in the use of a diverse and large dataset, use of simple reproducible descriptors and compliance with the OECD norms. Copyright © 2015 Elsevier Ltd. All rights reserved.
Neutral model analysis of landscape patterns from mathematical morphology
Kurt H. Riitters; Peter Vogt; Pierre Soille; Jacek Kozak; Christine Estreguil
2007-01-01
Mathematical morphology encompasses methods for characterizing land-cover patterns in ecological research and biodiversity assessments. This paper reports a neutral model analysis of patterns in the absence of a structuring ecological process, to help set standards for comparing and interpreting patterns identified by mathematical morphology on real land-cover maps. We...
Low, Yen S.; Sedykh, Alexander; Rusyn, Ivan; Tropsha, Alexander
2017-01-01
Cheminformatics approaches such as Quantitative Structure Activity Relationship (QSAR) modeling have been used traditionally for predicting chemical toxicity. In recent years, high throughput biological assays have been increasingly employed to elucidate mechanisms of chemical toxicity and predict toxic effects of chemicals in vivo. The data generated in such assays can be considered as biological descriptors of chemicals that can be combined with molecular descriptors and employed in QSAR modeling to improve the accuracy of toxicity prediction. In this review, we discuss several approaches for integrating chemical and biological data for predicting biological effects of chemicals in vivo and compare their performance across several data sets. We conclude that while no method consistently shows superior performance, the integrative approaches rank consistently among the best yet offer enriched interpretation of models over those built with either chemical or biological data alone. We discuss the outlook for such interdisciplinary methods and offer recommendations to further improve the accuracy and interpretability of computational models that predict chemical toxicity. PMID:24805064
Averaged kick maps: less noise, more signal…and probably less bias
DOE Office of Scientific and Technical Information (OSTI.GOV)
Pražnikar, Jure; Afonine, Pavel V.; Gunčar, Gregor
2009-09-01
Averaged kick maps are the sum of a series of individual kick maps, where each map is calculated from atomic coordinates modified by random shifts. These maps offer the possibility of an improved and less model-biased map interpretation. Use of reliable density maps is crucial for rapid and successful crystal structure determination. Here, the averaged kick (AK) map approach is investigated, its application is generalized and it is compared with other map-calculation methods. AK maps are the sum of a series of kick maps, where each kick map is calculated from atomic coordinates modified by random shifts. As such, theymore » are a numerical analogue of maximum-likelihood maps. AK maps can be unweighted or maximum-likelihood (σ{sub A}) weighted. Analysis shows that they are comparable and correspond better to the final model than σ{sub A} and simulated-annealing maps. The AK maps were challenged by a difficult structure-validation case, in which they were able to clarify the problematic region in the density without the need for model rebuilding. The conclusion is that AK maps can be useful throughout the entire progress of crystal structure determination, offering the possibility of improved map interpretation.« less
Up the Beanstalk: An Evolutionary Organizational Structure for Libraries.
ERIC Educational Resources Information Center
Hoadley, Irene B.; Corbin, John
1990-01-01
Presents a functional organizational model for research libraries consisting of six major divisions and subunits: acquisition (buying, borrowing, leasing); organization (records creation, records maintenance); collections (collections management, selection, preservation, special collections and archives); interpretation (reference, instructional…
Piaggio, Maria V; Peirotti, Marta B; Deiber, Julio A
2010-08-01
Peptide electrophoretic mobility data are interpreted through a physicochemical CZE model, providing estimates of the equivalent hydrodynamic radius, hydration, effective and total charge numbers, actual ionizing pK, pH-near molecule and electrical permittivity of peptide domain, among other basic properties. In this study, they are used to estimate some peptide global structural properties proposed, providing thus a distinction among different peptides. Therefore, the solvent drag on the peptide is obtained through a characteristic friction power coefficient of the number of amino acid residues, defined from the global chain conformation in solution. As modeling of the effective electrophoretic mobility of peptides is carried out in terms of particle hydrodynamic size and shape coupled to hydration and effective charge, a packing dimension related to chain conformation within the peptide domain may be defined. In addition, the effective and total charge number fractions of peptides provide some clues on the interpretation of chain conformations within the framework of scaling laws. Furthermore, the model estimates transport properties, such as sedimentation, friction and diffusion coefficients. As the relative numbers of ionizing, polar and non-polar amino acid residues vary in peptides, their global structural properties defined here change appreciably. Needs for further research are also discussed.
NASA Technical Reports Server (NTRS)
Won, C. C.
1993-01-01
This work describes a modeling and design method whereby a piezoelectric system is formulated by two sets of second-order equations, one for the mechanical system, and the other for the electrical system, coupled through the piezoelectric effect. The solution to this electromechanical coupled system gives a physical interpretation of the piezoelectric effect as a piezoelectric transformer that is a part of the piezoelectric system, which transfers the applied mechanical force into a force-controlled current source, and short circuit mechanical compliance into capacitance. It also transfers the voltage source into a voltage-controlled relative velocity input, and free motional capacitance into mechanical compliance. The formulation and interpretation simplify the modeling of smart structures and lead to physical insight that aids the designer. Due to its physical realization, the smart structural system can be unconditional stable and effectively control responses. This new concept has been demonstrated in three numerical examples for a simple piezoelectric system.
NASA Astrophysics Data System (ADS)
Hubenthal, M.; Braile, L. W.; Olds, S. E.; Taber, J.
2010-12-01
Geophysics research is continuously revealing new insights about Earth’s interior structure. Before students can grasp theses new complexities, they first must internalize the 1st order layered structure of Earth and comprehend how seismology contributes to the development of such models. Earth structure is of course covered in most introductory geoscience courses, though all too often instruction of this content is limited to didactic methods that make little effort to inspire or engage the minds of students. In the process, students are expected to blindly accept our understanding of the unseen and abstract. Thus, it is not surprising then that many students can draw a layered Earth diagram, yet not know that knowledge of Earth’s interior is based on information from earthquakes. Cognitive learning theory would suggest that what has been missing from instruction of Earth structure is a feasible method to present students with seismic evidence in a manner that allows students to become minds-on with the content; discovering or dispelling the presence of a layered Earth for themselves. Recent advances in serving seismic data to a non-seismologist audience have made the development of such laboratory investigations possible. In this exercise students use an inquiry approach to examine seismic evidence and determine that the Earth cannot have a homogeneous composition. Further they use the data to estimate the dimensions of Earth’s outer core. To reach these conclusions, students are divided into two teams, theoreticians and seismologists, to test the simplest hypothesis for Earth's internal structure; a homogeneous Earth. The theoreticians create a scale model of a homogeneous Earth and predict when seismic waves should arrive at various points on the model. Simultaneously, seismologists interpret a seismic record section from a recent earthquake noting when seismic waves arrive at various points around Earth. The two groups of students then compare the modeled arrivals to the observed data, and when plotted, a notable discrepancy is found. To help interpret the implications of this anomaly the students transfer the data to a second scale model. By extrapolating their data for additional earthquakes students are able to define and measure a boundary for Earth’s outer core. After completing this exercise, not only do students have an understanding of how we know about the structure of Earth, students are more prepared to understand the basics of seismic tomography and the interpretation and limitations of tomographic models.
A Generative Angular Model of Protein Structure Evolution
Golden, Michael; García-Portugués, Eduardo; Sørensen, Michael; Mardia, Kanti V.; Hamelryck, Thomas; Hein, Jotun
2017-01-01
Abstract Recently described stochastic models of protein evolution have demonstrated that the inclusion of structural information in addition to amino acid sequences leads to a more reliable estimation of evolutionary parameters. We present a generative, evolutionary model of protein structure and sequence that is valid on a local length scale. The model concerns the local dependencies between sequence and structure evolution in a pair of homologous proteins. The evolutionary trajectory between the two structures in the protein pair is treated as a random walk in dihedral angle space, which is modeled using a novel angular diffusion process on the two-dimensional torus. Coupling sequence and structure evolution in our model allows for modeling both “smooth” conformational changes and “catastrophic” conformational jumps, conditioned on the amino acid changes. The model has interpretable parameters and is comparatively more realistic than previous stochastic models, providing new insights into the relationship between sequence and structure evolution. For example, using the trained model we were able to identify an apparent sequence–structure evolutionary motif present in a large number of homologous protein pairs. The generative nature of our model enables us to evaluate its validity and its ability to simulate aspects of protein evolution conditioned on an amino acid sequence, a related amino acid sequence, a related structure or any combination thereof. PMID:28453724
Park, In-Hee; Venable, John D; Steckler, Caitlin; Cellitti, Susan E; Lesley, Scott A; Spraggon, Glen; Brock, Ansgar
2015-09-28
Hydrogen exchange (HX) studies have provided critical insight into our understanding of protein folding, structure, and dynamics. More recently, hydrogen exchange mass spectrometry (HX-MS) has become a widely applicable tool for HX studies. The interpretation of the wealth of data generated by HX-MS experiments as well as other HX methods would greatly benefit from the availability of exchange predictions derived from structures or models for comparison with experiment. Most reported computational HX modeling studies have employed solvent-accessible-surface-area based metrics in attempts to interpret HX data on the basis of structures or models. In this study, a computational HX-MS prediction method based on classification of the amide hydrogen bonding modes mimicking the local unfolding model is demonstrated. Analysis of the NH bonding configurations from molecular dynamics (MD) simulation snapshots is used to determine partitioning over bonded and nonbonded NH states and is directly mapped into a protection factor (PF) using a logistics growth function. Predicted PFs are then used for calculating deuteration values of peptides and compared with experimental data. Hydrogen exchange MS data for fatty acid synthase thioesterase (FAS-TE) collected for a range of pHs and temperatures was used for detailed evaluation of the approach. High correlation between prediction and experiment for observable fragment peptides is observed in the FAS-TE and additional benchmarking systems that included various apo/holo proteins for which literature data were available. In addition, it is shown that HX modeling can improve experimental resolution through decomposition of in-exchange curves into rate classes, which correlate with prediction from MD. Successful rate class decompositions provide further evidence that the presented approach captures the underlying physical processes correctly at the single residue level. This assessment is further strengthened in a comparison of residue resolved protection factor predictions for staphylococcal nuclease with NMR data, which was also used to compare prediction performance with other algorithms described in the literature. The demonstrated transferable and scalable MD based HX prediction approach adds significantly to the available tools for HX-MS data interpretation based on available structures and models.
Park, In-Hee; Venable, John D.; Steckler, Caitlin; Cellitti, Susan E.; Lesley, Scott A.; Spraggon, Glen; Brock, Ansgar
2015-01-01
Hydrogen exchange (HX) studies have provided critical insight into our understanding of protein folding, structure and dynamics. More recently, Hydrogen Exchange Mass Spectrometry (HX-MS) has become a widely applicable tool for HX studies. The interpretation of the wealth of data generated by HX-MS experiments as well as other HX methods would greatly benefit from the availability of exchange predictions derived from structures or models for comparison with experiment. Most reported computational HX modeling studies have employed solvent-accessible-surface-area based metrics in attempts to interpret HX data on the basis of structures or models. In this study, a computational HX-MS prediction method based on classification of the amide hydrogen bonding modes mimicking the local unfolding model is demonstrated. Analysis of the NH bonding configurations from Molecular Dynamics (MD) simulation snapshots is used to determine partitioning over bonded and non-bonded NH states and is directly mapped into a protection factor (PF) using a logistics growth function. Predicted PFs are then used for calculating deuteration values of peptides and compared with experimental data. Hydrogen exchange MS data for Fatty acid synthase thioesterase (FAS-TE) collected for a range of pHs and temperatures was used for detailed evaluation of the approach. High correlation between prediction and experiment for observable fragment peptides is observed in the FAS-TE and additional benchmarking systems that included various apo/holo proteins for which literature data were available. In addition, it is shown that HX modeling can improve experimental resolution through decomposition of in-exchange curves into rate classes, which correlate with prediction from MD. Successful rate class decompositions provide further evidence that the presented approach captures the underlying physical processes correctly at the single residue level. This assessment is further strengthened in a comparison of residue resolved protection factor predictions for staphylococcal nuclease with NMR data, which was also used to compare prediction performance with other algorithms described in the literature. The demonstrated transferable and scalable MD based HX prediction approach adds significantly to the available tools for HX-MS data interpretation based on available structures and models. PMID:26241692
Orellana, Liliana; Rotnitzky, Andrea; Robins, James M
2010-03-03
In this companion article to "Dynamic Regime Marginal Structural Mean Models for Estimation of Optimal Dynamic Treatment Regimes, Part I: Main Content" [Orellana, Rotnitzky and Robins (2010), IJB, Vol. 6, Iss. 2, Art. 7] we present (i) proofs of the claims in that paper, (ii) a proposal for the computation of a confidence set for the optimal index when this lies in a finite set, and (iii) an example to aid the interpretation of the positivity assumption.
Interpretation of long- and short-wavelength magnetic anomalies
DeNoyer, John M.; Barringer, Anthony R.
1980-01-01
Magset was launched on October 30, 1979. More than a decade of examining existing data, devising appropriate models of the global magnetic field, and extending methods for interpreting long-wavelength magnetic anomalies preceded this launch Magnetic data collected by satellite can be interrupted by using a method of analysis that quantitively describes the magnetic field resulting from three-dimensional geologic structures that are bounded by an arbitrary number of polygonal faces, Each face my have any orientation and three or more sides. At each point of the external field, the component normal to each face is obtained by using an expression for the solid angle subtended by a generalized polygon. The "cross" of tangential components are relatively easy to obtain for the same polygons. No approximations have been made related to orbit height that restrict the dimensions of the polygons relative to the distance from the external field points. This permits the method to be used to model shorter wavelength anomalies obtained from aircraft or ground surveys. The magnetic fields for all the structures considered are determine in the same rectangular coordinate system. The coordinate system is in depended from the orientation of geologic trends and permits multiple structures or bodies to be included in the same magnetic field calculations. This single reference system also simplified adjustments in position and direction to account for earth curvature in regional interpretation.
NASA Astrophysics Data System (ADS)
Harding, J.; Van Avendonk, H. J.; Hayman, N. W.; Grevemeyer, I.; Peirce, C.
2017-12-01
The Mid-Cayman Spreading Center (MCSC), an ultraslow-spreading center in the Caribbean Sea, has formed highly variable oceanic crust. Seafloor dredges have recovered extrusive basalts in the axial deeps as well as gabbro on bathymetric highs and exhumed mantle peridotite along the only 110 km MCSC. Wide-angle refraction data were collected with active-source ocean bottom seismometers in April, 2015, along lines parallel and across the MCSC. Travel-time tomography produces relatively smooth 2-D tomographic models of compressional wave velocity. These velocity models reveal large along- and across-axis variations in seismic velocity, indicating possible changes in crustal thickness, composition, faulting, and magmatism. It is difficult, however, to differentiate between competing interpretations of seismic velocity using these tomographic models alone. For example, in some areas the seismic velocities may be explained by either thin igneous crust or exhumed, serpentinized mantle. Distinguishing between these two interpretations is important as we explore the relationships between magmatism, faulting, and hydrothermal venting at ultraslow-spreading centers. We therefore improved our constraints on the shallow seismic velocity structure of the MCSC by modeling the amplitude of seismic refractions in the wide-angle data set. Synthetic seismograms were calculated with a finite-difference method for a range of models with different vertical velocity gradients. Small-scale features in the velocity models, such as steep velocity gradients and Moho boundaries, were explored systematically to best fit the real data. With this approach, we have improved our understanding of the compressional velocity structure of the MCSC along with the geological interpretations that are consistent with three seismic refraction profiles. Line P01 shows a variation in the thinness of lower seismic velocities along the axis, indicating two segment centers, while across-axis lines P02 and P03 show variations in igneous crustal thickness and exhumed mantle in some areas.
NASA Technical Reports Server (NTRS)
Sreekantamurthy, Thammaiah; Hudson, Tyler B.; Hou, Tan-Hung; Grimsley, Brian W.
2016-01-01
Composite cure process induced residual strains and warping deformations in composite components present significant challenges in the manufacturing of advanced composite structure. As a part of the Manufacturing Process and Simulation initiative of the NASA Advanced Composite Project (ACP), research is being conducted on the composite cure process by developing an understanding of the fundamental mechanisms by which the process induced factors influence the residual responses. In this regard, analytical studies have been conducted on the cure process modeling of composite structural parts with varied physical, thermal, and resin flow process characteristics. The cure process simulation results were analyzed to interpret the cure response predictions based on the underlying physics incorporated into the modeling tool. In the cure-kinetic analysis, the model predictions on the degree of cure, resin viscosity and modulus were interpreted with reference to the temperature distribution in the composite panel part and tool setup during autoclave or hot-press curing cycles. In the fiber-bed compaction simulation, the pore pressure and resin flow velocity in the porous media models, and the compaction strain responses under applied pressure were studied to interpret the fiber volume fraction distribution predictions. In the structural simulation, the effect of temperature on the resin and ply modulus, and thermal coefficient changes during curing on predicted mechanical strains and chemical cure shrinkage strains were studied to understand the residual strains and stress response predictions. In addition to computational analysis, experimental studies were conducted to measure strains during the curing of laminated panels by means of optical fiber Bragg grating sensors (FBGs) embedded in the resin impregnated panels. The residual strain measurements from laboratory tests were then compared with the analytical model predictions. The paper describes the cure process procedures and residual strain predications, and discusses pertinent experimental results from the validation studies.
NASA Astrophysics Data System (ADS)
Bedrosian, P.; Peacock, J.; Bowles-martinez, E.; Schultz, A.; Hill, G.
2017-12-01
Worldwide, arc volcanism occurs along relatively narrow magmatic arcs, the locations of which are considered to mark the onset of dehydration reactions within the subducting slab. This `bottom-up' approach, in which the location of arc volcanism reflects where fluids and melt are generated, explains first-order differences in trench-to-arc distance and is consistent with known variations in the thermal structure and geometry of subducting slabs. At a finer scale, arc segmentation, magmatic gaps, and anomalous forearc and backarc magmatism are also frequently interpreted in terms of variations in slab geometry, composition, or thermal structure.The role of inherited crustal structure in controlling faulting and deformation is well documented; less well examined is the role of crustal structure in controlling magmatism. While the source distribution of melt and subduction fluids is critical to determining the location of arc magmatism, we argue that crustal structure provides `top-down' control on patterns or seismicity and deformation as well as the channeling and ascent of arc magmas. We present evidence within the Washington Cascades based upon correlation between a new three-dimensional resistivity model, potential-field data, seismicity, and Quaternary volcanism. We image a mid-Tertiary batholith, intruded within an Eocene crustal suture zone, and extending throughout much of the crustal column. This and neighboring plutons are interpreted to channel crustal fluids and melt along their margins within steeply dipping zones of marine to transitional metasedimentary rock. Mount St. Helens is interpreted to be fed by fluids and melt generated further east at greater slab depths, migrating laterally (underplating?) beneath the Spirit Lake batholith, and ascending through metasedimentary rocks within the brittle crust. At a regional scale, we argue that this concealed suture zone controls present-day deformation and seismicity as well as the distribution of forearc magmatism. More generally, our results highlight the control that inherited crustal structure has on both the location and style of arc magmatism. We also address divergent interpretations of the Southern Washington Cascades Conductor, which we show results from limited data density and modeling assumptions in previous studies.
Automatic Hidden-Web Table Interpretation by Sibling Page Comparison
NASA Astrophysics Data System (ADS)
Tao, Cui; Embley, David W.
The longstanding problem of automatic table interpretation still illudes us. Its solution would not only be an aid to table processing applications such as large volume table conversion, but would also be an aid in solving related problems such as information extraction and semi-structured data management. In this paper, we offer a conceptual modeling solution for the common special case in which so-called sibling pages are available. The sibling pages we consider are pages on the hidden web, commonly generated from underlying databases. We compare them to identify and connect nonvarying components (category labels) and varying components (data values). We tested our solution using more than 2,000 tables in source pages from three different domains—car advertisements, molecular biology, and geopolitical information. Experimental results show that the system can successfully identify sibling tables, generate structure patterns, interpret tables using the generated patterns, and automatically adjust the structure patterns, if necessary, as it processes a sequence of hidden-web pages. For these activities, the system was able to achieve an overall F-measure of 94.5%.
Canivez, Gary L; Watkins, Marley W; Dombrowski, Stefan C
2016-08-01
The factor structure of the 16 Primary and Secondary subtests of the Wechsler Intelligence Scale for Children-Fifth Edition (WISC-V; Wechsler, 2014a) standardization sample was examined with exploratory factor analytic methods (EFA) not included in the WISC-V Technical and Interpretive Manual (Wechsler, 2014b). Factor extraction criteria suggested 1 to 4 factors and results favored 4 first-order factors. When this structure was transformed with the Schmid and Leiman (1957) orthogonalization procedure, the hierarchical g-factor accounted for large portions of total and common variance while the 4 first-order factors accounted for small portions of total and common variance; rendering interpretation at the factor index level less appropriate. Although the publisher favored a 5-factor model where the Perceptual Reasoning factor was split into separate Visual Spatial and Fluid Reasoning dimensions, no evidence for 5 factors was found. It was concluded that the WISC-V provides strong measurement of general intelligence and clinical interpretation should be primarily, if not exclusively, at that level. (PsycINFO Database Record (c) 2016 APA, all rights reserved).
Order within disorder: The atomic structure of ion-beam sputtered amorphous tantala (a-Ta₂O₅)
Bassiri, Riccardo; Liou, Franklin; Abernathy, Matthew R.; ...
2015-03-01
Amorphous tantala (a-Ta₂O₅) is a technologically important material often used in high-performance coatings. Understanding this material at the atomic level provides a way to further improve performance. This work details extended X-ray absorption fine structure measurements of a-Ta₂O₅ coatings, where high-quality experimental data and theoretical fits have allowed a detailed interpretation of the nearest-neighbor distributions. It was found that the tantalum atom is surrounded by four shells of atoms in sequence; oxygen, tantalum, oxygen, and tantalum. A discussion is also included on how these models can be interpreted within the context of published crystalline Ta₂O₅ and other a-T₂O₅ studies.
ERIC Educational Resources Information Center
Hannan, Michael T.
This document is part of a series of chapters described in SO 011 759. Addressing the question of effective models to measure change and the change process, the author suggests that linear structural equation systems may be viewed as steady state outcomes of continuous-change models and have rich sociological grounding. Two interpretations of the…
Fault-zone waves observed at the southern Joshua Tree earthquake rupture zone
Hough, S.E.; Ben-Zion, Y.; Leary, P.
1994-01-01
Waveform and spectral characteristics of several aftershocks of the M 6.1 22 April 1992 Joshua Tree earthquake recorded at stations just north of the Indio Hills in the Coachella Valley can be interpreted in terms of waves propagating within narrow, low-velocity, high-attenuation, vertical zones. Evidence for our interpretation consists of: (1) emergent P arrivals prior to and opposite in polarity to the impulsive direct phase; these arrivals can be modeled as headwaves indicative of a transfault velocity contrast; (2) spectral peaks in the S wave train that can be interpreted as internally reflected, low-velocity fault-zone wave energy; and (3) spatial selectivity of event-station pairs at which these data are observed, suggesting a long, narrow geologic structure. The observed waveforms are modeled using the analytical solution of Ben-Zion and Aki (1990) for a plane-parallel layered fault-zone structure. Synthetic waveform fits to the observed data indicate the presence of NS-trending vertical fault-zone layers characterized by a thickness of 50 to 100 m, a velocity decrease of 10 to 15% relative to the surrounding rock, and a P-wave quality factor in the range 25 to 50.
Interactive visualization to advance earthquake simulation
Kellogg, L.H.; Bawden, G.W.; Bernardin, T.; Billen, M.; Cowgill, E.; Hamann, B.; Jadamec, M.; Kreylos, O.; Staadt, O.; Sumner, D.
2008-01-01
The geological sciences are challenged to manage and interpret increasing volumes of data as observations and simulations increase in size and complexity. For example, simulations of earthquake-related processes typically generate complex, time-varying data sets in two or more dimensions. To facilitate interpretation and analysis of these data sets, evaluate the underlying models, and to drive future calculations, we have developed methods of interactive visualization with a special focus on using immersive virtual reality (VR) environments to interact with models of Earth's surface and interior. Virtual mapping tools allow virtual "field studies" in inaccessible regions. Interactive tools allow us to manipulate shapes in order to construct models of geological features for geodynamic models, while feature extraction tools support quantitative measurement of structures that emerge from numerical simulation or field observations, thereby enabling us to improve our interpretation of the dynamical processes that drive earthquakes. VR has traditionally been used primarily as a presentation tool, albeit with active navigation through data. Reaping the full intellectual benefits of immersive VR as a tool for scientific analysis requires building on the method's strengths, that is, using both 3D perception and interaction with observed or simulated data. This approach also takes advantage of the specialized skills of geological scientists who are trained to interpret, the often limited, geological and geophysical data available from field observations. ?? Birkhaueser 2008.
Antecedents of obesity - analysis, interpretation, and use of longitudinal data.
Gillman, Matthew W; Kleinman, Ken
2007-07-01
The obesity epidemic causes misery and death. Most epidemiologists accept the hypothesis that characteristics of the early stages of human development have lifelong influences on obesity-related health outcomes. Unfortunately, there is a dearth of data of sufficient scope and individual history to help unravel the associations of prenatal, postnatal, and childhood factors with adult obesity and health outcomes. Here the authors discuss analytic methods, the interpretation of models, and the use to which such rare and valuable data may be put in developing interventions to combat the epidemic. For example, analytic methods such as quantile and multinomial logistic regression can describe the effects on body mass index range rather than just its mean; structural equation models may allow comparison of the contributions of different factors at different periods in the life course. Interpretation of the data and model construction is complex, and it requires careful consideration of the biologic plausibility and statistical interpretation of putative causal factors. The goals of discovering modifiable determinants of obesity during the prenatal, postnatal, and childhood periods must be kept in sight, and analyses should be built to facilitate them. Ultimately, interventions in these factors may help prevent obesity-related adverse health outcomes for future generations.
ERIC Educational Resources Information Center
Nicoll, Gayle
2003-01-01
Reports research that investigates the encoding that students use to develop molecular models at the undergraduate level. Focuses on the translation between symbolic and subatomic representations of molecules. (Contains 31 references.) (DDR)
The NASTRAN User's Manual (Level 15)
NASA Technical Reports Server (NTRS)
Mccormick, C. W. (Editor)
1972-01-01
The User's manual for the NASA Structural Analysis (NASTRAN) program is presented. The manual contains all information needed to solve problems with NASTRAN. The volume is instructional and encyclopedic. The manual includes instruction in structural modeling techniques, instruction in input preparation, and information to assist the interpretation of the output. Descriptions of all input data cards, restart procedures, and diagnostic messages are developed.
Tectonic evolution and extension at the Møre Margin - Offshore mid-Norway
NASA Astrophysics Data System (ADS)
Theissen-Krah, S.; Zastrozhnov, D.; Abdelmalak, M. M.; Schmid, D. W.; Faleide, J. I.; Gernigon, L.
2017-11-01
Lithospheric stretching is the key process in forming extensional sedimentary basins at passive rifted margins. This study explores the stretching factors, resulting extension, and structural evolution of the Møre segment on the Mid-Norwegian continental margin. Based on the interpretation of new and reprocessed high-quality seismic, we present updated structural maps of the Møre margin that show very thick post-rift sediments in the central Møre Basin and extensive sill intrusion into the Cretaceous sediments. A major shift in subsidence and deposition occurred during mid-Cretaceous. One transect across the Møre continental margin from the Slørebotn Subbasin to the continent-ocean boundary is reconstructed using the basin modelling software TecMod. We test different initial crustal configurations and rifting events and compare our structural reconstruction results to stretching factors derived both from crustal thinning and the classical backstripping/decompaction approach. Seismic interpretation in combination with structural reconstruction modelling does not support the lower crustal bodies as exhumed and serpentinised mantle. Our extension estimate along this transect is 188 ± 28 km for initial crustal thickness varying between 30 and 40 km.
NASA Technical Reports Server (NTRS)
Kukreja, Sunil L.; Brenner, martin J.
2006-01-01
This viewgraph presentation reviews the 1. Motivation for the study 2. Nonlinear Model Form 3. Structure Detection 4. Least Absolute Shrinkage and Selection Operator (LASSO) 5. Objectives 6. Results 7. Assess LASSO as a Structure Detection Tool: Simulated Nonlinear Models 8. Applicability to Complex Systems: F/A-18 Active Aeroelastic Wing Flight Test Data. The authors conclude that 1. this is a novel approach for detecting the structure of highly over-parameterised nonlinear models in situations where other methods may be inadequate 2. that it is a practical significance in the analysis of aircraft dynamics during envelope expansion and could lead to more efficient control strategies and 3. this could allow greater insight into the functionality of various systems dynamics, by providing a quantitative model which is easily interpretable
Experimental Protein Structure Verification by Scoring with a Single, Unassigned NMR Spectrum.
Courtney, Joseph M; Ye, Qing; Nesbitt, Anna E; Tang, Ming; Tuttle, Marcus D; Watt, Eric D; Nuzzio, Kristin M; Sperling, Lindsay J; Comellas, Gemma; Peterson, Joseph R; Morrissey, James H; Rienstra, Chad M
2015-10-06
Standard methods for de novo protein structure determination by nuclear magnetic resonance (NMR) require time-consuming data collection and interpretation efforts. Here we present a qualitatively distinct and novel approach, called Comparative, Objective Measurement of Protein Architectures by Scoring Shifts (COMPASS), which identifies the best structures from a set of structural models by numerical comparison with a single, unassigned 2D (13)C-(13)C NMR spectrum containing backbone and side-chain aliphatic signals. COMPASS does not require resonance assignments. It is particularly well suited for interpretation of magic-angle spinning solid-state NMR spectra, but also applicable to solution NMR spectra. We demonstrate COMPASS with experimental data from four proteins--GB1, ubiquitin, DsbA, and the extracellular domain of human tissue factor--and with reconstructed spectra from 11 additional proteins. For all these proteins, with molecular mass up to 25 kDa, COMPASS distinguished the correct fold, most often within 1.5 Å root-mean-square deviation of the reference structure. Copyright © 2015 Elsevier Ltd. All rights reserved.
Experimental Protein Structure Verification by Scoring with a Single, Unassigned NMR Spectrum
Courtney, Joseph M.; Ye, Qing; Nesbitt, Anna E.; Tang, Ming; Tuttle, Marcus D.; Watt, Eric D.; Nuzzio, Kristin M.; Sperling, Lindsay J.; Comellas, Gemma; Peterson, Joseph R.; Morrissey, James H.; Rienstra, Chad M.
2016-01-01
Standard methods for de novo protein structure determination by nuclear magnetic resonance (NMR) require time-consuming data collection and interpretation efforts. Here we present a qualitatively distinct and novel approach, called Comparative, Objective Measurement of Protein Architectures by Scoring Shifts (COMPASS), which identifies the best structures from a set of structural models by numerical comparison with a single, unassigned 2D 13C-13C NMR spectrum containing backbone and side-chain aliphatic signals. COMPASS does not require resonance assignments. It is particularly well suited for interpretation of magic-angle spinning solid-state NMR spectra, but also applicable to solution NMR spectra. We demonstrate COMPASS with experimental data from four proteins—GB1, ubiquitin, DsbA, and the extracellular domain of human tissue factor—and with reconstructed spectra from 11 additional proteins. For all these proteins, with molecular mass up to 25 kDa, COMPASS distinguished the correct fold, most often within 1.5 Å root-mean-square deviation of the reference structure. PMID:26365800
Tools to Support Interpreting Multiple Regression in the Face of Multicollinearity
Kraha, Amanda; Turner, Heather; Nimon, Kim; Zientek, Linda Reichwein; Henson, Robin K.
2012-01-01
While multicollinearity may increase the difficulty of interpreting multiple regression (MR) results, it should not cause undue problems for the knowledgeable researcher. In the current paper, we argue that rather than using one technique to investigate regression results, researchers should consider multiple indices to understand the contributions that predictors make not only to a regression model, but to each other as well. Some of the techniques to interpret MR effects include, but are not limited to, correlation coefficients, beta weights, structure coefficients, all possible subsets regression, commonality coefficients, dominance weights, and relative importance weights. This article will review a set of techniques to interpret MR effects, identify the elements of the data on which the methods focus, and identify statistical software to support such analyses. PMID:22457655
Tools to support interpreting multiple regression in the face of multicollinearity.
Kraha, Amanda; Turner, Heather; Nimon, Kim; Zientek, Linda Reichwein; Henson, Robin K
2012-01-01
While multicollinearity may increase the difficulty of interpreting multiple regression (MR) results, it should not cause undue problems for the knowledgeable researcher. In the current paper, we argue that rather than using one technique to investigate regression results, researchers should consider multiple indices to understand the contributions that predictors make not only to a regression model, but to each other as well. Some of the techniques to interpret MR effects include, but are not limited to, correlation coefficients, beta weights, structure coefficients, all possible subsets regression, commonality coefficients, dominance weights, and relative importance weights. This article will review a set of techniques to interpret MR effects, identify the elements of the data on which the methods focus, and identify statistical software to support such analyses.
Blackboard architecture for medical image interpretation
NASA Astrophysics Data System (ADS)
Davis, Darryl N.; Taylor, Christopher J.
1991-06-01
There is a growing interest in using sophisticated knowledge-based systems for biomedical image interpretation. We present a principled attempt to use artificial intelligence methodologies in interpreting lateral skull x-ray images. Such radiographs are routinely used in cephalometric analysis to provide quantitative measurements useful to clinical orthodontists. Manual and interactive methods of analysis are known to be error prone and previous attempts to automate this analysis typically fail to capture the expertise and adaptability required to cope with the variability in biological structure and image quality. An integrated model-based system has been developed which makes use of a blackboard architecture and multiple knowledge sources. A model definition interface allows quantitative models, of feature appearance and location, to be built from examples as well as more qualitative modelling constructs. Visual task definition and blackboard control modules allow task-specific knowledge sources to act on information available to the blackboard in a hypothesise and test reasoning cycle. Further knowledge-based modules include object selection, location hypothesis, intelligent segmentation, and constraint propagation systems. Alternative solutions to given tasks are permitted.
D’Andreta, Daniela; Scarbrough, Harry; Evans, Sarah
2014-01-01
Objectives We contribute to existing knowledge translation (KT) literature by developing the notion of ‘enactment’ and illustrate this through an interpretative, comparative case-study analysis of three Collaborations for Leadership in Applied Health Research and Care (CLAHRC) initiatives. We argue for a focus on the way in which the CLAHRC model has been ‘enacted’ as central to the different KT challenges and capabilities encountered. Methods A comparative, mixed method study created a typology of enactments (Classical, Home-grown and Imported) using qualitative analysis and social network analysis. Results We identify systematic differences in the enactment of the CLAHRC model. The sources of these different enactments are subsequently related to variation in formative interpretations and leadership styles, the implementation of different governance structures, and the relative epistemic differences between the professional groups involved. Conclusions Enactment concerns the creative agency of individuals and groups in constituting a particular context for their work through their local interpretation of a particular KT model. Our theory of enactment goes beyond highlighting variation between CLAHRCs, to explore the mechanisms that influence the way a particular model is interpreted and acted upon. We thus encourage less focus on conceptual models and more on the formative role played by leaders of KT initiatives. PMID:24048695
Stevens, Calvin H.; Stone, Paul
2005-01-01
We interpret the Last Chance thrust as similar in many ways to Appalachian-type décollements in which the zone of thrusting is localized along a shale interval. The Last Chance thrust, however, has been dismembered during later geologic events so that its original geometry has been obscured. Our model may have unrecognized analogs in other structurally complex shale basins in which the initial deformation was along a major shale unit.
Fault analysis as part of urban geothermal exploration in the German Molasse Basin around Munich
NASA Astrophysics Data System (ADS)
Ziesch, Jennifer; Tanner, David C.; Hanstein, Sabine; Buness, Hermann; Krawczyk, Charlotte M.; Thomas, Rüdiger
2017-04-01
Faults play an essential role in geothermal exploration. The prediction of potential fluid pathways in urban Munich has been started with the interpretation of a 3-D seismic survey (170 km2) that was acquired during the winter of 2015/2016 in Munich (Germany) within the Bavarian Molasse Basin. As a part of the research project GeoParaMoL*, we focus on the structural interpretation and retro-deformation analysis to detect sub-seismic structures within the reservoir and overburden. We explore the hydrothermal Malm carbonate reservoir (at a depth of 3 km) as a source of deep geothermal energy and the overburden of Tertiary Molasse sediments. The stratigraphic horizons, Top Aquitan, Top Chatt, Top Bausteinschichten, Top Lithothamnien limestone (Top Eocene), Top and Base Malm (Upper Jurassic), together with the detailed interpretation of the faults in the study area are used to construct a 3-D geological model. The study area is characterised by synthetic normal faults that strike parallel to the alpine front. Most major faults were active from Upper Jurassic up to the Miocene. The Munich Fault, which belongs to the Markt-Schwabener Lineament, has a maximum vertical offset of 350 metres in the central part, and contrary to previous interpretation based on 2-D seismic, this fault dies out in the eastern part of the area. The south-eastern part of the study area is dominated by a very complex fault system. Three faults that were previously detected in a smaller 3-D seismic survey at Unterhaching, to the south of the study area, with strike directions of 25°, 45° and 70° (Lüschen et al. 2014), were followed in to the new 3-D seismic survey interpretation. Particularly noticeable are relay ramps and horst/graben structures. The fault with a strike of 25° ends in three big sinkholes with a maximum vertical offset of 60 metres. We interpret this special structure as fault tip horsetail-structure, which caused a large amount of sub-seismic deformation. Consequently, this area could be characterised by increased fluid flow. This detailed understanding of the structural development and regional tectonics of the study area will guide the subsequent determination of potential fluid pathways in the new 3-D subsurface model of urban Munich. This project is funded by the Federal Ministry for Economic Affairs and Energy (BMWi). Lüschen, E., Wolfgramm, M., Fritzer, T., Dussel, M., Thomas, R. & Schulz, R. (2014): 3D seismic survey explores geothermal targets for reservoir characterization at Unterhaching, Munich, Germany, Geothermics, 50, 167-179. * https://www.liag-hannover.de/en/fsp/ge/geoparamol.html
R3D Align web server for global nucleotide to nucleotide alignments of RNA 3D structures.
Rahrig, Ryan R; Petrov, Anton I; Leontis, Neocles B; Zirbel, Craig L
2013-07-01
The R3D Align web server provides online access to 'RNA 3D Align' (R3D Align), a method for producing accurate nucleotide-level structural alignments of RNA 3D structures. The web server provides a streamlined and intuitive interface, input data validation and output that is more extensive and easier to read and interpret than related servers. The R3D Align web server offers a unique Gallery of Featured Alignments, providing immediate access to pre-computed alignments of large RNA 3D structures, including all ribosomal RNAs, as well as guidance on effective use of the server and interpretation of the output. By accessing the non-redundant lists of RNA 3D structures provided by the Bowling Green State University RNA group, R3D Align connects users to structure files in the same equivalence class and the best-modeled representative structure from each group. The R3D Align web server is freely accessible at http://rna.bgsu.edu/r3dalign/.
Unfinished Business in Clarifying Causal Measurement: Commentary on Bainter and Bollen
ERIC Educational Resources Information Center
Markus, Keith A.
2014-01-01
In a series of articles and comments, Kenneth Bollen and his collaborators have incrementally refined an account of structural equation models that (a) model a latent variable as the effect of several observed variables and (b) carry an interpretation of the observed variables as, in some sense, measures of the latent variable that they cause.…
Structural interpretation of P2X receptor mutagenesis studies on drug action
Evans, Richard J
2010-01-01
P2X receptors for ATP are ligand gated cation channels that form from the trimeric assembly of subunits with two transmembrane segments, a large extracellular ligand binding loop, and intracellular amino and carboxy termini. The receptors are expressed throughout the body, involved in functions ranging from blood clotting to inflammation, and may provide important targets for novel therapeutics. Mutagenesis based studies have been used to develop an understanding of the molecular basis of their pharmacology with the aim of developing models of the ligand binding site. A crystal structure for the zebra fish P2X4 receptor in the closed agonist unbound state has been published recently, which provides a major advance in our understanding of the receptors. This review gives an overview of mutagenesis studies that have led to the development of a model of the ATP binding site, as well as identifying residues contributing to allosteric regulation and antagonism. These studies are discussed with reference to the crystal to provide a structural interpretation of the molecular basis of drug action. PMID:20977449
Seismic Evaluation of A Historical Structure In Kastamonu - Turkey
NASA Astrophysics Data System (ADS)
Pınar, USTA; Işıl ÇARHOĞLU, Asuman; EVCİ, Ahmet
2018-01-01
The Kastomonu province is a seismically active zone. the city has many historical buildings made of stone-masonry. In case of any probable future earthquakes, existing buildings may suffer substantial or heavy damages. In the present study, one of the historical traditional house located in Kastamonu were structurally investigated through probabilistic seismic risk assessment methodology. In the study, the building was modeled by using the Finite Element Modeling (FEM) software, SAP2000. Time history analyses were carried out using 10 different ground motion data on the FEM models. Displacements were interpreted, and the results were displayed graphically and discussed.
Uher, Jana
2015-12-01
As science seeks to make generalisations, a science of individual peculiarities encounters intricate challenges. This article explores these challenges by applying the Transdisciplinary Philosophy-of-Science Paradigm for Research on Individuals (TPS-Paradigm) and by exploring taxonomic "personality" research as an example. Analyses of researchers' interpretations of the taxonomic "personality" models, constructs and data that have been generated in the field reveal widespread erroneous assumptions about the abilities of previous methodologies to appropriately represent individual-specificity in the targeted phenomena. These assumptions, rooted in everyday thinking, fail to consider that individual-specificity and others' minds cannot be directly perceived, that abstract descriptions cannot serve as causal explanations, that between-individual structures cannot be isomorphic to within-individual structures, and that knowledge of compositional structures cannot explain the process structures of their functioning and development. These erroneous assumptions and serious methodological deficiencies in widely used standardised questionnaires have effectively prevented psychologists from establishing taxonomies that can comprehensively model individual-specificity in most of the kinds of phenomena explored as "personality", especially in experiencing and behaviour and in individuals' functioning and development. Contrary to previous assumptions, it is not universal models but rather different kinds of taxonomic models that are required for each of the different kinds of phenomena, variations and structures that are commonly conceived of as "personality". Consequently, to comprehensively explore individual-specificity, researchers have to apply a portfolio of complementary methodologies and develop different kinds of taxonomies, most of which have yet to be developed. Closing, the article derives some meta-desiderata for future research on individuals' "personality".
NASA Astrophysics Data System (ADS)
Milillo, Pietro; Perissin, Daniele; Salzer, Jacqueline T.; Lundgren, Paul; Lacava, Giusy; Milillo, Giovanni; Serio, Carmine
2016-10-01
The availability of new constellations of synthetic aperture radar (SAR) sensors is leading to important advances in infrastructure monitoring. These constellations offer the advantage of reduced revisit times, providing low-latency data that enable analysis that can identify infrastructure instability and dynamic deformation processes. In this paper we use COSMO-SkyMed (CSK) and TerraSAR-X (TSX) data to monitor seasonal induced deformation at the Pertusillo dam (Basilicata, Italy) using multi-temporal SAR data analysis. We analyzed 198 images spanning 2010-2015 using a coherent and incoherent PS approach to merge COSMO-SkyMed adjacent tracks and TerraSAR-X acquisitions, respectively. We used hydrostatic-seasonal-temporal (HST) and hydrostatic-temperature-temporal (HTT) models to interpret the non-linear deformation at the dam wall using ground measurements together with SAR time-series analysis. Different look geometries allowed us to characterize the horizontal deformation field typically observed at dams. Within the limits of our models and the SAR acquisition sampling we found that most of the deformation at the Pertusillo dam can be explained by taking into account only thermal seasonal dilation and hydrostatic pressure. The different models show slightly different results when interpreting the aging term at the dam wall. The results highlight how short-revisit SAR satellites in combination with models widely used in the literature for interpreting pendulum and GPS data can be used for supporting structural health monitoring and provide valuable information to ground users directly involved in field measurements.
Surface vibrational structure at alkane liquid/vapor interfaces
NASA Astrophysics Data System (ADS)
Esenturk, Okan; Walker, Robert A.
2006-11-01
Broadband vibrational sum frequency spectroscopy (VSFS) has been used to examine the surface structure of alkane liquid/vapor interfaces. The alkanes range in length from n-nonane (C9H20) to n-heptadecane (C17H36), and all liquids except heptadecane are studied at temperatures well above their bulk (and surface) freezing temperatures. Intensities of vibrational bands in the CH stretching region acquired under different polarization conditions show systematic, chain length dependent changes. Data provide clear evidence of methyl group segregation at the liquid/vapor interface, but two different models of alkane chain structure can predict chain length dependent changes in band intensities. Each model leads to a different interpretation of the extent to which different chain segments contribute to the anisotropic interfacial region. One model postulates that changes in vibrational band intensities arise solely from a reduced surface coverage of methyl groups as alkane chain length increases. The additional methylene groups at the surface must be randomly distributed and make no net contribution to the observed VSF spectra. The second model considers a simple statistical distribution of methyl and methylene groups populating a three dimensional, interfacial lattice. This statistical picture implies that the VSF signal arises from a region extending several functional groups into the bulk liquid, and that the growing fraction of methylene groups in longer chain alkanes bears responsibility for the observed spectral changes. The data and resulting interpretations provide clear benchmarks for emerging theories of molecular structure and organization at liquid surfaces, especially for liquids lacking strong polar ordering.
NASA Astrophysics Data System (ADS)
Argnani, Andrea; Carannante, Simona; Massa, Marco; Lovati, Sara; D'Alema, Ezio
2016-12-01
In their comments Bonini et al. argue that our seismotectonic interpretation of the Emilia 2012 seismic sequence does not agree with observations, and follow three lines of arguments to support their statement. These concern the structural interpretation of seismic reflection profiles, the relationship between seismogenic sources and seismicity patterns, and the fit of inferred fault geometry to InSAR observations. These lines of arguments are mostly repeating what has been previously presented by the same authors, and none of them, as discussed in detail in our reply, presents a strong case against our structural interpretation, that, we are convinced, does not conflict with the available data. The two adjacent rupture surfaces outlined by accurately relocated aftershocks are an indication of the presence of two different active fault planes. Interpretation of seismic profiles supports seismological observation and indicates the occurrence of relevant along-strike changes in structural style. These pieces of information have been integrated to build a new seismotectonic interpretation for the area of the Emilia 2012 seismic sequence. Analysis of geodetic data from the area of the Emilia earthquakes has produced very different models of the fault planes; unlike what has been stated by Bonini et al., who see a difficult fit to InSAR data for the fault planes we have identified, the most recent results are consistent with our interpretation that see a steep fault in the upper 8-10 km under the Mirandola anticline. We point out that the geological structures in the subsurface of the Ferrara Arc do change along strike, and the attempt of Bonini et al. to explain both the May 20 and May 29 sequences using a single cross section is not appropriate.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ran, Hao; de Riese, Tamara; Llorens, Maria-Gema
The forty-year history of the Journal of Structural Geology has recorded an enormous increase in the description, interpretation and modelling of deformation structures. Amongst factors that control deformation and the resulting structures, mechanical anisotropy has proven difficult to tackle. Using a Fast Fourier Transform-based numerical solver for viscoplastic deformation of crystalline materials, we illustrate in this paper how mechanical anisotropy has a profound effect on developing structures, such as crenulation cleavages, porphyroclast geometry and the initiation of shear bands and shear zones.
Ran, Hao; de Riese, Tamara; Llorens, Maria-Gema; ...
2018-05-20
The forty-year history of the Journal of Structural Geology has recorded an enormous increase in the description, interpretation and modelling of deformation structures. Amongst factors that control deformation and the resulting structures, mechanical anisotropy has proven difficult to tackle. Using a Fast Fourier Transform-based numerical solver for viscoplastic deformation of crystalline materials, we illustrate in this paper how mechanical anisotropy has a profound effect on developing structures, such as crenulation cleavages, porphyroclast geometry and the initiation of shear bands and shear zones.
NASA Astrophysics Data System (ADS)
Aydin, Orhun; Caers, Jef Karel
2017-08-01
Faults are one of the building-blocks for subsurface modeling studies. Incomplete observations of subsurface fault networks lead to uncertainty pertaining to location, geometry and existence of faults. In practice, gaps in incomplete fault network observations are filled based on tectonic knowledge and interpreter's intuition pertaining to fault relationships. Modeling fault network uncertainty with realistic models that represent tectonic knowledge is still a challenge. Although methods that address specific sources of fault network uncertainty and complexities of fault modeling exists, a unifying framework is still lacking. In this paper, we propose a rigorous approach to quantify fault network uncertainty. Fault pattern and intensity information are expressed by means of a marked point process, marked Strauss point process. Fault network information is constrained to fault surface observations (complete or partial) within a Bayesian framework. A structural prior model is defined to quantitatively express fault patterns, geometries and relationships within the Bayesian framework. Structural relationships between faults, in particular fault abutting relations, are represented with a level-set based approach. A Markov Chain Monte Carlo sampler is used to sample posterior fault network realizations that reflect tectonic knowledge and honor fault observations. We apply the methodology to a field study from Nankai Trough & Kumano Basin. The target for uncertainty quantification is a deep site with attenuated seismic data with only partially visible faults and many faults missing from the survey or interpretation. A structural prior model is built from shallow analog sites that are believed to have undergone similar tectonics compared to the site of study. Fault network uncertainty for the field is quantified with fault network realizations that are conditioned to structural rules, tectonic information and partially observed fault surfaces. We show the proposed methodology generates realistic fault network models conditioned to data and a conceptual model of the underlying tectonics.
Dresch, Jacqueline M; Liu, Xiaozhou; Arnosti, David N; Ay, Ahmet
2010-10-24
Quantitative models of gene expression generate parameter values that can shed light on biological features such as transcription factor activity, cooperativity, and local effects of repressors. An important element in such investigations is sensitivity analysis, which determines how strongly a model's output reacts to variations in parameter values. Parameters of low sensitivity may not be accurately estimated, leading to unwarranted conclusions. Low sensitivity may reflect the nature of the biological data, or it may be a result of the model structure. Here, we focus on the analysis of thermodynamic models, which have been used extensively to analyze gene transcription. Extracted parameter values have been interpreted biologically, but until now little attention has been given to parameter sensitivity in this context. We apply local and global sensitivity analyses to two recent transcriptional models to determine the sensitivity of individual parameters. We show that in one case, values for repressor efficiencies are very sensitive, while values for protein cooperativities are not, and provide insights on why these differential sensitivities stem from both biological effects and the structure of the applied models. In a second case, we demonstrate that parameters that were thought to prove the system's dependence on activator-activator cooperativity are relatively insensitive. We show that there are numerous parameter sets that do not satisfy the relationships proferred as the optimal solutions, indicating that structural differences between the two types of transcriptional enhancers analyzed may not be as simple as altered activator cooperativity. Our results emphasize the need for sensitivity analysis to examine model construction and forms of biological data used for modeling transcriptional processes, in order to determine the significance of estimated parameter values for thermodynamic models. Knowledge of parameter sensitivities can provide the necessary context to determine how modeling results should be interpreted in biological systems.
Trans-Dimensional Bayesian Imaging of 3-D Crustal and Upper Mantle Structure in Northeast Asia
NASA Astrophysics Data System (ADS)
Kim, S.; Tkalcic, H.; Rhie, J.; Chen, Y.
2016-12-01
Imaging 3-D structures using stepwise inversions of ambient noise and receiver function data is now a routine work. Here, we carry out the inversion in the trans-dimensional and hierarchical extension of the Bayesian framework to obtain rigorous estimates of uncertainty and high-resolution images of crustal and upper mantle structures beneath Northeast (NE) Asia. The methods inherently account for data sensitivities by means of using adaptive parameterizations and treating data noise as free parameters. Therefore, parsimonious results from the methods are balanced out between model complexity and data fitting. This allows fully exploiting data information, preventing from over- or under-estimation of the data fit, and increases model resolution. In addition, the reliability of results is more rigorously checked through the use of Bayesian uncertainties. It is shown by various synthetic recovery tests that complex and spatially variable features are well resolved in our resulting images of NE Asia. Rayleigh wave phase and group velocity tomograms (8-70 s), a 3-D shear-wave velocity model from depth inversions of the estimated dispersion maps, and regional 3-D models (NE China, the Korean Peninsula, and the Japanese islands) from joint inversions with receiver function data of dense networks are presented. High-resolution models are characterized by a number of tectonically meaningful features. We focus our interpretation on complex patterns of sub-lithospheric low velocity structures that extend from back-arc regions to continental margins. We interpret the anomalies in conjunction with distal and distributed intraplate volcanoes in NE Asia. Further discussion on other imaged features will be presented.
Chen, Haoyuan; Piccirilli, Joseph A; Harris, Michael E; York, Darrin M
2015-11-01
Divalent metal ions, due to their ability to stabilize high concentrations of negative charge, are important for RNA folding and catalysis. Detailed models derived from the structures and kinetics of enzymes and from computational simulations have been developed. However, in most cases the specific catalytic modes involving metal ions and their mechanistic roles and effects on transition state structures remain controversial. Valuable information about the nature of the transition state is provided by measurement of kinetic isotope effects (KIEs). However, KIEs reflect changes in all bond vibrational modes that differ between the ground state and transition state. QM calculations are therefore essential for developing structural models of the transition state and evaluating mechanistic alternatives. Herein, we present computational models for Zn2+ binding to RNA 2'O-transphosphorylation reaction models that aid in the interpretation of KIE experiments. Different Zn2+ binding modes produce distinct KIE signatures, and one binding mode involving two zinc ions is in close agreement with KIEs measured for non-enzymatic catalysis by Zn2+ aquo ions alone. Interestingly, the KIE signatures in this specific model are also very close to those in RNase A catalysis. These results allow a quantitative connection to be made between experimental KIE measurements and transition state structure and bonding, and provide insight into RNA 2'O-ransphosphorylation reactions catalyzed by metal ions and enzymes. This article is part of a Special Issue entitled: Enzyme Transition States from Theory and Experiment. Copyright © 2015. Published by Elsevier B.V.
Determining crystal structures through crowdsourcing and coursework
NASA Astrophysics Data System (ADS)
Horowitz, Scott; Koepnick, Brian; Martin, Raoul; Tymieniecki, Agnes; Winburn, Amanda A.; Cooper, Seth; Flatten, Jeff; Rogawski, David S.; Koropatkin, Nicole M.; Hailu, Tsinatkeab T.; Jain, Neha; Koldewey, Philipp; Ahlstrom, Logan S.; Chapman, Matthew R.; Sikkema, Andrew P.; Skiba, Meredith A.; Maloney, Finn P.; Beinlich, Felix R. M.; Caglar, Ahmet; Coral, Alan; Jensen, Alice Elizabeth; Lubow, Allen; Boitano, Amanda; Lisle, Amy Elizabeth; Maxwell, Andrew T.; Failer, Barb; Kaszubowski, Bartosz; Hrytsiv, Bohdan; Vincenzo, Brancaccio; de Melo Cruz, Breno Renan; McManus, Brian Joseph; Kestemont, Bruno; Vardeman, Carl; Comisky, Casey; Neilson, Catherine; Landers, Catherine R.; Ince, Christopher; Buske, Daniel Jon; Totonjian, Daniel; Copeland, David Marshall; Murray, David; Jagieła, Dawid; Janz, Dietmar; Wheeler, Douglas C.; Cali, Elie; Croze, Emmanuel; Rezae, Farah; Martin, Floyd Orville; Beecher, Gil; de Jong, Guido Alexander; Ykman, Guy; Feldmann, Harald; Chan, Hugo Paul Perez; Kovanecz, Istvan; Vasilchenko, Ivan; Connellan, James C.; Borman, Jami Lynne; Norrgard, Jane; Kanfer, Jebbie; Canfield, Jeffrey M.; Slone, Jesse David; Oh, Jimmy; Mitchell, Joanne; Bishop, John; Kroeger, John Douglas; Schinkler, Jonas; McLaughlin, Joseph; Brownlee, June M.; Bell, Justin; Fellbaum, Karl Willem; Harper, Kathleen; Abbey, Kirk J.; Isaksson, Lennart E.; Wei, Linda; Cummins, Lisa N.; Miller, Lori Anne; Bain, Lyn; Carpenter, Lynn; Desnouck, Maarten; Sharma, Manasa G.; Belcastro, Marcus; Szew, Martin; Szew, Martin; Britton, Matthew; Gaebel, Matthias; Power, Max; Cassidy, Michael; Pfützenreuter, Michael; Minett, Michele; Wesselingh, Michiel; Yi, Minjune; Cameron, Neil Haydn Tormey; Bolibruch, Nicholas I.; Benevides, Noah; Kathleen Kerr, Norah; Barlow, Nova; Crevits, Nykole Krystyne; Dunn, Paul; Silveira Belo Nascimento Roque, Paulo Sergio; Riber, Peter; Pikkanen, Petri; Shehzad, Raafay; Viosca, Randy; James Fraser, Robert; Leduc, Robert; Madala, Roman; Shnider, Scott; de Boisblanc, Sharon; Butkovich, Slava; Bliven, Spencer; Hettler, Stephen; Telehany, Stephen; Schwegmann, Steven A.; Parkes, Steven; Kleinfelter, Susan C.; Michael Holst, Sven; van der Laan, T. J. A.; Bausewein, Thomas; Simon, Vera; Pulley, Warwick; Hull, William; Kim, Annes Yukyung; Lawton, Alexis; Ruesch, Amanda; Sundar, Anjali; Lawrence, Anna-Lisa; Afrin, Antara; Maheshwer, Bhargavi; Turfe, Bilal; Huebner, Christian; Killeen, Courtney Elizabeth; Antebi-Lerrman, Dalia; Luan, Danny; Wolfe, Derek; Pham, Duc; Michewicz, Elaina; Hull, Elizabeth; Pardington, Emily; Galal, Galal Osama; Sun, Grace; Chen, Grace; Anderson, Halie E.; Chang, Jane; Hewlett, Jeffrey Thomas; Sterbenz, Jennifer; Lim, Jiho; Morof, Joshua; Lee, Junho; Inn, Juyoung Samuel; Hahm, Kaitlin; Roth, Kaitlin; Nair, Karun; Markin, Katherine; Schramm, Katie; Toni Eid, Kevin; Gam, Kristina; Murphy, Lisha; Yuan, Lucy; Kana, Lulia; Daboul, Lynn; Shammas, Mario Karam; Chason, Max; Sinan, Moaz; Andrew Tooley, Nicholas; Korakavi, Nisha; Comer, Patrick; Magur, Pragya; Savliwala, Quresh; Davison, Reid Michael; Sankaran, Roshun Rajiv; Lewe, Sam; Tamkus, Saule; Chen, Shirley; Harvey, Sho; Hwang, Sin Ye; Vatsia, Sohrab; Withrow, Stefan; Luther, Tahra K.; Manett, Taylor; Johnson, Thomas James; Ryan Brash, Timothy; Kuhlman, Wyatt; Park, Yeonjung; Popović, Zoran; Baker, David; Khatib, Firas; Bardwell, James C. A.
2016-09-01
We show here that computer game players can build high-quality crystal structures. Introduction of a new feature into the computer game Foldit allows players to build and real-space refine structures into electron density maps. To assess the usefulness of this feature, we held a crystallographic model-building competition between trained crystallographers, undergraduate students, Foldit players and automatic model-building algorithms. After removal of disordered residues, a team of Foldit players achieved the most accurate structure. Analysing the target protein of the competition, YPL067C, uncovered a new family of histidine triad proteins apparently involved in the prevention of amyloid toxicity. From this study, we conclude that crystallographers can utilize crowdsourcing to interpret electron density information and to produce structure solutions of the highest quality.
Determining crystal structures through crowdsourcing and coursework.
Horowitz, Scott; Koepnick, Brian; Martin, Raoul; Tymieniecki, Agnes; Winburn, Amanda A; Cooper, Seth; Flatten, Jeff; Rogawski, David S; Koropatkin, Nicole M; Hailu, Tsinatkeab T; Jain, Neha; Koldewey, Philipp; Ahlstrom, Logan S; Chapman, Matthew R; Sikkema, Andrew P; Skiba, Meredith A; Maloney, Finn P; Beinlich, Felix R M; Popović, Zoran; Baker, David; Khatib, Firas; Bardwell, James C A
2016-09-16
We show here that computer game players can build high-quality crystal structures. Introduction of a new feature into the computer game Foldit allows players to build and real-space refine structures into electron density maps. To assess the usefulness of this feature, we held a crystallographic model-building competition between trained crystallographers, undergraduate students, Foldit players and automatic model-building algorithms. After removal of disordered residues, a team of Foldit players achieved the most accurate structure. Analysing the target protein of the competition, YPL067C, uncovered a new family of histidine triad proteins apparently involved in the prevention of amyloid toxicity. From this study, we conclude that crystallographers can utilize crowdsourcing to interpret electron density information and to produce structure solutions of the highest quality.
Testing the structure of a hydrological model using Genetic Programming
NASA Astrophysics Data System (ADS)
Selle, Benny; Muttil, Nitin
2011-01-01
SummaryGenetic Programming is able to systematically explore many alternative model structures of different complexity from available input and response data. We hypothesised that Genetic Programming can be used to test the structure of hydrological models and to identify dominant processes in hydrological systems. To test this, Genetic Programming was used to analyse a data set from a lysimeter experiment in southeastern Australia. The lysimeter experiment was conducted to quantify the deep percolation response under surface irrigated pasture to different soil types, watertable depths and water ponding times during surface irrigation. Using Genetic Programming, a simple model of deep percolation was recurrently evolved in multiple Genetic Programming runs. This simple and interpretable model supported the dominant process contributing to deep percolation represented in a conceptual model that was published earlier. Thus, this study shows that Genetic Programming can be used to evaluate the structure of hydrological models and to gain insight about the dominant processes in hydrological systems.
Akkermans, Simen; Noriega Fernandez, Estefanía; Logist, Filip; Van Impe, Jan F
2017-01-02
Efficient modelling of the microbial growth rate can be performed by combining the effects of individual conditions in a multiplicative way, known as the gamma concept. However, several studies have illustrated that interactions between different effects should be taken into account at stressing environmental conditions to achieve a more accurate description of the growth rate. In this research, a novel approach for modeling the interactions between the effects of environmental conditions on the microbial growth rate is introduced. As a case study, the effect of temperature and pH on the growth rate of Escherichia coli K12 is modeled, based on a set of computer controlled bioreactor experiments performed under static environmental conditions. The models compared in this case study are the gamma model, the model of Augustin and Carlier (2000), the model of Le Marc et al. (2002) and the novel multiplicative interaction model, developed in this paper. This novel model enables the separate identification of interactions between the effects of two (or more) environmental conditions. The comparison of these models focuses on the accuracy, interpretability and compatibility with efficient modeling approaches. Moreover, for the separate effects of temperature and pH, new cardinal parameter model structures are proposed. The novel interaction model contributes to a generic modeling approach, resulting in predictive models that are (i) accurate, (ii) easily identifiable with a limited work load, (iii) modular, and (iv) biologically interpretable. Copyright © 2016. Published by Elsevier B.V.
Protein Structure and Function Prediction Using I-TASSER
Yang, Jianyi; Zhang, Yang
2016-01-01
I-TASSER is a hierarchical protocol for automated protein structure prediction and structure-based function annotation. Starting from the amino acid sequence of target proteins, I-TASSER first generates full-length atomic structural models from multiple threading alignments and iterative structural assembly simulations followed by atomic-level structure refinement. The biological functions of the protein, including ligand-binding sites, enzyme commission number, and gene ontology terms, are then inferred from known protein function databases based on sequence and structure profile comparisons. I-TASSER is freely available as both an on-line server and a stand-alone package. This unit describes how to use the I-TASSER protocol to generate structure and function prediction and how to interpret the prediction results, as well as alternative approaches for further improving the I-TASSER modeling quality for distant-homologous and multi-domain protein targets. PMID:26678386
Using HEC-RAS to Enhance Interpretive Capabilities of Geomorphic Assessments
NASA Astrophysics Data System (ADS)
Keefer, L. L.
2005-12-01
The purpose of a geomorphic assessment is to characterize and evaluate a fluvial system for determining the past watershed and channel conditions, current geomorphic character and potential future channel adjustments. The geomorphic assessment approach utilized by the Illinois State Water Survey assesses channel response to disturbance at multiple temporal and spatial scales to help identify the underlying factors and events which led to the existing channel morphology. This is accomplished through two phases of investigation that involve a historical and physical analysis of the watershed, disturbance history, and field work at increasing levels of detail. To infer future channel adjustments, the geomorphic assessment protocol combines two methods of analyses that are dependent on the quantity and detail of the available data. The first method is the compilation of multiple lines of evidence using qualitative information related to the dominant fluvial environment, channel gradient, stream power thresholds, and channel evolution models. The second method is the use of hydraulic models which provide additional interpretative skills to evaluate potential channel adjustments. The structured data collection framework of the geomorphic assessment approach is used for the development of a HEC-RAS model. The model results are then used as another tool to determine the influence of bridges and control structures on channel stability, stream power profiles to identify potential channel bed degradation zones, and provide data for physically-based bank stability models. This poster will demonstrate the advantages of using a hydraulic model, such as HEC-RAS, to expand the interpretive capabilities of geomorphic assessments. The results from applying this approach will be demonstrated for the Big Creek watershed of the Cache River Basin in southern Illinois.
NASA Technical Reports Server (NTRS)
Chao, Winston C.; Chen, Baode; Lau, William K. M. (Technical Monitor)
2002-01-01
Previous studies (Chao 2000, Chao and Chen 2001, Kirtman and Schneider 2000, Sumi 1992) have shown that, by means of one of several model design changes, the structure of the ITCZ in an aqua-planet model with globally uniform SST and solar angle (U-SST-SA) can change between a single ITCZ at the equator and a double ITCZ straddling the equator. These model design changes include switching to a different cumulus parameterization scheme (e.g., from relaxed Arakawa Schubert scheme (RAS) to moist convective adjustment scheme (MCA)), changes within the cumulus parameterization scheme, and changes in other aspects of the model, such as horizontal resolution. Sometimes only one component of the double ITCZ shows up; but still this is an ITCZ away from the equator, quite distinct from a single ITCZ over the equator. Since these model results were obtained by different investigators using different models which have yielded reasonable general circulation, they are considered as reliable. Chao and Chen (2001; hereafter CC01) have made an initial attempt to interpret these findings based on the concept of rotational ITCZ attractors that they introduced. The purpose of this paper is to offer a more complete interpretation.
Computational theory of line drawing interpretation
NASA Technical Reports Server (NTRS)
Witkin, A. P.
1981-01-01
The recovery of the three dimensional structure of visible surfaces depicted in an image by emphasizing the role of geometric cues present in line drawings, was studied. Three key components are line classification, line interpretation, and surface interpolation. A model for three dimensional line interpretation and surface orientation was refined and a theory for the recovery of surface shape from surface marking geometry was developed. A new approach to the classification of edges was developed and implemented signatures were deduced for each of several edge types, expressed in terms of correlational properties of the image intensities in the vicinity of the edge. A computer program was developed that evaluates image edges as compared with these prototype signatures.
NASA Astrophysics Data System (ADS)
Elkin, M. D.; Alykova, O. M.; Smirnov, V. V.; Stefanova, G. P.
2017-01-01
Structural and dynamic models of dopamine and adrenaline are proposed on the basis of ab initio quantum calculations of the geometric and electronic structure. The parameters of the adiabatic potential are determined, a vibrational states interpretation of the test compound is proposed in this work. The analysis of the molecules conformational structure of the substance is made. A method for calculating the shifts of vibrational excitation frequencies in 1,2,4-threesubstituted of benzole is presented. It is based on second order perturbation theory. A choice of method and basis for calculation of a fundamental vibrations frequencies and intensities of the bands in the IR and Raman spectra is justified. The technique for evaluation of anharmonicity with cubic and quartic force constants is described. The paper presents the results of numerical experiments, geometric parameters of molecules, such as the valence bond lengths and angles between them. We obtain the frequency of the vibrational states and values of their integrated intensities. The interpretation of vibration of conformers is given. The results are in good agreement with experimental values. Proposed frequency can be used to identify the compounds of the vibrational spectra of molecules. The calculation was performed quantum density functional method DFT/B3LYP. It is shown that this method can be used to modeling the geometrical parameters molecular and electronic structure of various substituted of benzole. It allows us to construct the structural-dynamic models of this class of compounds by numerical calculations.
Mesoscopic structure conditions the emergence of cooperation on social networks
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lozano, S.; Arenas, A.; Sanchez, A.
We study the evolutionary Prisoner's Dilemma on two social networks substrates obtained from actual relational data. We find very different cooperation levels on each of them that cannot be easily understood in terms of global statistical properties of both networks. We claim that the result can be understood at the mesoscopic scale, by studying the community structure of the networks. We explain the dependence of the cooperation level on the temptation parameter in terms of the internal structure of the communities and their interconnections. We then test our results on community-structured, specifically designed artificial networks, finding a good agreement withmore » the observations in both real substrates. Our results support the conclusion that studies of evolutionary games on model networks and their interpretation in terms of global properties may not be sufficient to study specific, real social systems. Further, the study allows us to define new quantitative parameters that summarize the mesoscopic structure of any network. In addition, the community perspective may be helpful to interpret the origin and behavior of existing networks as well as to design structures that show resilient cooperative behavior.« less
Bedrosian, Paul A.; Feucht, Daniel W.
2014-01-01
The magnetotelluric component of the EarthScope USArray program has covered over 35% of the continental United States. Resistivity tomography models derived from these data image lithospheric structure and provide constraints on the distribution of fluids and melt within the lithosphere. We present a three-dimensional resistivity model of the northwestern United States which provides new insight into the tectonic assembly of western North America from the Archean to present. Comparison with seismic tomography models reveals regions of correlated and anti-correlated resistivity and velocity that help identify thermal and compositional variations within the lithosphere. Recent (Neogene) tectonic features reflected in the model include the subducting Juan de Fuca–Gorda plate which can be traced beneath the forearc to more than 100 km depth, high lithospheric conductivity along the Snake River Plain, and pronounced lower-crustal and upper-mantle conductivity beneath the Basin and Range. The latter is abruptly terminated to the northwest by the Klamath–Blue Mountains Lineament, which we interpret as an important structure during and since the Mesozoic assembly of the region. This boundary is interpreted to separate hot extended lithosphere from colder, less extended lithosphere. The western edge of Proterozoic North America, as indicated by the Cretaceous initial 87Sr/86Sr = 0.706 contour, is clearly reflected in the resistivity model. We further image an Archean crustal block (“Pend Oreille block”) straddling the Washington/Idaho border, which we speculate separated from the Archean Medicine Hat block in the Proterozoic. Finally, in the modern Cascades forearc, the geometry and internal structure of the Eocene Siletz terrane is reflected in the resistivity model. The apparent eastern edge of the Siletz terrane under the Cascades arc suggests that pre-Tertiary rocks fill the Washington and Oregon back-arc.
Egri-Nagy, Attila; Nehaniv, Chrystopher L
2008-01-01
Biochemical and genetic regulatory networks are often modeled by Petri nets. We study the algebraic structure of the computations carried out by Petri nets from the viewpoint of algebraic automata theory. Petri nets comprise a formalized graphical modeling language, often used to describe computation occurring within biochemical and genetic regulatory networks, but the semantics may be interpreted in different ways in the realm of automata. Therefore, there are several different ways to turn a Petri net into a state-transition automaton. Here, we systematically investigate different conversion methods and describe cases where they may yield radically different algebraic structures. We focus on the existence of group components of the corresponding transformation semigroups, as these reflect symmetries of the computation occurring within the biological system under study. Results are illustrated by applications to the Petri net modelling of intermediary metabolism. Petri nets with inhibition are shown to be computationally rich, regardless of the particular interpretation method. Along these lines we provide a mathematical argument suggesting a reason for the apparent all-pervasiveness of inhibitory connections in living systems.
Pantea, Michael P.; Cole, James C.; Smith, Bruce D.; Faith, Jason R.; Blome, Charles D.; Smith, David V.
2008-01-01
This multimedia report shows and describes digital three-dimensional faulted geologic surfaces and volumes of the lithologic units of the Edwards aquifer in the upper Seco Creek area of Medina and Uvalde Counties in south-central Texas. This geologic framework model was produced using (1) geologic maps and interpretations of depositional environments and paleogeography; (2) lithologic descriptions, interpretations, and geophysical logs from 31 drill holes; (3) rock core and detailed lithologic descriptions from one drill hole; (4) helicopter electromagnetic geophysical data; and (5) known major and minor faults in the study area. These faults were used because of their individual and collective effects on the continuity of the aquifer-forming units in the Edwards Group. Data and information were compared and validated with each other and reflect the complex relationships of structures in the Seco Creek area of the Balcones fault zone. This geologic framework model can be used as a tool to visually explore and study geologic structures within the Seco Creek area of the Balcones fault zone and to show the connectivity of hydrologic units of high and low permeability between and across faults. The software can be used to display other data and information, such as drill-hole data, on this geologic framework model in three-dimensional space.
Orellana, Liliana; Rotnitzky, Andrea; Robins, James M.
2010-01-01
In this companion article to “Dynamic Regime Marginal Structural Mean Models for Estimation of Optimal Dynamic Treatment Regimes, Part I: Main Content” [Orellana, Rotnitzky and Robins (2010), IJB, Vol. 6, Iss. 2, Art. 7] we present (i) proofs of the claims in that paper, (ii) a proposal for the computation of a confidence set for the optimal index when this lies in a finite set, and (iii) an example to aid the interpretation of the positivity assumption. PMID:20405047
NASA Astrophysics Data System (ADS)
Jain, A.
2017-08-01
Computer based method can help in discovery of leads and can potentially eliminate chemical synthesis and screening of many irrelevant compounds, and in this way, it save time as well as cost. Molecular modeling systems are powerful tools for building, visualizing, analyzing and storing models of complex molecular structure that can help to interpretate structure activity relationship. The use of various techniques of molecular mechanics and dynamics and software in Computer aided drug design along with statistics analysis is powerful tool for the medicinal chemistry to synthesis therapeutic and effective drugs with minimum side effect.
Admixture, Population Structure, and F-Statistics.
Peter, Benjamin M
2016-04-01
Many questions about human genetic history can be addressed by examining the patterns of shared genetic variation between sets of populations. A useful methodological framework for this purpose isF-statistics that measure shared genetic drift between sets of two, three, and four populations and can be used to test simple and complex hypotheses about admixture between populations. This article provides context from phylogenetic and population genetic theory. I review how F-statistics can be interpreted as branch lengths or paths and derive new interpretations, using coalescent theory. I further show that the admixture tests can be interpreted as testing general properties of phylogenies, allowing extension of some ideas applications to arbitrary phylogenetic trees. The new results are used to investigate the behavior of the statistics under different models of population structure and show how population substructure complicates inference. The results lead to simplified estimators in many cases, and I recommend to replace F3 with the average number of pairwise differences for estimating population divergence. Copyright © 2016 by the Genetics Society of America.
Coincidence avoidance principle in surface haptic interpretation
Manuel, Steven G.; Klatzky, Roberta L.; Peshkin, Michael A.; Colgate, James Edward
2015-01-01
When multiple fingertips experience force sensations, how does the brain interpret the combined sensation? In particular, under what conditions are the sensations perceived as separate or, alternatively, as an integrated whole? In this work, we used a custom force-feedback device to display force signals to two fingertips (index finger and thumb) as they traveled along collinear paths. Each finger experienced a pattern of forces that, taken individually, produced illusory virtual bumps, and subjects reported whether they felt zero, one, or two bumps. We varied the spatial separation between these bump-like force-feedback regions, from being much greater than the finger span to nearly exactly the finger span. When the bump spacing was the same as the finger span, subjects tended to report only one bump. We found that the results are consistent with a quantitative model of perception in which the brain selects a structural interpretation of force signals that relies on minimizing coincidence stemming from accidental alignments between fingertips and inferred surface structures. PMID:25675477
Gravity profiles across the Uyaijah Ring structure, Kingdom of Saudi Arabia
Gettings, M.E.; Andreasen, G.E.
1987-01-01
The resulting structural model, based on profile fits to gravity responses of three-dimensional models and excess-mass calculations, gives a depth estimate to the base of the complex of 4.75 km. The contacts of the complex are inferred to be steeply dipping inward along the southwest margin of the structure. To the north and east, however, the basal contact of the complex dips more gently inward (about 30 degrees). The ring structure appears to be composed of three laccolith-shaped plutons; two are granitic in composition and make up about 85 percent of the volume of the complex, and one is granodioritic and comprises the remaining 15 percent. The source area for the plutons appears to be in the southwest quadrant of the Uyaijah ring structure. A northwest-trending shear zone cuts the northern half of the structure and contains mafic dikes that have a small but identifiable gravity-anomaly response. The structural model agrees with models derived from geological interpretation except that the estimated depth to which the structure extends is decreased considerably by the gravity results.
ERIC Educational Resources Information Center
Celik, Ismail; Sahin, Ismail; Akturk, Ahmet Oguz
2014-01-01
In the current study, the model of technological pedagogical and content knowledge (TPACK) is used as the theoretical framework in the process of data collection and interpretation of the results. This study analyzes the perceptions of 744 undergraduate students regarding their TPACK levels measured by responses to a survey developed by Sahin…
ERIC Educational Resources Information Center
Gallup, G. A.
1988-01-01
Describes why specific forms of orbitals used to interpret spectroscopy involving electronic transitions may not say much about the electronic structure of molecules. Discusses several theoretical approaches to explain the anomoly. Determines that the Lewis electron-pair model for molecules is a good predictor of spectroscopic results. (ML)
Federal Register 2010, 2011, 2012, 2013, 2014
2013-04-17
... performance requirements. Finite element modeling is a mature science and appropriately accurate for modeling... interpretation letter to Jason Backs (CPS Trailers, May 28, 1998). \\3\\ Finite element analysis can be used as a... FMVSS No. 224 that the guard-like structure can serve as a rear impact guard.\\2\\ Sidump'r used a finite...
Algebraic models of local period maps and Yukawa algebras
NASA Astrophysics Data System (ADS)
Bandiera, Ruggero; Manetti, Marco
2018-02-01
We describe some L_{∞} model for the local period map of a compact Kähler manifold. Applications include the study of deformations with associated variation of Hodge structure constrained by certain closed strata of the Grassmannian of the de Rham cohomology. As a by-product, we obtain an interpretation in the framework of deformation theory of the Yukawa coupling.
NASA Astrophysics Data System (ADS)
Silalahi, R. L. R.; Mustaniroh, S. A.; Ikasari, D. M.; Sriulina, R. P.
2018-03-01
UD. Bunda Foods is an SME located in the district of Sidoarjo. UD. Bunda Foods has problems of maintaining its milkfish’s quality assurance and developing marketing strategies. Improving those problems enables UD. Bunda Foods to compete with other similar SMEs and to market its product for further expansion of their business. The objectives of this study were to determine the model of the institutional structure of the milkfish supply chain, to determine the elements, the sub-elements, and the relationship among each element. The method used in this research was Interpretive Structural Modeling (ISM), involving 5 experts as respondents consisting of 1 practitioner, 1 academician, and 3 government organisation employees. The results showed that there were two key elements include requirement and goals elements. Based on the Drive Power-Dependence (DP-D) matrix, the key sub-elements of requirement element, consisted of raw material continuity, appropriate marketing strategy, and production capital, were positioned in the Linkage sector quadrant. The DP-D matrix for the key sub-elements of the goal element also showed a similar position. The findings suggested several managerial implications to be carried out by UD. Bunda Foods include establishing good relationships with all involved institutions, obtaining capital assistance, and attending the marketing training provided by the government.
Principal elementary mode analysis (PEMA).
Folch-Fortuny, Abel; Marques, Rodolfo; Isidro, Inês A; Oliveira, Rui; Ferrer, Alberto
2016-03-01
Principal component analysis (PCA) has been widely applied in fluxomics to compress data into a few latent structures in order to simplify the identification of metabolic patterns. These latent structures lack a direct biological interpretation due to the intrinsic constraints associated with a PCA model. Here we introduce a new method that significantly improves the interpretability of the principal components with a direct link to metabolic pathways. This method, called principal elementary mode analysis (PEMA), establishes a bridge between a PCA-like model, aimed at explaining the maximum variance in flux data, and the set of elementary modes (EMs) of a metabolic network. It provides an easy way to identify metabolic patterns in large fluxomics datasets in terms of the simplest pathways of the organism metabolism. The results using a real metabolic model of Escherichia coli show the ability of PEMA to identify the EMs that generated the different simulated flux distributions. Actual flux data of E. coli and Pichia pastoris cultures confirm the results observed in the simulated study, providing a biologically meaningful model to explain flux data of both organisms in terms of the EM activation. The PEMA toolbox is freely available for non-commercial purposes on http://mseg.webs.upv.es.
Location of geologic structures from interpretation of ERTS-1 imagery, Carbon County, Wyoming
NASA Technical Reports Server (NTRS)
Marrs, R. W.; Barton, R.
1974-01-01
The author has identified the following significant results. Possible geologic structures in the basin sediments of Carbon County and vicinity were located by interpretation of ERTS-1 imagery. These same structures are not evident on existing conventional geologic maps of the area. Subsequent field checks confirmed much of the geologic interpretation, but revealed that two apparent closed structures identified on the ERTS-1 imagery were actually topographic pseudostructures in flat or homoclinal sediments. Stereoscopic coverage (where available) allows the interpreter to avoid such misinterpretations.
Crustal insights from gravity and aeromagnetic analysis: Central North Slope, Alaska
Saltus, R.W.; Potter, C.J.; Phillips, J.D.
2006-01-01
Aeromagnetic and gravity data are processed and interpreted to reveal deep and shallow information about the crustal structure of the central North Slope, Alaska. Regional aeromagnetic anomalies primarily reflect deep crustal features. Regional gravity anomalies are more complex and require detailed analysis. We constrain our geophysical models with seismic data and interpretations along two transects including the Trans-Alaska Crustal Transect. Combined geophysical analysis reveals a remarkable heterogeneity of the pre-Mississippian basement. In the central North Slope, pre-Mississippian basement consists of two distinct geophysical domains. To the southwest, the basement is dense and highly magnetic; this basement is likely mafic and mechanically strong, possibly acting as a buttress to basement involvement in Brooks Range thrusting. To the northeast, the central North Slope basement consists of lower density, moderately magnetic rocks with several discrete regions (intrusions?) of more magnetic rocks. A conjugate set of geophysical trends, northwest-southeast and southwest-northeast, may be a factor in the crustal response to tectonic compression in this domain. High-resolution gravity and aeromagnetic data, where available, reflect details of shallow fault and fold structure. The maps and profile models in this report should provide useful guidelines and complementary information for regional structural studies, particularly in combination with detailed seismic reflection interpretations. Future challenges include collection of high-resolution gravity and aeromagnetic data for the entire North Slope as well as additional deep crustal information from seismic, drilling, and other complementary methods. Copyrights ?? 2006. The American Association of Petroleum Geologists. All rights reserved.
Linking numerical models of lithospheric deformation and magnetotelluric images
NASA Astrophysics Data System (ADS)
Sobolev, S. V.
2012-12-01
Efficient modeling of geodynamic processes requires constraints from different fields of geosciences. Frequently used are data on crustal structure and composition and their evolution constrained by seismic, gravity and petrological/geochemical studies. However, links between geodynamic modeling and rapidly developing field of magnetotelluric (MT) studies are still insufficient. I'll consider two recent examples of MT observations and geodynamic modeling demonstrating that joint analyses of thermomechanical models of lithospheric deformation and MT images may be useful to understand geodynamic processes. One set of observations is MT data for San Andreas Fault (SAF) in the region close to the SAFOD Site (Becken et al., 2011) that shows high conductivity anomalies in the mantle, that are interpreted as fluid flow feeding creeping part of SAF south of the SAFOD Site. Interestingly, zones of high conductivity do not coincide with the expected zones of the recent active deformation (SAF), but are located to the west of it. Based on thermomechanical model of the evolution of the SAFS in Central and Northern California during the last 20 Mln. years (Popov et al., 2012), I'll demonstrate that high conductivity anomalies precisely coincide with the expected zones of the highest accumulated shear strain. Possible interpretation of this coincidence is that strong preferred orientation of olivine crystals in the highly deformed mantle shear zone causes high permeability of fluids. Another set of observations is MT data showing high conductivity anomalies in the crust of Tibet (Unsworh et al., 2005, Bai et al., 2010) and Pamirs (Sass et al., 2011) that are often interpreted as an evidence for the widely spread partially molten crust. Using 2D thermomechanical models of the collision between India and Eurasia, I'll demonstrate that such structures in the crust cannot appear without delamination of the mantle lithosphere during tectonic shortening. Internal heating of the thickened felsic crust due to radiogenic heat production and shear heating is not sufficient to produce such structures. The key triggering factor for the delamination is gabbro-eclogite transformation in the lower crust. Delamination of the lower crust and mantle lithosphere is followed by the partial melting and internal convection in the thickened upper-middle crust.
VAMPnets for deep learning of molecular kinetics.
Mardt, Andreas; Pasquali, Luca; Wu, Hao; Noé, Frank
2018-01-02
There is an increasing demand for computing the relevant structures, equilibria, and long-timescale kinetics of biomolecular processes, such as protein-drug binding, from high-throughput molecular dynamics simulations. Current methods employ transformation of simulated coordinates into structural features, dimension reduction, clustering the dimension-reduced data, and estimation of a Markov state model or related model of the interconversion rates between molecular structures. This handcrafted approach demands a substantial amount of modeling expertise, as poor decisions at any step will lead to large modeling errors. Here we employ the variational approach for Markov processes (VAMP) to develop a deep learning framework for molecular kinetics using neural networks, dubbed VAMPnets. A VAMPnet encodes the entire mapping from molecular coordinates to Markov states, thus combining the whole data processing pipeline in a single end-to-end framework. Our method performs equally or better than state-of-the-art Markov modeling methods and provides easily interpretable few-state kinetic models.
Huang, Linda; Fernandes, Helen; Zia, Hamid; Tavassoli, Peyman; Rennert, Hanna; Pisapia, David; Imielinski, Marcin; Sboner, Andrea; Rubin, Mark A; Kluk, Michael; Elemento, Olivier
2017-05-01
This paper describes the Precision Medicine Knowledge Base (PMKB; https://pmkb.weill.cornell.edu ), an interactive online application for collaborative editing, maintenance, and sharing of structured clinical-grade cancer mutation interpretations. PMKB was built using the Ruby on Rails Web application framework. Leveraging existing standards such as the Human Genome Variation Society variant description format, we implemented a data model that links variants to tumor-specific and tissue-specific interpretations. Key features of PMKB include support for all major variant types, standardized authentication, distinct user roles including high-level approvers, and detailed activity history. A REpresentational State Transfer (REST) application-programming interface (API) was implemented to query the PMKB programmatically. At the time of writing, PMKB contains 457 variant descriptions with 281 clinical-grade interpretations. The EGFR, BRAF, KRAS, and KIT genes are associated with the largest numbers of interpretable variants. PMKB's interpretations have been used in over 1500 AmpliSeq tests and 750 whole-exome sequencing tests. The interpretations are accessed either directly via the Web interface or programmatically via the existing API. An accurate and up-to-date knowledge base of genomic alterations of clinical significance is critical to the success of precision medicine programs. The open-access, programmatically accessible PMKB represents an important attempt at creating such a resource in the field of oncology. The PMKB was designed to help collect and maintain clinical-grade mutation interpretations and facilitate reporting for clinical cancer genomic testing. The PMKB was also designed to enable the creation of clinical cancer genomics automated reporting pipelines via an API. © The Author 2016. Published by Oxford University Press on behalf of the American Medical Informatics Association.
Huang, Linda; Fernandes, Helen; Zia, Hamid; Tavassoli, Peyman; Rennert, Hanna; Pisapia, David; Imielinski, Marcin; Sboner, Andrea; Rubin, Mark A; Kluk, Michael
2017-01-01
Objective: This paper describes the Precision Medicine Knowledge Base (PMKB; https://pmkb.weill.cornell.edu), an interactive online application for collaborative editing, maintenance, and sharing of structured clinical-grade cancer mutation interpretations. Materials and Methods: PMKB was built using the Ruby on Rails Web application framework. Leveraging existing standards such as the Human Genome Variation Society variant description format, we implemented a data model that links variants to tumor-specific and tissue-specific interpretations. Key features of PMKB include support for all major variant types, standardized authentication, distinct user roles including high-level approvers, and detailed activity history. A REpresentational State Transfer (REST) application-programming interface (API) was implemented to query the PMKB programmatically. Results: At the time of writing, PMKB contains 457 variant descriptions with 281 clinical-grade interpretations. The EGFR, BRAF, KRAS, and KIT genes are associated with the largest numbers of interpretable variants. PMKB’s interpretations have been used in over 1500 AmpliSeq tests and 750 whole-exome sequencing tests. The interpretations are accessed either directly via the Web interface or programmatically via the existing API. Discussion: An accurate and up-to-date knowledge base of genomic alterations of clinical significance is critical to the success of precision medicine programs. The open-access, programmatically accessible PMKB represents an important attempt at creating such a resource in the field of oncology. Conclusion: The PMKB was designed to help collect and maintain clinical-grade mutation interpretations and facilitate reporting for clinical cancer genomic testing. The PMKB was also designed to enable the creation of clinical cancer genomics automated reporting pipelines via an API. PMID:27789569
New Age of 3D Geological Modelling or Complexity is not an Issue Anymore
NASA Astrophysics Data System (ADS)
Mitrofanov, Aleksandr
2017-04-01
Geological model has a significant value in almost all types of researches related to regional mapping, geodynamics and especially to structural and resource geology of mineral deposits. Well-developed geological model must take into account all vital features of modelling object without over-simplification and also should adequately represent the interpretation of the geologist. In recent years with the gradual exhaustion deposits with relatively simple morphology geologists from all over the world are faced with the necessity of building the representative models for more and more structurally complex objects. Meanwhile, the amount of tools used for that has not significantly changed in the last two-three decades. The most widespread method of wireframe geological modelling now was developed in 1990s and is fully based on engineering design set of instruments (so-called CAD). Strings and polygons representing the section-based interpretation are being used as an intermediate step in the process of wireframes generation. Despite of significant time required for this type of modelling, it still can provide sufficient results for simple and medium-complexity geological objects. However, with the increasing complexity more and more vital features of the deposit are being sacrificed because of fundamental inability (or much greater time required for modelling) of CAD-based explicit techniques to develop the wireframes of the appropriate complexity. At the same time alternative technology which is not based on sectional approach and which uses the fundamentally different mathematical algorithms is being actively developed in the variety of other disciplines: medicine, advanced industrial design, game and cinema industry. In the recent years this implicit technology started to being developed for geological modelling purpose and nowadays it is represented by very powerful set of tools that has been integrated in almost all major commercial software packages. Implicit modelling allows to develop geological models that really correspond with complicated geological reality. Models can include fault blocking, complex structural trends and folding; can be based on excessive input dataset (like lots of drilling on the mining stage) or, on the other hand, on a quite few drillholes intersections with significant input from geological interpretation of the deposit. In any case implicit modelling, if is used correctly, allows to incorporate the whole batch of geological data and relatively quickly get the easily adjustable, flexible and robust geological wireframes that can be used as a reliable foundation on the following stages of geological investigations. In SRK practice nowadays almost all the wireframe models used for structural and resource geology are developed with implicit modelling tools which significantly increased the speed and quality of geological modelling.
Toxicity Evaluation of Engineered Nanomaterials: Risk Evaluation Tools (Phase 3 Studies)
2012-01-01
report. The second modeling approach was on quantitative structure activity relationships ( QSARs ). A manuscript entitled “Connecting the dots: Towards...expands rapidly. We proposed two types of mechanisms of toxic action supported by the nano- QSAR model , which collectively govern the toxicity of the...interpretative nano- QSAR model describing toxicity of 18 nano-metal oxides to a HaCaT cell line as a model for dermal exposure. In result, by the comparison of
On numerical modeling of one-dimensional geothermal histories
Haugerud, R.A.
1989-01-01
Numerical models of one-dimensional geothermal histories are one way of understanding the relations between tectonics and transient thermal structure in the crust. Such models can be powerful tools for interpreting geochronologic and thermobarometric data. A flexible program to calculate these models on a microcomputer is available and examples of its use are presented. Potential problems with this approach include the simplifying assumptions that are made, limitations of the numerical techniques, and the neglect of convective heat transfer. ?? 1989.
a Structure of Experienced Time
NASA Astrophysics Data System (ADS)
Havel, Ivan M.
2005-10-01
The subjective experience of time will be taken as a primary motivation for an alternative, essentially discontinuous conception of time. Two types of such experience will be discussed, one based on personal episodic memory, the other on the theoretical fine texture of experienced time below the threshold of phenomenal awareness. The former case implies a discrete structure of temporal episodes on a large scale, while the latter case suggests endowing psychological time with a granular structure on a small scale, i.e. interpreting it as a semi-ordered flow of smeared (not point-like) subliminal time grains. Only on an intermediate temporal scale would the subjectively felt continuity and fluency of time emerge. Consequently, there is no locally smooth mapping of phenomenal time onto the real number continuum. Such a model has certain advantages; for instance, it avoids counterintuitive interpretations of some neuropsychological experiments (e.g. Libet's measurement) in which the temporal order of events is crucial.
Structural damage detection using deep learning of ultrasonic guided waves
NASA Astrophysics Data System (ADS)
Melville, Joseph; Alguri, K. Supreet; Deemer, Chris; Harley, Joel B.
2018-04-01
Structural health monitoring using ultrasonic guided waves relies on accurate interpretation of guided wave propagation to distinguish damage state indicators. However, traditional physics based models do not provide an accurate representation, and classic data driven techniques, such as a support vector machine, are too simplistic to capture the complex nature of ultrasonic guide waves. To address this challenge, this paper uses a deep learning interpretation of ultrasonic guided waves to achieve fast, accurate, and automated structural damaged detection. To achieve this, full wavefield scans of thin metal plates are used, half from the undamaged state and half from the damaged state. This data is used to train our deep network to predict the damage state of a plate with 99.98% accuracy given signals from just 10 spatial locations on the plate, as compared to that of a support vector machine (SVM), which achieved a 62% accuracy.
Solution x-ray scattering and structure formation in protein dynamics
NASA Astrophysics Data System (ADS)
Nasedkin, Alexandr; Davidsson, Jan; Niemi, Antti J.; Peng, Xubiao
2017-12-01
We propose a computationally effective approach that builds on Landau mean-field theory in combination with modern nonequilibrium statistical mechanics to model and interpret protein dynamics and structure formation in small- to wide-angle x-ray scattering (S/WAXS) experiments. We develop the methodology by analyzing experimental data in the case of Engrailed homeodomain protein as an example. We demonstrate how to interpret S/WAXS data qualitatively with a good precision and over an extended temperature range. We explain experimental observations in terms of protein phase structure, and we make predictions for future experiments and for how to analyze data at different ambient temperature values. We conclude that the approach we propose has the potential to become a highly accurate, computationally effective, and predictive tool for analyzing S/WAXS data. For this, we compare our results with those obtained previously in an all-atom molecular dynamics simulation.
NASA Astrophysics Data System (ADS)
Davis, J. K.; Becel, A.; Shillington, D. J.; Buck, W. R.
2017-12-01
In the fall of 2014, the R/V Marcus Langseth collected gravity, magnetic, and reflection seismic data as part of the Eastern North American Margin Community Seismic Experiment. The dataset covers a 500 km wide section of the Mid-Atlantic passive margin offshore North Carolina, which formed after the Mesozoic breakup of the supercontinent Pangaea. Using these seismic and potential field data, we present observations and interpretations along two cross margin and one along-margin profiles. Analyses and interpretations are conducted using pre-stack depth migrated reflection seismic profiles in conjunction with forward modeling of shipboard gravity and magnetic anomalies. Preliminary interpretations of the data reveal variations in basement character and structure across the entire transition between continental and oceanic domains. These interpretations help provide insight into the origin and nature of the prominent East Coast and Blake Spur magnetic anomalies, as well as the Inner Magnetic Quiet Zone which occupies the domain between the anomalies. Collectively, these observations can aid in deciphering the rift-to-drift transition during the breakup of North America and West Africa and formation of the Central Atlantic.
NASA Astrophysics Data System (ADS)
Hara, Hidetoshi; Kurihara, Toshiyuki; Mori, Hiroshi
2013-04-01
We characterize the tectono-stratigraphic architecture and low-grade metamorphism of the accretionary complex preserved in the Kurosegawa belt of the Kitagawa district in eastern Shikoku, Southwest Japan, in order to understand its internal structure, tectono-metamorphic evolution, and assessments of displacement of continental fragments within the complex. We report the first ever documented occurrence of an Early Jurassic radiolarian assemblage within the accretionary complex of the Kurosegawa belt that has been previously classified as the Late Permian accretionary complex, thus providing a revised age interpretation for these rocks. The accretionary complex is subdivided into four distinct tectono-stratigraphic units: Late Permian mélange and phyllite units, and Early Jurassic mélange and sandstone units. The stratigraphy of these four units is structurally repeated due to an E-W striking, steeply dipping regional fault. We characterized low-grade metamorphism of the accretionary complex via illite crystallinity and Raman spectroscopy of carbonaceous material. The estimated pattern of low-grade metamorphism showed pronounced variability within the complex and revealed no discernible spatial trends. The primary thermal structure in these rocks was overprinted by later tectonic events. Based on geological and thermal structure, we conclude that continental fragments within the Kurosegawa belt were structurally translated into both the Late Permian and Early Jurassic accretionary complexes, which comprise a highly deformed zone affected by strike-slip tectonics during the Early Cretaceous. Different models have been proposed to explain the initial structural evolution of the Kurosegawa belt (i.e., micro-continent collision and klippe tectonic models). Even if we presuppose either model, the available geological evidence requires a new interpretation, whereby primary geological structures are overprinted and reconfigured by later tectonic events.
NASA Astrophysics Data System (ADS)
Heron, Philip J.; Pysklywec, Russell N.
2016-05-01
Continents have a rich tectonic history that have left lasting crustal impressions. In analyzing Central Australian intraplate orogenesis, complex continental features make it difficult to identify the controls of inherited structure. Here the tectonics of two types of inherited structures (e.g., a thermally enhanced or a rheologically strengthened region) are compared in numerical simulations of continental compression with and without "glacial buzzsaw" erosion. We find that although both inherited structures produce deformation in the upper crust that is confined to areas where material contrasts, patterns of deformation in the deep lithosphere differ significantly. Furthermore, our models infer that glacial buzzsaw erosion has little impact at depth. This tectonic isolation of the mantle lithosphere from glacial processes may further assist in the identification of a controlling inherited structure in intraplate orogenesis. Our models are interpreted in the context of Central Australian tectonics (specifically the Petermann and Alice Springs orogenies).
Interactive Visualization to Advance Earthquake Simulation
NASA Astrophysics Data System (ADS)
Kellogg, Louise H.; Bawden, Gerald W.; Bernardin, Tony; Billen, Magali; Cowgill, Eric; Hamann, Bernd; Jadamec, Margarete; Kreylos, Oliver; Staadt, Oliver; Sumner, Dawn
2008-04-01
The geological sciences are challenged to manage and interpret increasing volumes of data as observations and simulations increase in size and complexity. For example, simulations of earthquake-related processes typically generate complex, time-varying data sets in two or more dimensions. To facilitate interpretation and analysis of these data sets, evaluate the underlying models, and to drive future calculations, we have developed methods of interactive visualization with a special focus on using immersive virtual reality (VR) environments to interact with models of Earth’s surface and interior. Virtual mapping tools allow virtual “field studies” in inaccessible regions. Interactive tools allow us to manipulate shapes in order to construct models of geological features for geodynamic models, while feature extraction tools support quantitative measurement of structures that emerge from numerical simulation or field observations, thereby enabling us to improve our interpretation of the dynamical processes that drive earthquakes. VR has traditionally been used primarily as a presentation tool, albeit with active navigation through data. Reaping the full intellectual benefits of immersive VR as a tool for scientific analysis requires building on the method’s strengths, that is, using both 3D perception and interaction with observed or simulated data. This approach also takes advantage of the specialized skills of geological scientists who are trained to interpret, the often limited, geological and geophysical data available from field observations.
Huang, Ruili; Southall, Noel; Xia, Menghang; Cho, Ming-Hsuang; Jadhav, Ajit; Nguyen, Dac-Trung; Inglese, James; Tice, Raymond R.; Austin, Christopher P.
2009-01-01
In support of the U.S. Tox21 program, we have developed a simple and chemically intuitive model we call weighted feature significance (WFS) to predict the toxicological activity of compounds, based on the statistical enrichment of structural features in toxic compounds. We trained and tested the model on the following: (1) data from quantitative high–throughput screening cytotoxicity and caspase activation assays conducted at the National Institutes of Health Chemical Genomics Center, (2) data from Salmonella typhimurium reverse mutagenicity assays conducted by the U.S. National Toxicology Program, and (3) hepatotoxicity data published in the Registry of Toxic Effects of Chemical Substances. Enrichments of structural features in toxic compounds are evaluated for their statistical significance and compiled into a simple additive model of toxicity and then used to score new compounds for potential toxicity. The predictive power of the model for cytotoxicity was validated using an independent set of compounds from the U.S. Environmental Protection Agency tested also at the National Institutes of Health Chemical Genomics Center. We compared the performance of our WFS approach with classical classification methods such as Naive Bayesian clustering and support vector machines. In most test cases, WFS showed similar or slightly better predictive power, especially in the prediction of hepatotoxic compounds, where WFS appeared to have the best performance among the three methods. The new algorithm has the important advantages of simplicity, power, interpretability, and ease of implementation. PMID:19805409
2D radiative-magnetohydrostatic model of a prominence observed by Hinode, SoHO/SUMER and Meudon/MSDP
NASA Astrophysics Data System (ADS)
Berlicki, A.; Gunar, S.; Heinzel, P.; Schmieder, B.; Schwartz, P.
2011-06-01
Aims: Prominences observed by Hinode show very dynamical and intriguing structures. To understand the mechanisms that are responsible for these moving structures, it is important to know the physical conditions that prevail in fine-structure threads. In the present work we analyse a quiescent prominence with fine structures, which exhibits dynamic behaviour, which was observed in the hydrogen Hα line with Hinode/SOT, Meudon/MSDP and Ondřejov/HSFA2, and simultaneously in hydrogen Lyman lines with SoHO/SUMER during a coordinated campaign. We derive the fine-structure physical parameters of this prominence and also address the questions of the role of the magnetic dips and of the interpretation of the flows. Methods: We calibrate the SoHO/SUMER and Meudon/MSDP data and obtain the line profiles of the hydrogen Lyman series (Lβ to L6), the Ciii (977.03 Å) and Svi (933.40 Å), and Hα along the slit of SoHO/SUMER that crosses the Hinode/SOT prominence. We employ a complex 2D radiation-magnetohydrostatic (RMHS) modelling technique to properly interpret the observed spectral lines and derive the physical parameters of interest. The model was constrained not only with integrated intensities of the lines, but also with the hydrogen line profiles. Results: The slit of SoHO/SUMER is crossing different prominence structures: threads and dark bubbles. Comparing the observed integrated intensities, the depressions of Hα bubbles are clearly identified in the Lyman, Ciii, and Svi lines. To fit the observations, we propose a new 2D model with the following parameters: T = 8000 K, pcen = 0.035 dyn cm-2, B = 5 Gauss, ne = 1010 cm-3, 40 threads each 1000 km wide, plasma β is 3.5 × 10-2. Conclusions: The analysis of Ciii and Svi emission in dark Hα bubbles allows us to conclude that there is no excess of a hotter plasma in these bubbles. The new 2D model allows us to diagnose the orientation of the magnetic field versus the LOS. The 40 threads are integrated along the LOS. We demonstrate that integrated intensities alone are not sufficient to derive the realistic physical parameters of the prominence. The profiles of the Lyman lines and also those of the Hα line are necessary to constrain 2D RMHS models. The magnetic field in threads is horizontal, perpendicular to the LOS, and in the form of shallow dips. With this geometry the dynamics of fine structures in prominences could be interpreted by a shrinkage of the quasi-horizontal magnetic field lines and apparently is not caused by the quasi-vertical bulk flows of the plasma, as Hinode/SOT movies seemingly suggest.
Quantitative Characterization of Tissue Microstructure with Temporal Diffusion Spectroscopy
Xu, Junzhong; Does, Mark D.; Gore, John C.
2009-01-01
The signals recorded by diffusion-weighted magnetic resonance imaging (DWI) are dependent on the micro-structural properties of biological tissues, so it is possible to obtain quantitative structural information non-invasively from such measurements. Oscillating gradient spin echo (OGSE) methods have the ability to probe the behavior of water diffusion over different time scales and the potential to detect variations in intracellular structure. To assist in the interpretation of OGSE data, analytical expressions have been derived for diffusion-weighted signals with OGSE methods for restricted diffusion in some typical structures, including parallel planes, cylinders and spheres, using the theory of temporal diffusion spectroscopy. These analytical predictions have been confirmed with computer simulations. These expressions suggest how OGSE signals from biological tissues should be analyzed to characterize tissue microstructure, including how to estimate cell nuclear sizes. This approach provides a model to interpret diffusion data obtained from OGSE measurements that can be used for applications such as monitoring tumor response to treatment in vivo. PMID:19616979
Philipp, Bodo; Hoff, Malte; Germa, Florence; Schink, Bernhard; Beimborn, Dieter; Mersch-Sundermann, Volker
2007-02-15
Prediction of the biodegradability of organic compounds is an ecologically desirable and economically feasible tool for estimating the environmental fate of chemicals. We combined quantitative structure-activity relationships (QSAR) with the systematic collection of biochemical knowledge to establish rules for the prediction of aerobic biodegradation of N-heterocycles. Validated biodegradation data of 194 N-heterocyclic compounds were analyzed using the MULTICASE-method which delivered two QSAR models based on 17 activating (OSAR 1) and on 16 inactivating molecular fragments (GSAR 2), which were statistically significantly linked to efficient or poor biodegradability, respectively. The percentages of correct classifications were over 99% for both models, and cross-validation resulted in 67.9% (GSAR 1) and 70.4% (OSAR 2) correct predictions. Biochemical interpretation of the activating and inactivating characteristics of the molecular fragments delivered plausible mechanistic interpretations and enabled us to establish the following biodegradation rules: (1) Target sites for amidohydrolases and for cytochrome P450 monooxygenases enhance biodegradation of nonaromatic N-heterocycles. (2) Target sites for molybdenum hydroxylases enhance biodegradation of aromatic N-heterocycles. (3) Target sites for hydratation by an urocanase-like mechanism enhance biodegradation of imidazoles. Our complementary approach represents a feasible strategy for generating concrete rules for the prediction of biodegradability of organic compounds.
Inferring Nonlinear Neuronal Computation Based on Physiologically Plausible Inputs
McFarland, James M.; Cui, Yuwei; Butts, Daniel A.
2013-01-01
The computation represented by a sensory neuron's response to stimuli is constructed from an array of physiological processes both belonging to that neuron and inherited from its inputs. Although many of these physiological processes are known to be nonlinear, linear approximations are commonly used to describe the stimulus selectivity of sensory neurons (i.e., linear receptive fields). Here we present an approach for modeling sensory processing, termed the Nonlinear Input Model (NIM), which is based on the hypothesis that the dominant nonlinearities imposed by physiological mechanisms arise from rectification of a neuron's inputs. Incorporating such ‘upstream nonlinearities’ within the standard linear-nonlinear (LN) cascade modeling structure implicitly allows for the identification of multiple stimulus features driving a neuron's response, which become directly interpretable as either excitatory or inhibitory. Because its form is analogous to an integrate-and-fire neuron receiving excitatory and inhibitory inputs, model fitting can be guided by prior knowledge about the inputs to a given neuron, and elements of the resulting model can often result in specific physiological predictions. Furthermore, by providing an explicit probabilistic model with a relatively simple nonlinear structure, its parameters can be efficiently optimized and appropriately regularized. Parameter estimation is robust and efficient even with large numbers of model components and in the context of high-dimensional stimuli with complex statistical structure (e.g. natural stimuli). We describe detailed methods for estimating the model parameters, and illustrate the advantages of the NIM using a range of example sensory neurons in the visual and auditory systems. We thus present a modeling framework that can capture a broad range of nonlinear response functions while providing physiologically interpretable descriptions of neural computation. PMID:23874185
NASA Astrophysics Data System (ADS)
Mhuder, J. J.; Muhlhl, A. A.; Basra Geologiests
2013-05-01
The Garraf Field is situated in Southern Iraq in Nasiriya area, is located in Mesopotamian basin. The carbonate facies are dominant in main reservoirs in Garraf field (Mishrif and Yammama Formations) which is Cretaceous in age. The structure of the reservoir in this field are low relief gentle anticlinal structure aligned in NW to SE direction, and No fault were observed and interpreted in 3D seismic section. 3D seismic survey by Iraqi Oil Exploration Company No 2 was successfully conducted on the Garraf field at 2008-2009 using recording system SERCEL 408UL and Vibrators Nomad 65. Bin size: 25*25, Fold: 36, SP Interval: 50m, Lines Interval: 300m, 3 wells were drilled Ga (1, 2, 3) and it used for seismic to well tie in Petrel. Data analysis was conducted for each reservoirs for Lithological and sedimentological studies were based on core and well data .The study showed That the Mishrif Formation deposited in a broad carbonate platform with shallowing upward regressive succession and The depositional environment is extending from outer marine to shallow middle-inner shelf settings with restricted lagoons as supported by the present of Miliolid fossils. The fragmented rudist biostromes accumulated in the middle shelf. No rudist reef is presence in the studied cores. While the Major sequences are micritic limestone of lagoonal and oolitic/peloidal grainstone sandy shoal separated by mudstone of Yamama formation. Sedimentation feature are seen on seismic attributes and it is help for understanding of sedimentation environment and suitable structure interpretation. There is good relationship between Acustic Impedance and porosity, Acustic Impedance reflects porosity or facies change of carbonate rather than fluid content. Data input used for 3D Modeling include 3D seismic and AI data, petrophysical analysis, core and thin section description. 3D structure modeling were created base on the geophysical data interpretation and Al analysis. Data analysis for Al data were run as secondary input for 3D properties modeling.
Invited Commentary: Antecedents of Obesity—Analysis, Interpretation, and Use of Longitudinal Data
Gillman, Matthew W.; Kleinman, Ken
2007-01-01
The obesity epidemic causes misery and death. Most epidemiologists accept the hypothesis that characteristics of the early stages of human development have lifelong influences on obesity-related health outcomes. Unfortunately, there is a dearth of data of sufficient scope and individual history to help unravel the associations of prenatal, postnatal, and childhood factors with adult obesity and health outcomes. Here the authors discuss analytic methods, the interpretation of models, and the use to which such rare and valuable data may be put in developing interventions to combat the epidemic. For example, analytic methods such as quantile and multinomial logistic regression can describe the effects on body mass index range rather than just its mean; structural equation models may allow comparison of the contributions of different factors at different periods in the life course. Interpretation of the data and model construction is complex, and it requires careful consideration of the biologic plausibility and statistical interpretation of putative causal factors. The goals of discovering modifiable determinants of obesity during the prenatal, postnatal, and childhood periods must be kept in sight, and analyses should be built to facilitate them. Ultimately, interventions in these factors may help prevent obesity-related adverse health outcomes for future generations. PMID:17490988
Network analysis of mesoscale optical recordings to assess regional, functional connectivity.
Lim, Diana H; LeDue, Jeffrey M; Murphy, Timothy H
2015-10-01
With modern optical imaging methods, it is possible to map structural and functional connectivity. Optical imaging studies that aim to describe large-scale neural connectivity often need to handle large and complex datasets. In order to interpret these datasets, new methods for analyzing structural and functional connectivity are being developed. Recently, network analysis, based on graph theory, has been used to describe and quantify brain connectivity in both experimental and clinical studies. We outline how to apply regional, functional network analysis to mesoscale optical imaging using voltage-sensitive-dye imaging and channelrhodopsin-2 stimulation in a mouse model. We include links to sample datasets and an analysis script. The analyses we employ can be applied to other types of fluorescence wide-field imaging, including genetically encoded calcium indicators, to assess network properties. We discuss the benefits and limitations of using network analysis for interpreting optical imaging data and define network properties that may be used to compare across preparations or other manipulations such as animal models of disease.
NASA Astrophysics Data System (ADS)
García-Yeguas, Araceli; Ledo, Juanjo; Piña-Varas, Perla; Prudencio, Janire; Queralt, Pilar; Marcuello, Alex; Ibañez, Jesús M.; Benjumea, Beatriz; Sánchez-Alzola, Alberto; Pérez, Nemesio
2017-12-01
In this work we have done a 3D joint interpretation of magnetotelluric and seismic tomography models. Previously we have described different techniques to infer the inner structure of the Earth. We have focused on volcanic regions, specifically on Tenerife Island volcano (Canary Islands, Spain). In this area, magnetotelluric and seismic tomography studies have been done separately. The novelty of the present work is the combination of both techniques in Tenerife Island. For this aim we have applied Fuzzy Clusters Method at different depths obtaining several clusters or classes. From the results, a geothermal system has been inferred below Teide volcano, in the center of Tenerife Island. An edifice hydrothermally altered and full of fluids is situated below Teide, ending at 600 m below sea level. From this depth the resistivity and VP values increase downwards. We also observe a clay cap structure, a typical feature in geothermal systems related with low resistivity and low VP values.
Supervised extensions of chemography approaches: case studies of chemical liabilities assessment
2014-01-01
Chemical liabilities, such as adverse effects and toxicity, play a significant role in modern drug discovery process. In silico assessment of chemical liabilities is an important step aimed to reduce costs and animal testing by complementing or replacing in vitro and in vivo experiments. Herein, we propose an approach combining several classification and chemography methods to be able to predict chemical liabilities and to interpret obtained results in the context of impact of structural changes of compounds on their pharmacological profile. To our knowledge for the first time, the supervised extension of Generative Topographic Mapping is proposed as an effective new chemography method. New approach for mapping new data using supervised Isomap without re-building models from the scratch has been proposed. Two approaches for estimation of model’s applicability domain are used in our study to our knowledge for the first time in chemoinformatics. The structural alerts responsible for the negative characteristics of pharmacological profile of chemical compounds has been found as a result of model interpretation. PMID:24868246
NASA Astrophysics Data System (ADS)
Nield, G.; Whitehouse, P. L.; Blank, B.; van der Wal, W.; O'Donnell, J. P.; Stuart, G. W.; Lloyd, A. J.; Wiens, D.
2017-12-01
Accurate models of Glacial Isostatic Adjustment (GIA) are required for correcting satellite measurements of ice-mass change and for interpretation of geodetic data at the location of present and former ice sheets. Global models of GIA tend to adopt a 1-D representation of Earth structure, varying in the radial direction only. In some regions rheological parameters may differ significantly from this global average leading to bias in model predictions of present-day deformation, geoid change rates and sea-level change. The advancement of 3-D GIA modelling techniques in recent years has led to improvements in the representation of the Earth via the incorporation of laterally varying structure. This study investigates the influence of 3-D Earth structure on deformation rates in West Antarctica using a finite element GIA model with power-law rheology. We utilise datasets of seismic velocity and temperature for the crust and upper mantle with the aim of determining a data-driven Earth model, and consider the differences when compared to deformation predicted from an equivalent 1-D Earth structure.
NASA Astrophysics Data System (ADS)
Liddell, Mitch; Unsworth, Martyn; Pek, Josef
2016-06-01
Viability for the development of an engineered geothermal system (EGS) in the oilsands region near Fort McMurray, Alberta, is investigated by studying the structure of the Precambrian basement rocks with magnetotellurics (MT). MT data were collected at 94 broad-band stations on two east-west profiles. Apparent resistivity and phase data showed little variation along each profile. The short period MT data detected a 1-D resistivity structure that could be identified as the shallow sedimentary basin underlain by crystalline basement rocks to a depth of 4-5 km. At lower frequencies a strong directional dependence, large phase splits, and regions of out-of-quadrant (OOQ) phase were detected. 2-D isotropic inversions of these data failed to produce a realistic resistivity model. A detailed dimensionality analysis found links between large phase tensor skews (˜15°), azimuths, OOQ phases and tensor decomposition strike angles at periods greater than 1 s. Low magnitude induction vectors, as well as uniformity of phase splits and phase tensor character between the northern and southern profiles imply that a 3-D analysis is not necessary or appropriate. Therefore, 2-D anisotropic forward modelling was used to generate a resistivity model to interpret the MT data. The preferred model was based on geological observations of outcropping anisotropic mylonitic basement rocks of the Charles Lake shear zone, 150 km to the north, linked to the study area by aeromagnetic and core sample data. This model fits all four impedance tensor elements with an rms misfit of 2.82 on the southern profile, and 3.3 on the northern. The conductive phase causing the anisotropy is interpreted to be interconnected graphite films within the metamorphic basement rocks. Characterizing the anisotropy is important for understanding how artificial fractures, necessary for EGS development, would form. Features of MT data commonly interpreted to be 3-D (e.g. out of OOQ phase and large phase tensor skew) are shown to be interpretable with this 2-D anisotropic model.
Determining crystal structures through crowdsourcing and coursework
Horowitz, Scott; Koepnick, Brian; Martin, Raoul; Tymieniecki, Agnes; Winburn, Amanda A.; Cooper, Seth; Flatten, Jeff; Rogawski, David S.; Koropatkin, Nicole M.; Hailu, Tsinatkeab T.; Jain, Neha; Koldewey, Philipp; Ahlstrom, Logan S.; Chapman, Matthew R.; Sikkema, Andrew P.; Skiba, Meredith A.; Maloney, Finn P.; Beinlich, Felix R. M.; Caglar, Ahmet; Coral, Alan; Jensen, Alice Elizabeth; Lubow, Allen; Boitano, Amanda; Lisle, Amy Elizabeth; Maxwell, Andrew T.; Failer, Barb; Kaszubowski, Bartosz; Hrytsiv, Bohdan; Vincenzo, Brancaccio; de Melo Cruz, Breno Renan; McManus, Brian Joseph; Kestemont, Bruno; Vardeman, Carl; Comisky, Casey; Neilson, Catherine; Landers, Catherine R.; Ince, Christopher; Buske, Daniel Jon; Totonjian, Daniel; Copeland, David Marshall; Murray, David; Jagieła, Dawid; Janz, Dietmar; Wheeler, Douglas C.; Cali, Elie; Croze, Emmanuel; Rezae, Farah; Martin, Floyd Orville; Beecher, Gil; de Jong, Guido Alexander; Ykman, Guy; Feldmann, Harald; Chan, Hugo Paul Perez; Kovanecz, Istvan; Vasilchenko, Ivan; Connellan, James C.; Borman, Jami Lynne; Norrgard, Jane; Kanfer, Jebbie; Canfield, Jeffrey M.; Slone, Jesse David; Oh, Jimmy; Mitchell, Joanne; Bishop, John; Kroeger, John Douglas; Schinkler, Jonas; McLaughlin, Joseph; Brownlee, June M.; Bell, Justin; Fellbaum, Karl Willem; Harper, Kathleen; Abbey, Kirk J.; Isaksson, Lennart E.; Wei, Linda; Cummins, Lisa N.; Miller, Lori Anne; Bain, Lyn; Carpenter, Lynn; Desnouck, Maarten; Sharma, Manasa G.; Belcastro, Marcus; Szew, Martin; Szew, Martin; Britton, Matthew; Gaebel, Matthias; Power, Max; Cassidy, Michael; Pfützenreuter, Michael; Minett, Michele; Wesselingh, Michiel; Yi, Minjune; Cameron, Neil Haydn Tormey; Bolibruch, Nicholas I.; Benevides, Noah; Kathleen Kerr, Norah; Barlow, Nova; Crevits, Nykole Krystyne; Dunn, Paul; Roque, Paulo Sergio Silveira Belo Nascimento; Riber, Peter; Pikkanen, Petri; Shehzad, Raafay; Viosca, Randy; James Fraser, Robert; Leduc, Robert; Madala, Roman; Shnider, Scott; de Boisblanc, Sharon; Butkovich, Slava; Bliven, Spencer; Hettler, Stephen; Telehany, Stephen; Schwegmann, Steven A.; Parkes, Steven; Kleinfelter, Susan C.; Michael Holst, Sven; van der Laan, T. J. A.; Bausewein, Thomas; Simon, Vera; Pulley, Warwick; Hull, William; Kim, Annes Yukyung; Lawton, Alexis; Ruesch, Amanda; Sundar, Anjali; Lawrence, Anna-Lisa; Afrin, Antara; Maheshwer, Bhargavi; Turfe, Bilal; Huebner, Christian; Killeen, Courtney Elizabeth; Antebi-Lerrman, Dalia; Luan, Danny; Wolfe, Derek; Pham, Duc; Michewicz, Elaina; Hull, Elizabeth; Pardington, Emily; Galal, Galal Osama; Sun, Grace; Chen, Grace; Anderson, Halie E.; Chang, Jane; Hewlett, Jeffrey Thomas; Sterbenz, Jennifer; Lim, Jiho; Morof, Joshua; Lee, Junho; Inn, Juyoung Samuel; Hahm, Kaitlin; Roth, Kaitlin; Nair, Karun; Markin, Katherine; Schramm, Katie; Toni Eid, Kevin; Gam, Kristina; Murphy, Lisha; Yuan, Lucy; Kana, Lulia; Daboul, Lynn; Shammas, Mario Karam; Chason, Max; Sinan, Moaz; Andrew Tooley, Nicholas; Korakavi, Nisha; Comer, Patrick; Magur, Pragya; Savliwala, Quresh; Davison, Reid Michael; Sankaran, Roshun Rajiv; Lewe, Sam; Tamkus, Saule; Chen, Shirley; Harvey, Sho; Hwang, Sin Ye; Vatsia, Sohrab; Withrow, Stefan; Luther, Tahra K; Manett, Taylor; Johnson, Thomas James; Ryan Brash, Timothy; Kuhlman, Wyatt; Park, Yeonjung; Popović, Zoran; Baker, David; Khatib, Firas; Bardwell, James C. A.
2016-01-01
We show here that computer game players can build high-quality crystal structures. Introduction of a new feature into the computer game Foldit allows players to build and real-space refine structures into electron density maps. To assess the usefulness of this feature, we held a crystallographic model-building competition between trained crystallographers, undergraduate students, Foldit players and automatic model-building algorithms. After removal of disordered residues, a team of Foldit players achieved the most accurate structure. Analysing the target protein of the competition, YPL067C, uncovered a new family of histidine triad proteins apparently involved in the prevention of amyloid toxicity. From this study, we conclude that crystallographers can utilize crowdsourcing to interpret electron density information and to produce structure solutions of the highest quality. PMID:27633552
Feature extraction applied to agricultural crops as seen by LANDSAT
NASA Technical Reports Server (NTRS)
Kauth, R. J.; Lambeck, P. F.; Richardson, W.; Thomas, G. S.; Pentland, A. P. (Principal Investigator)
1979-01-01
The physical interpretation of the spectral-temporal structure of LANDSAT data can be conveniently described in terms of a graphic descriptive model called the Tassled Cap. This model has been a source of development not only in crop-related feature extraction, but also for data screening and for haze effects correction. Following its qualitative description and an indication of its applications, the model is used to analyze several feature extraction algorithms.
Computational methods for constructing protein structure models from 3D electron microscopy maps.
Esquivel-Rodríguez, Juan; Kihara, Daisuke
2013-10-01
Protein structure determination by cryo-electron microscopy (EM) has made significant progress in the past decades. Resolutions of EM maps have been improving as evidenced by recently reported structures that are solved at high resolutions close to 3Å. Computational methods play a key role in interpreting EM data. Among many computational procedures applied to an EM map to obtain protein structure information, in this article we focus on reviewing computational methods that model protein three-dimensional (3D) structures from a 3D EM density map that is constructed from two-dimensional (2D) maps. The computational methods we discuss range from de novo methods, which identify structural elements in an EM map, to structure fitting methods, where known high resolution structures are fit into a low-resolution EM map. A list of available computational tools is also provided. Copyright © 2013 Elsevier Inc. All rights reserved.
Using Interactive Visualization to Analyze Solid Earth Data and Geodynamics Models
NASA Astrophysics Data System (ADS)
Kellogg, L. H.; Kreylos, O.; Billen, M. I.; Hamann, B.; Jadamec, M. A.; Rundle, J. B.; van Aalsburg, J.; Yikilmaz, M. B.
2008-12-01
The geological sciences are challenged to manage and interpret increasing volumes of data as observations and simulations increase in size and complexity. Major projects such as EarthScope and GeoEarthScope are producing the data needed to characterize the structure and kinematics of Earth's surface and interior at unprecedented resolution. At the same time, high-performance computing enables high-precision and fine- detail simulation of geodynamics processes, complementing the observational data. To facilitate interpretation and analysis of these datasets, to evaluate models, and to drive future calculations, we have developed methods of interactive visualization with a special focus on using immersive virtual reality (VR) environments to interact with models of Earth's surface and interior. VR has traditionally been used primarily as a presentation tool allowing active navigation through data. Reaping the full intellectual benefits of immersive VR as a tool for accelerated scientific analysis requires building on the method's strengths, that is, using both 3D perception and interaction with observed or simulated data. Our approach to VR takes advantage of the specialized skills of geoscientists who are trained to interpret geological and geophysical data generated from field observations. Interactive tools allow the scientist to explore and interpret geodynamic models, tomographic models, and topographic observations, while feature extraction tools support quantitative measurement of structures that emerge from numerical simulations or field observations. The use of VR technology enables us to improve our interpretation of crust and mantle structure and of geodynamical processes. Mapping tools based on computer visualization allow virtual "field studies" in inaccessible regions, and an interactive tool allows us to construct digital fault models for use in numerical models. Using the interactive tools on a high-end platform such as an immersive virtual reality room known as a Cave Automatic Virtual Environment (CAVE), enables the scientist to stand in data three-dimensional dataset while taking measurements. The CAVE involves three or more projection surfaces arranged as walls in a room. Stereo projectors combined with a motion tracking system and immersion recreates the experience of carrying out research in the field. This high-end system provides significant advantages for scientists working with complex volumetric data. The interactive tools also work on low-cost platforms that provide stereo views and the potential for interactivity such as a Geowall or a 3D enabled TV. The Geowall is also a well-established tool for education, and in combination with the tools we have developed, enables the rapid transfer of research data and new knowledge to the classroom. The interactive visualization tools can also be used on a desktop or laptop with or without stereo capability. Further information about the Virtual Reality User Interface (VRUI), the 3DVisualizer, the Virtual mapping tools, and the LIDAR viewer, can be found on the KeckCAVES website, www.keckcaves.org.
Self organising hypothesis networks: a new approach for representing and structuring SAR knowledge
2014-01-01
Background Combining different sources of knowledge to build improved structure activity relationship models is not easy owing to the variety of knowledge formats and the absence of a common framework to interoperate between learning techniques. Most of the current approaches address this problem by using consensus models that operate at the prediction level. We explore the possibility to directly combine these sources at the knowledge level, with the aim to harvest potentially increased synergy at an earlier stage. Our goal is to design a general methodology to facilitate knowledge discovery and produce accurate and interpretable models. Results To combine models at the knowledge level, we propose to decouple the learning phase from the knowledge application phase using a pivot representation (lingua franca) based on the concept of hypothesis. A hypothesis is a simple and interpretable knowledge unit. Regardless of its origin, knowledge is broken down into a collection of hypotheses. These hypotheses are subsequently organised into hierarchical network. This unification permits to combine different sources of knowledge into a common formalised framework. The approach allows us to create a synergistic system between different forms of knowledge and new algorithms can be applied to leverage this unified model. This first article focuses on the general principle of the Self Organising Hypothesis Network (SOHN) approach in the context of binary classification problems along with an illustrative application to the prediction of mutagenicity. Conclusion It is possible to represent knowledge in the unified form of a hypothesis network allowing interpretable predictions with performances comparable to mainstream machine learning techniques. This new approach offers the potential to combine knowledge from different sources into a common framework in which high level reasoning and meta-learning can be applied; these latter perspectives will be explored in future work. PMID:24959206
Vibrational spectroscopy of water at interfaces
Skinner, J. L.; Pieniazek, P. A.; Gruenbaum, S. M.
2011-01-01
Conspectus Recent experimental advances in vibrational spectroscopy, such as ultrafast pulses and heterodyne detection, have made it possible to probe the structure and dynamics of bulk and interfacial water in unprecedented detail. We consider three aqueous interfaces: the water liquid/vapor interface, the interface between water and the surfactant headgroups of reverse micelles, and the interface between water and the lipid headgroups of aligned multi-bilayers. In the first case, sum-frequency spectroscopy is used to probe the interface, while in the second and third cases, the confined water pools are sufficiently small that techniques of bulk spectroscopy such as FTIR, pump-probe, 2DIR, etc. can be used to probe the interfacial water. In this review, we discuss our attempts to model these three systems and interpret the existing experiments. In particular, for the water liquid/vapor interface we find that three-body interactions are essential for reproducing the experimental sum-frequency spectrum, and presumably for the structure of the interface as well. The observed spectrum is interpreted as arising from overlapping and cancelling positive and negative contributions from molecules in different hydrogen-bonding environments. For the reverse micelles, our theoretical models confirm that the experimentally observed blue shift of the water OD stretch (for dilute HOD in H2O) arises from weaker hydrogen bonding to sulfonate oxygens. We interpret the observed slow-down in water rotational dynamics as arising from curvature-induced frustration. For the water confined between lipid bilayers, our theoretical models confirm that the experimentally observed red shift of the water OD stretch arises from stronger hydrogen bonding to phosphate oxygens. We develop a model for heterogeneous vibrational lifetime distributions, and implement the model to calculate isotropic and anisotropic pump-probe decays, and compare with experiment. PMID:22032305
Kress, Wade H.; Teeple, Andrew
2005-01-01
Forward modeling was used as an interpretative tool to relate the subsurface distribution of resistivity from four DC resistivity lines to known, assumed, and hypothetical information on subsurface lithologies. The final forward models were used as an estimate of the true resistivity structure for the field data. The forward models and the inversion results of the forward models show the depth, thickness, and extent of strata as well as the resistive anomalies occurring along the four lines and the displacement of strata resulting from the Pecore Fault along two of the four DC resistivity lines. Ten additional DC resistivity lines show similarly distributed shallow subsurface lithologies of silty sand and clay strata. Eight priority areas of resistive anomalies were identified for evaluation in future studies. The interpreted DC resistivity data allowed subsurface stratigraphy to be extrapolated between existing boreholes resulting in an improved understanding of lithologies that can influence contaminant migration.
NASA Astrophysics Data System (ADS)
Götze, Hans-Jürgen; Schmidt, Sabine
2014-05-01
Modern geophysical interpretation requires an interdisciplinary approach, particularly when considering the available amount of 'state of the art' information. A combination of different geophysical surveys employing seismic, gravity and EM, together with geological and petrological studies, can provide new insights into the structures and tectonic evolution of the lithosphere, natural deposits and underground cavities. Interdisciplinary interpretation is essential for any numerical modelling of these structures and the processes acting on them Interactive gravity and magnetic modeling can play an important role in the depth imaging workflow of complex projects. The integration of the workflow and the tools is important to meet the needs of today's more interactive and interpretative depth imaging workflows. For the integration of gravity and magnetic models the software IGMAS+ can play an important role in this workflow. For simplicity the focus is on gravity modeling, but all methods can be applied to the modeling of magnetic data as well. Currently there are three common ways to define a 3D gravity model. Grid based models: Grids define the different geological units. The densities of the geological units are constant. Additional grids can be introduced to subdivide the geological units, making it possible to represent density depth relations. Polyhedral models: The interfaces between different geological units are defined by polyhedral, typically triangles. Voxel models: Each voxel in a regular cube has a density assigned. Spherical Earth modeling: Geophysical investigations may cover huge areas of several thousand square kilometers. The depression of the earth's surface due to the curvature of the Earth is 3 km at a distance of 200 km and 20 km at a distance of 500 km. Interactive inversion: Inversion is typically done in batch where constraints are defined beforehand and then after a few minutes or hours a model fitting the data and constraints is generated. As examples I show results from the Central Andes and the North Sea. Both gravity and geoid of the two areas were investigated with regard to their isostatic state, the crustal density structure and rigidity of the Lithosphere. Modern satellite measurements of the recent ESA campaigns are compared to ground observations in the region. Estimates of stress and GPE (gravitational potential energy) at the western South American margin have been derived from an existing 3D density model. Here, sensitivity studies of gravity and gravity gradients indicate that short wavelength lithospheric structures are more pronounced in the gravity gradient tensor than in the gravity field. A medium size example of the North Sea underground demonstrates how interdisciplinary data sets can support aero gravity investigations. At the micro scale an example from the detection of a crypt (Alversdorf, Northern Germany) is shown.
Three-factor structure for Epistemic Belief Inventory: A cross-validation study
2017-01-01
Research on epistemic beliefs has been hampered by lack of validated models and measurement instruments. The most widely used instrument is the Epistemological Questionnaire, which has been criticized for validity, and it has been proposed a new instrument based in the Epistemological Questionnaire: the Epistemic Belief Inventory. The Spanish-language version of Epistemic Belief Inventory was applied to 1,785 Chilean high school students. Exploratory and confirmatory factor analyses in independent subsamples were performed. A three factor structure emerged and was confirmed. Reliability was comparable to other studies, and the factor structure was invariant among randomized subsamples. The structure that was found does not replicate the one proposed originally, but results are interpreted in light of embedded systemic model of epistemological beliefs. PMID:28278258
Spectral inversion of frequency-domain IP data obtained in Haenam, South Korea
NASA Astrophysics Data System (ADS)
Kim, B.; Nam, M. J.; Son, J. S.
2017-12-01
Spectral induced polarization (SIP) method using a range of source frequencies have been performed for not only exploring minerals resources, but also engineering or environmental application. SIP interpretation first makes inversion of individual frequency data to obtain complex resistivity structures, which will further analyzed employing Cole-Cole model to explain the frequency-dependent characteristics. However, due to the difficulty in fitting Cole-Cole model, there is a movement to interpret complex resistivity structure inverted only from a single frequency data: that is so-called "complex resistivity survey". Further, simultaneous inversion of multi-frequency SIP data, rather than making a single frequency SIP data, has been studied to improve ambiguity and artefacts of independent single frequency inversion in obtaining a complex resistivity structure, even though the dispersion characteristics of complex resistivity with respect to source frequency. Employing the simultaneous inversion method, this study makes inversion of field SIP data obtained over epithermal mineralized area, Haenam, in the southernmost tip of South Korea. The area has a polarizable structure because of extensive hydrothermal alteration, gold-silver deposits. After the inversion, we compare between inversion results considering multi-frequency data and single frequency data set to evaluate the performance of simultaneous inversion of multi-frequency SIP data.
NASA Astrophysics Data System (ADS)
Dubey, C. P.; Tiwari, V. M.; Rao, P. R.
2017-12-01
Comprehension of subsurface structures buried under thick sediments in the region of Bay of Bengal is vital as structural features are the key parameters that influence or are caused by the subsurface deformation and tectonic events like earthquakes. Here, we address this issue using the integrated analysis and interpretation of gravity and full gravity gradient tensor with few seismic profiles available in the poorly known region. A 2D model of the deep earth crust-mantle is constructed and interpreted with gravity gradients and seismic profiles, which made it possible to obtain a visual image of a deep seated fault below the basement associated with thick sediments strata. Gravity modelling along a NE-SW profile crossing the hypocentre of the earthquake of 21 May 2014 ( M w 6.0) in the northern Bay of Bengal suggests that the location of intraplate normal dip fault earthquake in the upper mantle is at the boundary of density anomalies, which is probably connected to the crustal fault. We also report an enhanced structural trend of two major ridges, the 85°E and the 90°E ridges hidden under the sedimentary cover from the computed full gravity gradients tensor components.
Geometries of geoelectrical structures in central Tibetan Plateau from INDEPTH magnetotelluric data
NASA Astrophysics Data System (ADS)
Vozar, Jan; Jones, Alan G.; Le Pape, Florian
2013-04-01
Magnetotelluric (MT) data collected on N-S profiles crossing the Banggong-Nujiang Suture, which separates the Qiangtang and Lhasa Terranes in central Tibet, as a part of InterNational DEep Profiling of Tibet and the Himalaya project (INDEPTH) are modeled by 2D and 3D inversion codes. The 2D deep MT model of line 500 confirms previous observations concluding that the region is characterized to first-order by a resistive upper crust and a conductive, partially melted, middle to lower crust that extends from the Lhasa Terrane to the Qiangtang Terrane with varying depth. The same conductive structure setting, but in shallower depths is also present on the eastern 400 line. From deep electromagnetic sounding, supported by independent 1D integrated petro-physical investigation, we can estimate the next upper-mantle conductive layer at depths from 200 km to 250 km below the Lhasa Terrane and less resistive Tibetan lithosphere below the Qiangtang Terrane with conductive upper-mantle in depths about 120 km. The anisotropic 2D modeling reveals lower crustal anisotropy in Lhasa Terrane, which can interpreted as crustal channel flow. The 3D inversion models of all MT data from central Tibet show dominant 2D regional strike of mid and lower crustal structures equal N110E. This orientation is parallel to Shuanghu suture, BengCo Jiali strike-slip fault system and perpendicular to convergence direction. The lower crust conductor in central Lhasa Terrane can be interpreted more likely as 3D lower Indian crust structure, located to the east from line 500, than geoelectrical anisotropic crustal flow.
NASA Astrophysics Data System (ADS)
Budach, Ingmar; Moeck, Inga; Lüschen, Ewald; Wolfgramm, Markus
2018-03-01
The structural evolution of faults in foreland basins is linked to a complex basin history ranging from extension to contraction and inversion tectonics. Faults in the Upper Jurassic of the German Molasse Basin, a Cenozoic Alpine foreland basin, play a significant role for geothermal exploration and are therefore imaged, interpreted and studied by 3D seismic reflection data. Beyond this applied aspect, the analysis of these seismic data help to better understand the temporal evolution of faults and respective stress fields. In 2009, a 27 km2 3D seismic reflection survey was conducted around the Unterhaching Gt 2 well, south of Munich. The main focus of this study is an in-depth analysis of a prominent v-shaped fault block structure located at the center of the 3D seismic survey. Two methods were used to study the periodic fault activity and its relative age of the detected faults: (1) horizon flattening and (2) analysis of incremental fault throws. Slip and dilation tendency analyses were conducted afterwards to determine the stresses resolved on the faults in the current stress field. Two possible kinematic models explain the structural evolution: One model assumes a left-lateral strike slip fault in a transpressional regime resulting in a positive flower structure. The other model incorporates crossing conjugate normal faults within a transtensional regime. The interpreted successive fault formation prefers the latter model. The episodic fault activity may enhance fault zone permeability hence reservoir productivity implying that the analysis of periodically active faults represents an important part in successfully targeting geothermal wells.
bpRNA: large-scale automated annotation and analysis of RNA secondary structure.
Danaee, Padideh; Rouches, Mason; Wiley, Michelle; Deng, Dezhong; Huang, Liang; Hendrix, David
2018-05-09
While RNA secondary structure prediction from sequence data has made remarkable progress, there is a need for improved strategies for annotating the features of RNA secondary structures. Here, we present bpRNA, a novel annotation tool capable of parsing RNA structures, including complex pseudoknot-containing RNAs, to yield an objective, precise, compact, unambiguous, easily-interpretable description of all loops, stems, and pseudoknots, along with the positions, sequence, and flanking base pairs of each such structural feature. We also introduce several new informative representations of RNA structure types to improve structure visualization and interpretation. We have further used bpRNA to generate a web-accessible meta-database, 'bpRNA-1m', of over 100 000 single-molecule, known secondary structures; this is both more fully and accurately annotated and over 20-times larger than existing databases. We use a subset of the database with highly similar (≥90% identical) sequences filtered out to report on statistical trends in sequence, flanking base pairs, and length. Both the bpRNA method and the bpRNA-1m database will be valuable resources both for specific analysis of individual RNA molecules and large-scale analyses such as are useful for updating RNA energy parameters for computational thermodynamic predictions, improving machine learning models for structure prediction, and for benchmarking structure-prediction algorithms.
NASA Astrophysics Data System (ADS)
Ma, Xiyue; Chen, Kean; Ding, Shaohu; Yu, Haoxin
2016-06-01
This paper presents an analytical investigation on physical mechanisms of actively controlling sound transmission through a rib stiffened double-panel structure using point source in the cavity. The combined modal expansion and vibro-acoustic coupling methods are applied to establish the theoretical model of such active structure. Under the condition of minimizing radiated power of the radiating ribbed plate, the physical mechanisms are interpreted in detail from the point of view of modal couplings similar as that used in existed literatures. Results obtained demonstrate that the rule of sound energy transmission and the physical mechanisms for the rib stiffened double-panel structure are all changed, and affected by the coupling effects of the rib when compared with the analytical results obtained for unribbed double-panel case. By taking the coupling effects of the rib into considerations, the cavity modal suppression and rearrangement mechanisms obtained in existed investigations are modified and supplemented for the ribbed plate case, which gives a clear interpretation for the physical nature involved in the active rib stiffened double-panel structure.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Roy, Surajit; Ladpli, Purim; Chang, Fu-Kuo
Accurate interpretation of in-situ piezoelectric sensor signals is a challenging task. This article presents the development of a numerical compensation model based on physical insight to address the influence of structural loads on piezo-sensor signals. The model requires knowledge of in-situ strain and temperature distribution in a structure while acquiring sensor signals. The parameters of the numerical model are obtained using experiments on flat aluminum plate under uniaxial tensile loading. It is shown that the model parameters obtained experimentally can be used for different structures, and sensor layout. Furthermore, the combined effects of load and temperature on the piezo-sensor responsemore » are also investigated and it is observed that both of these factors have a coupled effect on the sensor signals. It is proposed to obtain compensation model parameters under a range of operating temperatures to address this coupling effect. An important outcome of this study is a new load monitoring concept using in-situ piezoelectric sensor signals to track changes in the load paths in a structure.« less
Fournet, Nathalie; Roulin, Jean-Luc; Monnier, Catherine; Atzeni, Thierry; Cosnefroy, Olivier; Le Gall, Didier; Roy, Arnaud
2015-01-01
The parent and teacher forms of the French version of the Behavioral Rating Inventory of Executive Function (BRIEF) were used to evaluate executive function in everyday life in a large sample of healthy children (N = 951) aged between 5 and 18. Several psychometric methods were applied, with a view to providing clinicians with tools for score interpretation. The parent and teacher forms of the BRIEF were acceptably reliable. Demographic variables (such as age and gender) were found to influence the BRIEF scores. Confirmatory factor analysis was then used to test five competing models of the BRIEF's latent structure. Two of these models (a three-factor model and a two-factor model, both based on a nine-scale structure) had a good fit. However, structural invariance with age was only obtained with the two-factor model. The French version of the BRIEF provides a useful measure of everyday executive function and can be recommended for use in clinical research and practice.
Joint Inversion of 3d Mt/gravity/magnetic at Pisagua Fault.
NASA Astrophysics Data System (ADS)
Bascur, J.; Saez, P.; Tapia, R.; Humpire, M.
2017-12-01
This work shows the results of a joint inversion at Pisagua Fault using 3D Magnetotellurics (MT), gravity and regional magnetic data. The MT survey has a poor coverage of study area with only 21 stations; however, it allows to detect a low resistivity zone aligned with the Pisagua Fault trace that it is interpreted as a damage zone. The integration of gravity and magnetic data, which have more dense sampling and coverage, adds more detail and resolution to the detected low resistivity structure and helps to improve the structure interpretation using the resulted models (density, magnetic-susceptibility and electrical resistivity). The joint inversion process minimizes a multiple target function which includes the data misfit, model roughness and coupling norms (crossgradient and direct relations) for all geophysical methods considered (MT, gravity and magnetic). This process is solved iteratively using the Gauss-Newton method which updates the model of each geophysical method improving its individual data misfit, model roughness and the coupling with the other geophysical models. For solving the model updates of magnetic and gravity methods were developed dedicated 3D inversion software codes which include the coupling norms with additionals geophysical parameters. The model update of the 3D MT is calculated using an iterative method which sequentially filters the priority model and the output model of a single 3D MT inversion process for obtaining the resistivity model coupled solution with the gravity and magnetic methods.
Crustal structure and evolution of the Arctic Caledonides: Results from controlled-source seismology
NASA Astrophysics Data System (ADS)
Aarseth, Iselin; Mjelde, Rolf; Breivik, Asbjørn Johan; Minakov, Alexander; Faleide, Jan Inge; Flueh, Ernst; Huismans, Ritske S.
2017-10-01
The continuation of the Caledonides into the Barents Sea has long been a subject of discussion, and two major orientations of the Caledonian deformation fronts have been suggested: NNW-SSE striking and NE-SW striking. A regional NW-SE oriented ocean bottom seismic profile across the western Barents Sea was acquired in 2014. In this paper we map the crust and upper mantle structure along this profile in order to discriminate between different interpretations of Caledonian structural trends and orientation of rift basins in the western Barents Sea. Modeling of P-wave travel times has been done using a ray-tracing method, and combined with gravity modeling. The results show high P-wave velocities (4 km/s) close to the seafloor, as well as localized sub-horizontal high velocity zones (6.0 km/s and 6.9 km/s) at shallow depths which are interpreted as magmatic sills. Refractions from the top of the crystalline basement together with reflections from the Moho give basement velocities from 6.0 km/s at the top to 6.7 km/s at the base of the crust. P-wave travel time modeling of the OBS profile indicate an eastwards increase in velocities from 6.4 km/s to 6.7 km/s at the base of the crystalline crust, and the western part of the profile is characterized by a higher seismic reflectivity than the eastern part. This change in seismic character is consistent with observations from vintage reflection seismic data and is interpreted as a Caledonian suture extending through the Barents Sea, separating Barentsia and Baltica. Local deepening of Moho (from 27 km to 33 km depth) creates ;root structures; that can be linked to the Caledonian compressional deformation or a suture zone imprinted in the lower crust. Our model supports a separate NE-SW Caledonian trend extending into the central Barents Sea, branching off from the northerly trending Svalbard Caledonides, implying the existence of Barentsia as an independent microcontinent between Laurentia and Baltica.
Quantifying Confidence in Model Predictions for Hypersonic Aircraft Structures
2015-03-01
of isolating calibrations of models in the network, segmented and simultaneous calibration are compared using the Kullback - Leibler ...value of θ. While not all test -statistics are as simple as measuring goodness or badness of fit , their directional interpretations tend to remain...data quite well, qualitatively. Quantitative goodness - of - fit tests are problematic because they assume a true empirical CDF is being tested or
Rodriguez, Brian D.; Sweetkind, Donald S.
2015-01-01
The 3-D inversion was generally able to reproduce the gross resistivity structure of the “known” model, but the simulated conductive volcanic composite unit horizons were often too shallow when compared to the “known” model. Additionally, the chosen computation parameters such as station spacing appear to have resulted in computational artifacts that are difficult to interpret but could potentially be removed with further refinements of the 3-D resistivity inversion modeling technique.
Reliability of the Suicide Opinion Questionnaire.
ERIC Educational Resources Information Center
Rogers, James R.; DeShon, Richard P.
The lack of systematic psychometric information on the Suicide Opinion Questionnaire (SOQ) was addressed by investigating the factor structure and reliability of the eight-factor clinical scale model (mental illness, cry for help, right to die, religion, impulsivity, normality, aggression, and moral evil), developed for interpreting responses to…
NASA Astrophysics Data System (ADS)
Essa, Khalid S.; Elhussein, Mahmoud
2018-04-01
A new efficient approach to estimate parameters that controlled the source dimensions from magnetic anomaly profile data in light of PSO algorithm (particle swarm optimization) has been presented. The PSO algorithm has been connected in interpreting the magnetic anomaly profiles data onto a new formula for isolated sources embedded in the subsurface. The model parameters deciphered here are the depth of the body, the amplitude coefficient, the angle of effective magnetization, the shape factor and the horizontal coordinates of the source. The model parameters evaluated by the present technique, generally the depth of the covered structures were observed to be in astounding concurrence with the real parameters. The root mean square (RMS) error is considered as a criterion in estimating the misfit between the observed and computed anomalies. Inversion of noise-free synthetic data, noisy synthetic data which contains different levels of random noise (5, 10, 15 and 20%) as well as multiple structures and in additional two real-field data from USA and Egypt exhibits the viability of the approach. Thus, the final results of the different parameters are matched with those given in the published literature and from geologic results.
Structural interpretation of P2X receptor mutagenesis studies on drug action.
Evans, Richard J
2010-11-01
P2X receptors for ATP are ligand gated cation channels that form from the trimeric assembly of subunits with two transmembrane segments, a large extracellular ligand binding loop, and intracellular amino and carboxy termini. The receptors are expressed throughout the body, involved in functions ranging from blood clotting to inflammation, and may provide important targets for novel therapeutics. Mutagenesis based studies have been used to develop an understanding of the molecular basis of their pharmacology with the aim of developing models of the ligand binding site. A crystal structure for the zebra fish P2X4 receptor in the closed agonist unbound state has been published recently, which provides a major advance in our understanding of the receptors. This review gives an overview of mutagenesis studies that have led to the development of a model of the ATP binding site, as well as identifying residues contributing to allosteric regulation and antagonism. These studies are discussed with reference to the crystal to provide a structural interpretation of the molecular basis of drug action. © 2010 The Author. British Journal of Pharmacology © 2010 The British Pharmacological Society.
Studying neuroanatomy using MRI.
Lerch, Jason P; van der Kouwe, André J W; Raznahan, Armin; Paus, Tomáš; Johansen-Berg, Heidi; Miller, Karla L; Smith, Stephen M; Fischl, Bruce; Sotiropoulos, Stamatios N
2017-02-23
The study of neuroanatomy using imaging enables key insights into how our brains function, are shaped by genes and environment, and change with development, aging and disease. Developments in MRI acquisition, image processing and data modeling have been key to these advances. However, MRI provides an indirect measurement of the biological signals we aim to investigate. Thus, artifacts and key questions of correct interpretation can confound the readouts provided by anatomical MRI. In this review we provide an overview of the methods for measuring macro- and mesoscopic structure and for inferring microstructural properties; we also describe key artifacts and confounds that can lead to incorrect conclusions. Ultimately, we believe that, although methods need to improve and caution is required in interpretation, structural MRI continues to have great promise in furthering our understanding of how the brain works.
NASA Technical Reports Server (NTRS)
Johnson, Dale L.; Keller, Vernon W.; Vaughan, William W.
2005-01-01
The description and interpretation of the terrestrial environment (0-90 km altitude) is an important driver of aerospace vehicle structural, control, and thermal system design. NASA is currently in the process of reviewing the meteorological information acquired over the past decade and producing an update to the 1993 Terrestrial Environment Guidelines for Aerospace Vehicle Design and Development handbook. This paper addresses the contents of this updated handbook, with special emphasis on new material being included in the areas of atmospheric thermodynamic models, wind dynamics, atmospheric composition, atmospheric electricity, cloud phenomena, atmospheric extremes, sea state, etc. In addition, the respective engineering design elements will be discussed relative to the importance and influence of terrestrial environment inputs that require consideration and interpretation for design applications. Specific lessons learned that have contributed to the advancements made in the acquisition, interpretation, application and awareness of terrestrial environment inputs for aerospace engineering applications are discussed.
NASA Astrophysics Data System (ADS)
Amorim, B.
2018-04-01
We develop a general theory to model the angle-resolved photoemission spectroscopy (ARPES) of commensurate and incommensurate van der Waals (vdW) structures, formed by lattice mismatched and/or misaligned stacked layers of two-dimensional materials. The present theory is based on a tight-binding description of the structure and the concept of generalized umklapp processes, going beyond previous descriptions of ARPES in incommensurate vdW structures, which are based on continuous, low-energy models, being limited to structures with small lattice mismatch/misalignment. As applications of the general formalism, we study the ARPES bands and constant energy maps for two structures: twisted bilayer graphene and twisted bilayer MoS2. The present theory should be useful in correctly interpreting experimental results of ARPES of vdW structures and other systems displaying competition between different periodicities, such as two-dimensional materials weakly coupled to a substrate and materials with density wave phases.
Acoustic wave transmission through piezoelectric structured materials.
Lam, M; Le Clézio, E; Amorín, H; Algueró, M; Holc, Janez; Kosec, Marija; Hladky-Hennion, A C; Feuillard, G
2009-05-01
This paper deals with the transmission of acoustic waves through multilayered piezoelectric materials. It is modeled in an octet formalism via the hybrid matrix of the structure. The theoretical evolution with the angle and frequency of the transmission coefficients of ultrasonic plane waves propagating through a partially depoled PZT plate is compared to finite element calculations showing that both methods are in very good agreement. The model is then used to study a periodic stack of 0.65 PMN-0.35 PT/0.90 PMN-0.10 PT layers. The transmission spectra are interpreted in terms of a dispersive behavior of the critical angles of longitudinal and transverse waves, and band gap structures are analysed. Transmission measurements confirm the theoretical calculations and deliver an experimental validation of the model.
Catchings, R.D.; Powars, D.S.; Gohn, G.S.; Horton, J. Wright; Goldman, M.R.; Hole, J.A.
2008-01-01
A 30-km-long, radial seismic reflection and refraction survey completed across the northern part of the late Eocene Chesapeake Bay impact structure (CBIS) on the Delmarva Peninsula, Virginia, USA, confirms that the CBIS is a complex central-peak crater. We used a tomographic P wave velocity model and low-fold reflection images, constrained by data from two deep boreholes located on the profile, to interpret the structure and composition of the upper 5 km of crust. The seismic images exhibit well-defined structural features, including (with increasing radial distance) a collapsed central uplift, a breccia-filled moat, and a collapsed transient-crater margin (which collectively constitute a ???40-km-wide collapsed transient crater), and a shallowly deformed annular trough. These seismic images are the first to resolve the deep structure of the crater (>1 km) and the boundaries between the central uplift, moat, and annular trough. Several distinct seismic signatures distinguish breccia units from each other and from more coherent crystalline rocks below the central uplift, moat, and annular trough. Within the moat, breccia extends to a minimum depth of 1.5 km or a maximum of 3.5 km, depending upon the interpretation of the deepest layered materials. The images show ???350 to 500 m of postimpact sediments above the impactites. The imaged structure of the CBIS indicates a complex sequence of event during the cratering process that will provide new constraints for numerical modeling. Copyright 2008 by the American Geophysical Union.
Structure, function, and behaviour of computational models in systems biology
2013-01-01
Background Systems Biology develops computational models in order to understand biological phenomena. The increasing number and complexity of such “bio-models” necessitate computer support for the overall modelling task. Computer-aided modelling has to be based on a formal semantic description of bio-models. But, even if computational bio-models themselves are represented precisely in terms of mathematical expressions their full meaning is not yet formally specified and only described in natural language. Results We present a conceptual framework – the meaning facets – which can be used to rigorously specify the semantics of bio-models. A bio-model has a dual interpretation: On the one hand it is a mathematical expression which can be used in computational simulations (intrinsic meaning). On the other hand the model is related to the biological reality (extrinsic meaning). We show that in both cases this interpretation should be performed from three perspectives: the meaning of the model’s components (structure), the meaning of the model’s intended use (function), and the meaning of the model’s dynamics (behaviour). In order to demonstrate the strengths of the meaning facets framework we apply it to two semantically related models of the cell cycle. Thereby, we make use of existing approaches for computer representation of bio-models as much as possible and sketch the missing pieces. Conclusions The meaning facets framework provides a systematic in-depth approach to the semantics of bio-models. It can serve two important purposes: First, it specifies and structures the information which biologists have to take into account if they build, use and exchange models. Secondly, because it can be formalised, the framework is a solid foundation for any sort of computer support in bio-modelling. The proposed conceptual framework establishes a new methodology for modelling in Systems Biology and constitutes a basis for computer-aided collaborative research. PMID:23721297
Warren, Tessa; Dickey, Michael Walsh; Liburd, Teljer L
2017-07-01
The rational inference, or noisy channel, account of language comprehension predicts that comprehenders are sensitive to the probabilities of different interpretations for a given sentence and adapt as these probabilities change (Gibson, Bergen & Piantadosi, 2013). This account provides an important new perspective on aphasic sentence comprehension: aphasia may increase the likelihood of sentence distortion, leading people with aphasia (PWA) to rely more on the prior probability of an interpretation and less on the form or structure of the sentence (Gibson, Sandberg, Fedorenko, Bergen & Kiran, 2015). We report the results of a sentence-picture matching experiment that tested the predictions of the rational inference account and other current models of aphasic sentence comprehension across a variety of sentence structures. Consistent with the rational inference account, PWA showed similar sensitivity to the probability of particular kinds of form distortions as age-matched controls, yet overall their interpretations relied more on prior probability and less on sentence form. As predicted by rational inference, but not by other models of sentence comprehension in aphasia, PWA's interpretations were more faithful to the form for active and passive sentences than for direct object and prepositional object sentences. However contra rational inference, there was no evidence that individual PWA's severity of syntactic or semantic impairment predicted their sensitivity to form versus the prior probability of a sentence, as cued by semantics. These findings confirm and extend previous findings that suggest the rational inference account holds promise for explaining aphasic and neurotypical comprehension, but they also raise new challenges for the account. Copyright © 2017 Elsevier Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Laxton, Katherine E.
This dissertation takes a close look at how district-level instructional coaches support teachers in learning to shifting their instructional practice, related to the Next Generation Science Standards. This dissertation aims to address how re-structuring professional development to a job-embedded coaching model supports individual teacher learning of new reform-related instructional practice. Implementing the NGSS is a problem of supporting professional learning in a way that will enable educators to make fundamental changes to their teaching practice. However, there are few examples in the literature that explain how coaches interact with teachers to improve teacher learning of reform-related instructional practice. There are also few examples in the literature that specifically address how supporting teachers with extended professional learning opportunities, aligned with high-leverage practices, tools and curriculum, impacts how teachers make sense of new standards-based educational reforms and what manifests in classroom instruction. This dissertation proposes four conceptual categories of sense-making that influence how instructional coaches interpret the nature of reform, their roles and in instructional improvement and how to work with teachers. It is important to understand how coaches interpret reform because their interpretations may have unintended consequences related to privileging certain views about instruction, or establishing priorities for how to work with teachers. In this dissertation, we found that re-structuring professional development to a job-embedded coaching model supported teachers in learning new reform-related instructional practice. However, individual teacher interpretations of reform emerged and seemed to be linked to how instructional coaches supported teacher learning.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Fonseca, A.; Navarro, A.; Osorio, R.
1996-08-01
Hydrocarbon exploration has nowadays a diversity of technological resources to capture, merge and interpret information from diverse sources. To accomplish this, the integration of geodata for modeling was done through the use of new technologies like Remote Sensing and Geographical Systems of Information and applied to the San Pedro-Machango area, located in the Serrania de Trujillo, west of Costa Bolivar (onshore), eastern Maracaibo Basin, Venezuela. The main purpose of this work was to optimize the design of an exploration program in harmony with environmental conservation procedures. Starting with satellital and radar images that incorporated geophysical, geological and environmental information, theymore » then were analyzed and merged to improve the lithological, structural and tectonic interpretation, generating an integrated model that allowed better project design. The use of a system that combines information of geographical, geodetical, geophysical and geological origins with satellital and radar images produced up to date cartography and refined results of image interpretation.« less
Possible Alternatives to the Supermassive Black Hole at the Galactic Center
NASA Astrophysics Data System (ADS)
Zakharov, A. F.
2015-12-01
Now there are two basic observational techniques to investigate a gravitational potential at the Galactic Center, namely, (a) monitoring the orbits of bright stars near the Galactic Center to reconstruct a gravitational potential; (b) measuring the size and shape of shadows around black hole giving an alternative possibility to evaluate black hole parameters in mm-band with VLBI-technique. At the moment, one can use a small relativistic correction approach for stellar orbit analysis (however, in the future the approximation will not be precise enough due to enormous progress of observational facilities) while for smallest structure analysis in VLBI observations one really needs a strong gravitational field approximation. We discuss results of observations, their conventional interpretations, tensions between observations and models and possible hints for a new physics from the observational data and tensions between observations and interpretations. We discuss an opportunity to use a Schwarzschild metric for data interpretation or we have to use more exotic models such as Reissner-Nordstrom or Schwarzschild-de-Sitter metrics for better fits.
Fields, Chris
2011-03-01
Structure-mapping inferences are generally regarded as dependent upon relational concepts that are understood and expressible in language by subjects capable of analogical reasoning. However, tool-improvisation inferences are executed by members of a variety of non-human primate and other species. Tool improvisation requires correctly inferring the motion and force-transfer affordances of an object; hence tool improvisation requires structure mapping driven by relational properties. Observational and experimental evidence can be interpreted to indicate that structure-mapping analogies in tool improvisation are implemented by multi-step manipulation of event files by binding and action-planning mechanisms that act in a language-independent manner. A functional model of language-independent event-file manipulations that implement structure mapping in the tool-improvisation domain is developed. This model provides a mechanism by which motion and force representations commonly employed in tool-improvisation structure mappings may be sufficiently reinforced to be available to inwardly directed attention and hence conceptualization. Predictions and potential experimental tests of this model are outlined.
NASA Astrophysics Data System (ADS)
Sridhar, M.; Markandeyulu, A.; Chaturvedi, A. K.
2017-01-01
Mapping of subtrappean sediments is a complex geological problem attempted by many interpreters applying different geophysical techniques. Variations in thickness and resistivity of traps and underlying sediments, respectively, results in considerable uncertainty in the interpretation of geophysical data. It is proposed that the transient electromagnetic technique is an effective geophysical tool for delineation of the sub-trappean sediments, due to marked resistivity contrast between the Deccan trap, and underlying sediments and/or basement. The northern margin of the Kaladgi basin is covered under trap. A heliborne time domain electromagnetic survey was conducted to demarcate the basin extent and map the sub-trappean sediments. Conductivity depth transformations were used to map the interface between conductive trap and resistive 'basement'. Two resistivity contrast boundaries are picked: the first corresponds to the bottom of the shallow conductive unit interpreted as the base of the Deccan Volcanics and the second - picked at the base of a deeper subsurface conductive zone - is interpreted as the weathered paleo-surface of the crystalline basement. This second boundary can only be seen in areas where the volcanics are thin or absent, suggesting that the volcanics are masking the EM signal preventing deeper penetration. An interesting feature, which shows prominently in the EM data but less clearly imaged in the magnetic data, is observed in the vicinity of Mudhol. The surface geology interpreted from satellite imagery show Deccan trap cover around Mudhol. Modelling of TDEM data suggest the presence of synclinal basin structure. The depth of penetration of the heliborne TDEM data is estimated to be approximately 350 m for the study area. This suggests that heliborne TDEM could penetrate significant thicknesses of conductive Deccan trap cover to delineate structure below in the Bagalkot Group.
NASA Astrophysics Data System (ADS)
Setyonegoro, Wiko; Kurniawan, Telly; Ahadi, Suaidi; Rohadi, Supriyanto; Hardy, Thomas; Prayogo, Angga S.
2017-07-01
Research was conducted to determine the value of the magnetic anomalies to identify anomalous value standard fault, down or up with the type of Meratus trending northeast-southwest Cisolok, Sukabumi. Data collection was performed by setting the measurement grid at intervals of 5 meters distance measurement using a Precision Proton Magnetometer (PPM) -GSM-19T. To identification the active fault using magnetic is needed another parameter. The purpose of this study is to identification active fault using magnetic Anomaly in related with subsurface structure through the validation analysis of earthquake mechanism, microgravity and with Topography Structure in Java Island. Qualitative interpretation is done by analyzing the residual anomaly that has been reduced to the pole while the quantitative interpretation is done by analyzing the pattern of residual anomalies through computation. The results of quantitative interpretation, an anomalous value reduction to the pole magnetic field is at -700 nT to 700 nT while the results of the qualitative interpretation of the modeling of the path AA', BB' and CC' shows the magnetic anomaly at coordinates liquefaction resources with a value of 1028.04, 1416.21, - 1565, -1686.91. The measurement results obtained in Cisolok magnetic anomalies that indicate a high content of alumina (Al) and iron (Fe) which be identified appears through the fault gap towards the northeast through Rajamandala Lembang Fault related to the mechanism in the form of a normal fault with slip rate of 2 mm / year.
Barents Sea Crustal and Upper Mantle Structure from Deep Seismic and Potential Field Data
NASA Astrophysics Data System (ADS)
Aarseth, I.; Mjelde, R.; Breivik, A. J.; Minakov, A.; Huismans, R. S.; Faleide, J. I.
2016-12-01
The Barents Sea basement comprises at least two different domains; the Caledonian in the west and the Timanian in the east. Contrasting interpretations have been published recently, as the transition between these two domains is not well constrained. Interpretations of new high-quality magnetic data covering most of the SW Barents Sea challenged previous studies of the Late Paleozoic basin configurations in the western and central Barents Sea. Two major directions of Caledonian structures have been proposed by different authors: N-S and SW-NE. Two regional ocean bottom seismic (OBS) profiles, crossing these two major directions, were acquired in 2014.The primary goal in this project is to locate the main Caledonian suture in the western Barents Sea, as well as the possible Barentsia-Baltica suture postulated further eastwards. High velocity anomalies associated with Caledonian eclogites are particularly interesting as they may be related to Caledonian suture zones. The collapse of the Caledonian mountain range predominantly along these suture zones is expected to be closely linked to the deposition of Devonian erosional products, and subsequent rifting is likely to be influenced by inheritance of Caledonian trends. P-wave travel-time modelling is done by use of a combined ray-tracing and inversion scheme, and gravity modelling has been used to support the seismic model. The results indicate high P-wave velocities (mostly over 4 km/s) close to the seafloor as well as high velocity (around 6 km/s) zones at shallow depths which are interpreted as volcanic sills. The crustal transect reveals areas of complex geology and velocity inversions. Strong reflections from within the crystalline crust indicate a heterogeneous basement terrain. Gravity modelling agrees with this, as several blocks with variable densities had to be introduced in order to reproduce the observed gravity anomalies. Refractions from the top of the crystalline basement together with reflections from the Moho gives basement velocities from 6.2 km/s at the top to 6.7 km/s at the base of the crust. In the middle of the profile, a rapid deepening of Moho creates a root structure that may be interpreted in terms of a Caledonian suture zone, with the crustal root representing a remnant of the continental collision.
Finding structure in data using multivariate tree boosting
Miller, Patrick J.; Lubke, Gitta H.; McArtor, Daniel B.; Bergeman, C. S.
2016-01-01
Technology and collaboration enable dramatic increases in the size of psychological and psychiatric data collections, but finding structure in these large data sets with many collected variables is challenging. Decision tree ensembles such as random forests (Strobl, Malley, & Tutz, 2009) are a useful tool for finding structure, but are difficult to interpret with multiple outcome variables which are often of interest in psychology. To find and interpret structure in data sets with multiple outcomes and many predictors (possibly exceeding the sample size), we introduce a multivariate extension to a decision tree ensemble method called gradient boosted regression trees (Friedman, 2001). Our extension, multivariate tree boosting, is a method for nonparametric regression that is useful for identifying important predictors, detecting predictors with nonlinear effects and interactions without specification of such effects, and for identifying predictors that cause two or more outcome variables to covary. We provide the R package ‘mvtboost’ to estimate, tune, and interpret the resulting model, which extends the implementation of univariate boosting in the R package ‘gbm’ (Ridgeway et al., 2015) to continuous, multivariate outcomes. To illustrate the approach, we analyze predictors of psychological well-being (Ryff & Keyes, 1995). Simulations verify that our approach identifies predictors with nonlinear effects and achieves high prediction accuracy, exceeding or matching the performance of (penalized) multivariate multiple regression and multivariate decision trees over a wide range of conditions. PMID:27918183
Use of MAGSAT anomaly data for crustal structure and mineral resources in the US midcontinent
NASA Technical Reports Server (NTRS)
Carmichael, R. S.
1983-01-01
Magnetic field data acquired by NASA's MAGSAT satellite is used to construct a long-wavelength magnetic anomaly map for the U.S. midcontinent. This aids in interpretation of gross crustal geology (structure, lithologic composition, resource potential) of the region. Magnetic properties of minerals and rocks are investigated and assessed, to help in evaluation and modelling of crustal magnetization sources and depth to the Curie-temperature isotherm.
Damage evaluation by a guided wave-hidden Markov model based method
NASA Astrophysics Data System (ADS)
Mei, Hanfei; Yuan, Shenfang; Qiu, Lei; Zhang, Jinjin
2016-02-01
Guided wave based structural health monitoring has shown great potential in aerospace applications. However, one of the key challenges of practical engineering applications is the accurate interpretation of the guided wave signals under time-varying environmental and operational conditions. This paper presents a guided wave-hidden Markov model based method to improve the damage evaluation reliability of real aircraft structures under time-varying conditions. In the proposed approach, an HMM based unweighted moving average trend estimation method, which can capture the trend of damage propagation from the posterior probability obtained by HMM modeling is used to achieve a probabilistic evaluation of the structural damage. To validate the developed method, experiments are performed on a hole-edge crack specimen under fatigue loading condition and a real aircraft wing spar under changing structural boundary conditions. Experimental results show the advantage of the proposed method.
Fuzzy Edge Connectivity of Graphical Fuzzy State Space Model in Multi-connected System
NASA Astrophysics Data System (ADS)
Harish, Noor Ainy; Ismail, Razidah; Ahmad, Tahir
2010-11-01
Structured networks of interacting components illustrate complex structure in a direct or intuitive way. Graph theory provides a mathematical modeling for studying interconnection among elements in natural and man-made systems. On the other hand, directed graph is useful to define and interpret the interconnection structure underlying the dynamics of the interacting subsystem. Fuzzy theory provides important tools in dealing various aspects of complexity, imprecision and fuzziness of the network structure of a multi-connected system. Initial development for systems of Fuzzy State Space Model (FSSM) and a fuzzy algorithm approach were introduced with the purpose of solving the inverse problems in multivariable system. In this paper, fuzzy algorithm is adapted in order to determine the fuzzy edge connectivity between subsystems, in particular interconnected system of Graphical Representation of FSSM. This new approach will simplify the schematic diagram of interconnection of subsystems in a multi-connected system.
NASA Astrophysics Data System (ADS)
Gridan, Maria-Roberta; Herban, Sorin; Grecea, Oana
2017-07-01
Nowadays, the engineering companies and contractors are facing challenges never experienced before. They are being charged with - and being held liable for - the health of the structures they create and maintain. To surmount these challenges, engineers need to be able to measure structural movements up to millimetre level accuracy. Accurate and timely information on the status of a structure is highly valuable to engineers. It enables them to compare the real world behaviour of a structure against the design and theoretical models. When empowered by such data, engineers can effectively and cost efficiently measure and maintain the health of vital infrastructure. This paper presents the interpretation of the draft tube topographical measurements in order to obtain its 3D model. Based on the documents made available by the beneficiary and the data obtained in situ, the modernization conclusions were presented.
Analyzing the Interaction of Performance Appraisal Factors Using Interpretive Structural Modeling
ERIC Educational Resources Information Center
Manoharan, T. R.; Muralidharan, C.; Deshmukh, S. G.
2010-01-01
In today's changed environment where the economy and industry are driven by customers, business is open to worldwide competition. Manufacturing firms have looked at employee performance improvement as a means to succeed. These findings advocate setting up priorities for employee performance improvement. This requires a continuous improvement…
Evaluating Great Lakes bald eagle nesting habitat with Bayesian inference
Teryl G. Grubb; William W. Bowerman; Allen J. Bath; John P. Giesy; D. V. Chip Weseloh
2003-01-01
Bayesian inference facilitated structured interpretation of a nonreplicated, experience-based survey of potential nesting habitat for bald eagles (Haliaeetus leucocephalus) along the five Great Lakes shorelines. We developed a pattern recognition (PATREC) model of our aerial search image with six habitat attributes: (a) tree cover, (b) proximity and...
The Band Structure of Polymers: Its Calculation and Interpretation. Part 2. Calculation.
ERIC Educational Resources Information Center
Duke, B. J.; O'Leary, Brian
1988-01-01
Details ab initio crystal orbital calculations using all-trans-polyethylene as a model. Describes calculations based on various forms of translational symmetry. Compares these calculations with ab initio molecular orbital calculations discussed in a preceding article. Discusses three major approximations made in the crystal case. (CW)
Modeling Pupils' Understanding and Explanations Concerning Changes in Matter
ERIC Educational Resources Information Center
Hatzinikita, Vassilia; Koulaidis, Vasilios; Hatzinikitas, Agapitos
2005-01-01
The explanations of thirty primary pupils for changes in matter were recorded through individual, semi-structured interviews. The analysis of data pointed to the construction of a system for classifying pupils' explanations of changes in matter. A parallel analysis of data focused on the identification and interpretation of associations between…
A Heuristic for the Teaching of Persuasion.
ERIC Educational Resources Information Center
Schell, John F.
Interpreting Aristotle's criteria for persuasive writing--ethos, logos, and pathos--as a concern for writer, language, and audience creates both an effective model for persuasive writing and a structure around which to organize discussions of relevant rhetorical issues. Use of this heuristic to analyze writing style, organization, and content…
Approaches to the structural modelling of insect wings.
Wootton, R J; Herbert, R C; Young, P G; Evans, K E
2003-01-01
Insect wings lack internal muscles, and the orderly, necessary deformations which they undergo in flight and folding are in part remotely controlled, in part encoded in their structure. This factor is crucial in understanding their complex, extremely varied morphology. Models have proved particularly useful in clarifying the facilitation and control of wing deformation. Their development has followed a logical sequence from conceptual models through physical and simple analytical to numerical models. All have value provided their limitations are realized and constant comparisons made with the properties and mechanical behaviour of real wings. Numerical modelling by the finite element method is by far the most time-consuming approach, but has real potential in analysing the adaptive significance of structural details and interpreting evolutionary trends. Published examples are used to review the strengths and weaknesses of each category of model, and a summary is given of new work using finite element modelling to investigate the vibration properties and response to impact of hawkmoth wings. PMID:14561349
Lecerf, Thierry; Canivez, Gary L
2018-06-01
Interpretation of the French Wechsler Intelligence Scale for Children-Fifth Edition (French WISC-V; Wechsler, 2016a) is based on a 5-factor model including Verbal Comprehension (VC), Visual Spatial (VS), Fluid Reasoning (FR), Working Memory (WM), and Processing Speed (PS). Evidence for the French WISC-V factorial structure was established exclusively through confirmatory factor analyses (CFAs). However, as recommended by Carroll (1995); Reise (2012), and Brown (2015), factorial structure should derive from both exploratory factor analysis (EFA) and CFA. The first goal of this study was to examine the factorial structure of the French WISC-V using EFA. The 15 French WISC-V primary and secondary subtest scaled scores intercorrelation matrix was used and factor extraction criteria suggested from 1 to 4 factors. To disentangle the contribution of first- and second-order factors, the Schmid and Leiman (1957) orthogonalization transformation (SLT) was applied. Overall, no EFA evidence for 5 factors was found. Results indicated that the g factor accounted for about 67% of the common variance and that the contributions of the first-order factors were weak (3.6 to 11.9%). CFA was used to test numerous alternative models. Results indicated that bifactor models produced better fit to these data than higher-order models. Consistent with previous studies, findings suggested dominance of the general intelligence factor and that users should thus emphasize the Full Scale IQ (FSIQ) when interpreting the French WISC-V. (PsycINFO Database Record (c) 2018 APA, all rights reserved).
Interpretation of the northern boundary of Ishtar Terra from Magellan images and altimetry
NASA Technical Reports Server (NTRS)
Mueller, S.; Grimm, Robert E.; Phillips, Roger J.
1991-01-01
Part of the controversy on the origin of western Ishtar Terra (IT) concerns the nature of Uorsar Rupes (UR), the northern boundary of IT. In the hypothesis of lithospheric convergence and underthrusting, UR is held to be the main boundary thrust fault at the toe of an accretionary wedge. A topographic rise parallel to the scarp was interpreted as a flexural bulge similar to those of terrestrial subduction zones, and quantitative models of this feature seemed broadly consistent with the expected lithospheric structure of Venus. In the alternative mantle upwelling hypothesis for western IT, the outer margins of the highland are thought to be collapsing, and UR has been interpreted as a normal fault. Herein, Magellan images and altimetry are interpreted for this region and the hypothesis that a flexural signature can be distinguished is reassessed. The Magellan images of IT show evidence of crustal shortening adjacent to UR, but extension and burial dominate northwards. Altimetric profiles display the same long wavelength trends visible in Venera data, but no clear evidence of the lithospheric flexure. A model of regional extension and burial is herein favored, but regional compression cannot be ruled out.
QSAR modeling based on structure-information for properties of interest in human health.
Hall, L H; Hall, L M
2005-01-01
The development of QSAR models based on topological structure description is presented for problems in human health. These models are based on the structure-information approach to quantitative biological modeling and prediction, in contrast to the mechanism-based approach. The structure-information approach is outlined, starting with basic structure information developed from the chemical graph (connection table). Information explicit in the connection table (element identity and skeletal connections) leads to significant (implicit) structure information that is useful for establishing sound models of a wide range of properties of interest in drug design. Valence state definition leads to relationships for valence state electronegativity and atom/group molar volume. Based on these important aspects of molecules, together with skeletal branching patterns, both the electrotopological state (E-state) and molecular connectivity (chi indices) structure descriptors are developed and described. A summary of four QSAR models indicates the wide range of applicability of these structure descriptors and the predictive quality of QSAR models based on them: aqueous solubility (5535 chemically diverse compounds, 938 in external validation), percent oral absorption (%OA, 417 therapeutic drugs, 195 drugs in external validation testing), AMES mutagenicity (2963 compounds including 290 therapeutic drugs, 400 in external validation), fish toxicity (92 substituted phenols, anilines and substituted aromatics). These models are established independent of explicit three-dimensional (3-D) structure information and are directly interpretable in terms of the implicit structure information useful to the drug design process.
NASA Astrophysics Data System (ADS)
Santer, B. D.; Mears, C. A.; Gleckler, P. J.; Solomon, S.; Wigley, T.; Arblaster, J.; Cai, W.; Gillett, N. P.; Ivanova, D. P.; Karl, T. R.; Lanzante, J.; Meehl, G. A.; Stott, P.; Taylor, K. E.; Thorne, P.; Wehner, M. F.; Zou, C.
2010-12-01
We perform the most comprehensive comparison to date of simulated and observed temperature trends. Comparisons are made for different latitude bands, timescales, and temperature variables, using information from a multi-model archive and a variety of observational datasets. Our focus is on temperature changes in the lower troposphere (TLT), the mid- to upper troposphere (TMT), and at the sea surface (SST). For SST, TLT, and TMT, trend comparisons over the satellite era (1979 to 2009) always yield closest agreement in mid-latitudes of the Northern Hemisphere. There are pronounced discrepancies in the tropics and in the Southern Hemisphere: in both regions, the multi-model average warming is consistently larger than observed. At high latitudes in the Northern Hemisphere, the observed tropospheric warming exceeds multi-model average trends. The similarity in the latitudinal structure of this discrepancy pattern across different temperature variables and observational data sets suggests that these trend differences are real, and are not due to residual inhomogeneities in the observations. The interpretation of these results is hampered by the fact that the CMIP-3 multi-model archive analyzed here convolves errors in key external forcings with errors in the model response to forcing. Under a "forcing error" interpretation, model-average temperature trends in the Southern Hemisphere extratropics are biased warm because many models neglect (and/or inaccurately specify) changes in stratospheric ozone and the indirect effects of aerosols. An alternative "response error" explanation for the model trend errors is that there are fundamental problems with model clouds and ocean heat uptake over the Southern Ocean. When SST changes are compared over the longer period 1950 to 2009, there is close agreement between simulated and observed trends poleward of 50°S. This result is difficult to reconcile with the hypothesis that the trend discrepancies over 1979 to 2009 are primarily attributable to response errors. Our results suggest that biases in multi-model average temperature trends over the satellite era can be plausibly linked to forcing errors. Better partitioning of the forcing and response components of model errors will require a systematic program of numerical experimentation, with a focus on exploring the climate response to uncertainties in key historical forcings.
NASA Astrophysics Data System (ADS)
Popovs, K.; Saks, T.; Ukass, J.; Jatnieks, J.
2012-04-01
Interpretation of geological structures in 3D geological models is a relatively new research topic that is already standardized in many geological branches. Due to its wide practical application, these models are indispensable and become one of the dominant interpretation methods in reducing geological uncertainties in many geology fields. Traditionally, geological concepts complement quantitative as much as qualitative data to obtain a model deemed acceptable, however, available data very often is insufficient and modeling methods primarily focus on spatial data but geological history usually is mostly neglected for the modeling of large sedimentary basins. A need to better integrate the long and often complex geological history and geological knowledge into modeling procedure is very acute to gain geological insight and improve the quality of geological models. During this research, 3D geological model of the Baltic basin (BB) was created. Because of its complex regional geological setting - wide range of the data sources with multiple scales, resolution and density as well as its various source formats, the study area provides a challenge for the 3D geological modeling. In order to create 3D regional geometrical model for the study area algorithmic genetic approach for model geometry reconstruction was applied. The genetic approach is based on the assumption that post-depositional deformation produce no significant change in sedimentary strata volume, assuming that the strata thickness and its length in a cross sectional plane remains unchanged except as a result of erosion. Assuming that the tectonic deformation occurred in sequential cycles and subsequent tectonic stage strata is separated by regional unconformity as is the case of the BB, there is an opportunity for algorithmic approach in reconstructing these conditions by sequentially reconstructing the layer original thickness. Layer thicknesses were sliced along fault lines, where applicable layer thickness was adjusted by taking into account amount of erosion by the presence of the regional unconformities. Borehole data and structural maps of some surfaces were used in creating geological model of the BB. Used approach allowed creating geologically sound geometric model. At first borehole logs were used to reconstruct initial thicknesses of different strata in every tectonic stage, where topography of each strata was obtained sequentially summing thickness to the initial reference surface from structural maps. Thereby each layer reflects the topography and amount of slip along the fault of the overlying layer. Overlying tectonic cycle sequence is implemented into the model structure by using unconformity surface as an initial reference surface. Applied techniques made possible reliably reconstructing and predicting in areas of sparse data layer surface geometry, its thickness distribution and evaluating displacements along the fault planes. Overall results indicate that the used approach has a good potential in development of regional geological models for the sedimentary basins and is valid for spatial interpretation of geological structures, subordinating this process to geological evolution prerequisites. This study is supported by the European Social Fund project No. 2009/0212/1DP/1.1.1.2.0/09/APIA/VIAA/060.
NASA Astrophysics Data System (ADS)
Selim, El Sayed Ibrahim
2016-01-01
The Sinai Peninsula is a part of the Sinai sub-plate that located between the southeast Nubian-Arabian shield and the southeastern Mediterranean northward. The main objectives of this investigation are to deduce the main sedimentary basin and its subdivisions, identify the subsurface structural framework that affects the study area and determine the thickness of sedimentary cover of the basement surface. The total intensity magnetic map, Bouguer gravity map and seismic data were used to achieve the study aims. Structural interpretation of the gravity and magnetic data were done by applying advanced processing techniques. These techniques include; Reduce to the pole (RTP), Power spectrum, Tile derivative and Analytical Signal techniques were applied on gravity and magnetic data. Two dimensional gravity and magnetic modeling and interpretation of seismic sections were done to determine the thickness of sedimentary cover of the study area. The integration of our interpretation suggests that, the northern Sinai area consists of elongated troughs that contain many high structural trends. Four major structural trends have been identified, that, reflecting the influence of district regional tectonic movements. These trends are: (1) NE-SW trend; (2) NNW-SSE trend; (3) ENE-WSW trend and (4) WNW-ESE trend. There are also many minor trends, E-W, NW-SE and N-S structural trends. The main sedimentary basin of North Sinai is divided into four sub-basins; (1) Northern Maghara; (2) Northeastern Sinai; (3) Northwestern Sinai and (4) Central Sinai basin. The sedimentary cover ranges between 2 km and 7 km in the northern part of the study area.
NASA Astrophysics Data System (ADS)
Ibraheem, Ismael M.; Elawadi, Eslam A.; El-Qady, Gad M.
2018-03-01
The Wadi El Natrun area in Egypt is located west of the Nile Delta on both sides of the Cairo-Alexandria desert road, between 30°00‧ and 30°40‧N latitude, and 29°40‧ and 30°40‧E longitude. The name refers to the NW-SE trending depression located in the area and containing lakes that produce natron salt. In spite of the area is promising for oil and gas exploration as well as agricultural projects, Geophysical studies carried out in the area is limited to the regional seismic surveys accomplished by oil companies. This study presents the interpretation of the airborne magnetic data to map the structure architecture and depth to the basement of the study area. This interpretation was facilitated by applying different data enhancement and processing techniques. These techniques included filters (regional-residual separation), derivatives and depth estimation using spectral analysis and Euler deconvolution. The results were refined using 2-D forward modeling along three profiles. Based on the depth estimation techniques, the estimated depth to the basement surface, ranges from 2.25 km to 5.43 km while results of the two-dimensional forward modeling show that the depth of the basement surface ranges from 2.2 km to 4.8 km. The dominant tectonic trends in the study area at deep levels are NW (Suez Trend), NNW, NE, and ENE (Syrian Arc System trend). The older ENE trend, which dominates the northwestern desert is overprinted in the study area by relatively recent NW and NE trends, whereas the tectonic trends at shallow levels are NW, ENE, NNE (Aqaba Trend), and NE. The predominant structure trend for both deep and shallow structures is the NW trend. The results of this study can be used to better understand deep-seated basement structures and to support decisions with regard to the development of agriculture, industrial areas, as well as oil and gas exploration in northern Egypt.
Sweetkind, D.S.; Dickerson, R.P.; Blakely, R.J.; Denning, Paul
2001-01-01
This report presents a network of 28 geologic cross sections that portray subsurface geologic relations within the Death Valley regional ground-water system, a ground-water basin that encompasses a 3? x 3? area (approximately 70,000 km2) in southern Nevada and eastern California. The cross sections transect that part of the southern Great Basin that includes Death Valley, the Nevada Test Site, and the potential high-level nuclear waste underground repository at Yucca Mountain. The specific geometric relationships portrayed on the cross sections are discussed in the context of four general sub-regions that have stratigraphic similarities and general consistency of structural style: (1) the Nevada Test Site vicinity; (2) the Spring Mountains, Pahrump Valley and Amargosa Desert region; (3) the Death Valley region; and (4) the area east of the Nevada Test Site. The subsurface geologic interpretations portrayed on the cross sections are based on an integration of existing geologic maps, measured stratigraphic sections, published cross sections, well data, and geophysical data and interpretations. The estimated top of pre-Cenozoic rocks in the cross sections is based on inversion of gravity data, but the deeper parts of the sections are based on geologic conceptual models and are more speculative. The region transected by the cross sections includes part of the southern Basin and Range Province, the northwest-trending Walker Lane belt, the Death Valley region, and the northern Mojave Desert. The region is structurally complex, where a locally thick Tertiary volcanic and sedimentary section unconformably overlies previously deformed Proterozoic through Paleozoic rocks. All of these rocks have been deformed by complex Neogene ex-tensional normal and strike-slip faults. These cross sections form a three-dimensional network that portrays the interpreted stratigraphic and structural relations in the region; the sections form part of the geologic framework that will be incorporated in a complex numerical model of ground-water flow in the Death Valley region.
Basement structures over Rio Grande Rise from gravity inversion
NASA Astrophysics Data System (ADS)
Constantino, Renata; Hackspacker, Peter Christian; Anderson de Souza, Iata; Sousa Lima Costa, Iago
2017-04-01
In this study, we show that from satellite-derived gravity field, bathymetry and sediment thicknesses, it is possible to give a 3-D model of the basement over oceanic areas, and for this purpose, we have chosen the Rio Grande Rise, in South Atlantic Ocean, to build a gravity-equivalent basement topography. The advantages of the method applied in this study are manifold: does not depend directly on reflection seismic data; can be applied quickly and with fewer costs for acquiring and interpreting the data; and as the main result, presents the physical surface below the sedimentary layer, which may be different from the acoustic basement. We evaluated the gravity effect of the sediments using the global sediment thickness model of NOAA, fitting a sediment compaction model to observed density values from Deep Sea Drilling Program (DSDP) reports. The Global Relief Model ETOPO1 and constraining data from seismic interpretation on crustal thickness are integrated in the gravity inversion procedure. The modeled Moho depth values vary between 6 to 27 km over the area, being thicker under the Rio Grande Rise and also in the direction of São Paulo Plateau. The inversion for the gravity-equivalent basement topography is applied for a gravity residual data, which is free from the gravity effect of sediments and from the gravity effect of the estimated Moho interface. A description of the basement depth over Rio Grande Rise area is unprecedented in the literature, however, our results could be compared to in situ data, provided by DSDP, and a small difference of only 9 m between our basement depth and leg 516 F was found. Our model shows a rift crossing the entire Rio Grande Rise deeper than previously presented in literature, with depths up to 5 km in the East Rio Grande Rise (ERGR) and deeper in the West Rio Grande Rise (WRGR), reaching 6.4 km. We find several short-wavelengths structures not present in the bathymetry data. Seamounts, guyots and fracture zones are much more clearly defined in the basement than in the bathymetric model. An interesting NS structure that goes from 34S and extends through de São Paulo Ridge is interpreted in the basement model, and we propose that this feature can be related to the South Atlantic opening, revealing an extinct spreading center.
NASA Astrophysics Data System (ADS)
Calo, M.; Tramelli, A.
2017-12-01
Seismic P and S velocity models (and their ratio Vp/Vs) help illuminating the geometrical structure of the bodies and give insight on the presence of water, molten or gas saturated regions. Seismic attenuation represents the anelastic behavior of the medium. Due to its dependence on temperature, fluid contents and cracks presence, this parameter is also largely used to characterize the structures of volcanoes and geothermal areas. Scattering attenuation is related, in the upper crust, to the amount, size and organization of the fractures giving complementary information on the state of the medium.Therefore a joint interpretation of these models provides an exhaustive view of the elastic parameters in volcanic regions. Campi Flegrei is an active Caldera marked by strong vertical deformations of the ground called bradyseisms and several models have been proposed to describe the nature and the geometry of the bodies responsible of the bradyseisms. Here we show Vp, Vp/Vs, Qp and scattering models carried out by applying an enhanced seismic tomography method that combines de double difference approach (Zhang and Thurber, 2003) and the Weigthed Average Method (Calò et al., 2009, Calò et al., 2011, 2013). The data used are the earthquakes recorded during the largest bradyseism crisis of the 80's. Our method allowed to image structures with linear dimension of 0.5-1.2km, resulting in an improvement of the resolving power at least two times of the other published models (e.g. Priolo et al., 2012). The joint interpretation of seismic models allowed to discern small anomalous bodies at shallow depth (0.5-2.0 km) marked by relatively low Vp, high Vp/Vs ratio and low Qp values associated with the presence of shallow geothermal water saturated reservoir from regions with low Vp, low Vp/Vs and low Qp related to the gas saturated part of the reservoir. At deeper depth (2-3.5 km) bodies with high Vp and Vp/Vs and low Qp are associated with magmatic intrusions. The Scattering model highlights the highly fractured part of the caldera suggesting the main paths of the fluid/heath transportation. This work was supported by UNAM-PAPIIT:IA100416.
Callahan, Sarah M.; Walenski, Matthew; Love, Tracy
2013-01-01
Purpose To examine children’s comprehension of verb phrase (VP) ellipsis constructions in light of their automatic, online structural processing abilities and conscious, metalinguistic reflective skill. Method Forty-two children ages 5 through 12 years listened to VP ellipsis constructions involving the strict/sloppy ambiguity (e.g., “The janitor untangled himself from the rope and the fireman in the elementary school did too after the accident.”) in which the ellipsis phrase (“did too”) had 2 interpretations: (a) strict (“untangled the janitor”) and (b) sloppy (“untangled the fireman”). We examined these sentences at a normal speech rate with an online cross-modal picture priming task (n = 14) and an offline sentence–picture matching task (n = 11). Both tasks were also given with slowed speech input (n = 17). Results Children showed priming for both the strict and sloppy interpretations at a normal speech rate but only for the strict interpretation with slowed input. Offline, children displayed an adultlike preference for the sloppy interpretation with normal-rate input but a divergent pattern with slowed speech. Conclusions Our results suggest that children and adults rely on a hybrid syntax-discourse model for the online comprehension and offline interpretation of VP ellipsis constructions. This model incorporates a temporally sensitive syntactic process of VP reconstruction (disrupted with slow input) and a temporally protracted discourse effect attributed to parallelism (preserved with slow input). PMID:22223886
Marsh, Herbert W; Scalas, L Francesca; Nagengast, Benjamin
2010-06-01
Self-esteem, typically measured by the Rosenberg Self-Esteem Scale (RSE), is one of the most widely studied constructs in psychology. Nevertheless, there is broad agreement that a simple unidimensional factor model, consistent with the original design and typical application in applied research, does not provide an adequate explanation of RSE responses. However, there is no clear agreement about what alternative model is most appropriate-or even a clear rationale for how to test competing interpretations. Three alternative interpretations exist: (a) 2 substantively important trait factors (positive and negative self-esteem), (b) 1 trait factor and ephemeral method artifacts associated with positively or negatively worded items, or (c) 1 trait factor and stable response-style method factors associated with item wording. We have posited 8 alternative models and structural equation model tests based on longitudinal data (4 waves of data across 8 years with a large, representative sample of adolescents). Longitudinal models provide no support for the unidimensional model, undermine support for the 2-factor model, and clearly refute claims that wording effects are ephemeral, but they provide good support for models positing 1 substantive (self-esteem) factor and response-style method factors that are stable over time. This longitudinal methodological approach has not only resolved these long-standing issues in self-esteem research but also has broad applicability to most psychological assessments based on self-reports with a mix of positively and negatively worded items.
NOXclass: prediction of protein-protein interaction types.
Zhu, Hongbo; Domingues, Francisco S; Sommer, Ingolf; Lengauer, Thomas
2006-01-19
Structural models determined by X-ray crystallography play a central role in understanding protein-protein interactions at the molecular level. Interpretation of these models requires the distinction between non-specific crystal packing contacts and biologically relevant interactions. This has been investigated previously and classification approaches have been proposed. However, less attention has been devoted to distinguishing different types of biological interactions. These interactions are classified as obligate and non-obligate according to the effect of the complex formation on the stability of the protomers. So far no automatic classification methods for distinguishing obligate, non-obligate and crystal packing interactions have been made available. Six interface properties have been investigated on a dataset of 243 protein interactions. The six properties have been combined using a support vector machine algorithm, resulting in NOXclass, a classifier for distinguishing obligate, non-obligate and crystal packing interactions. We achieve an accuracy of 91.8% for the classification of these three types of interactions using a leave-one-out cross-validation procedure. NOXclass allows the interpretation and analysis of protein quaternary structures. In particular, it generates testable hypotheses regarding the nature of protein-protein interactions, when experimental results are not available. We expect this server will benefit the users of protein structural models, as well as protein crystallographers and NMR spectroscopists. A web server based on the method and the datasets used in this study are available at http://noxclass.bioinf.mpi-inf.mpg.de/.
The Ischia volcanic island (Southern Italy): Inferences from potential field data interpretation
NASA Astrophysics Data System (ADS)
Paoletti, V.; Di Maio, R.; Cella, F.; Florio, G.; Motschka, K.; Roberti, N.; Secomandi, M.; Supper, R.; Fedi, M.; Rapolla, A.
2009-01-01
In this paper we present a study of the structural setting of the volcanic island of Ischia by the analysis and interpretation of high-resolution aeromagnetic and self-potential data recently acquired over the island. The magnetic data allowed us to locate the main anomaly sources and lineaments of the island and its offshore surroundings, while the self-potential (SP) data provided information on both the structural pattern of the resurgent caldera and the high-temperature fluid circulation. An inversion of the acquired magnetic and SP data, and a joint modelling of the magnetic data and of a previous gravity data set along a SW-NE profile allowed us to build a model of the island. The model is characterized by the presence of an igneous-very likely trachytic-structure, whose top is located at 1200-1750 m b.s.l. Such a body, possibly formed by several neighbouring intrusions, has a density contrast with the pyroclastic cover of about 0.4 gr/cm 3 and its central-western part, below Mt. Epomeo, seems to be demagnetized. The demagnetization should be connected to the high geothermal gradient measured in this portion of the island and may be due to hydro-chemical alteration processes and/or to the possible presence of partially melted spots within the intrusion. Our outcome is consistent with the results of previous geophysical, geo-volcanological and geothermal studies.
The big five personality traits: psychological entities or statistical constructs?
Franić, Sanja; Borsboom, Denny; Dolan, Conor V; Boomsma, Dorret I
2014-11-01
The present study employed multivariate genetic item-level analyses to examine the ontology and the genetic and environmental etiology of the Big Five personality dimensions, as measured by the NEO Five Factor Inventory (NEO-FFI) [Costa and McCrae, Revised NEO personality inventory (NEO PI-R) and NEO five-factor inventory (NEO-FFI) professional manual, 1992; Hoekstra et al., NEO personality questionnaires NEO-PI-R, NEO-FFI: manual, 1996]. Common and independent pathway model comparison was used to test whether the five personality dimensions fully mediate the genetic and environmental effects on the items, as would be expected under the realist interpretation of the Big Five. In addition, the dimensionalities of the latent genetic and environmental structures were examined. Item scores of a population-based sample of 7,900 adult twins (including 2,805 complete twin pairs; 1,528 MZ and 1,277 DZ) on the Dutch version of the NEO-FFI were analyzed. Although both the genetic and the environmental covariance components display a 5-factor structure, applications of common and independent pathway modeling showed that they do not comply with the collinearity constraints entailed in the common pathway model. Implications for the substantive interpretation of the Big Five are discussed.
Spatial Structure of Evolutionary Models of Dialects in Contact
Murawaki, Yugo
2015-01-01
Phylogenetic models, originally developed to demonstrate evolutionary biology, have been applied to a wide range of cultural data including natural language lexicons, manuscripts, folktales, material cultures, and religions. A fundamental question regarding the application of phylogenetic inference is whether trees are an appropriate approximation of cultural evolutionary history. Their validity in cultural applications has been scrutinized, particularly with respect to the lexicons of dialects in contact. Phylogenetic models organize evolutionary data into a series of branching events through time. However, branching events are typically not included in dialectological studies to interpret the distributions of lexical terms. Instead, dialectologists have offered spatial interpretations to represent lexical data. For example, new lexical items that emerge in a politico-cultural center are likely to spread to peripheries, but not vice versa. To explore the question of the tree model’s validity, we present a simple simulation model in which dialects form a spatial network and share lexical items through contact rather than through common ancestors. We input several network topologies to the model to generate synthetic data. We then analyze the synthesized data using conventional phylogenetic techniques. We found that a group of dialects can be considered tree-like even if it has not evolved in a temporally tree-like manner but has a temporally invariant, spatially tree-like structure. In addition, the simulation experiments appear to reproduce unnatural results observed in reconstructed trees for real data. These results motivate further investigation into the spatial structure of the evolutionary history of dialect lexicons as well as other cultural characteristics. PMID:26221958
NASA Astrophysics Data System (ADS)
Günther, Uwe; Kuzhel, Sergii
2010-10-01
Gauged \\ {P}\\ {T} quantum mechanics (PTQM) and corresponding Krein space setups are studied. For models with constant non-Abelian gauge potentials and extended parity inversions compact and noncompact Lie group components are analyzed via Cartan decompositions. A Lie-triple structure is found and an interpretation as \\ {P}\\ {T}-symmetrically generalized Jaynes-Cummings model is possible with close relation to recently studied cavity QED setups with transmon states in multilevel artificial atoms. For models with Abelian gauge potentials a hidden Clifford algebra structure is found and used to obtain the fundamental symmetry of Krein space-related J-self-adjoint extensions for PTQM setups with ultra-localized potentials.
Characterising RNA secondary structure space using information entropy
2013-01-01
Comparative methods for RNA secondary structure prediction use evolutionary information from RNA alignments to increase prediction accuracy. The model is often described in terms of stochastic context-free grammars (SCFGs), which generate a probability distribution over secondary structures. It is, however, unclear how this probability distribution changes as a function of the input alignment. As prediction programs typically only return a single secondary structure, better characterisation of the underlying probability space of RNA secondary structures is of great interest. In this work, we show how to efficiently compute the information entropy of the probability distribution over RNA secondary structures produced for RNA alignments by a phylo-SCFG, and implement it for the PPfold model. We also discuss interpretations and applications of this quantity, including how it can clarify reasons for low prediction reliability scores. PPfold and its source code are available from http://birc.au.dk/software/ppfold/. PMID:23368905
Kerisit, Sebastien; Bylaska, Eric J; Massey, Michael S; McBriarty, Martin E; Ilton, Eugene S
2016-11-21
Incorporation of economically or environmentally consequential polyvalent metals into iron (oxyhydr)oxides has applications in environmental chemistry, remediation, and materials science. A primary tool for characterizing the local coordination environment of such metals, and therefore building models to predict their behavior, is extended X-ray absorption fine structure spectroscopy (EXAFS). Accurate structural information can be lacking yet is required to constrain and inform data interpretation. In this regard, ab initio molecular dynamics (AIMD) was used to calculate the local coordination environment of minor amounts of U incorporated in the structure of goethite (α-FeOOH). U oxidation states (VI, V, and IV) and charge compensation schemes were varied. Simulated trajectories were used to calculate the U L III -edge EXAFS function and fit experimental EXAFS data for U incorporated into goethite under reducing conditions. Calculations that closely matched the U EXAFS of the well-characterized mineral uraninite (UO 2 ), and constrained the S 0 2 parameter to be 0.909, validated the approach. The results for the U-goethite system indicated that U(V) substituted for structural Fe(III) in octahedral uranate coordination. Charge balance was achieved by the loss of one structural proton coupled to addition of one electron into the solid (-1 H + , +1 e - ). The ability of AIMD to model higher energy states thermally accessible at room temperature is particularly relevant for protonated systems such as goethite, where proton transfers between adjacent octahedra had a dramatic effect on the calculated EXAFS. Vibrational effects as a function of temperature were also estimated using AIMD, allowing separate quantification of thermal and configurational disorder. In summary, coupling AIMD structural modeling and EXAFS experiments enables modeling of the redox behavior of polyvalent metals that are incorporated in conductive materials such as iron (oxyhydr)oxides, with applications over a broad swath of chemistry and materials science.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kerisit, Sebastien; Bylaska, Eric J.; Massey, Michael S.
2016-11-21
Incorporation of economically or environmentally consequential polyvalent metals into iron (oxyhydr)oxides has applications in environmental chemistry, remediation, and materials science. A primary tool for characterizing the local coordination environment of such metals, and therefore building models to predict their behavior, is extended X-ray absorption fine structure spectroscopy (EXAFS). Accurate structural information can be lacking, yet is required to constrain and inform data interpretation. In this regard, ab initio molecular dynamics (AIMD) was used to calculate the local coordination environment of minor amounts of U incorporated in the structure of goethite (α-FeOOH). U oxidation state (VI, V, and IV) and chargemore » compensation scheme (CCS) were varied. Simulated trajectories were used to calculate the U LIII-edge EXAFS function and fit experimental EXAFS data for U incorporated into goethite under reducing conditions. Calculations that closely matched the U EXAFS of the well-characterized mineral uraninite (UO2), and constrained the S02 parameter to be 0.909, validated the approach. The results for the U-goethite system indicated that U(V) substituted for structural Fe(III) in octahedral uranate coordination. Charge balance was achieved by the loss of one structural proton coupled to injection of one electron into the solid (–1 H+, + 1 e-). The ability of AIMD to model higher-energy states thermally accessible at room temperature is particularly relevant for protonated systems such as goethite, where proton transfers between adjacent octahedra had a dramatic effect on the calculated EXAFS. Vibrational effects as a function of temperature were also estimated using AIMD, allowing separate quantification of thermal and configurational disorder. In summary, coupling AIMD structural modeling and EXAFS experiments enables modeling of the redox behavior of polyvalent metals that are incorporated in conductive materials such as iron (oxyhydr)oxides, with applications over a broad swath of chemistry and materials science.« less
NASA Astrophysics Data System (ADS)
Masand, Vijay H.; El-Sayed, Nahed N. E.; Mahajan, Devidas T.; Mercader, Andrew G.; Alafeefy, Ahmed M.; Shibi, I. G.
2017-02-01
In the present work, sixty substituted 2-Phenylimidazopyridines previously reported with potent anti-human African trypanosomiasis (HAT) activity were selected to build genetic algorithm (GA) based QSAR models to determine the structural features that have significant correlation with the activity. Multiple QSAR models were built using easily interpretable descriptors that are directly associated with the presence or the absence of a structural scaffold, or a specific atom. All the QSAR models have been thoroughly validated according to the OECD principles. All the QSAR models are statistically very robust (R2 = 0.80-0.87) with high external predictive ability (CCCex = 0.81-0.92). The QSAR analysis reveals that the HAT activity has good correlation with the presence of five membered rings in the molecule.
Ueno, Yutaka; Ito, Shuntaro; Konagaya, Akihiko
2014-12-01
To better understand the behaviors and structural dynamics of proteins within a cell, novel software tools are being developed that can create molecular animations based on the findings of structural biology. This study proposes our method developed based on our prototypes to detect collisions and examine the soft-body dynamics of molecular models. The code was implemented with a software development toolkit for rigid-body dynamics simulation and a three-dimensional graphics library. The essential functions of the target software system included the basic molecular modeling environment, collision detection in the molecular models, and physical simulations of the movement of the model. Taking advantage of recent software technologies such as physics simulation modules and interpreted scripting language, the functions required for accurate and meaningful molecular animation were implemented efficiently.
Long regional magnetotelluric profile crossing geotectonic structures of central Poland
NASA Astrophysics Data System (ADS)
Stefaniuk, M.; Pokorski, J.; Wojdyla, M.
2009-04-01
Introduction The magnetotelluric survey was made along a regional profile, which runs across Poland from south-west to north-east during 2005-2006 years. The profile crosses major geological structures of Central Poland, including the Variscan Externides and Variscan foredeep, the Transeuropean Suture Zone and the marginal zone of East European Craton. The main objectives of the project include identification of sub-Zechstein sedimentary structures and evaluation of resistivity distribution within the deep crust, especially at the contact of East European Precambrian Craton and Central Europe Paleozoic structures. The length of the profile is about 700 km; 161 deep magnetotelluric sounding sites were made with a medium spacing of about 4 km. Data acquisition and processing The recording of the components of natural electromagnetic field was made with a broad range of frequencies, varying from 0.0003 Hz up to 575 Hz with use of MT-1 system of Electromagnetic Instruments Incorporation. This frequency band allowed obtaining the information about geology ranging from a few dozen meters to approximately 100 km, depending on the vertical distribution of the resistivity inside geological medium. To reduce the electromagnetic noise, magnetic and electric remote reference was applied. A remote reference site was located at a distance of over 100 km of field sites. Processing of the recorded data included the estimation of the components of impedance tensor (Zxx, Zxy, Zyx and Zyy ), with use of robust type procedures. The components of the impedance tensor allowed in a subsequent step for calculation of field curves for two orientations of the measurement system (XY - described further as the TM mode and YX - TE mode) and additional parameters of the medium like skew, strike, pole diagrams etc. Recording of the vertical component of electromagnetic field (Hz) allowed calculation of tipper parameter T. Magnetotelluric soundings interpretation Geophysical interpretation of MT sounding data was made based on 1D and 2D inversion. The upper part of the geological section is built of relatively flat layers, hence a 1D interpretation model could be effectively applied. Starting models for 1D inversion were constructed based on results of electromagnetic well-logging and some well-documented seismic horizons. Initial models for 2D inversion were constructed with the use of results of 1D magnetotelluric sounding inversion and structural model of the upper part of cross-section based on seismic data interpretation. 2D inversion was performed in two steps with use of NLCG and SBI algorithms. At first step of inversion high-frequency range of data was used and constraints based on borehole data was applied. Inversion in second step was made with starting model constructed based on results of first one and with stabilizing resistivity distribution in upper part of cross-section. Of great interest is varied resistivity of the formation resting between the Zechstein evaporate complex, and the crystalline basement. Interpretation of results of magnetotelluric soundings provide a lot of new information. The main tectonic boundaries were distinguished and location of sediments of different lithology reflected in resistivity differentiation was defined. Some new deep tectonic elements were recognized at the zone of Fore-Sudetic Block and Fore-Sudetic Monocline. Substantial differentiation of resistivity of crystalline massif of the East European Craton basement was discovered. Zones of low resistivity are probably connected with development of metamorphic processes or reflects location of big faults. Geological cross- section based on resistivity distribution was constructed. Deep model of regional structures based on resistivity distribution was suggested as well. Acknowledgments. This paper was based on results of investigations carried out by the PBG Geophysical Exploration Company Ltd. financed by the Minister of Environment through National Found for Environment Protection and Water Resources. The authors used also results of statutory research of Department of General Geology, Environment Protection and Geotourism, UST AGH, financed by the Minister of Science and Higher Education (project no 11.11.140.447). Geophysical interpretation was carried out using softwares by EMI, and Geosystem WingLinkTM.
NASA Astrophysics Data System (ADS)
Cai, Juntao; Chen, Xiaobin; Xu, Xiwei; Tang, Ji; Wang, Lifeng; Guo, Chunling; Han, Bing; Dong, Zeyi
2017-02-01
A three-dimensional (3-D) resistivity model around the 2014 Ms6.5 Ludian earthquake was obtained. The model shows that the aftershocks were mainly distributed in a shallow inverse L-shaped conductive angular region surrounded by resistive structures. The presences of this shallow conductive zone may be the key factor leading to the severe damage and surface rupture of the Ludian earthquake. A northwest trending local resistive belt along the Baogunao-Xiaohe fault interrupts the northeast trending conductive zone at the Zhaotong-Lianfeng fault zone in the middle crust, which may be the seismogenic structure of the main shock. Based on the 3-D electrical model, combining with GPS, thermal structure, and seismic survey results, a geodynamic model is proposed to interpret the seismotectonics, deep seismogenic background, and deformation characterized by a sinistral strike slip with a tensile component of the Ludian earthquake.
Array seismological investigation of the South Atlantic 'Superplume'
NASA Astrophysics Data System (ADS)
Hempel, Stefanie; Gassmöller, Rene; Thomas, Christine
2015-04-01
We apply the axisymmetric, spherical Earth spectral elements code AxiSEM to model seismic compressional waves which sample complex `superplume' structures in the lower mantle. High-resolution array seismological stacking techniques are evaluated regarding their capability to resolve large-scale high-density low-velocity bodies including interior structure such as inner upwellings, high density lenses, ultra-low velocity zones (ULVZs), neighboring remnant slabs and adjacent small-scale uprisings. Synthetic seismograms are also computed and processed for models of the Earth resulting from geodynamic modelling of the South Atlantic mantle including plate reconstruction. We discuss the interference and suppression of the resulting seismic signals and implications for a seismic data study in terms of visibility of the South Atlantic `superplume' structure. This knowledge is used to process, invert and interpret our data set of seismic sources from the Andes and the South Sandwich Islands detected at seismic arrays spanning from Ethiopia over Cameroon to South Africa mapping the South Atlantic `superplume' structure including its interior structure. In order too present the model of the South Atlantic `superplume' structure that best fits the seismic data set, we iteratively compute synthetic seismograms while adjusting the model according to the dependencies found in the parameter study.
Three-Dimensional Reconstruction of Thoracic Structures: Based on Chinese Visible Human
Luo, Na; Tan, Liwen; Fang, Binji; Li, Ying; Xie, Bing; Liu, Kaijun; Chu, Chun; Li, Min
2013-01-01
We managed to establish three-dimensional digitized visible model of human thoracic structures and to provide morphological data for imaging diagnosis and thoracic and cardiovascular surgery. With Photoshop software, the contour line of lungs and mediastinal structures including heart, aorta and its ramus, azygos vein, superior vena cava, inferior vena cava, thymus, esophagus, diaphragm, phrenic nerve, vagus nerve, sympathetic trunk, thoracic vertebrae, sternum, thoracic duct, and so forth were segmented from the Chinese Visible Human (CVH)-1 data set. The contour data set of segmented thoracic structures was imported to Amira software and 3D thorax models were reconstructed via surface rendering and volume rendering. With Amira software, surface rendering reconstructed model of thoracic organs and its volume rendering reconstructed model were 3D reconstructed and can be displayed together clearly and accurately. It provides a learning tool of interpreting human thoracic anatomy and virtual thoracic and cardiovascular surgery for medical students and junior surgeons. PMID:24369489
On the inner disc structure of MWC480: evidence for asymmetries?
NASA Astrophysics Data System (ADS)
Jamialahmadi, N.; Lopez, B.; Berio, Ph.; Matter, A.; Flament, S.; Fathivavsari, H.; Ratzka, T.; Sitko, M. L.; Spang, A.; Russell, R. W.
2018-01-01
Studying the physical conditions structuring the young circumstellar discs is required for understanding the onset of planet formation. Of particular interest is the protoplanetary disc surrounding the Herbig star MWC480. The structure and properties of the circumstellar disc of MWC480 are studied by infrared interferometry and interpreted from a modelling approach. New observations are driving this study, in particular, some recent Very Large Telescope Interferometer (VLTI)/MIDI data acquired in 2013 December. Our one-component disc model could not reproduce simultaneously all our data: the spectral energy distribution, the near-infrared Keck Interferometer data and the mid-infrared data obtained with the MIDI instrument. In order to explain all measurements, one possibility is to add an asymmetry in our one-component disc model with the assumption that the structure of the disc of MWC480 has not varied with time. Several scenarios are tested, and the one considering the presence of an azimuthal bright feature in the inner component of the disc model provides a better fit of the data.
Active influence in dynamical models of structural balance in social networks
NASA Astrophysics Data System (ADS)
Summers, Tyler H.; Shames, Iman
2013-07-01
We consider a nonlinear dynamical system on a signed graph, which can be interpreted as a mathematical model of social networks in which the links can have both positive and negative connotations. In accordance with a concept from social psychology called structural balance, the negative links play a key role in both the structure and dynamics of the network. Recent research has shown that in a nonlinear dynamical system modeling the time evolution of “friendliness levels” in the network, two opposing factions emerge from almost any initial condition. Here we study active external influence in this dynamical model and show that any agent in the network can achieve any desired structurally balanced state from any initial condition by perturbing its own local friendliness levels. Based on this result, we also introduce a new network centrality measure for signed networks. The results are illustrated in an international-relations network using United Nations voting record data from 1946 to 2008 to estimate friendliness levels amongst various countries.
NASA Astrophysics Data System (ADS)
Brethes, Anaïs; Guarnieri, Pierpaolo; Rasmussen, Thorkild Maack; Bauer, Tobias Erich
2018-01-01
This paper provides a detailed interpretation of several aeromagnetic datasets over the Jameson Land Basin in central East Greenland. The interpretation is based on texture and lineament analysis of magnetic data and derivatives of these, in combination with geological field observations. Numerous faults and Cenozoic intrusions were identified and a chronological interpretation of the events responsible for the magnetic features is proposed built on crosscutting relationships and correlated with absolute ages. Lineaments identified in enhanced magnetic data are compared with structures controlling the mineralized systems occurring in the area and form the basis for the interpretations presented in this paper. Several structures associated with base metal mineralization systems that were known at a local scale are here delineated at a larger scale; allowing the identification of areas displaying favorable geological settings for mineralization. This study demonstrates the usefulness of high-resolution airborne magnetic data for detailed structural interpretation and mineral exploration in geological contexts such as the Jameson Land Basin.
Modeling Of Object- And Scene-Prototypes With Hierarchically Structured Classes
NASA Astrophysics Data System (ADS)
Ren, Z.; Jensch, P.; Ameling, W.
1989-03-01
The success of knowledge-based image analysis methodology and implementation tools depends largely on an appropriately and efficiently built model wherein the domain-specific context information about and the inherent structure of the observed image scene have been encoded. For identifying an object in an application environment a computer vision system needs to know firstly the description of the object to be found in an image or in an image sequence, secondly the corresponding relationships between object descriptions within the image sequence. This paper presents models of image objects scenes by means of hierarchically structured classes. Using the topovisual formalism of graph and higraph, we are currently studying principally the relational aspect and data abstraction of the modeling in order to visualize the structural nature resident in image objects and scenes, and to formalize. their descriptions. The goal is to expose the structure of image scene and the correspondence of image objects in the low level image interpretation. process. The object-based system design approach has been applied to build the model base. We utilize the object-oriented programming language C + + for designing, testing and implementing the abstracted entity classes and the operation structures which have been modeled topovisually. The reference images used for modeling prototypes of objects and scenes are from industrial environments as'well as medical applications.
A unifying framework for marginalized random intercept models of correlated binary outcomes
Swihart, Bruce J.; Caffo, Brian S.; Crainiceanu, Ciprian M.
2013-01-01
We demonstrate that many current approaches for marginal modeling of correlated binary outcomes produce likelihoods that are equivalent to the copula-based models herein. These general copula models of underlying latent threshold random variables yield likelihood-based models for marginal fixed effects estimation and interpretation in the analysis of correlated binary data with exchangeable correlation structures. Moreover, we propose a nomenclature and set of model relationships that substantially elucidates the complex area of marginalized random intercept models for binary data. A diverse collection of didactic mathematical and numerical examples are given to illustrate concepts. PMID:25342871
Garrido, Luis Eduardo; Barrada, Juan Ramón; Aguasvivas, José Armando; Martínez-Molina, Agustín; Arias, Víctor B; Golino, Hudson F; Legaz, Eva; Ferrís, Gloria; Rojo-Moreno, Luis
2018-06-01
During the present decade a large body of research has employed confirmatory factor analysis (CFA) to evaluate the factor structure of the Strengths and Difficulties Questionnaire (SDQ) across multiple languages and cultures. However, because CFA can produce strongly biased estimations when the population cross-loadings differ meaningfully from zero, it may not be the most appropriate framework to model the SDQ responses. With this in mind, the current study sought to assess the factorial structure of the SDQ using the more flexible exploratory structural equation modeling approach. Using a large-scale Spanish sample composed of 67,253 youths aged between 10 and 18 years ( M = 14.16, SD = 1.07), the results showed that CFA provided a severely biased and overly optimistic assessment of the underlying structure of the SDQ. In contrast, exploratory structural equation modeling revealed a generally weak factorial structure, including questionable indicators with large cross-loadings, multiple error correlations, and significant wording variance. A subsequent Monte Carlo study showed that sample sizes greater than 4,000 would be needed to adequately recover the SDQ loading structure. The findings from this study prevent recommending the SDQ as a screening tool and suggest caution when interpreting previous results in the literature based on CFA modeling.
Protein Modelling: What Happened to the “Protein Structure Gap”?
Schwede, Torsten
2013-01-01
Computational modeling and prediction of three-dimensional macromolecular structures and complexes from their sequence has been a long standing vision in structural biology as it holds the promise to bypass part of the laborious process of experimental structure solution. Over the last two decades, a paradigm shift has occurred: starting from a situation where the “structure knowledge gap” between the huge number of protein sequences and small number of known structures has hampered the widespread use of structure-based approaches in life science research, today some form of structural information – either experimental or computational – is available for the majority of amino acids encoded by common model organism genomes. Template based homology modeling techniques have matured to a point where they are now routinely used to complement experimental techniques. With the scientific focus of interest moving towards larger macromolecular complexes and dynamic networks of interactions, the integration of computational modeling methods with low-resolution experimental techniques allows studying large and complex molecular machines. Computational modeling and prediction techniques are still facing a number of challenges which hamper the more widespread use by the non-expert scientist. For example, it is often difficult to convey the underlying assumptions of a computational technique, as well as the expected accuracy and structural variability of a specific model. However, these aspects are crucial to understand the limitations of a model, and to decide which interpretations and conclusions can be supported. PMID:24010712
The role of population inertia in predicting the outcome of stage-structured biological invasions.
Guiver, Chris; Dreiwi, Hanan; Filannino, Donna-Maria; Hodgson, Dave; Lloyd, Stephanie; Townley, Stuart
2015-07-01
Deterministic dynamic models for coupled resident and invader populations are considered with the purpose of finding quantities that are effective at predicting when the invasive population will become established asymptotically. A key feature of the models considered is the stage-structure, meaning that the populations are described by vectors of discrete developmental stage- or age-classes. The vector structure permits exotic transient behaviour-phenomena not encountered in scalar models. Analysis using a linear Lyapunov function demonstrates that for the class of population models considered, a large so-called population inertia is indicative of successful invasion. Population inertia is an indicator of transient growth or decline. Furthermore, for the class of models considered, we find that the so-called invasion exponent, an existing index used in models for invasion, is not always a reliable comparative indicator of successful invasion. We highlight these findings through numerical examples and a biological interpretation of why this might be the case is discussed. Copyright © 2015. Published by Elsevier Inc.
All-atom ensemble modeling to analyze small angle X-ray scattering of glycosylated proteins
Guttman, Miklos; Weinkam, Patrick; Sali, Andrej; Lee, Kelly K.
2013-01-01
Summary The flexible and heterogeneous nature of carbohydrate chains often renders glycoproteins refractory to traditional structure determination methods. Small Angle X-ray scattering (SAXS) can be a useful tool for obtaining structural information of these systems. All-atom modeling of glycoproteins with flexible glycan chains was applied to interpret the solution SAXS data for a set of glycoproteins. For simpler systems (single glycan, with a well defined protein structure), all-atom modeling generates models in excellent agreement with the scattering pattern, and reveals the approximate spatial occupancy of the glycan chain in solution. For more complex systems (several glycan chains, or unknown protein substructure), the approach can still provide insightful models, though the orientations of glycans become poorly determined. Ab initio shape reconstructions appear to capture the global morphology of glycoproteins, but in most cases offer little information about glycan spatial occupancy. The all-atom modeling methodology is available as a webserver at http://modbase.compbio.ucsf.edu/allosmod-foxs. PMID:23473666
The nature of the (visualization) game: Challenges and opportunities from computational geophysics
NASA Astrophysics Data System (ADS)
Kellogg, L. H.
2016-12-01
As the geosciences enters the era of big data, modeling and visualization become increasingly vital tools for discovery, understanding, education, and communication. Here, we focus on modeling and visualization of the structure and dynamics of the Earth's surface and interior. The past decade has seen accelerated data acquisition, including higher resolution imaging and modeling of Earth's deep interior, complex models of geodynamics, and high resolution topographic imaging of the changing surface, with an associated acceleration of computational modeling through better scientific software, increased computing capability, and the use of innovative methods of scientific visualization. The role of modeling is to describe a system, answer scientific questions, and test hypotheses; the term "model" encompasses mathematical models, computational models, physical models, conceptual models, statistical models, and visual models of a structure or process. These different uses of the term require thoughtful communication to avoid confusion. Scientific visualization is integral to every aspect of modeling. Not merely a means of communicating results, the best uses of visualization enable scientists to interact with their data, revealing the characteristics of the data and models to enable better interpretation and inform the direction of future investigation. Innovative immersive technologies like virtual reality, augmented reality, and remote collaboration techniques, are being adapted more widely and are a magnet for students. Time-varying or transient phenomena are especially challenging to model and to visualize; researchers and students may need to investigate the role of initial conditions in driving phenomena, while nonlinearities in the governing equations of many Earth systems make the computations and resulting visualization especially challenging. Training students how to use, design, build, and interpret scientific modeling and visualization tools prepares them to better understand the nature of complex, multiscale geoscience data.
Twilight reloaded: the peptide experience
Weichenberger, Christian X.; Pozharski, Edwin; Rupp, Bernhard
2017-01-01
The de facto commoditization of biomolecular crystallography as a result of almost disruptive instrumentation automation and continuing improvement of software allows any sensibly trained structural biologist to conduct crystallographic studies of biomolecules with reasonably valid outcomes: that is, models based on properly interpreted electron density. Robust validation has led to major mistakes in the protein part of structure models becoming rare, but some depositions of protein–peptide complex structure models, which generally carry significant interest to the scientific community, still contain erroneous models of the bound peptide ligand. Here, the protein small-molecule ligand validation tool Twilight is updated to include peptide ligands. (i) The primary technical reasons and potential human factors leading to problems in ligand structure models are presented; (ii) a new method used to score peptide-ligand models is presented; (iii) a few instructive and specific examples, including an electron-density-based analysis of peptide-ligand structures that do not contain any ligands, are discussed in detail; (iv) means to avoid such mistakes and the implications for database integrity are discussed and (v) some suggestions as to how journal editors could help to expunge errors from the Protein Data Bank are provided. PMID:28291756
Twilight reloaded: the peptide experience.
Weichenberger, Christian X; Pozharski, Edwin; Rupp, Bernhard
2017-03-01
The de facto commoditization of biomolecular crystallography as a result of almost disruptive instrumentation automation and continuing improvement of software allows any sensibly trained structural biologist to conduct crystallographic studies of biomolecules with reasonably valid outcomes: that is, models based on properly interpreted electron density. Robust validation has led to major mistakes in the protein part of structure models becoming rare, but some depositions of protein-peptide complex structure models, which generally carry significant interest to the scientific community, still contain erroneous models of the bound peptide ligand. Here, the protein small-molecule ligand validation tool Twilight is updated to include peptide ligands. (i) The primary technical reasons and potential human factors leading to problems in ligand structure models are presented; (ii) a new method used to score peptide-ligand models is presented; (iii) a few instructive and specific examples, including an electron-density-based analysis of peptide-ligand structures that do not contain any ligands, are discussed in detail; (iv) means to avoid such mistakes and the implications for database integrity are discussed and (v) some suggestions as to how journal editors could help to expunge errors from the Protein Data Bank are provided.
Foreland crustal structure of the New York recess, northeastern United States
Herman, G.C.; Monteverde, D.H.; Schlische, R.W.; Pitcher, D.M.
1997-01-01
A new structural model for the northeast part of the Central Appalachian foreland and fold-and-thrust belt is based on detailed field mapping, geophysical data, and balanced cross-section analysis. The model demonstrates that the region contains a multiply deformed, parautochthonous fold-and-thrust system of Paleozoic age. Our interpretations differ from previous ones in which the entire region north of the Newark basin was considered to be allochthonous. The new interpretation requires a substantial decrease in Paleozoic tectonic shortening northeastward from adjacent parts of the Central Appalachian foreland and illustrates the common occurrence of back-thrusting within the region. During early Paleozoic time northern New Jersey consisted of a Taconic orogenic foreland in which cover folds (F1) involved lower Paleozoic carbonate and flysch overlying Middle Proterozoic basement. F1 folds are open and upright in the foreland and more gently inclined to recumbent southeastward toward the trace of the Taconic allochthons. F1 structures were cut and transported by a fold-and-thrust system of the Allegheny orogeny. This thrust system mostly involves synthetic faults originating from a master decollement rooted in Proterozoic basement. Antithetic faults locally modify early synthetic overthrusts and S1 cleavage in lower Paleozoic cover and show out-of-sequence structural development. The synthetic parts of the regional thrust system are bounded in the northwestern foreland by blind antithetic faults interpreted from seismic-reflection data. This antithetic faulting probably represents Paleozoic reactivation of Late Proterozoic basement faults. Tectonic contraction in overlying cover occurred by wedge faulting where synthetic and antithetic components of the foreland fault system overlap. S2 cleavage in the Paleozoic cover stems from Alleghanian shortening and flattening and commonly occurs in the footwall of large overthrust sheets. Paleozoic structures in Proterozoic basement include fault blocks bounded by high-angle faults and low- to moderate-angle shear zones that locally produce overlying cover folds. Broad and open folds in basement probably reflect shear-zone displacement of subhorizontal foliation. Our cross-section interpretations require limited involvement of lower Paleozoic cover folds in the footwalls of major overthrust faults. Palinspastic restoration of F1 folds produces an arched passive-margin sequence. The tectonic contraction for the Valley and Ridge province and southeastern Pocono Plateau is about 25 km, and tectonic wedge angles are 8??-11??.
`Orphan' afterglows in the Universal structured jet model for γ-ray bursts
NASA Astrophysics Data System (ADS)
Rossi, Elena M.; Perna, Rosalba; Daigne, Frédéric
2008-10-01
The paucity of reliable achromatic breaks in γ-ray burst afterglow light curves motivates independent measurements of the jet aperture. Serendipitous searches of afterglows, especially at radio wavelengths, have long been the classic alternative. These survey data have been interpreted assuming a uniformly emitting jet with sharp edges (`top-hat' jet), in that case the ratio of weakly relativistically beamed afterglows to GRBs scales with the jet solid angle. In this paper, we consider, instead, a very wide outflow with a luminosity that decreases across the emitting surface. In particular, we adopt the universal structured jet (USJ) model, which is an alternative to the top-hat model for the structure of the jet. However, the interpretation of the survey data is very different: in the USJ model, we only observe the emission within the jet aperture and the observed ratio of prompt emission rate to afterglow rate should solely depend on selection effects. We compute the number and rate of afterglows expected in all-sky snapshot observations as a function of the survey sensitivity. We find that the current (negative) results for OA searches are in agreement with our expectations. In radio and X-ray bands, this was mainly due to the low sensitivity of the surveys, while in the optical band the sky coverage was not sufficient. In general, we find that X-ray surveys are poor tools for OA searches, if the jet is structured. On the other hand, the Faint Images of the Radio Sky at Twenty-cm radio survey and future instruments like the Allen Telescope Array (in the radio band) and especially GAIA, Panoramic Survey Telescope and Rapid Response System and Large Synoptic Survey Telescope (in the optical band) will have chances to detect afterglows.
Interpretation of lunar heat flow data. [for estimating bulk uranium abundance
NASA Technical Reports Server (NTRS)
Conel, J. E.; Morton, J. B.
1975-01-01
Lunar heat flow observations at the Apollo 15 and 17 sites can be interpreted to imply bulk U concentrations for the moon of 5 to 8 times those of normal chondrites and 2 to 4 times terrestrial values inferred from the earth's heat flow and the assumption of thermal steady state between surface heat flow and heat production. A simple model of nearsurface structure that takes into account the large difference in (highly insulating) regolith thickness between mare and highland provinces is considered. This model predicts atypically high local values of heat flow near the margins of mare regions - possibly a factor of 10 or so higher than the global average. A test of the proposed model using multifrequency microwave techniques appears possible wherein heat flow traverse measurements are made across mare-highland contacts. The theoretical considerations discussed here urge caution in attributing global significance to point heat-flow measurements on the moon.
Shideler, G.L.
1994-01-01
Middle Miocene siliciclastic deposits comprising the Calvert Cliffs section at the Baltimore Gas and Electric Company's (BG&E) nuclear power plant site in southern Maryland were analyzed in terms of lithostratigraphy, sedimentary structures, and granulometric parameters, to interprete paleo-environments within a sequence-stratigraphic framework. In terms of sequence-stratigraphic models, the BG&E section can be interpreted as consisting of two genetic stratigraphic sequences (Galloway model), namely, a shelf sequence and an overlying deltaic sequence. Using the Exxon model, the section consists of two third-order (1-5 m.y. duration) depositional sequences. The stratigraphic sequences of the BG&E section reflect both relatively short-term eustatic transgressive events, as well as a long-term regressive trend with associated local deltation and coastal progradation. The regression probably signified a regional basinward shift of depocenters within the Salisbury embayment during Miocene time. -from Author
Interface Problems: Structural Constraints on Interpretation?
ERIC Educational Resources Information Center
Frazier, Lyn; Clifton, Charles; Rayner, Keith; Deevy, Patricia; Koh, Sungryong; Bader, Markus
2005-01-01
Five experiments investigated the interpretation of quantified noun phrases in relation to discourse structure. They demonstrated, using questionnaire and on-line reading techniques, that readers in English prefer to give a quantified noun phrase in (VP-external) subject position a presuppositional interpretation, in which the noun phrase limits…
Seven challenges for metapopulation models of epidemics, including households models.
Ball, Frank; Britton, Tom; House, Thomas; Isham, Valerie; Mollison, Denis; Pellis, Lorenzo; Scalia Tomba, Gianpaolo
2015-03-01
This paper considers metapopulation models in the general sense, i.e. where the population is partitioned into sub-populations (groups, patches,...), irrespective of the biological interpretation they have, e.g. spatially segregated large sub-populations, small households or hosts themselves modelled as populations of pathogens. This framework has traditionally provided an attractive approach to incorporating more realistic contact structure into epidemic models, since it often preserves analytic tractability (in stochastic as well as deterministic models) but also captures the most salient structural inhomogeneity in contact patterns in many applied contexts. Despite the progress that has been made in both the theory and application of such metapopulation models, we present here several major challenges that remain for future work, focusing on models that, in contrast to agent-based ones, are amenable to mathematical analysis. The challenges range from clarifying the usefulness of systems of weakly-coupled large sub-populations in modelling the spread of specific diseases to developing a theory for endemic models with household structure. They include also developing inferential methods for data on the emerging phase of epidemics, extending metapopulation models to more complex forms of human social structure, developing metapopulation models to reflect spatial population structure, developing computationally efficient methods for calculating key epidemiological model quantities, and integrating within- and between-host dynamics in models. Copyright © 2014 The Authors. Published by Elsevier B.V. All rights reserved.
Pragmatics fragmented: the factor structure of the Dutch children's communication checklist (CCC).
Geurts, Hilde M; Hartman, Catharina; Verté, Sylvie; Oosterlaan, Jaap; Roeyers, Herbert; Sergeant, Joseph A
2009-01-01
A number of disorders are associated with pragmatic difficulties. Instruments that can make subdivisions within the larger construct of pragmatics could be important tools for disentangling profiles of pragmatic difficulty in different disorders. The deficits underlying the observed pragmatic difficulties may be different for different disorders. To study the construct validity of a pragmatic language questionnaire. The construct of pragmatics is studied by applying exploratory factor analysis (EFA) and confirmatory factor analysis to the parent version of the Dutch Children's Communication Checklist (CCC; Bishop 1998 ). Parent ratings of 1589 typically developing children and 481 children with a clinical diagnosis were collected. Four different factor models derived from the original CCC scales and five different factor models based on EFA were compared with each other. The models were cross-validated. The EFA-derived models were substantively different from the originally proposed CCC factor structure. EFA models gave a slightly better fit than the models based on the original CCC scales, though neither provided a good fit to the parent data. Coherence seemed to be part of language form and not of pragmatics, which is in line with the adaptation of the CCC, the CCC-2 (Bishop 2003 ). Most pragmatic items clustered together in one factor and these pragmatic items also clustered with items related to social relationships and specific interests. The nine scales of the original CCC do not reflect the underlying factor structure. Therefore, scale composition may be improved on and scores on subscale level need to be interpreted cautiously. Therefore, in interpreting the CCC profiles, the overall measure might be more informative than the postulated subscales as more information is needed to determine which constructs the suggested subscales are actually measuring.
A new approach of sensorial evaluation of cooked cereal foods: fractal analysis of rheological data
NASA Astrophysics Data System (ADS)
Scher, J.; Hardy, J.
2002-11-01
An analytical method based on a fractal geometry concept was developed through the relationship between structure-texture of solid-like crackers, flat bread and Bretzels. An universal testing machine was used to determine indentation tests. The graphs were irregularly shaped so that usual interpretation was made not possible. Nevertheless, the irregular shape, or “roughness" displays auto-similarity properties which can be interpreted in terms of apparent fractal dimension texture (D_T). A trained panel able to quantify the “hardness", “porous structure" and “crispness" descriptors carried out sensorial characterisation of products. High correlation between sensorial hardness and resistance to indentation, on one hand, and between crispness and D_T on the other hand was found. Modelling mathematics methods for complex systems allow useful contribution to Food Science.
Fortuna Tessera, Venus - Evidence of horizontal convergence and crustal thickening
NASA Technical Reports Server (NTRS)
Vorder Bruegge, R. W.; Head, J. W.
1989-01-01
Structural and tectonic patterns mapped in Fortuna Tessera are interpreted to reflect a change in the style and intensity of deformation from east to west, beginning with simple tessera terrain at relatively low topographic elevations in the east and progressing through increasingly complex deformation patterns and higher topography to Maxwell Montes in the West. These morphologic and topographic patterns are consistent with east-to-west convergence and compression and the increasing elevations are interpreted to be due to crustal thickening processes associated with the convergent deformational environment. Using an Airy isostatic model, crustal thicknesses of approximately 35 km for the initial tessera terrain, and crustal thicknesses of over 100 km for the Maxwell Montes region are predicted. Detailed mapping with Magellan data will permit the deconvolution of individual components and structures in this terrain.
Structure-charge relationship - the case of hematite (001)
Lutzenkirchen, Johannes; Heberling, Frank; Supljika, Filip; ...
2015-01-16
We present a multidisciplinary study on the hematite (001)–aqueous solution interface, in particular the relationship between surface structure (studied via surface diffraction in a humid atmosphere) and the macroscopic charging (studied via surface- and zeta-potential measurements in electrolyte solutions as a function of pH). Upon aging in water changes in the surface structure are observed, that are accompanied by drastic changes in the zeta-potential. Surprisingly the surface potential is not accordingly affected. We interpret our results by increasing hydration of the surface with time and enhanced reactivity of singly-coordinated hydroxyl groups that cause the isoelectric point of the surface tomore » shift to values that are reminiscent of those typically reported for hematite particles. In its initial stages after preparation the hematite surface is very flat and only weakly hydrated. Our model links the entailing weak water structure with the observed low isoelectric point reminiscent of hydrophobic surfaces. The absence of an aging effect on the surface potential vs. pH curves is interpreted as domination of the surface potential by the doubly coordinated hydroxyls, which are present on both surfaces.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
NONE
1995-03-01
Current trends in hydrogeology seek to enlist sedimentary concepts in the interpretation of permeability structures. However, existing conceptual models of alluvial deposition tend to inadequately account for the heterogeneity caused by complex sedimentological and external factors. This dissertation presents three analyses of alluvial hydrostratigraphy using indicator geostatistics. This approach empirically acknowledges both the random and structured qualities of alluvial structures at scales relevant to site investigations. The first analysis introduces the indicator approach, whereby binary values are assigned to borehole-log intervals on the basis of inferred relative permeability; it presents a case study of indicator variography at a well-documented ground-watermore » contamination site, and uses indicator kriging to interpolate an aquifer-aquitard sequence in three dimensions. The second analysis develops an alluvial-architecture context for interpreting semivariograms, and performs comparative variography for a suite of alluvial sites in Santa Clara Valley, California. The third analysis investigates the use of a water well perforation indicator for assessing large-scale hydrostratigraphic structures within relatively deep production zones.« less
Deconstructing the shallow internal structure of the Moon using GRAIL gravity and LOLA topography
NASA Astrophysics Data System (ADS)
Zuber, M. T.
2015-12-01
Globally-distributed, high-resolution gravity and topography observations of the Moon from the Gravity Recovery and Interior Laboratory (GRAIL) mission and Lunar Orbiter Laser Altimeter (LOLA) instrument aboard the Lunar Reconnaissance Orbiter (LRO) spacecraft afford the unprecedented opportunity to explore the shallow internal structure of the Moon. Gravity and topography can be combined to produce Bouguer gravity that reveals the distribution of mass in the subsurface, with high degrees in the spherical harmonic expansion of the Bouguer anomalies sensitive to shallowest structure. For isolated regions of the lunar highlands and several basins we have deconstructed the gravity field and mapped the subsurface distribution of density anomalies. While specified spherical harmonic degree ranges can be used to estimate contributions at different depths, such analyses require considerable caution in interpretation. A comparison of filtered Bouguer gravity with forward models of disk masses with plausible densities illustrates the interdependencies of the gravitational power of density anomalies with depth and spatial scale. The results have implications regarding the limits of interpretation of lunar subsurface structure.
Three novel approaches to structural identifiability analysis in mixed-effects models.
Janzén, David L I; Jirstrand, Mats; Chappell, Michael J; Evans, Neil D
2016-05-06
Structural identifiability is a concept that considers whether the structure of a model together with a set of input-output relations uniquely determines the model parameters. In the mathematical modelling of biological systems, structural identifiability is an important concept since biological interpretations are typically made from the parameter estimates. For a system defined by ordinary differential equations, several methods have been developed to analyse whether the model is structurally identifiable or otherwise. Another well-used modelling framework, which is particularly useful when the experimental data are sparsely sampled and the population variance is of interest, is mixed-effects modelling. However, established identifiability analysis techniques for ordinary differential equations are not directly applicable to such models. In this paper, we present and apply three different methods that can be used to study structural identifiability in mixed-effects models. The first method, called the repeated measurement approach, is based on applying a set of previously established statistical theorems. The second method, called the augmented system approach, is based on augmenting the mixed-effects model to an extended state-space form. The third method, called the Laplace transform mixed-effects extension, is based on considering the moment invariants of the systems transfer function as functions of random variables. To illustrate, compare and contrast the application of the three methods, they are applied to a set of mixed-effects models. Three structural identifiability analysis methods applicable to mixed-effects models have been presented in this paper. As method development of structural identifiability techniques for mixed-effects models has been given very little attention, despite mixed-effects models being widely used, the methods presented in this paper provides a way of handling structural identifiability in mixed-effects models previously not possible. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Loisel, Guillaume
2016-10-01
Emission from accretion powered objects accounts for a large fraction of all photons in the universe and is a powerful diagnostic for their behavior and structure. Quantitative interpretation of spectrum emission from these objects requires a spectral synthesis model for photoionized plasma, since the ionizing luminosity is so large that photon driven atomic processes dominate over collisions. This is a quandary because laboratory experiments capable of testing the spectral emission models are non-existent. The models must predict the photoionized charge state distribution, the photon emission processes, and the radiation transport influence on the observed emission. We have used a decade of research at the Z facility to achieve the first simultaneous measurements of emission and absorption from photoionized plasmas. The extraordinary spectra are reproducible to within +/-2% and the E/dE 500 spectral resolution has enabled unprecedented tests of atomic structure calculations. The absorption spectra enable determination of plasma density, temperature, and charge state distribution. The emission spectra then enable tests of spectral emission models. The emission has been measured from plasmas with varying size to elucidate the radiation transport effects. This combination of measurements will provide strong constraints on models used in astrophysics. Sandia is a multi-program laboratory operated by Sandia Corporation, a Lockheed Martin Company, for the United States Department of Energy under contract DE-AC04-94AL85000.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kalscheuer, T.; Commer, M.; Helwig, S.L.
2006-02-28
Long-Offset Transient Electromagnetic (LOTEM) data andVIBROTEM data from the south flank of Mount Merapi on Java island,Indonesia, are interpreted with one-dimensional (1D) inversions as wellas two-dimensional (2D) forward modelling. One-dimensional jointinversions of several components of the electromagnetic field withOccam's method reduce the number of equivalent models, which were derivedfrom inversions of single components and fit the data to a similarmisfit. The 1D results, together with results from other geophysicalmeasurements, serve as the basic model for further 2D forward modelling.The final model depicts a layering that follows the topography of thestrato-volcano. In the depth range of 500 m to 1000 m,more » the resistivity ofthe layers decreases rapidly downwards into a good conductor withresistivities below 10 OMEGAm. The deepest layer has a resistivity of 0.4OMEGAm which is quantitatively explained with a combination of salinefluids and hydrothermally altered minerals. Furthermore, the final modelsupports a hypothesis from the interpretation of central-loop TEM(Transient Electromagnetic) data that there is a fault structure belowthe southern flank, approximately 7.3 km south of the summit. To thenorth of the fault, the top of the good conductor is lowered from a depthof 500 m to 1000 m. We propose that the fault structure coincides with anancient avalanche caldera rim.« less
Geophysical setting of the Wabash Valley fault system
Hildenbrand, T.G.; Ravat, D.
1997-01-01
Interpretation of existing regional magnetic and gravity data and new local high-resolution aeromagnetic data provides new insights on the tectonic history and structural development of the Wabash Valley Fault System in Illinois and Indiana. Enhancement of short-wavelength magnetic anomalies reveal numerous NW- to NNE-trending ultramafic dikes and six intrusive complexes (including those at Hicks Dome and Omaha Dome). Inversion models indicate that the interpreted dikes are narrow (???3 m), lie at shallow depths (500 km long and generally >50 km wide) and with deep basins (locally >3 km thick), the ancestral Wabash Valley faults express, in comparison, minor tectonic structures and probably do not represent a failed rift arm. There is a lack of any obvious relation between the Wabash Valley Fault System and the epicenters of historic and prehistoric earthquakes. Five prehistoric earthquakes lie conspicuously near structures associated with the Commerce geophysical lineament, a NE-trending magnetic and gravity lineament lying oblique to the Wabash Valley Fault System and possibly extending over 600 km from NE Arkansas to central Indiana.
2009-11-01
force structure liability analysis tool, designed to forecast the dynamics of personnel and equipment populations over time for a particular scenario...it is intended that it will support analysis of the sustainability of planned Army force structures against a range of possible scenarios, as well as...the force options testing process. A-SMART Phase 1 has been limited to the development of personnel, major equipment and supplies/strategic lift
Shtarkshall, Ronny A; Baynesan, Fassil; Feldman, Becca S
2009-10-01
Despite receiving full medical care and many social services, many Ethiopian immigrants in Israel feel frustrated, and even alienated, by the care they receive. This study uses a qualitative approach to explore the obstacles Ethiopian immigrants face regarding effective health seeking behavior and optimal interactions with healthcare providers in Israel. We gained a three-cornered perspective by conducting semi-structured interviews with healthcare providers, immigrants, and interpreters who mediate between the two. An ecological system or socio-ecological model guided the data analysis. It allowed organizing the varied and complex relationship between the factors that influence healthcare delivery and receipt among this population. The advanced analysis of our results delineated four themes which we grouped into two domains: the cultural divide and the interpreters. Within each of these themes, we explored influences on health or healthcare at each level of the socio-ecological model. We demonstrated that the problems surrounding health seeking behaviors and receiving treatment stem mainly from a cultural divide. This cultural incongruity and its effects are apparent at multiple levels of the ecological model and must be recognized and addressed programmatically at these levels. Necessary program and service modifications include that cultural mediation become an integral part of health personnel's training for healthcare delivery and a necessary criterion for good practices. We recommend that professionals from within the health system be trained to act as interpreters. Lastly, the integration of traditional healers into the allopathic health system should be considered. These modifications require a system-wide change in policy, structure of services, and practices.
3D Gravity Inversion by Growing Bodies and Shaping Layers at Mt. Vesuvius (Southern Italy)
NASA Astrophysics Data System (ADS)
Berrino, Giovanna; Camacho, Antonio G.
2008-06-01
To improve our knowledge of the structural pattern of Mt. Vesuvius and its magmatic system, which represents one of the three volcanoes located in the Neapolitan area (together with Campi Flegrei and Ischia; southern Italy), we analyze here the Bouguer gravity map that is already available through its interpretation by means of 2.5-dimensional modelling. We have carried out a three-dimensional interpretation using a new and original algorithm, known as ‘Layers’, that has been especially processed for this purpose. Layers works in an automatic and non-subjective way, and allows the definition of the structural settings in terms of several layers, each representing a specific geological formation. The same data are also interpreted in terms of isolated and shallow anomalous density bodies using a well tested algorithm known as ‘Growth’. We focus our inversions on the Mt. Vesuvius volcano, while globally analyzing the entire Neapolitan area, in order to investigate the deep structures, and in particular the deep extended ‘sill’ that has been revealed by seismic tomography. The final models generally confirm the global setting of the area as outlined by previous investigations, mainly for the shape and depth of the carbonate basement below Mt. Vesuvius. The presence of lateral density contrasts inside the volcano edifice is also shown, which was only hypothesized in the 2.5-dimensional inversion. Moreover, the models allow us to note a high density body that rises from the top of the carbonate basement and further elongates above sea level. This probably represents an uprising of the same basement, which is just below the volcano and which coincides with the VP and VP/VS anomalies detected under the crater. The three-dimensional results also reveal that the two inversion methods provide very similar models, where the high density isolated body in the Growth model can be associated with the rising high density anomaly in the Layers model. Taking into account the density of these modelled bodies, we would also suggest that they represent solidified magma bodies, as suggested by other studies. Finally, we did not clearly detect any deep anomalous body that can be associated with the sill that was suggested by seismic tomography.
Using iMCFA to Perform the CFA, Multilevel CFA, and Maximum Model for Analyzing Complex Survey Data.
Wu, Jiun-Yu; Lee, Yuan-Hsuan; Lin, John J H
2018-01-01
To construct CFA, MCFA, and maximum MCFA with LISREL v.8 and below, we provide iMCFA (integrated Multilevel Confirmatory Analysis) to examine the potential multilevel factorial structure in the complex survey data. Modeling multilevel structure for complex survey data is complicated because building a multilevel model is not an infallible statistical strategy unless the hypothesized model is close to the real data structure. Methodologists have suggested using different modeling techniques to investigate potential multilevel structure of survey data. Using iMCFA, researchers can visually set the between- and within-level factorial structure to fit MCFA, CFA and/or MAX MCFA models for complex survey data. iMCFA can then yield between- and within-level variance-covariance matrices, calculate intraclass correlations, perform the analyses and generate the outputs for respective models. The summary of the analytical outputs from LISREL is gathered and tabulated for further model comparison and interpretation. iMCFA also provides LISREL syntax of different models for researchers' future use. An empirical and a simulated multilevel dataset with complex and simple structures in the within or between level was used to illustrate the usability and the effectiveness of the iMCFA procedure on analyzing complex survey data. The analytic results of iMCFA using Muthen's limited information estimator were compared with those of Mplus using Full Information Maximum Likelihood regarding the effectiveness of different estimation methods.
ECE-imaging of the H-mode pedestal (invited).
Tobias, B J; Austin, M E; Boom, J E; Burrell, K H; Classen, I G J; Domier, C W; Luhmann, N C; Nazikian, R; Snyder, P B
2012-10-01
A synthetic diagnostic has been developed that reproduces the highly structured electron cyclotron emission (ECE) spectrum radiated from the edge region of H-mode discharges. The modeled dependence on local perturbations of the equilibrium plasma pressure allows for interpretation of ECE data for diagnosis of local quantities. Forward modeling of the diagnostic response in this region allows for improved mapping of the observed fluctuations to flux surfaces within the plasma, allowing for the poloidal mode number of coherent structures to be resolved. In addition, other spectral features that are dependent on both T(e) and n(e) contain information about pedestal structure and the electron energy distribution of localized phenomena, such as edge filaments arising during edge-localized mode (ELM) activity.
NASA Astrophysics Data System (ADS)
Villalobos, J. I.
2005-12-01
The modeling of basin structures is an important step in the development of plans and policies for ground water management. To facilitate in the analysis of large scale regional structures, gravity data is implemented to examine the overall structural trend of the region. The gravitational attraction of structures in the upper mantle and crust provide vital information about the possible structure and composition of a region. Improved availability of gravity data via internet has promoted extensive construction and interpretation of gravity maps in the analysis of sub-surface structural anomalies. The utilization of gravity data appears to be particularly worthwhile because it is a non-invasive and inexpensive means of addressing the subsurface tectonic framework of large scale regions. In this paper, the author intends to illustrate 1) acquisition of gravity data and its processing; 2) interpretation of gravity data; and 3) sources of uncertainty and errors by using a case study of the Jornada del Muerto basin in South-Central New Mexico where integrated gravity data inferred several faults, sub-basins and thickness variations within the basins structure. The author also explores the integration of gravity method with other geophysical methods to further refine the delineation of basins.
Radiative-Transfer Modeling of Spectra of Densely Packed Particulate Media
NASA Astrophysics Data System (ADS)
Ito, G.; Mishchenko, M. I.; Glotch, T. D.
2017-12-01
Remote sensing measurements over a wide range of wavelengths from both ground- and space-based platforms have provided a wealth of data regarding the surfaces and atmospheres of various solar system bodies. With proper interpretations, important properties, such as composition and particle size, can be inferred. However, proper interpretation of such datasets can often be difficult, especially for densely packed particulate media with particle sizes on the order of wavelength of light being used for remote sensing. Radiative transfer theory has often been applied to the study of densely packed particulate media like planetary regoliths and snow, but with difficulty, and here we continue to investigate radiative transfer modeling of spectra of densely packed media. We use the superposition T-matrix method to compute scattering properties of clusters of particles and capture the near-field effects important for dense packing. Then, the scattering parameters from the T-matrix computations are modified with the static structure factor correction, accounting for the dense packing of the clusters themselves. Using these corrected scattering parameters, reflectance (or emissivity via Kirchhoff's Law) is computed with the method of invariance imbedding solution to the radiative transfer equation. For this work we modeled the emissivity spectrum of the 3.3 µm particle size fraction of enstatite, representing some common mineralogical and particle size components of regoliths, in the mid-infrared wavelengths (5 - 50 µm). The modeled spectrum from the T-matrix method with static structure factor correction using moderate packing densities (filling factors of 0.1 - 0.2) produced better fits to the laboratory measurement of corresponding spectrum than the spectrum modeled by the equivalent method without static structure factor correction. Future work will test the method of the superposition T-matrix and static structure factor correction combination for larger particles sizes and polydispersed clusters in search for the most effective modeling of spectra of densely packed particulate media.
From Airborne EM to Geology, some examples
NASA Astrophysics Data System (ADS)
Gunnink, Jan
2014-05-01
Introduction Airborne Electro Magnetics (AEM) provide a model of the 3-dimensional distribution of resistivity of the subsurface. These resistivity models were used for delineating geological structures (e.g. Buried Valleys and salt domes) and for geohydrological modeling of aquifers (sandy sediments) and aquitards (clayey sediments). Most of the interpretation of the AEM has been carried out manually, by interpretation of 2 and 3-dimensional resistivity models into geological units by a skilled geologists / geophysicist. The manual interpretation is tiresome, takes a long time and is prone to subjective choices of the interpreter. Therefore, semi-automatic interpretation of AEM resistivity models into geological units is a recent research topic. Two examples are presented that show how resistivity, as obtained from AEM, can be "converted" to useful geological / geohydrolocal models. Statistical relation between borehole data and resistivity In the northeastern part of the Netherlands, the 3D distribution of clay deposits - formed in a glacio-lacustrine environment with buried glacial valleys - was modelled. Boreholes with description of lithology, were linked to AEM resistivity. First, 1D AEM resistivity models from each individual sounding were interpolated to cover the entire study area, resulting in a 3-dimensional model of resistivity. For each interval of clay and sand in the boreholes, the corresponding resistivity was extracted from the 3D resistivity model. Linear regression was used to link the clay and non-clay proportion in each borehole interval to the Ln(resistivity). This regression is then used to "convert" the 3D resistivity model into proportion of clay for the entire study area. This so-called "soft information" is combined with the "hard data" (boreholes) to model the proportion of clay for the entire study area using geostatistical simulation techniques (Sequential Indicator Simulation with collocated co-kriging). 100 realizations of the 3-dimensional distribution of clay and sand were calculated giving an appreciation of the variability of the 3-dimensional distribution of clay and sand. Each realization was input into a groundwatermodel to assess the protection the of the clay against pollution from the surface. Artificial Neural Networks AEM resistivity models in an area in Northern part of the Netherlands were interpreted by Artificial Neural Networks (ANN) to obtain a 3-dimensional model of a glacial till deposit that is important in geohydrological modeling. The groundwater in the study area was brackish to saline, causing the AEM resistivity model to be dominated by the low resistivity of the groundwater. After conducting Electrical Cone Penetration Tests (ECPTs) it became clear that the glacial till showed a distinct, non-linear, pattern of resistivity, that was discriminating it from the surrounding sediments. The patterns, found in the ECPTs were used to train an ANN and was consequently applied to the resistivity model that was derived from the AEM. The result was a 3-dimensional model of the probability of having the glacial till, which was checked against boreholes and proved to be quite reasonable. Conclusion Resistivity derived from AEM can be linked to geological features in a number of ways. Besides manual interpretation, statistical techniques are used, either in the form of regression or by means of Neural Networks, to extract geological and geohydrological meaningful interpretations from the resistivity model.
NASA Astrophysics Data System (ADS)
Webb, S. I.; Tobin, H. J.; Everson, E. D.; Fortin, W.; Holbrook, W. S.; Kent, G.; Keranen, K. M.
2014-12-01
The Cascadia subduction zone has a history of large magnitude earthquakes, but a near-total lack of plate interface seismicity, making the updip limit of the seismogenic zone difficult to locate. In addition, the central Cascadia accretionary prism is characterized by an extremely low wedge taper angle, landward vergent initial thrusting, and a flat midslope terrace between the inner and outer wedges, unlike most other accretionary prisms (e.g. the Nankai Trough, Japan). The Cascadia Open Access Seismic Transect (COAST) lines were shot by R/V Marcus Langseth in July of 2012 off central Washington to image this subduction zone. Two trench-parallel and nine trench-perpendicular lines were collected. In this study, we present detailed seismic interpretation of both time- and depth-migrated stacked profiles, focused on elucidating the deposition and deformation of both pre- and syn-tectonic sediment in the trench and slope. Distribution and timing of sediments and their deformation is used to unravel the evolution of the wedge through time. Initially, interpretation of the time-sections is carried out to support the building of tomographic velocity models to aid in the pre-stack depth migration (PSDM) of selected lines. In turn, we use PSDM velocity models to estimate porosity and pore pressure conditions at the base of the wedge and across the basal plate interface décollement where possible, using established velocity-porosity transforms. Interpretation in this way incorporates both accurate structural relationships and robust porosity models to document wedge development and present-day stress state, in particular regions of potential overpressure. Results shed light on the origin and evolution of the mid-slope terrace and the low taper angle for the forearc wedge. This work may shed light ultimately on the position of the potential updip limit of the seismogenic zone beneath the wedge.
On the Latent Variable Interpretation in Sum-Product Networks.
Peharz, Robert; Gens, Robert; Pernkopf, Franz; Domingos, Pedro
2017-10-01
One of the central themes in Sum-Product networks (SPNs) is the interpretation of sum nodes as marginalized latent variables (LVs). This interpretation yields an increased syntactic or semantic structure, allows the application of the EM algorithm and to efficiently perform MPE inference. In literature, the LV interpretation was justified by explicitly introducing the indicator variables corresponding to the LVs' states. However, as pointed out in this paper, this approach is in conflict with the completeness condition in SPNs and does not fully specify the probabilistic model. We propose a remedy for this problem by modifying the original approach for introducing the LVs, which we call SPN augmentation. We discuss conditional independencies in augmented SPNs, formally establish the probabilistic interpretation of the sum-weights and give an interpretation of augmented SPNs as Bayesian networks. Based on these results, we find a sound derivation of the EM algorithm for SPNs. Furthermore, the Viterbi-style algorithm for MPE proposed in literature was never proven to be correct. We show that this is indeed a correct algorithm, when applied to selective SPNs, and in particular when applied to augmented SPNs. Our theoretical results are confirmed in experiments on synthetic data and 103 real-world datasets.
The Feasibility of Using Causal Indicators in Educational Measurement
ERIC Educational Resources Information Center
Wang, Jue; Engelhard, George, Jr.
2016-01-01
The authors of the focus article describe an important issue related to the use and interpretation of causal indicators within the context of structural equation modeling (SEM). In the focus article, the authors illustrate with simulated data the effects of omitting a causal indicator. Since SEMs are used extensively in the social and behavioral…
ERIC Educational Resources Information Center
De Fruyt, Filip; Van Leeuwen, Karla; Bagby, R. Michael; Rolland, Jean-Pierre; Rouillon, Frederic
2006-01-01
Structural, mean- and individual-level, differential, and positive personality continuity were examined in 599 patients treated for major depression assigned to 1 of 6 forms of a 6-month pharmacy-psychotherapy program. Covariation among traits from the Five Factor model remained invariant across treatment, and patients described themselves as…
Interpreting Regression Results: beta Weights and Structure Coefficients are Both Important.
ERIC Educational Resources Information Center
Thompson, Bruce
Various realizations have led to less frequent use of the "OVA" methods (analysis of variance--ANOVA--among others) and to more frequent use of general linear model approaches such as regression. However, too few researchers understand all the various coefficients produced in regression. This paper explains these coefficients and their…
Teaching Scientific Core Ideas through Immersing Students in Argument: Using Density as an Example
ERIC Educational Resources Information Center
Chen, Ying-Chih; Lin, Jia-Ling; Chen, Yen-Ting
2014-01-01
Argumentation is one of the central practices in science learning and helps deepen students' conceptual understanding. Students should learn how to communicate ideas including procedure tests, data interpretations, and investigation outcomes in verbal and written forms through argument structure. This article presents a negotiation model to…
ERIC Educational Resources Information Center
Ruisoto, Pablo; Juanes, Juan Antonio; Contador, Israel; Mayoral, Paula; Prats-Galino, Alberto
2012-01-01
Three-dimensional (3D) or volumetric visualization is a useful resource for learning about the anatomy of the human brain. However, the effectiveness of 3D spatial visualization has not yet been assessed systematically. This report analyzes whether 3D volumetric visualization helps learners to identify and locate subcortical structures more…
The World as Viewed by and with Unpaired Electrons
Eaton, Sandra S.; Eaton, Gareth R.
2012-01-01
Recent advances in electron paramagnetic resonance (EPR) include capabilities for applications to areas as diverse as archeology, beer shelf life, biological structure, dosimetry, in vivo imaging, molecular magnets, and quantum computing. Enabling technologies include multifrequency continuous wave, pulsed, and rapid scan EPR. Interpretation is enhanced by increasingly powerful computational models. PMID:22975244
ERIC Educational Resources Information Center
Marsh, Herbert W.; Dowson, Martin; Pietsch, James; Walker, Richard
2004-01-01
Multicollinearity is a well-known general problem, but it also seriously threatens valid interpretations in structural equation models. Illustrating this problem, J. Pietsch, R. Walker, and E. Chapman (2003) found paths leading to achievement were apparently much larger for self-efficacy (.55) than self-concept (-.05), suggesting--erroneously, as…
Modeling and Measuring the Structure of Professional Vision in Preservice Teachers
ERIC Educational Resources Information Center
Seidel, Tina; Stürmer, Kathleen
2014-01-01
Professional vision has been identified as an important element of teacher expertise that can be developed in teacher education. It describes the use of knowledge to notice and interpret significant features of classroom situations. Three aspects of professional vision have been described by qualitative research: describe, explain, and predict…
The Use of Structure Coefficients to Address Multicollinearity in Sport and Exercise Science
ERIC Educational Resources Information Center
Yeatts, Paul E.; Barton, Mitch; Henson, Robin K.; Martin, Scott B.
2017-01-01
A common practice in general linear model (GLM) analyses is to interpret regression coefficients (e.g., standardized ß weights) as indicators of variable importance. However, focusing solely on standardized beta weights may provide limited or erroneous information. For example, ß weights become increasingly unreliable when predictor variables are…
Portrayal of Families on Prime-Time TV: Structure, Type and Frequency.
ERIC Educational Resources Information Center
Skill, Thomas; And Others
1987-01-01
Documents the range and extent of family life configurations in prime-time television over a six-year period (1979-1985). Reveals that prime-time network television tends to reinforce conservative to moderate models of family life, while also presenting a diversity of nonstandard interpretations of family which are framed in the nonthreatening…
How to Teach Recycling at an Advanced Phase of Diffusion
ERIC Educational Resources Information Center
Meneses, Gonzalo Diaz
2006-01-01
The author conducted an empirical study based on structural equation modeling with a convenience sample of 246 individuals with the goal of demonstrating that recycling behavior is a routine conduct and should be addressed as such in educational materials. Although the classic hierarchy of effects dominates the interpretation of recycling behavior…
ERIC Educational Resources Information Center
Boom, Jan; Wouters, Hans; Keller, Monika
2007-01-01
Kohlberg's characterization of moral development as displaying an invariant hierarchical order of structurally consistent stages is losing ground. However, by applying Rasch analysis, Dawson recently gave new interpretation and support to his characterization of stage development. Using Rasch models, we replicated and strengthened her findings in…
Studies on Interpretive Structural Model for Forest Ecosystem Management Decision-Making
NASA Astrophysics Data System (ADS)
Liu, Suqing; Gao, Xiumei; Zen, Qunying; Zhou, Yuanman; Huang, Yuequn; Han, Weidong; Li, Linfeng; Li, Jiping; Pu, Yingshan
Characterized by their openness, complexity and large scale, forest ecosystems interweave themselves with social system, economic system and other natural ecosystems, thus complicating both their researches and management decision-making. According to the theories of sustainable development, hierarchy-competence levels, cybernetics and feedback, 25 factors have been chosen from human society, economy and nature that affect forest ecosystem management so that they are systematically analyzed via developing an interpretive structural model (ISM) to reveal their relationships and positions in the forest ecosystem management. The ISM consists of 7 layers with the 3 objectives for ecosystem management being the top layer (the seventh layer). The ratio between agricultural production value and industrial production value as the bases of management decision-making in forest ecosystems becomes the first layer at the bottom because it has great impacts on the values of society and the development trends of forestry, while the factors of climatic environments, intensive management extent, management measures, input-output ratio as well as landscape and productivity are arranged from the second to sixth layers respectively.
Raman structural studies of the nickel electrode
NASA Technical Reports Server (NTRS)
Cornilsen, B. C.
1985-01-01
Raman spectroscopy is sensitive to empirically controlled nickel electrode structural variations, and has unique potential for structural characterization of these materials. How the structure relates to electrochemical properties is examined so that the latter can be more completely understood, controlled, and optimized. Electrodes were impregnated and cycled, and cyclic voltammetry is being used for electrochemical characterization. Structural variation was observed which has escaped detection using other methods. Structural changes are induced by: (1) cobalt doping, (2) the state of change or discharge, (3) the preparation conditions and type of buffer used, and (4) the formation process. Charged active mass has an NiOOH-type structure, agreeing with X-ray diffraction results. Discharged active mass, however, is not isostructural with beta-Ni(OH)2. Chemically prepared alpha phases are not isostructural either. A disordered structural model, containing point defects, is proposed for the cycled materials. This model explains K(+) incorporation. Band assignments were made and spectra interpreted for beta-Ni(OH)2, electrochemical NiOOH and chemically precipitated NiOOH.
NASA Astrophysics Data System (ADS)
Beardsley, A. G.; Avé Lallemant, H. G.; Levander, A.; Clark, S. A.
2006-12-01
The kinematic history of the Leeward Antilles (offshore Venezuela) can be characterized with the integration of onshore outcrop data and offshore seismic reflection data. Deformation structures and seismic interpretation show that oblique convergence and wrench tectonics have controlled the diachronous deformation identified along the Caribbean - South America plate boundary. Field studies of structural features in outcrop indicate one generation of ductile deformation (D1) structures and three generations of brittle deformation (F1 - F3) structures. The earliest deformation (D1/F1) began ~ 110 Ma with oblique convergence between the Caribbean plate and South American plate. The second generation of deformation (F2) structures initiated in the Eocene with the extensive development of strike-slip fault systems along the diffuse plate boundary and the onset of wrench tectonics within a large-scale releasing bend. The most recent deformation (F3) has been observed in the west since the Miocene where continued dextral strike-slip motion has led to the development of a major restraining bend between the Caribbean plate transform fault and the Oca - San Sebastian - El Pilar fault system. Deformation since the late Cretaceous has been accompanied by a total of 135° clockwise rotation. Interpretation of 2D marine reflection data indicates similar onshore and offshore deformation trends. Seismic lines that approximately parallel the coastline (NW-SE striking) show syndepositional normal faulting during F1/F2 and thrust faulting associated with F3. On seismic lines striking NNE-SSW, we interpret inversion of F2 normal faults with recent F3 deformation. We also observe both normal and thrust faults related to F3. The thick sequence of recent basin sedimentation (Miocene - Recent), interpreted from the seismic data, supports the ongoing uplift and erosion of the islands; as suggested by fluid inclusion analysis. Overall, there appears to be a strong correlation between onshore micro- and mesoscopic deformational structures and offshore macro-scale structural features seen in the reflection data. The agreement of features supports our regional deformation and rotation model along the Caribbean - South America obliquely convergent plate boundary.
Clerkin, Elise M; Magee, Joshua C; Parsons, E Marie
2014-10-01
This study evaluated an adaptation of a Cognitive Bias Modification-Interpretation (CBM-I) procedure designed to shift interpretations of intrusive thoughts related to beliefs about the Importance and Control of Thoughts (ICT). Individuals high in the ICT belief domain were randomly assigned to one of two conditions: (a) a positive (n = 38) condition in which scenarios about intrusive thoughts were repeatedly paired with benign interpretations; or (b) a control (n = 39) condition in which scenarios about intrusive thoughts were paired with 50% benign and 50% threatening interpretations. Further, participants engaged in an ICT stressor task. Structural equation modeling with bias-corrected bootstrapping was used to examine the effects of training on ICT-relevant interpretations, beliefs, and ICT stressor responding. As predicted, individuals in a positive (vs. control) training condition reported decreases in ICT-relevant interpretations and beliefs. Further, there was a small, statistically significant indirect (i.e., mediated) effect of training on measures of ICT stressor responding, which occurred via decreases in ICT-relevant beliefs. In sum, results indicate that training was effective in influencing interpretations and beliefs tied to Importance/Control of Thoughts and that there may be clinical utility to shifting this belief domain.
Clerkin, Elise M.; Magee, Joshua C.; Parsons, E. Marie
2014-01-01
This study evaluated an adaptation of a Cognitive Bias Modification-Interpretation (CBM-I) procedure designed to shift interpretations of intrusive thoughts related to beliefs about the Importance and Control of Thoughts (ICT). Individuals high in the ICT belief domain were randomly assigned to one of two conditions: (a) a positive (n = 38) condition in which scenarios about intrusive thoughts were repeatedly paired with benign interpretations; or (b) a control (n = 39) condition in which scenarios about intrusive thoughts were paired with 50% benign and 50% threatening interpretations. Further, participants engaged in an ICT stressor task. Structural equation modeling with bias-corrected bootstrapping was used to examine the effects of training on ICT-relevant interpretations, beliefs, and ICT stressor responding. As predicted, individuals in a positive (vs. control) training condition reported decreases in ICT-relevant interpretations and beliefs. Further, there was a small, statistically significant indirect (i.e., mediated) effect of training on measures of ICT stressor responding, which occurred via decreases in ICT-relevant beliefs. In sum, results indicate that training was effective in influencing interpretations and beliefs tied to Importance/Control of Thoughts and that there may be clinical utility to shifting this belief domain. PMID:25414811
Insights into channel dysfunction from modelling and molecular dynamics simulations.
Musgaard, Maria; Paramo, Teresa; Domicevica, Laura; Andersen, Ole Juul; Biggin, Philip C
2018-04-01
Developments in structural biology mean that the number of different ion channel structures has increased significantly in recent years. Structures of ion channels enable us to rationalize how mutations may lead to channelopathies. However, determining the structures of ion channels is still not trivial, especially as they necessarily exist in many distinct functional states. Therefore, the use of computational modelling can provide complementary information that can refine working hypotheses of both wild type and mutant ion channels. The simplest but still powerful tool is homology modelling. Many structures are available now that can provide suitable templates for many different types of ion channels, allowing a full three-dimensional interpretation of mutational effects. These structural models, and indeed the structures themselves obtained by X-ray crystallography, and more recently cryo-electron microscopy, can be subjected to molecular dynamics simulations, either as a tool to help explore the conformational dynamics in detail or simply as a means to refine the models further. Here we review how these approaches have been used to improve our understanding of how diseases might be linked to specific mutations in ion channel proteins. This article is part of the Special Issue entitled 'Channelopathies.' Copyright © 2017 The Authors. Published by Elsevier Ltd.. All rights reserved.
Modeling Protein Expression and Protein Signaling Pathways
Telesca, Donatello; Müller, Peter; Kornblau, Steven M.; Suchard, Marc A.; Ji, Yuan
2015-01-01
High-throughput functional proteomic technologies provide a way to quantify the expression of proteins of interest. Statistical inference centers on identifying the activation state of proteins and their patterns of molecular interaction formalized as dependence structure. Inference on dependence structure is particularly important when proteins are selected because they are part of a common molecular pathway. In that case, inference on dependence structure reveals properties of the underlying pathway. We propose a probability model that represents molecular interactions at the level of hidden binary latent variables that can be interpreted as indicators for active versus inactive states of the proteins. The proposed approach exploits available expert knowledge about the target pathway to define an informative prior on the hidden conditional dependence structure. An important feature of this prior is that it provides an instrument to explicitly anchor the model space to a set of interactions of interest, favoring a local search approach to model determination. We apply our model to reverse-phase protein array data from a study on acute myeloid leukemia. Our inference identifies relevant subpathways in relation to the unfolding of the biological process under study. PMID:26246646
NASA Astrophysics Data System (ADS)
Stramaglia, S.; Pellicoro, M.; Angelini, L.; Amico, E.; Aerts, H.; Cortés, J. M.; Laureys, S.; Marinazzo, D.
2017-04-01
Dynamical models implemented on the large scale architecture of the human brain may shed light on how a function arises from the underlying structure. This is the case notably for simple abstract models, such as the Ising model. We compare the spin correlations of the Ising model and the empirical functional brain correlations, both at the single link level and at the modular level, and show that their match increases at the modular level in anesthesia, in line with recent results and theories. Moreover, we show that at the peak of the specific heat (the critical state), the spin correlations are minimally shaped by the underlying structural network, explaining how the best match between the structure and function is obtained at the onset of criticality, as previously observed. These findings confirm that brain dynamics under anesthesia shows a departure from criticality and could open the way to novel perspectives when the conserved magnetization is interpreted in terms of a homeostatic principle imposed to neural activity.
A fast community detection method in bipartite networks by distance dynamics
NASA Astrophysics Data System (ADS)
Sun, Hong-liang; Ch'ng, Eugene; Yong, Xi; Garibaldi, Jonathan M.; See, Simon; Chen, Duan-bing
2018-04-01
Many real bipartite networks are found to be divided into two-mode communities. In this paper, we formulate a new two-mode community detection algorithm BiAttractor. It is based on distance dynamics model Attractor proposed by Shao et al. with extension from unipartite to bipartite networks. Since Jaccard coefficient of distance dynamics model is incapable to measure distances of different types of vertices in bipartite networks, our main contribution is to extend distance dynamics model from unipartite to bipartite networks using a novel measure Local Jaccard Distance (LJD). Furthermore, distances between different types of vertices are not affected by common neighbors in the original method. This new idea makes clear assumptions and yields interpretable results in linear time complexity O(| E |) in sparse networks, where | E | is the number of edges. Experiments on synthetic networks demonstrate it is capable to overcome resolution limit compared with existing other methods. Further research on real networks shows that this model can accurately detect interpretable community structures in a short time.
Three-dimensional structure of the submarine flanks of La Réunion inferred from geophysical data
NASA Astrophysics Data System (ADS)
Gailler, Lydie-Sarah; LéNat, Jean-FrançOis
2010-12-01
La Réunion (Indian Ocean) constitutes a huge volcanic oceanic system of which most of the volume is submerged. We present a study of its submarine part based on the interpretation of magnetic and gravity data compiled from old and recent surveys. A model of the submarine internal structure is derived from 3-D and 2-D models using constraints from previous geological and geophysical studies. Two large-scale, previously unknown, buried volcanic construction zones are discovered in continuation of the island's construction. To the east, the Alizés submarine zone is interpreted as the remnants of Les Alizés volcano eastward flank whose center is marked by a large hypovolcanic intrusion complex. To the southwest, the Etang Salé submarine zone is interpreted as an extension of Piton des Neiges, probably fed by a volcanic rift zone over a large extent. They were predominantly built during the Matuyama period and thus probably belong to early volcanism. A correlation exists between their top and seismic horizons recognized in previous studies and interpreted as the base of the volcanic edifice. Their morphology suggested a lithospheric bulging beneath La Réunion, not required to explain our data, since the seismic interfaces match the top of our volcanic constructions. The coastal shelf coincides with a negative Bouguer anomaly belt, often associated with magnetic anomalies, suggesting a shelf built by hyaloclastites. A detailed analysis of the offshore continuation of La Montagne Massif to the north confirms this hypothesis. The gravity analysis confirms that the bathymetric bulges, forming the northern, eastern, southern, and western submarine flanks, are predominantly built by debris avalanche deposits at the surface.
Hydrogen Donor-Acceptor Fluctuations from Kinetic Isotope Effects: A Phenomenological Model
Roston, Daniel; Cheatum, Christopher M.; Kohen, Amnon
2012-01-01
Kinetic isotope effects (KIEs) and their temperature dependence can probe the structural and dynamic nature of enzyme-catalyzed proton or hydride transfers. The molecular interpretation of their temperature dependence requires expensive and specialized QM/MM calculations to provide a quantitative molecular understanding. Currently available phenomenological models use a non-adiabatic assumption that is not appropriate for most hydride and proton-transfer reactions, while others require more parameters than the experimental data justify. Here we propose a phenomenological interpretation of KIEs based on a simple method to quantitatively link the size and temperature dependence of KIEs to a conformational distribution of the catalyzed reaction. The present model assumes adiabatic hydrogen tunneling, and by fitting experimental KIE data, the model yields a population distribution for fluctuations of the distance between donor and acceptor atoms. Fits to data from a variety of proton and hydride transfers catalyzed by enzymes and their mutants, as well as non-enzymatic reactions, reveal that steeply temperature-dependent KIEs indicate the presence of at least two distinct conformational populations, each with different kinetic behaviors. We present the results of these calculations for several published cases and discuss how the predictions of the calculations might be experimentally tested. The current analysis does not replace molecular quantum mechanics/molecular mechanics (QM/MM) investigations, but it provides a fast and accessible way to quantitatively interpret KIEs in the context of a Marcus-like model. PMID:22857146
Zhang, Weihong; Howell, Steven C; Wright, David W; Heindel, Andrew; Qiu, Xiangyun; Chen, Jianhan; Curtis, Joseph E
2017-05-01
We describe a general method to use Monte Carlo simulation followed by torsion-angle molecular dynamics simulations to create ensembles of structures to model a wide variety of soft-matter biological systems. Our particular emphasis is focused on modeling low-resolution small-angle scattering and reflectivity structural data. We provide examples of this method applied to HIV-1 Gag protein and derived fragment proteins, TraI protein, linear B-DNA, a nucleosome core particle, and a glycosylated monoclonal antibody. This procedure will enable a large community of researchers to model low-resolution experimental data with greater accuracy by using robust physics based simulation and sampling methods which are a significant improvement over traditional methods used to interpret such data. Published by Elsevier Inc.
Substance and Artifact in the Higher-Order Factors of the Big Five
McCrae, Robert R.; Jang, Kerry L.; Ando, Juko; Ono, Yutaka; Yamagata, Shinji; Riemann, Rainer; Angleitner, Alois; Spinath, Frank M.
2018-01-01
J. M. Digman (1997) proposed that the Big Five personality traits showed a higher-order structure with 2 factors he labeled α and β. These factors have been alternatively interpreted as heritable components of personality or as artifacts of evaluative bias. Using structural equation modeling, the authors reanalyzed data from a cross-national twin study and from American cross-observer studies and analyzed new multimethod data from a German twin study. In all analyses, artifact models outperformed substance models by root-mean-square error of approximation criteria, but models combining both artifact and substance were slightly better. These findings suggest that the search for the biological basis of personality traits may be more profitably focused on the 5 factors themselves and their specific facets, especially in monomethod studies. PMID:18665712
The fractography-modeling link in cleavage fracture
DOE Office of Scientific and Technical Information (OSTI.GOV)
Thompson, A.W.
1997-12-31
Cleavage fracture has historically been modelled, out of necessity, in rather idealized terms. In real materials, however, there are a number of difficulties in linking such models with metallographic and fractographic observations. Some of the most vivid examples occur for {alpha}{sub 2} titanium aluminide alloys, in which, when the microstructure contains primary {alpha}{sub 2} particles, the primary particles crack first. When basketweave or Widmanstaetten structures of {alpha}{sub 2} laths comprise the microstructure, it appears that individual laths crack first. And in colony structures, cracking occurs first across the {alpha}{sub 2} lath colonies. Both detailed fractographic observations, and also a statisticalmore » model for brittle fracture by failure of weakest links, have been developed. The extent to which this can be interpreted in classical cleavage terms will be discussed.« less
Cloud draft structure and trace gas transport
NASA Technical Reports Server (NTRS)
Scala, John R.; Tao, Wei-Kuo; Thompson, Anne M.; Simpson, Joanne; Garstang, Michael; Pickering, Kenneth E.; Browell, Edward V.; Sachse, Glen W.; Gregory, Gerald L.; Torres, Arnold L.
1990-01-01
During the second Amazon Boundary Layer Experiment (ABLE 2B), meteorological observations, chemical measurements, and model simulations are utilized in order to interpret convective cloud draft structure and to analyze its role in transport and vertical distribution of trace gases. One-dimensional photochemical model results suggest that the observed poststorm changes in ozone concentration can be attributed to convective transports rather than photochemical production and the results of a two-dimensional time-dependent cloud model simulation are presented for the May 6, 1987 squall system. The mesoscale convective system exhibited evidence of significant midlevel detrainment in addition to transports to anvil heights. Chemical measurements of O3 and CO obtained in the convective environment are used to predict photochemical production within the troposphere and to corroborate the cloud model results.
[Job satisfaction, volition and reasons for choice of temporary work].
Muzzolon, Cristina; Spoto, Andrea; Vidotto, Giulio
2012-01-01
In this paper, we reviewed the literature on volition and the principal studies on the reasons for choosing temporary work, which explain in more details how voluntary/involuntary status is interpreted. The description of a research, based on a sample of 1979 workers, is presented with two aims: 1. confirm a structural model that examines the effects on satisfaction of some variables, such as motivation and trust; 2. evaluate the influence of volition and reasons for choosing a temporary employment on job satisfaction. The results confirm the plausibility of the proposed structural model and show interesting results regarding the reasons for choosing temporary work.
Paulina-Carabajal, Ariana; Lee, Yuong-Nam; Jacobs, Louis L.
2016-01-01
Background Ankylosaurs are one of the least explored clades of dinosaurs regarding endocranial anatomy, with few available descriptions of braincase anatomy and even less information on brain and inner ear morphologies. The main goal of this study is to provide a detailed description of the braincase and internal structures of the Early Cretaceous nodosaurid Pawpawsaurus campbelli, based on recently made CT scans. Methodology/Principal Findings The skull of Pawpawsaurus was CT scanned at University of Texas at Austin (UTCT). Three-dimensional models were constructed using Mimics 18.0 (Materialise). The digital data and further processed 3D models revealed inaccessible anatomic structures, allowing a detailed description of the lateral wall of the braincase (obscured by other bones in the articulated skull), and endocranial structures such as the cranial endocast, the most complete inner ear morphology for a nodosaurid, and the interpretation of the airflow system within the nasal cavities. Conslusions/Significance The new information on the endocranial morphology of Pawpawsaurus adds anatomical data to the poorly understand ankylosaur paleoneurology. The new set of data has potential use not only in taxonomy and phylogeny, but also in paleobiological interpretations based on the relative development of sense organs, such as olfaction, hearing and balance. PMID:27007950
NASA Astrophysics Data System (ADS)
Gonçalves, Ítalo Gomes; Kumaira, Sissa; Guadagnin, Felipe
2017-06-01
Implicit modeling has experienced a rise in popularity over the last decade due to its advantages in terms of speed and reproducibility in comparison with manual digitization of geological structures. The potential-field method consists in interpolating a scalar function that indicates to which side of a geological boundary a given point belongs to, based on cokriging of point data and structural orientations. This work proposes a vector potential-field solution from a machine learning perspective, recasting the problem as multi-class classification, which alleviates some of the original method's assumptions. The potentials related to each geological class are interpreted in a compositional data framework. Variogram modeling is avoided through the use of maximum likelihood to train the model, and an uncertainty measure is introduced. The methodology was applied to the modeling of a sample dataset provided with the software Move™. The calculations were implemented in the R language and 3D visualizations were prepared with the rgl package.
Light propagation in the averaged universe
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bagheri, Samae; Schwarz, Dominik J., E-mail: s_bagheri@physik.uni-bielefeld.de, E-mail: dschwarz@physik.uni-bielefeld.de
Cosmic structures determine how light propagates through the Universe and consequently must be taken into account in the interpretation of observations. In the standard cosmological model at the largest scales, such structures are either ignored or treated as small perturbations to an isotropic and homogeneous Universe. This isotropic and homogeneous model is commonly assumed to emerge from some averaging process at the largest scales. We assume that there exists an averaging procedure that preserves the causal structure of space-time. Based on that assumption, we study the effects of averaging the geometry of space-time and derive an averaged version of themore » null geodesic equation of motion. For the averaged geometry we then assume a flat Friedmann-Lemaître (FL) model and find that light propagation in this averaged FL model is not given by null geodesics of that model, but rather by a modified light propagation equation that contains an effective Hubble expansion rate, which differs from the Hubble rate of the averaged space-time.« less
Chemokines and their receptors: insights from molecular modeling and crystallography.
Kufareva, Irina
2016-10-01
Chemokines are small secreted proteins that direct cell migration in development, immunity, inflammation, and cancer. They do so by binding and activating specific G protein coupled receptors on the surface of migrating cells. Despite the importance of receptor:chemokine interactions, their structural basis remained unclear for a long time. In 2015, the first atomic resolution insights were obtained with the publication of X-ray structures for two distantly related receptors bound to chemokines. In conjunction with experiment-guided molecular modeling, the structures suggest a conserved receptor:chemokine complex architecture, while highlighting the diverse details and functional roles of individual interaction epitopes. Novel findings promote the development and detailed structural interpretation of the canonical two-site hypothesis of receptor:chemokine recognition, and suggest new avenues for pharmacological modulation of chemokine receptors. Copyright © 2016 Elsevier Ltd. All rights reserved.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kufareva, Irina; Gustavsson, Martin; Zheng, Yi
Chemokines and their cell surface G protein–coupled receptors are critical for cell migration, not only in many fundamental biological processes but also in inflammatory diseases and cancer. Recent X-ray structures of two chemokines complexed with full-length receptors provided unprecedented insight into the atomic details of chemokine recognition and receptor activation, and computational modeling informed by new experiments leverages these insights to gain understanding of many more receptor:chemokine pairs. In parallel, chemokine receptor structures with small molecules reveal the complicated and diverse structural foundations of small molecule antagonism and allostery, highlight the inherent physicochemical challenges of receptor:chemokine interfaces, and suggest novelmore » epitopes that can be exploited to overcome these challenges. The structures and models promote unique understanding of chemokine receptor biology, including the interpretation of two decades of experimental studies, and will undoubtedly assist future drug discovery endeavors.« less
NASA Astrophysics Data System (ADS)
Garcia-Reyes, A.; Dyment, J.; Thebault, E.
2016-12-01
Despite of the Caribbean plate and Gulf of Mexico have been widely explored from the last 60 years, there is still no consensus about its nature and age of formation. The imaging of the acoustic basement which can help to better understand the composition of the upper crust, is dependent on seismic reflection and exploratory wells but both of them lack of sufficient penetration. Regarding the magnetic anomalies and possible contribution to decipher the age of the Caribbean seafloor, some authors have reported the lack of an identifiable pattern over the Caribbean Plate (Duncan and Hargraves, 1984, Pindell et al. many publications). Marine tracks widely spaced or with very short coverage, and low amplitude magnetic anomalies constitute a limitation in terms of mapping and interpretation. In this work we present a geophysical interpretation from recently reprocessed marine magnetic data (Garcia et al., 2015), satellite geomagnetic models, and new free-air gravity anomaly derived from altimetry (Sandwell et al., 2014), which is useful to better understand the structure and age of the seafloor and constrain its nature and formation. A marine magnetic anomaly map of the Caribbean region and the Gulf of Mexico to 0.18 degree spatial resolution is showed as resulting from a dedicated processing of the NGDC marine magnetic measurements over the Caribbean region, applied over 516 surveys that were acquired between epochs 1958 and 2012. The corrections applied include the main internal field using a CM4 model for epochs ranging between 1960 and 2002.5 and the IGRF-11 model outside the time range of the CM4 model, removal of outliers, correction by magnetic heading effect, analysis and improvement of the internal and external cross-overs and frequency analysis and separation. This processing allows us to integrate and to interpret the results along with the potential field data mentioned above and open the discussion about the meaning of the magnetic and gravity signatures of some of the striking structures of the area. Special emphasis is done over the Gulf of Mexico, in where a magnetic isochrons identification and plate tectonic reconstruction is in progress.
NASA Technical Reports Server (NTRS)
Brown, A.; Jordan, C.; Stencel, R. E.; Linsky, J. L.; Ayres, T. R.
1984-01-01
High-resolution far ultraviolet spectra of the star Beta Draconis have been obtained with the IUE satellite. The observations and emission line data from the spectra are presented, the interpretation of the emission line widths and shifts is discussed, and the implications are given in terms of atmospheric properties. The emission measure distribution is derived, and density diagnostics involving both line ratios and line opacity arguments is investigated. The methods for calculating spherically symmetric models of the atmospheric structure are outlined, and several such models are presented. The extension of these models to log T(e) greater than 5.3 using the observed X-ray flux is addressed, the energy balance of an 'optimum' model is investigated, and possible models of energy transport and deposition are discussed.
Requirements for energy based constitutive modeling in tire mechanics
NASA Technical Reports Server (NTRS)
Luchini, John R.; Peters, Jim M.; Mars, Will V.
1995-01-01
The history, requirements, and theoretical basis of a new energy based constitutive model for (rubber) material elasticity, hysteresis, and failure are presented. Energy based elasticity is handled by many constitutive models, both in one dimension and in three dimensions. Conversion of mechanical energy to heat can be modeled with viscoelasticity or as structural hysteresis. We are seeking unification of elasticity, hysteresis, and failure mechanisms such as fatigue and wear. An energy state characterization for failure criteria of (rubber) materials may provide this unification and also help explain the interaction of temperature effects with failure mechanisms which are described as creation of growth of internal crack surface. Improved structural modeling of tires with FEM should result from such a unified constitutive theory. The theory will also guide experimental work and should enable better interpretation of the results of computational stress analyses.
Turney, Toby; Pan, Qingfeng; Sernau, Luke; Carmichael, Ian; Zhang, Wenhui; Wang, Xiaocong; Woods, Robert J; Serianni, Anthony S
2017-01-12
α- and β-d-glucopyranose monoacetates 1-3 were prepared with selective 13 C enrichment in the O-acetyl side-chain, and ensembles of 13 C- 1 H and 13 C- 13 C NMR spin-couplings (J-couplings) were measured involving the labeled carbons. Density functional theory (DFT) was applied to a set of model structures to determine which J-couplings are sensitive to rotation of the ester bond θ. Eight J-couplings ( 1 J CC , 2 J CH , 2 J CC , 3 J CH , and 3 J CC ) were found to be sensitive to θ, and four equations were parametrized to allow quantitative interpretations of experimental J-values. Inspection of J-coupling ensembles in 1-3 showed that O-acetyl side-chain conformation depends on molecular context, with flanking groups playing a dominant role in determining the properties of θ in solution. To quantify these effects, ensembles of J-couplings containing four values were used to determine the precision and accuracy of several 2-parameter statistical models of rotamer distributions across θ in 1-3. The statistical method used to generate these models has been encoded in a newly developed program, MA'AT, which is available for public use. These models were compared to O-acetyl side-chain behavior observed in a representative sample of crystal structures, and in molecular dynamics (MD) simulations of O-acetylated model structures. While the functional form of the model had little effect on the precision of the calculated mean of θ in 1-3, platykurtic models were found to give more precise estimates of the width of the distribution about the mean (expressed as circular standard deviations). Validation of these 2-parameter models to interpret ensembles of redundant J-couplings using the O-acetyl system as a test case enables future extension of the approach to other flexible elements in saccharides, such as glycosidic linkage conformation.
The Band Structure of Polymers: Its Calculation and Interpretation. Part 3. Interpretation.
ERIC Educational Resources Information Center
Duke, B. J.; O'Leary, Brian
1988-01-01
In this article, the third part of a series, the results of ab initio polymer calculations presented in part 2 are discussed. The electronic structure of polymers, symmetry properties of band structure, and generalizations are presented. (CW)
NASA Astrophysics Data System (ADS)
Anderson, M. L.; Blakely, R. J.; Wells, R. E.; Dragovich, J.
2011-12-01
The forearc of the Cascadia subduction zone in coastal Oregon and Washington is largely composed of a 15-30 km-thick stack of basalt flows comprising the Crescent Formation (WA) and Siletz River Volcanics (OR), and collectively termed the Siletz terrane. We are developing 3-D structural maps of the Puget Lowland to distinguish older and currently active structures for seismic hazard analysis. The boundaries of the Siletz terrane in particular may strongly influence crustal rheology and neotectonic structures of the region. Careful analysis of the areal extent of this terrane will also facilitate more accurate interpretation of seismic data and gravity anomalies, which will help define the extent and shape of overlying basins. Absence of extensive outcrop in the Lowland and a widespread veneer of Quaternary deposits require extensive subsurface geophysical studies to establish Lowland-wide crustal structure. Previous studies have used active seismic surveys and interpretation of existing industry seismic data, with several studies using gravity and magnetic data or passive-source tomography support. However, steeply dipping boundaries in the mid-crust are difficult targets for seismic study. We need to independently discriminate between potential models established by seismic data using gravity and magnetic datasets. In the Puget Lowland the Siletz is a region of high seismic wave speed, density, and magnetic susceptibility, and therefore its mid-crustal boundaries are good targets for definition by gravity and magnetic data. We present interpretations of gravity and magnetic anomalies for the Puget Lowland region that together establish the most likely position and structure of the Crescent Formation boundary in the mid-upper crust. Well-constrained physical properties of Crescent basalts inform our aeromagnetic map interpretation and give us baseline values for constructing three two-dimensional models by simultaneous forward modeling of aeromagnetic and isostatic gravity anomalies for the Lowland. Based on this work, the likely position of the eastern boundary of the Siletz terrane is east of the Puget Sound and west of the foothills of the Cascade arc, extending in a north-trending line through Lake Washington and merging to the north with the Southern Whidbey Island fault zone. Our preferred location agrees with suggested locations from past study of seismic data targeted at the Seattle basin, but we extend that location through the entire Puget Lowland by analysis of magnetic potential calculated from aeromagnetic data. We also find that the boundary is sharp and most likely dips west, suggesting a reverse-fault juxtaposition of Crescent rocks against Western Melange belt lithologies. The Crescent itself contains steeply dipping packages of basalt of contrasting magnetic character, indicating significant deformation within the Crescent formation under the Seattle uplift. Finally, the boundary location implies that the eastern third of the Seattle basin is shallower than previously estimated from gravity data.
NASA Astrophysics Data System (ADS)
Alania, Victor; Chabukiani, Alexander; Enukidze, Onise; Razmadze, Alexander; Sosson, Marc; Tsereteli, Nino; Varazanashvili, Otar
2017-04-01
Our study focused on the structural geometry at the eastern Achara-Trialeti fold and thrust belt (ATFTB) located at the retro-wedge of the Lesser Caucasus orogen (Alania et al., 2016a). Our interpretation has integrated seismic reflection profiles, several oil-wells, and the surface geology data to reveal structural characteristics of the eastern ATFTB. Fault-related folding theories were used to seismic interpretation (Shaw et al., 2004). Seismic reflection data reveal the presence of basement structural wedge, south-vergent backthrust, north-vergent forethrust and some structural wedges (or duplex). The rocks are involved in the deformation range from Paleozoic basement rocks to Tertiary strata. Building of thick-skinned structures of eastern Achara-Trialeti was formed by basement wedges propagated from south to north along detachment horizons within the cover generating thin-skinned structures. The kinematic evolution of the south-vergent backthrust zone with respect to the northward propagating structural wedge (or duplexes). The main style of deformation within the backthrust belt is a series of fault-propagation folds. Frontal part of eastern ATFTB are represent by triangle zone (Alania et al., 2016b; Sosson et al., 2016). A detailed study was done for Tbilisi area: seismic refection profiles, serial balanced cross-sections, and earthquakes reveal the presence of an active blind thrust fault beneath Tbilisi. 2 & 3-D structural models show that 2002 Mw 4.5 Tbilisi earthquake related to a north-vergent blind thrust. Empirical relations between blind fault rupture area and magnitude suggest that these fault segments could generate earthquakes of Mw 6.5. The growth fault-propagation fold has been observed near Tbilisi in the frontal part of eastern ATFTB. Seismic reflection profile through Ormoiani syncline shows that south-vergent growth fault-propagation fold related to out-of-the-syncline thrust. The outcrop of fault-propagation fold shown the geometry of the hangingwall structure with the syn-folding growth stratal sequence. Pre-growth Oligocene strata are overlain by Late (?) Quaternary alluvial fan gravels, sands and clays. Growth unconformity of back-limb showing flat clays unconformably on top of Oligocene sandstone and shale beds. The growth strata geometry of growth fold is related to the progressive limb-rotation model (Hardy & Poblet, 1994). References Alania, V., et al., 2016a. Structure of the eastern Achara-Trialeti fold and thrust belt using seismic reflection profiles: implication for tectonic model of the Lesser Caucasus orogen. 35TH International Geological Congress (IGC), 27 August - 4 September, 2016, Cape Town, South Africa. Alania, V., et al., 2016b. Growth structures, piggyback basins and growth strata of Georgian part of Kura foreland fold and thrust belt: implication for Late Alpine kinematic evolution. Geological Society, London, Special Publications no. 428, doi:10.1144/SP428.5. Hardy, S., and J. Poblet, 1994. Geometric and numerical model of progressive limb rotation in detachment folds: Geology, v. 22, p. 371-374. Shaw, J., Connors, C. & J. Suppe, 2005. Seismic interpretation of contractional fault-related folds. AAPG Studies in Geology 53, 156 pp. Sosson, M., et al., 2016. The Eastern Black Sea-Caucasus region during Cretaceous: new evidence to constrain its tectonic evolution. Compte-Rendus Geosciences, v. 348, Issue 1, p. 23-32.
2-D inversion of VES data in Saqqara archaeological area, Egypt
NASA Astrophysics Data System (ADS)
El-Qady, Gad; Sakamoto, Chika; Ushijima, Keisuke
1999-10-01
The interpretation of actual geophysical field data still has a problem for obtaining a unique solution. In order to investigate the groundwater potentials in Saqqara archaeological area, vertical electrical soundings with Schlumberger array have been carried out. In the interpretation of VES data, 1D resistivity inversion has been performed based on a horizontally layered earth model by El-Qady (1995). However, some results of 1D inversion are not fully satisfied for actual 3D structures such as archaeological tombs. Therefore, we have carried out 2D inversion based on ABIC least squares method for Schlumberger VES data obtained in Saqqara area. Although the results of 2D cross sections were correlated with the previous interpretation, the 2D inversion still shows a rough spatial resistivity distribution, which is the abrupt change in resistivity between two neighboring blocks of the computed region. It is concluded that 3D interpretation is recommended for visualizing ground water distribution with depth in the Saqqara area.
COMPUTATION OF ℛ IN AGE-STRUCTURED EPIDEMIOLOGICAL MODELS WITH MATERNAL AND TEMPORARY IMMUNITY.
Feng, Zhilan; Han, Qing; Qiu, Zhipeng; Hill, Andrew N; Glasser, John W
2016-03-01
For infectious diseases such as pertussis, susceptibility is determined by immunity, which is chronological age-dependent. We consider an age-structured epidemiological model that accounts for both passively acquired maternal antibodies that decay and active immunity that wanes, permitting reinfection. The model is a 6-dimensional system of partial differential equations (PDE). By assuming constant rates within each age-group, the PDE system can be reduced to an ordinary differential equation (ODE) system with aging from one age-group to the next. We derive formulae for the effective reproduction number ℛ and provide their biological interpretation in some special cases. We show that the disease-free equilibrium is stable when ℛ < 1 and unstable if ℛ > 1.
Le Deunff, Erwan; Malagoli, Philippe
2014-01-01
Background The top-down analysis of nitrate influx isotherms through the Enzyme-Substrate interpretation has not withstood recent molecular and histochemical analyses of nitrate transporters. Indeed, at least four families of nitrate transporters operating at both high and/or low external nitrate concentrations, and which are located in series and/or parallel in the different cellular layers of the mature root, are involved in nitrate uptake. Accordingly, the top-down analysis of the root catalytic structure for ion transport from the Enzyme-Substrate interpretation of nitrate influx isotherms is inadequate. Moreover, the use of the Enzyme-Substrate velocity equation as a single reference in agronomic models is not suitable in its formalism to account for variations in N uptake under fluctuating environmental conditions. Therefore, a conceptual paradigm shift is required to improve the mechanistic modelling of N uptake in agronomic models. Scope An alternative formalism, the Flow-Force theory, was proposed in the 1970s to describe ion isotherms based upon biophysical ‘flows and forces’ relationships of non-equilibrium thermodynamics. This interpretation describes, with macroscopic parameters, the patterns of N uptake provided by a biological system such as roots. In contrast to the Enzyme-Substrate interpretation, this approach does not claim to represent molecular characteristics. Here it is shown that it is possible to combine the Flow-Force formalism with polynomial responses of nitrate influx rate induced by climatic and in planta factors in relation to nitrate availability. Conclusions Application of the Flow-Force formalism allows nitrate uptake to be modelled in a more realistic manner, and allows scaling-up in time and space of the regulation of nitrate uptake across the plant growth cycle. PMID:25425406
Alternative interpretation for the active zones of Cuba
NASA Astrophysics Data System (ADS)
Rodríguez, Mario Octavio Cotilla
2014-11-01
An alternative explanation to the seismoactivity of Cuban faults is presented. The model is a consequence of the interaction between Caribbean and North American plates. It is made with 12 geodynamic cells form by a set of 13 active faults and their 14 areas of intersection. These cells are recognized morpho-structural blocks. The area between Eastern Matanzas and Western Cauto-Nipe is excluded because of the low level of seismic information. Cuba has two types of seismogenetic structures: faults and intersection of faults.
Collection of X-ray diffraction data from macromolecular crystals
Dauter, Zbigniew
2017-01-01
Diffraction data acquisition is the final experimental stage of the crystal structure analysis. All subsequent steps involve mainly computer calculations. Optimally measured and accurate data make the structure solution and refinement easier and lead to more faithful interpretation of the final models. Here, the important factors in data collection from macromolecular crystals are discussed and strategies appropriate for various applications, such as molecular replacement, anomalous phasing, atomic-resolution refinement etc., are presented. Criteria useful for judging the diffraction data quality are also discussed. PMID:28573573
CFD in the 1980's from one point of view
NASA Technical Reports Server (NTRS)
Lomax, Harvard
1991-01-01
The present interpretive treatment of the development history of CFD in the 1980s gives attention to advancements in such algorithmic techniques as flux Jacobian-based upwind differencing, total variation-diminishing and essentially nonoscillatory schemes, multigrid methods, unstructured grids, and nonrectangular structured grids. At the same time, computational turbulence research gave attention to turbulence modeling on the bases of increasingly powerful supercomputers and meticulously constructed databases. The major future developments in CFD will encompass such capabilities as structured and unstructured three-dimensional grids.
Three-dimensional waveform sensitivity kernels
NASA Astrophysics Data System (ADS)
Marquering, Henk; Nolet, Guust; Dahlen, F. A.
1998-03-01
The sensitivity of intermediate-period (~10-100s) seismic waveforms to the lateral heterogeneity of the Earth is computed using an efficient technique based upon surface-wave mode coupling. This formulation yields a general, fully fledged 3-D relationship between data and model without imposing smoothness constraints on the lateral heterogeneity. The calculations are based upon the Born approximation, which yields a linear relation between data and model. The linear relation ensures fast forward calculations and makes the formulation suitable for inversion schemes; however, higher-order effects such as wave-front healing are neglected. By including up to 20 surface-wave modes, we obtain Fréchet, or sensitivity, kernels for waveforms in the time frame that starts at the S arrival and which includes direct and surface-reflected body waves. These 3-D sensitivity kernels provide new insights into seismic-wave propagation, and suggest that there may be stringent limitations on the validity of ray-theoretical interpretations. Even recently developed 2-D formulations, which ignore structure out of the source-receiver plane, differ substantially from our 3-D treatment. We infer that smoothness constraints on heterogeneity, required to justify the use of ray techniques, are unlikely to hold in realistic earth models. This puts the use of ray-theoretical techniques into question for the interpretation of intermediate-period seismic data. The computed 3-D sensitivity kernels display a number of phenomena that are counter-intuitive from a ray-geometrical point of view: (1) body waves exhibit significant sensitivity to structure up to 500km away from the source-receiver minor arc; (2) significant near-surface sensitivity above the two turning points of the SS wave is observed; (3) the later part of the SS wave packet is most sensitive to structure away from the source-receiver path; (4) the sensitivity of the higher-frequency part of the fundamental surface-wave mode is wider than for its faster, lower-frequency part; (5) delayed body waves may considerably influence fundamental Rayleigh and Love waveforms. The strong sensitivity of waveforms to crustal structure due to fundamental-mode-to-body-wave scattering precludes the use of phase-velocity filters to model body-wave arrivals. Results from the 3-D formulation suggest that the use of 2-D and 1-D techniques for the interpretation of intermediate-period waveforms should seriously be reconsidered.
The Temporal Structure of Spoken Language Understanding.
ERIC Educational Resources Information Center
Marslen-Wilson, William; Tyler, Lorraine Komisarjevsky
1980-01-01
An investigation of word-by-word time-course of spoken language understanding focused on word recognition and structural and interpretative processes. Results supported an online interactive language processing theory, in which lexical, structural, and interpretative knowledge sources communicate and interact during processing efficiently and…
DOE Office of Scientific and Technical Information (OSTI.GOV)
O'Donnell, T.J.; Olson, A.J.
1981-08-01
GRAMPS, a graphics language interpreter has been developed in FORTRAN 77 to be used in conjunction with an interactive vector display list processor (Evans and Sutherland Multi-Picture-System). Several of the features of the language make it very useful and convenient for real-time scene construction, manipulation and animation. The GRAMPS language syntax allows natural interaction with scene elements as well as easy, interactive assignment of graphics input devices. GRAMPS facilitates the creation, manipulation and copying of complex nested picture structures. The language has a powerful macro feature that enables new graphics commands to be developed and incorporated interactively. Animation may bemore » achieved in GRAMPS by two different, yet mutually compatible means. Picture structures may contain framed data, which consist of a sequence of fixed objects. These structures may be displayed sequentially to give a traditional frame animation effect. In addition, transformation information on picture structures may be saved at any time in the form of new macro commands that will transform these structures from one saved state to another in a specified number of steps, yielding an interpolated transformation animation effect. An overview of the GRAMPS command structure is given and several examples of application of the language to molecular modeling and animation are presented.« less
NASA Astrophysics Data System (ADS)
Perez, J. C.; Chandran, B. D. G.
2016-12-01
As Solar Probe Plus (SPP) explores the near-Sun environment, our ability to obtain meaningful interpretation of in-situ measurements faces two significant challenges. The first challenge is that the Taylor Hypothesis (TH), which is normally used in the interpretation of existing spacecraft data, breaks down at the low heliocentric distances that SPP mission will explore. The second challenge is our limited understanding of turbulence in this region, largely due to the theoretical and numerical difficulties in modeling this problem. In this work we present recent progress towards overcoming these challenges using high-resolution numerical simulations of Alfvenic turbulence in the inner heliosphere. We fly virtual SPP spacecraft in the simulation domain to obtain single-point measurements of the velocity and magnetic field fluctuations at several radial locations relevant to SPP. We use these virtual measurements to 1) validate a recently introduced modified TH that allows one to recover the spatial structure of the dominant (outward-propagating) Alfvenic fluctuations, of the kind SPP will encounter; and 2) to compare these virtual observations with our most recent phenomenological models of reflection-driven Alfven turbulence.
Is there an ordinary supermassive black hole at the Galactic Center?
NASA Astrophysics Data System (ADS)
Zakharov, A. F.
Now there are two basic observational techniques to investigate a gravitational potential at the Galactic Center, namely, a) monitoring the orbits of bright stars near the Galactic Center to reconstruct a gravitational potential; b) measuring a size and a shape of shadows around black hole giving an alternative possibility to evaluate black hole parameters in mm-band with VLBI-technique. At the moment one can use a small relativistic correction approach for stellar orbit analysis (however, in the future the approximation will not be not precise enough due to enormous progress of observational facilities) while now for smallest structure analysis in VLBI observations one really needs a strong gravitational field approximation. We discuss results of observations, their conventional interpretations, tensions between observations and models and possible hints for a new physics from the observational data and tensions between observations and interpretations. We will discuss an opportunity to use a Schwarzschild metric for data interpretation or we have to use more exotic models such as Reissner - Nordström or Schwarzschild - de-Sitter metrics for better fits.
An ordinary supermassive black hole at the Galactic Center: pro and contra
NASA Astrophysics Data System (ADS)
Zakharov, Alexander
2016-07-01
Now there are two basic observational techniques to investigate a gravitational potential at the Galactic Center, namely, a) monitoring the orbits of bright stars near the Galactic Center to reconstruct a gravitational potential; b) measuring a size and a shape of shadows around black hole giving an alternative possibility to evaluate black hole parameters in mm-band with VLBI-technique. At the moment one can use a small relativistic correction approach for stellar orbit analysis (however, in the future the approximation will not be not precise enough due to enormous progress of observational facilities) while now for smallest structure analysis in VLBI observations one really needs a strong gravitational field approximation. We discuss results of observations, their conventional interpretations, tensions between observations and models and possible hints for a new physics from the observational data and tensions between observations and interpretations. We will discuss an opportunity to use a Schwarzschild metric for data interpretation or we have to use more exotic models such as Yukawa potential, Reissner -- Nordstrom or Schwarzschild -- de-Sitter metrics for better fits.
Complex Networks in Psychological Models
NASA Astrophysics Data System (ADS)
Wedemann, R. S.; Carvalho, L. S. A. V. D.; Donangelo, R.
We develop schematic, self-organizing, neural-network models to describe mechanisms associated with mental processes, by a neurocomputational substrate. These models are examples of real world complex networks with interesting general topological structures. Considering dopaminergic signal-to-noise neuronal modulation in the central nervous system, we propose neural network models to explain development of cortical map structure and dynamics of memory access, and unify different mental processes into a single neurocomputational substrate. Based on our neural network models, neurotic behavior may be understood as an associative memory process in the brain, and the linguistic, symbolic associative process involved in psychoanalytic working-through can be mapped onto a corresponding process of reconfiguration of the neural network. The models are illustrated through computer simulations, where we varied dopaminergic modulation and observed the self-organizing emergent patterns at the resulting semantic map, interpreting them as different manifestations of mental functioning, from psychotic through to normal and neurotic behavior, and creativity.
Nonlinear spike-and-slab sparse coding for interpretable image encoding.
Shelton, Jacquelyn A; Sheikh, Abdul-Saboor; Bornschein, Jörg; Sterne, Philip; Lücke, Jörg
2015-01-01
Sparse coding is a popular approach to model natural images but has faced two main challenges: modelling low-level image components (such as edge-like structures and their occlusions) and modelling varying pixel intensities. Traditionally, images are modelled as a sparse linear superposition of dictionary elements, where the probabilistic view of this problem is that the coefficients follow a Laplace or Cauchy prior distribution. We propose a novel model that instead uses a spike-and-slab prior and nonlinear combination of components. With the prior, our model can easily represent exact zeros for e.g. the absence of an image component, such as an edge, and a distribution over non-zero pixel intensities. With the nonlinearity (the nonlinear max combination rule), the idea is to target occlusions; dictionary elements correspond to image components that can occlude each other. There are major consequences of the model assumptions made by both (non)linear approaches, thus the main goal of this paper is to isolate and highlight differences between them. Parameter optimization is analytically and computationally intractable in our model, thus as a main contribution we design an exact Gibbs sampler for efficient inference which we can apply to higher dimensional data using latent variable preselection. Results on natural and artificial occlusion-rich data with controlled forms of sparse structure show that our model can extract a sparse set of edge-like components that closely match the generating process, which we refer to as interpretable components. Furthermore, the sparseness of the solution closely follows the ground-truth number of components/edges in the images. The linear model did not learn such edge-like components with any level of sparsity. This suggests that our model can adaptively well-approximate and characterize the meaningful generation process.
Nonlinear Spike-And-Slab Sparse Coding for Interpretable Image Encoding
Shelton, Jacquelyn A.; Sheikh, Abdul-Saboor; Bornschein, Jörg; Sterne, Philip; Lücke, Jörg
2015-01-01
Sparse coding is a popular approach to model natural images but has faced two main challenges: modelling low-level image components (such as edge-like structures and their occlusions) and modelling varying pixel intensities. Traditionally, images are modelled as a sparse linear superposition of dictionary elements, where the probabilistic view of this problem is that the coefficients follow a Laplace or Cauchy prior distribution. We propose a novel model that instead uses a spike-and-slab prior and nonlinear combination of components. With the prior, our model can easily represent exact zeros for e.g. the absence of an image component, such as an edge, and a distribution over non-zero pixel intensities. With the nonlinearity (the nonlinear max combination rule), the idea is to target occlusions; dictionary elements correspond to image components that can occlude each other. There are major consequences of the model assumptions made by both (non)linear approaches, thus the main goal of this paper is to isolate and highlight differences between them. Parameter optimization is analytically and computationally intractable in our model, thus as a main contribution we design an exact Gibbs sampler for efficient inference which we can apply to higher dimensional data using latent variable preselection. Results on natural and artificial occlusion-rich data with controlled forms of sparse structure show that our model can extract a sparse set of edge-like components that closely match the generating process, which we refer to as interpretable components. Furthermore, the sparseness of the solution closely follows the ground-truth number of components/edges in the images. The linear model did not learn such edge-like components with any level of sparsity. This suggests that our model can adaptively well-approximate and characterize the meaningful generation process. PMID:25954947
Wakes from submerged obstacles in an open channel flow
NASA Astrophysics Data System (ADS)
Smith, Geoffrey B.; Marmorino, George; Dong, Charles; Miller, W. D.; Mied, Richard
2015-11-01
Wakes from several submerged obstacles are examined via airborne remote sensing. The primary focus will be bathymetric features in the tidal Potomac river south of Washington, DC, but others may be included as well. In the Potomac the water depth is nominally 10 m with an obstacle height of 8 m, or 80% of the depth. Infrared imagery of the water surface reveals thermal structure suitable both for interpretation of the coherent structures and for estimating surface currents. A novel image processing technique is used to generate two independent scenes with a known time offset from a single overpass from the infrared imagery, suitable for velocity estimation. Color imagery of the suspended sediment also shows suitable texture. Both the `mountain wave' regime and a traditional turbulent wake are observed, depending on flow conditions. Results are validated with in-situ ADCP transects. A computational model is used to further interpret the results.
Curvature-driven morphing of non-Euclidean shells
NASA Astrophysics Data System (ADS)
Pezzulla, Matteo; Stoop, Norbert; Jiang, Xin; Holmes, D. P.
2017-05-01
We investigate how thin structures change their shape in response to non-mechanical stimuli that can be interpreted as variations in the structure's natural curvature. Starting from the theory of non-Euclidean plates and shells, we derive an effective model that reduces a three-dimensional stimulus to the natural fundamental forms of the mid-surface of the structure, incorporating expansion, or growth, in the thickness. Then, we apply the model to a variety of thin bodies, from flat plates to spherical shells, obtaining excellent agreement between theory and numerics. We show how cylinders and cones can either bend more or unroll, and eventually snap and rotate. We also study the nearly isometric deformations of a spherical shell and describe how this shape change is ruled by the geometry of a spindle. As the derived results stem from a purely geometrical model, they are general and scalable.
Factorial invariance of posttraumatic stress disorder symptoms across three veteran samples.
McDonald, Scott D; Beckham, Jean C; Morey, Rajendra; Marx, Christine; Tupler, Larry A; Calhoun, Patrick S
2008-06-01
Research generally supports a 4-factor structure of posttraumatic stress disorder (PTSD) symptoms. However, few studies have established factor invariance by comparing multiple groups. This study examined PTSD symptom structure using the Davidson Trauma Scale (DTS) across three veteran samples: treatment-seeking Vietnam-era veterans, treatment-seeking post-Vietnam-era veterans, and Operation Enduring Freedom/Operation Iraqi Freedom (OEF/OIF) veteran research participants. Confirmatory factor analyses of DTS items demonstrated that a 4-factor structural model of the DTS (reexperiencing, avoidance, numbing, and hyperarousal) was superior to five alternate models, including the conventional 3-factor model proposed by the Diagnostic and Statistical Manual of Mental Disorders, Fourth Edition (DSM-IV; American Psychiatric Association, 1994). Results supported factor invariance across the three veteran cohorts, suggesting that cross-group comparisons are interpretable. Implications and applications for DSM-IV nosology and the validity of symptom measures are discussed.
Akle, Veronica; Peña-Silva, Ricardo A; Valencia, Diego M; Rincón-Perez, Carlos W
2018-03-01
Visualizing anatomical structures and functional processes in three dimensions (3D) are important skills for medical students. However, contemplating 3D structures mentally and interpreting biomedical images can be challenging. This study examines the impact of a new pedagogical approach to teaching neuroanatomy, specifically how building a 3D-model from oil-based modeling clay affects learners' understanding of periventricular structures of the brain among undergraduate medical students in Colombia. Students were provided with an instructional video before building the models of the structures, and thereafter took a computer-based quiz. They then brought their clay models to class where they answered questions about the structures via interactive response cards. Their knowledge of periventricular structures was assessed with a paper-based quiz. Afterward, a focus group was conducted and a survey was distributed to understand students' perceptions of the activity, as well as the impact of the intervention on their understanding of anatomical structures in 3D. Quiz scores of students that constructed the models were significantly higher than those taught the material in a more traditional manner (P < 0.05). Moreover, the modeling activity reduced time spent studying the topic and increased understanding of spatial relationships between structures in the brain. The results demonstrated a significant difference between genders in their self-perception of their ability to contemplate and rotate structures mentally (P < 0.05). The study demonstrated that the construction of 3D clay models in combination with autonomous learning activities was a valuable and efficient learning tool in the anatomy course, and that additional models could be designed to promote deeper learning of other neuroanatomy topics. Anat Sci Educ 11: 137-145. © 2017 American Association of Anatomists. © 2017 American Association of Anatomists.
Fold-Thrust mapping using photogrammetry in Western Champsaur basin, SE France
NASA Astrophysics Data System (ADS)
Totake, Y.; Butler, R.; Bond, C. E.
2016-12-01
There is an increasing demand for high-resolution geometric data for outcropping geological structures - not only to test models for their formation and evolution but also to create synthetic seismic visualisations for comparison with subsurface data. High-resolution 3D scenes reconstructed by modern photogrammetry offer an efficient toolbox for such work. When integrated with direct field measurements and observations, these products can be used to build geological interpretations and models. Photogrammetric techniques using standard equipment are ideally suited to working in the high mountain terrain that commonly offers the best outcrops, as all equipment is readily portable and, in the absence of cloud-cover, not restricted to the meteorological and legal restrictions that can affect some airborne approaches. The workflows and approaches for generating geological models utilising such photogrammetry techniques are the focus of our contribution. Our case study comes from SE France where early Alpine fore-deep sediments have been deformed into arrays of fold-thrust complexes. Over 1500m vertical relief provides excellent outcrop control with surrounding hillsides providing vantage points for ground-based photogrammetry. We collected over 9,400 photographs across the fold-thrust array using a handheld digital camera from 133 ground locations that were individually georeferenced. We processed the photographic images within the software PhotoScan-Pro to build 3D landscape scenes. The built photogrammetric models were then imported into the software Move, along with field measurements, to map faults and sedimentary layers and to produce geological cross sections and 3D geological surfaces. Polylines of sediment beds and faults traced on our photogrammetry models allow interpretation of a pseudo-3D geometry of the deformation structures, and enable prediction of dips and strikes from inaccessible field areas, to map the complex geometries of the thrust faults and deformed strata in detail. The resultant structural geometry of the thrust zones delivers an exceptional analogue to inaccessible subsurface fold-thrust structures which are often challenging to obtain a clear seismic image.
NASA Astrophysics Data System (ADS)
Reginald, Nelson; St. Cyr, Orville; Davila, Joseph; Rastaetter, Lutz; Török, Tibor
2018-05-01
Obtaining reliable measurements of plasma parameters in the Sun's corona remains an important challenge for solar physics. We previously presented a method for producing maps of electron temperature and speed of the solar corona using K-corona brightness measurements made through four color filters in visible light, which were tested for their accuracies using models of a structured, yet steady corona. In this article we test the same technique using a coronal model of the Bastille Day (14 July 2000) coronal mass ejection, which also contains quiet areas and streamers. We use the coronal electron density, temperature, and flow speed contained in the model to determine two K-coronal brightness ratios at (410.3, 390.0 nm) and (423.3, 398.7 nm) along more than 4000 lines of sight. Now assuming that for real observations, the only information we have for each line of sight are these two K-coronal brightness ratios, we use a spherically symmetric model of the corona that contains no structures to interpret these two ratios for electron temperature and speed. We then compare the interpreted (or measured) values for each line of sight with the true values from the model at the plane of the sky for that same line of sight to determine the magnitude of the errors. We show that the measured values closely match the true values in quiet areas. However, in locations of coronal structures, the measured values are predictably underestimated or overestimated compared to the true values, but can nevertheless be used to determine the positions of the structures with respect to the plane of the sky, in front or behind. Based on our results, we propose that future white-light coronagraphs be equipped to image the corona using four color filters in order to routinely create coronal maps of electron density, temperature, and flow speed.
Computationally modeling interpersonal trust.
Lee, Jin Joo; Knox, W Bradley; Wormwood, Jolie B; Breazeal, Cynthia; Desteno, David
2013-01-01
We present a computational model capable of predicting-above human accuracy-the degree of trust a person has toward their novel partner by observing the trust-related nonverbal cues expressed in their social interaction. We summarize our prior work, in which we identify nonverbal cues that signal untrustworthy behavior and also demonstrate the human mind's readiness to interpret those cues to assess the trustworthiness of a social robot. We demonstrate that domain knowledge gained from our prior work using human-subjects experiments, when incorporated into the feature engineering process, permits a computational model to outperform both human predictions and a baseline model built in naiveté of this domain knowledge. We then present the construction of hidden Markov models to investigate temporal relationships among the trust-related nonverbal cues. By interpreting the resulting learned structure, we observe that models built to emulate different levels of trust exhibit different sequences of nonverbal cues. From this observation, we derived sequence-based temporal features that further improve the accuracy of our computational model. Our multi-step research process presented in this paper combines the strength of experimental manipulation and machine learning to not only design a computational trust model but also to further our understanding of the dynamics of interpersonal trust.
ERIC Educational Resources Information Center
Schilling, Stephen G.
2007-01-01
In this paper the author examines the role of item response theory (IRT), particularly multidimensional item response theory (MIRT) in test validation from a validity argument perspective. The author provides justification for several structural assumptions and interpretations, taking care to describe the role he believes they should play in any…
An Abstract Data Model for the IDEF0 Graphical Analysis Language
1990-01-11
whatever level was necessary to ensure an unambiguous interpretation of the system require- ments. Marca and McGowan have written an excellent book which...December 1987. AFIT/GE/ENG/87D-28. [7] MARCA , D. A., AND McGOWAN, C. L. SADT Structured Analysis and Design Technique. McGraw- Hill Book Company, 1988. [8
ERIC Educational Resources Information Center
Luxford, Cynthia J.; Bretz, Stacey Lowery
2014-01-01
Teachers use multiple representations to communicate the concepts of bonding, including Lewis structures, formulas, space-filling models, and 3D manipulatives. As students learn to interpret these multiple representations, they may develop misconceptions that can create problems in further learning of chemistry. Interviews were conducted with 28…
The world as viewed by and with unpaired electrons.
Eaton, Sandra S; Eaton, Gareth R
2012-10-01
Recent advances in electron paramagnetic resonance (EPR) include capabilities for applications to areas as diverse as archeology, beer shelf life, biological structure, dosimetry, in vivo imaging, molecular magnets, and quantum computing. Enabling technologies include multifrequency continuous wave, pulsed, and rapid scan EPR. Interpretation is enhanced by increasingly powerful computational models. Copyright © 2012 Elsevier Inc. All rights reserved.
Smith, Jacob W.; Lam, Royce K.; Sheardy, Alex T.; ...
2014-08-20
Since their introduction into the commercial marketplace in 1991, lithium ion batteries have become increasingly ubiquitous in portable technology. Nevertheless, improvements to existing battery technology are necessary to expand their utility for larger-scale applications, such as electric vehicles. Advances may be realized from improvements to the liquid electrolyte; however, current understanding of the liquid structure and properties remains incomplete. X-ray absorption spectroscopy of solutions of LiBF 4 in propylene carbonate (PC), interpreted using first-principles electronic structure calculations within the eXcited electron and Core Hole (XCH) approximation, yields new insight into the solvation structure of the Li + ion in thismore » model electrolyte. By generating linear combinations of the computed spectra of Li +-associating and free PC molecules and comparing to the experimental spectrum, we find a Li +–solvent interaction number of 4.5. This result suggests that computational models of lithium ion battery electrolytes should move beyond tetrahedral coordination structures.« less
NASA Astrophysics Data System (ADS)
Duer, Stanisław; Wrzesień, Paweł; Duer, Radosław
2017-10-01
This article describes rules and conditions for making a structure (a set) of facts for an expert knowledge base of the intelligent system to diagnose Wind Power Plants' equipment. Considering particular operational conditions of a technical object, that is a set of Wind Power Plant's equipment, this is a significant issue. A structural model of Wind Power Plant's equipment is developed. Based on that, a functional - diagnostic model of Wind Power Plant's equipment is elaborated. That model is a basis for determining primary elements of the object structure, as well as for interpreting a set of diagnostic signals and their reference signals. The key content of this paper is a description of rules for building of facts on the basis of developed analytical dependence. According to facts, their dependence is described by rules for transferring of a set of pieces of diagnostic information into a specific set of facts. The article consists of four chapters that concern particular issues on the subject.
NASA Astrophysics Data System (ADS)
Single, R.; Jerram, D.; Pearson, D.; Hobbs, R.
2003-04-01
Field investigations in Skye and Namibia have provided insight into structure and architecture of CFBs. The studies have been developed into lava sequence models in 3-D software GoCad. The understanding has been applied to interpretation of lavas in the Faeroe-Shetland trough. Volcanics hinder petroleum exploration in this play due to their complex internal geometries and velocity structure. Seismic resolution is poor beneath volcanics. Fieldwork has shown that lavas on Skye have developed from (olivine-phyric) compound basalts towards the base of the sequence, into more massive flows higher up the succession. Fieldwork in the Etendeka CFBs reveal a similar style of lava field development. The focus of the offshore study is through the area of the GFA-99 seismic data. Detailed 3-D interpretation over the central data area is 20x20km in dimensions. The lava sequence present may be sub-divided vertically and laterally into 4 zones between the following seismic picks: Base basalt/sub-basalt sills, top compound lava-dominated series, top Middle Series, top hyaloclastites, top massive basalt. Within the lava sequence, the surfaces have rugose topographies. Lower zone lavas are characterised by discontinuous, indistinct reflectors. These are interpreted to be sub-aerially effused basalts with compound-braided architecture. Middle Series basalts are considered to be a combination of compound lavas and more massive, tabular flows. Steeply dipping seismic reflectors also form part of the Middle Series and are interpreted as foreset-bedded hyaloclastites. The uppermost lavas have strong reflection characteristics and are laterally extensive. These are interpreted to be massive tabular lavas covering an area >8.4 x10^3 km^2. Such flows exist in upper parts of CFB sequences as evidenced from fieldwork. Complex stacking arrangements of lavas seen in the field, and the complexities observed in seismic, suggest that many factors need to be considered within CFBs for improved sub-volcanic imaging. Factors include understanding: The facies-zones present, changes in velocity structure and the geometries present within facies types. EU 5th Framework Project SIMBA is a collaborative research project combining industrial and academic partners in flood basalt research. SIMBA incorporates: TotalFinaElf GRC, ARK Geophysics, Norsk Hydro, Institut Français du Pétrole (IFP) and Universities of Durham, Cambridge, UC Dublin and Brest.
NASA Astrophysics Data System (ADS)
Julian, A.; Jehl, Z.; Miyashita, N.; Okada, Y.; Guillemoles, J.-F.
2016-12-01
Energy selective electrical contacts have been proposed as a way to approach ultimate efficiencies both for thermoelectric and photovoltaic devices as they allow a reduction of the entropy production during the energy conversion process. A self-consistent numerical model based on the transfer matrix approach in the effective mass and envelope function approximation has been developed to calculate the electronic properties of double resonant tunneling barriers used as energy selective contacts in hot carrier solar cells. It is found that the application of an external electric bias significantly degrades the electronic transmission of the structure, and thus the tunneling current in the current-voltage characteristic. This is due to a symmetry breaking which can be offset using finely tuned asymmetric double resonant tunneling barriers, leading to a full recovery of the tunneling current in our model. Moreover, we model the heterostructure using electrons temperature in the emitter higher than that of the lattice, providing insights on the interpretation of experimental devices functioning in hot carrier conditions, especially regarding the previously reported shift of the resonance peak (negative differential resistance), which we interpret as related to a shift in the hot electron distribution while the maximum remains at the conduction band edge of the emitter. Finally, experimental results are presented using asymmetric structure showing significantly improved resonant properties at room temperature with very sharp negative differential resistance.
NASA Astrophysics Data System (ADS)
Portal, A.; Béné, S.; Boivin, P.; Busato, E.; Cârloganu, C.; Combaret, C.; Dupieux, P.; Fehr, F.; Gay, P.; Labazuy, P.; Laktineh, I.; Lénat, J.-F.; Miallier, D.; Mirabito, L.; Niess, V.; Vulpescu, B.
2012-09-01
Muon imagery of volcanoes and geological structures are presently and actively developed by several groups in the world. It has the potential to provide a 2-D or 3-D density distribution with an accuracy of a few percent. However, at this stage of the development of the method, comparisons with the results from established geophysical methods are necessary to validate its results. An experiment is currently carried out at the Puy de Dôme volcano involving the concurrent acquisition of muon imagery, electrical resistivity (2-D tomography) and gravity survey. Here, we present the preliminary results for the last two methods. North-south and east-west resistivity sections have been obtained in June 2011 and May 2012. These electric data allow to model of the distribution of the resistivity values down to the base of the dome. The dome and its surroundings are now mapped with more than 300 gravity stations measured during a detailed gravity survey carried out in March and May 2012. The computed Bouguer anomaly can be interpreted by models of the density distribution within the dome. This will be directly comparable with the results from the muon imagery. Our ultimate goal is to derive a model of the dome using the joint interpretation of all the sets of data.
Strong neutron- γ competition above the neutron threshold in the decay of Co 70
Spyrou, A.; Liddick, S. N.; Naqvi, F.; ...
2016-09-29
The β-decay intensity of 70Co was measured for the first time using the technique of total absorption spectroscopy. The large β-decay Q value [12.3(3) MeV] offers a rare opportunity to study β-decay properties in a broad energy range. Two surprising features were observed in the experimental results, namely, the large fragmentation of the β intensity at high energies, as well as the strong competition between γ rays and neutrons, up to more than 2 MeV above the neutron-separation energy. The data are compared to two theoretical calculations: the shell model and the quasiparticle random phase approximation (QRPA). Both models seemmore » to be missing a significant strength at high excitation energies. Possible interpretations of this discrepancy are discussed. The shell model is used for a detailed nuclear structure interpretation and helps to explain the observed γ-neutron competition. The comparison to the QRPA calculations is done as a means to test a model that provides global β-decay properties for astrophysical calculations. Our work demonstrates the importance of performing detailed comparisons to experimental results, beyond the simple half-life comparisons. Finally, a realistic and robust description of the β-decay intensity is crucial for our understanding of nuclear structure as well as of r-process nucleosynthesis.« less
Electrical conduction mechanism and dielectric characterization of MnTPPCl thin films
NASA Astrophysics Data System (ADS)
Meikhail, M. S.; Oraby, A. H.; El-Nahass, M. M.; Zeyada, H. M.; Al-Muntaser, A. A.
2018-06-01
The AC conductivity and dielectric properties of MnTPPCl sandwich structure as Au/MnTPPCl/Au were studied. The conductivity of the MnTPPCl thin films have been interpreted by the correlated barrier hopping (CBH) model. The dominant conduction process have found to be the single polaron hopping conduction. The values of the hopping distance, Rω, barrier height, W, and the localized-state density, N, are estimated at different frequencies. The behavior of dielectric constant and dielectric loss was discussed as a function of temperature and frequency. The dielectric constant was described in terms of polarization mechanism in materials. The spectral behavior of dielectric loss is interpreted on the basis of the Giuntini et al. model [1]. The value of WM is obtained as 0.32 eV. A non-Debye relaxation phenomenon was observed from the dielectric relaxation mechanism.
NASA Technical Reports Server (NTRS)
Pap, Judit M. (Editor); Froehlich, Claus (Editor); Hudson, Hugh S. (Editor); Tobiska, W. Kent (Editor)
1994-01-01
Variations in solar and stellar irradiances have long been of interest. An International Astronomical Union (IAU) colloquium reviewed such relevant subjects as observations, theoretical interpretations, and empirical and physical models, with a special emphasis on climatic impact of solar irradiance variability. Specific topics discussed included: (1) General Reviews on Observations of Solar and Stellar Irradiance Variability; (2) Observational Programs for Solar and Stellar Irradiance Variability; (3) Variability of Solar and Stellar Irradiance Related to the Network, Active Regions (Sunspots and Plages), and Large-Scale Magnetic Structures; (4) Empirical Models of Solar Total and Spectral Irradiance Variability; (5) Solar and Stellar Oscillations, Irradiance Variations and their Interpretations; and (6) The Response of the Earth's Atmosphere to Solar Irradiance Variations and Sun-Climate Connections.
Local atomic and electronic structure of oxide/GaAs and SiO2/Si interfaces using high-resolution XPS
NASA Technical Reports Server (NTRS)
Grunthaner, F. J.; Grunthaner, P. J.; Vasquez, R. P.; Lewis, B. F.; Maserjian, J.; Madhukar, A.
1979-01-01
The chemical structures of thin SiO2 films, thin native oxides of GaAs (20-30 A), and the respective oxide-semiconductor interfaces, have been investigated using high-resolution X-ray photoelectron spectroscopy. Depth profiles of these structures have been obtained using argon ion bombardment and wet chemical etching techniques. The chemical destruction induced by the ion profiling method is shown by direct comparison of these methods for identical samples. Fourier transform data-reduction methods based on linear prediction with maximum entropy constraints are used to analyze the discrete structure in oxides and substrates. This discrete structure is interpreted by means of a structure-induced charge-transfer model.
Underplating along the northern portion of the Zagros suture zone, Iran
NASA Astrophysics Data System (ADS)
Motaghi, K.; Shabanian, E.; Kalvandi, F.
2017-07-01
A 2-D absolute shear wave velocity model has been resolved beneath a seismic profile across the northeastern margin of the Arabian Plate-Central Iran by simultaneously inverting data from P receiver functions and fundamental mode Rayleigh wave phase velocity. The data were gathered by a linear seismic array crossing the Zagros fold and thrust belt, Urmia-Dokhtar magmatic arc and Central Iran block assemblage as three major structural components of the Arabia-Eurasia collision. Our model shows a low-velocity tongue protruding from upper to lower crust which, north of the Zagros suture, indicates the signature of an intracontinent low-strength shear zone between the underthrusting and overriding continents. The velocity model confirms the presence of a significant crustal root as well as a thick high-velocity lithosphere in footwall of the suture, continuing northwards beneath the overriding continent for at least 200 km. These features are interpreted as underthrusting of Arabia beneath Central Iran. Time to depth migration of P receiver functions reveals an intracrustal flat interface at ∼17 km depth south of the suture; we interpret it as a significant decoupling within the upper crust. All these crustal scale structural features coherently explain different styles and kinematics of deformation in northern Zagros (Lorestan zone) with respect to its southern part (Fars zone).
The ratio of profile peak separations as a probe of pulsar radio-beam structure
NASA Astrophysics Data System (ADS)
Dyks, J.; Pierbattista, M.
2015-12-01
The known population of pulsars contains objects with four- and five-component profiles, for which the peak-to-peak separations between the inner and outer components can be measured. These Q- and M-type profiles can be interpreted as a result of sightline cut through a nested-cone beam, or through a set of azimuthal fan beams. We show that the ratio RW of the components' separations provides a useful measure of the beam shape, which is mostly independent of parameters that determine the beam scale and complicate interpretation of simpler profiles. In particular, the method does not depend on the emission altitude and the dipole tilt distribution. The different structures of the radio beam imply manifestly different statistical distributions of RW, with the conal model being several orders of magnitude less consistent with data than the fan-beam model. To bring the conal model into consistency with data, strong effects of observational selection need to be called for, with 80 per cent of Q and M profiles assumed to be undetected because of intrinsic blending effects. It is concluded that the statistical properties of Q and M profiles are more consistent with the fan-shaped beams, than with the traditional nested-cone geometry.
NASA Astrophysics Data System (ADS)
Ruan, Aiguo; Hu, Hao; Li, Jiabiao; Niu, Xiongwei; Wei, Xiaodong; Zhang, Jie; Wang, Aoxing
2017-06-01
As a supplementary study, we used passive seismic data recorded by one ocean bottom seismometer (OBS) station (49°41.8'E) close to a hydrothermal vent (49°39'E) at the Southwest Indian Ridge to invert the crustal structure and mantle transition zone (MTZ) thickness by P-to-S receiver functions to investigate previous active seismic tomographic crustal models and determine the influence of the deep mantle thermal anomaly on seafloor hydrothermal venting at an ultra-slow spreading ridge. The new passive seismic S-wave model shows that the crust has a low velocity layer (2.6 km/s) from 4.0 to 6.0 km below the sea floor, which is interpreted as partial melting. We suggest that the Moho discontinuity at 9.0 km is the bottom of a layer (2-3 km thick); the Moho (at depth of 6-7 km), defined by active seismic P-wave models, is interpreted as a serpentinized front. The velocity spectrum stacking plot made from passive seismic data shows that the 410 discontinuity is depressed by 15 km, the 660 discontinuity is elevated by 18 km, and a positive thermal anomaly between 182 and 237 K is inferred.
NASA Astrophysics Data System (ADS)
Ritz, M.; Robineau, B.; Vassal, J.; Bellion, Y.; Dukhan, M.
1989-04-01
Magnetotelluric (MT) measurements were carried out at 20 sites, extending 450 km across southern Mauritania in order to study lithospheric structures related to the West African craton (WAC) margin. The MT profile starts to the west on the Senegal-Mauritania basin (S-M basin), traverses across the Mauritanides orogenic belt, and terminates on the western border of the WAC (Taoudeni basin). Distortion effects due to local shallow inhomogeneities are present in nearly all of the basin data. In such a situation, the preliminary interpretation of the data was done by using 1D inversions based upon rotationally invariant parameters. Such distortion is not apparent for the belt and craton sites, and 1D inversions were followed by 2D modeling. The models produced reveal a clear crustal subdivision into a resistive upper crust underlain by a two-layer lower crust with two conductors, one at mid-crustal depths (supposed fluid-produced) beneath the S-M basin and the second at the base of the crust beneath the WAC. The 14-km-thick conductive material below the Mauritanides belt is interpreted as large imbricated thrusts representing the deep roots of the Mauritanides nappes. The models also show that significant contrasts in resistivity extend deep in the lithosphere between the cratonic area and the Senegal microplate.
An optimal strategy for functional mapping of dynamic trait loci.
Jin, Tianbo; Li, Jiahan; Guo, Ying; Zhou, Xiaojing; Yang, Runqing; Wu, Rongling
2010-02-01
As an emerging powerful approach for mapping quantitative trait loci (QTLs) responsible for dynamic traits, functional mapping models the time-dependent mean vector with biologically meaningful equations and are likely to generate biologically relevant and interpretable results. Given the autocorrelation nature of a dynamic trait, functional mapping needs the implementation of the models for the structure of the covariance matrix. In this article, we have provided a comprehensive set of approaches for modelling the covariance structure and incorporated each of these approaches into the framework of functional mapping. The Bayesian information criterion (BIC) values are used as a model selection criterion to choose the optimal combination of the submodels for the mean vector and covariance structure. In an example for leaf age growth from a rice molecular genetic project, the best submodel combination was found between the Gaussian model for the correlation structure, power equation of order 1 for the variance and the power curve for the mean vector. Under this combination, several significant QTLs for leaf age growth trajectories were detected on different chromosomes. Our model can be well used to study the genetic architecture of dynamic traits of agricultural values.
NASA Astrophysics Data System (ADS)
Tynan, M. C.; Smith, K. D.; Savino, J. M.; Vogt, T. J.
2004-12-01
Observed regional mega-rings define a zone ˜80-100 km in diameter centered on Timber Mountain (TM). The mega-rings encompass known smaller rhyolitic nested Miocene calderas ( ˜11-15 my, < 10 km circular to elliptical small "rings") and later stage basaltic features (< 11 my, small flows, cones, dikes) in the Southwest Nevada Volcanic Field. Miocene rhyolitic calderas cluster within the central area and on the outer margin of the interpreted larger mega-ring complex. The mega-ring interpretation is consistent with observations of regional physiography, tomographic images, seismicity patterns, and structural relationships. Mega-rings consist of arcuate faulted blocks with deformation (some remain active structures) patterns showing a genetic relationship to the TM volcanic system; they appear to be spatially associated and temporally correlated with Miocene volcanism and two geophysically identified crustal/upper mantle features. A 50+ km diameter pipe-like high velocity anomaly extends from crustal depth to over 200 km beneath TM (evidence for 400km depth to NE). The pipe is located between two ˜100 km sub-parallel N/S linear trends of small-magnitude earthquake activity, one extending through the central NV Test Site, and a second located near Beatty, NV. Neither the kinematics nor relational mechanism of 100km seismically active N/S linear zones, pipe, and mega-rings are understood. Interpreted mega-rings are: 1) Similar in size to larger terrestrial volcanic complexes (e.g., Yellowstone, Indonesia's Toba system); 2) Located in the region of structural transition from the Mohave block to the south, N/S Basin and Range features to the north, Walker Lane to the NW, and the Las Vegas Valley shear zone to the SE; 3) Associated with the two seismically active zones (similar to other caldera fault-bounded sags), the mantle high velocity feature, and possibly a regional bouguer gravity anomaly; 4) Nearly coincident with area hydrologic basins and sub-basins; 5) Similar to features described from terrestrial and planetary caldera-collapse studies, and as modeled in laboratory scaled investigations (ice melt, balloon/sand). Post Mid-Miocene basalts commonly occur within or adjacent to the older rhyolitic caldera moats; other basaltic material occurs marginal to both the outer rings of the interpreted mega-ring system and high velocity pipe. The YM repository may be situated in an isolated structural setting within the mega-ring system; basaltic materials are absent in the block for over 11my for geologic reasons. The mega-ring model may better explain YM area structures (Highway 95 fault), tectonism, and volcanism. Coincident physiographic, geologic, and geophysical features associated with the mega-rings feature, and temporal characteristics of regional seismicity and volcanism suggest the need to critically re-assess regional scale and YM tectonic, seismotectonic, and volcanic models.
NASA Technical Reports Server (NTRS)
Peres, G.; Serio, S.; Vaiana, G.; Acton, L.; Leibacher, J.; Rosner, R.; Pallavicini, R.
1983-01-01
A time-dependent one-dimensional code incorporating energy, momentum and mass conservation equations, and taking the entire solar atmospheric structure into account, is used to investigate the hydrodynamic response of confined magnetic structures to strong heating perturbations. Model calculation results are compared with flare observations which include the light curves of spectral lines formed over a wide range of coronal flare temperatures, as well as determinations of Doppler shifts for the high temperature plasma. It is shown that the numerical simulation predictions are in good overall agreement with the observed flare coronal plasma evolution, correctly reproducing the temporal profile of X-ray spectral lines and their relative intensities. The predicted upflow velocities support the interpretation of the blueshifts as due to evaporation of chromospheric material.
Tectonics and volcanism on Mars: a compared remote sensing analysis with earthly geostructures
NASA Astrophysics Data System (ADS)
Baggio, Paolo; Ancona, M. A.; Callegari, I.; Pinori, S.; Vercellone, S.
1999-12-01
The recent knowledge on Mars' lithosphere evolution does not find yet sufficient analogies with the Earth's tectonic models. The Viking image analysis seems to be even now frequently, rather fragmentary, and do not permits to express any coherent relationships among the different detected phenomena. Therefore, today it is impossible to support any reliable kinematic hypothesis. The Remote-Sensing interpretation is addressed to a Viking image mosaic of the known Tharsis Montes region and particularly focused on the Arsia Mons volcano. Several previously unknown lineaments, not directly linked to volcano-tectonics, were detected. Their mutual relationships recall transcurrent kinematics that could be related to similar geostructural models known in the Earth plate tectonic dynamics. Several concordant relationships between the Arsia Mons volcano and the brittle extensive tectonic features of earthly Etnean district (Sicily, South Italy), interpreted on Landsat TM images, were pointed out. These analogies coupled with the recently confirmed strato- volcano topology of Tharsis Montes (Head and Wilson), the layout distribution of the effusive centers (Arsia, Pavonis and Ascraeus Montes), the new tectonic lineaments and the morphological features, suggest the hypothesis of a plate tectonic volcanic region. The frame could be an example in agreement with the most recent interpretation of Mars (Sleep). A buried circular body, previously incorrectly interpreted as a great landslide event from the western slope of Arsia Mons volcano, seems really to be a more ancient volcanic structure (Arsia Mons Senilis), which location is in evident relation with the interpreted new transcurrent tectonic system.
Constructing a simple parametric model of shoulder from medical images
NASA Astrophysics Data System (ADS)
Atmani, H.; Fofi, D.; Merienne, F.; Trouilloud, P.
2006-02-01
The modelling of the shoulder joint is an important step to set a Computer-Aided Surgery System for shoulder prosthesis placement. Our approach mainly concerns the bones structures of the scapulo-humeral joint. Our goal is to develop a tool that allows the surgeon to extract morphological data from medical images in order to interpret the biomechanical behaviour of a prosthesised shoulder for preoperative and peroperative virtual surgery. To provide a light and easy-handling representation of the shoulder, a geometrical model composed of quadrics, planes and other simple forms is proposed.
AGN Variability: Probing Black Hole Accretion
NASA Astrophysics Data System (ADS)
Moreno, Jackeline; O'Brien, Jack; Vogeley, Michael S.; Richards, Gordon T.; Kasliwal, Vishal P.
2017-01-01
We combine the long temporal baseline of Sloan Digital Sky Survey (SDSS) for quasars in Stripe 82 with the high precision photometry of the Kepler/K2 Satellite to study the physics of optical variability in the accretion disk and supermassive black hole engine. We model the lightcurves directly as Continuous-time Auto Regressive Moving Average processes (C-ARMA) with the Kali analysis package (Kasliwal et al. 2016). These models are extremely robust to irregular sampling and can capture aperiodic variability structure on various timescales. We also estimate the power spectral density and structure function of both the model family and the data. A Green's function kernel may also be estimated for the resulting C-ARMA parameter fit, which may be interpreted as the response to driving impulses such as hotspots in the accretion disk. We also examine available spectra for our AGN sample to relate observed and modelled behavior to spectral properties. The objective of this work is twofold: to explore the proper physical interpretation of different families of C-ARMA models applied to AGN optical flux variability and to relate empirical characteristic timescales of our AGN sample to physical theory or to properties estimated from spectra or simulations like the disk viscosity and temperature. We find that AGN with strong variability features on timescales resolved by K2 are well modelled by a low order C-ARMA family while K2 lightcurves with weak amplitude variability are dominated by outliers and measurement errors which force higher order model fits. This work explores a novel approach to combining SDSS and K2 data sets and presents recovered characteristic timescales of AGN variability.
Poudel, R; Jumpponen, A; Schlatter, D C; Paulitz, T C; Gardener, B B McSpadden; Kinkel, L L; Garrett, K A
2016-10-01
Network models of soil and plant microbiomes provide new opportunities for enhancing disease management, but also challenges for interpretation. We present a framework for interpreting microbiome networks, illustrating how observed network structures can be used to generate testable hypotheses about candidate microbes affecting plant health. The framework includes four types of network analyses. "General network analysis" identifies candidate taxa for maintaining an existing microbial community. "Host-focused analysis" includes a node representing a plant response such as yield, identifying taxa with direct or indirect associations with that node. "Pathogen-focused analysis" identifies taxa with direct or indirect associations with taxa known a priori as pathogens. "Disease-focused analysis" identifies taxa associated with disease. Positive direct or indirect associations with desirable outcomes, or negative associations with undesirable outcomes, indicate candidate taxa. Network analysis provides characterization not only of taxa with direct associations with important outcomes such as disease suppression, biofertilization, or expression of plant host resistance, but also taxa with indirect associations via their association with other key taxa. We illustrate the interpretation of network structure with analyses of microbiomes in the oak phyllosphere, and in wheat rhizosphere and bulk soil associated with the presence or absence of infection by Rhizoctonia solani.
Walton, David M; Beattie, Tyler; Putos, Joseph; MacDermid, Joy C
2016-06-01
The Brief Pain Inventory is composed of two quantifiable scales: pain severity and pain interference. The reported factor structure of the interference subscale is not consistent in the extant literature, with no clear choice between a single- or two-factor structure. Here, we report on the results of Rasch-based analysis of the interference subscale using a large population-based ambulatory patient database (the Quebec Pain Registry). Observational cohort. A total of 1,000 responses were randomly drawn from a total database of 5,654 for this analysis. Both the original 7-item and an expanded 10-item version (Tyler 2002) of the interference subscale were evaluated. Rasch analysis revealed significant misfit of both versions of the scale, with the original 7-item version outperforming the expanded 10-item version. Analysis of dimensionality revealed that both versions showed improved model fit when considered two subscales (affective and physical interference) with the item on sleep interference removed or considered separately. Additionally, significant uniform differential item functioning was identified for 6 of the 7 original items when the sample was stratified by age above or below 55 years. The interference subscale achieved adequate model fit when considered as two separate subscales with age as a mediator of response, while interpreting the sleep interference item separately. A transformation matrix revealed that in all cases, ordinal-level change at the extreme ends of the scale appears to be more meaningful than does a similar change at the midpoints. The Interference subscale of the BPI should be interpreted as two separate subscales (Affective Interference, Physical Interference) with the sleep item removed or interpreted separately for optimal fit to the Rasch model. Implications for research and clinical use are discussed. Copyright © 2016 Elsevier Inc. All rights reserved.
NASA Astrophysics Data System (ADS)
Guardo, R.; De Siena, L.
2017-11-01
The timely estimation of short- and long-term volcanic hazard relies on the availability of detailed 3D geophysical images of volcanic structures. High-resolution seismic models of the absorbing uppermost conduit systems and highly-heterogeneous shallowest volcanic layers, while particularly challenging to obtain, provide important data to locate feasible eruptive centres and forecast flank collapses and lava ascending paths. Here, we model the volcanic structures of Mt. Etna (Sicily, Italy) and its outskirts using the Horizontal to Vertical Spectral Ratio method, generally applied to industrial and engineering settings. The integration of this technique with Web-based Geographic Information System improves precision during the acquisition phase. It also integrates geological and geophysical visualization of 3D surface and subsurface structures in a queryable environment representing their exact three-dimensional geographic position, enhancing interpretation. The results show high-resolution 3D images of the shallowest volcanic and feeding systems, which complement (1) deeper seismic tomography imaging and (2) the results of recent remote sensing imaging. The study recovers a vertical structure that divides the pre-existing volcanic complexes of Ellittico and Cuvigghiuni. This could be interpreted as a transitional phase between the two systems. A comparison with recent remote sensing and geological results, however, shows that anomalies are generally related to volcano-tectonic structures active during the last 17 years. We infer that seismic noise measurements from miniaturized instruments, when combined with remote sensing techniques, represent an important resource to monitor volcanoes in unrest, reducing the risk of loss of human lives and instrumentation.
Mesoscale Modeling of Chromatin Folding
NASA Astrophysics Data System (ADS)
Schlick, Tamar
2009-03-01
Eukaryotic chromatin is the fundamental protein/nucleic acid unit that stores the genetic material. Understanding how chromatin fibers fold and unfold in physiological conditions is important for interpreting fundamental biological processes like DNA replication and transcription regulation. Using a mesoscopic model of oligonucleosome chains and tailored sampling protocols, we elucidate the energetics of oligonucleosome folding/unfolding and the role of each histone tail, linker histones, and divalent ions in regulating chromatin structure. The resulting compact topologies reconcile features of the zigzag model with straight linker DNAs with the solenoid model with bent linker DNAs for optimal fiber organization and reveal dynamic and energetic aspects involved.