Sample records for interstellar medium absorption

  1. Helium glow detector experiment, MA-088. [Apollo Soyuz test project data reduction

    NASA Technical Reports Server (NTRS)

    Bowyer, C. S.

    1978-01-01

    Of the two 584 A channels in the helium glow detector, channel #1 appeared to provide data with erratic count rates and undue susceptibility to dayglow and solar contamination possibly because of filter fatigue or failure. Channel #3 data appear normal and of high quality. For this reason only data from this last channel was analyzed and used for detailed comparison with theory. Reduction and fitting techniques are described, as well as applications of the data in the study of nighttime and daytime Hel 584 A emission. A hot model of the interstellar medium is presented. Topics covered in the appendix include: observations of interstellar helium with a gas absorption cell: implications for the structure of the local interstellar medium; EUV dayglow observations with a helium gas absorption cell; and EUV scattering from local interstellar helium at nonzero temperatures: implications for the derivations of interstellar medium parameters.

  2. Processing Mechanisms for Interstellar Ices: Connections to the Solar System

    NASA Technical Reports Server (NTRS)

    Pendleton, Y. J.; Cuzzi, Jeffrey N. (Technical Monitor)

    1995-01-01

    The organic component of the interstellar medium, which has revealed itself through the ubiquitous 3.4 micrometers hydrocarbon absorption feature, is widespread throughout the disk of our galaxy and has been attributed to dust grains residing in the diffuse interstellar medium. The absorption band positions near 3.4 micrometers are characteristic of C-H stretching vibrations in the -CH3 and -CH2- groups of saturated aliphatic hydrocarbons associated with perturbing chemical groups. The production of complex molecules is thought to occur within dense molecular clouds when ice-mantled grains are processed by various energetic mechanisms. Studies of the processing of interstellar ices and the subsequent production of organic residues have relevance to studies of ices in the solar system, because primitive, icy solar system bodies such as those in the Kuiper belt are likely reservoirs of organic material, either preserved from the interstellar medium or produced in situ. Connections between the interstellar medium and the early solar nebula have long been a source of interest. A comparison of the interstellar organics and the Murchison meteorite illustrates the importance of probing the interstellar connection to the solar system, because although the carbonaceous meteorites are undoubtedly highly processed, they do retain specific interstellar signatures (such as diamonds, SiC grains, graphite and enriched D/H). The organic component, while not proven interstellar, has a remarkable similarity to the interstellar organics observed in over a dozen sightlines through our galaxy. This paper compares spectra from laboratory organics produced through the processing of interstellar ice analog materials with the high resolution infrared observations of the interstellar medium in order to investigate the mechanisms (such as ion bombardment, plasma processing, and UV photolysis) that may be producing the organics in the ISM.

  3. Ultraviolet spectra of quenched carbonaceous composite derivatives: Comparison to the '217 nanometer' interstellar absorption feature

    NASA Technical Reports Server (NTRS)

    Sakata, Akira; Wada, Setsuko; Tokunaga, Alan T.; Narisawa, Takatoshi; Nakagawa, Hidehiro; Ono, Hiroshi

    1994-01-01

    QCCs (quenched carbonaceous composite) are amorphus carbonaceous material formed from a hydrocarbon plasma. We present the UV-visible spectra of 'filmy QCC; (obtained outside of the beam ejected from the hydrocarbon plasma) and 'dark QCC' (obtained very near to the beam) for comparison to the stellar extinction curve. When filmy QCC is heated to 500-700 C (thermally altered), the wavelength of the absorption maximum increases form 204 nm to 220-222 nm. The dark QCC has an absorption maximum at 217-222 nm. In addition, the thermally altered filmy QCC has a slope change at about 500 nm which resmbles that in the interstellar extinction curve. The resemblance of the extinction curve of the QCCs to that of the interstellar medium suggests that QCC derivatives may be representative of the type of interstellar material that produces the 217 nm interstellar medium feature. The peak extinction of the dark QCC is higher than the average interstellar extinction curve while that of the thermally altered filmy QCC is lower, so that a mixture of dark and thermally altered filmy QCC can match the peak extinction observed in the interstellar medium. It is shown from electron micrographs that most of the thermally altered flimy QCC is in the form of small grainy structure less than 4 nm in diameter. This shows that the structure unit causing the 217-222 nm feature in QCC is very small.

  4. Modern Progress and Modern Problems in High Resolution X-ray Absorption from the Cold Interstellar Medium

    NASA Astrophysics Data System (ADS)

    Corrales, Lia; Li, Haochuan; Heinz, Sebastian

    2018-01-01

    With accurate cross-sections and higher signal-to-noise, X-ray spectroscopy can directly measure Milky Way gas and dust-phase metal abundances with few underlying assumptions. The X-ray energy band is sensitive to absorption by all abundant interstellar metals — carbon, oxygen, neon, silicon, magnesium, and iron — whether they are in gas or dust form. High resolution X-ray spectra from Galactic X-ray point sources can be used to directly measure metal abundances from all phases of the interstellar medium (ISM) along singular sight lines. We show our progress for measuring the depth of photoelectric absorption edges from neutral ISM metals, using all the observations of bright Galactic X-ray binaries available in the Chandra HETG archive. The cross-sections we use take into account both the absorption and scattering effects by interstellar dust grains on the iron and silicate spectral features. However, there are many open problems for reconciling X-ray absorption spectroscopy with ISM observations in other wavelengths. We will review the state of the field, lab measurements needed, and ways in which the next generation of X-ray telescopes will contribute.

  5. The Interstellar Medium in External Galaxies: Summaries of contributed papers

    NASA Technical Reports Server (NTRS)

    Hollenbach, David J. (Editor); Thronson, Harley A., Jr. (Editor)

    1990-01-01

    The Second Wyoming Conference entitled, The Interstellar Medium in External Galaxies, was held on July 3 to 7, 1989, to discuss the current understanding of the interstellar medium in external galaxies and to analyze the basic physical processes underlying interstellar phenomena. The papers covered a broad range of research on the gas and dust in external galaxies and focused on such topics as the distribution and morphology of the atomic, molecular, and dust components; the dynamics of the gas and the role of the magnetic field in the dynamics; elemental abundances and gas depletions in the atomic and ionized components; cooling flows; star formation; the correlation of the nonthermal radio continuum with the cool component of the interstellar medium; the origin and effect of hot galactic halos; the absorption line systems seen in distant quasars; and the effect of galactic collisions.

  6. Near-infrared absorption spectroscopy of interstellar hydrocarbon grains

    NASA Astrophysics Data System (ADS)

    Pendleton, Y. J.; Sandford, S. A.; Allamandola, L. J.; Tielens, A. G. G. M.; Sellgren, K.

    1994-12-01

    We present new 3600 - 2700/cm (2.8 - 3.7 micrometer) spectra of objects whose extinction is dominated by dust in the diffuse interstellar medium. The observations presented here augment an ongoing study of the organic component of the diffuse interstellar medium. These spectra contain a broad feature centered near 3300/cm (3.0 micrometers) and/or a feature with a more complex profile near 2950/cm (3.4 micrometers), the latter of which is attributed to saturated aliphatic hydrocarbons in interstellar grains and is the primary interest of this paper. As in our earlier work, the similarity of the absorption bands near 2950/cm (3.4 micrometers) along different lines of sight and the correlation of these features with interstellar extinction reveal that the carrier of this band lies in the dust in the diffuse interstellar medium (DISM). At least 2.5% of the cosmic carbon in the local interstellar medium and 4% toward the Galactic center is tied up in the carrier of the 2950/cm (3.4 micrometer) band. The spectral structure of the diffuse dust hydrocarbon C-H stretch absorption features is reasonably similar to UV photolyzed laboratory ice residues and is quite similar to the carbonaceous component of the Murchison meteorite. The similarity between the DISM and the meteoritic spectrum suggests that some of the interstellar material originally incorporated into the solar nebula may have survived relatively untouched in primitive solar system bodies. Comparisons of the DISM spectrum to hydrogenated amorphous carbon and quenched carbonaceous composite are also presented. The AV/tau ratio for the 2950/cm (3.4 micrometer) feature is lower toward the Galactic center than toward sources in the local solar neighborhood (approximately 150 for the Galactic center sources vs. approximately 250 for the local ISM sources). A similar trend has been observed previously for silicates in the diffuse medium by Roche & Aitken, suggesting that (1) the silicate and carbonaceous materials in the DISM may be physically correlated and (2) there is either dust compositional variation in the galaxy or galactic variation in the grain population density distribution. We also note a possible absorption feature near 3050/cm (3.28 micrometers), a wavelength position that is characteristic of polycyclic aromatic hydrocarbons (PAHs).

  7. Near-infrared absorption spectroscopy of interstellar hydrocarbon grains

    NASA Technical Reports Server (NTRS)

    Pendleton, Y. J.; Sandford, S. A.; Allamandola, L. J.; Tielens, A. G. G. M.; Sellgren, K.

    1994-01-01

    We present new 3600 - 2700/cm (2.8 - 3.7 micrometer) spectra of objects whose extinction is dominated by dust in the diffuse interstellar medium. The observations presented here augment an ongoing study of the organic component of the diffuse interstellar medium. These spectra contain a broad feature centered near 3300/cm (3.0 micrometers) and/or a feature with a more complex profile near 2950/cm (3.4 micrometers), the latter of which is attributed to saturated aliphatic hydrocarbons in interstellar grains and is the primary interest of this paper. As in our earlier work, the similarity of the absorption bands near 2950/cm (3.4 micrometers) along different lines of sight and the correlation of these features with interstellar extinction reveal that the carrier of this band lies in the dust in the diffuse interstellar medium (DISM). At least 2.5% of the cosmic carbon in the local interstellar medium and 4% toward the Galactic center is tied up in the carrier of the 2950/cm (3.4 micrometer) band. The spectral structure of the diffuse dust hydrocarbon C-H stretch absorption features is reasonably similar to UV photolyzed laboratory ice residues and is quite similar to the carbonaceous component of the Murchison meteorite. The similarity between the DISM and the meteoritic spectrum suggests that some of the interstellar material originally incorporated into the solar nebula may have survived relatively untouched in primitive solar system bodies. Comparisons of the DISM spectrum to hydrogenated amorphous carbon and quenched carbonaceous composite are also presented. The A(sub V)/tau ratio for the 2950/cm (3.4 micrometer) feature is lower toward the Galactic center than toward sources in the local solar neighborhood (approximately 150 for the Galactic center sources vs. approximately 250 for the local ISM sources). A similar trend has been observed previously for silicates in the diffuse medium by Roche & Aitken, suggesting that (1) the silicate and carbonaceous materials in the DISM may be physically correlated and (2) there is either dust compositional variation in the galaxy or galactic variation in the grain population density distribution. We also note a possible absorption feature near 3050/cm (3.28 micrometers), a wavelength position that is characteristic of polycyclic aromatic hydrocarbons (PAHs).

  8. Aliphatic Hydrocarbon Content of Interstellar Dust

    NASA Astrophysics Data System (ADS)

    Günay, B.; Schmidt, T. W.; Burton, M. G.; Afşar, M.; Krechkivska, O.; Nauta, K.; Kable, S. H.; Rawal, A.

    2018-06-01

    There is considerable uncertainty as to the amount of carbon incorporated in interstellar dust. The aliphatic component of the carbonaceous dust is of particular interest because it produces a significant 3.4 μm absorption feature when viewed against a background radiation source. The optical depth of the 3.4 μm absorption feature is related to the number of aliphatic carbon C-H bonds along the line of sight. It is possible to estimate the column density of carbon locked up in the aliphatic hydrocarbon component of interstellar dust from quantitative analysis of the 3.4 μm interstellar absorption feature providing that the absorption coefficient of aliphatic hydrocarbons incorporated in the interstellar dust is known. We report laboratory analogues of interstellar dust by experimentally mimicking interstellar/circumstellar conditions. The resultant spectra of these dust analogues closely match those from astronomical observations. Measurements of the absorption coefficient of aliphatic hydrocarbons incorporated in the analogues were carried out by a procedure combining FTIR and 13C NMR spectroscopies. The absorption coefficients obtained for both interstellar analogues were found to be in close agreement (4.76(8) × 10-18 cm group-1 and 4.69(14) × 10-18 cm group-1), less than half those obtained in studies using small aliphatic molecules. The results thus obtained permit direct calibration of the astronomical observations, providing rigorous estimates of the amount of aliphatic carbon in the interstellar medium.

  9. Studies of H I and D I in the local interstellar medium

    NASA Technical Reports Server (NTRS)

    Murthy, J.; Henry, R. C.; Moos, H. W.; Vidal-Madjar, A.; Linsky, J. L.

    1990-01-01

    High-dispersion IUE spectra are presented of the hydrogen Ly-alpha chromospheric emission line of two nearby late-type stars, Capella and Lambda And. Both interstellar H I and D I Ly-alpha absorption can be seen against the chromospheric line, and the density, velocity dispersion, and bulk velocity of the gas in those lines of sight are derived. Limits are placed on the D/H ratio. The results are consistent with the current picture of the local interstellar medium.

  10. Absorption Spectroscopy of Polycyclic Aromatic Hydrocarbons under Interstellar Conditions

    NASA Technical Reports Server (NTRS)

    Stone, Bradley M.

    1996-01-01

    The presence and importance of polycyclic aromatic hydrocarbons (PAHs, a large family of organic compounds containing carbon and hydrogen) in the interstellar medium has already been well established. The Astrochemistry Laboratory at NASA Ames Research Center (under the direction of Louis Allamandola and Scott Sandford) has been the center of pioneering work in performing spectroscopy on these molecules under simulated interstellar conditions, and consequently in the identification of these species in the interstellar medium by comparison to astronomically obtained spectra. My project this summer was twofold: (1) We planned on obtaining absorption spectra of a number of PAHs and their cations in cold (4K) Ne matrices. The purpose of these experiments was to increase the number of different PAHs for which laboratory spectra have been obtained under these simulated interstellar conditions; and (2) I was to continue the planning and design of a new laser facility that is being established in the Astrochemistry laboratory. The laser-based experimental set-up will greatly enhance our capability in examining this astrophysically important class of compounds.

  11. Ultraviolet observations of the gas phase abundances in the diffuse clouds toward Zeta Ophiuchi at 3.5 kilometers per second resolution

    NASA Technical Reports Server (NTRS)

    Savage, Blair D.; Cardelli, Jason A.; Sofia, Ulysses J.

    1992-01-01

    Goddard High Resolution Spectrograph echelle mode measurements at 3.5 km/s resolution are presented for interstellar absorption produced by C II, O I, Mg I, Mg II, Al III, P II, Cr II, Mn II, Fe II, Ni II, Cu II, Zn II, Ga II, Ge II, and Kr I. The absorption line measurements are converted into representations of apparent column density per unit velocity in order to study the multicomponent nature of the absorption. The high spectral resolution of the measurements allows a comparative study of gas phase abundances for many species in the absorbing clouds near -27 and -15 km/s with a typical precision of about 0.05 dex. The matter absorbing near -27 km/s is situated in the local interstellar medium and has log N(H I) of about 19.74. This absorption provides information about the modest 'base' depletion associated with the lower density interstellar medium. The depletion results suggest that accretion processes are operating interstellar clouds that exhibit similar depletion efficiencies for some elements but much higher depletion efficiencies for others.

  12. PROBING X-RAY ABSORPTION AND OPTICAL EXTINCTION IN THE INTERSTELLAR MEDIUM USING CHANDRA OBSERVATIONS OF SUPERNOVA REMNANTS

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Foight, Dillon R.; Slane, Patrick O.; Güver, Tolga

    We present a comprehensive study of interstellar X-ray extinction using the extensive Chandra supernova remnant (SNR) archive and use our results to refine the empirical relation between the hydrogen column density and optical extinction. In our analysis, we make use of the large, uniform data sample to assess various systematic uncertainties in the measurement of the interstellar X-ray absorption. Specifically, we address systematic uncertainties that originate from (i) the emission models used to fit SNR spectra; (ii) the spatial variations within individual remnants; (iii) the physical conditions of the remnant such as composition, temperature, and non-equilibrium regions; and (iv) themore » model used for the absorption of X-rays in the interstellar medium. Using a Bayesian framework to quantify these systematic uncertainties, and combining the resulting hydrogen column density measurements with the measurements of optical extinction toward the same remnants, we find the empirical relation N {sub H} = (2.87 ± 0.12) × 10{sup 21} A {sub V} cm{sup 2}, which is significantly higher than the previous measurements.« less

  13. Local Interstellar Medium. International Astronomical Union Colloquium No. 81

    NASA Technical Reports Server (NTRS)

    Kondo, Y. (Editor); Bruhweiler, F. C. (Editor); Savage, B. D. (Editor)

    1984-01-01

    Helium and hydrogen backscattering; ultraviolet and EUV absorption spectra; optical extinction and polarization; hot gases; soft X-ray observations; infrared and millimeter wavelengths; radio wavelengths and theoretical models of the interstellar matter within about 150 parsecs of the Sun were examined.

  14. Extreme ultraviolet observations of G191-B2B and the local interstellar medium with the Hopkins Ultraviolet Telescope

    NASA Technical Reports Server (NTRS)

    Kimble, Randy A.; Davidsen, Arthur F.; Blair, William P.; Bowers, Charles W.; Van Dyke Dixon, W.; Durrance, Samuel T.; Feldman, Paul D.; Ferguson, Henry C.; Henry, Richard C.; Kriss, Gerard A.

    1993-01-01

    During the Astro-l mission in 1990 December, the Hopkins Ultraviolet Telescope (HUT) was used to observe the extreme ultraviolet spectrum (415-912 A) of the hot DA white dwarf GI91-B2B. Absorption by neutral helium shortward of the 504 A He I absorption edge is clearly detected in the raw spectrum. Model fits to the observed spectrum require interstellar neutral helium and neutral hydrogen column densities of 1.45 +/- 0.065 x 10 exp 17/sq cm and 1.69 +/- 0.12 x 10 exp 18/sq cm, respectively. Comparison of the neutral columns yields a direct assessment of the ionization state of the local interstellar cloud surrounding the Sun. The neutral hydrogen to helium ratio of 11.6 +/- 1.0 observed by HUT strongly contradicts the widespread view that hydrogen is much more ionized than helium in the local interstellar medium, a view which has motivated some exotic theoretical explanations for the supposed high ionization.

  15. The interstellar N2 abundance towards HD 124314 from far-ultraviolet observations.

    PubMed

    Knauth, David C; Andersson, B-G; McCandliss, Stephan R; Moos, H Warren

    2004-06-10

    The abundance of interstellar molecular nitrogen (N2) is of considerable importance: models of steady-state gas-phase interstellar chemistry, together with millimetre-wavelength observations of interstellar N2H+ in dense molecular clouds predict that N2 should be the most abundant nitrogen-bearing molecule in the interstellar medium. Previous attempts to detect N2 absorption in the far-ultraviolet or infrared (ice features) have hitherto been unsuccessful. Here we report the detection of interstellar N2 at far-ultraviolet wavelengths towards the moderately reddened star HD 124314 in the constellation of Centaurus. The N2 column density is larger than expected from models of diffuse clouds and significantly smaller than expected for dense molecular clouds. Moreover, the N2 abundance does not explain the observed variations in the abundance of atomic nitrogen (N I) towards high-column-density sightlines, implying that the models of nitrogen chemistry in the interstellar medium are incomplete.

  16. Dust Spectroscopy and the Nature of Grains

    NASA Technical Reports Server (NTRS)

    Tielens, A. G. G. M.

    2006-01-01

    Ground-based, air-borne and space-based, infrared spectra of a wide variety of objects have revealed prominent absorption and emission features due to large molecules and small dust grains. Analysis of this data reveals a highly diverse interstellar and circumstellar grain inventory, including both amorphous materials and highly crystalline compounds (silicates and carbon). This diversity points towards a wide range of physical and chemical birthsites as well as a complex processing of these grains in the interstellar medium. In this talk, I will review the dust inventory contrasting and comparing both the interstellar and circumstellar reservoirs. The focus will be on the processes that play a role in the lifecycle of dust in the interstellar medium.

  17. The influence of the ionized medium on synchrotron emission in interstellar space.

    NASA Technical Reports Server (NTRS)

    Ramaty, R.

    1972-01-01

    The effect of the ionized gas on synchrotron emission in the interstellar medium is investigated. A detailed calculation of the synchrotron emissivity of cosmic electrons, assumed to have an isotropic pitch-angle distribution in a uniform magnetic field, is made as a function of frequency and observation angle with respect to the field. The results are presented both as a local emissivity and as an intensity, the latter obtained by neglecting free-free absorption in the interstellar medium and by assuming that the emissivity is constant along the line of sight. The comparison of these results with previous studies on the nature of the low-frequency turnover of the galactic nonthermal radio background reveals that, except if the component perpendicular to the line of sight of the interstellar magnetic field is small (less than 1 microgauss), or if the cosmic-ray electron spectrum is cut off at energies below a few hundred MeV, the suppression of synchrotron emission by the ambient electrons has in general a lesser effect than free-free absorption by these electrons, and that in some cases this suppression effect is almost entirely negligible.

  18. Laboratory evidence for ionized polycyclic aromatic hydrocarbons in the interstellar medium

    NASA Technical Reports Server (NTRS)

    Szczepanski, Jan; Vala, Martin

    1993-01-01

    The infrared absorption from neutrals and cations of four PAHs - naphthalene, anthracene, pyrene, and perylene - integrated over the spectral regions corresponding to the interstellar bands are compared with astronomical observations. It is found that the interstellar bands cannot be explained solely on the basis of neutral PAH species, but that cations must be a significant, and in some cases dominant, component.

  19. The Properties of the local Interstellar Medium and the Interaction of the Stellar Winds of epsilon Indi and lambda Andromedae with the Interstellar Environment

    NASA Technical Reports Server (NTRS)

    Wood, Brian E.; Alexander, William R.; Linsky, Jeffrey L.

    1996-01-01

    We present new observations of the Ly alpha lines of Epsilon Indi (K5 5) and A Andromedae (G8 4-3 + ?) These data were obtained by the Goddard High Resolution Spectrograph (GHRS) on the Hubble Space Telescope. Analysis of the interstellar H 1 and D 1 absorption lines reveals that the velocities and temperatures inferred from the H 1 lines are inconsistent with the parameters inferred from the D 1 lines, unless the H 1 absorption is assumed to be produced by two absorption components. One absorption component is produced by interstellar material. For both lines of sight observed, the velocity of this component is consistent with the velocity predicted by the local flow vector. For the Epsilon Indi data, the large velocity separation between the stellar emission and the interstellar absorption allows us to measure the H 1 column density independent of the shape of the intrinsic stellar Ly alpha profile. This approach permits us to quote an accurate column density and to assess its uncertainty with far more confidence than in previous analyses, for which the errors were dominated by uncertainties in the assumed stellar profiles.

  20. Ultraviolet observations of cool stars. VII - Local interstellar hydrogen and deuterium Lyman-alpha

    NASA Technical Reports Server (NTRS)

    Mcclintock, W.; Henry, R. C.; Linsky, J. L.; Moos, H. W.

    1978-01-01

    High-resolution Copernicus spectra of Epsilon Eri and Epsilon Ind containing interstellar hydrogen and deuterium L-alpha absorption lines are presented, reduced, and analyzed. Parameters of the interstellar hydrogen and deuterium toward these two stars are derived independently, without any assumptions concerning the D/H ratio. Copernicus spectra of Alpha Aur and Alpha Cen A are reanalyzed, and limits on the D/H number-density ratio consistent with the data for all four stars are considered. A comparison of the present estimates for the parameters of the local interstellar medium with those obtained by other techniques shows that there is no compelling evidence for significant variations in the hydrogen density and D/H ratio in the local interstellar medium. On this basis the hypothesis of an approaching local interstellar cloud proposed by Vidal-Madjar et al. (1978) is rejected

  1. Absorption by Spinning Dust: A Contaminant for High-redshift 21 cm Observations

    NASA Astrophysics Data System (ADS)

    Draine, B. T.; Miralda-Escudé, Jordi

    2018-05-01

    Spinning dust grains in front of the bright Galactic synchrotron background can produce a weak absorption signal that could affect measurements of high-redshift 21 cm absorption. At frequencies near 80 MHz where the Experiment to Detect the Global EoR Signature (EDGES) has reported 21 cm absorption at z≈ 17, absorption could be produced by interstellar nanoparticles with radii a≈ 50 \\mathringA in the cold interstellar medium (ISM), with rotational temperature T ≈ 50 K. Atmospheric aerosols could contribute additional absorption. The strength of the absorption depends on the abundance of such grains and on their dipole moments, which are uncertain. The breadth of the absorption spectrum of spinning dust limits its possible impact on measurement of a relatively narrow 21 cm absorption feature.

  2. Interstellar molecules. [detection from Copernicus satellite UV absorption data

    NASA Technical Reports Server (NTRS)

    Drake, J. F.

    1974-01-01

    The Princeton equipment on the Copernicus satellite provides the means to study interstellar molecules between the satellite and stars from 20 to 1000 pc distant. The study is limited to stars relatively unobscured by dust which strongly attenuates the ultraviolet continuum flux used as a source to probe the interstellar medium. Of the 14 molecules searched for only three have been detected including molecular hydrogen, molecular HD, and carbon monoxide.

  3. "CHON" particles: The interstellar component of cometary dust

    NASA Technical Reports Server (NTRS)

    Lien, David J.

    1998-01-01

    Interstellar dust is characterized by strong absorption in the ultraviolet and the mid-IR. Current models of interstellar dust are based on three chemically distinct components: a form of carbon (usually graphite), a silicate, and a blend of polycyclic aromatic hydrocarbons or other carbonaceous material. Previous work using effective medium theories to understand the optical properties of cometary dust suggested that an amalgam of materials could reproduce the observed interstellar and cometary dust features. Recently, Lawler and Brownlee (1992) re-analyzed the PIA and PUMA-1 data sets from the Giotto flyby of P/Halley and discovered that the so-called "CHON" particles were actually composed of a blend of carbon-bearing and silicon-bearing materials. Based on effective medium theories, the absorption spectrum of such a material would display the spectral features of each of the components - strong UV absorption from the carbonaceous component and strong absorption in the IR from the silicate component. To test this idea, vapor-deposited samples were created using two different deposition techniques: sputtering with an argon RF magnetron and deposition from an argon plasma torch. Two different compositions were tested: a blend of graphite and silica in a 7:1 ratio and an amalgam of materials whose approximate composition matches the "CHON"-silicate abundances for the uncompressed PIA data set of Lawler and Brownlee: graphite, iron oxide, magnesium oxide, ammonium sulfate, calcium carbonate, and silica in mass ratios of 6:4.3:4:2.2:1:9. The samples were finely ground and pressed into 2" diameter disks using a 40 ton press. In all, four different experiments were performed: one with each of the compositions (C:SiO and "CHON") in both the RF magnetron and the plasma torch chambers. The RF magnetron created a uniform dark thin film on the substrate surface, and the plasma torch created a coating of small (<100 micron) diameter grey particles. The spectra of all four samples show a strong, broad absorption feature at around 220 nm as well as a strong but narrower absorption peak near 10 microns. The RF magnetron sputtered samples showed some sub-structure in the UV, and the peak of the absorption was shifted toward longer wavelengths. The UV absorption in the plasma torch deposited samples have no sub-structure, and the peak absorption is very near 220 nm. Strong absorption near 9 microns is seen in the spectra from both sample preparation techniques, and is consistent with the IR spectra of some terrestrial silicates. Other features, particularly at 6.2 and 8.6 microns, are seen in the interstellar medium. A strong feature near 2 microns is due to absorbed water in the sample. Based on the results of these experiments, there is evidence that a material with a composition similar to that detected in "CHON" particles in the coma of P/Halley have a spectral signature which reproduces the main absorption features of interstellar dust. This suggests that the "CHON" particles could be the interstellar component of cometary dust.

  4. Astrochemistry: Recent Advances in the Study of Carbon Molecules in Space

    NASA Technical Reports Server (NTRS)

    Salama, Farid

    2006-01-01

    Carbon molecules and ions play an important role in space. Polycyclic Aromatic Hydrocarbons (PAHs) are the best-known candidates to account for the infrared emission bands (UIR bands) and PAH spectral features are now being used as probes of the interstellar medium in Galactic and extra-galactic environments. PAHs are also thought to be among the carriers of the diffuse interstellar absorption bands (DIBs). In the model dealing with the interstellar spectral features, PAHs are present as a mixture of radicals, ions and neutral species. PAH ionization states reflect the ionization balance of the medium while PAH size, composition, and structure reflect the energetic and chemical history of the medium. A major challenge for laboratory Astrochemistry is to reproduce (in a realistic way) the physical conditions that exist in the emission and absorption interstellar zones. An extensive laboratory program has been developed in various laboratories to characterize the physical and chemical properties of PAHs in astrophysical environments and to describe how they influence the radiation and energy balance in space and the interstellar chemistry. In particular, laboratory experiments provide measurements of the spectral characteristics of interstellar PAH analogs from the ultraviolet and visible range to the infrared range for comparison with astronomical data. The harsh physical conditions of the interstellar medium - characterized by a low temperature, an absence of collisions and strong ultraviolet radiation fields - are simulated in the laboratory by associating a molecular beam with an ionizing discharge to generate a cold plasma expansion. PAH ions are formed from the neutral precursors in an isolated environment at low temperature (of the order of 100 K). The spectra of neutral and ionized PAHs are measured using the high sensitivity methods of cavity ring down spectroscopy (CRDS). These experiments provide unique information on the spectra of free, cold large carbon molecules and ions in the gas phase.

  5. Atomic and molecular_diagnostics of the interstellar medium

    NASA Astrophysics Data System (ADS)

    Roueff, E.

    1987-08-01

    Ever since molecular species have been discovered in space in the 30's and early 40's by the optical identification of CH, CH+ and CN in absorption towards nearby hot stars, the question of molecule formation has accompanied the observational efforts. The purpose of this paper is to point out presently existing observational constraints and the limits they may cast on our knowledge of the interstellar medium. The need for reliable atomic and molecular data will be emphasized with some specific examples.

  6. Observations of the interstellar gas with the Copernicus satellite

    NASA Technical Reports Server (NTRS)

    Morton, D. C.

    1975-01-01

    Results are reviewed for Copernicus far-UV measurements of the absorption lines of H I, D I, H2, and heavier elements in the interstellar gas. Column densities along several lines of sight, as estimated from Ly-alpha absorption-line profiles, confirm that wide differences in the gas density are present in various directions. The measurement of interstellar D I implies an open universe unless alternate sources for this nuclide are found. Analysis of reddened stars for which the line of sight passes through one or more interstellar clouds indicates a depletion of several heavy elements in the gas. It is suggested that the depleted elements may be present in grains rather than molecules and that the intercloud medium may consist primarily of H II with a few small H I clouds.

  7. The Connection between Different Tracers of the Diffuse Interstellar Medium: Kinematics

    NASA Astrophysics Data System (ADS)

    Rice, Johnathan S.; Federman, S. R.; Flagey, Nicolas; Goldsmith, Paul F.; Langer, William D.; Pineda, Jorge L.; Lambert, D. L.

    2018-05-01

    Using visible, radio, microwave, and submillimeter data, we study several lines of sight toward stars generally closer than 1 kpc on a component-by-component basis. We derive the component structure seen in absorption at visible wavelengths from Ca II, Ca I, K I, CH, CH+, and CN and compare it to emission from H I, CO and its isotopologues, and C+ from the GOT C+ survey. The correspondence between components in emission and absorption helps create a more unified picture of diffuse atomic and molecular gas in the interstellar medium. We also discuss how these tracers are related to the CO-dark H2 gas probed by C+ emission and discuss the kinematic connections among the species observed.

  8. No evidence for interstellar proteins

    NASA Astrophysics Data System (ADS)

    Koch, R. H.; Davies, R. E.

    1984-03-01

    The claim by Karim et al. (1983) that the broad interstellar feature near 280 nm suggests the existence of proteinaceous matter in the interstellar medium is addressed. From astronomical and biochemical arguments it is shown that no quantitative measures of optical depth can be derived from the published data and that there is a great wealth of organic molecules which have absorptions at or near this wavelength interval. The amino acid tryptophan is one such molecule but the deduced spectrum does not satisfy two other properties of its spectrum. In particular, the 280 nm absorption for tryptophan refers to an aqueous solution of the molecule, and no liquid water is expected to exist in the ISM.

  9. On Graphene in the Interstellar Medium

    NASA Astrophysics Data System (ADS)

    Chen, X. H.; Li, Aigen; Zhang, Ke

    2017-11-01

    The possible detection of C24, a planar graphene that was recently reported to be in several planetary nebulae by García-Hernández et al., inspires us to explore whether and how much graphene could exist in the interstellar medium (ISM) and how it would reveal its presence through its ultraviolet (UV) extinction and infrared (IR) emission. In principle, interstellar graphene could arise from the photochemical processing of polycyclic aromatic hydrocarbon (PAH) molecules, which are abundant in the ISM, due to the complete loss of their hydrogen atoms, and/or from graphite, which is thought to be a major dust species in the ISM, via fragmentation caused by grain–grain collisional shattering. Both quantum-chemical computations and laboratory experiments have shown that the exciton-dominated electronic transitions in graphene cause a strong absorption band near 2755 \\mathringA . We calculate the UV absorption of graphene and place an upper limit of ∼5 ppm of C/H (i.e., ∼1.9% of the total interstellar C) on the interstellar graphene abundance. We also model the stochastic heating of graphene C24 in the ISM, excited by single starlight photons of the interstellar radiation field and calculate its IR emission spectra. We also derive the abundance of graphene in the ISM to be <5 ppm of C/H by comparing the model emission spectra with that observed in the ISM.

  10. Oxygen, Neon, and Iron X-Ray Absorption in the Local Interstellar Medium

    NASA Technical Reports Server (NTRS)

    Gatuzz, Efrain; Garcia, Javier; Kallman, Timothy R.; Mendoza, Claudio

    2016-01-01

    We present a detailed study of X-ray absorption in the local interstellar medium by analyzing the X-ray spectra of 24 galactic sources obtained with the Chandra High Energy Transmission Grating Spectrometer and the XMM-Newton Reflection Grating Spectrometer. Methods. By modeling the continuum with a simple broken power-law and by implementing the new ISMabs X-ray absorption model, we have estimated the total H, O, Ne, and Fe column densities towards the observed sources. Results. We have determined the absorbing material distribution as a function of source distance and galactic latitude longitude. Conclusions. Direct estimates of the fractions of neutrally, singly, and doubly ionized species of O, Ne, and Fe reveal the dominance of the cold component, thus indicating an overall low degree of ionization. Our results are expected to be sensitive to the model used to describe the continuum in all sources.

  11. The Identification of Complex Organic Molecules in the Interstellar Medium: Using Lasers and Matrix Isolation Spectroscopy to Simulate the Interstellar Environment

    NASA Technical Reports Server (NTRS)

    Stone, Bradley M.

    1998-01-01

    The Astrochemistry Group at NASA Ames Research Center is interested in the identification of large organic molecules in the interstellar medium Many smaller organic species (e.g. hydrocarbons, alcohols, etc.) have been previously identified by their radiofrequency signature due to molecular rotations. However, this becomes increasingly difficult to observe as the size of the molecule increases. Our group in interested in the identification of the carriers of the Diffuse Interstellar Bands (absorption features observed throughout the visible and near-infrared in the spectra of stars, due to species in the interstellar medium). Polycyclic Aromatic Hydrocarbons (PAHs) and related molecules are thought to be good candidates for these carriers. Laboratory experiments am performed at Ames to simulate the interstellar environment, and to compare spectra obtained from molecules in the laboratory to those derived astronomically. We are also interested in PAHs with respect to their possible connection to the UIR (Unidentified infrared) and ERE (Extended Red Emission) bands - emission features found to emanate from particular regions of our galaxy (e.g. Orion nebula, Red Rectangle, etc.). An old, "tried and proven spectroscopic technique, matrix isolation spectroscopy creates molecular conditions ideal for performing laboratory astrophysics.

  12. Interstellar PAH Analogs in the Laboratory: Comparison with Astronomical Data

    NASA Technical Reports Server (NTRS)

    Salama, Farid

    2005-01-01

    Polycyclic Aromatic Hydrocarbons (PAHs) are an important and ubiquitous component of carbon-bearing materials in space. PAHs are the best-known candidates to account for the IR emission bands (UIR bands) and PAH spectral features are now being used as new probes of the ISM. PAHs are also thought to be among the carriers of the diffuse interstellar absorption bands (DIBs). In the model dealing with the interstellar spectral features, PAHs are present as a mixture of radicals, ions and neutral species. PAH ionization states reflect the ionization balance of the medium while PAH size, composition, and structure reflect the energetic and chemical history of the medium. A major challenge for laboratory astrophysics is to reproduce (in a realistic way) the physical conditions that exist in the emission and/or absorption interstellar zones. An extensive laboratory program has been developed at NASA Ames to assess the physical and chemical properties of PAHs in such environments and to describe how they influence the radiation and energy balance in space and the interstellar chemistry. In particular, laboratory experiments provide measurements of the spectral characteristics of interstellar PAH analogs from the ultraviolet and visible range to the infrared range for comparison with astronomical data. This paper will focus on the recent progress made in the laboratory to measure the direct absorption spectra of neutral and ionized PAHs in the near-UV and visible range. Intrinsic band profiles and band positions of cold gas-phase PAHs can now be measured with high-sensitivity spectroscopy and directly compared to the astronomical data. Preliminary conclusions from the comparison of the laboratory data with astronomical observations will also be presented.

  13. Electronic Spectroscopy of Organic Cations in Gas-Phase at 6 K:IDENTIFICATION of C60/^+ in the Interstellar Medium

    NASA Astrophysics Data System (ADS)

    Maier, John P.

    2016-06-01

    After the discovery of C60, the question of its relevance to the diffuse interstellar bands was raised. In 1987 H. W. Kroto wrote: ``The present observations indicate that C60 might survive in the general interstellar medium (probably as the ion C60/^+)''. In 1994 two diffuse interstellar bands (DIBs) at 9632 and 9577 Å/ were detected and proposed to be the absorption features of C60/^+. This was based on the proximity of these wavelengths to the two prominent absorption bands of C60/^+ measured by us in a neon matrix in 1993. Confirmation of the assignment required the gas phase spectrum of C60/^+ and has taken 20 years. The approach which succeeded confines C60/^+ ions in a radiofrequency trap, cools them by collisions with high density helium allowing formation of the weakly bound C60/^+--He complexes below 10 K. The photofragmentation spectrum of this mass-selected complex is then recorded using a cw laser. In order to infer the position of the absorption features of the bare C60/^+ ion, measurements on C60/^+--He_2 were also made. The spectra show that the presence of a helium atom shifts the absorptions by less than 0.2 Å, much less than the accuracy of the astronomical measurements. The two absorption features in the laboratory have band maxima at 9632.7(1) and 9577.5(1) Å, exactly the DIB wavelengths, and the widths and relative intensities agree. This leads to the first definite identification of now five bands among the five hundred or so DIBs known and proves the presence of gaseous C60/^+ in the interstellar medium. The absorption of cold C70/^+ has also been obtained by this approach. In addition the electronic spectra of a number of cations of astrophysical interest ranging from those of carbon chains including oxygen to larger polycyclic aromatic hydrocarbon could be measured in the gas phase at around 10 K in the ion trap but using an excitation-dissociation approach. The implications of these laboratory spectra in relation to the diffuse interstellar band absorptions can be discussed. H. W. Kroto, J. R. Heath, S. C. O'Brian, R. E. Curl & R. E. Smalley, Nature, 318, 162, 1985 H. W. Kroto in ``Polycyclic aromatic hydrocarbons and astrophysics'', eds. A. Leger, L. B. d'Hendecourt & N. Boccara, Reidel, Dordrecht, 1987, p.197 B. H. Foing & P. Ehrenfreund, Nature, 369, L296, 1994 J. Fulara, M. Jakobi & J. P. Maier, Chem. Phys. Lett., 211, 227, 1993 E. K. Campbell, M. Holz, D. Gerlich & J. P. Maier, Nature, 523, 323, 2015 G. A. H. Walker, D. A. Bohlender, J. P. Maier & E. Campbell, Astrophys. J. Lett., 812, L8, 2015

  14. Modelling ultraviolet-line diagnostics of stars, the ionized and the neutral interstellar medium in star-forming galaxies

    NASA Astrophysics Data System (ADS)

    Vidal-García, A.; Charlot, S.; Bruzual, G.; Hubeny, I.

    2017-09-01

    We combine state-of-the-art models for the production of stellar radiation and its transfer through the interstellar medium (ISM) to investigate ultraviolet-line diagnostics of stars, the ionized and the neutral ISM in star-forming galaxies. We start by assessing the reliability of our stellar population synthesis modelling by fitting absorption-line indices in the ISM-free ultraviolet spectra of 10 Large Magellanic Cloud clusters. In doing so, we find that neglecting stochastic sampling of the stellar initial mass function in these young (∼10-100 Myr), low-mass clusters affects negligibly ultraviolet-based age and metallicity estimates but can lead to significant overestimates of stellar mass. Then, we proceed and develop a simple approach, based on an idealized description of the main features of the ISM, to compute in a physically consistent way the combined influence of nebular emission and interstellar absorption on ultraviolet spectra of star-forming galaxies. Our model accounts for the transfer of radiation through the ionized interiors and outer neutral envelopes of short-lived stellar birth clouds, as well as for radiative transfer through a diffuse intercloud medium. We use this approach to explore the entangled signatures of stars, the ionized and the neutral ISM in ultraviolet spectra of star-forming galaxies. We find that, aside from a few notable exceptions, most standard ultraviolet indices defined in the spectra of ISM-free stellar populations are prone to significant contamination by the ISM, which increases with metallicity. We also identify several nebular-emission and interstellar-absorption features, which stand out as particularly clean tracers of the different phases of the ISM.

  15. The diffuse interstellar bands: a tracer for organics in the diffuse interstellar medium?

    NASA Technical Reports Server (NTRS)

    Salama, F.

    1998-01-01

    The diffuse interstellar bands (DIBs) are absorption bands seen in the spectra of stars obscured by interstellar dust. DIBs are recognized as a tracer for free, organic molecules in the diffuse interstellar medium (ISM). The potential molecular carriers for the DIBs are discussed with an emphasis on neutral and ionized polycyclic aromatic hydrocarbons (PAHs) for which the most focused effort has been made to date. From the combined astronomical, laboratory and theoretical study, it is concluded that a distribution of free neutral and ionized complex organics (PAHs, fullerenes, unsaturated hydrocarbons) represents the most promising class of candidates to account for the DIBs. The case for aromatic hydrocarbons appears particularly strong. The implied widespread distribution of complex organics in the diffuse ISM bears profound implications for our understanding of the chemical complexity of the ISM, the evolution of prebiotic molecules and its impact on the origin and the evolution of life on early Earth through the exogenous delivery (cometary encounters and metoritic bombardments) of prebiotic organics.

  16. Detection of organic matter in interstellar grains.

    PubMed

    Pendleton, Y J

    1997-06-01

    Star formation and the subsequent evolution of planetary systems occurs in dense molecular clouds, which are comprised, in part, of interstellar dust grains gathered from the diffuse interstellar medium (DISM). Radio observations of the interstellar medium reveal the presence of organic molecules in the gas phase and infrared observational studies provide details concerning the solid-state features in dust grains. In particular, a series of absorption bands have been observed near 3.4 microns (approximately 2940 cm-1) towards bright infrared objects which are seen through large column densities of interstellar dust. Comparisons of organic residues, produced under a variety of laboratory conditions, to the diffuse interstellar medium observations have shown that aliphatic hydrocarbon grains are responsible for the spectral absorption features observed near 3.4 microns (approximately 2940 cm-1). These hydrocarbons appear to carry the -CH2- and -CH3 functional groups in the abundance ratio CH2/CH3 approximately 2.5, and the amount of carbon tied up in this component is greater than 4% of the cosmic carbon available. On a galactic scale, the strength of the 3.4 microns band does not scale linearly with visual extinction, but instead increases more rapidly for objects near the Galactic Center. A similar trend is noted in the strength of the Si-O absorption band near 9.7 microns. The similar behavior of the C-H and Si-O stretching bands suggests that these two components may be coupled, perhaps in the form of grains with silicate cores and refractory organic mantles. The ubiquity of the hydrocarbon features seen in the near infrared near 3.4 microns throughout out Galaxy and in other galaxies demonstrates the widespread availability of such material for incorporation into the many newly forming planetary systems. The similarity of the 3.4 microns features in any organic material with aliphatic hydrocarbons underscores the need for complete astronomical observational coverage in the 2-30 microns region, of lines of sight which sample dust in both dense and diffuse interstellar clouds, in order to uniquely specify the composition of interstellar organics. This paper reviews the information available from ground-based observations, although currently the Infrared Satellite Observatory is adding to our body of knowledge on this subject by providing more extensive wavelength coverage. The Murchison carbonaceous meteorite has also been used as an analog to the interstellar observations and has revealed a striking similarity between the light hydrocarbons in the meteorite and the ISM; therefore this review includes comparisons with the meteoritic analog as well as with relevant laboratory residues. Fundamental to the evolution of the biogenic molecules, to the process of planetary system formation, and perhaps to the origin of life, is the connection between the organic material found in the interstellar medium and that incorporated in the most primitive solar system bodies.

  17. Circumstellar gas associated with HL Tauri - Evidence for a remnant infalling envelope

    NASA Technical Reports Server (NTRS)

    Grasdalen, Gary L.; Sloan, Gregory; Stout, Natalie; Strom, Stephen E.; Welty, Alan D.

    1989-01-01

    Molecular carbon absorption lines in the spectrum of HL Tau has been discovered near 8775 A. These C2 lines have a heliocentric radial velocity of 43 + or - 3 km/s, redshifted by 23 + or - 3 km/s relative to the star and the associated molecular cloud. This velocity difference suggests that the molecular carbon absorption arises in an infalling envelope. Since KI and diffuse interstellar bands are much weaker than expected, the chemical composition and/or excitation conditions in the HL Tau envelope appear to differ substantially from those in the interstellar medium.

  18. Gas-phase Absorptions of {{\\rm{C}}}_{42}{{\\rm{H}}}_{18}^{+} near 8300 Å below 10 K: Astronomical Implications

    NASA Astrophysics Data System (ADS)

    Campbell, E. K.; Maier, J. P.

    2017-11-01

    The gas-phase electronic spectrum of {{{C}}}42{{{H}}}18+ ({{HBC}}+) with an origin band at 8281 \\mathringA has been measured below 10 {{K}} by photofragmentation of helium complexes ({{{C}}}42{{{H}}}18+{--}{{He}}n) in a radiofrequency trap. {{HBC}}+ is a medium-sized polycyclic aromatic hydrocarbon (PAH) cation, and using an ion trapping technique it has been possible to record a high-quality gas-phase spectrum to directly compare with astronomical observations. No diffuse interstellar bands (DIBs) have been reported at the wavelengths of the strongest absorption bands in the {{{C}}}42{{{H}}}18+ spectrum. Measurement of absolute absorption cross sections in the ion trap allows upper limits to the column density of this ion to be {10}12 {{cm}}-2, indicating that even PAH cations of this size, which are believed to be stable in the interstellar medium, should be excluded as candidates for at least the strong DIBs.

  19. On the Time Variation of Dust Extinction and Gas Absorption for Type Ia Supernovae Observed through a Nonuniform Interstellar Medium

    NASA Astrophysics Data System (ADS)

    Huang, X.; Aldering, G.; Biederman, M.; Herger, B.

    2017-11-01

    For Type Ia supernovae (SNe Ia) observed through a nonuniform interstellar medium (ISM) in its host galaxy, we investigate whether the nonuniformity can cause observable time variations in dust extinction and in gas absorption due to the expansion of the SN photosphere with time. We show that, owing to the steep spectral index of the ISM density power spectrum, sizable density fluctuation amplitudes at the length scale of typical ISM structures (≳ 10 {pc}) will translate to much smaller fluctuations on the scales of an SN photosphere. Therefore, the typical amplitude of time variation due to a nonuniform ISM, of absorption equivalent widths, and of extinction, would be small. As a result, we conclude that nonuniform ISM density should not impact cosmology measurements based on SNe Ia. We apply our predictions based on the ISM density power-law power spectrum to the observations of two highly reddened SNe Ia, SN 2012cu and SN 2014J.

  20. On the Time Variation of Dust Extinction and Gas Absorption for Type Ia Supernovae Observed Through Non-uniform Interstellar Medium

    NASA Astrophysics Data System (ADS)

    Huang, Xiaosheng; Aldering, Gregory; Biederman, Moriah; Herger, Brendan

    2018-01-01

    For Type Ia supernovae (SNe Ia) observed through a non-uniform interstellar medium (ISM) in its host galaxy, we investigate whether the non-uniformity can cause observable time variations in dust extinction and in gas absorption due to the expansion of the SN photosphere with time. We show that, owing to the steep spectral index of the ISM density power spectrum, sizable density fluctuation amplitudes at the length scale of typical ISM structures (>~ 10 pc) will translate to much smaller fluctuations on the scales of a SN photosphere. Therefore the typical amplitude of time variation due to non-uniform ISM, of absorption equivalent widths and of extinction, would be small. As a result, we conclude that non-uniform ISM density should not impact cosmology measurements based on SNe Ia. We apply our predictions based on the ISM density power law power spectrum to the observations of two highly reddened SNe Ia, SN 2012cu and SN 2014J.

  1. Observations of absorption lines from highly ionized atoms. [of interstellar medium

    NASA Technical Reports Server (NTRS)

    Jenkins, Edward B.

    1987-01-01

    In the ultraviolet spectra of hot stars, absorption lines can be seen from highly ionized species in the interstellar medium. Observations of these features which have been very influential in revising the perception of the medium's various physical states, are discussed. The pervasiveness of O 6 absorption lines, coupled with complementary observations of a diffuse background in soft X-rays and EUV radiation, shows that there is an extensive network of low density gas (n approx. few x 0.001/cu cm) existing at coronal temperatures log T = 5.3 or 6.3. Shocks created by supernova explosions or mass loss from early-type stars can propagate freely through space and eventually transfer a large amount of energy to the medium. To create the coronal temperatures, the shocks must have velocities in excess of 150 km/sec; shocks at somewhat lower velocity (v = 100 km/sec) can be directly observed in the lines of Si3. Observations of other lines in the ultraviolet, such as Si 4V and C 5, may highlight the widespread presence of energetic UV radiation from very hot, dwarf stars. More advanced techniques in visible and X-ray astronomical spectroscopy may open up for inspection selected lines from atoms in much higher stages of ionization.

  2. Modeling the Oxygen K Absorption in the Interstellar Medium: An XMM-Newton View of Sco X-1

    NASA Technical Reports Server (NTRS)

    Garcia, J.; Ramirez, J. M.; Kallman, T. R.; Witthoeft, M.; Bautista, M. A.; Mendoza, C.; Palmeri, P.; Quinet, P.

    2011-01-01

    We investigate the absorption structure of the oxygen in the interstellar medium by analyzing XMM-Newton observations of the low mass X-ray binary Sco X-1. We use simple models based on the O I atomic cross section from different sources to fit the data and evaluate the impact of the atomic data in the interpretation of astrophysical observations. We show that relatively small differences in the atomic calculations can yield spurious results. We also show that the most complete and accurate set of atomic cross sections successfully reproduce the observed data in the 21 - 24.5 Angstrom wavelength region of the spectrum. Our fits indicate that the absorption is mainly due to neutral gas with an ionization parameter of Epsilon = 10(exp -4) erg/sq cm, and an oxygen column density of N(sub O) approx. = 8-10 x 10(exp 17)/sq cm. Our models are able to reproduce both the K edge and the K(alpha) absorption line from O I, which are the two main features in this region. We find no conclusive evidence for absorption by other than atomic oxygen.

  3. Synthetic Observations of 21 cm H I Line Profiles from Inhomogeneous Turbulent Interstellar H I Gas with Magnetic Fields

    NASA Astrophysics Data System (ADS)

    Fukui, Yasuo; Hayakawa, Takahiro; Inoue, Tsuyoshi; Torii, Kazufumi; Okamoto, Ryuji; Tachihara, Kengo; Onishi, Toshikazu; Hayashi, Katsuhiro

    2018-06-01

    We carried out synthetic observations of interstellar atomic hydrogen at 21 cm wavelength by utilizing the magnetohydrodynamic numerical simulations of the inhomogeneous turbulent interstellar medium. The cold neutral medium (CNM) shows a significantly clumpy distribution with a small volume filling factor of 3.5%, whereas the warm neutral medium (WNM) has a distinctly different and smooth distribution with a large filling factor of 96.5%. In projection on the sky, the CNM exhibits a highly filamentary distribution with a subparsec width, whereas the WNM shows a smooth, extended distribution. In the H I optical depth, the CNM is dominant and the contribution of the WNM is negligibly small. The CNM has an area covering factor of 30% in projection, while the WNM has a covering factor of 70%. This means that the emission–absorption measurements toward radio continuum compact sources tend to sample the WNM with a probability of 70%, yielding a smaller H I optical depth and a smaller H I column density than those of the bulk H I gas. The emission–absorption measurements, which are significantly affected by the small-scale large fluctuations of the CNM properties, are not suitable for characterizing the bulk H I gas. Larger-beam emission measurements that are able to fully sample the H I gas will provide a better tool for that purpose, if a reliable proxy for hydrogen column density, possibly dust optical depth and gamma rays, is available. The present results provide a step toward precise measurements of the interstellar hydrogen with ∼10% accuracy. This will be crucial in interstellar physics, including identification of the proton–proton interaction in gamma-ray supernova remnants.

  4. Implications of high-velocity interstellar H I absorption features

    NASA Technical Reports Server (NTRS)

    Cowie, L.; York, D. G.; Laurent, C.; Vidal-Madjar, A.

    1979-01-01

    Contributions to the interstellar H I column density at high velocities from immediate postshock gas and from the cooling gas behind a shock are compared. The detection of high-velocity H I in L-epsilon and L-delta for Iota Ori is reported and interpreted as cooling gas behind a shock of 100 km/s velocity. The immediate postshock gas should be observable for shock velocities greater than 200 km/s and permits direct determination of the velocities of adiabatic shocks in the interstellar medium. It is pointed out that interstellar L-alpha and L-beta lines may not have purely Lorentzian profiles if high-velocity H I is a widespread phenomenon.

  5. Perspective: C60+ and laboratory spectroscopy related to diffuse interstellar bands

    NASA Astrophysics Data System (ADS)

    Campbell, E. K.; Maier, J. P.

    2017-04-01

    In the last 30 years, our research has focused on laboratory measurements of the electronic spectra of organic radicals and ions. Many of the species investigated were selected based on their potential astrophysical relevance, particularly in connection with the identification of appealing candidate molecules for the diffuse interstellar absorptions. Notably, carbon chains and derivatives containing hydrogen and nitrogen atoms in their neutral and ionic forms were studied. These data could be obtained after developing appropriate techniques to record spectra at low temperatures relevant to the interstellar medium. The measurement of gas phase laboratory spectra has enabled direct comparisons with astronomical data to be made and though many species were found to have electronic transitions in the visible where the majority of diffuse bands are observed, none of the absorptions matched the prominent interstellar features. In 2015, however, the first carrier molecule was identified: C60 + . This was achieved after the measurement of the electronic spectrum of C60 + -He at 6K in a radiofrequency ion trap.

  6. The interstellar line spectra of zeta Ophiuchi and zeta Persei and their relation to the short wavelength microwave background radiation. Ph.D. Thesis - N. Y. Univ.

    NASA Technical Reports Server (NTRS)

    Bortolot, V. J., Jr.

    1972-01-01

    Thirty-one high dispersion Coude spectrograms of zeta Ophiuchi and seven of zeta Persei were numerically synthesized to produce high resolution, low noise spectra in the interval 3650 A to 4350 that yield data on atomic and molecular absorption in well-defined regions of the interstellar medium. The detection threshold is improved by as much as a factor 5 over single plates. Several interstellar lines were discovered in the zeta Oph - 15km/sec cloud and the zeta Per + 13 km/sec cloud.

  7. Interstellar gas in the Gum Nebula

    NASA Technical Reports Server (NTRS)

    Wallerstein, G.; Jenkins, E. B.; Silk, J.

    1980-01-01

    A survey of the interstellar gas near the Gum Nebula by optical observation of 67 stars at Ca II, 42 stars at Na I, and 14 stars in the UV with the Copernicus satellite provided radial velocities and column densities for all resolved absorption components. Velocity dispersions for gas in the Gum Nebula are not significantly larger than in the general interstellar medium; the ionization structure is predominantly that of an H II region with moderately high ionization. Denser, more highly ionized clouds are concentrated toward the Gum Nebula; these clouds do not show the anomalously high ionization observed in the Vela remnant clouds.

  8. Polarization of submillimetre lines from interstellar medium

    NASA Astrophysics Data System (ADS)

    Zhang, Heshou; Yan, Huirong

    2018-04-01

    Magnetic fields play important roles in many astrophysical processes. However, there is no universal diagnostic for the magnetic fields in the interstellar medium (ISM) and each magnetic tracer has its limitation. Any new detection method is thus valuable. Theoretical studies have shown that submillimetre fine-structure lines are polarized due to atomic alignment by ultraviolet photon-excitation, which opens up a new avenue to probe interstellar magnetic fields. We will, for the first time, perform synthetic observations on the simulated three-dimensional ISM to demonstrate the measurability of the polarization of submillimetre atomic lines. The maximum polarization for different absorption and emission lines expected from various sources, including star-forming regions are provided. Our results demonstrate that the polarization of submillimetre atomic lines is a powerful magnetic tracer and add great value to the observational studies of the submilimetre astronomy.

  9. Constraints on cosmic silicates

    NASA Astrophysics Data System (ADS)

    Ossenkopf, V.; Henning, Th.; Mathis, J. S.

    1992-08-01

    Observational determinations of opacities of circumstellar silicates, relative to the peak value near 10 microns, are used to estimate the optical constants n and k, the real and imaginary parts of the index of refraction. Circumstellar dust is modified by processing within the interstellar medium. This leads to higher band strengths and a somewhat larger ratio of the opacities at the 18 and 10-micron peaks, compared with circumstellar silicates. By using an effective-medium theory, we calculate the effects of small spherical inclusions of various materials (various oxides, sulfides, carbides, amorphous carbon, and metallic iron) upon silicate opacities. Some of these can increase the absorption coefficient k in the 2-8 micron region appreciably, as is needed to reconcile laboratory silicate opacities with observations of both the interstellar medium and envelopes around late-type stars. We give tables of two sets of optical constants for warm oxygen-deficient and cool oxygen-rich silicates, representative for circumstellar and interstellar silicates. The required opacity in the 2-8 micron region is provided by iron and magnetite.

  10. UV action spectroscopy of protonated PAH derivatives. Methyl substituted quinolines

    NASA Astrophysics Data System (ADS)

    Klærke, B.; Holm, A. I. S.; Andersen, L. H.

    2011-08-01

    Aims: We investigate the production of molecular photofragments upon UV excitation of PAH derivatives, relevant for the interstellar medium. Methods: The action absorption spectra of protonated gas-phase methyl-substituted quinolines (CH3 - C9H7NH+) have been recorded in the 215-338 nm spectral range using the electrostatic storage ring ELISA, an electrospray ion source and 3 ns UV laser pulses. Results: It is shown that the absorption profile is both redshifted and broadened when moving the methyl group from the heterocycle containing nitrogen to the homoatomic ring. The absorption profiles are explained by TD-DFT calculations. The dissociation time of the studied molecules is found to be of several milliseconds at 230 nm and it is shown that after redistribution of the absorbed energy the molecules dissociate in several channels. The dissociation time found is an order of magnitude faster than the estimated IR relaxation time. Photophysical properties of both nitrogen containing and methyl-substituted PAHs are interesting in an astrophysical context in connection with identifying the aromatic component of the interstellar medium.

  11. Hydrogen and deuterium in the local interstellar medium

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Murthy, J.N.

    1987-01-01

    This work reports on the results of a series of IUE observations of interstellar HI and DI Ly..cap alpha.. absorption against the chromospheric Ly..cap alpha.. emission of the nearby late-type stars ..cap alpha.. Cen B(1.3 pc), epsilon Eri (3.3 pc), Procyon (3.5 pc), Altair (5.1 pc), Capella (13.2 pc), and HR 1099 (33 pc). The density, velocity dispersion, and bulk velocity of the neutral hydrogen along the line of sight to each of these stars was derived. Lower limits were placed on the deuterium-to-hydrogen (D/H) ratio towards the same stars. These IUE results are generally consistent with previous observations ofmore » the same stars with the Copernicus satellite showing that this modeling procedure is independent of stellar variations over a period of several years. The HI absorption profile towards Altair shows a broad saturated core and steep line wings, consistent with a multicomponent interstellar medium in that direction. The bulk velocities towards the other stars are consistent with a bulk flow from the approximate direction of the galactic center but do show local variations from a uniform flow, possibly indicating a complicated velocity structure even in the solar neighborhood. Interstellar deuterium is detected towards every star except Altair and the derived values for the D/H ratio are consistent with those previously found with Copernicus.« less

  12. Temporal Variability of Interstellar Na I Absorption toward the Monoceros Loop

    NASA Astrophysics Data System (ADS)

    Dirks, Cody; Meyer, David M.

    2016-03-01

    We report the first evidence of temporal variability in the interstellar Na I absorption toward HD 47240, which lies behind the Monoceros Loop supernova remnant (SNR). Analysis of multi-epoch Kitt Peak coudé feed spectra from this sight line taken over an eight-year period reveals significant variation in both the observed column density and the central velocities of the high-velocity gas components in these spectra. Given the ˜1.3 mas yr-1 proper motion of HD 47240 and an SNR distance of 1.6 kpc, this variation would imply ˜10 au fluctuations within the SNR shell. Similar variations have been previously reported in the Vela SNR, suggesting a connection between the expanding SNR gas and the observed variations. We speculate on the potential nature of the observed variations toward HD 47240 in the context of the expanding remnant gas interacting with the ambient interstellar medium.

  13. Connecting the Interstellar Gas and Dust Properties in Distant Galaxies Using Quasar Absorption Systems

    NASA Technical Reports Server (NTRS)

    Aller, Monique C.; Dwek, Eliahu; Kulkarni, Varsha P.; York, Donald G.; Welty, Daniel E.; Vladilo, Giovanni; Som, Debopam; Lackey, Kyle; Dwek, Eli; Beiranvand, Nassim; hide

    2016-01-01

    Gas and dust grains are fundamental components of the interstellar medium and significantly impact many of the physical processes driving galaxy evolution, such as star-formation, and the heating, cooling, and ionization of the interstellar material. Quasar absorption systems (QASs), which trace intervening galaxies along the sightlines to luminous quasars, provide a valuable tool to directly study the properties of the interstellar gas and dust in distant, normal galaxies. We have established the presence of silicate dust grains in at least some gas-rich QASs, and find that they exist at higher optical depths than expected for diffuse gas in the Milky Way. Differences in the absorption feature shapes additionally suggest variations in the silicate dust grain properties, such as in the level of grain crystallinity, from system-to-system. We present results from a study of the gas and dust properties of QASs with adequate archival IR data to probe the silicate dust grain properties. We discuss our measurements of the strengths of the 10 and 18 micron silicate dust absorption features in the QASs, and constraints on the grain properties (e.g., composition, shape, crystallinity) based on fitted silicate profile templates. We investigate correlations between silicate dust abundance, reddening, and gas metallicity, which will yield valuable insights into the history of star formation and chemical enrichment in galaxies.

  14. Ultraviolet observations of cool stars. V - The local density of interstellar matter

    NASA Technical Reports Server (NTRS)

    Mcclintock, W.; Henry, R. C.; Moos, H. W.; Linsky, J. L.

    1976-01-01

    A high-resolution Copernicus observation of the chromospheric Ly-alpha emission line of the nearby (3.3 pc) K dwarf epsilon Eri sets limits on the velocity, the velocity dispersion, and the density of atomic hydrogen in the local interstellar medium. Analysis shows that the interstellar Ly-alpha absorption is on the flat portion of the curve of growth. An upper limit of 0.12 per cu cm is derived for the atomic-hydrogen density. The value of this density is 0.08 (plus or minus 0.04 per cu cm if the velocity-dispersion parameter is 9 km/s, corresponding to a temperature of 5000 K. Also, the interstellar deuterium Ly-alpha line may be present in the spectrum.

  15. Laboratory Investigations into the Spectra and Origin of Propylene Oxide: A Chiral Interstellar Molecule

    NASA Technical Reports Server (NTRS)

    Hudson, R. L.; Loeffler, M. J.; Yocum, K. M.

    2017-01-01

    Propylene oxide was recently identified in the interstellar medium, but few laboratory results are available for this molecule to guide current and future investigations. To address this situation, here we report infrared spectra, absorption coefficients, and band strengths of solid propylene oxide along with the first measurement of its refractive index and a calculation of its density, all for the amorphous solid form of the compound. We present the first experimental results showing a low-temperature formation pathway for propylene oxide near 10 K in interstellar ice analogs. Connections are drawn between our new results and the interstellar molecules propanal and acetone, and predictions are made about several as yet unobserved vinyl alcohols and methylketene. Comparisons are given to earlier laboratory work and a few applications to interstellar and solar system astrochemistry are described.

  16. Laboratory Investigations into the Spectra and Origin of Propylene Oxide: A Chiral Interstellar Molecule

    NASA Astrophysics Data System (ADS)

    Hudson, R. L.; Loeffler, M. J.; Yocum, K. M.

    2017-02-01

    Propylene oxide was recently identified in the interstellar medium, but few laboratory results are available for this molecule to guide current and future investigations. To address this situation, here we report infrared spectra, absorption coefficients, and band strengths of solid propylene oxide along with the first measurement of its refractive index and a calculation of its density, all for the amorphous solid form of the compound. We present the first experimental results showing a low-temperature formation pathway for propylene oxide near 10 K in interstellar ice analogs. Connections are drawn between our new results and the interstellar molecules propanal and acetone, and predictions are made about several as yet unobserved vinyl alcohols and methylketene. Comparisons are given to earlier laboratory work and a few applications to interstellar and solar system astrochemistry are described.

  17. Interstellar grain chemistry and organic molecules

    NASA Technical Reports Server (NTRS)

    Allamandola, L. J.; Sandford, S. A.

    1990-01-01

    The detection of prominant infrared absorption bands at 3250, 2170, 2138, 1670 and 1470 cm(-1) (3.08, 4.61, 4.677, 5.99 and 6.80 micron m) associated with molecular clouds show that mixed molecular (icy) grain mantles are an important component of the interstellar dust in the dense interstellar medium. These ices, which contain many organic molecules, may also be the production site of the more complex organic grain mantles detected in the diffuse interstellar medium. Theoretical calculations employing gas phase as well as grain surface reactions predict that the ices should be dominated only by the simple molecules H2O, H2CO, N2, CO, O2, NH3, CH4, possibly CH3OH, and their deuterated counterparts. However, spectroscopic observations in the 2500 to 1250 cm(-1)(4 to 8 micron m) range show substantial variation from source reactions alone. By comparing these astronomical spectra with the spectra of laboratory-produced analogs of interstellar ices, one can determine the composition and abundance of the materials frozen on the grains in dense clouds. Experiments are described in which the chemical evolution of an interstellar ice analog is determined during irradiation and subsequent warm-up. Particular attention is paid to the types of moderately complex organic materials produced during these experiments which are likely to be present in interstellar grains and cometary ices.

  18. Hydrogen And Deuterium In The Local Interstellar Medium.

    NASA Astrophysics Data System (ADS)

    Murthy, Jayant

    2016-03-01

    In this work we report on the results of a series of IUE observations of interstellar HI and DI Ly alpha absorption against the chromospheric Lyalpha emission of the nearby late -type stars alpha Cen B(1.3 pc), epsilon Eri (3.3 pc), Procyon (3.5 pc), Altair (5.1 pc), Capella (13.2 pc), and HR 1099 (33 pc). From these observations we have derived the density, velocity dispersion, and bulk velocity of the neutral hydrogen along the line of sight to each of these stars. We have also placed lower limits on the deuterium to hydrogen (D/H) ratio towards the same stars. Our IUE results are generally consistent with previous observations of the same stars with the Copernicus satellite showing that our modelling procedure is independent of stellar variations over a period of several years. The HI absorption profile towards Altair shows a broad saturated core and steep line wings, consistent with a multicomponent interstellar medium in that direction. The bulk velocities towards the other stars are consistent with a bulk flow from the approximate direction of the galactic center but do show local variations from a uniform flow, possibly indicating a complicated velocity structure even in the solar neighbourhood. Interstellar deuterium is detected towards every star except Altair and the derived values for the D/H ratio are consistent with those previously found with Copernicus. In particular, we confirm the strong lower limit of 1.9 times 10^{-5} on the D/H ratio found towards Capella and we also place a lower limit of 1.5 times 10 ^{-5} on the D/H ratio towards alpha Cen B. Although an interstellar D/H ratio of 2 times 10^ {-5} is consistent with all the observations of late-type stars, the lower D/H ratios found towards several hot stars may indicate real variations in the D/H ratio in the local interstellar medium. Finally, we discuss the reality of a step in the cosmic background and of several galactic emission lines found by Auriemma et al. (1984) and show that, in fact, they are both artifacts of the data and of the analysis.

  19. Polycyclic Aromatic Hydrocarbons

    NASA Technical Reports Server (NTRS)

    Salama, Farid

    2010-01-01

    Carbonaceous materials play an important role in space. Polycyclic Aromatic Hydrocarbons (PAHs) are a ubiquitous component of the carbonaceous materials. PAHs are the best-known candidates to account for the IR emission bands. They are also thought to be among the carriers of the diffuse interstellar absorption bands (DIBs). PAH ionization states reflect the ionization balance of the medium while PAH size, composition, and structure reflect the energetic and chemical history of the medium. A major challenge is to reproduce in the laboratory the physical conditions that exist in the emission and absorption interstellar zones. The harsh physical conditions of the ISM -low temperature, collisionless, strong UV radiation fields- are simulated in the laboratory by associating a molecular beam with an ionizing discharge to generate a cold plasma expansion. PAH ions and radicals are formed from the neutral precursors in an isolated environment at low temperature and probed with high-sensitivity cavity ringdown spectroscopy in the NUV-NIR range. Carbon nanoparticles are also formed during the short residence time of the precursors in the plasma and are characterized with time-offlight mass spectrometry. These experiments provide unique information on the spectra of large carbonaceous molecules and ions in the gas phase that can now be directly compared to interstellar and circumstellar observations (IR emission bands, DIBs, extinction curve). These findings also hold great potential for understanding the formation process of interstellar carbonaceous grains. We will review recent progress in the experimental and theoretical studies of PAHs, compare the laboratory data with astronomical observations and discuss the global implications.

  20. Laboratory Investigations into the Spectra and Origin of Propylene Oxide: A Chiral Interstellar Molecule

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hudson, R. L.; Loeffler, M. J.; Yocum, K. M., E-mail: Reggie.Hudson@nasa.gov

    Propylene oxide was recently identified in the interstellar medium, but few laboratory results are available for this molecule to guide current and future investigations. To address this situation, here we report infrared spectra, absorption coefficients, and band strengths of solid propylene oxide along with the first measurement of its refractive index and a calculation of its density, all for the amorphous solid form of the compound. We present the first experimental results showing a low-temperature formation pathway for propylene oxide near 10 K in interstellar ice analogs. Connections are drawn between our new results and the interstellar molecules propanal andmore » acetone, and predictions are made about several as yet unobserved vinyl alcohols and methylketene. Comparisons are given to earlier laboratory work and a few applications to interstellar and solar system astrochemistry are described.« less

  1. Studies of solid carbon dioxide in interstellar ice analogs subject to thermal processing

    NASA Astrophysics Data System (ADS)

    White, Douglas W.

    2010-09-01

    Solid CO2 has been detected in many lines of sight in the interstellar medium from infrared observatories. Spectral profiles from space-based observatories have suggested that CO2 on icy grain mantles is mixed with other common molecules such as H2O and CH 3OH in interstellar regions and that thermal annealing has occurred. The vibrational mode at 658 cm-1 (15.2 mum) is suspected to be a powerful diagnostic tool as to the composition of species on icy grain mantles as well as thermal histories. However, previous studies have not systematically investigated ice composition and temperature. Laboratory spectra of interstellar ice analogs have been created in this study order to better understand the physical properties of solid CO2 in these interstellar environments. Existing databases of ice composition studies and effects of ice thermal history were updated in this study to include a more systematic approach. The 658 cm-1 (15.2 mum) bending mode feature of CO2 is examined here and the subsequent astrophysical implications stated. In the first set of experiments, 47 mixtures of H2O,CH3OH, andCO2 were slowly warmed and mid-infrared absorption spectra were recorded at 5K intervals. The second set of experiments involved examining the CO2 bending mode feature of 10 different CO2-containing ice mixtures at different temperatures where ice segregation was suspected. In these experiments, the ice mixtures were slowly heated to the desired temperature for increasing time intervals before cooling down and recording mid-IR absorption spectra. These studies may be used to analyze IR data from space-based observatories such as the Spitzer Space Telescope Infrared Spectrograph as well other future IR observations of the interstellar medium. Finally, mass spectroscopy measurements were taken from temperature programmed desorption (TPD) experiments performed on several binary mixtures of H2O + CO2 and CH 3OH + CO2. Physical properties such as desorption energy of CO2 can be determined from the TPD traces of these experiments. The work provided here addresses the physical properties of solid CO 2 thermally processed in ice mixtures in interstellar environments by laboratory simulations spectroscopically analyzed by mid-infrared absorption profiles and TPD.

  2. Observations of the interstellar medium with IUE

    NASA Technical Reports Server (NTRS)

    Jenkins, E. B.

    1981-01-01

    Limitations of the International Ultraviolet Explorer (IUE) are discussed, as well as improved powers of research in these areas: (1) Si and C IV doublet absorptions in the high dispersion stellar spectra of distant stars; (2) observation of spectra outside the galactic plans; (3) high velocity gas.

  3. Spectroscopy of neutral and ionized PAHs. From laboratory studies to astronomical observations

    NASA Technical Reports Server (NTRS)

    Salama, Farid

    2005-01-01

    Polycyclic Aromatic Hydrocarbons (PAHs) are an important and ubiquitous component of carbon-bearing materials in space. PAHs are the best-known candidates to account for the IR emission bands (UIR bands) and PAH spectral features are now being used as new probes of the ISM. PAHs are also thought to be among the carriers of the diffuse interstellar absorption bands (DIBs). In the model dealing with the interstellar spectral features, PAHs are present as a mixture of radicals, ions and neutral species. PAH ionization states reflect the ionization balance of the medium while PAH size, composition, and structure reflect the energetic and chemical history of the medium. A major challenge for laboratory astrochemistry is to reproduce (in a realistic way) the physical conditions that are associated with the emission and absorption interstellar zones. An extensive laboratory program has been developed at NASA Ames to assess the physical and chemical properties of PAHs in such environments and to describe how they influence the radiation and energy balance in space and the interstellar chemistry. PAHs, neutrals and ions, are expanded through a pulsed discharge nozzle (PDN) and probed with high-sensitivity cavity ringdown spectroscopy (CRDS). These laboratory experiments provide unique information on the spectra of free, cold large carbon molecules and ions in the gas phase from the ultraviolet and visible range to the near-infrared range. Intrinsic band profiles and band positions of cold gas-phase PAHs can now be measured with high-sensitivity spectroscopy and directly compared to the astronomical data. Preliminary conclusions from the comparison of the laboratory data with astronomical observations of interstellar and circumstellar environments will also be discussed.

  4. The effect of interstellar absorption on measurements of the baryon acoustic peak in the Lyman α forest

    DOE PAGES

    Vadai, Yishay; Poznanski, Dovi; Baron, Dalya; ...

    2017-08-14

    In recent years, the autocorrelation of the hydrogen Lyman α forest has been used to observe the baryon acoustic peak at redshift 2 < z < 3.5 using tens of thousands of QSO spectra from the BOSS survey. However, the interstellar medium of the Milky Way introduces absorption lines into the spectrum of any extragalactic source. These lines, while weak and undetectable in a single BOSS spectrum, could potentially bias the cosmological signal. In order to examine this, we generate absorption line maps by stacking over a million spectra of galaxies and QSOs. Here, we find that the systematics introducedmore » are too small to affect the current accuracy of the baryon acoustic peak, but might be relevant to future surveys such as the Dark Energy Spectroscopic Instrument (DESI). We outline a method to account for this with future data sets.« less

  5. Near-Infrared Band Strengths of Molecules Diluted in N2 and H20 Ice Mixtures Relevant to Interstellar and Planetary Ices

    NASA Technical Reports Server (NTRS)

    Richey, C. R.; Richey, Christina R.

    2012-01-01

    In order to determine the column density of a component of an ice from its infrared absorption features, the strengths of these features must be known. The peak positions, widths, profiles, and strengths of a certain ice component's infrared absorption features are affected be the overall composition of the ice. Many satellites within the solar system have surfaces that are dominated by H2O or N2 and ices in the interstellar medium (ISM) are primarily composed of H2O. The experiments presented here focus on the near-infrared absorption features of CO, CO2, CH4, and NH3 (nu=10,000-4,000/cm, lambda=1-2.5 microns) and the effects of diluting these molecules in N2 or H2O ice (mixture ratio of 5:1). This is a continuation of previous results published by our research group.

  6. The effect of interstellar absorption on measurements of the baryon acoustic peak in the Lyman α forest

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Vadai, Yishay; Poznanski, Dovi; Baron, Dalya

    In recent years, the autocorrelation of the hydrogen Lyman α forest has been used to observe the baryon acoustic peak at redshift 2 < z < 3.5 using tens of thousands of QSO spectra from the BOSS survey. However, the interstellar medium of the Milky Way introduces absorption lines into the spectrum of any extragalactic source. These lines, while weak and undetectable in a single BOSS spectrum, could potentially bias the cosmological signal. In order to examine this, we generate absorption line maps by stacking over a million spectra of galaxies and QSOs. Here, we find that the systematics introducedmore » are too small to affect the current accuracy of the baryon acoustic peak, but might be relevant to future surveys such as the Dark Energy Spectroscopic Instrument (DESI). We outline a method to account for this with future data sets.« less

  7. Searching for extra-terrestrial civilizations

    NASA Technical Reports Server (NTRS)

    Gindilis, L. M.

    1974-01-01

    The probability of radio interchange with extraterrestrial civilizations is discussed. Difficulties constitute absorption, scattering, and dispersion of signals by the rarified interstellar medium as well as the deciphering of received signals and convergence of semantic concept. A cybernetic approach considers searching for signals that develop from astroengineering activities of extraterrestrial civilizations.

  8. Radiative thermal conduction fronts

    NASA Technical Reports Server (NTRS)

    Borkowski, Kazimierz J.; Balbus, Steven A.; Fristrom, Carl C.

    1990-01-01

    The discovery of the O VI interstellar absorption lines in our Galaxy by the Copernicus observatory was a turning point in our understanding of the Interstellar Medium (ISM). It implied the presence of widespread hot (approx. 10 to the 6th power K) gas in disk galaxies. The detection of highly ionized species in quasi-stellar objects' absorption spectra may be the first indirect observation of this hot phase in external disk galaxies. Previous efforts to understand extensive O VI absorption line data from our Galaxy were not very successful in locating the regions where this absorption originates. The location at interfaces between evaporating ISM clouds and hot gas was favored, but recent studies of steady-state conduction fronts in spherical clouds by Ballet, Arnaud, and Rothenflug (1986) and Bohringer and Hartquist (1987) rejected evaporative fronts as the absorption sites. Researchers report here on time-dependent nonequilibrium calculations of planar conductive fronts whose properties match well with observations, and suggest reasons for the difference between the researchers' results and the above. They included magnetic fields in additional models, not reported here, and the conclusions are not affected by their presence.

  9. Radiative thermal conduction fronts

    NASA Astrophysics Data System (ADS)

    Borkowski, Kazimierz J.; Balbus, Steven A.; Fristrom, Carl C.

    1990-07-01

    The discovery of the O VI interstellar absorption lines in our Galaxy by the Copernicus observatory was a turning point in our understanding of the Interstellar Medium (ISM). It implied the presence of widespread hot (approx. 10 to the 6th power K) gas in disk galaxies. The detection of highly ionized species in quasi-stellar objects' absorption spectra may be the first indirect observation of this hot phase in external disk galaxies. Previous efforts to understand extensive O VI absorption line data from our Galaxy were not very successful in locating the regions where this absorption originates. The location at interfaces between evaporating ISM clouds and hot gas was favored, but recent studies of steady-state conduction fronts in spherical clouds by Ballet, Arnaud, and Rothenflug (1986) and Bohringer and Hartquist (1987) rejected evaporative fronts as the absorption sites. Researchers report here on time-dependent nonequilibrium calculations of planar conductive fronts whose properties match well with observations, and suggest reasons for the difference between the researchers' results and the above. They included magnetic fields in additional models, not reported here, and the conclusions are not affected by their presence.

  10. VARIATIONS BETWEEN DUST AND GAS IN THE DIFFUSE INTERSTELLAR MEDIUM. II. SEARCH FOR COLD GAS

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Reach, William T.; Heiles, Carl; Bernard, Jean-Philippe, E-mail: wreach@sofia.usra.edu

    2017-01-01

    The content of interstellar clouds, in particular the inventory of diffuse molecular gas, remains uncertain. We identified a sample of isolated clouds, approximately 100 M {sub ⊙} in size, and used the dust content to estimate the total amount of gas. In Paper I, the total inferred gas content was found significantly larger than that seen in 21 cm emission measurements of H i. In this paper we test the hypothesis that the apparent excess “dark” gas is cold H i, which would be evident in absorption but not in emission due to line saturation. The results show that theremore » is not enough 21 cm absorption toward the clouds to explain the total amount of “dark” gas.« less

  11. Mid and Near-IR Absorption Spectra of PAH Neutrals and Ions in H20 Ice to Facilitate their Astronomical Detection

    NASA Technical Reports Server (NTRS)

    Bernstein, Max P.; Sandford, Scott A.; Allamandola, Louis J.

    2004-01-01

    Polycyclic aromatic hydrocarbons (PAHs) are believed to be the most abundant and widespread class of organic compounds in the universe, having been observed in emission towards energetic regions and absorption towards colder ones.We will present IR spectra of PAHs and their cations in H20 ice measured in the laboratory in the hopes that this will facilitate the detection of these features in the interstellar medium.

  12. Near Infrared Emission of Highly Electronically Excited CO: A Sensitive Probe to Study the Interstellar Medium??

    NASA Technical Reports Server (NTRS)

    Gudipati, Murthy S.

    2002-01-01

    Among the various spectroscopic features of the second most abundant molecule in the space, CO, "the triplet - triplet transitions involving the lowest triplet state a(sup 3)II and the higher-lying a(sup 1)3 SIGMA (sup +), d(sup 3) (DELTA), e (sup 3) SIGMA (sup -) states spanning near-UV to mid-IR spectral range" have so far not been explored in astrophysical observations. The energies of these transitions are highly sensitive to the surroundings in which CO exists, i.e. gas-phase, polar or non-polar condensed phase. It is proposed here that these triplet-triplet emission/absorption bands can be used as a sensitive probe to investigate the local environments of CO, whether in the planetary atmosphere, stellar atmosphere or interstellar medium.

  13. Changes in interstellar atomic abundances from the galactic plane to the halo

    NASA Technical Reports Server (NTRS)

    Jenkins, E. B.

    1982-01-01

    A few, specially selected interstellar absorption lines were measured in the high resolution, far ultraviolet spectra of 200 O and B type stars observed by the International Ultraviolet Explorer (IUE). For lines of sight extending beyond about 500 pc from the galactic plane, the abundance of singly ionized iron atoms increases relative to singly ionized sulfur. However, the relative abundances of singly ionized sulfur, silicon and aluminum do not seem to change appreciably. An explanation for the apparent increase of iron is the partial sputtering of material off the surfaces of dust grains by interstellar shocks. Another possibility might be that the ejecta from type I supernovae enrich the low density medium in the halo with iron.

  14. Molecular Astrophysics from Space: the Physical and Chemical Effects of Star Formation and the Destruction of Planetary Systems around Evolved Stars

    NASA Technical Reports Server (NTRS)

    Neufeld, David

    2005-01-01

    The research conducted during the reporting period is grouped into three sections: 1) Warm molecular gas in the interstellar medium (ISM); 2) Absorption line studies of "cold" molecular clouds; 3) Vaporization of comets around the AGB star IRC+10216.

  15. Gas Phase Spectroscopy of Cold PAH Ions: Contribution to the Interstellar Extinction and the Diffuse Interstellar Bands

    NASA Technical Reports Server (NTRS)

    Biennier, L.; Salama, F.; Allamandola, L. J.; Scherer, J. J.; OKeefe, A.

    2002-01-01

    Polycyclic Aromatic Hydrocarbon molecules (PAHs) are ubiquitous in the interstellar medium (ISM) and constitute the building blocks of interstellar dust grains. Despite their inferred important role in mediating the energetic and chemical processes in thc ISM, their exact contribution to the interstellar extinction, and in particular to the diffuse interstellar bands (DIBs) remains unclear. The DIBs are spectral absorption features observed in the line of sight of stars that are obscured by diffuse interstellar clouds. More than 200 bands have been reported to date spanning from the near UV to the near IR with bandwidths ranging from 0.4 to 40 Angstroms (Tielens & Snow 1995). The present consensus is that the DIBs arise from free flying, gas-phase, organic molecules and/or ions that are abundant under the typical conditions reigning in the diffuse ISM. PAHs have been proposed as possible carriers (Allamandola et al. 1985; Leger & DHendecourt 1985). The PAH hypothesis is consistent with the cosmic abundance of Carbon and Hydrogen and with the required photostability of the DIB carriers against the strong VUV radiation field in the diffuse interstellar clouds. A significant fraction of PAHs is expected to be ionized in the diffuse ISM.

  16. High Resolution Spectroscopy in the Far UV: Observations of the Interstellar Medium by IMAPS on ORFEUS-SPAS

    NASA Astrophysics Data System (ADS)

    Jenkins, Edward B.; Reale, Michael A.; Zucchino, Paul M.; Sofia, Ulysses J.

    1996-09-01

    The Interstellar Medium Absorption Profile Spectrograph (IMAPS) is an objectivegrating, echelle spectrograph built to observe the spectra of bright, hot stars over the spectral region 950 1150Å, below the wavelength coverage of HST. This instrument has a high wavelength resolving power, making it especially well suited for studies of interstellar absorption lines. Following a series of sounding rocket flights in the 1980's, IMAPS flew on its first Shuttle-launched orbital mission in September 1993, as a partner in the ORFEUS-SPAS program sponsored by the US and German Space Agencies, NASA and DARA. On ORFEUS-SPAS, IMAPS spent one day of orbital time observing the spectra of 10 O- and early B-type stars. In addition to outlining how IMAPS works, we document some special problems that had an influence on the data, and we explain the specific steps in data reduction that were employed to overcome them. This discussion serves as a basic source of information for people who may use archival data from this flight, as well as those who are interested in some specific properties of the data that will be presented in forthcoming research papers. IMAPS is scheduled to fly once again on ORFEUS-SPAS in late 1996. On this flight, 50% of the observing time available for IMAPS and two other spectrographs on the mission will be available to guest observers.

  17. Radio Transients and their Environments

    NASA Astrophysics Data System (ADS)

    Rajwade, Kaustubh

    The interstellar medium is the principal ingredient for star formation and hence, it is necessary to study the properties of the interstellar medium. Radio sources in our Galaxy and beyond can be used as a probe of the intervening medium. In this dissertation, I present an attempt to use radio transients like pulsars and fast radio bursts and their interactions with the environment around them to study interstellar medium. We show that radio emission from pulsars is absorbed by dense ionized gas in their surroundings, causing a turnover in their flux density spectrum that can be used to reveal information about the absorbing medium. We carried out a multi-wavelength observation campaign of PSR B0611+22. The pulsar shows peculiar emission variability that is broadband in nature. Moreover, we show that the flux density spectrum of B0611+22 is unusual which can be attributed to the environment it lies in. We also present predictions of fast radio burst detections from upcoming low frequency surveys. We show that future surveys with the Canadian Hydrogen Intensity Mapping Experiment (CHIME) will be able to detect 1 radio burst per hour even if the radio burst undergoes significant absorption and scattering. Finally, we present our results of pulsar population synthesis to understand the pulsar population in the Galactic Centre (GC) and place conservative upper limits on the GC pulsar population. We obtain an upper limit of 52 CPs and 10,000 MSPs in the GC. The dense, ionized environment of the GC gives us the opportunity to predict the probability of detection by considering scattering and absorption as the principle sources of flux mitigation. Our results suggest that the optimal frequency range for a pulsar survey in the GC is 9-14 GHz. A larger sample of absorbed spectrum pulsars and fast radio bursts will be beneficial not only for the study of emission processes but also for discerning the properties of the material permeating through space.

  18. Organic molecules in translucent interstellar clouds.

    PubMed

    Krełowski, Jacek

    2014-09-01

    Absorption spectra of translucent interstellar clouds contain many known molecular bands of CN, CH+, CH, OH, OH(+), NH, C2 and C3. Moreover, one can observe more than 400 unidentified absorption features, known as diffuse interstellar bands (DIBs), commonly believed to be carried by complex, carbon-bearing molecules. DIBs have been observed in extragalactic sources as well. High S/N spectra allow to determine precisely the corresponding column densities of the identified molecules, rotational temperatures which differ significantly from object to object in cases of centrosymmetric molecular species, and even the (12)C/(13)C abundance ratio. Despite many laboratory based studies of possible DIB carriers, it has not been possible to unambiguously link these bands to specific species. An identification of DIBs would substantially contribute to our understanding of chemical processes in the diffuse interstellar medium. The presence of substructures inside DIB profiles supports the idea that DIBs are very likely features of gas phase molecules. So far only three out of more than 400 DIBs have been linked to specific molecules but none of these links was confirmed beyond doubt. A DIB identification clearly requires a close cooperation between observers and experimentalists. The review presents the state-of-the-art of the investigations of the chemistry of interstellar translucent clouds i.e. how far our observations are sufficient to allow some hints concerning the chemistry of, the most common in the Galaxy, translucent interstellar clouds, likely situated quite far from the sources of radiation (stars).

  19. On the Detectability of CO Molecules in the Interstellar Medium via X-Ray Spectroscopy

    NASA Technical Reports Server (NTRS)

    Joachimi, Katerine; Gatuzz, Efrain; Garcia, Javier; Kallman, Timothy R.

    2016-01-01

    We present a study of the detectability of CO molecules in the Galactic interstellar medium using high-resolution X-ray spectra obtained with the XMM-Newton Reflection Grating Spectrometer. We analysed 10 bright low mass X-ray binaries (LMXBs) to study the CO contribution in their line of sights. A total of 25 observations were fitted with the ISMabs X-ray absorption model which includes photoabsorption cross-sections for Oi, Oii, Oiii and CO. We performed a Monte Carlo (MC) simulation analysis of the goodness of fit in order to estimate the significance of the CO detection. We determine that the statistical analysis prevents a significant detection of CO molecular X-ray absorption features, except for the lines of sight towards XTE J1718-330 and 4U 1636-53. In the case of XTE J1817-330, this is the first report of the presence of CO along its line of sight. Our results reinforce the conclusion that molecules have a minor contribution to the absorption features in the O K-edge spectral region. We estimate a CO column density lower limit to perform a significant detection with XMM-Newton of N(CO) greater than 6 x 10(exp 16) per sq cm for typical exposure times.

  20. Accurate oscillator strengths for ultraviolet lines of Ar I - Implications for interstellar material

    NASA Technical Reports Server (NTRS)

    Federman, S. R.; Beideck, D. J.; Schectman, R. M.; York, D. G.

    1992-01-01

    Analysis of absorption from interstellar Ar I in lightly reddened lines of sight provides information on the warm and hot components of the interstellar medium near the sun. The details of the analysis are limited by the quality of the atomic data. Accurate oscillator strengths for the Ar I lines at 1048 and 1067 A and the astrophysical implications are presented. From lifetimes measured with beam-foil spectroscopy, an f-value for 1048 A of 0.257 +/- 0.013 is obtained. Through the use of a semiempirical formalism for treating singlet-triplet mixing, an oscillator strength of 0.064 +/- 0.003 is derived for 1067 A. Because of the accuracy of the results, the conclusions of York and colleagues from spectra taken with the Copernicus satellite are strengthened. In particular, for interstellar gas in the solar neighborhood, argon has a solar abundance, and the warm, neutral material is not pervasive.

  1. Interstellar silicate dust in the z = 0.685 absorber toward TXS 0218+357

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Aller, Monique C.; Kulkarni, Varsha P.; Liger, Nicholas

    2014-04-10

    We report the detection of interstellar silicate dust in the z {sub abs} = 0.685 absorber along the sightline toward the gravitationally lensed blazar TXS 0218+357. Using Spitzer Space Telescope Infrared Spectrograph data, we detect the 10 μm silicate absorption feature with a detection significance of 10.7σ. We fit laboratory-derived silicate dust profile templates obtained from the literature to the observed 10 μm absorption feature and find that the best single-mineral fit is obtained using an amorphous olivine template with a measured peak optical depth of τ{sub 10} = 0.49 ± 0.02, which rises to τ{sub 10} ∼ 0.67 ±more » 0.04 if the covering factor is taken into account. We also detected the 18 μm silicate absorption feature in our data with a >3σ significance. Due to the proximity of the 18 μm absorption feature to the edge of our covered spectral range, and associated uncertainty about the shape of the quasar continuum normalization near 18 μm, we do not independently fit this feature. We find, however, that the shape and depth of the 18 μm silicate absorption are well matched to the amorphous olivine template prediction, given the optical depth inferred for the 10 μm feature. The measured 10 μm peak optical depth in this absorber is significantly higher than those found in previously studied quasar absorption systems. However, the reddening, 21 cm absorption, and velocity spread of Mg II are not outliers relative to other studied absorption systems. This high optical depth may be evidence for variations in dust grain properties in the interstellar medium between this and the previously studied high redshift galaxies.« less

  2. PAHs and the Diffuse Interstellar Bands. What have we Learned from the New Generation of Laboratory and Observational Studies?

    NASA Technical Reports Server (NTRS)

    Salama, Farid

    2005-01-01

    Polycyclic Aromatic Hydrocarbons (PAHs) are an important and ubiquitous component of carbon-bearing materials in space. PAHs are the best-known candidates to account for the IR emission bands (UIR bands) and PAH spectral features are now being used as new probes of the ISM. PAHs are also thought to be among the carriers of the diffuse interstellar absorption bands (DIBs). In the model dealing with the interstellar spectral features, PAHs are present as a mixture of radicals, ions and neutral species. PAH ionization states reflect the ionization balance of the medium while PAH size, composition, and structure reflect the energetic and chemical history of the medium. A major challenge for laboratory astrophysics is to reproduce (in a realistic way) the physical conditions that exist in the emission and/or absorption interstellar zones, An extensive laboratory program has been developed at NASA Ames to characterize the physical and chemical properties of PAHs in astrophysical environments and to describe how they influence the radiation and energy balance in space and the interstellar chemistry. In particular, laboratory experiments provide measurements of the spectral characteristics of interstellar PAH analogs from the ultraviolet and visible range to the infrared range for comparison with astronomical data. This paper will focus on the recent progress made in the laboratory to measure the direct absorption spectra of neutral and ionized PAHs in the gas phase in the near-W and visible range in astrophysically relevant environments. These measurements provide data on PAHs and nanometer-sized particles that can now be directly compared to astronomical observations. The harsh physical conditions of the IS medium - characterized by a low temperature, an absence of collisions and strong V W radiation fields - are simulated in the laboratory by associating a molecular beam with an ionizing discharge to generate a cold plasma expansion. PAH ions are formed from the neutral precursors in an isolated environment at low temperature (of the order of 100 K). The spectra of neutral and ionized PAHs are measured using the high sensitivity methods of cavity ring down spectroscopy (CRDS). These experiments provide unique information on the spectra of free, cold large carbon molecules and ions in the gas phase. Intrinsic band profiles and band positions of cold gas-phase PAHs can now be measured with high- sensitivity spectroscopy and directly compared to the astronomical data. The electronic bands measured for ionized PAH are found to be intrinsically broad (about 20/cm) while the bands associated with the neutral precursors are narrower (of the order of 2 - 10/cm).

  3. Interstellar PAH in the Laboratory and in Space. What have we Learned from the New Generation of Laboratory and Observational Studies?

    NASA Technical Reports Server (NTRS)

    Salama, Farid

    2005-01-01

    Polycyclic Aromatic Hydrocarbons (PAHs) are an important and ubiquitous component of carbon-bearing materials in space. PAHs are the best-known candidates to account for the IR emission bands (UIR bands) and PAH spectral features are now being used as new probes of the ISM. PAHs are also thought to be among the carriers of the diffuse interstellar absorption bands (DIBs). In the model dealing with the interstellar spectral features, PAHs are present as a mixture of radicals, ions and neutral species. PAH ionization states reflect the ionization balance of the medium while PAH size, composition, and structure reflect the energetic and chemical history of the medium. A major challenge for laboratory astrophysics is to reproduce (in a realistic way) the physical conditions that exist in the emission and/or absorption interstellar zones. An extensive laboratory program has been developed at NASA Ames to assess the physical and chemical properties of PAHs in such environments and to describe how they influence the radiation and energy balance in space and the interstellar chemistry. In particular, laboratory experiments provide measurements of the spectral characteristics of interstellar PAH analogs from the ultraviolet and visible range to the infrared range for comparison with astronomical data. This paper will focus on the recent progress made in the laboratory to measure the direct absorption spectra of neutral and ionized PAHs in the gas phase in the near-UV and visible range in astrophysically relevant environments. These measurements provide data on PAHs and nanometer-sized particles that can now be directly compared to astronomical observations. The harsh physical conditions of the IS medium - characterized by a low temperature, an absence of collisions and strong VUV radiation fields - are simulated in the laboratory by associating a molecular beam with an ionizing discharge to generate a cold plasma expansion. PAH ions are formed from the neutral precursors in an isolated environment at low temperature (of the order of 100 K). The spectra of neutral and ionized PAHs are measured using the high sensitivity methods of cavity ring down spectroscopy (CRDS). These experiments provide unique information on the spectra of free, cold large carbon molecules and ions in the gas phase. Intrinsic band profiles and band positions of cold gas-phase PAHs can now be measured with high-sensitivity spectroscopy and directly compared to the astronomical data. The electronic bands measured for ionized PAH are found to be intrinsically broad (about 20 cm(sup -1)) while the bands associated with the neutral precursors are narrower (of the order of 2 - 10 cm(sup -1)). The laboratory data are discussed and compared with recent astronomical spectra of large and narrow DIBs and with the spectra of circumstellar environments of selected carbon stars and the implications for the interstellar PAH population are derived. Preliminary results also show that carbon nanoparticles are formed during the short residence time of the precursors in the plasma.

  4. Molecular Spectroscopy in Astrophysics: Interstellar PAHs

    NASA Technical Reports Server (NTRS)

    Salama, Farid; DeVincenzi, Donald L. (Technical Monitor)

    2000-01-01

    Polycyclic aromatic hydrocarbons (PAHs) are now considered to be an important and ubiquitous component of the organic material in space. PAHs are found in a large variety of extraterrestrial materials such as interplanetary dust particles (IDPs) and meteoritic materials. PAHs are also good candidates to account for the infrared emission bands (UIRs) and the diffuse interstellar optical absorption bands (DIBs) detected in various regions of the interstellar medium. The recent observations made with the Infrared Space Observatory (ISO) have confirmed the ubiquitous nature of the UIR bands and their carriers. PAHs are thought to form through chemical reactions in the outflow from carbon-rich stars in a process similar to soot formation. Once injected in the interstellar medium, PAHs are further processed by the interstellar radiation field, interstellar shocks and energetic particles. A long-term laboratory effort has been undertaken to measure the physical and chemical characteristics of these carbon molecules and their ions under experimental conditions that mimic the interstellar conditions. These measurements require collision-free conditions where the molecules and ions are cold and chemically isolated. The spectroscopy of PAHs under controlled conditions represents an essential diagnostic tool to study the evolution of extraterrestrial PAHs. The laboratory results will be discussed as well as the implications for astronomy and for molecular spectroscopy. A review of the data generated through laboratory simulations of space environments and the role these data have played in our current understanding of the properties of interstellar PAHs will be presented. We will also present the new generation of laboratory experiments that are currently being developed in order to provide a closer simulation of space environments and a better support to space missions.

  5. Laboratory Astrochemistry: Interstellar PAH Analogs

    NASA Technical Reports Server (NTRS)

    Salama, Farid; DeVincenzi, Donald L. (Technical Monitor)

    2000-01-01

    Polycyclic aromatic hydrocarbons (PAHs) are now considered to be an important and ubiquitous component of the organic material in space. PAHs are found in a large variety of extraterrestrial materials such as interplanetary dust particles (IDPs) and meteoritic materials. PAHs are also good candidates to account for the infrared emission bands (UIRs) and the diffuse interstellar optical absorption bands (DIBs) detected in various regions of the interstellar medium. The recent observations made with the Infrared Space Observatory (ISO) have confirmed the ubiquitous nature of the UIR bands and their carriers. PAHs are though to form through chemical reactions in the outflow from carbon-rich stars in a process similar to soot formation. Once injected in the interstellar medium, PAHs are further processed by the interstellar radiation field, interstellar shocks and energetic particles. A major, dedicated, laboratory effort has been undertaken over the past years to measure the physical and chemical characteristics of these complex molecules and their ions under experimental conditions that mimic the interstellar conditions. These measurements require collision-free conditions where the molecules and ions are cold and chemically isolated. The spectroscopy of PAHs under controlled conditions represents an essential diagnostic tool to study the evolution of extraterrestrial PAHs. The Astrochemistry Laboratory program will be discussed through its multiple aspects: objectives, approach and techniques adopted, adaptability to the nature of the problem(s), results and implications for astronomy as well as for molecular spectroscopy. A review of the data generated through laboratory simulations of space environments and the role these data have played in our current understanding of the properties of interstellar PAHs will be presented. The discussion will also introduce the newest generation of laboratory experiments that are currently being developed in order to provide a closer simulation of space environments and a better support to space missions.

  6. Laboratory Studies of Interstellar PAH Analogs

    NASA Technical Reports Server (NTRS)

    Salama, Farid; DeVincenzi, Donald (Technical Monitor)

    2000-01-01

    Polycyclic aromatic hydrocarbons (PAHs) are now considered to be an important and ubiquitous component of the organic material in space. PAHs are found in a large variety of extraterrestrial materials such as interplanetary dust particles (IDPs) and meteoritic materials. PAHs are also good candidates to account for the infrared emission bands (UIRs) and the diffuse interstellar optical absorption bands (DIBs) detected in various regions of the interstellar medium. The recent observations made with the Infrared Space Observatory (ISO) have confirmed the ubiquitous nature of the UIR bands and their carriers. PAHs are though to form through chemical reactions in the outflow from carbon-rich stars in a process similar to soot formation. Once injected in the interstellar medium, PAHs are further processed by the interstellar radiation field, interstellar shocks and energetic particles. A major, dedicated, laboratory effort has been undertaken over the past years to measure the physical and chemical characteristics of these complex molecules and their ions under experimental conditions that mimic the interstellar conditions. These measurements require collision-free conditions where the molecules and ions are cold and chemically isolated. The spectroscopy of PAHs under controlled conditions represents an essential diagnostic tool to study the evolution of extraterrestrial PAHs. The Astrochemistry Laboratory program will be discussed through its multiple aspects: objectives, approach and techniques adopted, adaptability to the nature of the problem(s), results and implications for astronomy as well as for molecular spectroscopy. A review of the data generated through laboratory simulations of space environments and the role these data have played in our current understanding of the properties of interstellar PAHs will be presented. The discussion will also introduce the newest generation of laboratory experiments that are currently being developed in order to provide a closer simulation of space environments and a better support to space missions.

  7. Near-infrared spectroscopy of the proto-planetary nebula CRL 618 and the origin of the hydrocarbon dust component in the interstellar medium.

    PubMed

    Chiar, J E; Pendleton, Y J; Geballe, T R; Tielens, A G

    1998-11-01

    A new 2.8-3.8 micrometers spectrum of the carbon-rich protoplanetary nebula CRL 618 confirms the previous detection of a circumstellar 3.4 micrometers absorption feature in this object (Lequeux & Jourdain de Muizon). The high resolution and high signal-to-noise ratio of our spectrum allow us to derive the detailed profile of this absorption feature, which is very similar to that observed in the spectrum of the Galactic center and also resembles the strong 3.4 micrometers emission feature in some post-asymptotic giant branch stars. A weak 3.3 micrometers unidentified infrared band, marginally detected in the CRL 618 spectrum of Lequeux & Jourdain de Muizon, is present in our spectrum. The existence of the 3.4 micrometers feature implies the presence of relatively short-chained, aliphatic hydrocarbon materials (-CH2-/-CH3 approximately = 2-2.5) in the circumstellar environment around CRL 618. It also implies that the carriers of the interstellar 3.4 micrometers feature are produced at least in part in circumstellar material, and it calls into question whether any are produced by the processing of interstellar ices in dense interstellar clouds, as has been previously proposed. Other features in the spectrum are recombination lines of hydrogen, rotational and vibration-rotation lines of molecular hydrogen, and a broad absorption probably due to a blend of HCN and C2H2 bands.

  8. Near-infrared spectroscopy of the proto-planetary nebula CRL 618 and the origin of the hydrocarbon dust component in the interstellar medium

    NASA Technical Reports Server (NTRS)

    Chiar, J. E.; Pendleton, Y. J.; Geballe, T. R.; Tielens, A. G.

    1998-01-01

    A new 2.8-3.8 micrometers spectrum of the carbon-rich protoplanetary nebula CRL 618 confirms the previous detection of a circumstellar 3.4 micrometers absorption feature in this object (Lequeux & Jourdain de Muizon). The high resolution and high signal-to-noise ratio of our spectrum allow us to derive the detailed profile of this absorption feature, which is very similar to that observed in the spectrum of the Galactic center and also resembles the strong 3.4 micrometers emission feature in some post-asymptotic giant branch stars. A weak 3.3 micrometers unidentified infrared band, marginally detected in the CRL 618 spectrum of Lequeux & Jourdain de Muizon, is present in our spectrum. The existence of the 3.4 micrometers feature implies the presence of relatively short-chained, aliphatic hydrocarbon materials (-CH2-/-CH3 approximately = 2-2.5) in the circumstellar environment around CRL 618. It also implies that the carriers of the interstellar 3.4 micrometers feature are produced at least in part in circumstellar material, and it calls into question whether any are produced by the processing of interstellar ices in dense interstellar clouds, as has been previously proposed. Other features in the spectrum are recombination lines of hydrogen, rotational and vibration-rotation lines of molecular hydrogen, and a broad absorption probably due to a blend of HCN and C2H2 bands.

  9. Multiphase gas in quasar absorption-line systems

    NASA Technical Reports Server (NTRS)

    Giroux, Mark L.; Sutherland, Ralph S.; Shull, J. Michael

    1994-01-01

    In the standard model for H I Lyman-limit (LL) quasar absorption-line systems, the absorbing matter is galactic disk and halo gas, heated and photoionized by the metagalactic radiation field produced by active galaxies. In recent Hubble Space Telescope (HST) observations (Reimers et al. 1992; Vogel & Reimers 1993; Reimers & Vogel 1993) of LL systems along the line of sight to the quasar HS 1700+6416, surprisingly high He I/H I ratios and a wide distribution of column densities of C, N, and O ions are deduced from extreme ultraviolet absorption lines. We show that these observations are incompatible with photoionization equilibrium by a single metagalactic ionizing background. We argue that these quasar absorption systems possess a multiphase interstellar medium similar to that of our Galaxy, in which extended hot, collisionally ionized gas is responsible for some or all of the high ionization stages of heavy elements. From the He/H ratios we obtain -4.0 less than or = log U less than or = -3.0, while the CNO ions are consistent with hot gas in collisional ionization equilibrium at log T = 5.3 and (O/H) = -1.6. The supernova rate necessary to produce these heavy elements and maintain the hot-gas energy budget of approximately 10(exp 41.5) ergs/s is approximately 10(exp -2)/yr, similar to that which maintains the 'three-phase' interstellar medium in our own Galaxy. As a consequence of the change in interpretation from photoionized gas to a multiphase medium, the derived heavy-element abundances (e.g., O/C) of these systems are open to question owing to substantial ionization corrections for unseen C V in the hot phase. The metal-line ratios may also lead to erroneous diagnostics of the shape of the metagalactic ionizaing spectrum and the ionizing parameter of the absorbers.

  10. Copernicus observations of neutral hydrogen and deuterium in the direction of HR 1099

    NASA Technical Reports Server (NTRS)

    Anderson, R. C.; Weiler, E. J.

    1979-01-01

    High-resolution Copernicus U1 scans were obtained of the bright RS CVn binary HR 1099 (d = 33 pc, galactic longitude = 185 deg, galactic latitude = -41 deg) in October 1977. Strong emission at L-alpha was detected. The interstellar L-alpha absorption features of H I and D I were also observed. Analyses of these interstellar lines are reported in this paper. The average density of neutral H in the direction of this system is found to be 0.006-0.012 per cu cm, which, because the local density is higher, requires a marked inhomogeneity along this line of sight. This result, when combined with other recent studies of the local interstellar medium, suggests the sun is located within a moderate-density H I region.

  11. On the source of the dust extinction in type Ia supernovae and the discovery of anomalously strong Na I absorption

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Phillips, M. M.; Morrell, Nidia; Hsiao, E. Y.

    High-dispersion observations of the Na I D λλ5890, 5896 and K I λλ7665, 7699 interstellar lines, and the diffuse interstellar band at 5780 Å in the spectra of 32 Type Ia supernovae are used as an independent means of probing dust extinction. We show that the dust extinction of the objects where the diffuse interstellar band at 5780 Å is detected is consistent with the visual extinction derived from the supernova colors. This strongly suggests that the dust producing the extinction is predominantly located in the interstellar medium of the host galaxies and not in circumstellar material associated with themore » progenitor system. One quarter of the supernovae display anomalously large Na I column densities in comparison to the amount of dust extinction derived from their colors. Remarkably, all of the cases of unusually strong Na I D absorption correspond to 'Blueshifted' profiles in the classification scheme of Sternberg et al. This coincidence suggests that outflowing circumstellar gas is responsible for at least some of the cases of anomalously large Na I column densities. Two supernovae with unusually strong Na I D absorption showed essentially normal K I column densities for the dust extinction implied by their colors, but this does not appear to be a universal characteristic. Overall, we find the most accurate predictor of individual supernova extinction to be the equivalent width of the diffuse interstellar band at 5780 Å, and provide an empirical relation for its use. Finally, we identify ways of producing significant enhancements of the Na abundance of circumstellar material in both the single-degenerate and double-degenerate scenarios for the progenitor system.« less

  12. Spectroscopy of PAHs with carbon side chains

    NASA Astrophysics Data System (ADS)

    Rouille, G.; Steglich, M.; Carpentier, Y.; Huisken, F.; Henning, T.

    2011-05-01

    The presence of polycyclic aromatic hydrocarbons (PAHs) in space has been inferred ever since sp ecific infrared emission bands were interpreted as their collective fingerprint. In parallel, it has been admitted that the famous diffuse interstellar bands (DIBs), which are absorption features observed in the visible wavelength range, are bands belonging to the electronic spectra of free-flying interstellar molecules yet to be identified. As neutral PAHs of medium and large sizes exhibit absorption bands in the range where the DIBs are found, these molecules, which also fulfill other criteria, have been proposed as potential carriers. Studies of small PAHs in solutions have shown that adding an ethynyl side chain (--CCH) to their structure causes their electronic transitions to shift toward longer wavelengths. This fact, added to the observations of interstellar polyynyl radicals, motivated our current research project on PAHs carrying polyynyl side chains. In a first stage, we are measuring the electronic spectra of small PAHs and of their ethynyl and butadiynyl (--CCCCH) derivatives at cryogenic temperatures in rare gas matrices. Then, measurements will be carried out in supersonic jets, providing us with spectra obtained under conditions relevant to the study of free-flying interstellar molecules. The results of IR absorption measurements will be included in our set of new data. As a complement to our laboratory study on the substituted PAHs, quantum chemical calculations are carried out to interprete and simulate their IR and vibronic spectra. We use the density functional theory approach and its time-dependent extension for calculating the electronic ground states and the electronically excited states, respectively. Through the analysis of the new data, it will be determined whether PAHs carrying polyynyl side chains can play a role in interstellar phenomena. The latest results of this on-going project will be presented.

  13. IRAS 08572+3915: constraining the aromatic versus aliphatic content of interstellar HACs

    NASA Astrophysics Data System (ADS)

    Dartois, E.; Geballe, T. R.; Pino, T.; Cao, A.-T.; Jones, A.; Deboffle, D.; Guerrini, V.; Bréchignac, Ph.; D'Hendecourt, L.

    2007-02-01

    We analyze dust features present in the mid-infrared (Spitzer) and recently published L-band (UKIRT) spectra of the infrared galaxy IRAS 08572+3915. The line of sight toward the AGN nucleus crosses a high column density of carbonaceous dust whose characteristic absorption features appear clearly. They provide a real insight into the chemical environment of the diffuse interstellar medium. Thanks to the moderate redshift of IRAS 08572+3915, the wavelength of the aromatic CH stretching mode is free of major telluric lines, and a strong observational constraint of Hsp2 /Hsp3 ≤ 0.08 has been determined. This limit clearly shows that the bonding of hydrogen atoms in interstellar hydrogenated amorphous carbon is highly aliphatic. The presence of a broad absorption feature centered at 6.2 μm, probably arising from olefinic/aromatic structures, corresponds to the backbone of this carbonaceous material, which is the major carbon-containing component of the interstellar medium along this line of sight. Based on observations made with the Spitzer Space Telescope (GO-3336 program), which is operated by the Jet Propulsion Laboratory, California Institute of Technology under NASA contract 1407. Based on data obtained at the United Kingdom Infrared Telescope, which is operated by the Joint Astronomy Center on behalf of the UK Particle Physics and Astronomy Research Council. Part of this work has been financed by the french CNRS program "Physique et Chimie du Milieu Interstellaire" (PCMI-CNRS). TRG's esearch is supported by the Gemini Observatory, which is operated by the Association of Universities for Research in Astronomy, Inc., on behalf of the international Gemini partnership of Argentina, Australia, Brazil, Canada, Chile, the United Kingdom, and the United States of America.

  14. Lifetimes and f-values of the D 2Σ- ← X 2Π system of OH and OD

    NASA Astrophysics Data System (ADS)

    Heays, Alan; de Oliveira, Nelson; Gans, Bérenger; Ito, Kenji; Boyé-Péronne, Séverine; Douin, Stéphane; Hickson, Kevin; Nahon, Laurent; Loison, Jean-Christophe

    2017-10-01

    The OH radical is abundant in the interstellar medium and cometary comae, where it plays a significant role in the photochemical cycle of water. Also, the oxidising potential of the Earth atmosphere is influenced by this molecule. The OH lifetime in the presence of ultraviolet radiation is of prime interest in all these locations. The vacuum-ultraviolet absorption of the D 2Σ- ← X 2Π system contributes to a reduction of this lifetime. It also provides an independent way to observe the OH molecule in the interstellar medium. But a reliable oscillator strength (f-value) is needed. Vacuum-ultraviolet absorption of the D 2Σ- ← X 2Π system of OH and OD was recorded with high spectral resolution in a plasma-discharge radical source and using synchrotron radiation coupled to the unique ultraviolet Fourier-transform spectrometer on the DESIRS beamline of synchrotron SOLEIL. Line oscillator strengths are absolutely calibrated with respect to the well-known A 2Σ+ ← X 2Π system. The new oscillator strength decreases the best-estimate lifetime of OH in an interstellar radiation field and reduces its uncertainty. We also measured line broadening of the excited D 2Σ- v=0 and 1 levels for the first time and find a lifetime for these states which is 5 times shorter than theoretically predicted.This new data will aid in the interpretation of astronomical observations and help improve photochemical models in many contexts.

  15. The outer atmospheres of cool M giants: High-dispersion ultraviolet spectra of Rho Per, 2 Cen, and g Her

    NASA Technical Reports Server (NTRS)

    Eaton, Joel A.; Johnson, Hollis R.

    1986-01-01

    Long duration IUE spectra were obtained to extend coverage of cool giants studied in the ultraviolet at high dispersion to M6. The chromospheric spectra of the three stars, which consist of a profusion of Fe II lines and a few lines of Mg II, Mg I, Al II, C II, C I, Cr II, and Fe I, are remarkably similar, both among themselves and with respect to stars of earlier spectral type. These lines present a picture of a warm chromosphere that is static in the average but may be far from uniform in density and ionization. The Mg II emission lines of 2 Cen show 2 unresolved absorption components, the shorter at the velocity of the local interstellar medium. The longer is blueshifted from the star by 12 to 18 km/sec and must be one of very few observed shell lines uncontaminated by interstellar absorption.

  16. Atomic Data Revisions for Transitions Relevant to Observations of Interstellar, Circumgalactic, and Intergalactic Matter

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cashman, Frances H.; Kulkarni, Varsha P.; Kisielius, Romas

    2017-05-01

    Measurements of element abundances in galaxies from astrophysical spectroscopy depend sensitively on the atomic data used. With the goal of making the latest atomic data accessible to the community, we present a compilation of selected atomic data for resonant absorption lines at wavelengths longward of 911.753 Å (the H i Lyman limit), for key heavy elements (heavier than atomic number 5) of astrophysical interest. In particular, we focus on the transitions of those ions that have been observed in the Milky Way interstellar medium (ISM), the circumgalactic medium (CGM) of the Milky Way and/or other galaxies, and the intergalactic mediummore » (IGM). We provide wavelengths, oscillator strengths, associated accuracy grades, and references to the oscillator strength determinations. We also attempt to compare and assess the recent oscillator strength determinations. For about 22% of the lines that have updated oscillator strength values, the differences between the former values and the updated ones are ≳0.1 dex. Our compilation will be a useful resource for absorption line studies of the ISM, as well as studies of the CGM and IGM traced by sight lines to quasars and gamma-ray bursts. Studies (including those enabled by future generations of extremely large telescopes) of absorption by galaxies against the light of background galaxies will also benefit from our compilation.« less

  17. Organic chemistry and biology of the interstellar medium

    NASA Technical Reports Server (NTRS)

    Sagan, C.

    1973-01-01

    Interstellar organic chemistry is discussed as the field of study emerging from the discovery of microwave lines of formaldehyde and of hydrogen cyanide in the interstellar medium. The reliability of molecular identifications and comparisons of interstellar and cometary compounds are considered, along with the degradational origin of simple organics. It is pointed out that the contribution of interstellar organic chemistry to problems in biology is not substantive but analogical. The interstellar medium reveals the operation of chemical processes which, on earth and perhaps on vast numbers of planets throughout the universe, led to the origin of life, but the actual molecules of the interstellar medium are unlikely to play any significant biological role.

  18. Non-equilibrium ionization around clouds evaporating in the interstellar medium

    NASA Technical Reports Server (NTRS)

    Ballet, J.; Luciani, J. F.; Mora, P.

    1986-01-01

    It is of prime importance for global models of the interstellar medium to know whether dense clouds do or do not evaporate in the hot coronal gas. The rate of mass exchanges between phases depends very much on that. McKee and Ostriker's model, for instance, assumes that evaporation is important enough to control the expansion of supernova remnants, and that mass loss obeys the law derived by Cowie and McKee. In fact, the geometry of the magnetic field is nearly unknown, and it might totally inhibit evaporation, if the clouds are not regularly connected to the hot gas. Up to now, the only test of the theory is the U.V. observation (by the Copernicus and IUE satellites) of absorption lines of ions such as OVI or NV, that exist at temperatures of a few 100,000 K typical of transition layers around evaporating clouds. Other means of testing the theory are discussed.

  19. Deuterium Abundance Toward WD2211-495: Results from the Far Ultraviolet Spectroscopic Explorer (FUSE) Mission

    NASA Technical Reports Server (NTRS)

    Hebrard, G.; Lemoine, M.; Vidal-Madjar, A.; Desert, J. M.; LecavelierdesEtangs, A.; Ferlet, R.; Wood, B. E.; Linsky, J. L.; Kruk, J. W.; Chayer, P.; hide

    2002-01-01

    We present a deuterium abundance analysis of the line of sight toward the white dwarf WD 2211-495 observed with the Far Ultraviolet Spectroscopic Explorer (FUSE). Numerous interstellar lines are detected on the continuum of the stellar spectrum. A thorough analysis was performed through the simultaneous fit of interstellar absorption lines detected in the four FUSE channels of multiple observations with different slits. We excluded all saturated lines in order to reduce possible systematic errors on the column density measurements. We report the determination of the average interstellar D/O and D/N ratios along this line of sight at the 95% confidence level: D/O = 4.0 (+/-1.2) x 10(exp -2); D/N = 4.4 (+/-1.3) x 10(exp -1). In conjunction with FUSE observations of other nearby sight lines, the results of this study will allow a deeper understanding of the present-day abundance of deuterium in the local interstellar medium and its evolution with time.

  20. HST/STIS Observations of the Local Interstellar Medium toward Very Nearby Stars: A Detailed Analysis of the a Centuari Sight Line

    NASA Astrophysics Data System (ADS)

    Dann, Julian; Redfield, Seth; Ayres, Thomas R.

    2017-01-01

    The Local Interstellar Medium (LISM), a region extending about 100 parsecs and in which the Sun is currently immersed, can only be studied using UV/optical absorption features against bright background stars. Perhaps in the future in-situ measurements will be possible (e.g., the Voyager spacecraft or Breakthrough Starshot-style missions). Using high-resolution observations with the Space Telescope Imaging Spectrograph (STIS) on-board the Hubble Space Telescope (HST), we have analyzed several very nearby sight lines to measure physical properties of the LISM. The data used in this study is a part of the Advanced Spectral Library (ASTRAL) Project, an HST Large Treasury Project, in which we have analyzed the spectra of fourteen nearby stars. LISM absorption features in these stellar spectra reveal key information about the abundances, temperature, and turbulence in the intervening gas. We have fit ion transitions in the near-UV for MgII, FeII, CII, DI, SiII, and OII. These absorption features provide direct measurements of the radial velocity, Doppler broadening parameter, and the column density along the line of sight. The presence of multiple local minima in the deep and narrow ISM profile is evidence of multiple clouds moving at different radial velocities.Included in our data set is the a Centauri sight line. We provide a detailed analysis of these new observations and a comparison with previous HST observations that were observed more than 20 years ago. A discussion of the physical properties along this line of sight is provided within the context of a Breakthrough Starshot mission. These high resolution and high signal-to-noise spectra will be important for making accurate estimations of the interstellar environment to help inform such an interstellar mission.We would like to acknowledge NASA HST Grant GO-12278 and GO-13346 awarded by the Space Telescope Science Institute, which is operated by the Association of Universities for Research in Astronomy, Inc., for NASA, under contract NAS 5-26555, and a student fellowship from the Connecticut Space Grant Consortium for their support of this research.

  1. Interstellar Medium, Young Stars, and Astrometric Binaries in Galactic Archaeology Spectroscopic Surveys

    NASA Astrophysics Data System (ADS)

    Zwitter, T.; Kos, J.; Žerjal, M.; Traven, G.

    2016-10-01

    Current ongoing stellar spectroscopic surveys (RAVE, GALAH, Gaia-ESO, LAMOST, APOGEE, Gaia) are mostly devoted to studying Galactic archaeology and the structure of the Galaxy. But they allow also for important auxiliary science: (i) the Galactic interstellar medium can be studied in four dimensions (position in space plus radial velocity) through weak but numerous diffuse interstellar bands and atomic absorptions seen in spectra of background stars, (ii) emission spectra which are quite frequent even in field stars can serve as a good indicator of their youth, pointing e.g. to stars recently ejected from young stellar environments, (iii) an astrometric solution of the photocenter of a binary to be obtained by Gaia can yield accurate masses when joined by spectroscopic information obtained serendipitously during a survey. These points are illustrated by first results from the first three surveys mentioned above. These hint at the near future: spectroscopic studies of the dynamics of the interstellar medium can identify and quantify Galactic fountains which may sustain star formation in the disk by entraining fresh gas from the halo; RAVE already provided a list of ˜ 14,000 field stars with chromospheric emission in Ca II lines, to be supplemented by many more observations by Gaia in the same band, and by GALAH and Gaia-ESO observations of Balmer lines; several millions of astrometric binaries with periods up to a few years which are being observed by Gaia can yield accurate masses when supplemented with measurements from only a few high-quality ground based spectra.

  2. The Redshifted Hydrogen Balmer and Metastable He 1 Absorption Line System in Mini-FeLoBAL Quasar SDSS J112526.12+002901.3: A Parsec-scale Accretion Inflow?

    NASA Astrophysics Data System (ADS)

    Shi, Xi-Heng; Jiang, Peng; Wang, Hui-Yuan; Zhang, Shao-Hua; Ji, Tuo; Liu, Wen-Juan; Zhou, Hong-Yan

    2016-10-01

    The accretion of the interstellar medium onto central super-massive black holes is widely accepted as the source of the gigantic energy released by the active galactic nuclei. However, few pieces of observational evidence have been confirmed directly demonstrating the existence of the inflows. The absorption line system in the spectra of quasar SDSS J112526.12+002901.3 presents an interesting example in which the rarely detected hydrogen Balmer and metastable He I absorption lines are found redshifted to the quasar's rest frame along with the low-ionization metal absorption lines Mg II, Fe II, etc. The repeated SDSS spectroscopic observations suggest a transverse velocity smaller than the radial velocity. The motion of the absorbing medium is thus dominated by infall. The He I* lines present a powerful probe to the strength of ionizing flux, while the Balmer lines imply a dense environment. With the help of photoionization simulations, we find that the absorbing medium is exposed to the radiation with ionization parameter U ≈ 10-1.8, and the density is n({{H}})≈ {10}9 {{cm}}-3. Thus the absorbing medium is located ˜4 pc away from the central engine. According to the similarity in the distance and physical conditions between the absorbing medium and the torus, we strongly propose the absorption line system as a candidate for the accretion inflow, which originates in the inner surface of the torus.

  3. Detection of CH+, SH+, and their 13C- and 34S-isotopologues toward PKS 1830-211

    NASA Astrophysics Data System (ADS)

    Muller, S.; Müller, H. S. P.; Black, J. H.; Gérin, M.; Combes, F.; Curran, S.; Falgarone, E.; Guélin, M.; Henkel, C.; Martín, S.; Menten, K. M.; Roueff, E.; Aalto, S.; Beelen, A.; Wiklind, T.; Zwaan, M. A.

    2017-10-01

    The z = 0.89 molecular absorber toward PKS 1830-211 provides us with the opportunity to probe the chemical and physical properties of the interstellar medium in the disk of a galaxy at a look-back time of half the present age of the Universe. Recent ALMA observations of hydrides have unveiled the multi-phase composition of this source's interstellar medium along two absorbing sightlines. Here, we report ALMA observations of CH+ and SH+, and of their 13C- and 34S-isotopologues, as potential tracers of energetic processes in the interstellar medium. CH+ and 13CH+ are detected toward both images of PKS 1830-211, CH+ showing the deepest and broadest absorption among all species observed so far. The [CH+]/[13CH+] abundance ratio is 100 in the south-west line of sight. This value is larger than any previous [12CX]/[13CX] ratios determined from other species toward this source and suggests either that the latter might be affected by fractionation or that CH+ might be tracing a different gas component. Toward the north-east image, we find an even larger value of [CH+]/[13CH+], 146 ± 43, although with a large uncertainty. This sightline intercepts the absorber at a larger galactocentric radius than the southwestern one, where material might be less processed in stellar nucleosynthesis. In contrast to CH+ and its 13C isotopologue, SH+ and 34SH+ are only detected on the south-west sightline. These are the first detections of extragalactic SH+ and interstellar 34SH+. The spectroscopic parameters of SH+ are reevaluated and improved rest frequencies of 34SH+ are obtained. The [CH+]/[SH+] column density ratios show a large difference between the two lines of sight: 25 and >600 toward the SW and NE image, respectively. We are not able to shed light on the formation process of CH+ and SH+ with these data, but the differences between the two sightlines toward PKS 1830-211 suggest that their absorptions arise from gas with a molecular fraction of ≳10%, with SH+ tracing significantly higher molecular fractions than CH+.

  4. Experimental Near Infrared Spectroscopy of Polycyclic Aromatic Hydrocarbons Between 0.7 to 2.5 microns

    NASA Technical Reports Server (NTRS)

    Mattioda, A. L.; Hudgins, D. M.; Allamandola, L. J.

    2005-01-01

    The near infrared (NIR) spectra and absolute band strengths of 27 polycyclic aromatic hydrocarbon (PAH) cations and anions ranging in size from C14H10 to C50H22, are reported. The spectra from 0.7 to 2.5 microns (14,000 to 4000/cm) are presented for the fifteen PAHs ranging in size from C40H18 to C50H22 whereas the spectra of the remaining twelve span the narrower range from 0.7 to 1.1 microns (14,000 to 9000/cm). The spectra of all the ionized PAHs we have studied to date have strong, broad absorption bands in the NIR arising from electronic transitions. This work shows that ionized PAHs have significant absorption bands at longer wavelengths than predicted by the current astronomical models which consider PAHs in their treatment of the radiation balance of the interstellar medium. Two implications are 1)-ionized interstellar PAHs should add weak, broad band structure to the NIR portion of the interstellar extinction curve and 2)- UV poor radiation fields can pump the PAH emission bands provided ionized PAHs are present.

  5. The violent interstellar medium

    NASA Technical Reports Server (NTRS)

    Mccray, R.; Snow, T. P., Jr.

    1979-01-01

    Observational evidence for high-velocity and high-temperature interstellar gas is reviewed. The physical processes that characterize this gas are described, including the ionization and emissivity of coronal gas, the behavior and appearance of high-velocity shocks, and interfaces between coronal gas and cooler interstellar gas. Hydrodynamical models for the action of supernova explosions and stellar winds on the interstellar medium are examined, and recent attempts to synthesize all the processes considered into a global model for the interstellar medium are discussed.

  6. First exploration of a single thermal interface between the two dominant phases of the interstellar medium

    NASA Astrophysics Data System (ADS)

    Gry, Cecile

    2017-08-01

    Two phases of the interstellar medium, the Warm Neutral Medium (WNM) and the Hot Ionized Medium (HIM) occupy most the volume of space in the plane of our Galaxy. Because the boundaries between these phases are important sources of energy loss for the hot gas, they are supposed to play an important role in the thermal structure and evolution of the ISM and of galaxies.Many theorists have created descriptions of the nature of such boundaries and have derived two fundamental concepts: (1) a conductive interface and (2) a turbulent mixing layer.We have yet to observe in detail either kind of boundary. This is achieved by using UV absorption lines of moderately high ionization stages of heavy elements. Yet, over most lines of sight the diagnostics are blurred out by the superposition of different regions with vastly different physical conditions, making them difficult to interpret. To characterize the nature of the physical processes at a boundary one must observe along a sight line that penetrates just one such region. The simplest configuration is the outer boundary of the Local Cloud, the WNM ((T 7000 K) that surrounds the Sun and which is embedded in a very low density, soft X-ray emitting hot medium ( 10^6 K) that fills a cavity ( 200 pc in diameter) called the Local Bubble.We propose to observe an ideal target: a nearby, bright B9V star (i.e. hot enough to provide a high-SNR continuum, but not enough to contaminate it with absorptions from circumstellar high-ionization species), located in a direction where the relative orientation of the magnetic field and the cloud boundary does not quench thermal conduction and thus favors a full extent of the interface.

  7. Summer School on Interstellar Processes: Abstracts of contributed papers

    NASA Technical Reports Server (NTRS)

    Hollenbach, D. J. (Editor); Thronson, H. A., Jr. (Editor)

    1986-01-01

    The Summer School on Interstellar Processes was held to discuss the current understanding of the interstellar medium and to analyze the basic physical processes underlying interstellar phenomena. Extended abstracts of the contributed papers given at the meeting are presented. Many of the papers concerned the local structure and kinematics of the interstellar medium and focused on such objects as star formation regions, molecular clouds, HII regions, reflection nebulae, planetary nebulae, supernova remnants, and shock waves. Other papers studied the galactic-scale structure of the interstellar medium either in the Milky Way or other galaxies. Some emphasis was given to observations of interstellar grains and

  8. Laboratory Spectroscopy of Large Carbon Molecules and Ions in Support of Space Missions

    NASA Technical Reports Server (NTRS)

    Salana, Farid; Tan, X.; Cami, J.; Remy, J.

    2006-01-01

    One of the major objectives of Laboratory Astrophysics is the optimization of data return from space missions by measuring spectra of atomic and molecular species in laboratory environments that mimic interstellar conditions (WhitePaper (2002, 2006)). Among interstellar species, PAHs are an important and ubiquitous component of carbon-bearing materials that represents a particularly difficult challenge for gas-phase laboratory studies. We present the absorption spectra of jet-cooled neutral and ionized PAHs and discuss the implications for astrophysics. The harsh physical conditions of the interstellar medium have been simulated in the laboratory. We are now, for the first time, in the position to directly compare laboratory spectra of PAHs and carbon nanoparticles with astronomical observations. This new phase offers tremendous opportunities for the data analysis of current and upcoming space missions geared toward the detection of large aromatic systems (HST/COS, FUSE, JWST, Spitzer).

  9. Laboratory Spectroscopy of Large Carbon Molecules and Ions in Support of Space Missions. A New Generation of Laboratory & Space Studies

    NASA Technical Reports Server (NTRS)

    Salama, Farid; Tan, Xiaofeng; Cami, Jan; Biennier, Ludovic; Remy, Jerome

    2006-01-01

    Polycyclic Aromatic Hydrocarbons (PAHs) are an important and ubiquitous component of carbon-bearing materials in space. A long-standing and major challenge for laboratory astrophysics has been to measure the spectra of large carbon molecules in laboratory environments that mimic (in a realistic way) the physical conditions that are associated with the interstellar emission and absorption regions [1]. This objective has been identified as one of the critical Laboratory Astrophysics objectives to optimize the data return from space missions [2]. An extensive laboratory program has been developed to assess the properties of PAHs in such environments and to describe how they influence the radiation and energy balance in space. We present and discuss the gas-phase electronic absorption spectra of neutral and ionized PAHs measured in the UV-Visible-NIR range in astrophysically relevant environments and discuss the implications for astrophysics [1]. The harsh physical conditions of the interstellar medium characterized by a low temperature, an absence of collisions and strong VUV radiation fields - have been simulated in the laboratory by associating a pulsed cavity ringdown spectrometer (CRDS) with a supersonic slit jet seeded with PAHs and an ionizing, penning-type, electronic discharge. We have measured for the {\\it first time} the spectra of a series of neutral [3,4] and ionized [5,6] interstellar PAHs analogs in the laboratory. An effort has also been attempted to quantify the mechanisms of ion and carbon nanoparticles production in the free jet expansion and to model our simulation of the diffuse interstellar medium in the laboratory [7]. These experiments provide {\\it unique} information on the spectra of free, large carbon-containing molecules and ions in the gas phase. We are now, for the first time, in the position to directly compare laboratory spectral data on free, cold, PAH ions and carbon nano-sized carbon particles with astronomical observations in the UV-NIR range (interstellar UV extinction, DIBs in the NUV-NIR range). This new phase offers tremendous opportunities for the data analysis of current and upcoming space missions geared toward the detection of large aromatic systems Le., the "new frontier space missions" (Spitzer, HST, COS, JWST, SOFIA,...).

  10. UV-visible spectroscopy of PAHs and PAHNs in supersonic jet. Astrophysical Implications

    NASA Astrophysics Data System (ADS)

    Salma, Bejaoui; Salama, Farid

    2017-06-01

    Polycyclic Aromatic Hydrocarbon (PAHs) molecules are attracting much attention of the astrophysical and astrochemical communities since they are ubiquitous presence in space and could survive in the harsh interstellar medium (ISM). They are proposed as plausible carriers of the still unassigned diffuse interstellar bands (DIBs) for more than two decades now. The so-called PAH - DIB proposal has been based on the abundance of PAHs in the ISM and their stability against the photo and thermo dissociation. Nitrogen is one of the most abundant elements after hydrogen, helium, and carbon [1]. PANHs exhibit spectral features similar to PAHs and may also contribute to unidentified spectral bands.To prove PAHs-DIBs hypothesis, laboratory absorption spectra of aromatic under astrophysical relevant conditions are of crucial importance to compare with the observed DIBs spectra. The most challenging task is to reproduce as closely as technically possible, the physical and chemical conditions that are present in space. Interstellar PAHs are expected to be present as free, cold, neutral molecules and/or charged species [2]. In our laboratory, comparable conditions are achieved using an excellent platform developed in NASA Ames. Our cosmic simulation chamber (COSmIC) allow the measurements of gas phase spectra of neutral and ionized interstellar PAHs analogs by associating a molecular beam with an ionizing discharge to generate a cold plasma expansion (˜ 100 K) [3]. Our approach to assign PAH as carriers of some DIBs is record the electronic spectra of cold PAHs in gas phase and systematic search for a possible correspondence in astronomical DIBs spectra. We report in this work UV-visible absorption spectra of neutral PAHs and PAHNs using the cavity ring down spectroscopy (CRDS) technique. We discuss the effect of the substitution of C-H bond(s) by a nitrogen atom(s) in spectroscopic features of PAHs and their astrophysical application.[1] L. Spitzer, 1978, Physical processes in the interstellar medium. New York Wiley-Interscience[2] F. Salama, E. Bakes, L.J. Allamandola, A.G.G.M. Tielens, Astrophys. J. 458 (1996) 621[3] L. Biennier, F. Salama, L. J. Allamandola, & J. J. Scherer, (2003) J. of Chemical Physics, 118(17), 7863-7872

  11. Interstellar Medium Absorption Profile Spectrograph (IMAPS)

    NASA Technical Reports Server (NTRS)

    Jenkins, E. B.

    1985-01-01

    The design and fabrication of an objective-grating echelle spectrograph to fly on sounding rockets and record spectra of stars from approximately 920 to 1120A with a resolving power lambda/delta lambda = 200,000 is discussed. The scientific purpose of the program is to observe, with ten times better velocity resolution than before, the plentiful absorption lines in this spectral region produced by atoms, ions and molecules in the interstellar medium. In addition, an important technical goal is to develop and flight-quality a new ultraviolet, photon-counting image sensor which has a windowless, opaque photocathode and a CCD bombarded directly by the accelerated photoelectrons. Except for some initial difficulties with the performance of CCDs, the development of the payload instrument is relatively straightforward and our overall design goals are satisfied. The first flight occurred in late 1984, but no data were obtained because of an inrush of air degraded the instrument's vacuum and caused the detector's high voltage to arc. A second flight in early 1985 was a complete success and obtained a spectrum of pi Sco. Data from this mission are currently being reduced; quick-look versions of the spectra indicate that excellent results will be obtained. Currently, the payload is being reconfigured to fly on a Spartan mission in 1988.

  12. Dust evolution, a global view: III. Core/mantle grains, organic nano-globules, comets and surface chemistry

    NASA Astrophysics Data System (ADS)

    Jones, A. P.

    2016-12-01

    Within the framework of The Heterogeneous dust Evolution Model for Interstellar Solids (THEMIS), this work explores the surface processes and chemistry relating to core/mantle interstellar and cometary grain structures and their influence on the nature of these fascinating particles. It appears that a realistic consideration of the nature and chemical reactivity of interstellar grain surfaces could self-consistently and within a coherent framework explain: the anomalous oxygen depletion, the nature of the CO dark gas, the formation of `polar ice' mantles, the red wing on the 3 μm water ice band, the basis for the O-rich chemistry observed in hot cores, the origin of organic nano-globules and the 3.2 μm `carbonyl' absorption band observed in comet reflectance spectra. It is proposed that the reaction of gas phase species with carbonaceous a-C(:H) grain surfaces in the interstellar medium, in particular the incorporation of atomic oxygen into grain surfaces in epoxide functional groups, is the key to explaining these observations. Thus, the chemistry of cosmic dust is much more intimately related with that of the interstellar gas than has previously been considered. The current models for interstellar gas and dust chemistry will therefore most likely need to be fundamentally modified to include these new grain surface processes.

  13. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bzowski, M.; Kubiak, M. A.; Sokol, J. M.

    Because of its high ionization potential and weak interaction with hydrogen, neutral interstellar helium (NISHe) is almost unaffected at the heliospheric interface with the interstellar medium and freely enters the solar system. This second most abundant species provides some of the best information on the characteristics of the interstellar gas in the local interstellar cloud. The Interstellar Boundary Explorer (IBEX) is the second mission to directly detect NISHe. We present a comparison between recent IBEX NISHe observations and simulations carried out using a well-tested quantitative simulation code. Simulation and observation results compare well for times when measured fluxes are dominatedmore » by NISHe (and contributions from other species are small). Differences between simulations and observations indicate a previously undetected secondary population of neutral helium, likely produced by interaction of interstellar helium with plasma in the outer heliosheath. Interstellar neutral parameters are statistically different from previous in situ results obtained mostly from the GAS/Ulysses experiment, but they do agree with the local interstellar flow vector obtained from studies of interstellar absorption: the newly established flow direction is ecliptic longitude 79.{sup 0}2, latitude -5.{sup 0}1, the velocity is {approx}22.8 km s{sup -1}, and the temperature is 6200 K. These new results imply a markedly lower absolute velocity of the gas and thus significantly lower dynamic pressure on the boundaries of the heliosphere and different orientation of the Hydrogen Deflection Plane compared to prior results from Ulysses. A different orientation of this plane also suggests a new geometry of the interstellar magnetic field, and the lower dynamic pressure calls for a compensation by other components of the pressure balance, most likely a higher density of interstellar plasma and strength of interstellar magnetic field.« less

  14. Electronic Absorption Spectra of Mass-Selected Hydrocarbon Cations in Solid Neon: C_nH_4+ (n=5-8,10,12)

    NASA Astrophysics Data System (ADS)

    Nagy, A.; Fulara, J.; Garkusha, I.; Maier, J. P.

    2011-05-01

    Small, unsaturated hydrocarbons, C_nH_m (n,m≤6), play an important role in astrochemical models as they have been detected in various space objects such as the interstellar medium or envelopes of carbon-rich stars. Although identification of most of these species was based on rotational studies, they are candidate carriers of the infamous diffuse interstellar bands. It has been proposed that corresponding cationic species formed upon UV radiation may also be of astrophysical relevance; therefore, their optical spectra need to be determined. In this contribution, electronic absorption spectra of mass-selected C_nH_4+ (n=5-8,10,12) ions trapped in neon matrices are presented. The cations were produced in a hot-cathode discharge source, guided through a series of electrostatic lenses, mass filtered and co-deposited with excess of neon onto a rhodium-coated sapphire plate held at 6 K. In the same experiments, neutral species were generated from the cations by a photobleaching procedure.

  15. The physical and compositional properties of dust: what do we really know?

    NASA Astrophysics Data System (ADS)

    Jones, A.

    Many things in current interstellar dust studies are taken as well understood givens by much of the community. For example, it is widely held that interstellar dust is made up of only three components, i.e., “astronomical silicates”, graphite and polycyclic aromatic hydrocarbons, and that our understanding of these is now complete and sufficient enough to interpret astronomical observations of dust in galaxies. To zeroth order this is a reasonable approximation. However, while these “three pillars” of dust modelling have been useful in advancing our understanding over the last few decades, it is now apparent that they are insufficient to explain the observed evolution of the dust properties from one region to another. Thus, it is time to abandon the “three pillars” approach and to seek more physically-realistic interstellar dust analogues. The analysis of the pre-solar grains extracted from meteorites, interplanetary dust particles and from the Stardust mission, and the interpretation of x-ray scattering and absorption observations, supports the view that our current view of the interstellar dust composition(s) is indeed too naïve. The aim of this review is to point out where our current views are rather secure and, perhaps more importantly, where they are far from secure and we must re-think our ideas. To this aim ten aspects of interstellar dust will be scrutinised and re-evaluated in terms of their validity within the current observational, experimental, modelling and theoretical constraints. It is concluded from this analysis that we really do need to re-assess many of the fundamental assumptions relating to what we think we really do ‘know’ about interstellar dust. In particular, it is clear that unravelling the nature dust evolution in the interstellar medium is perhaps the key to significantly advancing our current understanding of interstellar dust. For example, the dust in the diffuse interstellar medium, molecular clouds, photo-dissociation regions and HII regions is not exactly the same but exhibits important evolution within and between these different regions. An understanding of these evolutionary and regional variations exhibited by dust is now critical.

  16. Interstellar matter research with the Copernicus satellite

    NASA Technical Reports Server (NTRS)

    Spitzer, L., Jr.

    1976-01-01

    The use of the Copernicus satellite in an investigation of interstellar matter makes it possible to study absorption lines in the ultraviolet range which cannot be observed on the ground because of atmospheric absorption effects. A brief description is given of the satellite and the instrument used in the reported studies of interstellar matter. The results of the studies are discussed, giving attention to interstellar molecular hydrogen, the chemical composition of the interstellar gas, the coronal gas between the stars, and the interstellar abundance ratio of deuterium to hydrogen.

  17. Tetrahedral hydrocarbon nanoparticles in space: X-ray spectra

    NASA Astrophysics Data System (ADS)

    Bilalbegović, G.; Maksimović, A.; Valencic, L. A.

    2018-06-01

    It has been proposed, or confirmed, that diamond nanoparticles exist in various environments in space: close to active galactic nuclei, in the vicinity of supernovae and pulsars, in the interior of several planets in the Solar system, in carbon planets, and other exoplanets, carbon-rich stars, meteorites, in X-ray active Herbig Ae/Be stars, and in the interstellar medium. Using density functional theory methods, we calculate the carbon K-edge X-ray absorption spectrum of two large tetrahedral nanodiamonds: C26H32 and C51H52. We also study and test our methods on the astrophysical molecule CH4, the smallest C-H tetrahedral structure. A possible detection of nanodiamonds from X-ray spectra by future telescopes, such as the project Arcus, is proposed. Simulated spectra of the diffuse interstellar medium using Cyg X-2 as a source show that nanodiamonds studied in this work can be detected by Arcus, a high-resolution X-ray spectrometer mission selected by NASA for a Phase A concept study.

  18. Shedding light on the Type Ia supernova extinction puzzle: dust location found

    NASA Astrophysics Data System (ADS)

    Bulla, M.; Goobar, A.; Dhawan, S.

    2018-06-01

    The colour evolution of reddened Type Ia supernovae can place strong constraints on the location of dust and help address the question of whether the observed extinction stems from the interstellar medium or from circumstellar material surrounding the progenitor. Here we analyse BV photometry of 48 reddened Type Ia supernovae from the literature and estimate the dust location from their B - V colour evolution. We find a time-variable colour excess E(B - V) for 15 supernovae in our sample and constrain dust to distances between 0.013 and 45 pc (4 × 1016 - 1020 cm). For the remaining supernovae, we obtain a constant E(B - V) evolution and place lower limits on the dust distance from the explosion. In all the 48 supernovae, the inferred dust location is compatible with an interstellar origin for the extinction. This is corroborated by the observation that supernovae with relatively nearby dust (≲ 1 pc) are located close to the center of their host galaxy, in high-density dusty regions where interactions between the supernova radiation and interstellar clouds close by are likely to occur. For supernovae showing time-variable E(B - V), we identify a potential preference for low RV values, unusually strong sodium absorption and blue-shifted and time-variable absorption features. Within the interstellar framework, this brings evidence to a proposed scenario where cloud-cloud collisions induced by the supernova radiation pressure can shift the grain size distribution to smaller values and enhance the abundance of sodium in the gaseous phase.

  19. A new method to determine the interstellar reddening towards WN stars

    NASA Technical Reports Server (NTRS)

    Conti, Peter S.; Morris, Patrick W.

    1990-01-01

    An empirical approach to determine the redding in WN stars is presented, in which the measured strengths of the emission lines of He II at 1640 and 4686 A are used to estimate the extinction. The He II emission lines at these wavelengths are compared for a number of WN stars in the Galaxy and the LMC. It is shown that the equivalent width ratios are single valued and are independent of the spectral subtypes. The reddening for stars in the Galaxy is derived using a Galactic extinction law and observed line flux ratios, showing good agreement with previous determinations of reddening. The possible application of the method to study the absorption properties of the interstellar medium in more distant galaxies is discussed.

  20. 1E 0104.2 + 3153 - A broad absorption-line QSO viewed through a giant elliptical galaxy

    NASA Technical Reports Server (NTRS)

    Stocke, J. T.; Liebert, J.; Schild, R.; Gioia, I. M.; Maccacaro, T.

    1984-01-01

    The optical identification of the X-ray source 1E 0104.2 + 3153 is complicated by the close projection of a broad absorption-line (BAL) QSO (z = 2.027) 10 arcsec from a giant elliptical galaxy (z = 0.111) at the center of a compact group of galaxies. At only 1.2 de Vaucouleur radii (16 kpc for H sub 0 = 100 km/s Mpc) this QSO-galaxy projection is the closest yet discovered. Based upon current observations, the source of the X-ray emission cannot be conclusively determined. Present in the BAL QSO spectrum are extremely strong Ca II H and K absorption lines due to the intervening galaxy, the first optical detection of the cold interstellar medium in an elliptical galaxy. The strength of these lines (EW = 2 and 1 A) requires observation through several interstellar clouds in the line of sight to the QSO. By its proximity to the central regions of the elliptical galaxy and the relative distances of the galaxy and QSO, this QSO is a particularly good candidate for observing dramatic transient gravitational lensing phenomena due to halo stars in the foreground galaxy.

  1. IUE observations of interstellar hydrogen and deuterium toward Alpha Centauri B

    NASA Technical Reports Server (NTRS)

    Landsman, W. B.; Murthy, J.; Henry, R. C.; Moos, H. W.; Linsky, J. L.

    1986-01-01

    A high dispersion profile is presented of the Lyman-alpha emission toward Alpha Cen B as recorded in two images taken with the IUE spacecraft. The spectra were examined with a three-parameter Gaussian or five-parameter solar-type profile to derive the intrinsic background stellar emission. Voight absorption profiles were calculated for the intervening H I and D I gas. A uniform, thermally broadened medium was assumed, with the calculations being based on the free stellar parameters of density, velocity dispersion and the bulk velocity of H I, and the density of D I. The use of a small aperture is shown to have been effective in eliminating geocoronal and interplanetary diffuse Ly-alpha contamination. The H I absorption profile toward Alpha Cen B is found to be equivalent to that toward Alpha Cen A, indicating that the H I profiles derived are essentially independent of stellar emission. Less success, however, was attained in obtaining any definitive D I profile, although an asymmetry in the blue and red wings of the Lyman-alpha emissions did show the presence of absorption by interstellar deuterium and allow setting a lower limit of 0.00001 for the D I/H I ratio.

  2. A TALE OF TWO MYSTERIES IN INTERSTELLAR ASTROPHYSICS: THE 2175 A EXTINCTION BUMP AND DIFFUSE INTERSTELLAR BANDS

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Xiang, F. Y.; Zhong, J. X.; Li Aigen, E-mail: jxzhong@xtu.edu.cn, E-mail: lia@missouri.edu

    2011-06-01

    The diffuse interstellar bands (DIBs) are ubiquitous absorption spectral features arising from the tenuous material in the space between stars-the interstellar medium (ISM). Since their first detection nearly nine decades ago, over 400 DIBs have been observed in the visible and near-infrared wavelength range in both the Milky Way and external galaxies, both nearby and distant. However, the identity of the species responsible for these bands remains as one of the most enigmatic mysteries in astrophysics. An equally mysterious interstellar spectral signature is the 2175 A extinction bump, the strongest absorption feature observed in the ISM. Its carrier also remainsmore » unclear since its first detection 46 years ago. Polycyclic aromatic hydrocarbon (PAH) molecules have long been proposed as a candidate for DIBs as their electronic transitions occur in the wavelength range where DIBs are often found. In recent years, the 2175 A extinction bump is also often attributed to the {pi}-{pi}* transition in PAHs. If PAHs are indeed responsible for both the 2175 A extinction feature and DIBs, their strengths may correlate. We perform an extensive literature search for lines of sight for which both the 2175 A extinction feature and DIBs have been measured. Unfortunately, we found no correlation between the strength of the 2175 A feature and the equivalent widths of the strongest DIBs. A possible explanation might be that DIBs are produced by small free gas-phase PAH molecules and ions, while the 2175 A bump is mainly from large PAHs or PAH clusters in condensed phase so that there is no tight correlation between DIBs and the 2175 A bump.« less

  3. Infrared Spectroscopy of Carbonaceous-chondrite Inclusions in the Kapoeta Meteorite: Discovery of Nanodiamonds with New Spectral Features and Astrophysical Implications

    NASA Astrophysics Data System (ADS)

    Abdu, Yassir A.; Hawthorne, Frank C.; Varela, Maria E.

    2018-03-01

    We report the finding of nanodiamonds, coexisting with amorphous carbon, in carbonaceous-chondrite (CC) material from the Kapoeta achondritic meteorite by Fourier-transform infrared (FTIR) spectroscopy and micro-Raman spectroscopy. In the C–H stretching region (3100–2600 cm‑1), the FTIR spectrum of the Kapoeta CC material (KBr pellet) shows bands attributable to aliphatic CH2 and CH3 groups, and is very similar to IR spectra of organic matter in carbonaceous chondrites and the diffuse interstellar medium. Nanodiamonds, as evidenced by micro-Raman spectroscopy, were found in a dark region (∼400 μm in size) in the KBr pellet. Micro-FTIR spectra collected from this region are dramatically different from the KBr-pellet spectrum, and their C–H stretching region is dominated by a strong and broad absorption band centered at ∼2886 cm‑1 (3.47 μm), very similar to that observed in IR absorption spectra of hydrocarbon dust in dense interstellar clouds. Micro-FTIR spectroscopy also indicates the presence of an aldehyde and a nitrile, and both of the molecules are ubiquitous in dense interstellar clouds. In addition, IR peaks in the 1500–800 cm‑1 region are also observed, which may be attributed to different levels of nitrogen aggregation in diamonds. This is the first evidence for the presence of the 3.47 μm interstellar IR band in meteorites. Our results further support the assignment of this band to tertiary CH groups on the surfaces of nanodiamonds. The presence of the above interstellar bands and the absence of shock features in the Kapoeta nanodiamonds, as indicated by Raman spectroscopy, suggest formation by a nebular-condensation process similar to chemical-vapor deposition.

  4. Interstellar Dust: Contributed Papers

    NASA Technical Reports Server (NTRS)

    Tielens, Alexander G. G. M. (Editor); Allamandola, Louis J. (Editor)

    1989-01-01

    A coherent picture of the dust composition and its physical characteristics in the various phases of the interstellar medium was the central theme. Topics addressed included: dust in diffuse interstellar medium; overidentified infrared emission features; dust in dense clouds; dust in galaxies; optical properties of dust grains; interstellar dust models; interstellar dust and the solar system; dust formation and destruction; UV, visible, and IR observations of interstellar extinction; and quantum-statistical calculations of IR emission from highly vibrationally excited polycyclic aromatic hydrocarbon (PAH) molecules.

  5. LOCAL INTERSTELLAR MEDIUM: SIX YEARS OF DIRECT SAMPLING BY IBEX

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    McComas, D. J.; Fuselier, S. A.; Schwadron, N. A., E-mail: dmccomas@swri.edu, E-mail: sfuselier@swri.edu, E-mail: Nathan.schwadron@unh.edu

    2015-10-15

    The Interstellar Boundary Explorer (IBEX) has been directly observing neutral atoms from the local interstellar medium for the last six years (2009–2014). This paper ties together the 14 studies in this Astrophysical Journal Supplement Series Special Issue, which collectively describe the IBEX interstellar neutral results from this epoch and provide a number of other relevant theoretical and observational results. Interstellar neutrals interact with each other and with the ionized portion of the interstellar population in the “pristine” interstellar medium ahead of the heliosphere. Then, in the heliosphere's close vicinity, the interstellar medium begins to interact with escaping heliospheric neutrals. Inmore » this study, we compare the results from two major analysis approaches led by IBEX groups in New Hampshire and Warsaw. We also directly address the question of the distance upstream to the pristine interstellar medium and adjust both sets of results to a common distance of ∼1000 AU. The two analysis approaches are quite different, but yield fully consistent measurements of the interstellar He flow properties, further validating our findings. While detailed error bars are given for both approaches, we recommend that for most purposes, the community use “working values” of ∼25.4 km s{sup −1}, ∼75.°7 ecliptic inflow longitude, ∼ −5.°1 ecliptic inflow latitude, and ∼7500 K temperature at ∼1000 AU upstream. Finally, we briefly address future opportunities for even better interstellar neutral observations to be provided by the Interstellar Mapping and Acceleration Probe mission, which was recommended as the next major Heliophysics mission by the NRC's 2013 Decadal Survey.« less

  6. The effect of catastrophic collisional fragmentation and diffuse medium accretion on a computational interstellar dust system

    NASA Technical Reports Server (NTRS)

    Liffman, Kurt

    1990-01-01

    The effects of catastrophic collisional fragmentation and diffuse medium accretion on a the interstellar dust system are computed using a Monte Carlo computer model. The Monte Carlo code has as its basis an analytic solution of the bulk chemical evolution of a two-phase interstellar medium, described by Liffman and Clayton (1989). The model is subjected to numerous different interstellar processes as it transfers from one interstellar phase to another. Collisional fragmentation was found to be the dominant physical process that shapes the size spectrum of interstellar dust. It was found that, in the diffuse cloud phase, 90 percent of the refractory material is locked up in the dust grains, primarily due to accretion in the molecular medium. This result is consistent with the observed depletions of silicon. Depletions were found to be affected only slightly by diffuse cloud accretion.

  7. Experimental interstellar organic chemistry - Preliminary findings

    NASA Technical Reports Server (NTRS)

    Khare, B. N.; Sagan, C.

    1973-01-01

    Review of the results of some explicit experimental simulation of interstellar organic chemistry consisting in low-temperature high-vacuum UV irradiation of condensed simple gases known or suspected to be present in the interstellar medium. The results include the finding that acetonitrile may be present in the interstellar medium. The implication of this and other findings are discussed.

  8. Observational aspects of polycyclic aromatic hydrocarbon charging in the Interstellar Medium

    NASA Technical Reports Server (NTRS)

    Bakes, E. L. O.; Tielens, Alexander G. G. M.

    1995-01-01

    We have investigated the charging processes which affect small carbonaceous dust grains and polycyclic aromatic hydrocarbons (PAH's). Because of their high abundance, interstellar PAH molecules can dominate the charge balance of the interstellar medium (ISM), which controls the heating and cooling interstellar gas and interstellar chemistry. We present the results of our model, which compare well with observations and suggest further applications to both laboratory measurements and data obtainable from the KAO.

  9. Dust evolution, a global view: III. Core/mantle grains, organic nano-globules, comets and surface chemistry

    PubMed Central

    2016-01-01

    Within the framework of The Heterogeneous dust Evolution Model for Interstellar Solids (THEMIS), this work explores the surface processes and chemistry relating to core/mantle interstellar and cometary grain structures and their influence on the nature of these fascinating particles. It appears that a realistic consideration of the nature and chemical reactivity of interstellar grain surfaces could self-consistently and within a coherent framework explain: the anomalous oxygen depletion, the nature of the CO dark gas, the formation of ‘polar ice’ mantles, the red wing on the 3 μm water ice band, the basis for the O-rich chemistry observed in hot cores, the origin of organic nano-globules and the 3.2 μm ‘carbonyl’ absorption band observed in comet reflectance spectra. It is proposed that the reaction of gas phase species with carbonaceous a-C(:H) grain surfaces in the interstellar medium, in particular the incorporation of atomic oxygen into grain surfaces in epoxide functional groups, is the key to explaining these observations. Thus, the chemistry of cosmic dust is much more intimately related with that of the interstellar gas than has previously been considered. The current models for interstellar gas and dust chemistry will therefore most likely need to be fundamentally modified to include these new grain surface processes. PMID:28083090

  10. Photoionization Modeling of Oxygen K Absorption in the Interstellar Medium: The Chandra Grating Spectra of XTE J1817-330

    NASA Technical Reports Server (NTRS)

    Gatuzz, E.; Garcia, J.; Menodza, C.; Kallman, T. R.; Witthoeft, M.; Lohfink, A.; Bautista, M. A.; Palmeri, P.; Quinet, P.

    2013-01-01

    We present detailed analyses of oxygen K absorption in the interstellar medium (ISM) using four high-resolution Chandra spectra towards the X-ray low-mass binary XTE J1817-330. The 11-25 A broadband is described with a simple absorption model that takes into account the pileup effect and results in an estimate of the hydrogen column density. The oxygen K-edge region (21-25 A) is fitted with the physical warmabs model, which is based on a photoionization model grid generated with the XSTAR code with the most up-to-date atomic database. This approach allows a benchmark of the atomic data which involves wavelength shifts of both the K lines and photoionization cross sections in order to fit the observed spectra accurately. As a result we obtain: a column density of N(sub H) = 1.38 +/- 0.01 x 10(exp 21) cm(exp -2); ionization parameter of log xi = .2.70 +/- 0.023; oxygen abundance of A(sub O) = 0.689(exp +0.015./-0.010); and ionization fractions of O I/O = 0.911, O II/O = 0.077, and O III/O = 0.012 that are in good agreement with previous studies. Since the oxygen abundance in warmabs is given relative to the solar standard of Grevesse and Sauval (1998), a rescaling with the revision by Asplund et al. (2009) yields A(sub O) = 0.952(exp +0.020/-0.013, a value close to solar that reinforces the new standard. We identify several atomic absorption lines.K-alpha , K-beta, and K-gamma in O I and O II; and K-alpha in O III, O VI, and O VII--last two probably residing in the neighborhood of the source rather than in the ISM. This is the first firm detection of oxygen K resonances with principal quantum numbers n greater than 2 associated to ISM cold absorption.

  11. Photoionization Modeling of Oxygen K Absorption in the Interstellar Medium:. [The Chandra Grating Spectra of XTE J1817-330

    NASA Technical Reports Server (NTRS)

    Gatuzz, E.; Garcia, J.; Mendoza, C.; Kallman, T. R.; Witthoeft, M.; Lohfink, A.; Bautista, M. A.; Palmeri, P.; Quinet, P.

    2013-01-01

    We present detailed analyses of oxygen K absorption in the interstellar medium (ISM) using four high-resolution Chandra spectra toward the X-ray low-mass binary XTE J1817-330. The 11-25 Angstrom broadband is described with a simple absorption model that takes into account the pile-up effect and results in an estimate of the hydrogen column density. The oxygen K-edge region (21-25 Angstroms) is fitted with the physical warmabs model, which is based on a photoionization model grid generated with the xstar code with the most up-to-date atomic database. This approach allows a benchmark of the atomic data which involves wavelength shifts of both the K lines and photoionization cross sections in order to fit the observed spectra accurately. As a result we obtain a column density of N(sub H) = 1.38 +/- 0.01 × 10(exp 21) cm(exp -2); an ionization parameter of log xi = -2.70 +/- 0.023; an oxygen abundance of A(sub O) = 0.689 (+0.015/-0.010); and ionization fractions of O(sub I)/O = 0.911, O(sub II)/O = 0.077, and O(sub III)/O = 0.012 that are in good agreement with results from previous studies. Since the oxygen abundance in warmabs is given relative to the solar standard of Grevesse & Sauval, a rescaling with the revision by Asplund et al. yields A(sub O) = 0.952(+0.020/-0.013), a value close to solar that reinforces the new standard.We identify several atomic absorption lines-K(alpha), K(beta), and K(gamma) in O(sub I) and O(sub II) and K(alpha) in O(sub III), O(sub VI), and O(sub VII)-the last two probably residing in the neighborhood of the source rather than in the ISM. This is the first firm detection of oxygen K resonances with principal quantum numbers n greater than 2 associated with ISM cold absorption.

  12. Unveiling the Diffuse, Neutral Interstellar Medium: Absorption Spectroscopy of Galactic Hydrogen

    NASA Astrophysics Data System (ADS)

    Murray, Claire Elizabeth

    The formation of stars and evolution of galaxies depends on the cycle of interstellar matter between supernova-expelled plasma and molecule-rich gas. At the center of this cycle is multiphase neutral hydrogen (HI), whose physical conditions provide key ingredients to theoretical models. However, constraints for HI properties require measurements of gas emission and absorption which have been severely limited by previous observational capabilities. In this thesis, I present the largest survey of Galactic HI absorption ever undertaken with the Karl G. Jansky Very Large Array (VLA). The survey, 21 cm Spectral Line Observations of Neutral Gas with the VLA (21-SPONGE), is a statistical study of HI in all phases using direct absorption measurements. Leveraging novel calibration techniques, I demonstrate the capability of the VLA to detect a significant sample of 21 cm absorption lines from warm, diffuse HI. To maximize observational sensitivity, I stack the 21-SPONGE spectra and detect a pervasive signature of the warm neutral medium in absorption. The inferred excitation (or spin) temperature is consistent with existing estimates, yet higher than predictions from theoretical models of collisional HI excitation. This suggests that radiative feedback via resonant scattering of Lyalpha photons, known as the Wouthuysen-Field effect, is influential with important implications for cosmological 21 cm observations. Next, I compare 21-SPONGE with synthetic HI spectra from 3D numerical simulations using a new, objective decomposition and radiative transfer tool. I quantify the recovery of HI structures and their properties by Gaussian-fitted 21 cm spectral lines for the first time. I find that 21 cm absorption line shapes are sensitive to simulated physics, and demonstrate that my analysis method is a powerful tool for diagnosing neutral ISM conditions. Finally, I compare properties inferred from synthetic spectra with "true" simulation results to construct a bias correction function for estimating HI properties. I apply this correction to the mass distribution of HI as a function of temperature from 21-SPONGE, and find a significant fraction of thermally unstable gas. This confirms that non-steady radiative and dynamical processes, such as turbulence and supernovae, have a strong influence on the thermodynamic state of the ISM.

  13. Characterizing the Interstellar and Circumgalactic Medium in Star-forming Galaxies

    NASA Astrophysics Data System (ADS)

    Du, Xinnan; Shapley, Alice; Crystal Martin, Alison Coil, Charles Steidel, Tucker Jones, Daniel Stark, Allison Strom

    2018-01-01

    Rest-frame UV and optical spectroscopy provide valuable information on the physical properties of the neutral and ionized interstellar medium (ISM) in star-forming galaxies, including both the systemic interstellar component originating from HII regions, and the multi-phase outflowing component associated with star-formation feedback. My thesis focuses on both the systemic and outflowing ISM in star-forming galaxies at redshift z ~ 1-4. With an unprecedented sample at z~1 with the rest-frame near-UV coverage, we examined how the kinematics of the warm and cool phrases of gas, probed by the interstellar CIV and low-ionization features, respectively, relate to each other. The spectral properties of CIV strongly correlate with the current star-formation rate, indicating a distinct nature of highly-ionized outflowing gas being driven by massive star formation. Additionally, we used the same set of z~1 galaxies to study the properties of the systemic ISM in HII regions by analyzing the nebular CIII] emission. CIII] emission tends to be stronger in lower-mass, bluer, and fainter galaxies with lower metallicity, suggesting that the strong CIII] emitters at lower redshifts can be ideal analogs of young, bursty galaxies at z > 6, which are possibly responsible for reionizing the universe. We are currently investigating the redshift evolution of the neutral, circumgalactic gas in a sample of ~1100 Lyman Break Galaxies at z ~ 2-4. The negative correlation between Lya emission and low-ionization interstellar absorption line strengths appears to be universal across different redshifts, but the fine-structure line emitting regions are found to be more compact for higher-redshift galaxies. With the detailed observational constraints provided by the rest-UV and rest-optical spectroscopy, our study sheds light on how the interstellar and circumgalactic gas components and different phases of gas connect to each other, and therefore provides a comprehensive picture of the overall physical environment in typical star-forming galaxies.

  14. Deuterium Abundance in the Local Interstellar Medium

    NASA Technical Reports Server (NTRS)

    Ferlet, R.; Gry, C.; Vidal-Madjar, A.

    1984-01-01

    The present situation of deuterium abundance evaluation in interstellar space is discussed, and it is shown that it should be or = .00001 by studying in more detail lambda the Sco line of sight and by observing two NaI interstellar components toward that star, it can be shown that the D/H evaluation made toward lambda Sco is in fact related to the local interstellar medium (less than 10 pc from the Sun). Because this evaluation is also or = .00001 it is in striking contrast with the one made toward alpha Aur (D/H or = .000018 confirming the fact that the deuterium abundance in the local interstellar medium varies by at least a factor of two over few parsecs.

  15. Composition, structure and chemistry of interstellar dust

    NASA Technical Reports Server (NTRS)

    Tielens, Alexander G. G. M.; Allamandola, Louis J.

    1986-01-01

    The observational constraints on the composition of the interstellar dust are analyzed. The dust in the diffuse interstellar medium consists of a mixture of stardust (amorphous silicates, amorphous carbon, polycyclic aromatic hydrocarbons, and graphite) and interstellar medium dust (organic refractory material). Stardust seems to dominate in the local diffuse interstellar medium. Inside molecular clouds, however, icy grain mantles are also important. The structural differences between crystalline and amorphous materials, which lead to differences in the optical properties, are discussed. The astrophysical consequences are briefly examined. The physical principles of grain surface chemistry are discussed and applied to the formation of molecular hydrogen and icy grain mantles inside dense molecular clouds. Transformation of these icy grain mantles into the organic refractory dust component observed in the diffuse interstellar medium requires ultraviolet sources inside molecular clouds as well as radical diffusion promoted by transient heating of the mantle. The latter process also returns a considerable fraction of the molecules in the grain mantle to the gas phase.

  16. Far Ultraviolet Spectroscopy of the Intergalactic and Interstellar Absorption Toward 3C 273

    NASA Technical Reports Server (NTRS)

    Sembach, Kenneth R.; Howk, J. Christopher; Savage, Blair D.; Shull, J. Michael; Oegerle, William R.; Fisher, Richard R. (Technical Monitor)

    2001-01-01

    We present Far Ultraviolet Spectroscopic Explorer observations of the molecular, neutral atomic, weakly ionized, and highly ionized components of the interstellar and intergalactic material toward the quasar 3C273. We identify Ly-beta absorption in eight of the known intergalactic Ly-alpha absorbers along the sight line with the rest-frame equivalent widths W(sub r)(Ly-alpha) > 50 micro-angstroms. Refined estimates of the H(I) column densities and Doppler parameters (b) of the clouds are presented. We find a range of b = 16-46 km/s. We detect multiple H(I) lines (Ly-beta - Ly-theta) in the 1590 km/s Virgo absorber and estimate logN(H(I)) = 15.85 +/- 0.10, ten times more H(I) than all of the other absorbers along the sight line combined. The Doppler width of this absorber, b = 16 km/s, implies T < 15,000 K. We detect O(VI) absorption at 1015 km/s at the 2-3(sigma) level that may be associated with hot, X-ray emitting gas in the Virgo Cluster. We detect weak C(III) and O(VI) absorption in the IGM at z=0.12007; this absorber is predominantly ionized and has N(H+)/N(H(I)) > 4000/Z, where Z is the metallicity. Strong Galactic interstellar O(VI) is present between -100 and +100 km/s with an additional high-velocity wing containing about 13% of the total O(VI) between +100 and +240 km/s. The Galactic O(VI), N(V), and C(IV) lines have similar shapes, with roughly constant ratios across the -100 to +100 km/s velocity range. The high velocity O(VI) wing is not detected in other species. Much of the interstellar high ion absorption probably occurs within a highly fragmented medium within the Loop IV remnant or in the outer cavity walls of the remnant. Multiple hot gas production mechanisms are required. The broad O(VI) absorption wing likely traces the expulsion of hot gas out of the Galactic disk into the halo. A flux limit of 5.4 x 10(epx -16) erg/sq cm/s on the amount of diffuse O(VI) emission present = 3.5' off the 3C273 sight line combined with the observed O(VI) column density toward 3C273, logN O(VI) = 14.73 +/- 0.04, implies n(sub e) < 0.02/cubic cm and P/k < 11,500/cubic cm for an assumed temperature of 3 x 10(exp 5) K. The elemental abundances in the neutral and weakly-ionized interstellar clouds are similar to those found for other halo clouds. The warm neutral and warm ionized clouds along the sight line have similar dust-phase abundances, implying that the properties of the dust grains in the two types of clouds are similar. Interstellar H2 absorption is present at positive velocities at a level of logN(H2) = 15.71, but is very weak at the velocities of the main column density concentration along the sight line observed in H(I) 21 cm emission.

  17. A New Window into Escaping Exoplanet Atmospheres: 10830 Å Line of Helium

    NASA Astrophysics Data System (ADS)

    Oklopčić, Antonija; Hirata, Christopher M.

    2018-03-01

    Observational evidence for escaping exoplanet atmospheres has been obtained for a few exoplanets to date. It comes from strong transit signals detected in the ultraviolet, most notably in the wings of the hydrogen Lyα (Lyα) line. However, the core of the Lyα line is often heavily affected by interstellar absorption and geocoronal emission, limiting the information about the atmosphere that can be extracted from that part of the spectrum. Transit observations in atomic lines that are (a) sensitive enough to trace the rarefied gas in the planetary wind and (b) do not suffer from significant extinction by the interstellar medium could enable more detailed observations, and thus provide better constraints on theoretical models of escaping atmospheres. The absorption line of a metastable state of helium at 10830 Å could satisfy both of these conditions for some exoplanets. We develop a simple 1D model of escaping planetary atmospheres containing hydrogen and helium. We use it to calculate the density profile of helium in the 23S metastable excited state and the expected in-transit absorption at 10830 Å for two exoplanets known to have escaping atmospheres. Our results indicate that exoplanets similar to GJ 436b and HD 209458b should exhibit enhanced transit depths at 10830 Å, with ∼8% and ∼2% excess absorption in the line core, respectively.

  18. 3D maps of the local interstellar medium: the impact of Gaia

    NASA Astrophysics Data System (ADS)

    Capitanio, L.; Lallement, R.; Vergely, J. L.; Elyajouri, M.; Babusiaux, C.; Ruiz-Dern, L.; Monreal-Ibero, A.; Arenou, F.; Danielski, C.

    2017-12-01

    Gaia parallaxes combined with colour excess and absorption measurements from large stellar surveys will allow building increasingly precise three-dimensional maps of the interstellar matter (ISM). Reciprocally, detailed maps of the ISM will allow improving photometric calibrations of Gaia and measuring more precisely the amounts of reddening. In the future, the extraction of a diffuse interstellar band (DIB) from Gaia RVS (Radial Velocity Spectrometer) spectra will allow to build a tomography of the carrier of this DIB and compare it with dust and gas distributions. Here we show several results that illustrate current progress in local ISM mapping and a first example of the stellar-interstellar synergy linked to Gaia: a) how Gaia-DR1 parallaxes already modify the ISM maps obtained by means of a full-3D inversion of a compilation of colour excess data, b) how DIB measurements and corresponding Gaia parallaxes can complement colour excess data and improve the maps, c) new hierarchical methods combining distinct surveys, d) improved maps including APOGEE colour excess estimates deduced from the recent Gaia-based photometric calibrations of Ruiz-Dern et al (this issue), e) additional inclusion of LAMOST colour excess estimates (Wang et al, 2016).

  19. Inference of a 7.75 eV lower limit in the ultraviolet pumping of interstellar polycyclic aromatic hydrocarbon cations with resulting unidentified infrared emissions

    NASA Technical Reports Server (NTRS)

    Robinson, M. S.; Beegle, L. W.; Wdowiak, T. J.

    1997-01-01

    The discrete infrared features known as the unidentified infrared (UIR) bands originating in starburst regions of other galaxies, and in H II regions and planetary nebulae within the Milky Way, are widely thought to be the result of ultraviolet pumped infrared fluorescence of polycyclic aromatic hydrocarbon (PAH) molecules and ions. These UIR emissions are estimated to account for 10%-30% of the total energy emitted by galaxies. Laboratory absorption spectra including the vacuum ultraviolet region, as described in this paper, show a weakening of the intensity of absorption features as the population of cations increases, suggesting that strong pi* <-- pi transitions are absent in the spectra of PAH cations. This implies a lower energy bound for ultraviolet photons that pump infrared emissions from such ions at 7.75 eV, an amount greater than previously thought. The implications include size and structure limitations on the PAH molecules and ions which are apparent constituents of the interstellar medium. Also, this might affect estimations of the population of early-type stars in regions of rapid star formation.

  20. The Fourth Flight of CHESS: Analysis of Interstellar H2 on the γ Ara Sightline

    NASA Astrophysics Data System (ADS)

    Kruczek, Nick E.; France, Kevin; Nell, Nicholas; Fleming, Brian

    2018-06-01

    In this talk, we describe the scientific motivation and technical development of the Colorado High-resolution Echelle Stellar Spectrograph (CHESS) sounding rocket, focusing on the preliminary science results for the fourth launch of the payload (CHESS-4). CHESS is a far ultraviolet rocket-borne instrument designed to study the atomic-to-molecular transitions within translucent cloud regions in the interstellar medium. CHESS-4 launched on 13 April 2018 aboard NASA/CU sounding rocket mission 36.333 UG. The target for this flight was γ Ara, a B1I star that is known to display a variable and equatorially enhanced stellar wind. We present flight results of interstellar molecular hydrogen excitation, including initial measurements of the column density and temperature, on the sightline. These results are compared to previous values that were calculated using the damping wings of low-J H2 absorption features in Copernicus spectra. We also present analogous flight data for the sightline toward β Sco, finding that the derived column density of the J” = 1 rotational level differs by a factor of ~2 when compared to the previous observations. We discuss the discrepancies between the two measurements and show that the source of the difference is likely due to the opacity of higher rotational levels contributing to the J” = 1 absorption wing, increasing the inferred column density in the previous work.

  1. Massive stars: Their lives in the interstellar medium; Proceedings of the Symposium, ASP Annual Meeting, 104th, Univ. of Wisconsin, Madison, June 23-25, 1992

    NASA Astrophysics Data System (ADS)

    Cassinelli, Joseph P.; Churchwell, Edward B.

    1993-01-01

    Various papers on massive stars and their relationship to the interstellar medium are presented. Individual topics addressed include: observations of newly formed massive stars, star formation with nonthermal motions, embedded stellar clusters in H II regions, a Milky Way concordance, NH3 and H2O masers, PIGs in the Trapezium, star formation in photoevaporating molecular clouds, massive star evolution, mass loss from cool supergiant stars, massive runaway stars, CNO abundances in three A-supergiants, mass loss from late-type supergiants, OBN stars and blue supergiant supernovae, the most evolved W-R stars, X-ray variability in V444 Cygni, highly polarized stars in Cassiopeia, H I bubbles around O stars, interstellar H I LY-alpha absorption, shocked ionized gas in 30 Doradus, wind mass and energy deposition. Also discussed are: stellar wind bow shocks, O stars giant bubbles in M33, Eridanus soft X-ray enhancement, wind-blown bubbles in ejecta medium, nebulae around W-R stars, highly ionized gas in the LMC, cold ionized gas around hot H II regions, initial mass function in the outer Galaxy, late stages in SNR evolution, possible LBV in NGC 1313, old SN-pulsar association, cold bright matter near SN1987A, starbursts in the nearby universe, giant H II regions, powering the superwind in NGC 253, obscuration effects in starburst Galactic nuclei, starburst propagation in dwarf galaxies, 30 Doradus, W-R content of NGC 595 and NGC 604, Cubic Cosmic X-ray Background Experiment.

  2. Photodissociation Regions in the Interstellar Medium of Galaxies

    NASA Technical Reports Server (NTRS)

    Hollenbach, David J.; Tielens, A. G. G. M.; DeVincenzi, Donald L. (Technical Monitor)

    1999-01-01

    The interstellar medium of galaxies is the reservoir out of which stars are born and into which stars inject newly created elements as they age. The physical properties of the interstellar medium are governed in part by the radiation emitted by these stars. Far-ultraviolet (6 eV less than h(nu) less than 13.6 eV) photons from massive stars dominate the heating and influence the chemistry of the neutral atomic gas and much of the molecular gas in galaxies. Predominantly neutral regions of the interstellar medium in which the heating and chemistry are regulated by far ultraviolet photons are termed Photo-Dissociation Regions (PDRs). These regions are the origin of most of the non-stellar infrared (IR) and the millimeter and submillimeter CO emission from galaxies. The importance of PDRs has become increasingly apparent with advances in IR and submillimeter astronomy. The IR emission from PDRs includes fine structure lines of C, C+, and O; rovibrational lines of H2, rotational lines of CO; broad middle features of polycyclic aromatic hydrocarbons; and a luminous underlying IR continuum from interstellar dust. The transition of H to H2 and C+ to CO occurs within PDRs. Comparison of observations with theoretical models of PDRs enables one to determine the density and temperature structure, the elemental abundances, the level of ionization, and the radiation field. PDR models have been applied to interstellar clouds near massive stars, planetary nebulae, red giant outflows, photoevaporating planetary disks around newly formed stars, diffuse clouds, the neutral intercloud medium, and molecular clouds in the interstellar radiation field-in summary, much of the interstellar medium in galaxies. Theoretical PDR models explain the observed correlations of the [CII] 158 microns with the COJ = 1-0 emission, the COJ = 1-0 luminosity with the interstellar molecular mass, and the [CII] 158 microns plus [OI] 63 microns luminosity with the IR continuum luminosity. On a more global scale, MR models predict the existence of two stable neutral phases of the interstellar medium, elucidate the formation and destruction of star-forming molecular clouds, and suggest radiation-induced feedback mechanisms that may regulate star formation rates and the column density of gas through giant molecular clouds.

  3. More on the lambda 2800 A 'interstellar extinction' feature

    NASA Astrophysics Data System (ADS)

    McLachlan, A.; Nandy, K.

    1985-02-01

    In a response made to a recent letter by Karim et al. (1984), it is shown that the examples of interstellar absorption at 2800 A that they attribute to proteinaceous material can all be attributed to overexposure of IUE detectors. It is pointed out that stars in the Large Magellanic Cloud show pronounced absorption at 2800 A which cannot be due to interstellar protein since there is no associated absorption at 2200 A; this lack of absorption cannot be due to presence of graphite, whose absorption is weak in the Cloud. The claim by Karim et al. that the spectra of eight stars show 2800 A absorption and that these spectra are saturation-free is considered, and it is shown that data processing problems at IUE ground stations make these spectra unreliable.

  4. Turbulent mixing layers in the interstellar medium of galaxies

    NASA Technical Reports Server (NTRS)

    Slavin, J. D.; Shull, J. M.; Begelman, M. C.

    1993-01-01

    We propose that turbulent mixing layers are common in the interstellar medium (ISM). Injection of kinetic energy into the ISM by supernovae and stellar winds, in combination with density and temperature inhomogeneities, results in shear flows. Such flows will become turbulent due to the high Reynolds number (low viscosity) of the ISM plasma. These turbulent boundary layers will be particularly interesting where the shear flow occurs at boundaries of hot (approximately 10(exp 6) K) and cold or warm (10(exp 2) - 10(exp 4) K) gas. Mixing will occur in such layers producing intermediate-temperature gas at T is approximately equal to 10(exp 5.0) - 10(exp 5.5) that radiates strongly in the optical, ultraviolet, and EUV. We have modeled these layers under the assumptions of rapid mixing down to the atomic level and steady flow. By including the effects of non-equilibrium ionization and self-photoionization of the gas as it cools after mixing, we predict the intensities of numerous optical, infrared, and ultraviolet emission lines, as well as absorption column densities of C 4, N 5, Si 4, and O 6.

  5. The disk-halo connection and the nature of the interstellar medium

    NASA Technical Reports Server (NTRS)

    Norman, Colin A.; Ikeuchi, Satoru

    1988-01-01

    Some results on the nature of the interstellar medium that are specifically concerned with the disk-halo interaction are discussed. Over the last five years or so it has become clear that the supernovae rate in our Galaxy is spatially clumped and the consequences of such clumping are superbubbles and supershells fed by tens or hundreds of supernovae per shell. These objects evolve and expand rapidly and soon break out of the disk of the Galaxy, feeding the halo with very significant mass, energy, and momentum. As cooling occurs, gas will rain down onto the disk of the Galaxy completing the cycle. The basic flow of physical quantities from disk to halo and vice versa are discussed. Some of the many implications are noted including aspects of dynamo theory, quasar absorption lines, the theory of galactic coronae, and the nature of the x ray background. The essential difference here with the McKee-Ostriker (1977) theory is that the filling factor of the hot gas in the disk is significantly less than unity.

  6. Ubiquitous Argonium, ArH^+, in the Diffuse Interstellar Medium

    NASA Astrophysics Data System (ADS)

    Schilke, P.; Müller, Holger S. P.; Comito, C.; Sanchez-Monge, A.; Neufeld, D. A.; Indriolo, Nick; Bergin, Edwin; Lis, D. C.; Gerin, Maryvonne; Black, J. H.; Wolfire, M. G.; Pearson, John; Menten, Karl; Winkel, B.

    2014-06-01

    ArH^+ is isoelectronic with HCl. The J = 1 - 0 and 2 - 1 transitions of 36ArH^+ near 617.5 and 1234.6 GHz, respectively, have been identified very recently as emission lines in spectra obtained with Herschel toward the Crab Nebula supernova remnant. On Earth, 40Ar is by far the most abundant isotope, being almost exclusively formed by the radioactive decay of 40K. However, 36Ar is the dominant isotope in the Universe. In the course of unbiased line surveys of the massive and very luminous Galactic Center star-forming regions Sagittarius B2(M) and (N) with the high-resolution instrument HIFI on board of Herschel, we detected the J = 1 - 0 transition of 36ArH^+ as a moderately strong absorption line initially associated with an unidentified carrier. In both cases, the absorption feature is unique in its appearance at all velocity components associated with diffuse foreground molecular clouds, together with its conspicuous absence at velocities related to the denser sources themselves. Model calculations are able to reproduce the derived ArH^+ column densities and suggest that argonium resides in the largely atomic, diffuse interstellar medium with a molecular fraction of no more than ˜10-4. The 38ArH^+ isotopolog was also detected. Subsequent observations toward the continuum sources W51, W49, W31C, and G34.3+0.1 resulted in unequivocal detections of 36ArH^+ absorption. Hence, argonium is a good probe of the transition zone between atomic and molecular gas, in particular in combination with OH^+ and H_2O^+, whose abundances peak at a molecular fraction of ˜0.1. Moreover, argonium is a good indicator of an enhanced cosmic ray ionization rate. Therefore, it may be prominent toward, e.g., active galactic nuclei (AGNs) in addition to supernova remnants. M. J. Barlow et al., Science 342 (2013) 1343. H. S. P. Müller et al., Proceedings of the IAU Symposium 297, 2013, "The Diffuse Interstellar Bands", Eds. J. Cami & N. Cox.

  7. Soft X-ray Absorption Edges in LMXBs

    NASA Technical Reports Server (NTRS)

    2004-01-01

    The XMM observation of LMC X-2 is part of our program to study X-ray absorption in the interstellar medium (ISM). This program includes a variety of bright X-ray binaries in the Galaxy as well as the Magellanic Clouds (LMC and SMC). LMC X-2 is located near the heart of the LMC. Its very soft X-ray spectrum is used to determine abundance and ionization fractions of neutral and lowly ionized oxygen of the ISM in the LMC. The RGS spectrum so far allowed us to determine the O-edge value to be for atomic O, the EW of O-I in the ls-2p resonance absorption line, and the same for O-II. The current study is still ongoing in conjunction with other low absorption sources like Sco X-1 and the recently observed X-ray binary 4U 1957+11.

  8. The detection of interstellar C I in the immediate vicinity of the sun

    NASA Technical Reports Server (NTRS)

    Bruhweiler, F. C.; Kondo, Y.

    1982-01-01

    Multiple stacked IUE spectra reveal the presence of interstellar C I 1657 in the trough of a corresponding photospheric feature in the nearby star, Alpha PsA (d = 7 pc). This represents the first detection of this neutral atom in the interstellar medium within the immediate vicinity of the sun. It is suggested that C I may be a much better diagnostic tool in studying the local interstellar medium than the neutral species K I and Na I, which are observable at visual wavelengths. Variations in C I column density, coupled with b-values deduced from the Mg II doublet ratio, may prove to be an important means to unravel density and temperature fluctuations in the very local interstellar medium. Comparison of the line of sight toward Alpha PsA with previous Copernicus interstellar Mg II results for that of Alpha Leo tentatively indicates that the distribution of Mg II in the local cloud is not homogeneous about the sun. Rough constraints on the ionization fraction of hydrogen toward Alpha PsA do not conflict with previous data, implying that the very local interstellar medium is significantly ionized.

  9. On the nature of absorption features toward nearby stars

    NASA Astrophysics Data System (ADS)

    Kohl, S.; Czesla, S.; Schmitt, J. H. M. M.

    2016-06-01

    Context. Diffuse interstellar absorption bands (DIBs) of largely unknown chemical origin are regularly observed primarily in distant early-type stars. More recently, detections in nearby late-type stars have also been claimed. These stars' spectra are dominated by stellar absorption lines. Specifically, strong interstellar atomic and DIB absorption has been reported in τ Boo. Aims: We test these claims by studying the strength of interstellar absorption in high-resolution TIGRE spectra of the nearby stars τ Boo, HD 33608, and α CrB. Methods: We focus our analysis on a strong DIB located at 5780.61 Å and on the absorption of interstellar Na. First, we carry out a differential analysis by comparing the spectra of the highly similar F-stars, τ Boo and HD 33608, whose light, however, samples different lines of sight. To obtain absolute values for the DIB absorption, we compare the observed spectra of τ Boo, HD 33608, and α CrB to PHOENIX models and carry out basic spectral modeling based on Voigt line profiles. Results: The intercomparison between τ Boo and HD 33608 reveals that the difference in the line depth is 6.85 ± 1.48 mÅ at the DIB location which is, however, unlikely to be caused by DIB absorption. The comparison between PHOENIX models and observed spectra yields an upper limit of 34.0 ± 0.3 mÅ for any additional interstellar absorption in τ Boo; similar results are obtained for HD 33608 and α CrB. For all objects we derive unrealistically large values for the radial velocity of any presumed interstellar clouds. In τ Boo we find Na D absorption with an equivalent width of 0.65 ± 0.07 mÅ and 2.3 ± 0.1 mÅ in the D2 and D1 lines. For the other Na, absorption of the same magnitude could only be detected in the D2 line. Our comparisons between model and data show that the interstellar absorption toward τ Boo is not abnormally high. Conclusions: We find no significant DIB absorption in any of our target stars. Any differences between modeled and observed spectra are instead attributable to inaccuracies in the stellar atmospheric modeling than to DIB absorption. The spectra are available at the CDS via anonymous ftp to http://cdsarc.u-strasbg.fr (http://130.79.128.5) or via http://cdsarc.u-strasbg.fr/viz-bin/qcat?J/A+A/591/A20

  10. Interstellar absorption in the Mg II resonance line k2 and h2 emissions

    NASA Technical Reports Server (NTRS)

    Boehm-Vitense, E.

    1981-01-01

    High-resolution (0.2 A) IUE spectra for the long wavelength range (1800-3000 A) have been studied. It is shown that narrow interstellar Mg II lines are seen in the center of the k2 and h2 emissions from nearby stars with large rotational velocities. For all observed stars, the radial velocity of the central k3 absorption component in the rest system of the star is strongly correlated with the mirror image of the radial velocity of the stars; this shows that a major fraction if not all of the k3 absorption is due to interstellar absorption in the solar neighborhood. The violet to red asymmetry of the k2 emission also correlates with the radial velocities of the star; this shows that the shift of k3 is due to the velocity shift of the local interstellar cloud with respect to the star.

  11. Observations of Absorption Lines from Highly Ionized Atoms

    NASA Technical Reports Server (NTRS)

    Jenkins, E. B.

    1984-01-01

    In the ultraviolet spectra of hot stars, absorption lines can be seen from highly ionized species in the interstellar medium. Observations of these features which have been very influential in revising the perception of the medium's various physical states, are discussed. The pervasiveness of O 6 absorption lines, coupled with complementary observations of a diffuse background in soft X-rays and EUV radiation, shows that there is an extensive network of low density gas (n approx. fewX 0.001/cucm) existing at coronal temperatures, 5.3 or = log T or = 6.3. Shocks created by supernova explosions or mass loss from early-type stars can propagate freely through space and eventually transfer a large amount of energy to the medium. To create the coronal temperatures, the shocks must have velocities in excess of 150 km/sec; shocks at somewhat lower velocity 9v or = 100 km/sec) can be directly observed in the lines of Si3. Observations of other lines in the ultraviolet, such as Si 4V and C 5, may highlight the widespread presence of energetic uv radiation from very hot, dward stars. More advanced techniques in visible and X-ray astronomical spectroscopy may open up for inspection selected lines from atoms in much higher stages of ionization.

  12. Solid hydrogen coated graphite particles in the interstellar medium. I.

    NASA Technical Reports Server (NTRS)

    Swamy, K. S. K.; Wickramasinghe, N. C.

    1969-01-01

    Solid para hydrogen coated graphite particles expulsion into interstellar medium from star formation regions, considering mantles stability and particles extinction efficiency, albedo and phase function

  13. Surface science studies of ethene containing model interstellar ices

    NASA Astrophysics Data System (ADS)

    Puletti, F.; Whelan, M.; Brown, W. A.

    2011-05-01

    The formation of saturated hydrocarbons in the interstellar medium (ISM) is difficult to explain only by taking into account gas phase reactions. This is mostly due to the fact that carbonium ions only react with H_2 to make unsaturated hydrocarbons, and hence no viable route to saturated hydrocarbons has been postulated to date. It is therefore likely that saturation processes occur via surface reactions that take place on interstellar dust grains. One of the species of interest in this family of reactions is C_2H_4 (ethene) which is an intermediate in several molecular formation routes (e.g. C_2H_2 → C_2H_6). To help to understand some of the surface processes involving ethene, a study of ethene deposited on a dust grain analogue surface (highly oriented pyrolytic graphite) held under ultra-high vacuum at 20 K has been performed. The adsorption and desorption of ethene has been studied both in water-free and water-dominated model interstellar ices. A combination of temperature programmed desorption (TPD) and reflection absorption infrared spectroscopy (RAIRS) have been used to identify the adsorbed and trapped species and to determine the kinetics of the desorption processes. In all cases, ethene is found to physisorb on the carbonaceous surface. As expected water has a very strong influence on the desorption of ethene, as previously observed for other model interstellar ice systems.

  14. Laboratory Determination of the Infrared Band Strengths of Pyrene Frozen in Water Ice: Implications for the Composition of Interstellar Ices

    NASA Technical Reports Server (NTRS)

    Hardegree-Ullman, E.E.; Gudipati, M.S.; Boogert, A.C.A.; Lignell, H.; Allamandola, L.J.; Stapelfeldt, K. R.; Werner, M.

    2014-01-01

    Broad infrared emission features (e.g., at 3.3, 6.2, 7.7, 8.6, and 11.3 micrometers) from the gas phase interstellar medium have long been attributed to polycyclic aromatic hydrocarbons (PAHs). A significant portion (10 to 20%) of the Milky Way's carbon reservoir is locked in PAH molecules, which makes their characterization integral to our understanding of astrochemistry. In molecular clouds and the dense envelopes and disks of young stellar objects (YSOs), PAHs are expected to be frozen in the icy mantles of dust grains where they should reveal themselves through infrared absorption. To facilitate the search for frozen interstellar PAHs, laboratory experiments were conducted to determine the positions and strengths of the bands of pyrene mixed with H2O and deuterium oxide ices. The deuterium oxide mixtures are used to measure pyrene bands that are masked by the strong bands of H2O, leading to the first laboratory determination of the band strength for the CH stretching mode of pyrene in water ice near 3.25 micrometers. Our infrared band strengths were normalized to experimentally determined ultraviolet (UV) band strengths, and we find that they are generally approximately 50% larger than those reported by Bouwman et al. (2011) based on theoretical strengths. These improved band strengths were used to reexamine YSO spectra published by Boogert et al. (2008) to estimate the contribution of frozen PAHs to absorption in the 5 to 8 micrometer spectral region, taking into account the strength of the 3.25 micrometer CH stretching mode. It is found that frozen neutral PAHs contain 5 to 9% of the cosmic carbon budget, and account for 2 to 9% of the unidentified absorption in the 5 to 8 micrometer region.

  15. Photochemistry of PAHs in cosmic water ice. The effect of concentration on UV-VIS spectroscopy and ionization efficiency

    NASA Astrophysics Data System (ADS)

    Cuylle, Steven H.; Allamandola, Louis J.; Linnartz, Harold

    2014-02-01

    Context. Observations and models show that polycyclic aromatic hydrocarbons (PAHs) are ubiquitous in the interstellar medium. Like other molecules in dense clouds, PAHs accrete onto interstellar dust grains, where they are embedded in an ice matrix dominated by water. In the laboratory, mixed molecular ices (not containing PAHs) have been extensively studied using Fourier transform infrared absorption spectroscopy. Experiments including PAHs in ices have started, however, the concentrations used are typically much higher than the concentrations expected for interstellar ices. Optical spectroscopy offers a sensitive alternative. Aims: We report an experimental study of the effect PAH concentration has on the electronic spectra and the vacuum UV (VUV) driven processes of PAHs in water-rich ices. The goal is to apply the outcome to cosmic ices. Methods: Optical spectroscopic studies allow us to obtain in-situ and quasi real-time electronic solid state spectra of two prototypical PAHs (pyrene and coronene) embedded in water ice under VUV photoprocessing. The study is carried out on PAH:H2O concentrations in the range of 1:30 000 to pure PAH, covering the temperature range from 12 to 125 K. Results: PAH concentration strongly influences the efficiency of PAH cation formation. At low concentrations, ionization efficiencies are over 60% dropping to about 15% at 1:1000. Increasing the PAH concentration reveals spectral broadening in neutral and cation PAH spectra attributed to PAH clustering inside the ice. At the PAH concentrations expected for interstellar ices, some 10 to 20% may be present as cations. The presence of PAHs in neutral and ion form will add distinctive absorption bands to cosmic ice optical spectra and this may serve as a tool to determine PAH concentrations.

  16. A survey of interstellar neutral potassium. I - Abundances and physical conditions in clouds toward 188 early-type stars

    NASA Technical Reports Server (NTRS)

    Chaffee, F. H., Jr.; White, R. E.

    1982-01-01

    Observations of interstellar absorption in the resonance doublet 7664, 7698 A of neutral potassium toward 188 early-type stars at a spectral resolution of 8 km/s are reported. The 7664 A line is successfully separated from nearly coincident telluric O2 absorption for all but a few of the 165 stars for which K I absorption is detected, making possible an abundance analysis by the doublet ratio method. The relationships between the potassium abundances and other atomic abundances, the abundance of molecular hydrogen, and interstellar reddening are investigated.

  17. High-resolution ultraviolet observations of interstellar lines toward Zeta Persei observed with the balloon-borne ultraviolet stellar spectrometer

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Snow, T.P.; Lamers, H.J.G.L.M.; Joseph, C.L.

    1987-10-01

    The balloon-borne ultraviolet stellar spectrometer payload has been used to obtain high-resolution data on interstellar absorption lines toward Zeta Per. The only lines clearly present in the 2150-2450 region were several Fe II features, which show double structure. The two velocity components were sufficiently well separated that it was possible to construct separate curves of growth to derive the Fe II column densities for the individual components. These column densities and the component velocity separation were then used to compute a realistic two-component curve of growth for the line of sight to Zeta Per, which was then used to reanalyzemore » existing ultraviolet data from Copernicus. The results were generally similar to an earlier two-component analysis of the Copernicus data, with the important exception that the silicon depletion increased from near zero to about 1 dex. This makes the Zeta Per depletion pattern quite similar to those derived for other reddened lines of sight, supporting the viewpoint that the general diffuse interstellar medium has a nearly constant pattern of depletions. 31 references.« less

  18. Copernicus observations of interstellar matter in the direction of HR 1099

    NASA Technical Reports Server (NTRS)

    Anderson, R. C.; Weiler, E. J.

    1978-01-01

    Results are reported for high-resolution Copernicus U1 and V2 scans of the bright RS CVn spectroscopic binary HR 1099. The observations reveal strong UV emission lines at L-alpha and Mg II h and k from the stars as well as interstellar H I and D I L-alpha absorption lines and interstellar Mg II h and k absorption in the direction of the binary system. Column densities, bulk velocities, and temperatures are derived for the interstellar features. A comparison of the derived number density of interstellar H I with data for the nearby star Epsilon Eri indicates an inhomogeneous distribution of interstellar hydrogen along the line of sight. The range of values obtained for the D/H ratio is shown to be consistent with results of other studies. A depletion factor of at least 5 with respect to the solar abundance is estimated for the interstellar magnesium.

  19. On the Formation of Interstellar Water Ice: Constraints from a Search for Hydrogen Peroxide Ice in Molecular Clouds

    NASA Technical Reports Server (NTRS)

    Smith, R. G.; Charnely, S. B.; Pendleton, Y. J.; Wright, C. M.; Maldoni, M. M.; Robinson, G.

    2011-01-01

    Recent surface chemistry experiments have shown that the hydrogenation of molecular oxygen on interstellar dust grains is a plausible formation mechanism, via hydrogen peroxide (H2O2), for the production of water (H2O) ice mantles in the dense interstellar medium. Theoretical chemistry models also predict the formation of a significant abundance of H2O2 ice in grain mantles by this route. At their upper limits, the predicted and experimental abundances are sufficiently high that H2O2 should be detectable in molecular cloud ice spectra. To investigate this further, laboratory spectra have been obtained for H2O2/H2O ice films between 2.5 and 200 micron, from 10 to 180 K, containing 3%, 30%, and 97% H2O2 ice. Integrated absorbances for all the absorption features in low-temperature H2O2 ice have been derived from these spectra. For identifying H2O2 ice, the key results are the presence of unique features near 3.5, 7.0, and 11.3 micron. Comparing the laboratory spectra with the spectra of a group of 24 protostars and field stars, all of which have strong H2O ice absorption bands, no absorption features are found that can definitely be identified with H2O2 ice. In the absence of definite H2O2 features, the H2O2 abundance is constrained by its possible contribution to the weak absorption feature near 3.47 micron found on the long-wavelength wing of the 3 micron H2O ice band. This gives an average upper limit for H2O2, as a percentage of H2O, of 9% +/- 4%. This is a strong constraint on parameters for surface chemistry experiments and dense cloud chemistry models.

  20. Local Interstellar Medium Properties and Deuterium Abundances for the Lines of Sight Toward HR 1099, 31 Comae, beta Ceti, and beta Cassiopeiae

    NASA Technical Reports Server (NTRS)

    Piskunov, Nikolai; Wood, Brian E.; Linsky, Jeffrey L.; Dempsey, Robert C.; Ayres, Thomas R.

    1997-01-01

    We analyze Goddard High-Resolution Spectrograph data to infer the properties of local interstellar gas and the Deuterium/Hydrogen (D/H) ratio for lines of sight toward four nearby late-type stars-HR 1099, 31 Comae, beta Ceti, and beta Cassiopeiae. The data consist of spectra of the hydrogen and deuterium Lyman-(alpha) lines, and echelle spectra of the Mg IIh and k lines toward all stars except beta Cas. Spectra of the RS CVn-type spectroscopic binary system HR 1099 were obtained near opposite quadratures to determine the intrinsic stellar emission line profile and the interstellar absorption separately. Multiple-velocity components were found toward HR 1099 and beta Cet. The spectra of 31 Com and beta Cet are particularly interesting because they sample lines of sight toward the north and south Galactic poles, respectively, for which H I and D I column densities were not previously available. The north Galactic pole appears to be a region of low hydrogen density like the 'interstellar tunnel' toward epsilon CMa. The temperature and turbulent velocities of the Local InterStellar Medium (LISM) that we measure for the lines of sight toward HR 1099, 31 Com, beta Cet, and beta Cas are similar to previously measured values (T approx.7000 K and xi = 1.0-1.6 km/s). The deuterium/hydrogen ratios found for these lines of sight are also consistent with previous measurements of other short lines of sight, which suggest D/H approx. 1.6 x 10(sup -5). In contrast, the Mg abundance measured for the beta Cet line of sight (implying a logarithmic depletion of D(Mg) = +0.30 +/- 0.15) is about 5 times larger than the Mg abundance previously observed toward alpha Cen, and about 20 times larger than all other previous measurements for the LISM. These results demonstrate that metal abundances in the LISM vary greatly over distances of only a few parsecs.

  1. Interstellar lines in the spectra of four stars

    NASA Technical Reports Server (NTRS)

    Hobbs, L. M.

    1979-01-01

    Observations of optical interstellar absorption lines arising from Na I, K I, and/or Ca II are reported in the spectra of HD 72127, Iota(1) Sco, 102 Her, and 6 Cas. Line components showing strikingly large Ca II/Na I ratios are found toward HD 72127 and are verified for 102 Her. The absorption toward Iota(1) Sco and 6 Cas illustrates features of the local galactic distribution of interstellar gas.

  2. Inferring the Composition of Super-Jupiter Mass Companions of Pulsars with Radio Line Spectroscopy

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ray, Alak; Loeb, Abraham, E-mail: akr@tifr.res.in, E-mail: aloeb@cfa.harvard.edu

    We propose using radio line spectroscopy to detect molecular absorption lines (such as OH at 1.6–1.7 GHz) before and after the total eclipse of black widow and other short orbital period binary pulsars with low-mass companions. The companion in such a binary may be ablated away by energetic particles and high-energy radiation produced by the pulsar wind. The observations will probe the eclipsing wind being ablated by the pulsar and constrain the nature of the companion and its surroundings. Maser emission from the interstellar medium stimulated by a pulsar beam might also be detected from the intrabinary medium. The shortmore » temporal resolution allowed by the millisecond pulsars can probe this medium with the high angular resolution of the pulsar beam.« less

  3. The impact of different interstellar medium structures on the dynamical evolution of supernova remnants

    NASA Astrophysics Data System (ADS)

    Wang, Yueyang; Bao, Biwen; Yang, Chuyuan; Zhang, Li

    2018-05-01

    The dynamical properties of supernova remnants (SNRs) evolving with different interstellar medium structures are investigated through performing extensive two-dimensional magnetohydrodynamic (MHD) simulations in the cylindrical symmetry. Three cases of different interstellar medium structures are considered: the uniform medium, the turbulent medium and the cloudy medium. Large-scale density and magnetic fluctuations are calculated and mapped into the computational domain before simulations. The clouds are set by random distribution in advance. The above configuration allows us to study the time-dependent dynamical properties and morphological evolution of the SNR evolving with different ambient structures, along with the development of the instabilities at the contact discontinuity. Our simulation results indicate that remnant morphology deviates from symmetry if the interstellar medium contains clouds or turbulent density fluctuations. In the cloudy medium case, interactions between the shock wave and clouds lead to clouds' fragmentation. The magnetic field can be greatly enhanced by stretching field lines with a combination of instabilities while the width of amplification region is quite different among the three cases. Moreover, both the width of amplification region and the maximum magnetic-field strength are closely related to the clouds' density.

  4. TRES survey of variable diffuse interstellar bands

    NASA Astrophysics Data System (ADS)

    Law, Charles J.; Milisavljevic, Dan; Crabtree, Kyle N.; Johansen, Sommer L.; Patnaude, Daniel J.; Margutti, Raffaella; Parrent, Jerod T.; Drout, Maria R.; Sanders, Nathan E.; Kirshner, Robert P.; Latham, David W.

    2017-09-01

    Diffuse interstellar bands (DIBs) are absorption features commonly observed in optical/near-infrared spectra of stars and thought to be associated with polyatomic molecules that comprise a significant reservoir of organic material in the Universe. However, the central wavelengths of almost all DIBs do not correspond with electronic transitions of known atomic or molecular species and the specific physical nature of their carriers remains inconclusive despite decades of observational, theoretical and experimental research. It is well established that DIB carriers are located in the interstellar medium, but the recent discovery of time-varying DIBs in the spectra of the extragalactic supernova SN 2012ap suggests that some may be created in massive star environments. Here, we report evidence of short time-scale (∼10-60 d) changes in DIB absorption line substructure towards 3 of 17 massive stars observed as part of a pathfinder survey of variable DIBs conducted with the 1.5-m Tillinghast telescope and Tillinghast Reflector Echelle Spectrograph (TRES) at Fred L. Whipple Observatory. The detections are made in high-resolution optical spectra (R ∼ 44 000) having signal-to-noise ratios of 5-15 around the 5797 and 6614 Å features, and are considered significant but requiring further investigation. We find that these changes are potentially consistent with interactions between stellar winds and DIB carriers in close proximity. Our findings motivate a larger survey to further characterize these variations and may establish a powerful new method for probing the poorly understood physical characteristics of DIB carriers.

  5. TRES Survey of Variable Diffuse Interstellar Bands

    NASA Astrophysics Data System (ADS)

    Law, Charles; Milisavljevic, Dan; Crabtree, Kyle; Johansen, Sommer; Patnaude, Daniel

    2017-01-01

    Diffuse interstellar bands (DIBs) are absorption features commonly observed in optical/near-infrared spectra of stars and thought to be associated with polyatomic molecules that comprise a significant reservoir of organic material in the universe. However, because the central wavelengths of DIBs do not correspond with electronic transitions of known atomic or molecular species, the specific physical nature of their carriers remains inconclusive despite decades of observational, theoretical, and experimental research. It is well established that DIB carriers must be located in the interstellar medium, but the recent discovery of time-varying DIBs in the spectra of the extragalactic supernova SN 2012ap suggests that some may be created in massive star environments. We report evidence of short time-scale (˜1-60 days) variations in DIB absorption line substructure toward 3 of 17 massive stars observed as part of a pathfinder survey of variable DIBs. The detections are made in high-resolution optical spectra (R ˜ 44000) from the Tillinghast Reflection Echelle Spectrograph on the 1.5m Tillinghast telescope at the Smithsonian Astrophysical Observatory's Fred L. Whipple Observatory on Mt. Hopkins in Arizona. Our detections have signal-to-noise ratios of 5-15 around the features of interest, and are thus considered significant but requiring further investigation. We find that these changes are potentially consistent with interactions between stellar winds and DIB carriers in close proximity. Our findings motivate a larger survey to further characterize these variations and may establish a powerful new method for probing the poorly understood physical characteristics of DIB carriers.

  6. The heliosphere's interstellar interaction: no bow shock.

    PubMed

    McComas, D J; Alexashov, D; Bzowski, M; Fahr, H; Heerikhuisen, J; Izmodenov, V; Lee, M A; Möbius, E; Pogorelov, N; Schwadron, N A; Zank, G P

    2012-06-08

    As the Sun moves through the local interstellar medium, its supersonic, ionized solar wind carves out a cavity called the heliosphere. Recent observations from the Interstellar Boundary Explorer (IBEX) spacecraft show that the relative motion of the Sun with respect to the interstellar medium is slower and in a somewhat different direction than previously thought. Here, we provide combined consensus values for this velocity vector and show that they have important implications for the global interstellar interaction. In particular, the velocity is almost certainly slower than the fast magnetosonic speed, with no bow shock forming ahead of the heliosphere, as was widely expected in the past.

  7. Observations of interstellar zinc

    NASA Technical Reports Server (NTRS)

    Jura, M.; York, D.

    1981-01-01

    The International Ultraviolet Explorer observations of interstellar zinc toward 10 stars are examined. It is found that zinc is at most only slightly depleted in the interstellar medium; its abundance may serve as a tracer of the true metallicity in the gas. The local interstellar medium has abundances that apparently are homogeneous to within a factor of two, when integrated over paths of about 500 pc, and this result is important for understanding the history of nucleosynthesis in the solar neighborhood. The intrinsic errors in detecting weak interstellar lines are analyzed and suggestions are made as to how this error limit may be lowered to 5 mA per target observation.

  8. Photon counting image sensor development for astronomical applications

    NASA Technical Reports Server (NTRS)

    Jenkins, Edward B.

    1987-01-01

    Specially built intensified CCD (ICCD) detector tubes were purchased and the performance of the electron bombardment process was investigated. In addition to studying the signal characteristics of the photoevents, there was interest in demonstrating that back-illuminated chips were not susceptible to radiation damage to their clocking electrodes. How to perform a centroid analysis for a 2-dimensional Gaussian distribution of charge is described. Measurement of the projection (along columns or rows) of the average charge spread profile is discussed. The development and flight of the Interstellar Medium Absorption Profile Spectrograph (IMAPS) is discussed.

  9. High Resolution UV Emission Spectroscopy of Molecules Excited by Electron Impact

    NASA Technical Reports Server (NTRS)

    James, G. K.; Ajello, J. M.; Beegle, L.; Ciocca, M.; Dziczek, D.; Kanik, I.; Noren, C.; Jonin, C.; Hansen, D.

    1999-01-01

    Photodissociation via discrete line absorption into predissociating Rydberg and valence states is the dominant destruction mechanism of CO and other molecules in the interstellar medium and molecular clouds. Accurate values for the rovibronic oscillator strengths of these transitions and predissociation yields of the excited states are required for input into the photochemical models that attempt to reproduce observed abundances. We report here on our latest experimental results of the electron collisional properties of CO and N2 obtained using the 3-meter high resolution single-scattering spectroscopic facility at JPL.

  10. AN INFRARED DIFFUSE CIRCUMSTELLAR BAND? THE UNUSUAL 1.5272 μm DIB IN THE RED SQUARE NEBULA

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zasowski, G.; Chojnowski, S. Drew; Whelan, D. G.

    The molecular carriers of the ubiquitous absorption features called the diffuse interstellar bands (DIBs) have eluded identification for many decades, in part because of the enormous parameter space spanned by the candidates and the limited set of empirical constraints afforded by observations in the diffuse interstellar medium. Detection of these features in circumstellar regions, where the environmental properties are more easily measured, is thus a promising approach to understanding the chemical nature of the carriers themselves. Here, using high-resolution spectra from the Apache Point Observatory Galactic Evolution Experiment survey, we present an analysis of the unusually asymmetric 1.5272 μm DIBmore » feature along the sightline to the Red Square Nebula (RSN) and demonstrate the likely circumstellar origin of about half of the DIB absorption in this line of sight. This interpretation is supported both by the velocities of the feature components and by the ratio of foreground to total reddening along the line of sight. The RSN sightline offers the unique opportunity to study the behavior of DIB carriers in a constrained environment and thus to shed new light on the carriers themselves.« less

  11. Energy and mass balance in the three-phase interstellar medium

    NASA Technical Reports Server (NTRS)

    Wang, Zhong; Cowie, Lennox L.

    1988-01-01

    Details of the energy and mass balances are considered in the context of a three-phase interstellar medium. The rates of mass exchange between the different phases are derived based on the pressure variations created by supernova remnant expansions. It is shown that the pressure-confined warm and cold gases have stable temperatures under a variety of interstellar conditions. The three-phase quasi-static configuration is found to be a natural outcome, and both warm and cold phases generally contribute about half of the total mass density to the diffuse interstellar gas. The model is also likely to be self-regulatory in the sense that variations of the input parameters do not strongly alter the general result, which is consistent with most current observations. The consequences of extreme conditions on this model are considered, and the possible implications for interstellar medium in other galaxies are briefly discussed.

  12. Participation in the ISO Key Project - IPAC Project

    NASA Technical Reports Server (NTRS)

    Lo, Kwok-Yung

    2001-01-01

    This program used guaranteed ISO time to observe the interstellar medium in nearby galaxies. The goals of the program are to determine the origin of the infrared emission, to quantify the physical conditions of the interstellar medium, and to study the heating and physical properties of interstellar dust. This program has been carried out successfully, and produced a number of publications reporting the results.

  13. The Diffuse Interstellar Cloud Experiment: a high-resolution far-ultraviolet spectrograph.

    PubMed

    Schindhelm, Eric; Beasley, Matthew; Burgh, Eric B; Green, James C

    2012-03-01

    We have designed, assembled, and launched a sounding rocket payload to perform high-resolution far-ultraviolet spectroscopy. The instrument is functionally a Cassegrain telescope followed by a modified Rowland spectrograph. The spectrograph was designed to achieve a resolving power (R=λ/δλ) of 60,000 in a compact package by adding a magnifying secondary optic. This is enabled by using a holographically ruled grating to minimize aberrations induced by the second optic. We designed the instrument to observe two stars on opposing sides of a nearby hot/cold gas interface. Obtaining spectra of the O VI doublet in absorption toward these stars can provide new insight into the processes governing hot gas in the local interstellar medium. Here we present the optical design and alignment of the telescope and spectrograph, as well as flight results. © 2012 Optical Society of America

  14. Ultraviolet Studies of Interstellar Molecular Hydrogen

    NASA Astrophysics Data System (ADS)

    Sarlin, Scott Peter

    1998-12-01

    This work covers the design and conduct of two experiments designed to observe molecular hydrogen in the interstellar medium. The first experiment was intended to directly observe the ratio between H2 and CO column densities in translucent molecular clouds in order to calibrate CO radio maps and observations of this galaxy and others. H2 cannot be directly observed from the ground under ordinary circumstances, so a novel high resolution (30,000 λΔλ) ultraviolet (UV) spectrograph was designed and built to observe it in absorption in the spectra of a distant star (HD 206267). The instrument operated properly, but the target was not acquired and the sounding rocket's parachute did not deploy, destroying the instrument. The second experiment was to observe H2 absorption towards γ Cassiopeia at very high spectral resolution (-240,000 λΔλ) with a space shuttle experiment called IMAPS. Despite several problems, including a dramatic loss in sensitivity, H2 absorption lines from J=0, 1, 2, and 3 were detected and measured. In conjunction with published atomic line observations, this gas was determined to be from a very small, thermally dominated cloud embedded in a larger H I region. The lack of higher J-state detections preclude a definitive statement concerning the radiation field, although the data point towards limited UV excitation. Future directions for instrument development are then briefly discussed.

  15. Interstellar Gas-phase Element Depletions in the Small Magellanic Cloud: A Guide to Correcting for Dust in QSO Absorption Line Systems

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jenkins, Edward B.; Wallerstein, George, E-mail: ebj@astro.princeton.edu, E-mail: walleg@u.washington.edu

    We present data on the gas-phase abundances for 9 different elements in the interstellar medium of the Small Magellanic Cloud (SMC), based on the strengths of ultraviolet absorption features over relevant velocities in the spectra of 18 stars within the SMC. From this information and the total abundances defined by the element fractions in young stars in the SMC, we construct a general interpretation on how these elements condense into solid form onto dust grains. As a group, the elements Si, S, Cr, Fe, Ni, and Zn exhibit depletion sequences similar to those in the local part of our Galaxymore » defined by Jenkins. The elements Mg and Ti deplete less rapidly in the SMC than in the Milky Way, and Mn depletes more rapidly. We speculate that these differences might be explained by the different chemical affinities to different existing grain substrates. For instance, there is evidence that the mass fractions of polycyclic aromatic hydrocarbons in the SMC are significantly lower than those in the Milky Way. We propose that the depletion sequences that we observed for the SMC may provide a better model for interpreting the element abundances in low-metallicity Damped Lyman Alpha (DLA) and sub-DLA absorption systems that are recorded in the spectra of distant quasars and gamma-ray burst afterglows.« less

  16. Reverse-Engineering Laboratory Astrophysics: Oxygen Inner-shell Absorption in the ISM

    NASA Technical Reports Server (NTRS)

    Garcia, J.; Gatuzz, E.; Kallman, T. R.; Mendoza, C.; Gorczyca, T. W.

    2017-01-01

    The modeling of X-ray spectra from photoionized astrophysical plasmas has been significantly improved due to recent advancements in the theoretical and numerical frameworks, as well as a consolidated and reliable atomic database of inner-shell transitions for all the relevant ions. We discuss these developments and the current state of X-ray spectral modeling in the context of oxygen cold absorption in the interstellar medium (ISM). Unconventionally, we use high-resolution astrophysical observations to accurately determine line positions, and adjust the theoretical models for a comprehensive interpretation of the observed X-ray spectra. This approach has brought to light standing discrepancies in the neutral oxygen absorption-line positions determined from observations and laboratory measurements. We give an overview of our current efforts to devise a definitive model of oxygen photoabsorption that can help to resolve the existing controversy regarding ISM atomic and molecular fractions.

  17. Reverse-engineering laboratory astrophysics: Oxygen inner-shell absorption in the ISM

    NASA Astrophysics Data System (ADS)

    García, J.; Gatuzz, E.; Kallman, T. R.; Mendoza, C.; Gorczyca, T. W.

    2017-03-01

    The modeling of X-ray spectra from photoionized astrophysical plasmas has been significantly improved due to recent advancements in the theoretical and numerical frameworks, as well as a consolidated and reliable atomic database of inner-shell transitions for all the relevant ions. We discuss these developments and the current state of X-ray spectral modeling in the context of oxygen cold absorption in the interstellar medium (ISM). Unconventionally, we use high-resolution astrophysical observations to accurately determine line positions, and adjust the theoretical models for a comprehensive interpretation of the observed X-ray spectra. This approach has brought to light standing discrepancies in the neutral oxygen absorption-line positions determined from observations and laboratory measurements. We give an overview of our current efforts to devise a definitive model of oxygen photoabsorption that can help to resolve the existing controversy regarding ISM atomic and molecular fractions.

  18. Two-component scattering model and the electron density spectrum

    NASA Astrophysics Data System (ADS)

    Zhou, A. Z.; Tan, J. Y.; Esamdin, A.; Wu, X. J.

    2010-02-01

    In this paper, we discuss a rigorous treatment of the refractive scintillation caused by a two-component interstellar scattering medium and a Kolmogorov form of density spectrum. It is assumed that the interstellar scattering medium is composed of a thin-screen interstellar medium (ISM) and an extended interstellar medium. We consider the case that the scattering of the thin screen concentrates in a thin layer represented by a δ function distribution and that the scattering density of the extended irregular medium satisfies the Gaussian distribution. We investigate and develop equations for the flux density structure function corresponding to this two-component ISM geometry in the scattering density distribution and compare our result with the observations. We conclude that the refractive scintillation caused by this two-component ISM scattering gives a more satisfactory explanation for the observed flux density variation than does the single extended medium model. The level of refractive scintillation is strongly sensitive to the distribution of scattering material along the line of sight (LOS). The theoretical modulation indices are comparatively less sensitive to the scattering strength of the thin-screen medium, but they critically depend on the distance from the observer to the thin screen. The logarithmic slope of the structure function is sensitive to the scattering strength of the thin-screen medium, but is relatively insensitive to the thin-screen location. Therefore, the proposed model can be applied to interpret the structure functions of flux density observed in pulsar PSR B2111 + 46 and PSR B0136 + 57. The result suggests that the medium consists of a discontinuous distribution of plasma turbulence embedded in the interstellar medium. Thus our work provides some insight into the distribution of the scattering along the LOS to the pulsar PSR B2111 + 46 and PSR B0136 + 57.

  19. Probing gas and dust in the tidal tail of NGC 5221 with the type Ia supernova iPTF16abc

    NASA Astrophysics Data System (ADS)

    Ferretti, R.; Amanullah, R.; Goobar, A.; Petrushevska, T.; Borthakur, S.; Bulla, M.; Fox, O.; Freeland, E.; Fremling, C.; Hangard, L.; Hayes, M.

    2017-10-01

    Context. Type Ia supernovae (SNe Ia) can be used to address numerous questions in astrophysics and cosmology. Due to their well known spectral and photometric properties, SNe Ia are well suited to study gas and dust along the lines-of-sight to the explosions. For example, narrow Na I D and Ca II H&K absorption lines can be studied easily, because of the well-defined spectral continuum of SNe Ia around these features. Aims: We aim to study the gas and dust along the line-of-sight to iPTF16abc, which occurred in an unusual location, in a tidal arm, 80 kpc from centre of the galaxy NGC 5221. Methods: Using a time-series of high-resolution spectra, we have examined narrow Na I D and Ca II H&K absorption features for variations in time, which would be indicative for circumstellar (CS) matter. Furthermore, we have taken advantage of the well known photometric properties of SNe Ia to determine reddening due to dust along the line-of-sight. Results: From the lack of variations in Na I D and Ca II H&K, we determine that none of the detected absorption features originate from the CS medium of iPTF16abc. While the Na I D and Ca II H&K absorption is found to be optically thick, a negligible amount of reddening points to a small column of interstellar dust. Conclusions: We find that the gas along the line-of-sight to iPTF16abc is typical of what might be found in the interstellar medium (ISM) within a galaxy. It suggests that we are observing gas that has been tidally stripped during an interaction of NGC 5221 with one of its neighbouring galaxies in the past 109 yr. In the future, the gas clouds could become the locations of star formation. On a longer time scale, the clouds might diffuse, enriching the circum-galactic medium (CGM) with metals. The gas profile along the line-of-sight should be useful for future studies of the dynamics of the galaxy group containing NGC 5221. Based on observations collected at the European Organisation for Astronomical Research in the Southern Hemisphere under ESO DDT programme 297.D-5005(A), P. I. Ferretti.

  20. A Multi-Wavelength Study of the Hot Component Of The Interstellar Medium

    NASA Technical Reports Server (NTRS)

    Nichols, Joy; West, Donald K. (Technical Monitor)

    2001-01-01

    This research focuses on the kinematics and evolution of the hot phase of the interstellar medium in the Galaxy. The plan is to measure the UV spectra for all hot stars observed with International Ultraviolet Explorer (IUE), in order to identify and measure the main component and any high velocity components to the interstellar lines. A total of 1200 stars are candidates for inclusion in this study.

  1. The Propagation Distance and Sources of Interstellar Turbulence

    NASA Astrophysics Data System (ADS)

    Spangler, S. R.

    2007-07-01

    Turbulence appears to be widely distributed in the interstellar medium, including regions far from obvious generators of this turbulence such as supernova remnants and star formation regions. This indicates that the turbulence must be transported, most likely by propagation at the Alfvén speed, over distances of hundreds of parsecs. This requirement appears contradicted by estimates that the damping length of magnetohydrodynamic waves and turbulence by ion-neutral collisions in the Diffuse Ionized Gas (DIG, the most pervasive phase of the interstellar medium) is less than a parsec. This damping length estimate is not highly model-dependent, and is consistent with calculations positing a balance between radiative cooling and turbulent dissipative heating of the interstellar gas. This problem is even more severe in the Warm Neutral Medium (WNM) phase, where the neutral density fraction is much higher. Three possible resolutions of this matter are proposed. (1) Interstellar turbulence may be generated by highly distributed, local generators rather than greatly separated, powerful generators such as supernova remnants. (2) The turbulence may be generated by powerful and isolated objects like supernova remnants, but then ``percolate'' through the interstellar medium by propagating through channels with a very high degree of ionization. (3) The dissipation of small-scale turbulence may be balanced by a cascade from larger, less damped fluctuations.

  2. Gigahertz-peaked Spectra Pulsars and Thermal Absorption Model

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kijak, J.; Basu, R.; Lewandowski, W.

    2017-05-10

    We present the results of our radio interferometric observations of pulsars at 325 and 610 MHz using the Giant Metrewave Radio Telescope. We used the imaging method to estimate the flux densities of several pulsars at these radio frequencies. The analysis of the shapes of the pulsar spectra allowed us to identify five new gigahertz-peaked spectra (GPS) pulsars. Using the hypothesis that the spectral turnovers are caused by thermal free–free absorption in the interstellar medium, we modeled the spectra of all known objects of this kind. Using the model, we were able to put some observational constraints on the physicalmore » parameters of the absorbing matter, which allows us to distinguish between the possible sources of absorption. We also discuss the possible effects of the existence of GPS pulsars on future search surveys, showing that the optimal frequency range for finding such objects would be from a few GHz (for regular GPS sources) to possibly 10 GHz for pulsars and radio magnetars exhibiting very strong absorption.« less

  3. Investigating the interstellar dust through the Fe K-edge

    NASA Astrophysics Data System (ADS)

    Rogantini, D.; Costantini, E.; Zeegers, S. T.; de Vries, C. P.; Bras, W.; de Groot, F.; Mutschke, H.; Waters, L. B. F. M.

    2018-01-01

    Context. The chemical and physical properties of interstellar dust in the densest regions of the Galaxy are still not well understood. X-rays provide a powerful probe since they can penetrate gas and dust over a wide range of column densities (up to 1024 cm-2). The interaction (scattering and absorption) with the medium imprints spectral signatures that reflect the individual atoms which constitute the gas, molecule, or solid. Aims: In this work we investigate the ability of high resolution X-ray spectroscopy to probe the properties of cosmic grains containing iron. Although iron is heavily depleted into interstellar dust, the nature of the Fe-bearing grains is still largely uncertain. Methods: In our analysis we use iron K-edge synchrotron data of minerals likely present in the ISM dust taken at the European Synchrotron Radiation Facility. We explore the prospects of determining the chemical composition and the size of astrophysical dust in the Galactic centre and in molecular clouds with future X-ray missions. The energy resolution and the effective area of the present X-ray telescopes are not sufficient to detect and study the Fe K-edge, even for bright X-ray sources. Results: From the analysis of the extinction cross sections of our dust models implemented in the spectral fitting program SPEX, the Fe K-edge is promising for investigating both the chemistry and the size distribution of the interstellar dust. We find that the chemical composition regulates the X-ray absorption fine structures in the post edge region, whereas the scattering feature in the pre-edge is sensitive to the mean grain size. Finally, we note that the Fe K-edge is insensitive to other dust properties, such as the porosity and the geometry of the dust. The absorption, scattering, and extinction cross sections of the compounds are only available at the CDS via anonymous ftp to http://cdsarc.u-strasbg.fr (http://130.79.128.5) or via http://cdsarc.u-strasbg.fr/viz-bin/qcat?J/A+A/609/A22

  4. Diamonds in dense molecular clouds - A challenge to the standard interstellar medium paradigm

    NASA Technical Reports Server (NTRS)

    Allamandola, L. J.; Sandford, S. A.; Tielens, A. G. G. M.; Herbst, T. M.

    1993-01-01

    Observations of a newly discovered infrared C-H stretching band indicate that interstellar diamond-like material appears to be characteristic of dense clouds. In sharp contrast, the spectral signature of dust in the diffuse interstellar medium is dominated by -CH2- and -CH3 groups. This dichotomy in the aliphatic organic component between the dense and diffuse media challenges standard assumptions about the processes occurring in, and interactions between, these two media. The ubiquity of this interstellar diamond-like material rules out models for meteoritic diamond formation in unusual circumstellar environments and implies that the formation of the diamond-like material is associated with common interstellar processes or stellar types.

  5. Effect of Supernovae on the Local Interstellar Material

    NASA Astrophysics Data System (ADS)

    Frisch, Priscilla; Dwarkadas, Vikram V.

    A range of astronomical data indicates that ancient supernovae created the galactic environment of the Sun and sculpted the physical properties of the interstellar medium near the heliosphere. In this paper, we review the characteristics of the local interstellar medium that have been affected by supernovae. The kinematics, magnetic field, elemental abundances, and configuration of the nearest interstellar material support the view that the Sun is at the edge of the Loop I superbubble, which has merged into the low-density Local Bubble. The energy source for the higher temperature X-ray-emitting plasma pervading the Local Bubble is uncertain. Winds from massive stars and nearby supernovae, perhaps from the Sco-Cen association, may have contributed radioisotopes found in the geologic record and galactic cosmic ray population. Nested supernova shells in the Orion and Sco-Cen regions suggest spatially distinct sites of episodic star formation. The heliosphere properties vary with the pressure of the surrounding interstellar cloud. A nearby supernova would modify this pressure equilibrium and thereby severely disrupt the heliosphere as well as the local interstellar medium.

  6. Interaction of the jet from the neutron star with the interstellar medium

    NASA Astrophysics Data System (ADS)

    Kiikov, S. O.

    2017-12-01

    The interaction between the hypersonic plasma jet from the accreting neutron star and the ambient interstellar medium is studied. It is assumed that the jet is launched from the accretion disk via the open magnetic field anchored in the disk. The analytical investigation for the structure of the working surface of the jet is carried out. The estimates of the volume stream functions in the region of the interaction between the jet and the interstellar medium are derived. The obtained results allow to examine the distribution of the plasma velocity fields in the interaction region.

  7. Observations of interstellar zinc

    NASA Technical Reports Server (NTRS)

    York, D. G.; Jura, M.

    1982-01-01

    IUE observations toward 10 stars have shown that zinc is not depleted in the interstellar medium by more than a factor of two, suggesting that its abundance may serve as a tracer of the true metallicity in the gas. A result pertinent to the history of nucleosynthesis in the solar neighborhood is that the local interstellar medium has abundances that appear to be homogeneous to within a factor of two, when integrated over paths of about 500 pc.

  8. Spectral Properties of Gas-phase Condensed Fullerene-like Carbon Nanoparticles from Far-ultraviolet to Infrared Wavelengths

    NASA Astrophysics Data System (ADS)

    Jäger, C.; Mutschke, H.; Henning, Th.; Huisken, F.

    2008-12-01

    Carbon solids are ubiquitous material in interstellar space. However, the formation pathway of carbonaceous matter in astrophysical environments, as well as in terrestrial gas-phase condensation reactions, is not yet understood. Laser ablation of graphite in different quenching gas atmospheres, such as pure He, He/H2, and He/H2O at varying pressures, is used to synthesize very small, fullerene-like carbon nanoparticles. The particles are characterized by very small diameters between 1 and 4 nm and a disturbed onion-like structure. The soot particles extracted from the condensation zone obviously represent a very early stage of particle condensation. The spectral properties have been measured from the far-ultraviolet (FUV; λ = 120 nm) to the mid-infrared (MIR; λ = 15 μm). The seedlike soot particles show strong absorption bands in the 3.4 μm range. The profile and the intensity pattern of the 3.4 μm band of the diffuse interstellar medium can be well reproduced by the measured 3.4 μm profile of the condensed particles; however, all the carbon which is left to form solids is needed to fit the intensity of the interstellar bands. In contrast to the assumption that onion-like soot particles could be the carriers of the interstellar ultraviolet (UV) bump, our very small onion-like carbon nanoparticles do not show distinct UV bands due to (π-π*) transitions.

  9. Properties of the highly ionized disk and halo gas toward two distant high-latitude stars

    NASA Technical Reports Server (NTRS)

    Savage, Blair D.; Sembach, K. R.

    1994-01-01

    Goddard High Resolution Spectrograph (GHRS) intermediate -resolution observations of S III, Si III, Al III, Si IV, C IV, and N V absorption along the sight lines to HD 18100 (l = 217.9 deg, b = -62.7, d = 3.1 kpc, z = -2.8 kpc) and HD 100340 (l = 258.9 deg, b = +61.2 deg, d = 5.3 kpc, z = 4.6 kpc) are presented. These small science aperture spectra have resolutions ranging from 11 to 20 km/s full width at half maximum (FWHM) and S/N from 30 to 65 per diode substep. Strong absorption by moderately and highly ionized gas is seen in each direction. The absorption in the direction of the south Galactic polar region (HD 18100) is kinematically simple, while the absorption in the direction of north Galactic polar region (HD 100304) is kinematically complex. In each case the absorption by the highly ionized gas lies within the velocity range of absorption by neutral and weakly ionized gas. Along each sight line, the velocity dispersion determined from the unsaturated absorption lines increases with the energy required to create each ion. The logarithmic column densities for Al III, Si IV, C IV, and N V are log N(atoms/sq cm = 12.71, 13.10, 13.58, and 12.75 toward HD 18100 and log N = 12.88, 13.31, 13.83, and 13.04 toward HD 100340. Average ionic ratios among these species are very similar along the two sight lines. Differences in profile shape between the absorption for AL II, Si IV, C IV, and N V provide additional support for the claim of Savage, Sembach, & Cardelli (1994) that there exists two types of highly ionized gas in the interstellar medium. One type of highly ionized gas is responsible for the structured Si IV absorption and part of the C IV absorption. In this gas N(C IV)/N(Si IV) approximately 3.0 and N(C IV)/N(N V) greater than 6. The absorption by this gas seems to be associated with some type of self-regulating interface or mixing layer between the warm and hot interstellar medium. The other type of highly ionized gas is responsible for most of the N V absorption, part of the C IV absorption, and has very little associated Si IV absorption. In this gas N(C IV)/N(N V) is approximately 1 to 3. This gas is hot (T greater than 2 x 10(exp 5) K) and may be tracing the cooling gas of supernova (SN) bubbles or a Galactic fountain. The relative mixture of these two types of highly ionized gas varies from one sight line to the next. The two sight lines in this study sample halo gas in the solar neighborhood and have a smaller percentage of the more highly ionized gas than inner Galaxy sight lines.

  10. THE INTERSTELLAR MEDIUM IN THE KEPLER SEARCH VOLUME

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Johnson, Marshall C.; Redfield, Seth; Jensen, Adam G., E-mail: mjohnson@astro.as.utexas.edu

    2015-07-10

    The properties of the interstellar medium (ISM) surrounding a planetary system can impact planetary climate through a number of mechanisms, including changing the size of the astrosphere (one of the major shields for cosmic rays) as well as direct deposition of material into planetary atmospheres. In order to constrain the ambient ISM conditions for exoplanetary systems, we present observations of interstellar Na i and K i absorption toward seventeen early type stars in the Kepler prime mission field of view (FOV). We identify 39 Na i and 8 K i velocity components, and attribute these to 11 ISM clouds. Sixmore » of these are detected toward more than one star, and for these clouds we put limits on the cloud properties, including distance and hydrogen number density. We identify one cloud with significant (≳1.5 cm{sup −3}) hydrogen number density located within the nominal ∼100 pc boundary of the Local Bubble. We identify systems with confirmed planets within the Kepler FOV that could lie within these ISM clouds, and estimate upper limits on the astrosphere sizes of these systems under the assumption that they do lie within these clouds. Under this condition, the Kepler-20, 42, and 445 multiplanet systems could have compressed astrospheres much smaller than the present-day heliosphere. Among the known habitable zone planet hosts, Kepler-186 could have an astrosphere somewhat smaller than the heliosphere, while Kepler-437 and KOI-4427 could have astrospheres much larger than the heliosphere. The thick disk star Kepler-444 may have an astrosphere just a few AU in radius.« less

  11. Fullerenes in Space.

    PubMed

    Maier, John P; Campbell, Ewen K

    2017-04-24

    In 1985 the football structure of C 60 , buckminsterfullerene was proposed and subsequently confirmed following its macroscopic synthesis in 1990. From the very beginning the role of C 60 and C 60 + in space was considered, particularly in the context of the enigmatic diffuse interstellar bands. These are absorption features found in the spectra of reddened star light. The first astronomical observations were made around one hundred years ago and despite significant efforts none of the interstellar molecules responsible have been identified. The absorption spectrum of C 60 + was measured in a 5 K neon matrix in 1993 and two prominent bands near 9583 Å and 9645 Å were observed. On the basis of this data the likely wavelength range in which the gas phase C 60 + absorptions should lie was predicted. In 1994 two diffuse interstellar bands were found in this spectral region and proposed to be due to C 60 + . It took over 20 years to measure the absorption spectrum of C 60 + under conditions similar to those prevailing in diffuse clouds. In 2015, sophisticated laboratory experiments led to the confirmation that these two interstellar bands are indeed caused by C 60 + , providing the first answer to this century old puzzle. Here, we describe the experiments, concepts and astronomical observations that led to the detection of C 60 + in interstellar space. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  12. Interstellar X-Ray Absorption Spectroscopy of the Crab Pulsar with the LETGS

    NASA Technical Reports Server (NTRS)

    Paerels, Frits; Weisskopf, Martin C.; Tennant, Allyn F.; ODell, Stephen L.; Swartz, Douglas A.; Kahn, Steven M.; Behar, Ehud; Becker, Werner; Whitaker, Ann F. (Technical Monitor)

    2001-01-01

    We study the interstellar X-ray absorption along the line of sight to the Crab Pulsar. The Crab was observed with the Low Energy Transmission Grating Spectrometer on the Chandra X-ray Observatory, and the pulsar, a point source, produces a full resolution spectrum. The continuum spectrum appears smooth, and we compare its parameters with other measurements of the pulsar spectrum. The spectrum clearly shows absorption edges due to interstellar Ne, Fe, and O. The O edge shows spectral structure that is probably due to O bound in molecules or dust. We search for near-edge structure (EXAFS) in the O absorption spectrum. The Fe L absorption spectrum is largely due to a set of unresolved discrete n=2-3 transitions in neutral or near-neutral Fe, and we analyze it using a new set of dedicated atomic structure calculations, which provide absolute cross sections. In addition to being interesting in its own right, the ISM absorption needs to be understood in quantitative detail in order to derive spectroscopic constraints on possible soft thermal radiation from the pulsar.

  13. Low-energy cosmic ray protons from nuclear interactions of cosmic rays with the interstellar medium.

    NASA Technical Reports Server (NTRS)

    Wang, H. T.

    1973-01-01

    The intensity of low-energy (less than 100 MeV) protons from nuclear interactions of higher-energy (above 100 MeV) cosmic rays with the interstellar medium is calculated. The resultant intensity in the 10- to 100-MeV range is larger by a factor of 3-5 than the observed proton intensity near earth. The calculated intensity from nuclear interactions constitutes a lower limit on the actual proton intensity in interstellar space.

  14. Interaction of the Local Interstellar Medium with the Heliosphere: Role of the Interior and Exterior Magnetic Fields

    NASA Technical Reports Server (NTRS)

    Barnes, Aaron; DeVincenzi, Donald (Technical Monitor)

    2000-01-01

    A complete model of the global interaction between the solar wind and the local interstellar medium must take account of interstellar neutral atoms, interstellar ionized gas, solar and galactic magnetic fields, galactic and anomalous cosmic rays. For now, however, in view of the many uncertainties about conditions in the interstellar medium, etc., all models must be regarded as highly idealized and incomplete. In the present review I concentrate on the role of magnetic fields of solar and interstellar origin. The former, the interior field, has negligible influence on the unshocked solar wind; the immediate post-shock solar wind is probably low-beta, so that the interior magnetic field is still unimportant, but this situation changes as the plasma flows through the heliosheath, and a ridge of strong magnetic field may form to separate materials of polar and equatorial origin. The exterior (interstellar) field is likely to play an important role in determining the global morphology of the system outside the termination shock. If the exterior field is strong enough, it can compress the heliosphere (although exterior neutral and/or ionized hydrogen may play the dominant role). Even if the interstellar magnetic field does not provide the dominant pressure, its orientation can substantially affect the configuration of the heliosphere, especially the location and orientation of the heliospheric discontinuities. The configurations can be quite different for the situations in which the field and flow are (a) aligned or (b) transverse. Obliquity of the field produces asymmetry in the geometry of the system; in particular the noses of heliopause and interstellar bow shock are shifted away from the interstellar flow direction, and in opposite directions, due to the asymmetric draping of the magnetic field.

  15. The Evolution of Dust in the Multiphase Interstellar Medium

    NASA Technical Reports Server (NTRS)

    Oliversen, Ronald J. (Technical Monitor); Slavin, Jonathan

    2003-01-01

    Interstellar dust has a profound effect on the structure and evolution of the interstellar medium (ISM) and on the processes by which stars form from it. Dust obscures regions of star formation from view, and the uncertain quantities of elements in dust makes it difficult to measure accurately the abundances of the elements in low density regions. Despite the central importance of dust in astrophysics, we cannot answer some of the most basic questions about it: Why is it that most of the refractory elements are in dust grains? What determines the sizes of interstellar grains? It has been the goal of our proposed theoretical investigations to address these questions by studying the destruction of interstellar grains, and to develop observational diagnostics that can test the models we develop.

  16. Laboratory determination of the infrared band strengths of pyrene frozen in water ice: Implications for the composition of interstellar ices

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hardegree-Ullman, E. E.; Gudipati, M. S.; Werner, M.

    2014-04-01

    Broad infrared emission features (e.g., at 3.3, 6.2, 7.7, 8.6, and 11.3 μm) from the gas phase interstellar medium have long been attributed to polycyclic aromatic hydrocarbons (PAHs). A significant portion (10%-20%) of the Milky Way's carbon reservoir is locked in PAH molecules, which makes their characterization integral to our understanding of astrochemistry. In molecular clouds and the dense envelopes and disks of young stellar objects (YSOs), PAHs are expected to be frozen in the icy mantles of dust grains where they should reveal themselves through infrared absorption. To facilitate the search for frozen interstellar PAHs, laboratory experiments were conductedmore » to determine the positions and strengths of the bands of pyrene mixed with H{sub 2}O and D{sub 2}O ices. The D{sub 2}O mixtures are used to measure pyrene bands that are masked by the strong bands of H{sub 2}O, leading to the first laboratory determination of the band strength for the CH stretching mode of pyrene in water ice near 3.25 μm. Our infrared band strengths were normalized to experimentally determined ultraviolet band strengths, and we find that they are generally ∼50% larger than those reported by Bouwman et al. based on theoretical strengths. These improved band strengths were used to reexamine YSO spectra published by Boogert et al. to estimate the contribution of frozen PAHs to absorption in the 5-8 μm spectral region, taking into account the strength of the 3.25 μm CH stretching mode. It is found that frozen neutral PAHs contain 5%-9% of the cosmic carbon budget and account for 2%-9% of the unidentified absorption in the 5-8 μm region.« less

  17. Optical observations of nearby interstellar gas

    NASA Astrophysics Data System (ADS)

    Frisch, P. C.; York, D. G.

    1984-11-01

    Observations indicated that a cloud with a heliocentric velocity of approximately -28 km/s and a hydrogen column density that possibly could be on the order of, or greater than, 5 x 10 to the 19 power/square cm is located within the nearest 50 to 80 parsecs in the direction of Ophiuchus. This is a surprisingly large column density of material for this distance range. The patchy nature of the absorption from the cloud indicates that it may not be a feature with uniform properties, but rather one with small scale structure which includes local enhancements in the column density. This cloud is probably associated with the interstellar cloud at about the same velocity in front of the 20 parsec distant star alpha Oph (Frisch 1981, Crutcher 1982), and the weak interstellar polarization found in stars as near as 35 parsecs in this general region (Tinbergen 1982). These data also indicate that some portion of the -14 km/s cloud also must lie within the 100 parsec region. Similar observations of both Na1 and Ca2 interstellar absorption features were performed in other lines of sight. Similar interstellar absorption features were found in a dozen stars between 20 and 100 parsecs of the Sun.

  18. Optical Observations of Nearby Interstellar Gas

    NASA Technical Reports Server (NTRS)

    Frisch, P. C.; York, D. G.

    1984-01-01

    Observations indicated that a cloud with a heliocentric velocity of approximately -28 km/s and a hydrogen column density that possibly could be on the order of, or greater than, 5 x 10 to the 19 power/square cm is located within the nearest 50 to 80 parsecs in the direction of Ophiuchus. This is a surprisingly large column density of material for this distance range. The patchy nature of the absorption from the cloud indicates that it may not be a feature with uniform properties, but rather one with small scale structure which includes local enhancements in the column density. This cloud is probably associated with the interstellar cloud at about the same velocity in front of the 20 parsec distant star alpha Oph (Frisch 1981, Crutcher 1982), and the weak interstellar polarization found in stars as near as 35 parsecs in this general region (Tinbergen 1982). These data also indicate that some portion of the -14 km/s cloud also must lie within the 100 parsec region. Similar observations of both Na1 and Ca2 interstellar absorption features were performed in other lines of sight. Similar interstellar absorption features were found in a dozen stars between 20 and 100 parsecs of the Sun.

  19. On the cosmic ray diffusion in a violent interstellar medium

    NASA Technical Reports Server (NTRS)

    Bykov, A. M.; Toptygin, I. N.

    1985-01-01

    A variety of the available observational data on the cosmic ray (CR) spectrum, anisotropy and composition are in good agreement with a suggestion on the diffusion propagation of CR with energy below 10(15) eV in the interstellar medium. The magnitude of the CR diffusion coefficient and its energy dependence are determined by interstellar medium (ISM) magnetic field spectra. Direct observational data on magnetic field spectra are still absent. A theoretical model to the turbulence generation in the multiphase ISM is resented. The model is based on the multiple generation of secondary shocks and concomitant large-scale rarefactions due to supernova shock interactions with interstellar clouds. The distribution function for ISM shocks are derived to include supernova statistics, diffuse cloud distribution, and various shock wave propagation regimes. This permits calculation of the ISM magnetic field fluctuation spectrum and CR diffusion coefficient for the hot phase of ISM.

  20. A survey with Copernicus of interstellar O VI absorption

    NASA Technical Reports Server (NTRS)

    Jenkins, E. B.; Meloy, D. A.

    1974-01-01

    The presence of broad, shallow absorptions caused by O VI ions were revealed from UV spectra observations recorded by the Copernicus satellite for thirty-two stars. A table lists survey data on the stars observed for which values of the O VI column densities or their upper limits are extracted. Interstellar rather than circumstellar origin is evident from observation of the lack of correspondence between radical velocities of the stars and those of the O VI profiles. The presence of a low-density high-temperature phase of interstellar gas produced by supernova explosions is suggested.

  1. On the Relative "Transparency" of Gas-phase Coronene Molecules to Low-energy Electrons: Effects on the Interstellar Medium

    NASA Astrophysics Data System (ADS)

    Carelli, F.; Gianturco, F. A.

    2011-12-01

    Free, gas-phase polycyclic aromatic hydrocarbons (PAHs) are understood to play an important role in the interstellar medium (ISM), as they are thought to significantly contribute to both diffused and unidentified infrared interstellar bands. They are also considered fundamental blocks of the interstellar dust, whose nature has important implications for a plethora of physical and chemical nanoscopic processes within the ISM. Since free electrons represent a versatile alternative way to transport energy in the interstellar space, in this paper we compute from quantum scattering methods the angular redistributions of free electrons by gas-phase coronene molecules, the latter of which are believed to be one of the most representative PAHs, in order to assess their role in describing the efficiency of electron deflection by this molecule. The associated rates can provide useful information about the coupling mechanism between external radio-frequency fields and complex molecular plasmas containing neutral and ionized PAHs. They can also yield information on the possible presence of such species in the dust phase of the medium.

  2. Comets, carbonaceous chondrites, and interstellar clouds: Condensation of carbon

    NASA Technical Reports Server (NTRS)

    Field, G. B.

    1979-01-01

    Comets, carbonaceous chondrites, and interstellar clouds are discussed in relation to information on interstellar dust. The formation and presence of carbon in stars, comets, and meteorites is investigated. The existence of graphite in the interstellar medium, though it is predicted from thermodynamic calculations, is questioned and the form of carbon contained in comets is considered.

  3. High-Resolution Imaging of the Multiphase Interstellar Thick Disk in Two Edge-On Spiral Galaxies

    NASA Astrophysics Data System (ADS)

    Howk, J. Christopher; Rueff, K.

    2009-01-01

    We present broadband and narrow-band images, acquired from Hubble Space Telescope WFPC2 and WIYN 3.5 m telescope respectively, of two edge-on spiral galaxies, NGC 4302 and NGC 4013. These high-resolution images (BVI + H-alpha) provide a detailed view of the thick disk interstellar medium (ISM) in these galaxies. Both galaxies show prominent extraplanar dust-bearing clouds viewed in absorption against the background stellar light. Individual clouds are found to z 2 kpc in each galaxy. These clouds each contain >10^4 to >10^5 solar masses of gas. Both galaxies have extraplanar diffuse ionized gas (DIG), as seen in our H-alpha images and earlier work. In addition to the DIG, discrete H II regions are found at heights up to 1 kpc from both galaxies. We compare the morphologies of the dusty clouds with the DIG in these galaxies and discuss the relationship between these components of the thick disk ISM.

  4. Connection of the solar wind with the interstellar medium through numerical modeling

    DOE PAGES

    Heerikhuisen, J.; Zirnstein, E.; Kawamura, A. D.; ...

    2013-06-13

    In this article we investigate the interaction between the solar wind (SW) and the local interstellar medium (LISM) using spacecraft data and numerical simulations. In particular, we focus on neutral atom results from NASA's Interstellar Boundary EXplorer (IBEX) mission, and compare these with implementations of our neutral atom models that look at both the energetic neutral atoms (ENAs) which are created as hydrogen of LISM origin interacts with the heliosphere, as well as the transmission of interstellar Oxygen through the heliospheric interface. Lastly, the goal of this work is to better understand the global structure of the heliosphere and itsmore » interaction with the galaxy.« less

  5. Ultraviolet interstellar lines in the spectrum of Pi Scorpii recorded at 2 kilometers per second resolution

    NASA Technical Reports Server (NTRS)

    Joseph, Charles L.; Jenkins, Edward B.

    1991-01-01

    A spectrum of Pi Scorpii has been recorded from 1003 to 1172 A with a maximum SNR of about 20 and a velocity resolution of 2.4 km/s. Three types of H I as well as two discrete H II regions are distinguished in velocity space, allowing independent analyses of physical conditions and abundances for the individual gas components. A direct evaluation of optical depths and column densities across the absorption features is applied for the first time to the dominant ionization stage of Fe, Si, and P. Based on an analysis of the spectrum, it is concluded that all of the Ti II absorption seen toward Pi Sco arises in the warm, neutral intercloud medium while the other elements have their maximum absorption associated with cold clouds. A conservative value of log delta less than -3.4 is inferred for the Ti depletion in the cold clouds, a value more extreme than any integrated, line-of-sight measurement made to date.

  6. Absorption Reveals and Hydrogen Addition Explains New Interstellar Aldehydes: Propenal and Propanal

    NASA Technical Reports Server (NTRS)

    Hollis, J. M.; Jewell, P. R.; Lovas, F. J.; Remijan, A.; Mollendal, H.

    2004-01-01

    New interstellar molecules propenal (CH2CHCHO) and propanal (CH3CH2CHO) have been detected largely in absorption toward the star-forming region Sagittarius B2(N) by means of rotational transitions observed with the 100-m Green Bank Telescope (GBT) operating in the range of 18 GHz (lambda approximately 1.7 cm) to 26 GHz (lambda approximately 1.2 cm). The GBT was also used to observe the previously reported interstellar aldehyde propynal (HC2CHO) in Sagittarius B2(N) which is known for large molecules believed to form on interstellar grains. The presence of these three interstellar aldehydes toward Sagittarius B2(N) strongly suggests that simple hydrogen addition on interstellar grains accounts for successively larger molecular species: from propynal to propenal and from propenal to propanal. Energy sources within Sagittarius B2(N) likely permit the hydrogen addition reactions on grain surfaces to proceed. This work demonstrates that successive hydrogen addition is probably an important chemistry route in the formation of a number of complex interstellar molecules. We also searched for but did not detect the three-carbon sugar glyceraldehyde (CH2OHCHOHCHO).

  7. Interstellar Probe: First Step to the Stars

    NASA Astrophysics Data System (ADS)

    McNutt, R. L., Jr.

    2017-12-01

    The idea of an "Interstellar Probe," a robotic spacecraft traveling into the nearby interstellar medium for the purpose of scientific investigation, dates to the mid-1960s. The Voyager Interstellar Mission (VIM), an "accidental" 40-year-old by-product of the Grand Tour of the solar system, has provided initial answers to the problem of the global heliospheric configuration and the details of its interface with interstellar space. But the twin Voyager spacecraft have, at most, only another decade of lifetime, and only Voyager 1 has emerged from the heliosheath interaction region. To understand the nature of the interaction, a near-term mission to the "near-by" interstellar medium with modern and focused instrumentation remains a compelling priority. Imaging of energetic neutral atoms (ENAs) by the Ion Neutral CAmera (INCA) on Cassini and from the Interstellar Boundary Explorer (IBEX) in Earth orbit have provided significant new insights into the global interaction region but point to discrepancies with our current understanding. Exploring "as far as possible" into "pristine" interstellar space can resolve these. Hence, reaching large heliocentric distances rapidly is a driver for an Interstellar Probe. Such a mission is timely; understanding the interstellar context of exoplanet systems - and perhaps the context for the emergence of life both here and there - hinges upon what we can discover within our own stellar neighborhood. With current spacecraft technology and high-capability launch vehicles, such as the Space Launch System (SLS), a small, but extremely capable spacecraft, could be dispatched to the near-by interstellar medium with at least twice the speed of the Voyagers. Challenges remain with payload mass and power constraints for optimized science measurements. Mission longevity, as experienced by, but not designed into, the Voyagers, communications capability, and radioisotope power system performance and lifetime are solvable engineering challenges. Such a robotic craft can be built, and could be built and launched soon - to enable our first deliberate step to the stars.

  8. Laser Induced Fluorescence Spectroscopy of Neutral and Ionized Polycyclic Aromatic Hydrocarbons in the Cosmic Simulation Chamber

    NASA Technical Reports Server (NTRS)

    Bejaoui, Salma; Salama, Farid; Contreras, Cesar; Sciamma O'Brien, Ella; Foing, Bernard; Pascale, Ehrenfreund

    2015-01-01

    Polycyclic aromatic hydrocarbon (PAH) molecules are considered the best carriers to account for the ubiquitous infrared emission bands. PAHs have also been proposed as candidates to explain the diffuse interstellar bands (DIBs), a series of absorption features seen on the interstellar extinction curve and are plausible carriers for the extended red emission (ERE), a photoluminescent process associated with a wide variety of interstellar environments. Extensive efforts have been devoted over the past two decades to characterize the physical and chemical properties of PAH molecules and ions in space. Absorption spectra of PAH molecules and ions trapped in solid matrices have been compared to the DIBs. Absorption spectra of several cold, isolated gas-phase PAHs have also been measured under experimental conditions that mimic the interstellar conditions. The purpose of this study is to provide a new dimension to the existing spectroscopic database of neutral and single ionized PAHs that is largely based on absorption spectra by adding emission spectroscopy data. The measurements are based on the laser induced fluorescence (LIF) technique and are performed with the Pulsed Discharge Nozzle (PDN) of the COSmIC laboratory facility at NASA Ames laboratory. The PDN generates a plasma in a free supersonic jet expansion to simulate the physical and the chemical conditions in interstellar environments. We focus, here, on the fluorescence spectra of large neutral PAHs and their cations where there is a lack of fluorescence spectroscopy data. The astronomical implications of the data (e.g., ERE) are examined.

  9. A survey of local interstellar hydrogen from OAO-2 observations of Lyman alpha absorption

    NASA Technical Reports Server (NTRS)

    Savage, B. D.; Jenkins, E. B.

    1972-01-01

    The Wisconsin far ultraviolet spectrometer aboard OAO-2 observed the wavelength region near 1216 A for 69 stars of spectral type B2 or earlier. From the strength of the observed interstellar L sub alpha absorption, atomic hydrogen column densities were derived over distances averaging 300 pc away from the sun. The OAO data were compared to synthetic ultraviolet spectra, originally derived from earlier higher resolution rocket observations, which were computer processed to simulate the effects of absorption by different amounts of hydrogen followed by the instrumental blending.

  10. Laboratory Rotational Spectroscopy of the Interstellar Diatomic Hydride Ion SH+ (X 3Σ-)

    NASA Astrophysics Data System (ADS)

    Halfen, DeWayne; Ziurys, Lucy M.

    2016-06-01

    Diatomic hydride are among the most common molecular species in the interstellar medium (ISM). The low molecular mass and thus moments of inertia cause their rotational spectra to lie principally in the submillimeter and far-infrared regions. Diatomic hydrides, both neutral (MH) and ionic (MH+) forms, are also basic building blocks of interstellar chemistry. In ionic form, they may be the “hidden” carriers of refractory elements in dense gas. They are therefore extremely good targets for space-borne and airborne platforms such as Herschel, SOFIA, and SAFIR. However, in order to detect these species in the ISM, their rotational spectra must first be measured in the laboratory. To date, there is very little high resolution data available for many hydride species, in particular the ionic form. Using submillimeter/THz direct absorption methods in the Ziurys laboratory, spectra of the interstellar diatomic hydride SH+ (X 3Σ-) have been recorded. Recent work has concerned measurement of all three fine structure components of the fundamental rotational transition N = 1 ← 0 in the range 345 - 683 GHz. SH+ was generated from H2S and argon in an AC discharge. The data have been analyzed, and spectroscopic constants for this species have been refined. SH+ is found in Photon Dominated Regions (PDRs) and X-ray Dominated Regions (XDRs) and is thought to trace energetic processes in the ISM. These current measurements confirm recent observations of this species at submillimeter/THz wavelengths with ALMA and other ground-based telescopes.

  11. HIGH-ENERGY ELECTRON IRRADIATION OF INTERSTELLAR CARBONACEOUS DUST ANALOGS: COSMIC-RAY EFFECTS ON THE CARRIERS OF THE 3.4 μ m ABSORPTION BAND

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Maté, Belén; Molpeceres, Germán; Jiménez-Redondo, Miguel

    2016-11-01

    The effects of cosmic rays on the carriers of the interstellar 3.4 μ m absorption band have been investigated in the laboratory. This band is attributed to stretching vibrations of CH{sub 3} and CH{sub 2} in carbonaceous dust. It is widely observed in the diffuse interstellar medium, but disappears in dense clouds. Destruction of CH{sub 3} and CH{sub 2} by cosmic rays could become relevant in dense clouds, shielded from the external ultraviolet field. For the simulations, samples of hydrogenated amorphous carbon (a-C:H) have been irradiated with 5 keV electrons. The decay of the band intensity versus electron fluence reflectsmore » a-C:H dehydrogenation, which is well described by a model assuming that H{sub 2} molecules, formed by the recombination of H atoms liberated through CH bond breaking, diffuse out of the sample. The CH bond destruction rates derived from the present experiments are in good accordance with those from previous ion irradiation experiments of HAC. The experimental simplicity of electron bombardment has allowed the use of higher-energy doses than in the ion experiments. The effects of cosmic rays on the aliphatic components of cosmic dust are found to be small. The estimated cosmic-ray destruction times for the 3.4 μ m band carriers lie in the 10{sup 8} yr range and cannot account for the disappearance of this band in dense clouds, which have characteristic lifetimes of 3 × 10{sup 7} yr. The results invite a more detailed investigation of the mechanisms of CH bond formation and breaking in the intermediate region between diffuse and dense clouds.« less

  12. Accurate Modeling of X-ray Extinction by Interstellar Grains

    NASA Astrophysics Data System (ADS)

    Hoffman, John; Draine, B. T.

    2016-02-01

    Interstellar abundance determinations from fits to X-ray absorption edges often rely on the incorrect assumption that scattering is insignificant and can be ignored. We show instead that scattering contributes significantly to the attenuation of X-rays for realistic dust grain size distributions and substantially modifies the spectrum near absorption edges of elements present in grains. The dust attenuation modules used in major X-ray spectral fitting programs do not take this into account. We show that the consequences of neglecting scattering on the determination of interstellar elemental abundances are modest; however, scattering (along with uncertainties in the grain size distribution) must be taken into account when near-edge extinction fine structure is used to infer dust mineralogy. We advertise the benefits and accuracy of anomalous diffraction theory for both X-ray halo analysis and near edge absorption studies. We present an open source Fortran suite, General Geometry Anomalous Diffraction Theory (GGADT), that calculates X-ray absorption, scattering, and differential scattering cross sections for grains of arbitrary geometry and composition.

  13. The total rate of mass return to the interstellar medium from red giants and planetary nebulae

    NASA Technical Reports Server (NTRS)

    Knapp, G. R.; Rauch, K. P.; Wilcots, E. M.

    1990-01-01

    High luminosity post main sequence stars are observed to be losing mass in large amounts into the interstellar medium. The various methods used to estimate individual and total mass loss rates are summarized. Current estimates give MT 0.3 - 0.6 solar mass per year for the whole Galaxy.

  14. An Essay on Interactive Investigations of the Zeeman Effect in the Interstellar Medium

    ERIC Educational Resources Information Center

    Woolsey, Lauren

    2015-01-01

    The paper presents an interactive module created through the Wolfram Demonstrations Project that visualizes the Zeeman effect for the small magnetic field strengths present in the interstellar medium. The paper provides an overview of spectral lines and a few examples of strong and weak Zeeman splitting before discussing the module in depth.…

  15. Molecular Diagnostics of the Interstellar Medium and Star Forming Regions

    NASA Astrophysics Data System (ADS)

    Hartquist, T. W.; Dalgarno, A.

    1996-03-01

    Selected examples of the use of observationally inferred molecular level populations and chemical compositions in the diagnosis of interstellar sources and processes important in them (and in other diffuse astrophysical sources) are given. The sources considered include the interclump medium of a giant molecular cloud, dark cores which are the progenitors of star formation, material responding to recent star formation and which may form further stars, and stellar ejecta (including those of supernovae) about to merge with the interstellar medium. The measurement of the microwave background, mixing of material between different nuclear burning zones in evolved stars and turbulent boundary layers (which are present in and influence the structures and evolution of all diffuse astrophysical sources) are treated.

  16. The Galactic interstellar medium: foregrounds and star formation

    NASA Astrophysics Data System (ADS)

    Miville-Deschênes, Marc-Antoine

    2018-05-01

    This review presents briefly two aspects of Galactic interstellar medium science that seem relevant for studying EoR. First, we give some statistical properties of the Galactic foreground emission in the diffuse regions of the sky. The properties of the emission observed in projection on the plane of the sky are then related to how matter is organised along the line of sight. The diffuse atomic gas is multi-phase, with dense filamentary structures occupying only about 1% of the volume but contributing to about 50% of the emission. The second part of the review presents aspect of structure formation in the Galactic interstellar medium that could be relevant for the subgrid physics used to model the formation of the first stars.

  17. The interstellar depletion mystery, or where have all those atoms gone. [cosmic abundance as grain model evidence

    NASA Technical Reports Server (NTRS)

    Greenberg, J. M.

    1974-01-01

    The observed depletion of intermediate-weight elements O, C, and N from the interstellar medium is shown to be significantly greater than can be accounted for by accretion on interstellar dust. A number of possible explanations are presented, ranging from the existence in interstellar space of many 'snowballs' intermediate in size between dust grains and comets to the existence of many far more complicated interstellar molecules than have been detected.

  18. Gas-Phase Ion Chemistry in Interstellar, Circumstellar, and Planetary Environments

    NASA Astrophysics Data System (ADS)

    Demarais, Nicholas J.

    In the last century, astronomers, physicists, and chemists have shown that the environments of space are complex. Although we have learned a great amount about the interstellar medium, circumstellar medium, and atmospheres of other planets and moons, many mysteries still remain unsolved. The cooperation of astronomers, modelers, and chemists has lead to the detection of over 180 molecules in the interstellar and circumstellar medium, and the evolution of the new scientific field of astrochemistry. Gas-phase ion chemistry can determine the stability of ions in these complex environments, provide chemical networks, and guide searches for new interstellar molecules. Using the flowing afterglow-selected ion flow tube (FA-SIFT), we have characterized the reactions of positive and negative ions that are important in a variety of astrochemical environments. The detection of CF+ in photodissociation regions highlights the importance of fluorinated species in the interstellar medium. The viability of CF+ as a possible diffuse interstellar band (DIB) carrier is discussed as related to reactions with neutral molecules in various interstellar conditions; the reactions of CF+ with twenty-two molecules of interstellar relevance were investigated. The chemical reactions of HCNH+ with H2, CH 4, C2H2, and C2H4 were reexamined to provide insight into the overprediction of HCNH+ in Titan's ionosphere by current astrochemical models. In addition, this work suggests other chemical reactions that should be included in the current models to fully describe the destruction rates of HCNH+ in Titan's ionosphere. The reactions of polycyclic aromatic hydrocarbon (PAH) ions with H atoms and other small molecules were carried out to determine the stability of these species. In diffuse regions, where the photon flux is high, PAH cations are the dominant ionization state. This work continues our previous research to include PAHs of differing geometries as well as nitrogen-containing PAHs. Extension to larger PAH cations was made possible by the integration of the laser induced acoustic desorption (LIAD) source with the FA-SIFT. In addition, in dense environments, where the photon flux is low, anionic PAHs may exist. The detection of negative ions in the past 10 years has highlighted the importance of their inclusion in astrochemical models. We have investigated the chemistry of deprotonated PAHs with molecules of interstellar relevance to determine their chemical stability in dense regions of the interstellar and circumstellar medium. In addition to PAH anions, H- is an important species in dense interstellar environments. While the reaction of hydride anion has been recognized as a critical mechanism in the initial cooling immediately after the Big Bang, H- + H → H2 + e-, chemistry with neutral molecules was largely unknown. The chemistry of H- with various classes of organic molecules was investigated and conclusions are drawn based on reaction mechanisms.

  19. PAH in the laboratory and interstellar space

    NASA Technical Reports Server (NTRS)

    Wdowiak, Thomas J.; Flickinger, Gregory C.; Boyd, David A.

    1989-01-01

    The theory that polycyclic aromatic hydrocarbons (PAHs) are a constituent of the interstellar medium, and a source of the IR emission bands at 3.3, 6.2, 7.7, 8.6, and 11.3 microns is being studied using PAH containing acid insoluble residue of the Orgueil CI meteorite and coal tar. FTIR spectra of Orgueil PAH material that has undergone thermal treatment, and a solvent insoluble fraction of coal tar that has been exposed to hydrogen plasma are presented. The UV excided luminescence spectrum of a solvent soluble coal tar film is also shown. Comparison of the lab measurements with observations appears to support the interstellar PAH theory, and shows the process of dehydrogenation expected to take place in the interstellar medium.

  20. Absorption and scattering by interstellar dust in the silicon K-edge of GX 5-1

    NASA Astrophysics Data System (ADS)

    Zeegers, S. T.; Costantini, E.; de Vries, C. P.; Tielens, A. G. G. M.; Chihara, H.; de Groot, F.; Mutschke, H.; Waters, L. B. F. M.; Zeidler, S.

    2017-03-01

    Context. We study the absorption and scattering of X-ray radiation by interstellar dust particles, which allows us to access the physical and chemical properties of dust. The interstellar dust composition is not well understood, especially on the densest sight lines of the Galactic plane. X-rays provide a powerful tool in this study. Aims: We present newly acquired laboratory measurements of silicate compounds taken at the Soleil synchrotron facility in Paris using the Lucia beamline. The dust absorption profiles resulting from this campaign were used in this pilot study to model the absorption by interstellar dust along the line of sight of the low-mass X-ray binary GX 5-1. Methods: The measured laboratory cross-sections were adapted for astrophysical data analysis and the resulting extinction profiles of the Si K-edge were implemented in the SPEX spectral fitting program. We derive the properties of the interstellar dust along the line of sight by fitting the Si K-edge seen in absorption in the spectrum of GX 5-1. Results: We measured the hydrogen column density towards GX 5-1 to be 3.40 ± 0.1 × 1022 cm-2. The best fit of the silicon edge in the spectrum of GX 5-1 is obtained by a mixture of olivine and pyroxene. In this study, our modeling is limited to Si absorption by silicates with different Mg:Fe ratios. We obtained an abundance of silicon in dust of 4.0 ± 0.3 × 10-5 per H atom and a lower limit for total abundance, considering both gas and dust of >4.4 × 10-5 per H atom, which leads to a gas to dust ratio of >0.22. Furthermore, an enhanced scattering feature in the Si K-edge may suggest the presence of large particles along the line of sight.

  1. Voyager investigation of the cosmic diffuse background: Observations of rocket-studied locations with Voyager

    NASA Technical Reports Server (NTRS)

    Henry, Richard C.

    1994-01-01

    Attachments to this final report include 2 papers connected with the Voyager work: 'Voyager Observations of Dust Scattering Near the Coalsack Nebula' and 'Search for the Intergalactic Medium'. An appendix of 12 one-page write-ups prepared in connection with another program, UVISI, is also included. The one-page write-ups are: (1) Sky survey of UV point sources to 600 times fainter than previous (TD-1) survey; (2) Diffuse galactic light: starlight scattered from dust at high galactic latitude; (3) Optical properties of interstellar grains; (4) Fluorescence of molecular hydrogen in the interstellar medium; (5) Line emission from hot interstellar medium and/or hot halo of galaxy; (6) Integrated light of distant galaxies in the ultraviolet; (7) Intergalactic far-ultraviolet radiation field; (8) Radiation from recombining intergalactic medium; (9) Radiation from re-heating of intergalactic medium following recombination; (10) Radiation from radiative decay of dark matter candidates (neutrino, etc.); (11) Reflectivity of the asteroids in the Ultraviolet; and (12) Zodiacal light.

  2. Interstellar Protons in the TeV γ-Ray SNR HESS J1731-347: Possible Evidence for the Coexistence of Hadronic and Leptonic γ-Rays

    NASA Astrophysics Data System (ADS)

    Fukuda, T.; Yoshiike, S.; Sano, H.; Torii, K.; Yamamoto, H.; Acero, F.; Fukui, Y.

    2014-06-01

    HESS J1731-347 (G353.6-0.7) is one of the TeV γ-ray supernova remnants (SNRs) that shows the shell-like morphology. We have made a new analysis of the interstellar protons toward the SNR by using both the 12CO(J = 1-0) and H I data sets. The results indicate that the TeV γ-ray shell shows significant spatial correlation with the interstellar protons at a velocity range from -90 km s-1 to -75 km s-1. The total mass of the interstellar medium (ISM) protons is estimated to be 6.4 × 104 M ⊙, 25% of which is atomic gas, and the distance corresponding to the velocity range is ~5.2 kpc, a factor of 2 larger than the previous figure, 3 kpc. We have identified the cold H I gas observed as self-absorption which shows significant correspondence with the northeastern γ-ray peak. While the good correspondence between the ISM protons and TeV γ-rays in the north of the SNR lends support to the hadronic scenario for the TeV γ-rays, the southern part of the shell shows a break in the correspondence; in particular, the southwestern rim of the SNR shell shows a significant decrease of the interstellar protons by a factor of two. We argue that this discrepancy can be explained due to leptonic γ-rays because this region coincides well with the bright shell that emits non-thermal radio continuum emission and non-thermal X-rays, suggesting that the γ-rays of HESS J1713-347 consist of both the hadronic and leptonic components. The leptonic contribution corresponds to ~20% of the total γ-rays.

  3. The ratio of neutral hydrogen to neutral helium in the local interstellar medium

    NASA Astrophysics Data System (ADS)

    Green, James Carswell

    The results are described from a sounding rocket borne EUV spectrometer that was designed and built. This instrument operated from 400 to 1150A with a spectral resolution of approx. 15A. The instrument effective area was about 1 sq cm. The instrument was successfully launched, and observed the nearby DA white dwarf G191-B2B. From this observation, it was determined that the stellar effective temperature is 61,000 + or -4000 to 6000K, and the ratio of helium to hydrogen in the stellar photosphere is 1.0 + or -0.68 to 2.2 x 10-4. Additionally, the neutral column densities of helium and hydrogen were measured to the star. The neutral helium column density was determined from the first observation of the interstellar absorption edge at 504A. The ratio of neutral helium to neutral hydrogen constrains the mean ionization of the warm gas along the line of sight to G191-B2B. The fractional ionization of hydrogen (H II/H) is approx. less than 20 percent, unless significant helium ionization is present as well. The scenario where the fractional ionization of hydrogen is high (H II/H) approx. less than 40 percent and the helium is neutral is ruled out with 99 percent certainty. This result is consistent with some recent theoretical calculations. Using these results, a self-consistent model of the local interstellar medium along the line of sight to G191-B2B is developed. In addition, an unexpected emission feature at 584A was detected in this observation with a high level of significance. Possible sources of this emission are examined, including the companion K dwarf G191-B2A, and an emission nebula near or around G191-B2B.

  4. The Role of Low-Energy (less than 20 eV) Electrons in Astrochemistry: A Tale of Two Molecules

    NASA Astrophysics Data System (ADS)

    Arumainayagam, Chris

    2016-07-01

    In the interstellar medium, UV photolysis of ice mantles encasing dust grains is thought to be the mechanism that drives the synthesis of "complex" molecules. The source of this reaction-initiating UV light is assumed to be local because externally-sourced UV radiation cannot pass through the ice-containing dark, dense molecular clouds. Externally sourced cosmic rays (E_{max} ˜10^{20} eV), in addition to producing UV light within these clouds, also produce large numbers of low-energy (≤ 20 eV) secondary electrons. The goal of our studies is to understand the low-energy electron-induced processes that occur when high-energy cosmic rays interact with interstellar ices. Using electron stimulated desorption (ESD), post-irradiation temperature-programmed desorption (TPD), and infrared reflection absorption spectroscopy (IRAS), we have investigated the radiolysis initiated by electrons in condensed methanol and ammonia at ˜90K under ultrahigh vacuum (1 × 10^{-9} Torr) conditions. We have identified fifteen low-energy electron-induced methanol radiolysis products, many of which have been previously identified as being formed by methanol UV photolysis in the interstellar medium. We have also found evidence for the electron-induced formation from ammonia of hydrazine (N_2 H_4), diazene (N_2 H_2), cyclotriazane/triazene (N_3 H_3) and triazane (N_3 H_5). We have investigated the reaction yields' dependence on film thickness, irradiation time, incident current, electron energy, and metal substrate. These results provide a basis from which we can begin to understand the mechanisms by which methanol and ammonia can form more complex species in cosmic ices. Studies such as ours may ultimately help us better understand the initial stages of the genesis of life.

  5. The Role of Low-Energy Electrons in Astrochemistry: A Tale of Two Molecules

    NASA Astrophysics Data System (ADS)

    Arumainayagam, Chris; Cambell, Jyoti; Leon Sanche, Michael Boyer, and Petra Swiderek.

    2016-06-01

    In the interstellar medium, UV photolysis of ice mantles encasing dust grains is thought to be the mechanism that drives the synthesis of “complex” molecules. The source of this reaction-initiating UV light is assumed to be local because externally-sourced UV radiation cannot pass through the ice-containing dark, dense molecular clouds. Externally sourced cosmic rays (Emax ~ 1020 eV), in addition to producing UV light within these clouds, also produce large numbers of low-energy (≤ 20 eV) secondary electrons. The goal of our studies is to understand the low-energy electron-induced processes that occur when high-energy cosmic rays interact with interstellar ices. Using electron stimulated desorption (ESD), post-irradiation temperature-programmed desorption (TPD), and infrared reflection absorption spectroscopy (IRAS), we have investigated the radiolysis initiated by electrons in condensed methanol and ammonia at ~ 90 K under ultrahigh vacuum (1×10-9 Torr) conditions. We have identified fifteen low-energy (≤ 20 eV) electron-induced methanol radiolysis products, many of which have been previously identified as being formed by methanol UV photolysis in the interstellar medium. We have also found evidence for the electron-induced formation from ammonia of hydrazine (N2H4), diazene (N2H2), cyclotriazane/triazene (N3H3) and triazane (N3H5). We have investigated the reaction yields’ dependence on film thickness, irradiation time, incident current, electron energy, and metal substrate. These results provide a basis from which we can begin to understand the mechanisms by which methanol and ammonia can form more complex species in cosmic ices. Studies such as ours may ultimately help us better understand the initial stages of the genesis of life.

  6. The Interstellar Medium

    NASA Technical Reports Server (NTRS)

    Tielens, Alexander G. G. M.

    1995-01-01

    The Interstellar Medium (ISM) forms an integral part of the lifecycle of stars and the galaxy. Stars are formed by gravitational contraction of interstellar clouds. Over their life, stars return much of their mass to the ISM through winds and supernova explosions, resulting in a slow enrichment in heavy elements. Understanding the origin and evolution of the ISM is a key problem within astrophysics. The KAO has made many important contributions to studies of the interstellar medium both on the macro and on the micro scale. In this overview, I will concentrate on two breakthroughs in the last decade in which KAO observations have played a major role: (1) the importance of large Polycyclic Aromatic Hydrocarbon (PAH) molecules for the ISM (section 3) and (2) the study of Photodissociation Regions (PDRs) as an analog for the diffuse ISM at large (section 4). Appropriately, the micro and macro problem are intricately interwoven in these problems. Finally, section 5 reviews the origin of the (CII) emission observed by COBE.

  7. The Interstellar Heliopause Probe: Heliospheric Boundary Explorer Mission to the Interstellar Medium

    NASA Astrophysics Data System (ADS)

    Wimmer-Schweingruber, Robert F.; McNutt, Ralph

    2009-04-01

    The Sun, driving a supersonic solar wind, cuts out of the local interstellar medium a giant plasma bubble, the heliosphere. ESA, jointly with NASA, has had an important role in the development of our current understanding of the Suns’ immediate neighborhood. Ulysses is the only spacecraft exploring the third, out-of-ecliptic dimension, while SOHO has allowed us to better understand the influence of the Sun and to image the glow of interstellar matter in the heliosphere. Voyager 1 has recently encountered the innermost boundary of this plasma bubble, the termination shock, and is returning exciting yet puzzling data of this remote region. The next logical step is to leave the heliosphere and to thereby map out in unprecedented detail the structure of the outer heliosphere and its boundaries, the termination shock, the heliosheath, the heliopause, and, after leaving the heliosphere, to discover the true nature of the hydrogen wall, the bow shock, and the local interstellar medium beyond. This will greatly advance our understanding of the heliosphere that is the best-known example for astrospheres as found around other stars. Thus, IHP/HEX will allow us to discover, explore, and understand fundamental astrophysical processes in the largest accessible plasma laboratory, the heliosphere.

  8. The Formation and Physical Origin of Highly Ionized Cooling Gas

    NASA Astrophysics Data System (ADS)

    Bordoloi, Rongmon; Wagner, Alexander Y.; Heckman, Timothy M.; Norman, Colin A.

    2017-10-01

    We present a simple model that explains the origin of warm, diffuse gas seen primarily as highly ionized absorption-line systems in the spectra of background sources. We predict the observed column densities of several highly ionized transitions such as O VI, O vii, Ne viii, N v, and Mg x, and we present a unified comparison of the model predictions with absorption lines seen in the Milky Way disk, Milky Way halo, starburst galaxies, the circumgalactic medium, and the intergalactic medium at low and high redshifts. We show that diffuse gas seen in such diverse environments can be simultaneously explained by a simple model of radiatively cooling gas. We show that most such absorption-line systems are consistent with being collisionally ionized, and we estimate the maximum-likelihood temperature of the gas in each observation. This model satisfactorily explains why O VI is regularly observed around star-forming low-z L* galaxies, and why N v is rarely seen around the same galaxies. We further present some consequences of this model in quantifying the dynamics of the cooling gas around galaxies and predict the shock velocities associated with such flows. A unique strength of this model is that while it has only one free (but physically well-constrained) parameter, it nevertheless successfully reproduces the available data on O VI absorbers in the interstellar, circumgalactic, intragroup, and intergalactic media, as well as the available data on other absorption lines from highly ionized species.

  9. The Formation and Physical Origin of Highly Ionized Cooling Gas

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bordoloi, Rongmon; Wagner, Alexander Y.; Heckman, Timothy M.

    We present a simple model that explains the origin of warm, diffuse gas seen primarily as highly ionized absorption-line systems in the spectra of background sources. We predict the observed column densities of several highly ionized transitions such as O vi, O vii, Ne viii, N v, and Mg x, and we present a unified comparison of the model predictions with absorption lines seen in the Milky Way disk, Milky Way halo, starburst galaxies, the circumgalactic medium, and the intergalactic medium at low and high redshifts. We show that diffuse gas seen in such diverse environments can be simultaneously explainedmore » by a simple model of radiatively cooling gas. We show that most such absorption-line systems are consistent with being collisionally ionized, and we estimate the maximum-likelihood temperature of the gas in each observation. This model satisfactorily explains why O vi is regularly observed around star-forming low- z L* galaxies, and why N v is rarely seen around the same galaxies. We further present some consequences of this model in quantifying the dynamics of the cooling gas around galaxies and predict the shock velocities associated with such flows. A unique strength of this model is that while it has only one free (but physically well-constrained) parameter, it nevertheless successfully reproduces the available data on O vi absorbers in the interstellar, circumgalactic, intragroup, and intergalactic media, as well as the available data on other absorption lines from highly ionized species.« less

  10. Instellar grains within interstellar grains

    NASA Technical Reports Server (NTRS)

    Bernatowicz, Thomas J.; Amari, Sachiko; Zinner, Ernst K.; Lewis, Roy S.

    1991-01-01

    The discovery of crystals of titanium carbide in an interstellar graphite spherule is reported. The new species is particularly interesting in that it came in a protective wrapping (the graphite spherule) which eliminated the possibility of chemical alteration during its residence in the interstellar medium and in the meteorite in which it was discovered.

  11. Si K EDGE STRUCTURE AND VARIABILITY IN GALACTIC X-RAY BINARIES

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Schulz, Norbert S.; Corrales, Lia; Canizares, Claude R.

    2016-08-10

    We survey the Si K edge structure in various absorbed Galactic low-mass X-ray binaries (LMXBs) to study states of silicon in the inter- and circum-stellar medium. The bulk of these LMXBs lie toward the Galactic bulge region and all have column densities above 10{sup 22} cm{sup −2}. The observations were performed using the Chandra High Energy Transmission Grating Spectrometer. The Si K edge in all sources appears at an energy value of 1844 ± 0.001 eV. The edge exhibits significant substructure that can be described by a near edge absorption feature at 1849 ± 0.002 eV and a far edgemore » absorption feature at 1865 ± 0.002 eV. Both of these absorption features appear variable with equivalent widths up to several mÅ. We can describe the edge structure using several components: multiple edge functions, near edge absorption excesses from silicates in dust form, signatures from X-ray scattering optical depths, and a variable warm absorber from ionized atomic silicon. The measured optical depths of the edges indicate much higher values than expected from atomic silicon cross sections and interstellar medium abundances, and they appear consistent with predictions from silicate X-ray absorption and scattering. A comparison with models also indicates a preference for larger dust grain sizes. In many cases, we identify Si xiii resonance absorption and determine ionization parameters between log ξ = 1.8 and 2.8 and turbulent velocities between 300 and 1000 km s{sup −1}. This places the warm absorber in close vicinity of the X-ray binaries. In some data, we observe a weak edge at 1.840 keV, potentially from a lesser contribution of neutral atomic silicon.« less

  12. Deuterium and the Local Interstellar Medium: Properties for the Procyon and Capella Lines of Sight

    NASA Technical Reports Server (NTRS)

    Linsky, Jeffrey L.; Diplas, Athanassios; Wood, Brian E.; Brown, Alexander; Ayres, Thomas R.; Savage, Blair D.

    1995-01-01

    We present Goddard High-Resolution Spectrograph observations of the interstellar H I and D I Ly-alpha lines and the Mg II and Fe II resonance lines formed along the lines of sight toward the nearby stars Procyon (3.5 pc, l = 214 deg, b = 13 deg) and Capella (12.5 pc, l = 163 deg, b = 5 deg). New observations of Capella were obtained at orbital phase 0.80, when the radial velocities of the intrinsic Ly-alpha emission lines of each star were nearly reversed from those of the previous observations at phase 0.26. Since the intrinsic Ly-alpha line of the Capella system (the 'continuum' against which the interstellar absorption is measured) has different shapes at phases 0.26 and 0.80, we can derive both the intrinsic stellar profiles and the interstellar absorption lines more precisely by jointly analyzing the two data sets. For the analysis of the Procyon line of sight, we first assumed that the intrinsic Ly-alpha line profile is a broadened solar profile, but this assumption does not lead to a good fit to the observed D I line profile for any value of D/H. We then assumed that (D/H)(sub LISM) = 1.6 x 10(exp -5), the same value as for the Capella line of sight, and we modified the broadened solar profile to achieve agreement between the simulated and observed line profiles. The resulting asymmetric intrinsic stellar line profile is consistent with the shapes of the scaled Mg II line profiles. We believe therefore that the Procyon data are consistent with (D/H)(sub LISM) = 1.6 x 10(exp -5), but the uncertainty in the intrinsic Ly-alpha emission-line profile does not permit us to conclude that the D/H ratio is constant in the local interstellar medium (LISM). The temperature and turbulence in the Procyon line of sight are T = 6900 +/- 80 (+/- 300 systematic error) K and zeta = 1.21 +/- 0.27 km/s. These properties are similar to those of Capella, except that the gas toward Procyon is divided into two velocity components separated by 2.6 km/s and the Procyon line of sight has a mean neutral hydrogen density that is a factor of 2.4 larger than that of the Capella line of sight. This suggests that the first 5.3 pc along the Capella line of sight lies within the local cloud and the remaining 7.2 pc lies in the hot gas surrounding the local cloud. We propose that n(H I) = 0.1065 +/- 0.0028 cm(exp -2) be adopted for the neutral hydrogen density within the local cloud and that zeta = 1.21 +/- 0.27 km/s be adopted for the nonthermal motions. The existence of different second velocity components toward the nearby stars Procyon and Sirius provides the first glimpse of a turbulent cloudlet boundary layer between the local cloud and the surrounding hot interstellar gas.

  13. IUE observations of neutral hydrogen and deuterium in the local interstellar medium

    NASA Technical Reports Server (NTRS)

    Landsman, W. B.; Murthy, J.; Henry, R. C.; Moos, H. W.; Linsky, J. L.

    1986-01-01

    Small-aperture, high-dispersion IUE spectra have been obtained of seven late-type stars that, in general, confirm previous Copernicus results concerning the distribution of hydrogen and deuterium in the local interstellar medium. In addition, the IUE Ly Alpha spectra of Altair, and of the Alpha Cen components, suggest that multiple velocity components exist in these two directions.

  14. Astrophysical dust grains in stars, the interstellar medium, and the solar system

    NASA Technical Reports Server (NTRS)

    Gehrz, Robert D.

    1991-01-01

    Studies of astrophysical dust grains in circumstellar shells, the interstellar medium, and the solar system may provide information about stellar evolution and about physical conditions in the primitive solar nebula. The following subject areas are covered: (1) the cycling of dust in stellar evolution and the formation of planetary systems; (2) astrophysical dust grains in circumstellar environments; (3) circumstellar grain formation and mass loss; (4) interstellar dust grains; (5) comet dust and the zodiacal cloud; (6) the survival of dust grains during stellar evolution; and (7) establishing connections between stardust and dust in the solar system.

  15. Comprehensive Analysis of Interstellar Iso-PROPYL Cyanide up to 480 GHZ

    NASA Astrophysics Data System (ADS)

    Kolesniková, Lucie; Alonso, E. R.; Cabezas, Carlos; Mata, Santiago; Alonso, José L.

    2016-06-01

    Iso-propyl cyanide, also known as iso-butyronitrile, is a branched alkyl molecule recently detected in the interstellar medium. A combination of Stark-modulated microwave spectroscopy and frequency-modulated millimeter and submillimeter wave spectroscopy was used to analyze its rotational spectrum from 26 to 480 GHz. Spectral assignments and analysis include transitions from the ground state, eight excited vibrational states and 13C isotopologues. Results of this work should facilitate astronomers further observations of iso-propyl cyanide in the interstellar medium. A. Belloche, R. T. Garrod, H. S. P. Müller, K. M. Menten, Science, 2014, 345, 1584

  16. The structure of the interstellar medium at the 25 AU scale

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Diamond, P.J.; Goss, W.M.; Romney, J.D.

    1989-12-01

    A three-station VLBI Galactic H I absorption experiment has been carried out with baselines up to 600 km. The large collecting area of the European VLBI Network consisting of the Lovell Telescope (Mark Ia), the 100 m telescope at Effelsberg, and the Westerbork Synthesis Radio Telescope was necessary to achieve adequate sensitivity for these high angular resolution (0.05 arcsec) and high-velocity resolution (0.5 km/s) observations. The extragalactic sources 3C 138, 3C 147, and 3C 380 were observed. Changes in the local H I apparent absorption were observed in all three sources as a function of resolution. The changes are mostmore » striking in the direction of 3C 138. The implied linear diameters are in the range 25 AU with typical H I densities of 10,000-100,000/cu cm. 19 refs.« less

  17. Deexcitation Dynamics of Superhydrogenated Polycyclic Aromatic Hydrocarbon Cations after Soft-x-Ray Absorption

    NASA Astrophysics Data System (ADS)

    Reitsma, G.; Boschman, L.; Deuzeman, M. J.; González-Magaña, O.; Hoekstra, S.; Cazaux, S.; Hoekstra, R.; Schlathölter, T.

    2014-08-01

    We have investigated the response of superhydrogenated gas-phase coronene cations upon soft x-ray absorption. Carbon (1s)⟶π⋆ transitions were resonantly excited at hν =285 eV. The resulting core hole is then filled in an Auger decay process, with the excess energy being released in the form of an Auger electron. Predominantly highly excited dications are thus formed, which cool down by hydrogen emission. In superhydrogenated systems, the additional H atoms act as a buffer, quenching loss of native H atoms and molecular fragmentation. Dissociation and transition state energies for several H loss channels were computed by means of density functional theory. Using these energies as input into an Arrhenius-type cascade model, very good agreement with the experimental data is found. The results have important implications for the survival of polyaromatic hydrocarbons in the interstellar medium and reflect key aspects of graphene hydrogenation.

  18. Pre-Biological Evolution of Organic Matter in the Universe

    NASA Astrophysics Data System (ADS)

    Wiebe, D. Z.

    2017-05-01

    Discovery of interstellar molecules has become one of the most prominent findings of 20th century. Initially (since late 1930-ies) only simple two-atom compounds have been known. However, the rapid development of radioastronomy during post-war years has allowed expanding this list significantly. Now, the number of known interstellar and circumstellar molecules approaches two hundred (not counting isomers and isotopologues). Among them we see both simple and quite complex molecules. The largest molecules with solid identification consist of 12 atoms (CH3OC2H5, C3H7CN). Nearly all molecules with more than five atoms represent are organic. More than once even discovery of the simplest amino acid (glycine) in the interstellar medium had been reported. While later all these reports has been refuted, there is no doubt that this is a purely technical problem, and there are no fundamental obstacles on a pathway to interstellar synthesis of simplest amino acids. Definitely, even more complex organic structures are present in the interstellar medium, like fullerenes and some kind of aromatic particles. Recently, this diversity quite often became an incentive to suggest that organic species might have arrived to Earth (and other forming planets) in a "ready-to-use" form. However, one has to remember that numerous factors causing effective molecule destruction are in action in the interstellar medium, in the vicinity of young stars, and in protoplanetary disks.

  19. Laboratory absorption spectra of molecules at interstellar cloud temperatures - First measurements on CO at about 97 nm

    NASA Technical Reports Server (NTRS)

    Smith, P. L.; Yoshino, K.; Stark, G.; Ito, K.; Stevens, M. H.

    1991-01-01

    In the 91-100 nm spectral region, where absorption of photons by interstellar CO usually leads to dissociation, laboratory spectra obtained at 295 K show that most CO bands are both overlapped and perturbed. Reliable band oscillator strengths cannot be extracted from such spectra. As a consequence, synthetic extreme-ultraviolet absorption spectra for CO at the low temperatures that prevail in interstellar clouds are uncertain. A supersonic expansion technique has been used to cool CO to 30 K and three bands in the 97-nm region have been studied with high spectral resolution. The measured spectrum at 30 K is in reasonable agreement with some published modeled spectra, but the ratios of integrated cross sections are somewhat different from those determined from low resolution spectra obtained at 295 K, in which the bands are blended.

  20. Interstellar proteins and the discovery of a new absorption feature at lambda = 2800 A

    NASA Astrophysics Data System (ADS)

    Karim, L. M.; Hoyle, F.; Wickramasinghe, N. C.

    1983-07-01

    In order to check the presence of biogenic materials in interstellar grains, the spectra of three early-type, heavily reddened stars recorded by the IUE were examined. These stars showed comparatively weak absorption at 2200 A, minimizing the effect of graphite grains. A broad absorption feature centered on 2800 A is discovered in HD 14250 and interpreted to be due to the amino acid tryptophan. Comparison of the spectrum with that of the calculated extinction behavior of graphite spheres of radii 0.02 microns suggests that the latter are not responsible for the observed spectrum.

  1. Interstellar dust and related topics; Proceedings of the Symposium, State University of New York, Albany, N.Y., May 29-June 2, 1972

    NASA Technical Reports Server (NTRS)

    Greenberg, J. M. (Editor); Van De Hulst, H. C.

    1973-01-01

    Theoretical studies and observations of interstellar dust are described in papers dealing with the passive properties of dust grains, their physical and chemical activities in the interstellar medium, and their interactions in association with stars. The papers are grouped according to the principal topics of (1) extinction and polarization, (2) diffuse interstellar features, (3) dust around and in close association with stars, (4) reflection nebulae and other aspects of dust scattering properties, (5) alignment mechanisms, (6) distribution of molecules and processes of molecule formation, (7) radiation effects on dust, (8) physical and chemical interactions of dust with the ambient medium, and (9) gas and dust in H II regions. Individual items are announced in this issue.

  2. Cosmic Carbon Chemistry: From the Interstellar Medium to the Early Earth

    PubMed Central

    Ehrenfreund, Pascale; Cami, Jan

    2010-01-01

    Astronomical observations have shown that carbonaceous compounds in the gas and solid state, refractory and icy are ubiquitous in our and distant galaxies. Interstellar molecular clouds and circumstellar envelopes are factories of complex molecular synthesis. A surprisingly large number of molecules that are used in contemporary biochemistry on Earth are found in the interstellar medium, planetary atmospheres and surfaces, comets, asteroids and meteorites, and interplanetary dust particles. In this article we review the current knowledge of abundant organic material in different space environments and investigate the connection between presolar and solar system material, based on observations of interstellar dust and gas, cometary volatiles, simulation experiments, and the analysis of extraterrestrial matter. Current challenges in astrochemistry are discussed and future research directions are proposed. PMID:20554702

  3. The alpha Centauri Line of Sight: D/H Ratio, Physical Properties of Local Interstellar Gas, and Measurement of Heated Hydrogen (The 'Hydrogen Wall') Near the Heliopause

    NASA Astrophysics Data System (ADS)

    Linsky, Jeffrey L.; Wood, Brian E.

    1996-05-01

    We analyze high-resolution spectra of the nearby (1.34 pc) stars alpha Cen A (G2 V) and alpha Cen B (K1 V), which were obtained with the Goddard High Resolution Spectrograph on the Hubble Space Telescope. The observations consist of echelle spectra of the Mg II 2800 A and Fe II 2599 A resonance lines and the Lyman-alpha lines of hydrogen and deuterium. The interstellar gas has a velocity (v = - 18.0 +/- 0.2 km/s) consistent with the local flow vector proposed for this line of sight by Lailement & Berlin (1992). The temperature and nonthermal velocity inferred from the Fe II, Mg II, and D I line profiles are T = 5400 +/- 500 K and xi = 1.20 +/- 0.25 km/s, respectively. However, single-component fits to the H I Lyman-alpha lines yield a Doppler parameter (bHI = 11.80 km/s) that implies a significantly warmer temperature of 8350 K, and the velocity of the H I absorption (v = - 15.8 +/- 0.2 km/s) is redshifted by about 2.2 km/s with respect to the Fe II, Mg II, and D I lines. The one-component model of the interstellar gas suggests natural logarithm N base HI = 18.03 +/- 0.01 and D/H = (5.7 +/- 0.2) x 10-6 . These parameters lead to a good fit to the observed spectra, but this model does not explain the higher temperature and redshift of H I relative to the other interstellar lines. The most sensible way to resolve the discrepancy between H(I) and the other lines is to add a second absorption component to the H(I) lines. This second component is hotter (T approx. equals 30,000 K), is redshifted relative to the primary component by 2-4 km/s, and has a column density too low to be detected in the Fe(II), Mg(II), and D(I) lines. We propose that the gas responsible for this component is located near the heliopause, consisting of the heated H I gas from the interstellar medium that is compressed by the solar wind. This so-called 'hydrogen wall' is predicted by recent multifluid gasdynamical models of the interstellar gas and solar wind interaction. Our data provide the first measurements of the temperature and column density of H(I) in the hydrogen wall. After considering the effects that a corresponding hydrogen wall around alpha Cen would have on our analysis, our best estimates for the parameters of the solar hydrogen wall are natural log N(2)(H(I)) = 14.74 +/- 0.24, b(2)(H(I)) = 21.9 +/- 1.7 km/s (corresponding to T = 29,000 +/- 5000 K), and v(2)(H(I)) greater than -16km/s. Unfortunately, the existence of this heated H(I) reduces our ability to compute the H(I) column density of the interstellar medium accurately because, with slight alterations to our assumed stellar Lyman-alpha profiles, we discovered that acceptable two-component fits also exist with natural log N(H(I))approx. 17.6. We, therefore, quote large error bars for the H I column density along the alpha Cen line of sight, natural log N(H(I)) = 17.80 +/- 0.30. For this range in N(H(I)), n(H(I)) = 0.15 /cu.cm (+/- a factor of 2) and D/H = (0.5-1.9) x 10-5. This is the first direct measurement of the H(I) density in a local cloud and allows us to predict the distance from the Sun to the edge of the local cloud along various lines of sight. This range in D/H is consistent with the value D/H = 1.6 x 10-5 previously derived for the Capella and Procyon lines of sight. We cannot tell whether D/H ratio varies or is constant in the local interstellar medium, but we do find that the D(I)/Mg(II) ratio for the alpha Cen line of sight is about 4 times smaller than for the Capella and Procyon lines of sight. Therefore, either D/H or the Mg depletion varies significantly over distance scales of only a few parsecs.

  4. Observations of Interstellar HI Toward Nearby Late-type Stars

    NASA Technical Reports Server (NTRS)

    Landsman, W. B.; Henry, R. C.; Moos, H. W.; Linsky, J. L.

    1984-01-01

    High-disperson Copernicus and IUE observations of chromospheric Ly alpha emission are used to study the distribution of HI in the local interstellar medium. Interstellar parameters are derived toward 3 stars within 5 pc of the Sun, and upper limits are given for the Ly alpha flux from 9 other stars within 10 pc.

  5. Diffuse low-ionization gas in the galactic halo casts doubts on z ≃ 0.03 WHIM detections

    NASA Astrophysics Data System (ADS)

    Nicastro, F.; Senatore, F.; Gupta, A.; Mathur, S.; Krongold, Y.; Elvis, M.; Piro, L.

    2016-05-01

    In this Letter, we demonstrate that the two claims of z ≃ 0.03 O VII K α absorption lines from Warm Hot Intergalactic Medium (WHIM) along the lines of sight to the blazars H 2356-309 (Buote et al.; Fang et al.) and Mkn 501 (Ren, Fang & Buote) are likely misidentifications of the z = 0 O II K β line produced by a diffuse Low-Ionization Metal Medium in the Galaxy's interstellar and circum-galactic mediums. We perform detailed modelling of all the available high signal-to-noise Chandra Low Energy Transmission Grating (LETG) and XMM-Newton Reflection Grating Spectrometer (RGS) spectra of H 2356-309 and Mkn 501 and demonstrate that the z ≃ 0.03 WHIM absorption along these two sightlines is statistically not required. Our results, however, do not rule out a small contribution from the z ≃ 0.03 O VII K α absorber along the line of sight to H 2356-309. In our model the temperature of the putative z = 0.031 WHIM filament is T = 3 × 105 K and the O VII column density is N_{O VII} ≲ 4× 10^{15} cm-2, twenty times smaller than the O VIIcolumn density previously reported, and now more consistent with the expectations from cosmological hydrodynamical simulations.

  6. ACCURATE MODELING OF X-RAY EXTINCTION BY INTERSTELLAR GRAINS

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hoffman, John; Draine, B. T., E-mail: jah5@astro.princeton.edu, E-mail: draine@astro.princeton.edu

    Interstellar abundance determinations from fits to X-ray absorption edges often rely on the incorrect assumption that scattering is insignificant and can be ignored. We show instead that scattering contributes significantly to the attenuation of X-rays for realistic dust grain size distributions and substantially modifies the spectrum near absorption edges of elements present in grains. The dust attenuation modules used in major X-ray spectral fitting programs do not take this into account. We show that the consequences of neglecting scattering on the determination of interstellar elemental abundances are modest; however, scattering (along with uncertainties in the grain size distribution) must bemore » taken into account when near-edge extinction fine structure is used to infer dust mineralogy. We advertise the benefits and accuracy of anomalous diffraction theory for both X-ray halo analysis and near edge absorption studies. We present an open source Fortran suite, General Geometry Anomalous Diffraction Theory (GGADT), that calculates X-ray absorption, scattering, and differential scattering cross sections for grains of arbitrary geometry and composition.« less

  7. Carbon chain abundance in the diffuse interstellar medium

    NASA Technical Reports Server (NTRS)

    Allamandola, L. J.; Hudgins, D. M.; Bauschlicher, C. W. Jr; Langhoff, S. R.

    1999-01-01

    Thanks to the mid-IR sensitivities of the ISO and IRTS orbiting spectrometers it is now possible to search the diffuse interstellar medium for heretofore inaccessible molecular emission. In view of the recent strong case for the presence of C(7-) (Kirkwood et al. 1998, Tulej et al. 1998),and the fact that carbon chains possess prominent infrared active modes in a very clean portion of the interstellar spectrum, we have analyzed the IRTS spectrum of the diffuse interstellar medium for the infrared signatures of these species. Theoretical and experimental infrared band frequencies and absolute intensities of many different carbon chain species are presented. These include cyanopolyynes, neutral and anionic linear carbon molecules, and neutral and ionized, even-numbered, hydrogenated carbon chains. We show that--as a family--these species have abundances in the diffuse ISM on the order of 10(-10) with respect to hydrogen, values consistent with their abundances in dense molecular clouds. Assuming an average length of 10 C atoms per C-chain implies that roughly a millionth of the cosmically available carbon is in the form of carbon chains and that carbon chains can account for a few percent of the visible to near-IR diffuse interstellar band (DIB) total equivalent width (not DIB number).

  8. Interstellar holography

    NASA Astrophysics Data System (ADS)

    Walker, M. A.; Koopmans, L. V. E.; Stinebring, D. R.; van Straten, W.

    2008-08-01

    The dynamic spectrum of a radio pulsar is an in-line digital hologram of the ionized interstellar medium. It has previously been demonstrated that such holograms permit image reconstruction, in the sense that one can determine an approximation to the complex electric field values as a function of Doppler shift and delay, but to date the quality of the reconstructions has been poor. Here we report a substantial improvement in the method which we have achieved by simultaneous optimization of the thousands of coefficients that describe the electric field. For our test spectrum of PSRB0834+06 we find that the model provides an accurate representation of the data over the full 63dB dynamic range of the observations: residual differences between model and data are noise like. The advent of interstellar holography enables detailed quantitative investigation of the interstellar radio-wave propagation paths for a given pulsar at each epoch of observation. We illustrate this using our test data which show the scattering material to be structured and highly anisotropic. The temporal response of the medium exhibits a scattering tail which extends to beyond 100μs, and the centroid of the pulse at this frequency and this epoch of observation is delayed by approximately 15μs as a result of multipath propagation in the interstellar medium.

  9. KSC-02pd2055

    NASA Image and Video Library

    2002-11-11

    KENNEDY SPACE CENTER, FLA. - The Cosmic Hot Interstellar Plasma Spectrometer, or CHIPSat, undergoes final processing before launch. CHIPSat, a suitcase-size 131-pound satellite, will provide invaluable information into the origin, physical processes and properties of the hot gas contained in the interstellar medium. This can provide important clues about the formation and evolution of galaxies since the interstellar medium literally contains the seeds of future stars. CHIPSat is scheduled for launch, with the Ice, Cloud, and Land Elevation Satellite (ICESat), on a Delta II expendable launch vehicle from Vandenberg Air Force Base, Calif., on Jan. 11, 2003, between 4:45 p.m. - 5:30 p.m. PST.

  10. KSC-02pd2053

    NASA Image and Video Library

    2002-11-11

    KENNEDY SPACE CENTER, FLA. - The Cosmic Hot Interstellar Plasma Spectrometer, or CHIPSat, undergoes final processing before launch. CHIPSat, a suitcase-size 131-pound satellite, will provide invaluable information into the origin, physical processes and properties of the hot gas contained in the interstellar medium. This can provide important clues about the formation and evolution of galaxies since the interstellar medium literally contains the seeds of future stars. CHIPSat is scheduled for launch, with the Ice, Cloud, and Land Elevation Satellite (ICESat), on a Delta II expendable launch vehicle from Vandenberg Air Force Base, Calif., on Jan. 11, 2003, between 4:45 p.m. - 5:30 p.m. PST.

  11. KSC-02pd2056

    NASA Image and Video Library

    2002-11-11

    KENNEDY SPACE CENTER, FLA. - The Cosmic Hot Interstellar Plasma Spectrometer, or CHIPSat, undergoes final processing before launch. CHIPSat, a suitcase-size 131-pound satellite, will provide invaluable information into the origin, physical processes and properties of the hot gas contained in the interstellar medium. This can provide important clues about the formation and evolution of galaxies since the interstellar medium literally contains the seeds of future stars. CHIPSat is scheduled for launch, with the Ice, Cloud, and Land Elevation Satellite (ICESat), on a Delta II expendable launch vehicle from Vandenberg Air Force Base, Calif., on Jan. 11, 2003, between 4:45 p.m. - 5:30 p.m. PST.

  12. KSC-02pd2054

    NASA Image and Video Library

    2002-11-11

    KENNEDY SPACE CENTER, FLA. - The Cosmic Hot Interstellar Plasma Spectrometer, or CHIPSat, undergoes final processing before launch. CHIPSat, a suitcase-size 131-pound satellite, will provide invaluable information into the origin, physical processes and properties of the hot gas contained in the interstellar medium. This can provide important clues about the formation and evolution of galaxies since the interstellar medium literally contains the seeds of future stars. CHIPSat is scheduled for launch, with the Ice, Cloud, and Land Elevation Satellite (ICESat), on a Delta II expendable launch vehicle from Vandenberg Air Force Base, Calif., on Jan. 11, 2003, between 4:45 p.m. - 5:30 p.m. PST.

  13. Stellar and interstellar K lines - Gamma Pegasi and iota Herculis.

    NASA Technical Reports Server (NTRS)

    Hobbs, L. M.

    1973-01-01

    High-resolution scans show that the relatively strong (about 90 mA) K lines of Ca II in the early B stars gamma-Peg and iota-Her are almost entirely stellar in origin, although the latter case includes a small interstellar contribution. Such stellar lines can be of great importance in augmenting the interstellar absorption, up through the earliest of the B stars.

  14. Radio emission from supernova remnants in a cloudy interstellar medium

    NASA Technical Reports Server (NTRS)

    Blandford, R. D.; Cowie, L. L.

    1982-01-01

    The van der Laan (1962) theory of SNR radio emission is modified in light of the inhomogeneity of the interstellar medium, and in order to allow for particle acceleration in shock fronts. It is proposed that most of the radio emission in 10-20 pc radius SNRs originates in cold interstellar clouds that have been crushed by the high pressure hot gas within the expanding remnant. Under these circumstances, simple reacceleration of ambient interstellar cosmic ray electrons can account for the surface brightness-diameter distribution of observed remnants, with the additional, relativistic particle energy compensating for the decreased filling factor of the radio-emitting regions. Warm interstellar gas, at about 8000 K, may also be compressed within very large SNRs (of radius of 30-100 pc) and account for both the giant radio loops, when these SNRs are seen individually, and the anomalously bright galactic nonthermal radio background, which may be the superposition of a number of such features.

  15. A study of birefringence in the interstellar medium in the direction of the Crab Nebula

    NASA Technical Reports Server (NTRS)

    Martin, P. G.; Angel, J. R. P.

    1974-01-01

    The interstellar medium may be regarded as a weak wave plate, the linear birefringence arising from the aligned grains which produce interstellar linear polarization. Using the Crab Nebula as a background source of linearly polarized light we have investigated this birefringence by measurements of circular polarization. The circular component is found to vary with the intrinsic linear polarization in a sinusoidal fashion characteristic of a wave plate with the orientation expected from independent measurements of the interstellar linear polarization in the same direction. Measurements of the wavelength dependence, together with the sense and magnitude of the circular polarization are interpreted as evidence for the dielectric nature of the interstellar grain materials. These observations provide a firm basis for a similar interpretation of the circular polarization of reddened stars. The observations of the stars can then be used to study the grain composition and the structure of the magnetic field in many directions in the Galaxy.

  16. SILICATE COMPOSITION OF THE INTERSTELLAR MEDIUM

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Fogerty, S.; Forrest, W.; Watson, D. M.

    2016-10-20

    The composition of silicate dust in the diffuse interstellar medium and in protoplanetary disks around young stars informs our understanding of the processing and evolution of the dust grains leading up to planet formation. An analysis of the well-known 9.7 μ m feature indicates that small amorphous silicate grains represent a significant fraction of interstellar dust and are also major components of protoplanetary disks. However, this feature is typically modeled assuming amorphous silicate dust of olivine and pyroxene stoichiometries. Here, we analyze interstellar dust with models of silicate dust that include non-stoichiometric amorphous silicate grains. Modeling the optical depth alongmore » lines of sight toward the extinguished objects Cyg OB2 No. 12 and ζ Ophiuchi, we find evidence for interstellar amorphous silicate dust with stoichiometry intermediate between olivine and pyroxene, which we simply refer to as “polivene.” Finally, we compare these results to models of silicate emission from the Trapezium and protoplanetary disks in Taurus.« less

  17. Invited papers presented to a workshop on thermodynamics and kinetics of dust formation in the space medium. [condensation, nucleation, and interstellar dust

    NASA Technical Reports Server (NTRS)

    Robertson, P. C.

    1978-01-01

    Abstracts of 25 papers relating to condensation processes in the early solar system are presented. Special emphasis is given to the transition of an initial vapor phase in the space medium, the characterization of condensation environments, and condensation processes in the space medium. The question of whether some fraction of the solar system solids (particularly exemplified by meteoritic solids) may be interstellar grains that gathered in the region of the proto-sun, rather than being products of local condensation is addressed.

  18. Experimental Electronic Spectroscopy of Two PAHs: Naphthalene and 2-METHYL Naphthalene

    NASA Astrophysics Data System (ADS)

    Friha, H.; Feraud, G.; Pino, T.; Brechignac, Ph.; Parneix, P.; Dhaoudi, Z.; Jaidane, N.; Galila, H.; Troy, T.; Schmidt, T.

    2011-06-01

    The presence of polycyclic aromatic hydrocarbons (PAHs) in the interstellar medium (ISM) was suggested in the mid-80's. Since then, their important role in the physico-chemical evolution of the ISM has been confirmed. Interstellar PAHs have been in particular proposed as possible carriers of some Diffuse Interstellar Bands (DIBs). These absorption bands are seen in the spectra of reddened stars from the visible to the near infrared and constitute a major astrophysical issue. Our purpose is to obtain electronic spectra of gas phase PAHs which will be used to probe their participation to the interstellar extinction curve from the visible (DIBs) to the UV (bump). For this goal PAHs cations represent an excellent set of target species. A new way of forming PAH+-Ar_n clusters cations has been implemented in the experimental set-up 'ICARE' at ISMO (Orsay) giving us the capability to measure the electronic spectra of cold PAH cations in the gas phase through the "Ar tagging" trick. Two molecules have been investigated in this way: naphthalene (C_1_0H_8) and 2- methyl naphthalene (C_1_1H_1_0). Clusters of naphthalene and (or 2-methyl-naphthalene) with Ar atoms are first formed in a supersonic jet, before being hit by a 281 nm laser beam which photo-ionizes the clusters which are then injected in a molecular beam through a skimmer. A tunable laser beam crossing downstream photo-dissociates the cations. The bare PAH fragments are detected using a Time-Of-Flight spectrometer while scanning the visible laser wavelength from 470 to 690 nm.

  19. Observing Interstellar and Intergalactic Magnetic Fields

    NASA Astrophysics Data System (ADS)

    Han, J. L.

    2017-08-01

    Observational results of interstellar and intergalactic magnetic fields are reviewed, including the fields in supernova remnants and loops, interstellar filaments and clouds, Hii regions and bubbles, the Milky Way and nearby galaxies, galaxy clusters, and the cosmic web. A variety of approaches are used to investigate these fields. The orientations of magnetic fields in interstellar filaments and molecular clouds are traced by polarized thermal dust emission and starlight polarization. The field strengths and directions along the line of sight in dense clouds and cores are measured by Zeeman splitting of emission or absorption lines. The large-scale magnetic fields in the Milky Way have been best probed by Faraday rotation measures of a large number of pulsars and extragalactic radio sources. The coherent Galactic magnetic fields are found to follow the spiral arms and have their direction reversals in arms and interarm regions in the disk. The azimuthal fields in the halo reverse their directions below and above the Galactic plane. The orientations of organized magnetic fields in nearby galaxies have been observed through polarized synchrotron emission. Magnetic fields in the intracluster medium have been indicated by diffuse radio halos, polarized radio relics, and Faraday rotations of embedded radio galaxies and background sources. Sparse evidence for very weak magnetic fields in the cosmic web is the detection of the faint radio bridge between the Coma cluster and A1367. Future observations should aim at the 3D tomography of the large-scale coherent magnetic fields in our Galaxy and nearby galaxies, a better description of intracluster field properties, and firm detections of intergalactic magnetic fields in the cosmic web.

  20. Evolution of interstellar organic compounds under asteroidal hydrothermal conditions

    NASA Astrophysics Data System (ADS)

    Vinogradoff, V.; Bernard, S.; Le Guillou, C.; Remusat, L.

    2018-05-01

    Carbonaceous chondrites (CC) contain a diversity of organic compounds. No definitive evidence for a genetic relationship between these complex organic molecules and the simple organic molecules detected in the interstellar medium (ISM) has yet been reported. One of the many difficulties arises from the transformations of organic compounds during accretion and hydrothermal alteration on asteroids. Here, we report results of hydrothermal alteration experiments conducted on a common constituent of interstellar ice analogs, Hexamethylenetetramine (HMT - C6H12N4). We submitted HMT to asteroidal hydrothermal conditions at 150 °C, for various durations (up to 31 days) and under alkaline pH. Organic products were characterized by gas chromatography mass spectrometry, infrared spectroscopy and synchrotron-based X-ray absorption near edge structure spectroscopy. Results show that, within a few days, HMT has evolved into (1) a very diverse suite of soluble compounds dominated by N-bearing aromatic compounds (> 150 species after 31 days), including for instance formamide, pyridine, pyrrole and their polymers (2) an aromatic and N-rich insoluble material that forms after only 7 days of experiment and then remains stable through time. The reaction pathways leading to the soluble compounds likely include HMT dissociation, formose and Maillard-type reactions, e.g. reactions of sugar derivatives with amines. The present study demonstrates that, if interstellar organic compounds such as HMT had been accreted by chondrite parent bodies, they would have undergone chemical transformations during hydrothermal alteration, potentially leading to the formation of high molecular weight insoluble organic molecules. Some of the diversity of soluble and insoluble organic compounds found in CC may thus result from asteroidal hydrothermal alteration.

  1. Magnetized Neutron Stars in the Interstellar Medium

    NASA Astrophysics Data System (ADS)

    Toropina, O. D.; Romanova, M. M.; Lovelace, R. V. E.

    2014-09-01

    We investigate the propagation of magnetized, isolated old neutron stars through the interstellar medium. We performed axisymmetric, non-relativistic magnetohydrodynamic simulations of the supersonic motion of neutron star with dipole magnetic field aligned with its velocity through the interstellar medium (ISM). We consider two cases: (1) where the accretion radius is larger than Alfvén radius, i.e. Racc>>RA and gravitational focusing is important; and (2) where Racc<

  2. Molecules as diagnostic tools in the interstellar medium

    NASA Astrophysics Data System (ADS)

    Spielfiedel, A.; Feautrier, N.; Balança, C.; Dayou, F.; Lique, F.; Senent, M.-L.

    Analysis of light emission from different regions of the interstellar medium and circumstellar environments provides crucial information about the chemical composition and the physical conditions in these regions. Interpretation of the observed spectra requires the knowledge of collisional excitation rates as well as radiative rates participating to the line formation. In the first part, the paper focuses on collisional excitation rates of molecules relevant to the interstellar medium. It discusses currently available data and outlines new work carried out by the authors. Due to the use of accurate ab initio potential energy surfaces, the new rate coefficients differ significantly from previously published ones. In the second part, it is analysed from two examples how the use of the new rate coefficients could lead to important changes in the interpretation of molecular emission emerging from molecular clouds.

  3. Modeling Shocks Detected by Voyager 1 in the Local Interstellar Medium

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kim, T. K.; Pogorelov, N. V.; Burlaga, L. F.

    The magnetometer (MAG) on Voyager 1 ( V1 ) has been sampling the interstellar magnetic field (ISMF) since 2012 August. The V1 MAG observations have shown draped ISMF in the very local interstellar medium disturbed occasionally by significant enhancements in magnetic field strength. Using a three-dimensional, data-driven, multi-fluid model, we investigated these magnetic field enhancements beyond the heliopause that are supposedly associated with solar transients. To introduce time-dependent effects at the inner boundary at 1 au, we used daily averages of the solar wind parameters from the OMNI data set. The model ISMF strength, direction, and proton number density aremore » compared with V1 data beyond the heliopause. The model reproduced the large-scale fluctuations between 2012.652 and 2016.652, including major events around 2012.9 and 2014.6. The model also predicts shocks arriving at V1 around 2017.395 and 2019.502. Another model driven by OMNI data with interplanetary coronal mass ejections (ICMEs) removed at the inner boundary suggests that ICMEs may play a significant role in the propagation of shocks into the interstellar medium.« less

  4. Dust Destruction in the ISM: A Re-Evaluation of Dust Lifetimes

    NASA Technical Reports Server (NTRS)

    Jones, A. P.; Nuth, J. A., III

    2011-01-01

    There is a long-standing conundrum in interstellar dust studies relating to the discrepancy between the time-scales for dust formation from evolved stars and the apparently more rapid destruction in supernova-generated shock waves. Aims. We re-examine some of the key issues relating to dust evolution and processing in the interstellar medium. Methods. We use recent and new constraints from observations, experiments, modelling and theory to re-evaluate dust formation in the interstellar medium (ISM). Results. We find that the discrepancy between the dust formation and destruction time-scales may not be as significant as has previously been assumed because of the very large uncertainties involved. Conclusions. The derived silicate dust lifetime could be compatible with its injection time-scale, given the inherent uncertainties in the dust lifetime calculation. The apparent need to re-form significant quantities of silicate dust in the tenuous interstellar medium may therefore not be a strong requirement. Carbonaceous matter, on the other hand, appears to be rapidly recycled in the ISM and, in contrast to silicates, there are viable mechanisms for its re-formation in the ISM.

  5. The interstellar medium and the highly ionized species observed in the spectrum of the nearby white dwarf G191-B2B

    NASA Technical Reports Server (NTRS)

    Bruhweiler, F. C.; Kondo, Y.

    1981-01-01

    High-resolution spectra of the nearby (48 pc) white dwarf G191-B2B, obtained with the International Ultraviolet Explorer, reveal sharp resonance lines of N V, C IV, and Si IV. The origin of these features is most likely linked to the white dwarf, possibly being formed in an expanding halo around the star. Interstellar lines of C II, N I, Mg II, Si II, and Fe II are also seen in the spectrum. Analysis of these features indicates an average neutral hydrogen number density of 0.064 for this line of sight. In combination with the recent EUV and soft X-ray results, this is interpreted to mean that the interstellar medium in the most immediate solar vicinity is of the normal density n approximately equal to 0.1/cu cm of lower ionization, while just beyond it, at least in some directions, is a hot lower density plasma. These results are apparently in conflict with the model of the interstellar medium by McKee and Ostriker (1977) in its present form.

  6. Vibrational Spectroscopy of Ions and Radicals Present in the Interstellar Medium and in Planetary Atmospheres: A Theoretical Study

    NASA Technical Reports Server (NTRS)

    Chaban, Galina M.

    2004-01-01

    Anharmonic vibrational frequencies and intensities are calculated for OH(H2O)n and H(H2O)n radicals (that form on icy particles of the interstellar medium), HCO radical (the main intermediate in the synthesis of organic molecules in space), NH2(-) and C2H(-) anions, H5(+) cation, and other systems relevant to interstellar chemistry. In addition to pure ions and radicals, their complexes with water are studied to assess the effects of water environment on infrared spectra. The calculations are performed using the correlation-corrected vibrational self-consistent field (CC-VSCF) method with ab initio potential surfaces at the MP2 and CCSD(T) levels. Fundamental, overtone, and combination excitations are computed. The results are in good agreement with available experimental data and provide reliable predictions for vibrational excitations not yet measured in laboratory experiments. The data should be useful for interpretation of astronomically observed spectra and identification of ions and radicals present in the interstellar medium and in planetary atmospheres.

  7. Carbon atom clusters in random covalent networks: PAHs as an integral component of interstellar HAC

    NASA Astrophysics Data System (ADS)

    Jones, A. P.

    1990-11-01

    Using a random covalent network (RCN) model for the structure of hydrogenated amorphorous carbon (HAC) and the available laboratory data, it is shown that aromatic species are a natural consequence of the structure of amorphous carbons formed in the laboratory. Amorphous carbons in the interstellar medium are therefore likely to contain a significant fraction of Polycyclic aromatic hydrocarbons (PAH) species within the 'amorphous' matrix making up these materials. This aromatic component can be produced in situ during the accretion of gas phase carbon species on to grains in the interstellar medium under hydrogen-poor conditions, or subsequent to deposition as a result of photolysis (photodarkening). The fraction of interstellar carbon present in HAC in the form of PAHs, based upon a RCN model, is consistent with the observed Unidentified infrared (UIR) emission features.

  8. Cold and warm atomic gas around the Perseus molecular cloud. I. Basic properties

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Stanimirović, Snežana; Murray, Claire E.; Miller, Jesse

    2014-10-01

    Using the Arecibo Observatory, we have obtained neutral hydrogen (HI) absorption and emission spectral pairs in the direction of 26 background radio continuum sources in the vicinity of the Perseus molecular cloud. Strong absorption lines were detected in all cases, allowing us to estimate spin temperature (T{sub s} ) and optical depth for 107 individual Gaussian components along these lines of sight. Basic properties of individual H I clouds (spin temperature, optical depth, and the column density of the cold and warm neutral medium (CNM and WNM), respectively) in and around Perseus are very similar to those found for randommore » interstellar lines of sight sampled by the Millennium H I survey. This suggests that the neutral gas found in and around molecular clouds is not atypical. However, lines of sight in the vicinity of Perseus have, on average, a higher total H I column density and the CNM fraction, suggesting an enhanced amount of cold H I relative to an average interstellar field. Our estimated optical depth and spin temperature are in stark contrast with the recent attempt at using Planck data to estimate properties of the optically thick H I. Only ∼15% of lines of sight in our study have a column density weighted average spin temperature lower than 50 K, in comparison with ≳ 85% of Planck's sky coverage. The observed CNM fraction is inversely proportional to the optical depth weighted average spin temperature, in excellent agreement with the recent numerical simulations by Kim et al. While the CNM fraction is, on average, higher around Perseus relative to a random interstellar field, it is generally low, between 10%-50%. This suggests that extended WNM envelopes around molecular clouds and/or significant mixing of CNM and WNM throughout molecular clouds are present and should be considered in the models of molecule and star formation. Our detailed comparison of H I absorption with CO emission spectra shows that only 3 of the 26 directions are clear candidates for probing the CO-dark gas as they have N(H I)>10{sup 21} cm{sup –2} yet no detectable CO emission.« less

  9. Studying Dust Scattering Halos with Galactic X-ray Binaries

    NASA Astrophysics Data System (ADS)

    Beeler, Doreen; Corrales, Lia; Heinz, Sebastian

    2018-01-01

    Dust is an important part of the interstellar medium (ISM) and contributes to the formation of stars and planets. Since the advent of modern X-ray telescopes, Galactic X-ray point sources have permitted a closer look at all phases of the ISM. Interstellar metals from oxygen to iron — in both gas and dust form — are responsible for absorption and scattering of X-ray light. Dust scatters the light in a forward direction and creates a diffuse halo image surrounding many bright Galactic X-ray binaries. We use all the bright X-ray point sources available in the Chandra HETG archive to study dust scattering halos from the local ISM. We have described a data analysis pipeline using a combination of the data reduction software CIAO and Python. We compare our results from Chandra HETG and ACIS-I observations of a well studied dust scattering halo around GX 13+1, in order to characterize any systematic errors associated with the HETG data set. We describe how our data products will be used to measure ISM scaling relations for X-ray extinction, dust abundance, and dust-to-metal ratios.

  10. The interstellar C-H stretching band near 3.4 microns - Constraints on the composition of organic material in the diffuse interstellar medium

    NASA Technical Reports Server (NTRS)

    Sandford, S. A.; Allamandola, L. J.; Tielens, A. G. G. M.; Pendleton, Y.; Sellgren, K.

    1991-01-01

    The composition and history of dust in the diffuse ISM was studied using 3600-2700/cm absorption spectra of objects which have widely varying amounts of visual extinctions along different lines of sight. The 3300/cm and 2950/cm features are attributed to O-H and C-H stretching vibrations, respectively. The O-H feature in OH 32.8-0.3 is suggestive of circumstellar water ice and is probably not due to material in the diffuse ISM. The features in the 3100-2700/cm region are attributed either to C-H vibrations or to M stars. The spectra of the latter show a series of narrow features in this region that are identified with photospheric OH. Objects in which these bands are seen include OH 01-477, T629-5, and the Galactic center source IRS 7. The C-H stretch feature of diffuse ISM dust has subpeaks which fall within 5/cm of C-H stretching vibrations in the -CH2- and -CH3 groups of saturated aliphatic hydrocarbons.

  11. Infrared Spectra and Optical Constants of Elusive Amorphous Methane

    NASA Technical Reports Server (NTRS)

    Gerakines, Perry A.; Hudson, Reggie L.

    2015-01-01

    New and accurate laboratory results are reported for amorphous methane (CH4) ice near 10 K for the study of the interstellar medium (ISM) and the outer Solar System. Near- and mid-infrared (IR) data, including spectra, band strengths, absorption coefficients, and optical constants, are presented for the first time for this seldom-studied amorphous solid. The apparent IR band strength near 1300 cm(exp -1) (7.69 micrometer) for amorphous CH4 is found to be about 33% higher than the value long used by IR astronomers to convert spectral observations of interstellar CH4 into CH4 abundances. Although CH4 is most likely to be found in an amorphous phase in the ISM, a comparison of results from various laboratory groups shows that the earlier CH4 band strength at 1300 cm(exp -1) (7.69 micrometer) was derived from IR spectra of ices that were either partially or entirely crystalline CH4 Applications of the new amorphous-CH4 results are discussed, and all optical constants are made available in electronic form.

  12. Electronic absorption spectra of hydrogenated protonated naphthalene and proflavine

    NASA Astrophysics Data System (ADS)

    Bonaca, A.; Bilalbegović, G.

    2011-09-01

    We study hydrogenated cations of two polycyclic hydrocarbon molecules as models of hydrogenated organic species that form in the interstellar medium. Optical spectra of the hydrogenated naphthalene cation Hn-C10H+8 for n= 1, 2 and 10, as well as the astrobiologically interesting hydrogenated proflavine cation Hn-C13H11N+3 for n= 1 and 14, are calculated. The pseudopotential time-dependent density functional theory is used. It is found that the fully hydrogenated proflavine cation H14-C13H11N+3 shows a broad spectrum in which the positions of individual lines are almost lost. The positions, shapes and intensities of lines change in hydronaphthalene and hydroproflavine cations, showing that hydrogen additions induce substantially different optical spectra in comparison with base polycyclic hydrocarbon cations. One calculated line in the visible spectrum of H10-C10H+8 and one in the visible spectrum of H-C13H11N+3 are close to the measured diffuse interstellar bands. We also present the positions of near-ultraviolet lines.

  13. Infrared Spectra and Optical Constants of Astronomical Ices: I. Amorphous and Crystalline Acetylene

    NASA Technical Reports Server (NTRS)

    Hudson, R. L.; Ferrante, R. F.; Moore, M. H.

    2013-01-01

    Here we report recent measurements on acetylene (C2H2) ices at temperatures applicable to the outer Solar System and the interstellar medium. New near- and mid-infrared data, including optical constants (n, k), absorption coefficients (alpha), and absolute band strengths (A), are presented for both amorphous and crystalline phases of C2H2 that exist below 70 K. Comparisons are made to earlier work. Electronic versions of the data are made available, as is a computer routine to use our reported n and k values to simulate the observed IR spectra. Suggestions are given for the use of the data and a comparison to a spectrum of Makemake is made.

  14. UV photoabsorption cross sections of CO, N2, and SO2 for studies of the ISM and planetary atmospheres

    NASA Technical Reports Server (NTRS)

    Smith, Peter L.; Rufus, J.; Yoshino, K.; Parkinson, W. H.; Stark, Glenn; Pickering, Juliet C.; Thorne, A. P.

    2002-01-01

    We report high-resolution laboratory measurements of photoabsorption cross sections of CO, N2, and SO2 in the wavelength range 80 to 320 nm. The motivation is to provide the quantitative data that are needed to analyze observations of absorption by, and to model photochemical processes in, the interstellar medium and a number of planetary atmospheres. Because of the high resolution of the spectrometers used, we can minimize distortion of the spectrum that occurs when instrument widths are greater than the widths of spectral features being measured. In many cases, we can determine oscillator strengths of individual rotational lines - a unique feature of our work.

  15. Hubble Space Telescope STIS Observations of the Wolf-Rayet Star HD 5980 in the Small Magellanic Cloud. II. The Interstellar Medium Components

    NASA Astrophysics Data System (ADS)

    Koenigsberger, Gloria; Georgiev, Leonid; Peimbert, Manuel; Walborn, Nolan R.; Barbá, Rodolfo; Niemela, Virpi S.; Morrell, Nidia; Tsvetanov, Zlatan; Schulte-Ladbeck, Regina

    2001-01-01

    Observations of the interstellar and circumstellar absorption components obtained with the Hubble Space Telescope Space Telescope Imaging Spectrograph (STIS) along the line of sight toward the Wolf-Rayet-luminous blue variable (LBV) system HD 5980 in the Small Magellanic Cloud are analyzed. Velocity components from C I, C I*, C II, C II*, C IV, N I, N V, O I, Mg II, Al II, Si II, Si II*, Si III, Si IV, S II, S III, Fe II, Ni II, Be I, Cl I, and CO are identified, and column densities estimated. The principal velocity systems in our data are (1) interstellar medium (ISM) components in the Galactic disk and halo (Vhel=1.1+/-3, 9+/-2 km s-1) (2) ISM components in the SMC (Vhel=+87+/-6, +110+/-6, +132+/-6, +158+/-8, +203+/-15 km s-1) (3) SMC supernova remnant SNR 0057-7226 components (Vhel=+312+/-3, +343+/-3, +33, +64 km s-1) (4) circumstellar (CS) velocity systems (Vhel=-1020, -840, -630, -530, -300 km s-1) and (5) a possible system at -53+/-5 km s-1 (seen only in some of the Si II lines and marginally in Fe II) of uncertain origin. The supernova remnant SNR 0057-7226 has a systemic velocity of +188 km s-1, suggesting that its progenitor was a member of the NGC 346 cluster. Our data allow estimates to be made of Te~40,000 K, ne~100 cm-3, N(H)~(4-12)×1018 cm-2 and a total mass between 400 and 1000 Msolar for the supernova remnant (SNR) shell. We detect C I absorption lines primarily in the +132 and +158 km s-1 SMC velocity systems. As a result of the LBV-type eruptions in HD 5980, a fast-wind/slow-wind circumstellar interaction region has appeared, constituting the earliest formation stages of a windblown H II bubble surrounding this system. Variations over a timescale of 1 year in this circumstellar structure are detected. Based on observations with the NASA/ESA Hubble Space Telescope, obtained at the Space Telescope Science Institute, which is operated by the Association of Universities for Research in Astronomy, Inc., under NASA contract NAS 5-26555.

  16. A Comprehensive X-Ray Absorption Model for Atomic Oxygen

    NASA Technical Reports Server (NTRS)

    Gorczyca, T. W.; Bautista, M. A.; Hasoglu, M. F.; Garcia, J.; Gatuzz, E.; Kaastra, J. S.; Kallman, T. R.; Manson, S. T.; Mendoza, C.; Raassen, A. J. J.; hide

    2013-01-01

    An analytical formula is developed to accurately represent the photoabsorption cross section of atomic Oxygen for all energies of interest in X-ray spectral modeling. In the vicinity of the K edge, a Rydberg series expression is used to fit R-matrix results, including important orbital relaxation effects, that accurately predict the absorption oscillator strengths below threshold and merge consistently and continuously to the above-threshold cross section. Further, minor adjustments are made to the threshold energies in order to reliably align the atomic Rydberg resonances after consideration of both experimental and observed line positions. At energies far below or above the K-edge region, the formulation is based on both outer- and inner-shell direct photoionization, including significant shake-up and shake-off processes that result in photoionization-excitation and double-photoionization contributions to the total cross section. The ultimate purpose for developing a definitive model for oxygen absorption is to resolve standing discrepancies between the astronomically observed and laboratory-measured line positions, and between the inferred atomic and molecular oxygen abundances in the interstellar medium from XSTAR and SPEX spectral models.

  17. Status of the Stardust ISPE and the Origin of Four Interstellar Dust Candidates

    NASA Technical Reports Server (NTRS)

    Westphal, A. J.; Allen, C.; Ansari, A.; Bajt, S.; Bastien, R. S.; Bassim, N.; Bechtel, H. A.; Borg, J.; Brenker, F. E.; Bridges, J.; hide

    2012-01-01

    Some bulk properties of interstellar dust are known through infrared and X-ray observations of the interstellar medium. However, the properties of individual interstellar dust particles are largely unconstrained, so it is not known whether individual interstellar dust particles can be definitively distinguished from interplanetary dust particles in the Stardust Interstellar Dust Collector (SIDC) based only on chemical, mineralogical or isotopic analyses. It was therefore understood from the beginning of the Stardust Interstellar Preliminary Examination (ISPE) that identification of interstellar dust candidates would rest on three criteria - broad consistency with known extraterrestrial materials, inconsistency with an origin as secondary ejecta from impacts on the spacecraft, and consistency, in a statistical sense, of observed dynamical properties - that is, trajectory and capture speed - with an origin in the interstellar dust stream. Here we quantitatively test four interstellar dust candidates, reported previously [1], against these criteria.

  18. Vibrational Spectroscopy after OSU - From C2- to Interstellar Polycyclic Aromatic Hydrocarbons

    NASA Technical Reports Server (NTRS)

    Allamandola, Louis J.

    2006-01-01

    The composition of interstellar ice and dust provides insight into the chemical history of the interstellar medium and early solar system. It is now possible to probe this unique and unusual chemistry and determine the composition of these microscopic interstellar particles which are hundreds to many thousands of light years away thanks to substantial progress in two areas: astronomical spectroscopic techniques in the middle-infrared, the spectral region most diagnostic of chemical composition, and laboratory simulations which realistically reproduce the critical conditions in various interstellar environments. High quality infrared spectra of many different astronomical sources, some associated with giant, dark molecular clouds -the birthplace of stars and planets- and others in more tenuous, UV radiation rich regions are now available. The fundamentals of IR spectroscopy and what comparisons of astronomical IR spectra with laboratory spectra of materials prepared under realistic simulated interstellar conditions tell us about the components of these materials is the subject of this talk. These observations have shown that mixed molecular ices comprised of H2O, CH3OH, CO, NH3 and H2CO contain most of the molecular material in molecular clouds and that gas phase, ionized polycyclic aromatic hydrocarbons (PAHs) are widespread and surprisingly abundant throughout most of the interstellar medium.

  19. High Sensitivity Absorption Spectroscopy on Ti II VUV Resonance Lines of Astrophysical Interest

    NASA Astrophysics Data System (ADS)

    Wiese, Lm; Fedchak, Ja; Lawler, Je

    2000-06-01

    The neutral hydrogen regions of the Interstellar Medium (ISM) of our Galaxy and distant galaxies produce simple absorption spectra because most metals are singly ionized and in their ground fine structure level. Elemental abundance measurements and other studies of the ISM rely on accurate atomic oscillator strengths (f-values) for a few key lines in the second spectra of Ti and other metals. The Ti II VUV resonance lines at 1910.6 and 1910.9 Åare important in absorption line systems in which quasars provide the continuum and the ISM of intervening galaxies is observed. Some of these absorption line systems are redshifted to the visible and observed with ground based telescopes. We report the first laboratory measurement of these Ti II VUV resonance lines. Using High Sensitivity Absorption Spectroscopy, we determined f-values for the 1910 Ålines relative to well-known Ti II resonance lines at 3067 and 3384 ÅContinuum radiation from an Aladdin Storage Ring bending magnet at the Synchrotron Radiation Center (SRC) is passed through a discharge plasma containing Ti^+. The transmitted light is analyzed by our 3m vacuum echelle spectrometer equipped with VUV sensitive CCD array. The resolving power of our spectrometer/detector array is 300,000. F-values are determined to within 10%.

  20. Interstellar Gas-phase Element Depletions in the Small Magellanic Cloud: A Guide to Correcting for Dust in QSO Absorption Line Systems

    NASA Astrophysics Data System (ADS)

    Jenkins, Edward B.; Wallerstein, George

    2017-04-01

    We present data on the gas-phase abundances for 9 different elements in the interstellar medium of the Small Magellanic Cloud (SMC), based on the strengths of ultraviolet absorption features over relevant velocities in the spectra of 18 stars within the SMC. From this information and the total abundances defined by the element fractions in young stars in the SMC, we construct a general interpretation on how these elements condense into solid form onto dust grains. As a group, the elements Si, S, Cr, Fe, Ni, and Zn exhibit depletion sequences similar to those in the local part of our Galaxy defined by Jenkins. The elements Mg and Ti deplete less rapidly in the SMC than in the Milky Way, and Mn depletes more rapidly. We speculate that these differences might be explained by the different chemical affinities to different existing grain substrates. For instance, there is evidence that the mass fractions of polycyclic aromatic hydrocarbons in the SMC are significantly lower than those in the Milky Way. We propose that the depletion sequences that we observed for the SMC may provide a better model for interpreting the element abundances in low-metallicity Damped Lyman Alpha (DLA) and sub-DLA absorption systems that are recorded in the spectra of distant quasars and gamma-ray burst afterglows. Based on observations with the NASA/ESA Hubble Space Telescope and additional data obtained from the Data Archive at the Space Telescope Science Institute, which is operated by the Associations of Universities for Research in Astronomy, Incorporated, under NASA contract NAS5-26555. These observations are associated with program nr. 13778.

  1. Catalog of open clusters and associated interstellar matter

    NASA Technical Reports Server (NTRS)

    Leisawitz, David

    1988-01-01

    The Catalog of Open Clusters and Associated Interstellar Matter summarizes observations of 128 open clusters and their associated ionized, atomic, and molecular iinterstellar matter. Cluster sizes, distances, radial velocities, ages, and masses, and the radial velocities and masses of associated interstellar medium components, are given. The database contains information from approximately 400 references published in the scientific literature before 1988.

  2. First Results from the Interstellar Boundary Explorer (IBEX) Mission

    NASA Astrophysics Data System (ADS)

    McComas, David J.

    2010-03-01

    The Interstellar Boundary Explorer (IBEX) is a Small Explorer mission designed to study the global interaction between the heliosphere and the local interstellar medium. IBEX does this by measuring energetic neutral atoms (ENAs) created by both solar wind ions and pickup ions in the solar wind when they charge exchange with cold interstellar neutrals drifting in from the interstellar medium. Because the ENAs are not magnetically confined, some of them propagate back into the inner heliosphere, where IBEX can detect them. IBEX was launched October 19th 2008, using a new launch technique that was also developed as a part of the IBEX project. The first scientific observations from IBEX were of ENAs coming from the Moon-these represented the first ever lunar ENA observations from any spacecraft and provided important information about the universal physical processes of backscatter and neutralization from complex planetary surfaces like the lunar regolith. Since then, IBEX has been collecting its first all-sky maps of heliospheric ENAs and initial direct, in situ observations of interstellar H, He, and O. At the time of this writing, these observations have been submitted and are under review for a special IBEX section of Science magazine nominally scheduled to be published in October 2009.

  3. The VLT-FLAMES Tarantula Survey. IX. The interstellar medium seen through diffuse interstellar bands and neutral sodium&

    NASA Astrophysics Data System (ADS)

    van Loon, J. Th.; Bailey, M.; Tatton, B. L.; Maíz Apellániz, J.; Crowther, P. A.; de Koter, A.; Evans, C. J.; Hénault-Brunet, V.; Howarth, I. D.; Richter, P.; Sana, H.; Simón-Díaz, S.; Taylor, W.; Walborn, N. R.

    2013-02-01

    Context. The Tarantula Nebula (a.k.a. 30 Dor) is a spectacular star-forming region in the Large Magellanic Cloud (LMC), seen through gas in the Galactic disc and halo. Diffuse interstellar bands (DIBs) offer a unique probe of the diffuse, cool-warm gas in these regions. Aims: The aim is to use DIBs as diagnostics of the local interstellar conditions, whilst at the same time deriving properties of the yet-unknown carriers of these enigmatic spectral features. Methods: Spectra of over 800 early-type stars from the Very Large Telescope Flames Tarantula Survey (VFTS) were analysed. Maps were created, separately, for the Galactic and LMC absorption in the DIBs at 4428 and 6614 Å and - in a smaller region near the central cluster R 136 - neutral sodium (the Na i D doublet); we also measured the DIBs at 5780 and 5797 Å. Results: The maps show strong 4428 and 6614 Å DIBs in the quiescent cloud complex to the south of 30 Dor but weak absorption in the harsher environments to the north (bubbles) and near the OB associations. The Na maps show at least five kinematic components in the LMC and a shell-like structure surrounding R 136, and small-scale structure in the Milky Way. The strengths of the 4428, 5780, 5797 and 6614 Å DIBs are correlated, also with Na absorption and visual extinction. The strong 4428 Å DIB is present already at low Na column density but the 6614, 5780 and 5797 Å DIBs start to be detectable at subsequently larger Na column densities. Conclusions: The carriers of the 4428, 6614, 5780 and 5797 Å DIBs are increasingly prone to removal from irradiated gas. The relative strength of the 5780 and 5797 Å DIBs clearly confirm the Tarantula Nebula as well as Galactic high-latitude gas to represent a harsh radiation environment. The resilience of the 4428 Å DIB suggests its carrier is large, compact and neutral. Structure is detected in the distribution of cool-warm gas on scales between one and >100 pc in the LMC and as little as 0.01 pc in the Sun's vicinity. Stellar winds from the central cluster R 136 have created an expanding shell; some infalling gas is also detected, reminiscent of a galactic "fountain". Full Tables A.2-A.4 are only available at the CDS via anonymous ftp to cdsarc.u-strasbg.fr (130.79.128.5) or via http://cdsarc.u-strasbg.fr/viz-bin/qcat?J/A+A/550/A108

  4. The XMM-Newton View of Wolf-Rayet Bubbles

    NASA Astrophysics Data System (ADS)

    Guerrero, M.; Toala, J.

    2017-10-01

    The powerful stellar winds of Wolf-Rayet (WR) stars blow large bubble into the circumstellar material ejected in previous phases of stellar evolution. The shock of those stellar winds produces X-ray-emitting hot plasmas which tells us about the diffusion of processed material onto the interstellar medium, about processes of heat conduction and turbulent mixing at the interface, about the late stages of stellar evolution, and about the shaping of the circumstellar environment, just before supernova explosions. The unique sensitivity of XMM-Newton has been key for the detection, mapping and spectral analysis of the X-ray emission from the hot bubbles around WR stars. These observations underscore the importance of the structure of the interstellar medium around massive stars, but they have also unveiled unknown phenomena, such as blowouts of hot gas into the interstellar medium or spatially-resolved spectral properties of the hot gas, which disclose inhomogeneous chemical abundances and physical properties across these bubbles.

  5. Laboratory Investigations of the Physical and Optical Properties of the Analogs of Individual Cosmic Dust Grains

    NASA Technical Reports Server (NTRS)

    Abbas, M. M.; Tankosic, D.; Craven, P. D.; Spann, J. F.; LeClair, A.; West, E. A.

    2005-01-01

    Microdsub-micron size cosmic dust grains play an important role in the physical and dynamical process in the galaxy, the interstellar medium, and the interplanetary and planetary environments. The dust grains in various astrophysical environments are generally charged by a variety of mechanisms that include collisional process with electrons and ions, and photoelectric emissions with UV radiation. The photoelectric emission process is believed to be the dominant process in many astrophysical environments with nearby UV sources, such as the interstellar medium, diffuse clouds, the outer regions of the dense molecular clouds, interplanetary medium, dust in planetary environments and rings, cometary tails, etc. Also, the processes and mechanisms involved in the rotation and alignment of interstellar dust grains are of great interest in view of the polarization of observed starlight as a probe for evaluation of the galactic magnetic field.

  6. Theory of interstellar medium diagnostics

    NASA Technical Reports Server (NTRS)

    Fahr, H. J.

    1983-01-01

    The theoretical interpretation of observed interplanetary resonance luminescence patterns is used as one of the must promising methods to determine the state of the local interstellar medium (LISM). However, these methods lead to discrepant results that would be hard to understand in the framework of any physical LISM scenario. Assuming that the observational data are reliable, two possibilities which could help to resolve these discrepancies are discussed: (1) the current modeling of resonance luminescence patterns is unsatisfactory and has to be improved, and (2) the extrapolated interstellar parameters are not indicative of the unperturbed LISM state, but rather designate an intermediate state attained in the outer regions of the solar system. It is shown that a quantitative treatment of the neutral gas-plasma interaction effects in the interface between the heliospheric and the interstellar plasmas is of major importance for the correct understanding of the whole complex.

  7. The distribution of interstellar dust in the solar neighborhood

    NASA Technical Reports Server (NTRS)

    Gaustad, John E.; Van Buren, Dave

    1993-01-01

    We surveyed the IRAS data base at the positions of the 1808 O6-B9.5 stars in The Bright Star Catalog for extended objects with excess emission at 60 microns, indicating the presence of interstellar dust at the location of the star. Within 400 pc the filling factor of the interstellar medium, for dust clouds with a density greater than 0.5/cu cm is 14.6 + or - 2.4%. Above a density of 1.0/cu cm, the density distribution function appears to follow a power law index - 1.25. When the dust clouds are mapped onto the galactic plane, the sun appears to be located in a low-density region of the interstellar medium of width about 60 pc extending at least 500 pc in the direction of longitudes 80 deg - 260 deg, a feature we call the 'local trough'.

  8. An interstellar cloud density from Copernicus observations of CO in the spectrum of Zeta Ophiuchi

    NASA Technical Reports Server (NTRS)

    Smith, A. M.; Stecher, T. P.; Krishna Swamy, K. S.

    1978-01-01

    Interstellar CO absorption bands in Copernicus spectra of Zeta Oph have been studied. Absorption profiles, computed under the assumption that excitation is due to collisions with H2 molecules and interaction with the 3-K background radiation field, were fitted to the reduced data of nine bands. When a gas kinetic temperature of 56 K is assumed, the best-fit condition implies a hydrogen-nucleus density of 120 per cu cm, a CO column density of 1.2 by 10 to the 15th power per sq cm, and a radial-velocity dispersion of 0.9 km/s. The relevance of these results to existing ideas concerning the Zeta Oph interstellar clouds is discussed. It is suggested that the strongest interstellar component is not circumstellar in origin but is instead part of a supernova remnant. Simple calculations are made to establish the plausibility of the supernova-remnant identification. This suggestion is also supported by Heiles's (1976) 21-cm pictures.

  9. Interstellar molecules and dense clouds.

    NASA Technical Reports Server (NTRS)

    Rank, D. M.; Townes, C. H.; Welch, W. J.

    1971-01-01

    Current knowledge of the interstellar medium is discussed on the basis of recent published studies. The subjects considered include optical identification of interstellar molecules, radio molecular lines, interstellar clouds, isotopic abundances, formation and disappearance of interstellar molecules, and interstellar probing techniques. Diagrams are plotted for the distribution of galactic sources exhibiting molecular lines, for hydrogen molecule, hydrogen atom and electron abundances due to ionization, for the densities, velocities and temperature of NH3 in the direction of Sagitarius B2, for the lower rotational energy levels of H2CO, and for temporal spectral variations in masing H2O clouds of the radio source W49. Future applications of the maser and of molecular microscopy in this field are visualized.

  10. Anisotropy of low-energy Galactic cosmic rays in the outer heliosheath

    NASA Astrophysics Data System (ADS)

    Zhang, M.; Pogorelov, N.

    2017-12-01

    Since Voyager 1 crossed the heliopause into the local interstellar medium in August 2012, it has been observing nearly unmodulated low-energy Galactic cosmic rays for over 5 years and 18 AU beyond the heliopause. The angular distribution of these cosmic rays is not isotropic, showing a slight depletion at 90-degree pitch-angle to the magnetic field lines. The anisotropy was interrupted episodically by solar disturbances transmitting through the heliopause into the local interstellar medium of outer heliosheath. These observations indicate the heliosphere still affects cosmic rays in the local interstellar medium. The paper presents a theoretical analysis of the particle transport mechanisms responsible for the observed anisotropy. In order to explain the phenomenon, we argue that cosmic rays of near 90-degree pitch angles do not a quick access to the interstellar cosmic-ray source and in the meantime, they experience some loss in the outer heliosheath. Magnetic field barriers on the both sides of the observer may reduce the access to cosmic ray source, but it still requires that pitch scattering of these particles is very weak in the magnetic field of the outer heliosheath. A possible particle loss mechanism is diffusion into the heliospheric magnetic field where they get modulated by the solar wind plasma. Our model simulation will put constraints on the rates of particle scattering and cross-field diffusion in the interstellar magnetic field of the outer heliosheath.

  11. Interstellar Matters: Neutral Hydrogen and the Galactic Magnetic Field

    NASA Astrophysics Data System (ADS)

    Verschuur, Gerrit; Schmelz, Joan T.; Asgari-Targhi asgari-Targhi, M.

    2018-01-01

    The physics of the interstellar medium was revolutionized by the observations of the Galactic Arecibo L-Band Feed Array (GALFA) HI survey done at the Arecibo Observatory. The high-resolution, high-sensitivity, high-dynamic- range images show complex, tangled, extended filaments, and reveal that the fabric of the neutral interstellar medium is deeply tied to the structure of the ambient magnetic field. This discovery prompts an obvious question – how exactly is the interstellar {\\it neutral} hydrogen being affected by the galactic magnetic field? We look into this question by examining a set of GALFA-HI data in great detail. We have chosen a long, straight filament in the southern galactic sky. This structure is both close by and isolated in velocity space. Gaussian analysis of profiles both along and across the filament reveal internal structure – braided strands that can be traced through the simplest part, but become tangled in more complex segments. These braids do not resemble in any way the old spherical HI clouds and rudimentary pressure balance models that were used to explain the pre-GALFA- HI interstellar medium. It is clear that these structures are created, constrained, and dominated by magnetic fields. Like many subfields of astronomy before it, e.g., physics of the solar coronal, extragalactic radio jets, and pulsar environment, scientists are confronted with observations that simply cannot be explained by simple hydrodynamics and are forced to consider magneto-hydrodynamics.

  12. Synchrotron FTIR Examination of Interplanetary Dust Particles: An Effort to Determine the Compounds and Minerals in Interstellar and Circumstellar Dust

    NASA Technical Reports Server (NTRS)

    Flynn, G. J.; Keller, L. P.

    2002-01-01

    Some interplanetary dust particles (IDPs), collected by NASA from the Earth's stratosphere, are the most primitive extraterrestrial material available for laboratory analysis. Many exhibit isotopic anomalies in H, N, and O, suggesting they contain preserved interstellar matter. We report the preliminary results of a comparison of the infrared absorption spectra of subunits of the IDPs with astronomical spectra of interstellar grains.

  13. Developing Automated Spectral Analysis Tools for Interstellar Features Extractionto Support Construction of the 3D ISM Map

    NASA Astrophysics Data System (ADS)

    Puspitarini, L.; Lallement, R.; Monreal-Ibero, A.; Chen, H.-C.; Malasan, H. L.; Aprilia; Arifyanto, M. I.; Irfan, M.

    2018-04-01

    One of the ways to obtain a detailed 3D ISM map is by gathering interstellar (IS) absorption data toward widely distributed background target stars at known distances (line-of-sight/LOS data). The radial and angular evolution of the LOS measurements allow the inference of the ISM spatial distribution. For a better spatial resolution, one needs a large number of the LOS data. It requires building fast tools to measure IS absorption. One of the tools is a global analysis that fit two different diffuse interstellar bands (DIBs) simultaneously. We derived the equivalent width (EW) ratio of the two DIBs recorded in each spectrum of target stars. The ratio variability can be used to study IS environmental conditions or to detect DIB family.

  14. Ultraviolet absorption by highly ionized atoms in the Orion Nebula

    NASA Technical Reports Server (NTRS)

    Franco, J.; Savage, B. D.

    1982-01-01

    The International Ultraviolet Explorer was used to obtain high-resolution, far-UV spectra of theta 1 A, theta 1 C, theta 1 D, and theta 2 A Orionis. The interstellar absorption lines in these spectra are discussed with an emphasis on the high-ionization lines of C IV and Si IV. Theta 2 A Ori has interstellar C IV and Si IV absorption of moderate strength at the velocity found for normal H II region ions. Theta 1 C Ori has very strong interstellar C IV and Si IV absorption at velocities blueshifted by about 25 km/s from that found for the normal H II region ions. The possible origin of the high-ionization lines by three processes is considered: X-ray ionization, collisional ionization, and UV photoionization. It is concluded that the C IV and Si IV ions toward theta 2 A and theta 1 C Ori are likely produced by UV photoionization of surrounding nebular gas. In the case of theta 1 C Ori, the velocity shift of the high-ionization lines may be produced through the acceleration of high-density globules in the core of the nebula by the stellar wind of theta 1 C Ori.

  15. Equation of Motion of an Interstellar Bussard Ramjet with Radiation and Mass Losses

    ERIC Educational Resources Information Center

    Semay, Claude; Silvestre-Brac, Bernard

    2008-01-01

    An interstellar Bussard ramjet is a spaceship using the protons of the interstellar medium in a fusion engine to produce thrust. In recent papers, it was shown that the relativistic equation of motion of an ideal ramjet and that of a ramjet with radiation loss are analytical. When a mass loss appears, the limit speed of the ramjet is more strongly…

  16. Editorial: Interstellar Boundary Explorer (IBEX): Direct Sampling of the Interstellar Medium

    NASA Astrophysics Data System (ADS)

    McComas, D. J.

    2012-02-01

    This special supplement issue of the Astrophysical Journal comprises six coordinated papers that provide the first detailed analyses of the direct sampling of interstellar neutral atoms by the Interstellar Boundary Explorer (IBEX). Interstellar atoms are the detritus of older stars—their stellar winds, novae, and supernovae—spread across the galaxy, which fill the vast interstellar space between the stars. The very local interstellar medium around the Sun is filled with both ionized and neutral atoms with approximately equal numbers, and occasional ionization, charge exchange, and recombination makes them a single interacting material over large distances. IBEX (McComas et al. 2009a) is a NASA Small Explorer mission with the sole, focused science objective to discover the global interaction between the solar wind and the interstellar medium; this objective has primarily been achieved by taking the first global energetic neutral atom (ENA) images, which provide detailed ENA fluxes and energy spectra over all look directions in space. IBEX was launched 2008 October 19 and subsequently maneuvered into a high-altitude, highly elliptical (~15,000 × 300,000 km), roughly week-long orbit. The payload comprises two very high sensitivity, single-pixel ENA cameras: IBEX-Hi (Funsten et al. 2009a), which measures ENAs from ~300 eV to 6 keV, and IBEX-Lo (Fuselier et al. 2009a), which measures ENAs from ~10 eV to 2 keV. The initial IBEX ENA results were published together in a special issue of Science magazine (McComas et al. 2009b; Funsten et al. 2009b; Fuselier et al. 2009b; Schwadron et al. 2009). Since then there have been numerous additional studies of the IBEX ENA observations of the heliosphere, as well as ENAs from the Moon and Earth's magnetosphere (see recent review by McComas et al. 2011 and references therein). Prior to IBEX, the only interstellar neutral atoms to be directly sampled were He, observed by the Ulysses spacecraft a decade ago (Witte et al. 1996; Witte 2004). The first paper published on IBEX observations of interstellar neutral atoms (Möbius et al. 2009) used observations from the spring of 2009, shortly after IBEX achieved its first long-term orbit; that study showed that IBEX is able to directly observe interstellar H and O in addition to He, but provided only limited analysis of these measurements. IBEX has now completed a second full annual season of neutral observations in 2010, which together with the independent 2009 observations provide data adequate to carry out the first round of detailed, quantitative analyses of the IBEX interstellar neutral observations. In this special supplement issue, the IBEX Science Team presents a coordinated series of six articles that focus on various synergistic aspects of these observations, their analyses, and their implications. A critical foundational paper in this volume, Hlond et al. (2012), analyzes the angular pointing knowledge of IBEX observations and demonstrates that the arrival direction knowledge of neutral atoms can be determined to ~0.1° in both spin angle and elevation. This is no mean feat for a Small Explorer mission designed to measure ENAs in 7° × 7° pixels, and largely at much higher energies than the direct interstellar neutrals. In addition, these authors demonstrate that the in-space (post-launch) bore sight of the IBEX-Lo instrument can achieve this accuracy with either the spacecraft's on board attitude control system or an independent Star Sensor that was designed and built directly into the IBEX-Lo instrument. Lee et al. (2012) derive the analytical solution for the hyperbolic trajectories of individual neutral atoms by using Liouville's theorem, including solar gravity and radiation pressure, photoionization and charge exchange, to produce interstellar neutral atom phase-space distributions. These distributions are then transformed into the IBEX reference frame and integrated over the IBEX-Lo instrumental acceptance to provide an analytic solution for the predicted fluid moments of the interstellar neutral atom distributions. This analytic solution for the interstellar neutral parameters provides the basis for a companion paper by Möbius et al. (2012), who analyze the IBEX He (and Ne+O) measurements using the Lee et al. analytic solutions. This approach allows for physical insights into the dominant physical processes, while in another related paper Bzowski et al. (2012) describe a detailed forward model of the interstellar helium from the edge of the heliosphere all the way through the IBEX instrument geometry. Together, these papers show that the prior values for the interstellar flow speed and direction from Ulysses are inconsistent with our new IBEX observations. Möbius et al. (2012) compare the He and O+Ne flow distributions for both 2009 and 2010 and find interstellar flow parameters of ecliptic longitude at ∞ = 79.0° + 3.0°/-3.5°, ecliptic latitude at ∞ = -4.9° ± 0.2°, ISM speed at ∞ = 23.5 + 3.0/-2.0 km s-1, and neutral He temperature = 5000-8200 K. They also find a combined O+Ne temperature of 5300-9000 K, consistent with an isothermal medium for He, O, and Ne. Bzowski et al. (2012) develop and extensively test a detailed forward model simulation of the interstellar He propagation, losses, and measurement in the IBEX-Lo instrument. These simulations start particles at 150 AU and include more detailed physics than the analytic solutions; they therefore complement the analytic method by allowing detailed mapping of the multi-dimensional space of possible solutions. These authors show that the IBEX results are not in statistical agreement with the Ulysses values and provide new best-fit values of ecliptic longitude 79.2°, ecliptic latitude of -5.1°, speed of ~22.8 km s-1, and He temperature is 6200 K. The values obtained with both complementary methods agree with each other and are in agreement with the flow vector of the local interstellar cloud obtained from studies of interstellar absorption (Redfield & Linsky 2008). Bzowski et al. also show evidence for a previously unknown and unanticipated secondary population of helium. Together, the Möbius et al. (2012) and Bzowski et al. (2012) results provide a new interstellar flow direction and a significantly lower velocity of the incoming gas and therefore significantly lower dynamic pressure on the heliosphere, which translates into a heliospheric interaction that is even less dominated by the external dynamic pressure and clearly lies squarely in the middle ground of astrospheres dominated by the external magnetic and dynamic pressures (McComas et al. 2009b). On another topic, Bochsler et al. (2012) report the first direct measurements of interstellar Ne and estimate the interstellar Ne/O abundance ratio, showing a gas-phase Ne/O ratio for the LISM of 0.27 ± 0.10. This value agrees with results obtained from pickup ion observations (Gloeckler & Geiss 2004; Gloeckler & Fisk 2007) and is significantly larger than the solar abundance ratio, indicating that the LISM is different than the Sun's formation region and/or that a substantial portion of the O in the LISM is tied up (and thus "hidden") in grains and/or ices. Finally, Saul et al. (2012) provide the first detailed analysis of the new interstellar H measurements from IBEX. These authors confirm that the arrival direction of interstellar H is offset from that of He. They further show a variation in the strength of the radiation pressure and thus a change in the apparent arrival direction of H penetrating to 1 AU between the first two years of IBEX observations; these results are consistent with solar cycle variations in the radiation pressure, which works opposite to the Sun's gravitational force to effect the penetration of H into the inner heliosphere. Together, these six studies provide the first detailed analyses of the multi-component local interstellar medium—a medium that both effects us by bounding and interacting with our heliosphere, and a medium that gives us a first direct glimpse of non-solar material from the rest of the galaxy.

  17. Spectrally-resolved UV photodesorption of CH4 in pure and layered ices

    NASA Astrophysics Data System (ADS)

    Dupuy, R.; Bertin, M.; Féraud, G.; Michaut, X.; Jeseck, P.; Doronin, M.; Philippe, L.; Romanzin, C.; Fillion, J.-H.

    2017-07-01

    Context. Methane is among the main components of the ice mantles of interstellar dust grains, where it is at the start of a rich solid-phase chemical network. Quantification of the photon-induced desorption yield of these frozen molecules and understanding of the underlying processes is necessary to accurately model the observations and the chemical evolution of various regions of the interstellar medium. Aims: This study aims at experimentally determining absolute photodesorption yields for the CH4 molecule as a function of photon energy. The influence of the ice composition is also investigated. By studying the methane desorption from layered CH4:CO ice, indirect desorption processes triggered by the excitation of the CO molecules are monitored and quantified. Methods: Tunable monochromatic vacuum ultraviolet light (VUV) light from the DESIRS beamline of the SOLEIL synchrotron is used in the 7-13.6 eV (177-91 nm) range to irradiate pure CH4 or layers of CH4 deposited on top of CO ice samples. The release of species in the gas phase is monitored by quadrupole mass spectrometry, and absolute photodesorption yields of intact CH4 are deduced. Results: CH4 photodesorbs for photon energies higher than 9.1 eV ( 136 nm). The photodesorption spectrum follows the absorption spectrum of CH4, which confirms a desorption mechanism mediated by electronic transitions in the ice. When it is deposited on top of CO, CH4 desorbs between 8 and 9 eV with a pattern characteristic of CO absorption, indicating desorption induced by energy transfer from CO molecules. Conclusions: The photodesorption of CH4 from pure ice in various interstellar environments is around 2.0 ± 1.0 × 10-3 molecules per incident photon. Results on CO-induced indirect desorption of CH4 provide useful insights for the generalization of this process to other molecules co-existing with CO in ice mantles.

  18. Interstellar protons in the TeV γ-ray SNR HESS J1731-347: Possible evidence for the coexistence of hadronic and leptonic γ-rays

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Fukuda, T.; Yoshiike, S.; Sano, H.

    2014-06-10

    HESS J1731-347 (G353.6-0.7) is one of the TeV γ-ray supernova remnants (SNRs) that shows the shell-like morphology. We have made a new analysis of the interstellar protons toward the SNR by using both the {sup 12}CO(J = 1-0) and H I data sets. The results indicate that the TeV γ-ray shell shows significant spatial correlation with the interstellar protons at a velocity range from –90 km s{sup –1} to –75 km s{sup –1}. The total mass of the interstellar medium (ISM) protons is estimated to be 6.4 × 10{sup 4} M {sub ☉}, 25% of which is atomic gas, andmore » the distance corresponding to the velocity range is ∼5.2 kpc, a factor of 2 larger than the previous figure, 3 kpc. We have identified the cold H I gas observed as self-absorption which shows significant correspondence with the northeastern γ-ray peak. While the good correspondence between the ISM protons and TeV γ-rays in the north of the SNR lends support to the hadronic scenario for the TeV γ-rays, the southern part of the shell shows a break in the correspondence; in particular, the southwestern rim of the SNR shell shows a significant decrease of the interstellar protons by a factor of two. We argue that this discrepancy can be explained due to leptonic γ-rays because this region coincides well with the bright shell that emits non-thermal radio continuum emission and non-thermal X-rays, suggesting that the γ-rays of HESS J1713-347 consist of both the hadronic and leptonic components. The leptonic contribution corresponds to ∼20% of the total γ-rays.« less

  19. The Interstellar Medium of Blue compact dwarf galaxies

    NASA Astrophysics Data System (ADS)

    Thuan, Trinh Xuan

    Blue compact dwarf (BCD) galaxies are metal-deficient and thus constitute excellent nearby laboratories for studying how the properties of the interstellar medium (ISM) in galaxies change with metallicity. Our sample consists of 4 BCDs chosen to span the metallicity range from 15 to 12 of the solar metallicity. This sample will extend the metallicity range covered by our Cycle 1 observations (141 to 110 solar). The proposed FUSE observations will allow us to investigate the 1) H_2 content of BCDs as a function of metallicity. No H_2 line has been detected in the 2 very metal-deficient BCDs which have been observed by FUSE so far. Will diffuse H_2 be present in more metal-rich BCDs and with less UV radiation density? 2) the structure of the ISM in BCDs. Analysis of 2 BCDs observed by FUSE in Cycle 1 (IZw18 and Mrk 59) show that in the first, the ISM appears to be relatively homogeneous while in the second, it is very clumpy. What are the factors which determine the gas clumpiness in BCDs 3) the abundances in the ISM. Analysis of the FUSE spectrum of Mrk 59 showed C, N, O, Si, Fe and S absorption lines which allow to derive abundances in the ISM using photoinization models. How do these abundances compare with the abundances derived from the emission-line optical spectra? 4) the evolutionary history and stellar winds in BCDs by detecting the P Cygni profiles of high ionization S VI and O VI lines.

  20. Early afterglows in wind environments revisited

    NASA Astrophysics Data System (ADS)

    Zou, Y. C.; Wu, X. F.; Dai, Z. G.

    2005-10-01

    When a cold shell sweeps up the ambient medium, a forward shock and a reverse shock will form. We analyse the reverse-forward shocks in a wind environment, including their dynamics and emission. An early afterglow is emitted from the shocked shell, e.g. an optical flash may emerge. The reverse shock behaves differently in two approximations: the relativistic and Newtonian cases, which depend on the parameters, e.g. the initial Lorentz factor of the ejecta. If the initial Lorentz factor is much less than 114E1/453Δ-1/40,12A-1/4*,-1, the early reverse shock is Newtonian. This may take place for the wider of a two-component jet, an orphan afterglow caused by a low initial Lorentz factor and so on. The synchrotron self-absorption effect is significant especially for the Newtonian reverse shock case, as the absorption frequency νa is larger than the cooling frequency νc and the minimum synchrotron frequency νm for typical parameters. For the optical to X-ray band, the flux is nearly unchanged with time during the early period, which may be a diagnostic for the low initial Lorentz factor of the ejecta in a wind environment. We also investigate the early light curves with different wind densities and compare them with those in the interstellar medium model.

  1. The integrated radio continuum spectrum of M33 - Evidence for free-free absorption by cool ionized gas

    NASA Technical Reports Server (NTRS)

    Israel, F. P.; Mahoney, M. J.; Howarth, N.

    1992-01-01

    We present measurements of the integrated radio continuum flux density of M33 at frequencies between 22 and 610 MHz and discuss the radio continuum spectrum of M33 between 22 MHz and 10 GHz. This spectrum has a turnover between 500 and 900 MHz, depending on the steepness of the high frequency radio spectrum of M33. Below 500 MHz the spectrum is relatively flat. We discuss possible mechanisms to explain this spectral shape and consider efficient free-free absorption of nonthermal emission by a cool (not greater than 1000 K) ionized gas to be a very likely possibility. The surface filling factor of both the nonthermal and the thermal material appears to be small (of order 0.001), which could be explained by magnetic field/density fluctuations in the M 33 interstellar medium. We briefly speculate on the possible presence of a nuclear radio source with a steep spectrum.

  2. Heterodyne Receiver for Laboratory Spectrosocpy of Molecules of Astrophysical Importance

    NASA Astrophysics Data System (ADS)

    Wehres, Nadine; Lewen, Frank; Endres, Christian; Hermanns, Marius; Schlemmer, Stephan

    2016-06-01

    We present first results of a heterodyne receiver built for high-resolution emission laboratory spectroscopy of molecules of astrophysical interest. The room-temperature receiver operates at frequencies between 80 and 110 GHz, consistent with ALMA band 3. Many molecules have been identified in the interstellar and circumstellar medium at exactly these frequencies by comparing emission spectra obtained from telescopes to high-resolution laboratory absorption spectra. Taking advantage of the recent progresses in the field of mm/submm technology in the astronomy community, we have built a room-temperature emission spectrometer making use of heterodyne receiver technology at an instantaneous bandwidth of currently 2.5 GHz. The system performance, in particular the noise temperature and systematic errors, is presented. The proof-of-concept is demonstrated by comparing the emission spectrum of methyl cyanide to respective absorption spectra and to the literature. Future prospects as well as limitations of the new laboratory receiver for the spectroscopy of complex organic molecules or transient species in discharges will be discussed.

  3. The Frequency Evolution of Interstellar Pulse Broadening from Radio Pulsars

    NASA Astrophysics Data System (ADS)

    Löhmer, O.; Mitra, D.; Gupta, Y.; Kramer, M.; Ahuja, A.

    2004-10-01

    Using radio pulsars as probes of the interstellar medium (ISM) we study the frequency evolution of interstellar scattering. The frequency dependence of scatter broadening times, τsc, for most of the pulsars with low and intermediate dispersion measures (DM ≲ 400 pc cm-3) is consistent with the Kolmogorov spectrum of electron density fluctuations in a turbulent medium. In contrast, the measured τsc's for highly dispersed pulsars in the central region of the Galaxy are larger than expected and show a spectrum which is flatter than the Kolmogorov law. We analyse the first measurements of spectral indices of scatter broadening over the full known DM range and discuss possible explanations for the anomalous scattering behaviour along peculiar lines of sight (LOS).

  4. Diffuse Gamma Rays Galactic and Extragalactic Diffuse Emission

    NASA Technical Reports Server (NTRS)

    Moskalenko, Igor V.; Strong, Andrew W.; Reimer, Olaf

    2004-01-01

    Diffuse gamma rays consist of several components: truly diffuse emission from the interstellar medium, the extragalactic background, whose origin is not firmly established yet, and the contribution from unresolved and faint Galactic point sources. One approach to unravel these components is to study the diffuse emission from the interstellar medium, which traces the interactions of high energy particles with interstellar gas and radiation fields. Because of its origin such emission is potentially able to reveal much about the sources and propagation of cosmic rays. The extragalactic background, if reliably determined, can be used in cosmological and blazar studies. Studying the derived average spectrum of faint Galactic sources may be able to give a clue to the nature of the emitting objects.

  5. Variability in the x-ray emission of H0538+608: An unusual AM Her-type cataclysmic variable. Thesis, Final Report

    NASA Technical Reports Server (NTRS)

    Catelli, Jennifer

    1992-01-01

    The x-ray emissions of AM Herculis-type object H0538+608 were observed using the ROSAT satellite. Evidence was found for a highly varying soft x-ray component with a much lower intensity than is typical for this class. The spectrum was well fit by a thermal bremsstrahlung model (exponential plus gaunt factor) of 35 +/- 5 KeV plus a 0.05 +/- 0.01 KeV blackbody component, with absorption by interstellar medium with a neutral hydrogen column density of log N(sub H) (atoms/sq cm) = 20.2. No obvious periodic variations were found. There was very little correlation between the hard and soft x-ray bands.

  6. Evolution and Spectrum of the Radio Emission of Tycho's Supernova Remnant

    NASA Astrophysics Data System (ADS)

    Vinyaikin, E. N.

    2018-02-01

    The radio spectrum of Tycho's Supernova Remnant is constructed at frequencies 12.6-143 000 MHz for epoch 2010.3, taking into account the secular decrease in the radio flux density of the remnant at the rate d = -(0.46 ± 0.03)%/year: S_ν ^{3C10} (t = 2010.3) = (43.1 ± 1.8 Jy)(ν [GHz])^{ - (0.592 ± 0.019) + (0.041 ± 0.012)log (ν [GHz])} . The spectrum has positive curvature. The presence of a low-frequency turnover in the spectrum of the radio source 3C10 with its maximum at 7.7 MHz is predicted, due to absorption in the interstellar medium in the direction toward the source.

  7. Carbon and oxygen X-ray line emission from the interstellar medium

    NASA Technical Reports Server (NTRS)

    Schnopper, H. W.; Delvaille, J. P.; Rocchia, R.; Blondel, C.; Cheron, C.; Christy, J. C.; Ducros, R.; Koch, L.; Rothenflug, R.

    1982-01-01

    A soft X-ray, 0.3-1.0 keV spectrum from a 1 sr region which includes a portion of the North Polar Spur, obtained by three rocketborne lithium-drifted silicon detectors, shows the C V, C VI, O VII and O VIII emission lines. The spectrum is well fitted by a two-component, modified Kato (1976) model, where the coronal emission is in collisional equilibrium, with interstellar medium and North Polar Spur temperatures of 1.1 and 3.8 million K, respectively.

  8. Theoretical calculations on the electron absorption spectra of selected Polycyclic Aromatic Hydrocarbons (PAH) and derivatives

    NASA Technical Reports Server (NTRS)

    Du, Ping

    1993-01-01

    As a theoretical component of the joint effort with the laboratory of Dr. Lou Allamandola to search for potential candidates for interstellar organic carbon compound that are responsible for the visible diffuse interstellar absorption bands (DIB's), quantum mechanical calculations were performed on the electron absorption spectra of selected polycyclic aromatic hydrocarbons (PAH) and derivatives. In the completed project, 15 different species of naphthalene, its hydrogen abstraction and addition derivatives, and corresponding cations and anions were studied. Using semiempirical quantum mechanical method INDO/S, the ground electronic state of each species was evaluated with restricted Hartree-Fock scheme and limited configuration interaction. The lowest energy spin state for each species was used for electron absorption calculations. Results indicate that these calculations are accurate enough to reproduce the spectra of naphthalene cation and anion observed in neon matrix. The spectral pattern of the hydrogen abstraction and addition derivatives predicted based on these results indicate that the electron configuration of the pi orbitals of these species is the dominant determinant. A combined list of 19 absorptions calculated from 4500 A to 10,400 A were compiled and suggested as potential candidates that are relevant for the DIB's absorptions. Continued studies on pyrene and derivatives revealed the ground state symmetries and multiplicities of its neutral, anionic, and cationic species. Spectral calculations show that the cation (B(sub 3g)-2) and the anion (A(sub u)-2) are more likely to have low energy absorptions in the regions between 10 kK and 20 kK, similar to naphthalene. These absorptions, together with those to be determined from the hydrogen abstraction and addition derivatives of pyrene, can be used to provide additional candidates and suggest experimental work in the search for interstellar compounds that are responsible for DIB's.

  9. Simultaneous infrared and UV-visible absorption spectra of matrix-isolated carbon vapor

    NASA Technical Reports Server (NTRS)

    Kurtz, Joe; Huffman, Donald R.

    1989-01-01

    Carbon molecules were suggested as possible carriers of the diffuse interstellar bands. In particular, it was proposed that the 443 nm diffuse interstellar band is due to the same molecule which gives rise to the 447 nm absorption feature in argon matrix-isolated carbon vapor. If so, then an associated C-C stretching mode should be seen in the IR. By doing spectroscopy in both the IR and UV-visible regions on the same sample, the present work provides evidence for correlating UV-visible absorption features with those found in the IR. Early data indicates no correlation between the strongest IR feature (1997/cm) and the 447 nm band. Correlation with weaker IR features is being investigated.

  10. H ATOM IRRADIATION OF CARBON GRAINS UNDER SIMULATED DENSE INTERSTELLAR MEDIUM CONDITIONS: THE EVOLUTION OF ORGANICS FROM DIFFUSE INTERSTELLAR CLOUDS TO THE SOLAR SYSTEM

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mennella, Vito, E-mail: mennella@na.astro.i

    2010-08-01

    We present the results of experiments aimed at studying the interaction of hydrogen atoms at 80 K with carbon grains covered with a water ice layer at 12 K. The effects of H processing have been analyzed, using IR spectroscopy, as a function of the water ice layer. The results confirm that exposure of the samples to H atoms induces the activation of the band at 3.47 {mu}m with no evidence for the formation of aromatic and aliphatic C-H bonds in the CH{sub 2} and CH{sub 3} functional groups. The formation cross section of the 3.47 {mu}m band has beenmore » estimated from the increase of its integrated optical depth as a function of the H atom fluence. The cross section decreases with increasing thickness of the water ice layer, indicating an increase of adsorption of H atoms in the water ice layer. A penetration depth of 100 nm has been estimated for H atoms in the porous water ice covering carbon grains. Sample warm-up at room temperature causes the activation of the IR features due to the vibrations of the CH{sub 2} and CH{sub 3} aliphatic functional groups. The evolution of the 3.47 {mu}m band carrier has been evaluated for dense and diffuse interstellar clouds, using the estimated formation cross section and assuming that the destruction cross section by energetic processing is the same as that derived for the 3.4 {mu}m band. In both environments, the presence of the 3.47 {mu}m band carrier is compatible with the evolutionary timescale limit imposed by fast cycling of materials between dense and diffuse regions of the interstellar medium. In diffuse regions the formation of the CH{sub 2} and CH{sub 3} aliphatic bands, inhibited in dense regions, takes place, masking the 3.47 {mu}m band. The activation of the CH{sub 2} and CH{sub 3} aliphatic vibrational modes at the end of H processing after sample warm-up represents the first experimental evidence supporting an evolutionary connection between the interstellar carbon grain population, which is responsible for the 3.4 {mu}m band (diffuse regions) and contributes to the absorption at 3.47 {mu}m (dense regions), and the organics observed in interplanetary dust particles and cometary Stardust grains.« less

  11. Update on IBEX and the outer boundary of the space radiation environment

    NASA Astrophysics Data System (ADS)

    McComas, D. J.; IBEX Science Team

    2012-11-01

    The Interstellar Boundary Explorer (IBEX) mission has been remotely observing the global interaction of our heliosphere with the local interstellar medium for over three years. Initially, IBEX generated the first all-sky maps of Energetic Neutral Atoms (ENAs) emanating in from the boundaries of our heliosphere over the energy range from ˜0.1-6 keV. Using these observations, the IBEX team discovered a smoothly varying, globally distributed ENA flux overlaid by a narrow "ribbon" of significantly enhanced ENA emissions. Since the initial publication of these results in a special issue of Science magazine (November 2009), IBEX has completed five more energy-resolved sets of sky maps and discovered small but important time variations in the interaction, separated the ribbon from globally distributed ENA fluxes, measured the energy spectral shape and inferred ion source temperatures, and carried out many other observational and theoretical studies of the outer heliosphere. In a second major area of observations - direct measurements of Interstellar Neutral (ISN) atoms - just published, IBEX observations of ISN He atoms show that the speed and direction (the motion of the heliosphere with respect to the interstellar medium) is slower and from a somewhat different direction than that thought from prior Ulysses observations. These observations also show evidence for a previously unknown and unanticipated secondary population of Helium. In addition, IBEX is providing the first direct quantitative measurements of the ISN H parameters and the first direct measurements of interstellar Ne and the interstellar Neon/Oxygen abundance ratio; this ratio is significantly different than the solar abundance ratio. Finally, IBEX was recently maneuvered into a unique, long-term stable orbit, which has a very low radiation environment and requires no orbit maintenance. Thus, IBEX will likely continue to provide revolutionary observations of the outer heliosphere and local interstellar medium for many years to come.

  12. Variable interstellar absorption lines in young stellar aggregates

    NASA Astrophysics Data System (ADS)

    Krełowski, J.; Strobel, A.; Vješnica, S.; Melekh, D.; Bondar, A.

    2018-06-01

    The variability of interstellar atomic lines, sporadically reported in the astronomical literature, has been confirmed both in the case of the nearby hot star δ Ori and the very young and violent star-forming region η Carinae, using high-resolution echelle spectra. The presented variability concerns the intensities and profiles of Na I, K I and Ca II. The time-scale of the above-mentioned variations clearly suggests very local phenomena as their cause. It is important to say that not all interstellar lines vary in unison.

  13. Interstellar absorption of the extreme ultraviolet flux from two hot white dwarfs

    NASA Technical Reports Server (NTRS)

    Cash, W.; Bowyer, S.; Lampton, M.

    1979-01-01

    Photometric upper limits on the 300 A flux from the hot white dwarfs Feige 24 and G191-B2B are presented. The limits, which were obtained with a rocket-borne extreme ultraviolet imaging telescope, are interpreted as lower limits on the density of the intervening interstellar matter. The limits are used to investigate the state of interstellar gas within 100 pc. A local clumpiness factor, which is of value in planning future extreme ultraviolet observations, is derived.

  14. The Copernicus observations - Interstellar or circumstellar material. [UV spectra of early stars

    NASA Technical Reports Server (NTRS)

    Steigman, G.; Strittmatter, P. A.; Williams, R. E.

    1975-01-01

    It is suggested that the sharp absorption lines observed in the ultraviolet spectra of early-type stars by the Copernicus satellite may be entirely accounted for by the circumstellar material in the H II regions and associated transition zones around the observed stars. If this interpretation is correct, the Copernicus results yield little information on the state of any interstellar (as opposed to circumstellar) gas and, in particular, shed little light on the degree of element depletion in interstellar space.

  15. A Study of Interstellar Medium Components of the Ohio State University Bright Spiral Galaxy Survey

    NASA Astrophysics Data System (ADS)

    Butner, Melissa; Deustua, S. E.; Conti, A.; Smtih, J.

    2011-01-01

    Multi-wavelength data can be used to provide information on the interstellar medium of galaxies, as well as on their stellar populations. We use the Ohio State University Bright Spiral Galaxy Survey (OSBSGS) to investigate the distribution and properties of the interstellar medium in a set of nearby galaxies. The OSBSGS consists of B, V, R, J, H and K band images for a over 200 nearby spiral galaxies. These data allow us to probe the dust temperatures and distribution using color maps. When combined with a pixel based analysis, it may be possible to tease out, perhaps better constraining, the heating mechanism for the ISM, as well as constrain dust models. In this paper we will discuss our progress in understanding, in particular, the properties of dust in nearby galaxies. Melissa Butner was a participant in the STScI Summer Student Program supported by the STScI Director's Discretionary Research Fund. MB also acknowledges support and computer cluster access via NSF grant 07-22890.

  16. High Resolution X-Ray Absorption Spectroscopy: Distribution of Matter in and around Galaxies

    NASA Astrophysics Data System (ADS)

    Schulz, Norbert; MIT/CAT Team

    2015-10-01

    The chemical evolution of the Universe embraces aspects that reachdeep into modern astrophysics and cosmology. We want to know how present and past matter is affected by various levels and types of nucleo-synthesis and stellar evolution. Three major categories were be identified: 1. The study of pre-mordial star formation including periods of super-massive black hole formation, 2. The embedded evolution of the intergalactic medium IGM, 3. The status and evolution of stars and the interstellar medium ISM in galaxies. Today a fourth category relates to our understanding of dark matter in relationwith these three categories. The X-ray band is particularly sensitive to K- and L-shell absorption and scattering from high abundant elements like C, N, O, Ne, Mg, Si, S,Ar, Ca, Fe, and Ni. Like the Lyman alpha forest in the optical band, absorbers in the IGM produce an X-ray line forest along the line of sight in the X-rayspectrum of a background quasar. Similary bright X-ray sources within galaxies and the Milky Way produce a continuum, which is being absorbed by elements invarious phases of the ISM. High resolution X-ray absorption surveys are possible with technologies ready for flight within decade. == high efficiency X-ray optics with optical performance 3== high resolution X-ray gratings with R 3000 for E 1.5 keV== X-ray micro-calorimeters with R 2000 for E 1.5 keV. The vision for the next decade needs to lead to means and strategies which allows us to perform such absorption surveys as effectively as surveys are now or in very near future quite common in astronomy pursued in other wave length bands such as optical, IR, and sub-mm.

  17. The Diffuse Interstellar Bands: an Elderly Astro-Puzzle Rejuvenated

    NASA Astrophysics Data System (ADS)

    Cox, Nick L. J.

    2011-12-01

    The interstellar medium constitutes a physically and chemically complex component of galaxies and is important in the cycle of matter and the evolution of stars. From various spectroscopic clues we now know that the interstellar medium is rich in organic compounds. However, identifying the exact nature of all these components remains a challenge. In particular the identification of the so-called diffuse band carriers has been alluding astronomers for almost a century. In recent decades, observational, experimental and theoretical advances have rapidly lead to renewed interest in the diffuse interstellar bands (DIBs). This has been instigated partly by their perceived relation to the infrared aromatic emission bands, the UV extinction bump and far-UV rise, and the growing number of (small) organic molecules identified in space. This chapter gives an overview of the observational properties and behaviour of the DIBs, and their presence throughout the Universe. I will highlight recent progress in identifying their carriers and discuss their potential as tracers and probes of (extra)-Galactic ISM conditions.

  18. New Insights Concerning the Local Interstellar medium

    NASA Astrophysics Data System (ADS)

    Linsky, Jeffrey L.; Redfield, Seth

    2015-08-01

    We have been analyzing HST high-resolution ultraviolet spectra of nearby stars to measure the radial velocities, turbulence, temperature, and depletions on warm diffuse interstellar gas within a few parsecs of the Sun. These data reveal a picture of many partially-ionized warm gas clouds, each with their own vector velocity and physical characteristics. This picture has been recently challenged by Gry and Jenkins (2014), who argue for a single nonrigid cloud surrounding the Sun. We present a test of these two very different morphological structure by checking how well each predicts the radial velocities in a new data set (Malamut et al. 2014) that was not available when both models were constructed. We find that the multicloud model (Redfield & Linsky 2008) provides a much better fit to the new data. We compare the new IBEX results for the temperature and velocity of inflowing He gas (McComas et al. 2015) with the properties of the Local Interstellar Cloud and the G cloud. We also show a preliminary three-dimensional model for the local interstellar medium.

  19. The alpha Centauri Line of Sight: D/H Ratio, Physical Properties of Local Interstellar Gas, and Measurement of Heated Hydrogen (The 'Hydrogen Wall') Near the Heliopause

    NASA Technical Reports Server (NTRS)

    Linsky, Jeffrey L.; Wood, Brian E.

    1996-01-01

    We analyze high-resolution spectra of the nearby (1.34 pc) stars alpha Cen A (G2 V) and alpha Cen B (K1 V), which were obtained with the Goddard High Resolution Spectrograph on the Hubble Space Telescope. The observations consist of echelle spectra of the Mg II 2800 A and Fe II 2599 A resonance lines and the Lyman-alpha lines of hydrogen and deuterium. The interstellar gas has a velocity (v = - 18.0 +/- 0.2 km/s) consistent with the local flow vector proposed for this line of sight by Lailement & Berlin (1992). The temperature and nonthermal velocity inferred from the Fe II, Mg II, and D I line profiles are T = 5400 +/- 500 K and xi = 1.20 +/- 0.25 km/s, respectively. However, single-component fits to the H I Lyman-alpha lines yield a Doppler parameter (b(sub HI) = 11.80 km/s) that implies a significantly warmer temperature of 8350 K, and the velocity of the H I absorption (v = - 15.8 +/- 0.2 km/s) is redshifted by about 2.2 km/s with respect to the Fe II, Mg II, and D I lines. The one-component model of the interstellar gas suggests natural logarithm N base HI = 18.03 +/- 0.01 and D/H = (5.7 +/- 0.2) x 10(exp -6) . These parameters lead to a good fit to the observed spectra, but this model does not explain the higher temperature and redshift of H I relative to the other interstellar lines. The most sensible way to resolve the discrepancy between H(I) and the other lines is to add a second absorption component to the H(I) lines. This second component is hotter (T approx. equals 30,000 K), is redshifted relative to the primary component by 2-4 km/s, and has a column density too low to be detected in the Fe(II), Mg(II), and D(I) lines. We propose that the gas responsible for this component is located near the heliopause, consisting of the heated H I gas from the interstellar medium that is compressed by the solar wind. This so-called 'hydrogen wall' is predicted by recent multifluid gasdynamical models of the interstellar gas and solar wind interaction. Our data provide the first measurements of the temperature and column density of H(I) in the hydrogen wall. After considering the effects that a corresponding hydrogen wall around alpha Cen would have on our analysis, our best estimates for the parameters of the solar hydrogen wall are natural log N(sup (2))(H(I)) = 14.74 +/- 0.24, b(sup (2))(H(I)) = 21.9 +/- 1.7 km/s (corresponding to T = 29,000 +/- 5000 K), and v(sup (2))(H(I)) greater than -16km/s. Unfortunately, the existence of this heated H(I) reduces our ability to compute the H(I) column density of the interstellar medium accurately because, with slight alterations to our assumed stellar Lyman-alpha profiles, we discovered that acceptable two-component fits also exist with natural log N(H(I))approx. 17.6. We, therefore, quote large error bars for the H I column density along the alpha Cen line of sight, natural log N(H(I)) = 17.80 +/- 0.30. For this range in N(H(I)), n(H(I)) = 0.15 /cu.cm (+/- a factor of 2) and D/H = (0.5-1.9) x 10(exp -5). This is the first direct measurement of the H(I) density in a local cloud and allows us to predict the distance from the Sun to the edge of the local cloud along various lines of sight. This range in D/H is consistent with the value D/H = 1.6 x 10(exp -5) previously derived for the Capella and Procyon lines of sight. We cannot tell whether D/H ratio varies or is constant in the local interstellar medium, but we do find that the D(I)/Mg(II) ratio for the alpha Cen line of sight is about 4 times smaller than for the Capella and Procyon lines of sight. Therefore, either D/H or the Mg depletion varies significantly over distance scales of only a few parsecs.

  20. ASSIGNMENT OF 5069 A DIFFUSE INTERSTELLAR BAND TO HC{sub 4}H{sup +}: DISAGREEMENT WITH LABORATORY ABSORPTION BAND

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Maier, J. P.; Chakrabarty, S.; Mazzotti, F. J.

    2011-03-10

    Krelowski et al. have reported a weak, diffuse interstellar band (DIB) at 5069 A which appears to match in both mid-wavelength and width the A {sup 2}{Pi}{sub u}-X {sup 2}{Pi}{sub g} gas-phase origin absorption band of HC{sub 4}H{sup +}. Here, we present laboratory rotational profiles at low temperatures which are then compared with the 5069 A DIB using {approx}0.1 and 0.3 A line widths based on a realistic line-of-sight interstellar velocity dispersion. Neither the band shape nor the wavelength of the maximum absorption match, which makes the association of the 5069 A DIB with HC{sub 4}H{sup +} unlikely. The magneticmore » dipole transition X {sup 2}{Pi}{sub g} {Omega} = 1/2{yields}X {sup 2}{Pi}{sub g} {Omega} = 3/2 within the ground electronic state which competes with collisional excitation is also considered. In addition, we present the laboratory gas-phase spectrum of the A {sup 2}{Pi}{sub u}-X {sup 2}{Pi}{sub g} transition of HC{sub 4}H{sup +} measured at 25 K in an ion trap and identify further absorption bands at shorter wavelengths for comparison with future DIB data.« less

  1. Influence of galactic arm scale dynamics on the molecular composition of the cold and dense ISM. I. Observed abundance gradients in dense clouds

    NASA Astrophysics Data System (ADS)

    Ruaud, M.; Wakelam, V.; Gratier, P.; Bonnell, I. A.

    2018-04-01

    Aim. We study the effect of large scale dynamics on the molecular composition of the dense interstellar medium during the transition between diffuse to dense clouds. Methods: We followed the formation of dense clouds (on sub-parsec scales) through the dynamics of the interstellar medium at galactic scales. We used results from smoothed particle hydrodynamics (SPH) simulations from which we extracted physical parameters that are used as inputs for our full gas-grain chemical model. In these simulations, the evolution of the interstellar matter is followed for 50 Myr. The warm low-density interstellar medium gas flows into spiral arms where orbit crowding produces the shock formation of dense clouds, which are held together temporarily by the external pressure. Results: We show that depending on the physical history of each SPH particle, the molecular composition of the modeled dense clouds presents a high dispersion in the computed abundances even if the local physical properties are similar. We find that carbon chains are the most affected species and show that these differences are directly connected to differences in (1) the electronic fraction, (2) the C/O ratio, and (3) the local physical conditions. We argue that differences in the dynamical evolution of the gas that formed dense clouds could account for the molecular diversity observed between and within these clouds. Conclusions: This study shows the importance of past physical conditions in establishing the chemical composition of the dense medium.

  2. Heating of the Interstellar Diffuse Ionized Gas via the Dissipation of Turbulence

    NASA Astrophysics Data System (ADS)

    Minter, Anthony H.; Spangler, Steven R.

    1997-08-01

    We have recently published observations that specify most of the turbulent and mean plasma characteristics for a region of the sky containing the interstellar diffuse ionized gas (DIG). These observations have provided virtually all of the information necessary to calculate the heating rate from dissipation of turbulence. We have calculated the turbulent dissipation heating rate employing two models for the interstellar turbulence. The first is a customary modeling as a superposition of magnetohydrodynamic waves. The second is a fluid-turbulence-like model based on the ideas of Higdon. This represents the first time that such calculations have been carried out with full and specific interstellar turbulence parameters. The wave model of interstellar turbulence encounters the severe difficulty that plausible estimates of heating by Landau damping exceed the radiative cooling capacity of the interstellar DIG by 3-4 orders of magnitude. Clearly interstellar turbulence does not behave like an ensemble of obliquely propagating fast magnetosonic waves. The heating rate due to two other wave dissipation mechanisms, ion-neutral collisional damping and the parametric decay instability, are comparable to the cooling capacity of the diffuse ionized medium. We find that the fluid-like turbulence model is an acceptable and realistic model of the turbulence in the interstellar medium once the effects of ion-neutral collisions are included in the model. This statement is contingent on an assumption that the dissipation of such turbulence because of Landau damping is several orders of magnitude less than that from an ensemble of obliquely propagating magnetosonic waves with the same energy density. Arguments as to why this may be the case are made in the paper. Rough parity between the turbulent heating rate and the radiative cooling rate in the DIG also depends on the hydrogen ionization fraction being in excess of 90% or on a model-dependent lower limit to the heating rate being approximately valid. We conclude that the dissipation of turbulence is capable of providing a substantial and perhaps major contribution to the energy budget of the diffuse ionized medium.

  3. IBEX Observations and Simulations of the Ribbon: Implications for the Very Local Interstellar Medium

    NASA Astrophysics Data System (ADS)

    Zirnstein, E.

    2017-12-01

    The crossing of the Voyager 1 spacecraft into the very local interstellar medium (VLISM) in 2012 August opened a new chapter in humankind's exploration of space. Voyager 1 has been measuring interstellar plasma properties outside the heliosphere, including the galactic cosmic ray flux, (indirectly) the compressed interstellar plasma, as well as the compressed interstellar magnetic field draped around the heliosphere. Interstellar Boundary Explorer (IBEX) neutral atom observations complement the only in situ observations of the VLISM made by Voyager 1. IBEX is an Earth-orbiting spacecraft equipped with two single-pixel cameras that detect neutral atoms produced by the interaction of the solar wind (SW) with the VLISM, as well as neutral atoms flowing into the heliosphere from the VLISM itself. After its launch in 2009, IBEX discovered the unexpected existence of the "ribbon," a nearly circular arc across the sky of enhanced hydrogen ENA fluxes observed at keV energies. The ribbon fluxes originate from look directions perpendicular to the local interstellar magnetic field draped around the heliosphere, and can be used to derive the VLISM magnetic field magnitude and direction far from the heliopause. Thus, IBEX observations of the ribbon complement Voyager 1 in situ observations of the VLISM magnetic field, and provide insight into what Voyager 2 will observe after it crosses the heliopause. This talk will review key IBEX observations of the VLISM environment related to the ribbon and the VLISM magnetic field observed by Voyager 1, and their implications for the VLISM environment.

  4. Decades-long changes of the interstellar wind through our solar system.

    PubMed

    Frisch, P C; Bzowski, M; Livadiotis, G; McComas, D J; Moebius, E; Mueller, H-R; Pryor, W R; Schwadron, N A; Sokół, J M; Vallerga, J V; Ajello, J M

    2013-09-06

    The journey of the Sun through the dynamically active local interstellar medium creates an evolving heliosphere environment. This motion drives a wind of interstellar material through the heliosphere that has been measured with Earth-orbiting and interplanetary spacecraft for 40 years. Recent results obtained by NASA's Interstellar Boundary Explorer mission during 2009-2010 suggest that neutral interstellar atoms flow into the solar system from a different direction than found previously. These prior measurements represent data collected from Ulysses and other spacecraft during 1992-2002 and a variety of older measurements acquired during 1972-1978. Consideration of all data types and their published results and uncertainties, over the three epochs of observations, indicates that the trend for the interstellar flow ecliptic longitude to increase linearly with time is statistically significant.

  5. Eta Carinae: At the Crossroads of becoming a Supernova

    NASA Technical Reports Server (NTRS)

    Gull, Theodore

    2007-01-01

    Since the 1840's, when Eta Carinae's visual magnitude rivaled Sirius, the brightest star in the night sky, astronomers have wondered what major event took place. Today with the Hubble Space Telescope Imaging Spectrograph, with CHANDRA X-ray spectroscopy and the Very Large Telescope spectrographs and interferometers, we have learned that over 12 solar masses of material was ejected at 500 to 700 km/s into interstellar space. This ejecta is quite different from the normal interstellar medium. It is rich in nitrogen, poor in oxygen and carbon. The dust properties are quite peculiar and many metals such as vanadium, strontium, cadmium are seen in both absorption against the central source, plus a number of molecules. The chemical and dust formation is likely dominated by nitrogen as we see H_2, CH, CH+, OH, NH, HCl and NH-3, but no CO. Other metals and molecules are being searched out in the FUSE, HST/STIS, VLT/UVES and VLT/CRIRES spectra. I will describe what we know about the massive binary stellar system, how it changes every 5.54 year in UV and X-ray output and how the massive ejecta responds in this astrophysical laboratory.

  6. Rapid ionization of the environment of SN 1987A

    NASA Technical Reports Server (NTRS)

    Raga, A. C.

    1987-01-01

    It has been suggested by some authors that IUE observations of the supernova SN 1987A show the presence of a strong component of the interstellar C IV 1550 and Si IV 1393 absorption lines at a velocity that approximately corresponds to the velocity of the LMC. It is possible that this component might come from originally neutral (or at least not very highly ionized) gas which has been photoionized by the initially very strong ionizing radiation field of the supernova. Theoretical considerations of this scenario lead to the study of fast (with velocities of about c) ionization fronts. It is shown that for reasonable model parameters it is possible to obtain considerably large C IV column densities, in agreement with the IUE observations. On the other hand, the models do not so easily predict the large Si IV column densities that are also obtained from the IUE observations. It is found that only models in which the interstellar medium surrounding SN 1987A is initially composed of already ionized hydrogen and helium predict substantial Si IV column densities. This result provides an interesting prediction of the ionization state of the environment of the presupernova star.

  7. Laboratory Studies Of Astrophysically-interesting Phosphorus-bearing Molecules

    NASA Astrophysics Data System (ADS)

    Ziurys, Lucy M.; Halfen, D. T.; Sun, M.; Clouthier, D. J.

    2009-05-01

    Over the past year, there has been a renewed interest in the presence of phosphorus-containing molecules in the interstellar medium. Recent observations have increased the number of known interstellar phosphorus-bearing species from two (PN, CP) to six with the identification of HCP, CCP, and PH3 in the carbon-rich circumstellar shell of IRC+10216 and PO in the oxygen-rich envelope of VY Canis Majoris. More species of this type may be present in the ISM, but laboratory rest frequencies, necessary for such detections, are not generally known for many potential molecules. To fill in this gap, we have been conducting measurements of the pure rotational spectra of phosphorus-containing molecules of astrophysical interest, using both millimeter/submm direct absorption and Fourier transform microwave (FTMW) spectroscopy. We have developed a new phosphorus source for this purpose. These methods cover the frequency ranges 65-850 GHz and 4-40 GHz, respectively. Our recent study of the CCP radical (X2Πr) using both of these techniques has resulted in its identification in IRC+10216. Rotational spectra of other molecules such as PCN, HPS, and CH3PH2 have been recorded. We will report on these species and additional new laboratory developments

  8. Terahertz Spectroscopy and Global Analysis of the Rotational Spectrum of Doubly Deuterated Amidogen Radical ND2

    NASA Astrophysics Data System (ADS)

    Melosso, Mattia; Degli Esposti, Claudio; Dore, Luca

    2017-11-01

    The deuteration mechanism of molecules in the interstellar medium is still being debated. Observations of deuterium-bearing species in several astronomical sources represent a powerful tool to improve our understanding of the interstellar chemistry. The doubly deuterated form of the astrophysically interesting amidogen radical could be a target of detection in space. In this work, the rotational spectrum of the ND2 radical in its ground vibrational and electronic {X}2{B}1 state has been investigated between 588 and 1131 GHz using a frequency modulation millimeter/submillimeter-wave spectrometer. The ND2 molecule has been produced in a free-space glass absorption cell by discharging a mixture of ND3 and Ar. Sixty-four new transition frequencies involving J values from 2 to 5 and K a values from 0 to 4 have been measured. A global analysis including all the previous field-free pure rotational data has been performed, allowing for a more precise determination of a very large number of spectroscopic parameters. Accurate predictions of rotational transition frequencies of ND2 are now available from a few gigahertz up to several terahertz.

  9. Formation of cyanoallene (buta-2, 3-dienenitrile) in the interstellar medium: a quantum chemical and spectroscopic study

    NASA Astrophysics Data System (ADS)

    Singh, Amresh; Shivani; Misra, Alka; Tandon, Poonam

    2014-03-01

    The interstellar medium, filling the vast space between stars, is a rich reservoir of molecular material ranging from simple diatomic molecules to more complex, astrobiologically important molecules such as vinylcyanide, methylcyanodiaccetylene, cyanoallene, etc. Interstellar molecular cyanoallene is one of the most stable isomers of methylcynoacetylene. An attempt has been made to explore the possibility of forming cyanoallene in interstellar space by radical-radical and radical-molecule interaction schemes in the gaseous phase. The formation of cyanoallene starting from some simple, neutral interstellar molecules and radicals has been studied using density functional theory. The reaction energies and structures of the reactants and products show that the formation of cyanoallene is possible in the gaseous phase. Both of the considered reaction paths are totally exothermic and barrierless, thus giving rise to a high probability of occurrence. Rate constants for each step in the formation process of cyanoallene in both the reaction paths are estimated. A full vibrational analysis has been attempted for cyanoallene in the harmonic and anharmonic approximations. Anharmonic spectroscopic parameters such as rotational constants, rotation-vibration coupling constants and centrifugal distortion constants have been calculated.

  10. Molecular Spectroscopy in Astrophysics: The Case of Polycyclic Aromatic Hydrocarbons

    NASA Technical Reports Server (NTRS)

    Salama, Farid; DeVincent, Donald L. (Technical Monitor)

    2000-01-01

    The role of molecular spectroscopy in astrophysics and astrochemistry is discussed in the context of the study of large, complex, carbon-bearing molecules, namely, Polycyclic Aromatic Hydrocarbons or PAHs. These molecular species are now thought to be widespread in the interstellar medium in their neutral and ionized forms. Identifying the carriers responsible for unidentified interstellar spectral bands will allow to derive important information on cosmic elemental abundances as well as information on the physical conditions (density, temperature) reigning in specific interstellar environments. These, in turn, are key elements for a correct understanding of the energetic mechanisms that govern the origin and the evolution of the interstellar medium. A multidisciplinary approach - combining astronomical observations with laboratory simulations and theoretical modeling - is required to address these complex issues. Laboratory spectra of several PAHs, isolated at low temperature in inert gas matrices or seeded in a supersonic jet expansion, are discussed here and compared to the astronomical spectra of reddened, early type, stars. The electronic spectroscopy of PAHs in the ultraviolet, visible, and near-infrared domains is reviewed and an assessment of the potential contribution of PAHs to the interstellar extinction in the ultraviolet and in the visible is discussed.

  11. Termination of the solar wind in the hot, partially ionized interstellar medium. Ph.D. Thesis

    NASA Technical Reports Server (NTRS)

    Lombard, C. K.

    1974-01-01

    Theoretical foundations for understanding the problem of the termination of the solar wind are reexamined in the light of most recent findings concerning the states of the solar wind and the local interstellar medium. The investigation suggests that a simple extention of Parker's (1961) analytical model provides a useful approximate description of the combined solar wind, interstellar wind plasma flowfield under conditions presently thought to occur. A linear perturbation solution exhibiting both the effects of photoionization and charge exchange is obtained for the supersonic solar wind. A numerical algorithm is described for computing moments of the non-equilibrium hydrogen distribution function and associated source terms for the MHD equations. Computed using the algorithm in conjunction with the extended Parker solution to approximate the plasma flowfield, profiles of hydrogen number density are given in the solar wind along the upstream and downstream axes of flow with respect to the direction of the interstellar wind. Predictions of solar Lyman-alpha backscatter intensities to be observed at 1 a.u. have been computed, in turn, from a set of such hydrogen number density profiles varied over assumed conditions of the interstellar wind.

  12. EVALUATING THE MORPHOLOGY OF THE LOCAL INTERSTELLAR MEDIUM: USING NEW DATA TO DISTINGUISH BETWEEN MULTIPLE DISCRETE CLOUDS AND A CONTINUOUS MEDIUM

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Redfield, Seth; Linsky, Jeffrey L., E-mail: sredfield@wesleyan.edu, E-mail: jlinsky@jila.colorado.edu

    Ultraviolet and optical spectra of interstellar gas along the lines of sight to nearby stars have been interpreted by Redfield and Linsky and previous studies as a set of discrete warm, partially ionized clouds each with a different flow vector, temperature, and metal depletion. Recently, Gry and Jenkins proposed a fundamentally different model consisting of a single cloud with nonrigid flows filling space out to 9 pc from the Sun that they propose better describes the local ISM. Here we test these fundamentally different morphological models against the spatially unbiased Malamut et al. spectroscopic data set, and find that themore » multiple cloud morphology model provides a better fit to both the new and old data sets. The detection of three or more velocity components along the lines of sight to many nearby stars, the presence of nearby scattering screens, the observed thin elongated structures of warm interstellar gas, and the likely presence of strong interstellar magnetic fields also support the multiple cloud model. The detection and identification of intercloud gas and the measurement of neutral hydrogen density in clouds beyond the Local Interstellar Cloud could provide future morphological tests.« less

  13. The Evolution of the Interstellar Medium in the Mildly Disturbed Spiral Galaxy NGC 4647

    NASA Astrophysics Data System (ADS)

    Young, L. M.; Rosolowsky, E.; van Gorkom, J. H.; Lamb, S. A.

    2006-10-01

    We present matched-resolution maps of H I and CO emission in the Virgo Cluster spiral NGC 4647. The galaxy shows a mild kinematic disturbance in which one side of the rotation curve flattens but the other side continues to rise. This kinematic asymmetry is coupled with a dramatic asymmetry in the molecular gas distribution but not in the atomic gas. An analysis of the gas column densities and the interstellar pressure suggests that the H2/H I surface density ratio on the east side of the galaxy is 3 times higher than expected from the hydrostatic pressure contributed by the mass of the stellar disk. We discuss the probable effects of ram pressure, gravitational interactions, and asymmetric potentials on the interstellar medium and suggest it is likely that a m=1 perturbation in the gravitational potential could be responsible for all of the galaxy's features. Kinematic disturbances of the type seen here are common, but the curious thing about NGC 4647 is that the molecular distribution appears more disturbed than the H I distribution. Thus, it is the combination of the two gas phases that provides such interesting insight into the galaxy's history and into models of the interstellar medium.

  14. Origins Space Telescope: Nearby Galaxies, the Milky Way, and the Interstellar Medium

    NASA Astrophysics Data System (ADS)

    Battersby, Cara; Sandstrom, Karin; Origins Space Telescope Science and Technology Definition Team

    2018-01-01

    The Origins Space Telescope (OST) is the mission concept for the Far-Infrared Surveyor, one of the four science and technology definition studies of NASA Headquarters for the 2020 Astronomy and Astrophysics Decadal survey. Origins will enable flagship-quality general observing programs led by the astronomical community in the 2030s. We welcome you to contact the Science and Technology Definition Team (STDT) with your science needs and ideas by emailing us at ost_info@lists.ipac.caltech.eduThis presentation will summarize the science case related to Nearby Galaxies, the Milky Way, and the Interstellar Medium (Interstellar Medium). The Origins Space Telescope will enable a wealth of unprecedented scientific advances in this area, both those we know to expect, and the discovery space that lies unexplored. Origins will enable a comprehensive view of magnetic fields, turbulence, and the multiphase ISM; connecting these physics across scales of galaxies to protostellar cores. With unprecedented sensitivity, Origins will measure and characterize the mechanisms of feedback from star formation and Active Galactic Nuclei, and their interplay, over cosmic time. Origins will unveil the abundance and availability of water for habitable planets by allowing us to trace the trail of water from interstellar clouds to protoplanetary disks, to Earth itself.

  15. The state of clouds in a violent interstellar medium

    NASA Astrophysics Data System (ADS)

    Heathcote, S. R.; Brand, P. W. J. L.

    1983-04-01

    A highly approximate but simple model is developed which describes the interaction of a supernova blast wave with an interstellar cloud. The behavior of a cloud when exposed to conditions prevalent in a violent interstellar medium is examined using this model. Results show that after a cloud has been shocked it is rarely allowed sufficient time to return to pressure equilibrium with its surroundings before encountering a second shock. Thus, significant departures from pressure equilibrium are inevitable. It is determined that the disruption of a cloud by its passage through a blast wave is quite effective and the half life of clouds cannot greatly exceed the mean interval between shocks striking a given cloud. In addition, it is found that composite core-envelope clouds are not viable under typical conditions.

  16. HIghZ: A search for HI absorption in high-redshift radio galaxies

    NASA Astrophysics Data System (ADS)

    Allison, J.; Callingham, J.; Sadler, E.; Wayth, R.; Curran, S.; Mahoney, E.

    2017-01-01

    We will use the unique low-frequency spectral capability of the MWA to carry out a pilot survey for neutral gas in the interstellar medium of the most distant (z>5) radio galaxies in the Universe. Through detection of the HI 21-cm line in absorption we aim to place stringent lower limits on the source redshift, confirming its location in the early Universe. Our sample makes use of the excellent wide-band spectral information available from the recently completed MWA GLEAM survey, from which we have selected a sample of ultra-steep peaked-spectrum radio sources that have a spectral turnover below 300 MHz. These sources should be ideal candidates for high-redshift compact radio galaxies since they have (a) spectral peaks that turnover below 1GHz and (b) very steep (alpha < -1.0) spectral indices that are consistent with the high density environments expected for radio galaxies in the early Universe. Using the MWA, we aim to verify this hypothesis through the detection of significant column densities of cold HI. This pathfinder project will provide important technical information that will inform future absorption surveys both with the MWA and, ultimately, the SKA-LOW telescope.

  17. THE IMPACT OF ACCURATE EXTINCTION MEASUREMENTS FOR X-RAY SPECTRAL MODELS

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Smith, Randall K.; Valencic, Lynne A.; Corrales, Lia, E-mail: lynne.a.valencic@nasa.gov

    Interstellar extinction includes both absorption and scattering of photons from interstellar gas and dust grains, and it has the effect of altering a source's spectrum and its total observed intensity. However, while multiple absorption models exist, there are no useful scattering models in standard X-ray spectrum fitting tools, such as XSPEC. Nonetheless, X-ray halos, created by scattering from dust grains, are detected around even moderately absorbed sources, and the impact on an observed source spectrum can be significant, if modest, compared to direct absorption. By convolving the scattering cross section with dust models, we have created a spectral model asmore » a function of energy, type of dust, and extraction region that can be used with models of direct absorption. This will ensure that the extinction model is consistent and enable direct connections to be made between a source's X-ray spectral fits and its UV/optical extinction.« less

  18. Small scale H I structure and the soft X-ray background

    NASA Technical Reports Server (NTRS)

    Jahoda, K.; Mccammon, D.; Lockman, F. J.

    1986-01-01

    The observed anticorrelation between diffuse soft X-ray flux and H I column density has been explained as absorption of soft X-rays produced in a hot galactic halo, assuming that the neutral interstellar material is sufficiently clumped to reduce the soft X-ray absorption cross section by a factor of two to three. A 21 cm emission line study of H I column density variations at intermediate and high galactic latitudes to 10' spatial resolution has been done. The results confirm conclusions from preliminary work at coarser resolution, and in combination with other data appear to rule out the hypothesis that clumping of neutral interstellar matter on any angular scale significantly reduces X-ray absorption cross sections in the 0.13 - 0.28 keV energy range. It is concluded therefore that the observed anticorrelation is not primarily a consequence of absorption of soft X-rays produced in a hot galactic halo.

  19. Observations of the missing baryons in the warm-hot intergalactic medium.

    PubMed

    Nicastro, F; Kaastra, J; Krongold, Y; Borgani, S; Branchini, E; Cen, R; Dadina, M; Danforth, C W; Elvis, M; Fiore, F; Gupta, A; Mathur, S; Mayya, D; Paerels, F; Piro, L; Rosa-Gonzalez, D; Schaye, J; Shull, J M; Torres-Zafra, J; Wijers, N; Zappacosta, L

    2018-06-01

    It has been known for decades that the observed number of baryons in the local Universe falls about 30-40 per cent short 1,2 of the total number of baryons predicted 3 by Big Bang nucleosynthesis, as inferred 4,5 from density fluctuations of the cosmic microwave background and seen during the first 2-3 billion years of the Universe in the so-called 'Lyman α forest' 6,7 (a dense series of intervening H I Lyman α absorption lines in the optical spectra of background quasars). A theoretical solution to this paradox locates the missing baryons in the hot and tenuous filamentary gas between galaxies, known as the warm-hot intergalactic medium. However, it is difficult to detect them there because the largest by far constituent of this gas-hydrogen-is mostly ionized and therefore almost invisible in far-ultraviolet spectra with typical signal-to-noise ratios 8,9 . Indeed, despite large observational efforts, only a few marginal claims of detection have been made so far 2,10 . Here we report observations of two absorbers of highly ionized oxygen (O VII) in the high-signal-to-noise-ratio X-ray spectrum of a quasar at a redshift higher than 0.4. These absorbers show no variability over a two-year timescale and have no associated cold absorption, making the assumption that they originate from the quasar's intrinsic outflow or the host galaxy's interstellar medium implausible. The O VII systems lie in regions characterized by large (four times larger than average 11 ) galaxy overdensities and their number (down to the sensitivity threshold of our data) agrees well with numerical simulation predictions for the long-sought warm-hot intergalactic medium. We conclude that the missing baryons have been found.

  20. Photochemistry of polycyclic aromatic hydrocarbons in cosmic water ice. II. Near UV/VIS spectroscopy and ionization rates

    NASA Astrophysics Data System (ADS)

    Bouwman, J.; Cuppen, H. M.; Steglich, M.; Allamandola, L. J.; Linnartz, H.

    2011-05-01

    Context. Mid-infrared emission features originating from polycyclic aromatic hydrocarbons (PAHs) are observed towards photon dominated regions in space. Towards dense clouds, however, these emission features are quenched. Observations of dense clouds show that many simple volatile molecules are frozen out on interstellar grains, forming thin layers of ice. Recently, observations have shown that more complex non-volatile species, presumably including PAHs, also freeze out and contribute to the ongoing solid-state chemistry. Aims: The study presented here aims at obtaining reaction rate data that characterize PAH photochemistry upon vacuum ultraviolet (VUV) irradiation in an interstellar H2O ice analogue to explore the potential impact of PAH:H2O ice reactions on overall interstellar ice chemistry. To this end, the experimental results are implemented in a chemical model under simple interstellar cloud conditions. Methods: Time-dependent near-UV/VIS spectroscopy on the VUV photochemistry of anthracene, pyrene, benzo[ghi]perylene and coronene containing interstellar H2O ice analogs is performed at 25 and 125 K, using an optical absorption setup. Results: Near-UV/VIS absorption spectra are presented for these four PAHs and their photoproducts including cationic species trapped in H2O ice. Oscillator strengths of the cation absorption bands are derived relative to the oscillator strength of the neutral parent PAH. The loss of the parent and growth of PAH photoproducts are measured as a function of VUV dose, yielding solid state reaction constants. The rate constants are used in an exploratory astrochemical model, to assess the importance of PAH:H2O ice photoprocessing in UV exposed interstellar environments, compared with the timescales in which PAH molecules are incorporated in interstellar ices. Conclusions: All four PAHs studied here are found to be readily ionized upon VUV photolysis when trapped in H2O ice and exhibit similar rates for ionization at astronomically relevant temperatures. Depending on the relative efficiency of H2O photodesorption and PAH photoionization in H2O ice, the latter may trigger a charge induced aromatic solid state chemistry, in which PAH cations play a central role.

  1. Secondary Interstellar Oxygen in the Heliosphere: Numerical Modeling and Comparison with IBEX-Lo Data

    NASA Astrophysics Data System (ADS)

    Baliukin, I. I.; Izmodenov, V. V.; Möbius, E.; Alexashov, D. B.; Katushkina, O. A.; Kucharek, H.

    2017-12-01

    Quantitative analysis of the interstellar heavy (oxygen and neon) atom fluxes obtained by the Interstellar Boundary Explorer (IBEX) suggests the existence of the secondary interstellar oxygen component. This component is formed near the heliopause due to charge exchange of interstellar oxygen ions with hydrogen atoms, as was predicted theoretically. A detailed quantitative analysis of the fluxes of interstellar heavy atoms is only possible with a model that takes into account both the filtration of primary and the production of secondary interstellar oxygen in the boundary region of the heliosphere as well as a detailed simulation of the motion of interstellar atoms inside the heliosphere. This simulation must take into account photoionization, charge exchange with the protons of the solar wind and solar gravitational attraction. This paper presents the results of modeling interstellar oxygen and neon atoms through the heliospheric interface and inside the heliosphere based on a three-dimensional kinetic-MHD model of the solar wind interaction with the local interstellar medium and a comparison of these results with the data obtained on the IBEX spacecraft.

  2. Challenges in the determination of the interstellar flow longitude from the pickup ion cutoff

    NASA Astrophysics Data System (ADS)

    Taut, A.; Berger, L.; Möbius, E.; Drews, C.; Heidrich-Meisner, V.; Keilbach, D.; Lee, M. A.; Wimmer-Schweingruber, R. F.

    2018-03-01

    Context. The interstellar flow longitude corresponds to the Sun's direction of movement relative to the local interstellar medium. Thus, it constitutes a fundamental parameter for our understanding of the heliosphere and, in particular, its interaction with its surroundings, which is currently investigated by the Interstellar Boundary EXplorer (IBEX). One possibility to derive this parameter is based on pickup ions (PUIs) that are former neutral ions that have been ionized in the inner heliosphere. The neutrals enter the heliosphere as an interstellar wind from the direction of the Sun's movement against the partially ionized interstellar medium. PUIs carry information about the spatial variation of their neutral parent population (density and flow vector field) in their velocity distribution function. From the symmetry of the longitudinal flow velocity distribution, the interstellar flow longitude can be derived. Aim. The aim of this paper is to identify and eliminate systematic errors that are connected to this approach of measuring the interstellar flow longitude; we want to minimize any systematic influences on the result of this analysis and give a reasonable estimate for the uncertainty. Methods: We use He+ data measured by the PLAsma and SupraThermal Ion Composition (PLASTIC) sensor on the Solar TErrestrial RElations Observatory Ahead (STEREO A) spacecraft. We analyze a recent approach, identify sources of systematic errors, and propose solutions to eliminate them. Furthermore, a method is introduced to estimate the error associated with this approach. Additionally, we investigate how the selection of interplanetary magnetic field angles, which is closely connected to the pickup ion velocity distribution function, affects the result for the interstellar flow longitude. Results: We find that the revised analysis used to address part of the expected systematic effects obtains significantly different results than presented in the previous study. In particular, the derived uncertainties are considerably larger. Furthermore, an unexpected systematic trend of the resulting interstellar flow longitude with the selection of interplanetary magnetic field orientation is uncovered.

  3. The interaction of the solar wind with the interstellar medium

    NASA Technical Reports Server (NTRS)

    Axford, W. I.

    1972-01-01

    The expected characteristics of the solar wind, extrapolated from the vicinity of the earth are described. Several models are examined for the interaction of the solar wind with the interstellar plasma and magnetic field. Various aspects of the penetration of neutral interstellar gas into the solar wind are considered. The dynamic effects of the neutral gas on the solar wind are described. Problems associated with the interaction of cosmic rays with the solar wind are discussed.

  4. On the Surface Formation of NH3 and HNCO in Dark Molecular Clouds - Searching for Wöhler Synthesis in the Interstellar Medium

    NASA Astrophysics Data System (ADS)

    Fedoseev, Gleb; Lamberts, Thanja; Linnartz, Harold; Ioppolo, Sergio; Zhao, Dongfeng

    Despite its potential to reveal the link between the formation of simple species and more complex molecules (e.g., amino acids), the nitrogen chemistry of the interstellar medium (ISM) is still poorly understood. Ammonia (NH _{3}) is one of the few nitrogen-bearing species that have been observed in interstellar ices toward young stellar objects (YSOs) and quiescent molecular clouds. The aim of the present work is to experimentally investigate surface formation routes of NH _{3} and HNCO through non-energetic surface reactions in interstellar ice analogues under fully controlled laboratory conditions and at astrochemically relevant cryogenic temperatures. This study focuses on the formation of NH _{3} and HNCO in CO-rich (non-polar) interstellar ices that simulate the CO freeze-out stage in interstellar dark cloud regions, well before thermal and energetic processing start to become predominant. Our work confirms the surface formation of ammonia through the sequential addition of three hydrogen/deuterium atoms to a single nitrogen atom at low temperature. The H/D fractionation of the formed ammonia is also shown. Furthermore, we show the surface formation of solid HNCO through the interaction of CO molecules with NH radicals - one of the intermediates in the formation of solid NH _{3}. Finally, we discuss the implications of HNCO in astrobiology, as a possible starting point for the formation of more complex prebiotic species.

  5. Laboratory Anion Chemistry: Implications for the DIBs, and a Potential Formation Mechanism for a Known Interstellar Molecule

    NASA Technical Reports Server (NTRS)

    Eichelberger, B.; Barckholtz, C.; Stepanovic, M.; Bierbaum, V.; Snow, T.

    2002-01-01

    Due to recent interest in molecular anions as possible interstellar species, we have carried out several laboratory studies of anion chemistry. The reactions of the series C(sub n)(sup -); and C(sub n)H(sup -) with H and H2 were studied to address the viability of such species in the diffuse interstellar medium and to address their ability to be carriers of the diffuse interstellar bands (DIBs). These same molecules were also reacted with N and O to show possible heteroatomic products. C(sub m)N(sup - was a particularly stable product from the reaction of C(sub n)(sup -) + N. C3N(sup -) was further reacted with H to study chemistry that could produce HC3N, a known interstellar species. The reactions were done in a flowing afterglow selected ion flow tube apparatus (FA-SIFT). The anions were generated in an electron impact or cold cathode discharge source and the anion of interest was then selected by a quadrupole mass filter. The selected ion was then reacted with the atomic or molecular species in the flow tube and products were detected by another quadrupole. While the C(sub n)(sup -) species do not appear to be viable DIB carriers, their possible presence could provide a mechanism for the formation of known heteroatomic neutral molecules detected in the interstellar medium (ISM).

  6. The ESO Diffuse Interstellar Band Large Exploration Survey (EDIBLES)

    NASA Astrophysics Data System (ADS)

    Cami, J.; Cox, N. L.; Farhang, A.; Smoker, J.; Elyajouri, M.; Lallement, R.; Bacalla, X.; Bhatt, N. H.; Bron, E.; Cordiner, M. A.; de Koter, A..; Ehrenfreund, P.; Evans, C.; Foing, B. H.; Javadi, A.; Joblin, C.; Kaper, L.; Khosroshahi, H. G.; Laverick, M.; Le Petit, F..; Linnartz, H.; Marshall, C. C.; Monreal-Ibero, A.; Mulas, G.; Roueff, E.; Royer, P.; Salama, F.; Sarre, P. J.; Smith, K. T.; Spaans, M.; van Loon, J. T..; Wade, G.

    2018-03-01

    The ESO Diffuse Interstellar Band Large Exploration Survey (EDIBLES) is a Large Programme that is collecting high-signal-to-noise (S/N) spectra with UVES of a large sample of O and B-type stars covering a large spectral range. The goal of the programme is to extract a unique sample of high-quality interstellar spectra from these data, representing different physical and chemical environments, and to characterise these environments in great detail. An important component of interstellar spectra is the diffuse interstellar bands (DIBs), a set of hundreds of unidentified interstellar absorption lines. With the detailed line-of-sight information and the high-quality spectra, EDIBLES will derive strong constraints on the potential DIB carrier molecules. EDIBLES will thus guide the laboratory experiments necessary to identify these interstellar “mystery molecules”, and turn DIBs into powerful diagnostics of their environments in our Milky Way Galaxy and beyond. We present some preliminary results showing the unique capabilities of the EDIBLES programme.

  7. Extinct radioactivities - A three-phase mixing model. [for early solar system abundances

    NASA Technical Reports Server (NTRS)

    Clayton, D. D.

    1983-01-01

    A new class of models is advanced for interpreting the relationship of radioactive abundances in the early solar system to their average concentration in the interstellar medium. The model assumes that fresh radioactivities are ejected from supernovae into the hot interstellar medium, and that the time scales for changes of phase into molecular clouds determine how much survives for formation therein of the solar system. A more realistic and physically motivated understanding of the low observed concentrations of I-129, Pu-244, and Pd-107 may result.

  8. Interpreting the 10 micron Astronomical Silicate Feature

    NASA Astrophysics Data System (ADS)

    Bowey, Janet E.

    1998-11-01

    10micron spectra of silicate dust in the diffuse medium towards Cyg OB2 no. 12 and towards field and embedded objects in the Taurus Molecular Cloud (TMC) were obtained with CGS3 at the United Kingdom Infrared Telescope (UKIRT). Cold molecular-cloud silicates are sampled in quiescent lines of sight towards the field stars Taurus-Elias 16 and Elias 13, whilst observations of the embedded young stellar objects HL Tau, Taurus-Elias 7 (Haro6-10) and Elias 18 also include emission from heated dust. To obtain the foreground silicate absorption profiles, featureless continua are estimated using smoothed astronomical and laboratory silicate emissivities. TMC field stars and Cyg OB2 no. 12 are modelled as photospheres reddened by foreground continuum and silicate extinction. Dust emission in the non-photospheric continua of HL Tau and Elias 7 (Haro6-10) is distinguished from foreground silicate absorption using a 10micron disk model, based on the IR-submm model of T Tauri stars by Adams, Lada & Shu (1988), with terms added to represent the foreground continuum and silicate extinction. The absorption profiles of HL Tau and Elias 7 are similar to that of the field star Elias 16. Fitted temperature indices of 0.43 (HL Tau) and 0.33 (Elias 7) agree with Boss' (1996) theoretical models of the 200-300K region, but are lower than those of IR-submm disks (0.5-0.61; Mannings & Emerson 1994); the modelled 10micron emission of HL Tau is optically thin, that of Elias 7 is optically thick. A preliminary arcsecond-resolution determination of the 10micron emissivity near θ1 Ori D in the Trapezium region of Orion and a range of emission temperatures (225-310K) are derived from observations by T. L. Hayward; this Ney-Allen emissivity is 0.6micron narrower than the Trapezium emissivity obtained by Forrest et al. (1975) with a large aperture. Published interstellar grain models, elemental abundances and laboratory studies of Solar System silicates (IDPs, GEMS and meteorites), the 10micron spectra of comets, interstellar silicates, synthetic silicates and terrestrial minerals, and the effects of laboratory processing on the 10micron spectra of crystalline and amorphous silicates are reviewed to provide insight into the mineralogy of interstellar silicate dust. The wavelengths of the peaks of the 10micron silicate profiles decrease between circumstellar, diffuse medium and molecular-cloud environments, indicating (after Gürtler & Henning 1986) that the amorphous pyroxene content of initially olivine-rich interstellar dust increases with time. This is accompanied by an increase in the FWHM of the features which indicates an increase in grain size and/or an increasing fraction of chemically-varied crystalline pyroxene. Fine structure in the Cyg OB2 no. 12, Elias 16, Elias 7, HL Tau profiles indicate that hydrated layer silicates similar to terrestrial serpentines, clays and talc may be a ubiquitous component of interstellar dust. At 10microns the narrow bands of mixed crystalline pyroxenes blend, making their identification difficult. Since no fine structure is observed near 11.2microns, the fraction of crystalline olivine is small. In geology direct olivine-plus-SiO2 to pyroxene reactions occur only at high pressure within the terrestrial mantle. Therefore the fraction of amorphous pyroxene is probably increased by the hydration of Mg-rich olivine to form a serpentine-like hydrated silicate, which is subsequently annealed to form a mixture of amorphous pyroxene and olivine. Terrestrial and laboratory olivine samples are readily converted to serpentine in the presence of water, and (after extended annealing) the first crystalline band to appear is the 11.2micron olivine feature frequently observed in cometary spectra.

  9. GHRS observations of cool, low-gravity star. 2: Flow and turbulent velocities in the outer atmosphere of gamma CRU CIS (M3.4 III)

    NASA Technical Reports Server (NTRS)

    Carpenter, Kenneth G.; Robinson, Richard D.; Judge, Philip G.

    1995-01-01

    The Goddard High Resoulution Spectrograph (GHRS) on the Hubble Space Telescope (HST) has been used to obtain medium (R = 20,000) and high (R = 85,000) resoultion UV spectra of chromosphere emission features for the M3.4 III star gamma Cru. Small Science Aperture (SSA) G270M and Echelle-B spectra of selected regions in the 2300-2850 A range were obtained to determine the kinematics of the chromosphere using lines of C2), Fe2, Co2, Si1/2), Ni2, Mn2, and Mg2. Profiles of C2) (UV 0.01) lines and fluorescently excited lines of low optical depth indicate average turbulent velocities (Doppler FWHM) of 30.2 +/- 1.3 and 28.8 +/- 1.3 km/s, respectively. The fluorescent emission lines (mean RV = 21.3 +/- 0.9 km/s) and the wings of the emission components of Fe2 lines (mean RV = 22.8 +/- 0.4 km/s) are approximately at rest relative to the radial velocity of the star (21 km/s), while the C2) lines show a modest inflow (mean RV = 23.1 +/- 0.9 km/s). The more opaque lines of Fe2 and Mg2 exhibit complex profiles resulting from line formation in an optically thick, extended expanding atmosphere. The emission wings of these lines are broadened by multiple scattering, and they are centered near the photospheric radial velocity. Closer to line center, these strong lines show a strong blueshifted self-absorption feature (already seen in IUE data), indicative of formation in an expanding chromosphere, and a previously unseen dip in the profiles on the red side of line center. The absorption components, when extracted using simple Gaussian fits, show strong correlations with the relative optical depths of the lines. The derived absorption flow velocities converge to the photospheric velocity as one examines spectra features formed deeper in the atmosphere. The blueward abosrption velocity increases in magnitude from about 7 to 14 km/s with increasing line optical depth - the strong absorptions directly map the acceleration of the outflowing stellar wind, while the interpretation of the weaker redshifted abosrptions is more ambiguous, indicating either an inflow of material or formation in an extended, spherically expanding outflow. The Mg2 and Fe2 profiles, taken together, imply that the wind speed decreases between the atmospheric layers where the Mg2 and Fe2 self-absorption components are formed. Interstellar absorptions are seen in the resonance lines of Mg2 (UV 1) and Fe2 (UV1) with zero-volt lower levels, at about -3 km/s, consistent with models of the interstellar medium in the direction of gamma Cru. Finally, we have detected the Mg2 'satellite lines' seen in solar spectra obtained above the limb. In gamma Cru these lines are probably fluorescently excited by H Ly beta.

  10. Iron and Silicate Dust Growth in the Galactic Interstellar Medium: Clues from Element Depletions

    NASA Astrophysics Data System (ADS)

    Zhukovska, Svitlana; Henning, Thomas; Dobbs, Clare

    2018-04-01

    The interstellar abundances of refractory elements indicate a substantial depletion from the gas phase, which increases with gas density. Our recent model of dust evolution, based on hydrodynamic simulations of the life cycle of giant molecular clouds (GMCs), proves that the observed trend for [Sigas/H] is driven by a combination of dust growth by accretion in the cold diffuse interstellar medium (ISM) and efficient destruction by supernova (SN) shocks. With an analytic model of dust evolution, we demonstrate that even with optimistic assumptions for the dust input from stars and without destruction of grains by SNe it is impossible to match the observed [Sigas/H]–n H relation without growth in the ISM. We extend the framework developed in our previous work for silicates to include the evolution of iron grains and address a long-standing conundrum: “Where is the interstellar iron?” Much higher depletion of Fe in the warm neutral medium compared to Si is reproduced by the models, in which a large fraction of interstellar iron (70%) is locked as inclusions in silicate grains, where it is protected from efficient sputtering by SN shocks. The slope of the observed [Fegas/H]–n H relation is reproduced if the remaining depleted iron resides in a population of metallic iron nanoparticles with sizes in the range of 1–10 nm. Enhanced collision rates due to the Coulomb focusing are important for both silicate and iron dust models to match the slopes of the observed depletion–density relations and the magnitudes of depletion at high gas density.

  11. A survey of interstellar HI from L alpha absorption measurements 2

    NASA Technical Reports Server (NTRS)

    Bohlin, R. C.; Savage, B. D.; Drake, J. F.

    1977-01-01

    The Copernicus satellite surveyed the spectral region near L alpha to obtain column densities of interstellar HI toward 100 stars. The distance to 10 stars exceeds 2 kpc and 34 stars lie beyond 1 kpc. Stars with color excess E(B-V) up to 0.5 mag are observed. The value of the mean ratio of total neutral hydrogen to color excess was found to equal 5.8 x 10 to the 21st power atoms per (sq cm x mag). For stars with accurate E(B-V), the deviations from this mean are generally less than a factor of 1.5. A notable exception is the dark cloud star, rho Oph. A reduction in visual reddening efficiency for the grains that are larger than normal in the rho Oph dark cloud probably explains this result. The conversion of atomic hydrogen into molecular form in dense clouds was observed in the gas to E(B-V) correlation plots. The best estimate for the mean total gas density for clouds and the intercloud medium, as a whole, in the solar neighborhood and in the plane of the galaxy is 1.15 atoms per cu. cm; those for the atomic gas and molecular gas alone are 0.86 atoms per cu cm and 0.143 molecules per cu cm respectively. For the intercloud medium, where molecular hydrogen is a negligible fraction of the total gas, atomic gas density was found to equal 0.16 atoms per cu cm with a Gaussian scale height perpendicular to the plane of about 350 pc, as derived from high latitude stars.

  12. Solar wind/local interstellar medium interaction including charge exchange with neural hydrogen

    NASA Technical Reports Server (NTRS)

    Pauls, H. Louis; Zank, Gary P.

    1995-01-01

    We present results from a hydrodynamic model of the interaction of the solar wind with the local interstellar medium (LISM), self-consistently taking into account the effects of charge exchange between the plasma component and the interstellar neutrals. The simulation is fully time dependent, and is carried out in two or three dimensions, depending on whether the helio-latitudinal dependence of the solar wind speed and number density (both giving rise to three dimensional effects) are included. As a first approximation it is assumed that the neutral component of the flow can be described by a single, isotropic fluid. Clearly, this is not the actual situation, since charge exchange with the supersonic solar wind plasma in the region of the nose results in a 'second' neutral fluid propagating in the opposite direction as that of the LISM neutrals.

  13. Galactic and extragalactic hydrogen in the X-ray spectra of Gamma Ray Bursts

    NASA Astrophysics Data System (ADS)

    Rácz, I. I.; Bagoly, Z.; Tóth, L. V.; Balázs, L. G.; Horváth, I.; Pintér, S.

    2017-07-01

    Two types of emission can be observed from gamma-ray bursts (GRBs): the prompt emission from the central engine which can be observed in gamma or X-ray (as a low energy tail) and the afterglow from the environment in X-ray and at shorter frequencies. We examined the Swift XRT spectra with the XSPEC software. The correct estimation of the galactic interstellar medium is very important because we observe the host emission together with the galactic hydrogen absorption. We found that the estimated intrinsic hydrogen column density and the X-ray flux depend heavily on the redshift and the galactic foreground hydrogen. We also found that the initial parameters of the iteration and the cosmological parameters did not have much effect on the fitting result.

  14. Laboratory and observational study of the interrelation of the carbonaceous component of interstellar dust and solar system materials

    NASA Technical Reports Server (NTRS)

    Allamandola, L. J.; Sanford, S. A.; Schutte, W. A.; Tielens, A. G. G. M.

    1991-01-01

    By studying the chemical and isotopic composition of interstellar ice and dust, one gains insight into the composition and chemical evolution of the solid bodies in the solar nebula and the nature of the material subsequently brought into the inner part of the solar system by comets and meteorites. It is now possible to spectroscopically probe the composition of interstellar ice and dust in the mid-infrared, the spectral range which is most diagnostic of fundamental molecular vibrations. We can compare these spectra of various astronomical objects (including the diffuse and dense interstellar medium, comets, and the icy outer planets and their satellites) with the spectra of analogs we produce in the laboratory under conditions which mimic those in these different objects. In this way one can determine the composition and abundances of the major constituents of the various ices and place general constraints on the types of organics coating the grains in the diffuse interstellar medium. In particular we have shown the ices in the dense clouds contain H2O, CH3OH, CO, perhaps some NH3 and H2CO, we well as nitriles and ketones or esters. Furthermore, by studying the photochemistry of these ice analogs in the laboratory, one gains insight into the chemistry which takes place in interstellar/precometary ices. Chemical and spectroscopic studies of photolyzed analogs (including deuterated species) are now underway. The results of some of these studies will be presented and implications for the evolution of the biogenic elements in interstellar dust and comets will be discussed.

  15. RKR Franck-Condon factors for blue and ultraviolet transitions of some molecules of astrophysical interest and some comments on the interstellar abundance of CH, CH+ and SiH+.

    NASA Technical Reports Server (NTRS)

    Liszt, H. S.; Hayden Smith, W.

    1972-01-01

    RKR Franck-Condon factors for thirteen of the blue and ultraviolet transitions of AlF, AlO, BH, BD, CH, CD, CH(+), SiO and SiH(+) have been calculated. The interstellar abundances of CH, CH(+) and SiH(+) are discussed with regard to recent laboratory measurements, our Franck-Condon factors, and observations of the sun and the interstellar medium.

  16. Unveiling Vela: time variability of interstellar lines in the direction of the Vela supernova remnant - II. Na D and Ca II

    NASA Astrophysics Data System (ADS)

    Kameswara Rao, N.; Lambert, David L.; Reddy, Arumalla B. S.; Gupta, Ranjan; Muneer, S.; Singh, Harinder P.

    2017-05-01

    In a survey conducted between 2011 and 2012 of interstellar Na I D line profiles in the direction of the Vela supernova remnant (SNR), a few lines of sight showed dramatic changes in low-velocity absorption components with respect to profiles from 1993 to 1994 reported by Cha & Sembach. Three stars - HD 63578, HD 68217 and HD 76161 - showed large decrease in strength over the 1993-2012 interval. HD 68217 and HD 76161 are associated with the Vela SNR whereas HD 63578 is associated with γ2 Velorum wind bubble. Here, we present high spectral resolution observations of Ca II K lines obtained with the Southern African Large Telescope towards these three stars along with simultaneous observations of Na I D lines. These new spectra confirm that the Na D interstellar absorption weakened drastically between 1993-1994 and 2011-2012 but show for the first time that the Ca II K line is unchanged between 1993-1994 and 2015. This remarkable contrast between the behaviour of Na D and Ca II K absorption lines is a puzzle concerning gas presumably affected by the outflow from the SNR and the wind from γ2 Velorum.

  17. Laboratory Measurements of Celestial Solids

    NASA Technical Reports Server (NTRS)

    Sievers, A. J.; Beckwith, S. V. W.

    1997-01-01

    Our experimental study has focused on laboratory measurements of the low temperature optical properties of a variety of astronomically significant materials in the infrared and mm-wave region of the spectrum. Our far infrared measurements of silicate grains with an open structure have produced a variety of unusual results: (1) the low temperature mass opacity coefficient of small amorphous 2MgO(central dot)SiO2 and MgO(central dot)2SiO2 grains are many times larger than the values previously used for interstellar grain material; (2) all of the amorphous silicate grains studied possess the characteristic temperature dependent signature associated with two level systems in bulk glass; and (3) a smaller but nonzero two level temperature dependence signature is also observed for crystalline particles, its physical origin is unclear. These laboratory measurements yield surprisingly large and variable values for the mm-wave absorption coefficients of small silicate particles similar to interstellar grains, and suggest that the bulk absorptivity of interstellar dust at these long wavelengths will not be well known without such studies. Furthermore, our studies have been useful to better understand the physics of the two level absorption process in amorphous and crystalline grains to gain confidence in the wide applicability of these results.

  18. Applications of the Electrodynamic Tether to Interstellar Travel

    NASA Technical Reports Server (NTRS)

    Matloff, Gregory L.; Johnson, Les

    2005-01-01

    After considering relevant properties of the local interstellar medium and defining a sample interstellar mission, this paper considers possible interstellar applications of the electrodynamic tether, or EDT. These include use of the EDT to provide on-board power and affect trajectory modifications and direct application of the EDT to starship acceleration. It is demonstrated that comparatively modest EDTs can provide substantial quantities of on-board power, if combined with a large-area electron-collection device such as the Cassenti toroidal-field ramscoop. More substantial tethers can be used to accomplish large-radius thrustless turns. Direct application of the EDT to starship acceleration is apparently infeasible.

  19. Avoiding Intellectual Stagnation: The Starship as an Expander of Minds

    NASA Astrophysics Data System (ADS)

    Crawford, Ian A.

    2014-06-01

    Interstellar exploration will advance human knowledge and culture in multiple ways. Scientifically, it will advance our understanding of the interstellar medium, stellar astrophysics, planetary science and astrobiology. In addition, significant societal and cultural benefits will result from a programme of interstellar exploration and colonisation. Most important will be the cultural stimuli resulting from expanding the horizons of human experience, and increased opportunities for the spread and diversification of life and culture through the Galaxy. Ultimately, a programme of interstellar exploration may be the only way for human (and post-human) societies to avoid the intellectual stagnation predicted for the `end of history'.

  20. Interaction of planetary nebulae with the interstellar medium

    NASA Technical Reports Server (NTRS)

    Borkowski, Kazimierz J.; Sarazin, Craig L.; Soker, Noam

    1990-01-01

    The interaction of a moving planetary nebula (PN) with the interstellar medium is considered. The PN shell is compressed first in the direction of the stellar motion. This produces a dipole asymmetry in the surface brightness of the nebula, typically at a nebular density of about 40/cu cm if the nebula is located in the Galactic plane. In the later stages of the interaction, this part of the shell is significantly decelerated with respect to the central star, and the PN becomes strongly asymmetric in shape. This distortion and the subsequent stripping of the nebular gas away from the central star typically occurs at a low nebular density of about 6/cu cm. The morphology of PNs with central stars whose proper motions exceed 0.015 arcsec/yr was examined, and it was found that many of the extended nebulae are interacting with the interstellar medium (ISM). The sample doubles the number of known PNs interacting with the ISM. The morphology of nearby PNs was examined, and a number of strongly asymmetric nebuale were found.

  1. Photoabsorption and photodissociation of molecules important in the interstellar medium

    NASA Technical Reports Server (NTRS)

    Lee, L. C.

    1985-01-01

    The photoabsorption and photodissociation cross sections of several interstellar molecules and radicals in the 105 to 210 nm region were measured. The research results accomplished are briefly described. Photoabsorption cross sections of OD and CN, and photoabsorption and photodissociation of HCl, and photoabsorption and photodissociation cross sections of CH3OH are discussed.

  2. Ionization of Local Interstellar Gas Based on STIS and FUSE spectra of Nearby Stars

    NASA Astrophysics Data System (ADS)

    Redfield, Seth; Linsky, J. L.

    2009-01-01

    The ultraviolet contains many resonance line transitions that are sensitive to a range of ionization stages of ions present in the local interstellar medium (LISM). We couple observations of high resolution ultraviolet spectrographs, STIS and GHRS on the Hubble Space Telescope (HST) and the Far-Ultraviolet Spectroscopic Explorer (FUSE) in order to make a comprehensive survey of the ionization structure of the local interstellar medium. In particular, we focus on the sight line toward G191-B2B, a nearby (69 pc) white dwarf. We present interstellar detections of highly ionized elements (e.g., SiIII, CIII, CIV, etc) and compare them directly to neutral or singly ionized LISM detections (e.g., SiII, CII, etc). The extensive observations of G191-B2B provides an opportunity for a broad study of ionization stages of several elements, while a survey of several sight lines provides a comprehensive look at the ionization structure of the LISM. We acknowledge support for this project through NASA FUSE Grant NNX06AD33G.

  3. CNO isotopes in red giant stars

    NASA Technical Reports Server (NTRS)

    Wannier, P. G.

    1985-01-01

    The production and distribution of the CNO nuclides is discussed in light of observed abundance ratios in red giants and in the interstellar medium. Isotope abundances have been measured in the atmospheres and in the recent ejecta of cool giants, including carbon stars, S-type stars and red supergiants as well as in oxygen-rich giants making their first ascent of the giant branch. Several of the observations suggest revision of currently accepted nuclear cross-sections and of the mixing processes operating in giant envelopes. By comparing red giant abundances with high-quality observations of the interstellar medium, conclusions are reached about the contribution of intermediate-mass stars to galactic nuclear evolution. The three oxygen isotopes, O-16, -17 and -18, are particularly valuable for such comparison because they reflect three different stages of stellar nucleosynthesis. One remarkable result comes from observations of O-17/O-18 in several classes of red giant stars. The observed range of values for red giants excludes the entire range of values seen in interstellar molecular clouds. Furthermore, both the observations of stars and interstellar clouds exclude the isotopic ratio found in the solar system.

  4. The Diffuse Interstellar Bands: Solving a Century Old Problem

    NASA Technical Reports Server (NTRS)

    Salama, Farid

    2017-01-01

    The Diffuse Interstellar Bands (DIBs) are a set of apporoximately 500 absorption bands that are seen in the spectra of reddened stars (i.e., stars obscured by the presence of interstellar clouds in their line of sight). The first DIBs were detected in the visible over a century ago. Diffuse Interstellar Bands are now detected from the near ultraviolet to the near infrared in the spectra of reddened stars spanning a variety of interstellar environments in our local, and in other galaxies. Although DIB carriers are a significant part of the interstellar chemical inventory as they account for a noticeable fraction of the interstellar extinction, the nature of their carriers is still unknown over a century after the detection of the first bands. DIB carriers are stable and ubiquitous in a broad variety of interstellar environments and play a unique role in interstellar physics and chemistry. It has long been realized that the solving of the DIB problem requires a strong synergy between astronomical observations, laboratory astrophysics and astrochemistry, quantum chemistry calculations and astrophysical modeling of line-of-sights. In this review, we'll present and discuss the current state of this perplexing problem. We'll review the progress and the failures that have been encountered in the long quest for the identification of the carriers of these ubiquitous interstellar bands.

  5. Laser Induced Fluorescence Spectroscopy of Neutral and Ionized Polycyclic Aromatic Hydrocarbons in a Cosmic Simulation Chamber

    NASA Astrophysics Data System (ADS)

    Bejaoui, Salma; Salama, Farid

    2015-08-01

    Polycyclic aromatic hydrocarbon (PAH) molecules are considered the best carriers to account for the ubiquitous infrared emission bands. PAHs have also been proposed as candidates to explain the diffuse interstellar bands (DIBs), a series of absorption features seen on the interstellar extinction curve and are plausible carriers for the extended red emission (ERE), a photoluminescent process associated with a wide variety of interstellar environments. Extensive efforts have been devoted over the past two decades to characterize the physical and chemical properties of PAH molecules and ions in space. Absorption spectra of PAH molecules and ions trapped in solid matrices have been compared to the DIBs [1, 2]. Absorption spectra of several cold, isolated gas-phase PAHs have also been measured under experimental conditions that mimic the interstellar conditions [see 3 for a review]. The purpose of this study is to provide a new dimension to the existing spectroscopic database of neutral and single ionized PAHs that is largely based on absorption spectra by adding emission spectroscopy data. The measurements are based on the laser-induced fluorescence (LIF) technique [4] and are performed with the Pulsed Discharge Nozzle (PDN) of the COSmIC laboratory facility at NASA Ames laboratory. The PDN generates plasma in a free supersonic jet expansion to simulate the physical and the chemical conditions in interstellar environments. We focus, here, on the fluorescence spectra of large neutral PAHs and their cations where there is a lack of fluorescence spectroscopy data. The astronomical implications of the data (e.g., ERE) are examinedReferences[1] F. Salama, E. Bakes, L.J. Allamandola, A.G.G.M. Tielens, Astrophys. J., 458 (1996) p.621[2] F. Salama, The ISO Revolution, EDP Sciences, Les Ulis, France (1999) p.65[3] Salama F., In Organic Matter in Space, IAU Symposium 251, Kwok & Sandford Eds.Cambridge University Press,4, S251,(2008), p. 357 (2008) and references therein.[4] Salma Bejaoui, Xavier Mercier, Pascale Desgroux, Eric Therssen, Comb.& Fl, 161 (2014) p. 2479

  6. CAN IBEX DETECT INTERSTELLAR NEUTRAL HELIUM OR OXYGEN FROM ANTI-RAM DIRECTIONS?

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Galli, A.; Wurz, P.; Park, J.

    To better constrain the parameters of the interstellar neutral flow, we searched the Interstellar Boundary EXplorer (IBEX)-Lo database for helium and oxygen from the interstellar medium in the anti-ram direction in the three years (2009–2011) with the lowest background rates. We found that IBEX-Lo cannot observe interstellar helium from the anti-ram direction because the helium energy is too low for indirect detection by sputtering off the IBEX-Lo conversion surface. Our results show that this sputtering process has a low energy threshold between 25 and 30 eV, whereas the energy of the incident helium is only 10 eV for these observations.more » Interstellar oxygen, on the other hand, could in principle be detected in the anti-ram hemisphere, but the expected magnitude of the signal is close to the detection limit imposed by counting statistics and by the magnetospheric foreground.« less

  7. Global Anisotropies in TeV Cosmic Rays Related to the Sun's Local Galactic Environment from IBEX

    NASA Technical Reports Server (NTRS)

    Schwadron, N. A.; Adams, F. C.; Christian, E. R.; Desiati, P.; Frisch, P.; Funsten, H. O.; Jokipii, J. R.; McComas, D. J.; Moebius, E.; Zank, G. P.

    2014-01-01

    Observations with the Interstellar Boundary Explorer (IBEX) have shown enhanced energetic neutral atom (ENA) emission from a narrow, circular ribbon likely centered on the direction of the local interstellar medium (LISM) magnetic field. Here, we show that recent determinations of the local interstellar velocity, based on interstellar atom measurements with IBEX, are consistent with the interstellar modulation of high-energy (tera-electron volts, TeV) cosmic rays and diffusive propagation from supernova sources revealed in global anisotropy maps of ground-based high-energy cosmic-ray observatories (Milagro, Asg, and IceCube). Establishing a consistent local interstellar magnetic field direction using IBEX ENAs at hundreds to thousands of eV and galactic cosmic rays at tens of TeV has wide-ranging implications for the structure of our heliosphere and its interactions with the LISM, which is particularly important at the time when the Voyager spacecraft are leaving our heliosphere.

  8. Global anisotropies in TeV cosmic rays related to the Sun's local galactic environment from IBEX.

    PubMed

    Schwadron, N A; Adams, F C; Christian, E R; Desiati, P; Frisch, P; Funsten, H O; Jokipii, J R; McComas, D J; Moebius, E; Zank, G P

    2014-02-28

    Observations with the Interstellar Boundary Explorer (IBEX) have shown enhanced energetic neutral atom (ENA) emission from a narrow, circular ribbon likely centered on the direction of the local interstellar medium (LISM) magnetic field. Here, we show that recent determinations of the local interstellar velocity, based on interstellar atom measurements with IBEX, are consistent with the interstellar modulation of high-energy (tera-electron volts, TeV) cosmic rays and diffusive propagation from supernova sources revealed in global anisotropy maps of ground-based high-energy cosmic-ray observatories (Milagro, Asγ, and IceCube). Establishing a consistent local interstellar magnetic field direction using IBEX ENAs at hundreds to thousands of eV and galactic cosmic rays at tens of TeV has wide-ranging implications for the structure of our heliosphere and its interactions with the LISM, which is particularly important at the time when the Voyager spacecraft are leaving our heliosphere.

  9. A survey of ultraviolet interstellar absorption lines

    NASA Technical Reports Server (NTRS)

    Bohlin, R. C.; Jenkins, E. B.; Spitzer, L., Jr.; York, D. G.; Hill, J. K.; Savage, B. D.; Snow, T. P., Jr.

    1983-01-01

    A telescope-spectrometer on the Copernicus spacecraft made possible the measurement of many ultraviolet absorption lines produced by the interstellar gas. The present survey provides data on ultraviolet absorption lines in the spectra of 88 early-type stars. The stars observed are divided into four classes, including reddened stars, unreddened bright stars, moderately reddened bright stars, and unreddened and moderately reddened faint stars. Data are presented for equivalent width, W, radial velocity V, and rms line width, D, taking into account some 10 to 20 lines of N I, O I, Si II, P II, S II, Cl I, Cl II, Mn II, Fe II, Ni II, Cu II, and H2. The data are based on multiple scans for each line. Attention is given to details of observations, the data reduction procedure, and the computation of equivalent width, mean velocity, and velocity dispersion.

  10. The solar system/interstellar medium connection - Gas phase abundances

    NASA Technical Reports Server (NTRS)

    Lutz, Barry L.

    1987-01-01

    Gas-phase abundances in the outer solar system are presented as diagnostics of the interstellar medium at the time of the solar system formation, some 4.55 billion years ago. Possible influences of the thermal and chemical histories of the primitive solar nebula and of the processes which led to the formation and evolution of the outer planets and comets on the elemental and molecular composition of the primordial matter are outlined. The major components of the atmospheres of the outer planets and of the comae of comets are identified, and the cosmogonical and cosmological implications are discussed.

  11. Direct spectroscopic evidence for ionized polycyclic aromatic hydrocarbons in the interstellar medium.

    PubMed

    Sloan, G C; Hayward, T L; Allamandola, L J; Bregman, J D; DeVito, B; Hudgins, D M

    1999-03-01

    Long-slit 8-13 micrometers spectroscopy of the nebula around NGC 1333 SVS 3 reveals spatial variations in the strength and shape of emission features that are probably produced by polycyclic aromatic hydrocarbons (PAHs). Close to SVS 3, the 11.2 micrometers feature develops an excess at approximately 10.8-11.0 micrometers and a feature appears at approximately 10 micrometers. These features disappear with increasing distance from the central source, and they show striking similarities to recent laboratory data of PAH cations, providing the first identification of emission features arising specifically from ionized PAHs in the interstellar medium.

  12. IUE study of the very local interstellar medium. [Copernicus spacecraft

    NASA Technical Reports Server (NTRS)

    Henry, R. C.; Murthy, J.; Moos, H. W.; Landsman, W. B.; Linsky, J. L.; Vidal-Madjar, A.; Gry, C.

    1986-01-01

    The IUE and Copernicus results for the very local interstellar medium are compared. Despite its lower resolution, IUE produces results of comparable quality, giving important confirmation of Copernicus results on the density, temperature, turbulence, and deuterium-to-hydrogen ratio in the region within 10 pc of the Sun. The stars observed are in a very low-density quarter of the galaxy: multicomponent structure seen in other directions may not be present in the direction of most of the observed stars. The exceedingly low densities observed in certain directions encourages the idea that EUV studies of certain normal stars may be possible.

  13. Chemistry of nitrile anions in the interstellar medium

    NASA Astrophysics Data System (ADS)

    Carles, S.; Le Garrec, J.-L.; Guillemin, J.-C.; Biennier, L.

    2015-12-01

    Despite the extreme conditions of temperature (down to 10K) and density (down to 100 molecules/cm3), the giant molecular clouds and the circumstellar envelopes present a rich and complex chemistry. To date, more than 180 molecules have been detected in the InterStellar Medium (ISM) with a large abundance of nitriles (RC≡N). In addition, several anions have been recently observed in this medium: C4H¯, C6H¯, C8H¯, CN¯, C3N¯ and C5N¯. These last species should play a key role in the molecular growth towards complexity. To explore this hypothesis, their reactivity must be studied in the laboratory. The FALP-MS and the CRESU experimental apparatuses of the Rennes University are able to measure absolute rate coefficient of various chemical reactions, including the ion - molecule reactions, in gas phase at low temperature (from 300K for the FALP-MS down to 15K for the CRESU). Therefore, these experimental tools are particularly adapted to the kinetic studies of reactions potentially involved in the Interstellar Medium. One of the difficulties encountered in experiments with anions is their generation. We describe here the formation of the CN¯ and C3N¯ anions by dissociative electron attachment on the molecular precursors BrCN and BrC3N.

  14. Probing the Local Bubble with diffuse interstellar bands. I. Project overview and southern hemisphere survey

    NASA Astrophysics Data System (ADS)

    Bailey, Mandy; van Loon, Jacco Th.; Farhang, Amin; Javadi, Atefeh; Khosroshahi, Habib G.; Sarre, Peter J.; Smith, Keith T.

    2016-01-01

    Context. The Sun traverses a low-density, hot entity called the Local Bubble. Despite its relevance to life on Earth, the conditions in the Local Bubble and its exact configuration are not very well known. Besides that, there is some unknown interstellar substance that causes a host of absorption bands across the optical spectrum, called diffuse interstellar bands (DIBs). Aims: We have started a project to chart the Local Bubble in a novel way and learn more about the carriers of the DIBs, by using DIBs as tracers of diffuse gas and environmental conditions. Methods: We conducted a high signal-to-noise spectroscopic survey of 670 nearby early-type stars to map DIB absorption in and around the Local Bubble. The project started with a southern hemisphere survey conducted at the European Southern Observatory's New Technology Telescope and has since been extended to an all-sky survey using the Isaac Newton Telescope. Results: In this first paper in the series, we introduce the overall project and present the results from the southern heiphere survey. We make aviable a catalogue of equivalent-width measurements of the DIBs at 5780, 5797, 5850, 6196, 6203, 6270, 6283, and 6614 Å, of the interstellar Na I D lines at 5890 and 5896 Å, and of the stellar He I line at 5876 Å. We find that the 5780 Å DIB is relatively strong throughout, as compared to the 5797 Å DIB, but especially within the Local Bubble and at the interface iwth a more neutral medium. The 6203 Å DIB shows similar behaviour with respect to the 6196 Å DIB. Some nearby stars show surprisingly strong DIBs, whereas some distant stars show very weak DIBs, indicating small-scale structure within, as well as outside, the Local Bubble. The sight lines with non-detections trace the extent of the Local Bubble especially clearly and show it opening out into the halo. Conclusions: The Local Bubble has a wall that is in contact with hot gas and/or a harsh interstellar radiation field. That wall is perforated, though, causing leakage of radiation and possibly hot gas. On the other hand, compact self-shielded cloudlets are present much closer to the Sun, probably within the Local Bubble itself. As for the carriers of the DIBs, our observations confirm the notion that these are large molecules whose differences in behaviour are mainly governed by their differing resilience and/or electrical charge, with more subtle differences possibly related to varying excitation. Full Tables 1 and 3 are only available at the CDS via anonymous ftp to http://cdsarc.u-strasbg.fr (ftp://130.79.128.5) or I http://cdsarc.u-strasbg.fr/viz-bin/qcat?J/A+A/585/A12

  15. The molecular inventory around protostars: water, organic molecules, and the missing oxygen problem

    NASA Astrophysics Data System (ADS)

    Neufeld, David A.

    2018-06-01

    Massive star formation is accompanied by significant chemical evolution in the surrounding interstellar gas. Here, grains are heated up and icy mantles evaporate, releasing a rich inventory of water and organic molecules into the gas-phase within “hot core” regions surrounding massive protostars. Because molecules on the grain surface present broad infrared features without rotational structure, only the most abundant molecules can be identified unambiguously in the solid phase; once released into the gas-phase, however, where they are free to rotate, the constituents of grain mantles can be identified easily by means of rotational spectroscopy at millimeter and submillimeter wavelengths or through rovibrational spectroscopy in the mid-infrared. While observations of pure-rotational emission lines provide a broad view of hot core chemistry, absorption line spectroscopy of rovibrational transitions can probe the very hottest material closest to the protostar. With access to the mid-infrared spectral region from above 99% of Earth’s water vapor, SOFIA provides a unique platform for high-resolution rovibrational spectroscopy of water and organic molecules, many of which have vibrational transitions in the 5 – 8 micron spectral region that is unobservable from the ground. High spectral resolution is essential for disentangling the rotational structure and providing reliable measurements of the molecular column densities and temperatures. Future SOFIA observations will help elucidate the inventory of water and organic molecules around young protostars, and can address a puzzle related to the “oxygen budget” in the interstellar medium: surprisingly, the main interstellar reservoirs of the third-most abundant element in the Universe have yet to be identified.

  16. Galactic Observations of Terahertz C+ (GOT C+): First Results: Inner Galaxy Survey

    NASA Astrophysics Data System (ADS)

    Langer, William; Velusamy, T.; Pineda, J. L.; Goldsmith, P. F.; Li, D.; Yorke, H. W.

    2010-05-01

    To understand the lifecycle of the interstellar gas and star formation we need detailed information about the diffuse atomic and diffuse molecular gas cloud properties. The ionized carbon [CII] 1.9 THz fine structure line is an important tracer of the atomic gas in the diffuse regions and the interface regions of atomic gas to molecular clouds. Furthermore, C+ is a major ISM coolant and among the Galaxy's strongest far-IR emission lines, and thus controls the thermal conditions throughout large parts of the Galaxy. Until now our knowledge of interstellar gas has been limited to the diffuse atomic phase traced by HI and to the dense molecular H2 phase traced by CO. However, we are missing an important phase of the ISM called "dark gas” in which there is no or little, HI, and mostly molecular hydrogen but with insufficient shielding of UV to allow CO to form. C+ emission and absorption lines at 1.9 THz have the potential to trace this gas. Galactic Observations of the Terahertz C+ Line (GOT C+) is a Herschel Space Observatory Open Time Key Program to study the diffuse interstellar medium by sampling [CII] 1.9 THz line emission throughout the Galactic disk. We discuss the broader perspective of this survey and the first results of GOT C+ obtained during the Science Demonstration Phase (SDP) and Priority Science Phase (PSP) of HIFI, which focus on approximately 100 lines of sight in the inner galaxy. This research was conducted at the Jet Propulsion Laboratory, California Institute of Technology under contract with the National Aeronautics and Space Administration.

  17. HIFI Spectroscopy of H2O Submillimeter Lines in Nuclei of Actively Star-forming Galaxies

    NASA Astrophysics Data System (ADS)

    Liu, L.; Weiß, A.; Perez-Beaupuits, J. P.; Güsten, R.; Liu, D.; Gao, Y.; Menten, K. M.; van der Werf, P.; Israel, F. P.; Harris, A.; Martin-Pintado, J.; Requena-Torres, M. A.; Stutzki, J.

    2017-09-01

    We present a systematic survey of multiple velocity-resolved H2O spectra using Herschel/Heterodyne Instrument for the Far Infrared (HIFI) toward nine nearby actively star-forming galaxies. The ground-state and low-excitation lines (E up ≤ 130 K) show profiles with emission and absorption blended together, while absorption-free medium-excitation lines (130 K ≤ E up ≤ 350 K) typically display line shapes similar to CO. We analyze the HIFI observation together with archival SPIRE/PACS H2O data using a state-of-the-art 3D radiative transfer code that includes the interaction between continuum and line emission. The water excitation models are combined with information on the dust and CO spectral line energy distribution to determine the physical structure of the interstellar medium (ISM). We identify two ISM components that are common to all galaxies: a warm ({T}{dust}˜ 40{--}70 K), dense (n({{H}})˜ {10}5{--}{10}6 {{cm}}-3) phase that dominates the emission of medium-excitation H2O lines. This gas phase also dominates the far-IR emission and the CO intensities for {J}{up}> 8. In addition, a cold ({T}{dust}˜ 20{--}30 K), dense (n({{H}})˜ {10}4{--}{10}5 {{cm}}-3), more extended phase is present. It outputs the emission in the low-excitation H2O lines and typically also produces the prominent line absorption features. For the two ULIRGs in our sample (Arp 220 and Mrk 231) an even hotter and more compact (R s ≤ 100 pc) region is present, which is possibly linked to AGN activity. We find that collisions dominate the water excitation in the cold gas and for lines with {E}{up}≤slant 300 K and {E}{up}≤slant 800 K in the warm and hot component, respectively. Higher-energy levels are mainly excited by IR pumping.

  18. On the temperature and the interstellar nature of coronal gas observed by Copernicus

    NASA Technical Reports Server (NTRS)

    York, D. G.

    1977-01-01

    More detailed scans of ions expected in interstellar absorption at temperatures of 100,000 to 1 million K have been made with Copernicus in five stars: Alpha Vir, Beta Cen, Lambda Sco, Mu Col, and HD 28497. Preliminary data show that the absorption due to O VI is stationary compared with the velocities of stellar absorption in the spectrum of the spectroscopic binary Lambda Sco, thus demonstrating its nonstellar nature. Ionization temperatures interpreted using steady-state or time-dependent assumptions yield values of 280,000 to 700,000 K. There is some evidence that a range of temperatures consistent with this spread may in fact exist in Alpha Vir. For this limited sample of data, there is no clear evidence for a generic association of low-column-density H2 and the O VI absorption. It is concluded that the O VI absorption refers to regions with temperatures exceeding 250,000 K. The only UV diagnostic for the gas appears to be the O VI features, though C IV may be useful in some cases.

  19. Suzaku and XMM-Newton observations of the North Polar Spur: Charge exchange or ISM absorption?

    NASA Astrophysics Data System (ADS)

    Gu, Liyi; Mao, Junjie; Costantini, Elisa; Kaastra, Jelle

    2016-10-01

    By revisiting the Suzaku and XMM-Newton data of the North Polar Spur, we discovered that the spectra are inconsistent with the traditional model consisting of pure thermal emission and neutral absorption. The most prominent discrepancies are the enhanced O vii and Ne ix forbidden-to-resonance ratios, and a high O viii Lyβ line relative to other Lyman series. A collisionally ionized absorption model can naturally explain both features, while a charge exchange component can only account for the former. By including the additional ionized absorption, the plasma in the North Polar Spur can be described by a single-phase collisional ionization equilibrium (CIE) component with a temperature of 0.25 keV, and nitrogen, oxygen, neon, magnesium, and iron abundances of 0.4-0.8 solar. The abundance pattern of the North Polar Spur is well in line with those of the Galactic halo stars. The high nitrogen-to-oxygen ratio reported in previous studies can be migrated to the large transmission of the O viii Lyα line. The ionized absorber is characterized by a balance temperature of 0.17-0.20 keV and a column density of 3-5 × 1019 cm-2. Based on the derived abundances and absorption, we speculate that the North Polar Spur is a structure in the Galactic halo, so that the emission is mostly absorbed by the Galactic interstellar medium in the line of sight.

  20. Chemistry in Magnetohydrodynamic Shock Waves in Diffuse Molecular Clouds

    NASA Astrophysics Data System (ADS)

    Peimbert, Antonio

    1998-09-01

    Absorption observations of the CH+ molecule with column densities of up to 1014 cm-2 in diffuse molecular clouds in many lines of sight are reviewed, and compared to the reddening and to abundances and velocity shifts of molecules like CH. Special attention is placed on the observations of the line of sight towards ς Ophiuchi where high quality observations of many chemical species are available. The problem of the required CH+ is described, and many formation mechanisms from the literature are reviewed, finding that none of them is particularly apt at describing the observations towards ς-Oph. Two fluid J-type shock models are studied as an alternative. The necessary conditions for their formation are discussed, and it is shown how they are expected to be present widely in the interstellar medium. Plane parallel numerical integrations, for the particular case in which the magnetic field is perpendicular to the shock velocity, are employed to study the region of phase-space of initial conditions that will produce 2 fluid shocks. A chemical network is developed and formation of key molecules like CH+, CH and OH, along with the excited roto-vibrational levels of H2, are studied under the shock dynamics. These models are then compared to the observations of the different lines of sight, showing they are capable of reproducing the features of the observations towards most of those clouds. An attempt to model the line of sight towards ς-Oph is done, finding that a shock with a shock speed vs = 9.0km/s going through a cloud with a density of nH = 14cm-3 with a magnetic field of B = 4.7μG does a reasonable job at satisfying most of the observations with the exception of the highest rotational excited states of molecular hydrogen for which observations are available. There is a small family of solutions capable of explaining the observed results which make specific predictions for the velocity profiles of the H2 lines of various excited levels. New observations with the Interstellar Medium Absorption Profile Spectrograph (IMAPS) camera would be useful in confirming or rejecting these models.

  1. Intrinsic Lyα Profile Reconstructions of the MUSCLES Low-Mass Exoplanet Host Stars

    NASA Astrophysics Data System (ADS)

    Youngblood, Allison A.; France, Kevin; Loyd, R. O. Parke

    2015-12-01

    UV stellar radiation can significantly impact planetary atmospheres through heating and photochemistry, even regulating production of potential biomarkers. Cool stars emit the majority of their UV radiation in the form of emission lines, and the incident UV radiation on close-in habitable-zone planets is significant. Lyα (1215.67 Å) dominates the 912 - 3200 Å spectrum of cool stars, but strong absorption from the interstellar medium (ISM) makes direct observations of the intrinsic Lyα emission of even nearby stars challenging. The MUSCLES Hubble Space Telescope Treasury Survey (Measurements of the Ultraviolet Spectral Characteristics of Low-mass Exoplanetary Systems) has completed observations of 7 M and 4 K stars hosting exoplanets (d < 22 pc). We have reconstructed the intrinsic Lyα profiles using an MCMC technique and used the results to estimate the extreme ultraviolet (100 - 911 Å) spectrum. We also present empirical relations between Lyα and chromospheric UV metal lines, e.g., Mg II, for use when ISM absorption prevents direct measurement of Lyα. The spectra presented here will be made publicly available through MAST to support exoplanet atmosphere modeling.

  2. Parsec-scale jets and tori in seyfert galaxies

    NASA Astrophysics Data System (ADS)

    Roy, A. L.; Wrobel, J. M.; Wilson, A. S.; Ulvestad, J. S.; Norris, R. P.; Mundell, C. G.; Krichbaum, T. P.; Falcke, H.; Colbert, E. J. M.

    2001-01-01

    H. Falcke, T.P. Krichbaum, C.G. Mundell, J.S. Ulvestad, A.S. Wilson, J.M. Wrobel Active galaxies tend to be powerful or weak radio sources, and we still do not understand the underlying cause. Perhaps the engine is the same in both systems and the jet gets disrupted by dense interstellar medium in radio-quiet objects, or else the difference is intrinsic with jet power scaling with black hole spin. To distinguish, one can look for signs of interaction between the jet and the narrow-line region, and to measure the jet speed close to the jet base, before environmental effects become important. We find one-sided parsec-scale jet structures in Mrk 348, Mrk 231, NGC 4151, and NGC 5506 using VLBI, and we measure low jet speeds (typically <= 0.25 c). The one-sidedness probably is not due to Doppler boosting, but rather is probably free-free absorption. Plasma conditions required to produce the absorption are Ne >= 2 × 105 cm-3 assuming a path length of 0.1 pc, typical of that expected at the inner edge of the obscuring torus.

  3. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bréchignac, Philippe, E-mail: philippe.brechignac@u-psud.fr; Falvo, Cyril; Parneix, Pascal

    Polycyclic aromatic hydrocarbons (PAHs) are key species encountered in a large variety of environments such as the Interstellar Medium (ISM) and in combustion media. Their UV spectroscopy and photodynamics in neutral and cationic forms are important to investigate in order to learn about their structure, formation mechanisms, and reactivity. Here, we report an experimental photoelectron-photoion coincidence study of a prototypical PAH molecule, coronene, and its small clusters, in a molecular beam using the vacuum ultraviolet (VUV) photons provided by the SOLEIL synchrotron facility. Mass-selected high resolution threshold photoelectron (TPES) and total ion yield spectra were obtained and analyzed in detail.more » Intense series of autoionizing resonances have been characterized as originating from the monomer, dimer, and trimer neutral species, which may be used as spectral fingerprints for their detection in the ISM by VUV absorption spectroscopy. Finally, a full description of the electronic structure of the monomer cation was made and discussed in detail in relation to previous spectroscopic optical absorption data. Tentative vibrational assignments in the near-threshold TPES spectrum of the monomer have been made with the support of a theoretical approach based on density functional theory.« less

  4. The Mg II h and k interstellar lines in the spectrum of the G-type giant HD 156854

    NASA Technical Reports Server (NTRS)

    Gurzadian, G. A.; Cholakian, V. G.; Kondo, Y.; Shore, Steven N.; Terzian, Yervant

    1990-01-01

    The results of the measurements and analysis of the IUE observations of the 2800 Mg II doublet in the spectrum of HD 156854, a G9 III star, are presented. The relative power of the magnesium chromosphere, R(Mg) = 0.00001, is in agreement with the known data for giants of the same class. The emission profiles of this doublet present absorption cores, which are of interstellar origin. Taking into account the interstellar depletion of Mg, the derived density of interstellar hydrogen is n(H) = 0.001/cu cm, which agrees with the conclusion (Paresce 1984) about the possibility of large hydrogen concentrations in some directions of the Galaxy far from the sun.

  5. Interstellar Polycyclic Aromatic Compounds and Astrophysics

    NASA Technical Reports Server (NTRS)

    Hodgins, Douglas M.; DeVincenzi, Donald (Technical Monitor)

    1999-01-01

    Polycyclic aromatic compounds (PACs), a class of organic molecules whose structures are characterized by the presence of two or more fused aromatic rings, have been the subject of astrophysical interest for nearly two decades. Large by interstellar standards (from as few as 20 to perhaps as many as several hundred atoms), it has been suggested that these species are among the most abundant interstellar molecules impacting a wide range of astrophysical phenomena including: the ubiquitous family of infrared emission bands observed in an ever-increasing assortment of astronomical objects; the subtle but rich array of discrete visible/near-infrared interstellar molecular absorption features known as the diffuse interstellar bands (DIBs); the broad near-infrared quasi-continuum observed in a number of nebulae known as excess red emission (ERE); the interstellar ultraviolet extinction curve and broad '2200 Angstrom bump'; the heating/cooling mechanisms of interstellar clouds. Nevertheless, until recently a lack of good-quality laboratory spectroscopic data on PACs under astrophysically relevant conditions (i.e. isolated, ionized molecules; ionized molecular clusters, etc.) has hindered critical evaluation and extension of this model

  6. NASA Scientists Witness a Supernova Cosmic Rite of Passage

    NASA Astrophysics Data System (ADS)

    2005-11-01

    Scientists using NASA's Chandra X-ray Observatory have witnessed a cosmic rite of passage, the transition from a supernova to a supernova remnant, a process that has never been seen in much detail until now, leaving it poorly defined. A supernova is a massive star explosion; the remnant is the beautiful glowing shell that evolves afterwards. When does a supernova become supernova remnant? When does the shell appear and what powers its radiant glow? A science team led by Dr. Stefan Immler of NASA's Goddard Space Flight Center, Greenbelt, Md., has taken a fresh look at a supernova that exploded in 1970, called SN 1970G, just off the handle of the Big Dipper. This is the oldest supernova ever seen by X-ray telescopes. Chandra X-ray Image of SN 1970G Chandra X-ray Image of SN 1970G "Some astronomers have thought there's a moment when the supernova remnant magically turns on years after the supernova itself has faded away, when the shock wave of the explosion finally hits and lights up the interstellar medium," said Immler. "By contrast, our results show that a new supernova quickly and seamlessly evolves into a supernova remnant. The star's own debris, and not the interstellar medium gas, fuels the remnant." These results appear in The Astrophysical Journal, co-authored by Dr. Kip Kuntz, also of Goddard. They support previous Chandra observations of SN 1987A by Dr. Sangwook Park of Penn State. Using new data from Chandra and archived data from the European-led ROSAT and XMM-Newton observatories, Immler and Kuntz pieced together how SN 1970G evolved over the years. They found telltale signs of a supernova remnant - bright X-ray light - yet no evidence of interstellar gas, even across a distance around the site of the explosion 35 times larger than our solar system. Instead, the material that is heated by the supernova shock to glow in X-ray light, what we call the remnant, is from the stellar wind of the star itself and not distant gas in the interstellar medium. This wind, comprising energetic ions, was shed by the progenitor star thousands to million of years before the explosion. If this were from the interstellar medium, it would be much denser than this stellar wind. NOAO Optical Image of SN 1970G NOAO Optical Image of SN 1970G Immler and Kuntz next studied the density profiles of all other supernovae that have been detected over the past two decades. Sure enough, the low-density circumstellar matter from the stellar wind was the source of X-rays, not the interstellar medium. Immler said that historical supernova remnants such as Cassiopeia A, which exploded some 320 years ago, also show no signs of activity from the interstellar medium. This is more than just a name game, more than hypothetically changing SN 1970G to SNR 1970G. "We have to rethink this notion that a shock wave from the supernova crashes into the interstellar medium to create a supernova remnant," said Immler. "The luminous supernova remnants that we see can be created without the need of a dense interstellar medium. In fact, our study showed that all supernovae detected in X-rays over the past 25 years live in a low-density environment." SN 1970G is located in the galaxy M101, also called the Pinwheel Galaxy, a stunning spiral galaxy about 22 million light years away in the constellation Ursa Major, home of the Big Dipper. Although the galaxy itself is visible from dark skies with binoculars, telescopes cannot resolve much structure in SN 1970G, unlike for supernova remnants in our Milky Way galaxy. Discovered with an optical telescope in 1970, SN 1970G was not seen with X-ray telescopes until the 1990s. Immler's work at NASA Goddard is supported through the Universities Space Research Association. Kuntz is supported through University of Maryland, Baltimore County. NASA's Marshall Space Flight Center in Huntsville, Ala., manages the Chandra program for the Agency's Science Mission Directorate. The Smithsonian Astrophysical Observatory controls science and flight operations from the Chandra X-ray Center in Cambridge, Mass. Additional information and images are available at: http://chandra.harvard.edu and http://chandra.nasa.gov

  7. Radiation-pressure-driven dust waves inside bursting interstellar bubbles

    NASA Astrophysics Data System (ADS)

    Ochsendorf, B. B.; Verdolini, S.; Cox, N. L. J.; Berné, O.; Kaper, L.; Tielens, A. G. G. M.

    2014-06-01

    Massive stars drive the evolution of the interstellar medium through their radiative and mechanical energy input. After their birth, they form "bubbles" of hot gas surrounded by a dense shell. Traditionally, the formation of bubbles is explained through the input of a powerful stellar wind, even though direct evidence supporting this scenario is lacking. Here we explore the possibility that interstellar bubbles seen by the Spitzer- and Herschel space telescopes, blown by stars with log (L/L⊙) ≲ 5.2, form and expand because of the thermal pressure that accompanies the ionization of the surrounding gas. We show that density gradients in the natal cloud or a puncture in the swept-up shell lead to an ionized gas flow through the bubble into the general interstellar medium, which is traced by a dust wave near the star, which demonstrates the importance of radiation pressure during this phase. Dust waves provide a natural explanation for the presence of dust inside H II bubbles, offer a novel method to study dust in H II regions and provide direct evidence that bubbles are relieving their pressure into the interstellar medium through a champagne flow, acting as a probe of the radiative interaction of a massive star with its surroundings. We explore a parameter space connecting the ambient density, the ionizing source luminosity, and the position of the dust wave, while using the well studied H II bubbles RCW 120 and RCW 82 as benchmarks of our model. Finally, we briefly examine the implications of our study for the environments of super star clusters formed in ultraluminous infrared galaxies, merging galaxies, and the early Universe, which occur in very luminous and dense environments and where radiation pressure is expected to dominate the dynamical evolution.

  8. Analysis of ultraviolet spectrophotometric data from Copernicus

    NASA Technical Reports Server (NTRS)

    Snow, T. P., Jr.

    1979-01-01

    Ultraviolet spectral data from the OAO 3 satellite are being used to study interstellar absorption lines and stellar and circumstellar lines in hot stars. The interstellar data are beneficial in analyzing the depletions of heavy elements from the gas phase and in elucidating how these depletions depend on physical conditions. Abundances in separate velocity components were determined from line profiles. Observations were carried out for interstellar abundances, both atomic and molecular, towards a number of stars. The better quality data are being analyzed for profile information and the lesser data are being used in curve-of-growth analyses. Molecular observations were carried out as well, N2 was sought; interstellar C2 was detected and its rotational excitation utilized to establish limits in interstellar cloud temperatures. An extensive search for H2O resulted in a tentative identification which will produce new information on chemical reaction rates. Interstellar depletions and grain properties in the rho Ophiuchi cloud, stellar wind variability, and circumstellar lines are also under study.

  9. Use of magnetic sails for advanced exploration missions

    NASA Technical Reports Server (NTRS)

    Andrews, Dana G.; Zubrin, Robert M.

    1990-01-01

    The magnetic sail, or magsail, is a field effect device which interacts with the ambient solar wind or interstellar medium over a considerable volume of space to generate drag and lift forces. Two theories describing the method of thrust generation are analyzed and data results are presented. The techniques for maintaining superconductor temperatures in interplanetary space are analyzed and low risk options presented. Comparisons are presented showing mission performance differences between currently proposed spacecraft using chemical and electric propulsion systems, and a Magsail propelled spacecraft capable of generating an average thrust of 250 Newtons at a radius of one A.U. The magsail also provides unique capabilities for interstellar missions, in that at relativistic speeds the magnetic field would ionize and deflect the interstellar medium producing a large drag force. This would make it an ideal brake for decelerating a spacecraft from relativistic speeds and then maneuvering within the target star system.

  10. The Origin of Filamentary Star Forming Clouds in Magnetised Galaxies

    NASA Astrophysics Data System (ADS)

    Körtgen, Bastian; Banerjee, Robi; Pudritz, Ralph E.; Schmidt, Wolfram

    2018-05-01

    Observations show that galaxies and their interstellar media are pervaded by strong magnetic fields with energies in the diffuse component being at least comparable to the thermal and even as large or larger than the turbulent energy. Such strong magnetic fields prevent the formation of stars because patches of the interstellar medium are magnetically subcritical. Here we present the results from global numerical simulations of strongly magnetised and self-gravitating galactic discs, which show that the buoyancy of the magnetic field due to the Parker instability leads at first to the formation of giant filamentary regions. These filamentary structures become gravitationally unstable and fragment into ˜105M⊙ clouds that attract kpc long, coherent filamentary flows that build them into GMCs. Our results thus provide a solution to the long-standing problem of how the transition from sub- to supercritical regions in the interstellar medium proceeds.

  11. GAS PHASE SYNTHESIS OF (ISO)QUINOLINE AND ITS ROLE IN THE FORMATION OF NUCLEOBASES IN THE INTERSTELLAR MEDIUM

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Parker, Dorian S. N.; Kaiser, Ralf I.; Kostko, Oleg

    Nitrogen-substituted polycyclic aromatic hydrocarbons (NPAHs) have been proposed to play a key role in the astrochemical evolution of the interstellar medium, yet the formation mechanisms of even their simplest prototypes—quinoline and isoquinoline—remain elusive. Here, we reveal a novel concept that under high temperature conditions representing circumstellar envelopes of carbon stars, (iso)quinoline can be synthesized via the reaction of pyridyl radicals with two acetylene molecules. The facile gas phase formation of (iso)quinoline in circumstellar envelopes defines a hitherto elusive reaction class synthesizing aromatic structures with embedded nitrogen atoms that are essential building blocks in contemporary biological-structural motifs. Once ejected from circumstellarmore » shells and incorporated into icy interstellar grains in cold molecular clouds, these NPAHs can be functionalized by photo processing forming nucleobase-type structures as sampled in the Murchison meteorite.« less

  12. Spallation processes and nuclear interaction products of cosmic rays.

    PubMed

    Silberberg, R; Tsao, C H

    1990-08-01

    Most cosmic-ray nuclei heavier than helium have suffered nuclear collisions in the interstellar gas, with transformation of nuclear composition. The isotopic and elemental composition at the sources has to be inferred from the observed composition near the Earth. The source composition permits tests of current ideas on sites of origin, nucleosynthesis in stars, evolution of stars, the mixing and composition of the interstellar medium and injection processes prior to acceleration. The effects of nuclear spallation, production of radioactive nuclides and the time dependence of their decay provide valuable information on the acceleration and propagation of cosmic rays, their nuclear transformations, and their confinement time in the Galaxy. The formation of spallation products that only decay by electron capture and are relatively long-lived permits an investigation of the nature and density fluctuations (like clouds) of the interstellar medium. Since nuclear collisions yield positrons, antiprotons, gamma rays and neutrinos, we shall discuss these topics briefly.

  13. The origin of extended interstellar shells around Wolf-Rayet stars having bright optical ring nebulae

    NASA Technical Reports Server (NTRS)

    Nichols, J. S.; Fesen, R. A.

    1994-01-01

    Investigations of the interstellar environment around Wolf-Rayet (WR) stars have lead to the discovery of extended shells of gas and dust 50-100 pc in diameter in the lines of sight toward three WR stars. In this paper, several origins for these extended shells are discussed. While positional coincidences cannot be excluded, the locations of the WR stars near the projected centers of the shells, the detection of only shortward-shifted, high-velocity UV absorption line components in their IUE spectra, plus commonality of some WR star properties which are rare in the general WR star population suggest some casual connections between the WR stars and formation of interstellar shells. To access whether the high-velocity UV interstellar absorption lines are a frequent phenomenon related to WR stellar winds, we present a survey of such features in all WR stars observed with IUE through 1991. Of 35 stars studied, only four are found to have components with velocity displacements greater than 45 km/s which are not attributable to previously identified OB association superbubbles. The means a surprising 82% of non-OB association WR stars show no evidence of high-velocity gas in their lines of sight at IUE's spectral resolution, suggesting that high-velocity interstellar absorption lines are not a common consequence of Wolf-Rayet star stellar winds alone. We review the properties of three WR stars (HD 50896, HD 96548, and HD 192163) which may reside inside extended interstellar shells and find that they are similar in terms of spectral class (WN5-8), presence of an optical ring nebula, and reported photometric variability. Evaluation of possible origins of the extended shells suggests these three stars are in a post X-ray binary stage of high-mass binary star evolution. If this is correct, then the large interstellar shells detected might be evidence of either supernova remnant shells generated by the explosion of the binary's primary star, or non-conservative mass transfer during a Roche Lobe overflow stage of the binary after the supernova explosion. In either of these cases the bright optical ring nebulae associated with these three WR stars may signify recent Roche Lobe overflows consistent with spectroscopic abundance analysis.

  14. The galactic distribution of aliphatic hydrocarbons in the diffuse interstellar medium

    NASA Technical Reports Server (NTRS)

    Sandford, Scott A.; Pendleton, Yvonne J.; Allamandola, Louis J.

    1995-01-01

    The infrared absorption feature near 2950(exp -1) (3.4 micron), characteristic of dust in the diffuse interstellar medium (ISM), is attributed to C-H stretching vibrations of aliphatic hydrocarbons. We show here that the strength of the band does not scale linearly with visual extinction everywhere, but instead increases more rapidly for objects near the center of the Galaxy, a behavior that parallels that of the Si-O stretching band due to silicate materials in the diffuse ISM. This implies that the grains responsible for the diffuse medium aliphatic C-H and silicate Si-O stretching bands are different from those responsible for much of the observed visual extinction. It also suggests that the distribution of the carbonaceous component of the diffuse ISM is not uniform throughout the Galaxy, but instead may increase in density toward the center of the Galaxy. The similar behavior of the C-H and Si-O stretching bands suggests that these two components may be coupled, perhaps in the form of silicate-core, organic-mantle grains. Several possible models of the distribution of this material are presented and it is demonstrated that the inner parts of the Galaxy has a carrier density that is 5 to 35 times higher than in the local ISM. Depending on the model used, the density of aliphatic material in the local ISM is found to be about 1 to 2 -CH3 groups m(exp -3) and about 2 to 5 -CH2- groups m(exp -3). These densities are consistent with the strengths of the 2955 and 2925 cm(exp -1) (3.4 micron) band being described by the relations A(sub nu)/tau(sub 2955 cm(exp -1)) = 270 +/- 40 and A(sub nu)/tau(sub 2925 cm(exp -1)) = 250 +/- 40 in the local diffuse ISM.

  15. Neutral gas and diffuse interstellar bands in the LMC

    NASA Technical Reports Server (NTRS)

    Danks, Anthony C.; Penprase, Brian

    1994-01-01

    Tracing the dynamics of the neutral gas and observing diffuse interstellar bands in the LMC (Large Magellanic Cloud) was the focus of this study. The S/N values, a Quartz lamp exposure, a T horium Argon Comparision lamp exposure, and spectral plots for each star observed were taken. The stars observed were selected to sample the 30 Dor vicinty. NaI absorption profiles are included.

  16. Latest Observations of Interstellar Plasma Waves, Radio Emissions, and Dust Impacts from the Voyager 1 Plasma Wave Instrument

    NASA Astrophysics Data System (ADS)

    Gurnett, D. A.

    2017-12-01

    Voyager 1, which is now 140 AU (Astronomical Units) from the Sun, crossed the heliopause into interstellar space in 2012 at a heliospheric radial distance of 121 AU. Since crossing the heliopause the plasma wave instrument has on several occasions detected plasma oscillations and radio emissions at or near the electron plasma frequency. The most notable of these events occurred in Oct.-Nov. 2012, April-May 2013, Feb.-Nov. 2014, and Sept.-Nov. 2015. Most recently, a very weak emission has been observed at or near the electron plasma frequency through most of 2016. These emissions are all believed to be produced by shock waves propagating into the interstellar medium from energetic solar events. The oscillation frequency of the plasma indicates that the electron density in the interstellar plasma has gradually increased from about 0.06 cm-3 near the heliopause to about 0.12 cm-3 in the most recent data. The plasma wave instrument also continues to detect impacts of what are believed to be interstellar dust grains at an impact rate of a few per year. Comparisons with Ulysses observations of similar interstellar dust near 5 AU suggest that the dust grains have sizes in the range from about 0.1 to 1 micrometer. Although the statistics are poor due to the low count rate, the dust flux observed in the outer heliosphere appears to be as much as a factor of two greater than that observed in the interstellar medium. Since the dust particles are likely to be charged, this increase in the heliosphere suggests that there may be a significant electrodynamic interaction of the dust particles with the heliospheric magnetic field.

  17. The Dissipation Range of Interstellar Turbulence

    NASA Astrophysics Data System (ADS)

    Spangler, Steven R.; Buffo, J. J.

    2013-06-01

    Turbulence may play an important role in a number of interstellar processes. One of these is heating of the interstellar gas, as the turbulent energy is dissipated and changed into thermal energy of the gas, or at least other forms of energy. There have been very promising recent results on the mechanism for dissipation of turbulence in the Solar Wind (Howes et al, Phys. Plasm. 18, 102305, 2011). In the Solar Wind, the dissipation arises because small-scale irregularities develop properties of kinetic Alfven waves, and apparently damp like kinetic Alfven waves. A property of kinetic Alfven waves is that they become significantly compressive on size scales of order the ion Larmor radius. Much is known about the plasma properties of ionized components of interstellar medium such as HII regions and the Diffuse Ionized Gas (DIG) phase, including information on the turbulence in these media. The technique of radio wave scintillations can yield properties of HII region and DIG turbulence on scales of order the ion Larmor radius, which we refer to as the dissipation scale. In this paper, we collect results from a number of published radio scattering measurements of interstellar turbulence on the dissipation scale. These studies show evidence for a spectral break on the dissipation scale, but no evidence for enhanced compressibility of the fluctuations. The simplest explanation of our result is that turbulence in the ionized interstellar medium does not possess properties of kinetic Alfven waves. This could point to an important difference with Solar Wind turbulence. New observations, particularly with the Very Long Baseline Array (VLBA) could yield much better measurements of the power spectrum of interstellar turbulence in the dissipation range. This research was supported at the University of Iowa by grants AST09-07911 and ATM09-56901 from the National Science Foundation.

  18. IS VOYAGER 1 INSIDE AN INTERSTELLAR FLUX TRANSFER EVENT?

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Schwadron, N. A.; McComas, D. J., E-mail: n.schwadron@unh.edu

    Plasma wave observations from Voyager 1 have recently shown large increases in plasma density, to about 0.1 cm{sup –3}, consistent with the density of the local interstellar medium. However, corresponding magnetic field observations continue to show the spiral magnetic field direction observed throughout the inner heliosheath. These apparently contradictory observations may be reconciled if Voyager 1 is inside an interstellar flux transfer event—similar to flux transfer events routinely seen at the Earth's magnetopause. If this were the case, Voyager 1 remains inside the heliopause and based on the Voyager 1 observations we can determine the polarity of the interstellar magnetic field for the first time.

  19. A new way to measure the composition of the interstellar gas surrounding the heliosphere

    NASA Technical Reports Server (NTRS)

    Gruntman, Michael A.

    1993-01-01

    The composition of neutral gas in the Local Interstellar Medium can be studied by direct, in situ measuring of interstellar neutral atoms penetrating into interplanetary space. A novel experimental approach for in situ atom detection, which has never been used earlier in space, is proposed. The technique is based on the conversion of neutral atoms to negative ions at a specially prepared sensitive surface. Negative ions are subsequently analyzed and detected in an essentially noise-free, multicoincidence mode. It is shown that interstellar hydrogen, deuterium, and oxygen atoms can be measured by the proposed technique. The experiment can be performed from a high-apogee Earth-orbiting satellite or from a deep space probe.

  20. Small interstellar molecules and what they tell us

    NASA Astrophysics Data System (ADS)

    Neufeld, David A.

    2018-06-01

    Observations at ultraviolet, visible, infrared and radio wavelengths provide a wealth of information about the molecular inventory of the interstellar medium (ISM). Because of the different chemical pathways responsible for their formation and destruction, different molecules probe specific aspects of the interstellar environment. Carefully interpreted with the use of astrochemical models, they provide unique information of general astrophysical importance, yielding estimates of the cosmic ray density, the molecular fraction, the ultraviolet radiation field, and the dissipation of energy within the turbulent ISM. Laboratory experiments and quantum-mechanical calculations are essential both in providing the spectroscopic data needed to identify interstellar molecules and for elucidating the fundamental physical and chemical processes that must be included in astrochemical models.

  1. Unusually high rotational temperature of the CN radical

    NASA Astrophysics Data System (ADS)

    Krełowski, J.; Galazutdinov, G.; Beletsky, Y.

    2011-07-01

    We analyse a high-resolution, high signal-to-noise spectrogram of the hot reddened star Trumpler 16 112 to find relationships between the physical parameters of the intervening interstellar medium (e.g., the rotational temperature of the CN radical) and the intensities of interstellar lines/bands. We report on the discovery of an interstellar cloud that shows an exceptionally high rotational temperature of CN (4.5 K) and unusually strong Ca I and Fe I interstellar lines. This rare CaFe-type cloud seemingly contains no diffuse band carriers. Based on observations collected at the European Organisation for Astronomical Research in the Southern Hemisphere, Chile. Programs 073.D-0609(A) and 082.C-0566(A).

  2. Rotational Spectra in 29 Vibrationally Excited States of Interstellar Aminoacetonitrile

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kolesniková, L.; Alonso, E. R.; Mata, S.

    2017-04-01

    We report a detailed spectroscopic investigation of the interstellar aminoacetonitrile, a possible precursor molecule of glycine. Using a combination of Stark and frequency-modulation microwave and millimeter wave spectroscopies, we observed and analyzed the room-temperature rotational spectra of 29 excited states with energies up to 1000 cm{sup −1}. We also observed the {sup 13}C isotopologues in the ground vibrational state in natural abundance (1.1%). The extensive data set of more than 2000 new rotational transitions will support further identifications of aminoacetonitrile in the interstellar medium.

  3. Commentary on interstellar matter associated with 18 open clusters

    NASA Technical Reports Server (NTRS)

    Leisawitz, David

    1989-01-01

    Information supplementary to that contained in Section 4 of an article entitled, A CO Survey of Regions Around 34 Open Clusters, (Leisawitz, Bash, and Thaddeus) published in the Astrophysical Journal Supplement Series, Volume 70, Number 4, August 1989 is summarized. The information presented here, which describes the interstellar environments of young clusters and some cluster physical characteristics, comes from observations published in the astronomical literature and the author's carbon monoxide (CO) emission line survey, and may help clarify our understanding of the interaction of massive stars with the interstellar medium.

  4. Ionization in the local interstellar and intergalactic media

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cheng, K.

    1990-01-01

    Detailed photoionization calculations for the local interstellar medium (LISM) and the intergalactic medium (IGM) are presented. Constraints in the LISM are imposed by H I column density derived from IUE and Copernicus data toward nearby B stars and hot white dwarfs. The EUV radiation field is modeled including contributions from discrete stellar sources and from a thermal bremsstrahlung-radiative recombination spectrum emitted from the surrounding 10(exp 6) K coronal substrate. Lower limits to the fractional ionization of hydrogen and helium of 0.17 and 0.30 respectively are established. The derived limits have important implications for the interpretation of the H I andmore » He I backscattering results. The high He ionization fraction results primarily from very strong line emission below 500 A originating in the surrounding coronal substrate while the H ionization is dominated by the EUV radiation from the discrete stellar sources. The dual effects of thermal conduction and the EUV spectrum of the 10(exp 6) K plasma on ionization in the cloud skin are explored. The EUV radiation field and Auger ionization have insignificant effects on the resulting ionic column densities of Si IV, C IV, N V and O VI through the cloud skin. Calculations show that the abundances of these species are dominated by collisional ionization in the thermal conduction front. Because of a low charge exchange rate with hydrogen, the ionic column density ratios of N(C III)/N(C II) and N(N II)/N(N I) are dominated by the EUV radiation field in the local interstellar medium. These ratios should be important diagnostics for the EUV radiation field and serve as surrogate indicators of the interstellar He and H ionization fraction respectively. The same photoionization model is applied to the intergalactic medium.« less

  5. Electromagnetic Forces on a Relativistic Spacecraft in the Interstellar Medium

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hoang, Thiem; Loeb, Abraham, E-mail: thiemhoang@kasi.re.kr, E-mail: aloeb@cfa.harvard.edu

    2017-10-10

    A relativistic spacecraft of the type envisioned by the Breakthrough Starshot initiative will inevitably become charged through collisions with interstellar particles and UV photons. Interstellar magnetic fields would therefore deflect the trajectory of the spacecraft. We calculate the expected deflection for typical interstellar conditions. We also find that the charge distribution of the spacecraft is asymmetric, producing an electric dipole moment. The interaction between the moving electric dipole and the interstellar magnetic field is found to produce a large torque, which can result in fast oscillation of the spacecraft around the axis perpendicular to the direction of motion, with amore » period of ∼0.5 hr. We then study the spacecraft rotation arising from impulsive torques by dust bombardment. Finally, we discuss the effect of the spacecraft rotation and suggest several methods to mitigate it.« less

  6. Theoretical Modeling of Interstellar Chemistry

    NASA Technical Reports Server (NTRS)

    Charnley, Steven

    2009-01-01

    The chemistry of complex interstellar organic molecules will be described. Gas phase processes that may build large carbon-chain species in cold molecular clouds will be summarized. Catalytic reactions on grain surfaces can lead to a large variety of organic species, and models of molecule formation by atom additions to multiply-bonded molecules will be presented. The subsequent desorption of these mixed molecular ices can initiate a distinctive organic chemistry in hot molecular cores. The general ion-molecule pathways leading to even larger organics will be outlined. The predictions of this theory will be compared with observations to show how possible organic formation pathways in the interstellar medium may be constrained. In particular, the success of the theory in explaining trends in the known interstellar organics, in predicting recently-detected interstellar molecules, and, just as importantly, non-detections, will be discussed.

  7. Electromagnetic Forces on a Relativistic Spacecraft in the Interstellar Medium

    NASA Astrophysics Data System (ADS)

    Hoang, Thiem; Loeb, Abraham

    2017-10-01

    A relativistic spacecraft of the type envisioned by the Breakthrough Starshot initiative will inevitably become charged through collisions with interstellar particles and UV photons. Interstellar magnetic fields would therefore deflect the trajectory of the spacecraft. We calculate the expected deflection for typical interstellar conditions. We also find that the charge distribution of the spacecraft is asymmetric, producing an electric dipole moment. The interaction between the moving electric dipole and the interstellar magnetic field is found to produce a large torque, which can result in fast oscillation of the spacecraft around the axis perpendicular to the direction of motion, with a period of ˜0.5 hr. We then study the spacecraft rotation arising from impulsive torques by dust bombardment. Finally, we discuss the effect of the spacecraft rotation and suggest several methods to mitigate it.

  8. Ultraviolet absorption by highly ionized halo gas near the Galactic center

    NASA Technical Reports Server (NTRS)

    Savage, B. D.; Massa, D.

    1985-01-01

    Initial results are presented for a program to survey highly ionized gas in the Milky Way disk and halo. High-resolution IUE (International Ultraviolet Explorer) far-UV spectra were obtained for 12 stars at galactocentric distances less than 6 kpc. The stars are 0.7-2.2 kpc away from the plane. Most of the spectra contain exceedingly strong and broad interstellar absorption lines of weakly and highly ionized atoms. In addition to the normally strong lines of Si IV and C IV, strong interstellar NV lines have been detected in the spectra of eight stars. The detection of NV absorption (amounting to more than 10 times the predicted NV) provides an important new constraint on models for the origin of Galactic halo gas. A Galactic fountain operating in the presence of known UV and EUV radiation might explain the observations.

  9. THERMAL PRESSURES IN THE INTERSTELLAR MEDIUM OF THE MAGELLANIC CLOUDS

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Welty, Daniel E.; York, Donald G.; Lauroesch, James T.

    2016-04-20

    We discuss the thermal pressures ( n {sub H} T ) in predominantly cold, neutral interstellar gas in the Magellanic Clouds, derived from analyses of the fine-structure excitation of neutral carbon, as seen in high-resolution Hubble Space Telescope /Space Telescope Imaging Spectrograph spectra of seven diverse sight lines in the LMC and SMC. Detailed fits to the line profiles of the absorption from C i, C i*, and C i** yield consistent column densities for the three to six C i multiplets detected in each sight line. In the LMC and SMC, N (C i{sub tot}) is consistent with Galacticmore » trends versus N (Na i) and N (CH), but is slightly lower versus N (K i) and N (H{sub 2}). As for N (Na i) and N (K i), N (C i{sub tot}) is generally significantly lower, for a given N (H{sub tot}), in the LMC and (especially) in the SMC, compared to the local Galactic relationship. For the LMC and SMC components with well-determined column densities for C i, C i*, and C i**, the derived thermal pressures are typically factors of a few higher than the values found for most cold, neutral clouds in the Galactic ISM. Such differences are consistent with the predictions of models for clouds in systems (like the LMC and SMC) that are characterized by lower metallicities, lower dust-to-gas ratios, and enhanced radiation fields—where higher pressures are required for stable cold, neutral clouds. The pressures may be further enhanced by energetic activity (e.g., due to stellar winds, star formation, and/or supernova remnants) in several of the regions probed by these sight lines. Comparisons are made with the C i observed in some quasar absorption-line systems.« less

  10. THz Time-Domain Spectroscopy of Interstellar Ice Analogs

    NASA Astrophysics Data System (ADS)

    Ioppolo, Sergio; McGuire, Brett A.; de Vries, Xander; Carroll, Brandon; Allodi, Marco; Blake, Geoffrey

    2015-08-01

    The unambiguous identification of nearly 200 molecular species in different astronomical environments proves that our cosmos is a ‘Molecular Universe’. The cumulative outcome of recent observations, laboratory studies, and astrochemical models indicates that there is a strong interplay between the gas and the solid phase throughout the process of forming molecules in space. Observations of interstellar ices are generally limited to lines-of-sight along which infrared absorption spectroscopy is possible. Therefore, the identification of more complex prebiotic molecules in the mid-IR is difficult because of their low expected interstellar abundances and the overlap of their absorption features with those from the more abundant species. In the THz region, telescopes can detect Interstellar ices in emission or absorption against dust continuum. Thus, THz searches do not require a background point source. Moreover, since THz spectra are the fingerprint of inter- and intramolecular forces, complex species can present unique modes that do not overlap with those from simpler, more abundant molecules. THz modes are also sensitive to temperature and phase changes in the ice. Therefore, spectroscopy at THz frequencies has the potential to better characterize the physics and chemistry of the ISM. Currently, the Herschel Space Telescope, SOFIA, and ALMA databases contain a vast amount of new THz spectral data that require THz laboratory spectra for interpretation. The latter, however, are largely lacking. We have recently constructed a new THz time-domain spectroscopy system operating in the range between 0.3 - 7.5 THz. This work focuses on the laboratory investigation of the composition and structure of the most abundant interstellar ice analogs compared to some more complex species. Different temperatures, mixing ratios, and matrix isolation experiments will be shown. The ultimate goal of this research is to provide the scientific community with an extensive THz ice-database, which will allow quantitative studies of the ISM, and guide future astronomical observations of species in the solid phase.

  11. Hydride Molecules towards Nearby Galaxies

    NASA Astrophysics Data System (ADS)

    Monje, Raquel R.; La, Ngoc; Goldsmith, Paul

    2018-06-01

    Observations carried out by the Herschel Space Observatory revealed strong spectroscopic signatures from light hydride molecules within the Milky Way and nearby active galaxies. To better understand the chemical and physical conditions of the interstellar medium, we conducted the first comprehensive survey of hydrogen fluoride (HF) and water molecular lines observed through the SPIRE Fourier Transform Spectrometer. By collecting and analyzing the sub-millimeter spectra of over two hundred sources, we found that the HF J = 1 - 0 rotational transition which occurs at approximately 1232 GHz was detected in a total of 39 nearby galaxies both in absorption and emission. The analysis will determine the main excitation mechanism of HF in nearby galaxies and provide steady templates of the chemistry and physical conditions of the ISM to be used in the early universe, where observations of hydrides are more scarce.

  12. [C ii] 158-μm emission from the host galaxies of damped Lyman-alpha systems.

    PubMed

    Neeleman, Marcel; Kanekar, Nissim; Prochaska, J Xavier; Rafelski, Marc; Carilli, Chris L; Wolfe, Arthur M

    2017-03-24

    Gas surrounding high-redshift galaxies has been studied through observations of absorption line systems toward background quasars for decades. However, it has proven difficult to identify and characterize the galaxies associated with these absorbers due to the intrinsic faintness of the galaxies compared with the quasars at optical wavelengths. Using the Atacama Large Millimeter/Submillimeter Array, we report on detections of [C ii] 158-μm line and dust-continuum emission from two galaxies associated with two such absorbers at a redshift of z ~ 4. Our results indicate that the hosts of these high-metallicity absorbers have physical properties similar to massive star-forming galaxies and are embedded in enriched neutral hydrogen gas reservoirs that extend well beyond the star-forming interstellar medium of these galaxies. Copyright © 2017, American Association for the Advancement of Science.

  13. PSR B0329+54: substructure in the scatter-broadened image discovered with RadioAstron on baselines up to 330 000 km

    NASA Astrophysics Data System (ADS)

    Popov, Mikhail V.; Bartel, Norbert; Gwinn, Carl R.; Johnson, Michael D.; Andrianov, Andrey; Fadeev, Evgeny; Joshi, Bhal Chandra; Kardashev, Nikolay; Karuppusamy, Ramesh; Kovalev, Yuri Y.; Kramer, Michael; Rudnitskiy, Alexey; Shishov, Vladimir; Smirnova, Tatiana; Soglasnov, Vladimir A.; Zensus, J. Anton

    2017-02-01

    We have resolved the scatter-broadened image of PSR B0329+54 and detected a substructure within it. These results are not influenced by any extended structure of a source but instead are directly attributed to the interstellar medium. We obtained these results at 324 MHz with the ground-space interferometer RadioAstron, which included the Space Radio Telescope, ground-based Westerbork Synthesis Radio Telescope and 64-m Kalyazin Radio Telescope on baseline projections up to 330 000 km in 2013 November 22 and 2014 January 1 to 2. At short 15 000 to 35 000 km ground-space baseline projections, the visibility amplitude decreases with baseline length, providing a direct measurement of the size of the scattering disc of 4.8 ± 0.8 mas. At longer baselines, no visibility detections from the scattering disc would be expected. However, significant detections were obtained with visibility amplitudes of 3 to 5 per cent of the maximum scattered around a mean and approximately constant up to 330 000 km. These visibilities reflect a substructure from scattering in the interstellar medium and offer a new probe of ionized interstellar material. The size of the diffraction spot near Earth is 17 000 ± 3 000 km. With the assumption of turbulent irregularities in the plasma of the interstellar medium, we estimate that the effective scattering screen is located 0.6 ± 0.1 of the distance from the Earth towards the pulsar.

  14. Magnetic Fields in the Interstellar Medium

    NASA Astrophysics Data System (ADS)

    Clark, Susan

    2017-01-01

    The Milky Way is magnetized. Invisible magnetic fields thread the Galaxy on all scales and play a vital but still poorly understood role in regulating flows of gas in the interstellar medium and the formation of stars. I will present highlights from my thesis work on magnetic fields in the diffuse interstellar gas and in accretion disks. At high Galactic latitudes, diffuse neutral hydrogen is organized into an intricate network of slender linear features. I will show that these neutral hydrogen “fibers” are extremely well aligned with the ambient magnetic field as traced by both starlight polarization (Clark et al. 2014) and Planck 353 GHz polarized dust emission (Clark et al. 2015). The structure of the neutral interstellar medium is more tightly coupled to the magnetic field than previously known. Because the orientation of neutral hydrogen is an independent predictor of the local dust polarization angle, our work provides a new tool in the search for inflationary gravitational wave B-mode polarization in the cosmic microwave background, which is currently limited by dust foreground contamination. Magnetic fields also drive accretion in astrophysical disks via the magnetorotational instability (MRI). I analytically derive the behavior of this instability in the weakly nonlinear regime and show that the saturated state of the instability depends on the geometry of the background magnetic field. The analytical model describes the behavior of the MRI in a Taylor-Couette flow, a set-up used by experimentalists in the ongoing quest to observe MRI in the laboratory (Clark & Oishi 2016a, 2016b).

  15. Deciphering Galactic Hydrogen with 21-SPONGE

    NASA Astrophysics Data System (ADS)

    Murray, Claire; Stanimirovic, Snezana; Goss, Miller; Heiles, Carl E.; Miller Dickey, John; Lindner, Robert; Babler, Brian L.

    2017-01-01

    Neutral hydrogen (HI) in the interstellar medium (ISM) is crucial to the life cycles of galaxies. The balance between disparate phases of HI -- including the cold neutral (CNM) and warm neutral (WNM) medium -- governs the formation of dense, star-forming material, and reflects the nature of feedback in galaxies. To probe the multi-phase structure of HI, we present results from 21-SPONGE: the largest and most sensitive survey for Galactic HI absorption ever at the Karl G. Jansky Very Large Array (VLA). Complemented by HI emission from the Arecibo Observatory, 21-SPONGE is uniquely sensitive to CNM and WNM temperatures from 10-104 K and column densities from 1018-1022 cm-2. Despite our unprecedented sensitivity, the maximum temperature we detect for individual spectral lines is Ts~1500 K, although stacking analysis of 21-SPONGE absorption lines indicates the presence of pervasive, high-Ts WNM population with Ts~7000 K. To understand the physics underlying these results, we developed Autonomous Gaussian Decomposition (AGD), a Python-based tool for efficiently and objectively analyzing spectral lines. By applying AGD to 21-SPONGE and 1000s of synthetic HI spectra from 3D numerical simulations, we correct our measurements for completeness and observational biases. We further prove that we can successfully recover the temperatures and densities of real clouds along simulated lines of sight. In addition, we show that absorption line shapes are sensitive to the strength and topology of the Lyman alpha radiation field and its role in HI excitation, which are poorly-constrained yet important for understanding the energy balance of the ISM. Our results are among the first to statistically quantify the success of observational methods at reproducing true HI properties, and represent crucial steps towards understanding the role of HI in star formation.

  16. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Resmi, Lekshmi; Zhang, Bing, E-mail: l.resmi@iist.ac.in

    Reverse shock (RS) emission from gamma-ray bursts is an important tool in investigating the nature of the ejecta from the central engine. If the magnetization of the ejecta is not high enough to suppress the RS, a strong RS emission component, usually peaking in the optical/IR band early on, would provide an important contribution to early afterglow light curve. In the radio band, synchrotron self-absorption may suppress early RS emission and also delay the RS peak time. In this paper, we calculate the self-absorbed RS emission in the radio band under different dynamical conditions. In particular, we stress that themore » RS radio emission is subject to self-absorption in both RSs and forward shocks (FSs). We calculate the ratio between the RS to FS flux at the RS peak time for different frequencies, which is a measure of the detectability of the RS emission component. We then constrain the range of physical parameters for a detectable RS, in particular the role of magnetization. We notice that unlike optical RS emission which is enhanced by moderate magnetization, moderately magnetized ejecta do not necessarily produce a brighter radio RS due to the self-absorption effect. For typical parameters, the RS emission component would not be detectable below 1 GHz unless the medium density is very low (e.g., n < 10{sup −3} cm{sup −3} for the interstellar medium and A {sub *} < 5 × 10{sup −4} for wind). These predictions can be tested using the afterglow observations from current and upcoming radio facilities such as the Karl G. Jansky Very Large Array, the Low-Frequency Array, the Five Hundred Meter Aperture Spherical Telescope, and the Square Kilometer Array.« less

  17. Terahertz Spectroscopy and Global Analysis of the Rotational Spectrum of Bis-Deuterated Amidogen Radical Nd_{2}

    NASA Astrophysics Data System (ADS)

    Melosso, Mattia; Degli Esposti, Claudia; Tamassia, Filippo; Canè, Elisabetta; Dore, Luca

    2017-11-01

    The deuteration mechanism of molecules in the interstellar medium (ISM) is still being debated. Observations of deuterium-bearing species in several astronomical sources represent a powerful tool to improve our understanding of the interstellar chemistry. In this scenario, the doubly-deuterated form of the amidogen radical could be a target of detection in space.

  18. Physical state of interstellar atoms. [from Copernicus satellite UV data

    NASA Technical Reports Server (NTRS)

    York, D. G.

    1974-01-01

    Brief survey of the physical conditions along the lines of sight to reddened and unreddened stars, as determined from Copernicus observation of interstellar lines between 95 and 300 nm. Differences in ionization structure and density between clouds and the local intercloud medium are discussed. Some new data for beta Centauri is used to supplement the previously available data.

  19. An Investigation of the Cold Interstellar Medium of the Outer Galaxy

    NASA Technical Reports Server (NTRS)

    Heyer, Mark H.

    1997-01-01

    The primary objective of this proposal was to determine the relationship between the molecular gas and dust components of the interstellar medium of the Outer Galaxy. It made use of the High Resolution IRAS Galaxy Atlas and the FCRAO CO Survey of the Outer Galaxy. These HIRES images greatly augment the spatial dynamic range of the IRAS Survey data and the ability to discriminate multiple point sources within a compact region. Additionally, the HIRES far infrared images allow for more direct comparisons with molecular line data observed at 45 sec resolution. From funding of this proposal, we have completed two papers for publication in a refereed journal.

  20. Trajectories for a Near Term Mission to the Interstellar Medium

    NASA Technical Reports Server (NTRS)

    Arora, Nitin; Strange, Nathan; Alkalai, Leon

    2015-01-01

    Trajectories for rapid access to the interstellar medium (ISM) with a Kuiper Belt Object (KBO) flyby, launching between 2022 and 2030, are described. An impulsive-patched-conic broad search algorithm combined with a local optimizer is used for the trajectory computations. Two classes of trajectories, (1) with a powered Jupiter flyby and (2) with a perihelion maneuver, are studied and compared. Planetary flybys combined with leveraging maneuvers reduce launch C3 requirements (by factor of 2 or more) and help satisfy mission-phasing constraints. Low launch C3 combined with leveraging and a perihelion maneuver is found to be enabling for a near-term potential mission to the ISM.

  1. The diffuse interstellar medium

    NASA Technical Reports Server (NTRS)

    Cox, Donald P.

    1990-01-01

    The last 20 years of the efforts to understand the diffuse ISM are reviewed, with recent changes of fundamental aspects being highlighted. Attention is given to the interstellar pressure and its components, the weight of the ISM, the midplane pressure contributions, and pressure contributions at 1 kpc. What velocity dispersions, cosmic ray pressure, and magnetic field pressure that can be expected for a gas in a high magnetic field environment is addressed. The intercloud medium is described, with reference to the work of Cox and Slavin (1989). Various caveats are discussed and a number of areas for future investigation are identified. Steps that could be taken toward a successful phase segregation model are discussed.

  2. The influence of cosmic rays on the stability and large-scale dynamics of the interstellar medium

    NASA Astrophysics Data System (ADS)

    Kuznetsov, V. D.

    1986-06-01

    The diffusion-convection formulation is used to study the influence of galactic cosmic rays on the stability and dynamics of the interstellar medium which is supposedly kept in equilibrium by the gravitational field of stars. It is shown that the influence of cosmic rays on the growth rate of MHD instability depends largely on a dimensionless parameter expressing the ratio of the characteristic acoustic time scale to the cosmic-ray diffusion time. If this parameter is small, the cosmic rays will decelerate the build-up of instabilities, thereby stabilizing the system; in contrast, if the parameter is large, the system will be destabilized.

  3. The Interstellar Heliopause Probe/Heliospheric Explorer: IHP/HEX

    NASA Astrophysics Data System (ADS)

    Wimmer-Schweingruber, Robert F.; McNutt, Ralph L.

    2010-03-01

    The Sun, driving a supersonic solar wind, cuts out of the local interstellar medium a giant plasma bubble, the heliosphere. Dedicated deep-space missions have greatly enhanced our understanding of our immediate neighborhood. Ulysses is the only spacecraft exploring the third, out-of-ecliptic dimension, while SOHO has allowed us to better understand the influence of the Sun and to image the glow of interstellar matter in the heliosphere. Both Voyager spacecraft have recently encountered the innermost boundary of this plasma bubble, the termination shock, and are returning exciting yet puzzling data of this remote region. The next logical step is to leave the heliosphere and to thereby map out in unprecedented detail the structure of the outer heliosphere and its boundaries, the termination shock, the heliosheath, the heliopause, and, after leaving the heliosphere, to discover the true nature of the hydrogen wall, the bow shock, and the local interstellar medium beyond. This will greatly advance our understanding of the heliosphere that is the best-known example for astrospheres as found around other stars. Thus, IHP/HEX will allow us to discover, explore, and understand fundamental astrophysical processes in the largest accessible plasma laboratory, the heliosphere.

  4. Plasmas in the outer heliosphere

    NASA Technical Reports Server (NTRS)

    Belcher, J. W.; Richardson, J. D.; Lazarus, A. J.; Gazis, P. R.; Barnes, A.

    1995-01-01

    We review the observed properties of the solar wind in the outer heliosphere, including observations from Voyager and the Pioneers, as well as from inner heliospheric probes as appropriate. These observations are crucial to modeling of the heliosphere and its interactions with the interstellar medium, since the wind ram pressure and its temporal variations are important in understanding the distance to the termination shock and heliopause and how those boundaries might vary in time. We focus on results since Solar Wind 7. Among the issues we will discuss are: (1) the time scales for and statistical properties of variations in the ram pressure in the outer heliosphere, and how those variations might affect the morphology of the heliospheric/interstellar medium interface; (2) the question of possible solar wind slowing in the outer heliosphere due to the pick-up of interstellar ions; (3) the issue of whether there is bulk heating of the solar wind associated either with interstellar ion pick-up or with continued heating due to stream-stream interactions; (4) evidence for latitudinal variations in solar wind properties; and (5) the 1.3 year periodicities apparent in the outer heliosphere, and the close correspondence with similar variations seen with inner heliospheric probes.

  5. Solid State Pathways towards Molecular Complexity in Space

    NASA Astrophysics Data System (ADS)

    Linnartz, Harold; Bossa, Jean-Baptiste; Bouwman, Jordy; Cuppen, Herma M.; Cuylle, Steven H.; van Dishoeck, Ewine F.; Fayolle, Edith C.; Fedoseev, Gleb; Fuchs, Guido W.; Ioppolo, Sergio; Isokoski, Karoliina; Lamberts, Thanja; Öberg, Karin I.; Romanzin, Claire; Tenenbaum, Emily; Zhen, Junfeng

    2011-12-01

    It has been a long standing problem in astrochemistry to explain how molecules can form in a highly dilute environment such as the interstellar medium. In the last decennium more and more evidence has been found that the observed mix of small and complex, stable and highly transient species in space is the cumulative result of gas phase and solid state reactions as well as gas-grain interactions. Solid state reactions on icy dust grains are specifically found to play an important role in the formation of the more complex ``organic'' compounds. In order to investigate the underlying physical and chemical processes detailed laboratory based experiments are needed that simulate surface reactions triggered by processes as different as thermal heating, photon (UV) irradiation and particle (atom, cosmic ray, electron) bombardment of interstellar ice analogues. Here, some of the latest research performed in the Sackler Laboratory for Astrophysics in Leiden, the Netherlands is reviewed. The focus is on hydrogenation, i.e., H-atom addition reactions and vacuum ultraviolet irradiation of interstellar ice analogues at astronomically relevant temperatures. It is shown that solid state processes are crucial in the chemical evolution of the interstellar medium, providing pathways towards molecular complexity in space.

  6. On the Detectability of the X 2A" HSS, HSO, and HOS Radicals in the Interstellar Medium

    NASA Astrophysics Data System (ADS)

    Fortenberry, Ryan C.; Francisco, Joseph S.

    2017-02-01

    {\\tilde{X}}2A\\prime\\prime HSS has yet to be observed in the gas phase in the interstellar medium (ISM). HSS has been observed in cometary material and in high abundance. However, its agglomeration to such bodies or dispersal from them has not been observed. Similarly, HSO and HOS have not been observed in the ISM, either, even though models support their formation from reactions of known sulfur monoxide and hydrogen molecules, among other pathways. Consequently, this work provides high-level, quantum chemical rovibrational spectroscopic constants and vibrational frequencies in order to assist in interstellar searches for these radical molecules. Furthermore, the HSO-HOS isomerization energy is determined to be 3.63 kcal mol-1, in line with previous work, and the dipole moment of HOS is 36% larger at 3.87 D than HSO, making the less stable isomer more rotationally intense. Finally, the S-S bond strength in HSS is shown to be relatively weak at 30% of the typical disulfide bond energy. Consequently, HSS may degrade into SH and sulfur atoms, making any ISM abundance of HSS likely fairly low, as recent interstellar surveys have observed.

  7. Radiative Cooling of Warm Molecular Gas

    NASA Technical Reports Server (NTRS)

    Neufeld, David A.; Kaufman, Michael J.

    1993-01-01

    We consider the radiative cooling of warm (T >= 100 K), fully molecular astrophysical gas by rotational and vibrational transitions of the molecules H2O, CO, and H2. Using an escape probability method to solve for the molecular level populations, we have obtained the cooling rate for each molecule as a function of temperature, density, and an optical depth parameter. A four-parameter expression proves useful in fitting the run of cooling rate with density for any fixed values of the temperature and optical depth parameter. We identify the various cooling mechanisms which are dominant in different regions of the astrophysically relevant parameter space. Given the assumption that water is very abundant in warm regions of the interstellar medium, H2O rotational transitions are found to dominate the cooling of warm interstellar gas over a wide portion of the parameter space considered. While chemical models for the interstellar medium make the strong prediction that water will be produced copiously at temperatures above a few hundred degrees, our assumption of a high water abundance has yet to be tested observationally. The Infrared Space Observatory and the Submillimeter Wave Astronomy Satellite will prove ideal instruments for testing whether water is indeed an important coolant of interstellar and circumstellar gas.

  8. Formation of Benzene in the Interstellar Medium

    NASA Technical Reports Server (NTRS)

    Jones, Brant M.; Zhang, Fangtong; Kaiser, Ralf I.; Jamal, Adeel; Mebel, Alexander M.; Cordiner, Martin A.; Charnley, Steven B.; Crim, F. Fleming (Editor)

    2010-01-01

    Polycyclic aromatic hydrocarbons and related species have been suggested to play a key role in the astrochemical evolution of the interstellar medium, but the formation mechanism of even their simplest building block-the aromatic benzene molecule-has remained elusive for decades. Here we demonstrate in crossed molecular beam experiments combined with electronic structure and statistical calculations that benzene (C6H6) can be synthesized via the barrierless, exoergic reaction of the ethynyl radical and 1,3- butadiene, C2H + H2CCHCHCH2 --> C6H6, + H, under single collision conditions. This reaction portrays the simplest representative of a reaction class in which aromatic molecules with a benzene core can be formed from acyclic precursors via barrierless reactions of ethynyl radicals with substituted 1,3-butadlene molecules. Unique gas-grain astrochemical models imply that this low-temperature route controls the synthesis of the very first aromatic ring from acyclic precursors in cold molecular clouds, such as in the Taurus Molecular Cloud. Rapid, subsequent barrierless reactions of benzene with ethynyl radicals can lead to naphthalene-like structures thus effectively propagating the ethynyl-radical mediated formation of aromatic molecules in the interstellar medium.

  9. Formation of benzene in the interstellar medium

    PubMed Central

    Jones, Brant M.; Zhang, Fangtong; Kaiser, Ralf I.; Jamal, Adeel; Mebel, Alexander M.; Cordiner, Martin A.; Charnley, Steven B.

    2011-01-01

    Polycyclic aromatic hydrocarbons and related species have been suggested to play a key role in the astrochemical evolution of the interstellar medium, but the formation mechanism of even their simplest building block—the aromatic benzene molecule—has remained elusive for decades. Here we demonstrate in crossed molecular beam experiments combined with electronic structure and statistical calculations that benzene (C6H6) can be synthesized via the barrierless, exoergic reaction of the ethynyl radical and 1,3-butadiene, C2H + H2CCHCHCH2 → C6H6 + H, under single collision conditions. This reaction portrays the simplest representative of a reaction class in which aromatic molecules with a benzene core can be formed from acyclic precursors via barrierless reactions of ethynyl radicals with substituted 1,3-butadiene molecules. Unique gas-grain astrochemical models imply that this low-temperature route controls the synthesis of the very first aromatic ring from acyclic precursors in cold molecular clouds, such as in the Taurus Molecular Cloud. Rapid, subsequent barrierless reactions of benzene with ethynyl radicals can lead to naphthalene-like structures thus effectively propagating the ethynyl-radical mediated formation of aromatic molecules in the interstellar medium. PMID:21187430

  10. Grain Surface Chemistry and the Composition of Interstellar Ices

    NASA Technical Reports Server (NTRS)

    Tielens, A. G. G. M.

    2006-01-01

    Submicron sized dust grains are an important component of the interstellar medium. In particular they provide surface where active chemistry can take place. At the low temperatures (-10 K) of the interstellar medium, colliding gas phase species will stick, diffuse, react, and form an icy mantle on these dust grains. This talk will review the principles of grain surface chemistry and delineate important grain surface routes, focusing on reactions involving H, D, and O among each other and with molecules such as CO. Interstellar ice mantles can be studied through the fundamental vibrations of molecular species in the mid-infrared spectra of sources embedded in or located behind dense molecular clouds. Analysis of this type of data has provided a complex view of the composition of these ices and the processes involved. Specifically, besides grain surface chemistry, the composition of interstellar ices is also affected by thermal processing due to nearby newly formed stars. This leads to segregation between different ice components as well as outgassing. The latter results in the formation of a so-called Hot Core region with a gas phase composition dominated by evaporated mantle species. Studies of such regions provide thus a different view on the ice composition and the chemical processes involved. Interstellar ices can also be processed by FUV photons and high energy cosmic ray ions. Cosmic ray processing likely dominates the return of accreted species to the gas phase where further gas phase reactions can take place. These different chemical routes towards molecular complexity in molecular clouds and particularly regions of star formation will be discussed.

  11. Velocity-resolved [{\\rm{C}}\\,{\\rm{II}}] Emission from Cold Diffuse Clouds in the Interstellar Medium

    NASA Astrophysics Data System (ADS)

    Goldsmith, Paul F.; Pineda, Jorge L.; Neufeld, David A.; Wolfire, Mark G.; Risacher, Christophe; Simon, Robert

    2018-04-01

    We have combined emission from the 158 μm fine structure transition of C+ observed with the GREAT and upGREAT instruments on SOFIA with 21 cm absorption spectra and visual extinction to characterize the diffuse interstellar clouds found along the lines of sight. The weak [C II] emission is consistent in velocity and line width with the strongest H I component produced by the cold neutral medium. The H I column density and kinetic temperature are known from the 21 cm data and, assuming a fractional abundance of ionized carbon, we calculate the volume density and thermal pressure of each source, which vary considerably, with 27 {cm}}-3≤slant n({{{H}}}0) ≤slant 210 cm‑3 considering only the atomic hydrogen along the lines of sight to be responsible for the C+, while 13 {cm}}-3≤slant n({{{H}}}0+{{{H}}}2)≤slant 190 cm‑3 including the hydrogen in both forms. The thermal pressure varies widely with 1970 cm‑3 K ≤slant {P}th}/k≤slant 10,440 cm‑3 K for H0 alone and 750 cm‑3 K ≤ P th/k ≤ 9360 cm‑3 K including both H0 and H2. The molecular hydrogen fraction varies between 0.10 and 0.67. Photoelectric heating is the dominant heating source, supplemented by a moderately enhanced cosmic ray ionization rate, constrained by the relatively low 45 K to 73 K gas temperatures of the clouds. The resulting thermal balance for the two lower-density clouds is satisfactory, but for the two higher-density clouds, the combined heating rate is insufficient to balance the observed C+ cooling.

  12. Modeling the unidentified infrared emission with combinations of polycyclic aromatic hydrocarbons

    NASA Technical Reports Server (NTRS)

    Allamandola, L. J.; Hudgins, D. M.; Sandford, S. A.

    1999-01-01

    The infrared emission band spectrum associated with many different interstellar objects can be modeled successfully by using combined laboratory spectra of neutral and positively charged polycyclic aromatic hydrocarbons (PAHs). These model spectra, shown here for the first time, alleviate the principal spectroscopic criticisms previously leveled at the PAH hypothesis and demonstrate that mixtures of free molecular PAHs can indeed account for the overall appearance of the widespread interstellar infrared emission spectrum. Furthermore, these models give us insight into the structures, stabilities, abundances, and ionization balance of the interstellar PAH population. These, in turn, reflect conditions in the emission zones and shed light on the microscopic processes involved in the carbon nucleation, growth, and evolution in circumstellar shells and the interstellar medium.

  13. Massive stars: privileged sources of cosmic-rays for interstellar astrochemistry

    NASA Astrophysics Data System (ADS)

    De Becker, M.

    2015-01-01

    Massive stars can be considered as crucial engines for interstellar physics. They are indeed the main providers of UV radiation field, and constitute a substantial source of chemical enrichment. On their evolution time-scale (at most about 10 Myr), they typically stay close to their formation site, i.e. close to molecular clouds very rich in interstellar molecules. These stellar objects have also the property to be involved in particle acceleration processes leading to the production of high energy charged particles (cosmic-rays). After rejection in the interstellar medium, these particles will play a substantial role in processes such as those simulated in various facilities dedicated to experimental astrochemistry. This short contribution intends to put these particles, crucial for astrochemistry, in their adequate astrophysical context.

  14. Formation of E-cyanomethamine in a nitrile rich environment

    NASA Astrophysics Data System (ADS)

    Shivani; Misra, Alka; Tandon, Poonam

    2017-01-01

    Recently a new molecule, cyanomethamine, has been detected towards Sagittarius B2(N) (Sgr B2(N)). Studying the formation mechanisms of complex interstellar molecules is difficult. Hence, a theoretical quantum chemical approach for analyzing the reaction mechanism describing the formation of interstellar cyanomethamine through detected interstellar molecules and radicals (NCCN+H) is discussed in the present work. Calculations are performed by using quantum chemical techniques, such as Density Functional Theory (DFT) and Møller-Plesset perturbation (MP2) theory with a 6-311G(d,p) basis set, both in the gas phase and in icy grains. The proposed reaction path (NCCN+H+H) has exothermicity with no barrier which indicates the possibility of cyanomethamine formation in the interstellar medium.

  15. Applicability of Broad-Band Photometry for Determining the Properties of Stars and Interstellar Extinction

    NASA Astrophysics Data System (ADS)

    Sichevskij, S. G.

    2018-01-01

    The feasibility of the determination of the physical conditions in star's atmosphere and the parameters of interstellar extinction from broad-band photometric observations in the 300-3000 nm wavelength interval is studied using SDSS and 2MASS data. The photometric accuracy of these surveys is shown to be insufficient for achieving in practice the theoretical possibility of estimating the atmospheric parameters of stars based on ugriz and JHK s photometry exclusively because such determinations result in correlations between the temperature and extinction estimates. The uncertainty of interstellar extinction estimates can be reduced if prior data about the temperature are available. The surveys considered can nevertheless be potentially valuable sources of information about both stellar atmospheric parameters and the interstellar medium.

  16. Formation of Nucleobases from the UV Irradiation of Pyrimidine in Interstellar Ice Analogs

    NASA Technical Reports Server (NTRS)

    Milam, Stefanie N.; Nuevo, Michel; Sandford, Scott A.; Elsila, Jamie E.; Dworkin, Jason P.

    2010-01-01

    Previous laboratory simulations showed that complex molecules, including prebiotic compounds/can be formed under interstellar conditions from the vacuum UV irradiation of interstellar ice analogs containing H2O, CO, NH3 etc. Although some complex prebiotic species have not been confirmed In the interstellar medium, they are known to be present in meteorites. Nucleobases, the building blocks of DNA and RNA, have also been detected in meteorites. Here, we present a study of the formation of pyrimidine-based compounds from the UV irradiation of pyrimidine in H2O- and/or NH3-ices at 20-30 K, Our results show that various derivatives, induding the nucleobases uracil and cytosine, are formed under these conditions.

  17. Power requirements for cosmic ray propagation models involving diffusive reacceleration; estimates and implications for the damping of interstellar turbulence

    NASA Astrophysics Data System (ADS)

    Drury, Luke O.'C.; Strong, Andrew W.

    2017-01-01

    We make quantitative estimates of the power supplied to the Galactic cosmic ray population by second-order Fermi acceleration in the interstellar medium, or as it is usually termed in cosmic ray propagation studies, diffusive reacceleration. Using recent results on the local interstellar spectrum, following Voyager 1's crossing of the heliopause, we show that for parameter values, in particular the Alfvén speed, typically used in propagation codes such as GALPROP to fit the B/C ratio, the power contributed by diffusive reacceleration is significant and can be of order 50% of the total Galactic cosmic ray power. The implications for the damping of interstellar turbulence are briefly considered.

  18. Shape and evolution of wind-blown bubbles of massive stars: on the effect of the interstellar magnetic field

    NASA Astrophysics Data System (ADS)

    van Marle, A. J.; Meliani, Z.; Marcowith, A.

    2015-12-01

    Context. The winds of massive stars create large (>10 pc) bubbles around their progenitors. As these bubbles expand they encounter the interstellar coherent magnetic field which, depending on its strength, can influence the shape of the bubble. Aims: We wish to investigate if, and how much, the interstellar magnetic field can contribute to the shape of an expanding circumstellar bubble around a massive star. Methods: We use the MPI-AMRVAC code to make magneto-hydrodynamical simulations of bubbles, using a single star model, combined with several different field strengths: B = 5, 10, and 20 μG for the interstellar magnetic field. This covers the typical field strengths of the interstellar magnetic fields found in the galactic disk and bulge. Furthermore, we present two simulations that include both a 5 μG interstellar magnetic field and a warm (10 000 K) interstellar medium (ISM) and two different ISM densities to demonstrate how the magnetic field can combine with other external factors to influence the morphology of the circumstellar bubbles. Results: Our results show that low magnetic fields, as found in the galactic disk, inhibit the growth of the circumstellar bubbles in the direction perpendicular to the field. As a result, the bubbles become ovoid, rather than spherical. Strong interstellar fields, such as observed for the galactic bulge, can completely stop the expansion of the bubble in the direction perpendicular to the field, leading to the formation of a tube-like bubble. When combined with an ISM that is both warm and high density the bubble is greatly reduced in size, causing a dramatic change in the evolution of temporary features inside the bubble such as Wolf-Rayet ring nebulae. Conclusions: The magnetic field of the interstellar medium can affect the shape of circumstellar bubbles. This effect may have consequences for the shape and evolution of circumstellar nebulae and supernova remnants, which are formed within the main wind-blown bubble. Appendices and movies associated to Figs. A.1-A.12 are available in electronic form at http://www.aanda.org

  19. Radiofrequency recombination lines from the interstellar medium

    NASA Technical Reports Server (NTRS)

    Dupree, A. K.

    1971-01-01

    Observations of recombination lines form normal H II regions, extended H II regions, nonthermal sources, and the H I medium are discussed. Detection of recombination lines from elements other than hydrogen may provide a means of identifying fossil Stromgren spheres at high temperature.

  20. Ionization of Interstellar Hydrogen Beyond the Termination Shock

    NASA Astrophysics Data System (ADS)

    Gruntman, Mike

    2016-11-01

    Models of solar wind interaction with the surrounding interstellar medium usually disregard ionization of interstellar hydrogen atoms beyond the solar wind termination shock. If and when included, the effects of ionization in the heliospheric interface region are often obscured by complexities of the interaction. This work assesses the importance of interstellar hydrogen ionization in the heliosheath. Photoionization could be accounted for in a straightforward way. In contrast, electron impact ionization is largely unknown because of poorly understood energy transfer to electrons at the termination shock and beyond. We first estimate the effect of photoionization and then use it as a yardstick to assess the role of electron impact ionization. The physical estimates show that ionization of interstellar hydrogen may lead to significant mass loading in the inner heliosheath which would slow down plasma flowing toward the heliotail and deplete populations of nonthermal protons, with the corresponding effect on heliospheric fluxes of energetic neutral atoms.

  1. Interstellar Polycyclic Aromatic Compounds and Astrophysics

    NASA Technical Reports Server (NTRS)

    Hudgins, Douglas M.; DeVincenzi, Donald (Technical Monitor)

    2001-01-01

    Over the past fifteen years, thanks to significant, parallel advancements in observational, experimental, and theoretical techniques, tremendous strides have been made in our understanding of the role polycyclic aromatic compounds (PAC) in the interstellar medium (ISM). Twenty years ago, the notion of an abundant population of large, carbon rich molecules in the ISM was considered preposterous. Today, the unmistakable spectroscopic signatures of PAC - shockingly large molecules by previous interstellar chemistry standards - are recognized throughout the Universe. In this paper, we will examine the interstellar PAC model and its importance to astrophysics, including: (1) the evidence which led to inception of the model; (2) the ensuing laboratory and theoretical studies of the fundamental spectroscopic properties of PAC by which the model has been refined and extended; and (3) a few examples of how the model is being exploited to derive insight into the nature of the interstellar PAC population.

  2. Decoding IR Spectra of Cosmic Ices and Organics in the Laboratory

    NASA Technical Reports Server (NTRS)

    Allamandola, Louis J.

    2006-01-01

    Tremendous strides have been made in our understanding of interstellar material over the past twenty-five years thanks to significant developments in observational IR astronomy and dedicated laboratory experiments. Twenty-five years ago the composition of interstellar dust was largely guessed at. Today the composition of interstellar dust is reasonably well understood. In the diffuse interstellar medium (ISM) the dust population is mainly comprised of small grains of silicates and amorphous carbon. In dark molecular clouds, the birthplace of stars and planets, these cold refractory dust particles are coated with mixed molecular ices whose composition is reasonably well constrained. Lastly, the signature of carbon-rich polycyclic aromatic hydrocarbons (PAHs), shockingly large molecules by early interstellar chemistry standards, is widespread throughout the Universe. This extraordinary progress has been made possible by the close collaboration of laboratory experimentalists and theoreticians with IR astronomers using groundbased, air-borne, and orbiting telescopes.

  3. A cloud/particle model of the interstellar medium - Galactic spiral structure

    NASA Technical Reports Server (NTRS)

    Levinson, F. H.; Roberts, W. W., Jr.

    1981-01-01

    A cloud/particle model for gas flow in galaxies is developed that incorporates cloud-cloud collisions and supernovae as dominant local processes. Cloud-cloud collisions are the main means of dissipation. To counter this dissipation and maintain local dispersion, supernova explosions in the medium administer radial snowplow pushes to all nearby clouds. The causal link between these processes is that cloud-cloud collisions will form stars and that these stars will rapidly become supernovae. The cloud/particle model is tested and used to investigate the gas dynamics and spiral structures in galaxies where these assumptions may be reasonable. Particular attention is given to whether large-scale galactic shock waves, which are thought to underlie the regular well-delineated spiral structure in some galaxies, form and persist in a cloud-supernova dominated interstellar medium; this question is answered in the affirmative.

  4. Analysis of ultraviolet spectrophotometric data from Copernicus. Final report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Snow, T.P. Jr

    1979-04-17

    Ultraviolet spectral data from the OAO 3 satellite are being used to study interstellar absorption lines and stellar and circumstellar lines in hot stars. The interstellar data are beneficial in analyzing the depletions of heavy elements from the gas phase and in elucidating how these depletions depend on physical conditions. Abundances in separate velocity components were determined from line profiles. Observations were carried out for interstellar abundances, both atomic and molecular, towards a number of stars. The better quality data are being analyzed for profile information and the lesser data are being used in curve-of-growth analyses. Molecular observations were carriedmore » out as well; N/sup 2/ was sought, interstellar C/sup 2/ was detected and its rotational excitation utilized to establish limits in interstellar cloud temperatures. An extensive search for H/sup 2/O resulted in a tentative identification which will produce new information on chemical reaction rates. Interstellar depletions and grain properties in the rho Ophiuchi cloud, stellar wind variability, and circumstellar lines are also under study.« less

  5. Observations of interstellar hydrogen and deuterium toward Alpha Centauri A

    NASA Technical Reports Server (NTRS)

    Landsman, W. B.; Henry, R. C.; Moos, H. W.; Linsky, J. L.

    1984-01-01

    A composite profile is presented of the Ly-alpha emission line of Alpha Cen A, obtained from 10 individual spectra with the high-resolution spectrograph aboard the International Ultraviolet Explorer (IUE) satellite. There is excellent overall agreement with two previous Copernicus observations. Interstellar deuterium is detected, and a lower limit is set on the deuterium to hydrogen ratio of nDI/nHI greater than 8 x 10 to the -6th. In addition, the deuterium bulk velocity appears blueshifted by 8 + or - 2 km/s with respect to interstellar hydrogen, suggesting a nonuniform medium along the line of sight.

  6. Laboratory Experiments on the Reactions of PAH Cations with Molecules and Atoms of Interstellar Interest

    NASA Technical Reports Server (NTRS)

    LePage, V.; Lee, H. S.; Bierbaum, V. M.; Snow, T. P.

    1996-01-01

    The C10H8(+) cation and its dehydrogenated derivatives, C10H7(+) and C10H6(+), have been studied using a selected ion flow tube (SIFT). Reactions with molecules and atoms of interstellar interest show that C10H8(+) reacts with N md O to give neutral products HCN and CO, respectively. C10H6(+) and C10H6(+) are moderately reactive and reactions proceed through association with molecules. The implications of these results for the depletion of C10H(n)(+) in the interstellar medium are briefly discussed.

  7. Formation of the heliospheric boundaries and the induced dynamics of the solar system: a multifluid view

    NASA Astrophysics Data System (ADS)

    Fahr, Hans-Jörg

    2000-05-01

    In many papers in the literature it is shown that wind-driving stars with a peculiar motion relative to the ambient interstellar medium within dynamical time periods form a dynamically adapted astropause as separatrix between the stellar wind plasma and the surrounding interstellar plasma. As we shall show in this chapter stars with an adapted astropause are subject to thrust forces finally acting on the wing-generating central body and thus influencing the stellar motion. Thereby the actual magnitude of the resulting thrust force depends on the actual counterflow configuration of stellar and interstellar winds determined by the particular kinematic situation, i.e. the instantaneous Mach number of the motion relative to the ambient medium. We shall study the sensitivity of this configuration to whether the interstellar flow is sub- or supersonic. The resulting net force is shown to vary in a non-monotonic way with the actual peculiar velocity. For subsonic motions this force generally has an accelerating nature, i.e. operating like a rocket thrust motor, whereas for supersonic motions at supercritical Mach numbers μS≥μS,c, to the contrary, it is of a decelerating nature. For an adequate description of a time-dependent circumstellar flow configuration, we shall use an analytic, hydrodynamic modeling of the counterflow configuration representing the case of a stellar wind system in subsonic or supersonic motion with respect to the local interstellar medium. For the purpose of analytical treatability we assume irrotational and incompressible flows downstream of the inner and outer shocks and give quantitative numbers for forces acting on the central star. We also describe long-period evolutions of star motions and give typical acceleration time periods for different types of wind-driving stars. As we shall emphasize here the dynamical influence of these thrust forces onto the central stellar body requires an understanding of how the presence of the counterflowing interstellar plasma is communicated upstream in the supersonic stellar wind up to the origin of this wind, the stellar corona. The answer we shall give is based on the multifluid character of the relevant counterflow situation invalidating the conventional mono-Mach-number concept of hydrodynamical flows. In fact stellar winds can only be described by a poly-Mach-number concept, with stellar-wind protons being supersonic, with pick-up ions being marginally sonic, and with electrons and anomalous cosmic ray particles being strongly subsonic. We shall present solutions for multifluid counterflow configurations based on computational simulations in which a consistent picture of the interaction of all these different species is given. Our final conclusion is that already the solar wind when passing over the Earth's orbit tells us about the interstellar medium beyond the heliopause.

  8. IUE observations of hydrogen and deuterium in the local interstellar medium

    NASA Technical Reports Server (NTRS)

    Murthy, J.; Henry, R. C.; Moos, H. W.; Landsman, W. B.; Linsky, J. L.

    1987-01-01

    High-resolution Ly-alpha spectra of the late-type stars Epsilon Eri, Procyon, Altair, Capella, and HR 1099 taken with the short-wavelength camera on IUE are presented. The density, velocity dispersion, and bulk velocity of the interstellar H I toward each of the stars is derived from the spectra. Lower limits on the deuterium-to-hydrogen ratio toward these stars are obtained.

  9. THE MUSCLES TREASURY SURVEY. II. INTRINSIC LY α AND EXTREME ULTRAVIOLET SPECTRA OF K AND M DWARFS WITH EXOPLANETS

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Youngblood, Allison; France, Kevin; Loyd, R. O. Parke

    2016-06-20

    The ultraviolet (UV) spectral energy distributions (SEDs) of low-mass (K- and M-type) stars play a critical role in the heating and chemistry of exoplanet atmospheres, but are not observationally well-constrained. Direct observations of the intrinsic flux of the Ly α line (the dominant source of UV photons from low-mass stars) are challenging, as interstellar H i absorbs the entire line core for even the closest stars. To address the existing gap in empirical constraints on the UV flux of K and M dwarfs, the MUSCLES Hubble Space Telescope Treasury Survey has obtained UV observations of 11 nearby M and Kmore » dwarfs hosting exoplanets. This paper presents the Ly α and extreme-UV spectral reconstructions for the MUSCLES targets. Most targets are optically inactive, but all exhibit significant UV activity. We use a Markov Chain Monte Carlo technique to correct the observed Ly α profiles for interstellar absorption, and we employ empirical relations to compute the extreme-UV SED from the intrinsic Ly α flux in ∼100 Å bins from 100–1170 Å. The reconstructed Ly α profiles have 300 km s{sup −1} broad cores, while >1% of the total intrinsic Ly α flux is measured in extended wings between 300 and 1200 km s{sup −1}. The Ly α surface flux positively correlates with the Mg ii surface flux and negatively correlates with the stellar rotation period. Stars with larger Ly α surface flux also tend to have larger surface flux in ions formed at higher temperatures, but these correlations remain statistically insignificant in our sample of 11 stars. We also present H i column density measurements for 10 new sightlines through the local interstellar medium.« less

  10. Galactic Observations of Terahertz C+ (GOT C+): Inner Galaxy Survey

    NASA Astrophysics Data System (ADS)

    Yorke, Harold; Langer, William; Velusamy, T.; Pineda, J. L.; Goldsmith, P. F.; Li, D.

    To understand the lifecycle of the interstellar gas and star formation we need detailed information about the diffuse atomic and diffuse molecular gas cloud properties. The ionized carbon [CII] 1.9 THz fine structure line is an important tracer of the atomic gas in the diffuse regions and the interface regions of atomic gas to molecular clouds. Furthermore, C+ is a major ISM coolant and among the Galaxy's strongest far-IR emission lines, and thus controls the thermal conditions throughout large parts of the Galaxy. Until now our knowledge of interstellar gas has been limited to the diffuse atomic phase traced by HI and to the dense molecular H2 phase traced by CO. However, we are missing an important phase of the ISM, called "dark gas" in which there is no or little, HI, and mostly molecular hydrogen but with insufficient shielding of UV to allow CO to form. C+ emission and absorption lines at 1.9 THz have the potential to trace such cloud transitions and evolution. Galactic Observations of the Terahertz C+ Line (GOT C+) is a Herschel Space Observatory Open Time Key Program to study the diffuse interstellar medium by sampling [CII] 1.9 THz line emission throughout the Galactic disk. We discuss the broader perspective of this survey and the first results of GOT C+ obtained during the Science Demonstration Phase (SDP) and Priority Science Phase (PSP) of HIFI, which focus on approximately 100 lines of sight in the inner galaxy. These observations are being carried out with the Herschel Space Observatory, which is an ESA cornerstone mission, with contributions from NASA. This research was conducted at the Jet Propulsion Laboratory, California Institute of Technology under contract with the National Aeronautics and Space Administration. JLP is a Caltech-JPL Postdoctoral Associate.

  11. The abundance of interstellar sulphur and zinc in high density sight-lines

    NASA Technical Reports Server (NTRS)

    Harris, A. W.; Mashesse, J. M.

    1986-01-01

    On the basis of early absorption line studies of individual lines of sight with the Copernicus satellite, chlorine, sulphur and zinc were classed together as elements which showed little or no depletion, relative to hydrogen, in the interstellar medium. The abundances of other less volatile elements, such as Fe and Mg were found to vary widely from one sight-line to another with gas-phase abundances in some cases being orders of magnitude below their solar counterparts. Detailed studies are reported of the depletion/density behavior of two other volatile elements which were previously considered to be virtually undepleted, S and Zn, using equivalent width data from both Copernicus and IUE observations. The results provide further evidence that the established dependence of depletion on n bar (H) extends to volatile elements and show that their use as tracers of metallicity, or for estimating hydrogen column densities, may lead to large errors in sight-lines through dense regions. It now appears that such elements may take part in the surface chemistry of grains and be important constituents of grain mantle material, although they probably do not contribute significantly to the bulk mass of grains. Due to the very similar atomic masses and ionization potentials of sulphur and phosphorous, the thermal velocity distributions of the singly ionized species of these elements in interstellar clouds should be very similar. However, a comparison of Doppler widths (b-values) derived for SIT and PIT in the same sight-lines from the Bohlin et al Copernicus equivalent width measurements has revealed an unexpected systematic discrepancy of a factor of approx. 1.7. This Discrepancy indicates that the normally adopted oscillators strengths of the PII lambda lambda 1153 and 1302 A lines may require revision.

  12. Modeling the Variable Heliopause Location

    NASA Astrophysics Data System (ADS)

    Hensley, Kerry

    2018-03-01

    In 2012, Voyager 1 zipped across the heliopause. Five and a half years later, Voyager 2 still hasnt followed its twin into interstellar space. Can models of the heliopause location help determine why?How Far to the Heliopause?Artists conception of the heliosphere with the important structures and boundaries labeled. [NASA/Goddard/Walt Feimer]As our solar system travels through the galaxy, the solar outflow pushes against the surrounding interstellar medium, forming a bubble called the heliosphere. The edge of this bubble, the heliopause, is the outermost boundary of our solar system, where the solar wind and the interstellar medium meet. Since the solar outflow is highly variable, the heliopause is constantly moving with the motion driven by changes inthe Sun.NASAs twin Voyager spacecraft were poisedto cross the heliopause after completingtheir tour of the outer planets in the 1980s. In 2012, Voyager 1 registered a sharp increase in the density of interstellar particles, indicating that the spacecraft had passed out of the heliosphere and into the interstellar medium. The slower-moving Voyager 2 was set to pierce the heliopause along a different trajectory, but so far no measurements have shown that the spacecraft has bid farewell to oursolar system.In a recent study, ateam of scientists led by Haruichi Washimi (Kyushu University, Japan and CSPAR, University of Alabama-Huntsville) argues that models of the heliosphere can help explain this behavior. Because the heliopause location is controlled by factors that vary on many spatial and temporal scales, Washimiand collaborators turn to three-dimensional, time-dependent magnetohydrodynamics simulations of the heliosphere. In particular, they investigate how the position of the heliopause along the trajectories of Voyager 1 and Voyager 2 changes over time.Modeled location of the heliopause along the paths of Voyagers 1 (blue) and 2 (orange). Click for a closer look. The red star indicates the location at which Voyager 1 crossed the heliopause. The current location of Voyager 2 is marked with a red circle. [Washimi et al. 2017]A Time-Varying BarrierThe authorsconsider the impact that solar flares, coronal mass ejections, and other disturbances in the solar outflow have on the heliopause distance. These solar disturbances intermingle as they travel outward to form what the authors call global merged interaction regions.Using their hydrodynamical simulations, Washimi and collaborators capture the complex behavior of the global merged interaction regions as they propagate through the termination shock and collide with the heliopause. Part of the shock is transmitted into the local interstellar medium, while part of it is reflected back toward and collides with the termination shock, which is pushed toward the Sun. This complex interplay of transmitted and reflected shocks combined with the nonuniformity of the local interstellar medium causes the heliopause location to vary dramatically in time as well as space.What Does this Mean for Voyager 2?Washimi and collaborators find that the location of the heliopause along the trajectories of Voyagers 1 and 2 has changed considerably over the past decade. In particular, they find that the heliopause has been pushed outward over the past few years due to an increase in the solar wind ram pressure. According to their simulations, Voyager 2 is currently traveling outward faster than the heliopause is advancing, which means that the spacecraft should soon cross the boundary perhaps even thisyear to become Earths second interstellar messenger.CitationHaruichi Washimi et al 2017 ApJL 846 L9. doi:10.3847/2041-8213/aa8556

  13. Detection of Buckminsterfullerene emission in the diffuse interstellar medium.

    PubMed

    Berné, O; Cox, N L J; Mulas, G; Joblin, C

    2017-09-01

    Emission of fullerenes in their infrared vibrational bands has been detected in space near hot stars. The proposed attribution of the diffuse interstellar bands at 9577 and 9632 Å to electronic transitions of the buckminsterfullerene cation (i.e. [Formula: see text]) was recently supported by new laboratory data, confirming the presence of this species in the diffuse interstellar medium (ISM). In this letter, we present the detection, also in the diffuse ISM, of the 17.4 and 18.9 μ m emission bands commonly attributed to vibrational bands of neutral C 60 . According to classical models that compute the charge state of large molecules in space, C 60 is expected to be mostly neutral in the diffuse ISM. This is in agreement with the abundances of diffuse C 60 we derive here from observations. We also find that C 60 is less abundant in the diffuse ISM than in star-forming regions, supporting the theory that C 60 can be formed in these regions.

  14. Cooked GEMS - Insights into the Hot Origins of Crystalline Silicates in Circumstellar Disks and the Cold Origins of GEMS

    NASA Technical Reports Server (NTRS)

    Brownlee, D. E.; Joswiak, D. J.; Bradley, J. P.; Matrajt, G.; Wooden, D. H.

    2005-01-01

    The comparison of interstellar, circumstellar and primitive solar nebula silicates has led to a significant conundrum in the understanding of the nature of solid materials that begin the planet forming processes. Crystalline silicates are found in circumstellar regions around young stars and also evolved stars ejecting particles into the interstellar medium (ISM) but they are not seen in the interstellar medium itself, the source material for star and planet formation. Crystalline silicates are minor to major components of all known early solar system materials that have been examined as meteorites or interplanetary dust samples. The strong presence of Mg-rich crystalline silicates in Oort cloud comets and their minor presence in some Kuiper belt comets is also indicated by 11.2 m peak in approx. 10 microns "silicate" infrared feature. This evidence strongly indicates that Mg-rich crystalline silicates were abundant components of the solar nebula disk out to at least 10 AU, and present out to 30 AU.

  15. The Emergence of the Worldship (I): The Shift from Planet-Based to Space-Based Civilisation

    NASA Astrophysics Data System (ADS)

    Ashworth, S.

    Design concepts for passenger-carrying interstellar vehicles may be organised according to speed of travel and payload mass. The most likely design solutions fall on a scale which ranges from the high speed, low mass rapid transport at one end to the low speed, high mass multi-generation worldship at the other. The medium speed, medium mass cruiser is defined as an intermediate case. Using an energy-based analysis, it is shown that the rapid transport is a less plausible case. The more credible options for human interstellar flight are the multi-generation cruiser and worldship, in either case requiring the construction of an artificial mobile world-like environment for the sustainable support of a town- to city-sized community of travellers. This could be made possible by a shift in the dominant mode of human civilisation from planetary to space-based life. The long-term consequences for interstellar colonisation are illustrated with reference to the percolation theory presented by Geoffrey Landis.

  16. Measuring the Local ISM along the Sight Lines of the Two Voyager Spacecraft with HST/STIS

    NASA Astrophysics Data System (ADS)

    Zachary, Julia; Redfield, Seth; Linsky, Jeffrey L.; Wood, Brian E.

    2018-05-01

    In 2012 August, Voyager 1 crossed the heliopause, becoming the first human-made object to exit the solar system. This milestone signifies the beginning of an important new era for local interstellar medium (LISM) exploration. We present measurements of the structure and composition of the LISM in the immediate path of the Voyager spacecraft by using high-resolution Hubble Space Telescope (HST) spectra of nearby stars that lie along the same lines of sight. We provide a comprehensive inventory of LISM absorption in the near-ultraviolet (2600–2800 Å) and far-ultraviolet (1200–1500 Å). The LISM absorption profiles are used to make comparisons between each pair of closely spaced (<15°) sight lines. With fits to several absorption lines, we make measurements of the physical properties of the LISM. We estimate electron density along the Voyager 2 sight line, and our values are consistent with recent measurements by Voyager 1. Excess absorption in the H I Lyα line displays the presence of both the heliosphere and an astrosphere around GJ 780. This is only the 14th detection of an astrosphere, and the large mass-loss rate (\\dot{M}=10 {\\dot{M}}ȯ ) is consistent with other subgiant stars. The heliospheric absorption matches the predicted strength for a sight line 58° from the upwind direction. As both HST and Voyager reach the end of their lifetimes, we have the opportunity to synthesize their respective observations, combining in situ measurements with the shortest possible line-of-sight measurements to study the Galactic ISM surrounding the Sun.

  17. Calibrating the HISA temperature: Measuring the temperature of the Riegel-Crutcher cloud

    NASA Astrophysics Data System (ADS)

    Dénes, H.; McClure-Griffiths, N. M.; Dickey, J. M.; Dawson, J. R.; Murray, C. E.

    2018-06-01

    H I self absorption (HISA) clouds are clumps of cold neutral hydrogen (H I) visible in front of warm background gas, which makes them ideal places to study the properties of the cold atomic component of the interstellar medium (ISM). The Riegel-Crutcher (R-C) cloud is the most striking HISA feature in the Galaxy. It is one of the closest HISA clouds to us and is located in the direction of the Galactic Centre, which provides a bright background. High-resolution interferometric measurements have revealed the filamentary structure of this cloud, however it is difficult to accurately determine the temperature and the density of the gas without optical depth measurements. In this paper we present new H I absorption observations with the Australia Telescope Compact Array (ATCA) against 46 continuum sources behind the Riegel-Crutcher cloud to directly measure the optical depth of the cloud. We decompose the complex H I absorption spectra into Gaussian components using an automated machine learning algorithm. We find 300 Gaussian components, from which 67 are associated with the R-C cloud (0 < vLSR < 10 km s-1, FWHM <10 km s-1). Combining the new H I absorption data with H I emission data from previous surveys we calculate the spin temperature and find it to be between 20 and 80 K. Our measurements uncover a temperature gradient across the cloud with spin temperatures decreasing towards positive Galactic latitudes. We also find three new OH absorption lines associated with the cloud, which support the presence of molecular gas.

  18. Grain Spectroscopy

    NASA Technical Reports Server (NTRS)

    Allamandola, L. J.

    1992-01-01

    Our fundamental knowledge of interstellar grain composition has grown substantially during the past two decades thanks to significant advances in two areas: astronomical infrared spectroscopy and laboratory astrophysics. The opening of the mid-infrared, the spectral range from 4000-400 cm(sup -1) (2.5-25 microns), to spectroscopic study has been critical to this progress because spectroscopy in this region reveals more about a materials molecular composition and structure than any other physical property. Infrared spectra which are diagnostic of interstellar grain composition fall into two categories: absorption spectra of the dense and diffuse interstellar media, and emission spectra from UV-Vis rich dusty regions. The former will be presented in some detail, with the latter only very briefly mentioned. This paper summarized what we have learned from these spectra and presents 'doorway' references into the literature. Detailed reviews of many aspects of interstellar dust are given.

  19. The 2140 cm(exp -1) (4.673 Microns) Solid CO Band: The Case for Interstellar O2 and N2 and the Photochemistry of Non-Polar Interstellar Ice Analogs

    NASA Technical Reports Server (NTRS)

    Elsila, Jamie; Allamandola, Louis J.; Sandford, Scott A.; Witteborn, Fred C. (Technical Monitor)

    1996-01-01

    The infrared spectra of CO frozen in non-polar ices containing N2, CO2, O2, and H2O, and the ultraviolet photochemistry of these interstellar/precometary ice analogs are reported. The spectra are used to test the hypothesis that the narrow 2140/cm (4.673 micrometer) interstellar absorption feature attributed to solid CO might be produced by CO frozen in ices containing non-polar species such as N2 and O2. It is shown that mixed molecular ices containing CO, N2, O2, and CO2 provide a very good match to the interstellar band at all temperatures between 12 and 30 K both before and after photolysis. The optical constants (real and imaginary parts of the index of refraction) in the region of the solid CO feature are reported for several of these ices.

  20. A Multi-Wavelength Study of the Hot Component of the Interstellar Medium

    NASA Technical Reports Server (NTRS)

    Oliversen, Ronald J. (Technical Monitor)

    2004-01-01

    This research focuses on the kinematics and evolution of the hot phase of the interstellar medium in the Galaxy. The plan was to measure the UV spectra of all hot stars observed with IUE, in order to identify and measure the main component and any high velocity components to the interstellar lines. Collection of data from higher resolution instruments on HST has been proposed for some of the interesting lines of sight. IUE spectra of 240 stars up to 8 kpc in 2 quadrants of the galactic plane have been examined to (1) estimate the total column density per kpc as a function of direction and distance, and (2) to obtain a lower limit to the number of high velocity components to the interstellar lines, thus giving an approximation of the number of conductive interfaces encountered per line of sight. By determining an approximation to the number of components per unit distance we aim to derive statistics on interfaces between hot and cold gas in the Galaxy. We find that 20% of the stars in this sample show at least one high velocity component in the C IV interstellar line. Two successful FUSE programs address this research and collected data for several of the lines of sight identified as locations of hot, expanding gas with the IUE data. One FUSE program is complete for the Vela SNR region. Data from another FUSE program to investigate the Cygnus superbubble region are being analyzed.

  1. Interstellar Neutral Helium in the Heliosphere from IBEX Observations. V. Observations in IBEX-Lo ESA Steps 1, 2, and 3

    NASA Astrophysics Data System (ADS)

    Swaczyna, Paweł; Bzowski, Maciej; Kubiak, Marzena A.; Sokół, Justyna M.; Fuselier, Stephen A.; Galli, André; Heirtzler, David; Kucharek, Harald; McComas, David J.; Möbius, Eberhard; Schwadron, Nathan A.; Wurz, P.

    2018-02-01

    Direct-sampling observations of interstellar neutral (ISN) He by the Interstellar Boundary Explorer (IBEX) provide valuable insight into the physical state of and processes operating in the interstellar medium ahead of the heliosphere. The ISN He atom signals are observed at the four lowest ESA steps of the IBEX-Lo sensor. The observed signal is a mixture of the primary and secondary components of ISN He and H. Previously, only data from one of the ESA steps have been used. Here, we extend the analysis to data collected in the three lowest ESA steps with the strongest ISN He signal, for the observation seasons 2009–2015. The instrument sensitivity is modeled as a linear function of the atom impact speed onto the sensor’s conversion surface separately for each ESA step of the instrument. We find that the sensitivity increases from lower to higher ESA steps, but within each of the ESA steps it is a decreasing function of the atom impact speed. This result may be influenced by the hydrogen contribution, which was not included in the adopted model, but seems to exist in the signal. We conclude that the currently accepted temperature of ISN He and velocity of the Sun through the interstellar medium do not need a revision, and we sketch a plan of further data analysis aiming at investigating ISN H and a better understanding of the population of ISN He originating in the outer heliosheath.

  2. An astrosphere around the blue supergiant κ Cas: possible explanation of its filamentary structure

    NASA Astrophysics Data System (ADS)

    Katushkina, O. A.; Alexashov, D. B.; Gvaramadze, V. V.; Izmodenov, V. V.

    2018-01-01

    High-resolution mid-infrared observations carried out by the Spitzer Space Telescope allowed one to resolve the fine structure of many astrospheres. In particular, they showed that the astrosphere around the B0.7 Ia star κ Cas (HD 2905) has a clear-cut arc structure with numerous cirrus-like filaments beyond it. Previously, we suggested a physical mechanism for the formation of such filamentary structures. Namely, we showed theoretically that they might represent the non-monotonic spatial distribution of the interstellar dust in astrospheres (viewed as filaments) caused by interaction of the dust grains with the interstellar magnetic field disturbed in the astrosphere due to colliding of the stellar and interstellar winds. In this paper, we invoke this mechanism to explain the structure of the astrosphere around κ Cas. We performed 3D magnetohydrodynamic modelling of the astrosphere for realistic parameters of the stellar wind and space velocity. The dust dynamics and the density distribution in the astrosphere were calculated in the framework of a kinetic model. It is found that the model results with the classical MRN (Mathis, Rumpl & Nordsieck 1977) size distribution of dust in the interstellar medium do not match the observations, and that the observed filamentary structure of the astrosphere can be reproduced only if the dust is composed mainly of big (μm-sized) grains. Comparison of the model results with observations allowed us to estimate parameters (number density and magnetic field strength) of the surrounding interstellar medium.

  3. Evaluating the Morphology of the Local Interstellar Medium: Using New Data to Distinguish between Multiple Discrete Clouds and a Continuous Medium

    NASA Astrophysics Data System (ADS)

    Redfield, Seth; Linsky, Jeffrey L.

    2015-10-01

    Ultraviolet and optical spectra of interstellar gas along the lines of sight to nearby stars have been interpreted by Redfield & Linsky and previous studies as a set of discrete warm, partially ionized clouds each with a different flow vector, temperature, and metal depletion. Recently, Gry & Jenkins proposed a fundamentally different model consisting of a single cloud with nonrigid flows filling space out to 9 pc from the Sun that they propose better describes the local ISM. Here we test these fundamentally different morphological models against the spatially unbiased Malamut et al. spectroscopic data set, and find that the multiple cloud morphology model provides a better fit to both the new and old data sets. The detection of three or more velocity components along the lines of sight to many nearby stars, the presence of nearby scattering screens, the observed thin elongated structures of warm interstellar gas, and the likely presence of strong interstellar magnetic fields also support the multiple cloud model. The detection and identification of intercloud gas and the measurement of neutral hydrogen density in clouds beyond the Local Interstellar Cloud could provide future morphological tests. Based on observations made with the NASA/ESA Hubble Space Telescope, obtained from the Data Archive at the Space Telescope Science Institute, which is operated by the Association of Universities for Research in Astronomy, Inc., under NASA contract NAS AR-09525.01A. These observations are associated with programs #11568.

  4. Organic Chemistry: From the Interstellar Medium to the Solar System

    NASA Technical Reports Server (NTRS)

    Sandford, Scott; Witteborn, Fred C. (Technical Monitor)

    1997-01-01

    This talk will review the various types of organic materials observed in different environments in the interstellar medium, discuss the processes by which these materials may have formed and been modified, and present the evidence supporting the contention that at least a fraction of this material survived incorporation, substantially unaltered, into our Solar System during its formation. The nature of this organic material is of direct interest to issues associated with the origin of life, both because this material represents a large fraction of the Solar System inventory of the biogenically-important elements, and because many of the compounds in this inventory have biogenic implications. Several specific examples of such molecules will be briefly discussed.

  5. Observational properties of pulsars.

    PubMed

    Manchester, R N

    2004-04-23

    Pulsars are remarkable clocklike celestial sources that are believed to be rotating neutron stars formed in supernova explosions. They are valuable tools for investigations into topics such as neutron star interiors, globular cluster dynamics, the structure of the interstellar medium, and gravitational physics. Searches at radio and x-ray wavelengths over the past 5 years have resulted in a large increase in the number of known pulsars and the discovery of new populations of pulsars, posing challenges to theories of binary and stellar evolution. Recent images at radio, optical, and x-ray wavelengths have revealed structures resulting from the interaction of pulsar winds with the surrounding interstellar medium, giving new insights into the physics of pulsars.

  6. A spectroscopic study of the microorganism model of interstellar grains

    NASA Astrophysics Data System (ADS)

    Yabushita, S.; Wada, K.; Takai, T.; Inagaki, T.; Young, D.; Arakawa, E. T.

    1986-07-01

    The microorganism model of interstellar grains is investigated by spectroscopy from the infrared, visible to the ultraviolet (UV) wave regions. E. coli, yeast and spores of Bacillus subtilis exhibit absorption bands at lambda = 3.1 and 9.7 microns; they also exhibit several absorptions at 6 to about 8 microns which are in agreement with the observed IS extinction curves. To obtain the extinction curves in the visible and UV regions, dry films of microorganism are prepared on a MgF2 plate or synthesized quartz plate and their spectra measured. In the wavelength region 190 to about 400 nm, conventional spectrophotometers are adopted for the measurement. The extinction curve of the film of E. coli is similar to the observed IS curve. For the wave-range lambda of between 100 and 400 nm, a vacuum UV spectrometer is adopted to avoid absorptions due to O2 in the atmosphere. The extinction spectra by this method are in agreement with the result obtained by the conventional method where comparison is possible. The extinction curves of E. coli and yeast are such that they increase towards the short wavelength and exhibit a peak at lambda = 190 nm, which is different from the well-known IS peak at lambda = 220 nm. It remains to be seen whether interstellar low temperatures (10 to about 40 K) can shift the peak position in the extinction curve of biochemical materials.

  7. A (12)CO J = 2-1 map of the disk of Centaurus A: Evidence for large scale heating in the dust lane

    NASA Technical Reports Server (NTRS)

    Wild, W.; Cameron, M.; Eckart, A.; Genzel, R.; Rothermel, H.; Rydbeck, G.; Wiklind, T.

    1993-01-01

    Centaurus A (NGC 5128) is a nearby (3 Mpc) elliptical galaxy with a prominent dust lane, extensive radio lobes, and a compact radio continuum source, suggestive of nuclear activity. As a consequence of its peculiar morphology, this merger candidate has been the subject of much attention, particularly at optical wavelengths. Unfortunately the high and patchy extinction in the disk, aggravated by the warped structure of the dust lane, has severely hindered investigations into the properties of the interstellar medium, particularly with regard to the extent of star formation. Here we present a map of the (12)CO J = 2-1 line throughout the dust lane which, when combined with a previously measured (12)CO J = 1-0 map and data on molecular absorption lines observed against the compact non-thermal continuum source, offers insight into the excitation conditions of the molecular gas.

  8. Cosmic X-ray physics

    NASA Technical Reports Server (NTRS)

    Mccammon, D.; Cox, D. P.; Kraushaar, W. L.; Sanders, W. T.

    1985-01-01

    A progress report of research activities carried out in the area of cosmic X-ray physics is presented. The Diffuse X-ray Spectrometer DXS which has been flown twice as a rocket payload is described. The observation times proved to be too small for meaningful X-ray data to be obtained. Data collection and reduction activities from the Ultra-Soft X-ray background (UXT) instrument are described. UXT consists of three mechanically-collimated X-ray gas proportional counters with window/filter combinations which allow measurements in three energy bands, Be (80-110 eV), B (90-187 eV), and O (e84-532 eV). The Be band measurements provide an important constraint on local absorption of X-rays from the hot component of the local interstellar medium. Work has also continued on the development of a calorimetric detector for high-resolution spectroscopy in the 0.1 keV - 8keV energy range.

  9. Time Dependent Density Functional Theory Calculations of Large Compact PAH Cations: Implications for the Diffuse Interstellar Bands

    NASA Technical Reports Server (NTRS)

    Weisman, Jennifer L.; Lee, Timothy J.; Salama, Farid; Gordon-Head, Martin; Kwak, Dochan (Technical Monitor)

    2002-01-01

    We investigate the electronic absorption spectra of several maximally pericondensed polycyclic aromatic hydrocarbon radical cations with time dependent density functional theory calculations. We find interesting trends in the vertical excitation energies and oscillator strengths for this series containing pyrene through circumcoronene, the largest species containing more than 50 carbon atoms. We discuss the implications of these new results for the size and structure distribution of the diffuse interstellar band carriers.

  10. A Heliosphere Buffeted by Interstellar Turbulence?

    NASA Astrophysics Data System (ADS)

    Jokipii, J. R.; Giacalone, J.

    2014-12-01

    Recent observations from IBEX combined with previous measurements from other sources suggest new, local, effects of interstellar turbulence. Observations of various interstellar parameters such as the magnetic field, fluid velocity and electron density, over large spatial scales, have revealed a broadband Kolmogorov spectrum of interstellar turbulence which pervades most of interstellar space. The outer scale (or coherence scale of this turbulence) is found to be approximately 10^19 cm and the inner cutoff scale is less than 1000 km. The root-mean-square relative fluctuation in the fluid and the magnetic-field parameters is of order unity. If this turbulence exists at the heliosphere, the root-mean-square relative fluctuations at 100 (heliospheric) AU scales is approximately 0.1. The recently published value for the change In observed velocity direction for the interstellar flow relative to the heliosphere (Frisch, etal, 2014)is consistent with this. Similarly, interpreting the width of the IBEX ribbon in terms of a fluctuating magnetic field also is in agreement with this picture. Observations of TeV cosmic rays can also be explained. Potential effects of these fluctuations in the interstellar medium on the heliosphere will be discussed. Reference: Frisch, etal, Science, 341, 480

  11. A survey of the properties of early-type galaxies

    NASA Technical Reports Server (NTRS)

    Bregman, Joel N.; Roberts, M. S.; Hogg, D. E.

    1990-01-01

    A compilation of the properties of elliptical and early disk galaxies was completed. In addition to material from the literature, such as Infrared Astronomy Satellite (IRAS) fluxes, the compilation includes recent measurements of HI and CO, as well as a review of the x ray properties by Forman and Jones. The data are used to evaluate the gas content of early systems and to search for correlations with x ray emission. The interstellar medium in early-type galaxies is generally dominated by hot interstellar gas (T approx. 10 to the 7th power K; c.f. the review by Fabbiano 1989 and references therein). In addition, a significant fraction of these galaxies show infrared emission (Knapp, et al., 1989), optical emission lines, and visible dust. Sensitive studies in HI and CO of a number of these galaxies have been completed recently, resulting in several detections, particularly of the later types. Researchers wish to understand the connection among these different forms of the interstellar medium, and to examine the theoretical picture of the fate of the hot gas. To do so, they compiled observations of several forms of interstellar matter for a well-defined sample of early-type galaxies. Here they present a statistical analysis of this data base and discuss the implications of the results.

  12. Interstellar heliospheric probe/heliospheric boundary explorer mission—a mission to the outermost boundaries of the solar system

    NASA Astrophysics Data System (ADS)

    Wimmer-Schweingruber, Robert F.; McNutt, Ralph; Schwadron, Nathan A.; Frisch, Priscilla C.; Gruntman, Mike; Wurz, Peter; Valtonen, Eino

    2009-05-01

    The Sun, driving a supersonic solar wind, cuts out of the local interstellar medium a giant plasma bubble, the heliosphere. ESA, jointly with NASA, has had an important role in the development of our current understanding of the Suns immediate neighborhood. Ulysses is the only spacecraft exploring the third, out-of-ecliptic dimension, while SOHO has allowed us to better understand the influence of the Sun and to image the glow of interstellar matter in the heliosphere. Voyager 1 has recently encountered the innermost boundary of this plasma bubble, the termination shock, and is returning exciting yet puzzling data of this remote region. The next logical step is to leave the heliosphere and to thereby map out in unprecedented detail the structure of the outer heliosphere and its boundaries, the termination shock, the heliosheath, the heliopause, and, after leaving the heliosphere, to discover the true nature of the hydrogen wall, the bow shock, and the local interstellar medium beyond. This will greatly advance our understanding of the heliosphere that is the best-known example for astrospheres as found around other stars. Thus, IHP/HEX will allow us to discover, explore, and understand fundamental astrophysical processes in the largest accessible plasma laboratory, the heliosphere.

  13. DDT_ldecin_2: Unraveling the enigmatic nature of the turbulent interaction zone between the circumstellar and interstellar medium around the well-known supergiant Beteleuse

    NASA Astrophysics Data System (ADS)

    Decin, L.

    2011-01-01

    Evolved stars are the birthplaces of the interstellar gas and solid dust particles. Such stars lose mass through a stellar wind, which is slow and dusty for cool giants and supergiants, or through impressive supernova explo- sions. However, recent observations with the PACS and SPIRE photometers reveal that the encounter between these slow and dusty winds and the interstellar medium is as spectacular as supernova explosions: multiple arcs, bar-like structures and different kind of instabilities (Rayleigh-Taylor and Kelvin-Helmholtz) are detected. The most outstanding example concerns the well-known supergiant Betelgeuse. However, with the current set of Herschel observations, it is impossible to dene the exact physical mechanism causing the observed infrared emission. We propose to obtain PACS [O I] and HIFI [C II] spectroscopic observations at different pointings in the turbulent wind interaction zone around Betelgeuse. The proposed DDT observations would only take 3.1 hr and would give the astronomical community the rst possibility to study spectroscopically the different dynam- ical and chemical processes partaking in the interaction zone between circumstellar and interstellar material. The derived spectroscopic information will be valuable to the whole community in preparation of OT2.

  14. Low-frequency Carbon Radio Recombination Lines. II. The Diffuse Interstellar Medium

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Salgado, F.; Morabito, L. K.; Oonk, J. B. R.

    In the second paper of the series, we have modeled low-frequency carbon radio recombination lines (CRRLs) from the interstellar medium. Anticipating the Low Frequency Array survey of Galactic CRRLs, we focus our study on the physical conditions of the diffuse, cold neutral medium. We have used the improved departure coefficients computed in the first paper of the series to calculate line-to-continuum ratios. The results show that the line width and integrated optical depths of CRRLs are sensitive probes of the electron density, gas temperature, and emission measure of the cloud. Furthermore, the ratio of CRRL to the [C ii] atmore » the 158 μ m line is a strong function of the temperature and density of diffuse clouds. Guided by our calculations, we analyze CRRL observations and illustrate their use with data from the literature.« less

  15. Deuterium Abundance in the Local ISM and Possible Spatial Variations

    NASA Technical Reports Server (NTRS)

    Linsky, Jeffrey L.

    1998-01-01

    Excellent HST/GHRS spectra of interstellar hydrogen and deuterium Lyman-(alpha) absorption toward nearby stars allow us to identify systematic errors that have plagued earlier work and to measure accurate values of the D/H ratio in local interstellar gas. Analysis of 12 sightlines through the Local Interstellar Cloud leads to a mean value of D/H = (1.50 +/- 0.10) x 10(exp -5) with all data points lying within +/- l(delta) of the mean. Whether or not the D/H ratio has different values elsewhere in the Galaxy and beyond is a very important open question that will be one of the major objectives of the Far Ultraviolet Spectroscopic Explorer (FUSE) mission.

  16. Reactions of nitriles in ices relevant to Titan, comets, and the interstellar medium: formation of cyanate ion, ketenimines, and isonitriles

    NASA Astrophysics Data System (ADS)

    Hudson, R. L.; Moore, M. H.

    2004-12-01

    Motivated by detections of nitriles in Titan's atmosphere, cometary comae, and the interstellar medium, we report laboratory investigations of the low-temperature chemistry of acetonitrile, propionitrile, acrylonitrile, cyanoacetylene, and cyanogen (CH 3CN, CH 3CH 2CN, CH 2CHCN, HCCCN, and NCCN, respectively). A few experiments were also done on isobutyronitrile and trimethylacetonitrile ((CH 3) 2CHCN and (CH 3) 3CCN, respectively). Trends were sought, and found, in the photo- and radiation chemical products of these molecules at 12-25 K. In the absence of water, all of these molecules isomerized to isonitriles, and CH 3CN, CH 3CH 2CN, and (CH 3) 2CHCN also formed ketenimines. In the presence of H 2O, no isonitriles were detected but rather the cyanate ion (OCN -) was seen in all cases. Although isonitriles, ketenimines, and OCN - were the main focus of our work, we also describe cases of hydrogen loss, to make smaller nitriles, and hydrogen addition (reduction), to make larger nitriles. HCN formation also was seen in most experiments. The results are presented in terms of nitrile ice chemistry on Titan, in cometary ice, and in the interstellar medium. Possible connections to prebiotic chemistry are briefly discussed.

  17. Interstellar photoelectric absorption cross sections, 0.03-10 keV

    NASA Technical Reports Server (NTRS)

    Morrison, R.; Mccammon, D.

    1983-01-01

    An effective absorption cross section per hydrogen atom has been calculated as a function of energy in the 0.03-10 keV range using the most recent atomic cross section and cosmic abundance data. Coefficients of a piecewise polynomial fit to the numerical results are given to allow convenient application in automated calculations.

  18. Ultraviolet gas absorption and dust extinction toward M8

    NASA Technical Reports Server (NTRS)

    Boggs, Don; Bohm-Vitense, Erika

    1990-01-01

    Interstellar absorption lines are analyzed using high-resolution IUE spectra of 11 stars in the young cluster NGC 6530 located in the M8 region. High-velocity clouds at -35 km/s and -60 km/s are seen toward all cluster stars. The components arise in gases that are part of large interstellar bubbles centered on the cluster and driven by stellar winds of the most luminous members. Absorption lines of species of different ionization states are separated in velocity. The velocity stratification is best explained as a 'champagne' flow of ionized gas away from the cluster. The C IV/Si IV ratios toward the hotter cluster members are consistent with simple photoionization models if the gas-phase C/Si ratio is increased by preferential accretion onto dust grains. High ion column densities in the central cluster decline with distance from W93, suggesting that radiation from a hot source near W93 has photoionized gas in the central cluster.

  19. Two γ-ray bursts from dusty regions with little molecular gas.

    PubMed

    Hatsukade, B; Ohta, K; Endo, A; Nakanishi, K; Tamura, Y; Hashimoto, T; Kohno, K

    2014-06-12

    Long-duration γ-ray bursts are associated with the explosions of massive stars and are accordingly expected to reside in star-forming regions with molecular gas (the fuel for star formation). Previous searches for carbon monoxide (CO), a tracer of molecular gas, in burst host galaxies did not detect any emission. Molecules have been detected as absorption in the spectra of γ-ray burst afterglows, and the molecular gas is similar to the translucent or diffuse molecular clouds of the Milky Way. Absorption lines probe the interstellar medium only along the line of sight, so it is not clear whether the molecular gas represents the general properties of the regions where the bursts occur. Here we report spatially resolved observations of CO line emission and millimetre-wavelength continuum emission in two galaxies hosting γ-ray bursts. The bursts happened in regions rich in dust, but not particularly rich in molecular gas. The ratio of molecular gas to dust (<9-14) is significantly lower than in star-forming regions of the Milky Way and nearby star-forming galaxies, suggesting that much of the dense gas where stars form has been dissipated by other massive stars.

  20. Characterization of thin film CO2 ice through the infrared ν1 + ν3 combination mode

    NASA Astrophysics Data System (ADS)

    He, Jiao; Vidali, Gianfranco

    2018-01-01

    Carbon dioxide is abundant in ice mantles of dust grains; some is found in the pure crystalline form as inferred from the double peak splitting of the bending profile at about 650 cm-1. To study how CO2 segregates into the pure form from water-rich mixtures of ice mantles and how it then crystallizes, we used Reflection Absorption InfraRed Spectroscopy to study the structural change of pure CO2 ice as a function of both ice thickness and temperature. We found that the ν1 + ν3 combination mode absorption profile at 3708 cm-1 provides an excellent probe to quantify the degree of crystallinity in CO2 ice. We also found that between 20 and 30 K, there is an ordering transition that we attribute to reorientation of CO2 molecules, while the diffusion of CO2 becomes significant at much higher temperatures. In the formation of pure crystalline CO2 in interstellar medium ices, the rate limiting process is the diffusion/segregation of CO2 molecules in the ice instead of the phase transition from amorphous to crystalline after clusters/islands of CO2 are formed.

  1. Electron energy loss spectrometry of interstellar diamonds

    NASA Technical Reports Server (NTRS)

    Bernatowicz, Thomas J.; Gibbons, Patrick C.; Lewis, Roy S.

    1990-01-01

    The results are reported of electron energy loss spectra (EELS) measurements on diamond residues from carbonaceous meteorites designed to elucidate the structure and composition of interstellar diamonds. Dynamic effective medium theory is used to model the dielectric properties of the diamonds and in particular to synthesize the observed spectra as mixtures of diamond and various pi-bonded carbons. The results are shown to be quantitatively consistent with the idea that diamonds and their surfaces are the only contributors to the electron energy loss spectra of the diamond residues and that these peculiar spectra are the result of the exceptionally small grain size and large specific surface area of the interstellar diamonds.

  2. Photoabsorption and photodissociation of molecules important in the interstellar medium

    NASA Technical Reports Server (NTRS)

    Lee, Long C.; Suto, Masako

    1991-01-01

    The photoabsorption, photodissociation, and fluorescence cross sections of interstellar molecules are measured at 90 to 250 nm. These quantitative optical data are needed for the understanding of the formation and destruction processes of molecules under the intense interstellar UV radiation field. Research covering the following topics is presented: (1) fluorescences from photoexcitation of CH4, CH3OH, and CH3SH; (2) NO gamma emission from photoexcitation of NO; (3) photoexcitation cross sections of aromatic molecules; (4) IR emission from UV excitation of HONO2; (5) IR emission from UV excitation of benzene and methyl-derivitives; and (6) IR emission from UV excitation of polycyclic aromatic hydrocarbon molecules.

  3. Observations of local interstellar Mg I and Mg II

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bruhweiler, F.C.; Oegerle, W.; Weiler, E.

    1984-11-01

    Copernicus and IUE observations of 5 stars within 50 pc of the Sun were combined to study the ionization of magnesium in the Local Interstellar Medium (LISM). The high resolution Copernicus spectrometer was used to detect interstellar MG I 2852 in the spectra of alpha Gru, alpha Eri, and alpha Lyr, while placing upper limits on Mg I in the spectra of alpha CMa and alpha PsA. Observations of Mg II 2795, 2802 for these stars were also obtained with IUE and Copernicus. The column densities of Mg I and Mg II are used to place constraints on the temperaturemore » of the LISM.« less

  4. Observations of Local Interstellar Mg I and Mg II

    NASA Technical Reports Server (NTRS)

    Bruhweiler, F. C.; Oegerle, W.; Weiler, E.; Stencel, R. E.; Kondo, Y.

    1984-01-01

    Copernicus and IUE observations of 5 stars within 50 pc of the Sun were combined to study the ionization of magnesium in the local interstellar medium (LISM). The high resolution Copernicus spectrometer was used to detect interstellar MG I 2852 in the spectra of alpha Gru, alpha Eri, and alpha Lyr, while placing upper limits on Mg I in the spectra of alpha CMa and alpha PsA. Observations of Mg II 2795, 2802 for these stars were also obtained with IUE and Copernicus. The column densities of Mg I and Mg II are used to place constraints on the temperature of the LISM.

  5. Cosmic Ray Proton Anisotropies Measured at Voyager 1 in the Local Interstellar Medium

    NASA Astrophysics Data System (ADS)

    Decker, R. B.; Krimigis, S. M.; Hill, M. E.; Roelof, E. C.

    2016-12-01

    Voyager 1 entered the local interstellar medium in August of 2012 at helioradius 121.6 AU and heliolatitude N35°, and is now about 15 AU (≈12% the sun-heliopause distance at Voyager 1) upstream of the heliopause nose. Intensities of low-energy ions and electrons and of anomalous cosmic rays, all of which were routinely measured in the heliosheath, remain at background levels through July 2016. Galactic cosmic ray protons >211 MeV continue to show departures from isotropy, with broad (0.3-0.8 year) episodes of steady intensity depletions of ions gyrating nearly perpendicular to the magnetic field. Percentage intensity decreases during these depletions, relative to intensities of cosmic rays propagating along the field, peak at -7% on 2013.35, -3% on 2014.50, and -10% on 2016.00. In the last case, the peak anisotropy was preceded by an intensity decline lasting at least 9 months. The 2016.00 peak (-10%) anisotropy of was followed by a recovery back toward isotropy. But this recovery was interrupted in mid-April 2016, when the anisotropy had reached -2%, at which time the anisotropy began to again increase and continued to do so through at least July 2016, when the anisotropy reached -3%. We note that during its 4-year propagation through the local interstellar medium, Voyager 1 has encountered mainly anisotropic cosmic ray distributions. The longest period of isotropy occurred during a 4-month period in the latter half of 2014. Gurnett et al. [Ap. J., 809, 2015; Fall 2016 AGU (this meeting)] suggested that the broad periods when cosmic ray intensities evolve away from isotropy are precursor signatures produced by weak magnetic disturbances driven by solar activity. These disturbances propagate through the interstellar medium where they produce the bursts of electron plasma oscillations and peak cosmic ray anisotropies that are measured at Voyager 1 just before the disturbances cross the spacecraft.

  6. Modelling injection rates of PUIs from photoionization using kinetic simulations of interstellar neutrals traversing the heliosphere

    NASA Astrophysics Data System (ADS)

    Keilbach, D.; Drews, C.; Taut, A.; Wimmer-Schweingruber, R. F.

    2016-12-01

    Recent studies of the inflow direction of the local insterstellar medium from PUI density distributions have shown that the extrema of the longitudinal distribution of PUI velocities (with respect to the solar wind speed) can be attributed to the radial velocity of the interstellar neutral seed population and is symmetric around the inflow direction of the local interstellar medium. This work is aimed to model pickup ion injection rates from photoionization (which is the main process of interstellar PUI production) throughout the heliosphere. To that end a seed population of interstellar neutrals is injected into a model heliosphere at 60 AU distance from the sun, whereas each particle's initial speed is given by a maxwellian distribution at a temperature of 1 eV and an inflow speed of 22 km/s. Then the density of the interstellar neutrals is integrated over the model heliosphere, while the movement of the neutrals is simulated using timestep methods. To model the focusing of the interstellar neutral trajectories from the sun's gravitational potential the model heliosphere contains a central gravitational potential.Each neutral test particle can be ionized via photoionization with a per-timestep probability antiproportional to the neutral's distance to the sun squared. By tracking the ionization rate location-dependently, PUI injection rates have been determined. Therefore using these simulations the density distributions of different species of interstellar neutrals have been calculated. In addition location-dependent injection rates of different species of PUIs have been calculated, which show an increased rate of PUI production in the focusing cone region (e.g. for He+ PUIs), but also in the crescent region (e.g. for O+ PUIs).Furthermore the longitudinal distribution of the neutrals' velocity at 1 AU is calculated from the simulation's results in order to estimate the PUI cut-off as a function of ecliptic longitude. Figure: Simulated He neutral density (left) and simulated He PUI production rates from photoionization (right). The sun is located at 0 AU at both x-and y-axes.

  7. Laboratory Studies of Solid Carbon Dioxide in Planetary and Interstellar Ices

    NASA Technical Reports Server (NTRS)

    White, Douglas; Sandford, Scott A.; Mastrapa, Rachel M.

    2012-01-01

    Laboratory spectra have shown that CO2. is a powerful diagnostic tool for analyzing infrared data from remote observations, as it has been detected on icy moons in the outer solar system as well as dust grain surfaces in the interstellar medium. IR absorption profiles of CO2 wi thin ice mixtures containing H2O and CH30H change with respect to tem perature and mixture ratios. In this particular study, the CO2 stretch mode around 235O cm (exp -1) (4.3 rricrons) is systematically observ ed in different mixtures with H2O and CH30H in temperature ranges from 15K to 150 K, as well as vibrational modes in the near-IR such as th e combination bands near 3700 cm (exp -1) (2.7 microns) and 5080 (exp -1) (2.0 microns). Additionally, some high?temperature deposits (T > 50 K) of H2O, CH30H, and CO2 ice mixtures were performed to determine the maximum temperatures at which CO2 will deposit on the sample win dow. These data may then be used to interpret spectra obtained from remote IR observations. This research was sponsored by Oak Ridge Associ ated Universities (ORAU) through the NASA Postdoctoral Program (NPP) as well as Ames Research Center and the SETI institute who provided fa cilities and equipment.

  8. An optical spectrum of a large isolated gas-phase PAH cation: C78H26+

    PubMed Central

    Zhen, Junfeng; Mulas, Giacomo; Bonnamy, Anthony; Joblin, Christine

    2016-01-01

    A gas-phase optical spectrum of a large polycyclic aromatic hydrocarbon (PAH) cation - C78H26+- in the 410-610 nm range is presented. This large all-benzenoid PAH should be large enough to be stable with respect to photodissociation in the harsh conditions prevailing in the interstellar medium (ISM). The spectrum is obtained via multi-photon dissociation (MPD) spectroscopy of cationic C78H26 stored in the Fourier Transform Ion Cyclotron Resonance (FT-ICR) cell using the radiation from a mid-band optical parametric oscillator (OPO) laser. The experimental spectrum shows two main absorption peaks at 431 nm and 516 nm, in good agreement with a theoretical spectrum computed via time-dependent density functional theory (TD-DFT). DFT calculations indicate that the equilibrium geometry, with the absolute minimum energy, is of lowered, nonplanar C2 symmetry instead of the more symmetric planar D2h symmetry that is usually the minimum for similar PAHs of smaller size. This kind of slightly broken symmetry could produce some of the fine structure observed in some diffuse interstellar bands (DIBs). It can also favor the folding of C78H26+ fragments and ultimately the formation of fullerenes. This study opens up the possibility to identify the most promising candidates for DIBs amongst large cationic PAHs. PMID:26942230

  9. Stimulated Mid-Infrared Luminescence Experiment: Contribution to the Study of Pre-Earthquake Phenomena and UV Absorption by Interstellar Dust

    NASA Technical Reports Server (NTRS)

    Freund, Friedemann; Freund, Minoru M.; Tsay, Si-Chee; Ouzounov, Dimitar

    2004-01-01

    The work performed under this proposal is based on the experimentally supported observation - or inference - that a small fraction of the oxygen anions in silicate minerals in igneous and high-grade metamorphic rocks on Earth may not be in the usual 2- oxidation state, O(sup 2-), but in a higher oxidation state, as O(sup -). If this is true, the same would likely apply to the fine dust that fills the diffuse interstellar medium. An (sup -) in a matrix of O(sup 2-) represents a defect electron in the valence band, also known as positive hole or p-hole for short. When two O(sup -) combine, they undergo spin-pairing and form a positive hole pair, PHP. Chemically speaking a PHP is a peroxy bond. In an oxide matrix a peroxy bond takes the form of a peroxy anion, O2(sup 2-). In a silicate matrix it probably exists in the form of peroxy links between adjacent [SiO4] tetrahedral, O3Si00\\SiO3. From a physics perspective a PHP is an electrically inactive point defect, which contains dormant electronic charge carriers. When the peroxy bond breaks, p-hole charge carriers are released. These p-holes are diffusively mobile and spread through the O 2p-dominated valence band of the otherwise insulating mineral matrix.

  10. X-Ray Spectroscopy of the Low-Mass X-Ray Binaries 2S 0918-549 and 4U 1543-624: Evidence for Neon-rich Degenerate Donors

    NASA Astrophysics Data System (ADS)

    Juett, Adrienne M.; Chakrabarty, Deepto

    2003-12-01

    We present high-resolution spectroscopy of the neutron star/low-mass X-ray binaries 2S 0918-549 and 4U 1543-624 with the High Energy Transmission Grating Spectrometer on board the Chandra X-Ray Observatory and the Reflection Grating Spectrometer on board XMM-Newton. Previous low-resolution spectra of both sources showed a broad, linelike feature at 0.7 keV that was originally attributed to unresolved line emission. We recently showed that this feature could also be due to excess neutral Ne absorption, and this is confirmed by the new high-resolution Chandra and XMM spectra. The Chandra spectra are each well fitted by an absorbed-power-law+blackbody model with a modified Ne/O number ratio of 0.52+/-0.12 for 2S 0918-549 and 1.5+/-0.3 for 4U 1543-624, compared to the interstellar medium value of 0.18. The XMM spectrum of 2S 0918-549 is best fitted by an absorbed-power-law model with a Ne/O number ratio of 0.46+/-0.03, consistent with the Chandra result. On the other hand, the XMM spectrum of 4U 1543-624 is softer and less luminous than the Chandra spectrum and has a best-fit Ne/O number ratio of 0.54+/-0.03. The difference between the measured abundances and the expected interstellar ratio, as well as the variation of the column densities of O and Ne in 4U 1543-624, supports the suggestion that there is absorption local to these binaries. We propose that the variations in the O and Ne column densities of 4U 1543-624 are caused by changes in the ionization structure of the local absorbing material. It is important to understand the effect of ionization on the measured absorption columns before the abundance of the local material can be determined. This work supports our earlier suggestion that 2S 0918-549 and 4U 1543-624 are ultracompact binaries with Ne-rich companions.

  11. UV absorption investigation of ferromagnetically filled ultra-thick carbon onions, carriers of the 217.5 nm Interstellar Absorption Feature

    NASA Astrophysics Data System (ADS)

    Boi, Filippo S.; Zhang, Xiaotian; Ivaturi, Sameera; Liu, Qianyang; Wen, Jiqiu; Wang, Shanling

    2017-12-01

    Carbon nano-onions (CNOs) are fullerene-like structures which consist of quasi-spherical closed carbon shells. These structures have become a subject of great interest thanks to their characteristic absorption feature of interstellar origin (at 217.5 nm, 4.6 μm-1). An additional extinction peak at 3.8 μm-1 has also been reported and attributed to absorption by graphitic residues between the as-grown CNOs. Here, we report the ultraviolet absorption properties of ultra-thick CNOs filled with FePt3 crystals, which also exhibit two main absorption peaks—features located at 4.58 μm-1 and 3.44 μm-1. The presence of this additional feature is surprising and is attributed to nonmagnetic graphite flakes produced as a by-product in the pyrolysis experiment (as confirmed by magnetic separation methods). Instead, the feature at 4.58 μm-1 is associated with the π-plasmonic resonance of the CNOs structures. The FePt3 filled CNOs were fabricated in situ by an advanced one-step fast process consisting in the direct sublimation and pyrolysis of two molecular precursors, namely, ferrocene and dichloro-cyclooctadiene-platinum in a chemical vapour deposition system. The morphological, structural, and magnetic properties of the as-grown filled CNOs were characterized by a means of scanning and transmission electron microscopy, X-ray diffraction, and magnetometry.

  12. Eyes in the sky. Interactions between asymptotic giant branch star winds and the interstellar magnetic field

    NASA Astrophysics Data System (ADS)

    van Marle, A. J.; Cox, N. L. J.; Decin, L.

    2014-10-01

    Context. The extended circumstellar envelopes (CSEs) of evolved low-mass stars display a large variety of morphologies. Understanding the various mechanisms that give rise to these extended structures is important to trace their mass-loss history. Aims: Here, we aim to examine the role of the interstellar magnetic field in shaping the extended morphologies of slow dusty winds of asymptotic giant branch (AGB) stars in an effort to pin-point the origin of so-called eye shaped CSEs of three carbon-rich AGB stars. In addition, we seek to understand if this pre-planetary nebula (PN) shaping can be responsible for asymmetries observed in PNe. Methods: Hydrodynamical simulations are used to study the effect of typical interstellar magnetic fields on the free-expanding spherical stellar winds as they sweep up the local interstellar medium (ISM). Results: The simulations show that typical Galactic interstellar magnetic fields of 5 to 10 μG are sufficient to alter the spherical expanding shells of AGB stars to appear as the characteristic eye shape revealed by far-infrared observations. The typical sizes of the simulated eyes are in accordance with the observed physical sizes. However, the eye shapes are transient in nature. Depending on the stellar and interstellar conditions, they develop after 20 000 to 200 000 yrs and last for about 50 000 to 500 000 yrs, assuming that the star is at rest relative to the local interstellar medium. Once formed, the eye shape develops lateral outflows parallel to the magnetic field. The explosion of a PN in the centre of the eye-shaped dust shell gives rise to an asymmetrical nebula with prominent inward pointing Rayleigh-Taylor instabilities. Conclusions: Interstellar magnetic fields can clearly affect the shaping of wind-ISM interaction shells. The occurrence of the eyes is most strongly influenced by stellar space motion and ISM density. Observability of this transient phase is favoured for lines-of-sight perpendicular to the interstellar magnetic field direction. The simulations indicate that shaping of the pre-PN envelope can strongly affect the shape and size of PNe. Herschel is an ESA space observatory with science instruments provided by European-led Principal Investigator consortia and with important participation from NASA.Movies are available in electronic form at http://www.aanda.org

  13. Probing the Outflowing Multiphase Gas ∼1 kpc below the Galactic Center

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Savage, Blair D.; Kim, Tae-Sun; Wakker, Bart P.

    Comparison of interstellar medium (ISM) absorption in the UV spectrum of LS 4825, a B1 Ib−II star d  = 21 ± 5 kpc from the Sun toward l  = 1.°67 and b  = −6.°63, with ISM absorption toward an aligned foreground star at d  < 7.0 ± 1.7 kpc, allows us to isolate and study gas associated with the Milky Way nuclear wind. Spectra from the Space Telescope Imaging Spectrograph show low-ionization absorption out to d  < 7 kpc (e.g., O i, C ii, Mg ii, Si ii, Fe ii, S ii) only between 0 and 40 km s{sup −1}, while absorption at d  > 7 kpc, ∼1 kpc below themore » Galactic plane, is complex and spans −290 to +94 km s{sup −1}. The intermediate and high ions Si iii, C iv, Si iv, and N v show extremely strong absorption with multiple components from −283 to 107 km s{sup −1}, implying that the ISM ∼1 kpc below the Galactic center has a substantial reservoir of plasma and more gas containing C iv and N v than in the Carina OB1 association at z  = 0 kpc. Abundances and physical conditions are presented for many absorption components. The high ion absorption traces cooling transition temperature plasma probably driven by the outflowing hot gas, while the extraordinarily large thermal pressure, p / k  ∼ 10{sup 5} cm{sup −3} K{sup −1}, in an absorption component at −114 km s{sup −1} probably arises from the ram pressure of the outflowing hot gas. The observations are consistent with a flow whose ionization structure in the high ions can be understood through a combination of nonequilibrium radiative cooling and turbulent mixing.« less

  14. Interstellar matrices: the chemical composition and evolution of interstellar ices as observed by ISO.

    PubMed

    d'Hendecourt, L; Dartois, E

    2001-03-15

    Matrix isolation techniques have been developed in the early sixties as a tool for studying the spectroscopic properties of out of equilibrium species (atoms, radicals, ions, reactive molecules), embedded in rare gas inert matrices at low temperatures. Cold interstellar grains surfaces are able to condense out gas phase molecules, routinely observed by radioastronomy. These grain 'mantles' can be considered as 'interstellar matrices'. However, these matrices are not clean and unreactive. They are made principally of dirty ices whose composition must be determined carefully to assess the importance of the solid state chemistry that takes place in the Interstellar Medium. Infrared spectroscopy, both in astronomy and in the laboratory, is the unique tool to determine the chemical composition of these ices. Astronomical spectra can directly be compared with laboratory ones obtained using classical matrix isolation techniques. Furthermore, dedicated experiments may be undertaken to further improve the understanding of the basic physico-chemical processes that take place in cosmic ices.

  15. Infrared emission spectra of candidate interstellar aromatic molecules

    NASA Technical Reports Server (NTRS)

    Schlemmer, S.; Balucani, N.; Wagner, D. R.; Steiner, B.; Saykally, R. J.

    1996-01-01

    Interstellar dust is responsible, through surface reactions, for the creation of molecular hydrogen, the main component of the interstellar clouds in which new stars form. Intermediate between small, gas-phase molecules and dust are the polycyclic aromatic hydrocarbons (PAHs). Such molecules could account for 2-30% of the carbon in the Galaxy, and may provide nucleation sites for the formation of carbonaceous dust. Although PAHs have been proposed as the sources of the unidentified infrared emission bands that are observed in the spectra of a variety of interstellar sources, the emission characteristics of such molecules are still poorly understood. Here we report laboratory emission spectra of several representative PAHs, obtained in conditions approximating those of the interstellar medium, and measured over the entire spectral region spanned by the unidentified infrared bands. We find that neutral PAHs of small and moderate size can at best make only a minor contribution to these emission bands. Cations of these molecules, as well as much larger PAHs and their cations, remain viable candidates for the sources of these bands.

  16. Observations of Nitrogen Fractionation in Prestellar Cores: Nitriles Tracing Interstellar Chemistry

    NASA Technical Reports Server (NTRS)

    Milam, S. N.; Charnley, S. B.

    2012-01-01

    Primitive materials provide important clues on the processes that occurred during the formation and early evolution of the Solar System. Space-based and ground-based observations of cometary comae show that comets appear to contain a mixture of the products of both interstellar and nebular chemistries. Significant 15-nitrogen enrichments have been measured in CN and HCN towards a number of comets and may suggest an origin of interstellar chemical fractionation. Additionally, large N-15 enhancements are found in meteorites and has also led to to the view that the N-15 traces material formed in the interstellar medium (ISM), although multiple sources cannot be excluded. Here, we show the results of observations of the nitrogen and carbon fractionation in prestellar cores for various N-bearing species to decipher the origin of primitive material isotopic enrichments.

  17. Interstellar problems and matrix solutions

    NASA Technical Reports Server (NTRS)

    Allamandola, Louis J.

    1987-01-01

    The application of the matrix isolation technique to interstellar problems is described. Following a brief discussion of the interstellar medium (ISM), three areas are reviewed in which matrix experiments are particularly well suited to contribute the information which is sorely needed to further understanding of the ISM. The first involves the measurement of the spectroscopic properties of reactive species. The second is the determination of reaction rates and the elucidation of reaction pathways involving atoms, radicals, and ions which are likely to interact on grain surfaces and in grain mantles. The third entails the determiantion of the spectroscopic, photochemical, and photophysical properties of interstellar and cometary ice analogs. Significant, but limited, progress has been made in these three areas, and a tremendous amount of work is required to fully address the variety of unique chemical and spectroscopic questions posed by the astronomical observations.

  18. Time-dependent MHD modeling of the global structure of the heliosphere

    NASA Technical Reports Server (NTRS)

    Liewer, P. C.; Brackbill, J. U.; Karmesin, S. Roy

    1995-01-01

    We present results from time-dependent modeling of the global structure of the heliosphere with neutral and magnetic field effects included. The magnetic field is assumed parallel to the interstellar flow in this two-dimensional axisymmetric model; the neutrals are treated as a fluid. The effects of interstellar neutrals and the interplanetary magnetic field on the location of the termination shock are studied using the most recent estimate of the interstellar medium parameters, results will be compared to those of Baranov and Zaitsev. The effect of the solar wind - VLISM interaction on the density and velocity of interstellar neutrals within the heliosphere will also be presented and related to observations. The response of the termination shock to the solar cycle variation in the solar wind will be compared to the response found previously using an axisymmetric hydrodynamic model without neutrals.

  19. Interstellar dust spectra between 2.5 and 3.3 microns - A search for hydrated silicates

    NASA Technical Reports Server (NTRS)

    Knacke, R. F.; Mccorkle, S.; Puetter, R. C.; Erickson, E.

    1985-01-01

    Spectra in the 2.5-3.3 micron wavelength region of VI Cyg 12, AFGL 2205, and AFGL 2885 were obtained in a search for bound water, hydroxyl groups, and hydrated minerals in interstellar dust. No new absorption bands were found. Comparison of expected strengths of bands of serpentine and chlorite-like minerals with the data suggests that less than 25 percent and 50 percent, respectively, of the silicate in the grains is composed of these materials.

  20. Non-equilibrium processes in interstellar molecules

    NASA Technical Reports Server (NTRS)

    Strelnitskiy, V. S.

    1979-01-01

    The types of nonequilibrium emission and absorption by interstellar molecules are summarized. The observed brightness emission temperatures of compact OH and H2O sources are discussed using the concept of maser amplification. A single thermodynamic approach was used in which masers and anti-masers are considered as heat engines for the theoretical interpretation of the cosmic maser and anti-maser phenomena. The requirements for different models of pumping are formulated and a classification is suggested for the mechanisms of pumping, according to the source and discharge of energy.

Top