Observational aspects of polycyclic aromatic hydrocarbon charging in the Interstellar Medium
NASA Technical Reports Server (NTRS)
Bakes, E. L. O.; Tielens, Alexander G. G. M.
1995-01-01
We have investigated the charging processes which affect small carbonaceous dust grains and polycyclic aromatic hydrocarbons (PAH's). Because of their high abundance, interstellar PAH molecules can dominate the charge balance of the interstellar medium (ISM), which controls the heating and cooling interstellar gas and interstellar chemistry. We present the results of our model, which compare well with observations and suggest further applications to both laboratory measurements and data obtainable from the KAO.
PAH in the laboratory and interstellar space
NASA Technical Reports Server (NTRS)
Wdowiak, Thomas J.; Flickinger, Gregory C.; Boyd, David A.
1989-01-01
The theory that polycyclic aromatic hydrocarbons (PAHs) are a constituent of the interstellar medium, and a source of the IR emission bands at 3.3, 6.2, 7.7, 8.6, and 11.3 microns is being studied using PAH containing acid insoluble residue of the Orgueil CI meteorite and coal tar. FTIR spectra of Orgueil PAH material that has undergone thermal treatment, and a solvent insoluble fraction of coal tar that has been exposed to hydrogen plasma are presented. The UV excided luminescence spectrum of a solvent soluble coal tar film is also shown. Comparison of the lab measurements with observations appears to support the interstellar PAH theory, and shows the process of dehydrogenation expected to take place in the interstellar medium.
Astrochemistry: Recent Advances in the Study of Carbon Molecules in Space
NASA Technical Reports Server (NTRS)
Salama, Farid
2006-01-01
Carbon molecules and ions play an important role in space. Polycyclic Aromatic Hydrocarbons (PAHs) are the best-known candidates to account for the infrared emission bands (UIR bands) and PAH spectral features are now being used as probes of the interstellar medium in Galactic and extra-galactic environments. PAHs are also thought to be among the carriers of the diffuse interstellar absorption bands (DIBs). In the model dealing with the interstellar spectral features, PAHs are present as a mixture of radicals, ions and neutral species. PAH ionization states reflect the ionization balance of the medium while PAH size, composition, and structure reflect the energetic and chemical history of the medium. A major challenge for laboratory Astrochemistry is to reproduce (in a realistic way) the physical conditions that exist in the emission and absorption interstellar zones. An extensive laboratory program has been developed in various laboratories to characterize the physical and chemical properties of PAHs in astrophysical environments and to describe how they influence the radiation and energy balance in space and the interstellar chemistry. In particular, laboratory experiments provide measurements of the spectral characteristics of interstellar PAH analogs from the ultraviolet and visible range to the infrared range for comparison with astronomical data. The harsh physical conditions of the interstellar medium - characterized by a low temperature, an absence of collisions and strong ultraviolet radiation fields - are simulated in the laboratory by associating a molecular beam with an ionizing discharge to generate a cold plasma expansion. PAH ions are formed from the neutral precursors in an isolated environment at low temperature (of the order of 100 K). The spectra of neutral and ionized PAHs are measured using the high sensitivity methods of cavity ring down spectroscopy (CRDS). These experiments provide unique information on the spectra of free, cold large carbon molecules and ions in the gas phase.
Molecular Spectroscopy in Astrophysics: Interstellar PAHs
NASA Technical Reports Server (NTRS)
Salama, Farid; DeVincenzi, Donald L. (Technical Monitor)
2000-01-01
Polycyclic aromatic hydrocarbons (PAHs) are now considered to be an important and ubiquitous component of the organic material in space. PAHs are found in a large variety of extraterrestrial materials such as interplanetary dust particles (IDPs) and meteoritic materials. PAHs are also good candidates to account for the infrared emission bands (UIRs) and the diffuse interstellar optical absorption bands (DIBs) detected in various regions of the interstellar medium. The recent observations made with the Infrared Space Observatory (ISO) have confirmed the ubiquitous nature of the UIR bands and their carriers. PAHs are thought to form through chemical reactions in the outflow from carbon-rich stars in a process similar to soot formation. Once injected in the interstellar medium, PAHs are further processed by the interstellar radiation field, interstellar shocks and energetic particles. A long-term laboratory effort has been undertaken to measure the physical and chemical characteristics of these carbon molecules and their ions under experimental conditions that mimic the interstellar conditions. These measurements require collision-free conditions where the molecules and ions are cold and chemically isolated. The spectroscopy of PAHs under controlled conditions represents an essential diagnostic tool to study the evolution of extraterrestrial PAHs. The laboratory results will be discussed as well as the implications for astronomy and for molecular spectroscopy. A review of the data generated through laboratory simulations of space environments and the role these data have played in our current understanding of the properties of interstellar PAHs will be presented. We will also present the new generation of laboratory experiments that are currently being developed in order to provide a closer simulation of space environments and a better support to space missions.
Laboratory Astrochemistry: Interstellar PAH Analogs
NASA Technical Reports Server (NTRS)
Salama, Farid; DeVincenzi, Donald L. (Technical Monitor)
2000-01-01
Polycyclic aromatic hydrocarbons (PAHs) are now considered to be an important and ubiquitous component of the organic material in space. PAHs are found in a large variety of extraterrestrial materials such as interplanetary dust particles (IDPs) and meteoritic materials. PAHs are also good candidates to account for the infrared emission bands (UIRs) and the diffuse interstellar optical absorption bands (DIBs) detected in various regions of the interstellar medium. The recent observations made with the Infrared Space Observatory (ISO) have confirmed the ubiquitous nature of the UIR bands and their carriers. PAHs are though to form through chemical reactions in the outflow from carbon-rich stars in a process similar to soot formation. Once injected in the interstellar medium, PAHs are further processed by the interstellar radiation field, interstellar shocks and energetic particles. A major, dedicated, laboratory effort has been undertaken over the past years to measure the physical and chemical characteristics of these complex molecules and their ions under experimental conditions that mimic the interstellar conditions. These measurements require collision-free conditions where the molecules and ions are cold and chemically isolated. The spectroscopy of PAHs under controlled conditions represents an essential diagnostic tool to study the evolution of extraterrestrial PAHs. The Astrochemistry Laboratory program will be discussed through its multiple aspects: objectives, approach and techniques adopted, adaptability to the nature of the problem(s), results and implications for astronomy as well as for molecular spectroscopy. A review of the data generated through laboratory simulations of space environments and the role these data have played in our current understanding of the properties of interstellar PAHs will be presented. The discussion will also introduce the newest generation of laboratory experiments that are currently being developed in order to provide a closer simulation of space environments and a better support to space missions.
Laboratory Studies of Interstellar PAH Analogs
NASA Technical Reports Server (NTRS)
Salama, Farid; DeVincenzi, Donald (Technical Monitor)
2000-01-01
Polycyclic aromatic hydrocarbons (PAHs) are now considered to be an important and ubiquitous component of the organic material in space. PAHs are found in a large variety of extraterrestrial materials such as interplanetary dust particles (IDPs) and meteoritic materials. PAHs are also good candidates to account for the infrared emission bands (UIRs) and the diffuse interstellar optical absorption bands (DIBs) detected in various regions of the interstellar medium. The recent observations made with the Infrared Space Observatory (ISO) have confirmed the ubiquitous nature of the UIR bands and their carriers. PAHs are though to form through chemical reactions in the outflow from carbon-rich stars in a process similar to soot formation. Once injected in the interstellar medium, PAHs are further processed by the interstellar radiation field, interstellar shocks and energetic particles. A major, dedicated, laboratory effort has been undertaken over the past years to measure the physical and chemical characteristics of these complex molecules and their ions under experimental conditions that mimic the interstellar conditions. These measurements require collision-free conditions where the molecules and ions are cold and chemically isolated. The spectroscopy of PAHs under controlled conditions represents an essential diagnostic tool to study the evolution of extraterrestrial PAHs. The Astrochemistry Laboratory program will be discussed through its multiple aspects: objectives, approach and techniques adopted, adaptability to the nature of the problem(s), results and implications for astronomy as well as for molecular spectroscopy. A review of the data generated through laboratory simulations of space environments and the role these data have played in our current understanding of the properties of interstellar PAHs will be presented. The discussion will also introduce the newest generation of laboratory experiments that are currently being developed in order to provide a closer simulation of space environments and a better support to space missions.
Gas-Phase Ion Chemistry in Interstellar, Circumstellar, and Planetary Environments
NASA Astrophysics Data System (ADS)
Demarais, Nicholas J.
In the last century, astronomers, physicists, and chemists have shown that the environments of space are complex. Although we have learned a great amount about the interstellar medium, circumstellar medium, and atmospheres of other planets and moons, many mysteries still remain unsolved. The cooperation of astronomers, modelers, and chemists has lead to the detection of over 180 molecules in the interstellar and circumstellar medium, and the evolution of the new scientific field of astrochemistry. Gas-phase ion chemistry can determine the stability of ions in these complex environments, provide chemical networks, and guide searches for new interstellar molecules. Using the flowing afterglow-selected ion flow tube (FA-SIFT), we have characterized the reactions of positive and negative ions that are important in a variety of astrochemical environments. The detection of CF+ in photodissociation regions highlights the importance of fluorinated species in the interstellar medium. The viability of CF+ as a possible diffuse interstellar band (DIB) carrier is discussed as related to reactions with neutral molecules in various interstellar conditions; the reactions of CF+ with twenty-two molecules of interstellar relevance were investigated. The chemical reactions of HCNH+ with H2, CH 4, C2H2, and C2H4 were reexamined to provide insight into the overprediction of HCNH+ in Titan's ionosphere by current astrochemical models. In addition, this work suggests other chemical reactions that should be included in the current models to fully describe the destruction rates of HCNH+ in Titan's ionosphere. The reactions of polycyclic aromatic hydrocarbon (PAH) ions with H atoms and other small molecules were carried out to determine the stability of these species. In diffuse regions, where the photon flux is high, PAH cations are the dominant ionization state. This work continues our previous research to include PAHs of differing geometries as well as nitrogen-containing PAHs. Extension to larger PAH cations was made possible by the integration of the laser induced acoustic desorption (LIAD) source with the FA-SIFT. In addition, in dense environments, where the photon flux is low, anionic PAHs may exist. The detection of negative ions in the past 10 years has highlighted the importance of their inclusion in astrochemical models. We have investigated the chemistry of deprotonated PAHs with molecules of interstellar relevance to determine their chemical stability in dense regions of the interstellar and circumstellar medium. In addition to PAH anions, H- is an important species in dense interstellar environments. While the reaction of hydride anion has been recognized as a critical mechanism in the initial cooling immediately after the Big Bang, H- + H → H2 + e-, chemistry with neutral molecules was largely unknown. The chemistry of H- with various classes of organic molecules was investigated and conclusions are drawn based on reaction mechanisms.
Interstellar PAH Analogs in the Laboratory: Comparison with Astronomical Data
NASA Technical Reports Server (NTRS)
Salama, Farid
2005-01-01
Polycyclic Aromatic Hydrocarbons (PAHs) are an important and ubiquitous component of carbon-bearing materials in space. PAHs are the best-known candidates to account for the IR emission bands (UIR bands) and PAH spectral features are now being used as new probes of the ISM. PAHs are also thought to be among the carriers of the diffuse interstellar absorption bands (DIBs). In the model dealing with the interstellar spectral features, PAHs are present as a mixture of radicals, ions and neutral species. PAH ionization states reflect the ionization balance of the medium while PAH size, composition, and structure reflect the energetic and chemical history of the medium. A major challenge for laboratory astrophysics is to reproduce (in a realistic way) the physical conditions that exist in the emission and/or absorption interstellar zones. An extensive laboratory program has been developed at NASA Ames to assess the physical and chemical properties of PAHs in such environments and to describe how they influence the radiation and energy balance in space and the interstellar chemistry. In particular, laboratory experiments provide measurements of the spectral characteristics of interstellar PAH analogs from the ultraviolet and visible range to the infrared range for comparison with astronomical data. This paper will focus on the recent progress made in the laboratory to measure the direct absorption spectra of neutral and ionized PAHs in the near-UV and visible range. Intrinsic band profiles and band positions of cold gas-phase PAHs can now be measured with high-sensitivity spectroscopy and directly compared to the astronomical data. Preliminary conclusions from the comparison of the laboratory data with astronomical observations will also be presented.
NASA Astrophysics Data System (ADS)
Carelli, F.; Gianturco, F. A.
2011-12-01
Free, gas-phase polycyclic aromatic hydrocarbons (PAHs) are understood to play an important role in the interstellar medium (ISM), as they are thought to significantly contribute to both diffused and unidentified infrared interstellar bands. They are also considered fundamental blocks of the interstellar dust, whose nature has important implications for a plethora of physical and chemical nanoscopic processes within the ISM. Since free electrons represent a versatile alternative way to transport energy in the interstellar space, in this paper we compute from quantum scattering methods the angular redistributions of free electrons by gas-phase coronene molecules, the latter of which are believed to be one of the most representative PAHs, in order to assess their role in describing the efficiency of electron deflection by this molecule. The associated rates can provide useful information about the coupling mechanism between external radio-frequency fields and complex molecular plasmas containing neutral and ionized PAHs. They can also yield information on the possible presence of such species in the dust phase of the medium.
Carbon atom clusters in random covalent networks: PAHs as an integral component of interstellar HAC
NASA Astrophysics Data System (ADS)
Jones, A. P.
1990-11-01
Using a random covalent network (RCN) model for the structure of hydrogenated amorphorous carbon (HAC) and the available laboratory data, it is shown that aromatic species are a natural consequence of the structure of amorphous carbons formed in the laboratory. Amorphous carbons in the interstellar medium are therefore likely to contain a significant fraction of Polycyclic aromatic hydrocarbons (PAH) species within the 'amorphous' matrix making up these materials. This aromatic component can be produced in situ during the accretion of gas phase carbon species on to grains in the interstellar medium under hydrogen-poor conditions, or subsequent to deposition as a result of photolysis (photodarkening). The fraction of interstellar carbon present in HAC in the form of PAHs, based upon a RCN model, is consistent with the observed Unidentified infrared (UIR) emission features.
Spectroscopy of neutral and ionized PAHs. From laboratory studies to astronomical observations
NASA Technical Reports Server (NTRS)
Salama, Farid
2005-01-01
Polycyclic Aromatic Hydrocarbons (PAHs) are an important and ubiquitous component of carbon-bearing materials in space. PAHs are the best-known candidates to account for the IR emission bands (UIR bands) and PAH spectral features are now being used as new probes of the ISM. PAHs are also thought to be among the carriers of the diffuse interstellar absorption bands (DIBs). In the model dealing with the interstellar spectral features, PAHs are present as a mixture of radicals, ions and neutral species. PAH ionization states reflect the ionization balance of the medium while PAH size, composition, and structure reflect the energetic and chemical history of the medium. A major challenge for laboratory astrochemistry is to reproduce (in a realistic way) the physical conditions that are associated with the emission and absorption interstellar zones. An extensive laboratory program has been developed at NASA Ames to assess the physical and chemical properties of PAHs in such environments and to describe how they influence the radiation and energy balance in space and the interstellar chemistry. PAHs, neutrals and ions, are expanded through a pulsed discharge nozzle (PDN) and probed with high-sensitivity cavity ringdown spectroscopy (CRDS). These laboratory experiments provide unique information on the spectra of free, cold large carbon molecules and ions in the gas phase from the ultraviolet and visible range to the near-infrared range. Intrinsic band profiles and band positions of cold gas-phase PAHs can now be measured with high-sensitivity spectroscopy and directly compared to the astronomical data. Preliminary conclusions from the comparison of the laboratory data with astronomical observations of interstellar and circumstellar environments will also be discussed.
Laboratory evidence for ionized polycyclic aromatic hydrocarbons in the interstellar medium
NASA Technical Reports Server (NTRS)
Szczepanski, Jan; Vala, Martin
1993-01-01
The infrared absorption from neutrals and cations of four PAHs - naphthalene, anthracene, pyrene, and perylene - integrated over the spectral regions corresponding to the interstellar bands are compared with astronomical observations. It is found that the interstellar bands cannot be explained solely on the basis of neutral PAH species, but that cations must be a significant, and in some cases dominant, component.
Modeling the unidentified infrared emission with combinations of polycyclic aromatic hydrocarbons
NASA Technical Reports Server (NTRS)
Allamandola, L. J.; Hudgins, D. M.; Sandford, S. A.
1999-01-01
The infrared emission band spectrum associated with many different interstellar objects can be modeled successfully by using combined laboratory spectra of neutral and positively charged polycyclic aromatic hydrocarbons (PAHs). These model spectra, shown here for the first time, alleviate the principal spectroscopic criticisms previously leveled at the PAH hypothesis and demonstrate that mixtures of free molecular PAHs can indeed account for the overall appearance of the widespread interstellar infrared emission spectrum. Furthermore, these models give us insight into the structures, stabilities, abundances, and ionization balance of the interstellar PAH population. These, in turn, reflect conditions in the emission zones and shed light on the microscopic processes involved in the carbon nucleation, growth, and evolution in circumstellar shells and the interstellar medium.
Absorption Spectroscopy of Polycyclic Aromatic Hydrocarbons under Interstellar Conditions
NASA Technical Reports Server (NTRS)
Stone, Bradley M.
1996-01-01
The presence and importance of polycyclic aromatic hydrocarbons (PAHs, a large family of organic compounds containing carbon and hydrogen) in the interstellar medium has already been well established. The Astrochemistry Laboratory at NASA Ames Research Center (under the direction of Louis Allamandola and Scott Sandford) has been the center of pioneering work in performing spectroscopy on these molecules under simulated interstellar conditions, and consequently in the identification of these species in the interstellar medium by comparison to astronomically obtained spectra. My project this summer was twofold: (1) We planned on obtaining absorption spectra of a number of PAHs and their cations in cold (4K) Ne matrices. The purpose of these experiments was to increase the number of different PAHs for which laboratory spectra have been obtained under these simulated interstellar conditions; and (2) I was to continue the planning and design of a new laser facility that is being established in the Astrochemistry laboratory. The laser-based experimental set-up will greatly enhance our capability in examining this astrophysically important class of compounds.
Sloan, G C; Hayward, T L; Allamandola, L J; Bregman, J D; DeVito, B; Hudgins, D M
1999-03-01
Long-slit 8-13 micrometers spectroscopy of the nebula around NGC 1333 SVS 3 reveals spatial variations in the strength and shape of emission features that are probably produced by polycyclic aromatic hydrocarbons (PAHs). Close to SVS 3, the 11.2 micrometers feature develops an excess at approximately 10.8-11.0 micrometers and a feature appears at approximately 10 micrometers. These features disappear with increasing distance from the central source, and they show striking similarities to recent laboratory data of PAH cations, providing the first identification of emission features arising specifically from ionized PAHs in the interstellar medium.
Molecular Spectroscopy in Astrophysics: The Case of Polycyclic Aromatic Hydrocarbons
NASA Technical Reports Server (NTRS)
Salama, Farid; DeVincent, Donald L. (Technical Monitor)
2000-01-01
The role of molecular spectroscopy in astrophysics and astrochemistry is discussed in the context of the study of large, complex, carbon-bearing molecules, namely, Polycyclic Aromatic Hydrocarbons or PAHs. These molecular species are now thought to be widespread in the interstellar medium in their neutral and ionized forms. Identifying the carriers responsible for unidentified interstellar spectral bands will allow to derive important information on cosmic elemental abundances as well as information on the physical conditions (density, temperature) reigning in specific interstellar environments. These, in turn, are key elements for a correct understanding of the energetic mechanisms that govern the origin and the evolution of the interstellar medium. A multidisciplinary approach - combining astronomical observations with laboratory simulations and theoretical modeling - is required to address these complex issues. Laboratory spectra of several PAHs, isolated at low temperature in inert gas matrices or seeded in a supersonic jet expansion, are discussed here and compared to the astronomical spectra of reddened, early type, stars. The electronic spectroscopy of PAHs in the ultraviolet, visible, and near-infrared domains is reviewed and an assessment of the potential contribution of PAHs to the interstellar extinction in the ultraviolet and in the visible is discussed.
NASA Technical Reports Server (NTRS)
Biennier, L.; Salama, F.; Allamandola, L. J.; Scherer, J. J.; OKeefe, A.
2002-01-01
Polycyclic Aromatic Hydrocarbon molecules (PAHs) are ubiquitous in the interstellar medium (ISM) and constitute the building blocks of interstellar dust grains. Despite their inferred important role in mediating the energetic and chemical processes in thc ISM, their exact contribution to the interstellar extinction, and in particular to the diffuse interstellar bands (DIBs) remains unclear. The DIBs are spectral absorption features observed in the line of sight of stars that are obscured by diffuse interstellar clouds. More than 200 bands have been reported to date spanning from the near UV to the near IR with bandwidths ranging from 0.4 to 40 Angstroms (Tielens & Snow 1995). The present consensus is that the DIBs arise from free flying, gas-phase, organic molecules and/or ions that are abundant under the typical conditions reigning in the diffuse ISM. PAHs have been proposed as possible carriers (Allamandola et al. 1985; Leger & DHendecourt 1985). The PAH hypothesis is consistent with the cosmic abundance of Carbon and Hydrogen and with the required photostability of the DIB carriers against the strong VUV radiation field in the diffuse interstellar clouds. A significant fraction of PAHs is expected to be ionized in the diffuse ISM.
NASA Technical Reports Server (NTRS)
Salama, Farid
2005-01-01
Polycyclic Aromatic Hydrocarbons (PAHs) are an important and ubiquitous component of carbon-bearing materials in space. PAHs are the best-known candidates to account for the IR emission bands (UIR bands) and PAH spectral features are now being used as new probes of the ISM. PAHs are also thought to be among the carriers of the diffuse interstellar absorption bands (DIBs). In the model dealing with the interstellar spectral features, PAHs are present as a mixture of radicals, ions and neutral species. PAH ionization states reflect the ionization balance of the medium while PAH size, composition, and structure reflect the energetic and chemical history of the medium. A major challenge for laboratory astrophysics is to reproduce (in a realistic way) the physical conditions that exist in the emission and/or absorption interstellar zones. An extensive laboratory program has been developed at NASA Ames to assess the physical and chemical properties of PAHs in such environments and to describe how they influence the radiation and energy balance in space and the interstellar chemistry. In particular, laboratory experiments provide measurements of the spectral characteristics of interstellar PAH analogs from the ultraviolet and visible range to the infrared range for comparison with astronomical data. This paper will focus on the recent progress made in the laboratory to measure the direct absorption spectra of neutral and ionized PAHs in the gas phase in the near-UV and visible range in astrophysically relevant environments. These measurements provide data on PAHs and nanometer-sized particles that can now be directly compared to astronomical observations. The harsh physical conditions of the IS medium - characterized by a low temperature, an absence of collisions and strong VUV radiation fields - are simulated in the laboratory by associating a molecular beam with an ionizing discharge to generate a cold plasma expansion. PAH ions are formed from the neutral precursors in an isolated environment at low temperature (of the order of 100 K). The spectra of neutral and ionized PAHs are measured using the high sensitivity methods of cavity ring down spectroscopy (CRDS). These experiments provide unique information on the spectra of free, cold large carbon molecules and ions in the gas phase. Intrinsic band profiles and band positions of cold gas-phase PAHs can now be measured with high-sensitivity spectroscopy and directly compared to the astronomical data. The electronic bands measured for ionized PAH are found to be intrinsically broad (about 20 cm(sup -1)) while the bands associated with the neutral precursors are narrower (of the order of 2 - 10 cm(sup -1)). The laboratory data are discussed and compared with recent astronomical spectra of large and narrow DIBs and with the spectra of circumstellar environments of selected carbon stars and the implications for the interstellar PAH population are derived. Preliminary results also show that carbon nanoparticles are formed during the short residence time of the precursors in the plasma.
Interstellar dehydrogenated PAH anions: vibrational spectra
NASA Astrophysics Data System (ADS)
Buragohain, Mridusmita; Pathak, Amit; Sarre, Peter; Gour, Nand Kishor
2018-03-01
Interstellar polycyclic aromatic hydrocarbon (PAH) molecules exist in diverse forms depending on the local physical environment. Formation of ionized PAHs (anions and cations) is favourable in the extreme conditions of the interstellar medium (ISM). Besides in their pure form, PAHs are also likely to exist in substituted forms; for example, PAHs with functional groups, dehydrogenated PAHs etc. A dehydrogenated PAH molecule might subsequently form fullerenes in the ISM as a result of ongoing chemical processes. This work presents a density functional theory (DFT) calculation on dehydrogenated PAH anions to explore the infrared emission spectra of these molecules and discuss any possible contribution towards observed IR features in the ISM. The results suggest that dehydrogenated PAH anions might be significantly contributing to the 3.3 μm region. Spectroscopic features unique to dehydrogenated PAH anions are highlighted that may be used for their possible identification in the ISM. A comparison has also been made to see the size effect on spectra of these PAHs.
Infrared emission spectra of candidate interstellar aromatic molecules
NASA Technical Reports Server (NTRS)
Schlemmer, S.; Balucani, N.; Wagner, D. R.; Steiner, B.; Saykally, R. J.
1996-01-01
Interstellar dust is responsible, through surface reactions, for the creation of molecular hydrogen, the main component of the interstellar clouds in which new stars form. Intermediate between small, gas-phase molecules and dust are the polycyclic aromatic hydrocarbons (PAHs). Such molecules could account for 2-30% of the carbon in the Galaxy, and may provide nucleation sites for the formation of carbonaceous dust. Although PAHs have been proposed as the sources of the unidentified infrared emission bands that are observed in the spectra of a variety of interstellar sources, the emission characteristics of such molecules are still poorly understood. Here we report laboratory emission spectra of several representative PAHs, obtained in conditions approximating those of the interstellar medium, and measured over the entire spectral region spanned by the unidentified infrared bands. We find that neutral PAHs of small and moderate size can at best make only a minor contribution to these emission bands. Cations of these molecules, as well as much larger PAHs and their cations, remain viable candidates for the sources of these bands.
Interstellar Dust: Contributed Papers
NASA Technical Reports Server (NTRS)
Tielens, Alexander G. G. M. (Editor); Allamandola, Louis J. (Editor)
1989-01-01
A coherent picture of the dust composition and its physical characteristics in the various phases of the interstellar medium was the central theme. Topics addressed included: dust in diffuse interstellar medium; overidentified infrared emission features; dust in dense clouds; dust in galaxies; optical properties of dust grains; interstellar dust models; interstellar dust and the solar system; dust formation and destruction; UV, visible, and IR observations of interstellar extinction; and quantum-statistical calculations of IR emission from highly vibrationally excited polycyclic aromatic hydrocarbon (PAH) molecules.
NASA Technical Reports Server (NTRS)
Hudgins, Douglas M.; Allamandola, Louis J.
2003-01-01
Over the past fifteen years, thanks to significant, parallel advancements in observational, experimental, and theoretical techniques, tremendous strides have been made in our understanding of the role aromatic materials play in the interstellar medium (ISM). Twenty years ago, the possible existence of an abundant population of large, carbon-rich molecules in the ISM was unthinkable. Today, the unmistakable spectroscopic signatures of polycyclic aromatic hydrocarbon molecules (PAHs) - shockingly large molecules by the standards of traditional interstellar chemistry - are recognized throughout the Universe. In this paper, we will examine the current state of the interstellar PAH model and its utility as a diagnostic tool to derive insight into the nature of the interstellar PAH population. As an example of this application, we will examine the results of our recent spectroscopic studies of polycyclic aromatic nitrogen heterocycles (PANHs)-PAHs with an atom of nitrogen substituted into the aromatic skeleton-and discuss a possible tracer of such species amongst the interstellar PAH emission bands in the latest observational data.
NASA Technical Reports Server (NTRS)
Salama, Farid
2005-01-01
Polycyclic Aromatic Hydrocarbons (PAHs) are an important and ubiquitous component of carbon-bearing materials in space. PAHs are the best-known candidates to account for the IR emission bands (UIR bands) and PAH spectral features are now being used as new probes of the ISM. PAHs are also thought to be among the carriers of the diffuse interstellar absorption bands (DIBs). In the model dealing with the interstellar spectral features, PAHs are present as a mixture of radicals, ions and neutral species. PAH ionization states reflect the ionization balance of the medium while PAH size, composition, and structure reflect the energetic and chemical history of the medium. A major challenge for laboratory astrophysics is to reproduce (in a realistic way) the physical conditions that exist in the emission and/or absorption interstellar zones, An extensive laboratory program has been developed at NASA Ames to characterize the physical and chemical properties of PAHs in astrophysical environments and to describe how they influence the radiation and energy balance in space and the interstellar chemistry. In particular, laboratory experiments provide measurements of the spectral characteristics of interstellar PAH analogs from the ultraviolet and visible range to the infrared range for comparison with astronomical data. This paper will focus on the recent progress made in the laboratory to measure the direct absorption spectra of neutral and ionized PAHs in the gas phase in the near-W and visible range in astrophysically relevant environments. These measurements provide data on PAHs and nanometer-sized particles that can now be directly compared to astronomical observations. The harsh physical conditions of the IS medium - characterized by a low temperature, an absence of collisions and strong V W radiation fields - are simulated in the laboratory by associating a molecular beam with an ionizing discharge to generate a cold plasma expansion. PAH ions are formed from the neutral precursors in an isolated environment at low temperature (of the order of 100 K). The spectra of neutral and ionized PAHs are measured using the high sensitivity methods of cavity ring down spectroscopy (CRDS). These experiments provide unique information on the spectra of free, cold large carbon molecules and ions in the gas phase. Intrinsic band profiles and band positions of cold gas-phase PAHs can now be measured with high- sensitivity spectroscopy and directly compared to the astronomical data. The electronic bands measured for ionized PAH are found to be intrinsically broad (about 20/cm) while the bands associated with the neutral precursors are narrower (of the order of 2 - 10/cm).
UV-visible spectroscopy of PAHs and PAHNs in supersonic jet. Astrophysical Implications
NASA Astrophysics Data System (ADS)
Salma, Bejaoui; Salama, Farid
2017-06-01
Polycyclic Aromatic Hydrocarbon (PAHs) molecules are attracting much attention of the astrophysical and astrochemical communities since they are ubiquitous presence in space and could survive in the harsh interstellar medium (ISM). They are proposed as plausible carriers of the still unassigned diffuse interstellar bands (DIBs) for more than two decades now. The so-called PAH - DIB proposal has been based on the abundance of PAHs in the ISM and their stability against the photo and thermo dissociation. Nitrogen is one of the most abundant elements after hydrogen, helium, and carbon [1]. PANHs exhibit spectral features similar to PAHs and may also contribute to unidentified spectral bands.To prove PAHs-DIBs hypothesis, laboratory absorption spectra of aromatic under astrophysical relevant conditions are of crucial importance to compare with the observed DIBs spectra. The most challenging task is to reproduce as closely as technically possible, the physical and chemical conditions that are present in space. Interstellar PAHs are expected to be present as free, cold, neutral molecules and/or charged species [2]. In our laboratory, comparable conditions are achieved using an excellent platform developed in NASA Ames. Our cosmic simulation chamber (COSmIC) allow the measurements of gas phase spectra of neutral and ionized interstellar PAHs analogs by associating a molecular beam with an ionizing discharge to generate a cold plasma expansion (˜ 100 K) [3]. Our approach to assign PAH as carriers of some DIBs is record the electronic spectra of cold PAHs in gas phase and systematic search for a possible correspondence in astronomical DIBs spectra. We report in this work UV-visible absorption spectra of neutral PAHs and PAHNs using the cavity ring down spectroscopy (CRDS) technique. We discuss the effect of the substitution of C-H bond(s) by a nitrogen atom(s) in spectroscopic features of PAHs and their astrophysical application.[1] L. Spitzer, 1978, Physical processes in the interstellar medium. New York Wiley-Interscience[2] F. Salama, E. Bakes, L.J. Allamandola, A.G.G.M. Tielens, Astrophys. J. 458 (1996) 621[3] L. Biennier, F. Salama, L. J. Allamandola, & J. J. Scherer, (2003) J. of Chemical Physics, 118(17), 7863-7872
Polycyclic Aromatic Hydrocarbons
NASA Technical Reports Server (NTRS)
Salama, Farid
2010-01-01
Carbonaceous materials play an important role in space. Polycyclic Aromatic Hydrocarbons (PAHs) are a ubiquitous component of the carbonaceous materials. PAHs are the best-known candidates to account for the IR emission bands. They are also thought to be among the carriers of the diffuse interstellar absorption bands (DIBs). PAH ionization states reflect the ionization balance of the medium while PAH size, composition, and structure reflect the energetic and chemical history of the medium. A major challenge is to reproduce in the laboratory the physical conditions that exist in the emission and absorption interstellar zones. The harsh physical conditions of the ISM -low temperature, collisionless, strong UV radiation fields- are simulated in the laboratory by associating a molecular beam with an ionizing discharge to generate a cold plasma expansion. PAH ions and radicals are formed from the neutral precursors in an isolated environment at low temperature and probed with high-sensitivity cavity ringdown spectroscopy in the NUV-NIR range. Carbon nanoparticles are also formed during the short residence time of the precursors in the plasma and are characterized with time-offlight mass spectrometry. These experiments provide unique information on the spectra of large carbonaceous molecules and ions in the gas phase that can now be directly compared to interstellar and circumstellar observations (IR emission bands, DIBs, extinction curve). These findings also hold great potential for understanding the formation process of interstellar carbonaceous grains. We will review recent progress in the experimental and theoretical studies of PAHs, compare the laboratory data with astronomical observations and discuss the global implications.
NASA Technical Reports Server (NTRS)
Stone, Bradley M.
1998-01-01
The Astrochemistry Group at NASA Ames Research Center is interested in the identification of large organic molecules in the interstellar medium Many smaller organic species (e.g. hydrocarbons, alcohols, etc.) have been previously identified by their radiofrequency signature due to molecular rotations. However, this becomes increasingly difficult to observe as the size of the molecule increases. Our group in interested in the identification of the carriers of the Diffuse Interstellar Bands (absorption features observed throughout the visible and near-infrared in the spectra of stars, due to species in the interstellar medium). Polycyclic Aromatic Hydrocarbons (PAHs) and related molecules are thought to be good candidates for these carriers. Laboratory experiments am performed at Ames to simulate the interstellar environment, and to compare spectra obtained from molecules in the laboratory to those derived astronomically. We are also interested in PAHs with respect to their possible connection to the UIR (Unidentified infrared) and ERE (Extended Red Emission) bands - emission features found to emanate from particular regions of our galaxy (e.g. Orion nebula, Red Rectangle, etc.). An old, "tried and proven spectroscopic technique, matrix isolation spectroscopy creates molecular conditions ideal for performing laboratory astrophysics.
Deuterium Enrichment of PAHs by VUV Irradiation of Interstellar Ices
NASA Technical Reports Server (NTRS)
Bernstein, Max P.; Sandford, Scott A.; Allamandola, Louis J.; Gillette, J. Seb; Zare, Richard N.; DeVincenzi, Donald (Technical Monitor)
1998-01-01
Laboratory results demonstrate that polycyclic aromatic hydrocarbons (PAHs) rapidly exchange their hydrogen atoms with those of nearby molecules when they are frozen into low-temperature ices and exposed to vacuum ultraviolet radiation. As a result, PAHs quickly become deuterium-enriched when VUV irradiated in D-containing ices. This mechanism has important consequences for several astrophysical issues owing to the ubiquitous nature of PAHs in the interstellar medium. For example, this process may explain the deuterium enrichments found in PAHs in meteorites and interplanetary dust particles. These results also provide general predictions about the molecular siting of the deuterium on aromatic materials in meteorites if this process produced a significant fraction of their D-enrichment.
The diffuse interstellar bands: a tracer for organics in the diffuse interstellar medium?
NASA Technical Reports Server (NTRS)
Salama, F.
1998-01-01
The diffuse interstellar bands (DIBs) are absorption bands seen in the spectra of stars obscured by interstellar dust. DIBs are recognized as a tracer for free, organic molecules in the diffuse interstellar medium (ISM). The potential molecular carriers for the DIBs are discussed with an emphasis on neutral and ionized polycyclic aromatic hydrocarbons (PAHs) for which the most focused effort has been made to date. From the combined astronomical, laboratory and theoretical study, it is concluded that a distribution of free neutral and ionized complex organics (PAHs, fullerenes, unsaturated hydrocarbons) represents the most promising class of candidates to account for the DIBs. The case for aromatic hydrocarbons appears particularly strong. The implied widespread distribution of complex organics in the diffuse ISM bears profound implications for our understanding of the chemical complexity of the ISM, the evolution of prebiotic molecules and its impact on the origin and the evolution of life on early Earth through the exogenous delivery (cometary encounters and metoritic bombardments) of prebiotic organics.
NASA Astrophysics Data System (ADS)
Cuylle, Steven H.; Allamandola, Louis J.; Linnartz, Harold
2014-02-01
Context. Observations and models show that polycyclic aromatic hydrocarbons (PAHs) are ubiquitous in the interstellar medium. Like other molecules in dense clouds, PAHs accrete onto interstellar dust grains, where they are embedded in an ice matrix dominated by water. In the laboratory, mixed molecular ices (not containing PAHs) have been extensively studied using Fourier transform infrared absorption spectroscopy. Experiments including PAHs in ices have started, however, the concentrations used are typically much higher than the concentrations expected for interstellar ices. Optical spectroscopy offers a sensitive alternative. Aims: We report an experimental study of the effect PAH concentration has on the electronic spectra and the vacuum UV (VUV) driven processes of PAHs in water-rich ices. The goal is to apply the outcome to cosmic ices. Methods: Optical spectroscopic studies allow us to obtain in-situ and quasi real-time electronic solid state spectra of two prototypical PAHs (pyrene and coronene) embedded in water ice under VUV photoprocessing. The study is carried out on PAH:H2O concentrations in the range of 1:30 000 to pure PAH, covering the temperature range from 12 to 125 K. Results: PAH concentration strongly influences the efficiency of PAH cation formation. At low concentrations, ionization efficiencies are over 60% dropping to about 15% at 1:1000. Increasing the PAH concentration reveals spectral broadening in neutral and cation PAH spectra attributed to PAH clustering inside the ice. At the PAH concentrations expected for interstellar ices, some 10 to 20% may be present as cations. The presence of PAHs in neutral and ion form will add distinctive absorption bands to cosmic ice optical spectra and this may serve as a tool to determine PAH concentrations.
NASA Technical Reports Server (NTRS)
Mattioda, A. L.; Hudgins, D. M.; Allamandola, L. J.
2005-01-01
The near infrared (NIR) spectra and absolute band strengths of 27 polycyclic aromatic hydrocarbon (PAH) cations and anions ranging in size from C14H10 to C50H22, are reported. The spectra from 0.7 to 2.5 microns (14,000 to 4000/cm) are presented for the fifteen PAHs ranging in size from C40H18 to C50H22 whereas the spectra of the remaining twelve span the narrower range from 0.7 to 1.1 microns (14,000 to 9000/cm). The spectra of all the ionized PAHs we have studied to date have strong, broad absorption bands in the NIR arising from electronic transitions. This work shows that ionized PAHs have significant absorption bands at longer wavelengths than predicted by the current astronomical models which consider PAHs in their treatment of the radiation balance of the interstellar medium. Two implications are 1)-ionized interstellar PAHs should add weak, broad band structure to the NIR portion of the interstellar extinction curve and 2)- UV poor radiation fields can pump the PAH emission bands provided ionized PAHs are present.
Polycyclic Aromatic Hydrocarbons and Infrared Astrophysics with Spitzer
NASA Technical Reports Server (NTRS)
Allamandola, L. J.; Hudgins, D. M.
2004-01-01
PAH spectral features are now being used as new probes of the ISM. PAH ionization states reflect the ionization balance of the medium while PAH size and structure reflect the energetic and chemical history of the medium. This paper will focus on recent applications of the NASA Ames PAH IR spectral Database to interpret astronomical observations made by the Spitzer Space telescope and other space based infrared instruments. Examples will be given showing how changes in the spectral characteristics of different objects reveal interstellar PAH characteristics such as structure, size and composition, as well as provide insight into the chemical history and physical nature of the emission zones.
Spectroscopy of PAHs with carbon side chains
NASA Astrophysics Data System (ADS)
Rouille, G.; Steglich, M.; Carpentier, Y.; Huisken, F.; Henning, T.
2011-05-01
The presence of polycyclic aromatic hydrocarbons (PAHs) in space has been inferred ever since sp ecific infrared emission bands were interpreted as their collective fingerprint. In parallel, it has been admitted that the famous diffuse interstellar bands (DIBs), which are absorption features observed in the visible wavelength range, are bands belonging to the electronic spectra of free-flying interstellar molecules yet to be identified. As neutral PAHs of medium and large sizes exhibit absorption bands in the range where the DIBs are found, these molecules, which also fulfill other criteria, have been proposed as potential carriers. Studies of small PAHs in solutions have shown that adding an ethynyl side chain (--CCH) to their structure causes their electronic transitions to shift toward longer wavelengths. This fact, added to the observations of interstellar polyynyl radicals, motivated our current research project on PAHs carrying polyynyl side chains. In a first stage, we are measuring the electronic spectra of small PAHs and of their ethynyl and butadiynyl (--CCCCH) derivatives at cryogenic temperatures in rare gas matrices. Then, measurements will be carried out in supersonic jets, providing us with spectra obtained under conditions relevant to the study of free-flying interstellar molecules. The results of IR absorption measurements will be included in our set of new data. As a complement to our laboratory study on the substituted PAHs, quantum chemical calculations are carried out to interprete and simulate their IR and vibronic spectra. We use the density functional theory approach and its time-dependent extension for calculating the electronic ground states and the electronically excited states, respectively. Through the analysis of the new data, it will be determined whether PAHs carrying polyynyl side chains can play a role in interstellar phenomena. The latest results of this on-going project will be presented.
DISSOCIATIVE PHOTOIONIZATION OF POLYCYCLIC AROMATIC HYDROCARBON MOLECULES CARRYING AN ETHYNYL GROUP
DOE Office of Scientific and Technical Information (OSTI.GOV)
Rouillé, G.; Krasnokutski, S. A.; Fulvio, D.
The life cycle of the population of interstellar polycyclic aromatic hydrocarbon (PAH) molecules depends partly on the photostability of the individual species. We have studied the dissociative photoionization of two ethynyl-substituted PAH species, namely, 9-ethynylphenanthrene and 1-ethynylpyrene. Their adiabatic ionization energy and the appearance energy of fragment ions have been measured with the photoelectron photoion coincidence spectroscopy technique. The adiabatic ionization energy has been found at 7.84 ± 0.02 eV for 9-ethynylphenanthrene and at 7.41 ± 0.02 eV for 1-ethynylpyrene. These values are similar to those determined for the corresponding non-substituted PAH molecules phenanthrene and pyrene. The appearance energy ofmore » the fragment ion indicative of the loss of a H atom following photoionization is also similar for either ethynyl-substituted PAH molecule and its non-substituted counterpart. The measurements are used to estimate the critical energy for the loss of a H atom by the PAH cations and the stability of ethynyl-substituted PAH molecules upon photoionization. We conclude that these PAH derivatives are as photostable as the non-substituted species in H i regions. If present in the interstellar medium, they may play an important role in the growth of interstellar PAH molecules.« less
NASA Technical Reports Server (NTRS)
Sandford, S. A.; Bernstein, M. P.; Allamandola, L. J.; Gillette, J. S.; Zare, R. N.
2000-01-01
The polycyclic aromatic hydrocarbon (PAH) coronene (C24H12) frozen in D2O ice in a ratio of less than 1 part in 500 rapidly exchanges its hydrogen atoms with the deuterium in the ice at interstellar temperatures and pressures when exposed to ultraviolet radiation. Exchange occurs via three different chemical processes: D atom addition, D atom exchange at oxidized edge sites, and D atom exchange at aromatic edge sites. Observed exchange rates for coronene (C24H12)-D2O and d12-coronene (C24D12)-H2O isotopic substitution experiments show that PAHs in interstellar ices could easily attain the D/H levels observed in meteorites. These results may have important consequences for the abundance of deuterium observed in aromatic materials in the interstellar medium and in meteorites. These exchange mechanisms produce deuteration in characteristic molecular locations on the PAHs that may distinguish them from previously postulated processes for D enrichment of PAHs.
Laboratory rotational spectroscopy of cyano substituted polycyclic aromatic hydrocarbons
NASA Astrophysics Data System (ADS)
McNaughton, Don; Jahn, Michaela K.; Travers, Michael J.; Wachsmuth, Dennis; Godfrey, Peter D.; Grabow, Jens-Uwe
2018-06-01
The rotational spectra of the four cyano substituted polycyclic aromatic hydrocarbon (PAH) molecules 1-cyanonaphthalene, 2-cyanonaphthalene, 9-cyanoanthracene, and 9-cyanophenanthrene have been recorded in molecular expansions using a Stark-modulated millimetre-wave spectrometer and a Fourier transform microwave spectrometer in the centimetre-wave region. The spectra have been assigned and fitted to provide molecular constants and quadrupole hyperfine constants of sufficient accuracy to enable complete hyperfine structure line predictions for interstellar searches. The data may provide a route into detection of small PAHs in the interstellar medium.
Investigations of the Formation of Carbon Grains in Circumstellar Outflows
NASA Technical Reports Server (NTRS)
Contreras, Cesar; Salama, Farid
2013-01-01
The study of formation and destruction processes of cosmic dust is essential to understand and to quantify the budget of extraterrestrial organic molecules. Although dust with all its components plays an important role in the evolution of interstellar chemistry and in the formation of organic molecules, little is known on the formation and destruction processes of carbonaceous dust. PAHs are important chemical building blocks of interstellar dust. They are detected in interplanetary dust particles and in meteoritic samples. Additionally, observational, laboratory, and theoretical studies have shown that PAHs, in their neutral and ionized forms, are an important, ubiquitous component of the interstellar medium. Also, the formation of PAHs from smaller molecules has not been extensively studied. Therefore, it is imperative that laboratory experiments be conducted to study the dynamic processes of carbon grain formation from PAH precursors. Studies of interstellar dust analogs formed from a variety of PAH and hydrocarbon precursors as well as species that include the atoms O, N, and S, have recently been performed in our laboratory under conditions that simulate interstellar and circumstellar environments. The species formed in the pulsed discharge nozzle (PDN) plasma source are detected and characterized with a high-sensitivity cavity ringdown spectrometer (CRDS) coupled to a Reflectron time-of-flight mass spectrometer (ReTOF-MS), thus providing both spectroscopic and ion mass information in-situ. We report the first set of measurements obtained in these experiments and identify the species present in the experiments and the ions that are formed in the plasma process. From these unique measurements, we derive information on the size and the structure of interstellar dust grain particles, the growth and the destruction processes of interstellar dust and the resulting budget of extraterrestrial organic molecules.
Experimental Electronic Spectroscopy of Two PAHs: Naphthalene and 2-METHYL Naphthalene
NASA Astrophysics Data System (ADS)
Friha, H.; Feraud, G.; Pino, T.; Brechignac, Ph.; Parneix, P.; Dhaoudi, Z.; Jaidane, N.; Galila, H.; Troy, T.; Schmidt, T.
2011-06-01
The presence of polycyclic aromatic hydrocarbons (PAHs) in the interstellar medium (ISM) was suggested in the mid-80's. Since then, their important role in the physico-chemical evolution of the ISM has been confirmed. Interstellar PAHs have been in particular proposed as possible carriers of some Diffuse Interstellar Bands (DIBs). These absorption bands are seen in the spectra of reddened stars from the visible to the near infrared and constitute a major astrophysical issue. Our purpose is to obtain electronic spectra of gas phase PAHs which will be used to probe their participation to the interstellar extinction curve from the visible (DIBs) to the UV (bump). For this goal PAHs cations represent an excellent set of target species. A new way of forming PAH+-Ar_n clusters cations has been implemented in the experimental set-up 'ICARE' at ISMO (Orsay) giving us the capability to measure the electronic spectra of cold PAH cations in the gas phase through the "Ar tagging" trick. Two molecules have been investigated in this way: naphthalene (C_1_0H_8) and 2- methyl naphthalene (C_1_1H_1_0). Clusters of naphthalene and (or 2-methyl-naphthalene) with Ar atoms are first formed in a supersonic jet, before being hit by a 281 nm laser beam which photo-ionizes the clusters which are then injected in a molecular beam through a skimmer. A tunable laser beam crossing downstream photo-dissociates the cations. The bare PAH fragments are detected using a Time-Of-Flight spectrometer while scanning the visible laser wavelength from 470 to 690 nm.
Laboratory Spectroscopy of Large Carbon Molecules and Ions in Support of Space Missions
NASA Technical Reports Server (NTRS)
Salana, Farid; Tan, X.; Cami, J.; Remy, J.
2006-01-01
One of the major objectives of Laboratory Astrophysics is the optimization of data return from space missions by measuring spectra of atomic and molecular species in laboratory environments that mimic interstellar conditions (WhitePaper (2002, 2006)). Among interstellar species, PAHs are an important and ubiquitous component of carbon-bearing materials that represents a particularly difficult challenge for gas-phase laboratory studies. We present the absorption spectra of jet-cooled neutral and ionized PAHs and discuss the implications for astrophysics. The harsh physical conditions of the interstellar medium have been simulated in the laboratory. We are now, for the first time, in the position to directly compare laboratory spectra of PAHs and carbon nanoparticles with astronomical observations. This new phase offers tremendous opportunities for the data analysis of current and upcoming space missions geared toward the detection of large aromatic systems (HST/COS, FUSE, JWST, Spitzer).
Polycyclic aromatic hydrocarbons in the atmospheres of Titan and Jupiter
NASA Technical Reports Server (NTRS)
Sagan, Carl; Khare, B. N.; Thompson, W. R.; Mcdonald, G. D.; Wing, Michael R.; Bada, Jeffrey L.; Vo-Dinh, Tuan; Arakawa, E. T.
1993-01-01
PAHs are important components of the interstellar medium and carbonaceous chondrites, but have never been identified in the reducing atmospheres of the outer solar system. Incompletely characterized complex organic solids (tholins) produced by irradiating simulated Titan atmospheres reproduce well the observed UV/visible/IR optical constants of the Titan stratospheric haze. Titan tholin and a tholin generated in a crude simulation of the atmosphere of Jupiter are examined by two-step laser desorption/multiphoton ionization mass spectrometry. A range of two- to four-ring PAHs, some with one to four alkylation sites, are identified, with a net abundance of about 0.0001 g/g (grams per gram) of tholins produced. Synchronous fluorescence techniques confirm this detection. Titan tholins have proportionately more one- and two-ring PAHs than do Jupiter tholins, which in turn have more four-ring and larger PAHs. The four-ringed PAH chrysene, prominent in some discussions of interstellar grains, is found in Jupiter tholins.
NASA Technical Reports Server (NTRS)
Salama, Farid; Tan, Xiaofeng; Cami, Jan; Biennier, Ludovic; Remy, Jerome
2006-01-01
Polycyclic Aromatic Hydrocarbons (PAHs) are an important and ubiquitous component of carbon-bearing materials in space. A long-standing and major challenge for laboratory astrophysics has been to measure the spectra of large carbon molecules in laboratory environments that mimic (in a realistic way) the physical conditions that are associated with the interstellar emission and absorption regions [1]. This objective has been identified as one of the critical Laboratory Astrophysics objectives to optimize the data return from space missions [2]. An extensive laboratory program has been developed to assess the properties of PAHs in such environments and to describe how they influence the radiation and energy balance in space. We present and discuss the gas-phase electronic absorption spectra of neutral and ionized PAHs measured in the UV-Visible-NIR range in astrophysically relevant environments and discuss the implications for astrophysics [1]. The harsh physical conditions of the interstellar medium characterized by a low temperature, an absence of collisions and strong VUV radiation fields - have been simulated in the laboratory by associating a pulsed cavity ringdown spectrometer (CRDS) with a supersonic slit jet seeded with PAHs and an ionizing, penning-type, electronic discharge. We have measured for the {\\it first time} the spectra of a series of neutral [3,4] and ionized [5,6] interstellar PAHs analogs in the laboratory. An effort has also been attempted to quantify the mechanisms of ion and carbon nanoparticles production in the free jet expansion and to model our simulation of the diffuse interstellar medium in the laboratory [7]. These experiments provide {\\it unique} information on the spectra of free, large carbon-containing molecules and ions in the gas phase. We are now, for the first time, in the position to directly compare laboratory spectral data on free, cold, PAH ions and carbon nano-sized carbon particles with astronomical observations in the UV-NIR range (interstellar UV extinction, DIBs in the NUV-NIR range). This new phase offers tremendous opportunities for the data analysis of current and upcoming space missions geared toward the detection of large aromatic systems Le., the "new frontier space missions" (Spitzer, HST, COS, JWST, SOFIA,...).
Polycyclic aromatic hydrocarbons in stellar medium
NASA Astrophysics Data System (ADS)
Rastogi, Shantanu
2005-06-01
Polycyclic Aromatic Hydrocarbons (PAHs) are an important com- ponent of the Interstellar Medium (ISM). They are being used as probes for understanding of process and conditions of different astrophysical environments. The understanding of their IR spectra and its variations with PAH size and ionization state is useful in characterizing the ISM. Spectral features of model graphene sheets and also that of smaller PAH molecules are reported. The variation of intensity with charge state of the molecule shows that cations give a better correlation with observations. The relationship between changes in charge distribution with intensity changes upon ionization has been probed.
A survey for PAH emission in H II regions, planetary and proto-planetary nebulae
NASA Technical Reports Server (NTRS)
Demuizon, M.; Cox, P.; Lequeux, J.
1989-01-01
The results of a systematic investigation of polycyclic aromatic hydrocarbon (PAH) emission in H II regions, planetary nebulae (PN), and proto-planetary nebulae (PNN), are reported. Data is obtained from the low resolution spectra (LRS) of IRAS. The results show that: PAHs are formed in carbon rich objects; and PAH emission is ubiquitous in general interstellar medium and requires the presence of ultraviolet photons, in planetary and proto-planetary nebulae, PAH emission is seen only where an ionizing flux is present and in carbon rich objects.
LABORATORY PHOTO-CHEMISTRY OF PAHS: IONIZATION VERSUS FRAGMENTATION
Zhen, Junfeng; Castellanos, Pablo; Paardekooper, Daniel M.; Ligterink, Niels; Linnartz, Harold; Nahon, Laurent; Joblin, Christine; Tielens, Alexander G. G. M.
2015-01-01
Interstellar Polycyclic Aromatic Hydrocarbons (PAH) are expected to be strongly processed by Vacuum Ultra-Violet (VUV) photons. Here, we report experimental studies on the ionization and fragmentation of coronene (C24H12), ovalene (C32H14) and hexa-peri-hexabenzocoronene (HBC; C42H18) cations by exposure to synchrotron radiation in the range of 8–40 eV. The results show that for small PAH cations such as coronene, fragmentation (H-loss) is more important than ionization. However, as the size increases, ionization becomes more and more important and for the HBC cation, ionization dominates. These results are discussed and it is concluded that, for large PAHs, fragmentation only becomes important when the photon energy has reached the highest ionization potential accessible. This implies that PAHs are even more photo-stable than previously thought. The implications of this experimental study for the photo-chemical evolution of PAHs in the interstellar medium (ISM) are briefly discussed. PMID:26688710
LABORATORY PHOTO-CHEMISTRY OF PAHs: IONIZATION VERSUS FRAGMENTATION
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zhen, Junfeng; Castellanos, Pablo; Ligterink, Niels
2015-05-01
Interstellar polycyclic aromatic hydrocarbons (PAHs) are expected to be strongly processed by vacuum ultraviolet photons. Here, we report experimental studies on the ionization and fragmentation of coronene (C{sub 24}H{sub 12}), ovalene (C{sub 32}H{sub 14}) and hexa-peri-hexabenzocoronene (HBC; C{sub 42}H{sub 18}) cations by exposure to synchrotron radiation in the range of 8–40 eV. The results show that for small PAH cations such as coronene, fragmentation (H-loss) is more important than ionization. However, as the size increases, ionization becomes more and more important and for the HBC cation, ionization dominates. These results are discussed and it is concluded that, for large PAHs,more » fragmentation only becomes important when the photon energy has reached the highest ionization potential accessible. This implies that PAHs are even more photo-stable than previously thought. The implications of this experimental study for the photo-chemical evolution of PAHs in the interstellar medium are briefly discussed.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Xiang, F. Y.; Zhong, J. X.; Li Aigen, E-mail: jxzhong@xtu.edu.cn, E-mail: lia@missouri.edu
2011-06-01
The diffuse interstellar bands (DIBs) are ubiquitous absorption spectral features arising from the tenuous material in the space between stars-the interstellar medium (ISM). Since their first detection nearly nine decades ago, over 400 DIBs have been observed in the visible and near-infrared wavelength range in both the Milky Way and external galaxies, both nearby and distant. However, the identity of the species responsible for these bands remains as one of the most enigmatic mysteries in astrophysics. An equally mysterious interstellar spectral signature is the 2175 A extinction bump, the strongest absorption feature observed in the ISM. Its carrier also remainsmore » unclear since its first detection 46 years ago. Polycyclic aromatic hydrocarbon (PAH) molecules have long been proposed as a candidate for DIBs as their electronic transitions occur in the wavelength range where DIBs are often found. In recent years, the 2175 A extinction bump is also often attributed to the {pi}-{pi}* transition in PAHs. If PAHs are indeed responsible for both the 2175 A extinction feature and DIBs, their strengths may correlate. We perform an extensive literature search for lines of sight for which both the 2175 A extinction feature and DIBs have been measured. Unfortunately, we found no correlation between the strength of the 2175 A feature and the equivalent widths of the strongest DIBs. A possible explanation might be that DIBs are produced by small free gas-phase PAH molecules and ions, while the 2175 A bump is mainly from large PAHs or PAH clusters in condensed phase so that there is no tight correlation between DIBs and the 2175 A bump.« less
ON THE VIABILITY OF THE PAH MODEL AS AN EXPLANATION OF THE UNIDENTIFIED INFRARED EMISSION FEATURES
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zhang, Yong; Kwok, Sun, E-mail: zhangy96@hku.hk, E-mail: sunkwok@hku.hk
2015-01-01
Polycyclic aromatic hydrocarbon (PAH) molecules are widely considered the preferred candidate for the carrier of the unidentified infrared emission bands observed in the interstellar medium and circumstellar envelopes. In this paper, we report the results of fitting a variety of non-PAH spectra (silicates, hydrogenated amorphous carbon, coal, and even artificial spectra) using the theoretical infrared spectra of PAHs from the NASA Ames PAH IR Spectroscopic Database. We show that these non-PAH spectra can be well fitted by PAH mixtures. This suggests that a general match between astronomical spectra and those of PAH mixtures does not necessarily provide definitive support formore » the PAH hypothesis.« less
Polycyclic aromatic hydrocarbon molecules in astrophysics
NASA Astrophysics Data System (ADS)
Rastogi, Shantanu; Pathak, Amit; Maurya, Anju
2013-06-01
Polycyclic aromatic hydrocarbon (PAH) molecules are responsible for the mid-infrared emission features. Their ubiquitous presence in almost all types of astrophysical environments and related variations in their spectral profilesmake them an important tool to understand the physics and chemistry of the interstellar medium. The observed spectrum is generally a composite superposition of all different types of PAHs possible in the region. In the era of space telescopes the spectral richness of the emission features has enhanced their importance as probe and also the need to understand the variations with respect to PAH size, type and ionic state. Quantum computational studies of PAHs have proved useful in elucidating the profile variations and put constraints on the possible types of PAHs in different environments. The study of PAHs has also significantly contributed to the problems of diffuse interstellar bands (DIBs), UV extinction and understanding the chemistry of the formation of complex organics in space. The review highlights the results of various computational models for the understanding of infrared emission features, the PAH-DIB relation, formation of prebiotics and possible impact in the understanding of far-infrared features.
NASA Technical Reports Server (NTRS)
Bernstein, Max P.; Sandford, Scott A.; Allamandola, Louis J.
2004-01-01
Polycyclic aromatic hydrocarbons (PAHs) are believed to be the most abundant and widespread class of organic compounds in the universe, having been observed in emission towards energetic regions and absorption towards colder ones.We will present IR spectra of PAHs and their cations in H20 ice measured in the laboratory in the hopes that this will facilitate the detection of these features in the interstellar medium.
Polycyclic Aromatic Hydrocarbons and Infrared Astrophysics with Spitzer
NASA Technical Reports Server (NTRS)
Hudgins, Douglas M.; Allamandola, L. J.
2004-01-01
Over the past fifteen years, thanks to significant, parallel advancements in observational, experimental, and theoretical techniques, tremendous strides have been made in our understanding of the role that carbon-rich plays in the interstellar medium (ISM). Twenty years ago, the possible existence of an abundant population of large, carbon-rich molecules in the ISM was unthinkable. Today, the unmistakable spectroscopic signatures of polycyclic aromatic hydrocarbons (PAHs) - shockingly large molecules by the standards of traditional interstellar chemistry -are recognized throughout the Universe. In this presentation, we will examine the current state of the interstellar PAH model and explore how this data, in conjunction with the unparalleled observational data provided by the Spitzer Space Telescope, can be used to draw ever-deeper insights into the physical and chemical natures of a wide range of astrophysical environments.
Laboratory Formation of Fullerenes from PAHs: Top-down Interstellar Chemistry
NASA Astrophysics Data System (ADS)
Zhen, Junfeng; Castellanos, Pablo; Paardekooper, Daniel M.; Linnartz, Harold; Tielens, Alexander G. G. M.
2014-12-01
Interstellar molecules are thought to build up in the shielded environment of molecular clouds or in the envelope of evolved stars. This follows many sequential reaction steps of atoms and simple molecules in the gas phase and/or on (icy) grain surfaces. However, these chemical routes are highly inefficient for larger species in the tenuous environment of space as many steps are involved and, indeed, models fail to explain the observed high abundances. This is definitely the case for the C60 fullerene, recently identified as one of the most complex molecules in the interstellar medium. Observations have shown that, in some photodissociation regions, its abundance increases close to strong UV-sources. In this Letter we report laboratory findings in which C60 formation can be explained by characterizing the photochemical evolution of large polycyclic aromatic hydrocarbons (PAHs). Sequential H losses lead to fully dehydrogenated PAHs and subsequent losses of C2 units convert graphene into cages. Our results present for the first time experimental evidence that PAHs in excess of 60 C-atoms efficiently photo-isomerize to buckminsterfullerene, C60. These laboratory studies also attest to the importance of top-down synthesis routes for chemical complexity in space.
UV action spectroscopy of protonated PAH derivatives. Methyl substituted quinolines
NASA Astrophysics Data System (ADS)
Klærke, B.; Holm, A. I. S.; Andersen, L. H.
2011-08-01
Aims: We investigate the production of molecular photofragments upon UV excitation of PAH derivatives, relevant for the interstellar medium. Methods: The action absorption spectra of protonated gas-phase methyl-substituted quinolines (CH3 - C9H7NH+) have been recorded in the 215-338 nm spectral range using the electrostatic storage ring ELISA, an electrospray ion source and 3 ns UV laser pulses. Results: It is shown that the absorption profile is both redshifted and broadened when moving the methyl group from the heterocycle containing nitrogen to the homoatomic ring. The absorption profiles are explained by TD-DFT calculations. The dissociation time of the studied molecules is found to be of several milliseconds at 230 nm and it is shown that after redistribution of the absorbed energy the molecules dissociate in several channels. The dissociation time found is an order of magnitude faster than the estimated IR relaxation time. Photophysical properties of both nitrogen containing and methyl-substituted PAHs are interesting in an astrophysical context in connection with identifying the aromatic component of the interstellar medium.
Imaging of the PAH Emission Bands in the Orion Bar
NASA Technical Reports Server (NTRS)
Bregman, Jesse; Harker, David; Rank, David; Temi, Pasqiale; Morrison, David (Technical Monitor)
1994-01-01
The infrared spectrum of many planetary nebulae, HII regions, galactic nuclei, reflection nebulae, and WC stars are dominated by a set of narrow and broad features which for many years were called the "unidentified infrared bands". These bands have been attributed to several carbon-rich molecular species which all contain only carbon and hydrogen atoms, and fall into the class of PAH molecules or are conglomerates of PAH skeletons. If these bands are from PAHs, then PAHs contain 1-10% of the interstellar carbon, making them the most abundant molecular species in the interstellar medium after CO. From ground based telescopes, we have studied the emission bands assigned to C-H bond vibrations in PAHs (3.3, 11.3 microns) in the Orion Bar region, and showed that their distribution and intensities are consistent with a quantitative PAH model. We have recently obtained spectral images of the Orion Bar from the KAO at 6.2 and 7.7 microns using a 128 x 128 Si:Ga array camera in order to study the C-C modes of the PAH molecules. We will show these new data along with our existing C-H mode data set, and make a quantitative comparison of the data with the existing PAH model.
Website for the Astrochemistry Laboratory, Astrophysics Branch, Space Sciences Division
NASA Technical Reports Server (NTRS)
Sandford, Scott; DeVincenzi, D. (Technical Monitor)
2002-01-01
The Astrochemistry Laboratory in the Astrophysics Branch (SSA) of the Space Sciences Division at NASA's Ames Research Center specializes in the study of extraterrestrial materials and their analogs. The staff has pioneered laboratory studies of space environments including interstellar, cometary, and planetary ices, simulations of the so-called 'Unidentified' Infrared Emission Bands and Diffuse Interstellar Bands using PAHs (Polycyclic Aromatic Hydrocarbons) and PAH-related materials, and has extensive experience with low-temperature spectroscopy and astronomical observation. Important discoveries made by the Astrochemistry Group include: (1) The recognition that polycyclic aromatic hydrocarbons and their ions are common in space; (2) The identification of a major fraction of the known molecular species frozen in interstellar/pre-cometary ices; (3) The recognition that a significant fraction of the carbon in the interstellar medium is carried by both microdiamonds and organic materials; (4) The expansion of the types of molecules expected to be synthesized in interstellar/pre-cometary ices. These could be delivered to the early Earth (or other body) and influence the origin or early evolution of life.
The hydrogen coverage of interstellar PAHs
NASA Technical Reports Server (NTRS)
Barker, J. R.; Cohen, M.; Tielens, Alexander G. G. M.; Allamandola, Louis J.; Barker, J. R.; Barker, J. R.
1986-01-01
The rate at which the CH bond in interstellar Polycyclic Aromatic Hydrocarbons (PAHs) rupture due to the absorption of a UV photon has been calculated. The results show that small PAHs (less than or equal to 25 carbon atoms) are expected to be partially dehydrogenated in regions with intense UV fields, while large PAHs (greater than or equal to 25 atoms) are expected to be completely hydrogenated in those regions. Because estimate of the carbon content of interstellar PAHs lie in the range of 20 to 25 carbon atoms, dehydrogenation is probably not very important. Because of the absence of other emission features besides the 11.3 micrometer feature in ground-based 8 to 13 micrometer spectra, it has been suggested that interstellar PAHs are partially dehydrogenated. However, IRAS 8 to 22 micrometer spectra of most sources that show strong 7.7 and 11.2 micrometer emission features also show a plateau of emission extending from about 11.3 to 14 micrometer. Like the 11.3 micrometer feature, this new feature is attributed to the CH out of plane bending mode in PAHs. This new feature shows that interstellar PAHs are not as dehydrogenated as estimated from ground-based 8 to 13 micrometer spectra. It also constrains the molecular structure of interstellar PAHs. In particular, it seems that very condensed PAHs, such as coronene and circumcoronene, dominate the interstellar PAH mixture as expected from stability arguments.
NASA Technical Reports Server (NTRS)
Tielens, Alexander G. G. M.
1995-01-01
The Interstellar Medium (ISM) forms an integral part of the lifecycle of stars and the galaxy. Stars are formed by gravitational contraction of interstellar clouds. Over their life, stars return much of their mass to the ISM through winds and supernova explosions, resulting in a slow enrichment in heavy elements. Understanding the origin and evolution of the ISM is a key problem within astrophysics. The KAO has made many important contributions to studies of the interstellar medium both on the macro and on the micro scale. In this overview, I will concentrate on two breakthroughs in the last decade in which KAO observations have played a major role: (1) the importance of large Polycyclic Aromatic Hydrocarbon (PAH) molecules for the ISM (section 3) and (2) the study of Photodissociation Regions (PDRs) as an analog for the diffuse ISM at large (section 4). Appropriately, the micro and macro problem are intricately interwoven in these problems. Finally, section 5 reviews the origin of the (CII) emission observed by COBE.
Probing the chemical environments of early star formation: A multidisciplinary approach
NASA Astrophysics Data System (ADS)
Hardegree-Ullman, Emily Elizabeth
Chemical compositions of prestellar and protostellar environments in the dense interstellar medium are best quantified using a multidisciplinary approach. For my dissertation, I completed two projects to measure molecular abundances during the earliest phases of star formation. The first project investigates gas phase CO depletion in molecular cloud cores, the progenitors of star systems, using infrared photometry and molecular line spectroscopy at radio wavelengths. Hydrogenation of CO depleted onto dust is an important first step toward building complex organic molecules. The second project constrains polycyclic aromatic hydrocarbon (PAH) abundances toward young stellar objects (YSO). Band strengths measured from laboratory spectroscopy of pyrene/water ice mixtures were applied to estimate abundances from features attributed to PAHs in observational YSO spectra. PAHs represent a distinct but important component of interstellar organic material that is widely observed but not well quantified in star-forming regions.
Assessment of the Polycyclic Aromatic Hydrocarbon-Diffuse Interstellar Band Proposal
NASA Technical Reports Server (NTRS)
Salama, Farid; Bakes, F.; Allamandola, L.; Tielens, A. G. G. M.; Witteborn, Fred C. (Technical Monitor)
1995-01-01
The potential link between neutral and/or ionized polycyclic aromatic hydrocarbons (PAHs) and the diffuse interstellar band (DIB) carriers is examined. Based on the study of the general physical and chemical properties of PAHs, an assessment is made of their possible contribution to the DIB carriers. It is found that, under the conditions reigning in the diffuse interstellar medium, PAHs can be present in the form of neutral molecules as well as positive and/or negative ions. The charge distribution of small PAHs is dominated, however, by two charge states at one time with compact PAHs present only in the neutral and cationic forms. Each PAH has a distinct spectral signature depending on its charge state. Moreover, the spectra of ionized PAHs are always clearly dominated by a single band in the DIB spectral range. In the case of compact PAH ions, the strongest absorption band is of type A (i.e., the band is broad, falls in the high energy range of the spectrum, and possess a large oscillator strength), and seems to correlate with strong and broad DIBs. In the case of non-compact PAH ions, the strongest absorption band is of type I (i.e., the band is narrow, falls in the low energy range of the spectrum, and possess a small oscillator strength), and seems to correlate with weak and narrow DIBs. Potential molecular size and structure constraints for interstellar PAHs are derived by comparing known DIB characteristics to the spectroscopic properties of PAHs. It is found that: (i) Only neutral PAHs larger than about 30 carbon atoms could, if present, contribute to the DIBs. (ii) For compact PAHs, only ions with less than about 250 carbon atoms could, if present, contribute to the DIBs. (iii) The observed distribution of the DIBs between strong/moderate and broad bands on the one hand and weak and narrow bands on the other hand can easily be interpreted in the context of the PAH proposal by a distribution between compact and non-compact PAH ions, respectively. A plausible correlation between PAH charge states and DIB "families" is thus provided by the PAH-DIB proposal. Following this proposal, DIB families would provide tracers of conditions within a cloud which globally determine the relative importance of cations, anions, and neutral species, rather than tracers of a specific species. Observational predictions are given to establish the viability of the PAH hypothesis. It is concluded that small PAH ions are very promising candidates as DIB carriers provided their population is dominated by a finite number (100-200) of species. A key test for the PAH proposal, consisting of laboratory and astronomical investigations of the ultraviolet range, is called for.
Assessment of the polycyclic aromatic hydrocarbon-diffuse interstellar band proposal
NASA Technical Reports Server (NTRS)
Salama, F.; Bakes, E. L.; Allamandola, L. J.; Tielens, A. G.
1996-01-01
The potential link between neutral and/or ionized polycyclic aromatic hydrocarbons (PAHs) and the diffuse interstellar band (DIB) carriers is examined. Based on the study of the general physical and chemical properties of PAHs, an assessment is made of their possible contribution to the DIB carriers. It is found that, under the conditions reigning in the diffuse interstellar medium, PAHs can be present in the form of neutral molecules as well as positive and/or negative ions. The charge distribution of small PAHs is dominated, however, by two charge states at one time with compact PAHs present only in the neutral and cationic forms. Each PAH has a distinct spectral signature depending on its charge state. Moreover, the spectra of ionized PAHs are always clearly dominated by a single band in the DIB spectral range. In the case of compact PAH ions, the strongest absorption band is of type A (i.e., the band is broad, falls in the high-energy range of the spectrum, and possesses a large oscillator strength), and seems to correlate with strong and broad DIBs. For noncompact PAH ions, the strongest absorption band is of type I (i.e., the band is narrow, falls in the low-energy range of the spectrum, and possesses a small oscillator strength), and seems to correlate with weak and narrow DIBs. Potential molecular size and structure constraints for interstellar PAHs are derived by comparing known DIB characteristics to the spectroscopic properties of PAHs. It is found that (i) only neutral PAHs larger than about 30 carbon atoms could, if present, contribute to the DIBs. (ii) For compact PAHs, only ions with less than about 250 carbon atoms could, if present, contribute to the DIBs. (iii) The observed distribution of the DIBs between strong/moderate and broad bands on the one hand and weak and narow bands on the other can easily be interpreted in the context of the PAH proposal by a distribution of compact and noncompact PAH ions, respectively. A plausible correlation between PAH charge states and DIB "families" is thus provided by the PAH-DIB proposal. Following this proposal, DIB families would reflect conditions within a cloud which locally determine the relative importance of cations, anions, and neutral species, rather than tracers of a specific species. Observational predictions are given to establish the viability of the PAH hypothesis. It is concluded that small PAH ions are very promising candidates as DIB carriers provided their population is dominated by a finite number (100-200) of species. A key test for the PAH proposal, consisting of laboratory and astronomical investigations in the ultraviolet range, is called for.
NASA Astrophysics Data System (ADS)
Gudipati, Murthy S.; Yang, Rui
2012-09-01
Understanding the evolution of organic molecules in ice grains in the interstellar medium (ISM) under cosmic rays, stellar radiation, and local electrons and ions is critical to our understanding of the connection between ISM and solar systems. Our study is aimed at reaching this goal of looking directly into radiation-induced processing in these ice grains. We developed a two-color laser-desorption laser-ionization time-of-flight mass spectroscopic method (2C-MALDI-TOF), similar to matrix-assisted laser desorption and ionization time-of-flight (MALDI-TOF) mass spectroscopy. Results presented here with polycyclic aromatic hydrocarbon (PAH) probe molecules embedded in water-ice at 5 K show for the first time that hydrogenation and oxygenation are the primary chemical reactions that occur in astrophysical ice analogs when subjected to Lyα radiation. We found that hydrogenation can occur over several unsaturated bonds and the product distribution corresponds to their stabilities. Multiple hydrogenation efficiency is found to be higher at higher temperatures (100 K) compared to 5 K—close to the interstellar ice temperatures. Hydroxylation is shown to have similar efficiencies at 5 K or 100 K, indicating that addition of O atoms or OH radicals to pre-ionized PAHs is a barrierless process. These studies—the first glimpses into interstellar ice chemistry through analog studies—show that once accreted onto ice grains PAHs lose their PAH spectroscopic signatures through radiation chemistry, which could be one of the reason for the lack of PAH detection in interstellar ice grains, particularly the outer regions of cold, dense clouds or the upper molecular layers of protoplanetary disks.
From Interstellar PAHs and Ices to the Origin of Life
NASA Technical Reports Server (NTRS)
Allamandola, Louis J.; DeVincenzi, Donald L. (Technical Monitor)
2000-01-01
Tremendous strides have been made in our understanding of interstellar material over the past twenty years thanks to significant, parallel developments in observational astronomy and laboratory astrophysics. Twenty years ago the composition of interstellar dust was largely guessed at, the concept of ices in dense molecular clouds ignored, and the notion of large, abundant, gas phase, carbon rich molecules widespread throughout the interstellar medium (ISM) considered impossible. Today the composition of dust in the diffuse ISM is reasonably well constrained to micron-sized cold refractory materials comprised of amorphous and crystalline silicates mixed with an amorphous carbonaceous material containing aromatic structural units and short, branched aliphatic chains. In dense molecular clouds, the birthplace of stars and planets, these cold dust particles are coated with mixed molecular ices whose composition is very well constrained. Lastly, the signature of carbon-rich polycyclic aromatic hydrocarbons (PAHs), shockingly large molecules by earlier interstellar chemistry standards, is widespread throughout the Universe. The first part of this lecture will describe how infrared studies of interstellar space, combined with laboratory simulations, have revealed the composition of interstellar ices (the building blocks of comets) and the high abundance and nature of interstellar PAHs. The laboratory database has now enabled us to gain insight into the identities, concentrations, and physical state of many interstellar materials. Within a dense molecular cloud, and especially in the solar nebula during the star and planet formation stage, the materials frozen into interstellar/precometary ices are photoprocessed by ultraviolet light, producing more complex molecules. The remainder of the presentation will focus on the photochemical evolution of these materials and the possible role of these compounds on the early Earth. As these materials are thought to be the building blocks of comets and related to the carbonaceous components of micrometeorites, they are likely to have been important sources of complex organic materials on the early Earth and their composition may be related to the origin of life.
NASA Technical Reports Server (NTRS)
Allamandola, L. J.; Tielens, G. G. M.; Barker, J. R.
1989-01-01
A comprehensive study of the PAH hypothesis is presented, including the interstellar, IR spectral features which have been attributed to emission from highly vibrationally excited PAHs. Spectroscopic and IR emission features are discussed in detail. A method for calculating the IR fluorescence spectrum from a vibrationally excited molecule is described. Analysis of interstellar spectrum suggests that the PAHs which dominate the IR spectra contain between 20 and 40 C atoms. The results are compared with results from a thermal approximation. It is found that, for high levels of vibrational excitation and emission from low-frequency modes, the two methods produce similar results. Also, consideration is given to the relationship between PAH molecules and amorphous C particles, the most likely interstellar PAH molecular structures, the spectroscopic structure produced by PAHs and PAH-related materials in the UV portion of the interstellar extinction curve, and the influence of PAH charge on the UV, visible, and IR regions.
NASA Technical Reports Server (NTRS)
LePage, V.; Lee, H. S.; Bierbaum, V. M.; Snow, T. P.
1996-01-01
The C10H8(+) cation and its dehydrogenated derivatives, C10H7(+) and C10H6(+), have been studied using a selected ion flow tube (SIFT). Reactions with molecules and atoms of interstellar interest show that C10H8(+) reacts with N md O to give neutral products HCN and CO, respectively. C10H6(+) and C10H6(+) are moderately reactive and reactions proceed through association with molecules. The implications of these results for the depletion of C10H(n)(+) in the interstellar medium are briefly discussed.
NASA Astrophysics Data System (ADS)
Campbell, E. K.; Maier, J. P.
2017-11-01
The gas-phase electronic spectrum of {{{C}}}42{{{H}}}18+ ({{HBC}}+) with an origin band at 8281 \\mathringA has been measured below 10 {{K}} by photofragmentation of helium complexes ({{{C}}}42{{{H}}}18+{--}{{He}}n) in a radiofrequency trap. {{HBC}}+ is a medium-sized polycyclic aromatic hydrocarbon (PAH) cation, and using an ion trapping technique it has been possible to record a high-quality gas-phase spectrum to directly compare with astronomical observations. No diffuse interstellar bands (DIBs) have been reported at the wavelengths of the strongest absorption bands in the {{{C}}}42{{{H}}}18+ spectrum. Measurement of absolute absorption cross sections in the ion trap allows upper limits to the column density of this ion to be {10}12 {{cm}}-2, indicating that even PAH cations of this size, which are believed to be stable in the interstellar medium, should be excluded as candidates for at least the strong DIBs.
Zhen, Junfeng; Castillo, Sarah Rodriguez; Joblin, Christine; Mulas, Giacomo; Sabbah, Hassan; Giuliani, Alexandre; Nahon, Laurent; Martin, Serge; Champeaux, Jean-Philippe; Mayer, Paul M.
2016-01-01
Interstellar polycyclic aromatic hydrocarbons (PAHs) are strongly affected by the absorption of vacuum ultraviolet (VUV) photons in the interstellar medium (ISM), yet the branching ratio between ionization and fragmentation is poorly studied. This is crucial for the stability and charge state of PAHs in the ISM in different environments, affecting in turn the chemistry, the energy balance, and the contribution of PAHs to the extinction and emission curves. We studied the interaction of PAH cations with VUV photons in the 7 – 20 eV range from the synchrotron SOLEIL beamline, DESIRS. We recorded by action spectroscopy the relative intensities of photo-fragmentation and photo-ionization for a set of eight PAH cations ranging in size from 14 to 24 carbon atoms, with different structures. At photon energies below ~13.6 eV fragmentation dominates for the smaller species, while for larger species ionization is immediately competitive after the second ionization potential (IP). At higher photon energies, all species behave similarly, the ionization yield gradually increases, leveling off between 0.8 and 0.9 at ~18 eV. Among isomers, PAH structure appears to mainly affect the fragmentation cross section, but not the ionization cross section. We also measured the second IP for all species and the third IP for two of them, all are in good agreement with theoretical ones confirming that PAH cations can be further ionized in the diffuse ISM. Determining actual PAH dication abundances in the ISM will require detailed modeling. Our measured photo-ionization yields for several PAH cations provide a necessary ingredient for such models. PMID:27212712
Zhen, Junfeng; Castillo, Sarah Rodriguez; Joblin, Christine; Mulas, Giacomo; Sabbah, Hassan; Giuliani, Alexandre; Nahon, Laurent; Martin, Serge; Champeaux, Jean-Philippe; Mayer, Paul M
2016-05-10
Interstellar polycyclic aromatic hydrocarbons (PAHs) are strongly affected by the absorption of vacuum ultraviolet (VUV) photons in the interstellar medium (ISM), yet the branching ratio between ionization and fragmentation is poorly studied. This is crucial for the stability and charge state of PAHs in the ISM in different environments, affecting in turn the chemistry, the energy balance, and the contribution of PAHs to the extinction and emission curves. We studied the interaction of PAH cations with VUV photons in the 7 - 20 eV range from the synchrotron SOLEIL beamline, DESIRS. We recorded by action spectroscopy the relative intensities of photo-fragmentation and photo-ionization for a set of eight PAH cations ranging in size from 14 to 24 carbon atoms, with different structures. At photon energies below ~13.6 eV fragmentation dominates for the smaller species, while for larger species ionization is immediately competitive after the second ionization potential (IP). At higher photon energies, all species behave similarly, the ionization yield gradually increases, leveling off between 0.8 and 0.9 at ~18 eV. Among isomers, PAH structure appears to mainly affect the fragmentation cross section, but not the ionization cross section. We also measured the second IP for all species and the third IP for two of them, all are in good agreement with theoretical ones confirming that PAH cations can be further ionized in the diffuse ISM. Determining actual PAH dication abundances in the ISM will require detailed modeling. Our measured photo-ionization yields for several PAH cations provide a necessary ingredient for such models.
NASA Technical Reports Server (NTRS)
Hardegree-Ullman, E.E.; Gudipati, M.S.; Boogert, A.C.A.; Lignell, H.; Allamandola, L.J.; Stapelfeldt, K. R.; Werner, M.
2014-01-01
Broad infrared emission features (e.g., at 3.3, 6.2, 7.7, 8.6, and 11.3 micrometers) from the gas phase interstellar medium have long been attributed to polycyclic aromatic hydrocarbons (PAHs). A significant portion (10 to 20%) of the Milky Way's carbon reservoir is locked in PAH molecules, which makes their characterization integral to our understanding of astrochemistry. In molecular clouds and the dense envelopes and disks of young stellar objects (YSOs), PAHs are expected to be frozen in the icy mantles of dust grains where they should reveal themselves through infrared absorption. To facilitate the search for frozen interstellar PAHs, laboratory experiments were conducted to determine the positions and strengths of the bands of pyrene mixed with H2O and deuterium oxide ices. The deuterium oxide mixtures are used to measure pyrene bands that are masked by the strong bands of H2O, leading to the first laboratory determination of the band strength for the CH stretching mode of pyrene in water ice near 3.25 micrometers. Our infrared band strengths were normalized to experimentally determined ultraviolet (UV) band strengths, and we find that they are generally approximately 50% larger than those reported by Bouwman et al. (2011) based on theoretical strengths. These improved band strengths were used to reexamine YSO spectra published by Boogert et al. (2008) to estimate the contribution of frozen PAHs to absorption in the 5 to 8 micrometer spectral region, taking into account the strength of the 3.25 micrometer CH stretching mode. It is found that frozen neutral PAHs contain 5 to 9% of the cosmic carbon budget, and account for 2 to 9% of the unidentified absorption in the 5 to 8 micrometer region.
NASA Technical Reports Server (NTRS)
Zare, Richard N.; Boyce, Joseph M. (Technical Monitor)
2001-01-01
Polycyclic Aromatic Hydrocarbons (PAHs) are of considerable interest today because they are ubiquitous on Earth and in the interstellar medium (ISM). In fact, about 20% of cosmic carbon in the galaxy is estimated to be in the form of PAHs. Investigation of these species has obvious uses for determining the cosmochemistry of the solar system. Work in this laboratory has focused on four main areas: 1) Mapping the spatial distribution of PAHs in a variety of meteoritic samples and comparing this distribution with mineralogical features of the meteorite to determine whether a correlation exists between the two. 2) Developing a method for detection of fullerenes in extraterrestrial samples using microprobe Laser Desorption Ionization Mass Spectroscopy and utilizing this technique to investigate fullerene presence, while exploring the possibility of spatially mapping the fullerene distribution in these samples through in situ detection. 3) Investigating a possible formation pathway for meteoritic and ancient terrestrial kerogen involving the photochemical reactions of PAHs with alkanes under prebiotic and astrophysically relevant conditions. 4) Studying reaction pathways and identifying the photoproducts generated during the photochemical evolution of PAH-containing interstellar ice analogs as part of an ongoing collaboration with researchers at the Astrochemistry Lab at NASA Ames. All areas involve elucidation of the solar system formation and chemistry using microprobe Laser Desorption Laser Ionization Mass Spectrometry. A brief description of microprobe Laser Desorption Ionization Mass Spectroscopy, which allows selective investigation of subattomole levels of organic species on the surface of a sample at 10-40 micrometer spatial resolution, is given.
POLYCYCLIC AROMATIC HYDROCARBON PROCESSING IN THE BLAST WAVE OF THE SUPERNOVA REMNANT N132D
DOE Office of Scientific and Technical Information (OSTI.GOV)
Tappe, A.; Rho, J.; Boersma, C.
2012-08-01
We present Spitzer Infrared Spectrograph 14-36 {mu}m mapping observations of the supernova remnant N132D in the Large Magellanic Cloud. This study focuses on the processing of polycyclic aromatic hydrocarbons (PAHs) that we previously identified in the southern blast wave. The mid-infrared spectra show strong continuum emission from shock-heated dust and a unique, nearly featureless plateau in the 15-20 {mu}m region, which we attribute to PAH molecules. The typical PAH emission bands observed in the surrounding interstellar medium ahead of the blast wave disappear, which indicates shock processing of PAH molecules. The PAH plateau appears most strongly at the outer edgemore » of the blast wave and coincides with diffuse X-ray emission that precedes the brightest X-ray and optical filaments. This suggests that PAH molecules in the surrounding medium are swept up and processed in the hot gas of the blast wave shock, where they survive the harsh conditions long enough to be detected. We also observe a broad emission feature at 20 {mu}m appearing with the PAH plateau. We speculate that this feature is either due to FeO dust grains or connected to the processing of PAHs in the supernova blast wave shock.« less
PAHs molecules and heating of the interstellar gas
NASA Technical Reports Server (NTRS)
Verstraete, Laurent; Leger, Alain; Dhendecourt, Louis B.; Dutuit, O.; Defourneau, D.
1989-01-01
Until now it has remained difficult to account for the rather high temperatures seen in many diffuse interstellar clouds. Various heating mechanisms have been considered: photoionization of minor species, ionization of H by cosmic rays, and photoelectric effect on small grains. Yet all these processes are either too weak or efficient under too restricting conditions to balance the observed cooling rates. A major heat source is thus still missing in the thermal balance of the diffuse gas. Using photoionization cross sections measured in the lab, it was shown that in order to balance the observed cooling rates in cold diffuse clouds (T approx. 80 K) the PAHs would have to contain 15 percent of the cosmic abundance of carbon. This value does not contradict the former estimation of 6 percent deduced from the IR emission bands since this latter is to be taken as a lower limit. Further, it was estimated that the contribution to the heating rate due to PAH's in a warm HI cloud, assuming the same PAH abundance as for a cold HI cloud, would represent a significant fraction of the value required to keep the medium in thermal balance. Thus, photoionization of PAHs might well be a major heat source for the cold and warm HI media.
Analogs of solid nanoparticles as precursors of aromatic hydrocarbons
NASA Astrophysics Data System (ADS)
Gadallah, K. A. K.; Mutschke, H.; Jäger, C.
2013-06-01
Context. Aromatic =CH and C=C vibrational bands have been observed within shocked interstellar regions, indicating the presence of aromatic emission carriers such as PAHs, which may have been created from adjacent molecular cloud material by interaction with a shock front. Aims: We investigate the evolution of the aromatic =CH and C=C vibrational modes at 3.3 and 6.2 μm wavelength in heated HAC materials, PAHs and mixed PAHs and HACs, respectively, aiming at an explanation of the evolution of carbonaceous dust grains in the shocked regions. Methods: Materials used in these analogs (HAC and PAH materials) were prepared by the laser ablation and the laser pyrolysis methods, respectively. The transmission electron microscopy (TEM) in high-resolution mode was used as an analytical technique to characterize the aromatic layers in HACs. Spectroscopic analysis was prformed in the mid-IR range. Results: A remarkable destruction of aliphatic structures in HACs has been observed with the thermal processing, while aromatic structures become dominating by increasing the diameters of the graphene layers. The aromatic bands at 3.3 and 6.2 μm, observed in the laboratory spectra of PAHs and of the combination of the PAHs and HAC materials, are also clearly observed in the spectrum of the heated HACs. These bands agree with those of aromatic bands observed in astronomical observations. Conclusions: Aromatization of HACs could be a pre-stage in the decomposition process of hydrocarbons that form PAH-clusters in such hot interstellar medium.
NASA Technical Reports Server (NTRS)
Duley, W. W.; Jones, A. P.; Taylor, S. D.; Williams, D. A.
1993-01-01
The correlations deduced by Boulanger et al. (1990) from IRAS maps of the Chamaeleon, Taurus and Ursa Major molecular cloud complexes are interpreted in terms of the evolutionary hydrogenated amorphous carbon model of interstellar dust. In particular, regions of relatively strong 12-micron emission may be regions where recently accreted carbon is being converted by ambient UV to small PAHs in situ. Regions of weak 12-micron emission are probably quiescent regions where carbon has been annealed to amorphous carbon. Observational consequences of these inferences are briefly described.
From Interstellar Polycyclic Aromatic Hydrocarbons and Ice to the Origin of Life
NASA Technical Reports Server (NTRS)
Allamandola, Louis
2004-01-01
Tremendous strides have been made in our understanding of interstellar material over the past twenty years thanks to significant, parallel developments in observational astronomy and laboratory astrophysics. Twenty years ago the composition of interstellar dust was largely guessed at, the concept of ices in dense molecular clouds ignored, and the notion of large, abundant, gas phase, carbon rich molecules widespread throughout the interstellar medium (ISM) considered impossible. Today the composition of dust in the diffuse ISM is reasonably well constrained to cold refractory materials comprised of amorphous and crystalline silicates mixed with an amorphous carbonaceous material containing aromatic structural units and short, branched aliphatic chains. In the dense ISM, the birthplace of stars and planets, these cold dust particles are coated with mixed molecular ices whose composition is very well constrained. Lastly, the signature of carbon-rich polycyclic aromatic hydrocarbons (PAHs), shockingly large molecules by early interstellar chemistry standards, is widespread throughout the Universe. The first part of this talk will describe how infrared studies of interstellar space, combined with laboratory simulations, have revealed the composition of interstellar ices (the building blocks of comets) and the high abundance and nature of interstellar PAHs. The laboratory database has now enabled us to gain insight into the identities, abundances, and physical state of many interstellar materials. Within a dense molecular cloud, and especially in the presolar nebula, the materials frozen into the interstellar/precometary ices are photoprocessed by ultraviolet light and produce more complex molecules. The remainder of the presentation will focus on the photochemical evolution of these materials and the possible role of these compounds on the to the carbonaceous components of micrometeorites, they are likely to have been important sources of complex materials on the early Earth and their composition may be related to the origin of life.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zhen, Junfeng; Castillo, Sarah Rodriguez; Joblin, Christine
2016-05-10
Interstellar polycyclic aromatic hydrocarbons (PAHs) are strongly affected by the absorption of vacuum ultraviolet (VUV) photons in the interstellar medium (ISM), yet the branching ratio between ionization and fragmentation is poorly studied. This is crucial for the stability and charge state of PAHs in the ISM in different environments, affecting in turn the chemistry, the energy balance, and the contribution of PAHs to the extinction and emission curves. We studied the interaction of PAH cations with VUV photons in the 7–20 eV range from the synchrotron SOLEIL beamline, DESIRS. We recorded by action spectroscopy the relative intensities of photo-fragmentation andmore » photo-ionization for a set of eight PAH cations ranging in size from 14 to 24 carbon atoms, with different structures. At photon energies below ∼13.6 eV fragmentation dominates for the smaller species, while for larger species ionization is immediately competitive after the second ionization potential (IP). At higher photon energies all species behave similarly; the ionization yield gradually increases, leveling off between 0.8 and 0.9 at ∼18 eV. Among isomers, PAH structure appears to mainly affect the fragmentation cross section but not the ionization cross section. We also measured the second IP for all species and the third IP for two of them; all are in good agreement with theoretical ones, confirming that PAH cations can be further ionized in the diffuse ISM. Determining actual PAH dication abundances in the ISM will require detailed modeling. Our measured photo-ionization yields for several PAH cations provide a necessary ingredient for such models.« less
Vibrational Spectroscopy after OSU - From C2- to Interstellar Polycyclic Aromatic Hydrocarbons
NASA Technical Reports Server (NTRS)
Allamandola, Louis J.
2006-01-01
The composition of interstellar ice and dust provides insight into the chemical history of the interstellar medium and early solar system. It is now possible to probe this unique and unusual chemistry and determine the composition of these microscopic interstellar particles which are hundreds to many thousands of light years away thanks to substantial progress in two areas: astronomical spectroscopic techniques in the middle-infrared, the spectral region most diagnostic of chemical composition, and laboratory simulations which realistically reproduce the critical conditions in various interstellar environments. High quality infrared spectra of many different astronomical sources, some associated with giant, dark molecular clouds -the birthplace of stars and planets- and others in more tenuous, UV radiation rich regions are now available. The fundamentals of IR spectroscopy and what comparisons of astronomical IR spectra with laboratory spectra of materials prepared under realistic simulated interstellar conditions tell us about the components of these materials is the subject of this talk. These observations have shown that mixed molecular ices comprised of H2O, CH3OH, CO, NH3 and H2CO contain most of the molecular material in molecular clouds and that gas phase, ionized polycyclic aromatic hydrocarbons (PAHs) are widespread and surprisingly abundant throughout most of the interstellar medium.
Interstellar fullerene compounds and diffuse interstellar bands
NASA Astrophysics Data System (ADS)
Omont, Alain
2016-05-01
Recently, the presence of fullerenes in the interstellar medium (ISM) has been confirmed and new findings suggest that these fullerenes may possibly form from polycyclic aromatic hydrocarbons (PAHs) in the ISM. Moreover, the first confirmed identification of two strong diffuse interstellar bands (DIBs) with the fullerene, C60+, connects the long standing suggestion that various fullerenes could be DIB carriers. These new discoveries justify reassessing the overall importance of interstellar fullerene compounds, including fullerenes of various sizes with endohedral or exohedral inclusions and heterofullerenes (EEHFs). The phenomenology of fullerene compounds is complex. In addition to fullerene formation in grain shattering, fullerene formation from fully dehydrogenated PAHs in diffuse interstellar clouds could perhaps transform a significant percentage of the tail of low-mass PAH distribution into fullerenes including EEHFs. But many uncertain processes make it extremely difficult to assess their expected abundance, composition and size distribution, except for the substantial abundance measured for C60+. EEHFs share many properties with pure fullerenes, such as C60, as regards stability, formation/destruction and chemical processes, as well as many basic spectral features. Because DIBs are ubiquitous in all lines of sight in the ISM, we address several questions about the interstellar importance of various EEHFs, especially as possible carriers of diffuse interstellar bands. Specifically, we discuss basic interstellar properties and the likely contributions of fullerenes of various sizes and their charged counterparts such as C60+, and then in turn: 1) metallofullerenes; 2) heterofullerenes; 3) fulleranes; 4) fullerene-PAH compounds; 5) H2@C60. From this reassessment of the literature and from combining it with known DIB line identifications, we conclude that the general landscape of interstellar fullerene compounds is probably much richer than heretofore realized. EEHFs, together with pure fullerenes of various sizes, have many properties necessary to be suitably carriers of DIBs: carbonaceous nature; stability and resilience in the harsh conditions of the ISM; existing with various heteroatoms and ionization states; relatively easy formation; few stable isomers; spectral lines in the right spectral range; various and complex energy internal conversion; rich Jahn-Teller fine structure. This is supported by the first identification of a DIB carrier as C60+. Unfortunately, the lack of any precise information about the complex optical spectra of EEHFs and most pure fullerenes other than C60 and about their interstellar abundances still precludes definitive assessment of the importance of fullerene compounds as DIB carriers. Their compounds could significantly contribute to DIBs, but it still seems difficult that they are the only important DIB carriers. Regardless, DIBs appear as the most promising way of tracing the interstellar abundances of various fullerene compounds if the breakthrough in identifying C60+ as a DIB carrier can be extended to more spectral features through systematic studies of their laboratory gas-phase spectroscopy.
NASA Astrophysics Data System (ADS)
Bouwman, J.; Cuppen, H. M.; Steglich, M.; Allamandola, L. J.; Linnartz, H.
2011-05-01
Context. Mid-infrared emission features originating from polycyclic aromatic hydrocarbons (PAHs) are observed towards photon dominated regions in space. Towards dense clouds, however, these emission features are quenched. Observations of dense clouds show that many simple volatile molecules are frozen out on interstellar grains, forming thin layers of ice. Recently, observations have shown that more complex non-volatile species, presumably including PAHs, also freeze out and contribute to the ongoing solid-state chemistry. Aims: The study presented here aims at obtaining reaction rate data that characterize PAH photochemistry upon vacuum ultraviolet (VUV) irradiation in an interstellar H2O ice analogue to explore the potential impact of PAH:H2O ice reactions on overall interstellar ice chemistry. To this end, the experimental results are implemented in a chemical model under simple interstellar cloud conditions. Methods: Time-dependent near-UV/VIS spectroscopy on the VUV photochemistry of anthracene, pyrene, benzo[ghi]perylene and coronene containing interstellar H2O ice analogs is performed at 25 and 125 K, using an optical absorption setup. Results: Near-UV/VIS absorption spectra are presented for these four PAHs and their photoproducts including cationic species trapped in H2O ice. Oscillator strengths of the cation absorption bands are derived relative to the oscillator strength of the neutral parent PAH. The loss of the parent and growth of PAH photoproducts are measured as a function of VUV dose, yielding solid state reaction constants. The rate constants are used in an exploratory astrochemical model, to assess the importance of PAH:H2O ice photoprocessing in UV exposed interstellar environments, compared with the timescales in which PAH molecules are incorporated in interstellar ices. Conclusions: All four PAHs studied here are found to be readily ionized upon VUV photolysis when trapped in H2O ice and exhibit similar rates for ionization at astronomically relevant temperatures. Depending on the relative efficiency of H2O photodesorption and PAH photoionization in H2O ice, the latter may trigger a charge induced aromatic solid state chemistry, in which PAH cations play a central role.
The Origins of Polycyclic Aromatic Hydrocarbons: Are They Everywhere?
NASA Technical Reports Server (NTRS)
Allamandola, L. J.; Morrison, David (Technical Monitor)
1994-01-01
During the past 15 years considerable progress in observational techniques has been achieved in the middle-infrared region (5000-500 per centimeter, 2-20 micron), the region where most diagnostic molecular vibrations occur. Spectra of many different astronomical infrared sources, some deeply embedded in dark molecular clouds and others at their edges, are now available. These spectra provide a powerful probe, not only for the identification of interstellar molecules in both the gas and solid phases, but also of the physical and chemical conditions which prevail in these two very different domains. The two lectures will focus on the evidence that polycyclic aromatic hydrocarbons (PAHs) are an important, ubiquitous and abundant interstellar species. PAHs are. extremely stable species which can range in size from a few angstroms across to several hundred angstroms (PAHs are also the building blocks of amorphous carbon particles). This identification rests on the suggestive agreement between the laboratory spectra of PAHs with a set of IR emission bands which emanate from many different sources where ultraviolet starlight impinges on a "dusty" region. The picture is that individual PAHs are first pumped into highly vibrationally excited states and relax by fluorescence at their fundamental vibrational frequencies. That PAHs are a ubiquitous interstellar component has serious ramifications in other spectral regions as well, including the strong extinction in the ultraviolet, and the classic visible diffuse interstellar bands discovered more than 50 years ago (but unexplained to this day) The first part of the course will focus on the interpretation of astronomical spectra. The second lecture will start by showing how recent laboratory data on PAHs taken under realistic interstellar conditions has con borated the PAH hypothesis and led to great insight into the conditions in the PAH containing regions. This lecture will end by reviewing the ever-increasing evidence for interstellar PAHs in meteorites and interplanetary dust particles. This in conjunction with the recent suggestion that PAHs are abundant in Jupiter's atmosphere will make the point that "PAHs are Everywhere".
NASA Technical Reports Server (NTRS)
Robinson, M. S.; Beegle, L. W.; Wdowiak, T. J.
1997-01-01
The discrete infrared features known as the unidentified infrared (UIR) bands originating in starburst regions of other galaxies, and in H II regions and planetary nebulae within the Milky Way, are widely thought to be the result of ultraviolet pumped infrared fluorescence of polycyclic aromatic hydrocarbon (PAH) molecules and ions. These UIR emissions are estimated to account for 10%-30% of the total energy emitted by galaxies. Laboratory absorption spectra including the vacuum ultraviolet region, as described in this paper, show a weakening of the intensity of absorption features as the population of cations increases, suggesting that strong pi* <-- pi transitions are absent in the spectra of PAH cations. This implies a lower energy bound for ultraviolet photons that pump infrared emissions from such ions at 7.75 eV, an amount greater than previously thought. The implications include size and structure limitations on the PAH molecules and ions which are apparent constituents of the interstellar medium. Also, this might affect estimations of the population of early-type stars in regions of rapid star formation.
Decoding IR Spectra of Cosmic Ices and Organics in the Laboratory
NASA Technical Reports Server (NTRS)
Allamandola, Louis J.
2006-01-01
Tremendous strides have been made in our understanding of interstellar material over the past twenty-five years thanks to significant developments in observational IR astronomy and dedicated laboratory experiments. Twenty-five years ago the composition of interstellar dust was largely guessed at. Today the composition of interstellar dust is reasonably well understood. In the diffuse interstellar medium (ISM) the dust population is mainly comprised of small grains of silicates and amorphous carbon. In dark molecular clouds, the birthplace of stars and planets, these cold refractory dust particles are coated with mixed molecular ices whose composition is reasonably well constrained. Lastly, the signature of carbon-rich polycyclic aromatic hydrocarbons (PAHs), shockingly large molecules by early interstellar chemistry standards, is widespread throughout the Universe. This extraordinary progress has been made possible by the close collaboration of laboratory experimentalists and theoreticians with IR astronomers using groundbased, air-borne, and orbiting telescopes.
Fifteen Years of Laboratory Astrophysics at Ames
NASA Technical Reports Server (NTRS)
Allamandola, L. J.; Sandford, S. A.; Salama, F.; Hudgins, D. M.; Bernstein, M.; Goorvitch, David (Technical Monitor)
1998-01-01
Tremendous strides have been made in our understanding of interstellar material over the past fifteen years thanks to significant, parallel developments in two closely related areas: observational astronomy and laboratory astrophysics. Fifteen years ago the composition of interstellar dust was largely guessed at, the concept of ices in dense molecular clouds ignored, and the notion of large, abundant, gas phase, carbon-rich molecules widespread throughout the interstellar medium (ISM) considered impossible. Today the composition of dust in the diffuse ISM is reasonably well constrained to cold refractory materials comprised of amorphous and crystalline silicates mixed with an amorphous carbonaceous material containing aromatic structural units and short, branched aliphatic chains. In the dense ISM, these cold dust particles are coated with mixed-molecular ices whose compositions are very well known. Lastly, the signature of carbon-rich polycyclic aromatic hydrocarbons (PAHs), shockingly large molecules by early interstellar chemistry standards, is widespread throughout the ISM. This great progress has only been made possible by the close collaboration of laboratory experimentalists with observers and theoreticians, all with the goal of applying their skills to astrophysical problems of direct interest to NASA programs. Such highly interdisciplinary collaborations ensure fundamental, in depth coverage of the wide-ranging challenges posed by astrophysics. These challenges include designing astrophysically focused experiments and data analysis, tightly coupled with astrophysical searches spanning 2 orders of magnitude in wavelength, and detailed theoretical modeling. The impact of our laboratory has been particularly effective as there is constant cross-talk and feedback between quantum theorists; theoretical astrophysicists and chemists; experimental physicists; organic, physical and petroleum chemists; and infrared and UV/Vis astronomers. In this paper, two examples of the Ames Program will be given. We have been involved in identifying 9 out of the 14 interstellar pre-cometary ice species known, determined their abundances and the physical nature of the ice structure. Details on our ice work are given in the paper by Sandford et al. Our group is among the pioneers of the PAH model. We built the theoretical framework, participated in the observations and developed the experimental techniques needed to test the model. We demonstrated that the ubiquitous infrared emission spectrum associated with many interstellar objects can be matched by laboratory spectra of neutral and positively charged PAHs and that PAHs were excellent candidates for the diffuse interstellar band (DIB) carriers. See Salama et al. and Hudgins et al.
An optical spectrum of a large isolated gas-phase PAH cation: C78H26+
Zhen, Junfeng; Mulas, Giacomo; Bonnamy, Anthony; Joblin, Christine
2016-01-01
A gas-phase optical spectrum of a large polycyclic aromatic hydrocarbon (PAH) cation - C78H26+- in the 410-610 nm range is presented. This large all-benzenoid PAH should be large enough to be stable with respect to photodissociation in the harsh conditions prevailing in the interstellar medium (ISM). The spectrum is obtained via multi-photon dissociation (MPD) spectroscopy of cationic C78H26 stored in the Fourier Transform Ion Cyclotron Resonance (FT-ICR) cell using the radiation from a mid-band optical parametric oscillator (OPO) laser. The experimental spectrum shows two main absorption peaks at 431 nm and 516 nm, in good agreement with a theoretical spectrum computed via time-dependent density functional theory (TD-DFT). DFT calculations indicate that the equilibrium geometry, with the absolute minimum energy, is of lowered, nonplanar C2 symmetry instead of the more symmetric planar D2h symmetry that is usually the minimum for similar PAHs of smaller size. This kind of slightly broken symmetry could produce some of the fine structure observed in some diffuse interstellar bands (DIBs). It can also favor the folding of C78H26+ fragments and ultimately the formation of fullerenes. This study opens up the possibility to identify the most promising candidates for DIBs amongst large cationic PAHs. PMID:26942230
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hardegree-Ullman, E. E.; Gudipati, M. S.; Werner, M.
2014-04-01
Broad infrared emission features (e.g., at 3.3, 6.2, 7.7, 8.6, and 11.3 μm) from the gas phase interstellar medium have long been attributed to polycyclic aromatic hydrocarbons (PAHs). A significant portion (10%-20%) of the Milky Way's carbon reservoir is locked in PAH molecules, which makes their characterization integral to our understanding of astrochemistry. In molecular clouds and the dense envelopes and disks of young stellar objects (YSOs), PAHs are expected to be frozen in the icy mantles of dust grains where they should reveal themselves through infrared absorption. To facilitate the search for frozen interstellar PAHs, laboratory experiments were conductedmore » to determine the positions and strengths of the bands of pyrene mixed with H{sub 2}O and D{sub 2}O ices. The D{sub 2}O mixtures are used to measure pyrene bands that are masked by the strong bands of H{sub 2}O, leading to the first laboratory determination of the band strength for the CH stretching mode of pyrene in water ice near 3.25 μm. Our infrared band strengths were normalized to experimentally determined ultraviolet band strengths, and we find that they are generally ∼50% larger than those reported by Bouwman et al. based on theoretical strengths. These improved band strengths were used to reexamine YSO spectra published by Boogert et al. to estimate the contribution of frozen PAHs to absorption in the 5-8 μm spectral region, taking into account the strength of the 3.25 μm CH stretching mode. It is found that frozen neutral PAHs contain 5%-9% of the cosmic carbon budget and account for 2%-9% of the unidentified absorption in the 5-8 μm region.« less
NASA Technical Reports Server (NTRS)
Hudgins, Douglas M.; Bauschlicher, Charles W.; Allamandola, L. J.
2005-01-01
This paper presents the results of an investigation of the molecular characteristics that underlie the observed peak position and profile of the nominal 6.2 micron interstellar emission band generally attributed to the CC stretching vibrations of polycyclic aromatic hydrocarbons (PAHs). It begins with a summary of recent experimental and theoretical studies ofthe spectroscopic properties of large (>30 carbon atoms) PAH cations as they relate to this aspect of the astrophysical problem. It then continues with an examination of the spectroscopic properties of a number of PAH variants within the context of the interstellar 6.2 micron emission, beginning with a class of compounds known as polycyclic aromatic nitrogen heterocycles (PANHs; PAHs with one or more nitrogen atoms substituted into their carbon skeleton). In this regard, we summarize the results of recent relevant experimental studies involving a limited set of small PANHs and their cations and then report the results of a comprehensive computational study that extends that work to larger PANH cations including many nitrogen-substituted variants of coronene(+) (C24H12(+)), ovalene(+) (C32H14(+)), circumcoronene(+) (C54H18(+)), and circum-circumcoronene(+) (C96H24(+)). Finally, we report the results of more focused computational studies of selected representatives from a number of other classes of PAH variants that share one or more of the key attributes of the PANH species studied. These alternative classes of PAH variants include (1) oxygen- and silicon-substituted PAH cations; (2) PAH-metal ion complexes (metallocenes) involving the cosmically abundant elements magnesium and iron; and (3) large, asymmetric PAH cations. Overall, the studies reported here demonstrate that increasing PAH size alone is insuEcient to account for the position of the shortest wavelength interstellar 6.2 micron emission bands, as had been suggested by earlier studies. On the other hand, this work reveals that substitution of one or more nitrogen atoms within the interior of the carbon skeleton of a PAH cation induces a significant blueshift in the position of the dominant CC stretching feature of these compounds that is suf6cient to account for the position of the interstellar bands. Subsequent studies of the effects of substitution by other heteroatoms (O and Si), metal ion complexation (Fe(+), Mg(+), and Mg(2+)), and molecular symmetry variation-all of which fail to reproduce the blueshift observed in the PANH cations-indicate that N appears to be unique in its ability to accommodate the position of the interstellar 6.2 micron bands while simultaneously satisfying the other constraints of the astrophysical problem. This result implies that the peak position of the interstellar feature near 6.2 micron traces the degree of nitrogen substitution in the population, that most of the PAHs responsible for the interstellar IR emission features incorporate nitrogen within their aromatic networks, and that a lower limit of 1%-2% of the cosmic nitrogen is sequestered within the interstellar PAH population. Finally, in view of the ubiquity and abundance of interstellar PAHs and the permanent dipoles and distinctive electronic structures of these nitrogen-substituted variants, this work impacts a wide range of observational phenomena outside of the infrared region of the spectrum including the forest of unidentified molecular rotational features and the anomalous Galactic foreground emission in the microwave, and the diffuse interstellar bands (DIBs) and other structure in the interstellar extinction curve in the ulhviolet/visible. These astrophysical ramifications are discussed, and the dipole moments and rotational constants are tabulated to facilitate further investigations of the astrophysical role of nitrogen-substituted aromatic compounds.
NASA Technical Reports Server (NTRS)
Salama, Farid
2016-01-01
The Diffuse Interstellar Bands (DIBs) are a set of 500 absorption bands that are detected in the spectra of stars with interstellar clouds in the line of sight. DIBs are found from the NUV to the NIR in the spectra of reddened stars spanning different interstellar environments in our local, and in other galaxies. DIB carriers are a significant part of the interstellar chemical inventory. They are stable and ubiquitous in a broad variety of environments and play a unique role in interstellar physics/chemistry. It has long been realized that the solving of the DIB problem requires a strong synergy between astronomical observations, laboratory astrophysics, and astrophysical modeling of line-of-sights. PAHs are among the molecular species that have been proposed as DIB carriers. We will present an assessment of the PAH-DIB model in view of the progress and the advances that have been achieved over the past years through a series of studies involving astronomical observations of DIBs, laboratory simulation of interstellar analogs for neutrals and ionized PAHs, theoretical calculations of PAH spectra and the modelization of diffuse and translucent interstellar clouds. We will present a summary of what has been learned from these complementary studies, the constraints that can now be derived for the PAHs as DIB carriers in the context of the PAH-DIB model and how these constraints can be applied to the EDIBLES project. The spectra of several neutral and ionized PAHs isolated in the gas phase at low temperature have been measured in the laboratory under experimental conditions that mimic interstellar conditions and are compared with an extensive set of astronomical spectra of reddened, early type stars. The comparisons of astronomical and laboratory data provide upper limits for the abundances of specific neutral PAH molecules and ions along specific lines-of-sight. Something that is not attainable from infrared observations alone. We present the characteristics of the laboratory facilities, MIS and COSmIC, that have been developed for this study and discuss the findings resulting from the comparison of the laboratory data with high resolution, high S/N ratio astronomical observations. MIS stands for Matrix Isolation Spectroscopy, a well-proven technique for isolating cold molecular species in inert solid environments. COSmIC stands for Cosmic Simulation Chamber. It combines a supersonic free jet expansion with discharge plasma and high-sensitivity cavity ringdown spectroscopy and time-of-flight mass spectrometry detection tools for the generation and the detection of cold, isolated gas-phase molecules and ions under experimental conditions that closely mimic interstellar conditions. The column densities of the individual neutral PAH molecules and ions probed in these surveys are derived from the comparison of these unique laboratory data with high resolution, high S/N ratio astronomical observations. The comparisons of astronomical and laboratory data lead to clear and unambiguous conclusions regarding the expected abundances for PAHs of various sizes and charge states in the interstellar environments probed in the surveys. Band profile comparisons between laboratory and astronomical spectra lead to information regarding the molecular structures and characteristics associated with the DIB carriers in the corresponding lines-of-sight. These quantitative surveys of neutral and ionized PAHs in the optical range open the way for unambiguous quantitative searches of PAHs and complex organics in a variety of interstellar and circumstellar environments.
NASA Technical Reports Server (NTRS)
Hudgins, D. M.; Allamandola, L. J.
1999-01-01
A database of astrophysically relevant, infrared spectral measurements on a wide variety of neutral as well as positively and negatively charged polycyclic aromatic hydrocarbons (PAHs), ranging in size from C10H8 through C48H20, is now available to extend the interstellar PAH model. Beyond simply indicating general characteristics of the carriers, this collection of data now makes it possible to conduct a more thorough interpretation of the details of the interstellar spectra and thereby derive deeper insights into the nature of the emitting material and conditions in the emission zones. This Letter is the first such implementation of this spectral database. The infrared spectra of PAH cations, the main PAH form in the most energetic emission zones, are usually dominated by a few strong features in the 1650-1100 cm-1 (6.1-9.1 microns) region that tend to cluster the vicinity of the interstellar emission bands at 1610 and 1320 cm-1 (6.2 and 7.6 microns), but with spacings typically somewhat less than that observed in the canonical interstellar spectrum. However, the spectra in the database show that this spacing increases steadily with molecular size. Extrapolation of this trend indicates that PAHs in the 50-80 carbon atom size range are entirely consistent with the observed interstellar spacing. Furthermore, the profile of the 1610 cm-1 (6.2 microns) interstellar band indicates that PAHs containing as few as 20 carbon atoms contribute to this feature.
NASA Technical Reports Server (NTRS)
Hudgins, Douglas M.; Allamandola, L. J.; Mead, Susan (Technical Monitor)
1998-01-01
A database of astrophysically relevant, infrared spectral measurements on a wide variety of neutral as well as positively and negatively charged polycyclic aromatic hydrocarbons ranging in size from C10H8 through C48H20 is now available to extend the interstellar PAH model. Beyond simply indicating general characteristics of the carriers, this collection of data now makes it possible to conduct a more thorough interpretation of the details of the interstellar spectra and thereby derive deeper insights into the nature of the emitting material and conditions in the emission zones. This paper is the first such implementation of this spectral database. The infrared spectra of PAH cations, the main PAH form in the most energetic emission zones, are usually dominated by a few strong features in the 1650 - 1100 per centimeter (6.1 - 9.1 microns) region which tend to cluster in the vicinity of the interstellar emission bands at 1610 per centimeter and 1320 per centimeter (6.2 and 7.6 microns) but with spacings typically somewhat less than that observed in the canonical interstellar spectrum. However, the spectra in the database show that this spacing increases steadily with molecular size. Extrapolation of this trend indicates that PAHS in the 50 to 80 carbon atom size range are entirely consistent with the observed interstellar spacing. Furthermore, the profile of the 1610 per centimeter (6.2 microns) interstellar band indicates that PAHS containing as few as 20 carbon atoms contribute to this feature.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Krasnokutski, Serge A.; Huisken, Friedrich; Jäger, Cornelia
A very high abundance of atomic carbon in the interstellar medium (ISM), and the high reactivity of these species toward different hydrocarbon molecules including benzene, raise questions regarding the stability of polycyclic aromatic hydrocarbon (PAH) molecules in space. To test the efficiency of destruction of PAH molecules via reactions with atomic carbon, we performed a set of laboratory and computational studies of the reactions of naphthalene, anthracene, and coronene molecules with carbon atoms in the ground state. The reactions were investigated in liquid helium droplets at T = 0.37 K and by quantum chemical computations. Our studies suggest that allmore » small and all large catacondensed PAHs react barrierlessly with atomic carbon, and therefore should be efficiently destroyed by such reactions in a broad temperature range. At the same time, large compact pericondensed PAHs should be more inert toward such a reaction. In addition, taking into account their higher photostability, much higher abundances of pericondensed PAHs should be expected in various astrophysical environments. The barrierless reactions between carbon atoms and small PAHs also suggest that, in the ISM, these reactions could lead to the bottom-up formation of PAH molecules.« less
Recombination Rates of Electrons with Interstellar PAH Molecules
NASA Technical Reports Server (NTRS)
Ballester, Jorge (Cartographer)
1996-01-01
The goal of this project is to develop a general model for the recombination of electrons with PAH molecules in an interstellar environment. The model is being developed such that it can be applied to a small number of families of PAHs without reference to specific molecular structures. Special attention will be focused on modeling the approximately circular compact PAHs in a way that only depends on the number of carbon atoms.
Photochemistry of Coronene in Cosmic Water Ice Analogs at Different Concentrations
NASA Astrophysics Data System (ADS)
de Barros, A. L. F.; Mattioda, A. L.; Ricca, A.; Cruz-Diaz, G. A.; Allamandola, L. J.
2017-10-01
This work presents the photochemistry of ultraviolet (UV) irradiated coronene in water ices at 15 K studied using mid-infrared Fourier transform (FTIR) spectroscopy for C24H12:H2O at concentrations of (1:50), (1:150), (1:200), (1:300), and (1:400). Previous UV irradiation studies of anthracene:H2O, pyrene:H2O, and benzo[ghi]perylene:H2O ices at 15 K have shown that aromatic alcohols and ketones, as well as CO2 and H2CO, are formed at very low temperatures. Likewise, here, in addition to the coronene cation, hydroxy-, keto-, and protonated coronene (coronene H+) are formed. The rate constants for the decay of neutral coronene and for the formation of photoproducts have been derived. It is shown that Polycyclic Aromatic Hydrocarbons (PAHs) and their UV induced PAH:H2O photoproducts have mid-infrared spectroscopic signatures in the 5-8 μm region that can contribute to the interstellar ice components described by Boogert et al. as C1-C5. Our results suggest that oxygenated and hydrogenated PAHs could be in UV-irradiated regions of the interstellar medium where water-rich ices are important.
Angular motion of a PAH molecule in interstellar environment
NASA Technical Reports Server (NTRS)
Rouan, D.; Leger, Alain; Omont, A.; Giard, Martin
1989-01-01
Polycyclic aromatic hydrocarbon (PAH) molecules have recently been proposed as an important and hitherto undetected component of the Interstellar Medium (ISM). The theory was based on an explanation of the Unidentified IR Emission Bands by Leger et al. It has already led to a verified prediction on extended galactic and extragalactic emissions measured by IRAS, or by a recent balloon borne experiment. The physics that rules the motion of such molecules in the ISM was studied, taking into account their coupling with the ambient gas, the radiation field (absorption and emission) and the static magnetic field. This is important for many implications of the PAH theory such as the radio emission by these molecules or the expected polarization of their IR emission. A reflection nebulae is considered where the situation is rather well known. Every day life of a mean PAH molecule in such a region is as follows: every 3 hrs a UV photon is absorbed heating the molecule to a thousand degs; the temperature decay due to cooling by IR emission follows then within a few seconds. A collision with a molecule of gas occurs typically once a week, while an H atom is ejected or captured at the same rate. A typical cooling cycle after a heat impulse is given. The PAH molecules studied as representative of the family has typically 50 atoms, a radius of 4.5 A, is circular and has a molecular mass of M = 300; its permanent dipole moment is 3 Debye.
Thomas, Aaron M; Lucas, Michael; Yang, Tao; Kaiser, Ralf I; Fuentes, Luis; Belisario-Lara, Daniel; Mebel, Alexander M
2017-08-05
The hydrogen-abstraction/acetylene-addition mechanism has been fundamental to unravelling the synthesis of polycyclic aromatic hydrocarbons (PAHs) detected in combustion flames and carbonaceous meteorites like Orgueil and Murchison. However, the fundamental reaction pathways accounting for the synthesis of complex PAHs, such as the tricyclic anthracene and phenanthrene along with their dihydrogenated counterparts, remain elusive to date. By investigating the hitherto unknown chemistry of the 1-naphthyl radical with 1,3-butadiene, we reveal a facile barrierless synthesis of dihydrophenanthrene adaptable to low temperatures. These aryl-type radical additions to conjugated hydrocarbons via resonantly stabilized free-radical intermediates defy conventional wisdom that PAH growth is predominantly a high-temperature phenomenon and thus may represent an overlooked path to PAHs as complex as coronene and corannulene in cold regions of the interstellar medium like in the Taurus Molecular Cloud. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.
NASA Technical Reports Server (NTRS)
Bejaoui, Salma; Salama, Farid; Contreras, Cesar; Sciamma O'Brien, Ella; Foing, Bernard; Pascale, Ehrenfreund
2015-01-01
Polycyclic aromatic hydrocarbon (PAH) molecules are considered the best carriers to account for the ubiquitous infrared emission bands. PAHs have also been proposed as candidates to explain the diffuse interstellar bands (DIBs), a series of absorption features seen on the interstellar extinction curve and are plausible carriers for the extended red emission (ERE), a photoluminescent process associated with a wide variety of interstellar environments. Extensive efforts have been devoted over the past two decades to characterize the physical and chemical properties of PAH molecules and ions in space. Absorption spectra of PAH molecules and ions trapped in solid matrices have been compared to the DIBs. Absorption spectra of several cold, isolated gas-phase PAHs have also been measured under experimental conditions that mimic the interstellar conditions. The purpose of this study is to provide a new dimension to the existing spectroscopic database of neutral and single ionized PAHs that is largely based on absorption spectra by adding emission spectroscopy data. The measurements are based on the laser induced fluorescence (LIF) technique and are performed with the Pulsed Discharge Nozzle (PDN) of the COSmIC laboratory facility at NASA Ames laboratory. The PDN generates a plasma in a free supersonic jet expansion to simulate the physical and the chemical conditions in interstellar environments. We focus, here, on the fluorescence spectra of large neutral PAHs and their cations where there is a lack of fluorescence spectroscopy data. The astronomical implications of the data (e.g., ERE) are examined.
NASA Technical Reports Server (NTRS)
Hudgins, D. M.; Allamandola, L. J.
1995-01-01
Gaseous, ionized polycyclic aromatic hydrocarbons (PAHS) are thought to be responsible for a very common family of interstellar infrared emission bands. Unfortunately, very little infrared spectroscopic data are available on ionized PAHS. Here we present the near- and mid-infrared spectra of the polyacene cations anthracene, tetracene, and pentacene. We also report the vibrational frequencies and relative intensities of the pentacene anion. The cation bands corresponding to the CC modes are typically about 10-20 times more intense than those of the CH out-of-plane bending vibrations. For the cations the CC stretching and CH in-plane bending modes give rise to bands which are an order of magnitude stronger than for the neutral species, and the CH out-of-plane bends produce bands which are 3-20 times weaker than in the neutral species. This behavior is similar to that found for most other PAH cations. The most intense PAH cation bands fall within the envelopes of the most intense interstellar features. The strongest absorptions in the polyacenes anthracene, tetracene, and pentacene tend to group around 1400/cm (between about 1340 and 1500/cm) and near 1180/cm, regions of only moderate interstellar emission. These very strong polyacene bands tend to fall in gaps in the spectra of the other PAH cations studied to date suggesting that while PAHs with polyacene structures may contribute to specific regions of the interstellar emission spectra, they are not dominant members of the interstellar PAH family.
NASA Technical Reports Server (NTRS)
Hudgins, D. M.; Allamandola, L. J.
1995-01-01
Gaseous, ionized Polycyclic Aromatic Hydrocarbons (PAH's) are thought to be responsible for a very common family of interstellar infrared emission bands. Unfortunately, very little infrared spectroscopic data are available on ionized PAH's. Here we present the near- and mid-infrared spectra of the polyacene cations anthracene, tetracene, and pentacene. We also report the vibrational frequencies and relative intensities of the pentacene anion. The cation bands corresponding to the CC modes are typically about 10-20 times more intense than those of the CH out-of-plane bending vibrations. For the cations the CC stretching and CH in-plane bending modes give rise to bands which are an order of magnitude stronger than for the neutral species, and the CH out-of-plane bends produce bands which are 3-20 times weaker than in the neutral species. This behavior is similar to that found for most other PAH cations. The most intense PAH cation bands fall within the envelopes of the most intense interstellar features. The strongest absorptions in the polyacenes anthracene, tetracene, and pentacene tend to group around 1400 / cm (between about 1340 and 1500 / cm) and near 1180 /cm, regions of only moderate interstellar emission. These very strong polyacene bands tend to fall in gaps in the spectra of the other PAH cations studied to date suggesting that while PAHs with polyacene structures may contribute to specific regions of the interstellar emission spectra, they are not dominant members of the interstellar PAH family.
On Graphene in the Interstellar Medium
NASA Astrophysics Data System (ADS)
Chen, X. H.; Li, Aigen; Zhang, Ke
2017-11-01
The possible detection of C24, a planar graphene that was recently reported to be in several planetary nebulae by García-Hernández et al., inspires us to explore whether and how much graphene could exist in the interstellar medium (ISM) and how it would reveal its presence through its ultraviolet (UV) extinction and infrared (IR) emission. In principle, interstellar graphene could arise from the photochemical processing of polycyclic aromatic hydrocarbon (PAH) molecules, which are abundant in the ISM, due to the complete loss of their hydrogen atoms, and/or from graphite, which is thought to be a major dust species in the ISM, via fragmentation caused by grain–grain collisional shattering. Both quantum-chemical computations and laboratory experiments have shown that the exciton-dominated electronic transitions in graphene cause a strong absorption band near 2755 \\mathringA . We calculate the UV absorption of graphene and place an upper limit of ∼5 ppm of C/H (i.e., ∼1.9% of the total interstellar C) on the interstellar graphene abundance. We also model the stochastic heating of graphene C24 in the ISM, excited by single starlight photons of the interstellar radiation field and calculate its IR emission spectra. We also derive the abundance of graphene in the ISM to be <5 ppm of C/H by comparing the model emission spectra with that observed in the ISM.
NASA Technical Reports Server (NTRS)
Salama, Farid; Galazutdinov, Gazinur; Krewloski, Jacek; Biennier, Ludovic; Beletsky, Yuri; Song, In-Ok
2013-01-01
The spectra of neutral and ionized PAHs isolated in the gas phase at low temperature have been measured in the laboratory under conditions that mimic interstellar conditions and are compared with a set of astronomical spectra of reddened, early type stars. The comparisons of astronomical and laboratory data provide upper limits for the abundances of neutral PAH molecules and ions along specific lines-of-sight. Something that is not attainable from infrared observations. We present the characteristics of the laboratory facility (COSmIC) that was developed for this study and discuss the findings resulting from the comparison of the laboratory data with high resolution, high S/N ratio astronomical observations. COSmIC combines a supersonic jet expansion with discharge plasma and cavity ringdown spectroscopy and provides experimental conditions that closely mimic the interstellar conditions. The column densities of the individual PAH molecules and ions probed in these surveys are derived from the comparison of the laboratory data with high resolution, high S/N ratio astronomical observations. The comparisons of astronomical and laboratory data lead to clear conclusions regarding the expected abundances for PAHs in the interstellar environments probed in the surveys. Band profile comparisons between laboratory and astronomical spectra lead to information regarding the molecular structures and characteristics associated with the DIB carriers in the corresponding lines-of-sight. These quantitative surveys of neutral and ionized PAHs in the optical range open the way for quantitative searches of PAHs and complex organics in a variety of interstellar and circumstellar environments.
NASA Technical Reports Server (NTRS)
Hudgins, Douglas M.; Bauschlicher, Charles W., Jr.; Allamandola, Louis J.; DeVincenzi, Donald L. (Technical Monitor)
2000-01-01
Density functional theory has been employed to calculate the harmonic frequencies and intensities of a range of PAH cations which explore both size and electronic structure effects on the infrared spectroscopic of these species. The sample extends the size range of PAH species considered to more than 50 carbon atoms and includes several representatives from each of two heretofore unexplored categories of PAH cations: (1) fully benzenoid PAH cations whose carbon skeleton is composed of an odd number of carbon atoms and (2) protonated PAH cations. Unlike the radical electronic structures of the PAH cations that have been the subject of previous theoretical and experimental work, the species in these two classes have a closed-shell electronic configuration. The calculated spectra of circumcoronene, C54H18, in both neutral and (radical) cationic form are also reported and compared to those of the other species. Closed-shell species are inherently less reactive than radical (or open-shell) cations and are known to play a role in combustion chemistry. Since interstellar PAHs are typically exposed to abundant atomic hydrogen and are thought to originate under pseudo-combustion conditions in carbon-rich circumstellar shells, such species may represent an important component of the interstellar PAH population. Furthermore, species larger than 50 carbon atoms are more representative of the size of the typical interstellar PAH. Overall, as has been the case for previous studies of PAH radical cations, the general pattern of band positions and intensities are consistent with that of the interstellar infrared emission spectrum. In addition, the spectra of closed-shell and open-shell cations are found to converge with increasing molecular size and are found to be relatively similar for species containing about 50 carbon atoms.
Radiation Processing of Polycyclic Aromatic Hydrocarbons (PAHs) in Space: ICEE PoC
NASA Technical Reports Server (NTRS)
Mattioda, Andrew; Cruz-Diaz, Gustavo; Barnhardt, Michael; Ging, Andrew; Schneider, Todd; Vaughn, Jason; Quigley, Emmett; Phillips, Brandon
2017-01-01
Small Polycyclic Aromatic Hydrocarbon molecules or PAHs (<30 carbon atoms) have been identified in comets, meteorites, asteroids, and interplanetary dust particles in our Solar System, while PAHs in the Interstellar Medium (ISM) tend to be much larger, usually between 50 to 100 carbon atoms in size. The cause of the size disparity between PAHs found in the ISM and Solar System as well as their influence on Solar System organics is not yet understood. Two chemical evolutionary paths have been proposed to explain the inventory of solar system organics. In one the prebiotic material was formed from the radiation induced modification of large pre-solar carbon-bearing species (e.g. ISM PAHs). The second path suggests that Solar System prebiotic matter is the result of bottom-up synthesis from small reactive molecules after the Solar System was formed. In this second scenario very few ISM PAHs survived the harsh pre-solar radiation as aromatic structures. ICEE PoC (ICEE Proof of Concept) investigated factors impacting the chemical evolution of large PAHs irradiated under conditions similar to the proto-solar nebula. Likewise ICEE PoC will refine the technical parameters of the proposed ICEE (Institute for Carbon Evolution Experiment) laboratory.
Photochemistry of Coronene in Cosmic Water Ice Analogs at Different Concentrations
DOE Office of Scientific and Technical Information (OSTI.GOV)
De Barros, A. L. F.; Mattioda, A. L.; Ricca, A.
This work presents the photochemistry of ultraviolet (UV) irradiated coronene in water ices at 15 K studied using mid-infrared Fourier transform (FTIR) spectroscopy for C{sub 24}H{sub 12}:H{sub 2}O at concentrations of (1:50), (1:150), (1:200), (1:300), and (1:400). Previous UV irradiation studies of anthracene:H{sub 2}O, pyrene:H{sub 2}O, and benzo[ghi]perylene:H{sub 2}O ices at 15 K have shown that aromatic alcohols and ketones, as well as CO{sub 2} and H{sub 2}CO, are formed at very low temperatures. Likewise, here, in addition to the coronene cation, hydroxy-, keto-, and protonated coronene (coronene H{sup +}) are formed. The rate constants for the decay of neutralmore » coronene and for the formation of photoproducts have been derived. It is shown that Polycyclic Aromatic Hydrocarbons (PAHs) and their UV induced PAH:H{sub 2}O photoproducts have mid-infrared spectroscopic signatures in the 5–8 μ m region that can contribute to the interstellar ice components described by Boogert et al. as C1–C5. Our results suggest that oxygenated and hydrogenated PAHs could be in UV-irradiated regions of the interstellar medium where water-rich ices are important.« less
Theoretical modeling of the infrared fluorescence from interstellar polycyclic aromatic hydrocarbons
NASA Technical Reports Server (NTRS)
Schutte, W. A.; Tielens, A. G. G. M.; Allamandola, L. J.
1993-01-01
We have modeled the family of interstellar IR emission bands at 3.3, 6.2, 7.7, 8.6, 11.3, and 12.7 microns by calculating the fluorescence from a size distribution of interstellar polycyclic aromatic hydrocarbons (PAHs) embedded in the radiation field of a hot star. It is found that the various emission bands are dominated by distinctly different PAHs, from molecules with much less than about 80 C atoms for the 3.3 micron feature, to molecules with 10 exp 2-10 exp 5 C atoms for the emission in the IRAS 12 and 25 micron bands. We quantitatively describe the influence on the emergent spectrum of various PAH properties such as the molecular structure, the amount of dehydrogenation, the intrinsic strength of the IR active modes, and the size distribution. Comparing our model results to the emission spectrum from the Orion Bar region, we conclude that interstellar PAHs are likely fully, or almost fully, hydrogenated. Moreover, it is found that the intrinsic strengths of the 6.2 and 7.7 micron C-C stretching modes, and the 8.6 micron C-H in-plane bending mode are 2-6 times larger than measured for neutral PAHs in the laboratory.
Interstellar Dust Models Consistent with Extinction, Emission, and Abundance Constraints
NASA Technical Reports Server (NTRS)
Zubko, Viktor; Dwek, Eli; Arendt, Richard G.
2004-01-01
We present new interstellar dust models which have been derived by simultaneously fitting the far ultraviolet to near infrared extinction, the diffuse infrared emission, and, unlike previous models, the elemental abundances in dust for the diffuse interstellar medium. We found that dust models consisting of a mixture of spherical graphite and silicate grains, polycyclic aromatic hydrocarbon (PAH) molecules, in addition to porous composite particles containing silicate, organic refractory, and water ice, provide an improved .t to the UV-to-infrared extinction and infrared emission measurements, while consuming the amounts of elements well within the uncertainties of adopted interstellar abundances, including B star abundances. These models are a signi.cant improvement over the recent Li & Draine (2001, ApJ, 554, 778) model which requires an excessive amount of silicon to be locked up in dust: 48 ppm (atoms per million of H atoms), considerably more than the solar abundance of 34 ppm or the B star abundance of 19 ppm.
Near-infrared absorption spectroscopy of interstellar hydrocarbon grains
NASA Astrophysics Data System (ADS)
Pendleton, Y. J.; Sandford, S. A.; Allamandola, L. J.; Tielens, A. G. G. M.; Sellgren, K.
1994-12-01
We present new 3600 - 2700/cm (2.8 - 3.7 micrometer) spectra of objects whose extinction is dominated by dust in the diffuse interstellar medium. The observations presented here augment an ongoing study of the organic component of the diffuse interstellar medium. These spectra contain a broad feature centered near 3300/cm (3.0 micrometers) and/or a feature with a more complex profile near 2950/cm (3.4 micrometers), the latter of which is attributed to saturated aliphatic hydrocarbons in interstellar grains and is the primary interest of this paper. As in our earlier work, the similarity of the absorption bands near 2950/cm (3.4 micrometers) along different lines of sight and the correlation of these features with interstellar extinction reveal that the carrier of this band lies in the dust in the diffuse interstellar medium (DISM). At least 2.5% of the cosmic carbon in the local interstellar medium and 4% toward the Galactic center is tied up in the carrier of the 2950/cm (3.4 micrometer) band. The spectral structure of the diffuse dust hydrocarbon C-H stretch absorption features is reasonably similar to UV photolyzed laboratory ice residues and is quite similar to the carbonaceous component of the Murchison meteorite. The similarity between the DISM and the meteoritic spectrum suggests that some of the interstellar material originally incorporated into the solar nebula may have survived relatively untouched in primitive solar system bodies. Comparisons of the DISM spectrum to hydrogenated amorphous carbon and quenched carbonaceous composite are also presented. The AV/tau ratio for the 2950/cm (3.4 micrometer) feature is lower toward the Galactic center than toward sources in the local solar neighborhood (approximately 150 for the Galactic center sources vs. approximately 250 for the local ISM sources). A similar trend has been observed previously for silicates in the diffuse medium by Roche & Aitken, suggesting that (1) the silicate and carbonaceous materials in the DISM may be physically correlated and (2) there is either dust compositional variation in the galaxy or galactic variation in the grain population density distribution. We also note a possible absorption feature near 3050/cm (3.28 micrometers), a wavelength position that is characteristic of polycyclic aromatic hydrocarbons (PAHs).
Near-infrared absorption spectroscopy of interstellar hydrocarbon grains
NASA Technical Reports Server (NTRS)
Pendleton, Y. J.; Sandford, S. A.; Allamandola, L. J.; Tielens, A. G. G. M.; Sellgren, K.
1994-01-01
We present new 3600 - 2700/cm (2.8 - 3.7 micrometer) spectra of objects whose extinction is dominated by dust in the diffuse interstellar medium. The observations presented here augment an ongoing study of the organic component of the diffuse interstellar medium. These spectra contain a broad feature centered near 3300/cm (3.0 micrometers) and/or a feature with a more complex profile near 2950/cm (3.4 micrometers), the latter of which is attributed to saturated aliphatic hydrocarbons in interstellar grains and is the primary interest of this paper. As in our earlier work, the similarity of the absorption bands near 2950/cm (3.4 micrometers) along different lines of sight and the correlation of these features with interstellar extinction reveal that the carrier of this band lies in the dust in the diffuse interstellar medium (DISM). At least 2.5% of the cosmic carbon in the local interstellar medium and 4% toward the Galactic center is tied up in the carrier of the 2950/cm (3.4 micrometer) band. The spectral structure of the diffuse dust hydrocarbon C-H stretch absorption features is reasonably similar to UV photolyzed laboratory ice residues and is quite similar to the carbonaceous component of the Murchison meteorite. The similarity between the DISM and the meteoritic spectrum suggests that some of the interstellar material originally incorporated into the solar nebula may have survived relatively untouched in primitive solar system bodies. Comparisons of the DISM spectrum to hydrogenated amorphous carbon and quenched carbonaceous composite are also presented. The A(sub V)/tau ratio for the 2950/cm (3.4 micrometer) feature is lower toward the Galactic center than toward sources in the local solar neighborhood (approximately 150 for the Galactic center sources vs. approximately 250 for the local ISM sources). A similar trend has been observed previously for silicates in the diffuse medium by Roche & Aitken, suggesting that (1) the silicate and carbonaceous materials in the DISM may be physically correlated and (2) there is either dust compositional variation in the galaxy or galactic variation in the grain population density distribution. We also note a possible absorption feature near 3050/cm (3.28 micrometers), a wavelength position that is characteristic of polycyclic aromatic hydrocarbons (PAHs).
NASA Technical Reports Server (NTRS)
Zubko, V.; Dwek, E.; Arendt, R. G.; Oegerle, William (Technical Monitor)
2001-01-01
We present new interstellar dust models that are consistent with both, the FUV to near-IR extinction and infrared (IR) emission measurements from the diffuse interstellar medium. The models are characterized by different dust compositions and abundances. The problem we solve consists of determining the size distribution of the various dust components of the model. This problem is a typical ill-posed inversion problem which we solve using the regularization approach. We reproduce the Li Draine (2001, ApJ, 554, 778) results, however their model requires an excessive amount of interstellar silicon (48 ppM of hydrogen compared to the 36 ppM available for an ISM of solar composition) to be locked up in dust. We found that dust models consisting of PAHs, amorphous silicate, graphite, and composite grains made up from silicates, organic refractory, and water ice, provide an improved fit to the extinction and IR emission measurements, while still requiring a subsolar amount of silicon to be in the dust. This research was supported by NASA Astrophysical Theory Program NRA 99-OSS-01.
NASA Astrophysics Data System (ADS)
Cook, Amanda M.; Ricca, Alessandra; Mattioda, Andrew L.; Bouwman, Jordy; Roser, Joseph; Linnartz, Harold; Bregman, Jonathan; Allamandola, Louis J.
2015-01-01
Infrared spectroscopic studies of ultraviolet (UV) irradiated, water-rich, cosmic ice analogs containing small polycyclic aromatic hydrocarbons (PAHs) are described. The irradiation studies of anthracene:H2O, pyrene:H2O, and benzo[ghi]perylene:H2O ices (14 K) at various concentrations reported by Bouwman et al. are extended. While aromatic alcohols and ketones have been reported in residues after irradiated PAH:H2O ices were warmed to 270 K, it was not known if they formed during ice irradiation or during warm-up when reactants interact as H2O sublimes. Recent work has shown that they form in low temperature ice. Using DFT computed IR spectra to identify photoproducts and PAH cations, we tentatively identify the production of specific alcohols [PAH(OH) n ] and quinones [PAH(O) n ] for all PAH:H2O ices considered here. Little evidence is found for hydrogenation at 14 K, consistent with the findings of Gudipati & Yang. Addition of O and OH to the parent PAH is the dominant photochemical reaction, but PAH erosion to smaller PAHs (producing CO2 and H2CO) is also important. DFT spectra are used to assess the contribution of PAH-related species to interstellar absorption features from 5 to 9 μm. The case is made that PAH cations are important contributors to the C2 component and PAH(OH) n and PAH(O) n to the C5 component described by Boogert et al. Thus, interstellar ices should contain neutral and ionized PAHs, alcohols, ketones and quinones at the ~2%-4% level relative to H2O. PAHs, their photoproducts, and ion-mediated processes should therefore be considered when modeling interstellar ice processes.
NASA Astrophysics Data System (ADS)
Joblin, C.; Szczerba, R.; Berné, O.; Szyszka, C.
2008-10-01
Context: It has been shown that the diversity of the aromatic emission features can be rationalized into different classes of objects, in which differences between circumstellar and interstellar matter are emphasised. Aims: We probe the links between the mid-IR emitters observed in planetary nebulae (PNe) and their counterparts in the interstellar medium in order to probe a scenario in which the latter have been formed in the circumstellar environment of evolved stars. Methods: The mid-IR (6-14 μm) emission spectra of PNe and compact H II regions were analysed on the basis of previous work on photodissociation regions (PDRs). Galactic, Large Magellanic Cloud (LMC), and Small Magellanic Cloud (SMC) objects were considered in our sample. Results: We show that the mid-IR emission of PNe can be decomposed as the sum of six components. Some components made of polycyclic aromatic hydrocarbon (PAH) and very small grain (VSG) populations are similar to those observed in PDRs. Others are fitted in an evolutionary scenario involving the destruction of the aliphatic component observed in the post-AGB stage, as well as strong processing of PAHs in the extreme conditions of PNe that leads to a population of very large ionized PAHs. This species called PAHx are proposed as the carriers of a characteristic band at 7.90 μm. This band can be used as part of diagnostics that identify PNe in nearby galaxies and is also observed in galactic compact H II regions. Conclusions: These results support the formation of the aromatic very small dust particles in the envelopes of evolved stars, in the Milky Way, as well as in the LMC and SMC, and their subsequent survival in the interstellar medium. This work is based on observations made with the Spitzer Space Telescope, which is operated by the Jet Propulsion Laboratory, California Institute of Technology under a contract with NASA. Based on observations with ISO, an ESA project with instruments funded by ESA Member States (especially the PI countries: France, Germany, the Netherlands and the United Kingdom) and with the participation of ISAS and NASA. Tables A.1 and A.2 are only available in electronic form at http://www.aanda.org
Interstellar PAH Emission in the 11-14 micron Region: New Insights and a Tracer of Ionized PAHs
NASA Technical Reports Server (NTRS)
Hudgins, Douglas M.; Allamandola, Louis J.; Mead, Susan (Technical Monitor)
1999-01-01
The Ames infrared spectral database of isolated, neutral and ionized polycyclic aromatic hydrocarbons (PAHs) shows that aromatic CH out-of-plane bending frequencies are significantly shifted upon ionization. For non-adjacent and doubly-adjacent CH groups, the shift is pronounced and consistently toward higher frequencies. The non-adjacent modes are blueshifted by an average of 27 per cm and the doubly-adjacent modes by an average of 17 per cm. For triply- and quadruply-adjacent CH out-of-plane modes the ionization shifts are more erratic and typically more modest. As a result of these ionization shifts, both the non-adjacent and doubly-adjacent CH out-of-plane modes move out of the regions classically associated with their respective vibrations in neutral PAHs. The doubly-adjacent modes of ionized PAHs tend to fall into the frequency range traditionally associated with the non-adjacent modes, while the non-adjacent modes are shifted to frequencies above those normally attributed to out-of-plane bending vibrations. Consequently, the origin of the interstellar infrared emission feature near 11.2 microns, traditionally attributed to the out-of-plane bending of non-adjacent CH groups on PAHs is rendered ambiguous. Instead, this feature likely reflects contributions from both non-adjacent CH units in neutral PAHs and doubly-adjacent CH units in PAH cations, the dominant charge state in the most energetic emission regions. This greatly relieves the structural constraints placed on the interstellar PAH population by the dominance of the 11.2 micron band in this region and eliminates the necessity to invoke extensive dehydrogenation of the emitting species. Furthermore, these results indicate that the emission between 926 and 904 per cm (10.8 and 11.1 microns) observed in many sources can be unambiguously attributed to the non-adjacent CH out-of-plane bending modes of moderately-sized (fewer than 50 carbon atom) PAH cations making this emission an unequivocal tracer of ionized interstellar PAHs.
NASA Technical Reports Server (NTRS)
Salama, Farid; DeVincenzi, Donald L. (Technical Monitor)
2001-01-01
Recent studies of the spectroscopy of large (up to approx. 50 carbon atoms) neutral and Ionized polycyclic aromatic hydrocarbons (PAHs) and Fullerenes isolated in inert gas matrices will be presented. The advantages and the limitations of matrix isolation spectroscopy for the study of the molecular spectroscopy of interstellar dust analogs will be discussed. The laboratory data will be compared to the astronomical spectra (the interstellar extinction, the diffuse interstellar bands). Finally, the spectra of PAH ions isolated in neon/argon matrices will be compared to the spectra obtained for PAH ion seeded in a supersonic expansion. The astrophysical implications and future perspectives will be discussed.
[PAH Cations as Viable Carriers of DIBs
NASA Technical Reports Server (NTRS)
Snow, Ted
1998-01-01
This report is intended to fill in the blanks in NASA's file system for our lab astro study of molecular ions of astrophysical interest. In order to give NASA what it needs for its files, I attach below the text of the section from our recent proposal to continue this work, in which we describe progress to date, including a large number of publications. Our initial studies were focused on PAH cations, which appear to be viable candidates as the carriers of the DIBs, an idea that has been supported by laboratory spectroscopy of PAH cations in inert matrices. Beginning with the simplest aromatic (benzene; C6H6) and moving progressively to larger species (naphthalene, C10OH8; pyrene, C16H10; and most recently chrysene, C18H12), we have been able to derive rate coefficients for reactions with neutral spices that are abundant in the diffuse interstellar medium.
NASA Technical Reports Server (NTRS)
Szczepanski, Jan; Vala, Martin
1993-01-01
Polycyclic aromatic hydrocarbons (PAHs) have been implicated as the carriers of the 'unidentified infrared' (UIR) emission bands observed from the interstellar medium. It has long been thought that these molecules, if present, probably exist as cations. In this paper we present infrared spectra of the cations of five moderate-sized PAHs. The PAH cations have been produced by low-energy electron impact and then trapped and stabilized in argon matrices at 12 K. To date, results have been obtained on naphthalene, anthracene, pyrene, perylene, and coronene. A common feature of the infrared spectra of all these cations is the very different intensity pattern of the ions compared to the neutral parents. Visible and (partial) infrared spectra of the coronene cation are also presented. It is shown that the out-of-plane CH bending mode shifts to a position very close to the UIR band at 11.3 microns. The astrophysical impact of these observations is discussed.
Polycyclic Aromatic Hydrocarbons and the Diffuse Interstellar Bands: a Survey
NASA Technical Reports Server (NTRS)
Salama, F.; Galazutdinov, G. A.; Krelowski, J.; Allamandola, L. J.; Musaev, F. A.; DeVincenzi, Donald L. (Technical Monitor)
1999-01-01
We discuss the proposal relating the origin of some of the diffuse interstellar bands (DIBs) to neutral and ionized polycyclic aromatic hydrocarbons (PAHs) present in interstellar clouds. Laboratory spectra of several PAHs, isolated at low temperature in inert gas matrices, are compared with an extensive set of astronomical spectra of reddened, early type stars. From this comparison, it is concluded that PAN ions are good candidates to explain some of the DIBs. Unambiguous assignments are difficult, however, due to the shift in wavelengths and the band broadening induced in the laboratory spectra by the solid matrix. Definitive band assignments and, ultimately, the test of the of the proposal that PAH ions carry some of the DIB must await the availability of gas-phase measurements in the laboratory. The present assessment offers a guideline for future laboratory experiments by allowing the preselection of promising PAH molecules to be studied in jet expansions.
PAHs in the Ices of Saturn's Satellites: Connections to the Solar Nebula and the Interstellar Medium
NASA Technical Reports Server (NTRS)
Cruikshank, Dale P.; Pendleton, Yvonne J.
2015-01-01
Aliphatic hydrocarbons and PAHs have been observed in the interstellar medium (e.g., Allamandola et al. 1985, Pendleton et al. 1994, Pendleton & Allamandola 2002, Tielens 2013, Kwok 2008, Chiar & Pendleton 2008) The inventory of organic material in the ISM was likely incorporated into the molecular cloud in which the solar nebula condensed, contributing to the feedstock for the formation of the Sun, major planets, and the smaller icy bodies in the region outside Neptune's orbit (transneptunian objects, or TNOs). Additional organic synthesis occurred in the solar nebula (Ciesla & Sandford 2012). Saturn's satellites Phoebe, Iapetus, and Hyperion open a window to the composition of one class of TNO as revealed by the near-infrared mapping spectrometer (VIMS) on the Cassini spacecraft at Saturn. Phoebe (mean diameter 213 km) is a former TNO now orbiting Saturn (Johnson & Lunine 2005). VIMS spectral maps of Phoebe's surface reveal a complex organic spectral signature consisting of prominent aromatic (CH) and aliphatic hydrocarbon (=CH2, -CH3) absorption bands (3.2-3.6 micrometers). Phoebe is the source of a huge debris ring encircling Saturn, and from which particles ((is) approximately 5-20 micrometers size) spiral inward toward Saturn (Verbiscer et al. 2009). They encounter Iapetus and Hyperion where they mix with and blanket the native H2O ice of those two bodies. Quantitative analysis of the hydrocarbon bands on Iapetus demonstrates that aromatic CH is approximately 10 times as abundant as aliphatic CH2+CH3, significantly exceeding the strength of the aromatic signature in interplanetary dust particles, comet particles, and in carbonaceous meteorites (Cruikshank et al. 2014). A similar excess of aromatics over aliphatics is seen in the qualitative analysis of Hyperion and Phoebe itself (Dalle Ore et al. 2012). The Iapetus aliphatic hydrocarbons show CH2/CH3 (is) approximately 4, which is larger than the value found in the diffuse ISM ((is) approximately 2-2.5). Insofar as Phoebe is a primitive body that formed in the outer regions of the solar nebula and has preserved some of the original nebula inventory, it can be key in understanding the content and degree of processing of that nebular material. A dynamical subset of TNOs define the Kuiper Belt, from which the short-period comets originate. Particles collected from comet 81P/Wild contain PAHs with an interstellar signature of deuterium. By inference, the PAHs contained in Phoebe and now dusted on the surfaces of two other Saturn satellites share that interstellar origin. There are other Phoebe-like TNOs that are presently beyond our ability to study in the organic spectral region, but JWST will open that possibility for a number of objects.
NASA Astrophysics Data System (ADS)
Salama, Farid; Galazutdinov, G.; Krelowski, J.; Biennier, L.; Beletsky, Y.; Song, I.
2013-06-01
The spectra of neutral and ionized PAHs isolated in the gas phase at low temperature have been measured in the laboratory under conditions that mimic interstellar conditions and are compared with a set of astronomical spectra of reddened, early type stars. The comparisons of astronomical and laboratory data provide upper limits for the abundances of neutral PAH molecules and ions along specific lines-of-sight. Something that is not attainable from infrared observations. We present the characteristics of the laboratory facility (COSmIC) that was developed for this study and discuss the findings resulting from the comparison of the laboratory data with high resolution, high S/N ratio astronomical observations. COSmIC combines a supersonic jet expansion with discharge plasma and cavity ringdown spectroscopy and provides experimental conditions that closely mimic the interstellar conditions. The column densities of the individual PAH molecules and ions probed in these surveys are derived from the comparison of the laboratory data with high resolution, high S/N ratio astronomical observations. The comparisons of astronomical and laboratory data lead to clear conclusions regarding the expected abundances for PAHs in the interstellar environments probed in the surveys. Band profile comparisons between laboratory and astronomical spectra lead to information regarding the molecular structures and characteristics associated with the DIB carriers in the corresponding lines-of-sight. These quantitative surveys of neutral and ionized PAHs in the optical range open the way for quantitative searches of PAHs and complex organics in a variety of interstellar and circumstellar environments. Acknowledgements: F.S. acknowledges the support of the Astrophysics Research and Analysis Program of the NASA Space Mission Directorate and the technical support provided by R. Walker at NASA ARC. J.K. acknowledges the financial support of the Polish State. The authors are deeply grateful to the ESO archive as well as to the ESO staff members for their active support.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Cook, Amanda M.; Mattioda, Andrew L.; Roser, Joseph
2015-01-20
Infrared spectroscopic studies of ultraviolet (UV) irradiated, water-rich, cosmic ice analogs containing small polycyclic aromatic hydrocarbons (PAHs) are described. The irradiation studies of anthracene:H{sub 2}O, pyrene:H{sub 2}O, and benzo[ghi]perylene:H{sub 2}O ices (14 K) at various concentrations reported by Bouwman et al. are extended. While aromatic alcohols and ketones have been reported in residues after irradiated PAH:H{sub 2}O ices were warmed to 270 K, it was not known if they formed during ice irradiation or during warm-up when reactants interact as H{sub 2}O sublimes. Recent work has shown that they form in low temperature ice. Using DFT computed IR spectra to identify photoproducts andmore » PAH cations, we tentatively identify the production of specific alcohols [PAH(OH) {sub n} ] and quinones [PAH(O) {sub n} ] for all PAH:H{sub 2}O ices considered here. Little evidence is found for hydrogenation at 14 K, consistent with the findings of Gudipati and Yang. Addition of O and OH to the parent PAH is the dominant photochemical reaction, but PAH erosion to smaller PAHs (producing CO{sub 2} and H{sub 2}CO) is also important. DFT spectra are used to assess the contribution of PAH-related species to interstellar absorption features from 5 to 9 μm. The case is made that PAH cations are important contributors to the C2 component and PAH(OH) {sub n} and PAH(O) {sub n} to the C5 component described by Boogert et al. Thus, interstellar ices should contain neutral and ionized PAHs, alcohols, ketones and quinones at the ∼2%-4% level relative to H{sub 2}O. PAHs, their photoproducts, and ion-mediated processes should therefore be considered when modeling interstellar ice processes.« less
Recent Progress in DIB Research: Survey of PAHS and DIBS
NASA Technical Reports Server (NTRS)
Salama, Farid; Galazutdinov, G.; Krelowski, J.; Biennier, L.; Beletsky, Y.; Song, I.
2013-01-01
The spectra of several neutral and ionized PAHs isolated in the gas phase at low temperature have been measured in the laboratory under experimental conditions that mimic interstellar conditions and are compared with an extensive set of astronomical spectra of reddened, early type stars [1, 2]. The comparisons of astronomical and laboratory data provide upper limits for the abundances of specific neutral PAH molecules and ions along specific lines-of-sight. Something that is not attainable from infrared observations alone. We present the characteristics of the laboratory facility (COSmIC) that was developed for this study and discuss the findings resulting from the comparison of these unique laboratory data with high resolution, high S/N ratio astronomical observations. COSmIC combines a supersonic free jet expansion with discharge plasma and high-sensitivity cavity ringdown spectroscopy and provides experimental conditions that closely mimic the interstellar conditions. The column densities of the individual neutral PAH molecules and ions probed in these surveys are derived from the comparison of these unique laboratory data with high resolution, high S/N ratio astronomical observations. The comparisons of astronomical and laboratory data lead to clear and unambiguous conclusions regarding the expected abundances for PAHs of various sizes and charge states in the interstellar environments probed in the surveys. Band profile comparisons between laboratory and astronomical spectra lead to information regarding the molecular structures and characteristics associated with the DIB carriers in the corresponding lines-of-sight. These quantitative surveys of neutral and ionized PAHs in the optical range open the way for unambiguous quantitative searches of PAHs and complex organics in a variety of interstellar and circumstellar environments.
Blue Luminescence and Extended Red Emission: Possible Connections to the Diffuse Interstellar Bands
NASA Astrophysics Data System (ADS)
Witt, A. N.
2014-02-01
Blue luminescence (BL) and extended red emission (ERE) are observed as diffuse, optical-wavelength emissions in interstellar space, resulting from photoluminescence by ultraviolet(UV)-illuminated interstellar grains. Faintness and the challenge of separating the BL and ERE from the frequently much brighter dust-scattered continuum present major observational hurdles, which have permitted only slow progress in testing the numerous models that have been advanced to explain these two phenomena. Both the ERE, peaking near 680 nm (FWHM ~ 60 - 120 nm) and the BL, asymmetrically peaking at ~ 378 nm (FWHM ~ 45 nm), were first discovered in the Red Rectangle nebula. Subsequently, ERE and BL have been observed in other reflection nebulae, and in the case of the ERE, in carbon-rich planetary nebulae, H II regions, high-latitude cirrus clouds, the galactic diffuse ISM, and in external galaxies. BL exhibits a close spatial and intensity correlation with emission in the aromatic emission feature at 3.3 micron, most likely arising from small, neutral polycyclic aromatic hydrocarbon (PAH) molecules. The spectral characteristics of the BL also agree with those of fluorescence by PAH molecules with 13 to 19 carbon atoms. The BL phenomenon is thus most readily understood as the optical fluorescence of small, UV-excited aromatic molecules. The ERE, by contrast, though co-existent with mid-IR PAH emissions, does not correlate with emissions from either neutral or ionized PAHs. Instead, the spatial ERE morphology appears to be strictly governed by the density of far-UV (E >= 10.5 eV) photons, which are required for the ERE excitation. The most restrictive observational constraint for the ERE process is its exceptionally high quantum efficiency. If the ERE results from photo-excitation of a nano-particle carrier by photons with E >= 10.5 eV in a single-step process, the quantum efficiency exceeds 100%. Such a process, in which one to three low-energy optical photons may be emitted following a single far-UV excitation, is possible in highly isolated small clusters, e.g. small, dehydrogenated carbon clusters with about 20 to 28 carbon atoms. A possible connection between the ERE carriers and the carriers of DIBs may exist in that both are ubiquitous throughout the diffuse interstellar medium and both have an abundance of low-lying electronic levels with E <= 2.3 eV above the ground state.
Properties and evolution of dust in the interstellar medium.
NASA Astrophysics Data System (ADS)
Flagey, N.
2007-10-01
My thesis is dedicated to the properties and evolution of the dust in the Galactic interstellar medium (ISM), particularly the small sizes end of the dust size distribution. Throughout these three years, new infrared (IR) observations provided by the Spitzer Space Telescope helped me to bring my own contribution to the knowledge of the dust lifecycle. In order to get a view as global as possible, I have studied three different interstellar environments : the diffuse Galactic medium, a molecular cloud and a star forming region. I analyzed one line of sight that points towards the diffuse Galactic ISM, away from bright star forming regions. Combining spectroscopic and photometric data, I have built a mean Galactic near to mid IR spectrum of the dust, that I have afterwards used as a reference. The Polycyclic Aromatic Hydrocarbons (PAHs) bands are present on top of a continuum. In order to interpret the band intensity ratios in terms of PAHs size and ionization state, I have updated our dust model so that it takes into account the size dependent ionization state of the PAHs. The diffuse ISM spectrum is fit for a PAH mean size of about 60 carbon atoms and a cation fraction of about 40%. Molecular size and charged PAHs are thus present within the diffuse medium. A 3-5 μm continuum, first detected in reflection nebulae, is observed to be present in the diffuse ISM emission. This continuum accounts for 70% of the emission in the Spitzer/IRAC 3.6μm filter. Its origin is still unknown. I show that it is neither scattered light nor PAH fluorescence, as this process would require a photon conversion efficiency above 100%. I used Spitzer observations to quantify spatial variations of PAHs properties across the galaxy and on small scales within the Taurus molecular cloud. Analysis of a set of Galactic diffuse ISM sight lines show that the PAHs mean size exhibits significant dispersion, from 40 to 80 carbon atoms, while their ionization fraction stays constant within error bars. I have also analyzed mid and far-IR Spitzer images of the Taurus Molecular Cloud. Each dust component (PAHs, VSGs for Very Small Grains and BGs for Big Grains) can be related to one Spitzer channel (IRAC 8, MIPS 24 and MIPS 160 microns). A first difficulty was to obtain images of the low brightness diffuse emission across the entire cloud. I worked with Spitzer Science Center (SSC) experts to produce the IRAC 8 and MIPS 24 images. For the MIPS 160 I used an inversion algorithm developed to destripe the data. I validated the photometry of each image. The observations show that PAHs are present within a surface layer thinn! er than that penetrated by ultraviolet photons and that of VSGs emission. Such variations cannot be only explained by the extinction and must thus trace real PAH depletion within dense gas where the smallest dust particles may stick on large grains and/or coagulate. During my PhD thesis, I applied for a SSC Visiting Graduate Student grant in order to study the Eagle Nebula (M16), the object that made me decide to do astrophysics, more than ten years ago, when the Hubble Space Telescope imaged the iconic Pillars of Creation. My application was accepted and I spent 6 months within the MIPSGAL Science Team. My aim was to combine IRAC and MIPS data of M16 in order to analyze the properties of the dust within the dusty and gaseous structures, while being involved in the data processing enhancement. The MIPS 24 microns image defines a shell-like structure within the nebula while the pillars are observed at other wavelengths. M16 is a massive star forming region where the dust emission is expected to be powered by the massive stars radiation. However, we show that the UV field is one order of magnitude too small to account for the shell dust temperature. For comparison we analyzed several other Galactic shells. The M16 nebula stands out for having unusually high far-IR color temperature.We considered an alternative interpretation where the dust is heated by gas grain collisions. This interpretation would imply that the shell is a supernova remnant (SNR) about 3000 years old. If confirmed, the Eagle SNR would be the first one detected through dust emission and within a stellar cradle. Moreover, it would illustrate the importance of dust infrared emission within energetics of SNRs. At last, but not at least, the question of the formation and/or destruction of the iconic Pillars of Creation would be (re)opened.
Cox, N. L. J.; Pilleri, P.; Berné, O.; Cernicharo, J.; Joblin, C.
2015-01-01
Evolved stars are primary sources for the formation of polycyclic aromatic hydrocarbons (PAHs) and dust grains. Their circumstellar chemistry is usually designated as either oxygen-rich or carbon-rich, although dual-dust chemistry objects, whose infrared spectra reveal both silicate- and carbon-dust features, are also known. The exact origin and nature of this dual-dust chemistry is not yet understood. Spitzer-IRS mid-infrared spectroscopic imaging of the nearby, oxygen-rich planetary nebula NGC 6720 reveals the presence of the 11.3 μm aromatic (PAH) emission band. It is attributed to emission from neutral PAHs, since no band is observed in the 7–8 μm range. The spatial distribution of PAHs is found to closely follow that of the warm clumpy molecular hydrogen emission. Emission from both neutral PAHs and warm H2 is likely to arise from photo-dissociation regions associated with dense knots that are located within the main ring. The presence of PAHs together with the previously derived high abundance of free carbon (relative to CO) suggest that the local conditions in an oxygen-rich environment can also become conducive to in-situ formation of large carbonaceous molecules, such as PAHs, via a bottom-up chemical pathway. In this scenario, the same stellar source can enrich the interstellar medium with both oxygen-rich dust and large carbonaceous molecules. PMID:26924856
Stellar Evolutionary Effects on the Abundance of PAHS and SN-Condensed Dust in Galaxies
NASA Technical Reports Server (NTRS)
Dwek, Eli
2007-01-01
Spectral aid photometric observations of nearby galaxies show a correlation between the strength of their mid-IR aromatic features and their metal abundance, and a deficiency of these features in low-metallicity galaxies. The aromatic features are most commonly attributed to emission from PAH molecules. In this paper, we suggest that the observed correlation represents a trend of PAH abundance with galactic age, reflecting the delayed injection of PAHs and carbon dust into the ISM, by AGB stars in their final, post-AGB phase of their evolution. These AGB stars are the primary sources of PAHs and carbon dust in galaxies, and recycle their ejecta back to the interstellar medium only after a few hundred million years of evolution on the main sequence. In contrast, more massive stars that explode as Type II supernovae inject their metals and dust almost instantaneously after their formation. After determining the PAH abundances in 35 nearby galaxies, we use a chemical evolution model to show that the delayed injection of carbon dust by AGB stars provides a natural explanation to the dependence of the PAH content, in galaxies with metallicity. We also show that larger dust particles giving rise to the far-IR emission follow a distinct evolutionary trend closely related to the injection of dust by massive stars into the ISM.
NASA Astrophysics Data System (ADS)
Bejaoui, Salma; Salama, Farid
2015-08-01
Polycyclic aromatic hydrocarbon (PAH) molecules are considered the best carriers to account for the ubiquitous infrared emission bands. PAHs have also been proposed as candidates to explain the diffuse interstellar bands (DIBs), a series of absorption features seen on the interstellar extinction curve and are plausible carriers for the extended red emission (ERE), a photoluminescent process associated with a wide variety of interstellar environments. Extensive efforts have been devoted over the past two decades to characterize the physical and chemical properties of PAH molecules and ions in space. Absorption spectra of PAH molecules and ions trapped in solid matrices have been compared to the DIBs [1, 2]. Absorption spectra of several cold, isolated gas-phase PAHs have also been measured under experimental conditions that mimic the interstellar conditions [see 3 for a review]. The purpose of this study is to provide a new dimension to the existing spectroscopic database of neutral and single ionized PAHs that is largely based on absorption spectra by adding emission spectroscopy data. The measurements are based on the laser-induced fluorescence (LIF) technique [4] and are performed with the Pulsed Discharge Nozzle (PDN) of the COSmIC laboratory facility at NASA Ames laboratory. The PDN generates plasma in a free supersonic jet expansion to simulate the physical and the chemical conditions in interstellar environments. We focus, here, on the fluorescence spectra of large neutral PAHs and their cations where there is a lack of fluorescence spectroscopy data. The astronomical implications of the data (e.g., ERE) are examinedReferences[1] F. Salama, E. Bakes, L.J. Allamandola, A.G.G.M. Tielens, Astrophys. J., 458 (1996) p.621[2] F. Salama, The ISO Revolution, EDP Sciences, Les Ulis, France (1999) p.65[3] Salama F., In Organic Matter in Space, IAU Symposium 251, Kwok & Sandford Eds.Cambridge University Press,4, S251,(2008), p. 357 (2008) and references therein.[4] Salma Bejaoui, Xavier Mercier, Pascale Desgroux, Eric Therssen, Comb.& Fl, 161 (2014) p. 2479
Side Group Addition to the PAH Coronene by UV Photolysis in Cosmic Ice Analogs
NASA Technical Reports Server (NTRS)
Bernstein, Max P.; Elsila, Jamie E.; Dworkin, Jason P.; Sandford, Scott A.; Allamandola, Louis J.; Zare, Richard N.; DeVincenzi, D. (Technical Monitor)
2002-01-01
Ultraviolet photolysis of various ice mixtures at low temperature and pressure caused the addition of amino (-NH2), methyl (-CH3), methoxy (-OCH3), and cyano (-CN) functional groups to the polycyclic aromatic hydrocarbon (PAH) coronene (C22H12). The implications of these results for interstellar and meteoritic chemistry are discussed. Previously only simple PAH photo-oxidation had been reported. This work represents the first experimental evidence that ice photochemistry may have contributed to aromatics bearing carbon and nitrogen containing side groups that are detected in primitive meteorites and interplanetary dust particles. Furthermore, these results suggest a wider range of modified PAHs should be expected in interstellar lees and materials predating solar system formation.
NASA Astrophysics Data System (ADS)
Kofman, V.; Sarre, P. J.; Hibbins, R. E.; ten Kate, I. L.; Linnartz, H.
2017-06-01
Triphenylene (C18H12) is a highly symmetric polycyclic aromatic hydrocarbon (PAH) molecule with a 'fully-benzenoid' electronic structure. This confers a high chemical stability compared with PAHs of similar size. Although numerous infrared and UV-vis experimental spectroscopic and theoretical studies of a wide range PAHs in an astrophysical context have been conducted, triphenylene and its radical cation have received almost no attention. There exists a huge body of spectroscopic evidence for neutral and ionised PAHs in astrophysical sources, obtained principally through detection of infrared emission features that are characteristic of PAHs as a chemical class. However, it has so far not proved possible to identify spectroscopically a single isolated PAH in space, although PAHs including triphenylene have been detected mass spectrometrically in meteorites. In this work we focus on recording laboratory electronic spectra of neutral and ionised triphenylene between 220 and 780 nm, trapped in H2O ice and solid argon at 12 K. The studies are motivated by the potential for spectroscopic astronomical detection of electronic absorption spectra of PAHs in ice mantles on interstellar grains as discussed by Linnartz (2014), and were performed also in a cold Ar matrix to provide guidance as to whether triphenylene (particularly in its singly positively ionised form) could be a viable candidate for any of the unidentified diffuse interstellar absorption bands. Based on the argon-matrix experimental results, comparison is made with previously unpublished astronomical spectra near 400 nm which contain broad interstellar absorption features consistent with the predictions from the laboratory matrix spectra, thus providing motivation for the recording of gas-phase electronic spectra of the internally cold triphenylene cation.
NASA Technical Reports Server (NTRS)
Salama, F.; Allamandola, L. J.
1992-01-01
The properties of the cation of the PAH naphthalene (C10H8(+)) isolated in inert gas matrices under conditions relevant to astrophysical environments are described. The band at 6741 A is the strongest and falls close to the weak 6742 A diffuse interstellar bands (DIBs). Five other weaker bands also fall remarkably close to the positions of known DIBs. A very intense and broad continuum extended from the UV to the visible, which seems to be associated with the ion, is reported. The molar absorption coefficient at the peak of the continuum is 2.0 x 10 exp 6 cu dm/mol cm. If a continuum is a general property of PAH cations, this characteristic will have a strong impact on the understanding of how PAHs convert interstellar UV and visible radiation into IR radiation.
Theoretical study of deuteronated PAHs as carriers for IR emission features in the ISM
NASA Astrophysics Data System (ADS)
Buragohain, Mridusmita; Pathak, Amit; Sarre, Peter; Onaka, Takashi; Sakon, Itsuki
2015-11-01
This work proposes deuteronated PAH (DPAH+) molecules as a potential carrier of the 4.4 and 4.65 μm mid-infrared emission bands that have been observationally detected towards the Orion and M17 regions. Density Functional Theory calculations have been carried out on DPAH+ molecules to see the variations in the spectral behaviour from that of a pure polycyclic aromatic hydrocarbon (PAH). DPAH+ molecules show features that arise due to the stretching of the aliphatic C-D bond. Deuterated PAHs have been previously reported as carriers for such features. However, preferred conditions of ionization of PAHs in the interstellar medium (ISM) indicates the possibility of the formation of DPAH+ molecules. Comparison of band positions of DPAH+s shows reasonable agreement with the observations. We report the effect of size of the DPAH+ molecules on band positions and intensities. This study also reports a D/H ratio ([D/H]_{sc}; the ratio of C-D stretch and C-H stretch bands per [D/H]_{num}) that is decreasing with the increasing size of DPAH+s. It is noted that large DPAH+ molecules (no. of C atoms ˜50) match the D/H ratio that has been estimated from observations. This ratio offers prospects to study the deuterium abundance and depletion in the ISM.
ISO Mid-Infrared Spectra of Reflection Nebulae
NASA Technical Reports Server (NTRS)
Werner, M.; Uchida, K.; Sellgren, K.; Houdashelt, M.
1999-01-01
Our goal is to test predictions of models attributing the IEFs to polycyclic aromatic hydrocarbons (PAHs). Interstellar models predict PAHs change from singly ionized to neutral as the UV intensity, Go, decreases.
NASA Technical Reports Server (NTRS)
Hudgins, D. M.; Allamandola, L. J.
1999-01-01
The Ames infrared spectral database of isolated, neutral and ionized polycyclic aromatic hydrocarbons (PAHS) shows that aromatic CH out-of-plane bending frequencies are significantly shifted upon ionization. For solo- and duet-CH groups, the shift is pronounced and consistently toward higher frequencies. The solo-CH modes are blueshifted by an average of 27 cm-1 and the duet-CH modes by an average of 17 cm-1. For trio- and quartet-CH groups, the ionization shifts of the out-of-plane modes are more erratic and typically more modest. As a result of these ionization shifts, the solo-CH out-of-plane modes move out of the region classically associated with these vibrations in neutral PAHS, falling instead at frequencies well above those normally attributed to out-of-plane bending, vibrations of any type. In addition, for the compact PAHs studied, the duet-CH out-of-plane modes are shifted into the frequency range traditionally associated with the solo-CH modes. These results refine our understanding of the origin of the dominant interstellar infrared emission feature near 11.2 microns, whose envelope has traditionally been attributed only to the out-of-plane bending of solo-CH groups on PAHS, and provide a natural explanation for the puzzling emission feature near 11.0 microns within the framework of the PAH model. Specifically, the prevalent but variable long-wavelength wing or shoulder that is often observed near 11.4 microns likely reflects the contributions of duet-CH units in PAH cations. Also, these results indicate that the emission between 926 and 904 cm-1 (10.8 and 11.1 microns) observed in many sources can be unambiguously attributed to the out-of-plane wagging, of solo-CH units in moderately sized (fewer than 50 carbon atom) PAH cations, making this emission an unequivocal tracer of ionized interstellar PAHS.
Identification and discrimination of polycyclic aromatic hydrocarbons using Raman spectroscopy
NASA Astrophysics Data System (ADS)
Cloutis, Edward; Szymanski, Paul; Applin, Daniel; Goltz, Douglas
2016-08-01
Polycyclic aromatic hydrocarbons (PAHs) are widely present throughout the Solar System and beyond. They have been implicated as a contributor to unidentified infrared emission bands in the interstellar medium, comprise a substantial portion of the insoluble organic matter in carbonaceous chondrites, are expected stable components of organic matter on Mars, and are present in a wide range of terrestrial hydrocarbons and as components of biomolecules. However, PAH structures can be very complicated, making their identification challenging. Raman spectroscopy is known to be especially sensitive to the highly polarizable C-C and C=C bonds found in PAHs, and therefore, can be a powerful tool for PAH structural and compositional elucidation. This study examined Raman spectra of 48 different PAHs to determine the degree to which Raman spectroscopy could be used to uniquely identify different species, factors that control the positions of major Raman peaks, the degree to which induced fluorescence affects the intensity of Raman peaks, its usefulness for PAH discrimination, and the effects of varying excitation wavelength on some PAH Raman spectra. It was found that the arrangement and composition of phenyl (benzene) rings, and the type and position of functional groups can greatly affect fluorescence, positions and intensities of Raman peaks associated with the PAH backbone, and the introduction of new Raman peaks. Among the functional groups found on many of the PAHs that were analyzed, only a few Raman peaks corresponding to the molecular vibrations of these groups could be clearly distinguished. Comparison of the PAH Raman spectra that were acquired with both 532 and 785 nm excitation found that the longer wavelength resulted in reduced fluorescence, consistent with previous studies.
Properties of grains derived from IRAS observations of dust
NASA Technical Reports Server (NTRS)
Wesselius, P. R.; Chlewicki, Grzegorz; Laureijs, Rene J.
1989-01-01
The authors used the results of Infrared Astronomy Satellite (IRAS) observations of diffuse medium dust to develop a theoretical model of the infrared properties of grains. Recent models based entirely on traditional observations of extinction and polarization include only particles whose equilibrium temperatures do not exceed 20 K in the diffuse interstellar medium. These classical grains, for which the authors have adopted the multipopulation model developed by Hong and Greenberg (1980), can explain only the emission in the IRAS 100 micron band. The measurements at shorter wavelengths (12, 25 and 60 microns) require two new particle populations. Vibrational fluorescence from aromatic molecules provides the most likely explanation for the emission observed at 12 microns, with polycyclic aeromatic hydrocarbons (PAHs) containing about 10 percent of cosmic carbon. A simplified model of the emission process shows that PAH molecules can also explain most of the emission measured by IRAS at 25 microns. The authors identified the warm particles responsible for the excess 60 microns emission with small (a approx. equals 0.01 microns) iron grains. A compilation of the available data on the optical properties of iron indicates that the diffuse medium temperature of small iron particles should be close to 50 K and implies that a large, possibly dominant, fraction of cosmic iron must be locked up in metallic particles in order to match the observed 60 microns intensities. The model matches the infrared fluxes typically observed by IRAS in the diffuse medium and can also reproduce the infrared surface brightness distribution in individual clouds. In particular, the combination of iron and classical cool grains can explain the surprising observations of the 60/100 microns flux ratio in clouds, which is either constant or increases slightly towards higher opacities. The presence of metallic grains has significant implications for the physics of the interstellar medium, including catalytic H2 formation, for which iron grains could be the main site; differences in depletion patterns between iron and other refractory elements (Mg, Si); and superparamagnetic behavior of large grains with embedded iron clusters giving rise to the observed high degree of alignment by the galactic magnetic field.
Polycyclic Aromatic Hydrocarbon Ionization Energy Lowering in Water Ices
NASA Technical Reports Server (NTRS)
Gudipati, Murthy S.; Allamandola, Louis J.
2004-01-01
In studying various interstellar and solar system ice analogs, we have recently found that upon vacuum ultraviolet photolysis, polycyclic aromatic hydrocarbons (PAHs) frozen in water ice at low temperatures are easily ionized and indefinitely stabilized as trapped ions (Gudipati; Gudipati & Allamandola). Here we report the first experimental study that shows that PAH ionization energy is significantly lowered in PAH/H2O ices, in agreement with recent theoretical work (Woon & Park). The ionization energy (IE) of the PAH studied here, quaterrylene (C40H20, IE = 6.11 eV), is lowered by up to 2.11 eV in water ice. PAH ionization energy reduction in low-temperature water ice substantially expands the astronomical regions in which trapped ions and electrons may be important. This reduction in ionization energy should also hold for other types of trapped species in waterrich interstellar, circumstellar, and solar system ices. Subject headings: ISM: clouds - methods: laboratory - molecular processes - radiation mechanisms: nonthermal -ultraviolet: ISM - ultraviolet: solar system
Steps Toward Identifying PAHs: A Child's Garden of Recent Results
NASA Technical Reports Server (NTRS)
Hudgins, Douglas M.
2005-01-01
Based on over two decades of experimental, observational and theoretical studies by scientists around the world. It is now widely accepted that the composite emission of mixtures of vibrationally-excited PAHs and PAH ions can accommodate the general pattern of band positions, intensities, and profiles observed in the discreet IR emission features of carbon-rich interstellar dust, as well as the variations in those characteristics. These variations provide insight into the detailed nature of the emitting PAH population and reflect conditions within the emitting regions giving the population enormous potential as probes of astrophysical environments. Moreover, the ubiquity and abundance of this material has impacts that extend well beyond the IR. In this presentation we will examine recent, combined experimental, theoretical, and observational studies that indicate that nitrogen-substituted PAHs represent an important component of the interstellar dust population, and we will go on to explore some of the ramifications of this result. We will also explore the results of recent experimental studies of the strong, low-lying electronic transitions of ionized PAH ions in the Near-IR (0.7 - 2.5 microns) and explore the role that these transitions might play in pumping the PAH IR emission in regions of low-excitation.
The anharmonic quartic force field infrared spectra of hydrogenated and methylated PAHs.
Mackie, Cameron J; Candian, Alessandra; Huang, Xinchuan; Maltseva, Elena; Petrignani, Annemieke; Oomens, Jos; Buma, Wybren Jan; Lee, Timothy J; Tielens, Alexander G G M
2018-01-03
Polycyclic aromatic hydrocarbons (PAHs) have been shown to be ubiquitous in a large variety of distinct astrophysical environments and are therefore of great interest to astronomers. The majority of these findings are based on theoretically predicted spectra, which make use of scaled DFT harmonic frequencies for band positions and the double harmonic approximation for intensities. However, these approximations have been shown to fail at predicting high-resolution gas-phase infrared spectra accurately, especially in the CH-stretching region (2950-3150 cm -1 , 3 μm). This is particularly worrying for the subset of hydrogenated or methylated PAHs to which astronomers attribute the observed non-aromatic features that appear in the CH-stretching region of spectral observations of the interstellar medium (ISM). In our previous work, we presented the anharmonic theoretical spectra of three linear PAHs and five non-linear PAHs, demonstrating the importance of including anharmonicities into theoretical calculations. In this work we extend these techniques to two methylated PAHs (9-methylanthracene, and 9,10-dimethylanthracene) and four hydrogenated PAHs (9,10-dihydroanthracene, 9,10-dihydrophenanthrene, 1,2,3,4-tetrahydronaphthalene, and 1,2,3,6,7,8-hexahydropyrene) in order to better understand the aliphatic IR features of substituted PAHs. The theoretical spectra are compared with the spectra obtained under matrix isolation low-temperature conditions for the full vibrational fundamental range and under high-resolution, low-temperature gas-phase conditions for the CH-stretching region. Excellent agreement is observed between the theoretical and high-resolution experimental spectra with a deviation of 0.00% ± 0.17%, and changes to the spectra of PAHs upon methylation and hydrogenated are tracked accurately and explained.
NASA Technical Reports Server (NTRS)
Frenklach, Michael
1990-01-01
A variety of seemingly different carbon formation processes -- polycyclic aromatic hydrocarbons and diamond in the interstellar medium, soot in hydrocarbon flames, graphite and diamond in plasma-assisted-chemical vapor deposition reactors -- may all have closely related underlying chemical reaction mechanisms. Two distinct mechanisms for gas-phase carbon growth are discussed. At high temperatures it proceeds via the formation of carbon clusters. At lower temperatures it follows a polymerization-type kinetic sequence of chemical reactions of acetylene addition to a radical, and reactivation of the resultant species through H-abstraction by a hydrogen atom.
NASA Technical Reports Server (NTRS)
Jamieson, C. S.; Guo, Y.; Gu, X.; Zhang, F.; Bennett, C. J.; Kaiser, R. I.
2006-01-01
A detailed knowledge of the formation of carbon-bearing molecules in interstellar ices and in the gas phase of the interstellar medium is of paramount interest to understand the astrochemical evolution of extraterrestrial environments (1). This research also holds strong implications to comprehend the chemical processing of Solar System environments such as icy planets and their moons together with the atmospheres of planets and their satellites (2). Since the present composition of each interstellar and Solar System environment reflects the matter from which it was formed and the processes which have changed the chemical nature since the origin (solar wind, planetary magnetospheres, cosmic ray exposure, photolysis, chemical reactions), a detailed investigation of the physicochemical mechanisms altering the pristine environment is of paramount importance to grasp the contemporary composition. Once these underlying processes have been unraveled, we can identify those molecules, which belonged to the nascent setting, distinguish molecular species synthesized in a later stage, and predict the imminent chemical evolution of, for instance, molecular clouds. Laboratory experiments under controlled physicochemical conditions (temperature, pressure, chemical composition, high energy components) present ideal tools for simulating the chemical evolution of interstellar and Solar System environments. Here, laboratory experiments can predict where and how (reaction mechanisms; chemicals necessary) in extraterrestrial environments and in the interstellar medium complex, carbon bearing molecules can be formed on interstellar grains and in the gas phase. This paper overviews the experimental setups utilized in our laboratory to mimic the chemical processing of gas phase and solid state (ices) environments. These are a crossed molecular beams machine (3) and a surface scattering setup (4). We also present typical results of each setup (formation of amino acids, aldehydes, epoxides; synthesis of hydrogen terminated carbon chains as precursors to complex PAHs and to carbonaceous dust grains in general; nitriles as precursor to amino acids).
NASA Technical Reports Server (NTRS)
Wagner, D. R.; Kim, H. S.; Saykally, R. J.
2000-01-01
Infrared emission spectra of five gas-phase UV laser-excited polycyclic aromatic hydrocarbons (PAHs) containing aliphatic hydrogens are compared with the main 3.3 microns and associated interstellar unidentified infrared emission bands (UIRs). We show that neutral PAHs can account for the majority of the 3 microns emission complex while making little contribution to the other UIR bands; peripherally hydrogenated PAHs produce a better match to astrophysical data than do those containing methyl side groups; 3.4 microns plateau emission is shown to be a general spectral feature of vibrationally excited PAHs containing aliphatic hydrogens, especially those containing methyl groups; and finally, hot-band and overtone emissions arising from aromatic C-H vibrations are not observed in laboratory emission spectra, and therefore, in contrast to current assignments, are not expected to be observed in the UIRs.
Evidence for the Presence of Hn-PAHs in Post AGB Stars
NASA Technical Reports Server (NTRS)
Materese, Christopher K.; Bregman, Jesse D.; Sandford, Scott A.
2017-01-01
Polycyclic aromatic hydrocarbons (PAHs) are believed to be ubiquitous in space therefore represent an important class of molecules for the field of astrochemistry. PAHs are relatively stable under interstellar conditions, account for a significant fraction of the known Universe's molecular carbon inventory, and are believed responsible for numerous telltale interstellar infrared emission bands. PAHs can be subdivided into numerous classes, one of which is Hydrogenated PAHs (Hn-PAHs). Hn-PAHs are multi-ringed partially aromatic compounds with excess hydrogenation, leading to a partial disruption of the aromatic system. The infrared spectra of these compounds produce telltale signatures that make them distinct from ordinary aromatic or aliphatic molecules (or a mixture of both). Hn-PAHs may be an important subclass of PAHs that could explain the spectra of some astronomical objects with anomalously large 3.4 micron features. The 3.4 micron feature observed in these objects may be associated with the aliphatic C-H stretching vibrations of the excess hydrogen. If this presumption is correct, we also expect to observe methylene scissoring modes at 6.9 microns. We have recently conducted a series of follow-up observations to compliment our laboratory experiments into the properties of Hn-PAHs. Here we present our laboratory and observational results in support of the hypothesis that Hn-PAHs are a viable candidate molecule as the emission source for numerous post-asymptotic giant branch objects with abnormally large 3.4 micron features.
IR Laboratory Astrophysics at Forty: Some Highlights and a Look to the Future
NASA Astrophysics Data System (ADS)
Allamandola, Louis John
2016-06-01
Space was thought to be chemically barren until about forty years ago. Astrochemistry was in its infancy, the composition of interstellar dust was largely guessed at, the presence of mixed molecular ices in dense molecular clouds was not taken seriously, and the notion of large, gas phase, carbon-rich molecules (PAHs) abundant and widespread throughout the interstellar medium (ISM) was inconceivable. The rapid development of infrared astronomy between 1970 and 1985, especially observations made by the Kuiper Airborne Observatory (KAO) and the Infrared Astronomical Satellite IRAS), which made it possible to measure mid-infrared spectra between 2.5 to 14 µm, changed all that. Since then observations made from ground-based, airborne and orbiting IR telescopes, together with radio and submm observations, have revealed that we live in a Universe that is not a hydrogen-dominated, physicist's paradise, but in a molecular Universe with complex molecules directly interwoven into its fabric. Today we recognize that molecules are an abundant and important component of astronomical objects at all stages of their evolution and that they play important roles in many processes that contribute to the structure and evolution of galaxies. Furthermore, many of these organic molecules are thought to be delivered to habitable planets such as Earth, and their composition may be related to the origin of life. Laboratory astrophysics has been key to making this great progress; progress which has only been made possible thanks to the close collaboration of laboratory experimentalists with astronomers and theoreticians. These collaborations are essential to meet the growing interdisciplinary challenges posed by astrophysics. This talk will touch on some of the milestones that have been reached in IR astrospectroscopy over the past four decades, focusing on the experimental work that revealed the widespread presence of interstellar PAHs and the composition of interstellar/precometary ices, and concluding with a personal view of important, key objectives in each area
The search for shock-excited H{sub 2} in Virgo spirals experiencing ram pressure stripping
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wong, O. Ivy; Kenney, Jeffrey D. P.; Murphy, Eric J.
We investigate the presence of shock-excited H{sub 2} in four Virgo cluster galaxies that show clear evidence of ongoing ram pressure stripping. Mid-infrared spectral mapping of the rotational H{sub 2} emission lines were performed using the Infrared Spectrograph on board the Spitzer Space Telescope. We target four regions along the leading side of galaxies where the intracluster medium appears to be pushing back the individual galaxy's interstellar medium. For comparison purposes, we also study two regions on the trailing side of these galaxies: a region within an edge-on disk and an extraplanar star-forming region. We find a factor of 2.6more » excess of warm H{sub 2}/PAH in our sample relative to the observed fractions in other nearby galaxies. We attribute the H{sub 2}/PAH excess to contributions of shock-excited H{sub 2} which is likely to have been triggered by ongoing ram pressure interaction in our sample galaxies. Ram pressure driven shocks may also be responsible for the elevated ratios of [Fe II]/[Ne II] found in our sample.« less
Molecular hydrogen formation on interstellar PAHs through Eley-Rideal abstraction reactions
NASA Astrophysics Data System (ADS)
Foley, Nolan; Cazaux, S.; Egorov, D.; Boschman, L. M. P. V.; Hoekstra, R.; Schlathölter, T.
2018-06-01
We present experimental data on H2 formation processes on gas-phase polycyclic aromatic hydrocarbon (PAH) cations. This process was studied by exposing coronene radical cations, confined in a radio-frequency ion trap, to gas phase H atoms. Sequential attachment of up to 23 hydrogen atoms has been observed. Exposure to atomic D instead of H allows one to distinguish attachment from competing abstraction reactions, as the latter now leave a unique fingerprint in the measured mass spectra. Modeling of the experimental results using realistic cross sections and barriers for attachment and abstraction yield a 1:2 ratio of abstraction to attachment cross sections. The strong contribution of abstraction indicates that H2 formation on interstellar PAH cations is an order of magnitude more relevant than previously thought.
NASA Technical Reports Server (NTRS)
Arnoult, K. M.; Wdowiak, T. J.; Beegle, L. W.
2000-01-01
We have demonstrated by experiment that, in an energetic environment, a simple polycyclic aromatic hydrocarbon (PAH) such as naphthalene will undergo chemical reactions that produce a wide array of more complex species (an aggregate). For a stellar wind of a highly evolved star (post-asymptotic giant branch [post-AGB]), this process would be in addition to what is expected from reactions occurring under thermodynamic equilibrium. A surprising result of that work was that produced in substantial abundance are hydrogenated forms that are hybrids of polycyclic aromatic and polycyclic alkanes. Infrared spectroscopy described here reveals a spectral character for these materials that has much in common with that observed for the constituents of circumstellar clouds of post-AGB stars. It can be demonstrated that a methylene (-CH2-) substructure, as in cycloalkanes, is the likely carrier of the 6.9 microns band emission of dust that has recently been formed around IRAS 22272+5433, NGC 7027, and CPD -56 8032. Ultraviolet spectroscopy previously done with a lower limit of 190 nm had revealed that this molecular aggregate can contribute to the interstellar extinction feature at 2175 angstroms. We have now extended our UV spectroscopy of these materials to 110 nm by a vacuum ultraviolet technique. That work, described here, reveals new spectral characteristics and describes how material newly formed during the late stages of stellar evolution could have produced an extinction feature claimed to exist at 1700 angstroms in the spectrum of HD 145502 and also how the newly formed hydrocarbon material would be transformed/aged in the general interstellar environment. The contribution of this molecular aggregate to the rise in interstellar extinction at wavelengths below 1500 angstroms is also examined. The panspectral measurements of the materials produced in the laboratory, using plasmas of H, He, N, and O to convert the simple PAH naphthalene to an aggregate of complex species, provide insight into possible molecular structure details of newly formed hydrocarbon-rich interstellar dust and its transformation into aged material that becomes resident in the interstellar medium. Specifically the presence of naphthalene-like and butadiene-like conjugated structures as chromophores for the 2175 angstroms ultraviolet extinction feature is indicated.
Recent Advances in Organic Cosmochemistry
NASA Technical Reports Server (NTRS)
Sandford, Scott A.; Witteborn, Fred C. (Technical Monitor)
1994-01-01
The Astrochemistry Laboratory at NASA's Ames Research Center pursues a variety of activities, most of which center around the use of spectroscopy (ultraviolet to far-infrared) for the interpretation of astronomical and meteoritic data. One of our key activities is the study of the chemical and physical properties of cometary, interstellar, and planetary ice analogs and matrix-isolated molecules of astrophysical interest. As a result of these studies it is now known that a significant fraction of the carbon in the interstellar medium (ISM) is in reasonably complex forms, some of which are clearly of interest for exobiology. Examples of compounds known or suspected to be present in space include polycyclic aromatic hydrocarbons (PAHs), microdiamonds, an aliphatic-rich component found in the diffuse interstellar medium, and a variety of molecular species produced by the irradiation of mixed molecular ices in dense clouds. A number of the species produced by irradiation contain nitrogen and appear to offer an additional means of producing some of the amino acids found in meteorites. I will review these complex carbonaceous materials and discuss how they are connected with each other and the organic materials that ultimately ended up as part of our own Solar System. Specific points that will probably be covered include: (1) the composition of the ices in interstellar dense molecular clouds; (2) the more complex organic compounds produced when these ices are irradiated and/or warmed; (3) the detection of microdiamonds in space; (4) the discovery that aliphatic materials may constitute as much as 15% of all the carbon in the diffuse ISM, appears to be present everywhere in the galaxy, and yet seems to be present everywhere in the galaxy, and yet seems to be significantly concentrated towards the center of the galaxy.
Infrared spectra of interstellar deuteronated PAHs
NASA Astrophysics Data System (ADS)
Buragohain, Mridusmita; Pathak, Amit; Sarre, Peter
2015-08-01
Polycyclic Aromatic Hydrocarbon (PAH) molecules have emerged as a potential constituent of the ISM that emit strong features at 3.3, 6.2, 7.7, 8.6, 11.2 and 12.7 μm with weaker and blended features in the 3-20μm region. These features are proposed to arise from the vibrational relaxation of PAH molecules on absorption of background UV photons (Tielens 2008). These IR features have been observed towards almost all types of astronomical objects; say H II regions, photodissociation regions, reflection nebulae, planetary nebulae, young star forming regions, external galaxies, etc. A recent observation has proposed that interstellar PAHs are major reservoir for interstellar deuterium (D) (Peeters et al. 2004). According to the `deuterium depletion model' as suggested by Draine (2006), some of the Ds formed in the big bang are depleted in PAHs, which can account for the present value of D/H in the ISM. Hence, study of deuterated PAHs (PADs) is essential in order to measure D/H in the ISM.In this work, we consider another probable category of the large PAH family, i.e. Deuteronated PAHs (DPAH+). Onaka et al. have proposed a D/H ratio which is an order of magnitude smaller than the proposed value of D/H by Draine suggesting that if Ds are depleted in PAHs, they might be accommodated in large PAHs (Onaka et al. 2014). This work reports a `Density Functional Theory' calculation of large deuteronated PAHs (coronene, ovalene, circumcoronene and circumcircumcoronene) to determine the expected region of emission features and to find a D/H ratio that is comparable to the observational results. We present a detailed analysis of the IR spectra of these molecules and discuss the possible astrophysical implications.ReferencesDraine B. T. 2006, in ASP Conf. Ser. 348, Proc. Astrophysics in the Far Ultraviolet: Five Years of Discovery with FUSE, ed. G. Sonneborn, H. Moos, B-G Andersson (San Francisco, CA:ASP) 58Onaka T., Mori T. I., Sakon I., Ohsawa R., Kaneda H., Okada Y., Tanaka M., 2014, ApJ,780,114Peeters E., Allamandola L. J., Bauschlicher C. W., Jr., Hudgins D. M., Sandford S. A., Tielens A. G. G. M., 2004, ApJ, 604, 252Tielens A. G. G. M. 2008, ARA&A, 46, 289
Constraints on interstellar dust models from extinction and spectro-polarimetry
NASA Astrophysics Data System (ADS)
Siebenmorgen, R.; Voshchinnikov, N. V.; Bagnulo, S.; Cox, N. L. J.
2017-12-01
We present polarisation spectra of seven stars in the lines-of-sight towards the Sco OB1 association. Our spectra were obtained within the framework of the Large Interstellar Polarization Survey carried out with the FORS instrument of the ESO VLT. We have modelled the wavelength-dependence of extinction and linear polarisation with a dust model for the diffuse interstellar medium which consists of a mixture of particles with size ranging from the molecular domain of 0.5 nm up to 350 nm. We have included stochastically heated small dust grains with radii between 0.5 and 6 nm made of graphite and silicate, as well as polycyclic aromatic hydrocarbon molecules (PAHs), and we have assumed that larger particles are prolate spheroids made of amorphous carbon and silicate. Overall, a dust model with eight free parameters best reproduces the observations, and is in agreement with cosmic abundance constraints. Reducing the number of free parameters leads to results that are inconsistent with the cosmic abundances of silicate and carbon. We found that aligned silicates are the dominant contributor to the observed polarisation, and that the polarisation spectra are best-fit by a lower limit of the equivolume sphere radius of aligned grains of 70-200 nm.
NASA Astrophysics Data System (ADS)
Orzechowska, G. E.; Kidd, R. D.; Foing, B. H.; Kanik, I.; Stoker, C.; Ehrenfreund, P.
2011-07-01
Polycyclic aromatic hydrocarbons (PAHs) are robust and abundant molecules in extraterrestrial environments. They are found ubiquitously in the interstellar medium and have been identified in extracts of meteorites collected on Earth. PAHs are important target molecules for planetary exploration missions that investigate the organic inventory of planets, moons and small bodies. This study is part of an interdisciplinary preparation phase to search for organic molecules and life on Mars. We have investigated PAH compounds in desert soils to determine their composition, distribution and stability. Soil samples (Mars analogue soils) were collected at desert areas of Utah in the vicinity of the Mars Desert Research Station (MDRS), in the Arequipa region in Peru and from the Jutland region of Denmark. The aim of this study was to optimize the solid-phase microextraction (SPME) method for fast screening and determination of PAHs in soil samples. This method minimizes sample handling and preserves the chemical integrity of the sample. Complementary liquid extraction was used to obtain information on five- and six-ring PAH compounds. The measured concentrations of PAHs are, in general, very low, ranging from 1 to 60 ng g-1. The texture of soils is mostly sandy loam with few samples being 100 % silt. Collected soils are moderately basic with pH values of 8-9 except for the Salten Skov soil, which is slightly acidic. Although the diverse and variable microbial populations of the samples at the sample sites might have affected the levels and variety of PAHs detected, SPME appears to be a rapid, viable field sampling technique with implications for use on planetary missions.
NASA Technical Reports Server (NTRS)
Orzechowska, G. E.; Kidd, R. D.; Foing, B. H.; Kanik, I.; Stoker, C.; Ehrenfreund, P.
2011-01-01
Polycyclic aromatic hydrocarbons (PAHs) are robust and abundant molecules in extraterrestrial environments. They are found ubiquitously in the interstellar medium and have been identified in extracts of meteorites collected on Earth. PAHs are important target molecules for planetary exploration missions that investigate the organic inventory of planets, moons and small bodies. This study is part of an interdisciplinary preparation phase to search for organic molecules and life on Mars. We have investigated PAH compounds in desert soils to determine their composition, distribution and stability. Soil samples (Mars analogue soils) were collected at desert areas of Utah in the vicinity of the Mars Desert Research Station (MDRS), in the Arequipa region in Peru and from the Jutland region of Denmark. The aim of this study was to optimize the solid-phase microextraction (SPME) method for fast screening and determination of PAHs in soil samples. This method minimizes sample handling and preserves the chemical integrity of the sample. Complementary liquid extraction was used to obtain information on five- and six-ring PAH compounds. The measured concentrations of PAHs are, in general, very low, ranging from 1 to 60 ng g(sup -1). The texture of soils is mostly sandy loam with few samples being 100% silt. Collected soils are moderately basic with pH values of 8-9 except for the Salten Skov soil, which is slightly acidic. Although the diverse and variable microbial populations of the samples at the sample sites might have affected the levels and variety of PAHs detected, SPME appears to be a rapid, viable field sampling technique with implications for use on planetary missions.
The adsorption of helium atoms on coronene cations
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kurzthaler, Thomas; Rasul, Bilal; Kuhn, Martin
2016-08-14
We report the first experimental study of the attachment of multiple foreign atoms to a cationic polycyclic aromatic hydrocarbon (PAH). The chosen PAH was coronene, C{sub 24}H{sub 12}, which was added to liquid helium nanodroplets and then subjected to electron bombardment. Using mass spectrometry, coronene cations decorated with helium atoms were clearly seen and the spectrum shows peaks with anomalously high intensities (“magic number” peaks), which represent ion-helium complexes with added stability. The data suggest the formation of a rigid helium layer consisting of 38 helium atoms that completely cover both faces of the coronene ion. Additional magic numbers canmore » be seen for the further addition of 3 and 6 helium atoms, which are thought to attach to the edge of the coronene. The observation of magic numbers for the addition of 38 and 44 helium atoms is in good agreement with a recent path integral Monte Carlo prediction for helium atoms on neutral coronene. An understanding of how atoms and molecules attach to PAH ions is important for a number of reasons including the potential role such complexes might play in the chemistry of the interstellar medium.« less
High Abundance of Ions in Cosmic Ices
NASA Technical Reports Server (NTRS)
Gudipati, Murthy S.; Allamandola, Louis J.; Fonda, Mark (Technical Monitor)
2002-01-01
Water-rich, mixed molecular ices and polycyclic aromatic hydrocarbons (PAHs) are common throughout interstellar molecular clouds and the Solar System. Vacuum ultraviolet (VUV) irradiation and particle bombardment of these abiotic ices produces complex organic species, including important biogenic molecules such as amino acids and functionalized PAHs which may have played a role in the origin of life. This ability of such water-rich, oxygen dominated ices to promote production of complex organic species is surprising and points to an important, unusual, but previously overlooked mechanism at play within the ice. Here we report the nature of this mechanism using electronic spectroscopy. VUV-irradiation of PAH/H2O ices leads to an unprecedented and efficient (greater than 70 %) conversion of the neutral PAHs to their cation form (PAH+). Further, these H2O/PAH+ ices are stabile at temperatures below 50 K, a temperature domain common throughout interstellar clouds and the Solar System. Between 50 and 125 K they react to form the complex organics. In view of this, we conclude that charged PAHs and other molecular ions should be common and abundant in many cosmic ices. The chemical, spectroscopic and physical properties of these ion-rich ices can be of fundamental importance for objects as diverse as comets, planets, and molecular clouds and may account for several poorly understood phenomena associated with each of these object classes.
Induced nucleation of carbon dust in red giant stars
NASA Technical Reports Server (NTRS)
Cadwell, Brian J.; Wang, Hai; Feigelson, Eric D.; Frenklach, Michael
1994-01-01
This study quantitatively tests the proposed model of induced nucleation of carbonaceous grains in carbon-rich red giant stars. Induced nucleation is the process of grain growth initiated by the presence of reactive surfaces provided by seed particles. The numerical study was performed using a deailed chemical kinetic model of carbon deposition, grain coagulation, and homogeneous nucleation of polycyclic aromatic hydrocarbons (PAHs). The model uses a method of moments to keep track of developing grain population in the forming dust shell. We test the efficiency of grain formation for large ranges of dust shell parameters typical for carbon stars. Our model is capable of producing a range of optically thick and thin dust shells in carbon stars. Results are in accord with (IRAS) spectral classes of carbon stars. The resulting composite grains produced are consistent with those recently found in ancient meteorites. This model also provides a realistic explanation for high abundances of (PAHs) in the interstellar medium and some planetary nebulae.
NASA Technical Reports Server (NTRS)
Plows, F. L.; Elsila, J. E.; Zare, R. N.; Buseck, P. R.
2003-01-01
Organic material in meteorites provides insight into the cosmochemistry of the early solar system. The distribution of polycyclic aromatic hydrocarbons (PAHs) in the Allende and Murchison carbonaceous chondrites was investigated using spatially resolved microprobe laser-desorption laser-ionization mass spectrometry. Sharp chemical gradients of PAHs are associated with specific meteorite features. The ratios of various PAH intensities relative to the smallest PAH, naphthalene, are nearly constant across the sample. These findings suggest a common origin for PAHs dating prior to or contemporary with the formation of the parent body, consistent with proposed interstellar formation mechanisms.
NASA Astrophysics Data System (ADS)
Champeaux, J.-P.; Moretto-Capelle, P.; Cafarelli, P.; Deville, C.; Sence, M.; Casta, R.
2014-06-01
The physical interactions of polycyclic aromatic hydrocarbons (PAHs) with stellar particular radiation are key to understanding the life cycle of PAHs, their abundance and their role in the complex astrochemistry of the interstellar medium. In this context, we present experimental results on the ionization/fragmentation of isolated coronene by a 100-keV proton, reproducing interactions between stellar winds and PAH molecules in the star's environment. In particular, we show, without ambiguity, that such ionization/fragmentation induces intense dehydrogenation processes for which the loss of even numbers of hydrogen atoms and the detection of CH_2+ cations as a possible H2 precursor strongly suggest the formation of H2 neutral molecules along a scenario revealed by a quantum chemical calculation. We have evaluated the H2 emission cross-section from the coronene/proton interaction at 100 and 1.6 keV to be 2.97 × 10-16 and 3.3 × 10-16 cm2, respectively. A qualitative discussion on the formation rate of H2 in the HD 44179 Red Rectangle (RR) nebula leads to the conclusion that such processes could be very efficient, especially inside planetary nebulae rich in PAH molecules interacting with high proton mass-loss rate stars (such as post-asymptotic giant branch stars) or high velocity jets produced by an accretion disc.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Montgomery, Wren; Sephton, Mark A., E-mail: w.montgomery@imperial.ac.uk
2016-03-01
The influence of polycyclic aromatic nitrogen heterocycles (PANHs), which have been suggested as contributors to the interstellar IR emission bands, on interstellar emission features is difficult to constrain because their infrared characteristics are strongly similar to those for polycyclic aromatic hydrocarbons (PAHs). One possible solution is to seek a means of visualizing the presence of PANHs that provides information that is distinct from that for PAHs. Although PANHs and PAHs have similar infrared characteristics in many settings, this relationship may not be universally maintained. We have used in situ high-pressure synchrotron-source Fourier transform infrared spectroscopy to determine that the responsesmore » of two representative molecules, acridine and anthracene, differ at high pressures (>ca. 1 GPa). Because there are a number of high-pressure environments that can be remotely observed by infrared spectroscopy, they represent a potential to glimpse the distribution of PANHs across the cosmos.« less
Theoretical infrared and electronic absorption spectra of C16H10 isomers, their ions and doubly ions
NASA Astrophysics Data System (ADS)
Naganathappa, Mahadevappa; Chaudhari, Ajay
2012-09-01
Polycyclic aromatic hydrocarbons (PAHs) or PAH-related molecules are considered to be responsible for the unidentified infrared (UIR) emission features at 3.3, 6.2, 7.7, 8.6 and 11.2 μm. However, the exact identification of PAH or PAH-related molecules is difficult. There have been several investigations on the spectroscopic characterization of PAH molecules. But none of them compared the spectra of isomers of PAHs, which might have help in the identification of the UIR emission features. This work presents the infrared and electronic absorption spectra of isomers of C16H10. The aim of the present work is to compare infrared and electronic absorption spectra of four isomers of C16H10 PAH viz. pyrene, aceanthrylene, acephenanthrylene and fluoranthene, their ions and doubly ions. We also compare the spectra of pyrene in the gas-phase and in H2O ice. We have used the density functional theory with B3LYP exchange and correlation functional and 6-311++g** basis set to study the infrared spectra. The time-dependent density functional theory (TDDFT) has been used to obtain the electronic absorption spectra. Significant difference in the CC stretching, CH in-plane bending and CH out-of-plane bending vibration modes is observed for the isomers of C16H10 whereas there is no large difference in the CH stretching vibration band. A significant change in the vibrational band is observed for pyrene in H2O ice compared to gas-phase pyrene. Though isomers of C16H10 PAH have the same number of carbon and hydrogen atoms, their spectroscopic characteristics are different. This study should help in identifying the isomers of C16H10, their ions and doubly cation in the interstellar medium.
Organic chemistry and biology of the interstellar medium
NASA Technical Reports Server (NTRS)
Sagan, C.
1973-01-01
Interstellar organic chemistry is discussed as the field of study emerging from the discovery of microwave lines of formaldehyde and of hydrogen cyanide in the interstellar medium. The reliability of molecular identifications and comparisons of interstellar and cometary compounds are considered, along with the degradational origin of simple organics. It is pointed out that the contribution of interstellar organic chemistry to problems in biology is not substantive but analogical. The interstellar medium reveals the operation of chemical processes which, on earth and perhaps on vast numbers of planets throughout the universe, led to the origin of life, but the actual molecules of the interstellar medium are unlikely to play any significant biological role.
The UV to Near-IR Optical Properties of PAHs: A Semi-Empirical Model
NASA Technical Reports Server (NTRS)
Mattioda, A. L.; Allamandola, L. J.; Hudgins, D. M.
2005-01-01
Interstellar Polycyclic Aromatic Hydrocarbon (PAH) infrared emission features represent an important and unique diagnostic tool of the chemical and physical conditions throughout the universe. However, one challenge facing the widely accepted PAH emission model has been the detection of infrared features in regions of low UV flux. Utilizing recently published laboratory Near Infrared VIR) PAH ion absorption data measured in our laboratory, we build upon previous models for PAH ion absorption in the UV-Vis to extrapolate a new model which incorporates PAH ion absorption in the NIR. This model provides a basis for comparing the relative energy absorption of PAH ions in the UV-Vis and NIR regions for a wide variety of stellar types. This model demonstrates that the radiation from late-type stars can pump the mid-IR PAH features.
UV IRRADIATION OF AROMATIC NITROGEN HETEROCYCLES IN INTERSTELLAR ICE ANALOGS
NASA Technical Reports Server (NTRS)
Elsila, J. E.; Bernstein, M. P.; Sanford, S. A.
2005-01-01
Here, we present information on the properties of the ANH quinoline frozen in interstellar water-ice analogs. Quinoline is a two-ring compound structurally analogous to the PAH naphthalene. In this work, binary mixtures of water and quinoline were frozen to create interstellar ice analogs, which were then subjected to ultraviolet photolysis. We will present the infrared spectra of the resulting ices at various temperatures, as well as chromatographic analysis of the residues remaining upon warm-up of these ices to room temperature.
The Curators of the University of Missouri Modeling the Infrared Emission of C_60 in Space
NASA Astrophysics Data System (ADS)
Li, Aigen
Fullerenes are cage-like molecules of pure carbon, such as C_60, C_70, C_76, and C_84. C_60, also known as buckminsterfullerene, is the most stable fullerene and has a soccer- ball like structure. The presence of fullerenes in space has been suggested and observationally explored since their first synthesis in the laboratory in 1985 by Harry Kroto and his colleagues which earned them the 1996 Nobel prize in chemistry. C_60 (as well as C_70) has recently been detected in reflection nebulae, post-AGB stars, protoplanetary nebulae, planetary nebulae, Herbig Ae/Be stars, and young stellar objects through their characteristic infrared emission bands. The formation of C_60 in interstellar and circumstellar environments is not firmly established. Experimental studies have shown that C_60 can be made by gas-phase condensation (e.g. through vaporization of graphite) in a hydrogen-poor environment. In view of the simultaneous detection of C_60 and PAHs in hydrogen-rich interstellar and circumstellar regions, it has also been suggested that C_60 could be generated by the decomposition of hydrogenated amorphous carbon, or the destruction of PAHs, both induced by shocks and/or UV photoprocessing. The phase (gas or solid) and excitation mechanism of C_60 in interstellar and circumstellar conditions are also hotly debated in the literature. One model suggests that C_60 is attached to dust and emits in solid-phase at the equilibrium temperature of the dust. Another model suggests that C_60 is stochastically excited by UV photons and emits in the gas-phase. We prefer the latter model as in interstellar and circumstellar conditions the energy content of a C_60 molecule is often smaller than the energy of a single starlight photon and C_60 is expected to undergo stochastical heating. We propose a two-year project to model the vibrational excitation of C_60 and calculate its infrared emission spectra in a wide variety of regions (e.g. reflection nebulae excited by stars of a range of effective temperatures, protoplanetary nebulae, planetary nebulae, the diffuse interstellar medium, and protoplanetary disks around Herbig Ae/Be stars), using the ``exact-statistical'' method developed by Draine & Li (2001) for modeling the photoexcitation of PAHs. We will calculate the intensity of each vibrational band of C_60 excited by a given-type radiation field of a given radiation strength. These results will be tabulated and made available to the community through the PI's website. We will use the calculated C_60 band intensities to analyze the observed C_60 spectra. This will allow us to derive the C_60 abundance and the emitting condition (e.g. starlight intensities) of the regions where C_60 is observed. Similarly, the same research will be applied to C_70 as well. This research supports the NASA Strategic Subgoal 3C: Discover the origin, structure, evolution, and destiny of the universe.
NASA Technical Reports Server (NTRS)
Beegle, L. W.; Wdowiak, T. J.; Harrison, J. G.
2001-01-01
While many of the characteristics of the cosmic unidentified infrared (UIR) emission bands observed for interstellar and circumstellar sources within the Milky Way and other galaxies, can be best attributed to vibrational modes of the variants of the molecular family known as polycyclic aromatic hydrocarbons (PAH), there are open questions that need to be resolved. Among them is the observed strength of the 6.2 micron (1600 cm(-1)) band relative to other strong bands, and the generally low strength for measurements in the laboratory of the 1600 cm(-1) skeletal vibration band of many specific neutral PAH molecules. Also, experiments involving laser excitation of some gas phase neutral PAH species while producing long lifetime state emission in the 3.3 micron (3000 cm(-1)) spectral region, do not result in significant 6.2 micron (1600 cm(-1)) emission. A potentially important variant of the neutral PAH species, namely hydrogenated-PAH (H(N)-PAH) which exhibit intriguing spectral correlation with interstellar and circumstellar infrared emission and the 2175 A extinction feature, may be a factor affecting the strength of 6.2 micron emission. These species are hybrids of aromatic and cycloalkane structures. Laboratory infrared absorption spectroscopy augmented by density function theory (DFT) computations of selected partially hydrogenated-PAH molecules, demonstrates enhanced 6.2 micron (1600 cm(-1)) region skeletal vibration mode strength for these molecules relative to the normal PAH form. This along with other factors such as ionization or the incorporation of nitrogen or oxygen atoms could be a reason for the strength of the cosmic 6.2 micron (1600 cm(-1)) feature.
The violent interstellar medium
NASA Technical Reports Server (NTRS)
Mccray, R.; Snow, T. P., Jr.
1979-01-01
Observational evidence for high-velocity and high-temperature interstellar gas is reviewed. The physical processes that characterize this gas are described, including the ionization and emissivity of coronal gas, the behavior and appearance of high-velocity shocks, and interfaces between coronal gas and cooler interstellar gas. Hydrodynamical models for the action of supernova explosions and stellar winds on the interstellar medium are examined, and recent attempts to synthesize all the processes considered into a global model for the interstellar medium are discussed.
Evolution of Interstellar Ices
NASA Astrophysics Data System (ADS)
Allamandola, Louis J.; Bernstein, Max P.; Sandford, Scott A.; Walker, Robert L.
1999-10-01
Infrared observations, combined with realistic laboratory simulations, have revolutionized our understanding of interstellar ice and dust, the building blocks of comets. Ices in molecular clouds are dominated by the very simple molecules H2O, CH3OH, NH3, CO, CO2, and probably H2CO and H2. More complex species including nitriles, ketones, and esters are also present, but at lower concentrations. The evidence for these, as well as the abundant, carbon-rich, interstellar, polycyclic aromatic hydrocarbons (PAHs) is reviewed. Other possible contributors to the interstellar/pre-cometary ice composition include accretion of gas-phase molecules and in situ photochemical processing. By virtue of their low abundance, accretion of simple gas-phase species is shown to be the least important of the processes considered in determining ice composition. On the other hand, photochemical processing does play an important role in driving dust evolution and the composition of minor species. Ultraviolet photolysis of realistic laboratory analogs readily produces H2, H2CO, CO2, CO, CH4, HCO, and the moderately complex organic molecules: CH3CH2OH (ethanol), HC(=O)NH2 (formamide), CH3C(=O)NH2 (acetamide), R-CN (nitriles), and hexamethylenetetramine (HMT, C6H12N4), as well as more complex species including amides, ketones, and polyoxymethylenes (POMs). Inclusion of PAHs in the ices produces many species similar to those found in meteorites including aromatic alcohols, quinones and ethers. Photon assisted PAH-ice deuterium exchange also occurs. All of these species are readily formed and are therefore likely cometary constituents.
Summer School on Interstellar Processes: Abstracts of contributed papers
NASA Technical Reports Server (NTRS)
Hollenbach, D. J. (Editor); Thronson, H. A., Jr. (Editor)
1986-01-01
The Summer School on Interstellar Processes was held to discuss the current understanding of the interstellar medium and to analyze the basic physical processes underlying interstellar phenomena. Extended abstracts of the contributed papers given at the meeting are presented. Many of the papers concerned the local structure and kinematics of the interstellar medium and focused on such objects as star formation regions, molecular clouds, HII regions, reflection nebulae, planetary nebulae, supernova remnants, and shock waves. Other papers studied the galactic-scale structure of the interstellar medium either in the Milky Way or other galaxies. Some emphasis was given to observations of interstellar grains and
The Production of Complex Organics from Interstellar Ices
NASA Technical Reports Server (NTRS)
Sandford, Scott A.; Allamandola, Louis; Bernstein, Max; Deamer, David; Dworkin, Jason; Zare, Richard
2001-01-01
Infrared spectroscopy of ices in interstellar dense molecular clouds has shown that they contain a variety of simple molecules, as well as aromatic hydrocarbons. While in these clouds, these ices are processed by ultraviolet light and cosmic rays. High vacuum, UV irradiation laboratory simulations conducted using various realistic approx. 10 K interstellar mixed-molecular ice analogs, both with and without polycyclic aromatic hydrocarbons (PAHs), have been carried out in NASA-Ames' Astrochemistry Laboratory. Upon warming, these irradiated ices are found to produce refractory organic residues. These residues have been analyzed using a variety of techniques, including HPLC and laser desorption mass spectrometry, and they have been shown to contain a variety of complex organic compounds. Several of these compounds may be of prebiotic significance. In particular, we will discuss the detection of quinones (substituted PAHs that are used by living systems for electron transport) and amphiphiles (molecules that self-assemble to form membranes). Laboratory simulations have also demonstrated that the organic products can show isotopic enrichments in D that provide clues for the mechanisms of their formation. Similar compounds and D enrichments are seen in the organics found in primitive meteorites, suggesting a direct link between interstellar chemistry and the delivery of organics to newly formed planets.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bréchignac, Philippe, E-mail: philippe.brechignac@u-psud.fr; Falvo, Cyril; Parneix, Pascal
Polycyclic aromatic hydrocarbons (PAHs) are key species encountered in a large variety of environments such as the Interstellar Medium (ISM) and in combustion media. Their UV spectroscopy and photodynamics in neutral and cationic forms are important to investigate in order to learn about their structure, formation mechanisms, and reactivity. Here, we report an experimental photoelectron-photoion coincidence study of a prototypical PAH molecule, coronene, and its small clusters, in a molecular beam using the vacuum ultraviolet (VUV) photons provided by the SOLEIL synchrotron facility. Mass-selected high resolution threshold photoelectron (TPES) and total ion yield spectra were obtained and analyzed in detail.more » Intense series of autoionizing resonances have been characterized as originating from the monomer, dimer, and trimer neutral species, which may be used as spectral fingerprints for their detection in the ISM by VUV absorption spectroscopy. Finally, a full description of the electronic structure of the monomer cation was made and discussed in detail in relation to previous spectroscopic optical absorption data. Tentative vibrational assignments in the near-threshold TPES spectrum of the monomer have been made with the support of a theoretical approach based on density functional theory.« less
Kofman, V; Witlox, M J A; Bouwman, J; Ten Kate, I L; Linnartz, H
2018-05-01
This article describes a new, multi-functional, high-vacuum ice setup that allows to record the in situ and real-time spectra of vacuum UV (VUV)-irradiated non-volatile molecules embedded in a low-temperature (10 K) amorphous solid water environment. Three complementary diagnostic tools-UV-visible (UV-vis) and Fourier Transform Infrared (FTIR) spectroscopy and temperature-programmed desorption quadrupole mass spectrometry-can be used to simultaneously study the physical and chemical behavior of the organic molecules in the ice upon VUV irradiation. The setup is equipped with a temperature-controlled sublimation oven that enables the controlled homogeneous deposition of solid species such as amino acids, nucleobases, and polycyclic aromatic hydrocarbons (PAHs) in ice mixtures prepared from precursor gases and/or liquids. The resulting ice is photo-processed with a microwave discharge hydrogen lamp, generating VUV radiation with a spectral energy distribution representative for the interstellar medium. The characteristics, performance, and future potential of the system are discussed by describing three different applications. First, a new method is introduced, which uses broadband interference transmission fringes recorded during ice deposition, to determine the wavelength-dependent refractive index, n λ , of amorphous solid water. This approach is also applicable to other solids, pure and mixed. Second, the UV-vis and FTIR spectroscopy of an VUV-irradiated triphenylene:water ice mixture is discussed, monitoring the ionization efficiency of PAHs in interstellar ice environments. The third and final example investigates the stability of solid glycine upon VUV irradiation by monitoring the formation of dissociation products in real time.
NASA Astrophysics Data System (ADS)
Kofman, V.; Witlox, M. J. A.; Bouwman, J.; ten Kate, I. L.; Linnartz, H.
2018-05-01
This article describes a new, multi-functional, high-vacuum ice setup that allows to record the in situ and real-time spectra of vacuum UV (VUV)-irradiated non-volatile molecules embedded in a low-temperature (10 K) amorphous solid water environment. Three complementary diagnostic tools—UV-visible (UV-vis) and Fourier Transform Infrared (FTIR) spectroscopy and temperature-programmed desorption quadrupole mass spectrometry—can be used to simultaneously study the physical and chemical behavior of the organic molecules in the ice upon VUV irradiation. The setup is equipped with a temperature-controlled sublimation oven that enables the controlled homogeneous deposition of solid species such as amino acids, nucleobases, and polycyclic aromatic hydrocarbons (PAHs) in ice mixtures prepared from precursor gases and/or liquids. The resulting ice is photo-processed with a microwave discharge hydrogen lamp, generating VUV radiation with a spectral energy distribution representative for the interstellar medium. The characteristics, performance, and future potential of the system are discussed by describing three different applications. First, a new method is introduced, which uses broadband interference transmission fringes recorded during ice deposition, to determine the wavelength-dependent refractive index, nλ, of amorphous solid water. This approach is also applicable to other solids, pure and mixed. Second, the UV-vis and FTIR spectroscopy of an VUV-irradiated triphenylene:water ice mixture is discussed, monitoring the ionization efficiency of PAHs in interstellar ice environments. The third and final example investigates the stability of solid glycine upon VUV irradiation by monitoring the formation of dissociation products in real time.
NASA Technical Reports Server (NTRS)
Hudgins, Douglas M.; DeVincenzi, Donald (Technical Monitor)
2002-01-01
Tremendous strides have been made in our understanding of interstellar material over the past twenty years thanks to significant, parallel developments in observational astronomy and laboratory astrophysics. Today, the composition of dust in the ISM is reasonably well constrained to cold, micron-sized particles of various refractory materials. Shrouded within the protective confines of cold, opaque molecular clouds--the birthplace of stars and planets--these particles secrete mantles of mixed molecular lees whose major components are also well constrained. Finally, amidst the molecular inventory of these ice mantles are likely to be found polycyclic aromatic hydrocarbons (PAHs), whose telltale infrared signature I is now recognized throughout the Universe. However, of what significance is this scenario to the origin of life in our solar system--or any other? The major components of the icy materials observed in interstellar clouds and in our own solar system are uniformly quite simple. In addition, despite the fact that PAHs likely represent the single largest molecular reservoir of organic carbon in evolving planetary systems, they are not what would be considered "biogenic" molecules. Although interesting from a chemical and astrophysical standpoint, in the absence of a mechanism by which these materials can be transformed into more biochemically significant structures, they are of little Astrobiological significance. In this talk, we will begin with a brief review of the nature and abundance of the "raw" population of PAHs and PAH-related materials in the ISM. From there, we will move on to explore our laboratory simulations of the photochemical evolution of realistic mixed molecular ices under conditions which simulate those encountered in the ISM and in evolving planetary systems. Particular attention will be paid to the surprisingly complex array of organic species that are produced in these ices from such a deceptively simple inventory of starting materials. In addition, we will explore the chemistry of PAHs under these conditions and consider its potential for transforming that rich repository of pre-biotic organic "ore" into materials of greater importance to Astrobiology.
The IR emission features - Emission from PAH molecules and amorphous carbon particles
NASA Technical Reports Server (NTRS)
Allamandola, L. J.; Tielens, A. G. G. M.; Barker, J. R.
1987-01-01
Given the current understanding of polycyclic aromatic hydrocarbons (PAHs), the spectroscopic data suggest that are at least two components which contribute to the interstellar emission spectrum: (1) free molecule-sized PAHs producing the narrow features and (2) amorphous carbon particles (which are primarily composed of an irregular 'lattice' of PAHs) contributing to the broad underlying components. An exact treatment of the IR fluorescence from highly vibrationally excited large molecules demonstrates that species containing between 20 and 30 carbon atoms are responsible for the narrow features, although the spectra match more closely with the spectra of amorphous carbon particles. It is concluded that, since little is known about the spectroscopic properties of free PAHs and PAH clusters, much laboratory work is required along with an observational program focusing on the spatial characteristics of the spectra.
Processing Mechanisms for Interstellar Ices: Connections to the Solar System
NASA Technical Reports Server (NTRS)
Pendleton, Y. J.; Cuzzi, Jeffrey N. (Technical Monitor)
1995-01-01
The organic component of the interstellar medium, which has revealed itself through the ubiquitous 3.4 micrometers hydrocarbon absorption feature, is widespread throughout the disk of our galaxy and has been attributed to dust grains residing in the diffuse interstellar medium. The absorption band positions near 3.4 micrometers are characteristic of C-H stretching vibrations in the -CH3 and -CH2- groups of saturated aliphatic hydrocarbons associated with perturbing chemical groups. The production of complex molecules is thought to occur within dense molecular clouds when ice-mantled grains are processed by various energetic mechanisms. Studies of the processing of interstellar ices and the subsequent production of organic residues have relevance to studies of ices in the solar system, because primitive, icy solar system bodies such as those in the Kuiper belt are likely reservoirs of organic material, either preserved from the interstellar medium or produced in situ. Connections between the interstellar medium and the early solar nebula have long been a source of interest. A comparison of the interstellar organics and the Murchison meteorite illustrates the importance of probing the interstellar connection to the solar system, because although the carbonaceous meteorites are undoubtedly highly processed, they do retain specific interstellar signatures (such as diamonds, SiC grains, graphite and enriched D/H). The organic component, while not proven interstellar, has a remarkable similarity to the interstellar organics observed in over a dozen sightlines through our galaxy. This paper compares spectra from laboratory organics produced through the processing of interstellar ice analog materials with the high resolution infrared observations of the interstellar medium in order to investigate the mechanisms (such as ion bombardment, plasma processing, and UV photolysis) that may be producing the organics in the ISM.
NASA Technical Reports Server (NTRS)
Joblin, C.; Tielens, A. G. G. M.; Allamandola, L. J.; Geballe, T. R.
1996-01-01
Spectra of 3 microns emission features have been obtained at several positions within the reflection nebulae NGC 1333 SVS3 and NGC 2023. Strong variations of the relative intensities of the 3.29 microns feature and its most prominent satellite band at 3.40 microns are found. It is shown that: (1) the 3.40 microns band is too intense with respect to the 3.29 microns band at certain positions to arise from hot band emission alone, (2) the 3.40 microns band can be reasonably well matched by new laboratory spectra of gas-phase polycyclic aromatic hydrocarbons (PAHs) with alkyl (-CH3) side groups, and (3) the variations in the 3.40 microns to 3.29 microns band intensity ratios are consistent with the photochemical erosion of alkylated PAHs. We conclude that the 3.40 microns emission feature is attributable to -CH3 side groups on PAH molecules. We predict a value of 0.5 for the peak intensity ratio of the 3.40 and 3.29 microns emission bands from free PAHs in the diffuse interstellar medium, which would correspond to a proportion of one methyl group for four peripheral hydrogens. We also compare the 3 microns spectrum of the proto-planetary nebula IRAS 05341 + 0852 with the spectrum of the planetary nebula IRAS 21282 + 5050. We suggest that a photochemical evolution of the initial aliphatic and aromatic hydrocarbon mixture formed in the outflow is responsible for the changes observed in the 3 microns emission spectra of these objects.
NASA Technical Reports Server (NTRS)
Joblin, C.; Tielens, A. G.; Allamandola, L. J.; Geballe, T. R.
1996-01-01
Spectra of 3 micrometers emission features have been obtained at several positions within the reflection nebulae NGC 1333 SVS3 and NGC 2023. Strong variations of the relative intensities of the 3.29 micrometers feature and its most prominent satellite band at 3.40 micrometers are found. It is shown that (i) the 3.40 micrometers band is too intense with respect to the 3.29 micrometers band at certain positions to arise from hot band emission alone, (ii) the 3.40 micrometers band can be reasonably well matched by new laboratory spectra of gas-phase polycyclic aromatic hydrocarbons (PAHs) with alkyl (-CH3) side groups, and (iii) the variations in the 3.40 micrometers to 3.29 micrometers band intensity ratios are consistent with the photochemical erosion of alkylated PAHs. We conclude that the 3.40 micrometers emission feature is attributable to -CH3 side groups on PAH molecules. We predict a value of 0.5 for the peak intensity ratio of the 3.40 and 3.29 micrometers emission bands from free PAHs in the diffuse interstellar medium, which would correspond to a proportion of one methyl group for four peripheral hydrogens. We also compare the 3 micrometers spectrum of the proto-planetary nebula IRAS 05341+0852 with the spectrum of the planetary nebula IRAS 21282+5050. We suggest that a photochemical evolution of the initial aliphatic and aromatic hydrocarbon mixture formed in the outflow is responsible for the changes observed in the 3 micrometers emission spectra of these objects.
NASA Technical Reports Server (NTRS)
Hudgins, D. M.; Sandford, S. A.; Allamandola, Louis J.
1994-01-01
Ionized polycyclic aromatic hydrocarbons (PAHs) are thought to constitute an important component of the interstellar medium. Despite this fact, the infrared spectroscopic properties of ionized PAHs are almost unknown. The results we present here derive from our ongoing spectroscopic study of matrix isolated PAH ions and include the spectra of the naphthalene cation, C10H8(+), and its fully deuterated analog, C10D8(+), between 4000 and 200/cm. Ions are generated by in situ Lyman-alpha photoionization of the neutral precursor. Bands of the C10H8(+) ion are observed at 1525.7, 1518.8, 1400.9, 1218.0, 1216.9, 1214.9, 1023.2, and 758.7/cm. Positions and relative intensities of these bands agree well with those in the available literature. The 758.7/cm band has not previously been reported. C10D8(+) ion bands appear at 1466.2, 1463.8, 1379.4, 1373.8, 1077.3, 1075.4, and 1063.1/cm. Compared to the analogous modes in the neutral molecule, the intensities of the cation's CC modes are enhanced by an order of magnitude, while CH modes are depressed by this same factor. Integrated absorption intensities are calculated for the strongest bands of C10H8 and for the observed bands of C10H8(+). Absolute intensities derived for the naphthalene cation differ from earlier experimental results by a factor of approximately 50, and from theoretical predictions by a factor of approximately 300. Reasons for these discrepancies and from the astronomical implications of PAH cation spectra are discussed.
NASA Astrophysics Data System (ADS)
Yamagishi, Mitsuyoshi; Kaneda, Hidehiro; Ishihara, Daisuke; Oyabu, Shinki; Onaka, Takashi; Shimonishi, Takashi; Suzuki, Toyoaki
2011-04-01
We present the spatially resolved near-infrared (2.5-5.0 μm) spectra of the edge-on starburst galaxy NGC 253 obtained with the Infrared Camera on board AKARI. Near the center of the galaxy, we clearly detect the absorption features of interstellar ices (H2O: 3.05 μm, CO2: 4.27 μm, and XCN: 4.62 μm) and the emission of polycyclic aromatic hydrocarbons (PAHs) at 3.29 μm and the hydrogen recombination line Brα at 4.05 μm. We find that the distributions of the ices differ from those of the PAH and gas. We calculate the column densities of the ices and derive the abundance ratios of N(CO2)/N(H2O) = 0.17 ± 0.05. They are similar to those obtained around the massive young stellar objects in our Galaxy (0.17 ± 0.03), although a much stronger interstellar radiation field and higher dust temperature are expected near the center of NGC 253.
LOCAL INTERSTELLAR MEDIUM: SIX YEARS OF DIRECT SAMPLING BY IBEX
DOE Office of Scientific and Technical Information (OSTI.GOV)
McComas, D. J.; Fuselier, S. A.; Schwadron, N. A., E-mail: dmccomas@swri.edu, E-mail: sfuselier@swri.edu, E-mail: Nathan.schwadron@unh.edu
2015-10-15
The Interstellar Boundary Explorer (IBEX) has been directly observing neutral atoms from the local interstellar medium for the last six years (2009–2014). This paper ties together the 14 studies in this Astrophysical Journal Supplement Series Special Issue, which collectively describe the IBEX interstellar neutral results from this epoch and provide a number of other relevant theoretical and observational results. Interstellar neutrals interact with each other and with the ionized portion of the interstellar population in the “pristine” interstellar medium ahead of the heliosphere. Then, in the heliosphere's close vicinity, the interstellar medium begins to interact with escaping heliospheric neutrals. Inmore » this study, we compare the results from two major analysis approaches led by IBEX groups in New Hampshire and Warsaw. We also directly address the question of the distance upstream to the pristine interstellar medium and adjust both sets of results to a common distance of ∼1000 AU. The two analysis approaches are quite different, but yield fully consistent measurements of the interstellar He flow properties, further validating our findings. While detailed error bars are given for both approaches, we recommend that for most purposes, the community use “working values” of ∼25.4 km s{sup −1}, ∼75.°7 ecliptic inflow longitude, ∼ −5.°1 ecliptic inflow latitude, and ∼7500 K temperature at ∼1000 AU upstream. Finally, we briefly address future opportunities for even better interstellar neutral observations to be provided by the Interstellar Mapping and Acceleration Probe mission, which was recommended as the next major Heliophysics mission by the NRC's 2013 Decadal Survey.« less
NASA Technical Reports Server (NTRS)
Liffman, Kurt
1990-01-01
The effects of catastrophic collisional fragmentation and diffuse medium accretion on a the interstellar dust system are computed using a Monte Carlo computer model. The Monte Carlo code has as its basis an analytic solution of the bulk chemical evolution of a two-phase interstellar medium, described by Liffman and Clayton (1989). The model is subjected to numerous different interstellar processes as it transfers from one interstellar phase to another. Collisional fragmentation was found to be the dominant physical process that shapes the size spectrum of interstellar dust. It was found that, in the diffuse cloud phase, 90 percent of the refractory material is locked up in the dust grains, primarily due to accretion in the molecular medium. This result is consistent with the observed depletions of silicon. Depletions were found to be affected only slightly by diffuse cloud accretion.
Fullerenes in Allende Meteorite
NASA Technical Reports Server (NTRS)
Becker, L.; Bada, J. L.; Winans, R. E.; Bunch, T. E.
1994-01-01
The detection of fullerenes in deposits from meteor impacts has led to renewed interest in the possibility that fullerenes are present in meteorites. Although fullerenes have not previously been detected in the Murchison and Allende meteorites, the Allende meteorite is known to contain several well-ordered graphite particles which are remarkably similar in size and appearance to the fullerene-related structures carbon onions and nanotubes. We report that fullerenes are in fact present in trace amounts in the Allende meteorite. In addition to fullerenes, we detected many polycyclic aromatic hydrocarbons (PAHs) in the Allende meteorite, consistent with previous reports. In particular, we detected benzofluoranthene and corannulene (C20H10), five-membered ring structures which have been proposed as precursors to the formation of fullerene synthesis, perhaps within circumstellar envelopes or other sites in the interstellar medium.
Computational Spectroscopy of Polycyclic Aromatic Hydrocarbons In Support of Laboratory Astrophysics
NASA Technical Reports Server (NTRS)
Tan, Xiaofeng; Salama, Farid
2006-01-01
Polycyclic aromatic hydrocarbons (PAHs) are strong candidates for the molecular carriers of the unidentified infrared bands (UIR) and the diffuse interstellar bands (DIBs). In order to test the PAH hypothesis, we have systematically measured the vibronic spectra of a number of jet-cooled neutral and ionized PAHs in the near ultraviolet (UV) to visible spectral ranges using the cavity ring-down spectroscopy. To support this experimental effort, we have carried out theoretical studies of the spectra obtained in our measurements. Ab initio and (time-dependent) density.functiona1 theory calculations are performed to obtain the geometries, energetics, vibrational frequencies, transition dipole moments, and normal coordinates of these PAH molecules. Franck-Condon (FC) calculations and/or vibronic calculations are then performed using the calculated normal coordinates and vibrational frequencies to simulate the vibronic spectra. It is found that vibronic interactions in these conjugated pi electron systems are often strong enough to cause significant deviations from the Born-Oppenheimer (BO) approximation. For vibronic transitions that are well described by the BO approximation, the vibronic band profiles are simulated by calculating the rotational structure of the vibronic transitions. Vibronic oscillator strength factors are calculated in the frame of the FC approximation from the electronic transition dipole moments and the FC factors. This computational effort together with our experimental measurements provides, for the first time, powerful tools for comparison with space-based data and, hence, a powerful approach to understand the spectroscopy of interstellar PAH analogs and the nature of the UIR and DIBs.
Experimental interstellar organic chemistry - Preliminary findings
NASA Technical Reports Server (NTRS)
Khare, B. N.; Sagan, C.
1973-01-01
Review of the results of some explicit experimental simulation of interstellar organic chemistry consisting in low-temperature high-vacuum UV irradiation of condensed simple gases known or suspected to be present in the interstellar medium. The results include the finding that acetonitrile may be present in the interstellar medium. The implication of this and other findings are discussed.
NASA Astrophysics Data System (ADS)
Saperstein, E.; Arnoult, K. M.; Wdowiak, T. J.; Gerakines, P. A.
2002-09-01
Polycyclic aromatic hydrocarbons (PAHs) have been proposed as a component of interstellar dust. PAHs have also been positively identified in interplanetary dust particles (IDPs) and in carbonaceous meteorites. Many such meteorites show strong evidence for aqueous alteration of their mineral phases, which can be spatially correlated to the presence of organics. This suggests the possibility that PAHs, incorporated into a meteorite parent body, may have been altered along with neighboring minerals and other constituents in the presence of liquid water. We present preliminary results of the alteration of a laboratory analog of interstellar carbonaceous dust, produced by processing naphthalene in a hydrogen plasma, by exposing it to water at elevated temperature (100, 150, and 200 C) and pressure in a sealed container for 24 hours. This is a simulation of pressure capping during the accretion of the parent body. The high temperatures chosen here bring water near its critical point, at which it becomes extremely reactive. One sign of this reactivity is seen in the observed color of the aqueously altered product, changing from golden yellow (original color) to black at 200 C. Comparison of the infrared spectra of the original dust analog with those of the aqueously altered product show an oxidation feature at 1700 cm-1, present in all three products but absent in the dust analog. High performance liquid chromatography (HPLC) of the aqueously altered product, refluxed in tetrahydrafuran, shows a variety of low retention peaks (<600 s), absent in the original dust analog.
PAH Spectroscopy: Past, Present and Future
NASA Technical Reports Server (NTRS)
Mattioda, Andrew
2016-01-01
Since their discovery in the 1970's, astronomers, astrophysicists and astrochemists have been intrigued by the nearly ubiquitous unidentified infrared emission (UIR) bands. In the 1980's, investigators determined the most probably source of these emissions was a family of molecules known as Polycyclic Aromatic Hydrocarbons or simply PAHs. In order to better understand these interstellar IR features and utilize them as chemical probes of the cosmos, laboratory spectroscopists have spent the last three decades investigating the spectroscopy of PAHs under astrophysically relevant conditions. This presentation will discuss the similarities and differences in the spectroscopic properties of PAHs as one goes from the Far to Mid to Near infrared wavelength regions and probe the changes observed in PAH spectra as they go from neutral to ionized molecules suspended in an inert gas matrix, to PAHs in a water ice matrix and as a thin film. In selected instances, the experimental results will be compared to theoretical values. The presentation will conclude with a discussion on the future directions of PAH spectroscopy.
PAH formation in carbon-rich circumstellar envelopes
NASA Technical Reports Server (NTRS)
Feigelson, Eric D.; Frenklach, Michael
1989-01-01
While there is growing observational evidence that some fraction of interstellar carbon is in polycyclic aromatic hydrocarbons (PAH's), the mechanisms by which these molecules might be formed have not been extensively studied. A detailed investigation of PAH production in the outflowing molecular envelopes of carbon-rich red giant star is presented. The gasphase kinetics of a chemical reaction mechanism developed to study soot production in hydrocarbon flames is modified to apply in circumstellar environments. It was found that astrophysically significant quantities of PAH's can be formed in carbon star envelopes provided the gas is sufficiently dense and resides for a long time in the temperature range of 900 to 1100 k. The precise yield of PAH's is very sensitive to astronomical parameters of the envelope (e.g., mass loss rate, outflow velocity, and acetylene abundance) and certain poorly determined chemical reaction rates.
NASA Technical Reports Server (NTRS)
Flickinger, Gregory C.; Wdowiak, Thomas J.; Gomez, Percy L.
1991-01-01
Results of absorption measurements indicate that the PAH species responsible for the UIR (unidentified infrared) emission probably exist in a condensed form rather than as isolated molecules. It is shown that the peak absorption of the C-H stretch feature of vapor-phase PAHs occurs at a higher frequency than that of the condensed-phase PAHs and does not match the 3.289-micron interstellar feature. The vapor-phase experiments duplicate the phenomenon of the 3.3-micron profile simplification of PAH in KBr at elevated temperature. This confirms that the change of the profile with temperature is an intrinsic molecular effect, and is not a consequence of matrix (KBr) or condensed state interactions.
Infrared Spectroscopy of Polycyclic Aromatic Hydrocarbon Cations. 3; The Members
NASA Technical Reports Server (NTRS)
Hudgins, D. M.; Allamandola, L. J.; Wittebon, Fred C. (Technical Monitor)
1994-01-01
In spite of the fact that the infrared spectroscopic properties of only a few isolated ionized polycyclic aromatic hydrocarbons (PAHs) are known, gaseous, ionized PAHs are thought to be responsible for a very common family of infrared interstellar emission bands. In order to provide a data base to test this hypothesis and, if borne out, to use this emission band family as a probe of many different interstellar environments, we are carrying out a thorough study of the infrared spectroscopic properties of neutral and ionized PAHs in argon matrices. Here we present the near and mid-infrared spectra of the cations of the five most thermodynamically favored PAHs up to coronene: phenanthrene, pyrene, benzo[e]pyrene, benzo[ghilperylene, and coronene. The properties of naphthalene, the first member of the series, are given elsewhere. The spectra of perdeuterated phenanthrene and pyrene are also reported. For those molecules which have been previously studied (pyrene, d(10)-pyrene, and coronene), band positions and relative intensities are in agreement. In all cases we report additional features. Absolute integrated absorbance values are given for the phenanthrene, perdeutero-phenanthrene, pyrene, benzo[ghi]perylene, and coronene cations. With the exception of coronene,the cation bands corresponding to the CC modes are typically 2-5 times more intense than those of the CH out-of-plane bending vibrations. For the cations the CC stretching and CH in-plane bending modes give rise to bands which are an order of magnitude stronger than for the neutral species, and the CH out-of-plane bends produce bands which are 5-20 times weaker than in the neutral species. This behavior is similar to that found in most other PAH cations studied to date. The astronomical implications of these PAH cation spectra are also discussed.
NASA Astrophysics Data System (ADS)
Canelo, Carla M.; Friaça, Amâncio C. S.; Sales, Dinalva A.; Pastoriza, Miriani G.; Ruschel-Dutra, Daniel
2018-04-01
Analyses of the polycyclic aromatic hydrocarbon (PAH) feature profiles, especially the 6.2 μm feature, could indicate the presence of nitrogen incorporated in their aromatic rings. In this work, 155 predominantly starburst-dominated galaxies (including H II regions and Seyferts, for example), extracted from the Spitzer/Infrared Spectrograph ATLAS project, have their 6.2 μm profiles fitted allowing their separation into the Peeters' A, B, and C classes. 67 per cent of these galaxies were classified as class A, 31 per cent were as class B, and 2 per cent as class C. Currently, class A sources, corresponding to a central wavelength near 6.22 μm, seem only to be explained by polycyclic aromatic nitrogen heterocycles (PANHs), whereas class B may represent a mix between PAHs and PANHs emissions or different PANH structures or ionization states. Therefore, these spectra suggest a significant presence of PANHs in the interstellar medium (ISM) of these galaxies that could be related to their starburst-dominated emission. These results also suggest that PANHs constitute another reservoir of nitrogen in the Universe, in addition to the nitrogen in the gas phase and ices of the ISM.
AKARI observations of dust processing in merger galaxies: NGC2782 and NGC7727
NASA Astrophysics Data System (ADS)
Onaka, Takashi; Nakamura, Tomohiko; Sakon, Itsuki; Ohsawa, Ryou; Mori, Tamami; Wu, Ronin; Kaneda, Hidehiro
2015-08-01
Dust grains are the major reservoir of heavy elements and play significant roles in the thermal balance and chemistry in the interstellar medium. Where dust grains are formed and how they evolve in the ISM are one of the key issues for the understanding of the material evolution in the Universe. Although theoretical studies have been made, very little is so far known observationally about the lifecycle of dust grains in the ISM and that associated with Galactic scale events. The lifecycle of very small carbonaceous grains that contain polycyclic aromatic hydrocarbons (PAHs) or PAH-like atomic groups are of particular interest because they emit distinct band emission in the near- to mid-infrared region and they are thought to be most vulnerable to environmental conditions. PAHs may be formed in carbon-rich stars, while recent AKARI observations suggest that they may be formed by fragmentation of large carbonaceous grains in shocks in a supernova remnant or a galactic wind (Onaka et al. 2010, A&A, 514, 15; Seok et al. 2012, ApJ, 744, 160).Here we report results of AKARI observations of two mergers. NGC2782 (Arp 215) and NGC7727 (Arp 222). NGC2782 is a merger of 200Myr old. It shows a very long western tail of HI gas by a tidal interaction and the eastern tail that consists mainly of stellar components without an appreciable amount of gas and is thought to be a relic of the colliding low-mass galaxy whose gas component has been stripped off Smith 1994, AJ, 107, 1695. We found significant emission at the 7 μm band of the IRC onboard AKARI, which must come from PAH 6.2 and 7.7 μm bands, in the eastern tail. Based on dust model fitting, we found a low abundance of ~10nm size dust despite of the presence of PAHs, suggesting that PAHs may be formed from fragmentation of ~10nm carbonaceous dust grains. NGC7727 is a 1.2Gyr old merger and shows a SED similar to the NGC2782 tail in the northern tail of the merger event product, suggesting also the formation of PAHs from fragmentation. The observations of both galaxies indicate that PAHs can survive in violent events. We discuss these results in relation to the PAH formation and destruction.
The Interstellar Medium in External Galaxies: Summaries of contributed papers
NASA Technical Reports Server (NTRS)
Hollenbach, David J. (Editor); Thronson, Harley A., Jr. (Editor)
1990-01-01
The Second Wyoming Conference entitled, The Interstellar Medium in External Galaxies, was held on July 3 to 7, 1989, to discuss the current understanding of the interstellar medium in external galaxies and to analyze the basic physical processes underlying interstellar phenomena. The papers covered a broad range of research on the gas and dust in external galaxies and focused on such topics as the distribution and morphology of the atomic, molecular, and dust components; the dynamics of the gas and the role of the magnetic field in the dynamics; elemental abundances and gas depletions in the atomic and ionized components; cooling flows; star formation; the correlation of the nonthermal radio continuum with the cool component of the interstellar medium; the origin and effect of hot galactic halos; the absorption line systems seen in distant quasars; and the effect of galactic collisions.
Deuterium Abundance in the Local Interstellar Medium
NASA Technical Reports Server (NTRS)
Ferlet, R.; Gry, C.; Vidal-Madjar, A.
1984-01-01
The present situation of deuterium abundance evaluation in interstellar space is discussed, and it is shown that it should be or = .00001 by studying in more detail lambda the Sco line of sight and by observing two NaI interstellar components toward that star, it can be shown that the D/H evaluation made toward lambda Sco is in fact related to the local interstellar medium (less than 10 pc from the Sun). Because this evaluation is also or = .00001 it is in striking contrast with the one made toward alpha Aur (D/H or = .000018 confirming the fact that the deuterium abundance in the local interstellar medium varies by at least a factor of two over few parsecs.
Composition, structure and chemistry of interstellar dust
NASA Technical Reports Server (NTRS)
Tielens, Alexander G. G. M.; Allamandola, Louis J.
1986-01-01
The observational constraints on the composition of the interstellar dust are analyzed. The dust in the diffuse interstellar medium consists of a mixture of stardust (amorphous silicates, amorphous carbon, polycyclic aromatic hydrocarbons, and graphite) and interstellar medium dust (organic refractory material). Stardust seems to dominate in the local diffuse interstellar medium. Inside molecular clouds, however, icy grain mantles are also important. The structural differences between crystalline and amorphous materials, which lead to differences in the optical properties, are discussed. The astrophysical consequences are briefly examined. The physical principles of grain surface chemistry are discussed and applied to the formation of molecular hydrogen and icy grain mantles inside dense molecular clouds. Transformation of these icy grain mantles into the organic refractory dust component observed in the diffuse interstellar medium requires ultraviolet sources inside molecular clouds as well as radical diffusion promoted by transient heating of the mantle. The latter process also returns a considerable fraction of the molecules in the grain mantle to the gas phase.
NASA Technical Reports Server (NTRS)
Weisman, Jennifer L.; Lee, Timothy J.; Salama, Farid; Gordon-Head, Martin; Kwak, Dochan (Technical Monitor)
2002-01-01
We investigate the electronic absorption spectra of several maximally pericondensed polycyclic aromatic hydrocarbon radical cations with time dependent density functional theory calculations. We find interesting trends in the vertical excitation energies and oscillator strengths for this series containing pyrene through circumcoronene, the largest species containing more than 50 carbon atoms. We discuss the implications of these new results for the size and structure distribution of the diffuse interstellar band carriers.
After the Fall: The Dust and Gas in E+A Post-starburst Galaxies
NASA Astrophysics Data System (ADS)
Smercina, A.; Smith, J. D. T.; Dale, D. A.; French, K. D.; Croxall, K. V.; Zhukovska, S.; Togi, A.; Bell, E. F.; Crocker, A. F.; Draine, B. T.; Jarrett, T. H.; Tremonti, C.; Yang, Yujin; Zabludoff, A. I.
2018-03-01
The traditional picture of post-starburst galaxies as dust- and gas-poor merger remnants, rapidly transitioning to quiescence, has been recently challenged. Unexpected detections of a significant interstellar medium (ISM) in many post-starburst galaxies raise important questions. Are they truly quiescent, and if so, what mechanisms inhibit further star formation? What processes dominate their ISM energetics? We present an infrared spectroscopic and photometric survey of 33 E+A post-starbursts selected by the Sloan Digital Sky Survey, aimed at resolving these questions. We find compact, warm dust reservoirs with high PAH abundances and total gas and dust masses significantly higher than expected from stellar recycling alone. Both polycyclic aromatic hydrocarbon (PAH)/total infrared (TIR) and dust-to-burst stellar mass ratios are seen to decrease with post-burst age, indicative of the accumulating effects of dust destruction and an incipient transition to hot, early-type ISM properties. Their infrared spectral properties are unique, with dominant PAH emission, very weak nebular lines, unusually strong H2 rotational emission, and deep [C II] deficits. There is substantial scatter among star formation rate (SFR) indicators, and both PAH and TIR luminosities provide overestimates. Even as potential upper limits, all tracers show that the SFR has typically experienced a decline of more than two orders of magnitude since the starburst and that the SFR is considerably lower than expected given both their stellar masses and molecular gas densities. These results paint a coherent picture of systems in which star formation was, indeed, rapidly truncated, but in which the ISM was not completely expelled, and is instead supported against collapse by latent or continued injection of turbulent or mechanical heating. The resulting aging burst populations provide a “high-soft” radiation field that seemingly dominates the E+A galaxies’ unusual ISM energetics.
Photodissociation Regions in the Interstellar Medium of Galaxies
NASA Technical Reports Server (NTRS)
Hollenbach, David J.; Tielens, A. G. G. M.; DeVincenzi, Donald L. (Technical Monitor)
1999-01-01
The interstellar medium of galaxies is the reservoir out of which stars are born and into which stars inject newly created elements as they age. The physical properties of the interstellar medium are governed in part by the radiation emitted by these stars. Far-ultraviolet (6 eV less than h(nu) less than 13.6 eV) photons from massive stars dominate the heating and influence the chemistry of the neutral atomic gas and much of the molecular gas in galaxies. Predominantly neutral regions of the interstellar medium in which the heating and chemistry are regulated by far ultraviolet photons are termed Photo-Dissociation Regions (PDRs). These regions are the origin of most of the non-stellar infrared (IR) and the millimeter and submillimeter CO emission from galaxies. The importance of PDRs has become increasingly apparent with advances in IR and submillimeter astronomy. The IR emission from PDRs includes fine structure lines of C, C+, and O; rovibrational lines of H2, rotational lines of CO; broad middle features of polycyclic aromatic hydrocarbons; and a luminous underlying IR continuum from interstellar dust. The transition of H to H2 and C+ to CO occurs within PDRs. Comparison of observations with theoretical models of PDRs enables one to determine the density and temperature structure, the elemental abundances, the level of ionization, and the radiation field. PDR models have been applied to interstellar clouds near massive stars, planetary nebulae, red giant outflows, photoevaporating planetary disks around newly formed stars, diffuse clouds, the neutral intercloud medium, and molecular clouds in the interstellar radiation field-in summary, much of the interstellar medium in galaxies. Theoretical PDR models explain the observed correlations of the [CII] 158 microns with the COJ = 1-0 emission, the COJ = 1-0 luminosity with the interstellar molecular mass, and the [CII] 158 microns plus [OI] 63 microns luminosity with the IR continuum luminosity. On a more global scale, MR models predict the existence of two stable neutral phases of the interstellar medium, elucidate the formation and destruction of star-forming molecular clouds, and suggest radiation-induced feedback mechanisms that may regulate star formation rates and the column density of gas through giant molecular clouds.
The detection of interstellar C I in the immediate vicinity of the sun
NASA Technical Reports Server (NTRS)
Bruhweiler, F. C.; Kondo, Y.
1982-01-01
Multiple stacked IUE spectra reveal the presence of interstellar C I 1657 in the trough of a corresponding photospheric feature in the nearby star, Alpha PsA (d = 7 pc). This represents the first detection of this neutral atom in the interstellar medium within the immediate vicinity of the sun. It is suggested that C I may be a much better diagnostic tool in studying the local interstellar medium than the neutral species K I and Na I, which are observable at visual wavelengths. Variations in C I column density, coupled with b-values deduced from the Mg II doublet ratio, may prove to be an important means to unravel density and temperature fluctuations in the very local interstellar medium. Comparison of the line of sight toward Alpha PsA with previous Copernicus interstellar Mg II results for that of Alpha Leo tentatively indicates that the distribution of Mg II in the local cloud is not homogeneous about the sun. Rough constraints on the ionization fraction of hydrogen toward Alpha PsA do not conflict with previous data, implying that the very local interstellar medium is significantly ionized.
The IR emission features - Emission from PAH molecules and amorphous carbon particles
NASA Technical Reports Server (NTRS)
Allamandola, L. J.; Tielens, A. G. G. M.; Barker, J. R.
1987-01-01
Techniques for the assessment of the importance of the various forms of PAHs, and recent infrared observations concerning the PAH problem, are considered. Spectroscopic data suggest that the observed interstellar spectrum is due to both free molecule-sized PAHs producing the narrow features, and amorphous carbon particles contributing to the broad underlying components. Explanations for the multicomponent emission spectrum are discussed. A model of the emission mechanism for the example of chrysene is presented, and an exact treatment of the IR fluorescence from highly vibrationally excited large molecules shows that species containing 20-30 carbon atoms are responsible for the narrow features, although the spectra more closely resemble those of amorphous carbon particles. It is suggested that future emphasis should be placed on the spatial characteristics of the component spectra.
NASA Technical Reports Server (NTRS)
Allamandola, L. J.; Tielens, A. G. G. M.; Barker, J. R.
1985-01-01
The unidentified infrared emission features (UIR bands) are attributed to a collection of partially hydrogenated, positively charged polycyclic aromatic hydrocarbons (PAHs). This assignment is based on a spectroscopic analysis of the UIR bands. Comparison of the observed interstellar 6.2 and 7.7-micron bands with the laboratory measured Raman spectrum of a collection of carbon-based particulates (auto exhaust) shows a very good agreement, supporting this identification. The infrared emission is due to relaxation from highly vibrationally and electronically excited states. The excitation is probably caused by UV photon absorption. The infrared fluorescence of one particular, highly vibrationally excited PAH (chrysene) is modeled. In this analysis the species is treated as a molecule rather than bulk material and the non-thermodynamic equilibrium nature of the emission is fully taken into account. From a comparison of the observed ratio of the 3.3 to 11.3-micron UIR bands with the model calculations, the average number of carbon atoms per molecule is estimated to be about 20. The abundance of interstellar PAHs is calculated to be about 2 x 10 to the -7th with respect to hydrogen.
Facile Generation and Storage of Polycyclic Aromatic Hydrocarbon Ions in Astrophysical Ices
NASA Technical Reports Server (NTRS)
Gudipati, Murthy S.; Allamandola, Louis J.
2003-01-01
In situ ultraviolet-visible absorption and emission studies of vacuum ultraviolet (VUV) irradiated water-rich, cosmic ice analogs containing polycyclic aromatic hydrocarbons (PAHs) are described. W V irradiation of 12 K water ices containing the PAHs naphthalene (H2O/C10H8 = 200) and 4-methylpyrene (H2O/C17H12 > 500) readily converts the PAHs into their cation form (PAH(+)). Under these conditions, PAH photoionization is the predominant reaction. These ions are trapped and stored in the ices at temperatures between 10 and 50 K, a temperature domain common to ices throughout interstellar clouds and the solar system. Unlike the approx.15% ionization typical after W V irradiation of PAHs isolated in rare-gas matrices, in water ice, PAH photoionization and storage proceed efficiently and almost quantitatively with a greater than 70% ionization yield. As the temperature is increased from 50 to 150 K, the PAH ion bands slowly diminish as the PAH ions ultimately react to form more complex organic species involving the water host. The chemical, spectroscopic, and physical properties of these ion-rich ices can be important in icy objects such as molecular clouds, comets, and planets. Several astrophysical applications are presented.
Solid hydrogen coated graphite particles in the interstellar medium. I.
NASA Technical Reports Server (NTRS)
Swamy, K. S. K.; Wickramasinghe, N. C.
1969-01-01
Solid para hydrogen coated graphite particles expulsion into interstellar medium from star formation regions, considering mantles stability and particles extinction efficiency, albedo and phase function
NASA Astrophysics Data System (ADS)
Wang, Yueyang; Bao, Biwen; Yang, Chuyuan; Zhang, Li
2018-05-01
The dynamical properties of supernova remnants (SNRs) evolving with different interstellar medium structures are investigated through performing extensive two-dimensional magnetohydrodynamic (MHD) simulations in the cylindrical symmetry. Three cases of different interstellar medium structures are considered: the uniform medium, the turbulent medium and the cloudy medium. Large-scale density and magnetic fluctuations are calculated and mapped into the computational domain before simulations. The clouds are set by random distribution in advance. The above configuration allows us to study the time-dependent dynamical properties and morphological evolution of the SNR evolving with different ambient structures, along with the development of the instabilities at the contact discontinuity. Our simulation results indicate that remnant morphology deviates from symmetry if the interstellar medium contains clouds or turbulent density fluctuations. In the cloudy medium case, interactions between the shock wave and clouds lead to clouds' fragmentation. The magnetic field can be greatly enhanced by stretching field lines with a combination of instabilities while the width of amplification region is quite different among the three cases. Moreover, both the width of amplification region and the maximum magnetic-field strength are closely related to the clouds' density.
The Exobiological Role of Interstellar Polycyclic Aromatic Hydrocarbons and Ices
NASA Technical Reports Server (NTRS)
Hudgins, Douglas M.; DeVincenzi, Donald (Technical Monitor)
2002-01-01
Tremendous strides have been made in our understanding of interstellar material over the past twenty years thanks to significant, parallel developments in observational astronomy and laboratory astrophysics. Before this time, the composition of interstellar dust was largely guessed-at, the presence of ices in interstellar clouds ignored, and the notion that large, gas phase, carbon rich molecules might be abundant and widespread throughout the interstellar medium (ISM) considered impossible. Today, the composition of dust in the ISM is reasonably well constrained to micron-sized cold refractory materials comprised of amorphous and crystalline silicates mixed with an amorphous carbonaceous material containing aromatic structural units and short, branched aliphatic chains. Shrouded within the protective confines of cold, opaque molecular clouds--the birthplace of stars and planets--these cold dust particles secrete mantles of mixed molecular ices whose compositions are also well constrained. Finally, amidst the molecular inventory of these ice mantles are likely to be found polycyclic aromatic hydrocarbons (PAHs), shockingly large molecules by the standards of interstellar chemistry, the telltale infrared spectral signature of which is now recognized throughout the Universe. In the first part of this talk, we will review the spectroscopic evidence that forms the basis for the currently accepted abundance and ubiquity of PANs in the ISM. We will then look at a few specific examples which illustrate how experimental and theoretical data can be applied to interpret the interstellar spectra and track how the PAN population evolves as it passes from its formation site in the circumstellar outflows of dying stars, through the various phases of the ISM, and into forniing planetary systems. Nevertheless, despite the fact that PANs likely represent the single largest molecular reservoir of organic carbon in evolving planetary systems, they are not what would be considered "biogenic" molecules. Although interesting from a chemical and astrophysical standpoint, in the absence of a mechanism by which this population can be dislodged from the precipitous thermodynamic well afforded by their extensive aromatic networks, they are of little Astrobiological significance. Consequently, for the remainder of the talk, we will consider the photochemical evolution of PANS under conditions similar to those found in the ISM and in proto-planetary systems with an eye toward means by which this rich repository of pre-biotic organic "ore" might be converted into materials of greater importance to Astrobiology.
[Activities of Colorado University
NASA Technical Reports Server (NTRS)
Snow, Theodore P.; Bierbaum, Veronica
2003-01-01
During the report period we completed several studies and embarked on a new set of laboratory experiments. We also hired a new post-doctoral Research Associate, Momir Stepanovic, who has gradually assumed leadership in the laboratory work. The other person involved has been graduate student Brian Eichelberger, who will complete his Ph.D. based on this work by late spring of this year. We have also continued to collaborate with our previous postdoctoral Research Associate, Valery Le Page, through a consulting arrangement. In the following sections we summarize work that has been completed and either in print, in press, or in final stages of preparation for publication; current work being carried out in the laboratory; and plans for the coming year. Work completed in 2002: 1. Modeling the physical and chemical states of PAHs in the diffuse interstellar medium. 2. Hydrogenation and charge states of polycyclic aromatic hydrocarbons in diffuse clouds. 3. Laboratory studies of chemical reactions involving carbon chain anions.
The heliosphere's interstellar interaction: no bow shock.
McComas, D J; Alexashov, D; Bzowski, M; Fahr, H; Heerikhuisen, J; Izmodenov, V; Lee, M A; Möbius, E; Pogorelov, N; Schwadron, N A; Zank, G P
2012-06-08
As the Sun moves through the local interstellar medium, its supersonic, ionized solar wind carves out a cavity called the heliosphere. Recent observations from the Interstellar Boundary Explorer (IBEX) spacecraft show that the relative motion of the Sun with respect to the interstellar medium is slower and in a somewhat different direction than previously thought. Here, we provide combined consensus values for this velocity vector and show that they have important implications for the global interstellar interaction. In particular, the velocity is almost certainly slower than the fast magnetosonic speed, with no bow shock forming ahead of the heliosphere, as was widely expected in the past.
Observations of interstellar zinc
NASA Technical Reports Server (NTRS)
Jura, M.; York, D.
1981-01-01
The International Ultraviolet Explorer observations of interstellar zinc toward 10 stars are examined. It is found that zinc is at most only slightly depleted in the interstellar medium; its abundance may serve as a tracer of the true metallicity in the gas. The local interstellar medium has abundances that apparently are homogeneous to within a factor of two, when integrated over paths of about 500 pc, and this result is important for understanding the history of nucleosynthesis in the solar neighborhood. The intrinsic errors in detecting weak interstellar lines are analyzed and suggestions are made as to how this error limit may be lowered to 5 mA per target observation.
NASA Technical Reports Server (NTRS)
Buss, Richard H., Jr.; Tielens, A. G. G. M.; Snow, Theodore P.
1991-01-01
The mid-infrared spectra of carbon giant stars with hot companions are investigated in order to search for infrared emission bands from polycyclic aromatic hydrocarbons (PAH) in the envelopes of the C giants. A strong 8-micron emission band found in TU Tau = HD 38218 is attributed to the binary A star companion. It is argued that if the 8-micron feature in HD 38218 arises from PAHs, they seem to be important constituents of the C-giant shell, and they might be large compared with some interstellar PAHs. It is suggested that because no other IR spectra of C giants show clear PAH features, the greater flux of hard radiation in the binary HD 38218 seems likely to be responsible for the 8-micron feature and for its absence in many other C giants. Thus, PAHs could be present in the same amounts relative to SiC grains in the shells of similar single C giants, and the formation of carbonaceous grains could proceed through the formation of PAHs in C giant shells.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Monfredini, T.; Boechat-Roberty, H. M.; Fantuzzi, F.
The formation of polycyclic aromatic hydrocarbons (PAHs) and their methyl derivatives mainly occurs in the dust shells of asymptotic giant branch (AGB) stars. The bands at 3.3 and 3.4 μm, observed in infrared emission spectra of several objects, are attributed C–H vibrational modes in aromatic and aliphatic structures, respectively. In general, the feature at 3.3 μm is more intense than that at 3.4 μm. Photoionization and photodissociation processes of toluene, the precursor of methylated PAHs, were studied using synchrotron radiation at soft X-ray energies around the carbon K edge using time-of-flight mass spectrometry. Partial ion yields of a large numbermore » of ionic fragments were extracted from single and 2D-spectra, where electron-ion coincidences have revealed the doubly charged parent molecule and several doubly charged fragments containing seven carbon atoms with considerable abundance. Ab initio calculations based on density functional theory were performed in order to elucidate the chemical structure of these stable dicationic species. The survival of the dications subjected to hard inner shell ionization suggests that they could be observed in the interstellar medium, especially in regions where PAHs are detected. The ionization and destruction of toluene induced by X-rays were examined in the T Dra conditions, a carbon-rich AGB star. In this context, a minimum photodissociation radius and the half-life of toluene subjected to the incidence of the soft X-ray flux emitted from a companion white dwarf star were determined.« less
NASA Astrophysics Data System (ADS)
Monfredini, T.; Fantuzzi, F.; Nascimento, M. A. C.; Wolff, W.; Boechat-Roberty, H. M.
2016-04-01
The formation of polycyclic aromatic hydrocarbons (PAHs) and their methyl derivatives mainly occurs in the dust shells of asymptotic giant branch (AGB) stars. The bands at 3.3 and 3.4 μm, observed in infrared emission spectra of several objects, are attributed C-H vibrational modes in aromatic and aliphatic structures, respectively. In general, the feature at 3.3 μm is more intense than that at 3.4 μm. Photoionization and photodissociation processes of toluene, the precursor of methylated PAHs, were studied using synchrotron radiation at soft X-ray energies around the carbon K edge using time-of-flight mass spectrometry. Partial ion yields of a large number of ionic fragments were extracted from single and 2D-spectra, where electron-ion coincidences have revealed the doubly charged parent molecule and several doubly charged fragments containing seven carbon atoms with considerable abundance. Ab initio calculations based on density functional theory were performed in order to elucidate the chemical structure of these stable dicationic species. The survival of the dications subjected to hard inner shell ionization suggests that they could be observed in the interstellar medium, especially in regions where PAHs are detected. The ionization and destruction of toluene induced by X-rays were examined in the T Dra conditions, a carbon-rich AGB star. In this context, a minimum photodissociation radius and the half-life of toluene subjected to the incidence of the soft X-ray flux emitted from a companion white dwarf star were determined.
Energy and mass balance in the three-phase interstellar medium
NASA Technical Reports Server (NTRS)
Wang, Zhong; Cowie, Lennox L.
1988-01-01
Details of the energy and mass balances are considered in the context of a three-phase interstellar medium. The rates of mass exchange between the different phases are derived based on the pressure variations created by supernova remnant expansions. It is shown that the pressure-confined warm and cold gases have stable temperatures under a variety of interstellar conditions. The three-phase quasi-static configuration is found to be a natural outcome, and both warm and cold phases generally contribute about half of the total mass density to the diffuse interstellar gas. The model is also likely to be self-regulatory in the sense that variations of the input parameters do not strongly alter the general result, which is consistent with most current observations. The consequences of extreme conditions on this model are considered, and the possible implications for interstellar medium in other galaxies are briefly discussed.
Helium glow detector experiment, MA-088. [Apollo Soyuz test project data reduction
NASA Technical Reports Server (NTRS)
Bowyer, C. S.
1978-01-01
Of the two 584 A channels in the helium glow detector, channel #1 appeared to provide data with erratic count rates and undue susceptibility to dayglow and solar contamination possibly because of filter fatigue or failure. Channel #3 data appear normal and of high quality. For this reason only data from this last channel was analyzed and used for detailed comparison with theory. Reduction and fitting techniques are described, as well as applications of the data in the study of nighttime and daytime Hel 584 A emission. A hot model of the interstellar medium is presented. Topics covered in the appendix include: observations of interstellar helium with a gas absorption cell: implications for the structure of the local interstellar medium; EUV dayglow observations with a helium gas absorption cell; and EUV scattering from local interstellar helium at nonzero temperatures: implications for the derivations of interstellar medium parameters.
Participation in the ISO Key Project - IPAC Project
NASA Technical Reports Server (NTRS)
Lo, Kwok-Yung
2001-01-01
This program used guaranteed ISO time to observe the interstellar medium in nearby galaxies. The goals of the program are to determine the origin of the infrared emission, to quantify the physical conditions of the interstellar medium, and to study the heating and physical properties of interstellar dust. This program has been carried out successfully, and produced a number of publications reporting the results.
Formation of polycyclic aromatic hydrocarbons in circumstellar envelopes
NASA Technical Reports Server (NTRS)
Frenklach, Michael; Feigelson, Eric D.
1989-01-01
Production of polycyclic aromatic hydrocarbons in carbon-rich circumstellar envelopes was investigated using a kinetic approach. A detailed chemical reaction mechanism of gas-phase PAH formation and growth, containing approximately 100 reactions of 40 species, was numerically solved under the physical conditions expected in cool stellar winds. The chemistry is based on studies of soot production in hydrocarbon pyrolysis and combustion. Several first-ring and second-ring cyclization processes were considered. A linear lumping algorithm was used to describe PAH growth beyond the second aromatic ring. PAH production using this mechanism was examined with respect to a grid of idealized constant velocity stellar winds as well as several published astrophysical models. The basic result is that the onset of PAH production in the interstellar envelopes is predicted to occur within the temperature interval of 1100 to 900 K. The absolute amounts of the PAHs formed, however, are very sensitive to a number of parameters, both chemical and astrophysical, whose values are not accurately known. Astrophysically meaningful quantities of PAHs require particularly dense and slow stellar winds and high initial acetylene abundance. It is suggested that most of the PAHs may be produced in a relatively small fraction of carbon-rich red giants.
Two-component scattering model and the electron density spectrum
NASA Astrophysics Data System (ADS)
Zhou, A. Z.; Tan, J. Y.; Esamdin, A.; Wu, X. J.
2010-02-01
In this paper, we discuss a rigorous treatment of the refractive scintillation caused by a two-component interstellar scattering medium and a Kolmogorov form of density spectrum. It is assumed that the interstellar scattering medium is composed of a thin-screen interstellar medium (ISM) and an extended interstellar medium. We consider the case that the scattering of the thin screen concentrates in a thin layer represented by a δ function distribution and that the scattering density of the extended irregular medium satisfies the Gaussian distribution. We investigate and develop equations for the flux density structure function corresponding to this two-component ISM geometry in the scattering density distribution and compare our result with the observations. We conclude that the refractive scintillation caused by this two-component ISM scattering gives a more satisfactory explanation for the observed flux density variation than does the single extended medium model. The level of refractive scintillation is strongly sensitive to the distribution of scattering material along the line of sight (LOS). The theoretical modulation indices are comparatively less sensitive to the scattering strength of the thin-screen medium, but they critically depend on the distance from the observer to the thin screen. The logarithmic slope of the structure function is sensitive to the scattering strength of the thin-screen medium, but is relatively insensitive to the thin-screen location. Therefore, the proposed model can be applied to interpret the structure functions of flux density observed in pulsar PSR B2111 + 46 and PSR B0136 + 57. The result suggests that the medium consists of a discontinuous distribution of plasma turbulence embedded in the interstellar medium. Thus our work provides some insight into the distribution of the scattering along the LOS to the pulsar PSR B2111 + 46 and PSR B0136 + 57.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gencaga, Deniz; Knuth, Kevin H.; Carbon, Duane F.
Understanding the origins of life has been one of the greatest dreams throughout history. It is now known that star-forming regions contain complex organic molecules, known as Polycyclic Aromatic Hydrocarbons (PAHs), each of which has particular infrared spectral characteristics. By understanding which PAH species are found in specific star-forming regions, we can better understand the biochemistry that takes place in interstellar clouds. Identifying and classifying PAHs is not an easy task: we can only observe a single superposition of PAH spectra at any given astrophysical site, with the PAH species perhaps numbering in the hundreds or even thousands. This ismore » a challenging source separation problem since we have only one observation composed of numerous mixed sources. However, it is made easier with the help of a library of hundreds of PAH spectra. In order to separate PAH molecules from their mixture, we need to identify the specific species and their unique concentrations that would provide the given mixture. We develop a Bayesian approach for this problem where sources are separated from their mixture by Metropolis Hastings algorithm. Separated PAH concentrations are provided with their error bars, illustrating the uncertainties involved in the estimation process. The approach is demonstrated on synthetic spectral mixtures using spectral resolutions from the Infrared Space Observatory (ISO). Performance of the method is tested for different noise levels.« less
A Multi-Wavelength Study of the Hot Component Of The Interstellar Medium
NASA Technical Reports Server (NTRS)
Nichols, Joy; West, Donald K. (Technical Monitor)
2001-01-01
This research focuses on the kinematics and evolution of the hot phase of the interstellar medium in the Galaxy. The plan is to measure the UV spectra for all hot stars observed with International Ultraviolet Explorer (IUE), in order to identify and measure the main component and any high velocity components to the interstellar lines. A total of 1200 stars are candidates for inclusion in this study.
The Propagation Distance and Sources of Interstellar Turbulence
NASA Astrophysics Data System (ADS)
Spangler, S. R.
2007-07-01
Turbulence appears to be widely distributed in the interstellar medium, including regions far from obvious generators of this turbulence such as supernova remnants and star formation regions. This indicates that the turbulence must be transported, most likely by propagation at the Alfvén speed, over distances of hundreds of parsecs. This requirement appears contradicted by estimates that the damping length of magnetohydrodynamic waves and turbulence by ion-neutral collisions in the Diffuse Ionized Gas (DIG, the most pervasive phase of the interstellar medium) is less than a parsec. This damping length estimate is not highly model-dependent, and is consistent with calculations positing a balance between radiative cooling and turbulent dissipative heating of the interstellar gas. This problem is even more severe in the Warm Neutral Medium (WNM) phase, where the neutral density fraction is much higher. Three possible resolutions of this matter are proposed. (1) Interstellar turbulence may be generated by highly distributed, local generators rather than greatly separated, powerful generators such as supernova remnants. (2) The turbulence may be generated by powerful and isolated objects like supernova remnants, but then ``percolate'' through the interstellar medium by propagating through channels with a very high degree of ionization. (3) The dissipation of small-scale turbulence may be balanced by a cascade from larger, less damped fluctuations.
Diamonds in dense molecular clouds - A challenge to the standard interstellar medium paradigm
NASA Technical Reports Server (NTRS)
Allamandola, L. J.; Sandford, S. A.; Tielens, A. G. G. M.; Herbst, T. M.
1993-01-01
Observations of a newly discovered infrared C-H stretching band indicate that interstellar diamond-like material appears to be characteristic of dense clouds. In sharp contrast, the spectral signature of dust in the diffuse interstellar medium is dominated by -CH2- and -CH3 groups. This dichotomy in the aliphatic organic component between the dense and diffuse media challenges standard assumptions about the processes occurring in, and interactions between, these two media. The ubiquity of this interstellar diamond-like material rules out models for meteoritic diamond formation in unusual circumstellar environments and implies that the formation of the diamond-like material is associated with common interstellar processes or stellar types.
The interstellar N2 abundance towards HD 124314 from far-ultraviolet observations.
Knauth, David C; Andersson, B-G; McCandliss, Stephan R; Moos, H Warren
2004-06-10
The abundance of interstellar molecular nitrogen (N2) is of considerable importance: models of steady-state gas-phase interstellar chemistry, together with millimetre-wavelength observations of interstellar N2H+ in dense molecular clouds predict that N2 should be the most abundant nitrogen-bearing molecule in the interstellar medium. Previous attempts to detect N2 absorption in the far-ultraviolet or infrared (ice features) have hitherto been unsuccessful. Here we report the detection of interstellar N2 at far-ultraviolet wavelengths towards the moderately reddened star HD 124314 in the constellation of Centaurus. The N2 column density is larger than expected from models of diffuse clouds and significantly smaller than expected for dense molecular clouds. Moreover, the N2 abundance does not explain the observed variations in the abundance of atomic nitrogen (N I) towards high-column-density sightlines, implying that the models of nitrogen chemistry in the interstellar medium are incomplete.
Effect of Supernovae on the Local Interstellar Material
NASA Astrophysics Data System (ADS)
Frisch, Priscilla; Dwarkadas, Vikram V.
A range of astronomical data indicates that ancient supernovae created the galactic environment of the Sun and sculpted the physical properties of the interstellar medium near the heliosphere. In this paper, we review the characteristics of the local interstellar medium that have been affected by supernovae. The kinematics, magnetic field, elemental abundances, and configuration of the nearest interstellar material support the view that the Sun is at the edge of the Loop I superbubble, which has merged into the low-density Local Bubble. The energy source for the higher temperature X-ray-emitting plasma pervading the Local Bubble is uncertain. Winds from massive stars and nearby supernovae, perhaps from the Sco-Cen association, may have contributed radioisotopes found in the geologic record and galactic cosmic ray population. Nested supernova shells in the Orion and Sco-Cen regions suggest spatially distinct sites of episodic star formation. The heliosphere properties vary with the pressure of the surrounding interstellar cloud. A nearby supernova would modify this pressure equilibrium and thereby severely disrupt the heliosphere as well as the local interstellar medium.
Interaction of the jet from the neutron star with the interstellar medium
NASA Astrophysics Data System (ADS)
Kiikov, S. O.
2017-12-01
The interaction between the hypersonic plasma jet from the accreting neutron star and the ambient interstellar medium is studied. It is assumed that the jet is launched from the accretion disk via the open magnetic field anchored in the disk. The analytical investigation for the structure of the working surface of the jet is carried out. The estimates of the volume stream functions in the region of the interaction between the jet and the interstellar medium are derived. The obtained results allow to examine the distribution of the plasma velocity fields in the interaction region.
Observations of interstellar zinc
NASA Technical Reports Server (NTRS)
York, D. G.; Jura, M.
1982-01-01
IUE observations toward 10 stars have shown that zinc is not depleted in the interstellar medium by more than a factor of two, suggesting that its abundance may serve as a tracer of the true metallicity in the gas. A result pertinent to the history of nucleosynthesis in the solar neighborhood is that the local interstellar medium has abundances that appear to be homogeneous to within a factor of two, when integrated over paths of about 500 pc.
Thavamani, Palanisami; Megharaj, Mallavarapu; Naidu, Ravi
2015-06-01
The use of metal-tolerant polyaromatic hydrocarbon (PAH)-degrading bacteria is viable for mitigating metal inhibition of organic compound biodegradation in the remediation of mixed contaminated sites. Many microbial growth media used for toxicity testing contain high concentrations of metal-binding components such as phosphates that can reduce solution-phase metal concentrations thereby underestimate the real toxicity. In this study, we isolated two PAHs-degrading bacterial consortia from long-term mixed contaminated soils. We have developed a new mineral medium by optimising the concentrations of medium components to allow the bacterial growth and at the same time maintain high bioavailable metal (Cd(2+) as a model metal) in the medium. This medium has more than 60 % Cd as Cd(2+) at pH 6.5 as measured by an ion selective electrode and visual MINTEQ model. The Cd-tolerant patterns of the consortia were tested and minimum inhibitory concentration (MIC) derived. The consortium-5 had the highest MIC of 5 mg l(-1) Cd followed by consortium-9. Both cultures were able to completely metabolise 200 mg l(-1) phenanthrene in less than 4 days in the presence of 5 mg l(-1) Cd. The isolated metal-tolerant PAH-degrading bacterial cultures have great potential for bioremediation of mixed contaminated soils.
The PAH Emission Characteristics of the Reflection Nebula NGC 2023
NASA Astrophysics Data System (ADS)
Peeters, Els; Bauschlicher, Charles W., Jr.; Allamandola, Louis J.; Tielens, Alexander G. G. M.; Ricca, Alessandra; Wolfire, Mark G.
2017-02-01
We present 5-20 μm spectral maps of the reflection nebula NGC 2023 obtained with the Infrared Spectrograph SL and SH modes on board the Spitzer Space Telescope, which reveal emission from polycyclic aromatic hydrocarbons (PAHs), C60, and H2 superposed on a dust continuum. We show that several PAH emission bands correlate with each other and exhibit distinct spatial distributions that reveal a spatial sequence with distance from the illuminating star. We explore the distinct morphology of the 6.2, 7.7, and 8.6 μm PAH bands and find that at least two spatially distinct components contribute to the 7-9 μm PAH emission in NGC 2023. We report that the PAH features behave independently of the underlying plateaus. We present spectra of compact, oval PAHs ranging in size from C66 to C210, determined computationally using density functional theory, and we investigate trends in the band positions and relative intensities as a function of PAH size, charge, and geometry. Based on the NASA Ames PAH database, we discuss the 7-9 μm components in terms of band assignments and relative intensities. We assign the plateau emission to very small grains with possible contributions from PAH clusters and identify components in the 7-9 μm emission that likely originate in these structures. Based on the assignments and the observed spatial sequence, we discuss the photochemical evolution of the interstellar PAH family as the PAHs are more and more exposed to the radiation field of the central star in the evaporative flows associated with the Photo-Dissociation Regions in NGC 2023.
The Mid-Infrared Absorption Spectra of Neutral PAHs in Dense Interstellar Clouds
NASA Technical Reports Server (NTRS)
Bernstein, M. P.; Sandford, S. A.; Allamandola, L. J.
2005-01-01
Polycyclic aromatic hydrocarbons (PAHs) are common throughout the universe and are expected to be present in dense interstellar clouds. In these environments, some P.4Hs may be present in the gas phase, but most should be frozen into ice mantles or adsorbed onto dust grains and their spectral features are expected to be seen in absorption. Here we extend our previous work on the infrared spectral properties of the small PAH naphthalene (C10H8) in several media to include the full mid-infrared laboratory spectra of 11 other PAHs and related aromatic species frozen in H2O ices. These include the molecules 1,2-dihydronaphthalene, anthracene, 9,1O-dihydroanthracene, phenanthrene, pyrene, benzo[e]pyrene, perylene, benzo(k)fluoranthene, pentacene, benzo[ghi]perylene, and coronene. These results demonstrate that PAHs and related molecules, as a class, show the same spectral behaviors as naphthalene when incorporated into H2O-rich matrices. When compared to the spectra of these same molecules isolated in inert matrices (e.g., Ar or N2), the absorption bands produced when they are frozen in H2O matrices are broader (factors of 3-10), show small position shifts in either direction (usually < 4/cm, always < 10/cm), and show variable changes in relative band strengths (typically factors of 1-3). There is no evidence of systematic increases or decreases in the absolute strengths of the bands of these molecules when they are incorporated in H2O matrices. In H2O-rich ices, their absorption bands are relatively insensitive to concentration over the range of 10 < H2O/PAH < 200): The absorption bands of these molecules are also insensitive to temperature over the 10 K < T < 125 K range, although the spectra can show dramatic changes as the ices are warmed through the temperature range in which amorphous H2O ice converts to its cubic and hexagonal crystalline forms (T > 125 Kj. Given the small observed band shifts cause by H2O, the current database of spectra from Ar matrix-isolated neutral PAHs and related molecules should be useful for the search for these species in dense clouds on the basis of observed absorption band positions. Furthermore, these data permit determination of column densities to better than a factor of 3 for PAHs in dense clouds. Column density determination of detected aromatics to better than a factor of 3 will, however, require good knowledge about the nature of the matrix in which the PAH is embedded and laboratory studies of relevant samples.
Extended infrared emission around IRAS 21282 + 5050
NASA Technical Reports Server (NTRS)
Bregman, Jesse D.; Booth, John; Gilmore, D. K.; Kay, Laura; Rank, David
1992-01-01
Multiaperture 3-4-micron spectra along with K- and L-band images of the compact planetary nebula IRAS 21282 + 5050 show a 5 arcsec - 20 arcsec diameter nebula with structure similar to many other planetary nebulae. The spectral observations and the L-band image show evidence for extended PAH emission out to a radius of 20 arcsec, while the K-band image shows a 5 arcsec diameter nebula. An observed linear increase of integrated brightness with aperture size at L band implies a 1/r exp 2 volume emissivity for a spherically symmetric model. The spectral similarity of the emission in the small and large apertures suggests fluorescent emission by the PAHs. If the observed emission is from PAHs which formed during the planetary nebulae stage of IRAs 21282 + 5050, then PAHs have been forming for not less than 3000 yr. If the PAH emission is from material produced during the earlier red giant phase, then the formation time frame was much longer. The morphological and spectral similarity of IRAS 21282 + 5050 to many other planetary nebulae suggests that this phenomenon may be widespread, and that planetary nebulae may be a significant source of interstellar PAHs.
Ultraviolet observations of cool stars. VII - Local interstellar hydrogen and deuterium Lyman-alpha
NASA Technical Reports Server (NTRS)
Mcclintock, W.; Henry, R. C.; Linsky, J. L.; Moos, H. W.
1978-01-01
High-resolution Copernicus spectra of Epsilon Eri and Epsilon Ind containing interstellar hydrogen and deuterium L-alpha absorption lines are presented, reduced, and analyzed. Parameters of the interstellar hydrogen and deuterium toward these two stars are derived independently, without any assumptions concerning the D/H ratio. Copernicus spectra of Alpha Aur and Alpha Cen A are reanalyzed, and limits on the D/H number-density ratio consistent with the data for all four stars are considered. A comparison of the present estimates for the parameters of the local interstellar medium with those obtained by other techniques shows that there is no compelling evidence for significant variations in the hydrogen density and D/H ratio in the local interstellar medium. On this basis the hypothesis of an approaching local interstellar cloud proposed by Vidal-Madjar et al. (1978) is rejected
Yang, Tao; Muzangwa, Lloyd; Kaiser, Ralf I; Jamal, Adeel; Morokuma, Keiji
2015-09-07
Crossed molecular beam experiments and electronic structure calculations on the reaction of the meta-tolyl radical with vinylacetylene were conducted to probe the formation of methyl-substituted naphthalene isomers. We present the compelling evidence that under single collision conditions 1- and 2-methylnaphthalene can be formed without an entrance barrier via indirect scattering dynamics through a bimolecular collision of two non-PAH reactants: the meta-tolyl radical and vinylacetylene. The electronic structure calculations, conducted at the UCCSD(T)-F12b/cc-pVDZ//UM06-2x/cc-pVTZ + ZPE(UM06-2x/cc-pVTZ) level of theory, reveal that this reaction is initiated by the barrierless addition of the meta-tolyl radical to the terminal vinyl carbon (C1) of vinylacetylene, via a van-der-Waals complex implying that this mechanism can play a key role in forming methyl-substituted PAHs in low temperature extreme environments such as the low temperature interstellar medium and hydrocarbon-rich atmospheres of planets and their moons in the outer solar system. The reaction mechanism, proposed from the C11H11 potential energy surface, involves a sequence of isomerizations involving hydrogen transfer and ring closure, followed by hydrogen dissociation, which eventually leads to 1- and 2-methylnaphthalene in an overall exoergic process.
QUANTIFYING THE HEATING SOURCES FOR MID-INFRARED DUST EMISSIONS IN GALAXIES: THE CASE OF M 81
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lu, N.; Zhao, Y.; Bendo, G. J.
2014-12-20
With the newly available photometric images at 250 and 500 μm from the Herschel Space Observatory, we study quantitative correlations over a sub-kiloparsec scale among three distinct emission components in the interstellar medium of the nearby spiral galaxy M 81 (NGC 3031): (1) I {sub 8} or I {sub 24}, the surface brightness of the mid-infrared emission observed in the Spitzer Space Telescope 8 or 24 μm band, with I {sub 8} and I {sub 24} being dominated by the emissions from polycyclic aromatic hydrocarbons (PAHs) and very small grains (VSGs) of dust, respectively; (2) I {sub 500}, that of the coldmore » dust continuum emission in the Herschel Space Observatory 500 μm band, dominated by the emission from large dust grains heated by evolved stars; and (3) I {sub Hα}, a nominal surface brightness of the Hα line emission, from gas ionized by newly formed massive stars. The results from our correlation study, free from any assumption on or modeling of dust emissivity law or dust temperatures, present solid evidence for significant heating of PAHs and VSGs by evolved stars. In the case of M 81, about 67% (48%) of the 8 μm (24 μm ) emission derives its heating from evolved stars, with the remainder attributed to radiation heating associated with ionizing stars.« less
Studies of H I and D I in the local interstellar medium
NASA Technical Reports Server (NTRS)
Murthy, J.; Henry, R. C.; Moos, H. W.; Vidal-Madjar, A.; Linsky, J. L.
1990-01-01
High-dispersion IUE spectra are presented of the hydrogen Ly-alpha chromospheric emission line of two nearby late-type stars, Capella and Lambda And. Both interstellar H I and D I Ly-alpha absorption can be seen against the chromospheric line, and the density, velocity dispersion, and bulk velocity of the gas in those lines of sight are derived. Limits are placed on the D/H ratio. The results are consistent with the current picture of the local interstellar medium.
Low-energy cosmic ray protons from nuclear interactions of cosmic rays with the interstellar medium.
NASA Technical Reports Server (NTRS)
Wang, H. T.
1973-01-01
The intensity of low-energy (less than 100 MeV) protons from nuclear interactions of higher-energy (above 100 MeV) cosmic rays with the interstellar medium is calculated. The resultant intensity in the 10- to 100-MeV range is larger by a factor of 3-5 than the observed proton intensity near earth. The calculated intensity from nuclear interactions constitutes a lower limit on the actual proton intensity in interstellar space.
NASA Technical Reports Server (NTRS)
Barnes, Aaron; DeVincenzi, Donald (Technical Monitor)
2000-01-01
A complete model of the global interaction between the solar wind and the local interstellar medium must take account of interstellar neutral atoms, interstellar ionized gas, solar and galactic magnetic fields, galactic and anomalous cosmic rays. For now, however, in view of the many uncertainties about conditions in the interstellar medium, etc., all models must be regarded as highly idealized and incomplete. In the present review I concentrate on the role of magnetic fields of solar and interstellar origin. The former, the interior field, has negligible influence on the unshocked solar wind; the immediate post-shock solar wind is probably low-beta, so that the interior magnetic field is still unimportant, but this situation changes as the plasma flows through the heliosheath, and a ridge of strong magnetic field may form to separate materials of polar and equatorial origin. The exterior (interstellar) field is likely to play an important role in determining the global morphology of the system outside the termination shock. If the exterior field is strong enough, it can compress the heliosphere (although exterior neutral and/or ionized hydrogen may play the dominant role). Even if the interstellar magnetic field does not provide the dominant pressure, its orientation can substantially affect the configuration of the heliosphere, especially the location and orientation of the heliospheric discontinuities. The configurations can be quite different for the situations in which the field and flow are (a) aligned or (b) transverse. Obliquity of the field produces asymmetry in the geometry of the system; in particular the noses of heliopause and interstellar bow shock are shifted away from the interstellar flow direction, and in opposite directions, due to the asymmetric draping of the magnetic field.
The Evolution of Dust in the Multiphase Interstellar Medium
NASA Technical Reports Server (NTRS)
Oliversen, Ronald J. (Technical Monitor); Slavin, Jonathan
2003-01-01
Interstellar dust has a profound effect on the structure and evolution of the interstellar medium (ISM) and on the processes by which stars form from it. Dust obscures regions of star formation from view, and the uncertain quantities of elements in dust makes it difficult to measure accurately the abundances of the elements in low density regions. Despite the central importance of dust in astrophysics, we cannot answer some of the most basic questions about it: Why is it that most of the refractory elements are in dust grains? What determines the sizes of interstellar grains? It has been the goal of our proposed theoretical investigations to address these questions by studying the destruction of interstellar grains, and to develop observational diagnostics that can test the models we develop.
Infrared spectroscopy of hydrated polycyclic aromatic hydrocarbon cations: naphthalene+-water.
Chatterjee, Kuntal; Dopfer, Otto
2017-12-13
Polycyclic aromatic hydrocarbons (PAHs) are suggested to occur in interstellar media and ice grains. It is important to characterize hydrated PAHs and their cations to explore their stability in interstellar and biological media. Herein, the infrared photodissociation (IRPD) spectrum of the naphthalene + -H 2 O radical cation (Np + -H 2 O) recorded in the O-H and C-H stretch range is analysed by dispersion-corrected density functional theory calculations at the B3LYP-D3/aug-cc-pVTZ level to determine its structure and intermolecular bonding. Monohydration of Np + in its 2 A u ground electronic state leads to the formation of a bifurcated CHO ionic hydrogen bond (H-bond), in which the lone pairs of H 2 O bind to two adjacent CH proton donors of the two aromatic rings. The frequency-dependent branching ratios observed for IRPD of cold Np + -H 2 O-Ar clusters allows the estimation of the dissociation energy of Np + -H 2 O as D 0 ∼ 2800 ± 300 cm -1 . The monohydration motif of Np + differs qualitatively from that of the benzene cation in both structure and binding energy, indicating the strong influence of the multiple aromatic rings on the hydration of PAH + cations. This difference is rationalized by natural bond orbital analysis of the ionic H-bond motif. Comparison with neutral Np-H 2 O reveals the large change in structure and bond strength of the hydrated PAHs upon ionization. While neutral Np-H 2 O is stabilized by weak π H-bonds (OHπ, π-stacking), strong cation-dipole forces favour a planar bifurcated CHO ionic H-bond in Np + -H 2 O.
Fluorescence Spectroscopy of Gas-phase Polycyclic Aromatic Hydrocarbons
NASA Technical Reports Server (NTRS)
Thomas, J. D.; Witt, A. N.
2006-01-01
The purpose of this investigation was to produce fluorescence spectra of polycyclic aromatic hydrocarbon (PAH) molecules in the gas-phase for comparison with blue luminescence (BL) emission observed in astrophysical sources Vijh et al. (2004, 2005a,b). The BL occurs roughly from 350 to 450 nm, with a sharp peak near 380 nm. PAHs with three to four rings, e.g. anthracene and pyrene, were found to produce luminescence in the appropriate spectral region, based on existing studies. Relatively few studies of the gas-phase fluorescence of PAHs exist; those that do exist have dealt primarily with the same samples commonly available for purchase such as pyrene and anthracene. In an attempt to understand the chemistry of the nebular environment we also obtained several nitrogen substituted PAHs from our colleagues at NASA Ames. In order to simulate the astrophysical environment we also took spectra by heating the PAHs in a flame. The flame environment counteracts the formation of eximers and permits the spectroscopy of free-flying neutral molecules. Experiments with coal tar demonstrate that fluorescence spectroscopy reveals primarily the presence of the smallest molecules, which are most abundant and which possess the highest fluorescence efficiencies. One gas-phase PAH that seems to fit the BL spectrum most closely is phenanthridine. In view of the results from the spectroscopy of coal tar, a compound containing a mixture of PAHs ranging from small to very large PAH molecules, we can not preclude the presence of larger PAHs in interstellar sources exhibiting BL.
Life and the Universe: From Astrochemistry to Astrobiology
NASA Technical Reports Server (NTRS)
Allamandola, Louis J.
2013-01-01
Great strides have been made in our understanding of interstellar material thanks to advances in infrared astronomy and laboratory astrophysics. Ionized polycyclic aromatic hydrocarbons (PAHs), shockingly large molecules by earlier astrochemical standards, are widespread and very abundant throughout much of the cosmos. In cold molecular clouds, the birthplace of planets and stars, interstellar atoms and molecules freeze onto extremely cold dust and ice particles forming mixed molecular ices dominated by simple species such as water, methanol, ammonia, and carbon monoxide. Within these clouds, and especially in the vicinity of star and planet forming regions, these ices and PAHs are processed by ultraviolet light and cosmic rays forming hundreds of far more complex species, some of biogenic interest. Eventually, these are delivered to primordial planets by comets and meteorites. As these materials are the building blocks of comets and related to carbonaceous micrometeorites, they are likely to be important sources of complex organic materials delivered to habitable planets (including the primordial Earth) and their composition may be related to the origin of life. This talk will focus on the chemical evolution of these cosmic materials and their relevance to astrobiology.
Hydrogen atom addition to the surface of graphene nanoflakes: A density functional theory study
NASA Astrophysics Data System (ADS)
Tachikawa, Hiroto
2017-02-01
Polycyclic aromatic hydrocarbons (PAHs) provide a 2-dimensional (2D) reaction surface in 3-dimensional (3D) interstellar space and have been utilized as a model of graphene surfaces. In the present study, the reaction of PAHs with atomic hydrogen was investigated by means of density functional theory (DFT) to systematically elucidate the binding nature of atomic hydrogen to graphene nanoflakes. PAHs with n = 4-37 were chosen, where n indicates the number of benzene rings. Activation energies of hydrogen addition to the graphene surface were calculated to be 5.2-7.0 kcal/mol at the CAM-B3LYP/6-311G(d,p) level, which is almost constant for all PAHs. The binding energies of hydrogen atom were slightly dependent on the size (n): 14.8-28.5 kcal/mol. The absorption spectra showed that a long tail is generated at the low-energy region after hydrogen addition to the graphene surface. The electronic states of hydrogenated graphenes were discussed on the basis of theoretical results.
On the cosmic ray diffusion in a violent interstellar medium
NASA Technical Reports Server (NTRS)
Bykov, A. M.; Toptygin, I. N.
1985-01-01
A variety of the available observational data on the cosmic ray (CR) spectrum, anisotropy and composition are in good agreement with a suggestion on the diffusion propagation of CR with energy below 10(15) eV in the interstellar medium. The magnitude of the CR diffusion coefficient and its energy dependence are determined by interstellar medium (ISM) magnetic field spectra. Direct observational data on magnetic field spectra are still absent. A theoretical model to the turbulence generation in the multiphase ISM is resented. The model is based on the multiple generation of secondary shocks and concomitant large-scale rarefactions due to supernova shock interactions with interstellar clouds. The distribution function for ISM shocks are derived to include supernova statistics, diffuse cloud distribution, and various shock wave propagation regimes. This permits calculation of the ISM magnetic field fluctuation spectrum and CR diffusion coefficient for the hot phase of ISM.
The PAH Emission Characteristics of the Reflection Nebula NGC 2023
DOE Office of Scientific and Technical Information (OSTI.GOV)
Peeters, Els; Bauschlicher, Charles W. Jr.; Allamandola, Louis J.
We present 5–20 μ m spectral maps of the reflection nebula NGC 2023 obtained with the Infrared Spectrograph SL and SH modes on board the Spitzer Space Telescope, which reveal emission from polycyclic aromatic hydrocarbons (PAHs), C{sub 60}, and H{sub 2} superposed on a dust continuum. We show that several PAH emission bands correlate with each other and exhibit distinct spatial distributions that reveal a spatial sequence with distance from the illuminating star. We explore the distinct morphology of the 6.2, 7.7, and 8.6 μ m PAH bands and find that at least two spatially distinct components contribute to themore » 7–9 μ m PAH emission in NGC 2023. We report that the PAH features behave independently of the underlying plateaus. We present spectra of compact, oval PAHs ranging in size from C{sub 66} to C{sub 210}, determined computationally using density functional theory, and we investigate trends in the band positions and relative intensities as a function of PAH size, charge, and geometry. Based on the NASA Ames PAH database, we discuss the 7–9 μ m components in terms of band assignments and relative intensities. We assign the plateau emission to very small grains with possible contributions from PAH clusters and identify components in the 7–9 μ m emission that likely originate in these structures. Based on the assignments and the observed spatial sequence, we discuss the photochemical evolution of the interstellar PAH family as the PAHs are more and more exposed to the radiation field of the central star in the evaporative flows associated with the Photo-Dissociation Regions in NGC 2023.« less
Comets, carbonaceous chondrites, and interstellar clouds: Condensation of carbon
NASA Technical Reports Server (NTRS)
Field, G. B.
1979-01-01
Comets, carbonaceous chondrites, and interstellar clouds are discussed in relation to information on interstellar dust. The formation and presence of carbon in stars, comets, and meteorites is investigated. The existence of graphite in the interstellar medium, though it is predicted from thermodynamic calculations, is questioned and the form of carbon contained in comets is considered.
Connection of the solar wind with the interstellar medium through numerical modeling
Heerikhuisen, J.; Zirnstein, E.; Kawamura, A. D.; ...
2013-06-13
In this article we investigate the interaction between the solar wind (SW) and the local interstellar medium (LISM) using spacecraft data and numerical simulations. In particular, we focus on neutral atom results from NASA's Interstellar Boundary EXplorer (IBEX) mission, and compare these with implementations of our neutral atom models that look at both the energetic neutral atoms (ENAs) which are created as hydrogen of LISM origin interacts with the heliosphere, as well as the transmission of interstellar Oxygen through the heliospheric interface. Lastly, the goal of this work is to better understand the global structure of the heliosphere and itsmore » interaction with the galaxy.« less
Dust Spectroscopy and the Nature of Grains
NASA Technical Reports Server (NTRS)
Tielens, A. G. G. M.
2006-01-01
Ground-based, air-borne and space-based, infrared spectra of a wide variety of objects have revealed prominent absorption and emission features due to large molecules and small dust grains. Analysis of this data reveals a highly diverse interstellar and circumstellar grain inventory, including both amorphous materials and highly crystalline compounds (silicates and carbon). This diversity points towards a wide range of physical and chemical birthsites as well as a complex processing of these grains in the interstellar medium. In this talk, I will review the dust inventory contrasting and comparing both the interstellar and circumstellar reservoirs. The focus will be on the processes that play a role in the lifecycle of dust in the interstellar medium.
NASA Technical Reports Server (NTRS)
Bernstein, M. P.; Sandford, S. A.; Allamandola, L. J.; Gillette, J. S.; Clemett, S. J.; Zare, R. N.
1999-01-01
Polycyclic aromatic hydrocarbons (PAHs) in water ice were exposed to ultraviolet (UV) radiation under astrophysical conditions, and the products were analyzed by infrared spectroscopy and mass spectrometry. Peripheral carbon atoms were oxidized, producing aromatic alcohols, ketones, and ethers, and reduced, producing partially hydrogenated aromatic hydrocarbons, molecules that account for the interstellar 3.4-micrometer emission feature. These classes of compounds are all present in carbonaceous meteorites. Hydrogen and deuterium atoms exchange readily between the PAHs and the ice, which may explain the deuterium enrichments found in certain meteoritic molecules. This work has important implications for extraterrestrial organics in biogenesis.
Interstellar Probe: First Step to the Stars
NASA Astrophysics Data System (ADS)
McNutt, R. L., Jr.
2017-12-01
The idea of an "Interstellar Probe," a robotic spacecraft traveling into the nearby interstellar medium for the purpose of scientific investigation, dates to the mid-1960s. The Voyager Interstellar Mission (VIM), an "accidental" 40-year-old by-product of the Grand Tour of the solar system, has provided initial answers to the problem of the global heliospheric configuration and the details of its interface with interstellar space. But the twin Voyager spacecraft have, at most, only another decade of lifetime, and only Voyager 1 has emerged from the heliosheath interaction region. To understand the nature of the interaction, a near-term mission to the "near-by" interstellar medium with modern and focused instrumentation remains a compelling priority. Imaging of energetic neutral atoms (ENAs) by the Ion Neutral CAmera (INCA) on Cassini and from the Interstellar Boundary Explorer (IBEX) in Earth orbit have provided significant new insights into the global interaction region but point to discrepancies with our current understanding. Exploring "as far as possible" into "pristine" interstellar space can resolve these. Hence, reaching large heliocentric distances rapidly is a driver for an Interstellar Probe. Such a mission is timely; understanding the interstellar context of exoplanet systems - and perhaps the context for the emergence of life both here and there - hinges upon what we can discover within our own stellar neighborhood. With current spacecraft technology and high-capability launch vehicles, such as the Space Launch System (SLS), a small, but extremely capable spacecraft, could be dispatched to the near-by interstellar medium with at least twice the speed of the Voyagers. Challenges remain with payload mass and power constraints for optimized science measurements. Mission longevity, as experienced by, but not designed into, the Voyagers, communications capability, and radioisotope power system performance and lifetime are solvable engineering challenges. Such a robotic craft can be built, and could be built and launched soon - to enable our first deliberate step to the stars.
Polycyclic aromatic hydrocarbon ions and the diffuse interstellar bands
NASA Technical Reports Server (NTRS)
Salama, F.; Allamandola, L. J.
1995-01-01
Neutral naphthalene (C10H8), phenanthrene (C14H10), and pyrene (C16H10) absorb strongly in the ultraviolet and may contribute to the extinction curve. High abundances are required to produce detectable structures. The cations of these Polycyclic Aromatic Hydrocarbons (PAHs) absorb in the visible. C10H8(+) has 12 discrete absorption bands which fall between 6800 and 5000 A. The strongest band at 6741 A falls close to the weak 6742 A diffuse interstellar band (DIB). Five other weaker bands also match DIBs. The possibility that C10H8(+) is responsible for some of the DIBs can be tested by searching for new DIBS at 6520, 6151, and 5965 A, other moderately strong naphthalene cation band positions. If C10H8(+) is indeed responsible for the 6742 A feature, it accounts for 0.3% of the cosmic carbon. The spectrum of C16H10(+) is dominated by a strong band at 4435 A in an Ar matrix and 4395 A in a Ne matrix, a position which falls very close to the strongest DIB, that at 4430 A. If C16H10(+), or a closely related pyrene-like ion is indeed responsible for the 4430 A feature, it accounts for 0.2% of the cosmic carbon. We also report an intense, very broad UV-to-visible continuum which is associated with both ions and could explain how PAHs convert interstellar UV and visible radiation into IR.
NASA Technical Reports Server (NTRS)
Salama, Farid; Allamandola, Louis John
1993-01-01
Neutral naphthalene C10H8, phenanthrene C14H10 and pyrene C16H10 absorb strongly in the ultraviolet region and may contribute to the extinction curve. High abundances are required to produce detectable structures. The cations of these polycyclic aromatic hydrocarbons (PAHs) absorb in the visible C10H8(+) has 13 discrete absorption bands which fall between 6800 and 4500 A. The strongest band at 6741 A falls close to the weak 6742 A diffuse interstellar band (DIB). Five other weaker bands also match DIBs. The possibility that C10H8(+) is responsible for some of the DIBs can be tested by searching for new DIBs at 6520 and 6151 A, other strong naphthalene cation band positions. If C10H8(+) is indeed responsible for the 6742 A feature, it accounts for 0.3% of the cosmic carbon. The spectrum of C16H10(+) is dominated by a strong band at 4435 A in an Ar matrix and 4395 A in Ne, wavelengths which fall very close to the strongest DIB at 4430 A. If C16H10(+) or a closely related pyrene-like ion, is indeed responsible for the 4430 A feature, it accounts for 0.2% of the cosmic carbon. An intense, very broad UV-to-visible continuum is reported which is associated with both ions and could explain how PAHs convert interstellar UV and visible radiation into IR radiation.
The total rate of mass return to the interstellar medium from red giants and planetary nebulae
NASA Technical Reports Server (NTRS)
Knapp, G. R.; Rauch, K. P.; Wilcots, E. M.
1990-01-01
High luminosity post main sequence stars are observed to be losing mass in large amounts into the interstellar medium. The various methods used to estimate individual and total mass loss rates are summarized. Current estimates give MT 0.3 - 0.6 solar mass per year for the whole Galaxy.
An Essay on Interactive Investigations of the Zeeman Effect in the Interstellar Medium
ERIC Educational Resources Information Center
Woolsey, Lauren
2015-01-01
The paper presents an interactive module created through the Wolfram Demonstrations Project that visualizes the Zeeman effect for the small magnetic field strengths present in the interstellar medium. The paper provides an overview of spectral lines and a few examples of strong and weak Zeeman splitting before discussing the module in depth.…
Molecular Diagnostics of the Interstellar Medium and Star Forming Regions
NASA Astrophysics Data System (ADS)
Hartquist, T. W.; Dalgarno, A.
1996-03-01
Selected examples of the use of observationally inferred molecular level populations and chemical compositions in the diagnosis of interstellar sources and processes important in them (and in other diffuse astrophysical sources) are given. The sources considered include the interclump medium of a giant molecular cloud, dark cores which are the progenitors of star formation, material responding to recent star formation and which may form further stars, and stellar ejecta (including those of supernovae) about to merge with the interstellar medium. The measurement of the microwave background, mixing of material between different nuclear burning zones in evolved stars and turbulent boundary layers (which are present in and influence the structures and evolution of all diffuse astrophysical sources) are treated.
The Galactic interstellar medium: foregrounds and star formation
NASA Astrophysics Data System (ADS)
Miville-Deschênes, Marc-Antoine
2018-05-01
This review presents briefly two aspects of Galactic interstellar medium science that seem relevant for studying EoR. First, we give some statistical properties of the Galactic foreground emission in the diffuse regions of the sky. The properties of the emission observed in projection on the plane of the sky are then related to how matter is organised along the line of sight. The diffuse atomic gas is multi-phase, with dense filamentary structures occupying only about 1% of the volume but contributing to about 50% of the emission. The second part of the review presents aspect of structure formation in the Galactic interstellar medium that could be relevant for the subgrid physics used to model the formation of the first stars.
NASA Technical Reports Server (NTRS)
Hudgins, Douglas M.; Bauschlicher, Charles W., Jr.; Allamandola, Louis J.; DeVincenzi, Donald (Technical Monitor)
2001-01-01
Density functional theory has been employed to calculate the harmonic frequencies and intensities of a range of polycyclic aromatic hydrocarbon (PAH) cations that explore both size and electronic structure effects of the infrared spectroscopic properties of these species. The sample extends the size range of PAH species considered to more than 50 carbon atoms and includes several representatives from each of two heretofore unexplored categories of PAH cations: (1) fully benzenoid PAH cations whose carbon skeleton is composed of an odd number of carbon atoms (C(sub odd) PAHs); and (2) protonated PAH cations (HPAH+). Unlike the radical electronic structures of the PAH cations that have been the subject of previous theoretical and experimental work, the species in these two classes have a closed-shell electronic configuration. The calculated spectra of circumcoronene, C54H18 in both neutral and (radical) cationic form are also reported and compared with those of the other species. Overall, the C(sub odd) PAHs spectra are dominated by strong CC stretching modes near 1600 cm(exp -1) and display spectra that are remarkably insensitive to molecular size. The HPAH+ species evince a more complex spectrum consistent with the added contributions of aliphatic modes and their generally lower symmetry. Finally, for both classes of closed-shell cations, the intensity of the aromatic CH stretching modes is found to increase with molecular size far out of proportion with the number of CH groups, approaching a value more typical of neutral PAHs for the largest species studied.
NASA Technical Reports Server (NTRS)
Greenberg, J. M.
1974-01-01
The observed depletion of intermediate-weight elements O, C, and N from the interstellar medium is shown to be significantly greater than can be accounted for by accretion on interstellar dust. A number of possible explanations are presented, ranging from the existence in interstellar space of many 'snowballs' intermediate in size between dust grains and comets to the existence of many far more complicated interstellar molecules than have been detected.
NASA Technical Reports Server (NTRS)
Sakata, Akira; Wada, Setsuko; Tokunaga, Alan T.; Narisawa, Takatoshi; Nakagawa, Hidehiro; Ono, Hiroshi
1994-01-01
QCCs (quenched carbonaceous composite) are amorphus carbonaceous material formed from a hydrocarbon plasma. We present the UV-visible spectra of 'filmy QCC; (obtained outside of the beam ejected from the hydrocarbon plasma) and 'dark QCC' (obtained very near to the beam) for comparison to the stellar extinction curve. When filmy QCC is heated to 500-700 C (thermally altered), the wavelength of the absorption maximum increases form 204 nm to 220-222 nm. The dark QCC has an absorption maximum at 217-222 nm. In addition, the thermally altered filmy QCC has a slope change at about 500 nm which resmbles that in the interstellar extinction curve. The resemblance of the extinction curve of the QCCs to that of the interstellar medium suggests that QCC derivatives may be representative of the type of interstellar material that produces the 217 nm interstellar medium feature. The peak extinction of the dark QCC is higher than the average interstellar extinction curve while that of the thermally altered filmy QCC is lower, so that a mixture of dark and thermally altered filmy QCC can match the peak extinction observed in the interstellar medium. It is shown from electron micrographs that most of the thermally altered flimy QCC is in the form of small grainy structure less than 4 nm in diameter. This shows that the structure unit causing the 217-222 nm feature in QCC is very small.
Organic Synthesis in Simulated Interstellar Ice Analogs
NASA Technical Reports Server (NTRS)
Dworkin, Jason P.; Bernstein, Max P.; Sandford, Scott A.; Allamandola, Louis J.; Deamer, David W.; Elsila, Jamie; Zare, Richard N.; DeVincenzi, Donald (Technical Monitor)
2001-01-01
Comets and carbonaceous micrometeorites may have been significant sources of organic compounds on the early Earth. Ices on grains in interstellar dense molecular clouds contain a variety of simple molecules as well as aromatic molecules of various sizes. While in these clouds the icy grains are processed by ultraviolet light and cosmic radiation which produces more complex organic molecules. ID We have run laboratory simulations to identify the types of molecules which could have been generated photolytically in pre-cometary ices. Experiments were conducted by forming various realistic interstellar mixed-molecular ices with and without polycyclic aromatic hydrocarbons (PAHs) at approx. 10 K under high vacuum irradiated with LTV light from a hydrogen plasma lamp: The residue that remained after warming to room temperature was analyzed by HPLC, and by laser desorption mass spectrometry. The residue contains several classes of compounds which may be of prebiotic significance.
Organic Synthesis in Simulated Interstellar Ice Analogs
NASA Technical Reports Server (NTRS)
Dworkin, Jason P.; Bernstein, Max P.; Sandford, Scott A.; Allamandola, Louis J.; Deamer, David W.; Elsila, Jamie; Zare, Richard N.
2001-01-01
Comets and carbonaceous micrometeorites may have been significant sources of organic compounds on the early Earth. Ices on grains in interstellar dense molecular clouds contain a variety of simple molecules as well as aromatic molecules of various sizes. While in these clouds the icy grains are processed by ultraviolet light and cosmic radiation which produces more complex organic molecules. We have run laboratory simulations to identify the types of molecules which could have been generated photolytically in pre-cometary ices. Experiments were conducted by forming various realistic interstellar mixed-molecular ices with and without polycyclic aromatic hydrocarbons (PAHs) at approx. 10 K under high vacuum irradiated with UV light from a hydrogen plasma lamp. The residue that remained after warming to room temperature was analyzed by HPLC, and by laser desorption mass spectrometry. The residue contains several classes of compounds which may be of prebiotic significance.
NASA Technical Reports Server (NTRS)
Henry, Richard C.
1994-01-01
Attachments to this final report include 2 papers connected with the Voyager work: 'Voyager Observations of Dust Scattering Near the Coalsack Nebula' and 'Search for the Intergalactic Medium'. An appendix of 12 one-page write-ups prepared in connection with another program, UVISI, is also included. The one-page write-ups are: (1) Sky survey of UV point sources to 600 times fainter than previous (TD-1) survey; (2) Diffuse galactic light: starlight scattered from dust at high galactic latitude; (3) Optical properties of interstellar grains; (4) Fluorescence of molecular hydrogen in the interstellar medium; (5) Line emission from hot interstellar medium and/or hot halo of galaxy; (6) Integrated light of distant galaxies in the ultraviolet; (7) Intergalactic far-ultraviolet radiation field; (8) Radiation from recombining intergalactic medium; (9) Radiation from re-heating of intergalactic medium following recombination; (10) Radiation from radiative decay of dark matter candidates (neutrino, etc.); (11) Reflectivity of the asteroids in the Ultraviolet; and (12) Zodiacal light.
NASA Technical Reports Server (NTRS)
Allamandola, L. J.; Bregman, J. D.; Sandford, S. A.; Tielens, A. G. G. M.; Witteborn, F. C.
1989-01-01
A new IR emission feature at 1905/cm (5.25 microns) has been discovered in the spectrum of BD + 30 deg 3639. This feature joins the family of well-known IR emission features at 3040, 2940, 1750, 1610, '1310', 1160, and 890/cm. The origin of this new feature is discussed and it is assigned to an overtone or combination band involving C-H bending modes of polycyclic aromatic hydrocarbons (PAHs). Laboratory work suggests that spectral studies of the 2000-1650/cm region may be very useful in elucidating the molecular structure of interstellar PAHs. The new feature, in conjunction with other recently discovered spectral structures, suggests that the narrow IR emission features originate in PAH molecules rather than large carbon grains.
The Interstellar Heliopause Probe: Heliospheric Boundary Explorer Mission to the Interstellar Medium
NASA Astrophysics Data System (ADS)
Wimmer-Schweingruber, Robert F.; McNutt, Ralph
2009-04-01
The Sun, driving a supersonic solar wind, cuts out of the local interstellar medium a giant plasma bubble, the heliosphere. ESA, jointly with NASA, has had an important role in the development of our current understanding of the Suns’ immediate neighborhood. Ulysses is the only spacecraft exploring the third, out-of-ecliptic dimension, while SOHO has allowed us to better understand the influence of the Sun and to image the glow of interstellar matter in the heliosphere. Voyager 1 has recently encountered the innermost boundary of this plasma bubble, the termination shock, and is returning exciting yet puzzling data of this remote region. The next logical step is to leave the heliosphere and to thereby map out in unprecedented detail the structure of the outer heliosphere and its boundaries, the termination shock, the heliosheath, the heliopause, and, after leaving the heliosphere, to discover the true nature of the hydrogen wall, the bow shock, and the local interstellar medium beyond. This will greatly advance our understanding of the heliosphere that is the best-known example for astrospheres as found around other stars. Thus, IHP/HEX will allow us to discover, explore, and understand fundamental astrophysical processes in the largest accessible plasma laboratory, the heliosphere.
Instellar grains within interstellar grains
NASA Technical Reports Server (NTRS)
Bernatowicz, Thomas J.; Amari, Sachiko; Zinner, Ernst K.; Lewis, Roy S.
1991-01-01
The discovery of crystals of titanium carbide in an interstellar graphite spherule is reported. The new species is particularly interesting in that it came in a protective wrapping (the graphite spherule) which eliminated the possibility of chemical alteration during its residence in the interstellar medium and in the meteorite in which it was discovered.
IUE observations of neutral hydrogen and deuterium in the local interstellar medium
NASA Technical Reports Server (NTRS)
Landsman, W. B.; Murthy, J.; Henry, R. C.; Moos, H. W.; Linsky, J. L.
1986-01-01
Small-aperture, high-dispersion IUE spectra have been obtained of seven late-type stars that, in general, confirm previous Copernicus results concerning the distribution of hydrogen and deuterium in the local interstellar medium. In addition, the IUE Ly Alpha spectra of Altair, and of the Alpha Cen components, suggest that multiple velocity components exist in these two directions.
Astrophysical dust grains in stars, the interstellar medium, and the solar system
NASA Technical Reports Server (NTRS)
Gehrz, Robert D.
1991-01-01
Studies of astrophysical dust grains in circumstellar shells, the interstellar medium, and the solar system may provide information about stellar evolution and about physical conditions in the primitive solar nebula. The following subject areas are covered: (1) the cycling of dust in stellar evolution and the formation of planetary systems; (2) astrophysical dust grains in circumstellar environments; (3) circumstellar grain formation and mass loss; (4) interstellar dust grains; (5) comet dust and the zodiacal cloud; (6) the survival of dust grains during stellar evolution; and (7) establishing connections between stardust and dust in the solar system.
Comprehensive Analysis of Interstellar Iso-PROPYL Cyanide up to 480 GHZ
NASA Astrophysics Data System (ADS)
Kolesniková, Lucie; Alonso, E. R.; Cabezas, Carlos; Mata, Santiago; Alonso, José L.
2016-06-01
Iso-propyl cyanide, also known as iso-butyronitrile, is a branched alkyl molecule recently detected in the interstellar medium. A combination of Stark-modulated microwave spectroscopy and frequency-modulated millimeter and submillimeter wave spectroscopy was used to analyze its rotational spectrum from 26 to 480 GHz. Spectral assignments and analysis include transitions from the ground state, eight excited vibrational states and 13C isotopologues. Results of this work should facilitate astronomers further observations of iso-propyl cyanide in the interstellar medium. A. Belloche, R. T. Garrod, H. S. P. Müller, K. M. Menten, Science, 2014, 345, 1584
Pre-Biological Evolution of Organic Matter in the Universe
NASA Astrophysics Data System (ADS)
Wiebe, D. Z.
2017-05-01
Discovery of interstellar molecules has become one of the most prominent findings of 20th century. Initially (since late 1930-ies) only simple two-atom compounds have been known. However, the rapid development of radioastronomy during post-war years has allowed expanding this list significantly. Now, the number of known interstellar and circumstellar molecules approaches two hundred (not counting isomers and isotopologues). Among them we see both simple and quite complex molecules. The largest molecules with solid identification consist of 12 atoms (CH3OC2H5, C3H7CN). Nearly all molecules with more than five atoms represent are organic. More than once even discovery of the simplest amino acid (glycine) in the interstellar medium had been reported. While later all these reports has been refuted, there is no doubt that this is a purely technical problem, and there are no fundamental obstacles on a pathway to interstellar synthesis of simplest amino acids. Definitely, even more complex organic structures are present in the interstellar medium, like fullerenes and some kind of aromatic particles. Recently, this diversity quite often became an incentive to suggest that organic species might have arrived to Earth (and other forming planets) in a "ready-to-use" form. However, one has to remember that numerous factors causing effective molecule destruction are in action in the interstellar medium, in the vicinity of young stars, and in protoplanetary disks.
Assessment of the Interstellar Processes Leading to Deuterium Enrichment in Meteoritic Organics
NASA Technical Reports Server (NTRS)
Sandford, Scott A.; Bernstein, Max P.; Dworkin, Jason P.; DeVincenzi, Donald L. (Technical Monitor)
2001-01-01
The presence of isotopic anomalies is the most unequivocal demonstration that meteoritic material contains circumstellar or interstellar components. In the case of organic compounds in meteorites and interplanetary dust particles (IDPs), the most useful isotopic tracer has been deuterium (D). We discuss four processes that are expected to lead to D enrichment in interstellar materials and describe how their unique characteristics can be used to assess their relative importance for the organics in meteorites. These enrichment processes are low temperature gas phase ion-molecule reactions, low temperature gas-grain reactions, gas phase unimolecular photodissociation, and ultraviolet photolysis in D-enriched ice mantles. Each of these processes is expected to be associated with distinct regiochemical signatures (D placement on the product molecules, correlation with specific chemical functionalities, etc.), especially in the molecular population of polycyclic aromatic hydrocarbons (PAHs). We describe these differences and discuss how they may be used to delineate the various interstellar processes that may have contributed to meteoritic D enrichments. We also briefly discuss how these processes may affect the isotopic distributions in C, 0, and N in the same compounds.
Formation of Prebiotic Molecules in Interstellar and Cometary Ices
NASA Technical Reports Server (NTRS)
Bernstein, Max P.; Sandford, Scott A.; Allamandola, Louis J.; Dworkin, Jason; Gilette, J. Seb; Zare, Richard N.; DeVincenzi, D. (Technical Monitor)
2000-01-01
We report here on our lab studies of ice photochemistry of large organic molecules under cometary conditions. We focus on polycyclic aromatic hydrocarbons (PAHs), their photoproducts, and their similarities to molecules seen in living systems today. We note that these kinds of compounds are seen in meteorites and we propose an explanation for both their formation and their observed deuterium enrichments.
NASA Technical Reports Server (NTRS)
Sandford, S. A.; Materese, C. K.; Nuevo, M.
2015-01-01
Aromatic hydrocarbons are an important class of molecules for both astrochemistry and astrobiology (Fig. 1). Within this class of molecules, polycyclic aromatic hydrocarbons (PAHs) are known to be ubiquitous in many astrophysical environments, and are likely present in interstellar clouds and protostellar disks. In dense clouds, PAHs are expected to condense onto grains as part of mixed molecular ice mantles dominated by small molecules like H2O,CH3OH, NH3, CO, and CO2. These ices are exposed to ionizing radiation in the form of cosmic rays and ambient high-energy X-ray and UV photons.
NASA Technical Reports Server (NTRS)
Salama, F.; Biennier, L.
2004-01-01
The study of the formation and destruction processes of cosmic dust is essential to understand and to quantify the budget of extraterrestrial organic molecules. interstellar dust presents a continuous size distribution from large molecules, radicals and ions to nanometer-sized particles to micron-sized grains. The lower end of the dust size distribution is thought to be responsible for the ubiquitous spectral features that are seen in emission in the IR (UIBs) and in absorption in the visible (DIBs). The higher end of the dust-size distribution is thought to be responsible for the continuum emission plateau that is seen in the IR and for the strong absorption seen in the interstellar UV extinction curve. All these spectral signatures are characteristic of cosmic organic materials that are ubiquitous and present in various forms from gas-phase molecules to solid-state grains. Although dust with all its components plays an important role in the evolution of interstellar chemistry and in the formation of organic molecules, little is known on the formation and destruction processes of dust. Recent space observations in the UV (HST) and in the IR (ISO) help place size constraints on the molecular component of carbonaceous IS dust and indicate that small (ie., subnanometer) PAHs cannot contribute significantly to the IS features in the UV and in the IR. Studies of large molecular and nano-sized IS dust analogs formed from PAH precursors have been performed in our laboratory under conditions that simulate diffuse ISM environments (the particles are cold -100 K vibrational energy, isolated in the gas phase and exposed to a high-energy discharge environment in a cold plasma). The species (molecules, molecular fragments, ions, nanoparticles, etc) formed in the pulsed discharge nozzle (PDN) plasma source are detected with a high-sensitivity cavity ring-down spectrometer (CRDS). We will present new experimental results that indicate that nanoparticles are generated in the plasma. From these unique measurements, we derive information on the nature, the size and the structure of interstellar dust particles, the growth and the destruction processes of IS dust and the resulting budget of extraterrestrial organic molecules.
NASA Technical Reports Server (NTRS)
Greenberg, J. M. (Editor); Van De Hulst, H. C.
1973-01-01
Theoretical studies and observations of interstellar dust are described in papers dealing with the passive properties of dust grains, their physical and chemical activities in the interstellar medium, and their interactions in association with stars. The papers are grouped according to the principal topics of (1) extinction and polarization, (2) diffuse interstellar features, (3) dust around and in close association with stars, (4) reflection nebulae and other aspects of dust scattering properties, (5) alignment mechanisms, (6) distribution of molecules and processes of molecule formation, (7) radiation effects on dust, (8) physical and chemical interactions of dust with the ambient medium, and (9) gas and dust in H II regions. Individual items are announced in this issue.
Cosmic Carbon Chemistry: From the Interstellar Medium to the Early Earth
Ehrenfreund, Pascale; Cami, Jan
2010-01-01
Astronomical observations have shown that carbonaceous compounds in the gas and solid state, refractory and icy are ubiquitous in our and distant galaxies. Interstellar molecular clouds and circumstellar envelopes are factories of complex molecular synthesis. A surprisingly large number of molecules that are used in contemporary biochemistry on Earth are found in the interstellar medium, planetary atmospheres and surfaces, comets, asteroids and meteorites, and interplanetary dust particles. In this article we review the current knowledge of abundant organic material in different space environments and investigate the connection between presolar and solar system material, based on observations of interstellar dust and gas, cometary volatiles, simulation experiments, and the analysis of extraterrestrial matter. Current challenges in astrochemistry are discussed and future research directions are proposed. PMID:20554702
Enigmatic Extinction: An Investigation of the 2175Å Extinction Bump in M101
NASA Astrophysics Data System (ADS)
Danowski, Meredith E.; Cook, Timothy; Gordon, Karl D.; Chakrabarti, Supriya; Lawton, Brandon L.; Misselt, Karl A.
2014-06-01
Evidence from studies of starburst galaxies indicates that active formation of high mass stars modifies the UV dust extinction curve as seen by a lack of the characteristic 2175Å bump. For over 45 years, the source of the 2175Å extinction feature has yet to be positively identified. Small aromatic/PAH grains are suggested as a leading contender in dust grain models. The face-on spiral galaxy M101 is an ideal laboratory for the study of dust, with many well-studied HII regions and a steep metallicity and ionization gradient.The Interstellar Medium Absorption Gradient Experiment Rocket (IMAGER) probes the correlation between dust extinction, and the metallicity and radiation environment in M101 at ultraviolet wavelengths. IMAGER simultaneously images M101 in three 400Å-wide bandpasses, measuring the apparent strength of the 2175Å bump and the UV continuum.Combining data from IMAGER with high S/N far- and near- UV observations from the MAMA detectors on the Hubble STIS instrument, we examine the apparent strength of the 2175Å bump in HII regions of M101. With additional infrared data from Spitzer, the DIRTY radiative transfer model, and stellar evolution models, we probe the correlation between the 2175Å feature and the aromatic/PAH features across HII regions of varying metallicity and radiation field hardness. The results of this experiment will directly impact our understanding of the nature of dust and our ability to accurately account for the effects of dust on observations at all redshifts.
Observations of Interstellar HI Toward Nearby Late-type Stars
NASA Technical Reports Server (NTRS)
Landsman, W. B.; Henry, R. C.; Moos, H. W.; Linsky, J. L.
1984-01-01
High-disperson Copernicus and IUE observations of chromospheric Ly alpha emission are used to study the distribution of HI in the local interstellar medium. Interstellar parameters are derived toward 3 stars within 5 pc of the Sun, and upper limits are given for the Ly alpha flux from 9 other stars within 10 pc.
Herschel-PACS observation of gas lines from the disc around HD141569A
NASA Astrophysics Data System (ADS)
Thi, Wing-Fai; Pinte, Christophe; Pantin, Eric; Augereau, Jean-Charles; Meeus, Gwendolyn; Ménard, Francois; Martin-Zaidi, Claire; Woitke, Peter; Riviere-Marichalar, Pablo; Kamp, Inga; Carmona, Andres; Sandell, Goran; Eiroa, Carlos; Dent, William; Montesinos, Benjamin; Aresu, Giambattista; Meijerink, Rowin; Spaans, Marco; White, Glenn; Ardila, David; Lebreton, Jeremy; Mendigutia, Ignacio; Brittain, Sean
2013-07-01
At the distance of ˜ 99-116 pc, HD141569A is one of the nearest HerbigAe stars that is surrounded by a tenuous disc, probably in transition between a massive primordial disc and a debris disc. We observed the fine-structure lines of O I at 63 and 145 μm , and the C II line at 157 μm with the PACS instrument on board the Herschel Space Telescope as part of the open-time large programme GASPS. We complemented the atomic line observations with Spitzer spectroscopic and photometric continuum data, ground-based VLT-VISIR image at 8.6 microns, and 12CO J=3-2 observations. We simultaneously modelled the continuum emission and the line fluxes with the Monte-Carlo radiative transfer code MCFOST and the thermo-chemical code ProDiMo to derive the disc gas and dust properties. We modelled the [O I] lines at 63 μm and at 145 μm, and the [C II] line at 157 μm. The models show that the oxygen lines are emitted from the inner disc around HD141569A, whereas the [C II] line emission is more extended. The CO submillimeter flux is emitted from the outer disc. Simultaneous modelling of the photometric and line data using a realistic disc structure suggests a dust mass derived from grains having a radius less than 1 mm of ˜ 2.1 × 10-7M⊙ and a total solid mass of 4.9 × 10-6 M⊙ . We constrained the PAH mass to be between 2 × 10-11 and 1.4 × 10-10 M⊙ depending on the size of the PAH. The associated PAH abundance is lower than those found in the interstellar medium by two to three orders of magnitude. The gas mass is a few 10-4M⊙. We constrained simultaneously the silicate dust grain, PAH, and gas mass in an evolved Herbig Ae disc. The uncertainty on the gas mass is large (around a factor 5) because the different gas tracers give estimates that do not agree with each other.
From simple to complex prebiotic chemistry in a carbon-rich universe
NASA Astrophysics Data System (ADS)
Lage, C.; Janot-Pacheco, E.; Domiciano de Souza, A.; Suárez, O.; Bendjoya, P.; Gadotti, D. A.
2012-09-01
It is well known that the main components of important biomolecules are quite common not only in the Solar System, but also in other planetary systems and in the Galactic ISM. The ubiquitous presence of C in the Universe and the unique carbon chemical properties and carbon bonding thermodynamics supports the spontaneous self-replication of monomers into larger polymers, yielding the formation of large molecules. The detection of an ever increasing number of organic molecules in the interstellar medium (ISM) by radio-telescopes and chemical analysis of meteorites boosted astrochemical theories on radiation-induced chemistry, supported by laboratory experiments. In this scenario of exogenous origin of carbon compounds, polyaromatic hydrocarbons (PAHs) may represent a resilient way of accumulating carbon as a robust cosmic reservoir. Consisting of a family of compounds with fused aromatic rings, the abundances of its larger members (50-100 carbon atoms) were estimated to be on top scores just after H2 and CO. PAHs have been detected in the ISM, in star-forming regions, ~14% of low-mass premainsequence stars, and, remarkably, in some 54% of intermediate mass stars. They have also been detected by SPITZER in distant galaxies up to z = 3. PAHs were promptly photolysed into a family of radicals if exposed to UV and oxygen-bearing molecules in laboratory. The presence of oxygenbearing molecules was shown in the laboratory to bring aromatic rings into an unstable chemistry leading to the production of e.g. alcohols, ketones and ether radicals. It has already been observed that carbon-and oxygen-rich stellar envelopes give rise to richer carbon chemistry. It appears very tempting to think that key prebiotic fragments should appear along planetary formation as C-O reaction byproducts such as methanol (CH3OH), formaldehyde (H2CO) and also simpler hydrocarbons as methyl acetylene (CH3CCH). Under an Astrobiology perspective it is plausible to map PAHs and oxygen compounds together in the same target - envelopes of young stars - with the ALMA facility. We intend to do it in the frame of a CNRS funded international collaboration between Brazilian groups, OCA and ESO.
Biodegradation of PAHs in Soil: Influence of Initial PAHs Concentration
NASA Astrophysics Data System (ADS)
Kamil, N. A. F. M.; Talib, S. A.
2016-07-01
Most studies on biodegradation of Polycyclic Aromatic Hydrocarbons (PAHs) evaluate the effect of initial PAHs concentration in liquid medium. There are limited studies on evaluation in solid medium such as contaminated soil. This study investigated the potential of the bacteria, Corynebacterium urealyticum isolated from municipal sludge in degrading phenanthrene contaminated soil in different phenanthrene concentration. Batch experiments were conducted over 20 days in reactors containing artificially contaminated phenanthrene soil at different concentration inoculated with a bacterial culture. This study established the optimum condition for phenanthrene degradation by the bacteria under nonindigenous condition at 500 mg/kg of initial phenanthrene concentration. High initial concentration required longer duration for biodegradation process compared to low initial concentration. The bacteria can survive for three days for all initial phenanthrene concentrations.
NASA Technical Reports Server (NTRS)
Sandford, Scott A.; Bernstein, Max P.; Materese, Christopher K.
2013-01-01
A population of polycyclic aromatic hydrocarbons (PAHs) and related materials are thought to be responsible for the family of infrared emission features that are seen towards a wide variety of astrophysical environments. A potentially important subclass of these materials are polycyclic aromatic hydrocarbons whose edges contain excess H atoms (H(sub n)-PAHs). While it has been suggested that this type of compound may be present in the interstellar population, it has been difficult to properly assess this possibility because of a lack of suitable infrared laboratory spectra to assist with analysis of the astronomical data. We present the 4000-500 cm(exp -1) (2.5-20 micrometers) infrared spectra of 23 H(sub n)-PAHs and related molecules isolated in argon matrices, under conditions suitable for use in the interpretation of astronomical data. The spectra of molecules with mixed aromatic and aliphatic domains show unique characteristics that distinguish them from their fully aromatic PAH equivalents. We discuss the changes to the spectra of these types of molecules as they transition from fully aromatic to fully aliphatic forms. The implications for the interpretation of astronomical spectra are discussed with specific emphasis on the 3.4 and 6.9 micrometer features. Laboratory data is compared with emission spectra from IRAS 21282+5050, an object with normal PAH emission features, in addition to IRAS 22272+5435 and IRAS 0496+3429, two protoplanetary nebulae with abnormally large 3.4 micrometer features. We show that 'normal' PAH emission objects contain relatively few H(sub n)-PAHs in their emitter populations, but less evolved protoplanetary nebulae may contain significant abundances of these molecules.
NASA Astrophysics Data System (ADS)
Materese, Christopher K.; Bregman, Jesse D.; Sandford, Scott A.
2017-12-01
Polycyclic aromatic hydrocarbons (PAHs) are generally believed to be ubiquitous in space and responsible for numerous telltale interstellar infrared emission bands. In Sandford et al., we suggested that PAHs with excess hydrogenation at their periphery ({{{H}}}{{n}}-PAHs) may be an important subclass of these molecules in some astrophysical environments. These molecules are candidates to explain objects with anomalously large 3.4 μm features, which are presumed to be associated with the aliphatic C-H stretching vibrations of the excess hydrogen. In that work, we suggest that for Hn-PAHs to be a viable candidate as the source for this 3.4 μm feature, we must also expect to observe methylene scissoring modes at 6.9 μm. In this work, we continue to develop the {{{H}}}{{n}} - {PAH} hypothesis with a focus on the 6.9 μm feature. We also present some new observations of three post-asymptotic giant branch (post-AGB) objects with abnormally large 3.4 μm features, IRAS 04296+3429, IRAS 05341+0852, and IRAS 22272+5435, in addition to one post-AGB object with normal PAH emissions, IRAS 20000+3239. These observations were made using the FORCAST instrument in grism mode on the Stratospheric Observatory for Infrared Astronomy aircraft and demonstrate the presence of a 6.9 μm feature for the three objects with abnormally large 3.4 μm features and no detectable 6.9 μm feature for the normal PAH emitter. These results are consistent with the hypothesis that Hn-PAHs are a possible source of these infrared emission bands.
Carbon chain abundance in the diffuse interstellar medium
NASA Technical Reports Server (NTRS)
Allamandola, L. J.; Hudgins, D. M.; Bauschlicher, C. W. Jr; Langhoff, S. R.
1999-01-01
Thanks to the mid-IR sensitivities of the ISO and IRTS orbiting spectrometers it is now possible to search the diffuse interstellar medium for heretofore inaccessible molecular emission. In view of the recent strong case for the presence of C(7-) (Kirkwood et al. 1998, Tulej et al. 1998),and the fact that carbon chains possess prominent infrared active modes in a very clean portion of the interstellar spectrum, we have analyzed the IRTS spectrum of the diffuse interstellar medium for the infrared signatures of these species. Theoretical and experimental infrared band frequencies and absolute intensities of many different carbon chain species are presented. These include cyanopolyynes, neutral and anionic linear carbon molecules, and neutral and ionized, even-numbered, hydrogenated carbon chains. We show that--as a family--these species have abundances in the diffuse ISM on the order of 10(-10) with respect to hydrogen, values consistent with their abundances in dense molecular clouds. Assuming an average length of 10 C atoms per C-chain implies that roughly a millionth of the cosmically available carbon is in the form of carbon chains and that carbon chains can account for a few percent of the visible to near-IR diffuse interstellar band (DIB) total equivalent width (not DIB number).
NASA Astrophysics Data System (ADS)
Walker, M. A.; Koopmans, L. V. E.; Stinebring, D. R.; van Straten, W.
2008-08-01
The dynamic spectrum of a radio pulsar is an in-line digital hologram of the ionized interstellar medium. It has previously been demonstrated that such holograms permit image reconstruction, in the sense that one can determine an approximation to the complex electric field values as a function of Doppler shift and delay, but to date the quality of the reconstructions has been poor. Here we report a substantial improvement in the method which we have achieved by simultaneous optimization of the thousands of coefficients that describe the electric field. For our test spectrum of PSRB0834+06 we find that the model provides an accurate representation of the data over the full 63dB dynamic range of the observations: residual differences between model and data are noise like. The advent of interstellar holography enables detailed quantitative investigation of the interstellar radio-wave propagation paths for a given pulsar at each epoch of observation. We illustrate this using our test data which show the scattering material to be structured and highly anisotropic. The temporal response of the medium exhibits a scattering tail which extends to beyond 100μs, and the centroid of the pulse at this frequency and this epoch of observation is delayed by approximately 15μs as a result of multipath propagation in the interstellar medium.
2002-11-11
KENNEDY SPACE CENTER, FLA. - The Cosmic Hot Interstellar Plasma Spectrometer, or CHIPSat, undergoes final processing before launch. CHIPSat, a suitcase-size 131-pound satellite, will provide invaluable information into the origin, physical processes and properties of the hot gas contained in the interstellar medium. This can provide important clues about the formation and evolution of galaxies since the interstellar medium literally contains the seeds of future stars. CHIPSat is scheduled for launch, with the Ice, Cloud, and Land Elevation Satellite (ICESat), on a Delta II expendable launch vehicle from Vandenberg Air Force Base, Calif., on Jan. 11, 2003, between 4:45 p.m. - 5:30 p.m. PST.
2002-11-11
KENNEDY SPACE CENTER, FLA. - The Cosmic Hot Interstellar Plasma Spectrometer, or CHIPSat, undergoes final processing before launch. CHIPSat, a suitcase-size 131-pound satellite, will provide invaluable information into the origin, physical processes and properties of the hot gas contained in the interstellar medium. This can provide important clues about the formation and evolution of galaxies since the interstellar medium literally contains the seeds of future stars. CHIPSat is scheduled for launch, with the Ice, Cloud, and Land Elevation Satellite (ICESat), on a Delta II expendable launch vehicle from Vandenberg Air Force Base, Calif., on Jan. 11, 2003, between 4:45 p.m. - 5:30 p.m. PST.
2002-11-11
KENNEDY SPACE CENTER, FLA. - The Cosmic Hot Interstellar Plasma Spectrometer, or CHIPSat, undergoes final processing before launch. CHIPSat, a suitcase-size 131-pound satellite, will provide invaluable information into the origin, physical processes and properties of the hot gas contained in the interstellar medium. This can provide important clues about the formation and evolution of galaxies since the interstellar medium literally contains the seeds of future stars. CHIPSat is scheduled for launch, with the Ice, Cloud, and Land Elevation Satellite (ICESat), on a Delta II expendable launch vehicle from Vandenberg Air Force Base, Calif., on Jan. 11, 2003, between 4:45 p.m. - 5:30 p.m. PST.
2002-11-11
KENNEDY SPACE CENTER, FLA. - The Cosmic Hot Interstellar Plasma Spectrometer, or CHIPSat, undergoes final processing before launch. CHIPSat, a suitcase-size 131-pound satellite, will provide invaluable information into the origin, physical processes and properties of the hot gas contained in the interstellar medium. This can provide important clues about the formation and evolution of galaxies since the interstellar medium literally contains the seeds of future stars. CHIPSat is scheduled for launch, with the Ice, Cloud, and Land Elevation Satellite (ICESat), on a Delta II expendable launch vehicle from Vandenberg Air Force Base, Calif., on Jan. 11, 2003, between 4:45 p.m. - 5:30 p.m. PST.
Radio emission from supernova remnants in a cloudy interstellar medium
NASA Technical Reports Server (NTRS)
Blandford, R. D.; Cowie, L. L.
1982-01-01
The van der Laan (1962) theory of SNR radio emission is modified in light of the inhomogeneity of the interstellar medium, and in order to allow for particle acceleration in shock fronts. It is proposed that most of the radio emission in 10-20 pc radius SNRs originates in cold interstellar clouds that have been crushed by the high pressure hot gas within the expanding remnant. Under these circumstances, simple reacceleration of ambient interstellar cosmic ray electrons can account for the surface brightness-diameter distribution of observed remnants, with the additional, relativistic particle energy compensating for the decreased filling factor of the radio-emitting regions. Warm interstellar gas, at about 8000 K, may also be compressed within very large SNRs (of radius of 30-100 pc) and account for both the giant radio loops, when these SNRs are seen individually, and the anomalously bright galactic nonthermal radio background, which may be the superposition of a number of such features.
A study of birefringence in the interstellar medium in the direction of the Crab Nebula
NASA Technical Reports Server (NTRS)
Martin, P. G.; Angel, J. R. P.
1974-01-01
The interstellar medium may be regarded as a weak wave plate, the linear birefringence arising from the aligned grains which produce interstellar linear polarization. Using the Crab Nebula as a background source of linearly polarized light we have investigated this birefringence by measurements of circular polarization. The circular component is found to vary with the intrinsic linear polarization in a sinusoidal fashion characteristic of a wave plate with the orientation expected from independent measurements of the interstellar linear polarization in the same direction. Measurements of the wavelength dependence, together with the sense and magnitude of the circular polarization are interpreted as evidence for the dielectric nature of the interstellar grain materials. These observations provide a firm basis for a similar interpretation of the circular polarization of reddened stars. The observations of the stars can then be used to study the grain composition and the structure of the magnetic field in many directions in the Galaxy.
SILICATE COMPOSITION OF THE INTERSTELLAR MEDIUM
DOE Office of Scientific and Technical Information (OSTI.GOV)
Fogerty, S.; Forrest, W.; Watson, D. M.
2016-10-20
The composition of silicate dust in the diffuse interstellar medium and in protoplanetary disks around young stars informs our understanding of the processing and evolution of the dust grains leading up to planet formation. An analysis of the well-known 9.7 μ m feature indicates that small amorphous silicate grains represent a significant fraction of interstellar dust and are also major components of protoplanetary disks. However, this feature is typically modeled assuming amorphous silicate dust of olivine and pyroxene stoichiometries. Here, we analyze interstellar dust with models of silicate dust that include non-stoichiometric amorphous silicate grains. Modeling the optical depth alongmore » lines of sight toward the extinguished objects Cyg OB2 No. 12 and ζ Ophiuchi, we find evidence for interstellar amorphous silicate dust with stoichiometry intermediate between olivine and pyroxene, which we simply refer to as “polivene.” Finally, we compare these results to models of silicate emission from the Trapezium and protoplanetary disks in Taurus.« less
NASA Technical Reports Server (NTRS)
Robertson, P. C.
1978-01-01
Abstracts of 25 papers relating to condensation processes in the early solar system are presented. Special emphasis is given to the transition of an initial vapor phase in the space medium, the characterization of condensation environments, and condensation processes in the space medium. The question of whether some fraction of the solar system solids (particularly exemplified by meteoritic solids) may be interstellar grains that gathered in the region of the proto-sun, rather than being products of local condensation is addressed.
Magnetized Neutron Stars in the Interstellar Medium
NASA Astrophysics Data System (ADS)
Toropina, O. D.; Romanova, M. M.; Lovelace, R. V. E.
2014-09-01
We investigate the propagation of magnetized, isolated old neutron stars through the interstellar medium. We performed axisymmetric, non-relativistic magnetohydrodynamic simulations of the supersonic motion of neutron star with dipole magnetic field aligned with its velocity through the interstellar medium (ISM). We consider two cases: (1) where the accretion radius is larger than Alfvén radius, i.e. Racc>>RA and gravitational focusing is important; and (2) where Racc<
Molecules as diagnostic tools in the interstellar medium
NASA Astrophysics Data System (ADS)
Spielfiedel, A.; Feautrier, N.; Balança, C.; Dayou, F.; Lique, F.; Senent, M.-L.
Analysis of light emission from different regions of the interstellar medium and circumstellar environments provides crucial information about the chemical composition and the physical conditions in these regions. Interpretation of the observed spectra requires the knowledge of collisional excitation rates as well as radiative rates participating to the line formation. In the first part, the paper focuses on collisional excitation rates of molecules relevant to the interstellar medium. It discusses currently available data and outlines new work carried out by the authors. Due to the use of accurate ab initio potential energy surfaces, the new rate coefficients differ significantly from previously published ones. In the second part, it is analysed from two examples how the use of the new rate coefficients could lead to important changes in the interpretation of molecular emission emerging from molecular clouds.
Modeling Shocks Detected by Voyager 1 in the Local Interstellar Medium
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kim, T. K.; Pogorelov, N. V.; Burlaga, L. F.
The magnetometer (MAG) on Voyager 1 ( V1 ) has been sampling the interstellar magnetic field (ISMF) since 2012 August. The V1 MAG observations have shown draped ISMF in the very local interstellar medium disturbed occasionally by significant enhancements in magnetic field strength. Using a three-dimensional, data-driven, multi-fluid model, we investigated these magnetic field enhancements beyond the heliopause that are supposedly associated with solar transients. To introduce time-dependent effects at the inner boundary at 1 au, we used daily averages of the solar wind parameters from the OMNI data set. The model ISMF strength, direction, and proton number density aremore » compared with V1 data beyond the heliopause. The model reproduced the large-scale fluctuations between 2012.652 and 2016.652, including major events around 2012.9 and 2014.6. The model also predicts shocks arriving at V1 around 2017.395 and 2019.502. Another model driven by OMNI data with interplanetary coronal mass ejections (ICMEs) removed at the inner boundary suggests that ICMEs may play a significant role in the propagation of shocks into the interstellar medium.« less
Dust Destruction in the ISM: A Re-Evaluation of Dust Lifetimes
NASA Technical Reports Server (NTRS)
Jones, A. P.; Nuth, J. A., III
2011-01-01
There is a long-standing conundrum in interstellar dust studies relating to the discrepancy between the time-scales for dust formation from evolved stars and the apparently more rapid destruction in supernova-generated shock waves. Aims. We re-examine some of the key issues relating to dust evolution and processing in the interstellar medium. Methods. We use recent and new constraints from observations, experiments, modelling and theory to re-evaluate dust formation in the interstellar medium (ISM). Results. We find that the discrepancy between the dust formation and destruction time-scales may not be as significant as has previously been assumed because of the very large uncertainties involved. Conclusions. The derived silicate dust lifetime could be compatible with its injection time-scale, given the inherent uncertainties in the dust lifetime calculation. The apparent need to re-form significant quantities of silicate dust in the tenuous interstellar medium may therefore not be a strong requirement. Carbonaceous matter, on the other hand, appears to be rapidly recycled in the ISM and, in contrast to silicates, there are viable mechanisms for its re-formation in the ISM.
NASA Technical Reports Server (NTRS)
Bruhweiler, F. C.; Kondo, Y.
1981-01-01
High-resolution spectra of the nearby (48 pc) white dwarf G191-B2B, obtained with the International Ultraviolet Explorer, reveal sharp resonance lines of N V, C IV, and Si IV. The origin of these features is most likely linked to the white dwarf, possibly being formed in an expanding halo around the star. Interstellar lines of C II, N I, Mg II, Si II, and Fe II are also seen in the spectrum. Analysis of these features indicates an average neutral hydrogen number density of 0.064 for this line of sight. In combination with the recent EUV and soft X-ray results, this is interpreted to mean that the interstellar medium in the most immediate solar vicinity is of the normal density n approximately equal to 0.1/cu cm of lower ionization, while just beyond it, at least in some directions, is a hot lower density plasma. These results are apparently in conflict with the model of the interstellar medium by McKee and Ostriker (1977) in its present form.
NASA Technical Reports Server (NTRS)
Chaban, Galina M.
2004-01-01
Anharmonic vibrational frequencies and intensities are calculated for OH(H2O)n and H(H2O)n radicals (that form on icy particles of the interstellar medium), HCO radical (the main intermediate in the synthesis of organic molecules in space), NH2(-) and C2H(-) anions, H5(+) cation, and other systems relevant to interstellar chemistry. In addition to pure ions and radicals, their complexes with water are studied to assess the effects of water environment on infrared spectra. The calculations are performed using the correlation-corrected vibrational self-consistent field (CC-VSCF) method with ab initio potential surfaces at the MP2 and CCSD(T) levels. Fundamental, overtone, and combination excitations are computed. The results are in good agreement with available experimental data and provide reliable predictions for vibrational excitations not yet measured in laboratory experiments. The data should be useful for interpretation of astronomically observed spectra and identification of ions and radicals present in the interstellar medium and in planetary atmospheres.
Polycyclic Aromatic Hydrocarbon Far-infrared Spectroscopy
NASA Astrophysics Data System (ADS)
Boersma, C.; Bauschlicher, C. W., Jr.; Ricca, A.; Mattioda, A. L.; Peeters, E.; Tielens, A. G. G. M.; Allamandola, L. J.
2011-03-01
The far-IR characteristics of astrophysically relevant polycyclic aromatic hydrocarbons (PAHs) averaging in size around 100 carbon atoms have been studied using the theoretical spectra in the NASA Ames PAH IR Spectroscopic Database. These spectra were calculated using density functional theory. Selections of PAH species are made, grouped together by common characteristics or trends, such as size, shape, charge, and composition, and their far-IR spectra compared. The out-of-plane modes involving the entire molecule are explored in detail, astronomical relevance is assessed, and an observing strategy is discussed. It is shown that PAHs produce richer far-IR spectra with increasing size. PAHs also produce richer far-IR spectra with increasing number of irregularities. However, series of irregular-shaped PAHs with the same compact core have common "Jumping-Jack" modes that "pile up" at specific frequencies in their average spectrum. For the PAHs studied here, around 100 carbon atoms in size, this band falls near 50 μm. PAH charge and nitrogen inclusion affect band intensities but have little effect on far-IR band positions. Detailed analysis of the two-dimensional, out-of-plane bending "drumhead" modes in the coronene and pyrene "families" and the one-dimensional, out-of-plane bending "bar" modes in the acene "family" show that these molecular vibrations can be treated as classical vibrating sheets and bars of graphene, respectively. The analysis also shows that the peak position of these modes is very sensitive to the area of the emitting PAH and does not depend on the particular geometry. Thus, these longest wavelength PAH bands could provide a unique handle on the size of the largest species in the interstellar PAH family. However, these bands are weak. Observing highly excited regions showing the mid-IR bands in which the emission from classical dust peaks at short wavelengths offers the best chance of detecting PAH emission in the far-IR. For these regions sensitivity is not an issue, spectral contrast is maximized and the PAH population is only comprised of highly stable, compact symmetric PAHs, such as the members of the pyrene and coronene "families" discussed in detail here.
Status of the Stardust ISPE and the Origin of Four Interstellar Dust Candidates
NASA Technical Reports Server (NTRS)
Westphal, A. J.; Allen, C.; Ansari, A.; Bajt, S.; Bastien, R. S.; Bassim, N.; Bechtel, H. A.; Borg, J.; Brenker, F. E.; Bridges, J.;
2012-01-01
Some bulk properties of interstellar dust are known through infrared and X-ray observations of the interstellar medium. However, the properties of individual interstellar dust particles are largely unconstrained, so it is not known whether individual interstellar dust particles can be definitively distinguished from interplanetary dust particles in the Stardust Interstellar Dust Collector (SIDC) based only on chemical, mineralogical or isotopic analyses. It was therefore understood from the beginning of the Stardust Interstellar Preliminary Examination (ISPE) that identification of interstellar dust candidates would rest on three criteria - broad consistency with known extraterrestrial materials, inconsistency with an origin as secondary ejecta from impacts on the spacecraft, and consistency, in a statistical sense, of observed dynamical properties - that is, trajectory and capture speed - with an origin in the interstellar dust stream. Here we quantitatively test four interstellar dust candidates, reported previously [1], against these criteria.
Interstellar/Precometary Organic Material and the Photochemical Evolution of Complex Organics
NASA Technical Reports Server (NTRS)
Allamandola, Lou J.; Bernstein, Max; Sandford, Scott; Witteborn, Fred (Technical Monitor)
1996-01-01
During the past two decades ground-, air-, and space-based infrared spectroscopic observations, combined with realistic laboratory simulations, have revolutionized our understanding of interstellar ice and dust, the raw materials from which planets, comets and stars form. Most interstellar material is concentrated in Large molecular clouds where simple molecules are formed by dust grain and gas phase reactions. Gaseous species striking the cold (10 K) dust will stick, forming an icy grain mantle. This accretion, coupled with energetic particle bombardment and UV photolysis, will produce a complex chemical mixture containing volatile, non-volatile, and isotopically fractionated species. Ices in molecular clouds contain the very simple molecules H2O, CH3OH, CO, CO2, H2, and perhaps some NH3 and H2CO, as well as more complex species including nitriles and ketones or esters. The evidence for these compounds as well as carbon rich materials such as polycyclic aromatic hydrocarbons (PAHs), microdiamonds, and amorphous carbon will be reviewed and the possible connections with comets and meteorites will be presented in the first part of the talk. The second part of the presentation will focus on interstellar/precometary ice photochemical evolution. The chemical composition and photochemical evolution of realistic interstellar/pre-cometary ice analogs containing methanol will be discussed. ultraviolet photolysis of these ices produces H2, H2CO, CO2, CO, CH4, HCO, and more complex molecules. Infrared spectroscopy, H-1 and C-13 nuclear magnetic resonance (NMR) spectroscopy, and gas chromatography-mass spectrometry demonstrate that when ices representative of interstellar grains and comets are exposed to UV radiation at low temperature a series of moderately complex organic molecules are formed in the ice including: CH3CH2OH (ethanol), HC(=O)NH2 (formamide), CH3C(=O)NH2 (acetamide), and R-C(integral)N (nitriles). Several of these are already known to be in the interstellar medium, and their presence indicates the importance of grain processing. After warming to room temperature what remains is an organic residue composed primarily of Hexamethylenetetramine (HMT, C6H12N4), with lesser amounts of polyoxymethylene related species (POMs), amides, and ketones. This is in sharp contrast to the organic residues produced by irradiating ices which do not contain methanol (unrealistic interstellar ice analogs) or thermally promoted polymerization-type reactions in unirradiated realistic ice mixtures. Here HMT is only a minor product in a residue dominated by a mixture of polyoxymethylene related species. The implications, for infrared astronomy and astrochemistry, of high concentrations of HMT in interstellar and cometary ices may be profound. The ultraviolet photolysis of HMT frozen in H20 ice produces the "XCN" band observed in the spectra of protostellar objects and laboratory ices, as well as carbon oxides and other nitriles. Thus, HMT may be a precursor of XCN in protostellar objects and a source of CN and CO in the tail of comets. Also, HMT is known to hydrolyze under acidic conditions to yield ammonia and formaldehyde as well as amino acids. Thus, HMT may have been a source of organic material delivered to the early earth by comets.
Catalog of open clusters and associated interstellar matter
NASA Technical Reports Server (NTRS)
Leisawitz, David
1988-01-01
The Catalog of Open Clusters and Associated Interstellar Matter summarizes observations of 128 open clusters and their associated ionized, atomic, and molecular iinterstellar matter. Cluster sizes, distances, radial velocities, ages, and masses, and the radial velocities and masses of associated interstellar medium components, are given. The database contains information from approximately 400 references published in the scientific literature before 1988.
First Results from the Interstellar Boundary Explorer (IBEX) Mission
NASA Astrophysics Data System (ADS)
McComas, David J.
2010-03-01
The Interstellar Boundary Explorer (IBEX) is a Small Explorer mission designed to study the global interaction between the heliosphere and the local interstellar medium. IBEX does this by measuring energetic neutral atoms (ENAs) created by both solar wind ions and pickup ions in the solar wind when they charge exchange with cold interstellar neutrals drifting in from the interstellar medium. Because the ENAs are not magnetically confined, some of them propagate back into the inner heliosphere, where IBEX can detect them. IBEX was launched October 19th 2008, using a new launch technique that was also developed as a part of the IBEX project. The first scientific observations from IBEX were of ENAs coming from the Moon-these represented the first ever lunar ENA observations from any spacecraft and provided important information about the universal physical processes of backscatter and neutralization from complex planetary surfaces like the lunar regolith. Since then, IBEX has been collecting its first all-sky maps of heliospheric ENAs and initial direct, in situ observations of interstellar H, He, and O. At the time of this writing, these observations have been submitted and are under review for a special IBEX section of Science magazine nominally scheduled to be published in October 2009.
Observational Evidence Linking Interstellar UV Absorption to PAH Molecules
DOE Office of Scientific and Technical Information (OSTI.GOV)
Blasberger, Avi; Behar, Ehud; Perets, Hagai B.
The 2175 Å UV extinction feature was discovered in the mid-1960s, yet its physical origin remains poorly understood. One suggestion is absorption by polycyclic aromatic hydrocarbon (PAH) molecules, which is supported by theoretical molecular structure computations and by laboratory experiments. PAHs are positively detected by their 3.3, 6.2, 7.7, 8.6, 11.3, and 12.7 μ m IR emission bands, which are specified by their modes of vibration. A definitive empirical link between the 2175 Å UV extinction and the IR PAH emission bands, however, is still missing. We present a new sample of hot stars that have both 2175 Å absorptionmore » and IR PAH emission. We find significant shifts of the central wavelength of the UV absorption feature, up to 2350 Å, but predominantly in stars that also have IR PAH emission. These UV shifts depend on stellar temperature in a fashion that is similar to the shifts of the 6.2 and 7.7 μ m IR PAH bands, that is, the features are increasingly more redshifted as the stellar temperature decreases, but only below ∼15 kK. Above 15 kK both UV and IR features retain their nominal values. Moreover, we find a suggestive correlation between the UV and IR shifts. We hypothesize that these similar dependences of both the UV and IR features on stellar temperature hint at a common origin of the two in PAH molecules and may establish the missing link between the UV and IR observations. We further suggest that the shifts depend on molecular size, and that the critical temperature of ∼15 kK above which no shifts are observed is related to the onset of UV-driven hot-star winds and their associated shocks.« less
Observational Evidence Linking Interstellar UV Absorption to PAH Molecules
NASA Astrophysics Data System (ADS)
Blasberger, Avi; Behar, Ehud; Perets, Hagai B.; Brosch, Noah; Tielens, Alexander G. G. M.
2017-02-01
The 2175 Å UV extinction feature was discovered in the mid-1960s, yet its physical origin remains poorly understood. One suggestion is absorption by polycyclic aromatic hydrocarbon (PAH) molecules, which is supported by theoretical molecular structure computations and by laboratory experiments. PAHs are positively detected by their 3.3, 6.2, 7.7, 8.6, 11.3, and 12.7 μm IR emission bands, which are specified by their modes of vibration. A definitive empirical link between the 2175 Å UV extinction and the IR PAH emission bands, however, is still missing. We present a new sample of hot stars that have both 2175 Å absorption and IR PAH emission. We find significant shifts of the central wavelength of the UV absorption feature, up to 2350 Å, but predominantly in stars that also have IR PAH emission. These UV shifts depend on stellar temperature in a fashion that is similar to the shifts of the 6.2 and 7.7 μm IR PAH bands, that is, the features are increasingly more redshifted as the stellar temperature decreases, but only below ˜15 kK. Above 15 kK both UV and IR features retain their nominal values. Moreover, we find a suggestive correlation between the UV and IR shifts. We hypothesize that these similar dependences of both the UV and IR features on stellar temperature hint at a common origin of the two in PAH molecules and may establish the missing link between the UV and IR observations. We further suggest that the shifts depend on molecular size, and that the critical temperature of ˜15 kK above which no shifts are observed is related to the onset of UV-driven hot-star winds and their associated shocks.
The XMM-Newton View of Wolf-Rayet Bubbles
NASA Astrophysics Data System (ADS)
Guerrero, M.; Toala, J.
2017-10-01
The powerful stellar winds of Wolf-Rayet (WR) stars blow large bubble into the circumstellar material ejected in previous phases of stellar evolution. The shock of those stellar winds produces X-ray-emitting hot plasmas which tells us about the diffusion of processed material onto the interstellar medium, about processes of heat conduction and turbulent mixing at the interface, about the late stages of stellar evolution, and about the shaping of the circumstellar environment, just before supernova explosions. The unique sensitivity of XMM-Newton has been key for the detection, mapping and spectral analysis of the X-ray emission from the hot bubbles around WR stars. These observations underscore the importance of the structure of the interstellar medium around massive stars, but they have also unveiled unknown phenomena, such as blowouts of hot gas into the interstellar medium or spatially-resolved spectral properties of the hot gas, which disclose inhomogeneous chemical abundances and physical properties across these bubbles.
NASA Technical Reports Server (NTRS)
Abbas, M. M.; Tankosic, D.; Craven, P. D.; Spann, J. F.; LeClair, A.; West, E. A.
2005-01-01
Microdsub-micron size cosmic dust grains play an important role in the physical and dynamical process in the galaxy, the interstellar medium, and the interplanetary and planetary environments. The dust grains in various astrophysical environments are generally charged by a variety of mechanisms that include collisional process with electrons and ions, and photoelectric emissions with UV radiation. The photoelectric emission process is believed to be the dominant process in many astrophysical environments with nearby UV sources, such as the interstellar medium, diffuse clouds, the outer regions of the dense molecular clouds, interplanetary medium, dust in planetary environments and rings, cometary tails, etc. Also, the processes and mechanisms involved in the rotation and alignment of interstellar dust grains are of great interest in view of the polarization of observed starlight as a probe for evaluation of the galactic magnetic field.
NASA Technical Reports Server (NTRS)
Geballe, T. R.; Tielens, A. G. G. M.; Allamandola, L. J.; Moorhouse, A.; Brand, P. W. J. L.
1989-01-01
Spectra at 3 microns have been obtained at several positions in the Orion Bar region and in the nebula surrounding HD 44179. Weak emission features at 3.40, 3.46, 3.51, and 3.57 microns are prominent in the Orion Bar region. The 3.40- and 3.51-micron features increase in intensity relative to the dominant 3.29-micron feature. The spectrum obtained in the Red Rectangle region 5 arcsecs north of HD 44179 are similar to those in the Orion Bar, with a weak, broad 3.40-micron feature at the position of HD 44179. The spatial behavior of the weak emission features is explained in terms of hot bands of the CH stretch and overtones, and combination bands of other fundamental vibrations in simple PAHs. Based on the susceptibility of PAHs to destruction by the far UV fields in both regions, PAH sizes are estimated at 20-50 carbon atoms.
NASA Technical Reports Server (NTRS)
Zare, Richard N.
2005-01-01
The work funded by this research grant includes four specific projects: (1) Mapping the spatial distribution of polycyclic aromatic hydrocarbons (PAHs) in a variety of meteoritic samples and comparing this distribution with mineralogical features of the meteorite to determine whether a correlation exists between the two. (2) Developing a method for detection of fullerenes in extraterrestrial samples using microprobe laser-desorption laser-ionization mass spectrometry ( pL2MS) and utilizing this technique to investigate fullerene presence, while exploring the possibility of spatially mapping the fullerene distribution in these samples through in situ detection. (3) Investigating a possible formation pathway for meteoritic and ancient terrestrial kerogen involving the photochemical reactions of PAHs with alkanes under prebiotic and astrophysically relevant conditions. (4) Studying reaction pathways and identifying the photoproducts generated during the photochemical evolution of PAH-containing interstellar ice analogs as part of an ongoing collaboration with researchers at the Astrochemistry Lab at NASA Ames.
Theory of interstellar medium diagnostics
NASA Technical Reports Server (NTRS)
Fahr, H. J.
1983-01-01
The theoretical interpretation of observed interplanetary resonance luminescence patterns is used as one of the must promising methods to determine the state of the local interstellar medium (LISM). However, these methods lead to discrepant results that would be hard to understand in the framework of any physical LISM scenario. Assuming that the observational data are reliable, two possibilities which could help to resolve these discrepancies are discussed: (1) the current modeling of resonance luminescence patterns is unsatisfactory and has to be improved, and (2) the extrapolated interstellar parameters are not indicative of the unperturbed LISM state, but rather designate an intermediate state attained in the outer regions of the solar system. It is shown that a quantitative treatment of the neutral gas-plasma interaction effects in the interface between the heliospheric and the interstellar plasmas is of major importance for the correct understanding of the whole complex.
The distribution of interstellar dust in the solar neighborhood
NASA Technical Reports Server (NTRS)
Gaustad, John E.; Van Buren, Dave
1993-01-01
We surveyed the IRAS data base at the positions of the 1808 O6-B9.5 stars in The Bright Star Catalog for extended objects with excess emission at 60 microns, indicating the presence of interstellar dust at the location of the star. Within 400 pc the filling factor of the interstellar medium, for dust clouds with a density greater than 0.5/cu cm is 14.6 + or - 2.4%. Above a density of 1.0/cu cm, the density distribution function appears to follow a power law index - 1.25. When the dust clouds are mapped onto the galactic plane, the sun appears to be located in a low-density region of the interstellar medium of width about 60 pc extending at least 500 pc in the direction of longitudes 80 deg - 260 deg, a feature we call the 'local trough'.
Interstellar molecules and dense clouds.
NASA Technical Reports Server (NTRS)
Rank, D. M.; Townes, C. H.; Welch, W. J.
1971-01-01
Current knowledge of the interstellar medium is discussed on the basis of recent published studies. The subjects considered include optical identification of interstellar molecules, radio molecular lines, interstellar clouds, isotopic abundances, formation and disappearance of interstellar molecules, and interstellar probing techniques. Diagrams are plotted for the distribution of galactic sources exhibiting molecular lines, for hydrogen molecule, hydrogen atom and electron abundances due to ionization, for the densities, velocities and temperature of NH3 in the direction of Sagitarius B2, for the lower rotational energy levels of H2CO, and for temporal spectral variations in masing H2O clouds of the radio source W49. Future applications of the maser and of molecular microscopy in this field are visualized.
Understanding Organics in Meteorites and the Pre-Biotic Environment
NASA Technical Reports Server (NTRS)
Zare, Richard N.
2003-01-01
(1) Refinement of the analytic capabilities of our experiment via characterization of molecule-specific response and the effects upon analysis of the type of sample under investigation; (2) Measurement of polycyclic aromatic hydrocarbons (PAHs) with high sensitivity and spatial resolution within extraterrestrial samples; (3) Investigation of the interstellar reactions of PAHs via the analysis of species formed in systems modeling dust grains and ices; (4) Investigations into the potential role of PAHs in prebiotic and early biotic chemistry via photoreactions of PAHs under simulated prebiotic Earth conditions. To meet these objectives, we use microprobe laser-desorption, laser-ionization mass spectrometry (MuL(exp 2)MS), which is a sensitive, selective, and spatially resolved technique for detection of aromatic compounds. Appendix A presents a description of the MuL(exp 2)MS technique. The initial grant proposal was for a three-year funding period, while the award was given for a one-year interim period. Because of this change in time period, emphasis was shifted from the first research goal, which was more development-oriented, in order to focus more on the other analysis-oriented goals. The progress made on each of the four research areas is given below.
Anisotropy of low-energy Galactic cosmic rays in the outer heliosheath
NASA Astrophysics Data System (ADS)
Zhang, M.; Pogorelov, N.
2017-12-01
Since Voyager 1 crossed the heliopause into the local interstellar medium in August 2012, it has been observing nearly unmodulated low-energy Galactic cosmic rays for over 5 years and 18 AU beyond the heliopause. The angular distribution of these cosmic rays is not isotropic, showing a slight depletion at 90-degree pitch-angle to the magnetic field lines. The anisotropy was interrupted episodically by solar disturbances transmitting through the heliopause into the local interstellar medium of outer heliosheath. These observations indicate the heliosphere still affects cosmic rays in the local interstellar medium. The paper presents a theoretical analysis of the particle transport mechanisms responsible for the observed anisotropy. In order to explain the phenomenon, we argue that cosmic rays of near 90-degree pitch angles do not a quick access to the interstellar cosmic-ray source and in the meantime, they experience some loss in the outer heliosheath. Magnetic field barriers on the both sides of the observer may reduce the access to cosmic ray source, but it still requires that pitch scattering of these particles is very weak in the magnetic field of the outer heliosheath. A possible particle loss mechanism is diffusion into the heliospheric magnetic field where they get modulated by the solar wind plasma. Our model simulation will put constraints on the rates of particle scattering and cross-field diffusion in the interstellar magnetic field of the outer heliosheath.
Interstellar Matters: Neutral Hydrogen and the Galactic Magnetic Field
NASA Astrophysics Data System (ADS)
Verschuur, Gerrit; Schmelz, Joan T.; Asgari-Targhi asgari-Targhi, M.
2018-01-01
The physics of the interstellar medium was revolutionized by the observations of the Galactic Arecibo L-Band Feed Array (GALFA) HI survey done at the Arecibo Observatory. The high-resolution, high-sensitivity, high-dynamic- range images show complex, tangled, extended filaments, and reveal that the fabric of the neutral interstellar medium is deeply tied to the structure of the ambient magnetic field. This discovery prompts an obvious question – how exactly is the interstellar {\\it neutral} hydrogen being affected by the galactic magnetic field? We look into this question by examining a set of GALFA-HI data in great detail. We have chosen a long, straight filament in the southern galactic sky. This structure is both close by and isolated in velocity space. Gaussian analysis of profiles both along and across the filament reveal internal structure – braided strands that can be traced through the simplest part, but become tangled in more complex segments. These braids do not resemble in any way the old spherical HI clouds and rudimentary pressure balance models that were used to explain the pre-GALFA- HI interstellar medium. It is clear that these structures are created, constrained, and dominated by magnetic fields. Like many subfields of astronomy before it, e.g., physics of the solar coronal, extragalactic radio jets, and pulsar environment, scientists are confronted with observations that simply cannot be explained by simple hydrodynamics and are forced to consider magneto-hydrodynamics.
Equation of Motion of an Interstellar Bussard Ramjet with Radiation and Mass Losses
ERIC Educational Resources Information Center
Semay, Claude; Silvestre-Brac, Bernard
2008-01-01
An interstellar Bussard ramjet is a spaceship using the protons of the interstellar medium in a fusion engine to produce thrust. In recent papers, it was shown that the relativistic equation of motion of an ideal ramjet and that of a ramjet with radiation loss are analytical. When a mass loss appears, the limit speed of the ramjet is more strongly…
The influence of the ionized medium on synchrotron emission in interstellar space.
NASA Technical Reports Server (NTRS)
Ramaty, R.
1972-01-01
The effect of the ionized gas on synchrotron emission in the interstellar medium is investigated. A detailed calculation of the synchrotron emissivity of cosmic electrons, assumed to have an isotropic pitch-angle distribution in a uniform magnetic field, is made as a function of frequency and observation angle with respect to the field. The results are presented both as a local emissivity and as an intensity, the latter obtained by neglecting free-free absorption in the interstellar medium and by assuming that the emissivity is constant along the line of sight. The comparison of these results with previous studies on the nature of the low-frequency turnover of the galactic nonthermal radio background reveals that, except if the component perpendicular to the line of sight of the interstellar magnetic field is small (less than 1 microgauss), or if the cosmic-ray electron spectrum is cut off at energies below a few hundred MeV, the suppression of synchrotron emission by the ambient electrons has in general a lesser effect than free-free absorption by these electrons, and that in some cases this suppression effect is almost entirely negligible.
NASA Technical Reports Server (NTRS)
Du, Ping
1993-01-01
As a theoretical component of the joint effort with the laboratory of Dr. Lou Allamandola to search for potential candidates for interstellar organic carbon compound that are responsible for the visible diffuse interstellar absorption bands (DIB's), quantum mechanical calculations were performed on the electron absorption spectra of selected polycyclic aromatic hydrocarbons (PAH) and derivatives. In the completed project, 15 different species of naphthalene, its hydrogen abstraction and addition derivatives, and corresponding cations and anions were studied. Using semiempirical quantum mechanical method INDO/S, the ground electronic state of each species was evaluated with restricted Hartree-Fock scheme and limited configuration interaction. The lowest energy spin state for each species was used for electron absorption calculations. Results indicate that these calculations are accurate enough to reproduce the spectra of naphthalene cation and anion observed in neon matrix. The spectral pattern of the hydrogen abstraction and addition derivatives predicted based on these results indicate that the electron configuration of the pi orbitals of these species is the dominant determinant. A combined list of 19 absorptions calculated from 4500 A to 10,400 A were compiled and suggested as potential candidates that are relevant for the DIB's absorptions. Continued studies on pyrene and derivatives revealed the ground state symmetries and multiplicities of its neutral, anionic, and cationic species. Spectral calculations show that the cation (B(sub 3g)-2) and the anion (A(sub u)-2) are more likely to have low energy absorptions in the regions between 10 kK and 20 kK, similar to naphthalene. These absorptions, together with those to be determined from the hydrogen abstraction and addition derivatives of pyrene, can be used to provide additional candidates and suggest experimental work in the search for interstellar compounds that are responsible for DIB's.
Interstellar grain chemistry and organic molecules
NASA Technical Reports Server (NTRS)
Allamandola, L. J.; Sandford, S. A.
1990-01-01
The detection of prominant infrared absorption bands at 3250, 2170, 2138, 1670 and 1470 cm(-1) (3.08, 4.61, 4.677, 5.99 and 6.80 micron m) associated with molecular clouds show that mixed molecular (icy) grain mantles are an important component of the interstellar dust in the dense interstellar medium. These ices, which contain many organic molecules, may also be the production site of the more complex organic grain mantles detected in the diffuse interstellar medium. Theoretical calculations employing gas phase as well as grain surface reactions predict that the ices should be dominated only by the simple molecules H2O, H2CO, N2, CO, O2, NH3, CH4, possibly CH3OH, and their deuterated counterparts. However, spectroscopic observations in the 2500 to 1250 cm(-1)(4 to 8 micron m) range show substantial variation from source reactions alone. By comparing these astronomical spectra with the spectra of laboratory-produced analogs of interstellar ices, one can determine the composition and abundance of the materials frozen on the grains in dense clouds. Experiments are described in which the chemical evolution of an interstellar ice analog is determined during irradiation and subsequent warm-up. Particular attention is paid to the types of moderately complex organic materials produced during these experiments which are likely to be present in interstellar grains and cometary ices.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Stock, D. J.; Peeters, E., E-mail: dstock84@gmail.com
2017-03-10
We decompose the observed 7.7 μ m polycyclic aromatic hydrocarbon (PAH) emission complexes in a large sample of over 7000 mid-infrared spectra of the interstellar medium using spectral cubes observed with the Spitzer /IRS-SL instrument. In order to fit the 7.7 μ m PAH emission complex we invoke four Gaussian components, which are found to be very stable in terms of their peak positions and widths across all of our spectra, and subsequently define a decomposition with fixed parameters, which gives an acceptable fit for all the spectra. We see a strong environmental dependence on the interrelationships between our bandmore » fluxes—in the H ii regions all four components are intercorrelated, while in the reflection nebulae (RNs) the inner and outer pairs of bands correlate in the same manner as previously seen for NGC 2023. We show that this effect arises because the maps of RNs are dominated by emission from strongly irradiated photodissociation regions, while the much larger maps of H ii regions are dominated by emission from regions much more distant from the exciting stars, leading to subtly different spectral behavior. Further investigation of this dichotomy reveals that the ratio of two of these components (centered at 7.6 and 7.8 μ m) is linearly related to the UV-field intensity (log G {sub 0}). We find that this relationship does not hold for sources consisting of circumstellar material, which are known to have variable 7.7 μ m spectral profiles.« less
Spectroscopy of prospective interstellar ions and radicals isolated in para-hydrogen matrices.
Tsuge, Masashi; Tseng, Chih-Yu; Lee, Yuan-Pern
2018-02-21
para-Hydrogen (p-H 2 ) serves as a new host in matrix-isolation experiments for an investigation of species of astrochemical interest. Protonated and mono-hydrogenated species are produced upon electron bombardment during deposition of p-H 2 containing a precursor in a small proportion. The applications of this novel technique to generate protonated polycyclic aromatic hydrocarbons (H + PAH), protonated polycyclic nitrogen heterocycles (H + PANH), and their neutral counterparts, which are important in the identification of interstellar unidentified infrared emission bands, demonstrate its superiority over other methods. The clean production with little fragmentation, ease of distinction between protonated and neutral species, narrow lines and reliable relative infrared intensities of the lines, and broad coverage of the spectral range associated with this method enable us to assign the isomers unambiguously. The application of this method to the protonation of small molecules is more complicated partly because of the feasible fragmentation and reactions, and partly because of the possible proton sharing between the species of interest and H 2 , but, with isotopic experiments and secondary photolysis, definitive assignments are practicable. Furthermore, the true relative infrared intensities are critical to a comparison of experimental results with data from theoretical calculations. The spectra of a proton-shared species in solid p-H 2 might provide insight into a search for spectra of proton-bound species in interstellar media. Investigations of hydrogenated species involving the photolysis of Cl 2 or precursors of OH complement those using electron bombardment and provide an improved ratio of signal to noise. With careful grouping of observed lines after secondary photolysis and a comparison with theoretical predictions, various isomers of these species have been determined. This photolytic technique has been applied in an investigation of hydrogenated PAH and PANH, and the hydrogenation reactions of small molecules, which are important in interstellar ice and the evolution of life. The electronic transitions of molecules in solid p-H 2 have been little investigated. The matrix shift of the origins of transitions and the spectral width seem to be much smaller than those of noble-gas matrices; these features might facilitate a direct comparison of matrix spectra with diffuse interstellar bands, but further data are required to assess this possibility. The advantages and disadvantages of applying these techniques of p-H 2 matrix isolation to astrochemical research and their future perspectives are discussed.
The Frequency Evolution of Interstellar Pulse Broadening from Radio Pulsars
NASA Astrophysics Data System (ADS)
Löhmer, O.; Mitra, D.; Gupta, Y.; Kramer, M.; Ahuja, A.
2004-10-01
Using radio pulsars as probes of the interstellar medium (ISM) we study the frequency evolution of interstellar scattering. The frequency dependence of scatter broadening times, τsc, for most of the pulsars with low and intermediate dispersion measures (DM ≲ 400 pc cm-3) is consistent with the Kolmogorov spectrum of electron density fluctuations in a turbulent medium. In contrast, the measured τsc's for highly dispersed pulsars in the central region of the Galaxy are larger than expected and show a spectrum which is flatter than the Kolmogorov law. We analyse the first measurements of spectral indices of scatter broadening over the full known DM range and discuss possible explanations for the anomalous scattering behaviour along peculiar lines of sight (LOS).
Diffuse Gamma Rays Galactic and Extragalactic Diffuse Emission
NASA Technical Reports Server (NTRS)
Moskalenko, Igor V.; Strong, Andrew W.; Reimer, Olaf
2004-01-01
Diffuse gamma rays consist of several components: truly diffuse emission from the interstellar medium, the extragalactic background, whose origin is not firmly established yet, and the contribution from unresolved and faint Galactic point sources. One approach to unravel these components is to study the diffuse emission from the interstellar medium, which traces the interactions of high energy particles with interstellar gas and radiation fields. Because of its origin such emission is potentially able to reveal much about the sources and propagation of cosmic rays. The extragalactic background, if reliably determined, can be used in cosmological and blazar studies. Studying the derived average spectrum of faint Galactic sources may be able to give a clue to the nature of the emitting objects.
Interstellar molecules. [detection from Copernicus satellite UV absorption data
NASA Technical Reports Server (NTRS)
Drake, J. F.
1974-01-01
The Princeton equipment on the Copernicus satellite provides the means to study interstellar molecules between the satellite and stars from 20 to 1000 pc distant. The study is limited to stars relatively unobscured by dust which strongly attenuates the ultraviolet continuum flux used as a source to probe the interstellar medium. Of the 14 molecules searched for only three have been detected including molecular hydrogen, molecular HD, and carbon monoxide.
Atomic and molecular_diagnostics of the interstellar medium
NASA Astrophysics Data System (ADS)
Roueff, E.
1987-08-01
Ever since molecular species have been discovered in space in the 30's and early 40's by the optical identification of CH, CH+ and CN in absorption towards nearby hot stars, the question of molecule formation has accompanied the observational efforts. The purpose of this paper is to point out presently existing observational constraints and the limits they may cast on our knowledge of the interstellar medium. The need for reliable atomic and molecular data will be emphasized with some specific examples.
Carbon and oxygen X-ray line emission from the interstellar medium
NASA Technical Reports Server (NTRS)
Schnopper, H. W.; Delvaille, J. P.; Rocchia, R.; Blondel, C.; Cheron, C.; Christy, J. C.; Ducros, R.; Koch, L.; Rothenflug, R.
1982-01-01
A soft X-ray, 0.3-1.0 keV spectrum from a 1 sr region which includes a portion of the North Polar Spur, obtained by three rocketborne lithium-drifted silicon detectors, shows the C V, C VI, O VII and O VIII emission lines. The spectrum is well fitted by a two-component, modified Kato (1976) model, where the coronal emission is in collisional equilibrium, with interstellar medium and North Polar Spur temperatures of 1.1 and 3.8 million K, respectively.
Local Interstellar Medium. International Astronomical Union Colloquium No. 81
NASA Technical Reports Server (NTRS)
Kondo, Y. (Editor); Bruhweiler, F. C. (Editor); Savage, B. D. (Editor)
1984-01-01
Helium and hydrogen backscattering; ultraviolet and EUV absorption spectra; optical extinction and polarization; hot gases; soft X-ray observations; infrared and millimeter wavelengths; radio wavelengths and theoretical models of the interstellar matter within about 150 parsecs of the Sun were examined.
Update on IBEX and the outer boundary of the space radiation environment
NASA Astrophysics Data System (ADS)
McComas, D. J.; IBEX Science Team
2012-11-01
The Interstellar Boundary Explorer (IBEX) mission has been remotely observing the global interaction of our heliosphere with the local interstellar medium for over three years. Initially, IBEX generated the first all-sky maps of Energetic Neutral Atoms (ENAs) emanating in from the boundaries of our heliosphere over the energy range from ˜0.1-6 keV. Using these observations, the IBEX team discovered a smoothly varying, globally distributed ENA flux overlaid by a narrow "ribbon" of significantly enhanced ENA emissions. Since the initial publication of these results in a special issue of Science magazine (November 2009), IBEX has completed five more energy-resolved sets of sky maps and discovered small but important time variations in the interaction, separated the ribbon from globally distributed ENA fluxes, measured the energy spectral shape and inferred ion source temperatures, and carried out many other observational and theoretical studies of the outer heliosphere. In a second major area of observations - direct measurements of Interstellar Neutral (ISN) atoms - just published, IBEX observations of ISN He atoms show that the speed and direction (the motion of the heliosphere with respect to the interstellar medium) is slower and from a somewhat different direction than that thought from prior Ulysses observations. These observations also show evidence for a previously unknown and unanticipated secondary population of Helium. In addition, IBEX is providing the first direct quantitative measurements of the ISN H parameters and the first direct measurements of interstellar Ne and the interstellar Neon/Oxygen abundance ratio; this ratio is significantly different than the solar abundance ratio. Finally, IBEX was recently maneuvered into a unique, long-term stable orbit, which has a very low radiation environment and requires no orbit maintenance. Thus, IBEX will likely continue to provide revolutionary observations of the outer heliosphere and local interstellar medium for many years to come.
A Study of Interstellar Medium Components of the Ohio State University Bright Spiral Galaxy Survey
NASA Astrophysics Data System (ADS)
Butner, Melissa; Deustua, S. E.; Conti, A.; Smtih, J.
2011-01-01
Multi-wavelength data can be used to provide information on the interstellar medium of galaxies, as well as on their stellar populations. We use the Ohio State University Bright Spiral Galaxy Survey (OSBSGS) to investigate the distribution and properties of the interstellar medium in a set of nearby galaxies. The OSBSGS consists of B, V, R, J, H and K band images for a over 200 nearby spiral galaxies. These data allow us to probe the dust temperatures and distribution using color maps. When combined with a pixel based analysis, it may be possible to tease out, perhaps better constraining, the heating mechanism for the ISM, as well as constrain dust models. In this paper we will discuss our progress in understanding, in particular, the properties of dust in nearby galaxies. Melissa Butner was a participant in the STScI Summer Student Program supported by the STScI Director's Discretionary Research Fund. MB also acknowledges support and computer cluster access via NSF grant 07-22890.
Constraints on cosmic silicates
NASA Astrophysics Data System (ADS)
Ossenkopf, V.; Henning, Th.; Mathis, J. S.
1992-08-01
Observational determinations of opacities of circumstellar silicates, relative to the peak value near 10 microns, are used to estimate the optical constants n and k, the real and imaginary parts of the index of refraction. Circumstellar dust is modified by processing within the interstellar medium. This leads to higher band strengths and a somewhat larger ratio of the opacities at the 18 and 10-micron peaks, compared with circumstellar silicates. By using an effective-medium theory, we calculate the effects of small spherical inclusions of various materials (various oxides, sulfides, carbides, amorphous carbon, and metallic iron) upon silicate opacities. Some of these can increase the absorption coefficient k in the 2-8 micron region appreciably, as is needed to reconcile laboratory silicate opacities with observations of both the interstellar medium and envelopes around late-type stars. We give tables of two sets of optical constants for warm oxygen-deficient and cool oxygen-rich silicates, representative for circumstellar and interstellar silicates. The required opacity in the 2-8 micron region is provided by iron and magnetite.
NASA Technical Reports Server (NTRS)
Kimble, Randy A.; Davidsen, Arthur F.; Blair, William P.; Bowers, Charles W.; Van Dyke Dixon, W.; Durrance, Samuel T.; Feldman, Paul D.; Ferguson, Henry C.; Henry, Richard C.; Kriss, Gerard A.
1993-01-01
During the Astro-l mission in 1990 December, the Hopkins Ultraviolet Telescope (HUT) was used to observe the extreme ultraviolet spectrum (415-912 A) of the hot DA white dwarf GI91-B2B. Absorption by neutral helium shortward of the 504 A He I absorption edge is clearly detected in the raw spectrum. Model fits to the observed spectrum require interstellar neutral helium and neutral hydrogen column densities of 1.45 +/- 0.065 x 10 exp 17/sq cm and 1.69 +/- 0.12 x 10 exp 18/sq cm, respectively. Comparison of the neutral columns yields a direct assessment of the ionization state of the local interstellar cloud surrounding the Sun. The neutral hydrogen to helium ratio of 11.6 +/- 1.0 observed by HUT strongly contradicts the widespread view that hydrogen is much more ionized than helium in the local interstellar medium, a view which has motivated some exotic theoretical explanations for the supposed high ionization.
The Diffuse Interstellar Bands: an Elderly Astro-Puzzle Rejuvenated
NASA Astrophysics Data System (ADS)
Cox, Nick L. J.
2011-12-01
The interstellar medium constitutes a physically and chemically complex component of galaxies and is important in the cycle of matter and the evolution of stars. From various spectroscopic clues we now know that the interstellar medium is rich in organic compounds. However, identifying the exact nature of all these components remains a challenge. In particular the identification of the so-called diffuse band carriers has been alluding astronomers for almost a century. In recent decades, observational, experimental and theoretical advances have rapidly lead to renewed interest in the diffuse interstellar bands (DIBs). This has been instigated partly by their perceived relation to the infrared aromatic emission bands, the UV extinction bump and far-UV rise, and the growing number of (small) organic molecules identified in space. This chapter gives an overview of the observational properties and behaviour of the DIBs, and their presence throughout the Universe. I will highlight recent progress in identifying their carriers and discuss their potential as tracers and probes of (extra)-Galactic ISM conditions.
New Insights Concerning the Local Interstellar medium
NASA Astrophysics Data System (ADS)
Linsky, Jeffrey L.; Redfield, Seth
2015-08-01
We have been analyzing HST high-resolution ultraviolet spectra of nearby stars to measure the radial velocities, turbulence, temperature, and depletions on warm diffuse interstellar gas within a few parsecs of the Sun. These data reveal a picture of many partially-ionized warm gas clouds, each with their own vector velocity and physical characteristics. This picture has been recently challenged by Gry and Jenkins (2014), who argue for a single nonrigid cloud surrounding the Sun. We present a test of these two very different morphological structure by checking how well each predicts the radial velocities in a new data set (Malamut et al. 2014) that was not available when both models were constructed. We find that the multicloud model (Redfield & Linsky 2008) provides a much better fit to the new data. We compare the new IBEX results for the temperature and velocity of inflowing He gas (McComas et al. 2015) with the properties of the Local Interstellar Cloud and the G cloud. We also show a preliminary three-dimensional model for the local interstellar medium.
UV-Visible Spectra of PAHs and Derivatives Seeded in Supersonic Jet. Astrophysical Implications
NASA Astrophysics Data System (ADS)
Salma, Bejaoui; Salama, Farid
2018-06-01
Laboratory absorption spectra of Polycyclic Aromatic Hydrocarbons (PAHs) and PAH derivatives measured under astrophysical relevant conditions are crucial to test the PAHs-DIBs hypothesis as well as the PAH model for the IR emission bands. Our dedicated experimental setup on the COsmic SImulation Chamber (COSmIC) provides an excellent platform to study neutral and ionized PAHs under the low temperature and pressure conditions that are representative of interstellar environments [1]. In this work, we study the effect of the substitution of CH bond(s) by a nitrogen atom(s) on the electronic spectra of phenanthrene. The electronic transitions associated with the lower excited states of neutral phenanthrene (C14H10) and phenanthridine (C13H9N) are measured in gas phase in the 315-345 nm region. Molecules are seeded in a supersonic expansion of argon gas and the absorption spectra are measured using the Cavity Ring Down Spectroscopy (CRDS) technique. Additional measurements of the absorption spectra of phenanthrene, phenantridine and 1,10-phenanthroline (C12H8N2) isolated in 10 K argon matrices are also performed. The comparison between the CRDS spectra with the absorption of the matrix-isolated molecules highlight the matrix-induced perturbations in band position, profiles and broadening and illustrates the need of gas phase measurements for more accurate comparisons with astronomical spectra.[1] Salama, F., Galazutdinov, G., Krelowski, et al. ApJ 728, 154[FS1] (2011).[2] A. Tielens, ApJ 526 Pt 1265–273 (2008),Acknowledgements: This research is supported by the APRA Program of NASA SMD
DOE Office of Scientific and Technical Information (OSTI.GOV)
Duxbury, C.L.; Dixon, D.G.; Greenberg, B.M.
1997-08-01
Light (particularly ultraviolet B) results in photomodification of polycyclic aromatic hydrocarbons (PAHs) to products with increased polarity and water solubility and enhanced toxicity relative to the parent compounds. The uptake and depuration kinetics of three representative PAHs, anthracene (ANT), phenanthrene (PHE), and benzo[a]pyrene (BAP), and their photomodified products were determined for Lemna gibba. The {sup 14}C-labeled PAHs were delivered to the plants in their aqueous growth medium either via a dimethylsulfoxide (DMSO) carrier or adsorbed directly to sand placed in the medium. Assimilation was carried out under simulated solar radiation (SSR) and in darkness. The potential sites of PAH actionmore » within the plants were defined by identifying the subcellular location of both intact and photomodified PAHs following assimilation. Lemna gibba had a high capacity for intact ANT, PHE, and BAP in the dark regardless of the two routes of delivery. Depuration was also rapid. Net assimilation of all three PAHs in the dark was always higher when the chemicals were delivered with DMSO than from sand, although first-order kinetics were apparent with both delivery systems. The relative levels of assimilation were PHE > ANT > BAP. Polycyclic aromatic hydrocarbons were rapidly assimilated under SSR, albeit net assimilation for both the intact and photomodified forms was generally lower under SSR compared with darkness. This was also reflected in the bioconcentration factors, which were highest in darkness for each PAH and dropped significantly under SSR and after photomodification. Both intact and photooxidized PAHs accumulated preferentially in the thylakoids and microsomes of L. gibba, suggesting these to be the subcellular compartments most at risk from PAH damage.« less
NASA Astrophysics Data System (ADS)
Ruaud, M.; Wakelam, V.; Gratier, P.; Bonnell, I. A.
2018-04-01
Aim. We study the effect of large scale dynamics on the molecular composition of the dense interstellar medium during the transition between diffuse to dense clouds. Methods: We followed the formation of dense clouds (on sub-parsec scales) through the dynamics of the interstellar medium at galactic scales. We used results from smoothed particle hydrodynamics (SPH) simulations from which we extracted physical parameters that are used as inputs for our full gas-grain chemical model. In these simulations, the evolution of the interstellar matter is followed for 50 Myr. The warm low-density interstellar medium gas flows into spiral arms where orbit crowding produces the shock formation of dense clouds, which are held together temporarily by the external pressure. Results: We show that depending on the physical history of each SPH particle, the molecular composition of the modeled dense clouds presents a high dispersion in the computed abundances even if the local physical properties are similar. We find that carbon chains are the most affected species and show that these differences are directly connected to differences in (1) the electronic fraction, (2) the C/O ratio, and (3) the local physical conditions. We argue that differences in the dynamical evolution of the gas that formed dense clouds could account for the molecular diversity observed between and within these clouds. Conclusions: This study shows the importance of past physical conditions in establishing the chemical composition of the dense medium.
Heating of the Interstellar Diffuse Ionized Gas via the Dissipation of Turbulence
NASA Astrophysics Data System (ADS)
Minter, Anthony H.; Spangler, Steven R.
1997-08-01
We have recently published observations that specify most of the turbulent and mean plasma characteristics for a region of the sky containing the interstellar diffuse ionized gas (DIG). These observations have provided virtually all of the information necessary to calculate the heating rate from dissipation of turbulence. We have calculated the turbulent dissipation heating rate employing two models for the interstellar turbulence. The first is a customary modeling as a superposition of magnetohydrodynamic waves. The second is a fluid-turbulence-like model based on the ideas of Higdon. This represents the first time that such calculations have been carried out with full and specific interstellar turbulence parameters. The wave model of interstellar turbulence encounters the severe difficulty that plausible estimates of heating by Landau damping exceed the radiative cooling capacity of the interstellar DIG by 3-4 orders of magnitude. Clearly interstellar turbulence does not behave like an ensemble of obliquely propagating fast magnetosonic waves. The heating rate due to two other wave dissipation mechanisms, ion-neutral collisional damping and the parametric decay instability, are comparable to the cooling capacity of the diffuse ionized medium. We find that the fluid-like turbulence model is an acceptable and realistic model of the turbulence in the interstellar medium once the effects of ion-neutral collisions are included in the model. This statement is contingent on an assumption that the dissipation of such turbulence because of Landau damping is several orders of magnitude less than that from an ensemble of obliquely propagating magnetosonic waves with the same energy density. Arguments as to why this may be the case are made in the paper. Rough parity between the turbulent heating rate and the radiative cooling rate in the DIG also depends on the hydrogen ionization fraction being in excess of 90% or on a model-dependent lower limit to the heating rate being approximately valid. We conclude that the dissipation of turbulence is capable of providing a substantial and perhaps major contribution to the energy budget of the diffuse ionized medium.
IBEX Observations and Simulations of the Ribbon: Implications for the Very Local Interstellar Medium
NASA Astrophysics Data System (ADS)
Zirnstein, E.
2017-12-01
The crossing of the Voyager 1 spacecraft into the very local interstellar medium (VLISM) in 2012 August opened a new chapter in humankind's exploration of space. Voyager 1 has been measuring interstellar plasma properties outside the heliosphere, including the galactic cosmic ray flux, (indirectly) the compressed interstellar plasma, as well as the compressed interstellar magnetic field draped around the heliosphere. Interstellar Boundary Explorer (IBEX) neutral atom observations complement the only in situ observations of the VLISM made by Voyager 1. IBEX is an Earth-orbiting spacecraft equipped with two single-pixel cameras that detect neutral atoms produced by the interaction of the solar wind (SW) with the VLISM, as well as neutral atoms flowing into the heliosphere from the VLISM itself. After its launch in 2009, IBEX discovered the unexpected existence of the "ribbon," a nearly circular arc across the sky of enhanced hydrogen ENA fluxes observed at keV energies. The ribbon fluxes originate from look directions perpendicular to the local interstellar magnetic field draped around the heliosphere, and can be used to derive the VLISM magnetic field magnitude and direction far from the heliopause. Thus, IBEX observations of the ribbon complement Voyager 1 in situ observations of the VLISM magnetic field, and provide insight into what Voyager 2 will observe after it crosses the heliopause. This talk will review key IBEX observations of the VLISM environment related to the ribbon and the VLISM magnetic field observed by Voyager 1, and their implications for the VLISM environment.
Decades-long changes of the interstellar wind through our solar system.
Frisch, P C; Bzowski, M; Livadiotis, G; McComas, D J; Moebius, E; Mueller, H-R; Pryor, W R; Schwadron, N A; Sokół, J M; Vallerga, J V; Ajello, J M
2013-09-06
The journey of the Sun through the dynamically active local interstellar medium creates an evolving heliosphere environment. This motion drives a wind of interstellar material through the heliosphere that has been measured with Earth-orbiting and interplanetary spacecraft for 40 years. Recent results obtained by NASA's Interstellar Boundary Explorer mission during 2009-2010 suggest that neutral interstellar atoms flow into the solar system from a different direction than found previously. These prior measurements represent data collected from Ulysses and other spacecraft during 1992-2002 and a variety of older measurements acquired during 1972-1978. Consideration of all data types and their published results and uncertainties, over the three epochs of observations, indicates that the trend for the interstellar flow ecliptic longitude to increase linearly with time is statistically significant.
NASA Astrophysics Data System (ADS)
Singh, Amresh; Shivani; Misra, Alka; Tandon, Poonam
2014-03-01
The interstellar medium, filling the vast space between stars, is a rich reservoir of molecular material ranging from simple diatomic molecules to more complex, astrobiologically important molecules such as vinylcyanide, methylcyanodiaccetylene, cyanoallene, etc. Interstellar molecular cyanoallene is one of the most stable isomers of methylcynoacetylene. An attempt has been made to explore the possibility of forming cyanoallene in interstellar space by radical-radical and radical-molecule interaction schemes in the gaseous phase. The formation of cyanoallene starting from some simple, neutral interstellar molecules and radicals has been studied using density functional theory. The reaction energies and structures of the reactants and products show that the formation of cyanoallene is possible in the gaseous phase. Both of the considered reaction paths are totally exothermic and barrierless, thus giving rise to a high probability of occurrence. Rate constants for each step in the formation process of cyanoallene in both the reaction paths are estimated. A full vibrational analysis has been attempted for cyanoallene in the harmonic and anharmonic approximations. Anharmonic spectroscopic parameters such as rotational constants, rotation-vibration coupling constants and centrifugal distortion constants have been calculated.
Termination of the solar wind in the hot, partially ionized interstellar medium. Ph.D. Thesis
NASA Technical Reports Server (NTRS)
Lombard, C. K.
1974-01-01
Theoretical foundations for understanding the problem of the termination of the solar wind are reexamined in the light of most recent findings concerning the states of the solar wind and the local interstellar medium. The investigation suggests that a simple extention of Parker's (1961) analytical model provides a useful approximate description of the combined solar wind, interstellar wind plasma flowfield under conditions presently thought to occur. A linear perturbation solution exhibiting both the effects of photoionization and charge exchange is obtained for the supersonic solar wind. A numerical algorithm is described for computing moments of the non-equilibrium hydrogen distribution function and associated source terms for the MHD equations. Computed using the algorithm in conjunction with the extended Parker solution to approximate the plasma flowfield, profiles of hydrogen number density are given in the solar wind along the upstream and downstream axes of flow with respect to the direction of the interstellar wind. Predictions of solar Lyman-alpha backscatter intensities to be observed at 1 a.u. have been computed, in turn, from a set of such hydrogen number density profiles varied over assumed conditions of the interstellar wind.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Redfield, Seth; Linsky, Jeffrey L., E-mail: sredfield@wesleyan.edu, E-mail: jlinsky@jila.colorado.edu
Ultraviolet and optical spectra of interstellar gas along the lines of sight to nearby stars have been interpreted by Redfield and Linsky and previous studies as a set of discrete warm, partially ionized clouds each with a different flow vector, temperature, and metal depletion. Recently, Gry and Jenkins proposed a fundamentally different model consisting of a single cloud with nonrigid flows filling space out to 9 pc from the Sun that they propose better describes the local ISM. Here we test these fundamentally different morphological models against the spatially unbiased Malamut et al. spectroscopic data set, and find that themore » multiple cloud morphology model provides a better fit to both the new and old data sets. The detection of three or more velocity components along the lines of sight to many nearby stars, the presence of nearby scattering screens, the observed thin elongated structures of warm interstellar gas, and the likely presence of strong interstellar magnetic fields also support the multiple cloud model. The detection and identification of intercloud gas and the measurement of neutral hydrogen density in clouds beyond the Local Interstellar Cloud could provide future morphological tests.« less
The peculiar behaviour of the 5780 and 5797 DIBs in HD25137
NASA Technical Reports Server (NTRS)
Porceddu, Ignazio; Benvenuti, P.
1994-01-01
The interstellar environment close to the high latitude molecular cloud Lynds 1569 (L1569, Lynds 1962), also known as MBM 18 (Magnani, Blitz and Mundy, 1985), has been analyzed by Penrase et al. (1990) and Penrase (1993). Their observations of the CH, CH(sup+), and CN molecular features, are consistent with a region having a high molecular and reduced dust content. They also observed the background star HD 24263- located 8 degrees far from the center of L1569 - reporting a CH rich line of sight and the presence of two intervening clouds from a sodium lines spectra. The infrared excess which has been revealed by the IRAS survey at 12 microns might suggest the presence of PAH's molecules, the well know candidate for the Unidentified Infrared Bands and Diffuse Interstellar Bands. This interesting scenario led to the investigation of the behavior of the diffuse interstellar bands toward HD 25137, which is supposed to be a background object for L1569 (Penrase et al., 1990); as well as the field star HD 24263. As part of a wider observational program devoted to study the HLC's special environments, the observations of the diffuse interstellar bands (DIB's) at 5780 and 5797 lambda lambda in the direction of the two above mentioned stars, HD 24263 and HD 25137 are presented here.
The Evolution of the Interstellar Medium in the Mildly Disturbed Spiral Galaxy NGC 4647
NASA Astrophysics Data System (ADS)
Young, L. M.; Rosolowsky, E.; van Gorkom, J. H.; Lamb, S. A.
2006-10-01
We present matched-resolution maps of H I and CO emission in the Virgo Cluster spiral NGC 4647. The galaxy shows a mild kinematic disturbance in which one side of the rotation curve flattens but the other side continues to rise. This kinematic asymmetry is coupled with a dramatic asymmetry in the molecular gas distribution but not in the atomic gas. An analysis of the gas column densities and the interstellar pressure suggests that the H2/H I surface density ratio on the east side of the galaxy is 3 times higher than expected from the hydrostatic pressure contributed by the mass of the stellar disk. We discuss the probable effects of ram pressure, gravitational interactions, and asymmetric potentials on the interstellar medium and suggest it is likely that a m=1 perturbation in the gravitational potential could be responsible for all of the galaxy's features. Kinematic disturbances of the type seen here are common, but the curious thing about NGC 4647 is that the molecular distribution appears more disturbed than the H I distribution. Thus, it is the combination of the two gas phases that provides such interesting insight into the galaxy's history and into models of the interstellar medium.
Origins Space Telescope: Nearby Galaxies, the Milky Way, and the Interstellar Medium
NASA Astrophysics Data System (ADS)
Battersby, Cara; Sandstrom, Karin; Origins Space Telescope Science and Technology Definition Team
2018-01-01
The Origins Space Telescope (OST) is the mission concept for the Far-Infrared Surveyor, one of the four science and technology definition studies of NASA Headquarters for the 2020 Astronomy and Astrophysics Decadal survey. Origins will enable flagship-quality general observing programs led by the astronomical community in the 2030s. We welcome you to contact the Science and Technology Definition Team (STDT) with your science needs and ideas by emailing us at ost_info@lists.ipac.caltech.eduThis presentation will summarize the science case related to Nearby Galaxies, the Milky Way, and the Interstellar Medium (Interstellar Medium). The Origins Space Telescope will enable a wealth of unprecedented scientific advances in this area, both those we know to expect, and the discovery space that lies unexplored. Origins will enable a comprehensive view of magnetic fields, turbulence, and the multiphase ISM; connecting these physics across scales of galaxies to protostellar cores. With unprecedented sensitivity, Origins will measure and characterize the mechanisms of feedback from star formation and Active Galactic Nuclei, and their interplay, over cosmic time. Origins will unveil the abundance and availability of water for habitable planets by allowing us to trace the trail of water from interstellar clouds to protoplanetary disks, to Earth itself.
The state of clouds in a violent interstellar medium
NASA Astrophysics Data System (ADS)
Heathcote, S. R.; Brand, P. W. J. L.
1983-04-01
A highly approximate but simple model is developed which describes the interaction of a supernova blast wave with an interstellar cloud. The behavior of a cloud when exposed to conditions prevalent in a violent interstellar medium is examined using this model. Results show that after a cloud has been shocked it is rarely allowed sufficient time to return to pressure equilibrium with its surroundings before encountering a second shock. Thus, significant departures from pressure equilibrium are inevitable. It is determined that the disruption of a cloud by its passage through a blast wave is quite effective and the half life of clouds cannot greatly exceed the mean interval between shocks striking a given cloud. In addition, it is found that composite core-envelope clouds are not viable under typical conditions.
NASA Astrophysics Data System (ADS)
Baliukin, I. I.; Izmodenov, V. V.; Möbius, E.; Alexashov, D. B.; Katushkina, O. A.; Kucharek, H.
2017-12-01
Quantitative analysis of the interstellar heavy (oxygen and neon) atom fluxes obtained by the Interstellar Boundary Explorer (IBEX) suggests the existence of the secondary interstellar oxygen component. This component is formed near the heliopause due to charge exchange of interstellar oxygen ions with hydrogen atoms, as was predicted theoretically. A detailed quantitative analysis of the fluxes of interstellar heavy atoms is only possible with a model that takes into account both the filtration of primary and the production of secondary interstellar oxygen in the boundary region of the heliosphere as well as a detailed simulation of the motion of interstellar atoms inside the heliosphere. This simulation must take into account photoionization, charge exchange with the protons of the solar wind and solar gravitational attraction. This paper presents the results of modeling interstellar oxygen and neon atoms through the heliospheric interface and inside the heliosphere based on a three-dimensional kinetic-MHD model of the solar wind interaction with the local interstellar medium and a comparison of these results with the data obtained on the IBEX spacecraft.
NASA Technical Reports Server (NTRS)
Hudgins, D. M.; Allamandola, L. J.
1995-01-01
Gaseous, ionized polycyclic aromatic hydrocarbons (PAHs) are thought to be responsible for a very common family of interstellar infrared emission bands. Here the near- and mid-infrared spectra of the cations of the five most thermodynamically favored PAHs up to coronene:phenanthrene, pyrene, benzo[e]pyrene, benzo[ghi]perylene, and coronene, are presented to test this hypothesis. For those molecules that have been studied previously (pyrene, pyrene-d10, and coronene), band positions and relative intensities are in agreement. In all of these cases we report additional features. Absolute integrated absorbance values are given for the phenanthrene, perdeuteriophenanthrene, pyrene, benzo[ghi]perylene, and coronene cations. With the exception of coronene, the cation bands corresponding to the CC modes are typically 2-5 times more intense than those of the CH out-of-plane bending vibrations. For the cations, the CC stretching and CH in-plane bending modes give rise to bands that are an order of magnitude stronger than those of the neutral species, and the CH out-of-plane bends produce bands that are 5-20 times weaker than those of the neutral species. This behavior is similar to that found in most other PAH cations studied to date. The astronomical implications of these PAH cation spectra are also discussed.
Infrared Spectroscopy of Matrix-Isolated Polycyclic Aromatic Hydrocarbon Cations
NASA Technical Reports Server (NTRS)
Hudgins, D. M.; Allamandola, L. J.
1995-01-01
Gaseous, ionized polycyclic aromatic hydrocarbons (PAHs) are thought to be responsible for a very common family of interstellar infrared emission bands. Here the near- and mid-infrared spectra of the cations of the five most thermodynamically favored PAHs up to coronene: phenanthrene, pyrene, benzo(e)pyrene, benzo-(ghi)perylene, and coronene, are presented to test this hypothesis. For those molecules that have been studied previously (pyrene, pyrene-d(sub 10), and coronene), band positions and relative intensities are in agreement. In all of these cases we report additional features. Absolute integrated absorbance values are given for the phenanthrene, perdeuteriophenanthrene, pyrene, benzo(ghi]perylene, and coronene cations. With the exception of coronene, the cation bands corresponding to the CC modes are typically 2-5 times more intense than those of the CH out-of-plane bending vibrations. For the cations, the CC stretching and CH in-plane bending modes give rise to bands that are an order of magnitude stronger than those of the neutral species, and the CH out-of-plane bends produce bands that are 5-20 times weaker than those of the neutral species. This behavior is similar to that found in most other PAH cations studied to date. The astronomical implications of these PAH cation spectra are also discussed.
NASA Technical Reports Server (NTRS)
Adams, Nigel G.; Fondren, L. Dalila; McLain, Jason L.; Jackson, Doug M.
2006-01-01
Several ring compounds have been detected in interstellar gas clouds, ISC, including the aromatic, benzene. Polycyclic aromatic hydrocarbons, PAHs, have been implicated as carriers of diffuse interstellar bands (DIBs) and unidentified infrared (UIR) bands. Heterocyclic aromatic rings of intermediate size containing nitrogen, possibly PreLife molecules, were included in early searches but were not detected and a recent search for Pyrimidine was unsuccessful. Our laboratory investigations of routes to such molecules could establish their existence in ISC and suggest conditions under which their concentrations would be maximized thus aiding the searches. The stability of such ring compounds (C5H5N, C4H4N2, C5H11N and C4H8O2) has been tested in the laboratory using charge transfer excitation in ion-molecule reactions. The fragmentation paths, including production of C4H4(+), C3H3N(+) and HCN, suggest reverse routes to the parent molecules, which are presently under laboratory investigation as production sources.
NASA Technical Reports Server (NTRS)
Allamandola, L. J.; Bregman, J. D.; Sandford, S. A.; Tielens, A. G.; Witteborn, F. C.; Wooden, D. H.; Rank, D.
1989-01-01
We have discovered a new IR emission feature at 1905 cm-1 (5.25 microns) in the spectrum of BD +30 degrees 3639. This feature joins the family of well-known IR emission features at 3040, 2940, 1750, 1610, "1310," 1160, and 890 cm-1 (3.3, 3.4, 5.7, 6.2, "7.7," 8.6, and 11.2 microns). The origin of this new feature is discussed and it is assigned to an overtone or combination band involving C-H bending modes of polycyclic aromatic hydrocarbons (PAHs). Laboratory work suggests that spectral studies of the 2000-1650 cm-1 (5.0-6.1 microns) region may be very useful in elucidating the molecular structure of interstellar PAHs. The new feature, in conjunction with other recently discovered spectral structure, suggests that the narrow IR emission features originate in PAH molecules rather than large carbon grains. Larger species are likely to be the source of the broad underlying "plateaus" seen in many of the spectra.
NASA Astrophysics Data System (ADS)
Mackie, Cameron J.; Candian, Alessandra; Huang, Xinchuan; Maltseva, Elena; Petrignani, Annemieke; Oomens, Jos; Mattioda, Andrew L.; Buma, Wybren Jan; Lee, Timothy J.; Tielens, Alexander G. G. M.
2016-08-01
The study of interstellar polycyclic aromatic hydrocarbons (PAHs) relies heavily on theoretically predicted infrared spectra. Most earlier studies use scaled harmonic frequencies for band positions and the double harmonic approximation for intensities. However, recent high-resolution gas-phase experimental spectroscopic studies have shown that the harmonic approximation is not sufficient to reproduce experimental results. In our previous work, we presented the anharmonic theoretical spectra of three linear PAHs, showing the importance of including anharmonicities into the theoretical calculations. In this paper, we continue this work by extending the study to include five non-linear PAHs (benz[a]anthracene, chrysene, phenanthrene, pyrene, and triphenylene), thereby allowing us to make a full assessment of how edge structure, symmetry, and size influence the effects of anharmonicities. The theoretical anharmonic spectra are compared to spectra obtained under matrix isolation low-temperature conditions, low-resolution, high-temperature gas-phase conditions, and high-resolution, low-temperature gas-phase conditions. Overall, excellent agreement is observed between the theoretical and experimental spectra although the experimental spectra show subtle but significant differences.
Mackie, Cameron J; Candian, Alessandra; Huang, Xinchuan; Maltseva, Elena; Petrignani, Annemieke; Oomens, Jos; Mattioda, Andrew L; Buma, Wybren Jan; Lee, Timothy J; Tielens, Alexander G G M
2016-08-28
The study of interstellar polycyclic aromatic hydrocarbons (PAHs) relies heavily on theoretically predicted infrared spectra. Most earlier studies use scaled harmonic frequencies for band positions and the double harmonic approximation for intensities. However, recent high-resolution gas-phase experimental spectroscopic studies have shown that the harmonic approximation is not sufficient to reproduce experimental results. In our previous work, we presented the anharmonic theoretical spectra of three linear PAHs, showing the importance of including anharmonicities into the theoretical calculations. In this paper, we continue this work by extending the study to include five non-linear PAHs (benz[a]anthracene, chrysene, phenanthrene, pyrene, and triphenylene), thereby allowing us to make a full assessment of how edge structure, symmetry, and size influence the effects of anharmonicities. The theoretical anharmonic spectra are compared to spectra obtained under matrix isolation low-temperature conditions, low-resolution, high-temperature gas-phase conditions, and high-resolution, low-temperature gas-phase conditions. Overall, excellent agreement is observed between the theoretical and experimental spectra although the experimental spectra show subtle but significant differences.
Detection of organic matter in interstellar grains.
Pendleton, Y J
1997-06-01
Star formation and the subsequent evolution of planetary systems occurs in dense molecular clouds, which are comprised, in part, of interstellar dust grains gathered from the diffuse interstellar medium (DISM). Radio observations of the interstellar medium reveal the presence of organic molecules in the gas phase and infrared observational studies provide details concerning the solid-state features in dust grains. In particular, a series of absorption bands have been observed near 3.4 microns (approximately 2940 cm-1) towards bright infrared objects which are seen through large column densities of interstellar dust. Comparisons of organic residues, produced under a variety of laboratory conditions, to the diffuse interstellar medium observations have shown that aliphatic hydrocarbon grains are responsible for the spectral absorption features observed near 3.4 microns (approximately 2940 cm-1). These hydrocarbons appear to carry the -CH2- and -CH3 functional groups in the abundance ratio CH2/CH3 approximately 2.5, and the amount of carbon tied up in this component is greater than 4% of the cosmic carbon available. On a galactic scale, the strength of the 3.4 microns band does not scale linearly with visual extinction, but instead increases more rapidly for objects near the Galactic Center. A similar trend is noted in the strength of the Si-O absorption band near 9.7 microns. The similar behavior of the C-H and Si-O stretching bands suggests that these two components may be coupled, perhaps in the form of grains with silicate cores and refractory organic mantles. The ubiquity of the hydrocarbon features seen in the near infrared near 3.4 microns throughout out Galaxy and in other galaxies demonstrates the widespread availability of such material for incorporation into the many newly forming planetary systems. The similarity of the 3.4 microns features in any organic material with aliphatic hydrocarbons underscores the need for complete astronomical observational coverage in the 2-30 microns region, of lines of sight which sample dust in both dense and diffuse interstellar clouds, in order to uniquely specify the composition of interstellar organics. This paper reviews the information available from ground-based observations, although currently the Infrared Satellite Observatory is adding to our body of knowledge on this subject by providing more extensive wavelength coverage. The Murchison carbonaceous meteorite has also been used as an analog to the interstellar observations and has revealed a striking similarity between the light hydrocarbons in the meteorite and the ISM; therefore this review includes comparisons with the meteoritic analog as well as with relevant laboratory residues. Fundamental to the evolution of the biogenic molecules, to the process of planetary system formation, and perhaps to the origin of life, is the connection between the organic material found in the interstellar medium and that incorporated in the most primitive solar system bodies.
Challenges in the determination of the interstellar flow longitude from the pickup ion cutoff
NASA Astrophysics Data System (ADS)
Taut, A.; Berger, L.; Möbius, E.; Drews, C.; Heidrich-Meisner, V.; Keilbach, D.; Lee, M. A.; Wimmer-Schweingruber, R. F.
2018-03-01
Context. The interstellar flow longitude corresponds to the Sun's direction of movement relative to the local interstellar medium. Thus, it constitutes a fundamental parameter for our understanding of the heliosphere and, in particular, its interaction with its surroundings, which is currently investigated by the Interstellar Boundary EXplorer (IBEX). One possibility to derive this parameter is based on pickup ions (PUIs) that are former neutral ions that have been ionized in the inner heliosphere. The neutrals enter the heliosphere as an interstellar wind from the direction of the Sun's movement against the partially ionized interstellar medium. PUIs carry information about the spatial variation of their neutral parent population (density and flow vector field) in their velocity distribution function. From the symmetry of the longitudinal flow velocity distribution, the interstellar flow longitude can be derived. Aim. The aim of this paper is to identify and eliminate systematic errors that are connected to this approach of measuring the interstellar flow longitude; we want to minimize any systematic influences on the result of this analysis and give a reasonable estimate for the uncertainty. Methods: We use He+ data measured by the PLAsma and SupraThermal Ion Composition (PLASTIC) sensor on the Solar TErrestrial RElations Observatory Ahead (STEREO A) spacecraft. We analyze a recent approach, identify sources of systematic errors, and propose solutions to eliminate them. Furthermore, a method is introduced to estimate the error associated with this approach. Additionally, we investigate how the selection of interplanetary magnetic field angles, which is closely connected to the pickup ion velocity distribution function, affects the result for the interstellar flow longitude. Results: We find that the revised analysis used to address part of the expected systematic effects obtains significantly different results than presented in the previous study. In particular, the derived uncertainties are considerably larger. Furthermore, an unexpected systematic trend of the resulting interstellar flow longitude with the selection of interplanetary magnetic field orientation is uncovered.
The interaction of the solar wind with the interstellar medium
NASA Technical Reports Server (NTRS)
Axford, W. I.
1972-01-01
The expected characteristics of the solar wind, extrapolated from the vicinity of the earth are described. Several models are examined for the interaction of the solar wind with the interstellar plasma and magnetic field. Various aspects of the penetration of neutral interstellar gas into the solar wind are considered. The dynamic effects of the neutral gas on the solar wind are described. Problems associated with the interaction of cosmic rays with the solar wind are discussed.
NASA Astrophysics Data System (ADS)
Fedoseev, Gleb; Lamberts, Thanja; Linnartz, Harold; Ioppolo, Sergio; Zhao, Dongfeng
Despite its potential to reveal the link between the formation of simple species and more complex molecules (e.g., amino acids), the nitrogen chemistry of the interstellar medium (ISM) is still poorly understood. Ammonia (NH _{3}) is one of the few nitrogen-bearing species that have been observed in interstellar ices toward young stellar objects (YSOs) and quiescent molecular clouds. The aim of the present work is to experimentally investigate surface formation routes of NH _{3} and HNCO through non-energetic surface reactions in interstellar ice analogues under fully controlled laboratory conditions and at astrochemically relevant cryogenic temperatures. This study focuses on the formation of NH _{3} and HNCO in CO-rich (non-polar) interstellar ices that simulate the CO freeze-out stage in interstellar dark cloud regions, well before thermal and energetic processing start to become predominant. Our work confirms the surface formation of ammonia through the sequential addition of three hydrogen/deuterium atoms to a single nitrogen atom at low temperature. The H/D fractionation of the formed ammonia is also shown. Furthermore, we show the surface formation of solid HNCO through the interaction of CO molecules with NH radicals - one of the intermediates in the formation of solid NH _{3}. Finally, we discuss the implications of HNCO in astrobiology, as a possible starting point for the formation of more complex prebiotic species.
NASA Technical Reports Server (NTRS)
Eichelberger, B.; Barckholtz, C.; Stepanovic, M.; Bierbaum, V.; Snow, T.
2002-01-01
Due to recent interest in molecular anions as possible interstellar species, we have carried out several laboratory studies of anion chemistry. The reactions of the series C(sub n)(sup -); and C(sub n)H(sup -) with H and H2 were studied to address the viability of such species in the diffuse interstellar medium and to address their ability to be carriers of the diffuse interstellar bands (DIBs). These same molecules were also reacted with N and O to show possible heteroatomic products. C(sub m)N(sup - was a particularly stable product from the reaction of C(sub n)(sup -) + N. C3N(sup -) was further reacted with H to study chemistry that could produce HC3N, a known interstellar species. The reactions were done in a flowing afterglow selected ion flow tube apparatus (FA-SIFT). The anions were generated in an electron impact or cold cathode discharge source and the anion of interest was then selected by a quadrupole mass filter. The selected ion was then reacted with the atomic or molecular species in the flow tube and products were detected by another quadrupole. While the C(sub n)(sup -) species do not appear to be viable DIB carriers, their possible presence could provide a mechanism for the formation of known heteroatomic neutral molecules detected in the interstellar medium (ISM).
Extinct radioactivities - A three-phase mixing model. [for early solar system abundances
NASA Technical Reports Server (NTRS)
Clayton, D. D.
1983-01-01
A new class of models is advanced for interpreting the relationship of radioactive abundances in the early solar system to their average concentration in the interstellar medium. The model assumes that fresh radioactivities are ejected from supernovae into the hot interstellar medium, and that the time scales for changes of phase into molecular clouds determine how much survives for formation therein of the solar system. A more realistic and physically motivated understanding of the low observed concentrations of I-129, Pu-244, and Pd-107 may result.
Ultraviolet Irradiation of Naphthalene in H2O Ice: Implications for Meteorites and Biogenesis
NASA Technical Reports Server (NTRS)
Bernstein, Max P.; Dworkin, Jason; Sandford, Scott A.; Allamandola, Louis J.; DeVincenzi, Donald L. (Technical Monitor)
2000-01-01
The polycyclic aromatic hydrocarbon (PAH) naphthalene was exposed to ultraviolet radiation in H2O ice under astrophysical conditions, and the products were analyzed using infrared spectroscopy and high performance liquid chromatography. As we found in our earlier studies on the photoprocessing of coronene in H2O ice, aromatic alcohols and ketones (quinones) were formed. The regiochemistry of the reactions is described and leads to specific predictions of the relative abundances of various oxidized naphthalenes that should exist in meteorites if interstellar ice photochemistry influenced their aromatic inventory. Since oxidized PAHs are present in carbon-rich meteorites and interplanetary dust particles (IDPs), and ubiquitous in and fundamental to biochemistry, the delivery of such extraterrestrial molecules to the early Earth may have played a role in the origin and evolution of life.
Iron and Silicate Dust Growth in the Galactic Interstellar Medium: Clues from Element Depletions
NASA Astrophysics Data System (ADS)
Zhukovska, Svitlana; Henning, Thomas; Dobbs, Clare
2018-04-01
The interstellar abundances of refractory elements indicate a substantial depletion from the gas phase, which increases with gas density. Our recent model of dust evolution, based on hydrodynamic simulations of the life cycle of giant molecular clouds (GMCs), proves that the observed trend for [Sigas/H] is driven by a combination of dust growth by accretion in the cold diffuse interstellar medium (ISM) and efficient destruction by supernova (SN) shocks. With an analytic model of dust evolution, we demonstrate that even with optimistic assumptions for the dust input from stars and without destruction of grains by SNe it is impossible to match the observed [Sigas/H]–n H relation without growth in the ISM. We extend the framework developed in our previous work for silicates to include the evolution of iron grains and address a long-standing conundrum: “Where is the interstellar iron?” Much higher depletion of Fe in the warm neutral medium compared to Si is reproduced by the models, in which a large fraction of interstellar iron (70%) is locked as inclusions in silicate grains, where it is protected from efficient sputtering by SN shocks. The slope of the observed [Fegas/H]–n H relation is reproduced if the remaining depleted iron resides in a population of metallic iron nanoparticles with sizes in the range of 1–10 nm. Enhanced collision rates due to the Coulomb focusing are important for both silicate and iron dust models to match the slopes of the observed depletion–density relations and the magnitudes of depletion at high gas density.
Miki, Shizuho; Uno, Seiichi; Ito, Kazuki; Koyama, Jiro; Tanaka, Hiroyuki
2014-08-30
Contaminations in sediments by polycyclic aromatic hydrocarbons (PAHs) and alkylated PAHs were investigated at 44 sites in Osaka Bay, Japan. Concentrations of total PAHs and alkylated PAHs were in the range 6.40-7800 ng/g dry weights and 13.7-1700 ng/g dry weights, respectively. The PAH concentrations tended to be higher along the shoreline in the vicinities of big ports, industrialized areas, and densely populated regions such as the cities of Osaka and Kobe. The major sources appeared to be pyrogenic or both pyrogenic and petrogenic at most of the sites. PAH concentrations were remarkably high at a site near Kobe, where the concentrations of dibenzo(a,h)anthracene and benzo(g,h,i)perylene exceeded the effects-range-medium concentration and eight PAHs were above the corresponding effects-range-low concentrations. Those PAHs may have been derived from the great fire associated with the large earthquake in 1995. Copyright © 2014 Elsevier Ltd. All rights reserved.
Polarization of submillimetre lines from interstellar medium
NASA Astrophysics Data System (ADS)
Zhang, Heshou; Yan, Huirong
2018-04-01
Magnetic fields play important roles in many astrophysical processes. However, there is no universal diagnostic for the magnetic fields in the interstellar medium (ISM) and each magnetic tracer has its limitation. Any new detection method is thus valuable. Theoretical studies have shown that submillimetre fine-structure lines are polarized due to atomic alignment by ultraviolet photon-excitation, which opens up a new avenue to probe interstellar magnetic fields. We will, for the first time, perform synthetic observations on the simulated three-dimensional ISM to demonstrate the measurability of the polarization of submillimetre atomic lines. The maximum polarization for different absorption and emission lines expected from various sources, including star-forming regions are provided. Our results demonstrate that the polarization of submillimetre atomic lines is a powerful magnetic tracer and add great value to the observational studies of the submilimetre astronomy.
Solar wind/local interstellar medium interaction including charge exchange with neural hydrogen
NASA Technical Reports Server (NTRS)
Pauls, H. Louis; Zank, Gary P.
1995-01-01
We present results from a hydrodynamic model of the interaction of the solar wind with the local interstellar medium (LISM), self-consistently taking into account the effects of charge exchange between the plasma component and the interstellar neutrals. The simulation is fully time dependent, and is carried out in two or three dimensions, depending on whether the helio-latitudinal dependence of the solar wind speed and number density (both giving rise to three dimensional effects) are included. As a first approximation it is assumed that the neutral component of the flow can be described by a single, isotropic fluid. Clearly, this is not the actual situation, since charge exchange with the supersonic solar wind plasma in the region of the nose results in a 'second' neutral fluid propagating in the opposite direction as that of the LISM neutrals.
NASA Technical Reports Server (NTRS)
Allamandola, L. J.; Sanford, S. A.; Schutte, W. A.; Tielens, A. G. G. M.
1991-01-01
By studying the chemical and isotopic composition of interstellar ice and dust, one gains insight into the composition and chemical evolution of the solid bodies in the solar nebula and the nature of the material subsequently brought into the inner part of the solar system by comets and meteorites. It is now possible to spectroscopically probe the composition of interstellar ice and dust in the mid-infrared, the spectral range which is most diagnostic of fundamental molecular vibrations. We can compare these spectra of various astronomical objects (including the diffuse and dense interstellar medium, comets, and the icy outer planets and their satellites) with the spectra of analogs we produce in the laboratory under conditions which mimic those in these different objects. In this way one can determine the composition and abundances of the major constituents of the various ices and place general constraints on the types of organics coating the grains in the diffuse interstellar medium. In particular we have shown the ices in the dense clouds contain H2O, CH3OH, CO, perhaps some NH3 and H2CO, we well as nitriles and ketones or esters. Furthermore, by studying the photochemistry of these ice analogs in the laboratory, one gains insight into the chemistry which takes place in interstellar/precometary ices. Chemical and spectroscopic studies of photolyzed analogs (including deuterated species) are now underway. The results of some of these studies will be presented and implications for the evolution of the biogenic elements in interstellar dust and comets will be discussed.
NASA Technical Reports Server (NTRS)
Melbourne, J.; Boyer, Martha L.
2013-01-01
We present the near-through mid-infrared flux contribution of thermally-pulsing asymptotic giant branch (TP-AGB) and massive red supergiant (RSG) stars to the luminosities of the Large and Small Magellanic Clouds (LMC and SMC, respectively). Combined, the peak contribution from these cool evolved stars occurs at approx 3 - 4 micron, where they produce 32% of the SMC light, and 25% of the LMC flux. The TP-AGB star contribution also peaks at approx 3 - 4 micron and amounts to 21% in both galaxies. The contribution from RSG stars peaks at shorter wavelengths, 2.2 micron, where they provide 11% of the SMC flux, and 7% for the LMC. Both TP-AGB and RSG stars are short lived, and thus potentially impose a large stochastic scatter on the near-IR derived mass-to-light (M/L) ratios of galaxies at rest-frame 1 - 4 micron. To minimize their impact on stellar mass estimates, one can use the M/L ratio at shorter wavelengths (e.g., at 0.8 - 1 micron). At longer wavelengths (much > 8 micron), emission from dust in the interstellar medium dominates the flux. In the LMC, which shows strong polycyclic aromatic hydrocarbon (PAH) emission at 8 micron, TP-AGB and RSG contribute less than 4% of the 8 micron flux. However, 19% of the SMC 8 micron flux is from evolved stars, nearly half of which is produced by the rarest, dustiest, carbon-rich TP-AGB stars. Thus, star formation rates of galaxies, based on an 8 micron flux (e.g., observed-frame 24 micron at z = 2), may be biased modestly high, especially for galaxies with little PAH emission.
NASA Technical Reports Server (NTRS)
Liszt, H. S.; Hayden Smith, W.
1972-01-01
RKR Franck-Condon factors for thirteen of the blue and ultraviolet transitions of AlF, AlO, BH, BD, CH, CD, CH(+), SiO and SiH(+) have been calculated. The interstellar abundances of CH, CH(+) and SiH(+) are discussed with regard to recent laboratory measurements, our Franck-Condon factors, and observations of the sun and the interstellar medium.
Kästner, Matthias; Breuer-Jammali, Maren; Mahro, Bernd
1998-01-01
Degradation of polycyclic aromatic hydrocarbons (PAHs) and survival of bacteria in soil was investigated by applying different inoculation protocols. The soil was inoculated with Sphingomonas paucimobilis BA 2 and strain BP 9, which are able to degrade anthracene and pyrene, respectively. CFU of soil bacteria and of the introduced bacteria were monitored in native and sterilized soil at different pHs. Introduction with mineral medium inhibited PAH degradation by the autochthonous microflora and by the strains tested. After introduction with water (without increase of the pore water salinity), no inhibition of the autochthonous microflora was observed and both strains exhibited PAH degradation. PMID:9435090
Applications of the Electrodynamic Tether to Interstellar Travel
NASA Technical Reports Server (NTRS)
Matloff, Gregory L.; Johnson, Les
2005-01-01
After considering relevant properties of the local interstellar medium and defining a sample interstellar mission, this paper considers possible interstellar applications of the electrodynamic tether, or EDT. These include use of the EDT to provide on-board power and affect trajectory modifications and direct application of the EDT to starship acceleration. It is demonstrated that comparatively modest EDTs can provide substantial quantities of on-board power, if combined with a large-area electron-collection device such as the Cassenti toroidal-field ramscoop. More substantial tethers can be used to accomplish large-radius thrustless turns. Direct application of the EDT to starship acceleration is apparently infeasible.
Avoiding Intellectual Stagnation: The Starship as an Expander of Minds
NASA Astrophysics Data System (ADS)
Crawford, Ian A.
2014-06-01
Interstellar exploration will advance human knowledge and culture in multiple ways. Scientifically, it will advance our understanding of the interstellar medium, stellar astrophysics, planetary science and astrobiology. In addition, significant societal and cultural benefits will result from a programme of interstellar exploration and colonisation. Most important will be the cultural stimuli resulting from expanding the horizons of human experience, and increased opportunities for the spread and diversification of life and culture through the Galaxy. Ultimately, a programme of interstellar exploration may be the only way for human (and post-human) societies to avoid the intellectual stagnation predicted for the `end of history'.
Interaction of planetary nebulae with the interstellar medium
NASA Technical Reports Server (NTRS)
Borkowski, Kazimierz J.; Sarazin, Craig L.; Soker, Noam
1990-01-01
The interaction of a moving planetary nebula (PN) with the interstellar medium is considered. The PN shell is compressed first in the direction of the stellar motion. This produces a dipole asymmetry in the surface brightness of the nebula, typically at a nebular density of about 40/cu cm if the nebula is located in the Galactic plane. In the later stages of the interaction, this part of the shell is significantly decelerated with respect to the central star, and the PN becomes strongly asymmetric in shape. This distortion and the subsequent stripping of the nebular gas away from the central star typically occurs at a low nebular density of about 6/cu cm. The morphology of PNs with central stars whose proper motions exceed 0.015 arcsec/yr was examined, and it was found that many of the extended nebulae are interacting with the interstellar medium (ISM). The sample doubles the number of known PNs interacting with the ISM. The morphology of nearby PNs was examined, and a number of strongly asymmetric nebuale were found.
Photoabsorption and photodissociation of molecules important in the interstellar medium
NASA Technical Reports Server (NTRS)
Lee, L. C.
1985-01-01
The photoabsorption and photodissociation cross sections of several interstellar molecules and radicals in the 105 to 210 nm region were measured. The research results accomplished are briefly described. Photoabsorption cross sections of OD and CN, and photoabsorption and photodissociation of HCl, and photoabsorption and photodissociation cross sections of CH3OH are discussed.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Foight, Dillon R.; Slane, Patrick O.; Güver, Tolga
We present a comprehensive study of interstellar X-ray extinction using the extensive Chandra supernova remnant (SNR) archive and use our results to refine the empirical relation between the hydrogen column density and optical extinction. In our analysis, we make use of the large, uniform data sample to assess various systematic uncertainties in the measurement of the interstellar X-ray absorption. Specifically, we address systematic uncertainties that originate from (i) the emission models used to fit SNR spectra; (ii) the spatial variations within individual remnants; (iii) the physical conditions of the remnant such as composition, temperature, and non-equilibrium regions; and (iv) themore » model used for the absorption of X-rays in the interstellar medium. Using a Bayesian framework to quantify these systematic uncertainties, and combining the resulting hydrogen column density measurements with the measurements of optical extinction toward the same remnants, we find the empirical relation N {sub H} = (2.87 ± 0.12) × 10{sup 21} A {sub V} cm{sup 2}, which is significantly higher than the previous measurements.« less
Ionization of Local Interstellar Gas Based on STIS and FUSE spectra of Nearby Stars
NASA Astrophysics Data System (ADS)
Redfield, Seth; Linsky, J. L.
2009-01-01
The ultraviolet contains many resonance line transitions that are sensitive to a range of ionization stages of ions present in the local interstellar medium (LISM). We couple observations of high resolution ultraviolet spectrographs, STIS and GHRS on the Hubble Space Telescope (HST) and the Far-Ultraviolet Spectroscopic Explorer (FUSE) in order to make a comprehensive survey of the ionization structure of the local interstellar medium. In particular, we focus on the sight line toward G191-B2B, a nearby (69 pc) white dwarf. We present interstellar detections of highly ionized elements (e.g., SiIII, CIII, CIV, etc) and compare them directly to neutral or singly ionized LISM detections (e.g., SiII, CII, etc). The extensive observations of G191-B2B provides an opportunity for a broad study of ionization stages of several elements, while a survey of several sight lines provides a comprehensive look at the ionization structure of the LISM. We acknowledge support for this project through NASA FUSE Grant NNX06AD33G.
CNO isotopes in red giant stars
NASA Technical Reports Server (NTRS)
Wannier, P. G.
1985-01-01
The production and distribution of the CNO nuclides is discussed in light of observed abundance ratios in red giants and in the interstellar medium. Isotope abundances have been measured in the atmospheres and in the recent ejecta of cool giants, including carbon stars, S-type stars and red supergiants as well as in oxygen-rich giants making their first ascent of the giant branch. Several of the observations suggest revision of currently accepted nuclear cross-sections and of the mixing processes operating in giant envelopes. By comparing red giant abundances with high-quality observations of the interstellar medium, conclusions are reached about the contribution of intermediate-mass stars to galactic nuclear evolution. The three oxygen isotopes, O-16, -17 and -18, are particularly valuable for such comparison because they reflect three different stages of stellar nucleosynthesis. One remarkable result comes from observations of O-17/O-18 in several classes of red giant stars. The observed range of values for red giants excludes the entire range of values seen in interstellar molecular clouds. Furthermore, both the observations of stars and interstellar clouds exclude the isotopic ratio found in the solar system.
Viguri, J; Verde, J; Irabien, A
2002-07-01
Samples of intertidal surface sediments (0-2 cm) were collected in 17 stations of the Santander Bay, Cantabric Sea, Northern Spain. The concentrations of polycyclic aromatic hydrocarbons (PAHs), 16, were analysed by HPLC and MS detection. Surface sediments show a good linear correlation among the parameters of the experimental organic matter evaluation, where total carbon (TC) and loss on ignition (LOI) are approximately 2.5 and 5 times total organic carbon (TOC). A wide range of TOC from 0.08% to 4.1%, and a broad distribution of the sum of sigma16PAHs, from 0.02 to 344.6 microg/g d.w., which can be correlated by an exponential equation to the TOC, has been identified. A qualitative relationship may be established between the industrial input along the rivers and the concentration of sigma6PAHs in the sediments of the estuaries: Boo estuary (8404-4631 microg/g OC), Solia-San Salvador estuaries (305-113 microg/g OC) and Cubas estuary (31-32 microg/g OC). This work shows a dramatic change in the spatial distribution in the concentration of PAHs of intertidal surface sediments. The left edge of the Bay has the main traffic around the city and the major source of PAHs is from combustion processes and estuarine inputs, leading to medium values of PAHs in the sediments; the right edge of the Bay has much lesser anthropogenic activities leading to lower values of PAHs in sediments. The distribution of individual PAHs in sediments varies widely depending on their structure and molecular weight; the 4-6 ring aromatics predominate in polluted sediments due to their higher persistence. The isomer ratio does not allow any clear identification of the PAHs origin. Environmental evaluation according to Dutch guidelines and consensus sediment quality guidelines based on ecotoxicological data leads to the same conclusion, sediments in the Santander Bay show a very different environmental quality depending on the spatial position from heavily polluted/medium effects to non-polluted/below threshold effects. These results indicate that local sources of PAHs, especially estuary discharges, lead to very different qualities of sediments in coastal zones, where traffic and industrial activities take place.
CAN IBEX DETECT INTERSTELLAR NEUTRAL HELIUM OR OXYGEN FROM ANTI-RAM DIRECTIONS?
DOE Office of Scientific and Technical Information (OSTI.GOV)
Galli, A.; Wurz, P.; Park, J.
To better constrain the parameters of the interstellar neutral flow, we searched the Interstellar Boundary EXplorer (IBEX)-Lo database for helium and oxygen from the interstellar medium in the anti-ram direction in the three years (2009–2011) with the lowest background rates. We found that IBEX-Lo cannot observe interstellar helium from the anti-ram direction because the helium energy is too low for indirect detection by sputtering off the IBEX-Lo conversion surface. Our results show that this sputtering process has a low energy threshold between 25 and 30 eV, whereas the energy of the incident helium is only 10 eV for these observations.more » Interstellar oxygen, on the other hand, could in principle be detected in the anti-ram hemisphere, but the expected magnitude of the signal is close to the detection limit imposed by counting statistics and by the magnetospheric foreground.« less
Global Anisotropies in TeV Cosmic Rays Related to the Sun's Local Galactic Environment from IBEX
NASA Technical Reports Server (NTRS)
Schwadron, N. A.; Adams, F. C.; Christian, E. R.; Desiati, P.; Frisch, P.; Funsten, H. O.; Jokipii, J. R.; McComas, D. J.; Moebius, E.; Zank, G. P.
2014-01-01
Observations with the Interstellar Boundary Explorer (IBEX) have shown enhanced energetic neutral atom (ENA) emission from a narrow, circular ribbon likely centered on the direction of the local interstellar medium (LISM) magnetic field. Here, we show that recent determinations of the local interstellar velocity, based on interstellar atom measurements with IBEX, are consistent with the interstellar modulation of high-energy (tera-electron volts, TeV) cosmic rays and diffusive propagation from supernova sources revealed in global anisotropy maps of ground-based high-energy cosmic-ray observatories (Milagro, Asg, and IceCube). Establishing a consistent local interstellar magnetic field direction using IBEX ENAs at hundreds to thousands of eV and galactic cosmic rays at tens of TeV has wide-ranging implications for the structure of our heliosphere and its interactions with the LISM, which is particularly important at the time when the Voyager spacecraft are leaving our heliosphere.
Global anisotropies in TeV cosmic rays related to the Sun's local galactic environment from IBEX.
Schwadron, N A; Adams, F C; Christian, E R; Desiati, P; Frisch, P; Funsten, H O; Jokipii, J R; McComas, D J; Moebius, E; Zank, G P
2014-02-28
Observations with the Interstellar Boundary Explorer (IBEX) have shown enhanced energetic neutral atom (ENA) emission from a narrow, circular ribbon likely centered on the direction of the local interstellar medium (LISM) magnetic field. Here, we show that recent determinations of the local interstellar velocity, based on interstellar atom measurements with IBEX, are consistent with the interstellar modulation of high-energy (tera-electron volts, TeV) cosmic rays and diffusive propagation from supernova sources revealed in global anisotropy maps of ground-based high-energy cosmic-ray observatories (Milagro, Asγ, and IceCube). Establishing a consistent local interstellar magnetic field direction using IBEX ENAs at hundreds to thousands of eV and galactic cosmic rays at tens of TeV has wide-ranging implications for the structure of our heliosphere and its interactions with the LISM, which is particularly important at the time when the Voyager spacecraft are leaving our heliosphere.
The solar system/interstellar medium connection - Gas phase abundances
NASA Technical Reports Server (NTRS)
Lutz, Barry L.
1987-01-01
Gas-phase abundances in the outer solar system are presented as diagnostics of the interstellar medium at the time of the solar system formation, some 4.55 billion years ago. Possible influences of the thermal and chemical histories of the primitive solar nebula and of the processes which led to the formation and evolution of the outer planets and comets on the elemental and molecular composition of the primordial matter are outlined. The major components of the atmospheres of the outer planets and of the comae of comets are identified, and the cosmogonical and cosmological implications are discussed.
IUE study of the very local interstellar medium. [Copernicus spacecraft
NASA Technical Reports Server (NTRS)
Henry, R. C.; Murthy, J.; Moos, H. W.; Landsman, W. B.; Linsky, J. L.; Vidal-Madjar, A.; Gry, C.
1986-01-01
The IUE and Copernicus results for the very local interstellar medium are compared. Despite its lower resolution, IUE produces results of comparable quality, giving important confirmation of Copernicus results on the density, temperature, turbulence, and deuterium-to-hydrogen ratio in the region within 10 pc of the Sun. The stars observed are in a very low-density quarter of the galaxy: multicomponent structure seen in other directions may not be present in the direction of most of the observed stars. The exceedingly low densities observed in certain directions encourages the idea that EUV studies of certain normal stars may be possible.
Chemistry of nitrile anions in the interstellar medium
NASA Astrophysics Data System (ADS)
Carles, S.; Le Garrec, J.-L.; Guillemin, J.-C.; Biennier, L.
2015-12-01
Despite the extreme conditions of temperature (down to 10K) and density (down to 100 molecules/cm3), the giant molecular clouds and the circumstellar envelopes present a rich and complex chemistry. To date, more than 180 molecules have been detected in the InterStellar Medium (ISM) with a large abundance of nitriles (RC≡N). In addition, several anions have been recently observed in this medium: C4H¯, C6H¯, C8H¯, CN¯, C3N¯ and C5N¯. These last species should play a key role in the molecular growth towards complexity. To explore this hypothesis, their reactivity must be studied in the laboratory. The FALP-MS and the CRESU experimental apparatuses of the Rennes University are able to measure absolute rate coefficient of various chemical reactions, including the ion - molecule reactions, in gas phase at low temperature (from 300K for the FALP-MS down to 15K for the CRESU). Therefore, these experimental tools are particularly adapted to the kinetic studies of reactions potentially involved in the Interstellar Medium. One of the difficulties encountered in experiments with anions is their generation. We describe here the formation of the CN¯ and C3N¯ anions by dissociative electron attachment on the molecular precursors BrCN and BrC3N.
NASA Scientists Witness a Supernova Cosmic Rite of Passage
NASA Astrophysics Data System (ADS)
2005-11-01
Scientists using NASA's Chandra X-ray Observatory have witnessed a cosmic rite of passage, the transition from a supernova to a supernova remnant, a process that has never been seen in much detail until now, leaving it poorly defined. A supernova is a massive star explosion; the remnant is the beautiful glowing shell that evolves afterwards. When does a supernova become supernova remnant? When does the shell appear and what powers its radiant glow? A science team led by Dr. Stefan Immler of NASA's Goddard Space Flight Center, Greenbelt, Md., has taken a fresh look at a supernova that exploded in 1970, called SN 1970G, just off the handle of the Big Dipper. This is the oldest supernova ever seen by X-ray telescopes. Chandra X-ray Image of SN 1970G Chandra X-ray Image of SN 1970G "Some astronomers have thought there's a moment when the supernova remnant magically turns on years after the supernova itself has faded away, when the shock wave of the explosion finally hits and lights up the interstellar medium," said Immler. "By contrast, our results show that a new supernova quickly and seamlessly evolves into a supernova remnant. The star's own debris, and not the interstellar medium gas, fuels the remnant." These results appear in The Astrophysical Journal, co-authored by Dr. Kip Kuntz, also of Goddard. They support previous Chandra observations of SN 1987A by Dr. Sangwook Park of Penn State. Using new data from Chandra and archived data from the European-led ROSAT and XMM-Newton observatories, Immler and Kuntz pieced together how SN 1970G evolved over the years. They found telltale signs of a supernova remnant - bright X-ray light - yet no evidence of interstellar gas, even across a distance around the site of the explosion 35 times larger than our solar system. Instead, the material that is heated by the supernova shock to glow in X-ray light, what we call the remnant, is from the stellar wind of the star itself and not distant gas in the interstellar medium. This wind, comprising energetic ions, was shed by the progenitor star thousands to million of years before the explosion. If this were from the interstellar medium, it would be much denser than this stellar wind. NOAO Optical Image of SN 1970G NOAO Optical Image of SN 1970G Immler and Kuntz next studied the density profiles of all other supernovae that have been detected over the past two decades. Sure enough, the low-density circumstellar matter from the stellar wind was the source of X-rays, not the interstellar medium. Immler said that historical supernova remnants such as Cassiopeia A, which exploded some 320 years ago, also show no signs of activity from the interstellar medium. This is more than just a name game, more than hypothetically changing SN 1970G to SNR 1970G. "We have to rethink this notion that a shock wave from the supernova crashes into the interstellar medium to create a supernova remnant," said Immler. "The luminous supernova remnants that we see can be created without the need of a dense interstellar medium. In fact, our study showed that all supernovae detected in X-rays over the past 25 years live in a low-density environment." SN 1970G is located in the galaxy M101, also called the Pinwheel Galaxy, a stunning spiral galaxy about 22 million light years away in the constellation Ursa Major, home of the Big Dipper. Although the galaxy itself is visible from dark skies with binoculars, telescopes cannot resolve much structure in SN 1970G, unlike for supernova remnants in our Milky Way galaxy. Discovered with an optical telescope in 1970, SN 1970G was not seen with X-ray telescopes until the 1990s. Immler's work at NASA Goddard is supported through the Universities Space Research Association. Kuntz is supported through University of Maryland, Baltimore County. NASA's Marshall Space Flight Center in Huntsville, Ala., manages the Chandra program for the Agency's Science Mission Directorate. The Smithsonian Astrophysical Observatory controls science and flight operations from the Chandra X-ray Center in Cambridge, Mass. Additional information and images are available at: http://chandra.harvard.edu and http://chandra.nasa.gov
NASA Astrophysics Data System (ADS)
Fukui, Yasuo; Hayakawa, Takahiro; Inoue, Tsuyoshi; Torii, Kazufumi; Okamoto, Ryuji; Tachihara, Kengo; Onishi, Toshikazu; Hayashi, Katsuhiro
2018-06-01
We carried out synthetic observations of interstellar atomic hydrogen at 21 cm wavelength by utilizing the magnetohydrodynamic numerical simulations of the inhomogeneous turbulent interstellar medium. The cold neutral medium (CNM) shows a significantly clumpy distribution with a small volume filling factor of 3.5%, whereas the warm neutral medium (WNM) has a distinctly different and smooth distribution with a large filling factor of 96.5%. In projection on the sky, the CNM exhibits a highly filamentary distribution with a subparsec width, whereas the WNM shows a smooth, extended distribution. In the H I optical depth, the CNM is dominant and the contribution of the WNM is negligibly small. The CNM has an area covering factor of 30% in projection, while the WNM has a covering factor of 70%. This means that the emission–absorption measurements toward radio continuum compact sources tend to sample the WNM with a probability of 70%, yielding a smaller H I optical depth and a smaller H I column density than those of the bulk H I gas. The emission–absorption measurements, which are significantly affected by the small-scale large fluctuations of the CNM properties, are not suitable for characterizing the bulk H I gas. Larger-beam emission measurements that are able to fully sample the H I gas will provide a better tool for that purpose, if a reliable proxy for hydrogen column density, possibly dust optical depth and gamma rays, is available. The present results provide a step toward precise measurements of the interstellar hydrogen with ∼10% accuracy. This will be crucial in interstellar physics, including identification of the proton–proton interaction in gamma-ray supernova remnants.
Radiation-pressure-driven dust waves inside bursting interstellar bubbles
NASA Astrophysics Data System (ADS)
Ochsendorf, B. B.; Verdolini, S.; Cox, N. L. J.; Berné, O.; Kaper, L.; Tielens, A. G. G. M.
2014-06-01
Massive stars drive the evolution of the interstellar medium through their radiative and mechanical energy input. After their birth, they form "bubbles" of hot gas surrounded by a dense shell. Traditionally, the formation of bubbles is explained through the input of a powerful stellar wind, even though direct evidence supporting this scenario is lacking. Here we explore the possibility that interstellar bubbles seen by the Spitzer- and Herschel space telescopes, blown by stars with log (L/L⊙) ≲ 5.2, form and expand because of the thermal pressure that accompanies the ionization of the surrounding gas. We show that density gradients in the natal cloud or a puncture in the swept-up shell lead to an ionized gas flow through the bubble into the general interstellar medium, which is traced by a dust wave near the star, which demonstrates the importance of radiation pressure during this phase. Dust waves provide a natural explanation for the presence of dust inside H II bubbles, offer a novel method to study dust in H II regions and provide direct evidence that bubbles are relieving their pressure into the interstellar medium through a champagne flow, acting as a probe of the radiative interaction of a massive star with its surroundings. We explore a parameter space connecting the ambient density, the ionizing source luminosity, and the position of the dust wave, while using the well studied H II bubbles RCW 120 and RCW 82 as benchmarks of our model. Finally, we briefly examine the implications of our study for the environments of super star clusters formed in ultraluminous infrared galaxies, merging galaxies, and the early Universe, which occur in very luminous and dense environments and where radiation pressure is expected to dominate the dynamical evolution.
Use of magnetic sails for advanced exploration missions
NASA Technical Reports Server (NTRS)
Andrews, Dana G.; Zubrin, Robert M.
1990-01-01
The magnetic sail, or magsail, is a field effect device which interacts with the ambient solar wind or interstellar medium over a considerable volume of space to generate drag and lift forces. Two theories describing the method of thrust generation are analyzed and data results are presented. The techniques for maintaining superconductor temperatures in interplanetary space are analyzed and low risk options presented. Comparisons are presented showing mission performance differences between currently proposed spacecraft using chemical and electric propulsion systems, and a Magsail propelled spacecraft capable of generating an average thrust of 250 Newtons at a radius of one A.U. The magsail also provides unique capabilities for interstellar missions, in that at relativistic speeds the magnetic field would ionize and deflect the interstellar medium producing a large drag force. This would make it an ideal brake for decelerating a spacecraft from relativistic speeds and then maneuvering within the target star system.
The Origin of Filamentary Star Forming Clouds in Magnetised Galaxies
NASA Astrophysics Data System (ADS)
Körtgen, Bastian; Banerjee, Robi; Pudritz, Ralph E.; Schmidt, Wolfram
2018-05-01
Observations show that galaxies and their interstellar media are pervaded by strong magnetic fields with energies in the diffuse component being at least comparable to the thermal and even as large or larger than the turbulent energy. Such strong magnetic fields prevent the formation of stars because patches of the interstellar medium are magnetically subcritical. Here we present the results from global numerical simulations of strongly magnetised and self-gravitating galactic discs, which show that the buoyancy of the magnetic field due to the Parker instability leads at first to the formation of giant filamentary regions. These filamentary structures become gravitationally unstable and fragment into ˜105M⊙ clouds that attract kpc long, coherent filamentary flows that build them into GMCs. Our results thus provide a solution to the long-standing problem of how the transition from sub- to supercritical regions in the interstellar medium proceeds.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Parker, Dorian S. N.; Kaiser, Ralf I.; Kostko, Oleg
Nitrogen-substituted polycyclic aromatic hydrocarbons (NPAHs) have been proposed to play a key role in the astrochemical evolution of the interstellar medium, yet the formation mechanisms of even their simplest prototypes—quinoline and isoquinoline—remain elusive. Here, we reveal a novel concept that under high temperature conditions representing circumstellar envelopes of carbon stars, (iso)quinoline can be synthesized via the reaction of pyridyl radicals with two acetylene molecules. The facile gas phase formation of (iso)quinoline in circumstellar envelopes defines a hitherto elusive reaction class synthesizing aromatic structures with embedded nitrogen atoms that are essential building blocks in contemporary biological-structural motifs. Once ejected from circumstellarmore » shells and incorporated into icy interstellar grains in cold molecular clouds, these NPAHs can be functionalized by photo processing forming nucleobase-type structures as sampled in the Murchison meteorite.« less
Spallation processes and nuclear interaction products of cosmic rays.
Silberberg, R; Tsao, C H
1990-08-01
Most cosmic-ray nuclei heavier than helium have suffered nuclear collisions in the interstellar gas, with transformation of nuclear composition. The isotopic and elemental composition at the sources has to be inferred from the observed composition near the Earth. The source composition permits tests of current ideas on sites of origin, nucleosynthesis in stars, evolution of stars, the mixing and composition of the interstellar medium and injection processes prior to acceleration. The effects of nuclear spallation, production of radioactive nuclides and the time dependence of their decay provide valuable information on the acceleration and propagation of cosmic rays, their nuclear transformations, and their confinement time in the Galaxy. The formation of spallation products that only decay by electron capture and are relatively long-lived permits an investigation of the nature and density fluctuations (like clouds) of the interstellar medium. Since nuclear collisions yield positrons, antiprotons, gamma rays and neutrinos, we shall discuss these topics briefly.
Investigating the 3.3 micron infrared fluorescence from naphthalene following ultraviolet excitation
NASA Technical Reports Server (NTRS)
Williams, Richard M.; Leone, Stephen R.
1994-01-01
Polycyclic aromatic hydrocarbon (PAH) type molecules are proposed as the carriers of the unidentified infrared (UIR) bands. Detailed studies of the 3.3 micrometer infrared emission features from naphthalene, the simplest PAH, following ultraviolet laser excitation are used in the interpretation of the 3.29 micrometer (3040 cm(sup -1)) UIR band. A time-resolved Fourier transform spectrometer is used to record the infrared emission spectrum of gas-phase naphthalene subsequent to ultraviolet excitation facilitated by an excimer laser operated at either 193 nm or 248 nm. The emission spectra differ significantly from the absorption spectrum in the same spectral region. Following 193 nm excitation the maximum in the emission profile is red-shifted 45 cm(sup -1) relative to the absorption maximum; a 25 cm(sup -1) red-shift is observed after 248 nm excitation. The red-shifting of the emission spectrum is reduced as collisional and radiative relaxation removes energy from the highly vibrationally excited molecules. Coupling between the various vibrational modes is thought to account for the differences between absorption and emission spectra. Strong visible emission is also observed following ultraviolet excitation. Visible emission may play an important role in the rate of radiative relaxation, which according to the interstellar PAH hypothesis occurs only by the slow emission of infrared photons. Studying the visible emission properties of PAH type molecules may be useful in the interpretation of the DIB's observed in absorption.
NASA Technical Reports Server (NTRS)
Hudgins, D. M.; Allamandola, L. J.
1995-01-01
Gaseous, ionized polycyclic aromatic hydrocarbons (PAHS) are thought to be responsible for a very common family of interstellar infrared emission bands. Here the near- and mid-infrared spectra of the cations of the five most thermodynamically favored PAHs up to coronene: phenanthrene, pyrene, benzo[e]pyrene, benzo-[ghi]perylene, and coronene, are presented to test this hypothesis. For those molecules that have been studied previously (pyrene, pyrene-d(sub 10), and coronene), band positions and relative intensities are in agreement. In all of these cases we report additional features. Absolute integrated absorbance values are given for the phenanthrene, perdeuteriophenanthrene, pyrene, benzo[ghi]perylene, and coronene cations. With the exception of coronene, the cation bands corresponding to the CC modes are typically 2-5 times more intense than those of the CH out-of-plane bending vibrations. For the cations, the CC stretching and CH in-plane bending modes give rise to bands that are an order of magnitude stronger than those of the neutral species, and the CH out-of-plane bends produce bands that are 5-20 times weaker than those of the neutral species. This behavior is similar to that found in most other PAH cations studied to date. The astronomical implications of these PAH cation spectra are also discussed.
Infrared Spectroscopy of Naphthalene Aggregation and Cluster Formation in Argon Matrices
NASA Technical Reports Server (NTRS)
Roser, J. E.; Allamondola, L. J.
2011-01-01
Fourier-transform mid-infrared absorption spectra of mixed argon/naphthalene matrices at 5 K are shown with ratios of argon-to-naphthalene that vary from 1000 to 0. These spectra show the changes as naphthalene clustering and aggregation occurs, with moderate spectral shifts affecting the C-H vibrational modes and relatively small or no shifts to the C-C and C-C-C vibrational modes. The possible contribution of homogeneous naphthalene clusters to the interstellar unidentified infrared bands is discussed. The contribution of polycyclic aromatic hydrocarbon (PAH) clusters to the 7.7 micron emission plateau and the blue shading of the 12.7 micron emission band are identified as promising candidates for future research. In addition, since PAH clusters are model components of Jupiter and Titan's atmospheres, the information presented here may also be applicable to the spectroscopy of these objects.
PAH EMISSION AT THE BRIGHT LOCATIONS OF PDRs: THE grandPAH HYPOTHESIS
DOE Office of Scientific and Technical Information (OSTI.GOV)
Andrews, H.; Tielens, A. G. G. M.; Boersma, C.
2015-07-01
The polycyclic aromatic hydrocarbon (PAH) emission observed in the Spitzer Infrared Spectrograph spectra of bright mid-IR locations of NGC 7023, NGC 2023, and NGC 1333 was analyzed. These objects show large variations in PAH band ratios when studied through spectral mapping. Nevertheless, the mid-IR spectra at these bright spots show a remarkably similar PAH emission. We used the NASA Ames PAH IR Spectroscopic Database to fit the observations and analyze the derived PAH populations. Our results show that PAH emission in the 5–15 μm range appears to be rather insensitive to variations of the radiation field. Similar PAH populations ofmore » neutral small to medium-sized PAHs (∼50%), with ionized species contributing in slightly less than 50%, provide very good fits. Analyzing the degeneracy of the results shows that subtle (but intrinsic) variations in the emission properties of individual PAHs lead to observable differences in the resulting spectra. On top of this, we found that variations of <30% in the PAH abundances would lead to noticeable spectral differences between the three photodissociation regions (PDRs). Therefore, PAH populations must be remarkably similar at these different lines of sight. To account for this, we suggest the concept of grandPAHs as a unique mixture of the most stable PAHs emitting at these spots. Using NGC 7023 as an example, the grandPAHs refer to the robust PAH population that results from the intense processing of PAHs at the border limit between the PDR and the molecular cloud, where, due to the UV radiation that destroys the PAH population, the abundance of PAHs starts decreasing as we move toward the star.« less
NASA Astrophysics Data System (ADS)
Gurnett, D. A.
2017-12-01
Voyager 1, which is now 140 AU (Astronomical Units) from the Sun, crossed the heliopause into interstellar space in 2012 at a heliospheric radial distance of 121 AU. Since crossing the heliopause the plasma wave instrument has on several occasions detected plasma oscillations and radio emissions at or near the electron plasma frequency. The most notable of these events occurred in Oct.-Nov. 2012, April-May 2013, Feb.-Nov. 2014, and Sept.-Nov. 2015. Most recently, a very weak emission has been observed at or near the electron plasma frequency through most of 2016. These emissions are all believed to be produced by shock waves propagating into the interstellar medium from energetic solar events. The oscillation frequency of the plasma indicates that the electron density in the interstellar plasma has gradually increased from about 0.06 cm-3 near the heliopause to about 0.12 cm-3 in the most recent data. The plasma wave instrument also continues to detect impacts of what are believed to be interstellar dust grains at an impact rate of a few per year. Comparisons with Ulysses observations of similar interstellar dust near 5 AU suggest that the dust grains have sizes in the range from about 0.1 to 1 micrometer. Although the statistics are poor due to the low count rate, the dust flux observed in the outer heliosphere appears to be as much as a factor of two greater than that observed in the interstellar medium. Since the dust particles are likely to be charged, this increase in the heliosphere suggests that there may be a significant electrodynamic interaction of the dust particles with the heliospheric magnetic field.
The Dissipation Range of Interstellar Turbulence
NASA Astrophysics Data System (ADS)
Spangler, Steven R.; Buffo, J. J.
2013-06-01
Turbulence may play an important role in a number of interstellar processes. One of these is heating of the interstellar gas, as the turbulent energy is dissipated and changed into thermal energy of the gas, or at least other forms of energy. There have been very promising recent results on the mechanism for dissipation of turbulence in the Solar Wind (Howes et al, Phys. Plasm. 18, 102305, 2011). In the Solar Wind, the dissipation arises because small-scale irregularities develop properties of kinetic Alfven waves, and apparently damp like kinetic Alfven waves. A property of kinetic Alfven waves is that they become significantly compressive on size scales of order the ion Larmor radius. Much is known about the plasma properties of ionized components of interstellar medium such as HII regions and the Diffuse Ionized Gas (DIG) phase, including information on the turbulence in these media. The technique of radio wave scintillations can yield properties of HII region and DIG turbulence on scales of order the ion Larmor radius, which we refer to as the dissipation scale. In this paper, we collect results from a number of published radio scattering measurements of interstellar turbulence on the dissipation scale. These studies show evidence for a spectral break on the dissipation scale, but no evidence for enhanced compressibility of the fluctuations. The simplest explanation of our result is that turbulence in the ionized interstellar medium does not possess properties of kinetic Alfven waves. This could point to an important difference with Solar Wind turbulence. New observations, particularly with the Very Long Baseline Array (VLBA) could yield much better measurements of the power spectrum of interstellar turbulence in the dissipation range. This research was supported at the University of Iowa by grants AST09-07911 and ATM09-56901 from the National Science Foundation.
IS VOYAGER 1 INSIDE AN INTERSTELLAR FLUX TRANSFER EVENT?
DOE Office of Scientific and Technical Information (OSTI.GOV)
Schwadron, N. A.; McComas, D. J., E-mail: n.schwadron@unh.edu
Plasma wave observations from Voyager 1 have recently shown large increases in plasma density, to about 0.1 cm{sup –3}, consistent with the density of the local interstellar medium. However, corresponding magnetic field observations continue to show the spiral magnetic field direction observed throughout the inner heliosheath. These apparently contradictory observations may be reconciled if Voyager 1 is inside an interstellar flux transfer event—similar to flux transfer events routinely seen at the Earth's magnetopause. If this were the case, Voyager 1 remains inside the heliopause and based on the Voyager 1 observations we can determine the polarity of the interstellar magnetic field for the first time.
A new way to measure the composition of the interstellar gas surrounding the heliosphere
NASA Technical Reports Server (NTRS)
Gruntman, Michael A.
1993-01-01
The composition of neutral gas in the Local Interstellar Medium can be studied by direct, in situ measuring of interstellar neutral atoms penetrating into interplanetary space. A novel experimental approach for in situ atom detection, which has never been used earlier in space, is proposed. The technique is based on the conversion of neutral atoms to negative ions at a specially prepared sensitive surface. Negative ions are subsequently analyzed and detected in an essentially noise-free, multicoincidence mode. It is shown that interstellar hydrogen, deuterium, and oxygen atoms can be measured by the proposed technique. The experiment can be performed from a high-apogee Earth-orbiting satellite or from a deep space probe.
Small interstellar molecules and what they tell us
NASA Astrophysics Data System (ADS)
Neufeld, David A.
2018-06-01
Observations at ultraviolet, visible, infrared and radio wavelengths provide a wealth of information about the molecular inventory of the interstellar medium (ISM). Because of the different chemical pathways responsible for their formation and destruction, different molecules probe specific aspects of the interstellar environment. Carefully interpreted with the use of astrochemical models, they provide unique information of general astrophysical importance, yielding estimates of the cosmic ray density, the molecular fraction, the ultraviolet radiation field, and the dissipation of energy within the turbulent ISM. Laboratory experiments and quantum-mechanical calculations are essential both in providing the spectroscopic data needed to identify interstellar molecules and for elucidating the fundamental physical and chemical processes that must be included in astrochemical models.
Unusually high rotational temperature of the CN radical
NASA Astrophysics Data System (ADS)
Krełowski, J.; Galazutdinov, G.; Beletsky, Y.
2011-07-01
We analyse a high-resolution, high signal-to-noise spectrogram of the hot reddened star Trumpler 16 112 to find relationships between the physical parameters of the intervening interstellar medium (e.g., the rotational temperature of the CN radical) and the intensities of interstellar lines/bands. We report on the discovery of an interstellar cloud that shows an exceptionally high rotational temperature of CN (4.5 K) and unusually strong Ca I and Fe I interstellar lines. This rare CaFe-type cloud seemingly contains no diffuse band carriers. Based on observations collected at the European Organisation for Astronomical Research in the Southern Hemisphere, Chile. Programs 073.D-0609(A) and 082.C-0566(A).
Implications of high-velocity interstellar H I absorption features
NASA Technical Reports Server (NTRS)
Cowie, L.; York, D. G.; Laurent, C.; Vidal-Madjar, A.
1979-01-01
Contributions to the interstellar H I column density at high velocities from immediate postshock gas and from the cooling gas behind a shock are compared. The detection of high-velocity H I in L-epsilon and L-delta for Iota Ori is reported and interpreted as cooling gas behind a shock of 100 km/s velocity. The immediate postshock gas should be observable for shock velocities greater than 200 km/s and permits direct determination of the velocities of adiabatic shocks in the interstellar medium. It is pointed out that interstellar L-alpha and L-beta lines may not have purely Lorentzian profiles if high-velocity H I is a widespread phenomenon.
Rotational Spectra in 29 Vibrationally Excited States of Interstellar Aminoacetonitrile
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kolesniková, L.; Alonso, E. R.; Mata, S.
2017-04-01
We report a detailed spectroscopic investigation of the interstellar aminoacetonitrile, a possible precursor molecule of glycine. Using a combination of Stark and frequency-modulation microwave and millimeter wave spectroscopies, we observed and analyzed the room-temperature rotational spectra of 29 excited states with energies up to 1000 cm{sup −1}. We also observed the {sup 13}C isotopologues in the ground vibrational state in natural abundance (1.1%). The extensive data set of more than 2000 new rotational transitions will support further identifications of aminoacetonitrile in the interstellar medium.
Commentary on interstellar matter associated with 18 open clusters
NASA Technical Reports Server (NTRS)
Leisawitz, David
1989-01-01
Information supplementary to that contained in Section 4 of an article entitled, A CO Survey of Regions Around 34 Open Clusters, (Leisawitz, Bash, and Thaddeus) published in the Astrophysical Journal Supplement Series, Volume 70, Number 4, August 1989 is summarized. The information presented here, which describes the interstellar environments of young clusters and some cluster physical characteristics, comes from observations published in the astronomical literature and the author's carbon monoxide (CO) emission line survey, and may help clarify our understanding of the interaction of massive stars with the interstellar medium.
Ionization in the local interstellar and intergalactic media
DOE Office of Scientific and Technical Information (OSTI.GOV)
Cheng, K.
1990-01-01
Detailed photoionization calculations for the local interstellar medium (LISM) and the intergalactic medium (IGM) are presented. Constraints in the LISM are imposed by H I column density derived from IUE and Copernicus data toward nearby B stars and hot white dwarfs. The EUV radiation field is modeled including contributions from discrete stellar sources and from a thermal bremsstrahlung-radiative recombination spectrum emitted from the surrounding 10(exp 6) K coronal substrate. Lower limits to the fractional ionization of hydrogen and helium of 0.17 and 0.30 respectively are established. The derived limits have important implications for the interpretation of the H I andmore » He I backscattering results. The high He ionization fraction results primarily from very strong line emission below 500 A originating in the surrounding coronal substrate while the H ionization is dominated by the EUV radiation from the discrete stellar sources. The dual effects of thermal conduction and the EUV spectrum of the 10(exp 6) K plasma on ionization in the cloud skin are explored. The EUV radiation field and Auger ionization have insignificant effects on the resulting ionic column densities of Si IV, C IV, N V and O VI through the cloud skin. Calculations show that the abundances of these species are dominated by collisional ionization in the thermal conduction front. Because of a low charge exchange rate with hydrogen, the ionic column density ratios of N(C III)/N(C II) and N(N II)/N(N I) are dominated by the EUV radiation field in the local interstellar medium. These ratios should be important diagnostics for the EUV radiation field and serve as surrogate indicators of the interstellar He and H ionization fraction respectively. The same photoionization model is applied to the intergalactic medium.« less
Photochemistry of coronene in cosmic water ice analogs at different concentrations.
de Barros, A L F; Mattioda, A L; Ricca, A; Cruz, G; Allamandola, L J
2017-10-20
This work presents the photochemistry of ultraviolet (UV) irradiated coronene in water ices at 15 K, studied using mid-infrared Fourier transform (FTIR) spectroscopy for C 24 H 12 :H 2 O at concentrations of (1:50), (1:150), (1:200), (1:300) and (1:400). Previous UV irradiation studies of anthracene:H 2 O, pyrene:H 2 O and benzo[ghi]perylene:H 2 O ices at 15 K have shown that aromatic alcohols and ketones, as well as CO 2 and H 2 CO are formed at very low temperatures. Like-wise, here, in addition to the coronene cation, hydroxy-, keto-, and protonated coronene (coronene-H + ) are formed. The rate constants for the decay of neutral coronene and for the formation of photoproducts have been derived. It is shown that PAHs and their UV-induced PAH:H 2 O photoproducts have mid-infrared spectroscopic signatures in the 5-8 μ m region that can contribute to the interstellar ice components described by Boogert et al. (2008) as C1-C5. Our results suggest that oxygenated and hydrogenated PAHs could be in UV-irradiated regions of the ISM where water-rich ices are important.
Electromagnetic Forces on a Relativistic Spacecraft in the Interstellar Medium
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hoang, Thiem; Loeb, Abraham, E-mail: thiemhoang@kasi.re.kr, E-mail: aloeb@cfa.harvard.edu
2017-10-10
A relativistic spacecraft of the type envisioned by the Breakthrough Starshot initiative will inevitably become charged through collisions with interstellar particles and UV photons. Interstellar magnetic fields would therefore deflect the trajectory of the spacecraft. We calculate the expected deflection for typical interstellar conditions. We also find that the charge distribution of the spacecraft is asymmetric, producing an electric dipole moment. The interaction between the moving electric dipole and the interstellar magnetic field is found to produce a large torque, which can result in fast oscillation of the spacecraft around the axis perpendicular to the direction of motion, with amore » period of ∼0.5 hr. We then study the spacecraft rotation arising from impulsive torques by dust bombardment. Finally, we discuss the effect of the spacecraft rotation and suggest several methods to mitigate it.« less
Theoretical Modeling of Interstellar Chemistry
NASA Technical Reports Server (NTRS)
Charnley, Steven
2009-01-01
The chemistry of complex interstellar organic molecules will be described. Gas phase processes that may build large carbon-chain species in cold molecular clouds will be summarized. Catalytic reactions on grain surfaces can lead to a large variety of organic species, and models of molecule formation by atom additions to multiply-bonded molecules will be presented. The subsequent desorption of these mixed molecular ices can initiate a distinctive organic chemistry in hot molecular cores. The general ion-molecule pathways leading to even larger organics will be outlined. The predictions of this theory will be compared with observations to show how possible organic formation pathways in the interstellar medium may be constrained. In particular, the success of the theory in explaining trends in the known interstellar organics, in predicting recently-detected interstellar molecules, and, just as importantly, non-detections, will be discussed.
Electromagnetic Forces on a Relativistic Spacecraft in the Interstellar Medium
NASA Astrophysics Data System (ADS)
Hoang, Thiem; Loeb, Abraham
2017-10-01
A relativistic spacecraft of the type envisioned by the Breakthrough Starshot initiative will inevitably become charged through collisions with interstellar particles and UV photons. Interstellar magnetic fields would therefore deflect the trajectory of the spacecraft. We calculate the expected deflection for typical interstellar conditions. We also find that the charge distribution of the spacecraft is asymmetric, producing an electric dipole moment. The interaction between the moving electric dipole and the interstellar magnetic field is found to produce a large torque, which can result in fast oscillation of the spacecraft around the axis perpendicular to the direction of motion, with a period of ˜0.5 hr. We then study the spacecraft rotation arising from impulsive torques by dust bombardment. Finally, we discuss the effect of the spacecraft rotation and suggest several methods to mitigate it.
NASA Technical Reports Server (NTRS)
Hudson, R. L.; Loeffler, M. J.; Yocum, K. M.
2017-01-01
Propylene oxide was recently identified in the interstellar medium, but few laboratory results are available for this molecule to guide current and future investigations. To address this situation, here we report infrared spectra, absorption coefficients, and band strengths of solid propylene oxide along with the first measurement of its refractive index and a calculation of its density, all for the amorphous solid form of the compound. We present the first experimental results showing a low-temperature formation pathway for propylene oxide near 10 K in interstellar ice analogs. Connections are drawn between our new results and the interstellar molecules propanal and acetone, and predictions are made about several as yet unobserved vinyl alcohols and methylketene. Comparisons are given to earlier laboratory work and a few applications to interstellar and solar system astrochemistry are described.
NASA Astrophysics Data System (ADS)
Hudson, R. L.; Loeffler, M. J.; Yocum, K. M.
2017-02-01
Propylene oxide was recently identified in the interstellar medium, but few laboratory results are available for this molecule to guide current and future investigations. To address this situation, here we report infrared spectra, absorption coefficients, and band strengths of solid propylene oxide along with the first measurement of its refractive index and a calculation of its density, all for the amorphous solid form of the compound. We present the first experimental results showing a low-temperature formation pathway for propylene oxide near 10 K in interstellar ice analogs. Connections are drawn between our new results and the interstellar molecules propanal and acetone, and predictions are made about several as yet unobserved vinyl alcohols and methylketene. Comparisons are given to earlier laboratory work and a few applications to interstellar and solar system astrochemistry are described.
Hydrogenation and dehydrogenation of interstellar PAHs: Spectral characteristics and H2 formation
NASA Astrophysics Data System (ADS)
Andrews, H.; Candian, A.; Tielens, A. G. G. M.
2016-10-01
Context. We have modelled the abundance distribution and IR emission of the first 3 members of the coronene family in the north-west photodissociation region of the well-studied reflection nebulae NGC 7023. Aims: Our aim was 3-fold: I) analyze the distribution of abundances; (II) examine the spectral footprints from the hydrogenation state of polycyclic aromatic hydrocarbons (PAHs); and (III) assess the role of PAHs in the formation of H2 in photodissociation regions. Methods: To model the physical conditions inside the cloud, we used the Meudon PDR Code, and we gave this as input to our kinetic model. We used specific molecular properties for each PAH, based on the latest data available at the present time. We considered the loss of an H atom or an H2 molecule as multiphoton processes, and we worked under the premise that PAHs with extra H atoms can form H2 through an Eley-Rideal abstraction mechanism. Results: In terms of abundances, we can distinguish clear differences with PAH size. The smallest PAH, coronene (C24H12), is found to be easily destroyed down to the complete loss of all of its H atoms. The largest species circumcircumcoronene (C96H24), is found in its normal hydrogenated state. The intermediate size molecule, circumcoronene (C54H18), shows an intermediate behaviour with respect to the other two, where partial dehydrogenation is observed inside the cloud. Regarding spectral variations, we find that the emission spectra in NGC 7023 are dominated by the variation in the ionization of the dominant hydrogenation state of each species at each point inside the cloud. It is difficult to "catch" the effect of dehydrogenation in the emitted PAH spectra since, for any conditions, only PAHs within a narrow size range will be susceptible to dehydrogenation, being quickly stripped off of all H atoms (and may isomerize to cages or fullerenes). The 3 μm region is the most sensitive one towards the hydrogenation level of PAHs. Conclusions: Based on our results, we conclude that PAHs with extra H atoms are not the carriers of the 3.4 μm band observed in NGC 7023, since these species are only found in very benign environments. Finally, concerning the role of PAHs in the formation of H2 in photodissociation regions, we find that H2 abstraction from PAHs with extra H atoms is an inefficient process compared to grains. Instead, we propose that photodissociation of PAHs of small-to-intermediate sizes could contribute to H2 formation in PDR surfaces, but they cannot account by themselves for the inferred high H2 formation rates in these regions.
NASA Astrophysics Data System (ADS)
Popov, Mikhail V.; Bartel, Norbert; Gwinn, Carl R.; Johnson, Michael D.; Andrianov, Andrey; Fadeev, Evgeny; Joshi, Bhal Chandra; Kardashev, Nikolay; Karuppusamy, Ramesh; Kovalev, Yuri Y.; Kramer, Michael; Rudnitskiy, Alexey; Shishov, Vladimir; Smirnova, Tatiana; Soglasnov, Vladimir A.; Zensus, J. Anton
2017-02-01
We have resolved the scatter-broadened image of PSR B0329+54 and detected a substructure within it. These results are not influenced by any extended structure of a source but instead are directly attributed to the interstellar medium. We obtained these results at 324 MHz with the ground-space interferometer RadioAstron, which included the Space Radio Telescope, ground-based Westerbork Synthesis Radio Telescope and 64-m Kalyazin Radio Telescope on baseline projections up to 330 000 km in 2013 November 22 and 2014 January 1 to 2. At short 15 000 to 35 000 km ground-space baseline projections, the visibility amplitude decreases with baseline length, providing a direct measurement of the size of the scattering disc of 4.8 ± 0.8 mas. At longer baselines, no visibility detections from the scattering disc would be expected. However, significant detections were obtained with visibility amplitudes of 3 to 5 per cent of the maximum scattered around a mean and approximately constant up to 330 000 km. These visibilities reflect a substructure from scattering in the interstellar medium and offer a new probe of ionized interstellar material. The size of the diffraction spot near Earth is 17 000 ± 3 000 km. With the assumption of turbulent irregularities in the plasma of the interstellar medium, we estimate that the effective scattering screen is located 0.6 ± 0.1 of the distance from the Earth towards the pulsar.
Magnetic Fields in the Interstellar Medium
NASA Astrophysics Data System (ADS)
Clark, Susan
2017-01-01
The Milky Way is magnetized. Invisible magnetic fields thread the Galaxy on all scales and play a vital but still poorly understood role in regulating flows of gas in the interstellar medium and the formation of stars. I will present highlights from my thesis work on magnetic fields in the diffuse interstellar gas and in accretion disks. At high Galactic latitudes, diffuse neutral hydrogen is organized into an intricate network of slender linear features. I will show that these neutral hydrogen “fibers” are extremely well aligned with the ambient magnetic field as traced by both starlight polarization (Clark et al. 2014) and Planck 353 GHz polarized dust emission (Clark et al. 2015). The structure of the neutral interstellar medium is more tightly coupled to the magnetic field than previously known. Because the orientation of neutral hydrogen is an independent predictor of the local dust polarization angle, our work provides a new tool in the search for inflationary gravitational wave B-mode polarization in the cosmic microwave background, which is currently limited by dust foreground contamination. Magnetic fields also drive accretion in astrophysical disks via the magnetorotational instability (MRI). I analytically derive the behavior of this instability in the weakly nonlinear regime and show that the saturated state of the instability depends on the geometry of the background magnetic field. The analytical model describes the behavior of the MRI in a Taylor-Couette flow, a set-up used by experimentalists in the ongoing quest to observe MRI in the laboratory (Clark & Oishi 2016a, 2016b).
NASA Astrophysics Data System (ADS)
Melosso, Mattia; Degli Esposti, Claudia; Tamassia, Filippo; Canè, Elisabetta; Dore, Luca
2017-11-01
The deuteration mechanism of molecules in the interstellar medium (ISM) is still being debated. Observations of deuterium-bearing species in several astronomical sources represent a powerful tool to improve our understanding of the interstellar chemistry. In this scenario, the doubly-deuterated form of the amidogen radical could be a target of detection in space.
Physical state of interstellar atoms. [from Copernicus satellite UV data
NASA Technical Reports Server (NTRS)
York, D. G.
1974-01-01
Brief survey of the physical conditions along the lines of sight to reddened and unreddened stars, as determined from Copernicus observation of interstellar lines between 95 and 300 nm. Differences in ionization structure and density between clouds and the local intercloud medium are discussed. Some new data for beta Centauri is used to supplement the previously available data.
An Investigation of the Cold Interstellar Medium of the Outer Galaxy
NASA Technical Reports Server (NTRS)
Heyer, Mark H.
1997-01-01
The primary objective of this proposal was to determine the relationship between the molecular gas and dust components of the interstellar medium of the Outer Galaxy. It made use of the High Resolution IRAS Galaxy Atlas and the FCRAO CO Survey of the Outer Galaxy. These HIRES images greatly augment the spatial dynamic range of the IRAS Survey data and the ability to discriminate multiple point sources within a compact region. Additionally, the HIRES far infrared images allow for more direct comparisons with molecular line data observed at 45 sec resolution. From funding of this proposal, we have completed two papers for publication in a refereed journal.
Trajectories for a Near Term Mission to the Interstellar Medium
NASA Technical Reports Server (NTRS)
Arora, Nitin; Strange, Nathan; Alkalai, Leon
2015-01-01
Trajectories for rapid access to the interstellar medium (ISM) with a Kuiper Belt Object (KBO) flyby, launching between 2022 and 2030, are described. An impulsive-patched-conic broad search algorithm combined with a local optimizer is used for the trajectory computations. Two classes of trajectories, (1) with a powered Jupiter flyby and (2) with a perihelion maneuver, are studied and compared. Planetary flybys combined with leveraging maneuvers reduce launch C3 requirements (by factor of 2 or more) and help satisfy mission-phasing constraints. Low launch C3 combined with leveraging and a perihelion maneuver is found to be enabling for a near-term potential mission to the ISM.
The diffuse interstellar medium
NASA Technical Reports Server (NTRS)
Cox, Donald P.
1990-01-01
The last 20 years of the efforts to understand the diffuse ISM are reviewed, with recent changes of fundamental aspects being highlighted. Attention is given to the interstellar pressure and its components, the weight of the ISM, the midplane pressure contributions, and pressure contributions at 1 kpc. What velocity dispersions, cosmic ray pressure, and magnetic field pressure that can be expected for a gas in a high magnetic field environment is addressed. The intercloud medium is described, with reference to the work of Cox and Slavin (1989). Various caveats are discussed and a number of areas for future investigation are identified. Steps that could be taken toward a successful phase segregation model are discussed.
The influence of cosmic rays on the stability and large-scale dynamics of the interstellar medium
NASA Astrophysics Data System (ADS)
Kuznetsov, V. D.
1986-06-01
The diffusion-convection formulation is used to study the influence of galactic cosmic rays on the stability and dynamics of the interstellar medium which is supposedly kept in equilibrium by the gravitational field of stars. It is shown that the influence of cosmic rays on the growth rate of MHD instability depends largely on a dimensionless parameter expressing the ratio of the characteristic acoustic time scale to the cosmic-ray diffusion time. If this parameter is small, the cosmic rays will decelerate the build-up of instabilities, thereby stabilizing the system; in contrast, if the parameter is large, the system will be destabilized.
The Interstellar Heliopause Probe/Heliospheric Explorer: IHP/HEX
NASA Astrophysics Data System (ADS)
Wimmer-Schweingruber, Robert F.; McNutt, Ralph L.
2010-03-01
The Sun, driving a supersonic solar wind, cuts out of the local interstellar medium a giant plasma bubble, the heliosphere. Dedicated deep-space missions have greatly enhanced our understanding of our immediate neighborhood. Ulysses is the only spacecraft exploring the third, out-of-ecliptic dimension, while SOHO has allowed us to better understand the influence of the Sun and to image the glow of interstellar matter in the heliosphere. Both Voyager spacecraft have recently encountered the innermost boundary of this plasma bubble, the termination shock, and are returning exciting yet puzzling data of this remote region. The next logical step is to leave the heliosphere and to thereby map out in unprecedented detail the structure of the outer heliosphere and its boundaries, the termination shock, the heliosheath, the heliopause, and, after leaving the heliosphere, to discover the true nature of the hydrogen wall, the bow shock, and the local interstellar medium beyond. This will greatly advance our understanding of the heliosphere that is the best-known example for astrospheres as found around other stars. Thus, IHP/HEX will allow us to discover, explore, and understand fundamental astrophysical processes in the largest accessible plasma laboratory, the heliosphere.
Plasmas in the outer heliosphere
NASA Technical Reports Server (NTRS)
Belcher, J. W.; Richardson, J. D.; Lazarus, A. J.; Gazis, P. R.; Barnes, A.
1995-01-01
We review the observed properties of the solar wind in the outer heliosphere, including observations from Voyager and the Pioneers, as well as from inner heliospheric probes as appropriate. These observations are crucial to modeling of the heliosphere and its interactions with the interstellar medium, since the wind ram pressure and its temporal variations are important in understanding the distance to the termination shock and heliopause and how those boundaries might vary in time. We focus on results since Solar Wind 7. Among the issues we will discuss are: (1) the time scales for and statistical properties of variations in the ram pressure in the outer heliosphere, and how those variations might affect the morphology of the heliospheric/interstellar medium interface; (2) the question of possible solar wind slowing in the outer heliosphere due to the pick-up of interstellar ions; (3) the issue of whether there is bulk heating of the solar wind associated either with interstellar ion pick-up or with continued heating due to stream-stream interactions; (4) evidence for latitudinal variations in solar wind properties; and (5) the 1.3 year periodicities apparent in the outer heliosphere, and the close correspondence with similar variations seen with inner heliospheric probes.
Solid State Pathways towards Molecular Complexity in Space
NASA Astrophysics Data System (ADS)
Linnartz, Harold; Bossa, Jean-Baptiste; Bouwman, Jordy; Cuppen, Herma M.; Cuylle, Steven H.; van Dishoeck, Ewine F.; Fayolle, Edith C.; Fedoseev, Gleb; Fuchs, Guido W.; Ioppolo, Sergio; Isokoski, Karoliina; Lamberts, Thanja; Öberg, Karin I.; Romanzin, Claire; Tenenbaum, Emily; Zhen, Junfeng
2011-12-01
It has been a long standing problem in astrochemistry to explain how molecules can form in a highly dilute environment such as the interstellar medium. In the last decennium more and more evidence has been found that the observed mix of small and complex, stable and highly transient species in space is the cumulative result of gas phase and solid state reactions as well as gas-grain interactions. Solid state reactions on icy dust grains are specifically found to play an important role in the formation of the more complex ``organic'' compounds. In order to investigate the underlying physical and chemical processes detailed laboratory based experiments are needed that simulate surface reactions triggered by processes as different as thermal heating, photon (UV) irradiation and particle (atom, cosmic ray, electron) bombardment of interstellar ice analogues. Here, some of the latest research performed in the Sackler Laboratory for Astrophysics in Leiden, the Netherlands is reviewed. The focus is on hydrogenation, i.e., H-atom addition reactions and vacuum ultraviolet irradiation of interstellar ice analogues at astronomically relevant temperatures. It is shown that solid state processes are crucial in the chemical evolution of the interstellar medium, providing pathways towards molecular complexity in space.
NASA Technical Reports Server (NTRS)
Savage, Blair D.; Cardelli, Jason A.; Sofia, Ulysses J.
1992-01-01
Goddard High Resolution Spectrograph echelle mode measurements at 3.5 km/s resolution are presented for interstellar absorption produced by C II, O I, Mg I, Mg II, Al III, P II, Cr II, Mn II, Fe II, Ni II, Cu II, Zn II, Ga II, Ge II, and Kr I. The absorption line measurements are converted into representations of apparent column density per unit velocity in order to study the multicomponent nature of the absorption. The high spectral resolution of the measurements allows a comparative study of gas phase abundances for many species in the absorbing clouds near -27 and -15 km/s with a typical precision of about 0.05 dex. The matter absorbing near -27 km/s is situated in the local interstellar medium and has log N(H I) of about 19.74. This absorption provides information about the modest 'base' depletion associated with the lower density interstellar medium. The depletion results suggest that accretion processes are operating interstellar clouds that exhibit similar depletion efficiencies for some elements but much higher depletion efficiencies for others.
On the Detectability of the X 2A" HSS, HSO, and HOS Radicals in the Interstellar Medium
NASA Astrophysics Data System (ADS)
Fortenberry, Ryan C.; Francisco, Joseph S.
2017-02-01
{\\tilde{X}}2A\\prime\\prime HSS has yet to be observed in the gas phase in the interstellar medium (ISM). HSS has been observed in cometary material and in high abundance. However, its agglomeration to such bodies or dispersal from them has not been observed. Similarly, HSO and HOS have not been observed in the ISM, either, even though models support their formation from reactions of known sulfur monoxide and hydrogen molecules, among other pathways. Consequently, this work provides high-level, quantum chemical rovibrational spectroscopic constants and vibrational frequencies in order to assist in interstellar searches for these radical molecules. Furthermore, the HSO-HOS isomerization energy is determined to be 3.63 kcal mol-1, in line with previous work, and the dipole moment of HOS is 36% larger at 3.87 D than HSO, making the less stable isomer more rotationally intense. Finally, the S-S bond strength in HSS is shown to be relatively weak at 30% of the typical disulfide bond energy. Consequently, HSS may degrade into SH and sulfur atoms, making any ISM abundance of HSS likely fairly low, as recent interstellar surveys have observed.
NASA Astrophysics Data System (ADS)
Corrales, Lia; Li, Haochuan; Heinz, Sebastian
2018-01-01
With accurate cross-sections and higher signal-to-noise, X-ray spectroscopy can directly measure Milky Way gas and dust-phase metal abundances with few underlying assumptions. The X-ray energy band is sensitive to absorption by all abundant interstellar metals — carbon, oxygen, neon, silicon, magnesium, and iron — whether they are in gas or dust form. High resolution X-ray spectra from Galactic X-ray point sources can be used to directly measure metal abundances from all phases of the interstellar medium (ISM) along singular sight lines. We show our progress for measuring the depth of photoelectric absorption edges from neutral ISM metals, using all the observations of bright Galactic X-ray binaries available in the Chandra HETG archive. The cross-sections we use take into account both the absorption and scattering effects by interstellar dust grains on the iron and silicate spectral features. However, there are many open problems for reconciling X-ray absorption spectroscopy with ISM observations in other wavelengths. We will review the state of the field, lab measurements needed, and ways in which the next generation of X-ray telescopes will contribute.
Radiative Cooling of Warm Molecular Gas
NASA Technical Reports Server (NTRS)
Neufeld, David A.; Kaufman, Michael J.
1993-01-01
We consider the radiative cooling of warm (T >= 100 K), fully molecular astrophysical gas by rotational and vibrational transitions of the molecules H2O, CO, and H2. Using an escape probability method to solve for the molecular level populations, we have obtained the cooling rate for each molecule as a function of temperature, density, and an optical depth parameter. A four-parameter expression proves useful in fitting the run of cooling rate with density for any fixed values of the temperature and optical depth parameter. We identify the various cooling mechanisms which are dominant in different regions of the astrophysically relevant parameter space. Given the assumption that water is very abundant in warm regions of the interstellar medium, H2O rotational transitions are found to dominate the cooling of warm interstellar gas over a wide portion of the parameter space considered. While chemical models for the interstellar medium make the strong prediction that water will be produced copiously at temperatures above a few hundred degrees, our assumption of a high water abundance has yet to be tested observationally. The Infrared Space Observatory and the Submillimeter Wave Astronomy Satellite will prove ideal instruments for testing whether water is indeed an important coolant of interstellar and circumstellar gas.
Formation of Benzene in the Interstellar Medium
NASA Technical Reports Server (NTRS)
Jones, Brant M.; Zhang, Fangtong; Kaiser, Ralf I.; Jamal, Adeel; Mebel, Alexander M.; Cordiner, Martin A.; Charnley, Steven B.; Crim, F. Fleming (Editor)
2010-01-01
Polycyclic aromatic hydrocarbons and related species have been suggested to play a key role in the astrochemical evolution of the interstellar medium, but the formation mechanism of even their simplest building block-the aromatic benzene molecule-has remained elusive for decades. Here we demonstrate in crossed molecular beam experiments combined with electronic structure and statistical calculations that benzene (C6H6) can be synthesized via the barrierless, exoergic reaction of the ethynyl radical and 1,3- butadiene, C2H + H2CCHCHCH2 --> C6H6, + H, under single collision conditions. This reaction portrays the simplest representative of a reaction class in which aromatic molecules with a benzene core can be formed from acyclic precursors via barrierless reactions of ethynyl radicals with substituted 1,3-butadlene molecules. Unique gas-grain astrochemical models imply that this low-temperature route controls the synthesis of the very first aromatic ring from acyclic precursors in cold molecular clouds, such as in the Taurus Molecular Cloud. Rapid, subsequent barrierless reactions of benzene with ethynyl radicals can lead to naphthalene-like structures thus effectively propagating the ethynyl-radical mediated formation of aromatic molecules in the interstellar medium.
Formation of benzene in the interstellar medium
Jones, Brant M.; Zhang, Fangtong; Kaiser, Ralf I.; Jamal, Adeel; Mebel, Alexander M.; Cordiner, Martin A.; Charnley, Steven B.
2011-01-01
Polycyclic aromatic hydrocarbons and related species have been suggested to play a key role in the astrochemical evolution of the interstellar medium, but the formation mechanism of even their simplest building block—the aromatic benzene molecule—has remained elusive for decades. Here we demonstrate in crossed molecular beam experiments combined with electronic structure and statistical calculations that benzene (C6H6) can be synthesized via the barrierless, exoergic reaction of the ethynyl radical and 1,3-butadiene, C2H + H2CCHCHCH2 → C6H6 + H, under single collision conditions. This reaction portrays the simplest representative of a reaction class in which aromatic molecules with a benzene core can be formed from acyclic precursors via barrierless reactions of ethynyl radicals with substituted 1,3-butadiene molecules. Unique gas-grain astrochemical models imply that this low-temperature route controls the synthesis of the very first aromatic ring from acyclic precursors in cold molecular clouds, such as in the Taurus Molecular Cloud. Rapid, subsequent barrierless reactions of benzene with ethynyl radicals can lead to naphthalene-like structures thus effectively propagating the ethynyl-radical mediated formation of aromatic molecules in the interstellar medium. PMID:21187430
Grain Surface Chemistry and the Composition of Interstellar Ices
NASA Technical Reports Server (NTRS)
Tielens, A. G. G. M.
2006-01-01
Submicron sized dust grains are an important component of the interstellar medium. In particular they provide surface where active chemistry can take place. At the low temperatures (-10 K) of the interstellar medium, colliding gas phase species will stick, diffuse, react, and form an icy mantle on these dust grains. This talk will review the principles of grain surface chemistry and delineate important grain surface routes, focusing on reactions involving H, D, and O among each other and with molecules such as CO. Interstellar ice mantles can be studied through the fundamental vibrations of molecular species in the mid-infrared spectra of sources embedded in or located behind dense molecular clouds. Analysis of this type of data has provided a complex view of the composition of these ices and the processes involved. Specifically, besides grain surface chemistry, the composition of interstellar ices is also affected by thermal processing due to nearby newly formed stars. This leads to segregation between different ice components as well as outgassing. The latter results in the formation of a so-called Hot Core region with a gas phase composition dominated by evaporated mantle species. Studies of such regions provide thus a different view on the ice composition and the chemical processes involved. Interstellar ices can also be processed by FUV photons and high energy cosmic ray ions. Cosmic ray processing likely dominates the return of accreted species to the gas phase where further gas phase reactions can take place. These different chemical routes towards molecular complexity in molecular clouds and particularly regions of star formation will be discussed.
NASA Astrophysics Data System (ADS)
Merino, P.; Martin-Gago, J. A.; Cernicharo, J.
2011-05-01
We have modeled the interaction of large organic molecules and dust grains in the interstellar medium by means of conventional surface science techniques such as scanning probe microscopes (SPM) and X-ray photoelectron spectroscopy (XPS) among others. With these surface analysis techniques, no frequently used in astrochemistry, we can recreate model systems where the interstellar environment, in a wide range of conditions of pressure and temperature, can be studied. The accurate control of the species that can be studied enables us to simulate in our laboratory the reactions of important molecules on the surface of dust grains. These new kind of experiments provide new information about the chemical mechanisms of the interaction between dust grains and organic molecules which can be compared with the models and the observations. We use a state of the art ultra high vacuum chamber (UHV) with base pressure of 1× 10-10 mbar (2× 106 ppcm^3) where we can prepare macroscopic single-crystal samples simulating a particular dust grain surface. The clean surfaces are exposed to different molecules. The complete system molecule-substrate can be characterized down to the Armstrong scale with the scanning tunneling microscope (STM) and even single molecule orbitals can be resolved. The combination of this technique with diffraction and spectroscopic tools allows us to fully understand the adsorption configuration and chemistry of a particular molecular species on a modeled dust grain surface. Here we present, as a proof-of-concept, the study of a broadly studied molecule, fullerene, (C60) on a silicon carbide (SiC) surface. The stellar winds of carbon-rich red-giants are rich in SiC grains in the inner hot (1500K) shell. These grains can then be covered with C_2 H_2, C H_4 and other hydrocarbons that could lead to complex organic molecules, even PAHs, when they move apart from the star. In the present study we simulate the reaction of C60 molecules with the Si rich (3x3) 6H α-SiC(0001). Although 6H α-SiC is not one of the most common polytypes of SiC in the interstellar atmospheres (mostly abundant in 2H α-SiC and 3C β-SiC) we will use these first results to compare with our on-going measurements on 3C β-SiC.
Determination of polycyclic aromatic hydrocarbons in roasted coffee
JIMENEZ, ANGELICA; ADISA, AFOLABI; WOODHAM, CARA; SALEH, MAHMOUD
2016-01-01
Polycyclic aromatic hydrocarbons (PAHs) are suspected to be carcinogenic and mutagenic. This study describes the presence of PAHs in light, medium and dark roasted coffee including instant and decaffeinated brands. Total PAHs concentration was related to the degree of roasting with light roasted coffee showing the least and dark roasted coffee showing the highest level. Both instant and decaffeinated coffee brand showed lower levels of PAHs. Naphthalene, acenaphthylene, pyrene and chrysene were the most abundant individual isomers. The concentrations ranged from 0 to 561 ng g−1 for naphthalene, 0 to 512 ng g−1 for acenaphthylene, 60 to 459 ng g−1 for pyrene and 56 to 371 ng g−1 for chrysene. Thus, roasting conditions should be controlled to avoid the formation of PAHs due to their suspected carcinogenic and mutagenic properties. PMID:25190557
Polycyclic aromatic hydrocarbons in sediments and mussels of Corral Bay, south central Chile.
Palma-Fleming, Hernan; P, Adalberto J Asencio; Gutierrez, Elena
2004-03-01
PAHs were measured in sediments and mussels (Mytilus chilensis) from Carboneros and Puerto Claro, located in Corral Bay, Valdivia. According to the ratio of phenanthrene/anthracene and fluoranthene/pyrene concentrations, these sites are medium polluted with PAHs originating mainly from pyrolytic sources. Fluoranthene was the major component measured in mussels (3.1-390 ng g(-1) dry weight) and sediments (6.9-74.1 ng g(-1) dry weight). In general, mussels were mainly exposed to the dissolved fraction of the lower molecular weight PAHs (tri- and tetra-aromatics) while the higher molecular ring systems (penta- and hexa-aromatics) were more bioavailable to sediments. Mussel PAHs content was relatively constant, with the exception of the 1999 summer season (March), when higher concentration values were found in both sites; however, PAHs residues in sediments showed a temporal variation.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bastiaens, L.; Springael, D.; Wattiau, P.
Two different procedures were compared to isolate polycyclic aromatic hydrocarbon (PAH)-utilizing bacteria from PAH-contaminated soil and sludge samples, i.e., (i) shaken enrichment cultures in liquid mineral medium in which PAHs were supplied as crystals and (ii) a new method in which PAH degraders were enriched on and recovered from hydrophobic membranes containing sorbed PAHs. Both techniques were successful, but selected from the same source different bacterial strains able to grow on PAHs as the sole source of carbon and energy. The liquid enrichment mainly selected for Sphingomonas spp., whereas the membrane method exclusively led to the selection of Mycobacterium spp.more » Furthermore, in separate membrane enrichment set-ups with different membrane types, three repetitive extragenic palindromic PCR-related Mycobacterium strains were recovered. The new Mycobactereium isolates were strongly hydrophobic and displayed the capacity to adhere strongly to different surfaces. One strain, Mycobacterium sp. LB501T, displayed an unusual combination of high adhesion efficiency and an extremely high negative charge. This strain may represent a new bacterial species as suggested by 16S rRNA gene sequence analysis. These results indicate that the provision of hydrophobic sorbents containing sorbed PAHs in the enrichment procedure discriminated in favor of certain bacterial characteristics. The new isolation method is appropriate to select for adherent PAH-degrading bacteria, which might be useful to biodegrade sorbed PAHs in soils and sludge.« less
Bastiaens, Leen; Springael, Dirk; Wattiau, Pierre; Harms, Hauke; deWachter, Rupert; Verachtert, Hubert; Diels, Ludo
2000-01-01
Two different procedures were compared to isolate polycyclic aromatic hydrocarbon (PAH)-utilizing bacteria from PAH-contaminated soil and sludge samples, i.e., (i) shaken enrichment cultures in liquid mineral medium in which PAHs were supplied as crystals and (ii) a new method in which PAH degraders were enriched on and recovered from hydrophobic membranes containing sorbed PAHs. Both techniques were successful, but selected from the same source different bacterial strains able to grow on PAHs as the sole source of carbon and energy. The liquid enrichment mainly selected for Sphingomonas spp., whereas the membrane method exclusively led to the selection of Mycobacterium spp. Furthermore, in separate membrane enrichment set-ups with different membrane types, three repetitive extragenic palindromic PCR-related Mycobacterium strains were recovered. The new Mycobacterium isolates were strongly hydrophobic and displayed the capacity to adhere strongly to different surfaces. One strain, Mycobacterium sp. LB501T, displayed an unusual combination of high adhesion efficiency and an extremely high negative charge. This strain may represent a new bacterial species as suggested by 16S rRNA gene sequence analysis. These results indicate that the provision of hydrophobic sorbents containing sorbed PAHs in the enrichment procedure discriminated in favor of certain bacterial characteristics. The new isolation method is appropriate to select for adherent PAH-degrading bacteria, which might be useful to biodegrade sorbed PAHs in soils and sludge. PMID:10788347
Massive stars: privileged sources of cosmic-rays for interstellar astrochemistry
NASA Astrophysics Data System (ADS)
De Becker, M.
2015-01-01
Massive stars can be considered as crucial engines for interstellar physics. They are indeed the main providers of UV radiation field, and constitute a substantial source of chemical enrichment. On their evolution time-scale (at most about 10 Myr), they typically stay close to their formation site, i.e. close to molecular clouds very rich in interstellar molecules. These stellar objects have also the property to be involved in particle acceleration processes leading to the production of high energy charged particles (cosmic-rays). After rejection in the interstellar medium, these particles will play a substantial role in processes such as those simulated in various facilities dedicated to experimental astrochemistry. This short contribution intends to put these particles, crucial for astrochemistry, in their adequate astrophysical context.
Formation of E-cyanomethamine in a nitrile rich environment
NASA Astrophysics Data System (ADS)
Shivani; Misra, Alka; Tandon, Poonam
2017-01-01
Recently a new molecule, cyanomethamine, has been detected towards Sagittarius B2(N) (Sgr B2(N)). Studying the formation mechanisms of complex interstellar molecules is difficult. Hence, a theoretical quantum chemical approach for analyzing the reaction mechanism describing the formation of interstellar cyanomethamine through detected interstellar molecules and radicals (NCCN+H) is discussed in the present work. Calculations are performed by using quantum chemical techniques, such as Density Functional Theory (DFT) and Møller-Plesset perturbation (MP2) theory with a 6-311G(d,p) basis set, both in the gas phase and in icy grains. The proposed reaction path (NCCN+H+H) has exothermicity with no barrier which indicates the possibility of cyanomethamine formation in the interstellar medium.
Ultraviolet observations of cool stars. V - The local density of interstellar matter
NASA Technical Reports Server (NTRS)
Mcclintock, W.; Henry, R. C.; Moos, H. W.; Linsky, J. L.
1976-01-01
A high-resolution Copernicus observation of the chromospheric Ly-alpha emission line of the nearby (3.3 pc) K dwarf epsilon Eri sets limits on the velocity, the velocity dispersion, and the density of atomic hydrogen in the local interstellar medium. Analysis shows that the interstellar Ly-alpha absorption is on the flat portion of the curve of growth. An upper limit of 0.12 per cu cm is derived for the atomic-hydrogen density. The value of this density is 0.08 (plus or minus 0.04 per cu cm if the velocity-dispersion parameter is 9 km/s, corresponding to a temperature of 5000 K. Also, the interstellar deuterium Ly-alpha line may be present in the spectrum.
NASA Astrophysics Data System (ADS)
Sichevskij, S. G.
2018-01-01
The feasibility of the determination of the physical conditions in star's atmosphere and the parameters of interstellar extinction from broad-band photometric observations in the 300-3000 nm wavelength interval is studied using SDSS and 2MASS data. The photometric accuracy of these surveys is shown to be insufficient for achieving in practice the theoretical possibility of estimating the atmospheric parameters of stars based on ugriz and JHK s photometry exclusively because such determinations result in correlations between the temperature and extinction estimates. The uncertainty of interstellar extinction estimates can be reduced if prior data about the temperature are available. The surveys considered can nevertheless be potentially valuable sources of information about both stellar atmospheric parameters and the interstellar medium.
Formation of Nucleobases from the UV Irradiation of Pyrimidine in Interstellar Ice Analogs
NASA Technical Reports Server (NTRS)
Milam, Stefanie N.; Nuevo, Michel; Sandford, Scott A.; Elsila, Jamie E.; Dworkin, Jason P.
2010-01-01
Previous laboratory simulations showed that complex molecules, including prebiotic compounds/can be formed under interstellar conditions from the vacuum UV irradiation of interstellar ice analogs containing H2O, CO, NH3 etc. Although some complex prebiotic species have not been confirmed In the interstellar medium, they are known to be present in meteorites. Nucleobases, the building blocks of DNA and RNA, have also been detected in meteorites. Here, we present a study of the formation of pyrimidine-based compounds from the UV irradiation of pyrimidine in H2O- and/or NH3-ices at 20-30 K, Our results show that various derivatives, induding the nucleobases uracil and cytosine, are formed under these conditions.
NASA Astrophysics Data System (ADS)
Drury, Luke O.'C.; Strong, Andrew W.
2017-01-01
We make quantitative estimates of the power supplied to the Galactic cosmic ray population by second-order Fermi acceleration in the interstellar medium, or as it is usually termed in cosmic ray propagation studies, diffusive reacceleration. Using recent results on the local interstellar spectrum, following Voyager 1's crossing of the heliopause, we show that for parameter values, in particular the Alfvén speed, typically used in propagation codes such as GALPROP to fit the B/C ratio, the power contributed by diffusive reacceleration is significant and can be of order 50% of the total Galactic cosmic ray power. The implications for the damping of interstellar turbulence are briefly considered.
The physical and compositional properties of dust: what do we really know?
NASA Astrophysics Data System (ADS)
Jones, A.
Many things in current interstellar dust studies are taken as well understood givens by much of the community. For example, it is widely held that interstellar dust is made up of only three components, i.e., “astronomical silicates”, graphite and polycyclic aromatic hydrocarbons, and that our understanding of these is now complete and sufficient enough to interpret astronomical observations of dust in galaxies. To zeroth order this is a reasonable approximation. However, while these “three pillars” of dust modelling have been useful in advancing our understanding over the last few decades, it is now apparent that they are insufficient to explain the observed evolution of the dust properties from one region to another. Thus, it is time to abandon the “three pillars” approach and to seek more physically-realistic interstellar dust analogues. The analysis of the pre-solar grains extracted from meteorites, interplanetary dust particles and from the Stardust mission, and the interpretation of x-ray scattering and absorption observations, supports the view that our current view of the interstellar dust composition(s) is indeed too naïve. The aim of this review is to point out where our current views are rather secure and, perhaps more importantly, where they are far from secure and we must re-think our ideas. To this aim ten aspects of interstellar dust will be scrutinised and re-evaluated in terms of their validity within the current observational, experimental, modelling and theoretical constraints. It is concluded from this analysis that we really do need to re-assess many of the fundamental assumptions relating to what we think we really do ‘know’ about interstellar dust. In particular, it is clear that unravelling the nature dust evolution in the interstellar medium is perhaps the key to significantly advancing our current understanding of interstellar dust. For example, the dust in the diffuse interstellar medium, molecular clouds, photo-dissociation regions and HII regions is not exactly the same but exhibits important evolution within and between these different regions. An understanding of these evolutionary and regional variations exhibited by dust is now critical.
NASA Astrophysics Data System (ADS)
van Marle, A. J.; Meliani, Z.; Marcowith, A.
2015-12-01
Context. The winds of massive stars create large (>10 pc) bubbles around their progenitors. As these bubbles expand they encounter the interstellar coherent magnetic field which, depending on its strength, can influence the shape of the bubble. Aims: We wish to investigate if, and how much, the interstellar magnetic field can contribute to the shape of an expanding circumstellar bubble around a massive star. Methods: We use the MPI-AMRVAC code to make magneto-hydrodynamical simulations of bubbles, using a single star model, combined with several different field strengths: B = 5, 10, and 20 μG for the interstellar magnetic field. This covers the typical field strengths of the interstellar magnetic fields found in the galactic disk and bulge. Furthermore, we present two simulations that include both a 5 μG interstellar magnetic field and a warm (10 000 K) interstellar medium (ISM) and two different ISM densities to demonstrate how the magnetic field can combine with other external factors to influence the morphology of the circumstellar bubbles. Results: Our results show that low magnetic fields, as found in the galactic disk, inhibit the growth of the circumstellar bubbles in the direction perpendicular to the field. As a result, the bubbles become ovoid, rather than spherical. Strong interstellar fields, such as observed for the galactic bulge, can completely stop the expansion of the bubble in the direction perpendicular to the field, leading to the formation of a tube-like bubble. When combined with an ISM that is both warm and high density the bubble is greatly reduced in size, causing a dramatic change in the evolution of temporary features inside the bubble such as Wolf-Rayet ring nebulae. Conclusions: The magnetic field of the interstellar medium can affect the shape of circumstellar bubbles. This effect may have consequences for the shape and evolution of circumstellar nebulae and supernova remnants, which are formed within the main wind-blown bubble. Appendices and movies associated to Figs. A.1-A.12 are available in electronic form at http://www.aanda.org
Radiofrequency recombination lines from the interstellar medium
NASA Technical Reports Server (NTRS)
Dupree, A. K.
1971-01-01
Observations of recombination lines form normal H II regions, extended H II regions, nonthermal sources, and the H I medium are discussed. Detection of recombination lines from elements other than hydrogen may provide a means of identifying fossil Stromgren spheres at high temperature.
Ionization of Interstellar Hydrogen Beyond the Termination Shock
NASA Astrophysics Data System (ADS)
Gruntman, Mike
2016-11-01
Models of solar wind interaction with the surrounding interstellar medium usually disregard ionization of interstellar hydrogen atoms beyond the solar wind termination shock. If and when included, the effects of ionization in the heliospheric interface region are often obscured by complexities of the interaction. This work assesses the importance of interstellar hydrogen ionization in the heliosheath. Photoionization could be accounted for in a straightforward way. In contrast, electron impact ionization is largely unknown because of poorly understood energy transfer to electrons at the termination shock and beyond. We first estimate the effect of photoionization and then use it as a yardstick to assess the role of electron impact ionization. The physical estimates show that ionization of interstellar hydrogen may lead to significant mass loading in the inner heliosheath which would slow down plasma flowing toward the heliotail and deplete populations of nonthermal protons, with the corresponding effect on heliospheric fluxes of energetic neutral atoms.
Interstellar Polycyclic Aromatic Compounds and Astrophysics
NASA Technical Reports Server (NTRS)
Hudgins, Douglas M.; DeVincenzi, Donald (Technical Monitor)
2001-01-01
Over the past fifteen years, thanks to significant, parallel advancements in observational, experimental, and theoretical techniques, tremendous strides have been made in our understanding of the role polycyclic aromatic compounds (PAC) in the interstellar medium (ISM). Twenty years ago, the notion of an abundant population of large, carbon rich molecules in the ISM was considered preposterous. Today, the unmistakable spectroscopic signatures of PAC - shockingly large molecules by previous interstellar chemistry standards - are recognized throughout the Universe. In this paper, we will examine the interstellar PAC model and its importance to astrophysics, including: (1) the evidence which led to inception of the model; (2) the ensuing laboratory and theoretical studies of the fundamental spectroscopic properties of PAC by which the model has been refined and extended; and (3) a few examples of how the model is being exploited to derive insight into the nature of the interstellar PAC population.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hudson, R. L.; Loeffler, M. J.; Yocum, K. M., E-mail: Reggie.Hudson@nasa.gov
Propylene oxide was recently identified in the interstellar medium, but few laboratory results are available for this molecule to guide current and future investigations. To address this situation, here we report infrared spectra, absorption coefficients, and band strengths of solid propylene oxide along with the first measurement of its refractive index and a calculation of its density, all for the amorphous solid form of the compound. We present the first experimental results showing a low-temperature formation pathway for propylene oxide near 10 K in interstellar ice analogs. Connections are drawn between our new results and the interstellar molecules propanal andmore » acetone, and predictions are made about several as yet unobserved vinyl alcohols and methylketene. Comparisons are given to earlier laboratory work and a few applications to interstellar and solar system astrochemistry are described.« less
A cloud/particle model of the interstellar medium - Galactic spiral structure
NASA Technical Reports Server (NTRS)
Levinson, F. H.; Roberts, W. W., Jr.
1981-01-01
A cloud/particle model for gas flow in galaxies is developed that incorporates cloud-cloud collisions and supernovae as dominant local processes. Cloud-cloud collisions are the main means of dissipation. To counter this dissipation and maintain local dispersion, supernova explosions in the medium administer radial snowplow pushes to all nearby clouds. The causal link between these processes is that cloud-cloud collisions will form stars and that these stars will rapidly become supernovae. The cloud/particle model is tested and used to investigate the gas dynamics and spiral structures in galaxies where these assumptions may be reasonable. Particular attention is given to whether large-scale galactic shock waves, which are thought to underlie the regular well-delineated spiral structure in some galaxies, form and persist in a cloud-supernova dominated interstellar medium; this question is answered in the affirmative.
Duan, Yonghong; Shen, Guofeng; Tao, Shu; Hong, Jianping; Chen, Yuanchen; Xue, Miao; Li, Tongchao; Su, Shu; Shen, Huizhong; Fu, Xiaofang; Meng, Qingchun; Zhang, Jing; Zhang, Bing; Han, Xiaoying; Song, Kang
2015-05-01
There is wide concern about polycyclic aromatic hydrocarbons (PAHs) because of their carcinogenic and mutagenic potential. The coking industry is an important source of PAHs. In this study, 36 arable soil samples, a sensitive medium from the perspective of food safety and health, were collected from one of the largest coke production bases in China. The concentration of total 21 PAHs ranged from 294 to 1665 ng g(-1), with a mean of 822±355 ng g(-1). Approximately 60% of the soil samples were heavily polluted with the level higher than 600 ng g(-1). Particularly high abundances of high molecular weight PAHs were found, and the calculated BaPeq was as high as 54.3 ng g(-1). Soil PAH levels were positively correlated with soil organic matter content. The soil PAHs were from complex mixture sources, and high-temperature pyrogenic sources were most likely responsible for the heavy PAH contamination. Effective control strategies and probable remediation approaches should be proposed to improve soil quality. Copyright © 2015 Elsevier Ltd. All rights reserved.
NASA Technical Reports Server (NTRS)
Bortolot, V. J., Jr.
1972-01-01
Thirty-one high dispersion Coude spectrograms of zeta Ophiuchi and seven of zeta Persei were numerically synthesized to produce high resolution, low noise spectra in the interval 3650 A to 4350 that yield data on atomic and molecular absorption in well-defined regions of the interstellar medium. The detection threshold is improved by as much as a factor 5 over single plates. Several interstellar lines were discovered in the zeta Oph - 15km/sec cloud and the zeta Per + 13 km/sec cloud.
Interstellar gas in the Gum Nebula
NASA Technical Reports Server (NTRS)
Wallerstein, G.; Jenkins, E. B.; Silk, J.
1980-01-01
A survey of the interstellar gas near the Gum Nebula by optical observation of 67 stars at Ca II, 42 stars at Na I, and 14 stars in the UV with the Copernicus satellite provided radial velocities and column densities for all resolved absorption components. Velocity dispersions for gas in the Gum Nebula are not significantly larger than in the general interstellar medium; the ionization structure is predominantly that of an H II region with moderately high ionization. Denser, more highly ionized clouds are concentrated toward the Gum Nebula; these clouds do not show the anomalously high ionization observed in the Vela remnant clouds.
Observations of interstellar hydrogen and deuterium toward Alpha Centauri A
NASA Technical Reports Server (NTRS)
Landsman, W. B.; Henry, R. C.; Moos, H. W.; Linsky, J. L.
1984-01-01
A composite profile is presented of the Ly-alpha emission line of Alpha Cen A, obtained from 10 individual spectra with the high-resolution spectrograph aboard the International Ultraviolet Explorer (IUE) satellite. There is excellent overall agreement with two previous Copernicus observations. Interstellar deuterium is detected, and a lower limit is set on the deuterium to hydrogen ratio of nDI/nHI greater than 8 x 10 to the -6th. In addition, the deuterium bulk velocity appears blueshifted by 8 + or - 2 km/s with respect to interstellar hydrogen, suggesting a nonuniform medium along the line of sight.
Trzesicka-Mlynarz, D; Ward, O P
1995-06-01
A mixed culture, isolated from soil contaminated with polycyclic aromatic hydrocarbons (PAHs), grew on and degraded fluoranthene in aqueous media supplemented with glucose, yeast extract, and peptone. Increased complex nitrogen levels in the medium promoted bacterial growth and a greater extent of fluoranthene degradation. Amendment of the media with high glucose levels also diminished specific fluoranthene degradation. The mixed culture was capable of degrading a range of other PAHs, including benzo[a]pyrene, anthracene, phenanthrene, acenaphthene, and fluorene. The mixed culture contained four predominant isolates, all of which were Gram-negative rods, three of which were identified as Pseudomonas putida, Flavobacterium sp., and Pseudomonas aeruginosa. Better degradation of a defined PAH mixture was observed with the mixed culture than with individual isolates. A reconstituted culture, prepared by combining the four individual isolates, manifested a similar PAH biodegradation performance to the original mixed culture. When compared with the mixed culture, individual isolates exhibited a relatively good capacity to remove more water-soluble PAHs (acenaphthene, fluorene, phenanthrene, fluoranthene). In contrast, removal of less water-soluble PAHs (anthracene and pyrene) was low or negligible with isolated cultures compared with the mixed culture.
Sources and potential health risk of gas phase PAHs in Hexi Corridor, Northwest China.
Mao, Xiaoxuan; Yu, Zhousuo; Ding, Zhongyuan; Huang, Tao; Ma, Jianmin; Zhang, Gan; Li, Jun; Gao, Hong
2016-02-01
Gas phase polycyclic aromatic hydrocarbons (PAHs) in Hexi Corridor, Northwest China were determined during heating and non-heating seasons, respectively, using passive air samplers. Polyurethane foam (PUF) disks were chosen as the sampling medium. Fifteen PAHs out of the 16 PAHs classified by the United States Environmental Protection Agency (U.S. EPA) were detected in this field sampling investigation. The atmospheric levels of sampled PAHs were higher at urban sites than that at rural sites among 14 sampling sites and increased during heating season. The highest concentration (11.34 ng m(-3)) was observed in Lanzhou during the heating season, the capital and largest industrial city of Gansu Province. PAH contamination in air was dominated by three aromatic ring congeners. Possible sources of PAHs were apportioned using PAH species ratios and the principle component analysis (PCA) combined with a multiple linear regression (MLR) method. Fossil fuel consumption was identified to be the predominant source of PAHs over Hexi Corridor, accounting for 43 % of the concentration of total (15) PAHs. Backward and forward trajectory and cluster analysis were also carried out to identify potential origins of PAHs monitored at several urban and rural sites. Lung cancer risk of local residents to gas phase PAHs via inhalation exposure throughout the province was found to be around a critical value of the lung cancer risk level at 10(-6) recommended by the U.S. EPA risk assessment guideline.
Liang, Jing; Fang, Hailan; Zhang, Taolin; Wang, Xingxiang
2017-04-01
Plants, particularly their leaves, play an important role in filtering both gas-phase and particle-phase polycyclic aromatic hydrocarbons (PAHs). However, many studies have focused on the accumulation and adsorption functions of plant leaves, possibly underestimating the effects that plants have on air quality. Therefore, eight tree species from different locations in Shanghai were selected to assess PAH filtering (via adsorption and capture) using washed and unwashed plant leaves. The differences in the total PAH contents in the washed leaves were constant for the different species across the different sampling sites. The PAH levels decreased in the following order: industrial areas > traffic areas > urban areas > background area. The PAH compositions in the different plant leaves were dominated by fluorene (Fle), phenanthrene (Phe), anthracene (Ant), chrysene (Chr), fluoranthene (Flu), and pyrene (Pyr); notably, Phe accounted for 49.4-76.7% of the total PAHs. By comparing the PAH contents in the washed leaves with the PAH contents in the unwashed leaves, Pittosporum tobira (P. tobira), Ginkgo biloba (G. biloba), and Platanus acerifolia (P. acerifolia) were found to be efficient species for adsorbing PAHs, while Osmanthus fragrans (O. fragrans), Magnolia grandiflora (M. grandiflora), and Prunus cerasifera Ehrh. (P. cerasifera Ehrh.) were efficient species for capturing PAHs. The efficiencies of the plant leaves for the removal of PAHs from air occurred in the order of low molecular weight > medium molecular weight > high molecular weight PAHs.
NASA Astrophysics Data System (ADS)
Fahr, Hans-Jörg
2000-05-01
In many papers in the literature it is shown that wind-driving stars with a peculiar motion relative to the ambient interstellar medium within dynamical time periods form a dynamically adapted astropause as separatrix between the stellar wind plasma and the surrounding interstellar plasma. As we shall show in this chapter stars with an adapted astropause are subject to thrust forces finally acting on the wing-generating central body and thus influencing the stellar motion. Thereby the actual magnitude of the resulting thrust force depends on the actual counterflow configuration of stellar and interstellar winds determined by the particular kinematic situation, i.e. the instantaneous Mach number of the motion relative to the ambient medium. We shall study the sensitivity of this configuration to whether the interstellar flow is sub- or supersonic. The resulting net force is shown to vary in a non-monotonic way with the actual peculiar velocity. For subsonic motions this force generally has an accelerating nature, i.e. operating like a rocket thrust motor, whereas for supersonic motions at supercritical Mach numbers μS≥μS,c, to the contrary, it is of a decelerating nature. For an adequate description of a time-dependent circumstellar flow configuration, we shall use an analytic, hydrodynamic modeling of the counterflow configuration representing the case of a stellar wind system in subsonic or supersonic motion with respect to the local interstellar medium. For the purpose of analytical treatability we assume irrotational and incompressible flows downstream of the inner and outer shocks and give quantitative numbers for forces acting on the central star. We also describe long-period evolutions of star motions and give typical acceleration time periods for different types of wind-driving stars. As we shall emphasize here the dynamical influence of these thrust forces onto the central stellar body requires an understanding of how the presence of the counterflowing interstellar plasma is communicated upstream in the supersonic stellar wind up to the origin of this wind, the stellar corona. The answer we shall give is based on the multifluid character of the relevant counterflow situation invalidating the conventional mono-Mach-number concept of hydrodynamical flows. In fact stellar winds can only be described by a poly-Mach-number concept, with stellar-wind protons being supersonic, with pick-up ions being marginally sonic, and with electrons and anomalous cosmic ray particles being strongly subsonic. We shall present solutions for multifluid counterflow configurations based on computational simulations in which a consistent picture of the interaction of all these different species is given. Our final conclusion is that already the solar wind when passing over the Earth's orbit tells us about the interstellar medium beyond the heliopause.
IUE observations of hydrogen and deuterium in the local interstellar medium
NASA Technical Reports Server (NTRS)
Murthy, J.; Henry, R. C.; Moos, H. W.; Landsman, W. B.; Linsky, J. L.
1987-01-01
High-resolution Ly-alpha spectra of the late-type stars Epsilon Eri, Procyon, Altair, Capella, and HR 1099 taken with the short-wavelength camera on IUE are presented. The density, velocity dispersion, and bulk velocity of the interstellar H I toward each of the stars is derived from the spectra. Lower limits on the deuterium-to-hydrogen ratio toward these stars are obtained.
Hydrogen And Deuterium In The Local Interstellar Medium.
NASA Astrophysics Data System (ADS)
Murthy, Jayant
2016-03-01
In this work we report on the results of a series of IUE observations of interstellar HI and DI Ly alpha absorption against the chromospheric Lyalpha emission of the nearby late -type stars alpha Cen B(1.3 pc), epsilon Eri (3.3 pc), Procyon (3.5 pc), Altair (5.1 pc), Capella (13.2 pc), and HR 1099 (33 pc). From these observations we have derived the density, velocity dispersion, and bulk velocity of the neutral hydrogen along the line of sight to each of these stars. We have also placed lower limits on the deuterium to hydrogen (D/H) ratio towards the same stars. Our IUE results are generally consistent with previous observations of the same stars with the Copernicus satellite showing that our modelling procedure is independent of stellar variations over a period of several years. The HI absorption profile towards Altair shows a broad saturated core and steep line wings, consistent with a multicomponent interstellar medium in that direction. The bulk velocities towards the other stars are consistent with a bulk flow from the approximate direction of the galactic center but do show local variations from a uniform flow, possibly indicating a complicated velocity structure even in the solar neighbourhood. Interstellar deuterium is detected towards every star except Altair and the derived values for the D/H ratio are consistent with those previously found with Copernicus. In particular, we confirm the strong lower limit of 1.9 times 10^{-5} on the D/H ratio found towards Capella and we also place a lower limit of 1.5 times 10 ^{-5} on the D/H ratio towards alpha Cen B. Although an interstellar D/H ratio of 2 times 10^ {-5} is consistent with all the observations of late-type stars, the lower D/H ratios found towards several hot stars may indicate real variations in the D/H ratio in the local interstellar medium. Finally, we discuss the reality of a step in the cosmic background and of several galactic emission lines found by Auriemma et al. (1984) and show that, in fact, they are both artifacts of the data and of the analysis.
Modeling the Variable Heliopause Location
NASA Astrophysics Data System (ADS)
Hensley, Kerry
2018-03-01
In 2012, Voyager 1 zipped across the heliopause. Five and a half years later, Voyager 2 still hasnt followed its twin into interstellar space. Can models of the heliopause location help determine why?How Far to the Heliopause?Artists conception of the heliosphere with the important structures and boundaries labeled. [NASA/Goddard/Walt Feimer]As our solar system travels through the galaxy, the solar outflow pushes against the surrounding interstellar medium, forming a bubble called the heliosphere. The edge of this bubble, the heliopause, is the outermost boundary of our solar system, where the solar wind and the interstellar medium meet. Since the solar outflow is highly variable, the heliopause is constantly moving with the motion driven by changes inthe Sun.NASAs twin Voyager spacecraft were poisedto cross the heliopause after completingtheir tour of the outer planets in the 1980s. In 2012, Voyager 1 registered a sharp increase in the density of interstellar particles, indicating that the spacecraft had passed out of the heliosphere and into the interstellar medium. The slower-moving Voyager 2 was set to pierce the heliopause along a different trajectory, but so far no measurements have shown that the spacecraft has bid farewell to oursolar system.In a recent study, ateam of scientists led by Haruichi Washimi (Kyushu University, Japan and CSPAR, University of Alabama-Huntsville) argues that models of the heliosphere can help explain this behavior. Because the heliopause location is controlled by factors that vary on many spatial and temporal scales, Washimiand collaborators turn to three-dimensional, time-dependent magnetohydrodynamics simulations of the heliosphere. In particular, they investigate how the position of the heliopause along the trajectories of Voyager 1 and Voyager 2 changes over time.Modeled location of the heliopause along the paths of Voyagers 1 (blue) and 2 (orange). Click for a closer look. The red star indicates the location at which Voyager 1 crossed the heliopause. The current location of Voyager 2 is marked with a red circle. [Washimi et al. 2017]A Time-Varying BarrierThe authorsconsider the impact that solar flares, coronal mass ejections, and other disturbances in the solar outflow have on the heliopause distance. These solar disturbances intermingle as they travel outward to form what the authors call global merged interaction regions.Using their hydrodynamical simulations, Washimi and collaborators capture the complex behavior of the global merged interaction regions as they propagate through the termination shock and collide with the heliopause. Part of the shock is transmitted into the local interstellar medium, while part of it is reflected back toward and collides with the termination shock, which is pushed toward the Sun. This complex interplay of transmitted and reflected shocks combined with the nonuniformity of the local interstellar medium causes the heliopause location to vary dramatically in time as well as space.What Does this Mean for Voyager 2?Washimi and collaborators find that the location of the heliopause along the trajectories of Voyagers 1 and 2 has changed considerably over the past decade. In particular, they find that the heliopause has been pushed outward over the past few years due to an increase in the solar wind ram pressure. According to their simulations, Voyager 2 is currently traveling outward faster than the heliopause is advancing, which means that the spacecraft should soon cross the boundary perhaps even thisyear to become Earths second interstellar messenger.CitationHaruichi Washimi et al 2017 ApJL 846 L9. doi:10.3847/2041-8213/aa8556
NASA Astrophysics Data System (ADS)
Quitián-Lara, Heidy M.; Fantuzzi, Felipe; Nascimento, Marco A. C.; Wolff, Wania; Boechat-Roberty, Heloisa M.
2018-02-01
Polycyclic aromatic hydrocarbons (PAHs), comprised of fused benzene (C6H6) rings, emit infrared radiation (3–12 μm) due to the vibrational transitions of the C–H bonds of the aromatic rings. The 3.3 μm aromatic band is generally accompanied by the band at 3.4 μm assigned to the vibration of aliphatic C–H bonds of compounds such as PAHs with an excess of peripheral H atoms (H n –PAHs). Herein we study the stability of fully hydrogenated benzene (or cyclohexane, C6H12) under the impact of stellar radiation in the photodissociation region (PDR) of NGC 7027. Using synchrotron radiation and time-of-flight mass spectrometry, we investigated the ionization and dissociation processes at energy ranges of UV (10–200 eV) and soft X-rays (280–310 eV). Density Functional Theory (DFT) calculations were used to determine the most stable structures and the relevant low-lying isomers of singly charged C6H12 ions. Partial Ion Yield (PIY) analysis gives evidence of the higher tendency toward dissociation of cyclohexane in comparison to benzene. However, because of the high photoabsorption cross-section of benzene at the C1s resonance edge, its photodissociation and photoionization cross-sections are enhanced, leading to a higher efficiency of dissociation of benzene in the PDR of NGC 7027. We suggest that a similar effect is experienced by PAHs in X-ray photon-rich environments, which ultimately acts as an auxiliary protection mechanism of super-hydrogenated polycyclic hydrocarbons. Finally, we propose that the single photoionization of cyclohexane could enhance the abundance of branched molecules in interstellar and circumstellar media.
Detection of Buckminsterfullerene emission in the diffuse interstellar medium.
Berné, O; Cox, N L J; Mulas, G; Joblin, C
2017-09-01
Emission of fullerenes in their infrared vibrational bands has been detected in space near hot stars. The proposed attribution of the diffuse interstellar bands at 9577 and 9632 Å to electronic transitions of the buckminsterfullerene cation (i.e. [Formula: see text]) was recently supported by new laboratory data, confirming the presence of this species in the diffuse interstellar medium (ISM). In this letter, we present the detection, also in the diffuse ISM, of the 17.4 and 18.9 μ m emission bands commonly attributed to vibrational bands of neutral C 60 . According to classical models that compute the charge state of large molecules in space, C 60 is expected to be mostly neutral in the diffuse ISM. This is in agreement with the abundances of diffuse C 60 we derive here from observations. We also find that C 60 is less abundant in the diffuse ISM than in star-forming regions, supporting the theory that C 60 can be formed in these regions.
NASA Technical Reports Server (NTRS)
Brownlee, D. E.; Joswiak, D. J.; Bradley, J. P.; Matrajt, G.; Wooden, D. H.
2005-01-01
The comparison of interstellar, circumstellar and primitive solar nebula silicates has led to a significant conundrum in the understanding of the nature of solid materials that begin the planet forming processes. Crystalline silicates are found in circumstellar regions around young stars and also evolved stars ejecting particles into the interstellar medium (ISM) but they are not seen in the interstellar medium itself, the source material for star and planet formation. Crystalline silicates are minor to major components of all known early solar system materials that have been examined as meteorites or interplanetary dust samples. The strong presence of Mg-rich crystalline silicates in Oort cloud comets and their minor presence in some Kuiper belt comets is also indicated by 11.2 m peak in approx. 10 microns "silicate" infrared feature. This evidence strongly indicates that Mg-rich crystalline silicates were abundant components of the solar nebula disk out to at least 10 AU, and present out to 30 AU.
The Emergence of the Worldship (I): The Shift from Planet-Based to Space-Based Civilisation
NASA Astrophysics Data System (ADS)
Ashworth, S.
Design concepts for passenger-carrying interstellar vehicles may be organised according to speed of travel and payload mass. The most likely design solutions fall on a scale which ranges from the high speed, low mass rapid transport at one end to the low speed, high mass multi-generation worldship at the other. The medium speed, medium mass cruiser is defined as an intermediate case. Using an energy-based analysis, it is shown that the rapid transport is a less plausible case. The more credible options for human interstellar flight are the multi-generation cruiser and worldship, in either case requiring the construction of an artificial mobile world-like environment for the sustainable support of a town- to city-sized community of travellers. This could be made possible by a shift in the dominant mode of human civilisation from planetary to space-based life. The long-term consequences for interstellar colonisation are illustrated with reference to the percolation theory presented by Geoffrey Landis.
Hong, Youwei; Yu, Shen; Yu, Guangbin; Liu, Yi; Li, Guilin; Wang, Min
2012-06-01
Organic pollutants, especially synthetic organic compounds, can indicate paces of anthropogenic activities. Effects of urbanization on polycyclic aromatic hydrocarbons (PAHs) and polychlorinated biphenyls (PCBs) distributions in surface sediment were conducted in urban sections of the Grand Canal, China, consisting of a four-level urbanization gradient. The four-level urbanization gradients include three countryside towns, two small-size cities, three medium-size cities, and a large-size city. Diagnostic ratio analysis and factor analysis-multiple linear regression model were used for source apportionment of PAHs. Sediment quality guidelines (SQGs) of USA and Canada were employed to assess ecological risks of PAHs and PCBs in surface sediments of the Canal. Ranges of PAH and PCB concentrations in surface sediments were 0.66-22 mg/kg and 0.5-93 μg/kg, respectively. Coal-related sources were primary PAH sources and followed by vehicular emission. Total concentration, composition, and source apportionment of PAHs exhibited urbanization gradient effects. Total PCB concentrations increased with the urbanization gradient, while total PAHs concentration in surface sediments presented an inverted U Kuznets curve with the urbanization gradient. Elevated concentrations of both PAHs and PCBs ranged at effect range low levels or interim SQG, assessed by USA and Canadian SQGs. PAHs and PCBs in surface sediments of the Grand Canal showed urbanization gradient effects and low ecological risks.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Peron, O.; Laboratoire de Nanotechnologie et d'instrumentation Optique, Institut Charles Delaunay, FRE 2848, Universite de technologie de Troyes, 12 rue Marie Curie, 10010 Troyes; Rinnert, E.
2010-08-06
In the investigation of chemical pollutions, such as PAHs (Polycyclic Aromatic Hydrocarbons) at low concentration in aqueous medium, surface-enhanced Raman scattering (SERS) stands for an alternative to the inherent low cross-section of normal Raman scattering. Indeed, SERS is a very sensitive spectroscopic technique due to the excitation of the surface plasmon modes of the nanostructured metallic film.
NASA Astrophysics Data System (ADS)
Zwitter, T.; Kos, J.; Žerjal, M.; Traven, G.
2016-10-01
Current ongoing stellar spectroscopic surveys (RAVE, GALAH, Gaia-ESO, LAMOST, APOGEE, Gaia) are mostly devoted to studying Galactic archaeology and the structure of the Galaxy. But they allow also for important auxiliary science: (i) the Galactic interstellar medium can be studied in four dimensions (position in space plus radial velocity) through weak but numerous diffuse interstellar bands and atomic absorptions seen in spectra of background stars, (ii) emission spectra which are quite frequent even in field stars can serve as a good indicator of their youth, pointing e.g. to stars recently ejected from young stellar environments, (iii) an astrometric solution of the photocenter of a binary to be obtained by Gaia can yield accurate masses when joined by spectroscopic information obtained serendipitously during a survey. These points are illustrated by first results from the first three surveys mentioned above. These hint at the near future: spectroscopic studies of the dynamics of the interstellar medium can identify and quantify Galactic fountains which may sustain star formation in the disk by entraining fresh gas from the halo; RAVE already provided a list of ˜ 14,000 field stars with chromospheric emission in Ca II lines, to be supplemented by many more observations by Gaia in the same band, and by GALAH and Gaia-ESO observations of Balmer lines; several millions of astrometric binaries with periods up to a few years which are being observed by Gaia can yield accurate masses when supplemented with measurements from only a few high-quality ground based spectra.
A Multi-Wavelength Study of the Hot Component of the Interstellar Medium
NASA Technical Reports Server (NTRS)
Oliversen, Ronald J. (Technical Monitor)
2004-01-01
This research focuses on the kinematics and evolution of the hot phase of the interstellar medium in the Galaxy. The plan was to measure the UV spectra of all hot stars observed with IUE, in order to identify and measure the main component and any high velocity components to the interstellar lines. Collection of data from higher resolution instruments on HST has been proposed for some of the interesting lines of sight. IUE spectra of 240 stars up to 8 kpc in 2 quadrants of the galactic plane have been examined to (1) estimate the total column density per kpc as a function of direction and distance, and (2) to obtain a lower limit to the number of high velocity components to the interstellar lines, thus giving an approximation of the number of conductive interfaces encountered per line of sight. By determining an approximation to the number of components per unit distance we aim to derive statistics on interfaces between hot and cold gas in the Galaxy. We find that 20% of the stars in this sample show at least one high velocity component in the C IV interstellar line. Two successful FUSE programs address this research and collected data for several of the lines of sight identified as locations of hot, expanding gas with the IUE data. One FUSE program is complete for the Vela SNR region. Data from another FUSE program to investigate the Cygnus superbubble region are being analyzed.
NASA Astrophysics Data System (ADS)
Swaczyna, Paweł; Bzowski, Maciej; Kubiak, Marzena A.; Sokół, Justyna M.; Fuselier, Stephen A.; Galli, André; Heirtzler, David; Kucharek, Harald; McComas, David J.; Möbius, Eberhard; Schwadron, Nathan A.; Wurz, P.
2018-02-01
Direct-sampling observations of interstellar neutral (ISN) He by the Interstellar Boundary Explorer (IBEX) provide valuable insight into the physical state of and processes operating in the interstellar medium ahead of the heliosphere. The ISN He atom signals are observed at the four lowest ESA steps of the IBEX-Lo sensor. The observed signal is a mixture of the primary and secondary components of ISN He and H. Previously, only data from one of the ESA steps have been used. Here, we extend the analysis to data collected in the three lowest ESA steps with the strongest ISN He signal, for the observation seasons 2009–2015. The instrument sensitivity is modeled as a linear function of the atom impact speed onto the sensor’s conversion surface separately for each ESA step of the instrument. We find that the sensitivity increases from lower to higher ESA steps, but within each of the ESA steps it is a decreasing function of the atom impact speed. This result may be influenced by the hydrogen contribution, which was not included in the adopted model, but seems to exist in the signal. We conclude that the currently accepted temperature of ISN He and velocity of the Sun through the interstellar medium do not need a revision, and we sketch a plan of further data analysis aiming at investigating ISN H and a better understanding of the population of ISN He originating in the outer heliosheath.
An astrosphere around the blue supergiant κ Cas: possible explanation of its filamentary structure
NASA Astrophysics Data System (ADS)
Katushkina, O. A.; Alexashov, D. B.; Gvaramadze, V. V.; Izmodenov, V. V.
2018-01-01
High-resolution mid-infrared observations carried out by the Spitzer Space Telescope allowed one to resolve the fine structure of many astrospheres. In particular, they showed that the astrosphere around the B0.7 Ia star κ Cas (HD 2905) has a clear-cut arc structure with numerous cirrus-like filaments beyond it. Previously, we suggested a physical mechanism for the formation of such filamentary structures. Namely, we showed theoretically that they might represent the non-monotonic spatial distribution of the interstellar dust in astrospheres (viewed as filaments) caused by interaction of the dust grains with the interstellar magnetic field disturbed in the astrosphere due to colliding of the stellar and interstellar winds. In this paper, we invoke this mechanism to explain the structure of the astrosphere around κ Cas. We performed 3D magnetohydrodynamic modelling of the astrosphere for realistic parameters of the stellar wind and space velocity. The dust dynamics and the density distribution in the astrosphere were calculated in the framework of a kinetic model. It is found that the model results with the classical MRN (Mathis, Rumpl & Nordsieck 1977) size distribution of dust in the interstellar medium do not match the observations, and that the observed filamentary structure of the astrosphere can be reproduced only if the dust is composed mainly of big (μm-sized) grains. Comparison of the model results with observations allowed us to estimate parameters (number density and magnetic field strength) of the surrounding interstellar medium.
NASA Astrophysics Data System (ADS)
Redfield, Seth; Linsky, Jeffrey L.
2015-10-01
Ultraviolet and optical spectra of interstellar gas along the lines of sight to nearby stars have been interpreted by Redfield & Linsky and previous studies as a set of discrete warm, partially ionized clouds each with a different flow vector, temperature, and metal depletion. Recently, Gry & Jenkins proposed a fundamentally different model consisting of a single cloud with nonrigid flows filling space out to 9 pc from the Sun that they propose better describes the local ISM. Here we test these fundamentally different morphological models against the spatially unbiased Malamut et al. spectroscopic data set, and find that the multiple cloud morphology model provides a better fit to both the new and old data sets. The detection of three or more velocity components along the lines of sight to many nearby stars, the presence of nearby scattering screens, the observed thin elongated structures of warm interstellar gas, and the likely presence of strong interstellar magnetic fields also support the multiple cloud model. The detection and identification of intercloud gas and the measurement of neutral hydrogen density in clouds beyond the Local Interstellar Cloud could provide future morphological tests. Based on observations made with the NASA/ESA Hubble Space Telescope, obtained from the Data Archive at the Space Telescope Science Institute, which is operated by the Association of Universities for Research in Astronomy, Inc., under NASA contract NAS AR-09525.01A. These observations are associated with programs #11568.
Organic Chemistry: From the Interstellar Medium to the Solar System
NASA Technical Reports Server (NTRS)
Sandford, Scott; Witteborn, Fred C. (Technical Monitor)
1997-01-01
This talk will review the various types of organic materials observed in different environments in the interstellar medium, discuss the processes by which these materials may have formed and been modified, and present the evidence supporting the contention that at least a fraction of this material survived incorporation, substantially unaltered, into our Solar System during its formation. The nature of this organic material is of direct interest to issues associated with the origin of life, both because this material represents a large fraction of the Solar System inventory of the biogenically-important elements, and because many of the compounds in this inventory have biogenic implications. Several specific examples of such molecules will be briefly discussed.
Observational properties of pulsars.
Manchester, R N
2004-04-23
Pulsars are remarkable clocklike celestial sources that are believed to be rotating neutron stars formed in supernova explosions. They are valuable tools for investigations into topics such as neutron star interiors, globular cluster dynamics, the structure of the interstellar medium, and gravitational physics. Searches at radio and x-ray wavelengths over the past 5 years have resulted in a large increase in the number of known pulsars and the discovery of new populations of pulsars, posing challenges to theories of binary and stellar evolution. Recent images at radio, optical, and x-ray wavelengths have revealed structures resulting from the interaction of pulsar winds with the surrounding interstellar medium, giving new insights into the physics of pulsars.
Observations of the interstellar gas with the Copernicus satellite
NASA Technical Reports Server (NTRS)
Morton, D. C.
1975-01-01
Results are reviewed for Copernicus far-UV measurements of the absorption lines of H I, D I, H2, and heavier elements in the interstellar gas. Column densities along several lines of sight, as estimated from Ly-alpha absorption-line profiles, confirm that wide differences in the gas density are present in various directions. The measurement of interstellar D I implies an open universe unless alternate sources for this nuclide are found. Analysis of reddened stars for which the line of sight passes through one or more interstellar clouds indicates a depletion of several heavy elements in the gas. It is suggested that the depleted elements may be present in grains rather than molecules and that the intercloud medium may consist primarily of H II with a few small H I clouds.
The Study of Acenaphthene and its Complexation with Water
NASA Astrophysics Data System (ADS)
Steber, Amanda; Perez, Cristobal; Rijs, Anouk; Schnell, Melanie
2016-06-01
Acenaphthene (Ace) is a three ring polycyclic aromatic hydrocarbon (PAH), which consists of naphthalene and a non-aromatic five member ring. Ace has been previously been studied by microwave spectroscopy where the rotational constants were reported[1]. New measurements from 2-8 GHz using chirped pulse-Fourier transform microwave spectroscopy (CP-FTMW) will be presented. The high sensitivity achieved enabled us to observe all 13C isotopologues in natural abundance and determine the Kraitchman substitution structure. The spectra of Ace complexed with water and H218O were also recorded at this frequency range. From these spectra, we have been able to assign the complexes Ace-(H2O)n, n=1-3 and (Ace)2-H2O and experimentally derive the O-atom position of the H2O. The Ace-(H2O)3 complex is especially interesting as the water aggregate forms a slightly distorted cyclic water trimer from that observed in the IR[2]. These complexes could give insight about the formation of ice grains in the interstellar medium. [1] Thorwirth, S., Theulé, P., Gottlieb, C.A., McCarthy, M.C., Thaddeus, P. Astrophys. J., 662, 1309-1314, 2007. [2] Keutsch, F.N., Cruzan, J.D., Saykally, R.J. Chem. Rev., 103, 2533-2577, 2003.
A Heliosphere Buffeted by Interstellar Turbulence?
NASA Astrophysics Data System (ADS)
Jokipii, J. R.; Giacalone, J.
2014-12-01
Recent observations from IBEX combined with previous measurements from other sources suggest new, local, effects of interstellar turbulence. Observations of various interstellar parameters such as the magnetic field, fluid velocity and electron density, over large spatial scales, have revealed a broadband Kolmogorov spectrum of interstellar turbulence which pervades most of interstellar space. The outer scale (or coherence scale of this turbulence) is found to be approximately 10^19 cm and the inner cutoff scale is less than 1000 km. The root-mean-square relative fluctuation in the fluid and the magnetic-field parameters is of order unity. If this turbulence exists at the heliosphere, the root-mean-square relative fluctuations at 100 (heliospheric) AU scales is approximately 0.1. The recently published value for the change In observed velocity direction for the interstellar flow relative to the heliosphere (Frisch, etal, 2014)is consistent with this. Similarly, interpreting the width of the IBEX ribbon in terms of a fluctuating magnetic field also is in agreement with this picture. Observations of TeV cosmic rays can also be explained. Potential effects of these fluctuations in the interstellar medium on the heliosphere will be discussed. Reference: Frisch, etal, Science, 341, 480
A survey of the properties of early-type galaxies
NASA Technical Reports Server (NTRS)
Bregman, Joel N.; Roberts, M. S.; Hogg, D. E.
1990-01-01
A compilation of the properties of elliptical and early disk galaxies was completed. In addition to material from the literature, such as Infrared Astronomy Satellite (IRAS) fluxes, the compilation includes recent measurements of HI and CO, as well as a review of the x ray properties by Forman and Jones. The data are used to evaluate the gas content of early systems and to search for correlations with x ray emission. The interstellar medium in early-type galaxies is generally dominated by hot interstellar gas (T approx. 10 to the 7th power K; c.f. the review by Fabbiano 1989 and references therein). In addition, a significant fraction of these galaxies show infrared emission (Knapp, et al., 1989), optical emission lines, and visible dust. Sensitive studies in HI and CO of a number of these galaxies have been completed recently, resulting in several detections, particularly of the later types. Researchers wish to understand the connection among these different forms of the interstellar medium, and to examine the theoretical picture of the fate of the hot gas. To do so, they compiled observations of several forms of interstellar matter for a well-defined sample of early-type galaxies. Here they present a statistical analysis of this data base and discuss the implications of the results.
NASA Astrophysics Data System (ADS)
Wimmer-Schweingruber, Robert F.; McNutt, Ralph; Schwadron, Nathan A.; Frisch, Priscilla C.; Gruntman, Mike; Wurz, Peter; Valtonen, Eino
2009-05-01
The Sun, driving a supersonic solar wind, cuts out of the local interstellar medium a giant plasma bubble, the heliosphere. ESA, jointly with NASA, has had an important role in the development of our current understanding of the Suns immediate neighborhood. Ulysses is the only spacecraft exploring the third, out-of-ecliptic dimension, while SOHO has allowed us to better understand the influence of the Sun and to image the glow of interstellar matter in the heliosphere. Voyager 1 has recently encountered the innermost boundary of this plasma bubble, the termination shock, and is returning exciting yet puzzling data of this remote region. The next logical step is to leave the heliosphere and to thereby map out in unprecedented detail the structure of the outer heliosphere and its boundaries, the termination shock, the heliosheath, the heliopause, and, after leaving the heliosphere, to discover the true nature of the hydrogen wall, the bow shock, and the local interstellar medium beyond. This will greatly advance our understanding of the heliosphere that is the best-known example for astrospheres as found around other stars. Thus, IHP/HEX will allow us to discover, explore, and understand fundamental astrophysical processes in the largest accessible plasma laboratory, the heliosphere.
NASA Astrophysics Data System (ADS)
Decin, L.
2011-01-01
Evolved stars are the birthplaces of the interstellar gas and solid dust particles. Such stars lose mass through a stellar wind, which is slow and dusty for cool giants and supergiants, or through impressive supernova explo- sions. However, recent observations with the PACS and SPIRE photometers reveal that the encounter between these slow and dusty winds and the interstellar medium is as spectacular as supernova explosions: multiple arcs, bar-like structures and different kind of instabilities (Rayleigh-Taylor and Kelvin-Helmholtz) are detected. The most outstanding example concerns the well-known supergiant Betelgeuse. However, with the current set of Herschel observations, it is impossible to dene the exact physical mechanism causing the observed infrared emission. We propose to obtain PACS [O I] and HIFI [C II] spectroscopic observations at different pointings in the turbulent wind interaction zone around Betelgeuse. The proposed DDT observations would only take 3.1 hr and would give the astronomical community the rst possibility to study spectroscopically the different dynam- ical and chemical processes partaking in the interaction zone between circumstellar and interstellar material. The derived spectroscopic information will be valuable to the whole community in preparation of OT2.
Low-frequency Carbon Radio Recombination Lines. II. The Diffuse Interstellar Medium
DOE Office of Scientific and Technical Information (OSTI.GOV)
Salgado, F.; Morabito, L. K.; Oonk, J. B. R.
In the second paper of the series, we have modeled low-frequency carbon radio recombination lines (CRRLs) from the interstellar medium. Anticipating the Low Frequency Array survey of Galactic CRRLs, we focus our study on the physical conditions of the diffuse, cold neutral medium. We have used the improved departure coefficients computed in the first paper of the series to calculate line-to-continuum ratios. The results show that the line width and integrated optical depths of CRRLs are sensitive probes of the electron density, gas temperature, and emission measure of the cloud. Furthermore, the ratio of CRRL to the [C ii] atmore » the 158 μ m line is a strong function of the temperature and density of diffuse clouds. Guided by our calculations, we analyze CRRL observations and illustrate their use with data from the literature.« less
NASA Astrophysics Data System (ADS)
Hudson, R. L.; Moore, M. H.
2004-12-01
Motivated by detections of nitriles in Titan's atmosphere, cometary comae, and the interstellar medium, we report laboratory investigations of the low-temperature chemistry of acetonitrile, propionitrile, acrylonitrile, cyanoacetylene, and cyanogen (CH 3CN, CH 3CH 2CN, CH 2CHCN, HCCCN, and NCCN, respectively). A few experiments were also done on isobutyronitrile and trimethylacetonitrile ((CH 3) 2CHCN and (CH 3) 3CCN, respectively). Trends were sought, and found, in the photo- and radiation chemical products of these molecules at 12-25 K. In the absence of water, all of these molecules isomerized to isonitriles, and CH 3CN, CH 3CH 2CN, and (CH 3) 2CHCN also formed ketenimines. In the presence of H 2O, no isonitriles were detected but rather the cyanate ion (OCN -) was seen in all cases. Although isonitriles, ketenimines, and OCN - were the main focus of our work, we also describe cases of hydrogen loss, to make smaller nitriles, and hydrogen addition (reduction), to make larger nitriles. HCN formation also was seen in most experiments. The results are presented in terms of nitrile ice chemistry on Titan, in cometary ice, and in the interstellar medium. Possible connections to prebiotic chemistry are briefly discussed.
Aliphatic Hydrocarbon Content of Interstellar Dust
NASA Astrophysics Data System (ADS)
Günay, B.; Schmidt, T. W.; Burton, M. G.; Afşar, M.; Krechkivska, O.; Nauta, K.; Kable, S. H.; Rawal, A.
2018-06-01
There is considerable uncertainty as to the amount of carbon incorporated in interstellar dust. The aliphatic component of the carbonaceous dust is of particular interest because it produces a significant 3.4 μm absorption feature when viewed against a background radiation source. The optical depth of the 3.4 μm absorption feature is related to the number of aliphatic carbon C-H bonds along the line of sight. It is possible to estimate the column density of carbon locked up in the aliphatic hydrocarbon component of interstellar dust from quantitative analysis of the 3.4 μm interstellar absorption feature providing that the absorption coefficient of aliphatic hydrocarbons incorporated in the interstellar dust is known. We report laboratory analogues of interstellar dust by experimentally mimicking interstellar/circumstellar conditions. The resultant spectra of these dust analogues closely match those from astronomical observations. Measurements of the absorption coefficient of aliphatic hydrocarbons incorporated in the analogues were carried out by a procedure combining FTIR and 13C NMR spectroscopies. The absorption coefficients obtained for both interstellar analogues were found to be in close agreement (4.76(8) × 10-18 cm group-1 and 4.69(14) × 10-18 cm group-1), less than half those obtained in studies using small aliphatic molecules. The results thus obtained permit direct calibration of the astronomical observations, providing rigorous estimates of the amount of aliphatic carbon in the interstellar medium.
Modeling the Anomalous Microwave Emission with Spinning Nanoparticles: No PAHs Required
NASA Astrophysics Data System (ADS)
Hensley, Brandon S.; Draine, B. T.
2017-02-01
In light of recent observational results indicating an apparent lack of correlation between the anomalous microwave emission (AME) and mid-infrared emission from polycyclic aromatic hydrocarbons, we assess whether rotational emission from spinning silicate and/or iron nanoparticles could account for the observed AME without violating observational constraints on interstellar abundances, ultraviolet extinction, and infrared emission. By modifying the SpDust code to compute the rotational emission from these grains, we find that nanosilicate grains could account for the entirety of the observed AME, whereas iron grains could be responsible for only a fraction, even for extreme assumptions on the amount of interstellar iron concentrated in ultrasmall iron nanoparticles. Given the added complexity of contributions from multiple grain populations to the total spinning dust emission, as well as existing uncertainties due to the poorly constrained grain size, charge, and dipole moment distributions, we discuss generic, carrier-independent predictions of spinning dust theory and observational tests that could help identify the AME carrier(s).
FT-IR spectroscopic studies of polycyclic aromatic hydrocarbons
NASA Technical Reports Server (NTRS)
Salisbury, D. W.; Allen, J. E., Jr.; Donn, B.; Moore, W. J.; Khanna, R. K.
1990-01-01
Proper assessment of the hypothesis which correlates polycyclic aromatic hydrocarbons (PAHs) with the unidentified infrared emission bands requires additional experimental laboratory data. In order to address this need, thermal infrared emission studies were performed on a subset of PAHs suggested to be of astrophysical importance. It was proposed that infrared emission from interstellar PAHs occurs following absorption of an ultraviolet photon. Since energy transfer to the ground electronic state can be rapid for a species in which intersystem crossing is negligible, the emission spectrum may be viewed as resulting from an equilibrium vibrational temperature (Leger and d'Hendecourt, 1987). This has been the basis for using infrared absorption spectra to calculate the corresponding emission spectra at various temperatures. These calculations were made using room temperature infrared absorption coefficients instead of those at the temperature of interest because of the latter's unavailability. The present studies are designed to address the differences between the calculated and experimental thermal emission spectra and to provide information which will be useful in future ultraviolet induced infrared fluorescence studies. The emission spectra have been obtained for temperatures up to 825K using an emission cell designed to mount against an external port of an FT-IR spectrometer. These spectra provide information concerning relative band intensities and peak positions which is unavailable from previous calculations.
Electron energy loss spectrometry of interstellar diamonds
NASA Technical Reports Server (NTRS)
Bernatowicz, Thomas J.; Gibbons, Patrick C.; Lewis, Roy S.
1990-01-01
The results are reported of electron energy loss spectra (EELS) measurements on diamond residues from carbonaceous meteorites designed to elucidate the structure and composition of interstellar diamonds. Dynamic effective medium theory is used to model the dielectric properties of the diamonds and in particular to synthesize the observed spectra as mixtures of diamond and various pi-bonded carbons. The results are shown to be quantitatively consistent with the idea that diamonds and their surfaces are the only contributors to the electron energy loss spectra of the diamond residues and that these peculiar spectra are the result of the exceptionally small grain size and large specific surface area of the interstellar diamonds.
Photoabsorption and photodissociation of molecules important in the interstellar medium
NASA Technical Reports Server (NTRS)
Lee, Long C.; Suto, Masako
1991-01-01
The photoabsorption, photodissociation, and fluorescence cross sections of interstellar molecules are measured at 90 to 250 nm. These quantitative optical data are needed for the understanding of the formation and destruction processes of molecules under the intense interstellar UV radiation field. Research covering the following topics is presented: (1) fluorescences from photoexcitation of CH4, CH3OH, and CH3SH; (2) NO gamma emission from photoexcitation of NO; (3) photoexcitation cross sections of aromatic molecules; (4) IR emission from UV excitation of HONO2; (5) IR emission from UV excitation of benzene and methyl-derivitives; and (6) IR emission from UV excitation of polycyclic aromatic hydrocarbon molecules.
Observations of local interstellar Mg I and Mg II
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bruhweiler, F.C.; Oegerle, W.; Weiler, E.
1984-11-01
Copernicus and IUE observations of 5 stars within 50 pc of the Sun were combined to study the ionization of magnesium in the Local Interstellar Medium (LISM). The high resolution Copernicus spectrometer was used to detect interstellar MG I 2852 in the spectra of alpha Gru, alpha Eri, and alpha Lyr, while placing upper limits on Mg I in the spectra of alpha CMa and alpha PsA. Observations of Mg II 2795, 2802 for these stars were also obtained with IUE and Copernicus. The column densities of Mg I and Mg II are used to place constraints on the temperaturemore » of the LISM.« less
Observations of Local Interstellar Mg I and Mg II
NASA Technical Reports Server (NTRS)
Bruhweiler, F. C.; Oegerle, W.; Weiler, E.; Stencel, R. E.; Kondo, Y.
1984-01-01
Copernicus and IUE observations of 5 stars within 50 pc of the Sun were combined to study the ionization of magnesium in the local interstellar medium (LISM). The high resolution Copernicus spectrometer was used to detect interstellar MG I 2852 in the spectra of alpha Gru, alpha Eri, and alpha Lyr, while placing upper limits on Mg I in the spectra of alpha CMa and alpha PsA. Observations of Mg II 2795, 2802 for these stars were also obtained with IUE and Copernicus. The column densities of Mg I and Mg II are used to place constraints on the temperature of the LISM.
Cosmic Ray Proton Anisotropies Measured at Voyager 1 in the Local Interstellar Medium
NASA Astrophysics Data System (ADS)
Decker, R. B.; Krimigis, S. M.; Hill, M. E.; Roelof, E. C.
2016-12-01
Voyager 1 entered the local interstellar medium in August of 2012 at helioradius 121.6 AU and heliolatitude N35°, and is now about 15 AU (≈12% the sun-heliopause distance at Voyager 1) upstream of the heliopause nose. Intensities of low-energy ions and electrons and of anomalous cosmic rays, all of which were routinely measured in the heliosheath, remain at background levels through July 2016. Galactic cosmic ray protons >211 MeV continue to show departures from isotropy, with broad (0.3-0.8 year) episodes of steady intensity depletions of ions gyrating nearly perpendicular to the magnetic field. Percentage intensity decreases during these depletions, relative to intensities of cosmic rays propagating along the field, peak at -7% on 2013.35, -3% on 2014.50, and -10% on 2016.00. In the last case, the peak anisotropy was preceded by an intensity decline lasting at least 9 months. The 2016.00 peak (-10%) anisotropy of was followed by a recovery back toward isotropy. But this recovery was interrupted in mid-April 2016, when the anisotropy had reached -2%, at which time the anisotropy began to again increase and continued to do so through at least July 2016, when the anisotropy reached -3%. We note that during its 4-year propagation through the local interstellar medium, Voyager 1 has encountered mainly anisotropic cosmic ray distributions. The longest period of isotropy occurred during a 4-month period in the latter half of 2014. Gurnett et al. [Ap. J., 809, 2015; Fall 2016 AGU (this meeting)] suggested that the broad periods when cosmic ray intensities evolve away from isotropy are precursor signatures produced by weak magnetic disturbances driven by solar activity. These disturbances propagate through the interstellar medium where they produce the bursts of electron plasma oscillations and peak cosmic ray anisotropies that are measured at Voyager 1 just before the disturbances cross the spacecraft.
NASA Astrophysics Data System (ADS)
Keilbach, D.; Drews, C.; Taut, A.; Wimmer-Schweingruber, R. F.
2016-12-01
Recent studies of the inflow direction of the local insterstellar medium from PUI density distributions have shown that the extrema of the longitudinal distribution of PUI velocities (with respect to the solar wind speed) can be attributed to the radial velocity of the interstellar neutral seed population and is symmetric around the inflow direction of the local interstellar medium. This work is aimed to model pickup ion injection rates from photoionization (which is the main process of interstellar PUI production) throughout the heliosphere. To that end a seed population of interstellar neutrals is injected into a model heliosphere at 60 AU distance from the sun, whereas each particle's initial speed is given by a maxwellian distribution at a temperature of 1 eV and an inflow speed of 22 km/s. Then the density of the interstellar neutrals is integrated over the model heliosphere, while the movement of the neutrals is simulated using timestep methods. To model the focusing of the interstellar neutral trajectories from the sun's gravitational potential the model heliosphere contains a central gravitational potential.Each neutral test particle can be ionized via photoionization with a per-timestep probability antiproportional to the neutral's distance to the sun squared. By tracking the ionization rate location-dependently, PUI injection rates have been determined. Therefore using these simulations the density distributions of different species of interstellar neutrals have been calculated. In addition location-dependent injection rates of different species of PUIs have been calculated, which show an increased rate of PUI production in the focusing cone region (e.g. for He+ PUIs), but also in the crescent region (e.g. for O+ PUIs).Furthermore the longitudinal distribution of the neutrals' velocity at 1 AU is calculated from the simulation's results in order to estimate the PUI cut-off as a function of ecliptic longitude. Figure: Simulated He neutral density (left) and simulated He PUI production rates from photoionization (right). The sun is located at 0 AU at both x-and y-axes.
Petit, Pascal; Bicout, Dominique J; Persoons, Renaud; Bonneterre, Vincent; Barbeau, Damien; Maître, Anne
2017-05-01
Similar exposure groups (SEGs) are needed to reliably assess occupational exposures and health risks. However, the construction of SEGs can turn out to be rather challenging because of the multifactorial variability of exposures. The objective of this study is to put forward a semi-empirical approach developed to construct and implement a SEG database for exposure assessments. An occupational database of airborne levels of polycyclic aromatic hydrocarbons (PAHs) was used as an illustrative and working example. The approach that was developed consisted of four steps. The first three steps addressed the construction and implementation of the occupational Exporisq-HAP database (E-HAP). E-HAP was structured into three hierarchical levels of exposure groups, each of which was based on exposure determinants, along 16 dimensions that represented the sampled PAHs. A fourth step was implemented to identify and generate SEGs using the geometric standard deviation (GSD) of PAH concentrations. E-HAP was restructured into 16 (for 16 sampled PAHs) 3 × 3 matrices: three hierarchical levels of description versus three degrees of dispersion, which included low (the SEG database: GSD ≤ 3), medium (3 < GSD ≤ 6), and high (GSD > 6). Benzo[a]pyrene (BaP) was the least dispersed particulate PAH with 41.5% of groups that could be considered as SEGs, 48.5% of groups of medium dispersion, and only 8% with high dispersion. These results were comparable for BaP, BaP equivalent toxic, or the sum of all carcinogenic PAHs but were different when individual gaseous PAHs or ∑PAHG were chosen. Within the framework of risk assessment, such an approach, based on groundwork studies, allows for both the construction of an SEG database and the identification of exposure groups that require improvements in either the description level or the homogeneity degree toward SEG. © The Author 2017. Published by Oxford University Press on behalf of the British Occupational Hygiene Society.
Bejarano, Adriana C; Michel, Jacqueline
2010-05-01
A large-scale assessment of polycyclic aromatic hydrocarbons (PAHs) from the 1991 Gulf War oil spill was performed for 2002-2003 sediment samples (n = 1679) collected from habitats along the shoreline of Saudi Arabia. Benthic sediment toxicity was characterized using the Equilibrium Partitioning Sediment Benchmark Toxic Unit approach for 43 PAHs (ESBTU(FCV,43)). Samples were assigned to risk categories according to ESBTU(FCV,43) values: no-risk (< or = 1), low (>1 - < or = 2), low-medium (>2 - < or = 3), medium (>3 - < or = 5) and high-risk (>5). Sixty seven percent of samples had ESBTU(FCV,43) > 1 indicating potential adverse ecological effects. Sediments from the 0-30 cm layer from tidal flats, and the >30 - <60 cm layer from heavily oiled halophytes and mangroves had high frequency of high-risk samples. No-risk samples were characterized by chrysene enrichment and depletion of lighter molecular weight PAHs, while high-risk samples showed little oil weathering and PAH patterns similar to 1993 samples. North of Safaniya sediments were not likely to pose adverse ecological effects contrary to sediments south of Tanaqib. Landscape and geomorphology has played a role on the distribution and persistence in sediments of oil from the Gulf War. Copyright 2009 Elsevier Ltd. All rights reserved.
Kwon, Eilhann E; Oh, Jeong-Ik; Kim, Ki-Hyun
2015-09-01
Our work reported the CO2-assisted mitigation of PAHs and VOCs in the thermo-chemical process (i.e., pyrolysis). To investigate the pyrolysis of used tires to recover energy and chemical products, the experiments were conducted using a laboratory-scale batch-type reactor. In particular, to examine the influence of the CO2 in pyrolysis of a tire, the pyrolytic products including C1-5-hydrocarbons (HCs), volatile organic carbons (VOCs), and polycyclic aromatic hydrocarbons (PAHs) were evaluated qualitatively by gas chromatography (GC) with mass spectroscopy (MS) as well as with a thermal conductivity detector (TCD). The mass balance of the pyrolytic products under various pyrolytic conditions was established on the basis of their weight fractions of the pyrolytic products. Our experimental work experimentally validated that the amount of gaseous pyrolytic products increased when using CO2 as a pyrolysis medium, while substantially altering the production of pyrolytic oil in absolute content (7.3-17.2%) and in relative composition (including PAHs and VOCs). Thus, the co-feeding of CO2 in the pyrolysis process can be considered an environmentally benign and energy efficient process. Copyright © 2015 Elsevier Ltd. All rights reserved.
Hong, Wen-Jun; Jia, Hongliang; Li, Yi-Fan; Sun, Yeqing; Liu, Xianjie; Wang, Luo
2016-06-01
A total of 46 polycyclic aromatic hydrocarbons (PAHs, 21 parent and 25 alkylated) were determined in seawater, surface sediment and oyster from coastal area of Dalian, North China. The concentration of Σ46PAHs in seawater, sediment, and oyster were 136-621 ng/L, 172-4700 ng/g dry weight (dw) and 60.0-129 ng/g wet weight (ww) in winter, and 65.0-1130 ng/L, 71.1-1090 ng/g dw and 72.8-216 ng/g ww in summer, respectively. High PAH levels were found in industrial area both in winter and summer. Selected PAH levels in sediments were compared with Sediments Quality Guidelines (ERM-ERL, TEL-PEL indexes) for evaluation probable toxic effects on marine organism and the results indicate that surface sediment from all sampling sites have a low to medium ecotoxicological risk. Daily intake of PAHs via oyster as seafood by humans were estimated and the results indicated that oyster intake would not pose a health risk to humans even 30 days after a oil spill accident near by. Water-sediment exchange analysis showed that, both in winter and summer, the fluxes for most high molecular weight PAHs were from seawater to sediment, while for low molecular weight PAHs, an equilibrium was reached between seawater and sediment. Copyright © 2016 Elsevier Inc. All rights reserved.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bzowski, M.; Kubiak, M. A.; Sokol, J. M.
Because of its high ionization potential and weak interaction with hydrogen, neutral interstellar helium (NISHe) is almost unaffected at the heliospheric interface with the interstellar medium and freely enters the solar system. This second most abundant species provides some of the best information on the characteristics of the interstellar gas in the local interstellar cloud. The Interstellar Boundary Explorer (IBEX) is the second mission to directly detect NISHe. We present a comparison between recent IBEX NISHe observations and simulations carried out using a well-tested quantitative simulation code. Simulation and observation results compare well for times when measured fluxes are dominatedmore » by NISHe (and contributions from other species are small). Differences between simulations and observations indicate a previously undetected secondary population of neutral helium, likely produced by interaction of interstellar helium with plasma in the outer heliosheath. Interstellar neutral parameters are statistically different from previous in situ results obtained mostly from the GAS/Ulysses experiment, but they do agree with the local interstellar flow vector obtained from studies of interstellar absorption: the newly established flow direction is ecliptic longitude 79.{sup 0}2, latitude -5.{sup 0}1, the velocity is {approx}22.8 km s{sup -1}, and the temperature is 6200 K. These new results imply a markedly lower absolute velocity of the gas and thus significantly lower dynamic pressure on the boundaries of the heliosphere and different orientation of the Hydrogen Deflection Plane compared to prior results from Ulysses. A different orientation of this plane also suggests a new geometry of the interstellar magnetic field, and the lower dynamic pressure calls for a compensation by other components of the pressure balance, most likely a higher density of interstellar plasma and strength of interstellar magnetic field.« less
NASA Astrophysics Data System (ADS)
van Marle, A. J.; Cox, N. L. J.; Decin, L.
2014-10-01
Context. The extended circumstellar envelopes (CSEs) of evolved low-mass stars display a large variety of morphologies. Understanding the various mechanisms that give rise to these extended structures is important to trace their mass-loss history. Aims: Here, we aim to examine the role of the interstellar magnetic field in shaping the extended morphologies of slow dusty winds of asymptotic giant branch (AGB) stars in an effort to pin-point the origin of so-called eye shaped CSEs of three carbon-rich AGB stars. In addition, we seek to understand if this pre-planetary nebula (PN) shaping can be responsible for asymmetries observed in PNe. Methods: Hydrodynamical simulations are used to study the effect of typical interstellar magnetic fields on the free-expanding spherical stellar winds as they sweep up the local interstellar medium (ISM). Results: The simulations show that typical Galactic interstellar magnetic fields of 5 to 10 μG are sufficient to alter the spherical expanding shells of AGB stars to appear as the characteristic eye shape revealed by far-infrared observations. The typical sizes of the simulated eyes are in accordance with the observed physical sizes. However, the eye shapes are transient in nature. Depending on the stellar and interstellar conditions, they develop after 20 000 to 200 000 yrs and last for about 50 000 to 500 000 yrs, assuming that the star is at rest relative to the local interstellar medium. Once formed, the eye shape develops lateral outflows parallel to the magnetic field. The explosion of a PN in the centre of the eye-shaped dust shell gives rise to an asymmetrical nebula with prominent inward pointing Rayleigh-Taylor instabilities. Conclusions: Interstellar magnetic fields can clearly affect the shaping of wind-ISM interaction shells. The occurrence of the eyes is most strongly influenced by stellar space motion and ISM density. Observability of this transient phase is favoured for lines-of-sight perpendicular to the interstellar magnetic field direction. The simulations indicate that shaping of the pre-PN envelope can strongly affect the shape and size of PNe. Herschel is an ESA space observatory with science instruments provided by European-led Principal Investigator consortia and with important participation from NASA.Movies are available in electronic form at http://www.aanda.org
d'Hendecourt, L; Dartois, E
2001-03-15
Matrix isolation techniques have been developed in the early sixties as a tool for studying the spectroscopic properties of out of equilibrium species (atoms, radicals, ions, reactive molecules), embedded in rare gas inert matrices at low temperatures. Cold interstellar grains surfaces are able to condense out gas phase molecules, routinely observed by radioastronomy. These grain 'mantles' can be considered as 'interstellar matrices'. However, these matrices are not clean and unreactive. They are made principally of dirty ices whose composition must be determined carefully to assess the importance of the solid state chemistry that takes place in the Interstellar Medium. Infrared spectroscopy, both in astronomy and in the laboratory, is the unique tool to determine the chemical composition of these ices. Astronomical spectra can directly be compared with laboratory ones obtained using classical matrix isolation techniques. Furthermore, dedicated experiments may be undertaken to further improve the understanding of the basic physico-chemical processes that take place in cosmic ices.
Observations of Nitrogen Fractionation in Prestellar Cores: Nitriles Tracing Interstellar Chemistry
NASA Technical Reports Server (NTRS)
Milam, S. N.; Charnley, S. B.
2012-01-01
Primitive materials provide important clues on the processes that occurred during the formation and early evolution of the Solar System. Space-based and ground-based observations of cometary comae show that comets appear to contain a mixture of the products of both interstellar and nebular chemistries. Significant 15-nitrogen enrichments have been measured in CN and HCN towards a number of comets and may suggest an origin of interstellar chemical fractionation. Additionally, large N-15 enhancements are found in meteorites and has also led to to the view that the N-15 traces material formed in the interstellar medium (ISM), although multiple sources cannot be excluded. Here, we show the results of observations of the nitrogen and carbon fractionation in prestellar cores for various N-bearing species to decipher the origin of primitive material isotopic enrichments.
Interstellar problems and matrix solutions
NASA Technical Reports Server (NTRS)
Allamandola, Louis J.
1987-01-01
The application of the matrix isolation technique to interstellar problems is described. Following a brief discussion of the interstellar medium (ISM), three areas are reviewed in which matrix experiments are particularly well suited to contribute the information which is sorely needed to further understanding of the ISM. The first involves the measurement of the spectroscopic properties of reactive species. The second is the determination of reaction rates and the elucidation of reaction pathways involving atoms, radicals, and ions which are likely to interact on grain surfaces and in grain mantles. The third entails the determiantion of the spectroscopic, photochemical, and photophysical properties of interstellar and cometary ice analogs. Significant, but limited, progress has been made in these three areas, and a tremendous amount of work is required to fully address the variety of unique chemical and spectroscopic questions posed by the astronomical observations.
Time-dependent MHD modeling of the global structure of the heliosphere
NASA Technical Reports Server (NTRS)
Liewer, P. C.; Brackbill, J. U.; Karmesin, S. Roy
1995-01-01
We present results from time-dependent modeling of the global structure of the heliosphere with neutral and magnetic field effects included. The magnetic field is assumed parallel to the interstellar flow in this two-dimensional axisymmetric model; the neutrals are treated as a fluid. The effects of interstellar neutrals and the interplanetary magnetic field on the location of the termination shock are studied using the most recent estimate of the interstellar medium parameters, results will be compared to those of Baranov and Zaitsev. The effect of the solar wind - VLISM interaction on the density and velocity of interstellar neutrals within the heliosphere will also be presented and related to observations. The response of the termination shock to the solar cycle variation in the solar wind will be compared to the response found previously using an axisymmetric hydrodynamic model without neutrals.
The origin and evolution of dust in interstellar and circumstellar environments
NASA Technical Reports Server (NTRS)
Whittet, Douglas C. B.; Leung, Chun M.
1993-01-01
This status report covers the period from the commencement of the research program on 1 Jul. 1992 through 30 Apr. 1993. Progress is reported for research in the following areas: (1) grain formation in circumstellar envelopes; (2) photochemistry in circumstellar envelopes; (3) modeling ice features in circumstellar envelopes; (4) episodic dust formation in circumstellar envelopes; (5) grain evolution in the diffuse interstellar medium; and (6) grain evolution in dense molecular clouds.
New rate coefficients of CS in collision with para- and ortho-H2 and astrophysical implications
NASA Astrophysics Data System (ADS)
Denis-Alpizar, Otoniel; Stoecklin, Thierry; Guilloteau, Stéphane; Dutrey, Anne
2018-05-01
Astronomers use the CS molecule as a gas mass tracer in dense regions of the interstellar medium, either to measure the gas density through multi-line observations or the level of turbulence. This necessarily requires the knowledge of the rates coefficients with the most common colliders in the interstellar medium, He and H2. In the present work, the close coupling collisional rates are computed for the first thirty rotational states of CS in collision with para- and ortho-H2 using a recent rigid rotor potential energy surface. Some radiative transfer calculations, using typical astrophysical conditions, are also performed to test this new set of data and to compare with the existing ones.
The Connection between Different Tracers of the Diffuse Interstellar Medium: Kinematics
NASA Astrophysics Data System (ADS)
Rice, Johnathan S.; Federman, S. R.; Flagey, Nicolas; Goldsmith, Paul F.; Langer, William D.; Pineda, Jorge L.; Lambert, D. L.
2018-05-01
Using visible, radio, microwave, and submillimeter data, we study several lines of sight toward stars generally closer than 1 kpc on a component-by-component basis. We derive the component structure seen in absorption at visible wavelengths from Ca II, Ca I, K I, CH, CH+, and CN and compare it to emission from H I, CO and its isotopologues, and C+ from the GOT C+ survey. The correspondence between components in emission and absorption helps create a more unified picture of diffuse atomic and molecular gas in the interstellar medium. We also discuss how these tracers are related to the CO-dark H2 gas probed by C+ emission and discuss the kinematic connections among the species observed.
Airborne Astronomy Symposium on the Galactic Ecosystem: From Gas to Stars to Dust, volume 73
NASA Technical Reports Server (NTRS)
Haas, Michael R. (Editor); Davidson, Jacqueline A. (Editor); Erickson, Edwin F. (Editor)
1995-01-01
This symposium was organized to review the science related to NASA's Airborne Astronomy Program on the occasion of the twentieth anniversary of the Kuiper Airborne Observatory (KAO). The theme selected, 'The Galactic Ecosystem: From Gas to Stars to Dust,' was considered to capture the underlying commonality of much of the research discussed. The 8 sessions were as follows: The Interstellar Medium; The Life Cycle of the ISM in Other Galaxies; Star and Planetary System Formation; Our Planetary System: The Solar System; The Enrichment of the Interstellar Medium; The Galactic Center: A Unique Region of the Galactic Ecosystem; Instrumentation for Airborne Astronomy; KAO History and Education; and Missions and the Future of Infrared Astronomy.
The Origin of Compressible Magnetic Turbulence in the Very Local Interstellar Medium
NASA Astrophysics Data System (ADS)
Zank, G. P.; Du, S.; Hunana, P.
2017-06-01
Voyager 1 observed compressible magnetic turbulence in the very local interstellar medium (VLISM). We show that inner heliosheath (IHS) fast- and slow-mode waves incident on the heliopause (HP) generate VLISM fast-mode waves only that propagate into the VLISM. We suggest that this is the origin of compressible turbulence in the VLISM. We show that fast- and slow-mode waves transmitted across a tangential discontinuity such as the HP are strongly refracted on crossing the HP and subsequently propagate at highly oblique angles to the VLISM magnetic field. Thus, fast-mode waves in the VLISM contribute primarily to the compressible and not the transverse components of the VLISM fluctuating magnetic field variance < δ {\\hat{B}}2> since < δ {\\hat{B}}{fz}2> \
Heating up the Galaxy with hidden photons
DOE Office of Scientific and Technical Information (OSTI.GOV)
Dubovsky, Sergei; Hernández-Chifflet, Guzmán, E-mail: dubovsky@nyu.edu, E-mail: ghc236@nyu.edu
2015-12-01
We elaborate on the dynamics of ionized interstellar medium in the presence of hidden photon dark matter. Our main focus is the ultra-light regime, where the hidden photon mass is smaller than the plasma frequency in the Milky Way. We point out that as a result of the Galactic plasma shielding direct detection of ultra-light photons in this mass range is especially challenging. However, we demonstrate that ultra-light hidden photon dark matter provides a powerful heating source for the ionized interstellar medium. This results in a strong bound on the kinetic mixing between hidden and regular photons all the waymore » down to the hidden photon masses of order 10{sup −20} eV.« less
Heating up the Galaxy with hidden photons
DOE Office of Scientific and Technical Information (OSTI.GOV)
Dubovsky, Sergei; Hernández-Chifflet, Guzmán; Instituto de Física, Facultad de Ingeniería, Universidad de la República,Montevideo, 11300
2015-12-29
We elaborate on the dynamics of ionized interstellar medium in the presence of hidden photon dark matter. Our main focus is the ultra-light regime, where the hidden photon mass is smaller than the plasma frequency in the Milky Way. We point out that as a result of the Galactic plasma shielding direct detection of ultra-light photons in this mass range is especially challenging. However, we demonstrate that ultra-light hidden photon dark matter provides a powerful heating source for the ionized interstellar medium. This results in a strong bound on the kinetic mixing between hidden and regular photons all the waymore » down to the hidden photon masses of order 10{sup −20} eV.« less
Detection of the aromatic molecule benzonitrile (c-C6H5CN) in the interstellar medium
NASA Astrophysics Data System (ADS)
McGuire, Brett A.; Burkhardt, Andrew M.; Kalenskii, Sergei; Shingledecker, Christopher N.; Remijan, Anthony J.; Herbst, Eric; McCarthy, Michael C.
2018-01-01
Polycyclic aromatic hydrocarbons and polycyclic aromatic nitrogen heterocycles are thought to be widespread throughout the universe, because these classes of molecules are probably responsible for the unidentified infrared bands, a set of emission features seen in numerous Galactic and extragalactic sources. Despite their expected ubiquity, astronomical identification of specific aromatic molecules has proven elusive. We present the discovery of benzonitrile (c-C6H5CN), one of the simplest nitrogen-bearing aromatic molecules, in the interstellar medium. We observed hyperfine-resolved transitions of benzonitrile in emission from the molecular cloud TMC-1. Simple aromatic molecules such as benzonitrile may be precursors for polycyclic aromatic hydrocarbon formation, providing a chemical link to the carriers of the unidentified infrared bands.
Measurement of the spectral signature of small carbon clusters at near and far infrared wavelengths
NASA Technical Reports Server (NTRS)
Tarter, J.; Saykally, R.
1991-01-01
A significant percentage of the carbon inventory of the circumstellar and interstellar media may be in the form of large refractory molecules (or small grains) referred to as carbon clusters. At the small end, uneven numbers of carbon atoms seem to be preferred, whereas above 12 atoms, clusters containing an even number of carbon atoms appear to be preferred in laboratory chemistry. In the lab, the cluster C-60 appears to be a particularly stable form and has been nicknamed Bucky Balls because of its resemblance to a soccer ball and to geodesic domes designed by Buckminster Fuller. In order to investigate the prevalence of these clusters, and their relationship to the polycyclic aromatic hydrocarbons (PAHs) that have become the newest focus of IR astronomy, it is necessary to determine the spectroscopic characteristics of these clusters at near and far infrared wavelengths. Described here is the construction of a near to far IR laser magnetic resonance spectrometer that has been built at the University of California Berkeley in order to detect and characterize these spectra. The equipment produces carbon clusters by laser evaporation of a graphitic target. The clusters are then cooled in a supersonic expansion beam in order to simulate conditions in the interstellar medium (ISM). The expansion beam feeds into the spectrometer chamber and permits concentrations of clusters sufficiently high as to permit ultra-high resolution spectroscopy at near and far IR wavelengths. The first successful demonstration of this apparatus occurred last year when the laboratory studies permitted the observational detection of C-5 in the stellar outflow surrounding IRC+10216 in the near-IR. Current efforts focus on reducing the temperature of the supersonic expansion beam that transport the C clusters evaporated from a graphite target into the spectrometer down to temperatures as low as 1 K.
NASA Astrophysics Data System (ADS)
Vidal-García, A.; Charlot, S.; Bruzual, G.; Hubeny, I.
2017-09-01
We combine state-of-the-art models for the production of stellar radiation and its transfer through the interstellar medium (ISM) to investigate ultraviolet-line diagnostics of stars, the ionized and the neutral ISM in star-forming galaxies. We start by assessing the reliability of our stellar population synthesis modelling by fitting absorption-line indices in the ISM-free ultraviolet spectra of 10 Large Magellanic Cloud clusters. In doing so, we find that neglecting stochastic sampling of the stellar initial mass function in these young (∼10-100 Myr), low-mass clusters affects negligibly ultraviolet-based age and metallicity estimates but can lead to significant overestimates of stellar mass. Then, we proceed and develop a simple approach, based on an idealized description of the main features of the ISM, to compute in a physically consistent way the combined influence of nebular emission and interstellar absorption on ultraviolet spectra of star-forming galaxies. Our model accounts for the transfer of radiation through the ionized interiors and outer neutral envelopes of short-lived stellar birth clouds, as well as for radiative transfer through a diffuse intercloud medium. We use this approach to explore the entangled signatures of stars, the ionized and the neutral ISM in ultraviolet spectra of star-forming galaxies. We find that, aside from a few notable exceptions, most standard ultraviolet indices defined in the spectra of ISM-free stellar populations are prone to significant contamination by the ISM, which increases with metallicity. We also identify several nebular-emission and interstellar-absorption features, which stand out as particularly clean tracers of the different phases of the ISM.
Wang, Ruwei; Liu, Guijian; Sun, Ruoyu; Yousaf, Balal; Wang, Jizhong; Liu, Rongqiong; Zhang, Hong
2018-07-01
The partitioning behavior of polycyclic aromatic hydrocarbons (PAHs) between gaseous and particulate phases from coal-fired power plants (CFPPs) is critically important to predict PAH removal by dust control devices. In this study, 16 US-EPA priority PAHs in gaseous and size-segregated particulate phases at the inlet and outlet of the fabric filter unit (FFs) of a circulating fluidized bed (CFB) boiler were analyzed. The partitioning mechanisms of PAHs between gaseous and particulate phases and in particles of different size classes were investigated. We found that the removal efficiencies of PAHs are 45.59% and 70.67-89.06% for gaseous and particulate phases, respectively. The gaseous phase mainly contains low molecular weight (LMW) PAHs (2- and 3-ring PAHs), which is quite different from the particulate phase that mainly contains medium and high molecular weight (MMW and HMW) PAHs (4- to 6-ring PAHs). The fractions of LMW PAHs show a declining trend with the decrease of particle size. The gas-particle partitioning of PAHs is primarily controlled by organic carbon absorption, in addition, it has a clear dependence on the particle sizes. Plot of log (TPAH/PM) against logD p shows that all slope values were below -1, suggesting that PAHs were mainly adsorbed to particulates. The adsorption effect of PAHs in size-segregated PMs for HMW PAHs is more evident than LMW PAHs. The particle size distributions (PSDs) of individual PAHs show that most of PAHs exhibit bi-model structures, with one mode peaking in the accumulation size range (2.1-1.1 μm) and another mode peaking in coarse size range (5.8-4.7 μm). The intensities of these two peaks vary in function of ring number of PAHs, which is likely attributed to Kelvin effect that the less volatile HMW PAH species preferentially condense onto the finer particulates. The emission factor of PAHs was calculated as 3.53 mg/kg of coal burned, with overall mean EF PAH of 0.55 and 2.98 mg/kg for gaseous and particulate phase, respectively. Moreover, the average emission amount of PAHs for the investigated CFPP was 1016.6 g/day and 371073.6 g/y, respectively. Copyright © 2018 Elsevier Ltd. All rights reserved.
PROBING THE IONIZATION STATES OF POLYCYCLIC AROMATIC HYDROCARBONS VIA THE 15–20 μm EMISSION BANDS
DOE Office of Scientific and Technical Information (OSTI.GOV)
Shannon, M. J.; Stock, D. J.; Peeters, E., E-mail: mshann3@uwo.ca
2015-10-01
We report new correlations between ratios of band intensities of the 15–20 μm emission bands of polycyclic aromatic hydrocarbons (PAHs) in a sample of 57 sources observed with the Spitzer/Infrared Spectrograph. This sample includes Large Magellanic Cloud point sources from the SAGE-Spec survey, nearby galaxies from the Spitzer Infrared Nearby Galaxies Survey survey, two Galactic interstellar medium cirrus sources, and the spectral maps of the Galactic reflection nebulae NGC 2023 and NGC 7023. We find that the 16.4, 17.4, and 17.8 μm band intensities are inter-correlated in all environments. In NGC 2023 and NGC 7023 these bands also correlate withmore » the 11.0 and 12.7 μm band intensities. The 15.8 μm band correlates only with the 15–18 μm plateau and the 11.2 μm emission. We examine the spatial morphology of these bands and introduce radial cuts. We find that these bands can be spatially organized into three sets: the 12.7, 16.4, and 17.8 μm bands; the 11.2, 15.8 μm bands and the 15–18 μm plateau; and the 11.0 and 17.4 μm bands. We also find that the spatial distribution of the 12.7, 16.4, and 17.8 μm bands can be reconstructed by averaging the spatial distributions of the cationic 11.0 μm and neutral 11.2 μm bands. We conclude that the 17.4 μm band is dominated by cations, the 15.8 μm band by neutral species, and the 12.7, 16.4, and 17.8 μm bands by a combination of the two. These results highlight the importance of PAH ionization for spatially differentiating sub-populations by their 15–20 μm emission variability.« less
Demeter, Marc A; Lemire, Joseph A; Mercer, Sean M; Turner, Raymond J
2017-03-01
Bacteria are often found tolerating polluted environments. Such bacteria may be exploited to bioremediate contaminants in controlled ex situ reactor systems. One potential strategic goal of such systems is to harness microbes directly from the environment such that they exhibit the capacity to markedly degrade organic pollutants of interest. Here, the use of biofilm cultivation techniques to inoculate and activate moving bed biofilm reactor (MBBR) systems for the degradation of polycyclic aromatic hydrocarbons (PAHs) was explored. Biofilms were cultivated from 4 different hydrocarbon contaminated sites using a minimal medium spiked with the 16 EPA identified PAHs. Overall, all 4 inoculant sources resulted in biofilm communities capable of tolerating the presence of PAHs, but only 2 of these exhibited enhanced PAH catabolic gene prevalence coupled with significant degradation of select PAH compounds. Comparisons between inoculant sources highlighted the dependence of this method on appropriate inoculant screening and biostimulation efforts. Copyright © 2016 Elsevier Ltd. All rights reserved.
Editorial: Interstellar Boundary Explorer (IBEX): Direct Sampling of the Interstellar Medium
NASA Astrophysics Data System (ADS)
McComas, D. J.
2012-02-01
This special supplement issue of the Astrophysical Journal comprises six coordinated papers that provide the first detailed analyses of the direct sampling of interstellar neutral atoms by the Interstellar Boundary Explorer (IBEX). Interstellar atoms are the detritus of older stars—their stellar winds, novae, and supernovae—spread across the galaxy, which fill the vast interstellar space between the stars. The very local interstellar medium around the Sun is filled with both ionized and neutral atoms with approximately equal numbers, and occasional ionization, charge exchange, and recombination makes them a single interacting material over large distances. IBEX (McComas et al. 2009a) is a NASA Small Explorer mission with the sole, focused science objective to discover the global interaction between the solar wind and the interstellar medium; this objective has primarily been achieved by taking the first global energetic neutral atom (ENA) images, which provide detailed ENA fluxes and energy spectra over all look directions in space. IBEX was launched 2008 October 19 and subsequently maneuvered into a high-altitude, highly elliptical (~15,000 × 300,000 km), roughly week-long orbit. The payload comprises two very high sensitivity, single-pixel ENA cameras: IBEX-Hi (Funsten et al. 2009a), which measures ENAs from ~300 eV to 6 keV, and IBEX-Lo (Fuselier et al. 2009a), which measures ENAs from ~10 eV to 2 keV. The initial IBEX ENA results were published together in a special issue of Science magazine (McComas et al. 2009b; Funsten et al. 2009b; Fuselier et al. 2009b; Schwadron et al. 2009). Since then there have been numerous additional studies of the IBEX ENA observations of the heliosphere, as well as ENAs from the Moon and Earth's magnetosphere (see recent review by McComas et al. 2011 and references therein). Prior to IBEX, the only interstellar neutral atoms to be directly sampled were He, observed by the Ulysses spacecraft a decade ago (Witte et al. 1996; Witte 2004). The first paper published on IBEX observations of interstellar neutral atoms (Möbius et al. 2009) used observations from the spring of 2009, shortly after IBEX achieved its first long-term orbit; that study showed that IBEX is able to directly observe interstellar H and O in addition to He, but provided only limited analysis of these measurements. IBEX has now completed a second full annual season of neutral observations in 2010, which together with the independent 2009 observations provide data adequate to carry out the first round of detailed, quantitative analyses of the IBEX interstellar neutral observations. In this special supplement issue, the IBEX Science Team presents a coordinated series of six articles that focus on various synergistic aspects of these observations, their analyses, and their implications. A critical foundational paper in this volume, Hlond et al. (2012), analyzes the angular pointing knowledge of IBEX observations and demonstrates that the arrival direction knowledge of neutral atoms can be determined to ~0.1° in both spin angle and elevation. This is no mean feat for a Small Explorer mission designed to measure ENAs in 7° × 7° pixels, and largely at much higher energies than the direct interstellar neutrals. In addition, these authors demonstrate that the in-space (post-launch) bore sight of the IBEX-Lo instrument can achieve this accuracy with either the spacecraft's on board attitude control system or an independent Star Sensor that was designed and built directly into the IBEX-Lo instrument. Lee et al. (2012) derive the analytical solution for the hyperbolic trajectories of individual neutral atoms by using Liouville's theorem, including solar gravity and radiation pressure, photoionization and charge exchange, to produce interstellar neutral atom phase-space distributions. These distributions are then transformed into the IBEX reference frame and integrated over the IBEX-Lo instrumental acceptance to provide an analytic solution for the predicted fluid moments of the interstellar neutral atom distributions. This analytic solution for the interstellar neutral parameters provides the basis for a companion paper by Möbius et al. (2012), who analyze the IBEX He (and Ne+O) measurements using the Lee et al. analytic solutions. This approach allows for physical insights into the dominant physical processes, while in another related paper Bzowski et al. (2012) describe a detailed forward model of the interstellar helium from the edge of the heliosphere all the way through the IBEX instrument geometry. Together, these papers show that the prior values for the interstellar flow speed and direction from Ulysses are inconsistent with our new IBEX observations. Möbius et al. (2012) compare the He and O+Ne flow distributions for both 2009 and 2010 and find interstellar flow parameters of ecliptic longitude at ∞ = 79.0° + 3.0°/-3.5°, ecliptic latitude at ∞ = -4.9° ± 0.2°, ISM speed at ∞ = 23.5 + 3.0/-2.0 km s-1, and neutral He temperature = 5000-8200 K. They also find a combined O+Ne temperature of 5300-9000 K, consistent with an isothermal medium for He, O, and Ne. Bzowski et al. (2012) develop and extensively test a detailed forward model simulation of the interstellar He propagation, losses, and measurement in the IBEX-Lo instrument. These simulations start particles at 150 AU and include more detailed physics than the analytic solutions; they therefore complement the analytic method by allowing detailed mapping of the multi-dimensional space of possible solutions. These authors show that the IBEX results are not in statistical agreement with the Ulysses values and provide new best-fit values of ecliptic longitude 79.2°, ecliptic latitude of -5.1°, speed of ~22.8 km s-1, and He temperature is 6200 K. The values obtained with both complementary methods agree with each other and are in agreement with the flow vector of the local interstellar cloud obtained from studies of interstellar absorption (Redfield & Linsky 2008). Bzowski et al. also show evidence for a previously unknown and unanticipated secondary population of helium. Together, the Möbius et al. (2012) and Bzowski et al. (2012) results provide a new interstellar flow direction and a significantly lower velocity of the incoming gas and therefore significantly lower dynamic pressure on the heliosphere, which translates into a heliospheric interaction that is even less dominated by the external dynamic pressure and clearly lies squarely in the middle ground of astrospheres dominated by the external magnetic and dynamic pressures (McComas et al. 2009b). On another topic, Bochsler et al. (2012) report the first direct measurements of interstellar Ne and estimate the interstellar Ne/O abundance ratio, showing a gas-phase Ne/O ratio for the LISM of 0.27 ± 0.10. This value agrees with results obtained from pickup ion observations (Gloeckler & Geiss 2004; Gloeckler & Fisk 2007) and is significantly larger than the solar abundance ratio, indicating that the LISM is different than the Sun's formation region and/or that a substantial portion of the O in the LISM is tied up (and thus "hidden") in grains and/or ices. Finally, Saul et al. (2012) provide the first detailed analysis of the new interstellar H measurements from IBEX. These authors confirm that the arrival direction of interstellar H is offset from that of He. They further show a variation in the strength of the radiation pressure and thus a change in the apparent arrival direction of H penetrating to 1 AU between the first two years of IBEX observations; these results are consistent with solar cycle variations in the radiation pressure, which works opposite to the Sun's gravitational force to effect the penetration of H into the inner heliosphere. Together, these six studies provide the first detailed analyses of the multi-component local interstellar medium—a medium that both effects us by bounding and interacting with our heliosphere, and a medium that gives us a first direct glimpse of non-solar material from the rest of the galaxy.
Abundance of live 244Pu in deep-sea reservoirs on Earth points to rarity of actinide nucleosynthesis
Wallner, A.; Faestermann, T.; Feige, J.; Feldstein, C.; Knie, K.; Korschinek, G.; Kutschera, W.; Ofan, A.; Paul, M.; Quinto, F.; Rugel, G.; Steier, P.
2015-01-01
Half of the heavy elements including all actinides are produced in r-process nucleosynthesis, whose sites and history remain a mystery. If continuously produced, the Interstellar Medium is expected to build-up a quasi-steady state of abundances of short-lived nuclides (with half-lives ≤100 My), including actinides produced in r-process nucleosynthesis. Their existence in today’s interstellar medium would serve as a radioactive clock and would establish that their production was recent. In particular 244Pu, a radioactive actinide nuclide (half-life=81 My), can place strong constraints on recent r-process frequency and production yield. Here we report the detection of live interstellar 244Pu, archived in Earth’s deep-sea floor during the last 25 My, at abundances lower than expected from continuous production in the Galaxy by about 2 orders of magnitude. This large discrepancy may signal a rarity of actinide r-process nucleosynthesis sites, compatible with neutron-star mergers or with a small subset of actinide-producing supernovae. PMID:25601158
The jet-ISM interactions in IC 5063
NASA Astrophysics Data System (ADS)
Mukherjee, Dipanjan; Wagner, Alexander Y.; Bicknell, Geoffrey V.; Morganti, Raffaella; Oosterloo, Tom; Nesvadba, Nicole; Sutherland, Ralph S.
2018-05-01
The interstellar medium of the radio galaxy IC 5063 is highly perturbed by an AGN jet expanding in the gaseous disc of the galaxy. We model this interaction with relativistic hydrodynamic simulations and multiphase initial conditions for the interstellar medium and compare the results with recent observations. As the jets flood through the intercloud channels of the disc, they ablate, accelerate, and disperse clouds to velocities exceeding 400 km s-1. Clouds are also destroyed or displaced in bulk from the central regions of the galaxy. Our models with jet powers of 1044 and 1045 erg s-1 are capable of reproducing many of the observed features in the position velocity diagram of IC 5063, and confirm the notion that the jet is responsible for the strongly perturbed gas dynamics seen in the ionized, neutral, and molecular gas phases. In our simulations, we also see strong venting of the jet plasma perpendicular to the disc, which entrains clumps and diffuse filaments into the halo of the galaxy. Our simulations are the first 3D hydrodynamic simulations of the jet and interstellar matter of IC 5063.
Research in particles and fields. [using spacecraft and balloons
NASA Technical Reports Server (NTRS)
Vogt, R. E.
1974-01-01
Investigations, by particle-detectors flown on spacecraft, of the astrophysical aspects of cosmic radiation and the radiation environment of the earth are reported along with the research of the interplanetary medium, and planetary magnetic fields. The cosmic ray interactions with the interplanetary and interstellar medium, and radio scintillation theory were also studied.