Sample records for interstellar pickup protons

  1. Pickup protons and pressure-balanced structures: Voyager 2 observations in merged interaction regions near 35 AU

    NASA Astrophysics Data System (ADS)

    Burlaga, L. F.; Ness, N. F.; Belcher, J. W.; Szabo, A.; Isenberg, P. A.; Lee, M. A.

    1994-11-01

    Five pressure-balanced structures, each with a scale of the order of a few hundredths of an astonomical unit (AU), were identified in two merged interaction regions (MIRs) near 35 AU in the Voyager 2 plasma and magnetic field data. They include a tangential discontinuity, simple and complex magnetic holes, slow correlated variations among the plasma and magnetic field parameters, and complex uncorrelated variations among the parameters. The changes in the magnetic pressure in these events are balanced by changes in the pressure of interstellar pickup protons. Thus the pickup protons probably play a major role in the dynamics of the MIRs. The solar wind proton and electron pressures are relatively unimportant in the MIRs at 35 AU and beyond. The region near 35 AU is transition region: the Sun is the source of the magnetic field, but the interstellar medium in source of pickups protons. Relative to the solar wind proton guyroadius, the thicknesses of the discontinuities and simple magnetic holes observed near 35 AU are at least an order of magnitude greater than those observed at 1 AU. However, the thicknesses of the tangential discontinuity and simple magnetic holes observed near 35 AU (in units of the pickup proton Larmor radius) are comparable to those observed at 1 AU (in units of the solar wind proton gyroradius). Thus the gyroradius of interstellar pickup protons controls the thickness of current sheets near 35 AU. We determine the interstellar pickup proton pressure in the PBSs. Using a model for the pickup proton temperature, we estimate that the average interstellar pickup proton pressure, temperature, and density in the MIRs at 35 AU are (0.53 +/- 0.14) x 10-12 erg/cu cm, (5.8 +/- 0.4) x 106 K and (7 +/- 2) x 10-4/cu cm.

  2. Three-Dimensional Magnetohydrodynamic Modeling of the Solar Wind Including Pickup Protons and Turbulence Transport

    NASA Technical Reports Server (NTRS)

    Usmanov, Arcadi V.; Goldstein, Melvyn L.; Matthaeus, William H.

    2012-01-01

    To study the effects of interstellar pickup protons and turbulence on the structure and dynamics of the solar wind, we have developed a fully three-dimensional magnetohydrodynamic solar wind model that treats interstellar pickup protons as a separate fluid and incorporates the transport of turbulence and turbulent heating. The governing system of equations combines the mean-field equations for the solar wind plasma, magnetic field, and pickup protons and the turbulence transport equations for the turbulent energy, normalized cross-helicity, and correlation length. The model equations account for photoionization of interstellar hydrogen atoms and their charge exchange with solar wind protons, energy transfer from pickup protons to solar wind protons, and plasma heating by turbulent dissipation. Separate mass and energy equations are used for the solar wind and pickup protons, though a single momentum equation is employed under the assumption that the pickup protons are comoving with the solar wind protons.We compute the global structure of the solar wind plasma, magnetic field, and turbulence in the region from 0.3 to 100 AU for a source magnetic dipole on the Sun tilted by 0 deg - .90 deg and compare our results with Voyager 2 observations. The results computed with and without pickup protons are superposed to evaluate quantitatively the deceleration and heating effects of pickup protons, the overall compression of the magnetic field in the outer heliosphere caused by deceleration, and the weakening of corotating interaction regions by the thermal pressure of pickup protons.

  3. THREE-DIMENSIONAL MAGNETOHYDRODYNAMIC MODELING OF THE SOLAR WIND INCLUDING PICKUP PROTONS AND TURBULENCE TRANSPORT

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Usmanov, Arcadi V.; Matthaeus, William H.; Goldstein, Melvyn L., E-mail: arcadi.usmanov@nasa.gov

    2012-07-20

    To study the effects of interstellar pickup protons and turbulence on the structure and dynamics of the solar wind, we have developed a fully three-dimensional magnetohydrodynamic solar wind model that treats interstellar pickup protons as a separate fluid and incorporates the transport of turbulence and turbulent heating. The governing system of equations combines the mean-field equations for the solar wind plasma, magnetic field, and pickup protons and the turbulence transport equations for the turbulent energy, normalized cross-helicity, and correlation length. The model equations account for photoionization of interstellar hydrogen atoms and their charge exchange with solar wind protons, energy transfermore » from pickup protons to solar wind protons, and plasma heating by turbulent dissipation. Separate mass and energy equations are used for the solar wind and pickup protons, though a single momentum equation is employed under the assumption that the pickup protons are comoving with the solar wind protons. We compute the global structure of the solar wind plasma, magnetic field, and turbulence in the region from 0.3 to 100 AU for a source magnetic dipole on the Sun tilted by 0 Degree-Sign -90 Degree-Sign and compare our results with Voyager 2 observations. The results computed with and without pickup protons are superposed to evaluate quantitatively the deceleration and heating effects of pickup protons, the overall compression of the magnetic field in the outer heliosphere caused by deceleration, and the weakening of corotating interaction regions by the thermal pressure of pickup protons.« less

  4. Magnetofluid Simulations of the Global Solar Wind Including Pickup Ions and Turbulence Modeling

    NASA Technical Reports Server (NTRS)

    Goldstein, Melvyn L.; Usmanov, Arcadi V.; Matthaeus, William H.

    2011-01-01

    I will describe a three-dimensional magnetohydrodynamic model of the solar wind that takes into account turbulent heating of the wind by velocity and magnetic fluctuations as well as a variety of effects produced by interstellar pickup protons. In this report, the interstellar pickup protons are treated as one fluid and the protons and electrons are treated together as a second fluid. The model equations include a Reynolds decomposition of the plasma velocity and magnetic field into mean and fluctuating quantities, as well as energy transfer from interstellar pickup protons to solar wind protons that results in the deceleration of the solar wind. The model is used to simulate the global steady-state structure of the solar wind in the region from 0.3 to 100 AU. Where possible, the model is compared with Voyager data. Initial results from generalization to a three-fluid model is described elsewhere in this session.

  5. Multifluid Simulations of the Global Solar Wind Including Pickup Ions and Turbulence Modeling

    NASA Technical Reports Server (NTRS)

    Goldstein, Melvyn L.; Usmanov, A. V.

    2011-01-01

    I will describe a three-dimensional magnetohydrodynamic model of the solar wind that takes into account turbulent heating of the wind by velocity and magnetic fluctuations as well as a variety of effects produced by interstellar pickup protons. The interstellar pickup protons are treated in the model as one fluid and the protons and electrons are treated together as a second fluid. The model equations include a Reynolds decomposition of the plasma velocity and magnetic field into mean and fluctuating quantities, as well as energy transfer from interstellar pickup protons to solar wind protons that results in the deceleration of the solar wind. The model is used to simulate the global steady-state structure of the solar wind in the region from 0.3 to 100 AU. The simulation assumes that the background magnetic field on the Sun is either a dipole (aligned or tilted with respect to the solar rotation axis) or one that is deduced from solar magnetograms.

  6. The role of charge-exchange cross-section for pickup protons and neutrals in the inner heliosheath

    NASA Astrophysics Data System (ADS)

    Chalov, S. V.

    2018-06-01

    The process of deceleration of the solar wind downstream of the termination shock is studied on the basis of a one-dimensional multi-component model. It is assumed that the solar wind consists of thermal protons, electrons and interstellar pickup protons. The protons interact with interstellar hydrogen atoms by charge-exchange. Two cases are considered. In the first one, the charge-exchange cross-section for thermal protons and hydrogen atoms is the same as for pickup protons and atoms. Under this condition, there is a strong dependence of the solar wind velocity on the downstream temperature of pickup protons. When the proton temperature is close to 10 keV, the change in the velocity with the distance from the termination shock is similar to that measured on the Voyager 1 spacecraft: linear velocity decrease is accompanied by an extended transition region with near-zero velocity. However, with a more careful approach to the choice of the charge-exchange cross-section, the situation changes dramatically. The strong dependence of the solar wind speed on the pickup proton temperature disappears and the transition region in the heliosheath disappears as well, at least at reasonable distances from the TS.

  7. Effects of spatial transport and ambient wave intensity on the generation of MHD waves by interstellar pickup protons

    NASA Technical Reports Server (NTRS)

    Isenberg, P. A.

    1995-01-01

    Intense MHD waves generated by the isotropization of interstellar pickup protons were predicted by Lee and Ip (1987) to appear in the solar wind whenever pickup proton fluxes were high enough. However, in reality these waves have proved surprisingly difficult to identify, even in the presence of observed pickup protons. We investigate the wave excitation by isotropization from an initially broad pitch-angle distribution instead of the narrow ring-beam assumed by Lee and Ip. The pitch angle of a newly-ionized proton is given by theta(sub o), the angle between the magnetic field (averaged over a pickup proton gyroradius) and the solar wind flow at the time of ionization. Then, a broadened distribution results from spatial transport of pickup protons prior to isotropization from regions upstream along the field containing different values of theta(sub o). The value of theta(sub o) will vary as a result of the ambient long-wavelength fluctuations in the solar wind. Thus, the range of initial pitch-angles is directly related to the amplitude of these fluctuations within a length-scale determined by the isotropization time. We show that a broad initial pitch-angle distribution can significantly modify the intensity and shape of the pickup-proton-generated wave spectrum, and we derive a criterion for the presence of observable pickup-proton generated waves given the intensity of the ambient long wavelength fluctuations.

  8. Theoretical studies of the solar atmosphere and interstellar pickup ions

    NASA Technical Reports Server (NTRS)

    1994-01-01

    Solar atmosphere research activities are summarized. Specific topics addressed include: (1) coronal mass ejections and related phenomena; (2) parametric instabilities of Alfven waves; (3) pickup ions in the solar wind; and (4) cosmic rays in the outer heliosphere. Also included is a list of publications covering the following topics: catastrophic evolution of a force-free flux rope; maximum energy release in flux-rope models of eruptive flares; sheet approximations in models of eruptive flares; material ejection, motions of loops and ribbons of two-ribbon flares; dispersion relations for parametric instabilities of parallel-propagating; parametric instabilities of parallel-propagating Alfven waves; beat, modulation, and decay instabilities of a circularly-polarized Alfven wave; effects of time-dependent photoionization on interstellar pickup helium; observation of waves generated by the solar wind pickup of interstellar hydrogen ions; ion thermalization and wave excitation downstream of the quasi-perpendicular bowshock; ion cyclotron instability and the inverse correlation between proton anisotrophy and proton beta; and effects of cosmic rays and interstellar gas on the dynamics of a wind.

  9. A New Model for the Heliosphere’s “IBEX Ribbon”

    NASA Astrophysics Data System (ADS)

    Giacalone, J.; Jokipii, J. R.

    2015-10-01

    We present a model for the narrow, ribbon-like enhancement in the emission of ∼keV energetic neutral atoms (ENA) coming from the outer heliosphere, coinciding roughly with the plane of the very local interstellar magnetic field (LISMF). We show that the pre-existing turbulent LISMF has sufficient amplitude in magnitude fluctuations to efficiently trap ions with initial pitch-angles near 90°, primarily by magnetic mirroring, leading to a narrow region of enhanced pickup-proton intensity. The pickup protons interact with cold interstellar hydrogen to produce ENAs seen at 1 AU. The computed width of the resulting ribbon of emission is consistent with observations. We also present results from a numerical model that are also generally consistent with the observations. Our interpretation relies only on the pre-existing turbulent interstellar magnetic field to trap the pickup protons. This leads to a broader local pitch-angle distribution compared to that of a ring. Our numerical model also predicts that the ribbon is double-peaked with a central depression. This is a further consequence of the (primarily) magnetic mirroring of pickup ions with pitch-angles close to 90° in the pre-existing, turbulent interstellar magnetic field.

  10. A NEW MODEL FOR THE HELIOSPHERE’S “IBEX RIBBON”

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Giacalone, J.; Jokipii, J. R.

    We present a model for the narrow, ribbon-like enhancement in the emission of ∼keV energetic neutral atoms (ENA) coming from the outer heliosphere, coinciding roughly with the plane of the very local interstellar magnetic field (LISMF). We show that the pre-existing turbulent LISMF has sufficient amplitude in magnitude fluctuations to efficiently trap ions with initial pitch-angles near 90°, primarily by magnetic mirroring, leading to a narrow region of enhanced pickup-proton intensity. The pickup protons interact with cold interstellar hydrogen to produce ENAs seen at 1 AU. The computed width of the resulting ribbon of emission is consistent with observations. Wemore » also present results from a numerical model that are also generally consistent with the observations. Our interpretation relies only on the pre-existing turbulent interstellar magnetic field to trap the pickup protons. This leads to a broader local pitch-angle distribution compared to that of a ring. Our numerical model also predicts that the ribbon is double-peaked with a central depression. This is a further consequence of the (primarily) magnetic mirroring of pickup ions with pitch-angles close to 90° in the pre-existing, turbulent interstellar magnetic field.« less

  11. Pickup Protons: Comparisons using the Three-Dimensional MHD HHMS-PI model and Ulysses SWICS Measurements

    NASA Technical Reports Server (NTRS)

    Intriligator, Devrie S.; Detman, Thomas; Gloecker, George; Gloeckler, Christine; Dryer, Murray; Sun, Wei; Intriligator, James; Deehr, Charles

    2012-01-01

    We report the first comparisons of pickup proton simulation results with in situ measurements of pickup protons obtained by the SWICS instrument on Ulysses. Simulations were run using the three dimensional (3D) time-dependent Hybrid Heliospheric Modeling System with Pickup Protons (HHMS-PI). HHMS-PI is an MHD solar wind model, expanded to include the basic physics of pickup protons from neutral hydrogen that drifts into the heliosphere from the local interstellar medium. We use the same model and input data developed by Detman et al. (2011) to now investigate the pickup protons. The simulated interval of 82 days in 2003 2004, includes both quiet solar wind (SW) and also the October November 2003 solar events (the Halloween 2003 solar storms). The HHMS-PI pickup proton simulations generally agree with the SWICS measurements and the HHMS-PI simulated solar wind generally agrees with SWOOPS (also on Ulysses) measurements. Many specific features in the observations are well represented by the model. We simulated twenty specific solar events associated with the Halloween 2003 storm. We give the specific values of the solar input parameters for the HHMS-PI simulations that provide the best combined agreement in the times of arrival of the solar-generated shocks at both ACE and Ulysses. We show graphical comparisons of simulated and observed parameters, and we give quantitative measures of the agreement of simulated with observed parameters. We suggest that some of the variations in the pickup proton density during the Halloween 2003 solar events may be attributed to depletion of the inflowing local interstellar medium (LISM) neutral hydrogen (H) caused by its increased conversion to pickup protons in the immediately preceding shock.

  12. Interstellar Pickup Ion Acceleration in the Turbulent Magnetic Field at the Solar Wind Termination Shock Using a Focused Transport Approach

    NASA Astrophysics Data System (ADS)

    Ye, Junye; le Roux, Jakobus A.; Arthur, Aaron D.

    2016-08-01

    We study the physics of locally born interstellar pickup proton acceleration at the nearly perpendicular solar wind termination shock (SWTS) in the presence of a random magnetic field spiral angle using a focused transport model. Guided by Voyager 2 observations, the spiral angle is modeled with a q-Gaussian distribution. The spiral angle fluctuations, which are used to generate the perpendicular diffusion of pickup protons across the SWTS, play a key role in enabling efficient injection and rapid diffusive shock acceleration (DSA) when these particles follow field lines. Our simulations suggest that variation of both the shape (q-value) and the standard deviation (σ-value) of the q-Gaussian distribution significantly affect the injection speed, pitch-angle anisotropy, radial distribution, and the efficiency of the DSA of pickup protons at the SWTS. For example, increasing q and especially reducing σ enhances the DSA rate.

  13. Pickup Ion Effect of the Solar Wind Interaction with the Local Interstellar Medium

    DOE PAGES

    Pogorelov, N. V.; Bedford, M. C.; Kryukov, I. A.; ...

    2016-11-22

    Pickup ions are created when interstellar neutral atoms resonantly exchange charge with the solar wind (SW) ions, especially in the supersonic part of the wind, where they carry most of the plasma pressure. Here we present numerical simulation results of the 3D heliospheric interface treating pickup ions as a separate proton fluid. To satisfy the fundamental conservation laws, we solve the system of equations describing the flow of the mixture of electrons, thermal protons, and pickup ions. To find the density and pressure of pickup ions behind the termination shock, we employ simple boundary conditions that take into account themore » \\emph{Voyager} observations that showed that the decrease in the kinetic energy of the mixture at the termination shock predominantly contributed to the increase in the pressure of pickup ions. We show that this model adequately describes the flow of the plasma mixture and results in a noticeable decrease in the heliosheath width.« less

  14. Messenger Observations Inside 1 AU of Low-Frequency Magnetic Waves due to Inner Source Pickup Protons

    NASA Astrophysics Data System (ADS)

    Smith, C. W.; Argall, M. R.; Schwadron, N.; Joyce, C.; Isenberg, P. A.; Vasquez, B. J.; Korth, H.; Anderson, B. J.

    2017-12-01

    Wave excitation by pickup protons inside 1 AU have not been previously reported. Waves excited by pickup protons have a characteristic signature, a spectral peak at and above the proton gyrofrequency, that demonstrates a significant lack of particle energization beyond the initial pickup proton energy combined with pitch-angle scattering. Interstellar Hydrogen atoms cannot penetrate significantly inside about 3.5 AU due to loss of these atoms through ionization. Since the waves reported here, which are observed by the Messenger spacecraft during the cruise phase to Mercury, are not seen near the Mercury and Venus planetary encounters and there is no evidence of low-frequency waves that would indicate proximity to comets, we conclude that these waves originate from pickup protons created by the interaction of solar wind with dust relatively close to the Sun, inside 0.4 AU (Schwadron et al. 2000; Schwadron & Geiss 2000). This is the so-called inner source of pickup protons. We will present our analyses of these wave observations.Schwadron et al., J. Geophys. Res., 105, 7465, 2000.Schwadron & Geiss, J. Geophys. Res., 10, 7473, 2000.

  15. Listing of 502 Times When the Ulysses Magnetic Fields Instrument Observed Waves Due to Newborn Interstellar Pickup Protons

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cannon, Bradford E.; Smith, Charles W.; Isenberg, Philip A.

    In two earlier publications we analyzed 502 intervals of magnetic waves excited by newborn interstellar pickup protons that were observed by the Ulysses spacecraft. Due to the considerable effort required in identifying these events, we provide a list of the times for the 502 wave event intervals previously identified. In the process, we provide a brief description of how the waves were found and what their properties are. We also remind the reader of the conditions that permit the waves to reach observable levels and explain why the waves are not seen more often.

  16. Alfvenic turbulence generated by the interstellar pickup protons in the outer heliosphere

    DOE PAGES

    Gamayunov, K.; Zhang, M.; Pogorelov, N.; ...

    2013-06-13

    Here a self-consistent model of the interstellar pickup protons, slab component of the Alfvénic turbulence, and core solar wind protons is presented for r ≤ 1 AU along with the initial results and comparison with the Voyager 2 (V2) observations. A fraction of the pickup proton free energy, f D, which is actually released in the wave form during isotropization, is taken from the quasi-linear consideration without preexisting turbulence. Whereas we use observations to specify a strength of the large scale driving, C sh, for turbulence. Our results show that for C sh ≈ 1 - 1.5 and f Dmore » ≈ 0.7 - 1, the model slab component agrees well with the V2 observations of the total transverse magnetic fluctuations starting from ~8 AU. Finally, this finding agrees with the result by Oughton et al. [17] where they also showed that the slab component dominates the two-dimensional component at the heliocentric distances beyond ~ 10 AU. So it is likely that the slab component at low-latitudes makes up a majority of the transverse magnetic fluctuations beyond 8 - 10 AU.« less

  17. A FOUR-FLUID MHD MODEL OF THE SOLAR WIND/INTERSTELLAR MEDIUM INTERACTION WITH TURBULENCE TRANSPORT AND PICKUP PROTONS AS SEPARATE FLUID

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Usmanov, Arcadi V.; Matthaeus, William H.; Goldstein, Melvyn L., E-mail: arcadi.usmanov@nasa.gov

    2016-03-20

    We have developed a four-fluid, three-dimensional magnetohydrodynamic model of the solar wind interaction with the local interstellar medium. The unique features of the model are: (a) a three-fluid description for the charged components of the solar wind and interstellar plasmas (thermal protons, electrons, and pickup protons), (b) the built-in turbulence transport equations based on Reynolds decomposition and coupled with the mean-flow Reynolds-averaged equations, and (c) a solar corona/solar wind model that supplies inner boundary conditions at 40 au by computing solar wind and magnetic field parameters outward from the coronal base. The three charged species are described by separate energy equationsmore » and are assumed to move with the same velocity. The fourth fluid in the model is the interstellar hydrogen which is treated by separate continuity, momentum, and energy equations and is coupled with the charged components through photoionization and charge exchange. We evaluate the effects of turbulence transport and pickup protons on the global heliospheric structure and compute the distribution of plasma, magnetic field, and turbulence parameters throughout the heliosphere for representative solar minimum and maximum conditions. We compare our results with Voyager 1 observations in the outer heliosheath and show that the relative amplitude of magnetic fluctuations just outside the heliopause is in close agreement with the value inferred from Voyager 1 measurements by Burlaga et al. The simulated profiles of magnetic field parameters in the outer heliosheath are in qualitative agreement with the Voyager 1 observations and with the analytical model of magnetic field draping around the heliopause of Isenberg et al.« less

  18. Three-Fluid Magnetohydrodynamic Modeling of the Solar Wind in the Outer Heliosphere

    NASA Technical Reports Server (NTRS)

    Usmanov, Arcadi V.; Goldstein, Melvyn L.; Matthaeus, William H.

    2011-01-01

    We have developed a three-fluid, fully three-dimensional magnetohydrodynamic model of the solar wind plasma in the outer heliosphere as a co-moving system of solar wind protons, electrons, and interstellar pickup protons, with separate energy equations for each species. Our approach takes into account the effects of electron heat conduction and dissipation of Alfvenic turbulence on the spatial evolution of the solar wind plasma and interplanetary magnetic fields. The turbulence transport model is based on the Reynolds decomposition of physical variables into mean and fluctuating components and uses the turbulent phenomenologies that describe the conversion of fluctuation energy into heat due to a turbulent cascade. We solve the coupled set of the three-fluid equations for the mean-field solar wind and the turbulence equations for the turbulence energy, cross helicity, and correlation length. The equations are written in the rotating frame of reference and include heating by turbulent dissipation, energy transfer from interstellar pickup protons to solar wind protons, and solar wind deceleration due to the interaction with the interstellar hydrogen. The numerical solution is constructed by the time relaxation method in the region from 0.3 to 100 AU. Initial results from the novel model are presented.

  19. Locations of termination shock and heliopause based on Voyager plasma and magnetic field data

    NASA Technical Reports Server (NTRS)

    Whang, Y. C.; Burlaga, L. F.; Ness, N. F.

    1995-01-01

    The locations of the termination shock and the heliopause are studied taking into account the effects of pickup protons. The study uses available plasma and magnetic field data from Voyagers over a 14-year period (1978-1991) and Voyager observation of the 1992-93 radio emission event. Outside 30 AU, pickup protons have a significant influence on dynamical structures of the outer heliosphere. The solar wind is treated as a mixture of electrons, solar wind protons, and interstellar pickup protons. If the magnitude of the interstellar magnetic field B(sub int) is given, one can quantitatively study the motion and location of the termination shock. The location is anti-correlated with the sun spot number and the shock has an average speed of approx. 24 km/s. Because B(sub int) is poorly known, additional information is needed in studying the termination shock. Cummings, et al. have used observations of anomalous cosmic rays to estimate the location of the shock. The observations of the 1991 GMIR and GMIR shock and the 1992-93 radio emission event provide another handle for the study of the termination shock and the heliopause. After its penetration through the termination shock, the GMIR shock continued to propagate in the subsonic region of the solar wind and eventually interacted with the heliopause. This interaction produces a transmitted shock propagating outward in the interstellar medium and a reflected shock propagating inward toward the sun in the subsonic solar wind. The plasma frequencies behind the reflected and the transmitted shock can be, respectively, responsible for the 2- and 3-kHz radio emissions. Taking into account the effects of pickup protons we found that the average locations of the termination shock and the heliopause in 1991-92 are at approximately 66 AU and 150 AU, respectively.

  20. PROTON HEATING BY PICK-UP ION DRIVEN CYCLOTRON WAVES IN THE OUTER HELIOSPHERE: HYBRID EXPANDING BOX SIMULATIONS

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hellinger, Petr; Trávníček, Pavel M., E-mail: petr.hellinger@asu.cas.cz

    Using a one-dimensional hybrid expanding box model, we investigate properties of the solar wind in the outer heliosphere. We assume a proton–electron plasma with a strictly transverse ambient magnetic field and, aside from the expansion, we take into account the influence of a continuous injection of cold pick-up protons through the charge-exchange process between the solar wind protons and hydrogen of interstellar origin. The injected cold pick-up protons form a ring distribution function, which rapidly becomes unstable, and generate Alfvén cyclotron waves. The Alfvén cyclotron waves scatter pick-up protons to a spherical shell distribution function that thickens over that timemore » owing to the expansion-driven cooling. The Alfvén cyclotron waves heat solar wind protons in the perpendicular direction (with respect to the ambient magnetic field) through cyclotron resonance. At later times, the Alfvén cyclotron waves become parametrically unstable and the generated ion-acoustic waves heat protons in the parallel direction through Landau resonance. The resulting heating of the solar wind protons is efficient on the expansion timescale.« less

  1. Ionization of Interstellar Hydrogen

    NASA Astrophysics Data System (ADS)

    Whang, Y. C.

    1996-09-01

    Interstellar hydrogen can penetrate through the heliopause, enter the heliosphere, and may become ionized by photoionization and by charge exchange with solar wind protons. A fluid model is introduced to study the flow of interstellar hydrogen in the heliosphere. The flow is governed by moment equations obtained from integration of the Boltzmann equation over the velocity space. Under the assumption that the flow is steady axisymmetric and the pressure is isotropic, we develop a method of solution for this fluid model. This model and the method of solution can be used to study the flow of neutral hydrogen with various forms of ionization rate β and boundary conditions for the flow on the upwind side. We study the solution of a special case in which the ionization rate β is inversely proportional to R2 and the interstellar hydrogen flow is uniform at infinity on the upwind side. We solve the moment equations directly for the normalized density NH/NN∞, bulk velocity VH/VN∞, and temperature TH/TN∞ of interstellar hydrogen as functions of r/λ and z/λ, where λ is the ionization scale length. The solution is compared with the kinetic theory solution of Lallement et al. The fluid solution is much less time-consuming than the kinetic theory solutions. Since the ionization rate for production of pickup protons is directly proportional to the local density of neutral hydrogen, the high-resolution solution of interstellar neutral hydrogen obtained here will be used to study the global distribution of pickup protons.

  2. Studies of Interstellar Pickup Ions in the Solar Wind

    NASA Technical Reports Server (NTRS)

    Isenberg, Philip A.; Lee, Martin A.; Mobius, Eberhard

    1996-01-01

    The work under this grant involves studies of the interaction of interstellar pickup ions with the solar wind, with the goal of a comprehensive model of the particle distributions and wave intensities to be expected throughout the heliosphere, as well as the interactions of those distributions with the solar wind termination shock. In the past year, we have completed a number of projects, including observations and modeling of the effects of a large scattering mean free path on the pickup He(+) seen at AMPTE, an analytical model of anisotropic pickup tons in a steady radial magnetic field, and a derivation of a reduced solar wind Mach number due to increased estimates on the inflowing hydrogen density allowing for a weak termination shock. In the next year, we plan to investigate in more detail the correspondence between our models of anisotropic pickup ions and the data on spectra, variations, and proton-He(+) correlation provided by AMPTE, Ulysses, and our instrument on SOHO. We will model the time-dependent pickup ion density resulting from finite periods of radial magnetic field. We will also incorporate the effects of a large mean free path into our analysis of the He(+) focusing cone, leading to more accurate parameter values for the interstellar helium gas. This progress report also includes a discussion of our Space Physics Educational Outreach activities in the past year and plans for the next year.

  3. Electromagnetic Waves with Frequencies Near the Local Proton Gryofrequency: ISEF-3 1 AU Observations

    NASA Technical Reports Server (NTRS)

    Tsurutani, B.

    1993-01-01

    Low Frequency electromagnetic waves with periods near the local proton gyrofrequency have been detected near 1 AU by the magnetometer onboard ISEE-3. For these 1 AU waves two physical processes are possible: solar wind pickup of nuetral (interstellar?) particles and generation by relativistic electron beams propagating from the Sun.

  4. Self-consistent model of the interstellar pickup protons, Alfvenic turbulence, and core solar wind in the outer heliosphere

    DOE PAGES

    Gamayunov, Konstantin V.; Zhang, Ming; Pogorelov, Nikolai V.; ...

    2012-09-05

    In this study, a self-consistent model of the interstellar pickup protons, the slab component of the Alfvénic turbulence, and core solar wind (SW) protons is presented for r ≥ 1 along with the initial results of and comparison with the Voyager 2 (V2) observations. Two kinetic equations are used for the pickup proton distribution and Alfvénic power spectral density, and a third equation governs SW temperature including source due to the Alfvén wave energy dissipation. A fraction of the pickup proton free energy, fD , which is actually released in the waveform during isotropization, is taken from the quasi-linear considerationmore » without preexisting turbulence, whereas we use observations to specify the strength of the large-scale driving, C sh, for turbulence. The main conclusions of our study can be summarized as follows. (1) For C sh ≈ 1-1.5 and f D ≈ 0.7-1, the model slab component agrees well with the V2 observations of the total transverse magnetic fluctuations starting from ~8 AU. This indicates that the slab component at low-latitudes makes up a majority of the transverse magnetic fluctuations beyond 8-10 AU. (2) The model core SW temperature agrees well with the V2 observations for r ≳ 20 AU if f D ≈ 0.7-1. (3) A combined effect of the Wentzel-Kramers-Brillouin attenuation, large-scale driving, and pickup proton generated waves results in the energy sink in the region r ≲ 10 AU, while wave energy is pumped in the turbulence beyond 10 AU. Without energy pumping, the nonlinear energy cascade is suppressed for r ≲ 10 AU, supplying only a small energy fraction into the k-region of dissipation by the core SW protons. A similar situation takes place for the two-dimensional turbulence. (4) The energy source due to the resonant Alfvén wave damping by the core SW protons is small at heliocentric distances r ≲ 10 AU for both the slab and the two-dimensional turbulent components. As a result, adiabatic cooling mostly controls the model SW temperature in this region, and the model temperature disagrees with the V2 observations in the region r ≲ 20 AU.« less

  5. The Influence of Pickup Protons, from Interstellar Neutral Hydrogen, on the Propagation of Interplanetary Shocks from the Halloween 2003 Solar Events to ACE and Ulysses: A 3-D MHD Modeling Study

    NASA Technical Reports Server (NTRS)

    Detman, T. R.; Intriligator, D. S.; Dryer, M.; Sun, W.; Deehr, C. S.; Intriligator, J.

    2012-01-01

    We describe our 3-D, time ]dependent, MHD solar wind model that we recently modified to include the physics of pickup protons from interstellar neutral hydrogen. The model has a time-dependent lower boundary condition, at 0.1 AU, that is driven by source surface map files through an empirical interface module. We describe the empirical interface and its parameter tuning to maximize model agreement with background (quiet) solar wind observations at ACE. We then give results of a simulation study of the famous Halloween 2003 series of solar events. We began with shock inputs from the Fearless Forecast real ]time shock arrival prediction study, and then we iteratively adjusted input shock speeds to obtain agreement between observed and simulated shock arrival times at ACE. We then extended the model grid to 5.5 AU and compared those simulation results with Ulysses observations at 5.2 AU. Next we undertook the more difficult tuning of shock speeds and locations to get matching shock arrival times at both ACE and Ulysses. Then we ran this last case again with neutral hydrogen density set to zero, to identify the effect of pickup ions. We show that the speed of interplanetary shocks propagating from the Sun to Ulysses is reduced by the effects of pickup protons. We plan to make further improvements to the model as we continue our benchmarking process to 10 AU, comparing our results with Cassini observations, and eventually on to 100 AU, comparing our results with Voyager 1 and 2 observations.

  6. Kinetic Properties of the Neutral Solar Wind

    NASA Astrophysics Data System (ADS)

    Florinski, V.; Heerikhuisen, J.

    2017-03-01

    Charge-exchange collisions between the solar wind protons and interstellar hydrogen produce a distinctive population of neutral hydrogen streaming radially at nearly the solar-wind speed. This tenuous population, known as the neutral solar wind (NSW) is thought to play a key role in the appearance of the Interplanetary Boundary EXplorer ribbon, a bright circular band in the sky that is the source of neutral hydrogen with energies near 1 keV. According to the leading model of the ribbon, the velocity distribution of NSW hydrogen is imparted on the pickup ions (PUIs) generated via charge exchange with the interstellar protons beyond the heliopause, and in this way controls the stability of the resulting ring distribution of PUIs against hydromagnetic wave generation. In this paper, we examine the velocity distributions of the NSW atoms in the heliosphere and the outer heliosheath regions by following the phase-space trajectories of the Boltzmann equation. It is demonstrated that these distributions are highly anisotropic, with the parallel (radial) temperature greatly exceeding the perpendicular temperature. Ions picked up near 90° from the anisotropic NSW would form a stable ring distribution capable of generating the ribbon flux. We also discuss a second population of neutrals born in charge transfer collisions with interstellar PUIs, the so-called neutralized pickup ion (NPI) component. Their high thermal velocities translate into large parallel velocity spread of the daughter ribbon PUIs, which would adversely affect plasma stability in local interstellar space.

  7. Propagation of Interplanetary Disturbances in the Outer Heliosphere

    NASA Technical Reports Server (NTRS)

    Wang, Chi

    2005-01-01

    Contents include the following: 1. We have developed a one-dimensional, spherically symmetric, multi-fluid MHD model that includes solar wind protons and electrons, pickup ions, and interstellar neutral hydrogen. This model advances the existing solar wind models for the outer heliosphere in two important ways: one is that it distinguishes solar wind protons from pickup ions, and the other is that it allows for energy transfer from pickup ions to the solar wind protons. Model results compare favorably with the Voyager 2 observations. 2. 2. Solar wind slowdown and interstellar neutral density. The solar wind in the outer heliosphere is fundamentally different from that in the inner heliosphere since the effects of interstellar neutrals become significant. 3. ICME propagation from the inner to outer heliosphere. Large coronal mass ejections (CMEs) have major effects on the structure of the solar wind and the heliosphere. The plasma and magnetic field can be compressed ahead of interplanetary CMEs. 4. During the current solar cycle (Cycle 23), several major CMEs associated with solar flares produced large transient shocks which were observed by widely-separated spacecraft such as Wind at Earth and Voyager 2 beyond 60 AU. Using data from these spacecraft, we use the multi-fluid model to investigate shock propagation and interaction in the heliosphere. Specifically, we studied the Bastille Day 2000, April 2001 and Halloween 2003 events. 5. Statistical properties of the solar wind in the outer heliosphere. In a collaboration with L.F. Burlaga of GSFC, it is shown that the basic statistical properties of the solar wind in the outer heliosphere can be well produced by our model. We studied the large-scale heliospheric magnetic field strength fluctuations as a function of distance from the Sun during the declining phase of a solar cycle, using our numerical model with observations made at 1 AU during 1995 as input. 6. Radial heliospheric magnetic field events. The heliospheric magnetic field (HMF) direction, on average, conforms well to the Parker spiral.

  8. Ulysses Observations of Magnetic Waves due to Newborn Interstellar Pickup Ions. I. New Observations and Linear Analysis

    NASA Astrophysics Data System (ADS)

    Cannon, Bradford E.; Smith, Charles W.; Isenberg, Philip A.; Vasquez, Bernard J.; Murphy, Neil; Nuno, Raquel G.

    2014-04-01

    We have examined Ulysses magnetic field data using dynamic spectrogram techniques that compute wave amplitude, polarization, and direction of propagation over a broad range of frequencies and time. Events were identified that showed a strong polarization signature and an enhancement of power above the local proton gyrofrequency. We perform a statistical study of 502 wave events in an effort to determine when, where, and why they are observed. Most notably, we find that waves arising from newborn interstellar pickup ions are relatively rare and difficult to find. The quantities normally employed in theories of wave growth are neutral atom density and quantities related to their ionization and the subsequent dynamics such as wind speed, solar wind flux, and magnetic field orientation. We find the observations of waves to be largely uncorrelated to these quantities except for mean field direction where quasi-radial magnetic fields are favored and solar wind proton flux where wave observations appear to be favored by low flux conditions which runs contrary to theoretical expectations of wave generation. It would appear that an explanation based on source physics and instability growth rates alone is not adequate to account for the times when these waves are seen.

  9. A Test of the Interstellar Boundary EXplorer Ribbon Formation in the Outer Heliosheath

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gamayunov, Konstantin V.; Rassoul, Hamid; Heerikhuisen, Jacob, E-mail: kgamayunov@fit.edu

    NASA’s Interstellar Boundary EXplorer ( IBEX ) mission is imaging energetic neutral atoms (ENAs) propagating to Earth from the outer heliosphere and local interstellar medium (LISM). A dominant feature in all ENA maps is a ribbon of enhanced fluxes that was not predicted before IBEX . While more than a dozen models of the ribbon formation have been proposed, consensus has gathered around the so-called secondary ENA model. Two classes of secondary ENA models have been proposed; the first class assumes weak scattering of the energetic pickup protons in the LISM, and the second class assumes strong but spatially localizedmore » scattering. Here we present a numerical test of the “weak scattering” version of the secondary ENA model using our gyro-averaged kinetic model for the evolution of the phase-space distribution of protons in the outer heliosheath. As input for our test, we use distributions of the primary ENAs from our MHD-plasma/kinetic-neutral model of the heliosphere-LISM interaction. The magnetic field spectrum for the large-scale interstellar turbulence and an upper limit for the amplitude of small-scale local turbulence (SSLT) generated by protons are taken from observations by Voyager 1 in the LISM. The hybrid simulations of energetic protons are also used to set the bounding wavenumbers for the spectrum of SSLT. Our test supports the “weak scattering” version. This makes an additional solid step on the way to understanding the origin and formation of the IBEX ribbon and thus to improving our understanding of the interaction between the heliosphere and the LISM.« less

  10. THE IBEX RIBBON AND THE PICKUP ION RING STABILITY IN THE OUTER HELIOSHEATH. I. THEORY AND HYBRID SIMULATIONS

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Florinski, V.; Heerikhuisen, J.; Niemiec, J.

    2016-08-01

    The nearly circular band of energetic neutral atom emission dominating the field of view of the Interplanetary Boundary Explorer ( IBEX ) satellite, is most commonly attributed to the effect of charge exchange of secondary pickup ions (PUIs) gyrating about the magnetic field in the outer heliosheath and the interstellar space beyond. Several models for the PUI dynamics of this mechanism have been proposed, each requiring either strong or weak scattering of the initial pitch angle. Conventional wisdom states that ring distributions tend to generate waves and scatter onto a shell on timescales too short for charge exchange to occur.more » We performed a careful study of ring and thin shell proton distribution stability using theoretical tools and hybrid plasma simulations. We show that the kinetic behavior of a freshly injected proton ring is a far more complicated process than previously thought. In the presence of a warm Maxwellian core, narrower rings could be more stable than broader toroidal distributions. The scattered rings possess a fine structure that can only be revealed using very large numbers of macroparticles in a simulation. It is demonstrated that a “stability gap” in ring temperature exists where the protons could retain large gyrating anisotropies for years, and the wave activity could remain below the level of the ambient magnetic fluctuations in interstellar space. In the directions away from the ribbon, however, a partial shell distribution is more likely to be unstable, leading to significant scattering into one hemisphere in velocity space. The process is accompanied by turbulence production, which is puzzling given the very low level of magnetic fluctuations measured in the outer heliosheath by Voyager 1 .« less

  11. Contributions of Mirror and Ion Bernstein Instabilities to the Scattering of Pickup Ions in the Outer Heliosheath

    NASA Astrophysics Data System (ADS)

    Min, Kyungguk; Liu, Kaijun

    2018-01-01

    Maintaining the stability of pickup ions in the outer heliosheath is a critical element for the secondary energetic neutral atom (ENA) mechanism, a theory put forth to explain the nearly annular band of ENA emission observed by the Interstellar Boundary EXplorer. A recent study showed that a pickup ion ring can remain stable to the Alfvén/ion cyclotron (AC) instability at propagation parallel to the background magnetic field when the parallel thermal spread of the ring is comparable to that of a background population. This study investigates the potential role that the mirror or ion Bernstein (IB) instabilities can play in the stability of pickup ions when conditions are such that the AC instability is suppressed. Linear Vlasov theory predicts relatively fast mirror and IB instability growth even though AC instability growth is suppressed. For a few such cases, two-dimensional hybrid and macroscopic quasi-linear simulations are carried out to examine how the unstable mirror and IB modes evolve and affect the pickup ion ring beyond the linear theory picture. For the parameters used, the mirror mode dominates initially and leads to a rapid parallel heating of the pickup ions in excess of the parallel temperature of the background protons. The heated pickup ions subsequently trigger onset of the AC mode, which grows sufficiently large to be the dominant pitch angle scattering agent after the mirror mode has decayed away. The present results indicate that the pickup ion stability needed may not be guaranteed once the mirror and IB instabilities are taken into account.

  12. κ -distributed protons in the solar wind and their charge-exchange coupling to energetic hydrogen

    DOE PAGES

    Heerikhuisen, J.; Zirnstein, Eric; Pogorelov, Nikolai

    2015-03-16

    The interaction between the solar wind and the interstellar medium represents a collision between two plasma flows, resulting in a heliosphere with an extended tail. While the solar wind is mostly ionized material from the corona, the interstellar medium is only partially ionized. The ion and neutral populations are coupled through charge-exchange collisions that operate on length scales of tens to hundreds of astronomical units. About half the interstellar hydrogen flows into the heliosphere where it may charge-exchange with solar wind protons. This process gives rise to a nonthermal proton, known as a pickup ion, which joins the plasma. Inmore » this paper we investigate the effects of approximating the total ion distribution of the subsonic solar wind as a generalized Lorentzian, or κ distribution, using an MHD neutral code. We illustrate the effect different values of the κ parameter have on both the structure of the heliosphere and the energetic neutral atom flux at 1 AU. We find that using a κ distribution in our simulations yields levels of energetic neutral atom flux that are within a factor of about 2 or 3 over the IBEX-Hi range of energies from 0.5 to 6 keV. In conclusion, while the presence of a suprathermal tail in the proton distribution leads to the production of high-energy neutrals, the sharp decline in the charge-exchange cross section around 10 keV mitigates the enhanced transfer of energy from the ions to the neutrals that might otherwise be expected.« less

  13. INTERSTELLAR PICK-UP IONS OBSERVED BETWEEN 11 AND 22 AU BY NEW HORIZONS

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Randol, B. M.; McComas, D. J.; Schwadron, N. A., E-mail: brentrandol@gmail.com

    We report new observations by the Solar Wind Around Pluto instrument on the New Horizons spacecraft, which measures energy per charge (E/q) spectra of solar wind and interstellar pick-up ions (PUIs) between 11 AU and 22 AU from the Sun. The data provide an unprecedented look at PUIs as there have been very few measurements of PUIs beyond 10 AU. We analyzed the PUI part of the spectra by comparing them to the classic Vasyliunas and Siscoe PUI model. Our analysis indicates that PUIs are usually well-described by this distribution. We derive parameters relevant to PUI studies, such as themore » ionization rate normalized to 1 AU. Our result for the average ionization rate between 11 and 12 AU agrees with an independently derived average value found during the same time. Later, we find a general increase in the ionization rate, which is consistent with the increase in solar activity. We also calculate the PUI thermal pressure, which appears to be roughly consistent with previous results. Through fitting of the solar wind proton peaks in our spectra, we derive solar wind thermal pressures. Based on our analysis, we predict a ratio of PUI thermal pressure to solar wind thermal pressure just inside the termination shock to be between 100 and >1000.« less

  14. Interstellar Pickup Ion Observations to 38 au

    NASA Astrophysics Data System (ADS)

    McComas, D. J.; Zirnstein, E. J.; Bzowski, M.; Elliott, H. A.; Randol, B.; Schwadron, N. A.; Sokół, J. M.; Szalay, J. R.; Olkin, C.; Spencer, J.; Stern, A.; Weaver, H.

    2017-11-01

    We provide the first direct observations of interstellar H+ and He+ pickup ions in the solar wind from 22 to 38 au. We use the Vasyliunas and Siscoe model functional form to quantify the pickup ion distributions, and while the fit parameters generally lie outside their physically expected ranges, this form allows fits that quantify variations in the pickup H+ properties with distance. By ˜20 au, the pickup ions already provide the dominant internal pressure in the solar wind. We determine the radial trends and extrapolate them to the termination shock at ˜90 au, where the pickup H+ to core solar wind density reaches ˜0.14. The pickup H+ temperature and thermal pressure increase from 22 to 38 au, indicating additional heating of the pickup ions. This produces very large extrapolated ratios of pickup H+ to solar wind temperature and pressure, and an extrapolated ratio of the pickup ion pressure to the solar wind dynamic pressure at the termination shock of ˜0.16. Such a large ratio has profound implications for moderating the termination shock and the overall outer heliospheric interaction. We also identify suprathermal tails in the H+ spectra and complex features in the He+ spectra, likely indicating variations in the pickup ion history and processing. Finally, we discover enhancements in both H+ and He+ populations just below their cutoff energies, which may be associated with enhanced local pickup. This study serves to document the release and serves as a citable reference of these pickup ion data for broad community use and analysis.

  15. Near Earth Inner-Source and Interstellar Pickup Ions Observed with the Hot Plasma Composition Analyzer of the Magnetospheric Multiscale Mission Mms-Hpca

    NASA Astrophysics Data System (ADS)

    Gomez, R. G.; Fuselier, S. A.; Mukherjee, J.; Gonzalez, C. A.

    2017-12-01

    Pickup ions found near the earth are generally picked up in the rest frame of the solar wind, and propagate radially outward from their point of origin. While propagating, they simultaneously gyrate about the magnetic field. Pickup ions come in two general populations; interstellar and inner source ions. Interstellar ions originate in the interstellar medium, enter the solar system in a neutral charge state, are gravitationally focused on the side of the sun opposite their arrival direction and, are ionized when they travel near the sun. Inner-source ions originate at a location within the solar system and between the sun and the observation point. Both pickup ion populations share similarities in composition and charge states, so measuring of their dynamics, using their velocity distribution functions, f(v)'s, is absolutely essential to distinguishing them, and to determining their spatial and temporal origins. Presented here will be the results of studies conducted with the four Hot Plasma Composition Analyzers of the Magnetospheric Multiscale Mission (MMS-HPCA). These instruments measure the full sky (4π steradians) distribution functions of near earth plasmas at a 10 second cadence in an energy-to-charge range 0.001-40 keV/e. The instruments are also capable of parsing this combined energy-solid angle phase space with 22.5° resolution polar angle, and 11.25° in azimuthal angle, allowing for clear measurement of the pitch angle scattering of the ions.

  16. Challenges in the determination of the interstellar flow longitude from the pickup ion cutoff

    NASA Astrophysics Data System (ADS)

    Taut, A.; Berger, L.; Möbius, E.; Drews, C.; Heidrich-Meisner, V.; Keilbach, D.; Lee, M. A.; Wimmer-Schweingruber, R. F.

    2018-03-01

    Context. The interstellar flow longitude corresponds to the Sun's direction of movement relative to the local interstellar medium. Thus, it constitutes a fundamental parameter for our understanding of the heliosphere and, in particular, its interaction with its surroundings, which is currently investigated by the Interstellar Boundary EXplorer (IBEX). One possibility to derive this parameter is based on pickup ions (PUIs) that are former neutral ions that have been ionized in the inner heliosphere. The neutrals enter the heliosphere as an interstellar wind from the direction of the Sun's movement against the partially ionized interstellar medium. PUIs carry information about the spatial variation of their neutral parent population (density and flow vector field) in their velocity distribution function. From the symmetry of the longitudinal flow velocity distribution, the interstellar flow longitude can be derived. Aim. The aim of this paper is to identify and eliminate systematic errors that are connected to this approach of measuring the interstellar flow longitude; we want to minimize any systematic influences on the result of this analysis and give a reasonable estimate for the uncertainty. Methods: We use He+ data measured by the PLAsma and SupraThermal Ion Composition (PLASTIC) sensor on the Solar TErrestrial RElations Observatory Ahead (STEREO A) spacecraft. We analyze a recent approach, identify sources of systematic errors, and propose solutions to eliminate them. Furthermore, a method is introduced to estimate the error associated with this approach. Additionally, we investigate how the selection of interplanetary magnetic field angles, which is closely connected to the pickup ion velocity distribution function, affects the result for the interstellar flow longitude. Results: We find that the revised analysis used to address part of the expected systematic effects obtains significantly different results than presented in the previous study. In particular, the derived uncertainties are considerably larger. Furthermore, an unexpected systematic trend of the resulting interstellar flow longitude with the selection of interplanetary magnetic field orientation is uncovered.

  17. The Velocity Distribution Of Pickup He+ Measured at 0.3 AU by MESSENGER

    NASA Astrophysics Data System (ADS)

    Gershman, Daniel J.; Fisk, Lennard A.; Gloeckler, George; Raines, Jim M.; Slavin, James A.; Zurbuchen, Thomas H.; Solomon, Sean C.

    2014-06-01

    During its interplanetary trajectory in 2007-2009, the MErcury Surface, Space ENvrionment, GEochemistry, and Ranging (MESSENGER) spacecraft passed through the gravitational focusing cone for interstellar helium multiple times at a heliocentric distance R ≈ 0.3 AU. Observations of He+ interstellar pickup ions made by the Fast Imaging Plasma Spectrometer sensor on MESSENGER during these transits provide a glimpse into the structure of newly formed inner heliospheric pickup-ion distributions. This close to the Sun, these ions are picked up in a nearly radial interplanetary magnetic field. Compared with the near-Earth environment, pickup ions observed near 0.3 AU will not have had sufficient time to be energized substantially. Such an environment results in a nearly pristine velocity distribution function that should depend only on pickup-ion injection velocities (related to the interstellar gas), pitch-angle scattering, and cooling processes. From measured energy-per-charge spectra obtained during multiple spacecraft observational geometries, we have deduced the phase-space density of He+ as a function of magnetic pitch angle. Our measurements are most consistent with a distribution that decreases nearly monotonically with increasing pitch angle, rather than the more commonly modeled isotropic or hemispherically symmetric forms. These results imply that pitch-angle scattering of He+ may not be instantaneous, as is often assumed, and instead may reflect the velocity distribution of initially injected particles. In a slow solar wind stream, we find a parallel-scattering mean free path of λ || ~ 0.1 AU and a He+ production rate of ~0.05 m-3 s-1 within 0.3 AU.

  18. Derivation Of Local Interstellar Medium Parame-ters From Pickup Ion Observations

    NASA Astrophysics Data System (ADS)

    Gloeckler, G.; Geiss, G.

    2002-05-01

    Pickup ions provide us with a new tool to probe remote regions in and beyond the heliosphere. Comprehensive and continuous meas-urements of H, He, C, N, O, and Ne, especially with the Solar Wind Ion Composition Spectrometer (SWICS) on both Ulysses and ACE, have given us a wealth of data that are being used to infer the chemi-cal and physical properties of the Local Interstellar Cloud (LIC). Knowledge gained from this work will be reviewed with an emphasis on LIC characteristics, such as the isotopic and elemental composi-tion of the LIC gas, its density, temperature and ionization state, and limits on the strength of the LIC magnetic field. Using pressure-balance arguments and the latest values of the LIC parameters we will estimate the location of the heliospheric termination shock. Future directions for further dramatic advances in pickup ion meas-urements will also be discussed.

  19. Potential Role of the Mirror and Ion Bernstein Instabilities on the Pickup Ion Dynamics in the Outer Heliosheath: Linear Theory and Hybrid Simulations

    NASA Astrophysics Data System (ADS)

    Min, K.; Liu, K.; Gary, S. P.

    2017-12-01

    The main challenge of the secondary ENA mechanism, a theory put forth to explain the IBEX ENA ribbon, is maintaining the stability of the pickup ion velocity distribution before the pickup ions in the outer heliosheath go through two consecutive charge exchanges. The Alfvén/ion-cyclotron instability, which has its maximum growth at propagation parallel to Bo, the background magnetic field, is believed to be the main agent leading to rapid isotropization of the pickup ions. However, recent studies found that this instability can be suppressed when parallel temperatures of the background plasma and the pickup ion ring distribution are comparable, allowing the pickup ion distribution to remain stable for a long period. This paper demonstrates that a pickup ion ring distribution can also drive the mirror and ion Bernstein instabilities which lead to growing modes at propagation oblique to Bo. For idealized proton-electron plasmas where relatively cool background electron and proton populations are represented by isotropic Maxwellian distributions and tenuous (1%) pickup protons are represented by a Maxwellian-ring distribution (assuming a 90˚ pickup angle), linear Vlasov theory predicts unstable mirror and ion Bernstein modes with growth rates comparable to or exceeding that of the Alfvén-cyclotron instability. According to quasilinear theory, interactions with these obliquely-propagating modes can lead to substantial pitch angle scattering of the ring protons. Two-dimensional hybrid (kinetic ions and massless fluid electrons) simulations are carried out to examine the nonlinear consequences of the mirror and Bernstein instabilities. The preliminary simulation results are presented. The study suggests a scenario that the oblique mirror and ion Bernstein modes can be an active agent of the pickup ion isotropization when the condition is such that the Alfvén-cyclotron instability is suppressed.

  20. 2D He+ Pickup Ion Velocity Distribution Functions: STEREO PLASTIC Observations

    NASA Astrophysics Data System (ADS)

    Drews, C.; Berger, L.; Peleikis, T.; Wimmer-Schweingruber, R. F.

    2014-12-01

    He+ pickup ions are either born from the ionization of interstellar neutral helium atoms inside our heliosphere, the so called interstellar pickup ions, or through the interaction of solar wind ions with small dust particles close to the Sun, the so called inner-source of pickup ions. Until now, most observations of He+ pickup ions were limited to reduced 1D velocity spectra, which are insufficient to study certain characteristics of the He+ Velocity Distribution Function (VDF). It is generally assumed that rapid pitch-angle scattering of freshly created pickup ions quickly leads to a fully isotropic He+ VDF. In the light of recent observations, this assumption has found to be oversimplified and needs to be re-investigated. Using He+ pickup ion data from the PLASTIC instrument on board the STEREO A spacecraft we reconstruct a reduced form of the He+ VDF in 2 dimensions (see figure). The reduced form of the He+ VDF allows us to study the pitch-angle distribution and anisotropy of the He+ VDF as a function of the solar magnetic field, B. Our observations show clear signs of a significant anisotropy of the He+ VDF and even indicates that, at least for certain configurations of B, it is not even fully gyrotropic. Our results further suggest, that the observed velocity and pitch-angle of He+ depends strongly on the solar magnetic field vector, B, the ecliptic longitude, λ, the solar wind speed, vsw, and the history of B. Consequently, we argue that reduced 1D velocity spectra of He+ are insufficient to study quantities like the pitch-angle scattering rate, τ, or the adiabatic cooling index γ.

  1. Observation of Magnetic Waves Excited by Newborn Interstellar Pickup He+ Observed by the Voyager 2 Spacecraft at 30 au

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Argall, Matthew R.; Hollick, Sophia J.; Pine, Zackary B., E-mail: Matthew.Argall@unh.edu, E-mail: sjhollick@hotmail.com, E-mail: zbpine@gmail.com

    We report two observations of magnetic waves due to He{sup +} pickup ions observed by the Voyager 2 spacecraft in mid-1989 to demonstrate that such waves occur as far out as ∼30 au from the Sun. The observations are sufficiently far from planets, interplanetary shocks, and other possible sources of energetic particles to make newborn interstellar He{sup +} the only likely explanation for the source of the waves. Additionally, the low-frequency waves that might be expected for a variety of cometary pickup species are not seen. The events studied here were picked from a preliminary list of ∼300 events thatmore » were discovered based on polarization signatures in daily spectrograms of the magnetic field between 1977 and 1990. Analysis of those observations is ongoing. We present an analysis of these two observations using the same techniques we have employed for recently reported observations closer to the Sun.« less

  2. ENERGETIC NEUTRAL HYDROGEN OBSERVATIONS DEMONSTRATE THAT VOYAGER 1 IS NOT OBSERVING THE EXTRAORDINARILY STRONG INTERSTELLAR MAGNETIC FIELD

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gloeckler, G.; Fisk, L. A., E-mail: gglo@umich.edu

    It is generally believed that Voyager 1 ( V1 ) is now in interstellar space, having crossed the heliopause at a heliocentric distance of 121.58 au in late August of 2012. Here we use recently published spectra of energetic neutral hydrogen, and the magnetic field and energetic particles directly measured by V1 to find the average pressure in the inner heliosheath (termination shock to 122 au). This pressure turns out to be surprisingly large, (3.57 ± 0.71) × 10{sup −12} dyn cm{sup −2}, and is completely dominated by pressures of pickup ions (PUIs), created in the inner heliosheath, and their suprathermal tails (43%), andmore » PUIs and their tails that are produced upstream of the termination shock and enter the heliosheath (46%). We compute the total particle pressure in the outer heliosheath near the heliopause from distribution functions of the interstellar plasma and locally created PUIs using profiles of proton density, proton temperature, and neutral hydrogen density from model 2 in Zank et al., and find it to be at most 7.7 × 10{sup −13} dyn cm{sup −2}. Balancing pressure across the heliopause, thus requires an unusually large magnetic pressure (2.8 × 10{sup −12} dyn cm{sup −2}). The resulting strength and 1 σ uncertainty of the draped magnetic field in the outer heliosheath near the heliopause is 0.839 ± 0.106 nT. The 3 σ lower limit field strength (0.52 nT) is greater than the field of ∼0.43 ± 0.02 nT measured by V1 , implying that there is less than 1% probability that V1 is measuring the interstellar draped field.« less

  3. Systematic Variability of the He+ Pickup Ion Velocity Distribution Function Observed with SOHO/CELIAS/CTOF

    NASA Astrophysics Data System (ADS)

    Taut, A.; Drews, C.; Berger, L.; Wimmer-Schweingruber, R. F.

    2015-12-01

    The 1D Velocity Distribution Function (VDF) of He+ pickup ions shows two distinct populations that reflect the sources of these ions. The highly suprathermal population is the result of the ionization and pickup of almost resting interstellar neutrals that are injected into the solar wind as a highly anisotropic torus distribution. The nearly thermalized population is centered around the solar wind bulk speed and is mainly attributed to inner-source pickup ions that originate in the inner heliosphere. It is generally believed that the initial torus distribution of interstellar pickup ions is rapidly isotropized by resonant wave-particle interactions, but recent observations by Drews et al. (2015) of a torus-like VDF strongly limit this isotropization. This in turn means that more observational data is needed to further characterize the kinetic behavior of pickup ions. In this study we use data from the Charge-Time-Of-Flight sensor on-board SOHO. As this sensor offers unrivaled counting statistics for He+ together with a sufficient mass-per-charge resolution it is well-suited for investigating the He+ VDF on comparatively short timescales. We combine this data with the high resolution magnetic field data from WIND via an extrapolation to the location of SOHO. With this combination of instruments we investigate the He+ VDF for time periods of different solar wind speeds, magnetic field directions, and wave power. We find a systematic trend of the short-term He+ VDF with these parameters. Especially by varying the considered magnetic field directions we observe a 1D projection of the anisotropic torus-like VDF. In addition, we investigate stream interaction regions and coronal mass ejections. In the latter we observe an excess of inner-source He+ that is accompanied by a significant increase of heavy pickup ion count rates. This may be linked to the as yet ill understood production mechanism of inner-source pickup ions.

  4. Plasmas in the outer heliosphere

    NASA Technical Reports Server (NTRS)

    Belcher, J. W.; Richardson, J. D.; Lazarus, A. J.; Gazis, P. R.; Barnes, A.

    1995-01-01

    We review the observed properties of the solar wind in the outer heliosphere, including observations from Voyager and the Pioneers, as well as from inner heliospheric probes as appropriate. These observations are crucial to modeling of the heliosphere and its interactions with the interstellar medium, since the wind ram pressure and its temporal variations are important in understanding the distance to the termination shock and heliopause and how those boundaries might vary in time. We focus on results since Solar Wind 7. Among the issues we will discuss are: (1) the time scales for and statistical properties of variations in the ram pressure in the outer heliosphere, and how those variations might affect the morphology of the heliospheric/interstellar medium interface; (2) the question of possible solar wind slowing in the outer heliosphere due to the pick-up of interstellar ions; (3) the issue of whether there is bulk heating of the solar wind associated either with interstellar ion pick-up or with continued heating due to stream-stream interactions; (4) evidence for latitudinal variations in solar wind properties; and (5) the 1.3 year periodicities apparent in the outer heliosphere, and the close correspondence with similar variations seen with inner heliospheric probes.

  5. Composition of inner-source heavy pickup ions at 1 AU: SOHO/CELIAS/CTOF observations. Implications for the production mechanisms

    NASA Astrophysics Data System (ADS)

    Taut, A.; Berger, L.; Drews, C.; Wimmer-Schweingruber, R. F.

    2015-04-01

    Context. Pickup ions in the inner heliosphere mainly originate in two sources, one interstellar and one in the inner solar system. In contrast to the interstellar source that is comparatively well understood, the nature of the inner source has not been clearly identified. Former results obtained with the Solar Wind Ion Composition Spectrometer on-board the Ulysses spacecraft revealed that the composition of inner-source pickup ions is similar, but not equal, to the elemental solar-wind composition. These observations suffered from very low counting statistics of roughly one C+ count per day. Aims: Because the composition of inner-source pickup ions could lead to identifying their origin, we used data from the Charge-Time-Of-Flight sensor on-board the Solar and Heliospheric Observatory. It offers a large geometry factor that results in about 100 C+ counts per day combined with an excellent mass-per-charge resolution. These features enable a precise determination of the inner-source heavy pickup ion composition at 1 AU. To address the production mechanisms of inner-source pickup ions, we set up a toy model based on the production scenario involving the passage of solar-wind ions through thin dust grains to explain the observed deviations of the inner-source PUI and the elemental solar-wind composition. Methods: An in-flight calibration of the sensor allows identification of heavy pickup ions from pulse height analysis data by their mass-per-charge. A statistical analysis was performed to derive the inner-source heavy pickup ion relative abundances of N+, O+, Ne+, Mg+, Mg2+, and Si+ compared to C+. Results: Our results for the inner-source pickup ion composition are in good agreement with previous studies and confirm the deviations from the solar-wind composition. The large geometry factor of the Charge-Time-of-Flight sensor even allowed the abundance ratios of the two most prominent pickup ions, C+ and O+, to be investigated at varying solar-wind speeds. We found that the O+/C+ ratio increases systematically with higher solar-wind speeds. This observation is an unprecedented feature characterising the production of inner-source pickup ions. Comparing our observations to the toy model results, we find that both the deviation from the solar-wind composition and the solar-wind-speed dependent O+/C+ ratio can be explained.

  6. Observation of Bernstein Waves Excited by Newborn Interstellar Pickup Ions in the Solar Wind

    NASA Technical Reports Server (NTRS)

    Joyce, Colin J.; Smith, Charles W.; Isenberg, Philip A.; Gary, S. Peter; Murphy, Neil; Gray, Perry C.; Burlaga, Leonard F.

    2012-01-01

    A recent examination of 1.9 s magnetic field data recorded by the Voyager 2 spacecraft in transit to Jupiter revealed several instances of strongly aliased spectra suggestive of unresolved high-frequency magnetic fluctuations at 4.4 AU. A closer examination of these intervals using the highest resolution data available revealed one clear instance of wave activity at spacecraft frame frequencies from 0.2 to 1 Hz. Using various analysis techniques, we have characterized these fluctuations as Bernstein mode waves excited by newborn interstellar pickup ions. We can find no other interpretation or source consistent with the observations, but this interpretation is not without questions. In this paper, we report a detailed analysis of the waves, including their frequency and polarization, that supports our interpretation.

  7. Determining the Interstellar Wind Longitudinal Inflow Evolution Using Pickup Ions in the Helium Focusing Cone

    NASA Astrophysics Data System (ADS)

    Spitzer, S. A.; Gilbert, J. A.; Lepri, S. T.

    2017-12-01

    We propose to determine the longitudinal inflow direction of the local interstellar medium through the Heliosphere. This longitudinal inflow direction directly correlates to the longitudinal direction of the helium focusing cone with respect to the Sun. We can calculate this direction by finding the He+ pickup ion density peak as mass spectrometers such as ACE/SWICS, Wind/STICS, and Helios/Micrometeoroid Detector and Analyzer pass through the focusing cone. Mapping from the location of this density peak to the Sun, around which the helium is focused, will directly yield the desired longitudinal direction. We will find this direction for each year since the first measurements in the 1970s through the present and thereby analyze its evolution over time. This poster outlines our proposed method and initial results.

  8. Pickup protons and water ions at Comet Halley - Comparisons with Giotto observations

    NASA Astrophysics Data System (ADS)

    Ye, G.; Cravens, T. E.; Gombosi, T. I.

    1993-02-01

    The cometary ion pickup process along the sun-comet line at Comet Halley is investigated using a quasi-linear diffusion model including both pitch angle and energy diffusion, adiabatic compression, and convective motion with the solar wind flow. The model results are compared with energetic ion distributions observed by instruments on board the Giotto spacecraft. The observed power spectrum index of magnetic turbulence (gamma) is 2-2.5. The present simulation shows that when gamma was 2, the calculated proton distributions were much more isotropic than the observed ones. The numerical solutions of the quasi-linear diffusion equations show that the isotropization of the pickup ion distribution, particularly at the pickup velocity, is not complete even close to the bow shock. Given the observed turbulence level, quasi-linear theory yields pickup ion energy distributions that agree with the observed ones quite well and easily produces energetic ions with energies up to hundreds of keV.

  9. Power law "thermalization" of ion pickup and ionospheric outflows

    NASA Astrophysics Data System (ADS)

    Moore, T. E.; Ofman, L.; Glocer, A.; Gershman, D. J.; Khazanov, G. V.; Paterson, W. R.

    2016-12-01

    One observed feature of ionospheric outflows is that the active ion heating processes produce power law tails of the core plasma velocity distribution, as well as transverse or conic peaks in the angular distributions. This characteristic is shared with hot ion distributions produced by ion pickup in the solar wind, resulting from cometary or interstellar gas ionization, and with hot ions observed around the Space Transportation System during gas releases. We revisit relevant observations and consider the hypothesis that the ion pickup thermalization process tends to produce power law (𝛋) energy distributions, using a simulation of the instability of a simple pickup (ring) distribution. Simulation results are derived for cases representative of both solar wind pickup, where ion velocities exceed the local Alfvén speed, and ionospheric pickup, where the local Alfvén speed exceeds ion velocities. The sub-Alfvenic pickup ring distribution appears to have a slow growth rate (per ion gyro period), that is, the instability evolves more slowly in the latter case than in the former. Implications for ionospheric outflow are discussed.

  10. The Structure of Shocks in the Very Local Interstellar Medium

    NASA Astrophysics Data System (ADS)

    Mostafavi, P.; Zank, G. P.

    2018-02-01

    The Voyager 1 magnetometer has detected several shock waves in the very local interstellar medium (VLISM). Interplanetary shock waves can be transmitted across the heliopause (HP) into the VLISM. The first in situ shock observed by Voyager 1 inside the VLISM was remarkably broad and had properties different than those of shocks inside the heliosphere. We present a model of the 2012 VLISM shock, which was observed to be a weak, quasi-perpendicular, low magnetosonic Mach number, low beta, and subcritical shock. Although the heliosphere is a collisionless environment, we show that the VLISM is collisional with respect to the thermal plasma, and that the thermal collisions introduce dissipative terms such as heat conduction and viscosity. The structure of the VLISM shock is determined by thermal proton–proton collisions. VLISM pickup ions (PUIs) do not introduce a significant pressure or dissipation through the shock transition, meaning that the VLISM shock is not mediated by PUIs but only by the thermal gas and magnetic field. Therefore, VLISM shocks are controlled by particle collisions and not by wave–particle interactions. We find that the weak VLISM shock is very broad with a thickness of about 0.12 au, corresponding to the characteristic thermal heat conduction scale length.

  11. Inner Source and Interstellar Pickup Ions observed by MMS-HPCA

    NASA Astrophysics Data System (ADS)

    Gomez, Roman; Fuselier, Stephen; Burch, James L.; Mukherjee, Joey; Valek, Phillip W.; Allegrini, Frederic; Desai, Mihir I.

    2017-04-01

    Pickup Ions in the solar system are either of interstellar origin, or come from an inner source whose existence is confirmed, but which has not been directly observed. The Hot Plasma Composition Analyzer of the Magnetospheric Multiscale mission (MMS-HPCA) measures the energy and directional flux of ions with M/Q from 1 eV/e to 40 keV/e and is used measure the composition and dynamics of reconnection plasmas near the earth. During the first phase of the mission, from 1 September 2015 to 8 March 2016, the spacecraft at 12 Earth Radii apogee swept through the dayside from 1800 to 0600 local time. Although the apogee was designed to maximize encounters with the magnetopause, there were many instances when the spacecraft crossed the bow shock and sampled the solar wind. In November and December, while the spacecraft were downstream of the interstellar neutral focusing cone, HPCA detected pick up ions, such as He+, O+, and Ne+. He+ was distributed in an energy range of 14 eV - 20.6 keV, peaking at 757 eV; presumably of interstellar origin. O+ was observed in the energy range of 390 eV - 10.6 keV, and also seems to come from the interstellar medium. Ne+ was observed to be tightly distributed around a center energy of 5.5 keV, which implies an inner source origin. The mass - energy - angle analysis of these pick up ion distributions is presented, and their interpretation in terms of interstellar and inner source ions is discussed.

  12. Capacitive beam position monitors for the low-β beam of the Chinese ADS proton linac

    NASA Astrophysics Data System (ADS)

    Zhang, Yong; Wu, Jun-Xia; Zhu, Guang-Yu; Jia, Huan; Xue, Zong-Heng; Zheng, Hai; Xie, Hong-Ming; Kang, Xin-Cai; He, Yuan; Li, Lin; Denard, Jean Claude

    2016-02-01

    Beam Position Monitors (BPMs) for the low-β beam of the Chinese Accelerator Driven Subcritical system (CADS) Proton linac are of the capacitive pick-up type. They provide higher output signals than that of the inductive type. This paper will describe the design and tests of the capacitive BPM system for the low-β proton linac, including the pick-ups, the test bench and the read-out electronics. The tests done with an actual proton beam show a good agreement between the measurements and the simulations in the time domain. Supported by National Natural Science Foundation of China (11405240) and “Western Light” Talents Training Program of Chinese Academy of Sciences

  13. Investigating Systematic Errors of the Interstellar Flow Longitude Derived from the Pickup Ion Cutoff

    NASA Astrophysics Data System (ADS)

    Taut, A.; Berger, L.; Drews, C.; Bower, J.; Keilbach, D.; Lee, M. A.; Moebius, E.; Wimmer-Schweingruber, R. F.

    2017-12-01

    Complementary to the direct neutral particle measurements performed by e.g. IBEX, the measurement of PickUp Ions (PUIs) constitutes a diagnostic tool to investigate the local interstellar medium. PUIs are former neutral particles that have been ionized in the inner heliosphere. Subsequently, they are picked up by the solar wind and its frozen-in magnetic field. Due to this process, a characteristic Velocity Distribution Function (VDF) with a sharp cutoff evolves, which carries information about the PUI's injection speed and thus the former neutral particle velocity. The symmetry of the injection speed about the interstellar flow vector is used to derive the interstellar flow longitude from PUI measurements. Using He PUI data obtained by the PLASTIC sensor on STEREO A, we investigate how this concept may be affected by systematic errors. The PUI VDF strongly depends on the orientation of the local interplanetary magnetic field. Recently injected PUIs with speeds just below the cutoff speed typically form a highly anisotropic torus distribution in velocity space, which leads to a longitudinal transport for certain magnetic field orientation. Therefore, we investigate how the selection of magnetic field configurations in the data affects the result for the interstellar flow longitude that we derive from the PUI cutoff. Indeed, we find that the results follow a systematic trend with the filtered magnetic field angles that can lead to a shift of the result up to 5°. In turn, this means that every value for the interstellar flow longitude derived from the PUI cutoff is affected by a systematic error depending on the utilized magnetic field orientations. Here, we present our observations, discuss possible reasons for the systematic trend we discovered, and indicate selections that may minimize the systematic errors.

  14. Intermediate-energy inverse-kinematics one-proton pickup reactions on neutron-deficient fp-shell nuclei

    NASA Astrophysics Data System (ADS)

    McDaniel, S.; Gade, A.; Tostevin, J. A.; Baugher, T.; Bazin, D.; Brown, B. A.; Cook, J. M.; Glasmacher, T.; Grinyer, G. F.; Ratkiewicz, A.; Weisshaar, D.

    2012-01-01

    Background: Thick-target-induced nucleon-adding transfer reactions onto energetic rare-isotope beams are an emerging spectroscopic tool. Their sensitivity to single-particle structure complements one-nucleon removal reaction capabilities in the quest to reveal the evolution of nuclear shell structure in very exotic nuclei. Purpose: Our purpose is to add intermediate-energy, carbon-target-induced one-proton pickup reactions to the arsenal of γ-ray-tagged direct reactions applicable in the regime of low beam intensities and to apply these for the first time to fp-shell nuclei. Methods: Inclusive and partial cross sections were measured for the 12C(48Cr,49Mn+γ)X and 12C(50Fe,51Co+γ)X proton pickup reactions at 56.7 and 61.2 MeV/nucleon, respectively, using coincident particle-γ spectroscopy at the National Superconducting Cyclotron Laboratory. The results are compared to reaction theory calculations using fp-shell-model nuclear structure input. For comparison with our previous work, the same reactions were measured on 9Be targets. Results: The measured partial cross sections confirm the specific population pattern predicted by theory, with pickup into high-ℓ orbitals being strongly favored, driven by linear and angular momentum matching. Conclusion: Carbon-target-induced pickup reactions are well suited, in the regime of modest beam intensity, to study the evolution of nuclear structure, with specific sensitivities that are well described by theory.

  15. THE IBEX RIBBON AND THE PICKUP ION RING STABILITY IN THE OUTER HELIOSHEATH. II. MONTE-CARLO AND PARTICLE-IN-CELL MODEL RESULTS

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Niemiec, J.; Florinski, V.; Heerikhuisen, J.

    2016-08-01

    The nearly circular ribbon of energetic neutral atom (ENA) emission discovered by NASA’s Interplanetary Boundary EXplorer satellite ( IBEX ), is most commonly attributed to the effect of charge exchange of secondary pickup ions (PUIs) gyrating about the magnetic field in the outer heliosheath (OHS) and the interstellar space beyond. The first paper in the series (Paper I) presented a theoretical analysis of the pickup process in the OHS and hybrid-kinetic simulations, revealing that the kinetic properties of freshly injected proton rings depend sensitively on the details of their velocity distribution. It was demonstrated that only rings that are notmore » too narrow (parallel thermal spread above a few km s{sup −1}) and not too wide (parallel temperature smaller than the core plasma temperature) could remain stable for a period of time long enough to generate ribbon ENAs. This paper investigates the role of electron dynamics and the extra spatial degree of freedom in the ring ion scattering process with the help of two-dimensional full particle-in-cell (PIC) kinetic simulations. A good agreement is observed between ring evolution under unstable conditions in hybrid and PIC models, and the dominant modes are found to propagate parallel to the magnetic field. We also present more realistic ribbon PUI distributions generated using Monte Carlo simulations of atomic hydrogen in the global heliosphere and examine the effect of both the cold ring-like and the hot “halo” PUIs produced from heliosheath ENAs on the ring stability. It is shown that the second PUI population enhances the fluctuation growth rate, leading to faster isotropization of the solar-wind-derived ring ions.« less

  16. The IBEX Ribbon and the Pickup Ion Ring Stability in the Outer Heliosheath II. Monte-Carlo and Particle-in-cell Model Results

    NASA Astrophysics Data System (ADS)

    Niemiec, J.; Florinski, V.; Heerikhuisen, J.; Nishikawa, K.-I.

    2016-08-01

    The nearly circular ribbon of energetic neutral atom (ENA) emission discovered by NASA’s Interplanetary Boundary EXplorer satellite (IBEX), is most commonly attributed to the effect of charge exchange of secondary pickup ions (PUIs) gyrating about the magnetic field in the outer heliosheath (OHS) and the interstellar space beyond. The first paper in the series (Paper I) presented a theoretical analysis of the pickup process in the OHS and hybrid-kinetic simulations, revealing that the kinetic properties of freshly injected proton rings depend sensitively on the details of their velocity distribution. It was demonstrated that only rings that are not too narrow (parallel thermal spread above a few km s-1) and not too wide (parallel temperature smaller than the core plasma temperature) could remain stable for a period of time long enough to generate ribbon ENAs. This paper investigates the role of electron dynamics and the extra spatial degree of freedom in the ring ion scattering process with the help of two-dimensional full particle-in-cell (PIC) kinetic simulations. A good agreement is observed between ring evolution under unstable conditions in hybrid and PIC models, and the dominant modes are found to propagate parallel to the magnetic field. We also present more realistic ribbon PUI distributions generated using Monte Carlo simulations of atomic hydrogen in the global heliosphere and examine the effect of both the cold ring-like and the hot “halo” PUIs produced from heliosheath ENAs on the ring stability. It is shown that the second PUI population enhances the fluctuation growth rate, leading to faster isotropization of the solar-wind-derived ring ions.

  17. Low-energy cosmic ray protons from nuclear interactions of cosmic rays with the interstellar medium.

    NASA Technical Reports Server (NTRS)

    Wang, H. T.

    1973-01-01

    The intensity of low-energy (less than 100 MeV) protons from nuclear interactions of higher-energy (above 100 MeV) cosmic rays with the interstellar medium is calculated. The resultant intensity in the 10- to 100-MeV range is larger by a factor of 3-5 than the observed proton intensity near earth. The calculated intensity from nuclear interactions constitutes a lower limit on the actual proton intensity in interstellar space.

  18. Transport of Helium Pickup Ions within the Focusing Cone: Reconciling STEREO Observations with IBEX

    NASA Astrophysics Data System (ADS)

    Quinn, P. R.; Schwadron, N. A.; Möbius, E.

    2016-06-01

    Recent observations of the pickup helium focusing cone by STEREO/Plasma and Suprathermal Ion Composition indicate an inflow longitude of the interstellar wind that differs from the observations of IBEX by 1\\buildrel{\\circ}\\over{.} 8+/- 2\\buildrel{\\circ}\\over{.} 4. It has been under debate whether the transport of helium pickup ions with an anisotropic velocity distribution is the cause of this difference. If so, the roughly field-aligned pickup ion streaming relative to the solar wind should create a shift in the pickup ion density relative to the focusing cone. A large pickup ion streaming depends on the size of the mean free path. Therefore, the observed longitudinal shift in the pickup ion density relative to the neutral focusing cone may carry fundamental information about the mean free path experienced by pickup ions inside 1 au. We test this hypothesis using the Energetic Particle Radiation Environment Module (EPREM) model by simulating the transport of helium pickup ions within the focusing cone finding a mean free path of {λ }\\parallel =0.19+0.29(-0.19) au. We calculate the average azimuthal velocity of pickup ions and find that the anisotropic distribution reaches ˜8% of the solar wind speed. Lastly, we isolate transport effects within EPREM, finding that pitch-angle scattering, adiabatic focusing, perpendicular diffusion, and particle drift contribute to shifting the focusing cone 20.00%, 69.43%, 10.56%, and \\lt 0.01 % , respectively. Thus we show with the EPREM model that the transport of pickup ions does indeed shift the peak of the focusing cone relative to the progenitor neutral atoms and this shift provides fundamental information on the scattering of pickup ions inside 1 au.

  19. Electromagnetic waves with frequencies near the local proton gyrofrequency: ISEE-3 1 AU observations

    NASA Technical Reports Server (NTRS)

    Tsurutani, Bruce T.; Arballo, John K.; Mok, John; Smith, Edward J.; Mason, Glenn M.; Tan, Lun C.

    1994-01-01

    Low Frequency (LF) electromagnetic waves with periods near the local proton gyrofrequency have been detected in interplanetary space by the magnetometer onboard International-Sun-Earth-Explorer-3 (ISEE-3). Transverse peak-to-peak amplitudes as large as delta vector B/absolute value of B approximately 0.4 have been noted with compressional components (Delta absolute value of B/absolute value of B) typically less than or = 0.1. Generally, the waves have even smaller amplitudes, or are not detectable within the solar wind turbulence. The waves are elliptically/linearly polarized and are often, but not always, found to propagate nearly along vector B(sub zero). Both right- and left-hand polarizations in the spacecraft-frame have been detected. The waves are observed during all orientations of the interplanetary magnetic field, with the Parker spiral orientation being the most common case. Because the waves are detected at and near the local proton cyclotron frequency, the generation mechanism must almost certainly be solar wind pickup of freshly created hydrogen ions. Possible sources for the hydrogen are the Earth's atmosphere, coronal mass ejections from the Sun, comets and interstellar neutral atoms. At this time it is not obvious which potential source is the correct one. Statistical tests employing over one year of ISEE-3 data will be done in the near future to eliminate/confirm some of these possibilities.

  20. Modeling and Observation of Interstellar He+ Pickup Ions in the Inner Heliosphere

    NASA Astrophysics Data System (ADS)

    Chen, Junhong

    Interstellar pickup ions constitute a charged particle population that originates from interstellar neutrals inside the heliosphere. They are produced by photoionization, charge exchange with solar wind ions, and electron impact ionization (EI). Once ionized, they are picked up by the interplanetary magnetic field (IMF) and rapidly swept outward with the solar wind. Typically, pickup ion distributions have been described in terms of a velocity distribution function that evolves through fast pitch angle scattering followed by adiabatic cooling during radial transport in the reference frame of the solar wind [e.g., Vasyliunas & Siscoe, 1976, VS76 hereafter]. In the VS76 model, the slope of the isotropic velocity distributions is controlled by the combination of the ionization rate and the cooling process. Thus far, for the cooling index that relates the slope of the velocity distribution to the radial transport and expansion of the pickup ions a constant value of 3/2 has been widely used. The implicit assumptions to arrive at this value are immediate PUI isotropization due to pitch angle scattering and solar wind expansion with the square of the distance from the Sun. Any experimental determination of the cooling index depends on the knowledge of the ionization rate and its spatial variation, as well as solar wind and interplanetary conditions. In this thesis, we study their influences on the PUI cooling index and separate them by making use of the two complementary helium PUI data sets from SWICS instrument on the ACE spacecraft, and PLASTIC instrument on STEREO spacecraft. We use the pickup ion observations from ACE SIWCS in the last solar cycle to determine the cooling index, and the possible effects of the electron impact ionization on the determination of the cooling index. With pickup ion observations from STEREO PLASTIC, we determine how solar wind expansion patterns affect the cooling index. We find that the cooling index varies substantially with solar activity and suspect that these variations may be due to the influence of electron impact ionization, solar wind structures, and slow pitch angle scattering. Electron impact ionization, which does not scale as 1/r 2, is shown to have negligible influence on the cooling index and its variations. However, the effects of solar wind compression and rarefaction regions are found to be important. Comparisons of the pickup ion cooling behavior in the compression and rarefaction regions show that the radial solar wind expansion behaviors that differer from the usual 1/r 2 scaling may play the leading roles in the observed variations. A kinetic model of PUI is used to quantitatively describe their behavior in co-rotating interaction regions (CIR). The simulated distributions mimic closely the observed variations in the cooling behavior of PUIs in these regions. In addition, suprathermal tails appear to emerge from the PUI distributions inside compression regions, which provide further evidence that some particles of this population are accelerated locally in CIR compression regions even in the absence of shocks.

  1. VOYAGER OBSERVATIONS OF MAGNETIC WAVES DUE TO NEWBORN INTERSTELLAR PICKUP IONS: 2–6 au

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Aggarwal, Poornima; Taylor, David K.; Smith, Charles W.

    We report observations by the Voyager 1 and 2 spacecraft of low-frequency magnetic waves excited by newborn interstellar pickup ions H{sup +} and He{sup +} during 1978–1979 when the spacecraft were in the range from 2 to 6.3 au. The waves have the expected association with the cyclotron frequency of the source ions, are left-hand polarized in the spacecraft frame, and have minimum variance directions that are quasi-parallel to the local mean magnetic field. There is one exception to this in that one wave event that is excited by pickup H{sup +} is right-hand polarized in the spacecraft frame, butmore » similar exceptions have been reported by Cannon et al. and remain unexplained. We apply the theory of Lee and Ip that predicts the energy spectrum of the waves and then compare growth rates with turbulent cascade rates under the assumption that turbulence acts to destroy the enhanced wave activity and transport the associated energy to smaller scales where dissipation heats the background plasma. As with Cannon et al., we find that the ability to observe the waves depends on the ambient turbulence being weak when compared with growth rates, thereby allowing sustained wave growth. This analysis implies that the coupled processes of pitch-angle scattering and wave generation are continuously associated with newly ionized pickup ions, despite the fact that the waves themselves may not be directly observable. When waves are not observed, but wave excitation can be argued to be present, the wave energy is simply absorbed by the turbulence at a rate that prevents significant accumulation. In this way, the kinetic process of wave excitation by scattering of newborn ions continues to heat the plasma without producing observable wave energy. These findings support theoretical models that invoke efficient scattering of new pickup ions, leading to turbulent driving in the outer solar wind and in the IBEX ribbon beyond the heliopause.« less

  2. The Downwind Hemisphere of the Heliosphere: Eight Years of IBEX-Lo Observations

    NASA Astrophysics Data System (ADS)

    Galli, A.; Wurz, P.; Schwadron, N. A.; Kucharek, H.; Möbius, E.; Bzowski, M.; Sokół, J. M.; Kubiak, M. A.; Fuselier, S. A.; Funsten, H. O.; McComas, D. J.

    2017-12-01

    We present a comprehensive study of energetic neutral atoms (ENAs) of 10 eV to 2.5 keV from the downwind hemisphere of the heliosphere. These ENAs are believed to originate mostly from pickup protons and solar-wind protons in the inner heliosheath. This study includes all low-energy observations made with the Interstellar Boundary Explorer over the first eight years. Because the protons around 0.1 keV dominate the plasma pressure within the inner heliosheath in downwind direction, these ENA observations offer the unique opportunity to constrain the plasma properties and dimensions of the heliosheath where no in situ observations are available. We first derive energy spectra of ENA intensities averaged over time for 49 macropixels covering the entire downwind hemisphere. The results confirm previous studies regarding integral intensities and the roll-over around 0.1 keV energy. With the expanded data set, we now find that ENA intensities at 0.2 and 0.1 keV seem to anti-correlate with solar activity. We then derive the product of total plasma pressure and emission thickness of protons in the heliosheath to estimate lower limits on the thickness of the inner heliosheath. The temporally averaged ENA intensities support a rather spherical shape of the termination shock and a heliosheath thickness between 150 and 210 au for most regions of the downwind hemisphere. Around the nominal downwind direction of 76° ecliptic longitude, the heliosheath is at least 280 au thick. There, the neutral hydrogen density seems to be depleted compared to upwind directions by roughly a factor of 2.

  3. The Downwind Hemisphere of the Heliosphere: Eight Years of IBEX -Lo Observations

    DOE PAGES

    Galli, A.; Wurz, P.; Schwadron, N. A.; ...

    2017-12-05

    We present a comprehensive study of energetic neutral atoms (ENAs) of 10 eV to 2.5 keV from the downwind hemisphere of the heliosphere. These ENAs are believed to originate mostly from pickup protons and solar wind protons in the inner heliosheath. This study includes all low-energy observations made with the Interstellar Boundary Explorer over the first 8 years. Since the protons around 0.1 keV dominate the plasma pressure in the inner heliosheath in downwind direction, these ENA observations offer the unique opportunity to constrain the plasma properties and dimensions of the heliosheath where no in-situ observations are available. We firstmore » derive energy spectra of ENA intensities averaged over time for 49 macropixels covering the entire downwind hemisphere. The results confirm previous studies regarding integral intensities and the roll-over around 0.1 keV energy. With the expanded dataset we now find that ENA intensities at 0.2 and 0.1 keV seem to anti-correlate with solar activity. We then derive the product of total plasma pressure and emission thickness of protons in the heliosheath to estimate lower limits on the thickness of the inner heliosheath. The temporally averaged ENA intensities support a rather spherical shape of the termination shock and a heliosheath thickness between 150 and 210 au for most regions of the downwind hemisphere. Around the nominal downwind direction of 76° ecliptic longitude, the heliosheath is at least 280 au thick. There, the neutral hydrogen density seems to be depleted compared to upwind directions by roughly a factor of 2.« less

  4. The Downwind Hemisphere of the Heliosphere: Eight Years of IBEX -Lo Observations

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Galli, A.; Wurz, P.; Schwadron, N. A.

    We present a comprehensive study of energetic neutral atoms (ENAs) of 10 eV to 2.5 keV from the downwind hemisphere of the heliosphere. These ENAs are believed to originate mostly from pickup protons and solar wind protons in the inner heliosheath. This study includes all low-energy observations made with the Interstellar Boundary Explorer over the first 8 years. Since the protons around 0.1 keV dominate the plasma pressure in the inner heliosheath in downwind direction, these ENA observations offer the unique opportunity to constrain the plasma properties and dimensions of the heliosheath where no in-situ observations are available. We firstmore » derive energy spectra of ENA intensities averaged over time for 49 macropixels covering the entire downwind hemisphere. The results confirm previous studies regarding integral intensities and the roll-over around 0.1 keV energy. With the expanded dataset we now find that ENA intensities at 0.2 and 0.1 keV seem to anti-correlate with solar activity. We then derive the product of total plasma pressure and emission thickness of protons in the heliosheath to estimate lower limits on the thickness of the inner heliosheath. The temporally averaged ENA intensities support a rather spherical shape of the termination shock and a heliosheath thickness between 150 and 210 au for most regions of the downwind hemisphere. Around the nominal downwind direction of 76° ecliptic longitude, the heliosheath is at least 280 au thick. There, the neutral hydrogen density seems to be depleted compared to upwind directions by roughly a factor of 2.« less

  5. Oxygen Pickup Ions Measured by MAVEN Outside the Martian Bow Shock

    NASA Astrophysics Data System (ADS)

    Rahmati, A.; Cravens, T.; Larson, D. E.; Lillis, R. J.; Dunn, P.; Halekas, J. S.; Connerney, J. E. P.; Eparvier, F. G.; Thiemann, E.; Mitchell, D. L.; Jakosky, B. M.

    2015-12-01

    The MAVEN (Mars Atmosphere and Volatile EvolutioN) spacecraft entered orbit around Mars on September 21, 2014 and has since been detecting energetic oxygen pickup ions by its SEP (Solar Energetic Particles) and SWIA (Solar Wind Ion Analyzer) instruments. The oxygen pickup ions detected outside the Martian bowshock and in the upstream solar wind are associated with the extended hot oxygen exosphere of Mars, which is created mainly by the dissociative recombination of molecular oxygen ions with electrons in the ionosphere. We use analytic solutions to the equations of motion of pickup ions moving in the undisturbed upstream solar wind magnetic and motional electric fields and calculate the flux of oxygen pickup ions at the location of MAVEN. Our model calculates the ionization rate of oxygen atoms in the exosphere based on the hot oxygen densities predicted by Rahmati et al. (2014), and the sources of ionization include photo-ionization, charge exchange, and electron impact ionization. The photo-ionization frequency is calculated using the FISM (Flare Irradiance Spectral Model) solar flux model, based on MAVEN EUVM (Extreme Ultra-Violet Monitor) measurements. The frequency of charge exchange between a solar wind proton and an oxygen atom is calculated using MAVEN SWIA solar wind proton flux measurements, and the electron impact ionization frequency is calculated based on MAVEN SWEA (Solar Wind Electron Analyzer) solar wind electron flux measurements. The solar wind magnetic field used in the model is from the measurements taken by MAVEN MAG (magnetometer) in the upstream solar wind. The good agreement between our predicted pickup oxygen fluxes and the MAVEN SEP and SWIA measured ones confirms detection of oxygen pickup ions and these model-data comparisons can be used to constrain models of hot oxygen densities and photochemical escape flux.

  6. On the decades-long stability of the interstellar wind through the solar system

    NASA Astrophysics Data System (ADS)

    Lallement, R.; Bertaux, J. L.

    2014-05-01

    We have revisited the series of observations recently used to infer a temporal variation in the interstellar helium flow over the past forty years. Concerning the recent IBEX-Lo direct detection of helium neutrals, there are two types of precise and unambiguous measurements that do not rely on the exact response of the instrument: the count rate maxima as a function of the spin angle, which determines the ecliptic latitude of the flow, and the count rate maxima as a function of IBEX longitude, which determines a tight relationship between the ecliptic longitude of the flow and its velocity far from the Sun. These measurements provide parameters (and couples of parameters in the second case) that are remarkably similar to the canonical, old values. In contrast, the preferred choice of a lower velocity and higher longitude reported before from IBEX data is only based on the count rate variation (at each spin phase maximum) as a function of the satellite longitude, when drifting across the region of high fluxes. We have examined the consequences of dead-time counting effects and conclude that including them at a realistic level is sufficient to reconcile the data with the old parameters, calling for further investigations. We discuss the analyses of the STEREO pickup ion data and argue that the statistical method that has been preferred to infer the neutral flow longitude (instead of the more direct method based on the pickup ion maximum flux directions) is not appropriate. Moreover, transport effects may have been significant at the very weak solar activity level of 2007-2009, in which case the longitudes of the pickup ion maxima are only upper limits on the flow longitude. Finally, we found that using some flow longitude determinations based on UV glow data is not adequate. Based on this global study, and at variance with recent conclusions, we find no evidence for a temporal variability of the interstellar helium flow. This has implications for inner and outer heliosphere studies.

  7. Interstellar He Flow Analysis over the Past 9 Years with Observations over the Full IBEX-Lo Energy Range

    NASA Astrophysics Data System (ADS)

    Moebius, E.; Bower, E.; Bzowski, M.; Fuselier, S. A.; Heirtzler, D.; Kubiak, M. A.; Kucharek, H.; Lee, M. A.; McComas, D. J.; Schwadron, N.; Swaczyna, P.; Sokol, J. M.; Wurz, P.

    2017-12-01

    The Sun's motion relative to the surrounding interstellar medium leads to an interstellar neutral (ISN) wind through the heliosphere. This wind is moderately depleted by ionization and can be analyzed in-situ with pickup ions and direct neutral atom imaging. Since 2009, observations of the ISN wind at 1 AU with the Interstellar Boundary Explorer (IBEX) have returned a very precise 4-dimensional parameter tube for the flow vector (speed VISN, longitude λISN, and latitude βISN) and temperature TISN of interstellar He in the local cloud, which organizes VISN, βISN, and TISN as a function of λISN, and the local flow Mach number (VThISN/VISN). Typically, the uncertainties along this functional dependence are larger than across it. Here we present important refinements of the determination of this parameter tube by analyzing the spin-integrated ISN flux for its maximum as a function of ecliptic longitude for each year through 2017. In particular, we include a weak energy dependence of the sensor efficiency by comparing the response in all four energy steps that record the ISN He flow. In addition, a recent operational extension of letting the spin axis pointing of IBEX drift to the maximum offset west of the Sun, results in an additional constraint that helps breaking the degeneracy of the ISN parameters along the 4D tube. This constraint is part of the complement of drivers for the determination of all four ISN parameters effective in the full χ2-minimization by comparing the observed count rate distribution with detailed modeling of the ISN flow (e.g. Bzowski et al., 2015, ApJS, 220:28; Schwadron et al., 2015, ApJS, 220:25) and is complementary to the independent determination of λISN using the longitude dependence of the He+ pickup ion cut-off speed with STEREO PLASTIC and ACE SWICS (Möbius et al., 2015, ApJ 815:20).

  8. Energetics and mechanisms for the unimolecular dissociation of protonated trioses and relationship to proton-mediated formaldehyde polymerization to carbohydrates in interstellar environments.

    PubMed

    Simakov, Anton; Sekiguchi, Osamu; Bunkan, Arne Joakim C; Uggerud, Einar

    2011-12-28

    We report the unimolecular decomposition of protonated glyceraldehyde, [HOCH(2)CH(OH)CHO]H(+), and protonated dihydroxyacetone, [HOCH(2)C(O)CH(2)OH]H(+). On the basis of mass spectrometric experiments and computational quantum chemistry, we have found that these isomeric ions interconvert freely at energies below that required for their unimolecular decompositions. The losses of formaldehyde and water (the latter also followed by CO loss) are the dominating processes, with formaldehyde loss having the lower energetic threshold. The reverse of the formaldehyde loss, namely, the addition of formaldehyde to protonated glycolaldehyde, appears to be an inefficient reaction at low temperature and pressure in the gas phase, leading to dissociation products. The relevance of these findings to interstellar chemistry and prebiotic chemistry is discussed, and it is concluded that the suggestion made in the literature that successive addition of formaldehyde by proton-assisted reactions should account for interstellar carbohydrates most likely is incorrect. © 2011 American Chemical Society

  9. Simulations and Characteristics of Large Solar Events Propagating Throughout the Heliosphere and Beyond (Invited)

    NASA Astrophysics Data System (ADS)

    Intriligator, D. S.; Sun, W.; Detman, T. R.; Dryer, Ph D., M.; Intriligator, J.; Deehr, C. S.; Webber, W. R.; Gloeckler, G.; Miller, W. D.

    2015-12-01

    Large solar events can have severe adverse global impacts at Earth. These solar events also can propagate throughout the heliopshere and into the interstellar medium. We focus on the July 2012 and Halloween 2003 solar events. We simulate these events starting from the vicinity of the Sun at 2.5 Rs. We compare our three dimensional (3D) time-dependent simulations to available spacecraft (s/c) observations at 1 AU and beyond. Based on the comparisons of the predictions from our simulations with in-situ measurements we find that the effects of these large solar events can be observed in the outer heliosphere, the heliosheath, and even into the interstellar medium. We use two simulation models. The HAFSS (HAF Source Surface) model is a kinematic model. HHMS-PI (Hybrid Heliospheric Modeling System with Pickup protons) is a numerical magnetohydrodynamic solar wind (SW) simulation model. Both HHMS-PI and HAFSS are ideally suited for these analyses since starting at 2.5 Rs from the Sun they model the slowly evolving background SW and the impulsive, time-dependent events associated with solar activity. Our models naturally reproduce dynamic 3D spatially asymmetric effects observed throughout the heliosphere. Pre-existing SW background conditions have a strong influence on the propagation of shock waves from solar events. Time-dependence is a crucial aspect of interpreting s/c data. We show comparisons of our simulation results with STEREO A, ACE, Ulysses, and Voyager s/c observations.

  10. First Results from the Interstellar Boundary Explorer (IBEX) Mission

    NASA Astrophysics Data System (ADS)

    McComas, David J.

    2010-03-01

    The Interstellar Boundary Explorer (IBEX) is a Small Explorer mission designed to study the global interaction between the heliosphere and the local interstellar medium. IBEX does this by measuring energetic neutral atoms (ENAs) created by both solar wind ions and pickup ions in the solar wind when they charge exchange with cold interstellar neutrals drifting in from the interstellar medium. Because the ENAs are not magnetically confined, some of them propagate back into the inner heliosphere, where IBEX can detect them. IBEX was launched October 19th 2008, using a new launch technique that was also developed as a part of the IBEX project. The first scientific observations from IBEX were of ENAs coming from the Moon-these represented the first ever lunar ENA observations from any spacecraft and provided important information about the universal physical processes of backscatter and neutralization from complex planetary surfaces like the lunar regolith. Since then, IBEX has been collecting its first all-sky maps of heliospheric ENAs and initial direct, in situ observations of interstellar H, He, and O. At the time of this writing, these observations have been submitted and are under review for a special IBEX section of Science magazine nominally scheduled to be published in October 2009.

  11. Possible modification of the cooling index of interstellar helium pickup ions by electron impact ionization in the inner heliosphere

    NASA Astrophysics Data System (ADS)

    Chen, Jun Hong; Bochsler, Peter; Möbius, Eberhard; Gloeckler, George

    2014-09-01

    Interstellar neutrals penetrating into the inner heliosphere are ionized by photoionization, charge exchange with solar wind ions, and electron impact ionization. These processes comprise the first step in the evolution of interstellar pickup ion (PUI) distributions. Typically, PUI distributions have been described in terms of velocity distribution functions that cool adiabatically under solar wind expansion, with a cooling index of 3/2. Recently, the cooling index has been determined experimentally in observations of He PUI distributions with Advanced Composition Explorer (ACE)/Solar Wind Ion Composition Spectrometer and found to vary substantially over the solar cycle. The experimental determination of the cooling index depends on the knowledge of the ionization rates and their spatial variation. Usually, ionization rates increase with 1/r2 as neutral particles approach the Sun, which is not exactly true for electron impact ionization, because the electron temperature increases with decreasing distance from the Sun due to the complexity of its distributions and different radial gradients in temperature. This different dependence on distance may become important in the study of the evolution of PUI distributions and is suspected as one of the potential reasons for the observed variation of the cooling index. Therefore, we investigate in this paper the impact of electron ionization on the variability of the cooling index. We find that the deviation of the electron ionization rate from the canonical 1/r2 behavior of other ionization processes plays only a minor role.

  12. Numerical simulations of primary and secondary hydrogen ENA fluxes at 1 AU

    DOE PAGES

    Zirnstein, Eric; Heerikhuisen, Jacob; Pogorelov, Nikolai

    2012-11-20

    The interaction between the solar wind (SW) and the local interstellar medium (LISM) creates energetic neutral atoms (ENAs), mainly Hydrogen (H), at energies similar to ions in the SW. H ENAs are born from charge exchanges between SW protons and LISM H atoms. A large portion of measurable primary ENAs are born in the inner heliosheath (IHS), where the heated and condensed SW plasma has a large thermal component to direct ENAs back toward 1 AU. Secondary ENAs, however, require secondary charge exchanges before being detected at 1 AU. Primary ENAs born in the supersonic and subsonic SW may exitmore » the HP, charge exchange into pick-up ions (PUIs), and charge exchange again to become secondary ENAs. Recent IBEX observations show a ribbon of flux dominating the entire sky. It is possible that the IBEX ribbon is created through secondary charge exchange processes. In this article we present a numerical code that calculates primary and secondary H ENA fluxes by integrating along ENA trajectories. Here we will provide descriptions of the code and preliminary results.« less

  13. Pickup Ion Dynamics in the Outer Heliosheath Associated with the Growth of Kelvin-Helmholtz Instability at the Heliopause

    NASA Astrophysics Data System (ADS)

    Tsubouchi, K.

    2017-12-01

    A discovery of "IBEX ribbon", localized bright emission of energetic neutral atoms, has brought new insights into the plasma environment of its source region beyond the heliosphere. It has been basically established that its geometrical property is associated with the local interstellar magnetic field draped on the heliopause, and pickup ions (PUIs) in the outer heliosheath (OHS) must be its primary source particles. Understanding the PUI dynamics in OHS more in detail is our motivation for this study. We performed two-dimensional hybrid simulations to evaluate the response of PUIs to the structural variation in the heliosheath. We assumed the simulation system such that the background plasma is hot solar wind in the inner heliosheath and cold interstellar plasma in OHS, and the directions of these flows are tangential to the heliopause. Such a situation leads to the growth of Kelvin-Helmholtz instability (KHI), where the plasma mixing and turbulence excitation takes place. We identified that non-stationarity and non-uniformity emerges in the PUI density structure in a specific energy range as KHI process advances. Relevance of these results to the expected observation like IBEX ribbon will be discussed.

  14. Systematic Variability of the He+ Pickup Ion Velocity Distribution Function Observed with SOHO/CELIAS/CTOF

    NASA Astrophysics Data System (ADS)

    Taut, Andreas; Drews, Christian; Berger, Lars; Wimmer-Schweingruber, Robert

    2016-04-01

    The 1D Velocity Distribution Function (VDF) of He+ pickup ions shows two distinct populations that reflect the sources of these ions. The highly suprathermal population is the result of the ionization and pickup of almost resting interstellar neutrals that are injected into the solar wind as a highly anisotropic torus distribution. The nearly thermalized population is centered around the solar wind bulk speed and is mainly attributed to inner-source pickup ions that originate in the inner heliosphere. Current pickup ion models assume a rapid isotropization of the initial VDF by resonant wave-particle interactions, but recent observations by Drews et al. (2015) of a torus-like VDF strongly limit this isotropization. This in turn means that more observational data is needed to further characterize the kinetic behavior of pickup ions. The Charge-Time-Of-Flight sensor on-board SOHO offers unrivaled counting statistics for He+ and a sufficient mass-per-charge resolution. Thus, the He+ VDF can be observed on comparatively short timescales. We combine this data with the magnetic field data from WIND via an extrapolation to the location of SOHO. On the one hand we investigate the 1D VDF of He+ pickup ions with respect to different magnetic field orientations. Our findings complement on previous studies with other instruments that show an anisotropy of the VDF that is linked to the initial torus VDF. On the other hand we find a significant modification of the VDF during stream-interaction region. This may be linked to a different cooling behaviour in these regions and/or the absence of inner-source He+ during these times. Here, we report on our preliminary results.

  15. Interstellar Gas Flow Vector and Temperature Determination over 5 Years of IBEX Observations

    NASA Astrophysics Data System (ADS)

    Möbius, E.; Bzowski, M.; Fuselier, S. A.; Heirtzler, D.; Kubiak, M. A.; Kucharek, H.; Lee, M. A.; Leonard, T.; McComas, D. J.; Schwadron, N.; Sokół, J. M.; Wurz, P.

    2015-01-01

    The Interstellar Boundary Explorer (IBEX) observes the interstellar neutral gas flow trajectories at their perihelion in Earth's orbit every year from December through early April, when the Earth's orbital motion is into the oncoming flow. These observations have defined a narrow region of possible, but very tightly coupled interstellar neutral flow parameters, with inflow speed, latitude, and temperature as well-defined functions of inflow longitude. The best- fit flow vector is different by ≈ 3° and lower by ≈ 3 km/s than obtained previously with Ulysses GAS, but the temperature is comparable. The possible coupled parameter space reaches to the previous flow vector, but only for a substantially higher temperature (by ≈ 2000 K). Along with recent pickup ion observations and including historical observations of the interstellar gas, these findings have led to a discussion, whether the interstellar gas flow into the solar system has been stable or variable over time. These intriguing possibilities call for more detailed analysis and a longer database. IBEX has accumulated observations over six interstellar flow seasons. We review key observations and refinements in the analysis, in particular, towards narrowing the uncertainties in the temperature determination. We also address ongoing attempts to optimize the flow vector determination through varying the IBEX spacecraft pointing and discuss related implications for the local interstellar cloud and its interaction with the heliosphere.

  16. Anisotropy of the He+, C+, N+, O+, and Ne+ Pickup Ion Velocity Distribution Function

    NASA Astrophysics Data System (ADS)

    Drews, Christian; Berger, Lars; Taut, Andreas; Wimmer-Schweingruber, Robert F.

    2016-04-01

    Interstellar and inner-source PickUp Ions (PUIs) are produced by the ionization of neutral atoms that originate either outside or inside the heliosphere. Just after the ionization, the singly charged ions are picked up by the magnetized solar wind plasma and develop strong anisotropic toroidal features in their Velocity Distribution Functions (VDF). As the plasma parcel moves outward with the solar wind, the pickup-ion VDF gets more and more affected by resonant wave-particle interactions, changing heliospheric conditions, and plasma drifts, which lead to a gradual isotropization of the pickup ion VDF. Past investigations of the pickup ion torus distribution were limited to He+ pickup ions at 1 Astronomical Unit (AU). The aim of this study is to quantify the state of anisotropy of the He+, C+, N+, O+, and Ne+ pickup ion VDF at 1 AU. Changes between the state of anisotropy between PUIs of different mass-per charges can be used to estimate the significance of resonant wave particle interactions for the isotropization of their VDF, and to investigate the numerous simplifications that are generally made for the description of the phase space transport of PUIs. Pulse height analysis data by the PLAsma and SupraThermal Ion Composition instrument (PLASTIC) on board the Solar Terrestrial RElations Observatory Ahead (STEREO A) is used to obtain velocity spectra of He+, C+, N+, O+, and Ne+ relative to the solar wind, f(wsw). The wsw-spectra are sorted by two different configurations of the local magnetic field - one in which the torus distribution lies within the instrument's aperture, φ⊥, and one in which the torus distribution lies exclusively outside the instrument's field of view, φ∥. The ratio of the PUI spectra between φ⊥ and φ∥ is used to determine the degree of anisotropy of the PUI VDF. The data shows that the formation of a torus distribution at 1 AU is significantly more prominent for O+ (and N+) than for He+ (and Ne+). This cannot be explained by resonant wave-particle interactions as the sole mechanism for the isotropization of the PUI VDF. The anisotropy of the O+ VDF compared to He+ is highly fluctuating but consistently higher over an observation period of 6 years and therefore unlikely to be related to either specific heliospheric conditions or solar activity variations. To our surprise, we also found a clear signature of a C+ torus distribution at 1 AU very similar to the one of He+, although as an inner-source PUI, C+ should have a considerably different spectral and spatial injection pattern than interstellar PUIs.

  17. Interstellar Protons in the TeV γ-Ray SNR HESS J1731-347: Possible Evidence for the Coexistence of Hadronic and Leptonic γ-Rays

    NASA Astrophysics Data System (ADS)

    Fukuda, T.; Yoshiike, S.; Sano, H.; Torii, K.; Yamamoto, H.; Acero, F.; Fukui, Y.

    2014-06-01

    HESS J1731-347 (G353.6-0.7) is one of the TeV γ-ray supernova remnants (SNRs) that shows the shell-like morphology. We have made a new analysis of the interstellar protons toward the SNR by using both the 12CO(J = 1-0) and H I data sets. The results indicate that the TeV γ-ray shell shows significant spatial correlation with the interstellar protons at a velocity range from -90 km s-1 to -75 km s-1. The total mass of the interstellar medium (ISM) protons is estimated to be 6.4 × 104 M ⊙, 25% of which is atomic gas, and the distance corresponding to the velocity range is ~5.2 kpc, a factor of 2 larger than the previous figure, 3 kpc. We have identified the cold H I gas observed as self-absorption which shows significant correspondence with the northeastern γ-ray peak. While the good correspondence between the ISM protons and TeV γ-rays in the north of the SNR lends support to the hadronic scenario for the TeV γ-rays, the southern part of the shell shows a break in the correspondence; in particular, the southwestern rim of the SNR shell shows a significant decrease of the interstellar protons by a factor of two. We argue that this discrepancy can be explained due to leptonic γ-rays because this region coincides well with the bright shell that emits non-thermal radio continuum emission and non-thermal X-rays, suggesting that the γ-rays of HESS J1713-347 consist of both the hadronic and leptonic components. The leptonic contribution corresponds to ~20% of the total γ-rays.

  18. Interstellar H3+

    PubMed Central

    Oka, Takeshi

    2006-01-01

    Protonated molecular hydrogen, H3+, is the simplest polyatomic molecule. It is the most abundantly produced interstellar molecule, next only to H2, although its steady state concentration is low because of its extremely high chemical reactivity. H3+ is a strong acid (proton donor) and initiates chains of ion-molecule reactions in interstellar space thus leading to formation of complex molecules. Here, I summarize the understandings on this fundamental species in interstellar space obtained from our infrared observations since its discovery in 1996 and discuss the recent observations and analyses of H3+ in the Central Molecular Zone near the Galatic center that led to a revelation of a vast amount of warm and diffuse gas existing in the region. PMID:16894171

  19. Indirect observation of unobservable interstellar molecules

    NASA Technical Reports Server (NTRS)

    Herbst, E.; Green, S.; Thaddeus, P.; Klemperer, W.

    1977-01-01

    It is suggested that the abundances of neutral non-polar interstellar molecules unobservable by radio astronomy can be systematically determined by radio observation of the protonated ions. As an example, observed N2H(+) column densities are analyzed to infer molecular nitrogen abundances in dense interstellar clouds. The chemistries and expected densities of the protonated ions of O2, C2, CO2, C2H2 and CH4 are then discussed. Microwave transition frequencies fo HCO2(+) and C2H3(+) are estimated, and a preliminary astronomical search for HCO2(+) is described.

  20. On the stability of pick-up ion ring distributions in the outer heliosheath

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Summerlin, Errol J.; Viñas, Adolfo F.; Moore, Thomas E.

    The 'secondary energetic neutral atom (ENA)' hypothesis for the ribbon feature observed by the Interstellar Boundary Explorer (IBEX) posits that the neutral component of the solar wind continues beyond the heliopause and charge exchanges with interstellar ions in the Outer Heliosheath (OHS). This creates pick-up ions that gyrate about the draped interstellar magnetic field (ISMF) lines at pitch angles near 90° on the locus where the ISMF lies tangential to the heliopause and perpendicular to the heliocentric radial direction. This location closely coincides with the location of the ribbon feature according to the prevailing inferences of the ISMF orientation andmore » draping. The locally gyrating ions undergo additional charge exchange and escape as free-flying neutral atoms, many of which travel back toward the inner solar system and are imaged by IBEX as a ribbon tracing out the locus described above. For this mechanism to succeed, the pick-up ions must diffuse in pitch angle slowly enough to permit secondary charge exchange before their pitch angle distribution substantially broadens away from 90°. Previous work using linear Vlasov dispersion analysis of parallel propagating waves has suggested that the ring distribution in the OHS is highly unstable, which, if true, would make the secondary ENA hypothesis incapable of rendering the observed ribbon. In this paper, we extend this earlier work to more realistic ring distribution functions. We find that, at the low densities necessary to produce the observed IBEX ribbon via the secondary ENA hypothesis, growth rates are highly sensitive to the temperature of the beam and that even very modest temperatures of the ring beam corresponding to beam widths of <1° are sufficient to damp the self-generated waves associated with the ring beam. Thus, at least from the perspective of linear Vlasov dispersion analysis of parallel propagating waves, there is no reason to expect that the ring distributions necessary to produce the observed IBEX ENA flux via the secondary ENA hypothesis will be unstable to their own self-generated turbulence.« less

  1. On the Stability of Pick-up Ion Ring Distributions in the Outer Heliosheath

    NASA Astrophysics Data System (ADS)

    Summerlin, Errol J.; Viñas, Adolfo F.; Moore, Thomas E.; Christian, Eric R.; Cooper, John F.

    2014-10-01

    The "secondary energetic neutral atom (ENA)" hypothesis for the ribbon feature observed by the Interstellar Boundary Explorer (IBEX) posits that the neutral component of the solar wind continues beyond the heliopause and charge exchanges with interstellar ions in the Outer Heliosheath (OHS). This creates pick-up ions that gyrate about the draped interstellar magnetic field (ISMF) lines at pitch angles near 90° on the locus where the ISMF lies tangential to the heliopause and perpendicular to the heliocentric radial direction. This location closely coincides with the location of the ribbon feature according to the prevailing inferences of the ISMF orientation and draping. The locally gyrating ions undergo additional charge exchange and escape as free-flying neutral atoms, many of which travel back toward the inner solar system and are imaged by IBEX as a ribbon tracing out the locus described above. For this mechanism to succeed, the pick-up ions must diffuse in pitch angle slowly enough to permit secondary charge exchange before their pitch angle distribution substantially broadens away from 90°. Previous work using linear Vlasov dispersion analysis of parallel propagating waves has suggested that the ring distribution in the OHS is highly unstable, which, if true, would make the secondary ENA hypothesis incapable of rendering the observed ribbon. In this paper, we extend this earlier work to more realistic ring distribution functions. We find that, at the low densities necessary to produce the observed IBEX ribbon via the secondary ENA hypothesis, growth rates are highly sensitive to the temperature of the beam and that even very modest temperatures of the ring beam corresponding to beam widths of <1° are sufficient to damp the self-generated waves associated with the ring beam. Thus, at least from the perspective of linear Vlasov dispersion analysis of parallel propagating waves, there is no reason to expect that the ring distributions necessary to produce the observed IBEX ENA flux via the secondary ENA hypothesis will be unstable to their own self-generated turbulence.

  2. Direct Observations of Interstellar H, He, and O by the Interstellar Boundary Explorer (Invited)

    NASA Astrophysics Data System (ADS)

    Moebius, E.; Bochsler, P. A.; Bzowski, M.; Crew, G. B.; Funsten, H. O.; Fuselier, S. A.; Ghielmetti, A.; Heirtzler, D.; Izmodenov, V.; Kubiak, M.; Kucharek, H.; Lee, M. A.; Leonard, T.; McComas, D. J.; Petersen, L.; Saul, L. A.; Scheer, J.; Schwadron, N. A.; Witte, M.; Wurz, P.

    2009-12-01

    Due to the motion of the Sun relative to its neighborhood, the neutral gas of the local in-terstellar medium (LISM) flows through the inner heliosphere where it is subject to ioni-zation, the Sun’s gravity, and radiation pressure. Observing the resulting spatial distribu-tion and flow pattern of several interstellar gas species with UV backscatter, pickup ion, and neutral atom imaging techniques allows us to unravel the physical conditions of the LISM and its interaction with the heliosphere. Imaging of the neutral gas flow directly with energetic neutral atom (ENA) cameras yields the most accurate account of the ki-netic parameters of the interstellar gas, but so far this has been carried out only for He using Ulysses GAS. IBEX, which was launched in October 2008, provides the capability for simultaneous flow observations of several interstellar species with its triple-time-of-flight IBEX-Lo sensor. Because H and O are strongly affected by the heliospheric inter-face while He is not, a direct comparison between these species enables an independent assessment of the slowdown and heating processes in the outer heliosheath. Likewise, IBEX observations will constrain models of the heliospheric interaction and provide a test of the heliospheric asymmetry - recently inferred from Voyager and SOHO SWAN observations - that is seen as an indicator for the interstellar magnetic field direction. During the first half year of its mission IBEX has observed the interstellar He, O, and H flow. We will present an overview and preliminary analysis of these first interstellar mul-tispecies scans of the interstellar gas flow in spring and fall 2009.

  3. Systematic properties of proton single-particle energies

    NASA Astrophysics Data System (ADS)

    Mairle, G.

    1985-03-01

    Single-particle energies of protons in the 1f7/2, 2p3/2, 2p1/2, 1f5/2 and 1g9/2 shells of medium-weight nuclei were determined from proton pickup and stripping experiments. The data reveal a simple linear dependence on mass number A and isospin To of the target nuclei which can be interpreted in terms of an extended Bansal-French model.

  4. Modeling of the solar cycle modulated interstellar He, Ne, and O pick-up ion flux along the Earth orbit

    NASA Astrophysics Data System (ADS)

    Bzowski, M.; Sokol, J. M.; Kubiak, M. A.; Moebius, E.

    2015-12-01

    Interstellar pick-up ions (PUIs) are used to study in-situ the interstellar flow through the heliosphere. The locations of the peaks of the downwind focusing cone and the upwind crescent as observed in the PUI flux have been used as signatures for the flow direction of neutral interstellar (ISN) gas into the heliosphere. We study the modulation of interstellar He, Ne, and O PUI along the Earth orbit over almost the entire solar activity cycle from 2002 to 2013. We present the expected density of ISN atoms and the resulting PUI fluxes with their modulation due to varying ionization over the solar cycle. Considering the important role of the finite injection speed of ISN atoms and of adiabatic PUI cooling, we show that Ne and O always form an upwind crescent in the PUI flux, but that the crescent formation for He PUIs strongly depends on the integration boundaries for the PUI distribution. Because the crescent has been observed for all three species, we find that the classical model of PUI evolution by Vasyliunas & Siscoe (1976) may not be sufficient to reproduce the upwind structure of He PUIs. We also find that ecliptic longitude of the PUI peak in the focusing cone is a good proxy for the inflow direction of ISN He and Ne during solar minimum, but not for ISN O, which exhibits a systematic shift in the model. On the other hand, the peak location derived from the crescent may not be a good proxy to determine the inflow longitude because it is highly modulated by short-time (few months) variations in the ionization losses. These lead to a corrugated crescent structure and may shift the fitted position of the crescent peak used to determine the inflow direction by up to 10°, with the strongest effects for the species that are heavily affected by ionization, i.e., O and Ne. These findings are in a qualitative agreement with results of in-situ PUI measurements, which showed that the location of PUI maximum varies.

  5. Investigating Global Ion and Neutral Atom Populations with IBEX and Voyager

    NASA Technical Reports Server (NTRS)

    Florinski, Vladimir

    2016-01-01

    The main objective of this project was to investigate pickup ion (PUI) production in the solar wind and heliosheath (the region between the termination shock and the heliopause) and compute the distributed energetic neutral atom fluxes throughout the helioshpere. The simulations were constrained by comparing the model output against observations from Ulysses, New Horizons, Voyager 1 and 2, and IBEX space probes. As evidenced by the number of peer reviewed journal publications resulting from the project (13 plus three submitted) and their citation rate (156 citations over three years), the project has made a lasting contribution to the field. The outcome is a significant improvement of our understanding of the pickup ion production and distribution in the distant heliosphere. The team has accomplished the entire set of tasks A-H set forth in the proposal. Namely, the transport modeling framework has been augmented with two populations of pickup ions (PUIs), the boundary conditions for the plasma and interstellar neutral hydrogen were verified against Ulysses and New Horizons PUI and an optimal set of velocity diffusion parameters established. The multi-component fluxes of PUIs were computed and isotropic velocity distributions generated for each cell in the computer simulation that covered the heliosphere from 1.5 AU to the heliopause. The distributions were carefully compared with in situ measurements at 3 AU (Ulysses), 12 AU (New Horizons), and 80-90 AU (Voyager 1 and 2) as well as those inferred from ENA fluxes measured by Cassini and IBEX (Wu et al., 2016). Some examples of modeldata comparison are shown in Figure 1. We have used coupled MHD-plasma and kinetic-neutral code to investigate the likely range of plasma and magnetic field parameters in the local interstellar medium (LISM), based on the assumption that the shape of the IBEX ribbon could be used to determine the orientation of the interstellar magnetic field. While the magnetic field is believed to be oriented toward the center of the ribbon, constraining its strength requires comparing the model-predicted angular diameter and circularity of the ribbon with the observations. The study, published in Heerikhuisen et al. (2014), found that the most likely range for the LISM magnetic field strength is between 0.2 and 0.3 nT, which is less than previously thought. Figure 2 shows the IBEX data (left) and compares it to the simulation with a 0.2 nT interstellar magnetic field (center) and a 0.4 nT (right).

  6. Solar cycle variation of interstellar neutral He, Ne, O density and pick-up ions along the Earth's orbit

    NASA Astrophysics Data System (ADS)

    Sokół, Justyna M.; Bzowski, Maciej; Kubiak, Marzena A.; Möbius, Eberhard

    2016-06-01

    We simulated the modulation of the interstellar neutral (ISN) He, Ne, and O density and pick-up ion (PUI) production rate and count rate along the Earth's orbit over the solar cycle (SC) from 2002 to 2013 to verify if SC-related effects may modify the inferred ecliptic longitude of the ISN inflow direction. We adopted the classical PUI model with isotropic distribution function and adiabatic cooling, modified by time- and heliolatitude-dependent ionization rates and non-zero injection speed of PUIs. We found that the ionization losses have a noticeable effect on the derivation of the ISN inflow longitude based on the Gaussian fit to the crescent and cone peak locations. We conclude that the non-zero radial velocity of the ISN flow and the energy range of the PUI distribution function that is accumulated are of importance for a precise reproduction of the PUI count rate along the Earth orbit. However, the temporal and latitudinal variations of the ionization in the heliosphere, and particularly their variation on the SC time-scale, may significantly modify the shape of PUI cone and crescent and also their peak positions from year to year and thus bias by a few degrees the derived longitude of the ISN gas inflow direction.

  7. Solar wind composition

    NASA Technical Reports Server (NTRS)

    Ogilvie, K. W.; Coplan, M. A.

    1995-01-01

    Advances in instrumentation have resulted in the determination of the average abundances of He, C, N, O, Ne, Mg, Si, S, and Fe in the solar wind to approximately 10%. Comparisons with solar energetic particle (SEP) abundances and galactic cosmic ray abundances have revealed many similarities, especially when compared with solar photospheric abundances. It is now well established that fractionation in the corona results in an overabundance (with respect to the photosphere) of elements with first ionization potentials less than 10 eV. These observations have in turn led to the development of fractionation models that are reasonably successful in reproducing the first ionization (FIP) effect. Under some circumstances it has been possible to relate solar wind observations to particular source regions in the corona. The magnetic topologies of the source regions appear to have a strong influence on the fractionation of elements. Comparisons with spectroscopic data are particularly useful in classifying the different topologies. Ions produced from interstellar neutral atoms are also found in the solar wind. These ions are picked up by the solar wind after ionization by solar radiation or charge exchange and can be identified by their velocity in the solar wind. The pick-up ions provide most of the pressure in the interplanetary medium at large distances. Interstellar abundances can be derived from the observed fluxes of solar wind pick-up ions.

  8. Formation of the heliospheric boundaries and the induced dynamics of the solar system: a multifluid view

    NASA Astrophysics Data System (ADS)

    Fahr, Hans-Jörg

    2000-05-01

    In many papers in the literature it is shown that wind-driving stars with a peculiar motion relative to the ambient interstellar medium within dynamical time periods form a dynamically adapted astropause as separatrix between the stellar wind plasma and the surrounding interstellar plasma. As we shall show in this chapter stars with an adapted astropause are subject to thrust forces finally acting on the wing-generating central body and thus influencing the stellar motion. Thereby the actual magnitude of the resulting thrust force depends on the actual counterflow configuration of stellar and interstellar winds determined by the particular kinematic situation, i.e. the instantaneous Mach number of the motion relative to the ambient medium. We shall study the sensitivity of this configuration to whether the interstellar flow is sub- or supersonic. The resulting net force is shown to vary in a non-monotonic way with the actual peculiar velocity. For subsonic motions this force generally has an accelerating nature, i.e. operating like a rocket thrust motor, whereas for supersonic motions at supercritical Mach numbers μS≥μS,c, to the contrary, it is of a decelerating nature. For an adequate description of a time-dependent circumstellar flow configuration, we shall use an analytic, hydrodynamic modeling of the counterflow configuration representing the case of a stellar wind system in subsonic or supersonic motion with respect to the local interstellar medium. For the purpose of analytical treatability we assume irrotational and incompressible flows downstream of the inner and outer shocks and give quantitative numbers for forces acting on the central star. We also describe long-period evolutions of star motions and give typical acceleration time periods for different types of wind-driving stars. As we shall emphasize here the dynamical influence of these thrust forces onto the central stellar body requires an understanding of how the presence of the counterflowing interstellar plasma is communicated upstream in the supersonic stellar wind up to the origin of this wind, the stellar corona. The answer we shall give is based on the multifluid character of the relevant counterflow situation invalidating the conventional mono-Mach-number concept of hydrodynamical flows. In fact stellar winds can only be described by a poly-Mach-number concept, with stellar-wind protons being supersonic, with pick-up ions being marginally sonic, and with electrons and anomalous cosmic ray particles being strongly subsonic. We shall present solutions for multifluid counterflow configurations based on computational simulations in which a consistent picture of the interaction of all these different species is given. Our final conclusion is that already the solar wind when passing over the Earth's orbit tells us about the interstellar medium beyond the heliopause.

  9. Analog signal pre-processing for the Fermilab Main Injector BPM upgrade

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Saewert, A.L.; Rapisarda, S.M.; Wendt, M.

    2006-05-01

    An analog signal pre-processing scheme was developed, in the framework of the Fermilab Main Injector Beam Position Monitor (BPM) Upgrade, to interface BPM pickup signals to the new digital receiver based read-out system. A key component is the 8-channel electronics module, which uses separate frequency selective gain stages to acquire 53 MHz bunched proton, and 2.5 MHz anti-proton signals. Related hardware includes a filter and combiner box to sum pickup electrode signals in the tunnel. A controller module allows local/remote control of gain settings and activation of gain stages, and supplies test signals. Theory of operation, system overview, and somemore » design details are presented, as well as first beam measurements of the prototype hardware.« less

  10. A Detailed Study of the Interstellar Protons toward the TeV γ-Ray SNR RX J0852.0-4622 (G266.2-1.2, Vela Jr.): The Third Case of the γ-Ray and ISM Spatial Correspondence

    NASA Astrophysics Data System (ADS)

    Fukui, Y.; Sano, H.; Sato, J.; Okamoto, R.; Fukuda, T.; Yoshiike, S.; Hayashi, K.; Torii, K.; Hayakawa, T.; Rowell, G.; Filipović, M. D.; Maxted, N.; McClure-Griffiths, N. M.; Kawamura, A.; Yamamoto, H.; Okuda, T.; Mizuno, N.; Tachihara, K.; Onishi, T.; Mizuno, A.; Ogawa, H.

    2017-11-01

    We present a new analysis of the interstellar protons toward the TeV γ-ray SNR RX J0852.0-4622 (G266.2-1.2, Vela Jr.). We used the NANTEN2 12CO(J = 1-0) and Australia Telescope Compact Array and Parkes H I data sets in order to derive the molecular and atomic gas associated with the TeV γ-ray shell of the SNR. We find that atomic gas over a velocity range from V LSR = -4 to 50 km s-1 or 60 km s-1 is associated with the entire SNR, while molecular gas is associated with a limited portion of the SNR. The large velocity dispersion of the H I is ascribed to the expanding motion of a few H I shells overlapping toward the SNR but is not due to the Galactic rotation. The total masses of the associated H I and molecular gases are estimated to be ˜ 2.5× {10}4 M ⊙ and ˜103 M ⊙, respectively. A comparison with the High Energy Stereoscopic System TeV γ-rays indicates that the interstellar protons have an average density around 100 cm-3 and shows a good spatial correspondence with the TeV γ-rays. The total cosmic-ray proton energy is estimated to be ˜1048 erg for the hadronic γ-ray production, which may still be an underestimate by a factor of a few due to a small filling factor of the SNR volume by the interstellar protons. This result presents a third case, after RX J1713.7-3946 and HESS J1731-347, of the good spatial correspondence between the TeV γ-rays and the interstellar protons, lending further support for a hadronic component in the γ-rays from young TeV γ-ray SNRs.

  11. Interstellar protons in the TeV γ-ray SNR HESS J1731-347: Possible evidence for the coexistence of hadronic and leptonic γ-rays

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Fukuda, T.; Yoshiike, S.; Sano, H.

    2014-06-10

    HESS J1731-347 (G353.6-0.7) is one of the TeV γ-ray supernova remnants (SNRs) that shows the shell-like morphology. We have made a new analysis of the interstellar protons toward the SNR by using both the {sup 12}CO(J = 1-0) and H I data sets. The results indicate that the TeV γ-ray shell shows significant spatial correlation with the interstellar protons at a velocity range from –90 km s{sup –1} to –75 km s{sup –1}. The total mass of the interstellar medium (ISM) protons is estimated to be 6.4 × 10{sup 4} M {sub ☉}, 25% of which is atomic gas, andmore » the distance corresponding to the velocity range is ∼5.2 kpc, a factor of 2 larger than the previous figure, 3 kpc. We have identified the cold H I gas observed as self-absorption which shows significant correspondence with the northeastern γ-ray peak. While the good correspondence between the ISM protons and TeV γ-rays in the north of the SNR lends support to the hadronic scenario for the TeV γ-rays, the southern part of the shell shows a break in the correspondence; in particular, the southwestern rim of the SNR shell shows a significant decrease of the interstellar protons by a factor of two. We argue that this discrepancy can be explained due to leptonic γ-rays because this region coincides well with the bright shell that emits non-thermal radio continuum emission and non-thermal X-rays, suggesting that the γ-rays of HESS J1713-347 consist of both the hadronic and leptonic components. The leptonic contribution corresponds to ∼20% of the total γ-rays.« less

  12. MULTIPLE CURRENT SHEET SYSTEMS IN THE OUTER HELIOSPHERE: ENERGY RELEASE AND TURBULENCE

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Burgess, D.; Gingell, P. W.; Matteini, L.

    2016-05-01

    In the outer heliosphere, beyond the solar wind termination shock, it is expected that the warped heliospheric current sheet forms a region of closely packed, multiple, thin current sheets. Such a system may be subject to the ion-kinetic tearing instability, and hence may generate magnetic islands and hot populations of ions associated with magnetic reconnection. Reconnection processes in this environment have important implications for local particle transport, and for particle acceleration at reconnection sites and in turbulence. We study this complex environment by means of three-dimensional hybrid simulations over long timescales, in order to capture the evolution from linear growthmore » of the tearing instability to a fully developed turbulent state at late times. The final state develops from the highly ordered initial state via both forward and inverse cascades. Component and spectral anisotropy in the magnetic fluctuations is present when a guide field is included. The inclusion of a population of newborn interstellar pickup protons does not strongly affect these results. Finally, we conclude that reconnection between multiple current sheets can act as an important source of turbulence in the outer heliosphere, with implications for energetic particle acceleration and propagation.« less

  13. The pick-up of cometary protons by the solar wind

    NASA Technical Reports Server (NTRS)

    Neugebauer, M.; Goldstein, B. E.; Goldstein, R.; Lazarus, A. J.; Altwegg, K.; Balsiger, H.

    1987-01-01

    The HERS detector of the Ion Mass Spectrometer on the Giotto spacecraft measured the 3-dimensional distribution of picked-up cometary protons over a distance of about 8 million km upstream of the bow shock of comet P/Hally. The protons were observed to be elastically scattered out of their original cycloidal trajectories such that they were nonuniformly distributed over a spherical shell in velocity space. The shell radius (relative to its expected radius) and thickness increased as the bow shock was approached. Down-stream of the shock, the cometary protons could not be distinguished from the heated solar wind protons.

  14. Charge-exchange coupling between pickup ions across the heliopause and its effect on energetic neutral hydrogen flux

    DOE PAGES

    Zirnstein, Eric J.; Heerikhuisen, J.; Zank, G. P.; ...

    2014-02-24

    Pickup ions (PUIs) appear to play an integral role in the multi-component nature of the plasma in the interaction between the solar wind (SW) and local interstellar medium (LISM). Three-dimensional (3D) MHD simulations with a kinetic treatment for neutrals and PUIs are currently still not viable. In light of recent energetic neutral atom (ENA) observations by the Interstellar Boundary EXplorer, the purpose of this paper is to illustrate the complex coupling between PUIs across the heliopause (HP) as facilitated by ENAs using estimates of PUI properties extracted from a 3D MHD simulation of the SW-LISM interaction with kinetic neutrals. First,more » we improve upon the multi-component treatment of the inner heliosheath (IHS) plasma from Zank et al. by including the extinction of PUIs through charge-exchange. We find a significant amount of energy is transferred away from hot, termination shock-processed PUIs into a colder, "freshly injected" PUI population. Second, we extend the multi-component approach to estimate ENA flux from the outer heliosheath (OHS), formed from charge-exchange between interstellar hydrogen atoms and energetic PUIs. These PUIs are formed from ENAs in the IHS that crossed the HP and experienced charge-exchange. Lastly, our estimates, based on plasma-neutral simulations of the SW-LISM interaction and a post-processing analysis of ENAs and PUIs, suggest the majority of flux visible at 1 AU from the front of the heliosphere, between ~0.02 and 10 keV, originates from OHS PUIs, indicating strong coupling between the IHS and OHS plasmas through charge-exchange.« less

  15. The Role of Pickup Ion Dynamics Outside of the Heliopause in the Limit of Weak Pitch Angle Scattering: Implications for the Source of the IBEX Ribbon.

    PubMed

    Zirnstein, E J; Heerikhuisen, J; Dayeh, M A

    2018-01-01

    We present a new model of the Interstellar Boundary Explorer ( IBEX ) ribbon based on the secondary energetic neutral atom (ENA) mechanism, under the assumption that there is negligible pitch angle scattering of pickup ions (PUIs) outside the heliopause. Using the results of an MHD-plasma/kinetic-neutral simulation of the heliosphere, we generate PUIs in the outer heliosheath, solve their transport using guiding center theory, and compute ribbon ENA fluxes at 1 AU. We implement several aspects of the PUI dynamics, including (1) parallel motion along the local interstellar magnetic field (ISMF), (2) advective transport with the interstellar plasma, (3) the mirror force acting on PUIs propagating along the ISMF, and (4) betatron acceleration of PUIs as they are advected within an increasing magnetic field towards the heliopause. We find that ENA fluxes at 1 AU are reduced when PUIs are allowed to move along the ISMF, and ENA fluxes are reduced even more by the inclusion of the mirror force, which pushes particles away from IBEX lines-of-sight. Inclusion of advection and betatron acceleration do not result in any significant change in the ribbon. Interestingly, the mirror force reduces the ENA fluxes from the inner edge of the ribbon more than its outer edge, effectively reducing the ribbon's width by ∼6° and increasing its radius projected on the sky. This is caused by the asymmetric draping of the ISMF around the heliopause, such that ENAs from the ribbon's inner edge originate closer to the heliopause, where the mirror force is strongest.

  16. The Role of Pickup Ion Dynamics Outside of the Heliopause in the Limit of Weak Pitch Angle Scattering: Implications for the Source of the IBEX Ribbon

    NASA Astrophysics Data System (ADS)

    Zirnstein, E. J.; Heerikhuisen, J.; Dayeh, M. A.

    2018-03-01

    We present a new model of the Interstellar Boundary Explorer (IBEX) ribbon based on the secondary energetic neutral atom (ENA) mechanism, under the assumption that there is negligible pitch angle scattering of pickup ions (PUIs) outside the heliopause. Using the results of an MHD-plasma/kinetic-neutral simulation of the heliosphere, we generate PUIs in the outer heliosheath, solve their transport using guiding center theory, and compute ribbon ENA fluxes at 1 au. We implement several aspects of the PUI dynamics, including (1) parallel motion along the local interstellar magnetic field (ISMF), (2) advective transport with the interstellar plasma, (3) the mirror force acting on PUIs propagating along the ISMF, and (4) betatron acceleration of PUIs as they are advected within an increasing magnetic field toward the heliopause. We find that ENA fluxes at 1 au are reduced when PUIs are allowed to move along the ISMF, and ENA fluxes are reduced even more by the inclusion of the mirror force, which pushes particles away from IBEX lines of sight. Inclusion of advection and betatron acceleration do not result in any significant change in the ribbon. Interestingly, the mirror force reduces the ENA fluxes from the inner edge of the ribbon more than those from its outer edge, effectively reducing the ribbon’s width by ∼6° and increasing its radius projected on the sky. This is caused by the asymmetric draping of the ISMF around the heliopause, such that ENAs from the ribbon’s inner edge originate closer to the heliopause, where the mirror force is strongest.

  17. Spectroscopy of prospective interstellar ions and radicals isolated in para-hydrogen matrices.

    PubMed

    Tsuge, Masashi; Tseng, Chih-Yu; Lee, Yuan-Pern

    2018-02-21

    para-Hydrogen (p-H 2 ) serves as a new host in matrix-isolation experiments for an investigation of species of astrochemical interest. Protonated and mono-hydrogenated species are produced upon electron bombardment during deposition of p-H 2 containing a precursor in a small proportion. The applications of this novel technique to generate protonated polycyclic aromatic hydrocarbons (H + PAH), protonated polycyclic nitrogen heterocycles (H + PANH), and their neutral counterparts, which are important in the identification of interstellar unidentified infrared emission bands, demonstrate its superiority over other methods. The clean production with little fragmentation, ease of distinction between protonated and neutral species, narrow lines and reliable relative infrared intensities of the lines, and broad coverage of the spectral range associated with this method enable us to assign the isomers unambiguously. The application of this method to the protonation of small molecules is more complicated partly because of the feasible fragmentation and reactions, and partly because of the possible proton sharing between the species of interest and H 2 , but, with isotopic experiments and secondary photolysis, definitive assignments are practicable. Furthermore, the true relative infrared intensities are critical to a comparison of experimental results with data from theoretical calculations. The spectra of a proton-shared species in solid p-H 2 might provide insight into a search for spectra of proton-bound species in interstellar media. Investigations of hydrogenated species involving the photolysis of Cl 2 or precursors of OH complement those using electron bombardment and provide an improved ratio of signal to noise. With careful grouping of observed lines after secondary photolysis and a comparison with theoretical predictions, various isomers of these species have been determined. This photolytic technique has been applied in an investigation of hydrogenated PAH and PANH, and the hydrogenation reactions of small molecules, which are important in interstellar ice and the evolution of life. The electronic transitions of molecules in solid p-H 2 have been little investigated. The matrix shift of the origins of transitions and the spectral width seem to be much smaller than those of noble-gas matrices; these features might facilitate a direct comparison of matrix spectra with diffuse interstellar bands, but further data are required to assess this possibility. The advantages and disadvantages of applying these techniques of p-H 2 matrix isolation to astrochemical research and their future perspectives are discussed.

  18. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kerns, Q.A.; Jackson, G.; Kerns, C.R.

    This paper describes the damper design for 6 proton on 6 pbar bunches in the Tevatron collider. Signal pickup, transient phase detection, derivative networks, and phase correction via the high-level rf are covered. Each rf station is controlled by a slow feedback loop. In addition, global feedback loops control each set of four cavities, one set for protons and one set for antiprotons. Operational experience with these systems is discussed. 7 refs., 9 figs.

  19. Proton impact charge transfer on hydantoin - Prebiotic implications

    NASA Astrophysics Data System (ADS)

    Bacchus-Montabonel, Marie-Christine

    2016-11-01

    Formation and destruction of prebiotic compounds in astrophysical environments is a major issue in reactions concerning the origin of life. Detection of hydantoin in laboratory irradiation of interstellar ice analogues has confirmed evidence of this prebiotic compound and its stability to UV radiation or collisions may be crucial. Considering the different astrophysical environments, we have investigated theoretically proton-induced collisions with hydantoin in a wide energy range, from eV in the interstellar medium, up to keV for processes involving solar wind or supernovae shock-waves protons. Results are compared to previous investigations and qualitative trends on damage under spatial radiations are suggested.

  20. Probing non polar interstellar molecules through their protonated form: Detection of protonated cyanogen (NCCNH+)★

    PubMed Central

    Agúndez, M.; Cernicharo, J.; de Vicente, P.; Marcelino, N.; Roueff, E.; Fuente, A.; Gerin, M.; Guélin, M.; Albo, C.; Barcia, A.; Barbas, L.; Bolaño, R.; Colomer, F.; Diez, M. C.; Gallego, J. D.; Gómez-González, J.; López-Fernández, I.; López-Fernández, J. A.; López-Pérez, J. A.; Malo, I.; Serna, J. M.; Tercero, F.

    2015-01-01

    Cyanogen (NCCN) is the simplest member of the series of dicyanopolyynes. It has been hypothesized that this family of molecules can be important constituents of interstellar and circumstellar media, although the lack of a permanent electric dipole moment prevents its detection through radioastronomical techniques. Here we present the first solid evidence of the presence of cyanogen in interstellar clouds through the detection of its protonated form toward the cold dark clouds TMC-1 and L483. Protonated cyanogen (NCCNH+) has been identified through the J = 5 – 4 and J = 10 – 9 rotational transitions using the 40m radiotelescope of Yebes and the IRAM 30m telescope. We derive beam averaged column densities for NCCNH+ of (8.6 ± 4.4) × 1010 cm−2 in TMC-1 and (3.9 ± 1.8) × 1010 cm−2 in L483, which translate to fairly low fractional abundances relative to H2, in the range (1-10) × 10−12. The chemistry of protonated molecules in dark clouds is discussed, and it is found that, in general terms, the abundance ratio between the protonated and non protonated forms of a molecule increases with increasing proton affinity. Our chemical model predicts an abundance ratio NCCNH+/NCCN of ~ 10−4, which implies that the abundance of cyanogen in dark clouds could be as high as (1-10) × 10−8 relative to H2, i.e., comparable to that of other abundant nitriles such as HCN, HNC, and HC3N. PMID:26543239

  1. Effects of multiscale phase-mixing and interior conductance in the lunar-like pickup ion plasma wake. First results from 3-D hybrid kinetic modeling

    NASA Astrophysics Data System (ADS)

    Lipatov, A. S.; Sarantos, M.; Farrell, W. M.; Cooper, J. F.

    2018-07-01

    The study of multiscale pickup ion phase-mixing in the lunar plasma wake with a hybrid model is the main subject of our investigation in this paper. Photoionization and charge exchange of protons with the lunar exosphere are the ionization processes included in our model. The computational model includes the self-consistent dynamics of the light (H+ or H2+ and He+), and heavy (Na+) pickup ions. The electrons are considered as a fluid. The lunar interior is considered as a weakly conducting body. In this paper we considered for the first time the cumulative effect of heavy neutrals in the lunar exosphere (e.g., Al, Ar), an effect which was simulated with one species of Na+ but with a tenfold increase in total production rates. We find that various species produce various types of plasma tail in the lunar plasma wake. Specifically, Na+ and He+ pickup ions form a cycloid-like tail, whereas the H+ or H2+ pickup ions form a tail with a high density core and saw-like periodic structures in the flank region. The length of these structures varies from 1.5RM to 3.3RM depending on the value of gyroradius for H+ or H2+ pickup ions. The light pickup ions produce more symmetrical jump in the density and magnetic field at the Mach cone which is mainly controlled by the conductivity of the interior, an effect previously unappreciated. Although other pickup ion species had little effect on the nature of the interaction of the Moon with the solar wind, the global structure of the lunar tail in these simulations appeared quite different when the H2+ production rate was high.

  2. Equation of Motion of an Interstellar Bussard Ramjet with Radiation and Mass Losses

    ERIC Educational Resources Information Center

    Semay, Claude; Silvestre-Brac, Bernard

    2008-01-01

    An interstellar Bussard ramjet is a spaceship using the protons of the interstellar medium in a fusion engine to produce thrust. In recent papers, it was shown that the relativistic equation of motion of an ideal ramjet and that of a ramjet with radiation loss are analytical. When a mass loss appears, the limit speed of the ramjet is more strongly…

  3. Fisk-Gloeckler Suprathermal Proton Spectrum in the Heliosheath and the Local Interstellar Medium

    NASA Technical Reports Server (NTRS)

    Cooper, John F.; Kasprzak, W. T.; Mahaffy, P. R.; Niemann, H. B.; Hartle, R. E.; Paschalidis, N.; Chornay, D.; Coplan, M.; Johnson, R. E.

    2010-01-01

    Convergence of suprathermal keV-MeV proton and ion spectra approximately to the Fisk-Gloeckler (F-G) form j(E) = j(sub 0) E(sup -1.5) in Voyager land 2 heliosheath measurements is suggestive of distributed acceleration in Kolmogorov turbulence which may extend well beyond the heliopause into the local interstellar medium (LISM). Turbulence of this type is already indicated by interstellar radio scintillation measurements of electron density power spectra. Previously published extrapolations (Cooper et al., 2003, 2006) of the LISM proton spectrum from eV to GeV energies are highly consistent with the F-G power-law and further indicative of such turbulence and LISM effectiveness of the F-G cascade acceleration process. The LISM pressure computed from this spectrum well exceeds that from current estimates for the LISM magnetic field, so exchange of energy between the protons and the magnetic field would likely have a strong role in evolution of the turbulence as per the F-G theory and as long ago proposed for cosmic ray energies by Parker and others. Pressure-dependent estimates of the LISM field strength should not ignore this potentially strong and even dominant contribution from the plasma. Presence of high-beta suprathermal plasma on LISM field lines could significantly affect interactions with the heliospheric outer boundary region and might potentially account for distributed and more discrete features in ongoing measurements of energetic neutral emission from the Interstellar Boundary Explorer (IBEX) mission.

  4. Planetary quarantine in the solar system. Survival rates of some terrestrial organisms under simulated space conditions by proton irradiation

    NASA Astrophysics Data System (ADS)

    Koike, J.; Oshima, T.

    We have been studying the survival rates of some species of terrestrial unicellular and multicellular organism (viruses, bacteria, yeasts, fungi, algae, etc.) under simulated interstellar conditions, in connection with planetary quarantine. The interstellar environment in the solar system has been simulated by low temperature, high vacuum (77 K, 4 × 10 -8 torr), and proton irradiation from a Van de Graaff generator. After exposure to a barrage of protons corresponding to about 250 years of irradiation in solar space, tobacco mosaic virus, Bacillus subtilis spores, Staphylococcus aureus, Micrococcus flavus, Aspergillus niger spores, and Clostridium mangenoti spores showed survival rates of 82, 45, 74, 13, 28, and 25%, respectively.

  5. Probing the Martian Exosphere and Neutral Escape Using Pickup Ions Measured by MAVEN

    NASA Astrophysics Data System (ADS)

    Rahmati, A.; Larson, D. E.; Cravens, T.; Halekas, J. S.; Lillis, R. J.; McFadden, J. P.; Mitchell, D. L.; Thiemann, E.; Connerney, J. E. P.; Dunn, P.; DiBraccio, G. A.; Espley, J. R.; Eparvier, F. G.; Jakosky, B. M.

    2016-12-01

    Soon after the MAVEN (Mars Atmosphere and Volatile EvolutioN) spacecraft started orbiting Mars in September 2014, the SEP (Solar Energetic Particle), SWIA (Solar Wind Ion Analyzer), and STATIC (Supra-Thermal and Thermal Ion Composition) instruments onboard the spacecraft started detecting planetary pickup ions. SEP can measure energetic (>50 keV) oxygen pickup ions, the source of which is the extended hot oxygen exosphere of Mars. Model results show that these pickup ions originate from tens of Martian radii upstream of Mars and are energized by the solar wind motional electric field as they gyrate back towards Mars. SEP is blind to pickup hydrogen, as the low energy threshold for detection of hydrogen in SEP is 20 keV; well above the maximum pickup hydrogen energy, which is four times the solar wind proton energy. SWIA and STATIC, on the other hand, can detect both pickup oxygen and pickup hydrogen with energies below 30 keV and created closer to Mars. During the times when MAVEN is outside the Martian bow shock and in the upstream undisturbed solar wind, the solar wind velocity measured by SWIA and the solar wind (or interplanetary) magnetic field measured by the MAG (magnetometer) instrument can be used to model pickup oxygen and hydrogen fluxes near Mars. Solar wind flux measurements of the SWIA instrument are used in calculating charge-exchange frequencies, and data from the EUVM (Extreme Ultraviolet Monitor) and SWEA (Solar Wind Electron Analyzer) instruments are also used in calculating photo-ionization and electron impact frequencies of neutral species in the Martian exosphere. By comparing SEP, SWIA, and STATIC measured pickup ion fluxes with model results, the Martian thermal hydrogen and hot oxygen neutral densities can be probed outside the bow shock, which would place constraints on estimates of oxygen and hydrogen neutral escape rates. We will present model-data comparisons of pickup ions measured outside the Martian bow shock. Our analysis reveals an order of magnitude density change with Mars season in the hydrogen exosphere, whereas the hot oxygen exosphere densities vary less than a factor of 2.

  6. Parametrized energy spectrum of cosmic-ray protons with kinetic energies down to 1 GeV

    NASA Technical Reports Server (NTRS)

    Tan, L. C.

    1985-01-01

    A new estimation of the interstellar proton spectrum is made in which the source term of primary protons is taken from shock acceleration theory and the cosmic ray propagation calculation is based on a proposed nonuniform galactic disk model.

  7. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Park, J.; Kucharek, H.; Möbius, E.

    In this paper we report on a two-year study to estimate the Ne/O abundance ratio in the gas phase of the local interstellar cloud (LIC). Based on the first two years of observations with the Interstellar Boundary Explorer, we determined the fluxes of interstellar neutral (ISN) O and Ne atoms at the Earth's orbit in spring 2009 and 2010. A temporal variation of the Ne/O abundance ratio at the Earth's orbit could be expected due to solar cycle-related effects such as changes of ionization. However, this study shows that there is no significant change in the Ne/O ratio at themore » Earths orbit from 2009 to 2010. We used time-dependent survival probabilities of the ISNs to calculate the Ne/O abundance ratio at the termination shock. Then we estimated the Ne/O abundance ratio in the gas phase of the LIC with the use of filtration factors and the ionization fractions. From our analysis, the Ne/O abundance ratio in the LIC is 0.33 ± 0.07, which is in agreement with the abundance ratio inferred from pickup-ion measurements.« less

  8. Changes In the Pickup Ion Cutoff Under Variable Solar Wind Conditions

    NASA Astrophysics Data System (ADS)

    Bower, J.; Moebius, E.; Taut, A.; Berger, L.; Drews, C.; Lee, M. A.; Farrugia, C. J.

    2017-12-01

    We present the first systematic analysis to determine pickup ion (PUI) cutoff speed variations,both during compression regions, identified by their structure, and during times of highly variablesolar wind (SW) speed or magnetic field strength. This study is motivated by the attempt toremove or correct these effects on the determination of the longitude of the interstellar neutralgas flow from the flow pattern related variation of the PUI cutoff with ecliptic longitude. At thesame time, this study sheds light on the physical mechanisms that lead to energy transferbetween the SW and the embedded PUI population. Using 2007-2014 STEREO A PLASTICobservations we identify compression regions in the solar wind and analyze the PUI velocitydistribution function (VDF). We developed a routine to identify stream interaction regions andCIRs, by identifying the stream interface and the successive velocity increase in the solar windspeed and density. Characterizing these individual compression events and combining them in asuperposed epoch analysis allows us to analyze the PUI population in similar conditions andfind the local cutoff shift with adequate statistics. The result of this method yields cutoff shifts forcompression regions with large solar wind speed gradients. Additionally, through sorting theentire set of PUI VDFs at high time resolution we obtain a noticeable correlation of the cutoffshift with gradients in the SW speed and interplanetary magnetic field strength. We willdiscuss implications for the understanding of the PUI VDF evolution and the PUI cutoff analysisof the interstellar gas flow.

  9. Comparative study of ion cyclotron waves at Mars, Venus and Earth

    NASA Astrophysics Data System (ADS)

    Wei, H. Y.; Russell, C. T.; Zhang, T. L.; Blanco-Cano, X.

    2011-08-01

    Ion cyclotron waves are generated in the solar wind when it picks up freshly ionized planetary exospheric ions. These waves grow from the free energy of the highly anisotropic distribution of fresh pickup ions, and are observed in the spacecraft frame with left-handed polarization and a wave frequency near the ion's gyrofrequency. At Mars and Venus and in the Earth's polar cusp, the solar wind directly interacts with the planetary exospheres. Ion cyclotron waves with many similar properties are observed in these diverse plasma environments. The ion cyclotron waves at Mars indicate its hydrogen exosphere to be extensive and asymmetric in the direction of the interplanetary electric field. The production of fast neutrals plays an important role in forming an extended exosphere in the shape and size observed. At Venus, the region of exospheric proton cyclotron wave production may be restricted to the magnetosheath. The waves observed in the solar wind at Venus appear to be largely produced by the solar-wind-Venus interaction, with some waves at higher frequencies formed near the Sun and carried outward by the solar wind to Venus. These waves have some similarity to the expected properties of exospherically produced proton pickup waves but are characterized by magnetic connection to the bow shock or by a lack of correlation with local solar wind properties respectively. Any confusion of solar derived waves with exospherically derived ion pickup waves is not an issue at Mars because the solar-produced waves are generally at much higher frequencies than the local pickup waves and the solar waves should be mostly absorbed when convected to Mars distance as the proton cyclotron frequency in the plasma frame approaches the frequency of the solar-produced waves. In the Earth's polar cusp, the wave properties of ion cyclotron waves are quite variable. Spatial gradients in the magnetic field may cause this variation as the background field changes between the regions in which the fast neutrals are produced and where they are re-ionized and picked up. While these waves were discovered early in the magnetospheric exploration, their generation was not understood until after we had observed similar waves in the exospheres of Mars and Venus.

  10. Parameterized spectral distributions for meson production in proton-proton collisions

    NASA Technical Reports Server (NTRS)

    Schneider, John P.; Norbury, John W.; Cucinotta, Francis A.

    1995-01-01

    Accurate semiempirical parameterizations of the energy-differential cross sections for charged pion and kaon production from proton-proton collisions are presented at energies relevant to cosmic rays. The parameterizations, which depend on both the outgoing meson parallel momentum and the incident proton kinetic energy, are able to be reduced to very simple analytical formulas suitable for cosmic ray transport through spacecraft walls, interstellar space, the atmosphere, and meteorites.

  11. Interstellar gas in the middle-aged SNRs

    NASA Astrophysics Data System (ADS)

    Yoshiike, Satoshi; Fukuda, Tatsuya; Sano, Hidetoshi; Fukui, Yasuo

    2017-01-01

    An analysis of neutral interstellar gas in the γ-ray middle-aged supernova remnants (SNRs) is presented. We carried out multi-line CO observations of 12CO(J = 1-0) and 12CO(J = 2-1) toward three middle-aged SNRs, W44, IC 443 and W28, with the NANTEN2 telescope. For all three SNRs, we identified the shocked molecular gas which has high-velocity wing emission and the high 12CO J = 2-1/1-0 line intensity ratio of greater than 1. The distribution of these shocked gas has the good correlation with that of GeV-TeV γ-rays, which indicates these γ-rays originate from hadronic process and the interaction between SNR shock and clouds plays an major role in the cosmic-ray acceleration for these SNRs. By combining CO results with archive H I data, we derived the amount of total interstellar protons responsible for the γ-rays. Every SNRs have the averaged proton densities ranged from a few hundred to less than 103 cm-3 and we estimated the total cosmic-ray proton energy to be ˜ 1048-1049 erg as lower limits.

  12. Complex Organic Molecules Formation in Space Through Gas Phase Reactions: A Theoretical Approach

    NASA Astrophysics Data System (ADS)

    Redondo, Pilar; Barrientos, Carmen; Largo, Antonio

    2017-02-01

    Chemistry in the interstellar medium (ISM) is capable of producing complex organic molecules (COMs) of great importance to astrobiology. Gas phase and grain surface chemistry almost certainly both contribute to COM formation. Amino acids as building blocks of proteins are some of the most interesting COMs. The simplest one, glycine, has been characterized in meteorites and comets and, its conclusive detection in the ISM seems to be highly plausible. In this work, we analyze the gas phase reaction of glycine and {{{CH}}5}+ to establish the role of this process in the formation of alanine or other COMs in the ISM. Formation of protonated α- and β-alanine in spite of being exothermic processes is not viable under interstellar conditions because the different paths leading to these isomers present net activation energies. Nevertheless, glycine can evolve to protonated 1-imide-2, 2-propanediol, protonated amino acetone, protonated hydroxyacetone, and protonated propionic acid. However, formation of acetic acid and protonated methylamine is also a favorable process and therefore will be a competitive channel with the evolution of glycine to COMs.

  13. Lunar Pickup Ions Observed by ARTEMIS: Spatial and Temporal Distribution and Constraints on Species and Source Locations

    NASA Technical Reports Server (NTRS)

    Halekas, Jasper S.; Poppe, A. R.; Delory, G. T.; Sarantos, M.; Farrell, W. M.; Angelopoulos, V.; McFadden, J. P.

    2012-01-01

    ARTEMIS observes pickup ions around the Moon, at distances of up to 20,000 km from the surface. The observed ions form a plume with a narrow spatial and angular extent, generally seen in a single energy/angle bin of the ESA instrument. Though ARTEMIS has no mass resolution capability, we can utilize the analytically describable characteristics of pickup ion trajectories to constrain the possible ion masses that can reach the spacecraft at the observation location in the correct energy/angle bin. We find that most of the observations are consistent with a mass range of approx. 20-45 amu, with a smaller fraction consistent with higher masses, and very few consistent with masses below 15 amu. With the assumption that the highest fluxes of pickup ions come from near the surface, the observations favor mass ranges of approx. 20-24 and approx. 36-40 amu. Although many of the observations have properties consistent with a surface or near-surface release of ions, some do not, suggesting that at least some of the observed ions have an exospheric source. Of all the proposed sources for ions and neutrals about the Moon, the pickup ion flux measured by ARTEMIS correlates best with the solar wind proton flux, indicating that sputtering plays a key role in either directly producing ions from the surface, or producing neutrals that subsequently become ionized.

  14. On the Anisotropy of the He+, C+, O+, and Ne+ Pickup Ion Velocity Distribution Function: STEREO PLASTIC Observations

    NASA Astrophysics Data System (ADS)

    Taut, A.; Drews, C.; Berger, L.; Peleikis, T.; Wimmer-Schweingruber, R. F.

    2015-12-01

    PickUp Ions (PUIs) are typically characterized by (1) their almost exclusively single charge state, (2) a highly non-thermal and anisotropic Velocity Distribution Function (VDF) [Drews et al., 2015], and (3) an extended source population of neutral atoms somewhere between the observer and the Sun. The origin of pickup ions ranges from sources only several solar radii away from the Sun, the so-called inner-source of pickup ions, up to a distance of several hundreds of astronomical units, the local interstellar medium. Their continuous production inside the heliosphere and complex interactions with the magnetized solar wind plasma leads to the development of non-thermal, anisotropic features of both the solar wind and pickup ion velocity distribution functions. In this study, we present observations of the VDF of He+, C+, N+, O+ and Ne+ pickup ions with PLASTIC on STEREO A. We have found a PUI flux increase during perpendicular configurations of the local magnetic field that is generally linked to the existence of a so-called torus-distribution [Drews et al., 2015] which is attributed to the production of PUIs close to the observer. A comparison of the PUI VDF between radial and perpendicular configurations of the local magnetic field vector is used to quantify the anisotropy of the PUI VDF and thereby enables us to estimate the mean free path for pitch-angle scattering of He, C, N, O and Ne pickup ions without the necessity of an over-simplified heliospheric model to describe the PUI phase space transport. Our results show a clear signature of a C+ torus signature at 1 AU as well as significant differences between the anisotropies of the He+ and O+ VDF. We will discuss our results in the light of recent studies about the nature of the inner-source of PUIs [Berger et al., 2015] and observations of the 2D VDF of He+[Drews et al., 2015]. Figure Caption: Velocity space diagrams of a pickup ion torus distribution as a (vx-vy)-projection (top left panel) and in the vz = 0 km/s plane (top right) are shown for magnetic configuration in which B is almost perpendicular. The bottom two panels show the torus distribution under the influence of pitch-angle scattering (right) and adiabatic cooling (left). To illustrate the torus character of the distribution the (vx-vy)-plane is slightly tilted in this diagram.

  15. DEVELOPMENT OF THE MODEL OF GALACTIC INTERSTELLAR EMISSION FOR STANDARD POINT-SOURCE ANALYSIS OF FERMI LARGE AREA TELESCOPE DATA

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Acero, F.; Ballet, J.; Ackermann, M.

    2016-04-01

    Most of the celestial γ rays detected by the Large Area Telescope (LAT) on board the Fermi Gamma-ray Space Telescope originate from the interstellar medium when energetic cosmic rays interact with interstellar nucleons and photons. Conventional point-source and extended-source studies rely on the modeling of this diffuse emission for accurate characterization. Here, we describe the development of the Galactic Interstellar Emission Model (GIEM), which is the standard adopted by the LAT Collaboration and is publicly available. This model is based on a linear combination of maps for interstellar gas column density in Galactocentric annuli and for the inverse-Compton emission producedmore » in the Galaxy. In the GIEM, we also include large-scale structures like Loop I and the Fermi bubbles. The measured gas emissivity spectra confirm that the cosmic-ray proton density decreases with Galactocentric distance beyond 5 kpc from the Galactic Center. The measurements also suggest a softening of the proton spectrum with Galactocentric distance. We observe that the Fermi bubbles have boundaries with a shape similar to a catenary at latitudes below 20° and we observe an enhanced emission toward their base extending in the north and south Galactic directions and located within ∼4° of the Galactic Center.« less

  16. Development of the Model of Galactic Interstellar Emission for Standard Point-Source Analysis of Fermi Large Area Telescope Data

    DOE PAGES

    Acero, F.

    2016-04-22

    Most of the celestial γ rays detected by the Large Area Telescope (LAT) aboard the Fermi Gamma-ray Space Telescope originate from the interstellar medium when energetic cosmic rays interact with interstellar nucleons and photons. Conventional point and extended source studies rely on the modeling of this diffuse emission for accurate characterization. We describe here the development of the Galactic Interstellar Emission Model (GIEM) that is the standard adopted by the LAT Collaboration and is publicly available. The model is based on a linear combination of maps for interstellar gas column density in Galactocentric annuli and for the inverse Compton emissionmore » produced in the Galaxy. We also include in the GIEM large-scale structures like Loop I and the Fermi bubbles. The measured gas emissivity spectra con rm that the cosmic-ray proton density decreases with Galactocentric distance beyond 5 kpc from the Galactic Center. The measurements also suggest a softening of the proton spectrum with Galactocentric distance. We observe that the Fermi bubbles have boundaries with a shape similar to a catenary at latitudes below 20° and we observe an enhanced emission toward their base extending in the North and South Galactic direction and located within ~4° of the Galactic Center.« less

  17. Development of the Model of Galactic Interstellar Emission for Standard Point-Source Analysis of Fermi Large Area Telescope Data

    NASA Technical Reports Server (NTRS)

    Acero, F.; Ackermann, M.; Ajello, M.; Albert, A.; Baldini, L.; Ballet, J.; Barbiellini, G.; Bastieri, D.; Bellazzini, R.; Brandt, T. J.; hide

    2016-01-01

    Most of the celestial gamma rays detected by the Large Area Telescope (LAT) on board the Fermi Gamma-ray Space Telescope originate from the interstellar medium when energetic cosmic rays interact with interstellar nucleons and photons. Conventional point-source and extended-source studies rely on the modeling of this diffuse emission for accurate characterization. Here, we describe the development of the Galactic Interstellar Emission Model (GIEM),which is the standard adopted by the LAT Collaboration and is publicly available. This model is based on a linear combination of maps for interstellar gas column density in Galactocentric annuli and for the inverse-Compton emission produced in the Galaxy. In the GIEM, we also include large-scale structures like Loop I and the Fermi bubbles. The measured gas emissivity spectra confirm that the cosmic-ray proton density decreases with Galactocentric distance beyond 5 kpc from the Galactic Center. The measurements also suggest a softening of the proton spectrum with Galactocentric distance. We observe that the Fermi bubbles have boundaries with a shape similar to a catenary at latitudes below 20deg and we observe an enhanced emission toward their base extending in the north and south Galactic directions and located within approximately 4deg of the Galactic Center.

  18. Secondary Interstellar Oxygen in the Heliosphere: Numerical Modeling and Comparison with IBEX-Lo Data

    NASA Astrophysics Data System (ADS)

    Baliukin, I. I.; Izmodenov, V. V.; Möbius, E.; Alexashov, D. B.; Katushkina, O. A.; Kucharek, H.

    2017-12-01

    Quantitative analysis of the interstellar heavy (oxygen and neon) atom fluxes obtained by the Interstellar Boundary Explorer (IBEX) suggests the existence of the secondary interstellar oxygen component. This component is formed near the heliopause due to charge exchange of interstellar oxygen ions with hydrogen atoms, as was predicted theoretically. A detailed quantitative analysis of the fluxes of interstellar heavy atoms is only possible with a model that takes into account both the filtration of primary and the production of secondary interstellar oxygen in the boundary region of the heliosphere as well as a detailed simulation of the motion of interstellar atoms inside the heliosphere. This simulation must take into account photoionization, charge exchange with the protons of the solar wind and solar gravitational attraction. This paper presents the results of modeling interstellar oxygen and neon atoms through the heliospheric interface and inside the heliosphere based on a three-dimensional kinetic-MHD model of the solar wind interaction with the local interstellar medium and a comparison of these results with the data obtained on the IBEX spacecraft.

  19. Interstellar Ices and Radiation-induced Oxidations of Alcohols

    NASA Astrophysics Data System (ADS)

    Hudson, R. L.; Moore, M. H.

    2018-04-01

    Infrared spectra of ices containing alcohols that are known or potential interstellar molecules are examined before and after irradiation with 1 MeV protons at ∼20 K. The low-temperature oxidation (hydrogen loss) of six alcohols is followed, and conclusions are drawn based on the results. The formation of reaction products is discussed in terms of the literature on the radiation chemistry of alcohols and a systematic variation in their structures. The results from these new laboratory measurements are then applied to a recent study of propargyl alcohol. Connections are drawn between known interstellar molecules, and several new reaction products in interstellar ices are predicted.

  20. GAS-PHASE SYNTHESIS OF PRECURSORS OF INTERSTELLAR GLYCINE: A COMPUTATIONAL STUDY OF THE REACTIONS OF ACETIC ACID WITH HYDROXYLAMINE AND ITS IONIZED AND PROTONATED DERIVATIVES

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Barrientos, Carmen; Redondo, Pilar; Largo, Laura

    2012-04-01

    A computational study of the reactions of hydroxylamine and its ionized and protonated derivatives with acetic acid is provided. The reaction of neutral hydroxylamine with acetic acid, despite being clearly exothermic, involves a very large energy barrier. The reaction of ionized hydroxylamine with acetic acid is also clearly exothermic, but again a significant energy barrier is found (around 24 kcal mol{sup -1} at the CCSD(T) level). The reaction of the most stable protonated isomer of hydroxylamine, NH{sub 3}OH{sup +}, with acetic acid also involves a high barrier (more than 27 kcal mol{sup -1} at the CCSD(T) level). Only the highermore » energy isomer, NH{sub 2}OH{sup +}{sub 2}, leads to a sensibly lower energy barrier (about 2.3 kcal mol{sup -1} at the CCSD(T) level). Nevertheless, an estimate of the reaction coefficient at low temperatures such as those reigning in the interstellar medium gives very low values. Therefore, it seems that precursors of interstellar glycine could not be efficiently produced from the reactions of hydroxylamine-derived ions with acetic acid.« less

  1. Seasonal variation of Martian pick-up ions: Evidence of breathing exosphere

    NASA Astrophysics Data System (ADS)

    Yamauchi, M.; Hara, T.; Lundin, R.; Dubinin, E.; Fedorov, A.; Sauvaud, J.-A.; Frahm, R. A.; Ramstad, R.; Futaana, Y.; Holmstrom, M.; Barabash, S.

    2015-12-01

    The Mars Express (MEX) Ion Mass Analyser (IMA) found that the detection rate of the ring-like distribution of protons in the solar wind outside of the bow shock to be quite different between Mars orbital summer (around perihelion) and orbital winter (around aphelion) for four Martian years, while the north-south asymmetry is much smaller than the perihelion-aphelion difference. Further analyses using eight years of MEX/IMA solar wind data between 2005 and 2012 has revealed that the detection frequency of the pick-up ions originating from newly ionized exospheric hydrogen with certain flux strongly correlates with the Sun-Mars distance, which changes approximately every two years. Variation due to the solar cycle phase is not distinguishable partly because this effect is masked by the seasonal variation under the MEX capability of plasma measurements. This finding indicates that the variation in solar UV has a major effect on the formation of the pick-up ions, but this is not the only controlling factor.

  2. Communication: Ab initio study of O{sub 4}H{sup +}: A tracer molecule in the interstellar medium?

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Xavier, George D.; Bernal-Uruchurtu, Margarita I.; Hernández-Lamoneda, Ramón, E-mail: ramon@uaem.mx

    2014-08-28

    The structure and energetics of the protonated molecular oxygen dimer calculated via ab initio methods is reported. We find structures that share analogies with the eigen and zundel forms for the protonated water dimer although the symmetrical sharing of the proton is more prevalent. Analysis of different fragmentation channels show charge transfer processes which indicate the presence of conical intersections for various states including the ground state. An accurate estimate for the proton affinity of O{sub 4} leads to a significantly larger value (5.6 eV) than for O{sub 2} (4.4 eV), implying that the reaction H{sub 3}{sup +} + O{submore » 4} → O{sub 4}H{sup +} + H{sub 2} is exothermic by 28 Kcal/mol as opposed to the case of O{sub 2} which is nearly thermoneutral. This opens up the possibility of using O{sub 4}H{sup +} as a tracer molecule for oxygen in the interstellar medium.« less

  3. HelMod in the Works: From Direct Observations to the Local Interstellar Spectrum of Cosmic-Ray Electrons

    NASA Astrophysics Data System (ADS)

    Boschini, M. J.; Della Torre, S.; Gervasi, M.; Grandi, D.; Jóhannesson, G.; La Vacca, G.; Masi, N.; Moskalenko, I. V.; Pensotti, S.; Porter, T. A.; Quadrani, L.; Rancoita, P. G.; Rozza, D.; Tacconi, M.

    2018-02-01

    The local interstellar spectrum (LIS) of cosmic-ray (CR) electrons for the energy range 1 MeV to 1 TeV is derived using the most recent experimental results combined with the state-of-the-art models for CR propagation in the Galaxy and in the heliosphere. Two propagation packages, GALPROP and HELMOD, are combined to provide a single framework that is run to reproduce direct measurements of CR species at different modulation levels, and at both polarities of the solar magnetic field. An iterative maximum-likelihood method is developed that uses GALPROP-predicted LIS as input to HELMOD, which provides the modulated spectra for specific time periods of the selected experiments for model-data comparison. The optimized HelMod parameters are then used to adjust GALPROP parameters to predict a refined LIS with the procedure repeated subject to a convergence criterion. The parameter optimization uses an extensive data set of proton spectra from 1997 to 2015. The proposed CR electron LIS accommodates both the low-energy interstellar spectra measured by Voyager 1 as well as the high-energy observations by PAMELA and AMS-02 that are made deep in the heliosphere; it also accounts for Ulysses counting rate features measured out of the ecliptic plane. The interstellar and heliospheric propagation parameters derived in this study agree well with our earlier results for CR protons, helium nuclei, and anti-protons propagation and LIS obtained in the same framework.

  4. Collaborative Research: A Model of Partially Ionized Plasma Flows with Kinetic Treatment of Neutral Atoms and Nonthermal Ions

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Pogorelov, Nikolai; Zhang, Ming; Borovikov, Sergey

    Interactions of flows of partially ionized, magnetized plasma are frequently accompanied by the presence of both thermal and non-thermal (pickup) ion components. Such interactions cannot be modeled using traditional MHD equations and require more advanced approaches to treat them. If a nonthermal component of ions is formed due to charge exchange and collisions between the thermal (core) ions and neutrals, it experiences the action of magnetic field, its distribution function is isotropized, and it soon acquires the velocity of the ambient plasma without being thermodynamically equilibrated. This situation, e. g., takes place in the outer heliosphere - the part ofmore » interstellar space beyond the solar system whose properties are determined by the solar wind interaction with the local interstellar medium. This is also possible in laboratory, at million degrees and above, when plasma is conducting electricity far too well, which makes Ohmic heating ineffective. To attain the target temperatures one needs additional heating eventually playing a dominant role. Among such sources is a so-called neutral particle beam heating. This is a wide-spread technique (Joint European Torus and International Thermonuclear Experimental Reactor experiments) based on the injection of powerful beams of neutral atoms into ohmically preheated plasma. In this project we have investigated the energy and density separation between the thermal and nonthermal components in the solar wind and interstellar plasmas. A new model has been developed in which we solve the ideal MHD equations for mixture of all ions and the kinetic Boltzmann equation to describe the transport of neutral atoms. As a separate capability, we can treat the flow of neutral atoms in a multi-component fashion, where neutral atoms born in each thermodynamically distinct regions are governed by the Euler gas dynamic equations. We also describe the behavior of pickup ions either kinetically, using the Fokker–Planck equation, or as a separate fluid. Our numerical simulations have demonstrated that pickup ions play a major role in the interaction of the solar wind and (partially ionized) interstellar medium plasmas. Our teams have investigated the stability of the surface (the heliopause) that separates the solar wind from the local interstellar medium, the transport of galactic cosmic rays, the properties of the heliotail flow, and modifications to the bow wave in front of the heliopause due to charge exchange between the neutral H atoms born in the solar wind and interstellar ions. Modeling results have been validated against observational data, such as obtained by the Interstellar Boundary Explorer (IBEX), and made it possible to shed light on the structure of energetic neutral atom maps created by this spacecraft.. We have also demonstrated that charge-exchange modulated heliosphere is a source of anisotropy of the multi-TeV cosmic ray flux observed in a number of Earth-bound air shower experiments. Newly developed codes are implemented within a Multi-Scale Fluid-Kinetic Simulation Suite (MS-FLUKSS), a publicly available code being developed by our team for over 12 years. MS-FLUKSS scales well up to 160,000 computing cores and has been ported on major supercomputers in the country. Efficient parallelization and data choreography in the continuum simulation modules are provided by Chombo, an adaptive mesh refinement framework managed by Phillip Colella’s team at LBNL. We have implemented in-house, hybrid (MPI+OpenMP) parallelization of the kinetic modules that solve the Boltzmann equation with a Monte Carlo method. Currently, the kinetic modules are being rewritten to take advantage of the modern CPU-GPU supercomputer architecture. The scope of the project allowed us to enhance plasma research and education in such broad, multidis- ciplinary field as physics of partially ionized plasma and its application to space physics and fusion science. Besides the impact on the modeling of complex physical systems, our approach to computational resource management for complex codes utilizing multiple algorithm technologies appears to be a major advance on current approaches. The development of sophisticated resource management will be essential for all future modeling efforts that incorporate a diversity of scales and physical processes. Our effort provided leadership in promoting computational science and plasma physics within the UAH and FIT campuses and, through the training of a broad spectrum of scientists and engineers, foster new technologies across the country.« less

  5. Collaborative Research: A Model of Partially Ionized Plasma Flows with Kinetic Treatment of Neutral Atoms and Nonthermal Ions

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Pogorelov, Nikolai; Zhang, Ming

    Interactions of flows of partially ionized, magnetized plasma are frequently accompanied by the presence of both thermal and non-thermal (pickup) ion components. Such interactions cannot be modeled using traditional MHD equations and require more advanced approaches to treat them. If a nonthermal component of ions is formed due to charge exchange and collisions between the thermal (core) ions and neutrals, it experiences the action of magnetic field, its distribution function is isotropized, and it soon acquires the velocity of the ambient plasma without being thermodynamically equilibrated. This situation, e. g., takes place in the outer heliosphere –- the part ofmore » interstellar space beyond the solar system whose properties are determined by the solar wind interaction with the local interstellar medium. This is also possible in laboratory, at million degrees and above, when plasma is conducting electricity far too well, which makes Ohmic heating ineffective. To attain the target temperatures one needs additional heating eventually playing a dominant role. Among such sources is a so-called neutral particle beam heating. This is a wide-spread technique (Joint European Torus and International Thermonuclear Experimental Reactor experiments) based on the injection of powerful beams of neutral atoms into ohmically preheated plasma. In this project we have investigated the energy and density separation between the thermal and nonthermal components in the solar wind and interstellar plasmas. A new model has been developed in which we solve the ideal MHD equations for mixture of all ions and the kinetic Boltzmann equation to describe the transport of neutral atoms. As a separate capability, we can treat the flow of neutral atoms in a multi-component fashion, where neutral atoms born in each thermodynamically distinct region are governed by the Euler gas dynamic equations. We also describe the behavior of pickup ions either kinetically, using the Fokker--Planck equation, or as a separate fluid. Our numerical simulations have demonstrated that pickup ions play a major role in the interaction of the solar wind and (partially ionized) interstellar medium plasmas. Our teams have investigated the stability of the surface (the heliopause) that separates the solar wind from the local interstellar medium, the transport of galactic cosmic rays, the properties of the heliotail flow, and modifications to the bow wave in front of the heliopause due to charge exchange between the neutral H atoms born in the solar wind and interstellar ions. Modeling results have been validated against observational data, such as obtained by the Interstellar Boundary Explorer (IBEX), and made it possible to shed light on the structure of energetic neutral atom maps created by this spacecraft.. We have also demonstrated that charge-exchange modulated heliosphere is a source of anisotropy of the multi-TeV cosmic ray flux observed in a number of Earth-bound air shower experiments. Newly developed codes are implemented within a Multi-Scale Fluid-Kinetic Simulation Suite (MS-FLUKSS), a publicly available code being developed by our team for over 12 years. MS-FLUKSS scales well up to 160,000 computing cores and has been ported on major supercomputers in the country. Efficient parallelization and data choreography in the continuum simulation modules are provided by Chombo, an adaptive mesh refinement framework managed by Phillip Colella's team at LBNL. We have implemented in-house, hybrid (MPI+OpenMP) parallelization of the kinetic modules that solve the Boltzmann equation with a Monte Carlo method. Currently, the kinetic modules are being rewritten to take advantage of the modern CPU-GPU supercomputer architecture. The scope of the project allowed us to enhance plasma research and education in such broad, multidisciplinary field as physics of partially ionized plasma and its application to space physics and fusion science. Besides the impact on the modeling of complex physical systems, our approach to computational resource management for complex codes utilizing multiple algorithm technologies appears to be a major advance on current approaches. The development of sophisticated resource management will be essential for all future modeling efforts that incorporate a diversity of scales and physical processes. Our effort provided leadership in promoting computational science and plasma physics within the UAH and FIT campuses and, through the training of a broad spectrum of scientists and engineers, fostering new technologies across the country.« less

  6. Pioneer Venus Data Analysis

    NASA Technical Reports Server (NTRS)

    Jones, Douglas E.

    1996-01-01

    Analysis and interpretation of data from the Orbiter Retarding Potential Analyzer (ORPA) onboard the Pioneer Venus Orbiter is reported. By comparing ORPA data to proton data from the Orbiter Plasma Analyzer (OPA), it was found that the ORPA suprathermal electron densities taken outside the Venusian ionopause represent solar wind electron densities, thus allowing the high resolution study of Venus bow shocks using both magnetic field and solar wind electron data. A preliminary analysis of 366 bow shock penetrations was completed using the solar wind electron data as determined from ORPA suprathermal electron densities and temperatures, resulting in an estimate of the extent to which mass loading pickup of O+ (UV ionized O atoms flowing out of the Venus atmosphere) upstream of the Venus obstacle occurred. The pickup of O+ averaged 9.95%, ranging from 0.78% to 23.63%. Detailed results are reported in two attached theses: (1) Comparison of ORPA Suprathermal Electron and OPA Solar Wind Proton Data from the Pioneer Venus Orbiter and (2) Pioneer Venus Orbiter Retarding Potential Analyzer Observations of the Electron Component of the Solar Wind, and of the Venus Bow Shock and Magnetosheath.

  7. O+ pickup ions outside of Venus' bow shock: Venus Express observation

    NASA Astrophysics Data System (ADS)

    Wei, Y.; Fraenz, M.; Dubinin, E.; Zhang, T. L.; Wan, W.; Barabash, S.; Woch, J.; Lundin, R.

    2012-09-01

    Pickup ions are ions of planetary origin that become assimilated into the solar wind flow through their interaction with the solar wind magnetic and electric field. The speed of pickup ions varies between zero and twice the underlying plasma flow component perpendicular to magnetic field vector. For the unmagnetized planet Venus and Mars, oxygen (O+) pickup ions are known to be important because they can modify the global configuration of planetary plasma environment and significantly contribute to the atmospheric O+ loss [1]. Since the kinetic energy of an O+ pickup ion can reach 64 times that of a co-moving proton, an instrument must be able to measure O+ ions with energy of at least tens of keV to investigate the O+ pickup ion distribution from planetary ionosphere to solar wind. The in-situ observations and simulations at Mars have shown that the energy of O+ pickup ions can be 55-72 keV outside of the bow shock [2]. For Venus case, the plasma analyzer (OPA) onboard Pioneer Venus Orbiter (PVO), which was designed for solar wind monitoring, has an 8 keV energy limit for O+ detection and the limited sampling and data rate [3]. Therefore, OPA can only measure the O+ pickup ions in the sheath flow or inside the induced magnetosphere where the speed of ambient plasma flow is significantly lower than that of the unshocked solar wind outside of the bow shock. The Ion Mass Analyzer (IMA), included in the Analyzer of Space Plasma and Energetic Atoms (ASPERA-4) package on board Venus Express (VEX), determines the composition, energy, and angular distribution of ions in the energy range ~10 eV/q to 30 keV/q. Note that an O+ ion moving at the typical solar wind speed 400 km/s has kinetic energy 13.4 keV. Therefore, IMA has ability to measure the O+ pickup ions outside of Venus' bow shock. We have examined the IMA data during the solar minimum period 2006-2010, and identified about ten cases with clear signature of O+ pickup ion. With these observations, we will determine the location and the scale height of the source region of O+ pickup ions and describe the relationship between the behavior of these O+ and the upstream solar wind condition. The results would provide new information for numerical simulation of plasma environment near Venus and contribute to estimation of total O+ ion loss from Venus.

  8. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Acero, F.

    Most of the celestial γ rays detected by the Large Area Telescope (LAT) aboard the Fermi Gamma-ray Space Telescope originate from the interstellar medium when energetic cosmic rays interact with interstellar nucleons and photons. Conventional point and extended source studies rely on the modeling of this diffuse emission for accurate characterization. We describe here the development of the Galactic Interstellar Emission Model (GIEM) that is the standard adopted by the LAT Collaboration and is publicly available. The model is based on a linear combination of maps for interstellar gas column density in Galactocentric annuli and for the inverse Compton emissionmore » produced in the Galaxy. We also include in the GIEM large-scale structures like Loop I and the Fermi bubbles. The measured gas emissivity spectra con rm that the cosmic-ray proton density decreases with Galactocentric distance beyond 5 kpc from the Galactic Center. The measurements also suggest a softening of the proton spectrum with Galactocentric distance. We observe that the Fermi bubbles have boundaries with a shape similar to a catenary at latitudes below 20° and we observe an enhanced emission toward their base extending in the North and South Galactic direction and located within ~4° of the Galactic Center.« less

  9. A SURVEY OF MAGNETIC WAVES EXCITED BY NEWBORN INTERSTELLAR He{sup +} OBSERVED BY THE ACE SPACECRAFT AT 1 au

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Fisher, Meghan K.; Argall, Matthew R.; Joyce, Colin J., E-mail: mkl54@wildcats.unh.edu, E-mail: Matthew.Argall@unh.edu, E-mail: cjl46@wildcats.unh.edu

    We report observations of low-frequency waves at 1 au by the magnetic field instrument on the Advanced Composition Explorer ( ACE /MAG) and show evidence that they arise due to newborn interstellar pickup He{sup +}. Twenty-five events are studied. They possess the generally predicted attributes: spacecraft-frame frequencies slightly greater than the He{sup +} cyclotron frequency, left-hand polarization in the spacecraft frame, and transverse fluctuations with minimum variance directions that are quasi-parallel to the mean magnetic field. Their occurrence spans the first 18 years of ACE operations, with no more than 3 such observations in any given year. Thus, the eventsmore » are relatively rare. As with past observations by the Ulysses and Voyager spacecraft, we argue that the waves are seen only when the background turbulence is sufficiently weak as to allow for the slow accumulation of wave energy over many hours.« less

  10. Analog Signal Pre-Processing For The Fermilab Main Injector BPM Upgrade

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Saewert, A. L.; Rapisarda, S. M.; Wendt, M.

    2006-11-20

    An analog signal pre-processing scheme was developed, in the framework of the Fermilab Main Injector Beam Position Monitor (BPM) Upgrade, to interface BPM pickup signals to the new digital receiver based read-out system. A key component is the 8-channel electronics module, which uses separate frequency-selective gain stages to acquire 53 MHz bunched proton and 2.5 MHz antiproton signals. Related hardware includes a filter and combiner box to sum pickup electrode signals in the tunnel. A controller module allows local/remote control of gain settings and activation of gain stages and supplies test signals. Theory of operation, system overview, and some designmore » details are presented, as well as first beam measurements of the prototype hardware.« less

  11. Modelling injection rates of PUIs from photoionization using kinetic simulations of interstellar neutrals traversing the heliosphere

    NASA Astrophysics Data System (ADS)

    Keilbach, D.; Drews, C.; Taut, A.; Wimmer-Schweingruber, R. F.

    2016-12-01

    Recent studies of the inflow direction of the local insterstellar medium from PUI density distributions have shown that the extrema of the longitudinal distribution of PUI velocities (with respect to the solar wind speed) can be attributed to the radial velocity of the interstellar neutral seed population and is symmetric around the inflow direction of the local interstellar medium. This work is aimed to model pickup ion injection rates from photoionization (which is the main process of interstellar PUI production) throughout the heliosphere. To that end a seed population of interstellar neutrals is injected into a model heliosphere at 60 AU distance from the sun, whereas each particle's initial speed is given by a maxwellian distribution at a temperature of 1 eV and an inflow speed of 22 km/s. Then the density of the interstellar neutrals is integrated over the model heliosphere, while the movement of the neutrals is simulated using timestep methods. To model the focusing of the interstellar neutral trajectories from the sun's gravitational potential the model heliosphere contains a central gravitational potential.Each neutral test particle can be ionized via photoionization with a per-timestep probability antiproportional to the neutral's distance to the sun squared. By tracking the ionization rate location-dependently, PUI injection rates have been determined. Therefore using these simulations the density distributions of different species of interstellar neutrals have been calculated. In addition location-dependent injection rates of different species of PUIs have been calculated, which show an increased rate of PUI production in the focusing cone region (e.g. for He+ PUIs), but also in the crescent region (e.g. for O+ PUIs).Furthermore the longitudinal distribution of the neutrals' velocity at 1 AU is calculated from the simulation's results in order to estimate the PUI cut-off as a function of ecliptic longitude. Figure: Simulated He neutral density (left) and simulated He PUI production rates from photoionization (right). The sun is located at 0 AU at both x-and y-axes.

  12. Higher Energy Plasma Ions found near the Termination Shock: Analyses of Voyager 2 Data in the Heliosheath and in the Outer Heliosphere

    NASA Technical Reports Server (NTRS)

    Intriligator, Devrie S.; Intriligator, James; Miller, W. David; Webber, William R.; Decker, Robert B.

    2010-01-01

    We have found in the Voyager 2 (V2) plasma science data in the heliosheath (HS) near the termination shock (TS) high-energy ions (HEIs) in addition to the bulk plasma convective flow ions. The HEI detections temporally coincide with increased V2 plasma wave subsystem (PWS) activity in "event A"h of Gurnett and Kurth. Maxwellian fits to HEI detections indicate the HEIs are moving radially anti -Sunward with a proton speed of 600 km/s, a density of 10(exp -4) (exp -3), and a thermal speed of 10 km/s. The heliosheath bulk convective protons have a speed of 204 km/s, a density of 0.0029 cm(exp -3), and a thermal speed of 26.7 km/s. The HEI flux and ram pressure are approximately 10% and 30% of those of the bulk HS flow. Since the HEI speed is both close to twice the solar wind speed and independent of the heliosheath bulk plasma speed, the HEIs may be detections of pickup protons formed in the solar wind and convected through the TS. The HEIs also are reminiscent of the pickup protons upstream of the Mars bow shock where their energy also was independent of the bulk plasma speed and attributed to multiple reflections off the Mars bow shock. Gurnett and Kurth 's (2008) event A enhanced PWS activity may be generated by a two ]stream instability from the interaction of these HEIs with the heliosheath bulk plasma ions. We present our findings, discuss their implications, and also present alternative interpretations.

  13. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Pasquinelli, Ralph J.; /Fermilab; Jansson, Andreas

    The LHC Schottky system consists for four independent 4.8 GHz triple down conversion receivers with associated data acquisition systems. Each system is capable of measuring tune, chromaticity, momentum spread in either horizontal or vertical planes; two systems per beam. The hardware commissioning has taken place from spring through fall of 2010. With nominal bunch beam currents of 10{sup 11} protons, the first incoherent Schottky signals were detected and analyzed. This paper will report on these initial commissioning results. A companion paper will report on the data analysis curve fitting and remote control user interface of the system. The Schottky systemmore » for the LHC was proposed in 2004 under the auspices of the LARP collaboration. Similar systems were commissioned in 2003 in the Fermilab Tevatron and Recycler accelerators as a means of measuring tunes noninvasively. The Schottky detector is based on the stochastic cooling pickups that were developed for the Fermilab Antiproton Source Debuncher cooling upgrade completed in 2002. These slotted line waveguide pickups have the advantage of large aperture coupled with high beam coupling characteristics. For stochastic cooling, wide bandwidths are integral to cooling performance. The bandwidth of slotted waveguide pickups can be tailored by choosing the length of the pickup and slot spacing. The Debuncher project covered the 4-8 GHz band with eight bands of pickups, each with approximately 500 MHz of bandwidth. For use as a Schottky detector, bandwidths of 100-200 MHz are required for gating, resulting in higher transfer impedance than those used for stochastic cooling. Details of hardware functionality are reported previously.« less

  14. Ionization of Interstellar Hydrogen Beyond the Termination Shock

    NASA Astrophysics Data System (ADS)

    Gruntman, Mike

    2016-11-01

    Models of solar wind interaction with the surrounding interstellar medium usually disregard ionization of interstellar hydrogen atoms beyond the solar wind termination shock. If and when included, the effects of ionization in the heliospheric interface region are often obscured by complexities of the interaction. This work assesses the importance of interstellar hydrogen ionization in the heliosheath. Photoionization could be accounted for in a straightforward way. In contrast, electron impact ionization is largely unknown because of poorly understood energy transfer to electrons at the termination shock and beyond. We first estimate the effect of photoionization and then use it as a yardstick to assess the role of electron impact ionization. The physical estimates show that ionization of interstellar hydrogen may lead to significant mass loading in the inner heliosheath which would slow down plasma flowing toward the heliotail and deplete populations of nonthermal protons, with the corresponding effect on heliospheric fluxes of energetic neutral atoms.

  15. Evidence for a Neutral Iron Line Generated by MeV Protons from Supernova Remnants Interacting with Molecular Clouds

    NASA Astrophysics Data System (ADS)

    Nobukawa, Kumiko K.; Nobukawa, Masayoshi; Koyama, Katsuji; Yamauchi, Shigeo; Uchiyama, Hideki; Okon, Hiromichi; Tanaka, Takaaki; Uchida, Hiroyuki; Tsuru, Takeshi G.

    2018-02-01

    Supernova remnants (SNRs) have been prime candidates for Galactic cosmic-ray accelerators. When low-energy cosmic-ray protons (LECRp) collide with interstellar gas, they ionize neutral iron atoms and emit the neutral iron line (Fe I Kα) at 6.40 keV. We search for the iron K-shell line in seven SNRs from the Suzaku archive data of the Galactic plane in the 6^\\circ ≲ l≲ 40^\\circ ,| b| < 1^\\circ region. All of these SNRs interact with molecular clouds. We discover Fe I Kα line emissions from five SNRs (W28, Kes 67, Kes 69, Kes 78, and W44). The spectra and morphologies suggest that the Fe I Kα line is produced by interactions between LECRp and the adjacent cold gas. The proton energy density is estimated to be ≳10–100 eV cm‑3, which is more than 10 times higher than that in the ambient interstellar medium.

  16. The Interstellar Mapping and Acceleration Probe - A Mission to Discover the Origin of Particle Acceleration and its Fundamental Connection to the Global Interstellar Interaction

    NASA Astrophysics Data System (ADS)

    Schwadron, N.

    2017-12-01

    Our piece of cosmic real-estate, the heliosphere, is the domain of all human existence - an astrophysical case-history of the successful evolution of life in a habitable system. The Interstellar Boundary Explorer (IBEX) was the first mission to explore the global heliosphere and in concert with Voyager 1 and Voyager 2 is discovering a fundamentally new and uncharted physical domain of the outer heliosphere. In parallel, Cassini/INCA maps the global heliosphere at energies ( 5-55 keV) above those measured by IBEX. The enigmatic IBEX ribbon and the INCA belt were unanticipated discoveries demonstrating that much of what we know or think we understand about the outer heliosphere needs to be revised. The global structure of the heliosphere is highly complex and influenced by competing factors ranging from the local interstellar magnetic field, suprathermal populations both within and beyond the heliopause, and the detailed flow properties of the LISM. Global heliospheric structure and microphysics in turn influences the acceleration of energetic particles and creates feedbacks that modify the interstellar interaction as a whole. The next quantum leap enabled by IMAP will open new windows on the frontier of Heliophysics and probe the acceleration of suprathermal and higher energy particles at a time when the space environment is rapidly evolving. IMAP ultimately connects the acceleration processes observed directly at 1 AU with unprecedented sensitivity and temporal resolution with the global structure of our heliosphere. The remarkable synergy between IMAP, Voyager 1 and Voyager 2 will remain for at least the next decade as Voyager 1 pushes further into the interstellar domain and Voyager 2 moves through the heliosheath. IMAP, like ACE before it, will be a keystone of the Heliophysics System Observatory by providing comprehensive energetic particle, pickup ion, suprathermal ion, neutral atom, solar wind, solar wind heavy ion, and magnetic field observations to diagnose the changing space environment, to discover the fundamental origins of particle acceleration, while discerning the physical processes that control our global heliosphere's interactions with the local interstellar medium.

  17. Reaction channel coupling effects for nucleons on 16O: Induced undularity and proton-neutron potential differences

    NASA Astrophysics Data System (ADS)

    Keeley, N.; Mackintosh, R. S.

    2018-01-01

    Background: Precise fitting of scattering observables suggests that the nucleon-nucleus interaction is l dependent. Such l dependence has been shown to be S -matrix equivalent to an undulatory l -independent potential. The undulations include radial regions where the imaginary term is emissive. Purpose: To study the dynamical polarization potential (DPP) generated in proton-16O and neutron-16O interaction potentials by coupling to pickup channels. Undulatory features occurring in these DPPs can be compared with corresponding features of empirical optical model potentials (OMPs). Furthermore, the additional inclusion of coupling to vibrational states of the target will provide evidence for dynamically generated nonlocality. Methods: The fresco code provides the elastic channel S -matrix Sl j for chosen channel couplings. Inversion, Sl j→V (r ) +l .s VSO(r ) , followed by subtraction of the bare potential, yields an l -independent and local representation of the DPP due to the chosen couplings. Results: The DPPs have strongly undulatory features, including radial regions of emissivity. Certain features of empirical DPPs appear, e.g., the full inverted potential has emissive regions. The DPPs for different collective states are additive except near the nuclear center, whereas the collective and reaction channel DPPs are distinctly nonadditive over a considerable radial range, indicating dynamical nonlocality. Substantial differences between the DPPs due to pickup coupling for protons and neutrons occur; these imply a greater difference between proton and neutron OMPs than the standard phenomenological prescription. Conclusions: The onus is on those who object to undularity in the local and l -independent representation of nucleon elastic scattering to show why such undulations do not occur. This work suggests that it is not legitimate to halt model-independent fits to high-quality data at the appearance of undularity.

  18. Solution of Heliospheric Propagation: Unveiling the Local Interstellar Spectra of Cosmic-ray Species

    NASA Astrophysics Data System (ADS)

    Boschini, M. J.; Della Torre, S.; Gervasi, M.; Grandi, D.; Jóhannesson, G.; Kachelriess, M.; La Vacca, G.; Masi, N.; Moskalenko, I. V.; Orlando, E.; Ostapchenko, S. S.; Pensotti, S.; Porter, T. A.; Quadrani, L.; Rancoita, P. G.; Rozza, D.; Tacconi, M.

    2017-05-01

    Local interstellar spectra (LIS) for protons, helium, and antiprotons are built using the most recent experimental results combined with state-of-the-art models for propagation in the Galaxy and heliosphere. Two propagation packages, GALPROP and HelMod, are combined to provide a single framework that is run to reproduce direct measurements of cosmic-ray (CR) species at different modulation levels and at both polarities of the solar magnetic field. To do so in a self-consistent way, an iterative procedure was developed, where the GALPROP LIS output is fed into HelMod, providing modulated spectra for specific time periods of selected experiments to compare with the data; the HelMod parameter optimization is performed at this stage and looped back to adjust the LIS using the new GALPROP run. The parameters were tuned with the maximum likelihood procedure using an extensive data set of proton spectra from 1997 to 2015. The proposed LIS accommodate both the low-energy interstellar CR spectra measured by Voyager 1 and the high-energy observations by BESS, Pamela, AMS-01, and AMS-02 made from the balloons and near-Earth payloads; it also accounts for Ulysses counting rate features measured out of the ecliptic plane. The found solution is in a good agreement with proton, helium, and antiproton data by AMS-02, BESS, and PAMELA in the whole energy range.

  19. VizieR Online Data Catalog: Local interstellar spectra of cosmic-ray species (Boschini+, 2017)

    NASA Astrophysics Data System (ADS)

    Boschini, M. J.; Torre, S. D.; Gervasi, M.; Grandi, D.; Johannesson, G.; Kachelriess, M.; La Vacca, G.; Masi, N.; Moskalenko, I. V.; Orlando, E.; Ostapchenko, S. S.; Pensotti, S.; Porter, T. A.; Quadrani, L.; Rancoita, P. G.; Rozza, D.; Tacconi, M.

    2017-11-01

    Local interstellar spectra (LIS) for protons, helium, and antiprotons are built using the most recent experimental results combined with state-of-the-art models for propagation in the Galaxy and heliosphere. Two propagation packages, GALPROP and HelMod, are combined to provide a single framework that is run to reproduce direct measurements of cosmic-ray (CR) species at different modulation levels and at both polarities of the solar magnetic field. To do so in a self-consistent way, an iterative procedure was developed, where the GALPROP LIS output is fed into HelMod, providing modulated spectra for specific time periods of selected experiments to compare with the data; the HelMod parameter optimization is performed at this stage and looped back to adjust the LIS using the new GALPROP run. The parameters were tuned with the maximum likelihood procedure using an extensive data set of proton spectra from 1997 to 2015. The proposed LIS accommodate both the low-energy interstellar CR spectra measured by Voyager 1 and the high-energy observations by BESS, Pamela, AMS-01, and AMS-02 made from the balloons and near-Earth payloads; it also accounts for Ulysses counting rate features measured out of the ecliptic plane. The found solution is in a good agreement with proton, helium, and antiproton data by AMS-02, BESS, and PAMELA in the whole energy range. (3 data files).

  20. Solution of Heliospheric Propagation: Unveiling the Local Interstellar Spectra of Cosmic-ray Species

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Boschini, M. J.; Torre, S. Della; Gervasi, M.

    2017-05-10

    Local interstellar spectra (LIS) for protons, helium, and antiprotons are built using the most recent experimental results combined with state-of-the-art models for propagation in the Galaxy and heliosphere. Two propagation packages, GALPROP and HelMod, are combined to provide a single framework that is run to reproduce direct measurements of cosmic-ray (CR) species at different modulation levels and at both polarities of the solar magnetic field. To do so in a self-consistent way, an iterative procedure was developed, where the GALPROP LIS output is fed into HelMod, providing modulated spectra for specific time periods of selected experiments to compare with themore » data; the HelMod parameter optimization is performed at this stage and looped back to adjust the LIS using the new GALPROP run. The parameters were tuned with the maximum likelihood procedure using an extensive data set of proton spectra from 1997 to 2015. The proposed LIS accommodate both the low-energy interstellar CR spectra measured by Voyager 1 and the high-energy observations by BESS, Pamela, AMS-01, and AMS-02 made from the balloons and near-Earth payloads; it also accounts for Ulysses counting rate features measured out of the ecliptic plane. The found solution is in a good agreement with proton, helium, and antiproton data by AMS-02, BESS, and PAMELA in the whole energy range.« less

  1. O+ pickup ions outside of Venus' bow shock: Venus Express observations

    NASA Astrophysics Data System (ADS)

    Wei, Yong; Fraenz, Markus; Dubinin, Eduard; Zhang, Tielong; Jarvinen, Riku; Wan, Weixing; Kallio, Esa; Collinson, Glyn; Barabash, Stars; Norbert, Krupp; Woch, Joachim; Lundin, Rickard; delva, Magda

    2013-04-01

    Pickup ions are ions of planetary origin that become assimilated into the solar wind flow through their interaction with the solar wind magnetic and electric field. The speed of pickup ions varies between zero and twice the underlying plasma flow component perpendicular to magnetic field vector. For the unmagnetized planet Venus and Mars, oxygen (O+) pickup ions are known to be important because they can modify the global configuration of planetary plasma environment and significantly contribute to the atmospheric O+ loss [1]. Since the kinetic energy of an O+ pickup ion can reach 64 times that of a co-moving proton, an instrument must be able to measure O+ ions with energy of at least tens of keV to investigate the O+ pickup ion distribution from planetary ionosphere to solar wind. The in-situ observations and simulations at Mars have shown that the energy of O+ pickup ions can be 55-72 keV outside of the bow shock [2]. For Venus case, the plasma analyzer (OPA) onboard Pioneer Venus Orbiter (PVO), which was designed for solar wind monitoring, has an 8 keV energy limit for O+ detection and the limited sampling and data rate [3]. Therefore, OPA can only measure the O+ pickup ions in the sheath flow or inside the induced magnetosphere where the speed of ambient plasma flow is significantly lower than that of the unshocked solar wind outside of the bow shock. In addition, Galileo also did not capture O+ outside bowshock during its 1-hour Venus flyby though its plasma instrument had ability to cover the energy band of O+ pickup ions [4]. The Ion Mass Analyzer (IMA), included in the Analyzer of Space Plasma and Energetic Atoms (ASPERA-4) package on board Venus Express (VEX), determines the composition, energy, and angular distribution of ions in the energy range ~10 eV/q to 30 keV/q. Note that an O+ ion moving at the typical solar wind speed 400 km/s has kinetic energy 13.4 keV. Therefore, IMA has ability to measure the O+ pickup ions outside of Venus' bow shock. We have examined the IMA data during the solar minimum period 2006-2010, and identified 80 cases with clear signature of O+ pickup ion. With these observations, we can determine the location and the scale height of the source region of O+ pickup ions and describe the relationship between the behavior of these O+ and the upstream solar wind condition. The results would provide new information for numerical simulation of plasma environment near Venus and contribute to estimation of total O+ ion loss from Venus. Reference: [1] Dubinin, E., M. Fränz, J. Woch, E. Roussos, S. Barabash, R. Lundin, J. D. Winningham, R. A. Frahm, and M. Acuña (2006a), Plasma morphology at Mars: Aspera-3 observations, Space Sci. Rev., 126, 209-238, doi:10.1007/s11214-006-9039-4. [2] Cravens, T. E., A. Hoppe, S. A. Ledvina, and S. McKenna-Lawlor (2002), Pickup ions near Mars associated with escaping oxygen atoms, J. Geophys. Res., 107, 1170, doi:10.1029/2001JA000125. [3] Luhmann, J. G., S. A. Ledvina, J. G. Lyon, and C. T. Russell (2006), Venus O+ pickup ions: Collected PVO results and expectations for Venus Express, Planet. Space Sci., 54, 1457-1471, doi:10.1016/j.pss.2005.10.009. [4] Williams, D. J. et al.(1991), Energetic Particles at Venus: Galileo Results. Science 253, 1525-1528.

  2. Voyager observations of the interaction of the heliosphere with the interstellar medium

    PubMed Central

    Richardson, John D.

    2012-01-01

    This paper provides a brief review and update on the Voyager observations of the interaction of the heliosphere with the interstellar medium. Voyager has found many surprises: (1) a new energetic particle component which is accelerated at the termination shock (TS) and leaks into the outer heliosphere forming a foreshock region; (2) a termination shock which is modulated by energetic particles and which transfers most of the solar wind flow energy to the pickup ions (not the thermal ions); (3) the heliosphere is asymmetric; (4) the TS does not accelerate anomalous cosmic rays at the Voyager locations; and (5) the plasma flow in the Voyagers 1 (V1) and 2 (V2) directions are very different. At V1 the flow was small after the TS and has recently slowed to near zero, whereas at V2 the speed has remained constant while the flow direction has turned tailward. V1 may have entered an extended boundary region in front of the heliopause (HP) in 2010 in which the plasma flow speeds are near zero. PMID:25685423

  3. Voyager observations of the interaction of the heliosphere with the interstellar medium.

    PubMed

    Richardson, John D

    2013-05-01

    This paper provides a brief review and update on the Voyager observations of the interaction of the heliosphere with the interstellar medium. Voyager has found many surprises: (1) a new energetic particle component which is accelerated at the termination shock (TS) and leaks into the outer heliosphere forming a foreshock region; (2) a termination shock which is modulated by energetic particles and which transfers most of the solar wind flow energy to the pickup ions (not the thermal ions); (3) the heliosphere is asymmetric; (4) the TS does not accelerate anomalous cosmic rays at the Voyager locations; and (5) the plasma flow in the Voyagers 1 (V1) and 2 (V2) directions are very different. At V1 the flow was small after the TS and has recently slowed to near zero, whereas at V2 the speed has remained constant while the flow direction has turned tailward. V1 may have entered an extended boundary region in front of the heliopause (HP) in 2010 in which the plasma flow speeds are near zero.

  4. Elastic Scattering of 65 MeV Protons from Several Nuclei between 16O and 209Bi

    NASA Astrophysics Data System (ADS)

    Ahmed, Syed; Akther, Parvin; Ferdous, Nasima; Begum, Amena; Gupta, Hiranmay

    1997-10-01

    Elastic scattering of 65 MeV polarized protons from twenty five nuclei ranging from 16O to 209Bi have been analysed within the framework of the nine parameter optical model. A set of optical model parameters has been obtained which shows the systematic behaviour of the target mass dependence of the real potential, volume integral and the r.m.s. radius. The isotopic spin dependence of the real potential has also been studied. Parameters obtained by fitting the elastic scattering data have been able to reproduce the pickup and stripping reaction cross sections as studied in a few cases.

  5. Global Properties of the Heliospheric Termination Shock as inferred from Energetic Neutral Atoms measured by the Interstellar Boundary Explorer (IBEX)

    NASA Astrophysics Data System (ADS)

    Desai, Mihir; Heerikhuisen, Jacob; McComas, David; Pogorelov, Nikolai; Zank, Gary; Dayeh, Maher; Schwadron, Nathan; Allegrini, Frederic; Zirnstein, Eric

    Energetic Neutral Atoms (ENAs) observed by the Interstellar Boundary Explorer (IBEX) provide powerful diagnostics about the origin of the progenitor ion populations and the physical mechanisms responsible for their production. Desai et al. (2012; 2013) combined and compared ENA spectra from the first three years of observations by the IBEX-Hi and -Lo ENA imagers along the lines-of-sights (LOS) from the inner heliosphere through to the locations of Voyager 1 and 2 with results from an updated physics-based model of the 3D heliosphere and its constituent ion populations. These results showed that (1) IBEX ENA fluxes and spectra above ˜0.7 keV measured along the LOS of the Voyagers are consistent with several models in which the parent pickup (PUI) populations originate in the inner heliosheath, and (2) a significant fraction of lower-energy ENAs between ˜0.1-0.5 keV may originate from interstellar neutral gas charge-exchanging with a non-thermalized (hot) population of PUIs in the outer heliosheath beyond the heliopause. We use these results and model the full sky IBEX-Hi energy spectra to probe the microphysical processes occurring in the inner heliospheath near the termination shock and then infer the global properties (e.g., latitudinal and longitudinal variations of the shock compression ratio) of the termination shock.

  6. Prebiotic molecules formation through the gas-phase reaction between HNO and CH2CHOH2+

    NASA Astrophysics Data System (ADS)

    Redondo, Pilar; Martínez, Henar; Largo, Antonio; Barrientos, Carmen

    2017-07-01

    Context. Knowing how the molecules that are present in the ISM can evolve to more complex ones is an interesting topic in interstellar chemistry. The study of possible reactions between detected species can help to understand the evolution in complexity of the interstellar matter and also allows knowing the formation of new molecules which could be candidates to be detected. We focus our attention on two molecules detected in space, vinyl alcohol (CH2CHOH) and azanone (HNO). Aims: We aim to carry out a theoretical study of the ion-molecule reaction between protonated vinyl alcohol and azanone. The viability of formation of complex organic molecules (COMs) from these reactants is expected to provide some insight into the formation of prebiotic species through gas phase reactions. Methods: The reaction of protonated vinyl alcohol with azanone has been theoretically studied by using ab initio methods. Stationary points on the potential energy surface (PES) were characterized at the second-order Moller-Plesset level in conjunction with the aug-cc-pVTZ (correlation-consistent polarized valence triple-zeta) basis set. In addition, the electronic energies were refined by means of single-point calculations at the CCSD(T) level (coupled cluster single and double excitation model augmented with a non-iterative treatment of triple excitations) with the same basis set. Results: From a thermodynamic point of view, twelve products, composed of carbon, oxygen, nitrogen, and hydrogen which could be precursors in the formation of more complex biological molecules, can be obtained from this reaction. Among these, we focus especially on ionized glycine and two of its isomers. The analysis of the PES shows that only formation of cis- and trans-O-protonated imine acetaldehyde, CH2NHCOH+ and, CHNHCHOH+, are viable under interstellar conditions. Conclusions: The reaction of protonated vinyl alcohol with azanone can evolve in the interstellar medium to more complex organic molecules of prebiotic interest. Our results suggest that imine acetaldehyde could be a feasible candidate molecule to be searched for in space.

  7. Interstellar Mapping and Acceleration Probe (IMAP)

    NASA Astrophysics Data System (ADS)

    Schwadron, Nathan

    2016-04-01

    Our piece of cosmic real-estate, the heliosphere, is the domain of all human existence - an astrophysical case-history of the successful evolution of life in a habitable system. By exploring our global heliosphere and its myriad interactions, we develop key physical knowledge of the interstellar interactions that influence exoplanetary habitability as well as the distant history and destiny of our solar system and world. IBEX was the first mission to explore the global heliosphere and in concert with Voyager 1 and Voyager 2 is discovering a fundamentally new and uncharted physical domain of the outer heliosphere. In parallel, Cassini/INCA maps the global heliosphere at energies (~5-55 KeV) above those measured by IBEX. The enigmatic IBEX ribbon and the INCA belt were unanticipated discoveries demonstrating that much of what we know or think we understand about the outer heliosphere needs to be revised. The next quantum leap enabled by IMAP will open new windows on the frontier of Heliophysics at a time when the space environment is rapidly evolving. IMAP with 100 times the combined resolution and sensitivity of IBEX and INCA will discover the substructure of the IBEX ribbon and will reveal in unprecedented resolution global maps of our heliosphere. The remarkable synergy between IMAP, Voyager 1 and Voyager 2 will remain for at least the next decade as Voyager 1 pushes further into the interstellar domain and Voyager 2 moves through the heliosheath. The "A" in IMAP refers to acceleration of energetic particles. With its combination of highly sensitive pickup and suprathermal ion sensors, IMAP will provide the species and spectral coverage as well as unprecedented temporal resolution to associate emerging suprathermal tails with interplanetary structures and discover underlying physical acceleration processes. These key measurements will provide what has been a critical missing piece of suprathermal seed particles in our understanding of particle acceleration to high energies in the solar-heliospheric system and by extension to other planetary and astrophysical paradigms. IMAP, like ACE before it, will be a keystone of the Heliophysics System Observatory by providing comprehensive cosmic ray, energetic particle, pickup ion, suprathermal ion, neutral atom, solar wind, solar wind heavy ion, and magnetic field observations to diagnose the changing space environment and understand the fundamental origins of particle acceleration.

  8. Observation of pick-up ions in the solar wind: Evidence for the source of the anomalous cosmic ray component?

    NASA Technical Reports Server (NTRS)

    Hovestadt, D.; Moebius, E.; Klecker, B.; Scholer, M.; Gloeckler, G.; Ipavich, F. M.

    1985-01-01

    Singly ionized energetic helium has been observed in the solar wind by using the time of flight spectrometer SULEICA on the AMPTE/IRM satellite between September and December, 1984. The energy density spectrum shows a sharp cut off which is strongly correlated with the four fold solar wind bulk energy. The absolute flux of the He(+)ions of about 10000 ion/sq cm.s is present independent of the IPL magnetic field orientation. The most likely source is the neutral helium of the interstellar wind which is ionized by solar UV radiation. It is suggested that these particles represent the source of the anomalous cosmic ray component.

  9. Electromagnetic instabilities in solar wind interaction with dusty cometary plasmas

    NASA Technical Reports Server (NTRS)

    Verheest, Frank; Meuris, Peter

    1995-01-01

    Dusty plasmas contain charged dust grains which are much more massive than protons, carry high negative charges due to preferential capture of electrons, and do not have a fixed charge. Fluctuations in the grain charges due to liberation or capture of additional electrons and protons translate as mass and momentum losses or gains for these species, which can render linear modes unstable. On the other hand, many authors have addressed the pickup of ions of cometary origin by the solar wind, which for the parallel part is due to relative streaming between cometary and solar wind ions which excites low-frequency electromagnetic turbulence. In the present work we look again at those instabilities by including effects due to the presence of charged dust in the cometary environments. We have investigated several frequency regimes: nonresonant below the cometary watergroup gyrofrequency, nonresonant below the cometary charged dust gyrofrequency (new and interesting but highly unlikely!) and resonant with the cometary watergroup ions. For most parameter ranges either the existing instabilities are enhanced, showing that the presence of charged dust facilitates the cometary ion pickup by the solar wind, or new instabilities have been shown to exist. Similar conclusions might be relevant for other kinds of astrophysical and heliospheric plasmas containing charged dust, as in planetary rings.

  10. The interstellar formation and spectra of the noble gas, proton-bound HeHHe+, HeHNe+ and HeHAr+ complexes

    NASA Astrophysics Data System (ADS)

    Stephan, Cody J.; Fortenberry, Ryan C.

    2017-07-01

    The sheer interstellar abundance of helium makes any bound molecules or complexes containing it of potential interest for astrophysical observation. This work utilizes high-level and trusted quantum chemical techniques to predict the rotational, vibrational and rovibrational traits of HeHHe+, HeHNe+ and HeHAr+. The first two are shown to be strongly bound, while HeHAr+ is shown to be more of a van der Waals complex of argonium with a helium atom. In any case, the formation of HeHHe+ through reactions of HeH+ with HeH3+ is exothermic. HeHHe+ exhibits the quintessentially bright proton-shuttle motion present in all proton-bound complexes in the 7.4 micron range making it a possible target for telescopic observation at the mid-/far-Infrared crossover point and a possible tracer for the as-of-yet unobserved helium hydride cation. Furthermore, a similar mode in HeHNe+ can be observed to the blue of this close to 6.9 microns. The brightest mode of HeHAr+ is dimmed due the reduced interaction of the helium atom with the central proton, but this fundamental frequency can be found slightly to the red of the Ar-H stretch in the astrophysically detected argonium cation.

  11. Boundary conditions for the paleoenvironment: Chemical and physical processes in the pre-solar nebula

    NASA Technical Reports Server (NTRS)

    Irvine, William M.; Schloerb, F. Peter

    1987-01-01

    Detailed study of the first interstellar hydrocarbon ring, cyclopropenylidene (C3H2), is continuing. The singly deuterated isotope of this molecule, C3HD, was observed in several cold interstellar clouds. The results of a large survey for C3H2 in galactic sources of various types will soon be completed. It appears that cyclopropenylidene is present in virtually all interstellar clouds of at least moderate density. In order to make the first determinations of the CO2/CO abundance ratio in interstellar sources, observations of protonated CO2 were pursued. The spectrum from 18.5 to 22 GHz for several interstellar clouds is being systematically measured. Particular attention is being given to the cold, dark clouds TMC-1 and L124N, which may be formation sites for solar mass stars. The phenomena of maser emission from molecules of methanol is being studied in certain interstellar clouds. A comparison of 1 millimeter continuum emission from dust with the column density of carbon monoxide as determined from the rare C(18)O isotope for 4 molecular clouds in the Galaxy is nearing completion. Papers published during the period of this report are listed.

  12. Voyager 1 in the foreshock, termination shock, and heliosheath.

    PubMed

    Decker, R B; Krimigis, S M; Roelof, E C; Hill, M E; Armstrong, T P; Gloeckler, G; Hamilton, D C; Lanzerotti, L J

    2005-09-23

    Voyager 1 (V1) began measuring precursor energetic ions and electrons from the heliospheric termination shock (TS) in July 2002. During the ensuing 2.5 years, average particle intensities rose as V1 penetrated deeper into the energetic particle foreshock of the TS. Throughout 2004, V1 observed even larger, fluctuating intensities of ions from 40 kiloelectron volts (keV) to >/=50 megaelectron volts per nucleon and of electrons from >26 keV to >/=350 keV. On day 350 of 2004 (2004/350), V1 observed an intensity spike of ions and electrons that was followed by a sustained factor of 10 increase at the lowest energies and lesser increases at higher energies, larger than any intensities since V1 was at 15 astronomical units in 1982. The estimated solar wind radial flow speed was positive (outward) at approximately +100 kilometers per second (km s(-1)) from 2004/352 until 2005/018, when the radial flows became predominantly negative (sunward) and fluctuated between approximately -50 and 0 km s(-1) until about 2005/110; they then became more positive, with recent values (2005/179) of approximately +50 km s(-1). The energetic proton spectrum averaged over the postshock period is apparently dominated by strongly heated interstellar pickup ions. We interpret these observations as evidence that V1 was crossed by the TS on 2004/351 (during a tracking gap) at 94.0 astronomical units, evidently as the shock was moving radially inward in response to decreasing solar wind ram pressure, and that V1 has remained in the heliosheath until at least mid-2005.

  13. Energetic neutral atoms measured by the interstellar boundary explorer (IBEX): evidence for multiple heliosheath populations

    DOE PAGES

    Desai, M. I.; Allegrini, F. A.; Bzowski, M.; ...

    2013-12-13

    Energetic neutral atoms (ENAs) observed by the Interstellar Boundary Explorer (IBEX) provide powerful diagnostics about the origin of the progenitor ion populations and the physical mechanisms responsible for their production. In this paper, we extend the work of Desai et al. and Fuselier et al. and combine and compare ENA spectra from the first 3 yr of observations by the IBEX-Hi and -Lo ENA imagers along the lines-of-sight (LOSs) from the inner heliosphere through to the locations of Voyager 1 and 2 with results from an updated physics-based model of the three-dimensional heliosphere and its constituent ion populations. Our resultsmore » show that (1) IBEX ENA fluxes and spectra above ~0.7 keV measured along the LOSs of the Voyagers are consistent with several models in which the parent pickup ion (PUI) populations originate in the inner heliosheath, and (2) a significant fraction of lower energy ENAs between ~0.1-0.5 keV may originate from interstellar neutral gas charge-exchanging with a non-thermalized (hot) population of PUIs in the outer heliosheath beyond the heliopause. Here we discuss the implications of ENAs observed by IBEX originating from distinct parent populations as well as from two distinct locations in the heliospheric interface. In conclusion, these results indicate that ENA spectral measurements at various energies can be used to remotely probe distinct physical processes operating in vastly different regions of the distant heliosphere.« less

  14. Energetic Neutral Atoms Measured by the Interstellar Boundary Explorer (IBEX): Evidence for Multiple Heliosheath Ion Populations

    NASA Astrophysics Data System (ADS)

    Desai, M. I.; Allegrini, F.; Bzowski, M.; Dayeh, M. A.; Funsten, H. O.; Fuselier, S.; Kubiak, M. A.; McComas, D. J.; Pogorelov, N. V.; Schwadron, N.; Sokol, J. M.; Zank, G. P.; Zirnstein, E. J.

    2013-12-01

    Energetic Neutral Atoms (ENAs) observed by the Interstellar Boundary Explorer (IBEX) provide powerful diagnostics about the origin of the progenitor ion populations and the physical mechanisms responsible for their production. In this paper, we extend the work of Desai et al. (2012) and Fuselier et al. (2012) and combine and compare ENA spectra from the first three years of observations by the IBEX-Hi and -Lo ENA imagers along the lines-of-sights (LOS) from the inner heliosphere through to the locations of Voyager 1 and 2 with results from an updated physics-based model of the 3D heliosphere and its constituent ion populations. Our results show that (1) IBEX ENA fluxes and spectra above ~0.7 keV measured along the LOS of the Voyagers are consistent with several models in which the parent pickup (PUI) populations originate in the inner heliosheath, and (2) a significant fraction of lower-energy ENAs between ~0.1-0.5 keV may originate from interstellar neutral gas charge-exchanging with a non-thermalized (hot) population of PUIs in the outer heliosheath beyond the heliopause. We discuss the implications of ENAs observed by IBEX originating from distinct parent populations as well as from two distinct locations in the heliospheric interface. These results indicate that ENA spectral measurements at various energies can be used to remotely probe distinct physical processes operating in vastly different regions of the distant heliosphere.

  15. Energetic Neutral Atoms Measured by the Interstellar Boundary Explorer (IBEX): Evidence for Multiple Heliosheath Populations

    NASA Astrophysics Data System (ADS)

    Desai, M. I.; Allegrini, F. A.; Bzowski, M.; Dayeh, M. A.; Funsten, H.; Fuselier, S. A.; Heerikhuisen, J.; Kubiak, M. A.; McComas, D. J.; Pogorelov, N. V.; Schwadron, N. A.; Sokół, J. M.; Zank, G. P.; Zirnstein, E. J.

    2014-01-01

    Energetic neutral atoms (ENAs) observed by the Interstellar Boundary Explorer (IBEX) provide powerful diagnostics about the origin of the progenitor ion populations and the physical mechanisms responsible for their production. In this paper, we extend the work of Desai et al. and Fuselier et al. and combine and compare ENA spectra from the first 3 yr of observations by the IBEX-Hi and -Lo ENA imagers along the lines-of-sight (LOSs) from the inner heliosphere through to the locations of Voyager 1 and 2 with results from an updated physics-based model of the three-dimensional heliosphere and its constituent ion populations. Our results show that (1) IBEX ENA fluxes and spectra above ~0.7 keV measured along the LOSs of the Voyagers are consistent with several models in which the parent pickup ion (PUI) populations originate in the inner heliosheath, and (2) a significant fraction of lower energy ENAs between ~0.1-0.5 keV may originate from interstellar neutral gas charge-exchanging with a non-thermalized (hot) population of PUIs in the outer heliosheath beyond the heliopause. We discuss the implications of ENAs observed by IBEX originating from distinct parent populations as well as from two distinct locations in the heliospheric interface. These results indicate that ENA spectral measurements at various energies can be used to remotely probe distinct physical processes operating in vastly different regions of the distant heliosphere.

  16. Time-dependent Processes in the Sheath Between the Heliospheric Termination Shock and the Heliopause

    NASA Astrophysics Data System (ADS)

    Pogorelov, N. V.; Borovikov, S. N.; Heerikhuisen, J.; Kim, T. K.; Zank, G. P.

    2014-09-01

    In this paper, we present the results of our numerical simulation of the solar wind (SW) interaction with the local interstellar medium (LISM). In particular, a solar cycle model based on Ulysses measurements allowed us to estimate the interrelationship between heliospheric asymmetries due to the action of the interstellar magnetic field and the decrease in the solar wind ram pressure. We evaluate the possibility to develop an improved approach to derive SW boundary conditions from interplanetary scintillation data. It is shown that solar cycle affects stability of the heliopause in a way favorable for the interpretation of Voyager 1 “early” penetration into the local interstellar medium. We also show that the heliotail is always a subject of violent Kelvin-Helmholtz instability, which ultimately should make the heliotail indistinguishable from the LISM. Numerical results are obtained with a Multi-Scale Fluid-Kinetic Simulation Suite (MS-FLUKSS), which is a package of numerical codes capable of performing adaptive mesh refinement simulations of complex plasma flows in the presence of discontinuities and charge exchange between ions and neutral atoms. The flow of the ionized component is described with the ideal MHD equations, while the transport of atoms is governed either by the Boltzmann equation or multiple Euler gas dynamics equations. We have enhanced the code with additional physical treatments for the transport of turbulence and acceleration of pickup ions in interplanetary space and at the termination shock.

  17. INJECTION TO RAPID DIFFUSIVE SHOCK ACCELERATION AT PERPENDICULAR SHOCKS IN PARTIALLY IONIZED PLASMAS

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ohira, Yutaka, E-mail: ohira@phys.aoyama.ac.jp

    2016-08-10

    We present a three-dimensional hybrid simulation of a collisionless perpendicular shock in a partially ionized plasma for the first time. In this simulation, the shock velocity and upstream ionization fraction are v {sub sh} ≈ 1333 km s{sup −1} and f {sub i} ∼ 0.5, which are typical values for isolated young supernova remnants (SNRs) in the interstellar medium. We confirm previous two-dimensional simulation results showing that downstream hydrogen atoms leak into the upstream region and are accelerated by the pickup process in the upstream region, and large magnetic field fluctuations are generated both in the upstream and downstream regions.more » In addition, we find that the magnetic field fluctuations have three-dimensional structures and the leaking hydrogen atoms are injected into the diffusive shock acceleration (DSA) at the perpendicular shock after the pickup process. The observed DSA can be interpreted as shock drift acceleration with scattering. In this simulation, particles are accelerated to v ∼ 100 v {sub sh} ∼ 0.3 c within ∼100 gyroperiods. The acceleration timescale is faster than that of DSA in parallel shocks. Our simulation results suggest that SNRs can accelerate cosmic rays to 10{sup 15.5} eV (the knee) during the Sedov phase.« less

  18. A quantitative investigation of the solar modulation of cosmic-ray protons and helium nuclei. Ph.D. Thesis

    NASA Technical Reports Server (NTRS)

    Garrard, T. L.

    1972-01-01

    The differential energy spectra of cosmic ray protons and He nuclei were measured at energies up to 315 MeV/nucleon using balloon-borne and satellite-borne instruments. These spectra are presented for solar quiet times for the years 1966 through 1970. The data analysis is verified by extensive accelerator calibrations of the detector systems and by calculations and measurements of the production of secondary protons in the atmosphere. The spectra of protons and He nuclei in this energy range are dominated by the solar modulation of the local interstellar spectra. Numerical solutions to the transport equation are presented for a wide range of parameters.

  19. ON THE GEOMETRY OF THE IBEX RIBBON

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sylla, Adama; Fichtner, Horst

    2015-10-01

    The Energetic Neutral Atom (ENA) full-sky maps obtained with the Interstellar Boundary Explorer (IBEX) show an unexpected bright narrow band of increased intensity. This so-called ENA ribbon results from charge exchange of interstellar neutral atoms with protons in the outer heliosphere or beyond. Among other hypotheses it has been argued that this ribbon may be related to a neutral density enhancement, or H-wave, in the local interstellar medium. Here we quantitatively demonstrate, on the basis of an analytical model of the principal large-scale heliospheric structure, that this scenario for the ribbon formation leads to results that are fully consistent withmore » the observed location of the ribbon in the full-sky maps at all energies detected with high-energy sensor IBEX-Hi.« less

  20. Imprints of cosmic rays in multifrequency observations of the interstellar emission

    NASA Astrophysics Data System (ADS)

    Orlando, E.

    2018-04-01

    Ever since the discovery of cosmic rays (CRs), significant advancements have been made in modelling their propagation in the Galaxy and in the Heliosphere. However, propagation models suffer from degeneracy of many parameters. To complicate the picture, the precision of recent data have started challenging existing models. To tackle these issues, we use available multifrequency observations of the interstellar emission from radio to gamma rays, together with direct CR measurements, to study local interstellar spectra (LIS) and propagation models. As a result, the electron LIS is characterized without any assumption on solar modulation, and favourite propagation models are put forwards. More precisely, our analysis leads to the following main conclusions: (1) the electron injection spectrum needs at least a break below a few GeV; (2) even though consistent with direct CR measurements, propagation models producing a LIS with large all-electron density from a few hundreds of MeV to a few GeV are disfavoured by both radio and gamma-ray observations; (3) the usual assumption that direct CR measurements, after accounting for solar modulation, are representative of the proton LIS in our ˜1 kpc region is challenged by the observed local gamma-ray H I emissivity. We provide the resulting proton LIS, all-electron LIS, and propagation parameters based on synchrotron, gamma-ray, and direct CR data. A plain diffusion model and a tentative diffusive-reacceleration model are put forwards. The various models are investigated in the inner-Galaxy region in X-rays and gamma rays. Predictions of the interstellar emission for future gamma-ray instruments (e-ASTROGAM and AMEGO) are derived.

  1. Pickup Ions in the Plasma Environments of Mars, Comets, and Enceladus

    NASA Astrophysics Data System (ADS)

    Cravens, T.; Rahmati, A.; Sakai, S.; Madanian, H.; Larson, D. E.; Lillis, R. J.; Halekas, J. S.; Goldstein, R.; Burch, J. L.; Clark, G. B.; Jakosky, B. M.

    2015-12-01

    Ions created within a flowing plasma by ionization of neutrals respond to the electric and magnetic fields associated with the flow becoming what are called pick-up ions (PUI). PUI play an important role in many solar system plasma environments and affect the energy and momentum balance of the plasma flow. PUI have been observed during several recent space missions and PUI data will be compared and interpreted using models. Pick-up oxygen ions were observed in the solar wind upstream of Mars by the Solar Energetic Particle (SEP) and Solar Wind Ion Analyzer (SWIA) instruments on NASA's MAVEN (Mars Atmosphere and Volatile EvolutioN) spacecraft. The pick-up oxygen ions are created when atoms in the hot corona are ionized by solar radiation and charge exchange with solar wind protons. The ion fluxes measured by SEP can constrain the oxygen escape rate from Mars. PUI were also been detected at distances of 10 - 100 km from the nucleus of comet 67P/Churyumov- Gerasimenko (67P/CG) by plasma instruments (IES and ICA) onboard the Rosetta Orbiter when the comet was at 3 AU. The newly-born cometary ions are accelerated by the solar wind motional electric field but remain un-magnetized, as suggested by pre-encounter models (Rubin et al., 2014). The inner magnetosphere of Saturn and the water plume of the icy satellite Enceladus provide a third example of PUI. H2O+ ions created by ionization of neutral water producing ions that are picked-up by the co-rotating magnetospheric plasma flow. These ions then undergo a complex interaction with the plume gas including collisions that convert most H2O+ ions to H3O+, as measured by the Ion and Neutral Mass Spectrometer (INMS) onboard the Cassini spacecraft.

  2. ACCURATE SPECTROSCOPIC CHARACTERIZATION OF PROTONATED OXIRANE: A POTENTIAL PREBIOTIC SPECIES IN TITAN'S ATMOSPHERE.

    PubMed

    Puzzarini, Cristina; Ali, Ashraf; Biczysko, Malgorzata; Barone, Vincenzo

    2014-09-10

    An accurate spectroscopic characterization of protonated oxirane has been carried out by means of state-of-the-art computational methods and approaches. The calculated spectroscopic parameters from our recent computational investigation of oxirane together with the corresponding experimental data available were used to assess the accuracy of our predicted rotational and IR spectra of protonated oxirane. We found an accuracy of about 10 cm -1 for vibrational transitions (fundamentals as well as overtones and combination bands) and, in relative terms, of 0.1% for rotational transitions. We are therefore confident that the spectroscopic data provided herein are a valuable support for the detection of protonated oxirane not only in Titan's atmosphere but also in the interstellar medium.

  3. Ketene Formation in Interstellar Ices: A Laboratory Study

    NASA Technical Reports Server (NTRS)

    Hudson, Reggie L.; Loeffler, Mark Josiah

    2013-01-01

    The formation of ketene (H2CCO, ethenone) in polar and apolar ices was studied with in situ 0.8 MeV proton irradiation, far-UVphotolysis, and infrared spectroscopic analyses at 10-20 K. Using isotopically enriched reagents, unequivocal evidencewas obtained for ketene synthesis in H2O-rich and CO2-rich ices, and several reaction products were identified. Results from scavenging experiments suggested that ketene was formed by free-radical pathways, as opposed to acid-base processes or redox reactions. Finally, we use our results to draw conclusions about the formation and stability of ketene in the interstellar medium.

  4. Temperature effects on the pickup process of water group and hydrogen ions - Extensions of 'A theory for low-frequency waves observed at Comet Giacobini-Zinner' by M. L. Goldstein and H. K. Wong

    NASA Technical Reports Server (NTRS)

    Brinca, Armando L.; Tsurutani, Bruce T.

    1988-01-01

    Cometary heavy ions can resonantly excite hydromagnetic wave activity with spacecraft frequency spectra strongly deviating from the ion cyclotron frequency. The influence of the newborn particle temperature on this effect is assessed, its relevance to the interpretation of the observations is discussed, and an alternative, more efficient mechanism to generate spacecraft frequencies of the order of the proton cyclotron frequency is suggested.

  5. Influence of isovector pairing and particle-number projection effects on spectroscopic factors for one-pair like-particle transfer reactions in proton-rich even-even nuclei

    NASA Astrophysics Data System (ADS)

    Benbouzid, Y.; Allal, N. H.; Fellah, M.; Oudih, M. R.

    2018-04-01

    Isovector neutron-proton (np) pairing and particle-number fluctuation effects on the spectroscopic factors (SF) corresponding to one-pair like-particle transfer reactions in proton-rich even-even nuclei are studied. With this aim, expressions of the SF corresponding to two-neutron stripping and two-proton pick-up reactions, which take into account the isovector np pairing effect, are established within the generalized BCS approach, using a schematic definition proposed by Chasman. Expressions of the same SF which strictly conserve the particle number are also established within the Sharp-BCS (SBCS) discrete projection method. In both cases, it is shown that these expressions generalize those obtained when only the pairing between like particles is considered. First, the formalism is tested within the Richardson schematic model. Second, it is applied to study even-even proton-rich nuclei using the single-particle energies of a Woods-Saxon mean-field. In both cases, it is shown that the np pairing effect and the particle-number projection effect on the SF values are important, particularly in N = Z nuclei, and must then be taken into account.

  6. Digital signal processing the Tevatron BPM signals

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cancelo, G.; James, E.; Wolbers, S.

    2005-05-01

    The Beam Position Monitor (TeV BPM) readout system at Fermilab's Tevatron has been updated and is currently being commissioned. The new BPMs use new analog and digital hardware to achieve better beam position measurement resolution. The new system reads signals from both ends of the existing directional stripline pickups to provide simultaneous proton and antiproton measurements. The signals provided by the two ends of the BPM pickups are processed by analog band-pass filters and sampled by 14-bit ADCs at 74.3MHz. A crucial part of this work has been the design of digital filters that process the signal. This paper describesmore » the digital processing and estimation techniques used to optimize the beam position measurement. The BPM electronics must operate in narrow-band and wide-band modes to enable measurements of closed-orbit and turn-by-turn positions. The filtering and timing conditions of the signals are tuned accordingly for the operational modes. The analysis and the optimized result for each mode are presented.« less

  7. Magnetic Field Fluctuations Observed in the Heliosheath and Interstellar Magnetic Field by Voyager 1 at 115.7-124.9 AU during 2011-2013

    NASA Astrophysics Data System (ADS)

    Burlaga, L. F.; Ness, N. F.; Florinski, V.; Heerikhuisen, J.

    2014-09-01

    We discuss microscale fluctuations of the hour averages of the magnetic field B observed on a scale of one day by Voyager 1 (V1) from 2011.0 to 2012.3143 (when it was within the distant heliosheath, where the average magnetic field strength langBrang = 0.17 nT) and during the interval from 2012.6503 to 2013.5855 (when it was within the interstellar plasma with langBrang = 0.47 nT). In both regions, the fluctuations were primarily compressive fluctuations, varying along the average B (≈T direction in RTN coordinates). In the heliosheath, the average of the daily standard deviations (SDs) of the compressive and transverse components of B were langSDcrang = 0.010 nT and langSDtrang <= 0.005 nT (which is the limit of the measurement). In the distant heliosheath langSDcrang/langBrang = 0.06, and the distributions of SD were skewed and highly kurtotic. The interstellar magnetic field (ISMF) strength was B = 0.48 nT, but the fluctuations were below the limit of measurement: langSDcrang = 0.004 nT and langabs(SDt)rang = 0.004 nT. The distributions of these interstellar SDs have skewness and kurtosis consistent with a Gaussian noise distribution. We also discuss the fluctuations of 48 s averages of B on a scale of 1 day during a 30 day interval when V1 was observing the ISMF. For the fluctuations in all three components of B, SD = 0.010 nT, which gives an upper limit on the fluctuations of the ISMF on the scales observed by V1. This SD rules out the possibility that there is significant power in electromagnetic fluctuations generated by pickup ion ring instabilities at these scales, which strongly constrains models of the IBEX ribbon.

  8. Discovery of Molecular and Atomic Clouds Associated with the Magellanic Superbubble 30 Doradus C

    NASA Astrophysics Data System (ADS)

    Sano, H.; Yamane, Y.; Voisin, F.; Fujii, K.; Yoshiike, S.; Inaba, T.; Tsuge, K.; Babazaki, Y.; Mitsuishi, I.; Yang, R.; Aharonian, F.; Rowell, G.; Filipović, M. D.; Mizuno, N.; Tachihara, K.; Kawamura, A.; Onishi, T.; Fukui, Y.

    2017-07-01

    We analyzed the 2.6 mm CO and 21 cm H I lines toward the Magellanic superbubble 30 Doradus C, in order to reveal the associated molecular and atomic gas. We uncovered five molecular clouds in a velocity range from 251 to 276 km s-1 toward the western shell. The non-thermal X-rays are clearly enhanced around the molecular clouds on a parsec scale, suggesting possible evidence for magnetic field amplification via shock-cloud interaction. The thermal X-rays are brighter in the eastern shell, where there are no dense molecular or atomic clouds, opposite to the western shell. The TeV γ-ray distribution may spatially match the total interstellar proton column density as well as the non-thermal X-rays. If the hadronic γ-ray is dominant, the total energy of the cosmic-ray protons is at least ˜ 1.2× {10}50 erg with the estimated mean interstellar proton density ˜60 cm-3. In addition, the γ-ray flux associated with the molecular cloud (e.g., MC3) could be detected and resolved by the Cherenkov Telescope Array (CTA). This should permit CTA to probe the diffusion of cosmic-rays into the associated dense ISM.

  9. NEUTRAL ATOM PROPERTIES IN THE DIRECTION OF THE IBEX RIBBON

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Heerikhuisen, Jacob; Pogorelov, Nikolai V.; Gamayunov, Konstantin V.

    2016-11-10

    In this paper, we present results from our three-dimensional (3D) simulations of the interaction between the solar wind and local interstellar medium with an emphasis on the phase-space properties of energetic neutral atoms (ENAs) along a sight line that intersects the ribbon of enhanced ENA flux seen by NASA’s Interstellar Boundary EXplorer spacecraft. The majority of these ENAs have velocities directed away from the heliosphere, but it is believed that interactions between heliospheric ENAs and ions outside the heliosphere may result in a population of secondary ENAs that return to the heliosphere and generate the ribbon. While we do notmore » consider the ion dynamics that result in secondary ENAs, our analysis is of key importance to the process since the heliospheric ENAs we consider form the source population for those ions. We present the moments of the hydrogen distribution, along with moments parallel and perpendicular to the local magnetic field for the pick-up ions (PUIs) that these neutrals generate. Finally, we present gyro-averaged velocity distributions relative to the local magnetic field for the PUIs created from our simulated H-atoms, along with analytic fits to these distributions in the secondary ENA source region just beyond the heliopause.« less

  10. Modeling Shocks Detected by Voyager 1 in the Local Interstellar Medium

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kim, T. K.; Pogorelov, N. V.; Burlaga, L. F.

    The magnetometer (MAG) on Voyager 1 ( V1 ) has been sampling the interstellar magnetic field (ISMF) since 2012 August. The V1 MAG observations have shown draped ISMF in the very local interstellar medium disturbed occasionally by significant enhancements in magnetic field strength. Using a three-dimensional, data-driven, multi-fluid model, we investigated these magnetic field enhancements beyond the heliopause that are supposedly associated with solar transients. To introduce time-dependent effects at the inner boundary at 1 au, we used daily averages of the solar wind parameters from the OMNI data set. The model ISMF strength, direction, and proton number density aremore » compared with V1 data beyond the heliopause. The model reproduced the large-scale fluctuations between 2012.652 and 2016.652, including major events around 2012.9 and 2014.6. The model also predicts shocks arriving at V1 around 2017.395 and 2019.502. Another model driven by OMNI data with interplanetary coronal mass ejections (ICMEs) removed at the inner boundary suggests that ICMEs may play a significant role in the propagation of shocks into the interstellar medium.« less

  11. Deciphering the Local Interstellar Spectra of Primary Cosmic-Ray Species with HELMOD

    NASA Astrophysics Data System (ADS)

    Boschini, M. J.; Della Torre, S.; Gervasi, M.; Grandi, D.; Jóhannesson, G.; La Vacca, G.; Masi, N.; Moskalenko, I. V.; Pensotti, S.; Porter, T. A.; Quadrani, L.; Rancoita, P. G.; Rozza, D.; Tacconi, M.

    2018-05-01

    Local interstellar spectra (LIS) of primary cosmic ray (CR) nuclei, such as helium, oxygen, and mostly primary carbon are derived for the rigidity range from 10 MV to ∼200 TV using the most recent experimental results combined with the state-of-the-art models for CR propagation in the Galaxy and in the heliosphere. Two propagation packages, GALPROP and HELMOD, are combined into a single framework that is used to reproduce direct measurements of CR species at different modulation levels, and at both polarities of the solar magnetic field. The developed iterative maximum-likelihood method uses GALPROP-predicted LIS as input to HELMOD, which provides the modulated spectra for specific time periods of the selected experiments for model–data comparison. The interstellar and heliospheric propagation parameters derived in this study are consistent with our prior analyses using the same methodology for propagation of CR protons, helium, antiprotons, and electrons. The resulting LIS accommodate a variety of measurements made in the local interstellar space (Voyager 1) and deep inside the heliosphere at low (ACE/CRIS, HEAO-3) and high energies (PAMELA, AMS-02).

  12. KETENE FORMATION IN INTERSTELLAR ICES: A LABORATORY STUDY

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hudson, Reggie L.; Loeffler, Mark J., E-mail: Reggie.Hudson@NASA.gov

    2013-08-20

    The formation of ketene (H{sub 2}CCO, ethenone) in polar and apolar ices was studied with in situ 0.8 MeV proton irradiation, far-UV photolysis, and infrared spectroscopic analyses at 10-20 K. Using isotopically enriched reagents, unequivocal evidence was obtained for ketene synthesis in H{sub 2}O-rich and CO{sub 2}-rich ices, and several reaction products were identified. Results from scavenging experiments suggested that ketene was formed by free-radical pathways, as opposed to acid-base processes or redox reactions. Finally, we use our results to draw conclusions about the formation and stability of ketene in the interstellar medium.

  13. Structure of Ion Outflow in the Martian Magnetotail

    NASA Astrophysics Data System (ADS)

    McFadden, J. P.; Mitchell, D.; Luhmann, J. G.; Connerney, J. E. P.; Jakosky, B. M.

    2017-12-01

    The Suprathermal And Thermal Ion Composition (STATIC) sensor on the MAVEN spacecraft provides a detailed look at the structure of ion outflow in the Martian magnetotail including ion composition, energization, and flow. Mars' magnetotail contains a mixture of cold (<10 eV) nearly-stationary multi-species ions, tailward-moving cold multi-species ions, suprathermal ions of a few tens of eV, warm (about 100 eV) proton populations, and heavy (primarily O+) pickup ions at energies from 1 to 10 keV which may display several simultaneous peaks in energy flux. The cold tailward-moving ions represent a significant fraction of the Martian ion loss, perhaps comparable to loses from molecular oxygen dissociation. The suprathermal tail that accompanies the cold ions varies greatly and provides clues to ion escape. The warm protons, on first examination, appear to be of sheath origin, displaying a similar energy distribution and accompanied by a tenuous warm population at M/Q=2 (which could be either solar wind alphas or molecular hydrogen ions of ionospheric origin). STATIC produces a weak ghost peak at M/Q=11-12 when observing molecular hydrogen ions, but not alphas, often allowing the instrument to distinguish the source of protons. Measurements show the warm protons are of ionospheric origin in the central tail and transition to sheath plasma in the umbra. Energetic (1-10 keV) pickup oxygen in the magnetotail is produced on the nightside, near the pole where the IMF convection electric field points toward the planet, the same hemisphere where sputtering occurs. When two spectral peaks are observed, these tailward-moving ions differ in direction by relatively small angles (about 20 degrees). These peaks can persist for tens of minutes indicating approximately time-stationary acceleration, and therefore acceleration in potential fields. Magnetotail structure and geometry can be inferred not only from the local magnetic field, but also from the measured electron distributions which indicate source populations and connectivity (closed, open, or interplanetary). This paper will be used to describe the observed tail structure and the inferred acceleration structure.

  14. Interplanetary magnetic field over two solar cycles and out to 20 AU

    NASA Technical Reports Server (NTRS)

    Smith, J. E.

    1989-01-01

    Interplanetary field measurements are now available from Pioneer and Voyager at large distances and from various spacecraft in the inner solar system. These multiple observations at different locations have proven indispensable in separating temporal from spatial dependences. The data set has revealed a number of characteristic solar cycle variations including changes in field strength and the inclination of the heliospheric current sheet responsible for magnetic sectors. Spatial gradients in the field parameters out to 20 AU have been compared with the Parker Model including the spiral angle, the north-south field component and the magnitude. As a result of planetary encounters, Pioneer and the Voyagers are traveling outward at significantly different latitudes making it possible to investigate latitudinal, as well as radial, dependences. Effects associated with the pick-up of interstellar ions are being sought.

  15. UV action spectroscopy of protonated PAH derivatives. Methyl substituted quinolines

    NASA Astrophysics Data System (ADS)

    Klærke, B.; Holm, A. I. S.; Andersen, L. H.

    2011-08-01

    Aims: We investigate the production of molecular photofragments upon UV excitation of PAH derivatives, relevant for the interstellar medium. Methods: The action absorption spectra of protonated gas-phase methyl-substituted quinolines (CH3 - C9H7NH+) have been recorded in the 215-338 nm spectral range using the electrostatic storage ring ELISA, an electrospray ion source and 3 ns UV laser pulses. Results: It is shown that the absorption profile is both redshifted and broadened when moving the methyl group from the heterocycle containing nitrogen to the homoatomic ring. The absorption profiles are explained by TD-DFT calculations. The dissociation time of the studied molecules is found to be of several milliseconds at 230 nm and it is shown that after redistribution of the absorbed energy the molecules dissociate in several channels. The dissociation time found is an order of magnitude faster than the estimated IR relaxation time. Photophysical properties of both nitrogen containing and methyl-substituted PAHs are interesting in an astrophysical context in connection with identifying the aromatic component of the interstellar medium.

  16. The Chemical Composition and Gas-to-Dust Mass Ratio of Nearby Interstellar Matter

    NASA Technical Reports Server (NTRS)

    Frisch, Priscilla C.; Slavin, Jonathan D.

    2003-01-01

    We use recent results on interstellar gas toward nearby stars and interstellar by-products within the solar system to select among the equilibrium radiative transfer models of the nearest interstellar material presented in Slavin & Frisch. For the assumption that O/H - 400 parts per million, models 2 and 8 are found to yield good fits to available data on interstellar material inside and outside of the heliosphere, with the exception of the Ne abundance in the pickup ion and anomalous cosmic-ray populations. For these models, the interstellar medium (ISM) at the entry point to the heliosphere has n(H(sup 0)) = 0.202-0.208/cu cm, n(He(sup 0) = 0.0137-0.0152/cu cm, and ionizations X(H) = 0.29-0.30, X(He) = 0.47-0.51. These best models suggest that the chemical composition of the nearby ISM is approx.60%-70% subsolar if S is undepleted. Both H(0) and H(+) need to be included when evaluating abundances of ions found in warm diffuse clouds. Models 2 and 8 yield an H filtration factor of approx.0.46. Gas-to-dust mass ratios for the ISM toward epsilon CMa are R(sub gd) = 178-183 for solar abundances of Holweger or R(sub gd) = 611-657 for an interstellar abundance standard 70% solar. Direct observations of dust grains in the solar system by Ulysses and Galileo yield R(sub gd) appr0x. 115 for models 2 and 8, supporting earlier results (Frisch and coworkers). If the local ISM abundances are subsolar, then gas and dust are decoupled over small spatial scales. The inferred variation in R(sub gd) over parsec length scales is consistent with the fact that the ISM near the Sun is part of a dynamically active cluster of cloudlets flowing away from the Sco-Cen association. Observations toward stars within approx.500 pc show that R(sub gd) correlates with the percentage of the dust mass that is carried by iron, suggesting that an Fe-rich grain core (by mass) remains after grain destruction. Evidently large dust grains (>10(exp -13) g) and small dust grains (<10(exp -13) g) are not well mixed over parsec length spatial scales in the ISM. It also appears that very small C-dominated dust grains have been destroyed in the ISM within several parsecs of the Sun, since C appears to be essentially undepleted. However, if gas-dust coupling breaks down over the cloud lifetime, the missing mass arguments applied here to determine R(sub gd) and dust grain mineralogy are not appropriate.

  17. A GAS-PHASE FORMATION ROUTE TO INTERSTELLAR TRANS-METHYL FORMATE

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cole, Callie A.; Wehres, Nadine; Yang Zhibo

    2012-07-20

    The abundance of methyl formate in the interstellar medium has previously been underpredicted by chemical models. Additionally, grain surface chemistry cannot account for the relative abundance of the cis- and trans-conformers of methyl formate, and the trans-conformer is not even formed at detectable abundance on these surfaces. This highlights the importance of studying formation pathways to methyl formate in the gas phase. The rate constant and branching fractions are reported for the gas-phase reaction between protonated methanol and formic acid to form protonated trans-methyl formate and water as well as adduct ion: Rate constants were experimentally determined using a flowingmore » afterglow-selected ion flow tube apparatus at 300 K and a pressure of 530 mTorr helium. The results indicate a moderate overall rate constant of (3.19 {+-} 0.39) Multiplication-Sign 10{sup -10} cm{sup 3} s{sup -1} ({+-} 1{sigma}) and an average branching fraction of 0.05 {+-} 0.04 for protonated trans-methyl formate and 0.95 {+-} 0.04 for the adduct ion. These experimental results are reinforced by ab initio calculations at the MP2(full)/aug-cc-pVTZ level of theory to examine the reaction coordinate and complement previous density functional theory calculations. This study underscores the need for continued observational studies of trans-methyl formate and for the exploration of other gas-phase formation routes to complex organic molecules.« less

  18. Protonated Nitrous Oxide, NNOH(+): Fundamental Vibrational Frequencies and Spectroscopic Constants from Quartic Force Fields

    NASA Technical Reports Server (NTRS)

    Huang, Xinchuan; Fortenberry, Ryan C.; Lee, Timothy J.

    2013-01-01

    The interstellar presence of protonated nitrous oxide has been suspected for some time. Using established high-accuracy quantum chemical techniques, spectroscopic constants and fundamental vibrational frequencies are provided for the lower energy O-protonated isomer of this cation and its deuterated isotopologue. The vibrationally-averaged B0 and C0 rotational constants are within 6 MHz of their experimental values and the D(subJ) quartic distortion constants agree with experiment to within 3%. The known gas phase O-H stretch of NNOH(+) is 3330.91 cm(exp-1), and the vibrational configuration interaction computed result is 3330.9 cm(exp-1). Other spectroscopic constants are also provided, as are the rest of the fundamental vibrational frequencies for NNOH(+) and its deuterated isotopologue. This high-accuracy data should serve to better inform future observational or experimental studies of the rovibrational bands of protonated nitrous oxide in the ISM and the laboratory.

  19. Nuclear gamma rays from energetic particle interactions

    NASA Technical Reports Server (NTRS)

    Ramaty, R.; Kozlovsky, B.; Lingenfelter, R. E.

    1978-01-01

    Gamma ray line emission from nuclear deexcitation following energetic particle reactions is evaluated. The compiled nuclear data and the calculated gamma ray spectra and intensities can be used for the study of astrophysical sites which contain large fluxes of energetic protons and nuclei. A detailed evaluation of gamma ray line production in the interstellar medium is made.

  20. Overhauser Geomagnetic Sensor Based on the Dynamic Nuclear Polarization Effect for Magnetic Prospecting

    PubMed Central

    Ge, Jian; Dong, Haobin; Liu, Huan; Yuan, Zhiwen; Dong, He; Zhao, Zhizhuo; Liu, Yonghua; Zhu, Jun; Zhang, Haiyang

    2016-01-01

    Based on the dynamic nuclear polarization (DNP) effect, an alternative design of an Overhauser geomagnetic sensor is presented that enhances the proton polarization and increases the amplitude of the free induction decay (FID) signal. The short-pulse method is adopted to rotate the enhanced proton magnetization into the plane of precession to create an FID signal. To reduce the negative effect of the powerful electromagnetic interference, the design of the anti-interference of the pick-up coil is studied. Furthermore, the radio frequency polarization method based on the capacitive-loaded coaxial cavity is proposed to improve the quality factor of the resonant circuit. In addition, a special test instrument is designed that enables the simultaneous testing of the classical proton precession and the Overhauser sensor. Overall, comparison experiments with and without the free radical of the Overhauser sensors show that the DNP effect does effectively improve the amplitude and quality of the FID signal, and the magnetic sensitivity, resolution and range reach to 10 pT/Hz1/2@1 Hz, 0.0023 nT and 20–100 μT, respectively. PMID:27258283

  1. Embryo Space Colonisation to Overcome the Interstellar Time Distance Bottleneck

    NASA Astrophysics Data System (ADS)

    Crowl, A.; Hunt, J.; Hein, A. M.

    The immense distances to neighbouring star systems pose the single greatest challenge to a true interstellar mission. The challenge is made even greater if the purpose of the mission is scientific in which it is commonly stated that the mission should last no longer than the career of a participating scientist. This imposes speed requirements with a host of well-known problems of propulsion, immense vehicle mass, need for in-space infrastructure, impact hazards, proton flux, and deceleration. If instead the purpose of the interstellar mission is to ensure the survival of humanity by establishing a viable colony using frozen embryos, these many problems are potentially mitigated due to the fact that the speeds can be much slower. Sleeper ships are a suggested low speed alternative, but cosmic ray damage to suspended/frozen humans could place a limit on the acceptable duration of the mission thereby necessitating greater speed with the aforementioned challenges. Near-term solar-sail technology could be sufficient to launch an ESC mission once human ectogenetic technology has matured.

  2. Cosmic Ray Proton Anisotropies Measured at Voyager 1 in the Local Interstellar Medium

    NASA Astrophysics Data System (ADS)

    Decker, R. B.; Krimigis, S. M.; Hill, M. E.; Roelof, E. C.

    2016-12-01

    Voyager 1 entered the local interstellar medium in August of 2012 at helioradius 121.6 AU and heliolatitude N35°, and is now about 15 AU (≈12% the sun-heliopause distance at Voyager 1) upstream of the heliopause nose. Intensities of low-energy ions and electrons and of anomalous cosmic rays, all of which were routinely measured in the heliosheath, remain at background levels through July 2016. Galactic cosmic ray protons >211 MeV continue to show departures from isotropy, with broad (0.3-0.8 year) episodes of steady intensity depletions of ions gyrating nearly perpendicular to the magnetic field. Percentage intensity decreases during these depletions, relative to intensities of cosmic rays propagating along the field, peak at -7% on 2013.35, -3% on 2014.50, and -10% on 2016.00. In the last case, the peak anisotropy was preceded by an intensity decline lasting at least 9 months. The 2016.00 peak (-10%) anisotropy of was followed by a recovery back toward isotropy. But this recovery was interrupted in mid-April 2016, when the anisotropy had reached -2%, at which time the anisotropy began to again increase and continued to do so through at least July 2016, when the anisotropy reached -3%. We note that during its 4-year propagation through the local interstellar medium, Voyager 1 has encountered mainly anisotropic cosmic ray distributions. The longest period of isotropy occurred during a 4-month period in the latter half of 2014. Gurnett et al. [Ap. J., 809, 2015; Fall 2016 AGU (this meeting)] suggested that the broad periods when cosmic ray intensities evolve away from isotropy are precursor signatures produced by weak magnetic disturbances driven by solar activity. These disturbances propagate through the interstellar medium where they produce the bursts of electron plasma oscillations and peak cosmic ray anisotropies that are measured at Voyager 1 just before the disturbances cross the spacecraft.

  3. Proton velocity ring-driven instabilities and their dependence on the ring speed: Linear theory

    NASA Astrophysics Data System (ADS)

    Min, Kyungguk; Liu, Kaijun; Gary, S. Peter

    2017-08-01

    Linear dispersion theory is used to study the Alfvén-cyclotron, mirror and ion Bernstein instabilities driven by a tenuous (1%) warm proton ring velocity distribution with a ring speed, vr, varying between 2vA and 10vA, where vA is the Alfvén speed. Relatively cool background protons and electrons are assumed. The modeled ring velocity distributions are unstable to both the Alfvén-cyclotron and ion Bernstein instabilities whose maximum growth rates are roughly a linear function of the ring speed. The mirror mode, which has real frequency ωr=0, becomes the fastest growing mode for sufficiently large vr/vA. The mirror and Bernstein instabilities have maximum growth at propagation oblique to the background magnetic field and become more field-aligned with an increasing ring speed. Considering its largest growth rate, the mirror mode, in addition to the Alfvén-cyclotron mode, can cause pitch angle diffusion of the ring protons when the ring speed becomes sufficiently large. Moreover, because the parallel phase speed, v∥ph, becomes sufficiently small relative to vr, the low-frequency Bernstein waves can also aid the pitch angle scattering of the ring protons for large vr. Potential implications of including these two instabilities at oblique propagation on heliospheric pickup ion dynamics are discussed.

  4. Emission of hydrogen energetic neutral atoms from the Martian subsolar magnetosheath

    NASA Astrophysics Data System (ADS)

    Wang, X.-D.; Alho, M.; Jarvinen, R.; Kallio, E.; Barabash, S.; Futaana, Y.

    2016-01-01

    We have simulated the hydrogen energetic neutral atom (ENA) emissions from the subsolar magnetosheath of Mars using a hybrid model of the proton plasma charge exchanging with the Martian exosphere to study statistical features revealed from the observations of the Neutral Particle Detectors on Mars Express. The simulations reproduce well the observed enhancement of the hydrogen ENA emissions from the dayside magnetosheath in directions perpendicular to the Sun-Mars line. Our results show that the neutralized protons from the shocked solar wind are the dominant ENA population rather than those originating from the pickup planetary ions. The simulation also suggests that the observed stronger ENA emissions in the direction opposite to the solar wind convective electric field result from a stronger proton flux in the same direction at the lower magnetosheath; i.e., the proton fluxes in the magnetosheath are not cylindrically symmetric. We also confirm the observed increasing of the ENA fluxes with the solar wind dynamical pressure in the simulations. This feature is associated with a low altitude of the induced magnetic boundary when the dynamic pressure is high and the magnetosheath protons can reach to a denser exosphere, and thus, the charge exchange rate becomes higher. Overall, the analysis suggests that kinetic effects play an important and pronounced role in the morphology of the hydrogen ENA distribution and the plasma environment at Mars, in general.

  5. Production cross sections of cosmic antiprotons in the light of new data from the NA61 and LHCb experiments

    NASA Astrophysics Data System (ADS)

    Korsmeier, Michael; Donato, Fiorenza; Di Mauro, Mattia

    2018-05-01

    The cosmic-ray flux of antiprotons is measured with high precision by the space-borne particle spectrometers AMS-02. Its interpretation requires a correct description of the dominant production process for antiprotons in our Galaxy, namely, the interaction of cosmic-ray proton and helium with the interstellar medium. In light of new cross section measurements by the NA61 experiment of p +p →p ¯+X and the first ever measurement of p +He →p ¯+X by the LHCb experiment, we update the parametrization of proton-proton and proton-nucleon cross sections. We find that the LHCb p He data constrain a shape for the cross section at high energies and show for the first time how well the rescaling from the p p channel applies to a helium target. By using p p , p He and p C data we estimate the uncertainty on the Lorentz invariant cross section for p +He →p ¯+X . We use these new cross sections to compute the source term for all the production channels, considering also nuclei heavier than He both in cosmic rays and the interstellar medium. The uncertainties on the total source term are up to ±20 % and slightly increase below antiproton energies of 5 GeV. This uncertainty is dominated by the p +p →p ¯+X cross section, which translates into all channels since we derive them using the p p cross sections. The cross sections to calculate the source spectra from all relevant cosmic-ray isotopes are provided in Supplemental Material. We finally quantify the necessity of new data on antiproton production cross sections, and pin down the kinematic parameter space which should be covered by future data.

  6. Complex Organics from Laboratory Simulated Interstellar Ices

    NASA Technical Reports Server (NTRS)

    Dworkin, J. P.

    2003-01-01

    Many of the volatiles in interstellar dense clouds exist in ices surrounding dust grains. The low temperatures of these ices (T < 50 K) preclude most chemical reactions, but photolysis can drive reactions that produce a suite of new species, many of which are complex organics. We study the UV and proton radiation processing of interstellar ice analogs to explore links between interstellar chemistry, the organics in comets and meteorites, and the origin of life on Earth. The high D/H ratios in some interstellar species, and the knowledge that many of the organics in primitive meteorites are D-enriched, suggest that such links are plausible. Once identified, these species may serve as markers of interstellar heritage of cometary dust and meteorites. Of particular interest are our findings that UV photolysis of interstellar ice analogs produce molecules of importance in current living organisms, including quinones, amphiphiles, and amino acids. Quinones are essential in vital metabolic roles such as electron transport. Studies show that quinones should be made wherever polycyclic aromatic hydrocarbons are photolyzed in interstellar ices. In the case of anthracene-containing ices, we have observed the production of 9-anthrone and 9,10 anthraquinone, both of which have been observed in the Murchison meteorite. Amphiphiles are also made when mixed molecular ices are photolyzed. These amphiphiles self-assemble into fluorescent vesicles when placed in liquid water, as do Murchison extracts. Both have the ability to trap an ionic dye. Photolysis of plausible ices can also produce alanine, serine, and glycine as well as a number of small alcohols and amines. Flash heating of the room temperature residue generated by such experiments generates mass spectral distributions similar to those of IDPs. The detection of high D/H ratios in some interstellar molecular species, and the knowledge that many of the organics, such as hydroxy and amino acids, in primitive meteorites are D-enriched provides evidence for a connection between intact organic material in the interstellar medium and in meteorites. Thus, some of the oxidized aromatics, amphiphiles, amino acids, hydroxy acids, and other compounds found in meteorites may have had an interstellar ancestry and not solely a product of parent body aqueous alteration. Such compounds should also be targeted for searches of organics in cometary dust.

  7. Felix Spectroscopy of Likely Astronomical Molecular Ions: HC_3O^+, C_2H_3CNH^+, and C_2H_5CNH^+

    NASA Astrophysics Data System (ADS)

    Thorwirth, Sven; Asvany, Oskar; Brünken, Sandra; Jusko, Pavol; Schlemmer, Stephan; Martin-Drumel, Marie-Aline; McCarthy, Michael C.

    2017-06-01

    Infrared signatures of three molecular ions of relevance to the interstellar medium and planetary atmospheres have been detected at the Free Electron Laser for Infrared eXperiments, FELIX, at Radboud University (Nijmegen, The Netherlands) in combination with the 4K FELion 22-pole ion trap facility. Mid-infrared vibrational modes of protonated tricarbon monoxide, HC_3O^+, protonated vinyl cyanide, C_2H_3CNH^+, and protonated ethyl cyanide, C_2H_5CNH^+, were detected using resonant photodissociation of the respective Ne-complexes by monitoring the depletion of their cluster mass signal as a function of wavenumber. The infrared fingerprints compare very favorably with results from high-level quantum-chemical calculations performed at the CCSD(T) level of theory.

  8. High-energy radiation from collisions of high-velocity clouds and the Galactic disc

    NASA Astrophysics Data System (ADS)

    del Valle, Maria V.; Müller, A. L.; Romero, G. E.

    2018-04-01

    High-velocity clouds (HVCs) are interstellar clouds of atomic hydrogen that do not follow normal Galactic rotation and have velocities of a several hundred kilometres per second. A considerable number of these clouds are falling down towards the Galactic disc. HVCs form large and massive complexes, so if they collide with the disc a great amount of energy would be released into the interstellar medium. The cloud-disc interaction produces two shocks: one propagates through the cloud and the other through the disc. The properties of these shocks depend mainly on the cloud velocity and the disc-cloud density ratio. In this work, we study the conditions necessary for these shocks to accelerate particles by diffusive shock acceleration and we study the non-thermal radiation that is produced. We analyse particle acceleration in both the cloud and disc shocks. Solving a time-dependent two-dimensional transport equation for both relativistic electrons and protons, we obtain particle distributions and non-thermal spectral energy distributions. In a shocked cloud, significant synchrotron radio emission is produced along with soft gamma rays. In the case of acceleration in the shocked disc, the non-thermal radiation is stronger; the gamma rays, of leptonic origin, might be detectable with current instruments. A large number of protons are injected into the Galactic interstellar medium, and locally exceed the cosmic ray background. We conclude that under adequate conditions the contribution from HVC-disc collisions to the galactic population of relativistic particles and the associated extended non-thermal radiation might be important.

  9. Physical Roles of Interstellar-origin Pickup Ions at Heliospheric Termination Shock. II. Impact of the Front Nonstationary on the Energy Partition and Particle Velocity Distribution

    NASA Astrophysics Data System (ADS)

    Lembège, Bertrand; Yang, Zhongwei

    2018-06-01

    The impact of the nonstationarity of the heliospheric termination shock in the presence of pickup ions (PUIs) on the energy partition between different plasma components is analyzed self-consistently by using a one-dimensional particle-in-cell simulation code. Solar wind ions (SWIs) and PUIs are introduced as Maxwellian and shell distributions, respectively. For a fixed time, (a) with a percentage of 25% PUIs, a large part of the downstream thermal pressure is carried by reflected PUIs, in agreement with previous hybrid simulations; (b) the total downstream distribution includes three main components: (i) a low-energy component dominated by directly transmitted (DT) SWIs, (ii) a high-energy component dominated by reflected PUIs, and (iii) an intermediate-energy component dominated by reflected SWIs and DT PUIs. Moreover, results show that the front nonstationarity (self-reformation) persists even in presence of 25% PUIs, and has some impacts on both SWIs and PUIs: (a) the rate of reflected ions suffers some time fluctuations for both SWIs and PUIs; (b) the relative percentage of downstream thermal pressure transfered to PUIs and SWIs also suffers some time fluctuations, but depends on the relative distance from the front; (c) the three components within the total downstream heliosheath distribution persist in time, but the contribution of the ion subpopulations to the low- and intermediate-energy components are redistributed by the front nonstationarity. Our results allow clarifying the respective roles of SWIs and PUIs as a viable production source of energetic neutral atoms and are compared with previous results.

  10. An overview of atmosphere and plasma observations planned for the New Horizons flyby of 2014 MU69

    NASA Astrophysics Data System (ADS)

    Gladstone, R.; Young, L. A.; Parker, J. W.; Elliott, H. A.; Hill, M. E.; Piquette, M. R.; Stern, A.; Weaver, H. A., Jr.; Olkin, C.; Spencer, J. R.

    2017-12-01

    Due to its small size, it is highly likely that all volatiles that might have once been present on 2014 MU69 are now gone, having long ago escaped to space. However, it is possible that 2014 MU69 retains some volatiles (e.g., methanol, acetylene, ethane, hydrogen cyanide, ammonia) at the present day. Although these volatiles are likely quite stable on the surface at their current temperature, ongoing radiation processing and occasional impacts provide a possible source for a transient atmosphere. Such a transient atmosphere will be searched for by the Alice ultraviolet spectrograph, e.g., in absorption, using stellar and solar appulses, and in emission, using resonantly scattered solar emissions. Dust associated with 2014 MU69 will be searched for with high phase angle LORRI and MVIC imaging, and with in situ SDC observations. In addition, the particle and plasma environment of KBOs is largely unknown. SWAP and PEPSSI observations will establish the interaction of the interplanetary medium with 2014 MU69, e.g., looking for pickup ions resulting from sputtering of surface materials. Although it is likely that only upper limits will be set on neutrals and ions in the vicinity of 2014 MU69, the New Horizons observations will characterize the fluxes of UV, solar wind, interstellar pickup ions, and energetic particles, i.e., space weathering, that can modify the surface of 2014 MU69 and other KBOs. In this presentation, we will outline the plans for New Horizons plasma and atmospheres observations during the flyby of 2014 MU69.

  11. Physical Roles of Interstellar-origin Pickup Ions at the Heliospheric Termination Shock: Impact on the Shock Front Microstructures and Nonstationarity

    NASA Astrophysics Data System (ADS)

    Lembège, Bertrand; Yang, Zhongwei

    2016-08-01

    The nonstationary dynamics of the heliospheric termination shock in the presence of pickup ions (PUI) is analyzed by using a one-dimensional particle-in-cell simulation code. This work initially stimulated by Voyager 2 data focusses on this nonstationarity for different percentages of PUIs and for different Alfvén Mach numbers M A. Solar wind ions (SWIs) and PUIs are described, respectively, as Maxwellian and shell distributions (with a zero/finite thickness). For a moderate M A, present results show that (1) the shock front is still nonstationary even in the presence of 25% of PUIs; its instantaneous velocity varies, which is in favor for shock multicrossing; (2) the presence of PUIs tends to smooth out the time fluctuations of field amplitude and of microstructure widths at the front and overshoot; (3) the shock has a multiple overshoot, which is analyzed by identifying the contributions of SWIs and the PUIs; (4) as the PUI percentage increases, the shock moves faster and the downstream compression becomes weaker, which is explained by a Rankine-Hugoniot model; (5) the reflection rate of SWIs and PUIs decreases as the PUI percentage increases; (6) the shock structure is almost insensitive to the shell thickness and (7) for the PUIs dominated shock case (PUI = 55%), the shock becomes stationary. However, for higher M A regime, the front nonstationarity persists even in the PUI = 55% case. In summary, high M A regime allows to compensate the smoothing of the microstructures and the time fluctuations of the shock front brought by the presence of PUIs.

  12. Generalized Jeans' Escape of Pick-Up Ions in Quasi-Linear Relaxation

    NASA Technical Reports Server (NTRS)

    Moore, T. E.; Khazanov, G. V.

    2011-01-01

    Jeans escape is a well-validated formulation of upper atmospheric escape that we have generalized to estimate plasma escape from ionospheres. It involves the computation of the parts of particle velocity space that are unbound by the gravitational potential at the exobase, followed by a calculation of the flux carried by such unbound particles as they escape from the potential well. To generalize this approach for ions, we superposed an electrostatic ambipolar potential and a centrifugal potential, for motions across and along a divergent magnetic field. We then considered how the presence of superthermal electrons, produced by precipitating auroral primary electrons, controls the ambipolar potential. We also showed that the centrifugal potential plays a small role in controlling the mass escape flux from the terrestrial ionosphere. We then applied the transverse ion velocity distribution produced when ions, picked up by supersonic (i.e., auroral) ionospheric convection, relax via quasi-linear diffusion, as estimated for cometary comas [1]. The results provide a theoretical basis for observed ion escape response to electromagnetic and kinetic energy sources. They also suggest that super-sonic but sub-Alfvenic flow, with ion pick-up, is a unique and important regime of ion-neutral coupling, in which plasma wave-particle interactions are driven by ion-neutral collisions at densities for which the collision frequency falls near or below the gyro-frequency. As another possible illustration of this process, the heliopause ribbon discovered by the IBEX mission involves interactions between the solar wind ions and the interstellar neutral gas, in a regime that may be analogous [2].

  13. Cumulative neutrino background from quasar-driven outflows

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wang, Xiawei; Loeb, Abraham, E-mail: xiawei.wang@cfa.harvard.edu, E-mail: aloeb@cfa.harvard.edu

    2016-12-01

    Quasar-driven outflows naturally account for the missing component of the extragalactic γ-ray background through neutral pion production in interactions between protons accelerated by the forward outflow shock and interstellar protons. We study the simultaneous neutrino emission by the same protons. We adopt outflow parameters that best fit the extragalactic γ-ray background data and derive a cumulative neutrino background of ∼ 10{sup −7} GeV cm{sup −2} s{sup −1} sr{sup −1} at neutrino energies E {sub ν} ∼> 10 TeV, which naturally explains the most recent IceCube data without tuning any free parameters. The link between the γ-ray and neutrino emission frommore » quasar outflows can be used to constrain the high-energy physics of strong shocks at cosmological distances.« less

  14. 75 FR 3252 - Ford Motor Company, Dearborn Truck Plant, Dearborn, MI; Notice of Negative Determination on...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-01-20

    ... hand, the like articles are specifically Ford F Series pickups and Lincoln Mark LT sports-utility... Series pickups and Lincoln Mark LR sports-utility pickups and there was no shift/acquisition of production of Ford F Series pickups and Lincoln Mark LR sports-utility pickups to/from a foreign country. The...

  15. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Abe, K.; Itazaki, A.; Kusumoto, A.

    The BESS-Polar Collaboration measured the energy spectra of cosmic-ray protons and helium during two long-duration balloon flights over Antarctica in 2004 December and 2007 December at substantially different levels of solar modulation. Proton and helium spectra probe the origin and propagation history of cosmic rays in the galaxy, and are essential to calculations of the expected spectra of cosmic-ray antiprotons, positrons, and electrons from interactions of primary cosmic-ray nuclei with the interstellar gas, and to calculations of atmospheric muons and neutrinos. We report absolute spectra at the top of the atmosphere for cosmic-ray protons in the kinetic energy range 0.2–160more » GeV and helium nuclei in the range 0.15–80 GeV/nucleon. The corresponding magnetic-rigidity ranges are 0.6–160 GV for protons and 1.1–160 GV for helium. These spectra are compared to measurements from previous BESS flights and from ATIC-2, PAMELA, and AMS-02. We also report the ratio of the proton and helium fluxes from 1.1 to 160 GV and compare this to the ratios from PAMELA and AMS-02.« less

  16. Two-proton pickup studies with the (6Li,8B) reaction

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Weisenmiller, R.B.

    1976-12-03

    The (/sup 6/Li,/sup 8/B) reaction has been investigated on targets of /sup 26/Mg, /sup 24/Mg, /sup 16/O, /sup 13/C, /sup 12/C, /sup 11/B, /sup 10/B, and /sup 9/Be at a bombarding energy of 80.0 MeV, and on targets of /sup 16/O, /sup 12/C, /sup 9/Be, /sup 7/Li, and /sup 6/Li at a bombarding energy of 93.3 MeV. Only levels consistent with direct, single-step two-proton pickup reaction mechanisms were observed to be strongly populated. On T/sub z/ = 0 targets, the spectroscopic selectivity of this reaction resembles that of the analogous (p,t) reaction. Additionally, these data demonstrate the dominance of spatiallymore » symmetric transfer of the two protons. On T/sub z/ greater than 0 targets the (/sup 6/Li,/sup 8/B) reaction was employed to locate two previously unreported levels (at 7.47 +- 0.05 MeV and 8.86 +- 0.07 MeV) in the T/sub z/ = 2 nuclide /sup 24/Ne and to establish the low-lying 1p-shell states in the T/sub z/ = /sup 3///sub 2/ nuclei /sup 11/Be, /sup 9/Li, and /sup 7/He. However, no evidence was seen for any narrow levels in the T/sub z/ = /sup 3///sub 2/ nuclide /sup 5/H nor for any narrow excited states in /sup 7/He. The angular distributions reported here are rather featureless and decrease monotonically with increasing angle. This behavior can be shown by a semi-classical reaction theory to be a consequence of the reaction kinematics. A semi-classical approach also suggests that the kinematic term in the transition matrix element is only weakly dependent upon the angular momentum transfer (which is consistent with simple Distorted Wave Born Approximation calculations). However, only qualitative agreement was obtained between the observed relative transition yields and semi-classical predictions, using the two-nucleon coefficients of fractional parentage of Cohen and Kurath, probably due to the limitations of the semi-classical reaction theory.« less

  17. The abundance of boron in three halo stars

    NASA Technical Reports Server (NTRS)

    Duncan, Douglas K.; Lambert, David L.; Lemke, Michael

    1992-01-01

    B abundances for three halo stars: HD 140283, HD 19445, and HD 201891 are presented. Using recent determinations of the Be abundance in HD 140283, B/Be of 10 +5/-4 is found for this star, and similar ratios are inferred for HD 19445 and HD 201891. This ratio is equal to the minimum value of 10 expected from a synthesis of B and Be by high-energy cosmic-ray spallation reactions in the interstellar medium. It is shown that the accompanying synthesis of Li by alpha on alpha fusion reactions is probably a minor contributor to the observed 'primordial' Li of halo stars. The observed constant ratios of B/O and Be/O are expected if the principal channel of synthesis involves cosmic-ray CNO nuclei from the supernovae colliding with interstellar protons.

  18. Measurements of Cosmic-Ray Proton and Helium Spectra from the BESS-Polar Long-Duration Balloon Flights Over Antarctica

    NASA Technical Reports Server (NTRS)

    Abe, K.; Fuke, H.; Haino, S.; Hams, T.; Hasegawa, M.; Horikoshi, A.; Itazaki, A.; Kim, K. C.; Kumazawa, T.; Kusumoto, A.; hide

    2016-01-01

    The BESS-Polar Collaboration measured the energy spectra of cosmic-ray protons and helium during two long-duration balloon flights over Antarctica in December 2004 and December 2007, at substantially different levels of solar modulation. Proton and helium spectra probe the origin and propagation history of cosmic rays in the galaxy, and are essential to calculations of the expected spectra of cosmic-ray antiprotons, positrons, and electrons from interactions of primary cosmic-ray nuclei with the interstellar gas, and to calculations of atmospheric muons and neutrinos. We report absolute spectra at the top of the atmosphere for cosmic-ray protons in the kinetic energy range 0.2-160 GeV and helium nuclei 0.15-80 GeV/nucleon. The corresponding magnetic rigidity ranges are 0.6-160 GV for protons and 1.1-160 GV for helium. These spectra are compared to measurements from previous BESS flights and from ATIC-2, PAMELA, and AMS-02. We also report the ratio of the proton and helium fluxes from 1.1 GV to 160 GV and compare to ratios from PAMELA and AMS-02.

  19. Ion Irradiation of H2-Laden Porous Water-ice Films: Implications for Interstellar Ices

    NASA Astrophysics Data System (ADS)

    Raut, U.; Mitchell, E. H.; Baragiola, R. A.

    2015-10-01

    To understand the effects of cosmic-ray (CR) impacts on interstellar icy grains immersed in H2 gas, we have irradiated porous water-ice films loaded with H2 with 100 keV H+. The ice films were exposed to H2 gas at different pressures following deposition and during irradiation. A net H2 loss is observed during irradiation due to competition between ion-induced sputtering and gas adsorption. The initial H2 loss cross-section, 4(1) × 10-14 cm2, was independent of film thickness, H2, and proton fluxes. In addition to sputtering, irradiation also closes nanopores, trapping H2 in the film with binding that exceeds physical absorption energies. As a result, 2%-7% H2 is retained in the ice following irradiation to high fluences. We find that the trapped H2 concentration increases with decreasing Φ, the ratio of ion to H2 fluxes, suggesting that as high as 8% solid H2 can be trapped in interstellar ice by CR or stellar wind impacts.

  20. Detection of NMR signals with a radio-frequency atomic magnetometer.

    PubMed

    Savukov, I M; Seltzer, S J; Romalis, M V

    2007-04-01

    We demonstrate detection of proton NMR signals with a radio-frequency (rf) atomic magnetometer tuned to the NMR frequency of 62 kHz. High-frequency operation of the atomic magnetometer makes it relatively insensitive to ambient magnetic field noise. We obtain magnetic field sensitivity of 7 fT/Hz1/2 using only a thin aluminum shield. We also derive an expression for the fundamental sensitivity limit of a surface inductive pick-up coil as a function of frequency and find that an atomic rf magnetometer is intrinsically more sensitive than a coil of comparable size for frequencies below about 50 MHz.

  1. Estimate of radiation damage to low-level electronics of the RF system in the LHC cavities arising from beam gas collisions.

    PubMed

    Butterworth, A; Ferrari, A; Tsoulou, E; Vlachoudis, V; Wijnands, T

    2005-01-01

    Monte Carlo simulations have been performed to estimate the radiation damage induced by high-energy hadrons in the digital electronics of the RF low-level systems in the LHC cavities. High-energy hadrons are generated when the proton beams interact with the residual gas. The contributions from various elements-vacuum chambers, cryogenic cavities, wideband pickups and cryomodule beam tubes-have been considered individually, with each contribution depending on the gas composition and density. The probability of displacement damage and single event effects (mainly single event upsets) is derived for the LHC start-up conditions.

  2. Transport of Solar Wind Fluctuations: A Two-Component Model

    NASA Technical Reports Server (NTRS)

    Oughton, S.; Matthaeus, W. H.; Smith, C. W.; Breech, B.; Isenberg, P. A.

    2011-01-01

    We present a new model for the transport of solar wind fluctuations which treats them as two interacting incompressible components: quasi-two-dimensional turbulence and a wave-like piece. Quantities solved for include the energy, cross helicity, and characteristic transverse length scale of each component, plus the proton temperature. The development of the model is outlined and numerical solutions are compared with spacecraft observations. Compared to previous single-component models, this new model incorporates a more physically realistic treatment of fluctuations induced by pickup ions and yields improved agreement with observed values of the correlation length, while maintaining good observational accord with the energy, cross helicity, and temperature.

  3. Global hybrid simulation of the solar wind interaction with the dayside of Venus

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Moore, K.R.; Thomas, V.A.; McComas, D.J.

    1991-05-01

    The authors present a 3-dimensional global hybrid simulation of the interaction of the solar wind with the entire dayside of Venus. The model obstacle is half the size of Venus, and planetary ion mass loading is included self-consistently. Results are compared to observations as well as to results from gasdynamic convected field modeling. Magnetic field magnitudes and bulk flow speeds along the planet-Sun line are comparable in both models, but only the hybrid model reproduces the experimentally observed magnetic barrier proton density depletions. The finite gyroradius of the planetary pickup ions causes a number density asymmetry in the direction ofmore » the convective ({minus}V {times} B) electric field, as predicted and observed. Mass addition consistent with photoionization of the planetary neutral hot oxygen corona has little effect on the geometry of the shock, including the subsolar and terminator shock altitudes. Mass addition rates well in excess of likely values are required to significantly affect the model shock geometry. The hybrid model results imply that oxygen ions originating deep within the dayside Venus magnetic barrier are nearly fluidlike while oxygen ions produced higher on the dayside, at much lower densities, behave more as test particles. Gasdynamic modeling incorporating both fluid and test particle mass addition reproduces the O{sup +} terminator escape flux (a few times 10{sup 24} s{sup {minus}1}) found in the hybrid model and inferred from observations, but underestimates the escape region spatial extent. The hybrid model predictions include a shock asymmetry dependent on the upstream IMF orientation, asymmetries in the magnetic barrier position and field magnitude, an asymmetry in pickup ion speed altitude profiles, and a finite gyroradius effect asymmetry in pickup ion number density caused by field draping.« less

  4. Performance of timing Resistive Plate Chambers with protons from 200 to 800 MeV

    NASA Astrophysics Data System (ADS)

    Machado, J.; Adamczewski-Musch, J.; Blanco, A.; Boretzky, K.; Cabanelas, P.; Cartegni, L.; Ferreira Marques, R.; Fonte, P.; Fruehauf, J.; Galaviz, D.; Heil, M.; Henriques, A.; . Ickert, G.; Körper, D.; Lopes, L.; Palka, M.; Pereira, A.; Rossi, D.; Simon, H.; Teubig, P.; Traxler, M.; Velho, P.; Altstadt, S.; Atar, L.; Aumann, T.; Bemmerer, D.; Caesar, C.; Charpy, A.; Elekes, Z.; Fiori, E.; Gasparic, I.; Gerbig, J.; Göbel, K.; Heftrich, T.; Heine, M.; Heinz, A.; Holl, M.; Ignatov, A.; Isaak, J.; Johansson, H.; Kelic-Heil, A.; Lederer, C.; Lindberg, S.; Löher, B.; Marganiec, J.; Martensson, M.; Nilsson, T.; Panin, V.; Paschalis, S.; Petri, M.; Plag, R.; Pohl, M.; Rastrepina, G.; Reifarth, R.; Reinhardt, T. P.; Röder, M.; Savran, D.; Scheit, H.; Schrock, P.; Silva, J.; Stach, D.; Strannerdahl, F.; Thies, R.; Wagner, A.; Wamers, F.; Weigand, M.

    2015-01-01

    A prototype composed of four resistive plate chamber layers has been exposed to quasi-monoenergetic protons produced from a deuteron beam of varying energy (200 to 800 AMeV) in experiment S406 at GSI, Darmstadt, Germany. The aim of the experiment is to characterize the response of the prototype to protons in this energy range, which deposit from 1.75 to 6 times more energy than minimum ionizing particles. Each layer, with an active area of about 2000 × 500 mm2, is made of modules containing the active gaps, all in multigap construction. Each gap is defined by 0.3 mm nylon mono-filaments positioned between 2.85 mm thick float glass electrodes. The modules are operated in avalanche mode with a non-flammable gas mixture composed of 90% C2H2F4 and 10% SF6. The signals are readout by a pick-up electrode formed by 15 copper strips (per layer), spaced at a pitch of 30 mm, connected at both sides to timing front end electronics. Results show an uniform efficiency close to 100% along with a timing resolution of around 60 ps on the entire 2000 × 500 mm2 area.

  5. Design, test, and calibration of an electrostatic beam position monitor

    NASA Astrophysics Data System (ADS)

    Cohen-Solal, Maurice

    2010-03-01

    The low beta of proton or ion beams favors an electrostatic pickup to measure the transverse beam centroid position. Often papers on beam position monitors (BPM) are focused on a particular aspect of the problem; however, it is important to consider all various issues of a position measurement system. Based on our experience at the IPHI (high intensity injector proton) facility at CEA-Saclay, this paper will address all aspects to design, test, and calibrate a BPM for proton linear accelerators, while emphasizing the determination of the absolute beam position. We present details of the readout electronics, and describe the calibration of the BPM using a test station. For calculation and simulation of the electrical signals we developed a Mathematica script. The error analysis presented, on the basis of six BPMs installed in the high energy section of IPHI, demonstrates the expected accuracy of the position measurement. These studies also identify the parameters that could improve the performance of the beam position control. The experience from these developments is currently being used for the BPM design and test stand dedicated to the Spiral2 accelerator at Ganil-Caen which will deliver heavy ion beams.

  6. Structure of Energetic Particle Mediated Shocks Revisited

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mostafavi, P.; Zank, G. P.; Webb, G. M.

    2017-05-20

    The structure of collisionless shock waves is often modified by the presence of energetic particles that are not equilibrated with the thermal plasma (such as pickup ions [PUIs] and solar energetic particles [SEPs]). This is relevant to the inner and outer heliosphere and the Very Local Interstellar Medium (VLISM), where observations of shock waves (e.g., in the inner heliosphere) show that both the magnetic field and thermal gas pressure are less than the energetic particle component pressures. Voyager 2 observations revealed that the heliospheric termination shock (HTS) is very broad and mediated by energetic particles. PUIs and SEPs contribute bothmore » a collisionless heat flux and a higher-order viscosity. We show that the incorporation of both effects can completely determine the structure of collisionless shocks mediated by energetic ions. Since the reduced form of the PUI-mediated plasma model is structurally identical to the classical cosmic ray two-fluid model, we note that the presence of viscosity, at least formally, eliminates the need for a gas sub-shock in the classical two-fluid model, including in that regime where three are possible. By considering parameters upstream of the HTS, we show that the thermal gas remains relatively cold and the shock is mediated by PUIs. We determine the structure of the weak interstellar shock observed by Voyager 1 . We consider the inclusion of the thermal heat flux and viscosity to address the most general form of an energetic particle-thermal plasma two-fluid model.« less

  7. Hybrid Simulations of Pickup Ions and Ion Cyclotron Waves at Enceladus

    NASA Astrophysics Data System (ADS)

    Cowee, M.; Wei, H.; Tokar, R. L.

    2014-12-01

    Saturn's moon Enceladus releases tens of kilograms per second of water-group neutrals from its southern plumes. These neutrals are ionized and accelerated by the background co-rotation electric field, producing a local population of pickup ions with a ring distribution in velocity space. This velocity space distribution is highly unstable to the growth of electromagnetic ion cyclotron waves whose amplitudes are generally related to the pickup ion production rate, the mass of the pickup ion, the pickup velocity, and the degree of damping by the background plasma. Observations from the Cassini spacecraft show the amplitudes of the waves generally increase with distance within 2 Enceladus radii of the Moon, consistent with an increasing density of pickup ion source, but then decrease right at the Moon, consistent with zero pickup velocity in the stagnating plasma flow. In order to interpret the observed wave amplitudes in terms of ion production rates at Enceladus, we carry out self-consistent hybrid simulations of the growth of ion cyclotron waves from pickup ions to determine the relationship between wave amplitude and background plasma and ion pickup conditions.

  8. The effect of new interstellar medium parameters on the heliosphere and energetic neutral atoms from the interstellar boundary

    DOE PAGES

    Heerikhuisen, J.; Zirnstein, E. J.; Funsten, H. O.; ...

    2014-03-05

    Here we present new results from three-dimensional simulations of the solar wind interaction with the local interstellar medium (LISM) using recent observations by NASA's Interstellar Boundary EXplorer (IBEX) mission estimates of the velocity and temperature of the LISM. We investigate four strengths of the LISM magnetic field, from 1 to 4 μG, and adjust the LISM proton and hydrogen densities so that the distance to the termination shock (TS) in the directions of the Voyager spacecraft is just below 90 AU, and the density of hydrogen at the TS is close to 0.09 cm-3 in the nose direction. The orientationmore » of the magnetic field is chosen to point toward the center of the ribbon of enhanced energetic neutral atom (ENA) flux seen in the IBEX data. Our simulations show that the plasma and neutral properties in the outer heliosheath vary considerably as a function of the LISM magnetic field strength. We also show that the heliotail points downwind in all cases, though its structure is strongly affected by the external magnetic field. Lastly, comparison and consistency between the simulated ENA flux and the circularity of the ribbon as measured by IBEX are most consistent with a LISM magnetic field strength aligned with the center of the ribbon and a magnitude in the range 2.5-3 μG.« less

  9. Rotational Quenching Study in Isovalent H+ + CO and H+ + CS Systems

    NASA Astrophysics Data System (ADS)

    Kaur, Rajwant; Dhilip Kumar, T. J.

    2016-06-01

    Cooling and trapping of polar molecules has attracted attention at cold and ultracold temperatures. Extended study of molecular inelastic collision processes of polar interstellar species with proton finds an important astrophysical application to model interstellar medium. Present study includes computation of rate coefficient for molecular rotational quenching process in proton collision with isovalent CO and CS molecules using quantum dynamical close-coupling calculations. Full dimensional ab initio potential energy surfaces have been computed for the ground state for both the systems using internally contracted multireference configuration interaction method and basis sets. Quantum scattering calculations for rotational quenching of isovalent species are studied in the rigid-rotor approximation with CX (X=O, S) bond length fixed at an experimental equilibrium value of 2.138 and 2.900 a.u., respectively. Asymptotic potentials are computed using the dipole and quadrupole moments, and the dipole polarizability components. The resulting long-range potentials with the short-range ab initio interaction potentials have been fitted to study the anisotropy of the rigid-rotor surface using the multipolar expansion coefficients. Rotational quenching cross-section and corresponding rates from j=4 level of CX to lower j' levels have been obtained and found to obey Wigner's threshold law at ultra cold temperatures.

  10. Modeling Solar Wind Flow with the Multi-Scale Fluid-Kinetic Simulation Suite

    DOE PAGES

    Pogorelov, N.V.; Borovikov, S. N.; Bedford, M. C.; ...

    2013-04-01

    Multi-Scale Fluid-Kinetic Simulation Suite (MS-FLUKSS) is a package of numerical codes capable of performing adaptive mesh refinement simulations of complex plasma flows in the presence of discontinuities and charge exchange between ions and neutral atoms. The flow of the ionized component is described with the ideal MHD equations, while the transport of atoms is governed either by the Boltzmann equation or multiple Euler gas dynamics equations. We have enhanced the code with additional physical treatments for the transport of turbulence and acceleration of pickup ions in the interplanetary space and at the termination shock. In this article, we present themore » results of our numerical simulation of the solar wind (SW) interaction with the local interstellar medium (LISM) in different time-dependent and stationary formulations. Numerical results are compared with the Ulysses, Voyager, and OMNI observations. Finally, the SW boundary conditions are derived from in-situ spacecraft measurements and remote observations.« less

  11. ULF waves in the Martian foreshock: MAVEN observations

    NASA Astrophysics Data System (ADS)

    Shan, Lican; Mazelle, Christian; Meziane, Karim; Ruhunusiri, Suranga; Espley, Jared; Halekas, Jasper; Connerney, Jack; McFadden, Jim; Mitchell, Dave; Larson, Davin; Brain, Dave; Jakosky, Bruce; Ge, Yasong; Du, Aimin

    2016-04-01

    Foreshock ULF waves constitute a significant physical phenomenon of the plasma environment for terrestrial planets. The occurrence of these ULF waves, associated with backstreaming ions reflected and accelerated at the bow shock, implies specific conditions and properties of the shock and its foreshock. Using measurements from MAVEN, we report clear observations of this type of ULF waves in the Martian foreshock. We show from different case studies that the peak frequency of the wave case in spacecraft frame is too far from the local ion cyclotron frequency to be associated with local pickup ions taking into account the Doppler shifted frequency from a cyclotron resonance, the obliquity of the mode, resonance broadening and experimental uncertainties. On the opposite their properties fit very well with foreshock waves driven unstable by backtreaming field-aligned ion beams. The propagation angle is usually less than 30 degrees from ambient magnetic field. The waves also display elliptical and left-hand polarizations with respect to interplanetary magnetic field in the spacecraft frame. It is clear for these cases that foreshock ions are simultaneous present for the ULF wave interval. Such observation is important in order to discriminate with the already well-reported pickup ion (protons) waves associated with exospheric hydrogen in order to quantitatively use the later to study seasonal variations of the hydrogen corona.

  12. 47 CFR 74.431 - Special rules applicable to remote pickup stations.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... system. (b) Remote pickup mobile or base stations may be used for communications related to production... pickup mobile or base stations may communicate with any other station licensed under this subpart. (d... additional frequency is limited to 2.5 watts. (f) Remote pickup base and mobile stations in Alaska, Guam...

  13. PICKUP Wales, U.K. Assurance of Quality Vocational Continuing Education and Training.

    ERIC Educational Resources Information Center

    Daniels, C. E. J.

    The Professional, Industrial, and Commercial Updating Programme (PICKUP) of the United Kingdom is aimed at improving the performance of British industry through the colleges. In Wales, PICKUP is part of the Welsh Office Education Department. Various factors have encouraged educational institutions to take on PICKUP work: the Education Reform Act…

  14. ULF waves at comets Halley and Giacobini-Zinner - Comparison with simulations

    NASA Astrophysics Data System (ADS)

    Le, G.; Russell, C. T.; Gary, S. P.; Smith, E. J.; Riedler, W.; Schwingenschuh, K.

    1989-09-01

    A comparison is made between observations and numerical simulations of magnetic fluctuations near the proton and water group ion cyclotron frequencies as a function of distance from the comets Halley and Giacobini-Zinner. The amplitude of waves due to different cyclotron resonant instabilities is monitored by examining the amplitude of waves near the gyrofrequency of the respective ions, measured in by the ICE spacecraft. The results are compared with a one-dimensional electromagnetic hybrid simulation of two-ion pickup based on the predictions of Gary et al. (1989). The observations are consistent with the prediction that amplitudes are dependent on the properties of the injected beams and the local injection rate.

  15. Will the light truck bumper height-matching standard reduce deaths in cars?

    PubMed

    Ossiander, Eric M; Koepsell, Thomas D; McKnight, Barbara

    2013-03-01

    In a collision between a car and a sport utility vehicle (SUV) or pickup truck, car occupants are more likely to be killed than if they crashed with another car. Some of the excess risk may be due to the propensity of SUVs and pickups with high bumpers to override the lower bumpers in cars. To reduce this incompatibility, particularly in head-on collisions, in 2003 automobile manufacturers voluntarily established a bumper height-matching standard for pickups and SUVs. To assess whether height-matching bumpers in pickups and SUVs were associated with the risk of death in either car occupants or pickup and SUV occupants. Case-control study of collisions between one car and one SUV or pickup in the US during 2000-2008, in which the SUV or pickup was model year 2000-2006. Cases were all decedents in fatal crashes; one control was selected from each crash in a national probability sample of crashes. Occupants of cars that crashed with SUVs or pickups with height-matching bumpers may be at slightly reduced risk of death compared to those that crashed with other SUVs or pickups (adjusted odds ratio: 0.83 (95% confidence interval 0.61-1.13)). There was no evidence of a reduction in risk in head-on crashes (1.09 (0.66-1.79)). In crashes in which the SUV or pickup struck the car on the side, height-matched bumpers were associated with a reduced risk of death (0.68 (0.48-0.97)). Occupants of SUVs and pickups with height-matching bumpers may also be at slightly reduced risk of death (0.91 (0.64-1.28)). Height-matching bumpers were associated with a reduced risk of death among car occupants in crashes in which SUVs or pickups struck cars in the side, but there was little evidence of an effect in head-on crashes. The new bumper height-matching standard may not achieve its primary goal of reducing deaths in head-on crashes, but may modestly reduce overall deaths in crashes between cars and SUVs or pickups because of unanticipated benefits to car occupants in side crashes, and a possible beneficial effect to SUV and pickup occupants. Copyright © 2012 Elsevier Ltd. All rights reserved.

  16. Synthetic Observations of 21 cm H I Line Profiles from Inhomogeneous Turbulent Interstellar H I Gas with Magnetic Fields

    NASA Astrophysics Data System (ADS)

    Fukui, Yasuo; Hayakawa, Takahiro; Inoue, Tsuyoshi; Torii, Kazufumi; Okamoto, Ryuji; Tachihara, Kengo; Onishi, Toshikazu; Hayashi, Katsuhiro

    2018-06-01

    We carried out synthetic observations of interstellar atomic hydrogen at 21 cm wavelength by utilizing the magnetohydrodynamic numerical simulations of the inhomogeneous turbulent interstellar medium. The cold neutral medium (CNM) shows a significantly clumpy distribution with a small volume filling factor of 3.5%, whereas the warm neutral medium (WNM) has a distinctly different and smooth distribution with a large filling factor of 96.5%. In projection on the sky, the CNM exhibits a highly filamentary distribution with a subparsec width, whereas the WNM shows a smooth, extended distribution. In the H I optical depth, the CNM is dominant and the contribution of the WNM is negligibly small. The CNM has an area covering factor of 30% in projection, while the WNM has a covering factor of 70%. This means that the emission–absorption measurements toward radio continuum compact sources tend to sample the WNM with a probability of 70%, yielding a smaller H I optical depth and a smaller H I column density than those of the bulk H I gas. The emission–absorption measurements, which are significantly affected by the small-scale large fluctuations of the CNM properties, are not suitable for characterizing the bulk H I gas. Larger-beam emission measurements that are able to fully sample the H I gas will provide a better tool for that purpose, if a reliable proxy for hydrogen column density, possibly dust optical depth and gamma rays, is available. The present results provide a step toward precise measurements of the interstellar hydrogen with ∼10% accuracy. This will be crucial in interstellar physics, including identification of the proton–proton interaction in gamma-ray supernova remnants.

  17. Axisymmetric Self-Consistent Model of the Solar Wind Interaction with the Lism: Basic Results and Possible Ways of Development

    NASA Astrophysics Data System (ADS)

    Baranov, V. B.; Malama, Yu. G.

    1996-10-01

    We analyze the main results of the axisymmetric self-consistent model of the solar wind (SW) and supersonic local interstellar medium (LISM) interaction proposed by Baranov and Malama (1993, hereafter BM93, 1995) for an interstellar flow assumed to be composed of protons, electrons and hydrogen atoms. Here, in addition to the resonant charge exchange we also take into account the photoionization and the ionization by electron impact. The characteristics of the plasma in the interface region and inside the heliosphere depend strongly on the ionization degree of the LISM. The distribution function of the H atoms which penetrate the solar system from the LISM is non-Maxwellian, which implies that a pure hydrodynamic description of their motion is not appropriate. The H atom number density is a non-monotonic function of the heliocentric distance and the existence of a “hydrogen wall” in the vicinity of the heliopause is important for the interpretation of solar Lyman-alpha scattering experiments. The influence of the interface plasma structure on the interstellar oxygen penetration into the solar system is also illustrated. Possible ways of development of the model are analyzed.

  18. Transfer of a proton between H2 and O2.

    PubMed

    Kluge, Lars; Gärtner, Sabrina; Brünken, Sandra; Asvany, Oskar; Gerlich, Dieter; Schlemmer, Stephan

    2012-11-13

    The proton affinities of hydrogen and oxygen are very similar. Therefore, it has been discussed that the proton transfer from the omnipresent H(3)(+) to molecular oxygen in the near thermoneutral reaction H(3)(+) + O(2) <--> O(2)H(+) + H(2) effectively binds the interstellar oxygen in O(2)H(+). In this work, the proton transfer reaction has been investigated in a low-temperature 22-pole ion trap from almost room temperature (280 K) down to the lowest possible temperature limited by freeze out of oxygen gas (about 40 K at a low pressure). The Arrhenius behaviour of the rate coefficient for the forward reaction shows that it is subject to an activation energy of E(A)/k=113 K. Thus, the forward reaction can proceed only in higher temperature molecular clouds. Applying laser-induced reactions to the given reaction (in the backward direction), a preliminary search for spectroscopic signatures of O(2)H(+) in the infrared was unsuccessful, whereas the forward reaction has been successfully used to probe the population of the lowest ortho and para levels of H(3)(+).

  19. Ultra Compact Optical Pickup with Integrated Optical System

    NASA Astrophysics Data System (ADS)

    Nakata, Hideki; Nagata, Takayuki; Tomita, Hironori

    2006-08-01

    Smaller and thinner optical pickups are needed for portable audio-visual (AV) products and notebook personal computers (PCs). We have newly developed an ultra compact recordable optical pickup for Mini Disc (MD) that measures less than 4 mm from the disc surface to the bottom of the optical pickup, making the optical system markedly compact. We have integrated all the optical components into an objective lens actuator moving unit, while fully satisfying recording and playback performance requirements. In this paper, we propose an ultra compact optical pickup applicable to portable MD recorders.

  20. The solar wind as a possible source of fast temporal variations of the heliospheric ribbon

    DOE PAGES

    Kucharek, H.; Fuselier, S. A.; Wurz, P.; ...

    2013-10-04

    Here we present a possible source of pickup ions (PUIs) the ribbon observed by the Interstellar Boundary EXplorer (IBEX). We suggest that a gyrating solar wind and PUIs in the ramp and in the near downstream region of the termination shock (TS) could provide a significant source of energetic neutral atoms (ENAs) in the ribbon. A fraction of the solar wind and PUIs are reflected and energized during the first contact with the TS. Some of the solar wind may be reflected propagating toward the Sun but most of the solar wind ions form a gyrating beam-like distribution that persistsmore » until it is fully thermalized further downstream. Depending on the strength of the shock, these gyrating distributions can exist for many gyration periods until they are scattered/thermalized due to wave-particle interactions at the TS and downstream in the heliosheath. During this time, ENAs can be produced by charge exchange of interstellar neutral atoms with the gyrating ions. In order to determine the flux of energetic ions, we estimate the solar wind flux at the TS using pressure estimates inferred from in situ measurements. Assuming an average path length in the radial direction of the order of a few AU before the distribution of gyrating ions is thermalized, one can explain a significant fraction of the intensity of ENAs in the ribbon observed by IBEX. In conclusion, with a localized source and such a short integration path, this model would also allow fast time variations of the ENA flux.« less

  1. GEOMETRY AND CHARACTERISTICS OF THE HELIOSHEATH REVEALED IN THE FIRST FIVE YEARS OF INTERSTELLAR BOUNDARY EXPLORER OBSERVATIONS

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zirnstein, E. J.; McComas, D. J.; Schwadron, N. A.

    2016-07-20

    We investigate and interpret the geometry and characteristics of the inner heliosheath (IHS) plasma and their impact on the heliotail structure as observed in energetic neutral atom (ENA) maps acquired during the first 5 yr of Interstellar Boundary Explorer ( IBEX ) observations. In particular, IBEX observations of the heliotail reveal distinct, localized emission features (lobes) that provide a rich set of information about the properties and evolution of the heliosheath plasma downstream of the termination shock (TS). We analyze the geometry of the heliotail lobes and find that the plane intersecting the port and starboard heliotail lobe centers ismore » ∼6° from the solar equatorial plane, and the plane intersecting the north and south heliotail lobe centers is ∼90° from the solar equatorial plane, both indicating strong correlation with the fast–slow solar wind asymmetry, and thus reflecting the structure of the IHS flow around the Sun. We also analyze the key parameters and processes that form and shape the port and starboard lobes, which are distinctly different from the north and south lobes. By comparing IBEX ENA observations with results from a simplistic flow model of the heliosphere and a multicomponent description for pickup ions (PUIs) in the IHS, we find that the port and starboard lobe formation is driven by a thin IHS, large nose–tail asymmetry of the distance to the TS (and consequently, a large nose–tail asymmetry of the relative abundance of PUIs at the TS) and the energy-dependent removal of PUIs by charge exchange in the IHS.« less

  2. Instability of the heliopause driven by charge exchange interactions

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Avinash, K.; Zank, G. P.; Dasgupta, B.

    2014-08-20

    The stability of the heliopause that separates the tenuous hot magnetized heliosheath plasma from the dense cool local interstellar magnetized plasma is examined using a fully general model that includes all the essential physical processes. Charge exchange coupling between plasma protons and primary interstellar neutral atoms provides an effective gravity that drives Rayleigh-Taylor (RT)-like instabilities. The velocity difference or shear between the heliosheath and interstellar flows, when coupled to energetic neutral atoms (ENAs), drives a Kelvin-Helmholtz (KH)-like instability on the heliopause. The shoulder region of the heliopause is unstable to a new instability that has characteristics of a mixed RT-KH-likemore » mode. The instabilities are not stabilized by typical values of the magnetic fields in the inner and outer heliosheath (OHS). ENAs play an essential role in driving the KH-like instability, which is fully stabilized in their absence by magnetic fields. The nonlinear phase of these instabilities is briefly discussed. We also discuss the possibility that RT-like or mixed KH-RT-like instabilities drag outer heliosheath/very local interstellar medium (OHS/VLISM) magnetic field lines into the inner heliosheath (IHS) with the VLISM flow, and the possibility that IHS and VLISM magnetic field lines experience reconnection. Such reconnection may (1) greatly enhance the mixing of plasmas across the heliopause and (2) provide open magnetic field lines that allow easy ingress of galactic cosmic rays into the heliosphere and corresponding easy loss of anomalous cosmic rays from the heliosphere.« less

  3. Flow of neutral interstellar helium into the heliosphere as inferred from IBEX-Lo observations and simulations

    NASA Astrophysics Data System (ADS)

    Bzowski, M.; Kubiak, M. A.; Hlond, M.; Moebius, E.; Leonard, T.; Heirtzler, D.; Kucharek, H.; Bochsler, P. A.; Schwadron, N. A.; Crew, G. B.; McComas, D. J.; Fuselier, S. A.

    2010-12-01

    Previously, a team coordinated through the International Space Science Institute (ISSI) examined direct neutral gas, pickup ion, and UV backscatter observations to produce consensus values for the inflow direction (λ, β), speed v, and temperature T of neutral interstellar helium from the Local Interstellar Cloud (LIC) with relatively small uncertainties. Since then, NASA’s Interstellar Boundary Explorer (IBEX) has started to provide new observations of the interstellar He flow in Earth orbit, with data currently available from the spring seasons of 2009 and 2010. Using a test-particle simulation to compute the spin-phase distributions that IBEX observes during each orbit, we optimize input LIC parameters to best fit the observations. The simulations take into account actual ionization rates as derived from solar EUV observations by SOHO CELIAS SEM, the OMNI solar wind data set, the positions and velocity vectors of the Earth during the actual integration intervals for each orbit, and the IBEX-Lo field-of-view. The simulations were performed on a grid of bulk flow vectors and temperatures, starting with the ISSI team consensus values based most heavily on Ulysses GAS observations (v = 26.4 km/s, T = 6318 K, and λ = 255.4o, β = -5.31o in J2000 coordinates). The Mach number of the flow derived from the IBEX observations is generally lower than derived from Ulysses measurements, which would be consistent with a higher temperature (up to 10 000 K) and/or a lower flow speed (down to ≈22.5 km/s) of the LIC. Based on these findings, the possible LIC parameter sets most probably lie within a narrow range between (λ = 255.4°, β = 5.3°, v = 26.4 km/s, M = 4.5 or T = 10,000 K) and (λ = 261.2°, β = 4.9, v = 23.05 km/s, M = 4.9, or T = 6300 K). At one end of the acceptable range, the parameters agree with the previous values except for the temperature, and at the other end, the temperatures agree, but the direction is different by almost 6° and the velocity is lower by ≈4 km/s. The simulations appear to agree with the IBEX observations slightly better for the different inflow direction. The results obtained separately from the two passes through the He flow (in 2009 and 2010) are identical within observational uncertainties. Potential reasons for the differences from previous results will be discussed. Any modifications in these critical inflow parameters will require modification of current global heliosphere models. In particular, a reduced flow speed and thus reduced ram pressure would require an increase in the total LIC density and/or the magnetic field strength to maintain pressure balance at the heliopause.

  4. Lunar Neutral Exposphere Properties from Pickup Ion Analysis

    NASA Technical Reports Server (NTRS)

    Hartle, R. E.; Sarantos, M.; Killen, R.; Sittler, E. C. Jr.; Halekas, J.; Yokota, S.; Saito, Y.

    2009-01-01

    Composition and structure of neutral constituents in the lunar exosphere can be determined through measurements of phase space distributions of pickup ions borne from the exosphere [1]. An essential point made in an early study [ 1 ] and inferred by recent pickup ion measurements [2, 3] is that much lower neutral exosphere densities can be derived from ion mass spectrometer measurements of pickup ions than can be determined by conventional neutral mass spectrometers or remote sensing instruments. One approach for deriving properties of neutral exospheric source gasses is to first compare observed ion spectra with pickup ion model phase space distributions. Neutral exosphere properties are then inferred by adjusting exosphere model parameters to obtain the best fit between the resulting model pickup ion distributions and the observed ion spectra. Adopting this path, we obtain ion distributions from a new general pickup ion model, an extension of a simpler analytic description obtained from the Vlasov equation with an ion source [4]. In turn, the ion source is formed from a three-dimensional exospheric density distribution, which can range from the classical Chamberlain type distribution to one with variable exobase temperatures and nonthermal constituents as well as those empirically derived. The initial stage of this approach uses the Moon's known neutral He and Na exospheres to deriv e He+ and Na+ pickup ion exospheres, including their phase space distributions, densities and fluxes. The neutral exospheres used are those based on existing models and remote sensing studies. As mentioned, future ion measurements can be used to constrain the pickup ion model and subsequently improve the neutral exosphere descriptions. The pickup ion model is also used to estimate the exosphere sources of recently observed pickup ions on KAGUYA [3]. Future missions carrying ion spectrometers (e.g., ARTEMIS) will be able to study the lunar neutral exosphere with great sensitivity, yielding the necessary ion velocity spectra needed to further analysis of parent neutral exosphere properties.

  5. Revisit of cosmic ray antiprotons from dark matter annihilation with updated constraints on the background model from AMS-02 and collider data

    NASA Astrophysics Data System (ADS)

    Cui, Ming-Yang; Pan, Xu; Yuan, Qiang; Fan, Yi-Zhong; Zong, Hong-Shi

    2018-06-01

    We study the cosmic ray antiprotons with updated constraints on the propagation, proton injection, and solar modulation parameters based on the newest AMS-02 data near the Earth and Voyager data in the local interstellar space, and on the cross section of antiproton production due to proton-proton collisions based on new collider data. We use a Bayesian approach to properly consider the uncertainties of the model predictions of both the background and the dark matter (DM) annihilation components of antiprotons. We find that including an extra component of antiprotons from the annihilation of DM particles into a pair of quarks can improve the fit to the AMS-02 antiproton data considerably. The favored mass of DM particles is about 60~100 GeV, and the annihilation cross section is just at the level of the thermal production of DM (langleσvrangle ~ O(10‑26) cm3 s‑1).

  6. Tevatron beam position monitor upgrade

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wolbers, Stephen; Banerjee, B.; Barker, B.

    2005-05-01

    The Tevatron Beam Position Monitor (BPM) readout electronics and software have been upgraded to improve measurement precision, functionality and reliability. The original system, designed and built in the early 1980's, became inadequate for current and future operations of the Tevatron. The upgraded system consists of 960 channels of new electronics to process analog signals from 240 BPMs, new front-end software, new online and controls software, and modified applications to take advantage of the improved measurements and support the new functionality. The new system reads signals from both ends of the existing directional stripline pickups to provide simultaneous proton and antiprotonmore » position measurements. Measurements using the new system are presented that demonstrate its improved resolution and overall performance.« less

  7. The Structure of the Heliosphere as Seen from In Situ and Remote Observations

    NASA Astrophysics Data System (ADS)

    Pogorelov, N. V.; Heerikhuisen, J.; Kim, T. K.; Zhang, M.

    2017-12-01

    The heliosphere is formed due to interaction between the solar wind (SW) and local interstellar medium (LISM). The shape and position of the heliospheric boundary, the heliopause, in space depend on the parameters of interacting plasma flows. The interplay between the asymmetrizing effect of the interstellar magnetic field and charge exchange between ions and neutral atoms plays an important role in the SW-LISM interaction. By performing three-dimensional, MHD plasma / kinetic neutral atom simulations, we describe the structure of the outer heliosheath (OHS) - the LISM plasma region affected by the presence of the heliosphere - and analyze quantitatively the distributions in front of the heliopause. It is shown that charge exchange modifies the LISM plasma to such extent that the contribution of a shock transition to the total variation of plasma parameters becomes small even if the LISM velocity exceeds the fast magnetosonic speed in the unperturbed medium. By performing adaptive mesh refinement simulations, we show that a distinct boundary layer of decreased plasma density and enhanced magnetic field should be observed on the interstellar side of the heliopause. We show that this behavior is in agreement with the plasma oscillations of increasing frequency observed by the plasma wave instrument onboard Voyager 1. Numerical results are presented that reproduce shocks that pass by Voyager 1 in the OHS. We demonstrate that Voyager observations in the inner heliosheath between the heliospheric termination shock and the heliopause are consistent with dissipation of the heliospheric magnetic field. The effect of pickup ions is discussed in the context of in situ measurements. We also show that multi-TeV cosmic ray anisotropy can serve as an imager of the heliosphere due to its effect on the LISM properties. In particular, both the bow wave and the heliotail reveal themselves as characteristic features in the TeV flux images. The choice of LISM parameters in this analysis is based on the simulations that fit observations of energetic neutral atoms performed by IBEX. In particular, the position of the IBEX ribbon on the celestial sphere is strongly dependent on the choice of the plane that contains the vectors of velocity and magnetic field in the unperturbed LISM.

  8. A relativistic neutron fireball from a supernova explosion as a possible source of chiral influence.

    PubMed

    Gusev, G A; Saito, T; Tsarev, V A; Uryson, A V

    2007-06-01

    We elaborate on a previously proposed idea that polarized electrons produced from neutrons, released in a supernova (SN) explosion, can cause chiral dissymmetry of molecules in interstellar gas-dust clouds. A specific physical mechanism of a relativistic neutron fireball with Lorentz factor of the order of 100 is assumed for propelling a great number of free neutrons outside the dense SN shell. A relativistic chiral electron-proton plasma, produced from neutron decays, is slowed down owing to collective effects in the interstellar plasma. As collective effects do not involve the particle spin, the electrons can carry their helicities to the cloud. The estimates show high chiral efficiency of such electrons. In addition to this mechanism, production of circularly polarized ultraviolet photons through polarized-electron bremsstrahlung at an early stage of the fireball evolution is considered. It is shown that these photons can escape from the fireball plasma. However, for an average density of neutrals in the interstellar medium of the order of 0.2 cm(-3) and at distances of the order of 10 pc from the SN, these photons will be absorbed with a factor of about 10(-7) due to the photoeffect. In this case, their chiral efficiency will be about five orders of magnitude less than that for polarized electrons.

  9. THE INFRARED SPECTRUM OF PROTONATED OVALENE IN SOLID PARA-HYDROGEN AND ITS POSSIBLE CONTRIBUTION TO INTERSTELLAR UNIDENTIFIED INFRARED EMISSION

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tsuge, Masashi; Bahou, Mohammed; Lee, Yuan-Pern

    The mid-infrared emission from galactic objects, including reflection nebulae, planetary nebulae, proto-planetary nebulae, molecular clouds, etc, as well as external galaxies, is dominated by the unidentified infrared (UIR) emission bands. Large protonated polycyclic aromatic hydrocarbons (H{sup +}PAHs) were proposed as possible carriers, but no spectrum of an H{sup +}PAH has been shown to exactly match the UIR bands. Here, we report the IR spectrum of protonated ovalene (7-C{sub 32}H{sub 15} {sup +}) measured in a para -hydrogen ( p -H{sub 2}) matrix at 3.2 K, generated by bombarding a mixture of ovalene and p -H{sub 2} with electrons during matrixmore » deposition. Spectral assignments were made based on the expected chemistry and on the spectra simulated with the wavenumbers and infrared intensities predicted with the B3PW91/6-311++G(2d,2p) method. The close resemblance of the observed spectral pattern to that of the UIR bands suggests that protonated ovalene may contribute to the UIR emission, particularly from objects that emit Class A spectra, such as the IRIS reflection nebula, NGC 7023.« less

  10. 40 CFR 86.1870-12 - CO2 credits for qualifying full-size pickup trucks.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... broadcast battery pack voltage via an on-board diagnostics parameter ID channel. (1) Full size pickup trucks... conditioning leakage and/or efficiency credits as determined in §§ 86.1867 and 6.1868. Pickup trucks earning...

  11. 47 CFR 74.433 - Temporary authorizations.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... identification number of the associated broadcast station or stations, call letters of remote pickup station (if..., AUXILIARY, SPECIAL BROADCAST AND OTHER PROGRAM DISTRIBUTIONAL SERVICES Remote Pickup Broadcast Stations § 74.433 Temporary authorizations. (a) Special temporary authority may be granted for remote pickup station...

  12. 47 CFR 74.433 - Temporary authorizations.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... identification number of the associated broadcast station or stations, call letters of remote pickup station (if..., AUXILIARY, SPECIAL BROADCAST AND OTHER PROGRAM DISTRIBUTIONAL SERVICES Remote Pickup Broadcast Stations § 74.433 Temporary authorizations. (a) Special temporary authority may be granted for remote pickup station...

  13. 47 CFR 74.433 - Temporary authorizations.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... identification number of the associated broadcast station or stations, call letters of remote pickup station (if..., AUXILIARY, SPECIAL BROADCAST AND OTHER PROGRAM DISTRIBUTIONAL SERVICES Remote Pickup Broadcast Stations § 74.433 Temporary authorizations. (a) Special temporary authority may be granted for remote pickup station...

  14. 47 CFR 74.433 - Temporary authorizations.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... identification number of the associated broadcast station or stations, call letters of remote pickup station (if..., AUXILIARY, SPECIAL BROADCAST AND OTHER PROGRAM DISTRIBUTIONAL SERVICES Remote Pickup Broadcast Stations § 74.433 Temporary authorizations. (a) Special temporary authority may be granted for remote pickup station...

  15. Interstellar Mapping and Acceleration Probe (IMAP)

    NASA Astrophysics Data System (ADS)

    Schwadron, N. A.; Opher, M.; Kasper, J.; Mewaldt, R.; Moebius, E.; Spence, H. E.; Zurbuchen, T. H.

    2016-11-01

    Our piece of cosmic real estate, the heliosphere, is the domain of all human existence - an astrophysical case history of the successful evolution of life in a habitable system. By exploring our global heliosphere and its myriad interactions, we develop key physical knowledge of the interstellar interactions that influence exoplanetary habitability as well as the distant history and destiny of our solar system and world. IBEX is the first mission to explore the global heliosphere and in concert with Voyager 1 and Voyager 2 is discovering a fundamentally new and uncharted physical domain of the outer heliosphere. In parallel, Cassini/INCA maps the global heliosphere at energies (˜5-55 keV) above those measured by IBEX. The enigmatic IBEX ribbon and the INCA belt were unanticipated discoveries demonstrating that much of what we know or think we understand about the outer heliosphere needs to be revised. This paper summarizes the next quantum leap enabled by IMAP that will open new windows on the frontier of Heliophysics at a time when the space environment is rapidly evolving. IMAP with 100 times the combined resolution and sensitivity of IBEX and INCA will discover the substructure of the IBEX ribbon and will reveal, with unprecedented resolution, global maps of our heliosphere. The remarkable synergy between IMAP, Voyager 1 and Voyager 2 will remain for at least the next decade as Voyager 1 pushes further into the interstellar domain and Voyager 2 moves through the heliosheath. Voyager 2 moves outward in the same region of sky covered by a portion of the IBEX ribbon. Voyager 2’s plasma measurements will create singular opportunities for discovery in the context of IMAP's global measurements. IMAP, like ACE before, will be a keystone of the Heliophysics System Observatory by providing comprehensive measurements of interstellar neutral atoms and pickup ions, the solar wind distribution, composition, and magnetic field, as well as suprathermal ion, energetic particle, and cosmic ray distributions to diagnose the changing space environment and understand the fundamental origins of particle acceleration. This paper, the first citable reference for IMAP, is similar to an unpublished whitepaper that was presented to the National Academies of Sciences, Engineering and Medicine Committee for Solar and Space Physics. We provide the IMAP objectives and instrument straw man traced from the Solar and Space Physics Decadal Survey. It is fitting that our paper is published in the volume of papers that celebrates the 80th birthday of Ed Stone.

  16. Model structure of a cosmic-ray mediated stellar or solar wind

    NASA Technical Reports Server (NTRS)

    Lee, M. A.; Axford, W. I.

    1988-01-01

    An idealized hydrodynamic model is presented for the mediation of a free-streaming stellar wind by galactic cosmic rays or energetic particles accelerated at the stellar wind termination shock. The spherically-symmetric stellar wind is taken to be cold; the only body force is the cosmic ray pressure gradient. The cosmic rays are treated as a massless fluid with an effective mean diffusion coefficient k proportional to radial distance r. The structure of the governing equations is investigated both analytically and numerically. Solutions for a range of values of k are presented which describe the deceleration of the stellar wind and a transition to nearly incompressible flow and constant cosmic ray pressure at large r. In the limit of small k the transition steepens to a strong stellar wind termination shock. For large k the stellar wind is decelerated gradually with no shock transition. It is argued that the solutions provide a simple model for the mediation of the solar wind by interstellar ions as both pickup ions and the cosmic ray anomalous component which together dominate the pressure of the solar wind at large r.

  17. Finite Gyroradius Effects Observed in Pickup Oxygen Ions at Venus

    NASA Technical Reports Server (NTRS)

    Hartle, Richard E.; Intriligator, Devrie; Grebowsky, Joseph M.; Einaudi, Franco (Technical Monitor)

    2000-01-01

    On the dayside of Venus, the hot oxygen corona extending above the ionopause is the principal source of pickup oxygen ions. The ions are born here and picked up by the ionosheath plasma as it is deflected around the planet. These pickup ions have been observed by the Orbiter Plasma Analyzer (OPA) throughout the Pioneer Venus Orbiter (PVO) mission. They were observed over a region extending from their dayside source to great distances downstream (about 10 Venus radii), in the solar wind wake, as PVO passed through apoapsis. Finite gyroradius effects in the velocity distribution of the oxygen pickup ions are expected in the source region because the gyroradius is several times larger than the scale height of the hot oxygen source. Such effects are also expected in those regions of the ionosheath where the scale lengths of the magnetic field and the ambient plasma velocity field are less than the pickup ion gyroradius. While explicitly accounting for the spatial distribution of the hot oxygen source, an analytic expression for the pickup oxygen ion velocity distribution is developed to study how it is affected by finite gyroradii. The analysis demonstrates that as the gyroradius increases by factors of three to six above the hot oxygen scale height, the peak of the pickup oxygen ion flux distribution decreases 25 to 50% below the maximum allowed speed, which is twice the speed of the ambient plasma times the sine of the angle between the magnetic field and the flow velocity. The pickup oxygen ion flux distribution observed by OPA is shown to follow this behavior in the source region. It is also shown that this result is consistent with the pickup ion distributions observed in the wake, downstream of the source, where the flux peaks are usually well below the maximum allowed speed.

  18. PAL-XFEL cavity beam position monitor pick-up design and beam test

    NASA Astrophysics Data System (ADS)

    Lee, Sojeong; Park, Young Jung; Kim, Changbum; Kim, Seung Hwan; Shin, Dong Cheol; Han, Jang-Hui; Ko, In Soo

    2016-08-01

    As an X-ray Free Electron Laser, PAL-XFEL is about to start beam commissioning. X-band cavity beam position monitor (BPM) is used in the PAL-XFEL undulator beam line. Prototypes of cavity BPM pick-up were designed and fabricated to test the RF characteristics. Also, the beam test of a cavity BPM pick-up was done in the Injector Test Facility (ITF). In the beam test, the raw signal properties of the cavity BPM pick-up were measured at a 200 pC bunch charge. According to the RF test and beam test results, the prototype cavity BPM pick-up design was confirmed to meet the requirements of the PAL-XFEL cavity BPM system.

  19. 47 CFR 74.431 - Special rules applicable to remote pickup stations.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... damaged, stations licensed under Subpart D may be used to provide temporary circuits for a period not... SERVICES Remote Pickup Broadcast Stations § 74.431 Special rules applicable to remote pickup stations. (a..., frequency coordination, establishing microwave links, and operational communications. Operational...

  20. 47 CFR 74.431 - Special rules applicable to remote pickup stations.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... damaged, stations licensed under Subpart D may be used to provide temporary circuits for a period not... SERVICES Remote Pickup Broadcast Stations § 74.431 Special rules applicable to remote pickup stations. (a..., frequency coordination, establishing microwave links, and operational communications. Operational...

  1. 47 CFR 74.431 - Special rules applicable to remote pickup stations.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... damaged, stations licensed under Subpart D may be used to provide temporary circuits for a period not... SERVICES Remote Pickup Broadcast Stations § 74.431 Special rules applicable to remote pickup stations. (a..., frequency coordination, establishing microwave links, and operational communications. Operational...

  2. 47 CFR 74.431 - Special rules applicable to remote pickup stations.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... damaged, stations licensed under Subpart D may be used to provide temporary circuits for a period not... SERVICES Remote Pickup Broadcast Stations § 74.431 Special rules applicable to remote pickup stations. (a..., frequency coordination, establishing microwave links, and operational communications. Operational...

  3. Implant Impression Techniques for the Edentulous Jaw: A Summary of Three Studies.

    PubMed

    Stimmelmayr, Michael; Beuer, Florian; Edelhoff, Daniel; Güth, Jan-Frederik

    2016-02-01

    Precise implant-supported restorations require accurate impressions. Transfer, pick-up, and splinted pick-up are commonly used techniques. Several in vitro studies have compared these impression techniques; however, all studies used mechanical evaluation methods. The purpose of this study was to compare the discrepancies of these impression techniques digitally in vitro and in vivo. Four dental implants were inserted in ten polymer mandibular models bilaterally in the regions of the first molars and canines. Three different impressions were made of each model and the models (original and stone casts) were scanned and digitized. Clinically, four implants were inserted in ten edentulous jaws; transfer and splinted pick-up impressions were made. With inspection software, discrepancies between the different impressions were calculated. The mean discrepancies in the in vitro study of the original polymer model to stone casts were 124 ± 34 μm for the transfer type, 116 ± 46 μm for the pick-up type, and 80 ± 25 μm for the splinted pick-up type, resulting in a mean discrepancy between the transfer and splinted pick-up type of 44 μm (124 - 80 μm). Clinically, the mean discrepancy between these two impression techniques was 280 μm. The differing results between the transfer and splinted pick-up techniques of in vitro and in vivo data showed the need for clinical data; however, splinted pick-up impressions seemed to produce the most precise results. © 2015 by the American College of Prosthodontists.

  4. The Energetic Neutral Atoms of the "Croissant" Heliosphere with Jets

    NASA Astrophysics Data System (ADS)

    Kornbleuth, M. Z.; Opher, M.; Michael, A.

    2017-12-01

    Opher et al. (2015) suggests the heliosphere may have two jets in the tail-ward direction driven to the north and south. This new model, the "Croissant Heliosphere", is in contrast to the classically accepted view of a comet-like tail. We investigate the effect of the heliosphere with jets model on energetic neutral atom (ENA) maps. Regardless of the existence of a split tail, other models show heliosheath plasma confined by the toroidal magnetic field in a "slinky" structure, similar to astrophysical jets bent by the interstellar medium. Therefore, the confinement of the plasma should appear in the ENA maps. ENA maps from the Interstellar Boundary Explorer (IBEX) have recently shown two high latitude lobes with excess ENA flux at higher energies in the tail of the heliosphere. These lobes could be a signature of the two jet structure of the heliosphere, while some have argued they are cause by the fast/slow solar wind profile. Here we present the ENA maps of the "Croissant Heliosphere" using initially a uniform solar wind. We incorporate pick-up ions (PUIs) into our model based on the kinetic modeling of Malama et al. (2006). We include the extinction of PUIs in the heliosheath and describe a locally created PUI population resulting from this extinction process. Additionally, we include the angular dependence of the PUIs based on the work of Vasyliunas & Siscoe (1976). With our model, we find that, in the presence of a uniform solar wind, the "heliosphere with jets" model is able to qualitatively reproduce the lobe structure of the tail seen in IBEX measurements. Turbulence also manifests itself within the lobes of the simulated ENA maps on the order of years. Finally we will present ENA maps using a time-dependent model of the heliosphere with the inclusion of solar cycle.

  5. Continuum model for hydrogen pickup in zirconium alloys of LWR fuel cladding

    NASA Astrophysics Data System (ADS)

    Wang, Xing; Zheng, Ming-Jie; Szlufarska, Izabela; Morgan, Dane

    2017-04-01

    A continuum model for calculating the time-dependent hydrogen pickup fractions in various Zirconium alloys under steam and pressured water oxidation has been developed in this study. Using only one fitting parameter, the effective hydrogen gas partial pressure at the oxide surface, a qualitative agreement is obtained between the predicted and previously measured hydrogen pickup fractions. The calculation results therefore demonstrate that H diffusion through the dense oxide layer plays an important role in the hydrogen pickup process. The limitations and possible improvement of the model are also discussed.

  6. Superconductive imaging surface magnetometer

    DOEpatents

    Overton, Jr., William C.; van Hulsteyn, David B.; Flynn, Edward R.

    1991-01-01

    An improved pick-up coil system for use with Superconducting Quantum Interference Device gradiometers and magnetometers involving the use of superconducting plates near conventional pick-up coil arrangements to provide imaging of nearby dipole sources and to deflect environmental magnetic noise away from the pick-up coils. This allows the practice of gradiometry and magnetometry in magnetically unshielded environments. One embodiment uses a hemispherically shaped superconducting plate with interior pick-up coils, allowing brain wave measurements to be made on human patients. another embodiment using flat superconducting plates could be used in non-destructive evaluation of materials.

  7. Inner Source Pickup Ions Observed by Ulysses

    NASA Astrophysics Data System (ADS)

    Gloeckler, G.

    2016-12-01

    The existence of an inner source of pickup ions close to the Sun was proposed in order to explain the unexpected discovery of C+ in the high-speed polar solar wind. Here I report on detailed analyses of the composition and the radial and latitudinal variations of inner source pickup ions measured with the Solar Wind Ion Composition Spectrometer on Ulysses from 1991 to 1998, approaching and during solar minimum. We find that the C+ intensity drops off with radial distance R as R-1.53, peaks at mid latitudes and drops to its lowest value in the ecliptic. Not only was C+ observed, but also N+, O+, Ne+, Na+, Mg+, Ar+, S+, K+, CH+, NH+, OH+, H2O+, H3O+, MgH+, HCN+, C2H4+, SO+ and many other singly-charged heavy ions and molecular ions. The measured velocity distributions of inner source pickup C+ and O+ indicate that these inner source pickup ions are most likely produced by charge exchange, photoionization and electron impact ionization of neutrals close to the Sun (within 10 to 30 solar radii). Possible causes for the unexpected latitudinal variations and the neutral source(s) producing the inner source pickup ions as well as plausible production mechanisms for inner source pickup ions will be discussed.

  8. Radiation Synthesis of Carbon Dioxide in Ice-coated Carbon: Implications for Interstellar Grains and Icy Moons

    NASA Astrophysics Data System (ADS)

    Raut, U.; Fulvio, D.; Loeffler, M. J.; Baragiola, R. A.

    2012-06-01

    We report the synthesis of carbon dioxide on an amorphous carbon-13 substrate coated with amorphous water ice from irradiation with 100 keV protons at 20 K and 120 K. The quantitative studies show that the CO2 is dispersed in the ice; its column density increases with ion fluence to a maximum value (in 1015 molecules cm-2) of ~1 at 20 K and ~3 at 120 K. The initial yield is 0.05 (0.1) CO2 per incident H+ at 20 (120) K. The CO2 destruction process, which limits the maximum column density, occurs with an effective cross section of ~2.5 (4.1) × 10-17 cm2 at 20 (120) K. We discuss radiation-induced oxidation by reactions of radicals in water with the carbon surface and demonstrate that these reactions can be a significant source of condensed carbon dioxide in interstellar grains and in icy satellites in the outer solar system.

  9. Stone-Ice Bodies as Possible Incubators of a Primary Life

    NASA Astrophysics Data System (ADS)

    Busarev, V. V.

    2014-10-01

    Widespread in the interstellar medium three-atomic molecules of HCN and H2O and derivative formamid (NH2COH) are the basis for the origin of life. It is shown that irradiation of formamid by protons in the presence of terrestrial mineral and meteoritic catalysts in conditions compatible with terrestrial leads to simultaneous synthesis of a wide range of compounds (amino acids, heterocycles, alcohols, amides, sugars, etc.) having potential to develop as genetics (based on RNA and DNA), and metabolism underlying terrestrial life forms [1, 2]. However, the intended path of extraterrestrial origin of life in the open interstellar medium could not reach its logical end. The subsequent stages of the assumed biological synthesis needed protection from the harsh cosmic factors and presence of liquid water, catalysts, etc. (e.g., [3]). Such conditions could be realized only on planetary bodies and/or in their interiors. On the basis of observations and calculations, the author sug! gested that the objects were in the early Solar system. Such could be stone-ice bodies.

  10. Run 16, eIPM Summary

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Connolly, R.; Dawson, C.; Jao, S.

    2016-08-05

    Three problems with the eIPMs were corrected during the 2015 summer shutdown. These involved ac coupling and 'negative profiles', detector 'dead zone' created by biasing, and gain control on ramp. With respect to Run 16, problems dealt with included gain depletion on horizontal MCP and rf pickup on profile signals; it was found that the MCP was severely damaged over part of the aperture. Various corrective measures were applied. Some results of these measured obtained during Run 16 are shown. At the end of Run 16 there was a three-­day beam run to study polarized proton beams in the AGS.more » Attempts to minimize beam injection errors which increase emittance by using the eIPMs to measure the contribution of injection mismatch to the AGS output beam emittance are recounted. .« less

  11. Hyperspectral Imaging and Obstacle Detection for Robotics Navigation

    DTIC Science & Technology

    2005-09-01

    anatomy and diffraction process. 17 3.3 Technical Specifications of the System A. Brimrose AOTF Video Adaptor Specifications: Material TeO2 Active...sampled from glass case on person 2’s belt 530 pixels 20 pick-up white sampled from body panels of pick-up 600 pixels 21 pick-up blue sampled from

  12. A Theoretical Investigation of the Plausibility of Reactions Between Ammonia and Carbonyl Species (Formaldehyde, Acetaldehyde, and Acetone) in Interstellar Ice Analogs at Ultracold Temperatures

    NASA Technical Reports Server (NTRS)

    Chen, Lina; Woon, David E.

    2011-01-01

    We have reexamined the reaction between formaldehyde and ammonia, which was previously studied by us and other workers in modestly sized cluster calculations. Larger model systems with up to 12H2O were employed, and reactions of two more carbonyl species, acetaldehyde and acetone, were also carried out. Calculations were performed at the B3LYP/6-31+G** level with bulk solvent effects treated with a polarizable continuum model; limited MP2/6-31+G** calculations were also performed. We found that while the barrier for the concerted proton relay mechanism described in previous work remains modest, it is still prohibitively high for the reaction to occur under the ultracold conditions that prevail in dense interstellar clouds. However, a new pathway emerged in more realistic clusters that involves at least one barrierless step for two of the carbonyl species considered here: ammonia reacts with formaldehyde and acetaldehyde to form a partial charge transfer species in small clusters (4H2O) and a protonated hydroxyamino intermediate species in large clusters (9H2O, 12H2O); modest barriers that decrease sharply with cluster size are found for the analogous processes for the acetone-NH3 reaction. Furthermore, if a second ammonia replaces one of the water molecules in calculations in the 9H2O clusters, deprotonation can occur to yield the same neutral hydroxyamino species that is formed via the original concerted proton relay mechanism. In at least one position, deprotonation is barrierless when zero-point energy is included. In addition to describing the structures and energetics of the reactions between formaldehyde, acetaldehyde, and acetone with ammonia, we report spectroscopic predictions of the observable vibrational features that are expected to be present in ice mixtures of different composition.

  13. MAVEN Pickup Ion Constraints on Mars Neutral Escape

    NASA Astrophysics Data System (ADS)

    Rahmati, A.; Larson, D. E.; Cravens, T.; Lillis, R. J.; Dunn, P.; Halekas, J. S.; McFadden, J. P.; Mitchell, D. L.; Thiemann, E.; Connerney, J. E. P.; DiBraccio, G. A.; Espley, J. R.; Eparvier, F. G.

    2017-12-01

    Mars is currently losing its atmosphere mainly due to the escape of neutral hydrogen and oxygen. Directly measuring the rate of escaping neutrals is difficult, because the neutral density in the Mars exosphere is dominated, up to several Martian radii, by atoms that are gravitationally bound to the planet. Neutral atoms in the Martian exosphere, however, can get ionized, picked up, and accelerated by the solar wind motional electric field and energized to energies high enough for particle detectors to measure them. The MAVEN SEP instrument detects O+ pickup ions that are created at altitudes where the escaping part of the exosphere is dominant. Fluxes of these ions reflect neutral densities in the distant exosphere of Mars, allowing us to constrain neutral oxygen escape rates. The MAVEN SWIA and STATIC instruments measure pickup H+ and O+ created closer to Mars; comparisons of these data with models can be used to constrain exospheric hot O and thermal H densities and escape rates. In this work, pickup ion measurements from SEP, SWIA, and STATIC, taken during the first 3 Earth years of the MAVEN mission, are compared to the outputs of a pickup ion model to constrain the variability of neutral escape at Mars. The model is based on data from six MAVEN instruments, namely, MAG providing magnetic field used in calculating pickup ion trajectories, SWIA providing solar wind velocity as well as 3D pickup H+ and O+ spectra, SWEA providing solar wind electron spectrum used in electron impact ionization rate calculations, SEP providing pickup O+ spectra, STATIC providing mass resolved 3D pickup H+ and O+ spectra, and EUVM providing solar EUV spectra used in photoionization rate calculations. A variability of less than a factor of two is observed in hot oxygen escape rates, whereas thermal escape of hydrogen varies by an order of magnitude with Mars season. This hydrogen escape variability challenges our understanding of the H cycle at Mars, but is consistent with other recent measurements.

  14. Comparison of magnetosonic wave and water group ion energy densities at Comet Giacobini-Zinner

    NASA Technical Reports Server (NTRS)

    Staines, K.; Balogh, A.; Cowley, S. W. H.; Forster, P. M. De F.; Hynds, R. J.; Yates, T. S.; Sanderson, T. R.; Wenzel, K.-P.; Tsurutani, B. T.

    1991-01-01

    Measurements of the Comet Giacobini-Zinner (GZ) are presented to determine to what extent wave-particle scattering redistributed the initial pick-up energy of the ion population. Also examined is the difference between the ion thermal energy and the energy in the magnetic fields of the waves. In spite of uncertainty of about a factor of 2 noted in the pick-up and mass-loaded regions, it is shown that less than approximately 50 percent of the pick-up energy is converted into wave magnetic energy in the inbound pick-up region.

  15. The risk of injury to children in compact pickup trucks.

    PubMed

    Winston, Flaura K; Durbin, Dennis

    2002-01-01

    Nearly one million compact pickup trucks were sold last year in the US. Manufacturers now produce extended-cab models of pickups such as the Ford Ranger, Chevrolet S-10, Dodge Dakota, and Toyota Tacoma that can accommodate at least two rear-seated passengers, making them attractive to families with children. However, the safety of these rear seats for children has not been determined. This Issue Brief summarizes a new study that examines and quantifies the risk of injury to children riding in compact pickup trucks. Based on these findings, parents should be advised against using these vehicles as family transportation.

  16. Charging of Interstellar Dust Grains in the out-of-equilibrium Heliosheath Plasma traced by IBEX ENAs

    NASA Astrophysics Data System (ADS)

    Frisch, P. C.; Ogasawara, K.; Livadiotis, G.; Slavin, J. D.; McComas, D. J.; Funsten, H. O.; Schwadron, N.; Heerikhuisen, J.

    2017-12-01

    Dusty bow waves are common around stars and anticipated around the heliosphere due to the deficit of low-mass interstellar dust grains in the inner heliosphere. Interstellar grains entering the heliosphere must first cross barriers of non-Maxwellian plasma in the heliosheath regions where collisional charging of grains is highly effective. IBEX measures 0.1-6 keV ENAs in the heliosheath plasma, providing an in situ sample of the heliosheath plasma thermodynamics that can be used for grain-charging calculations. Plasma in three-quarters of the sky can be described with a stationary state kappa-distribution, giving predictions for kappa, kappa-distribution temperature, and plasma density [1]. This thermodynamic description allows a more realistic evaluation of the dominant heliosheath electron and ion currents, and hence also grain gyroradii and exclusion from the heliosphere. At the highest temperatures ion collisional currents dominate grain charging; at lower temperatures collisional electron currents are more important together with the photoelectric ejection of electrons. An absence of data on the thermodynamical state of heliosheath electrons has led to the assumption of similar thermodynamic parameters for the electron and ion populations. The balance between electron, proton and photoionization currents on the grains then yield the equilibrium grain charges. Grain gyroradii calculated based on these charging currents differentiate between interstellar grains able to penetrate the heliosphere, versus those that are excluded, and allow predictions of properties of the dusty bow wave likely to be present around the heliosphere. The smallest grains are excluded and grains at the high latitude edges of the described regions tend to have systematically lower grain potentials. Grain charging calculations utilize the modeling of [2]. [1] Livadiotis et al., ApJ 734, 1 (2011). [2] Weingartner Draine, ApJSS 263 (2001)

  17. A Theoretical Investigation of the Infrared Spectroscopic Properties of Closed-Shell Polycyclic Aromatic Hydrocarbon Cations

    NASA Technical Reports Server (NTRS)

    Hudgins, Douglas M.; Bauschlicher, Charles W., Jr.; Allamandola, Louis J.; DeVincenzi, Donald L. (Technical Monitor)

    2000-01-01

    Density functional theory has been employed to calculate the harmonic frequencies and intensities of a range of PAH cations which explore both size and electronic structure effects on the infrared spectroscopic of these species. The sample extends the size range of PAH species considered to more than 50 carbon atoms and includes several representatives from each of two heretofore unexplored categories of PAH cations: (1) fully benzenoid PAH cations whose carbon skeleton is composed of an odd number of carbon atoms and (2) protonated PAH cations. Unlike the radical electronic structures of the PAH cations that have been the subject of previous theoretical and experimental work, the species in these two classes have a closed-shell electronic configuration. The calculated spectra of circumcoronene, C54H18, in both neutral and (radical) cationic form are also reported and compared to those of the other species. Closed-shell species are inherently less reactive than radical (or open-shell) cations and are known to play a role in combustion chemistry. Since interstellar PAHs are typically exposed to abundant atomic hydrogen and are thought to originate under pseudo-combustion conditions in carbon-rich circumstellar shells, such species may represent an important component of the interstellar PAH population. Furthermore, species larger than 50 carbon atoms are more representative of the size of the typical interstellar PAH. Overall, as has been the case for previous studies of PAH radical cations, the general pattern of band positions and intensities are consistent with that of the interstellar infrared emission spectrum. In addition, the spectra of closed-shell and open-shell cations are found to converge with increasing molecular size and are found to be relatively similar for species containing about 50 carbon atoms.

  18. Electromagnetic fluctuation spectra of collective oscillations in magnetized Maxwellian plasmas for parallel wave vectors

    NASA Astrophysics Data System (ADS)

    Vafin, S.; Schlickeiser, R.; Yoon, P. H.

    2016-05-01

    The general electromagnetic fluctuation theory for magnetized plasmas is used to calculate the steady-state wave number spectra and total electromagnetic field strength of low-frequency collective weakly damped eigenmodes with parallel wavevectors in a Maxwellian electron-proton plasma. These result from the equilibrium of spontaneous emission and collisionless damping, and they represent the minimum electromagnetic fluctuations guaranteed in quiet thermal space plasmas, including the interstellar and interplanetary medium. Depending on the plasma beta, the ratio of |δB |/B0 can be as high as 10-12 .

  19. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mazarakis, Michael G.; Kiefer, Mark L.; Leckbee, Joshua J.

    This paper describes our effort to measure the back-streaming ions emitted from the target x-ray convertor and thus estimate the ion contribution to the A-K gap bipolar current flow. Knowing the ion contribution is quite important in order to calculate the expected x-ray dose and compare it with the actual measurements. Our plans were first to measure the total ion current using B-dot monitors, Rogowski coils, and Faraday cups and then to utilize filtered Faraday cups and time of flight techniques to identify and measure the various ionic species. The kinetic energy (velocities) of the ions should help evaluate themore » actual voltage applied at the anode-cathode (A-K) gap. LSP simulations found that the most prominent ions are protons and carbon single plus (C+). For an 8-MV A-K voltage, the estimated proton current back-streaming through an 1 cm in diameter hollow cathode tip was on the average 3 kA and the carbon current 0.7 kA. Since only a small fraction of the ions will make it through the cylindrical aperture, the corresponding total currents were calculated to be respectively 25kA for proton and 7 kA for carbon ions, a quite substantial contribution to the total bipolar beam current. Hence, approximately only 10% of the total back-streaming ionic currents could make it through the hollow cathode tip aperture. Unfortunately the diagnostic cables connecting the Faraday cup and the B-dot monitors to the screen room scopes experienced a large amount of charge pick-up that obliterated our effort to directly measure those relatively small currents. However, we succeeded in measuring those currents indirectly with activation techniques [Contribution of the back-streaming ions to the self-magnetic pinch (SMP) diode Current., M. G. Mazarakis, M. G. Mazarakis, M. E. Cuneo, S. D. Fournier, M. D. Johnston, M. L. Kiefer, J. J. Leckbee, D. S. Nielsen, B.V.Oliver, M. E. Sceiford, S. C. Simpson, T. J. Renk, C. L. Ruiz, T. J. Webb, and D. Ziska. Subitted for publication.]. In the following sections we present some typical cable pick-up results and also our efforts to verify that the observed “current” scope traces were indeed not ion currents but instead cable charge pic-up. Interestingly enough we also discovered that the appearance of those “currents” are in synchronism with the A-K gap impedance variation (decrease) and the MITL sheath current re-trapping. Hence those B-dots or Faraday cups could be utilized as diode behavior diagnostics.« less

  20. 47 CFR 74.1290 - FM translator and booster station information available on the Internet.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... Transmissions, Permissible (Low Power Auxiliaries) 74.831 Transmitter power (Remote Pickup) 74.461 Transmitters... equipment— Aural Auxiliary 74.550 Remote Pickup 74.451 TV Auxiliaries 74.655 Lw Power Auxiliaries 74.851... stations 74.537 Remote Pickup 74.433 TV Auxiliaries 74.633 Low Power Auxiliaries 74.833 Authorized emission...

  1. 17 CFR 240.17Ad-1 - Definitions.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... or mails the item to, or the item is awaiting pick-up by, the presentor or a person designated by the... transfer agent dispatches or mails the item to, or the item is awaiting pick-up by, the outside registrar... registrar dispatches or mails the item to, or the item is awaiting pick-up by, the presenting transfer agent...

  2. 17 CFR 240.17Ad-1 - Definitions.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... or mails the item to, or the item is awaiting pick-up by, the presentor or a person designated by the... transfer agent dispatches or mails the item to, or the item is awaiting pick-up by, the outside registrar... registrar dispatches or mails the item to, or the item is awaiting pick-up by, the presenting transfer agent...

  3. Simulating Negative Pickup Ions and Ion Cyclotron Wave Generation at Europa (Invited)

    NASA Astrophysics Data System (ADS)

    Desai, R. T.; Cowee, M.; Gary, S. P.; Wei, H.; Coates, A. J.; Kataria, D. O.; Fu, X.

    2015-12-01

    The mass loading of space environments through the ionisation of planetary atmospheres is a fundamental process governing the plasma interactions and long term evolution of celestial bodies across the solar system. Regions containing significant pickup ion populations have been observed to exhibit a rich variety of electromagnetic plasma wave phenomena, the characteristics and properties of which can be used to infer the ion species present, their spatial and temporal distributions, and the global ionisation rates of the neutral material. In this study we present hybrid (kinetic ion, massless fluid electron) simulations of ion pickup and Ion Cyclotron (IC) waves observed in the Jovian magnetosphere and draw comparisons to sub-alfvénic pickup observed by Cassini in the Saturnian system, and also to supra-alfvénic pickup at planetary bodies immersed directly in the solar wind. At Jupiter, Europa has been identified as the secondary mass loader in the magnetosphere, orbiting within a neutral gas torus at ~9.38 Rj. Near Europa, Galileo magnetometer observations displayed bursty IC wave characteristics at the gyrofrequency of a number of species including SO2, K, Cl, O2, and Na, suggesting a complex mass loading environment. A particular deduction from the dataset was the presence of both positively and negatively charged pickup ions, inferred from the left and right hand polarisations of the transverse waves. Using hybrid simulations for both positively and negatively charged Cl pickup ions we are able to self-consistently reproduce the growth of both right and left hand near-circularly polarised waves in agreement with linear theory and, using the observed wave amplitudes, estimate Cl pickup ion densities at Europa.

  4. Side Group Addition to the Polycyclic Aromatic Hydrocarbon Coronene by Proton Irradiation in Cosmic Ice Analogs

    NASA Astrophysics Data System (ADS)

    Bernstein, Max P.; Moore, Marla H.; Elsila, Jamie E.; Sandford, Scott A.; Allamandola, Louis J.; Zare, Richard N.

    2003-01-01

    Ices at ~15 K consisting of the polycyclic aromatic hydrocarbon coronene (C24H12) condensed either with H2O, CO2, or CO in the ratio of 1:100 or greater have been subjected to MeV proton bombardment from a Van de Graaff generator. The resulting reaction products have been examined by infrared transmission-reflection-transmission spectroscopy and by microprobe laser-desorption laser-ionization mass spectrometry. Just as in the case of UV photolysis, oxygen atoms are added to coronene, yielding, in the case of H2O ices, the addition of one or more alcohol (OH) and ketone (>CO) side chains to the coronene scaffolding. There are, however, significant differences between the products formed by proton irradiation and the products formed by UV photolysis of coronene containing CO and CO2 ices. The formation of a coronene carboxylic acid (COOH) by proton irradiation is facile in solid CO but not in CO2, the reverse of what was previously observed for UV photolysis under otherwise identical conditions. This work presents evidence that cosmic-ray irradiation of interstellar or cometary ices should have contributed to the formation of aromatics bearing ketone and carboxylic acid functional groups in primitive meteorites and interplanetary dust particles.

  5. Impact of the 26mAl(p, γ) reaction to galactic 26Al yield

    NASA Astrophysics Data System (ADS)

    Kahl, D.; Shimizu, H.; Yamaguchi, H.; Abe, K.; Beliuskina, O.; Cha, S. M.; Chae, K. Y.; Chen, A. A.; Ge, Z.; Hayakawa, S.; Imai, N.; Iwasa, N.; Kim, A.; Kim, D. H.; Kim, M. J.; Kubono, S.; Kwag, M. S.; Liang, J.; Moon, J. Y.; Nishimura, S.; Oka, S.; Park, S. Y.; Psaltis, A.; Teranishi, T.; Ueno, Y.; Yang, L.

    2018-04-01

    Astrophysical observables that are directly linked to nuclear physics inputs provide critical and stringent constraints on nucleosynthetic models. As 26Al was the first specific radioactivity observed in the Galaxy, its origin has fascinated the nuclear astrophysics community for nearly forty years. Despite extensive research, the precise origins of 26Al remain elusive. At present, the sum of all putative stellar contributions generally overestimates the 26Al mass in the interstellar medium. Among the many reactions that influence the yield of 26Al, radiative proton capture on its isomer 26mAl is one of the least constrained reactions by experimental data. To this end, we developed a 26Al isomeric beam and performed proton elastic scattering to search for low-spin states in 27Si. The experimental method and the preliminary results of this on-going study will be presented.

  6. Hybrid simulations of positively and negatively charged pickup ions and cyclotron wave generation at Europa

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Desai, Ravindra T.; Cowee, Misa; Wei, Hanying

    In the vicinity of Europa, Galileo observed bursty Alfvén-cyclotron wave power at the gyrofrequencies of a number of species including K +, math formula, Na +, and Cl +, indicating the localised pickup of these species. Additional evidence for the presence of Chlorine was the occurrence of both left-hand (LH) and right-hand (RH) polarised transverse wave power near the Cl + gyrofrequency, thought to be due to the pickup of both Cl + and the easily formed Chlorine anion, Cl –. To test this hypothesis we use one-dimensional hybrid (kinetic ion, massless fluid electron) simulations for both positive and negativemore » pickup ions and self-consistently reproduce the growth of both LH and RH Alfvén-cyclotron waves in agreement with linear theory. We show how the simultaneous generation of LH and RH waves can result in non-gyrotropic ion distributions and increased wave amplitudes, and how even trace quantities of negative pickup ions are able to generate an observable RH signal. Here, through comparing simulated and observed wave amplitudes, we are able to place the first constraints on the densities of Chlorine pickup ions in localised regions at Europa.« less

  7. Hybrid simulations of positively and negatively charged pickup ions and cyclotron wave generation at Europa

    DOE PAGES

    Desai, Ravindra T.; Cowee, Misa; Wei, Hanying; ...

    2017-09-19

    In the vicinity of Europa, Galileo observed bursty Alfvén-cyclotron wave power at the gyrofrequencies of a number of species including K +, math formula, Na +, and Cl +, indicating the localised pickup of these species. Additional evidence for the presence of Chlorine was the occurrence of both left-hand (LH) and right-hand (RH) polarised transverse wave power near the Cl + gyrofrequency, thought to be due to the pickup of both Cl + and the easily formed Chlorine anion, Cl –. To test this hypothesis we use one-dimensional hybrid (kinetic ion, massless fluid electron) simulations for both positive and negativemore » pickup ions and self-consistently reproduce the growth of both LH and RH Alfvén-cyclotron waves in agreement with linear theory. We show how the simultaneous generation of LH and RH waves can result in non-gyrotropic ion distributions and increased wave amplitudes, and how even trace quantities of negative pickup ions are able to generate an observable RH signal. Here, through comparing simulated and observed wave amplitudes, we are able to place the first constraints on the densities of Chlorine pickup ions in localised regions at Europa.« less

  8. Hybrid Simulations of Positively and Negatively Charged Pickup Ions and Cyclotron Wave Generation at Europa.

    PubMed

    Desai, R T; Cowee, M M; Wei, H; Fu, X; Gary, S P; Volwerk, M; Coates, A J

    2017-10-01

    In the vicinity of Europa, Galileo observed bursty Alfvén-cyclotron wave power at the gyrofrequencies of a number of species including K + , O 2+, Na + , and Cl + , indicating the localized pickup of these species. Additional evidence for the presence of chlorine was the occurrence of both left-hand (LH) and right-hand (RH) polarized transverse wave power near the Cl + gyrofrequency, thought to be due to the pickup of both Cl + and the easily formed chlorine anion, Cl - . To test this hypothesis, we use one-dimensional hybrid (kinetic ion, massless fluid electron) simulations for both positive and negative pickup ions and self-consistently reproduce the growth of both LH and RH Alfvén-cyclotron waves in agreement with linear theory. We show how the simultaneous generation of LH and RH waves can result in nongyrotropic ion distributions and increased wave amplitudes, and how even trace quantities of negative pickup ions are able to generate an observable RH signal. Through comparing simulated and observed wave amplitudes, we are able to place the first constraints on the densities of Chlorine pickup ions in localized regions at Europa.

  9. Comparison of teen driver fatality rates by vehicle type in the United States.

    PubMed

    Trowbridge, Matthew J; McKay, Mary Pat; Maio, Ronald F

    2007-10-01

    To compare national fatality rates for teen drivers by vehicle type. Fatality rates were calculated for 16- to 19-year-old drivers by vehicle type using data from the Fatal Analysis Reporting System (1999-2003) and estimates of miles driven from the National Household Transportation Survey (2001). Relative fatality risks for teen drivers of sports utility vehicles (SUVs) and pickups were calculated using passenger cars as a reference. Per vehicle mile driven, the fatality risk for both male and female teens driving SUVs was decreased relative to passenger car drivers (male teens: relative risk [RR], 0.33 [95% confidence interval [CI] = 0.29 to 0.37]; female teens: RR, 0.45 [95% CI = 0.34 to 0.59]). Fatality rates for male teens driving pickups were also lower per mile driven compared with male passenger car drivers (RR, 0.55 [95% CI = 0.51 to 0.60]). Fatality rates for female teens driving pickups and passenger cars were not statistically different but appear potentially higher for pickups (RR, 1.19 [95% CI = 0.98 to 1.44]). Both SUVs and pickups demonstrated significantly higher rates of fatal rollovers than passenger cars. Female adolescent drivers of SUVs and pickups were at particularly high risk for fatal rollovers per vehicle mile driven compared with passenger cars (SUV: RR, 1.88 [95% CI = 1.19 to 2.96]; pickup: RR, 3.42 [95% CI = 2.29 to 5.10]). Fatality rates for teen drivers vary significantly by vehicle type. From 1999 to 2003 in the United States, fatal rollovers were significantly more likely per mile driven for teen drivers of both SUVs and pickups compared with passenger cars. However, overall fatality rates (i.e., all crash types) for teen drivers of SUVs and male drivers of pickups were lower per mile driven than for teen drivers of passenger cars. The results of this ecological analysis cannot predict the individual-level fatality risk for teens driving different vehicle types. However, the significant variability in fatality rates among SUVs, pickups, and passenger cars seen at a population level suggests that vehicle choice should be further explored as a potentially modifiable risk factor in interventions to address teen driver safety.

  10. Hydrogen pickup mechanism of zirconium alloys

    NASA Astrophysics Data System (ADS)

    Couet, Adrien

    Although the optimization of zirconium based alloys has led to significant improvements in hydrogen pickup and corrosion resistance, the mechanisms by which such alloy improvements occur are still not well understood. In an effort to understand such mechanisms, a systematic study of the alloy effect on hydrogen pickup is conducted, using advanced characterization techniques to rationalize precise measurements of hydrogen pickup. The hydrogen pick-up fraction is accurately measured for a specially designed set of commercial and model alloys to investigate the effects of alloying elements, microstructure and corrosion kinetics on hydrogen uptake. Two different techniques to measure hydrogen concentrations were used: a destructive technique, Vacuum Hot Extraction, and a non-destructive one, Cold Neutron Prompt Gamma Activation Analysis. The results indicate that hydrogen pickup varies not only from alloy to alloy but also during the corrosion process for a given alloy. For instance Zircaloy type alloys show high hydrogen pickup fraction and sub-parabolic oxidation kinetics whereas ZrNb alloys show lower hydrogen pickup fraction and close to parabolic oxidation kinetics. Hypothesis is made that hydrogen pickup result from the need to balance charge during the corrosion reaction, such that the pickup of hydrogen is directly related to (and indivisible of) the corrosion mechanism and decreases when the rate of electron transport or oxide electronic conductivity sigmao xe through the protective oxide increases. According to this hypothesis, alloying elements (either in solid solution or in precipitates) embedded in the oxide as well as space charge variations in the oxide would impact the hydrogen pick-up fraction by modifying sigmaox e, which drives oxidation and hydriding kinetics. Dedicated experiments and modelling were performed to assess and validate these hypotheses. In-situ electrochemical impedance spectroscopy (EIS) experiments were performed on Zircaloy-4 tubes to directly measure the evolution of sigma oxe as function of exposure time. The results show that sigmao xe decreases as function of exposure time and that its variations are directly correlated to the instantaneous hydrogen pickup fraction variations. The electron transport through the oxide layer is thus altered as the oxide grows, reasons for which are yet to be exactly determined. Preliminary results also show that sigma oxe of ZrNb alloys would be much higher compared with Zircaloy-4. Thus, it is confirmed that sigmaox e is a key parameter in the hydrogen and oxidation mechanism. Because the mechanism whereby alloying elements are incorporated into the oxide layer is critical to changing sigmao xe, the evolution of the oxidation state of two common alloying elements, Fe and Nb, when incorporated into the growing oxide layers is investigated using X-Ray Absorption Near-Edge Spectroscopy (XANES) using micro-beam synchrotron radiation on cross sectional oxide samples. The results show that the oxidation of both Fe and Nb is delayed in the oxide layer compared to that of Zr, and that this oxidation delay is related to the variations of the instantaneous hydrogen pick-up fraction with exposure time. The evolution of Nb oxidation as function of oxide depth is also compatible with space charge compensation in the oxide and with an increase in sigmaox e of ZrNb alloys compared to Zircaloys. Finally, various successively complex models from the well-known Wagner oxidation theory to the more complex effect of space charge on oxidation kinetics have been developed. The general purpose of the modeling effort is to provide a rationale for the sub-parabolic oxidation kinetics and demonstrate the correlation with hydrogen pickup fraction. It is directly demonstrated that parabolic oxidation kinetics is associated with high sigmao xe and low space charges in the oxide whereas sub-parabolic oxidation kinetics is associated with lower sigmaox e and higher space charge in the oxide. All these observations helped us to propose a general corrosion mechanism of zirconium alloys involving both oxidation and hydrogen pickup mechanism to better understand and predict the effect of alloying additions on the behavior of zirconium alloys.

  11. Vector sensor for scanning SQUID microscopy

    NASA Astrophysics Data System (ADS)

    Dang, Vu The; Toji, Masaki; Thanh Huy, Ho; Miyajima, Shigeyuki; Shishido, Hiroaki; Hidaka, Mutsuo; Hayashi, Masahiko; Ishida, Takekazu

    2017-07-01

    We plan to build a novel 3-dimensional (3D) scanning SQUID microscope with high sensitivity and high spatial resolution. In the system, a vector sensor consists of three SQUID sensors and three pick-up coils realized on a single chip. Three pick-up coils are configured in orthogonal with each other to measure the magnetic field vector of X, Y, Z components. We fabricated some SQUID chips with one uniaxial pick-up coil or three vector pick-up coils and carried out fundamental measurements to reveal the basic characteristics. Josephson junctions (JJs) of sensors are designed to have the critical current density J c of 320 A/cm2, and the critical current I c becomes 12.5 μA for the 2.2μm × 2.2μm JJ. We carefully positioned the three pickup coils so as to keep them at the same height at the centers of all three X, Y and Z coils. This can be done by arranging them along single line parallel to a sample surface. With the aid of multilayer technology of Nb-based fabrication, we attempted to reduce an inner diameter of the pickup coils to enhance both sensitivity and spatial resolution. The method for improving a spatial resolution of a local magnetic field image is to employ an XYZ piezo-driven scanner for controlling the positions of the pick-up coils. The fundamental characteristics of our SQUID sensors confirmed the proper operation of our SQUID sensors and found a good agreement with our design parameters.

  12. Skills and offensive tactics used in pick-up basketball games.

    PubMed

    Wang, Jianyu; Liu, Wenhao; Moffit, Jeffrey

    2009-10-01

    The purpose of this study was to describe skills and offensive tactics frequently used in pick-up basketball games. 65 participants were recruited from public basketball courts. An observational instrument was developed to analyze the performances of pick-up games. Participants' performances were videotaped and coded. Results indicated that the passing skills most frequently observed in the games were chest pass, overhead pass, and bounce pass. For dribbling, crossover dribble and change-of-pace dribble were frequently observed. Jump shot, set shot, and layup were also frequently used. The offensive tactics frequently used included drive, cut, and set screen. The study may be beneficial for helping young people prepare to play pick-up basketball games.

  13. Are starburst galaxies proton calorimeters?

    NASA Astrophysics Data System (ADS)

    Wang, Xilu; Fields, Brian D.

    2018-03-01

    Several starburst galaxies have been observed in the GeV and TeV bands. In these dense environments, gamma-ray emission should be dominated by cosmic ray (CR) interactions with the interstellar medium (pcrpism → π0 → γγ). Indeed, starbursts may act as proton `calorimeters' where a substantial fraction of CR energy input is emitted in gamma-rays. Here, we build a one-zone, `thick-target' model implementing calorimetry and placing a firm upper bound on gamma-ray emission from CR interactions. The model assumes that CRs are accelerated by supernovae (SNe), and all suffer nuclear interactions rather than escape. Our model has only two free parameters: the CR proton acceleration energy per SN ɛcr, and the proton injection spectral index s. We calculate the pionic gamma-ray emission from 10 MeV to 10 TeV, and derive thick-target parameters for six galaxies with Fermi, H.E.S.S., and/or VERITAS data. Our model provides good fits for the M82 and NGC 253, and yields ɛcr and s values suggesting that SN CR acceleration is similar in starbursts and in our Galaxy. We find that these starbursts are indeed nearly if not fully proton calorimeters. For NGC 4945 and NGC 1068, the models are consistent with calorimetry but are less well-constrained due to the lack of TeV data. However, the Circinus galaxy and the ultra-luminous infrared galaxy Arp 220 exceed our pionic upper-limit; possible explanations are discussed.

  14. Beam current sensor

    DOEpatents

    Kuchnir, M.; Mills, F.E.

    1984-09-28

    A current sensor for measuring the dc component of a beam of charged particles employs a superconducting pick-up loop probe, with twisted superconducting leads in combination with a Superconducting Quantum Interference Device (SQUID) detector. The pick-up probe is in the form of a single-turn loop, or a cylindrical toroid, through which the beam is directed and within which a first magnetic flux is excluded by the Meisner effect. The SQUID detector acts as a flux-to-voltage converter in providing a current to the pick-up loop so as to establish a second magnetic flux within the electrode which nulls out the first magnetic flux. A feedback voltage within the SQUID detector represents the beam current of the particles which transit the pick-up loop. Meisner effect currents prevent changes in the magnetic field within the toroidal pick-up loop and produce a current signal independent of the beam's cross-section and its position within the toroid, while the combination of superconducting elements provides current measurement sensitivities in the nano-ampere range.

  15. Radially Focused Eddy Current Sensor for Detection of Longitudinal Flaws in Metallic Tubes

    NASA Technical Reports Server (NTRS)

    Wincheski, Russell A. (Inventor); Simpson, John W. (Inventor); Fulton, James P. (Inventor); Nath, Shridhar C. (Inventor); Todhunter, Ronald G. (Inventor); Namkung, Min (Inventor)

    1999-01-01

    A radially focused eddy current sensor detects longitudinal flaws in a metal tube. A drive coil induces eddy currents within the wall of the metal tube. A pick-up cod is spaced apart from the drive coil along the length of the metal tube. The pick@up coil is positioned with one end thereof lying adjacent the wall of the metal tube such that the pick-up coil's longitudinal axis is perpendicular to the wall of the metal tube. To isolate the pick-up coil from the magnetic flux of the drive coil and the flux from the induced eddy currents. except the eddy currents diverted by a longitudinal flaw. an electrically conducting material high in magnetic permeability surrounds all of the pick-up coil except its one end that is adjacent the walls of the metal tube. The electrically conducting material can extend into and through the drive coil in a coaxial relationship therewith.

  16. Beam current sensor

    DOEpatents

    Kuchnir, Moyses; Mills, Frederick E.

    1987-01-01

    A current sensor for measuring the DC component of a beam of charged particles employs a superconducting pick-up loop probe, with twisted superconducting leads in combination with a Superconducting Quantum Interference Device (SQUID) detector. The pick-up probe is in the form of a single-turn loop, or a cylindrical toroid, through which the beam is directed and within which a first magnetic flux is excluded by the Meisner effect. The SQUID detector acts as a flux-to-voltage converter in providing a current to the pick-up loop so as to establish a second magnetic flux within the electrode which nulls out the first magnetic flux. A feedback voltage within the SQUID detector represents the beam current of the particles which transit the pick-up loop. Meisner effect currents prevent changes in the magnetic field within the toroidal pick-up loop and produce a current signal independent of the beam's cross-section and its position within the toroid, while the combination of superconducting elements provides current measurement sensitivites in the nano-ampere range.

  17. Capacitively coupled pickup in MCP-based photodetectors using a conductive metallic anode

    NASA Astrophysics Data System (ADS)

    Angelico, E.; Seiss, T.; Adams, B.; Elagin, A.; Frisch, H.; Spieglan, E.

    2017-02-01

    We have designed and tested a robust 20×20 cm2 thin metal film internal anode capacitively coupled to an external array of signal pads or micro-strips for use in fast microchannel plate photodetectors. The internal anode, in this case a 10 nm-thick NiCr film deposited on a 96% pure Al2O3 3 mm-thick ceramic plate and connected to HV ground, provides the return path for the electron cascade charge. The multi-channel pickup array consists of a printed-circuit card or glass plate with metal signal pickups on one side and the signal ground plane on the other. The pickup can be put in close proximity to the bottom outer surface of the sealed photodetector, with no electrical connections through the photodetector hermetic vacuum package other than a single ground connection to the internal anode. Two pickup patterns were tested using a small commercial MCP-PMT as the signal source: 1) parallel 50 Ω 25-cm-long micro-strips with an analog bandwidth of 1.5 GHz, and 2) a 20×20 cm2 array of 2-dimensional square 'pads' with sides of 1.27 cm or 2.54 cm. The rise-time of the fast input pulse is maintained for both pickup patterns. For the pad pattern, we observe 80% of the directly coupled amplitude. For the strip pattern we measure 34% of the directly coupled amplitude on the central strip of a broadened signal. The physical decoupling of the photodetector from the pickup pattern allows easy customization for different applications while maintaining high analog bandwidth.

  18. Uptake of methanol on mixed HNO3/H2O clusters: An absolute pickup cross section

    NASA Astrophysics Data System (ADS)

    Pysanenko, A.; Lengyel, J.; Fárník, M.

    2018-04-01

    The uptake of atmospheric oxidized organics on acid clusters is relevant for atmospheric new particle formation. We investigate the pickup of methanol (CH3OH) on mixed nitric acid-water clusters (HNO3)M(H2O)N by a combination of mass spectrometry and cluster velocity measurements in a molecular beam. The mass spectra of the mixed clusters exhibit (HNO3)m(H2O)nH+ series with m = 0-3 and n = 0-12. In addition, CH3OH.(HNO3)m(H2O)nH+ series with very similar patterns appear in the spectra after the methanol pickup. The velocity measurements prove that the undoped (HNO3)m(H2O)nH+ mass peaks in the pickup spectra originate from the neutral (HNO3)M(H2O)N clusters which have not picked up any CH3OH molecule, i.e., methanol has not evaporated upon the ionization. Thus the fraction of the doped clusters can be determined and the mean pickup cross section can be estimated, yielding σs ¯ ≈ 20 Å2. This is compared to the lower estimate of the mean geometrical cross section σg ¯ ≈ 60 Å2 obtained from the theoretical cluster geometries. Thus the "size" of the cluster corresponding to the methanol pickup is at least 3-times smaller than its geometrical size. We have introduced a method which can yield the absolute pickup cross sections relevant to the generation and growth of atmospheric aerosols, as illustrated in the example of methanol and nitric acid clusters.

  19. Modeling Emission of Heavy Energetic Neutral Atoms from the Heliosphere

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Swaczyna, Paweł; Bzowski, Maciej, E-mail: pswaczyna@cbk.waw.pl

    2017-09-10

    Observations of energetic neutral atoms (ENAs) are a fruitful tool for remote diagnosis of the plasma in the heliosphere and its vicinity. So far, instruments detecting ENAs from the heliosphere were configured for observations of hydrogen atoms. Here, we estimate emissions of ENAs of the heavy chemical elements helium, oxygen, nitrogen, and neon. A large portion of the heliospheric ENAs is created in the inner heliosheath from neutralized interstellar pick-up ions (PUIs). We modeled this process and calculated full-sky intensities of ENAs for energies 0.2–130 keV/nuc. We found that the largest fluxes among considered species are expected for helium, smallermore » for oxygen and nitrogen, and smallest for neon. The obtained intensities are 50–10{sup 6} times smaller than the hydrogen ENA intensities observed by IBEX . The detection of heavy ENAs will be possible if a future ENA detector is equipped with the capability to measure the masses of observed atoms. Because of different reaction cross-sections among the different species, observations of heavy ENAs can allow for a better understanding of global structure of the heliosphere as well as the transport and energization of PUIs in the heliosphere.« less

  20. Modeling Emission of Heavy Energetic Neutral Atoms from the Heliosphere

    NASA Astrophysics Data System (ADS)

    Swaczyna, Paweł; Bzowski, Maciej

    2017-09-01

    Observations of energetic neutral atoms (ENAs) are a fruitful tool for remote diagnosis of the plasma in the heliosphere and its vicinity. So far, instruments detecting ENAs from the heliosphere were configured for observations of hydrogen atoms. Here, we estimate emissions of ENAs of the heavy chemical elements helium, oxygen, nitrogen, and neon. A large portion of the heliospheric ENAs is created in the inner heliosheath from neutralized interstellar pick-up ions (PUIs). We modeled this process and calculated full-sky intensities of ENAs for energies 0.2-130 keV/nuc. We found that the largest fluxes among considered species are expected for helium, smaller for oxygen and nitrogen, and smallest for neon. The obtained intensities are 50-106 times smaller than the hydrogen ENA intensities observed by IBEX. The detection of heavy ENAs will be possible if a future ENA detector is equipped with the capability to measure the masses of observed atoms. Because of different reaction cross-sections among the different species, observations of heavy ENAs can allow for a better understanding of global structure of the heliosphere as well as the transport and energization of PUIs in the heliosphere.

  1. Hand and Grasp Selection in a Preferential Reaching Task: The Effects of Object Location, Orientation, and Task Intention.

    PubMed

    Scharoun, Sara M; Scanlan, Kelly A; Bryden, Pamela J

    2016-01-01

    As numerous movement options are available in reaching and grasping, of particular interest are what factors influence an individual's choice of action. In the current study a preferential reaching task was used to assess the propensity for right handers to select their preferred hand and grasp a coffee mug by the handle in both independent and joint action object manipulation contexts. Mug location (right-space, midline, and left-space) and handle orientation (toward, away, to left, and to right of the participant) varied in four tasks that differed as a function of intention: (1) pick-up (unimanual, independent); (2) pick-up and pour (bimanual, independent); (3) pick-up and pass (unimanual, joint action); and (4) pick-up, pour and pass (bimanual, joint action). In line with previous reports, a right-hand preference for unimanual tasks was observed. Furthermore, extending existing literature to a preferential reaching task, role differentiation between the hands in bimanual tasks (i.e., preferred hand mobilizing, non-preferred hand stabilizing) was displayed. Finally, right-hand selection was greatest in right space, albeit lower in bimanual tasks compared to what is typically reported in unimanual tasks. Findings are attributed to the desire to maximize biomechanical efficiency in reaching. Grasp postures were also observed to reflect consideration of efficiency. More specifically, within independent object manipulation (pick-up; pick-up and pour) participants only grasped the mug by the handle when it afforded a comfortable posture. Furthermore, in joint action (pick-up and pass; pick-up, pour and pass), the confederate was only offered the handle if the intended action of the confederate was similar or required less effort than that of the participant. Together, findings from the current study add to our knowledge of hand and grasp selection in unimanual and bimanual object manipulation, within the context of both independent and joint action tasks.

  2. Heliospheric and Local Interstellar Space Weathering Environments of Extreme Kuiper Belt Objects

    NASA Astrophysics Data System (ADS)

    Cooper, J. F.; Sturner, S. J.

    2017-12-01

    Since the first direct detection of a Kuiper Belt Object (KBO), (15760) 1992 QB1, in 1992, observational evidence via direct detection has accumulated for thousands (and via inference for hundreds of thousands) of small to large icy bodies that populate the solar system from within the supersonic heliosphere out into the local interstellar medium (LISM). These objects have mainly been discovered when within the heliosphere but the orbits of the more extreme KBOs, fifteen percent of the total known KBO population, take them out into the heliosheath and about half of these continue further out into the LISM. Continuing observations will inevitably increase the known inventory of extreme KBOs, possibly including a few that may be accessible as near-encounter targets for a future interstellar probe mission directed beyond 200 AU into the upstream LISM. Here we review the known population of extreme KBOs and address the properties of the heliospheric and LISM environments that could potentially affect object visibility and surface composition. The twin Voyager spacecraft are our present source of in-situ measurements for the plasma and energetic particle environments, except that there are no plasma data from Voyager 1. Voyager 1 and 2 are now respectively in the LISM and the heliosheath after earlier passing through the outer regions of the supersonic heliosphere upstream of the solar wind termination shock. The Voyager data coverage is complemented by energetic neutral atom (ENA) measurements of the Interstellar Background Explorer (IBEX) and Cassini Orbiter spacecraft that can be used to infer proton flux spectra from models of ENA production in the outer heliosphere. High radiation background in the LISM has precluded sub-MeV energetic ion measurements by Voyager 1, so we use limits from Cummings et al. (ApJ, 2016) for molecular cloud ionization. This would be an important energy region to cover with interstellar probe measurements. These sources of plasma and energetic particle flux measurements are used to estimate values for space weathering parameters including surface energy flux and pressure, dosage vs. depth profiles for chemical processing of mixed ice surfaces, and ion sputtering rates. We further consider other space weathering processes including ultraviolet irradiation and meteoritic impact gardening.

  3. Electronic absorption spectra of hydrogenated protonated naphthalene and proflavine

    NASA Astrophysics Data System (ADS)

    Bonaca, A.; Bilalbegović, G.

    2011-09-01

    We study hydrogenated cations of two polycyclic hydrocarbon molecules as models of hydrogenated organic species that form in the interstellar medium. Optical spectra of the hydrogenated naphthalene cation Hn-C10H+8 for n= 1, 2 and 10, as well as the astrobiologically interesting hydrogenated proflavine cation Hn-C13H11N+3 for n= 1 and 14, are calculated. The pseudopotential time-dependent density functional theory is used. It is found that the fully hydrogenated proflavine cation H14-C13H11N+3 shows a broad spectrum in which the positions of individual lines are almost lost. The positions, shapes and intensities of lines change in hydronaphthalene and hydroproflavine cations, showing that hydrogen additions induce substantially different optical spectra in comparison with base polycyclic hydrocarbon cations. One calculated line in the visible spectrum of H10-C10H+8 and one in the visible spectrum of H-C13H11N+3 are close to the measured diffuse interstellar bands. We also present the positions of near-ultraviolet lines.

  4. The electric potential of particles in interstellar space released from a nuclear waste payload

    NASA Technical Reports Server (NTRS)

    Williams, A. C.

    1980-01-01

    Mechanisms for charging a grain in the interplanetary medium include: (1) capture of solar wind electrons; (2) capture of solar wind protons; (3) ejection of electrons through the photoelectric effect due to the solar radiation; (4) escape of beta particles from beta emitters in the grain; and (5) escape of alpha particles from alpha emitters in the grain. The potentials on both nonradioactive and radioactive grains are considered with relation to particle size and time, and the distance from the Sun. Numerical results are presented where the waste mix is assumed to be PW-4b.

  5. Apparatus for sequentially transporting containers

    NASA Technical Reports Server (NTRS)

    Hudgins, J. L. (Inventor)

    1982-01-01

    Apparatus for transferring and manipulating a plurality of containers in a sequence is disclosed including a mechanical manipulator arm having a gripping device which automatically picks up a container at a fixed pickup position P and transfers it to a processing station. At a processing station X, the container is loaded with silicon wafers and thereafter returned by the arm to the fixed position P at the pickup and return station Y. A plurality of the containers may be processed in sequence from the fixed pickup position by providing a movable carriage upon which container pedestal platforms are supported, at least one of which is an elevator platform. The platforms include abutments for properly positioning the containers for accurate pickup by the manipulator arm.

  6. On the Energy Spectra of GeV/TeV Cosmic Ray Leptons

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Stawarz, Lukasz; /KIPAC, Menlo Park /Jagiellonian U., Astron. Observ.; Petrosian, Vahe

    2011-08-19

    Recent observations of cosmic ray electrons from several instruments have revealed various degrees of deviation in the measured electron energy distribution from a simple power-law, in a form of an excess around 0.1 to 1 TeV energies. An even more prominent deviation and excess has been observed in the fraction of cosmic ray positrons around 10 and 100 GeV energies. These observations have received considerable attention and many theoretical models have been proposed to explain them. The models rely on either dark matter annihilation/decay or specific nearby astrophysical sources, and involve several additional assumptions regarding the dark matter distribution ormore » particle acceleration. In this paper we show that the observed excesses in the electron spectrum may be easily reproduced without invoking any unusual sources other than the general diffuse Galactic components of cosmic rays. The model presented here assumes a power-law injection of electrons (and protons) by supernova remnants, and evaluates their expected energy spectrum based on a simple kinetic equation describing the propagation of charged particles in the interstellar medium. The primary physical effect involved is the Klein-Nishina suppression of the electron cooling rate around TeV energies. With a very reasonable choice of the model parameters characterizing the local interstellar medium, we can reproduce the most recent observations by Fermi and HESS experiments. Interestingly, in our model the injection spectral index of cosmic ray electrons becomes comparable to, or even equal to that of cosmic ray protons. The Klein-Nishina effect may also affect the propagation of the secondary e{sup {+-}} pairs, and therefore modify the cosmic ray positron-to-electron ratio. We have explored this possibility by considering two mechanisms for production of e{sup {+-}} pairs within the Galaxy. The first is due to the decay of {pi}{sup {+-}}'s produced by interaction of cosmic ray nuclei with ambient protons. The second source discussed here is due to the annihilation of the diffuse Galactic {gamma}-rays on the stellar photon field. We find that high positron fraction increasing with energy, as claimed by the PAMELA experiment, cannot be explained in our model with the conservative set of the model parameters. We are able, however, to reproduce the PAMELA (as well as Fermi and HESS) results assuming high values of the starlight and interstellar gas densities, which would be more appropriate for vicinities of supernova remnants. A possible solution to this problem may be that cosmic rays undergo most of their interactions near their sources due to the efficient trapping in the far upstream of supernova shocks by self-generated, cosmic ray-driven turbulence.« less

  7. Shock Structure: Application to the heliospheric termination shock and an interstellar shock

    NASA Astrophysics Data System (ADS)

    Mostafavi, P.; Zank, G. P.

    2017-12-01

    The structure of parallel and perpendicular shocks is often mediated by energetic particles. Here we describe shock structure when mediated by energetic particle heat flux and viscosity. We present a general theoretical model of shock mediation, which is then applied to Voyager 2 observations of the heliospheric termination shock (HTS) and Voyage 1 observations of a shock in very local interstellar medium (VLISM). Voyager 2 observations showed that the downstream HTS flow remained supersonic with respect to the thermal gas [Richardson et al., 2008]. Thus the thermal gas remains cold through the HTS and does not provide the dissipation to account for the deceleration of the supersonic solar wind. We show that PUIs are the primary dissipation mechanism and gain most of the solar wind kinetic energy in crossing the HTS. The interstellar shock observed by Voyager 1 [Burlaga et al., 2013] was extremely broad and so far there no theoretical explanation has been provided that describes the VLISM shock structure. Using the Chandrasekhar function, we show that the VLISM is collisional with respect to the thermal plasma and that electron and proton collisional mean free paths are very small. Thus, thermal collisionality should determine the structure of VLISM shocks. PUIs outside the heliosphere are generated by secondary charge exchange and contribute a very small pressure. Since PUIs and the dissipation associated with them cannot mediate the shock observed in the VLISM, we suggest that the thickness of the shock observed in the VLISM is due to collisional thermal gas dissipation.

  8. Editorial: Interstellar Boundary Explorer (IBEX): Direct Sampling of the Interstellar Medium

    NASA Astrophysics Data System (ADS)

    McComas, D. J.

    2012-02-01

    This special supplement issue of the Astrophysical Journal comprises six coordinated papers that provide the first detailed analyses of the direct sampling of interstellar neutral atoms by the Interstellar Boundary Explorer (IBEX). Interstellar atoms are the detritus of older stars—their stellar winds, novae, and supernovae—spread across the galaxy, which fill the vast interstellar space between the stars. The very local interstellar medium around the Sun is filled with both ionized and neutral atoms with approximately equal numbers, and occasional ionization, charge exchange, and recombination makes them a single interacting material over large distances. IBEX (McComas et al. 2009a) is a NASA Small Explorer mission with the sole, focused science objective to discover the global interaction between the solar wind and the interstellar medium; this objective has primarily been achieved by taking the first global energetic neutral atom (ENA) images, which provide detailed ENA fluxes and energy spectra over all look directions in space. IBEX was launched 2008 October 19 and subsequently maneuvered into a high-altitude, highly elliptical (~15,000 × 300,000 km), roughly week-long orbit. The payload comprises two very high sensitivity, single-pixel ENA cameras: IBEX-Hi (Funsten et al. 2009a), which measures ENAs from ~300 eV to 6 keV, and IBEX-Lo (Fuselier et al. 2009a), which measures ENAs from ~10 eV to 2 keV. The initial IBEX ENA results were published together in a special issue of Science magazine (McComas et al. 2009b; Funsten et al. 2009b; Fuselier et al. 2009b; Schwadron et al. 2009). Since then there have been numerous additional studies of the IBEX ENA observations of the heliosphere, as well as ENAs from the Moon and Earth's magnetosphere (see recent review by McComas et al. 2011 and references therein). Prior to IBEX, the only interstellar neutral atoms to be directly sampled were He, observed by the Ulysses spacecraft a decade ago (Witte et al. 1996; Witte 2004). The first paper published on IBEX observations of interstellar neutral atoms (Möbius et al. 2009) used observations from the spring of 2009, shortly after IBEX achieved its first long-term orbit; that study showed that IBEX is able to directly observe interstellar H and O in addition to He, but provided only limited analysis of these measurements. IBEX has now completed a second full annual season of neutral observations in 2010, which together with the independent 2009 observations provide data adequate to carry out the first round of detailed, quantitative analyses of the IBEX interstellar neutral observations. In this special supplement issue, the IBEX Science Team presents a coordinated series of six articles that focus on various synergistic aspects of these observations, their analyses, and their implications. A critical foundational paper in this volume, Hlond et al. (2012), analyzes the angular pointing knowledge of IBEX observations and demonstrates that the arrival direction knowledge of neutral atoms can be determined to ~0.1° in both spin angle and elevation. This is no mean feat for a Small Explorer mission designed to measure ENAs in 7° × 7° pixels, and largely at much higher energies than the direct interstellar neutrals. In addition, these authors demonstrate that the in-space (post-launch) bore sight of the IBEX-Lo instrument can achieve this accuracy with either the spacecraft's on board attitude control system or an independent Star Sensor that was designed and built directly into the IBEX-Lo instrument. Lee et al. (2012) derive the analytical solution for the hyperbolic trajectories of individual neutral atoms by using Liouville's theorem, including solar gravity and radiation pressure, photoionization and charge exchange, to produce interstellar neutral atom phase-space distributions. These distributions are then transformed into the IBEX reference frame and integrated over the IBEX-Lo instrumental acceptance to provide an analytic solution for the predicted fluid moments of the interstellar neutral atom distributions. This analytic solution for the interstellar neutral parameters provides the basis for a companion paper by Möbius et al. (2012), who analyze the IBEX He (and Ne+O) measurements using the Lee et al. analytic solutions. This approach allows for physical insights into the dominant physical processes, while in another related paper Bzowski et al. (2012) describe a detailed forward model of the interstellar helium from the edge of the heliosphere all the way through the IBEX instrument geometry. Together, these papers show that the prior values for the interstellar flow speed and direction from Ulysses are inconsistent with our new IBEX observations. Möbius et al. (2012) compare the He and O+Ne flow distributions for both 2009 and 2010 and find interstellar flow parameters of ecliptic longitude at ∞ = 79.0° + 3.0°/-3.5°, ecliptic latitude at ∞ = -4.9° ± 0.2°, ISM speed at ∞ = 23.5 + 3.0/-2.0 km s-1, and neutral He temperature = 5000-8200 K. They also find a combined O+Ne temperature of 5300-9000 K, consistent with an isothermal medium for He, O, and Ne. Bzowski et al. (2012) develop and extensively test a detailed forward model simulation of the interstellar He propagation, losses, and measurement in the IBEX-Lo instrument. These simulations start particles at 150 AU and include more detailed physics than the analytic solutions; they therefore complement the analytic method by allowing detailed mapping of the multi-dimensional space of possible solutions. These authors show that the IBEX results are not in statistical agreement with the Ulysses values and provide new best-fit values of ecliptic longitude 79.2°, ecliptic latitude of -5.1°, speed of ~22.8 km s-1, and He temperature is 6200 K. The values obtained with both complementary methods agree with each other and are in agreement with the flow vector of the local interstellar cloud obtained from studies of interstellar absorption (Redfield & Linsky 2008). Bzowski et al. also show evidence for a previously unknown and unanticipated secondary population of helium. Together, the Möbius et al. (2012) and Bzowski et al. (2012) results provide a new interstellar flow direction and a significantly lower velocity of the incoming gas and therefore significantly lower dynamic pressure on the heliosphere, which translates into a heliospheric interaction that is even less dominated by the external dynamic pressure and clearly lies squarely in the middle ground of astrospheres dominated by the external magnetic and dynamic pressures (McComas et al. 2009b). On another topic, Bochsler et al. (2012) report the first direct measurements of interstellar Ne and estimate the interstellar Ne/O abundance ratio, showing a gas-phase Ne/O ratio for the LISM of 0.27 ± 0.10. This value agrees with results obtained from pickup ion observations (Gloeckler & Geiss 2004; Gloeckler & Fisk 2007) and is significantly larger than the solar abundance ratio, indicating that the LISM is different than the Sun's formation region and/or that a substantial portion of the O in the LISM is tied up (and thus "hidden") in grains and/or ices. Finally, Saul et al. (2012) provide the first detailed analysis of the new interstellar H measurements from IBEX. These authors confirm that the arrival direction of interstellar H is offset from that of He. They further show a variation in the strength of the radiation pressure and thus a change in the apparent arrival direction of H penetrating to 1 AU between the first two years of IBEX observations; these results are consistent with solar cycle variations in the radiation pressure, which works opposite to the Sun's gravitational force to effect the penetration of H into the inner heliosphere. Together, these six studies provide the first detailed analyses of the multi-component local interstellar medium—a medium that both effects us by bounding and interacting with our heliosphere, and a medium that gives us a first direct glimpse of non-solar material from the rest of the galaxy.

  9. Galactic cosmic-ray model in the light of AMS-02 nuclei data

    NASA Astrophysics Data System (ADS)

    Niu, Jia-Shu; Li, Tianjun

    2018-01-01

    Cosmic ray (CR) physics has entered a precision-driven era. With the latest AMS-02 nuclei data (boron-to-carbon ratio, proton flux, helium flux, and antiproton-to-proton ratio), we perform a global fitting and constrain the primary source and propagation parameters of cosmic rays in the Milky Way by considering 3 schemes with different data sets (with and without p ¯ /p data) and different propagation models (diffusion-reacceleration and diffusion-reacceleration-convection models). We find that the data set with p ¯/p data can remove the degeneracy between the propagation parameters effectively and it favors the model with a very small value of convection (or disfavors the model with convection). The separated injection spectrum parameters are used for proton and other nucleus species, which reveal the different breaks and slopes among them. Moreover, the helium abundance, antiproton production cross sections, and solar modulation are parametrized in our global fitting. Benefited from the self-consistence of the new data set, the fitting results show a little bias, and thus the disadvantages and limitations of the existed propagation models appear. Comparing to the best fit results for the local interstellar spectra (ϕ =0 ) with the VOYAGER-1 data, we find that the primary sources or propagation mechanisms should be different between proton and helium (or other heavier nucleus species). Thus, how to explain these results properly is an interesting and challenging question.

  10. Pickup Ion Velocity Distributions at Titan: Effects of Spatial Gradients

    NASA Technical Reports Server (NTRS)

    Hartle, R. E.; Sittler, E. C.

    2004-01-01

    The principle source of pickup ions at Titan is its neutral exosphere, extending well above the ionopause into the magnetosphere of Saturn or the solar wind, depending on the moon's orbital position. Thermal and nonthermal processes in the thermosphere generate the distribution of neutral atoms and molecules in the exosphere. The combination of these processes and the range of mass numbers, 1 to over 28, contribute to an exospheric source structure that produces pickup ions with gyroradii that are much larger or smaller than the corresponding scale heights of their neutral sources. The resulting phase space distributions are dependent on the spatial structure of the exosphere as well as that of the magnetic field and background plasma. When the pickup ion gyroradius is less than the source gas scale height, the pickup ion velocity distribution is characterized by a sharp cutoff near the maximum speed, which is twice that of the ambient plasma times the sine of the angle between the magnetic field and the flow velocity. This was the case for pickup H(sup +) ions identified during the Voyager 1 flyby. In contrast, as the gyroradius becomes much larger than the scale height, the peak of the velocity distribution in the source region recedes from the maximum speed. Iri addition, the amplitude of the distribution near the maximum speed decreases. These more beam like distributions of heavy ions were not observed from Voyager 1 , but should be observable by more sensitive instruments on future spacecraft, including Cassini. The finite gyroradius effects in the pickup ion velocity distributions are studied by including in the analysis the possible range of spatial structures in the neutral exosphere and background plasma.

  11. Evaluation of impression accuracy for a four-implant mandibular model--a digital approach.

    PubMed

    Stimmelmayr, Michael; Erdelt, Kurt; Güth, Jan-Frederik; Happe, Arndt; Beuer, Florian

    2012-08-01

    Implant-supported prosthodontics requires precise impressions to achieve a passive fit. Since the early 1990s, in vitro studies comparing different implant impression techniques were performed, capturing the data mostly mechanically. The purpose of this study was to evaluate the accuracy of three different impression techniques digitally. Dental implants were inserted bilaterally in ten polymer lower-arch models at the positions of the first molars and canines. From each original model, three different impressions (A, transfer; B, pick-up; and C, splinted pick-up) were taken. Scan-bodies were mounted on the implants of the polymer and on the lab analogues of the stone models and digitized. The scan-body in position 36 (FDI) of the digitized original and master casts were each superimposed, and the deviations of the remaining three scan-bodies were measured three-dimensionally. The systematic error of digitizing the models was 13 μm for the polymer and 5 μm for the stone model. The mean discrepancies of the original model to the stone casts were 124 μm (±34) μm for the transfer technique, 116 (±46) μm for the pick-up technique, and 80 (±25) μm for the splinted pick-up technique. There were statistically significant discrepancies between the evaluated impression techniques (p ≤ 0.025; ANOVA test). The splinted pick-up impression showed the least deviation between original and stone model; transfer and pick-up techniques showed similar results. For better accuracy of implant-supported prosthodontics, the splinted pick-up technique should be used for impressions of four implants evenly spread in edentulous jaws.

  12. Electronically transmitted prescriptions not picked up at pharmacies in Sweden.

    PubMed

    Ax, Fredrik; Ekedahl, Anders

    2010-03-01

    Electronically transmitted prescriptions (ETPs) became common after 1995 in Sweden; however, it is accompanied by a substantial increase in the number of prescriptions not picked up at pharmacies. To investigate the "no pick-up" rates of ETPs at pharmacies across type of drug and patient age and gender and the reasons patients' report for no pick-up. A cross-sectional study examining no pick-up of ETPs transmitted during 3 months in 2002, and a mail survey of patients to determine the reasons for failure to pick-up in the county of Sörmland, Sweden, with a population of 261,000, and 21 pharmacies. Chi-square tests were used for calculations of frequency differences among groups. The overall no pick-up rate of ETPs was 2.5%; men had consistently higher rates than women. The highest rates were seen for adolescents and young adults. Rates were higher than average for antibiotics. About 60% of the answers indicated that prescriptions not picked up were duplicate prescriptions or not needed. "Unintentional nonadherence" was reported by one-fifth of patients. No pick-up rate in general was low (2.5%), but there were differences across patient age and gender, the rates being higher among adolescents and young adults. Duplicate prescriptions may explain a significant share of the abandoned prescriptions. Copyright 2010 Elsevier Inc. All rights reserved.

  13. Development of a planar-type high sensitivity metallic contaminant detector

    NASA Astrophysics Data System (ADS)

    Okabe, Shunsuke; Sasada, Ichiro

    2017-05-01

    Metallic contaminant detectors based on the balanced coil system are widely used in the food industry. In the balanced coil system, an excitation coil and two identical pickup coils are used in a way that the magnetic coupling of pickup coils to the excitation coil is cancelled with each other when no metallic contaminants present. In a conventional system, the excitation coil and the pickup coil are planar and are parallel, therefore the magnetic coupling is strong even if there is no metallic contaminant. Such strong magnetic coupling makes balancing procedure tedious. In this paper, we introduce a new coil system in which pickup coils are set orthogonal to the excitation coil, making the magnetic coupling much small compared to conventional counterpart. Pickup coils are equipped with thin magnetic cores and placed inside the excitation coil being parallel to the excitation coil plane. The balancing method consists of two steps; the one is geometrical and the other is digital processing including down conversion. Experiments are carried out to show the detection capability of ferromagnetic contaminants and non-magnetic contaminants.

  14. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Karlsson, Niklas

    Observations of gamma-rays have been made from celestial sources such as active galaxies, gamma-ray bursts and supernova remnants as well as the Galactic ridge. The study of gamma rays can provide information about production mechanisms and cosmic-ray acceleration. In the high-energy regime, one of the dominant mechanisms for gamma-ray production is the decay of neutral pions produced in interactions of ultra-relativistic cosmic-ray nuclei and interstellar matter. Presented here is a parametric model for calculations of inclusive cross sections and transverse momentum distributions for secondary particles--gamma rays, e ±, v e,more » $$\\bar{v}$$ e, v μ and $$\\bar{μ}$$ e--produced in proton-proton interactions. This parametric model is derived on the proton-proton interaction model proposed by Kamae et al.; it includes the diffraction dissociation process, Feynman-scaling violation and the logarithmically rising inelastic proton-proton cross section. To improve fidelity to experimental data for lower energies, two baryon resonance excitation processes were added; one representing the Δ(1232) and the other multiple resonances with masses around 1600 MeV/c 2. The model predicts the power-law spectral index for all secondary particle to be about 0.05 lower in absolute value than that of the incident proton and their inclusive cross sections to be larger than those predicted by previous models based on the Feynman-scaling hypothesis. The applications of the presented model in astrophysics are plentiful. It has been implemented into the Galprop code to calculate the contribution due to pion decays in the Galactic plane. The model has also been used to estimate the cosmic-ray flux in the Large Magellanic Cloud based on HI, CO and gamma-ray observations. The transverse momentum distributions enable calculations when the proton distribution is anisotropic. It is shown that the gamma-ray spectrum and flux due to a pencil beam of protons varies drastically with viewing angle. A fanned proton jet with a Gaussian intensity profile impinging on surrounding material is given as a more realistic example. As the observer is moved off the jet axis, the peak of the spectrum is moved to lower energies.« less

  15. Precise measurement of a magnetic field generated by the electromagnetic flux compression technique.

    PubMed

    Nakamura, D; Sawabe, H; Matsuda, Y H; Takeyama, S

    2013-04-01

    The precision of the values of a magnetic field generated by electromagnetic flux compression was investigated in ultra-high magnetic fields of up to 700 T. In an attempt to calibrate the magnetic field measured by pickup coils, precise Faraday rotation (FR) measurements were conducted on optical (quartz and crown) glasses. A discernible "turn-around" phenomenon was observed in the FR signal as well as the pickup coils before the end of a liner implosion. We found that the magnetic field measured by pickup coils should be corrected by taking into account the high-frequency response of the signal transmission line. Near the peak magnetic field, however, the pickup coils failed to provide reliable values, leaving the FR measurement as the only method to precisely measure extremely high magnetic fields.

  16. Exact solutions for the collaborative pickup and delivery problem.

    PubMed

    Gansterer, Margaretha; Hartl, Richard F; Salzmann, Philipp E H

    2018-01-01

    In this study we investigate the decision problem of a central authority in pickup and delivery carrier collaborations. Customer requests are to be redistributed among participants, such that the total cost is minimized. We formulate the problem as multi-depot traveling salesman problem with pickups and deliveries. We apply three well-established exact solution approaches and compare their performance in terms of computational time. To avoid unrealistic solutions with unevenly distributed workload, we extend the problem by introducing minimum workload constraints. Our computational results show that, while for the original problem Benders decomposition is the method of choice, for the newly formulated problem this method is clearly dominated by the proposed column generation approach. The obtained results can be used as benchmarks for decentralized mechanisms in collaborative pickup and delivery problems.

  17. Accurate simulations of helium pick-up experiments using a rejection-free Monte Carlo method

    NASA Astrophysics Data System (ADS)

    Dutra, Matthew; Hinde, Robert

    2018-04-01

    In this paper, we present Monte Carlo simulations of helium droplet pick-up experiments with the intention of developing a robust and accurate theoretical approach for interpreting experimental helium droplet calorimetry data. Our approach is capable of capturing the evaporative behavior of helium droplets following dopant acquisition, allowing for a more realistic description of the pick-up process. Furthermore, we circumvent the traditional assumption of bulk helium behavior by utilizing density functional calculations of the size-dependent helium droplet chemical potential. The results of this new Monte Carlo technique are compared to commonly used Poisson pick-up statistics for simulations that reflect a broad range of experimental parameters. We conclude by offering an assessment of both of these theoretical approaches in the context of our observed results.

  18. Thermodynamic Structure of Collision-Dominated Expanding Plasma: Heating of Interplanetary Coronal Mass Injections

    NASA Technical Reports Server (NTRS)

    Liu, Y.; Richardson, J. D.; Belcher, J. W.; Kasper, J. C.; Elliott, H. A.

    2006-01-01

    We investigate the thermodynamic structure of interplanetary coronal mass ejections (ICMEs) using combined surveys of the ejecta between 0.3 and 20 AU. ICMEs are shown to have a moderate expansion in the solar wind compared with theoretical predictions. The expansion seems to be governed by a polytrope with gamma approx. 1.3 in this distance range. We find that Coulomb collisions are important contributors to the ion-ion equilibration process in the ICME plasma. The alpha-proton differential speed quickly drops to below 10 km/s due to strong Coulomb collisions. However, the two species of particles are far from thermal equilibrium with a temperature ratio T(sub alpha/T(sub p) = 4-6, suggestive of a preferential heating of alpha particles. The plasma heating rate as a function of heliocentric &stance required for the temperature profile is deduced by taking into account the expansion and energy transfer between protons and alphas via Coulomb collisions. The turbulence dissipation rate is also inferred from the inertial range power spectrum of magnetic fluctuations within ICMEs. Comparison of the turbulence dissipation rate with the required heating rate shows that turbulence dissipation seems sufficient to explain the ICME heating. Sources powering the turbulence are also investigated by examining the instabilities induced by temperature anisotropies and energy deposition by pickup ions.

  19. Interaction of the solar wind with comets: a Rosetta perspective

    NASA Astrophysics Data System (ADS)

    Glassmeier, Karl-Heinz

    2017-05-01

    The Rosetta mission provides an unprecedented possibility to study the interaction of comets with the solar wind. As the spacecraft accompanies comet 67P/Churyumov-Gerasimenko from its very low-activity stage through its perihelion phase, the physics of mass loading is witnessed for various activity levels of the nucleus. While observations at other comets provided snapshots of the interaction region and its various plasma boundaries, Rosetta observations allow a detailed study of the temporal evolution of the innermost cometary magnetosphere. Owing to the short passage time of the solar wind through the interaction region, plasma instabilities such as ring-beam and non-gyrotropic instabilities are of less importance during the early life of the magnetosphere. Large-amplitude ultra-low-frequency (ULF) waves, the `singing' of the comet, is probably due to a modified ion Weibel instability. This instability drives a cross-field current of implanted cometary ions unstable. The initial pick-up of these ions causes a major deflection of the solar wind protons. Proton deflection, cross-field current and the instability induce a threefold structure of the innermost interaction region with the characteristic Mach cone and Whistler wings as stationary interaction signatures as well as the ULF waves representing the dynamic aspect of the interaction. This article is part of the themed issue 'Cometary science after Rosetta'.

  20. 47 CFR 74.12 - Notification of filing of applications.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ....1030 “Notification concerning interference to Radio Astronomy, Research, and Receiving Installations... remote pickup stations (subpart D). (b) TV pickup stations (subpart F). (c) Low power auxiliary stations...

  1. RECONSTRUCTING THE SOLAR WIND FROM ITS EARLY HISTORY TO CURRENT EPOCH

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Airapetian, Vladimir S.; Usmanov, Arcadi V., E-mail: vladimir.airapetian@nasa.gov, E-mail: avusmanov@gmail.com

    Stellar winds from active solar-type stars can play a crucial role in removal of stellar angular momentum and erosion of planetary atmospheres. However, major wind properties except for mass-loss rates cannot be directly derived from observations. We employed a three-dimensional magnetohydrodynamic Alfvén wave driven solar wind model, ALF3D, to reconstruct the solar wind parameters including the mass-loss rate, terminal velocity, and wind temperature at 0.7, 2, and 4.65 Gyr. Our model treats the wind thermal electrons, protons, and pickup protons as separate fluids and incorporates turbulence transport, eddy viscosity, turbulent resistivity, and turbulent heating to properly describe proton and electronmore » temperatures of the solar wind. To study the evolution of the solar wind, we specified three input model parameters, the plasma density, Alfvén wave amplitude, and the strength of the dipole magnetic field at the wind base for each of three solar wind evolution models that are consistent with observational constrains. Our model results show that the velocity of the paleo solar wind was twice as fast, ∼50 times denser and 2 times hotter at 1 AU in the Sun's early history at 0.7 Gyr. The theoretical calculations of mass-loss rate appear to be in agreement with the empirically derived values for stars of various ages. These results can provide realistic constraints for wind dynamic pressures on magnetospheres of (exo)planets around the young Sun and other active stars, which is crucial in realistic assessment of the Joule heating of their ionospheres and corresponding effects of atmospheric erosion.« less

  2. Solar wind structure out of the ecliptic plane over solar cycles

    NASA Astrophysics Data System (ADS)

    Sokol, J. M.; Bzowski, M.; Tokumaru, M.

    2017-12-01

    Sun constantly emits a stream of plasma known as solar wind. Ground-based observations of the solar wind speed through the interplanetary scintillations (IPS) of radio flux from distant point sources and in-situ measurements by Ulysses mission revealed that the solar wind flow has different characteristics depending on the latitude. This latitudinal structure evolves with the cycle of solar activity. The knowledge on the evolution of solar wind structure is important for understanding the interaction between the interstellar medium surrounding the Sun and the solar wind, which is responsible for creation of the heliosphere. The solar wind structure must be taken into account in interpretation of most of the observations of heliospheric energetic neutral atoms, interstellar neutral atoms, pickup ions, and heliospheric backscatter glow. The information on the solar wind structure is not any longer available from direct measurements after the termination of Ulysses mission and the only source of the solar wind out of the ecliptic plane is the IPS observations. However, the solar wind structure obtained from this method contains inevitable gaps in the time- and heliolatitude coverage. Sokół et al 2015 used the solar wind speed data out of the ecliptic plane retrieved from the IPS observations performed by Institute for Space-Earth Environmental Research (Nagoya University, Japan) and developed a methodology to construct a model of evolution of solar wind speed and density from 1985 to 2013 that fills the data gaps. In this paper we will present a refined model of the solar wind speed and density structure as a function of heliographic latitude updated by the most recent data from IPS observations. And we will discuss methods of extrapolation of the solar wind structure out of the ecliptic plane for the past solar cycles, when the data were not available, as well as forecasting for few years upward.

  3. Composition of matter in the heliosphere

    NASA Astrophysics Data System (ADS)

    Bochsler, Peter

    2009-03-01

    The Sun is by far the largest reservoir of matter in the solar system and contains more than 99% of the mass of the solar system. Theories on the formation of the solar system maintain that the gravitational collapse is very efficient and that typically not more than one tenth from the solar nebula is lost during the formation process. Consequently, the Sun can be considered as a representative sample of interstellar matter taken from a well mixed reservoir 4.6 Gy ago, at about 8 kpc from the galactic center. At the same time, the Sun is also a faithful witness of the composition of matter at the beginning of the evolution of the solar system and the formation of planets, asteroids, and comets. Knowledge on the solar composition and a fair account of the related uncertainties is relevant for many fields in astrophysics, planetary sciences, cosmo- and geochemistry. Apart from the basic interest in the chemical evolution of the galaxy and the solar system, compositional studies have also led to many applications in space research, i.e., it has helped to distinguish between different components of diffuse heliospheric matter. The elemental, isotopic, and charge state composition of heliospheric particles (solar wind, interstellar neutrals, pickup ions) has been used for a multitude of applications, such as tracing the source material, constraining parameters for models of the acceleration processes, and of the transport through the interplanetary medium. It is important to realize, that the two mainstream applications, as outlined above - geochemistry and cosmochemistry on one side, and tracing of heliospheric processes on the other side - are not independent of each other. Understanding the physical processes, e.g., of the fractionation of the solar wind, is crucial for the interpretation of compositional data; on the other hand, reliable information on the source composition is the basis for putting constraints on models of the solar wind fractionation.

  4. SPECTRAL PROPERTIES OF {approx}0.5-6 keV ENERGETIC NEUTRAL ATOMS MEASURED BY THE INTERSTELLAR BOUNDARY EXPLORER (IBEX) ALONG THE LINES OF SIGHT OF VOYAGER

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Desai, M. I.; Allegrini, F. A.; Dayeh, M. A.

    2012-04-20

    Energetic neutral atoms (ENAs) observed by the Interstellar Boundary Explorer (IBEX) provide powerful diagnostics about the origin of the progenitor ion populations and the physical mechanisms responsible for their production. Here we survey the fluxes, energy spectra, and energy dependence of the spectral indices of {approx}0.5-6 keV ENAs measured by IBEX-Hi along the lines of sight of Voyager 1 and 2. We compare the ENA spectra observed at IBEX with predictions of Zank et al. who modeled the microphysics of the heliospheric termination shock to predict the shape and relative contributions of three distinct heliosheath ion populations. We show thatmore » (1) the ENA spectral indices exhibit similar energy dependence along V1 and V2 directions-the spectrum hardens to {gamma} {approx} 1 between {approx}1 and 2 keV and softens to {gamma} {approx} 2 below {approx}1 keV and above {approx}2 keV, (2) the observed ENA fluxes agree to within {approx}50% of the Zank et al. predictions and are unlikely to be produced by core solar wind (SW) ions, and (3) the ENA spectra do not exhibit sharp cutoffs at {approx}twice the SW speed as is typically observed for shell-like pickup ion (PUI) distributions in the heliosphere. We conclude that ENAs at IBEX are generated by at least two types of ion populations whose relative contributions depend on the ENA energy: transmitted PUIs in the {approx}0.5-5 keV energy range and reflected PUIs above {approx}5 keV energy. The {approx}0.5-5 keV PUI distribution is probably a superposition of Maxwellian or kappa distributions and partially filled shell distributions in velocity space.« less

  5. Secondary antiproton production in relativistic plasmas

    NASA Technical Reports Server (NTRS)

    Dermer, C. D.; Ramaty, R.

    1985-01-01

    The possibility is investigated that the reported excess low energy antiproton component of the cosmic radiation results from proton-proton (p-p) interactions in relativistic plasmas. Because of both target and projectile motion in such plasmas, the antiproton production threshold in the frame of the plasma is much lower than the threshold of antiproton production in cosmic ray interactions with ambient matter. The spectrum of the resultant antiprotons therefore extends to much lower energy than in the cosmic ray case. The antiproton spectrum is calculated for relativistic thermal plasmas and the spectrum is estimated for relativistic nonthermal plasmas. As possible production sites, matter accreting onto compact objects located in the galaxy is considered. Possible overproduction of gamma rays from associated neutral pion production can be avoided if the site is optically thick to the photons but not to the antiprotons. A possible scenario involves a sufficiently large photon density that the neutral pion gamma rays are absorbed by photon-photon pair production. Escape of the antiprotons to the interstellar medium can be mediated by antineutron production.

  6. Precise Measurements of the Cosmic Ray Antiproton Spectrum with BESS Including the Effects of Solar Modulation

    NASA Technical Reports Server (NTRS)

    Mitchell, J. W.; Abe, K.; Anraku, K.; Asaoka, Y.; Fujikawa, M.; Fuke, H.; Haino, S.; Hams, T.; Ikeda, N.; Imori, M.

    2002-01-01

    The Balloon Borne Experiment with a Superconducting Spectrometer (BESS) has measured the energy spectrum of cosmic-ray antiprotons between 0.18 and 4.20 GeV in eight flights between 1993 and 2002. Above about 1 GeV, models in which antiprotons are secondary products of the interactions of primary cosmic rays with the interstellar gas agree with the BESS antiproton spectrum. Below 1 GeV, the data show a possible excess antiproton flux compared to secondary model predictions, suggesting the presence of an additional source of antiprotons. The antiproton/proton ratios measured between 1993 and 1999, during the Sun's positive-polarity phase, are consistent with simple models of solar modulation. However, results from the 2000 flight, following the solar magnetic field reversal, show a sudden increase in the antiproton/proton ratio and tend to favor a charge-sign-dependent drift model. To extend BESS measurements to lower energies, an evolutionary instrument, BESS-Polar, is under construction for polar flight in 2004.

  7. Measurement of Recoil Losses and Ranges for Spallation Products Produced in Proton Interactions with Al, Si, Mg at 200 and 500 MeV

    NASA Technical Reports Server (NTRS)

    Sisterson, J. M.

    2005-01-01

    Cosmic rays interact with extraterrestrial materials to produce a variety of spallation products. If these cosmogenic nuclides are produced within an inclusion in such material, then an important consideration is the loss of the product nuclei, which recoil out of the inclusion. Of course, at the same time, some atoms of the product nuclei under study may be knocked into the inclusion from the surrounding material, which is likely to have a different composition to that of the inclusion [1]. For example, Ne-21 would be produced in presolar grains, such as SiC, when irradiated in interstellar space. However, to calculate a presolar age, one needs to know how much 21Ne is retained in the grain. For small grains, the recoil losses might be large [2, 3] To study this effect under laboratory conditions, recoil measurements were made using protons with energies from 66 - 1600 MeV on Si, Al and Ba targets [3, 4, 5].

  8. Monitoring transients in low inductance circuits

    DOEpatents

    Guilford, Richard P.; Rosborough, John R.

    1987-01-01

    A pair of flat cable transmission lines are monitored for transient current spikes by using a probe connected to a current transformer by a pickup loop and monitoring the output of the current transformer. The approach utilizes a U-shaped pickup probe wherein the pair of flat cable transmission lines are received between the legs of the U-shaped probe. The U-shaped probe is preferably formed of a flat coil conductor adhered to one side of a flexible substrate. On the other side of the flexible substrate there is a copper foil shield. The copper foil shield is connected to one end of the flat conductor coil and connected to one leg of the pickup loop which passes through the current transformer. The other end of the flat conductor coil is connected to the other leg of the pickup loop.

  9. Study of optical design of Blu-ray pickup head system with a liquid crystal element.

    PubMed

    Fang, Yi-Chin; Yen, Chih-Ta; Hsu, Jui-Hsin

    2014-10-10

    This paper proposes a newly developed optical design and an active compensation method for a Blu-ray pickup head system with a liquid crystal (LC) element. Different from traditional pickup lens design, this new optical design delivers performance as good as the conventional one but has more room for tolerance control, which plays a role in antishaking devices, such as portable Blu-ray players. A hole-pattern electrode and LC optics with external voltage input were employed to generate a symmetric nonuniform electrical field in the LC layer that directs LC molecules into the appropriate gradient refractive index distribution, resulting in the convergence or divergence of specific light beams. LC optics deliver fast and, most importantly, active compensation through optical design when errors occur. Simulations and tolerance analysis were conducted using Code V software, including various tolerance analyses, such as defocus, tilt, and decenter, and their related compensations. Two distinct Blu-ray pickup head system designs were examined in this study. In traditional Blu-ray pickup head system designs, the aperture stop is always set on objective lenses. In the study, the aperture stop is on the LC lens as a newly developed lens. The results revealed that an optical design with aperture stop set on the LC lens as an active compensation device successfully eliminated up to 57% of coma aberration compared with traditional optical designs so that this pickup head lens design will have more space for tolerance control.

  10. Analytical model of tilted driver–pickup coils for eddy current nondestructive evaluation

    NASA Astrophysics Data System (ADS)

    Cao, Bing-Hua; Li, Chao; Fan, Meng-Bao; Ye, Bo; Tian, Gui-Yun

    2018-03-01

    A driver-pickup probe possesses better sensitivity and flexibility due to individual optimization of a coil. It is frequently observed in an eddy current (EC) array probe. In this work, a tilted non-coaxial driver-pickup probe above a multilayered conducting plate is analytically modeled with spatial transformation for eddy current nondestructive evaluation. Basically, the core of the formulation is to obtain the projection of magnetic vector potential (MVP) from the driver coil onto the vector along the tilted pickup coil, which is divided into two key steps. The first step is to make a projection of MVP along the pickup coil onto a horizontal plane, and the second one is to build the relationship between the projected MVP and the MVP along the driver coil. Afterwards, an analytical model for the case of a layered plate is established with the reflection and transmission theory of electromagnetic fields. The calculated values from the resulting model indicate good agreement with those from the finite element model (FEM) and experiments, which validates the developed analytical model. Project supported by the National Natural Science Foundation of China (Grant Nos. 61701500, 51677187, and 51465024).

  11. Verification test of the Battronic Truck Volta Electric Pickup. Report for Jul 80-Jan 81

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dowgiallo, E.J. Jr; Snellings, I.R.; Chapman, R.D.

    1982-04-01

    The Volta Pickup is an electric 1/2-ton truck manufactured by the Battronic Truck Co. It was tested by MERADCOM at Fort Belvoir, Virginia as part of a Department of Energy project to verify conformity to performance standards of electric vehicles. The verification test results are presented in this report. The Volta Pickup is powered by 24 6-V lead-acid batteries, has a 38 hp series wound d.c. motor, SCR chopper controller, regenerative braking, and a 2-speed Helical gear transmission.

  12. The prescription pickup lag, an automatic prescription refill program, and community pharmacy operations.

    PubMed

    Lester, Corey A; Chui, Michelle A

    2016-01-01

    To determine the effect of an automatic prescription refill program on the prescription pickup lag in community pharmacy. A post-only quasi-experimental design comparing automatic and manual refill prescription cohorts for each of the 3 Centers for Medicare and Medicaid medication adherence metrics. A 29-store community pharmacy chain in the Midwest. Community-dwelling patients over the age of 65 years receiving prescription medications included in the statin, renin-angiotensin-aldosterone system antagonist, or non-insulin diabetes adherence metrics. An automatic prescription refill program that initiated prescription refills on a standardized, recurrent basis, eliminating the need for patients to phone in or drop off prescription refills. The prescription pickup lag, defined as the number of days between a prescription being adjudicated in the pharmacy and the prescription being picked up by the patient. A total of 37,207 prescription fills were examined. There were 20.5%, 22.4%, and 23.3% of patients enrolled in the automatic prescription refill program for the statin, renin-angiotensin-aldosterone system antagonist, and diabetes adherence metrics, respectively. Prescriptions in the automatic prescription refill cohorts experienced a median pickup lag of 7 days compared with 1 day for the manual refill prescriptions. 35.2% of all manual refill prescriptions had a pickup lag of 0 days compared with 13% for automatic refills. However, 15.4% of automatic prescription refills had a pickup lag of greater than 14 days, compared with 4.8% of manual refills. Prescriptions in the automatic prescription refill programs were associated with a significantly longer amount of time in the pharmacy before being picked up by the patient. This increased pickup lag may contribute positively by smoothing out workload demands of pharmacy staff, but may contribute negatively owing to an increased amount of rework and greater inventory requirements. Copyright © 2016 American Pharmacists Association®. Published by Elsevier Inc. All rights reserved.

  13. Developing a model law restricting the transporting of passengers in the cargo areas of pickup trucks.

    PubMed

    Christoffel, T; Agran, P; Winn, D; Anderson, C; Del Valle, C

    2000-01-01

    Pickup trucks have become increasingly popular in the United States, accounting for about one in five vehicles involved in fatal motor-vehicle crashes. A critical factor in these deaths is the practice of carrying passengers in truck cargo areas, which are not designed for this purpose. Each year approximately 200 deaths occur to occupants riding in the back of pickup trucks. Over half the states have laws dealing with preventable injury problem, but these laws vary widely and most are too limited to be effective. We have reviewed existing laws, as well as crash injury data, and we have developed and recommend a model bill. The bill focuses on intended use, restricting passengers to only those portions of a vehicle designed for human transport. We have also conducted and report on a survey of legislative sponsors of pickup truck legislation.

  14. Solar wind pickup of ionized Venus exosphere atoms

    NASA Technical Reports Server (NTRS)

    Curtis, S. A.

    1981-01-01

    Previous calculations of electrostatic and electromagnetic growth rates for plasma instabilities have neglected the thermal spread of the distribution function of the planetary ions. We consider the effects of finite temperatures for exospheric ions borne in the solar wind. Specifically, growth rates are calculated for electromagnetic instabilities in the low-frequency case for Alfven waves and the intermediate frequency case for whistlers. Also, electrostatic growth rates are calculated for the intermediate frequency regime. From these growth rates, estimates are derived for the pickup times of the planetary ions. The electromagnetic instabilities are shown to produce the most rapid pickup. In the situation where the angle between the local Venus magnetic field and the plasma flow direction is small, the pickup times for both electromagnetic and electrostatic instabilities become very long. A possible consequence of this effect is to produce regions of enhanced planetary ion density in favorable Venus magnetic field-solar wind flow geometries.

  15. Momentum transport at the Mars magnetopause

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Perez-de-Tejada, H.

    1991-07-01

    The conditions leading to the transport of momentum of the shocked solarwind to the Mars magnetosphere are examined. It is argued that planetary pickup ions born in the magnetosheath and scattered across the magnetopause by local turbulent waves carry that momentum and deliver it to the magnetospheric plasma. It is further suggested that as the pickup ions experience momentum scattering interactions with the wave field in the velocity shear adjacent to the magnetosphere they are subject to a gradual internment within that region of space. The end effect of this phenomenon is that the pickup ions deliver a larger amountmore » of momentum to the local flow than what they can subtract from it. Calculations of the efficiency of the process lead to values of the effective mean free path of the pickup ions of the order of a few hundred kilometers.« less

  16. Carbon monoxide poisoning in children riding in the back of pickup trucks.

    PubMed

    Hampson, N B; Norkool, D M

    OBJECTIVE - To describe the case characteristics of a series of children poisoned with carbon monoxide while traveling in the back of pickup trucks. DESIGN - Pediatric cases referred for treatment of carbon monoxide poisoning with hyperbaric oxygen between 1986 and 1991 were reviewed. Those cases that occurred during travel in the back of pickup trucks were selected. Clinical follow-up by telephone interview ranged from 2 to 55 months. SETTING - A private, urban, tertiary care center in Seattle, Wash. PATIENTS - Twenty children ranging from 4 to 16 years of age. INTERVENTION - All patients were treated with hyperbaric oxygen. MAIN OUTCOME MEASURES - Characteristics of the poisoning incident and clinical patient outcome. RESULTS - Of 68 pediatric patients treated for accidental carbon monoxide poisoning, 20 cases occurred as children rode in the back of pickup trucks. In 17 of these, the children were riding under a rigid closed canopy on the rear of the truck, while three episodes occurred as children rode beneath a tarpaulin. Average carboxyhemoglobin level on emergency department presentation was 18.2% +/- 2.4% (mean +/- SEM; range, 1.6% to 37.0%). Loss of consciousness occurred in 15 of the 20 children. One child died of cerebral edema, one had permanent neurologic deficits, and 18 had no recognizable sequelae related to the episode. In all cases, the truck exhaust system had a previously known leak or a tail pipe that exited at the rear rather than at the side of the pickup truck. CONCLUSIONS - Carbon monoxide poisoning is a significant hazard for children who ride in the back of pickup trucks. If possible, this practice should be avoided.

  17. Preliminary Interpretation of Ambient Pickup Ions at Titan Observed by the Cassini Plasma Spectrometer

    NASA Technical Reports Server (NTRS)

    Hartle, R. E.; Sittler, E. C.; Johnson, R. E.

    2004-01-01

    The Cassini Plasma Spectrometer (CAPS) instrument is scheduled to observe the plasma environment at Titan October 26,2004 from the Cassini Orbiter. Preliminary CAPS ion measurements from this encounter will be compared with measurements made by the Voyager I Plasma Science Instrument (PSI). The comparison will be used to evaluate previous interpretations and predictions of the Titan plasma environment that have been made using PSI measurements. The comparisons will focus on the composition and nature of the ambient plasma and pickup ions. Using the CAPS ion measurements, some of the questions to be addressed, as stimulated by the previous interpretations and predictions made evaluating PSI data, are the following: A) Are H+ and N+ the major ion components of Saturn's rotating magnetosphere in the vicinity of Titan? B) Are other ambient ions present? C) Are finite gyroradius effects apparent in ambient N+ as the result of its interaction with Titans atmosphere? D) Are the principal pickup ions composed of H+, H2+, N+, N2+ and CH4+? E) Is the dominant pickup ion closest to Titan's ionopause N2+? F) Is there evidence of slowing down of the ambient plasma due to pickup ion mass loading? F) If so, does the ambient plasma slow down rapidly, as the ionopause is approached and heavier pickup ions like N2+ are added? During the Voyager I flyby, Titan was in Saturn's magnetosphere. If Titan is in Saturn's magnetosheath or the solar wind at the encounter, questions similar to the above will be addressed as appropriate.

  18. Enantiomer-Selective Photo-Induced Reaction of Protonated Tryptophan with Disaccharides in the Gas Phase

    NASA Astrophysics Data System (ADS)

    Doan, Thuc N.; Fujihara, Akimasa

    2018-03-01

    In order to investigate chemical evolution in interstellar molecular clouds, enantiomer-selective photo-induced chemical reactions between an amino acid and disaccharides in the gas phase were examined using a tandem mass spectrometer containing an electrospray ionization source and a cold ion trap. Ultraviolet photodissociation mass spectra of cold gas-phase noncovalent complexes of protonated tryptophan (Trp) enantiomers with disaccharides consisting of two d-glucose units, such as d-maltose or d-cellobiose, were obtained by photoexcitation of the indole ring of Trp. NH2CHCOOH loss via cleavage of the Cα-Cβ bond in Trp induced by hydrogen atom transfer from the NH3 + group of a protonated Trp was observed in a noncovalent heterochiral H+( l-Trp)( d-maltose) complex. In contrast, a photo-induced chemical reaction forming the product ion with m/z 282 occurs in homochiral H+( d-Trp)( d-maltose). For d-cellobiose, both NH2CHCOOH elimination and the m/z 282 product ion were observed, and no enantiomer-selective phenomena occurred. The m/z 282 product ion indicates that the photo-induced C-glycosylation, which links d-glucose residues to the indole moiety of Trp via a C-C bond, can occur in cold gas-phase noncovalent complexes, and its enantiomer-selectivity depends on the structure of the disaccharide.

  19. Simulating the Heliosphere with Kinetic Hydrogen and Dynamic MHD Source Terms

    DOE PAGES

    Heerikhuisen, Jacob; Pogorelov, Nikolai; Zank, Gary

    2013-04-01

    The interaction between the ionized plasma of the solar wind (SW) emanating from the sun and the partially ionized plasma of the local interstellar medium (LISM) creates the heliosphere. The heliospheric interface is characterized by the tangential discontinuity known as the heliopause that separates the SW and LISM plasmas, and a termination shock on the SW side along with a possible bow shock on the LISM side. Neutral Hydrogen of interstellar origin plays a critical role in shaping the heliospheric interface, since it freely traverses the heliopause. Charge-exchange between H-atoms and plasma protons couples the ions and neutrals, but themore » mean free paths are large, resulting in non-equilibrated energetic ion and neutral components. In our model, source terms for the MHD equations are generated using a kinetic approach for hydrogen, and the key computational challenge is to resolve these sources with sufficient statistics. For steady-state simulations, statistics can accumulate over arbitrarily long time intervals. In this paper we discuss an approach for improving the statistics in time-dependent calculations, and present results from simulations of the heliosphere where the SW conditions at the inner boundary of the computation vary according to an idealized solar cycle.« less

  20. MODELING THE SOLAR WIND AT THE ULYSSES , VOYAGER , AND NEW HORIZONS SPACECRAFT

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kim, T. K.; Pogorelov, N. V.; Zank, G. P.

    The outer heliosphere is a dynamic region shaped largely by the interaction between the solar wind and the interstellar medium. While interplanetary magnetic field and plasma observations by the Voyager spacecraft have significantly improved our understanding of this vast region, modeling the outer heliosphere still remains a challenge. We simulate the three-dimensional, time-dependent solar wind flow from 1 to 80 astronomical units (au), where the solar wind is assumed to be supersonic, using a two-fluid model in which protons and interstellar neutral hydrogen atoms are treated as separate fluids. We use 1 day averages of the solar wind parameters frommore » the OMNI data set as inner boundary conditions to reproduce time-dependent effects in a simplified manner which involves interpolation in both space and time. Our model generally agrees with Ulysses data in the inner heliosphere and Voyager data in the outer heliosphere. Ultimately, we present the model solar wind parameters extracted along the trajectory of the New Horizons spacecraft. We compare our results with in situ plasma data taken between 11 and 33 au and at the closest approach to Pluto on 2015 July 14.« less

  1. Solar photoionization as a loss mechanism of neutral interstellar hydrogen in interplanetary space

    NASA Technical Reports Server (NTRS)

    Ogawa, H. S.; Wu, C. Y. Robert; Gangopadhyay, P.; Judge, D. L.

    1995-01-01

    Two primary loss mechanisms of interstellar neutral hydrogen in interplanetary space are resonance charge exchange ionization with solar wind protons and photoionization by solar EUV radiation. The later process has often been neglected since the average photoionization rate has been estimated to be as much as 5 to 10 times smaller than the charge exchange rate. These factors are based on ionization rates from early measurements of solar EUV and solar wind fluxes. Using revised solar EUV and solar wind fluxes measured near the ecliptic plane we have reinvestigated the ionization rates of interplanetary hydrogen. The result of our analysis indicates that indeed the photoionization rate during solar minimum can be smaller than charge exchange by a factor of 5; however, during solar maximum conditions when solar EUV fluxes are high, and solar wind fluxes are low, photoionization can be over 60% of the charge exchange rate at Earth orbit. To obtain an accurate estimate of the importance of photoionization relative to charge exchange, we have included photoionization from both the ground and metastable states of hydrogen. We find, however, that the photoionization from the metastable state does not contribute significantly to the overall photoionization rate.

  2. SOLAR MODULATION OF THE LOCAL INTERSTELLAR SPECTRUM WITH VOYAGER 1 , AMS-02, PAMELA , AND BESS

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Corti, C.; Bindi, V.; Consolandi, C.

    In recent years, the increasing precision of direct cosmic rays measurements opened the door to high-sensitivity indirect searches of dark matter and to more accurate predictions for radiation doses received by astronauts and electronics in space. The key ingredients in the study of these phenomena are the knowledge of the local interstellar spectrum (LIS) of galactic cosmic rays and the understanding of how the solar modulation affects the LIS inside the heliosphere. Voyager 1 , AMS-02, PAMELA , and BESS measurements of proton and helium fluxes provide valuable information, allowing us to shed light on the shape of the LISmore » and the details of the solar modulation during solar cycles 22-24. A new parametrization of the LIS is presented, based on the latest data from Voyager 1 and AMS-02. Using the framework of the force-field approximation, the solar modulation parameter is extracted from the time-dependent fluxes measured by PAMELA and BESS . A modified version of the force-field approximation with a rigidity-dependent modulation parameter is introduced, yielding better fits than the force-field approximation. The results are compared with the modulation parameter inferred by neutron monitors.« less

  3. Laboratory Measurements of Solar-Wind/Comet X-Ray Emission and Charge Exchange Cross Sections

    NASA Technical Reports Server (NTRS)

    Chutjian, A.; Cadez, I.; Greenwood, J. B.; Mawhorter, R. J.; Smith, S. J.; Lozano, J.

    2002-01-01

    The detection of X-rays from comets such as Hyakutake, Hale-Bopp, d Arrest, and Linear as they approach the Sun has been unexpected and exciting. This phenomenon, moreover, should be quite general, occurring wherever a fast solar or stellar wind interacts with neutrals in a comet, a planetary atmosphere, or a circumstellar cloud. The process is, O(+8) + H2O --> O(+7*) + H2O(+), where the excited O(+7*) ions are the source of the X-ray emissions. Detailed modeling has been carried out of X-ray emissions in charge-transfer collisions of heavy solar-wind Highly Charged Ions (HCIs) and interstellar/interplanetary neutral clouds. In the interplanetary medium the solar wind ions, including protons, can charge exchange with interstellar H and He. This can give rise to a soft X-ray background that could be correlated with the long-term enhancements seen in the low-energy X-ray spectrum of ROSAT. Approximately 40% of the soft X-ray background detected by Exosat, ROSAT, Chandra, etc. is due to Charge Exchange (CXE): our whole heliosphere is glowing in the soft X-ray due to CXE.

  4. Photochemistry of Coronene in Cosmic Water Ice Analogs at Different Concentrations

    NASA Astrophysics Data System (ADS)

    de Barros, A. L. F.; Mattioda, A. L.; Ricca, A.; Cruz-Diaz, G. A.; Allamandola, L. J.

    2017-10-01

    This work presents the photochemistry of ultraviolet (UV) irradiated coronene in water ices at 15 K studied using mid-infrared Fourier transform (FTIR) spectroscopy for C24H12:H2O at concentrations of (1:50), (1:150), (1:200), (1:300), and (1:400). Previous UV irradiation studies of anthracene:H2O, pyrene:H2O, and benzo[ghi]perylene:H2O ices at 15 K have shown that aromatic alcohols and ketones, as well as CO2 and H2CO, are formed at very low temperatures. Likewise, here, in addition to the coronene cation, hydroxy-, keto-, and protonated coronene (coronene H+) are formed. The rate constants for the decay of neutral coronene and for the formation of photoproducts have been derived. It is shown that Polycyclic Aromatic Hydrocarbons (PAHs) and their UV induced PAH:H2O photoproducts have mid-infrared spectroscopic signatures in the 5-8 μm region that can contribute to the interstellar ice components described by Boogert et al. as C1-C5. Our results suggest that oxygenated and hydrogenated PAHs could be in UV-irradiated regions of the interstellar medium where water-rich ices are important.

  5. Recent Selected Ion Flow Tube (SIFT) Studies Concerning the Formation of Amino Acids in the Gas Phase

    NASA Technical Reports Server (NTRS)

    Jackson, Douglas M.; Adams, Nigel G.; Babcock, Lucia M.

    2006-01-01

    Recently the simplest amino acid, glycine, has been detected in interstellar clouds, ISC, although this has since been contested. In order to substantiate either of these claims, plausible routes to amino acids need to be investigated. For gas phase synthesis, the SIFT technique has been employed to study simple amino acids via ion-molecule reactions of several ions of interstellar interest with methylamine, ethylamine, formic acid, acetic acid, and methyl formate. Carboxylic acid type ions were considered in the reactions involving the amines. In reactions where the carboxylic acid and methyl formate neutrals were studied, the reactant ions were primarily amine ion fragments. It was observed that the amines and acids preferentially fragment or accept a proton whenever energetically possible. NH3(+), however, uniquely reacted with the neutrals via atom abstraction to form NH4(+). These studies yielded a body of data relevant to astrochemistry, supplementing the available literature. However, the search for gas phase routes to amino acids using conventional molecules has been frustrated. Our most recent research investigates the fragmentation patterns of several amino acids and several possible routes have been suggested for future study.

  6. Voyager 1 Near the heliopause

    DOE PAGES

    Borovikov, S. N.; Pogorelov, N. V.

    2014-02-18

    Recent observations from the Voyager 1 spacecraft show that it is sampling the local interstellar medium (LISM). This is quite surprising because no realistic, steady-state model of the solar wind (SW) interaction with the LISM gives an inner heliosheath width as narrow as ~30 AU. This includes models that assume a strong redistribution of the ion energy to the tails in the pickup ion distribution function. We show that the heliopause (HP), which separates the SW from the LISM, is not a smooth tangential discontinuity, but rather a surface subject to Rayleigh-Taylor-type instabilities which can result in LISM material penetrationmore » deep inside the SW. We also show that the HP flanks are always subject to a Kelvin-Helmholtz instability. The instabilities are considerably suppressed near the HP nose by the heliospheric magnetic field in steady-state models, but reveal themselves in the presence of solar cycle effects. Here we argue that Voyager 1 may be in one such instability region and is therefore observing plasma densities much higher than those in the pristine SW. Lastly, these results may explain the early penetration of Voyager 1 into the LISM. They also show that there is a possibility that the spacecraft may start sampling the SW again before it finally leaves the heliosphere.« less

  7. Sodium Pick-Up Ion Observations in the Solar Wind Upstream of Mercury

    NASA Astrophysics Data System (ADS)

    Jasinski, J. M.; Raines, J. M.; Slavin, J. A.; Regoli, L. R.; Murphy, N.

    2018-05-01

    We present the first observations of sodium pick-up ions upstream of Mercury’s magnetosphere. From these observations we infer properties of Mercury’s sodium exosphere and implications for the solar wind interaction with Mercury’s magnetosphere.

  8. Microelectromechanical power generator and vibration sensor

    DOEpatents

    Roesler, Alexander W [Tijeras, NM; Christenson, Todd R [Albuquerque, NM

    2006-11-28

    A microelectromechanical (MEM) apparatus is disclosed which can be used to generate electrical power in response to an external source of vibrations, or to sense the vibrations and generate an electrical output voltage in response thereto. The MEM apparatus utilizes a meandering electrical pickup located near a shuttle which holds a plurality of permanent magnets. Upon movement of the shuttle in response to vibrations coupled thereto, the permanent magnets move in a direction substantially parallel to the meandering electrical pickup, and this generates a voltage across the meandering electrical pickup. The MEM apparatus can be fabricated by LIGA or micromachining.

  9. Background and Pickup Ion Velocity Distribution Dynamics in Titan's Plasma Environment: 3D Hybrid Simulation and Comparison with CAPS T9 Observations

    NASA Technical Reports Server (NTRS)

    Lipatov, A. S.; Sittler, E. C., Jr.; Hartle, R. E.; Cooper, J. F.; Simpson, D. G.

    2011-01-01

    In this report we discuss the ion velocity distribution dynamics from the 3D hybrid simulation. In our model the background, pickup, and ionospheric ions are considered as a particles, whereas the electrons are described as a fluid. Inhomogeneous photoionization, electron-impact ionization and charge exchange are included in our model. We also take into account the collisions between the ions and neutrals. The current simulation shows that mass loading by pickup ions H(+); H2(+), CH4(+) and N2(+) is stronger than in the previous simulations when O+ ions are introduced into the background plasma. In our hybrid simulations we use Chamberlain profiles for the atmospheric components. We also include a simple ionosphere model with average mass M = 28 amu ions that were generated inside the ionosphere. The moon is considered as a weakly conducting body. Special attention will be paid to comparing the simulated pickup ion velocity distribution with CAPS T9 observations. Our simulation shows an asymmetry of the ion density distribution and the magnetic field, including the formation of the Alfve n wing-like structures. The simulation also shows that the ring-like velocity distribution for pickup ions relaxes to a Maxwellian core and a shell-like halo.

  10. THE INFLUENCE OF DISSIPATION RANGE POWER SPECTRA AND PLASMA-WAVE POLARIZATION ON COSMIC-RAY SCATTERING MEAN FREE PATH

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Schlickeiser, R.; Lazar, M.; Vukcevic, M., E-mail: rsch@tp4.rub.d, E-mail: mlazar@tp4.ruhr-uni-bochum.d, E-mail: vuk.mira@gmail.co

    2010-08-20

    The influence of the polarization state and the dissipation range spectral steepening of slab plasma waves on the scattering mean free path of single-charged cosmic-ray particles is investigated in a turbulence model, where the crucial scattering of cosmic-ray particles with small pitch-angle cosines is caused by resonant cyclotron interactions with slab plasma waves. Analytical expressions for the mean free path of protons, antiprotons, negatrons, and positrons are derived for the case of constant frequency-independent magnetic helicity values {sigma} and different values of the dissipation range spectral index k for characteristic interplanetary and interstellar plasma conditions. The positron mean free pathmore » is not affected by the dissipation range spectral index k as these particles can only cyclotron-resonate for rigidity values larger than R {sub 0} = m{sub p}c = 938 MV. Proton and antiproton mean free paths are only slightly affected by the dissipation range spectral index k at small rigidities R < R {sub 0}. The negatron mean free path is severely affected by the dissipation range spectral index k at rigidities smaller than R {sub 0}. At high rigidities R >> R {sub 0}, all particle species approach the same power-law dependence {proportional_to}R {sup 2-s} determined by the inertial range spectral index s = 5/3. The magnetic helicity value {sigma} affects the value of the mean free path. At all rigidities, the ratio of the antiproton to proton mean free paths equals the constant (1 + {sigma})/(1 - {sigma}), which also agrees with the ratio of the negatron to the proton and positron mean free paths at relativistic rigidities. At relativistic rigidities the positron and proton mean free paths agree, as do the negatron and antiproton mean free paths.« less

  11. 47 CFR 74.482 - Station identification.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 47 Telecommunication 4 2010-10-01 2010-10-01 false Station identification. 74.482 Section 74.482..., AUXILIARY, SPECIAL BROADCAST AND OTHER PROGRAM DISTRIBUTIONAL SERVICES Remote Pickup Broadcast Stations § 74.482 Station identification. (a) Each remote pickup broadcast station shall be identified by the...

  12. 40 CFR 86.1870-12 - CO2 credits for qualifying full-size pickup trucks.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... strong hybrid electric vehicle. To provide for EPA testing, the vehicle must be able to broadcast battery... leakage and/or efficiency credits as determined in § 86.1867 and § 86.1868. Pickup trucks earning the...

  13. Embodied intersubjective engagement in mother–infant tactile communication: a cross-cultural study of Japanese and Scottish mother–infant behaviors during infant pick-up

    PubMed Central

    Negayama, Koichi; Delafield-Butt, Jonathan T.; Momose, Keiko; Ishijima, Konomi; Kawahara, Noriko; Lux, Erin J.; Murphy, Andrew; Kaliarntas, Konstantinos

    2015-01-01

    This study examines the early development of cultural differences in a simple, embodied, and intersubjective engagement between mothers putting down, picking up, and carrying their infants between Japan and Scotland. Eleven Japanese and ten Scottish mothers with their 6- and then 9-month-old infants participated. Video and motion analyses were employed to measure motor patterns of the mothers’ approach to their infants, as well as their infants’ collaborative responses during put-down, pick-up, and carry phases. Japanese and Scottish mothers approached their infants with different styles and their infants responded differently to the short duration of separation during the trial. A greeting-like behavior of the arms and hands was prevalent in the Scottish mothers’ approach, but not in the Japanese mothers’ approach. Japanese mothers typically kneeled before making the final reach to pick-up their children, giving a closer, apparently gentler final approach of the torso than Scottish mothers, who bent at the waist with larger movements of the torso. Measures of the gap closure between the mothers’ hands to their infants’ heads revealed variably longer duration and distance gap closures with greater velocity by the Scottish mothers than by the Japanese mothers. Further, the sequence of Japanese mothers’ body actions on approach, contact, pick-up, and hold was more coordinated at 6 months than at 9 months. Scottish mothers were generally more variable on approach. Measures of infant participation and expressivity indicate more active participation in the negotiation during the separation and pick-up phases by Scottish infants. Thus, this paper demonstrates a culturally different onset of development of joint attention in pick-up. These differences reflect cultures of everyday interaction. PMID:25774139

  14. Direct Acceleration of Pickup Ions at The Solar Wind Termination Shock: The Production of Anomalous Cosmic Rays

    NASA Technical Reports Server (NTRS)

    Ellison, Donald C.; Jones, Frank C.; Baring, Matthew G.

    1998-01-01

    We have modeled the injection and acceleration of pickup ions at the solar wind termination shock and investigated the parameters needed to produce the observed Anomalous Cosmic Ray (ACR) fluxes. A non-linear Monte Carlo technique was employed, which in effect solves the Boltzmann equation and is not restricted to near-isotropic particle distribution functions. This technique models the injection of thermal and pickup ions, the acceleration of these ions, and the determination of the shock structure under the influence of the accelerated ions. The essential effects of injection are treated in a mostly self-consistent manner, including effects from shock obliquity, cross- field diffusion, and pitch-angle scattering. Using recent determinations of pickup ion densities, we are able to match the absolute flux of hydrogen in the ACRs by assuming that pickup ion scattering mean free paths, at the termination shock, are much less than an AU and that modestly strong cross-field diffusion occurs. Simultaneously, we match the flux ratios He(+)/H(+) or O(+)/H(+) to within a factor approx. 5. If the conditions of strong scattering apply, no pre-termination-shock injection phase is required and the injection and acceleration of pickup ions at the termination shock is totally analogous to the injection and acceleration of ions at highly oblique interplanetary shocks recently observed by the Ulysses spacecraft. The fact that ACR fluxes can be modeled with standard shock assumptions suggests that the much-discussed "injection problem" for highly oblique shocks stems from incomplete (either mathematical or computer) modeling of these shocks rather than from any actual difficulty shocks may have in injecting and accelerating thermal or quasi-thermal particles.

  15. Embodied intersubjective engagement in mother-infant tactile communication: a cross-cultural study of Japanese and Scottish mother-infant behaviors during infant pick-up.

    PubMed

    Negayama, Koichi; Delafield-Butt, Jonathan T; Momose, Keiko; Ishijima, Konomi; Kawahara, Noriko; Lux, Erin J; Murphy, Andrew; Kaliarntas, Konstantinos

    2015-01-01

    This study examines the early development of cultural differences in a simple, embodied, and intersubjective engagement between mothers putting down, picking up, and carrying their infants between Japan and Scotland. Eleven Japanese and ten Scottish mothers with their 6- and then 9-month-old infants participated. Video and motion analyses were employed to measure motor patterns of the mothers' approach to their infants, as well as their infants' collaborative responses during put-down, pick-up, and carry phases. Japanese and Scottish mothers approached their infants with different styles and their infants responded differently to the short duration of separation during the trial. A greeting-like behavior of the arms and hands was prevalent in the Scottish mothers' approach, but not in the Japanese mothers' approach. Japanese mothers typically kneeled before making the final reach to pick-up their children, giving a closer, apparently gentler final approach of the torso than Scottish mothers, who bent at the waist with larger movements of the torso. Measures of the gap closure between the mothers' hands to their infants' heads revealed variably longer duration and distance gap closures with greater velocity by the Scottish mothers than by the Japanese mothers. Further, the sequence of Japanese mothers' body actions on approach, contact, pick-up, and hold was more coordinated at 6 months than at 9 months. Scottish mothers were generally more variable on approach. Measures of infant participation and expressivity indicate more active participation in the negotiation during the separation and pick-up phases by Scottish infants. Thus, this paper demonstrates a culturally different onset of development of joint attention in pick-up. These differences reflect cultures of everyday interaction.

  16. Interaction of the solar wind with comets: a Rosetta perspective

    PubMed Central

    2017-01-01

    The Rosetta mission provides an unprecedented possibility to study the interaction of comets with the solar wind. As the spacecraft accompanies comet 67P/Churyumov–Gerasimenko from its very low-activity stage through its perihelion phase, the physics of mass loading is witnessed for various activity levels of the nucleus. While observations at other comets provided snapshots of the interaction region and its various plasma boundaries, Rosetta observations allow a detailed study of the temporal evolution of the innermost cometary magnetosphere. Owing to the short passage time of the solar wind through the interaction region, plasma instabilities such as ring--beam and non-gyrotropic instabilities are of less importance during the early life of the magnetosphere. Large-amplitude ultra-low-frequency (ULF) waves, the ‘singing’ of the comet, is probably due to a modified ion Weibel instability. This instability drives a cross-field current of implanted cometary ions unstable. The initial pick-up of these ions causes a major deflection of the solar wind protons. Proton deflection, cross-field current and the instability induce a threefold structure of the innermost interaction region with the characteristic Mach cone and Whistler wings as stationary interaction signatures as well as the ULF waves representing the dynamic aspect of the interaction. This article is part of the themed issue ‘Cometary science after Rosetta’. PMID:28554976

  17. 47 CFR 74.464 - Frequency tolerance.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 30 kHz, the licensee of a remote pickup broadcast station or system shall maintain the operating... chapter. For all other operations, the licensee of a remote pickup broadcast station or system shall maintain the operating frequency of each station in accordance with the following: Frequency range...

  18. 47 CFR 74.464 - Frequency tolerance.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 30 kHz, the licensee of a remote pickup broadcast station or system shall maintain the operating... chapter. For all other operations, the licensee of a remote pickup broadcast station or system shall maintain the operating frequency of each station in accordance with the following: Frequency range...

  19. Painted Pickup.

    ERIC Educational Resources Information Center

    Wheeler, Kimberly

    2001-01-01

    Discusses a six week art class project for elementary school children that lasted for six weeks. Explains that the students painted sunflowers in the style of Vincent van Gogh over the rust spots of a pickup truck. Reports that the painting served as great publicity for the art classes. (CMK)

  20. Reexamining the Nonlinear Moisture-Precipitation Relationship Over the Tropical Oceans

    NASA Astrophysics Data System (ADS)

    Rushley, S. S.; Kim, D.; Bretherton, C. S.; Ahn, M.-S.

    2018-01-01

    Bretherton et al. (2004) used the Special Sensor Microwave Imager (SSM/I) version 5 product to derive an exponential curve that describes the relationship between precipitation and column relative humidity (CRH) over the tropical oceans. The curve, which features a precipitation pickup at a CRH of about 0.75 and a rapid increase of precipitation with CRH after the pickup, has been widely used in the studies of the tropical atmosphere. This study reexamines the moisture-precipitation relationship by using the version 7 SSM/I data, in which several biases in the previous version are corrected, and evaluates the relationship in the Coupled Model Intercomparison Project phase 5 (CMIP5) models. In the revised exponential curve derived using the updated satellite data, the precipitation pickup occurs at a higher CRH ( 0.8), and precipitation increases more slowly with CRH than in the previous curve. In most CMIP5 models, the precipitation pickup is too early due to the common model bias of overestimated (underestimated) precipitation in the dry (wet) regime.

  1. Ion pickup, scattering, and stochastic acceleration in the cometary environment of P/Giacobini-Zinner

    NASA Technical Reports Server (NTRS)

    Barbosa, D. D.

    1991-01-01

    Observations and theory related to the scattering and acceleration of cometary pickup ions are reviewed with emphasis on Comet P/Giacobini-Zinner. A comparison of the regions upstream and downstream of the bow shock is made to assess the relative merits of each as a site for stochastic acceleration of ions above the pickup energy through interaction with low-frequency MHD waves. In the far upstream region the data are most consistent with a model where pickup ions generate a low level of MHD waves but remain relatively scatter-free. In the downstream region intense magnetic fluctuations gives rise to rapid isotropization of the ions and a second-order stochastic acceleration. The properties of the MHD power spectrum are related to the energetic ion spectrum in the framework of a leaky box model where the bulk of the acceleration occurs downstream of the shock throughout the cometosheath. Good agreement of the observations with theory is evident for both P/Giacobini-Zinner and P/Halley.

  2. On the Effects of Pickup Ion-driven Waves on the Diffusion Tensor of Low-energy Electrons in the Heliosphere

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Engelbrecht, N. Eugene, E-mail: n.eugene.engelbrecht@gmail.com

    The effects of Alfvén cyclotron waves generated due to the formation in the outer heliosphere of pickup ions on the transport coefficients of low-energy electrons is investigated here. To this end, parallel mean free path (MFP) expressions are derived from quasilinear theory, employing the damping model of dynamical turbulence. These are then used as inputs for existing expressions for the perpendicular MFP and turbulence-reduced drift coefficient. Using outputs generated by a two-component turbulence transport model, the resulting diffusion coefficients are compared with those derived using a more typically assumed turbulence spectral form, which neglects the effects of pickup ion-generated waves.more » It is found that the inclusion of pickup ion effects greatly leads to considerable reductions in the parallel and perpendicular MFPs of 1–10 MeV electrons beyond ∼10 au, which are argued to have significant consequences for studies of the transport of these particles.« less

  3. On the role of the quasi-parallel bow shock in ion pickup - A lesson from Venus?

    NASA Technical Reports Server (NTRS)

    Luhmann, J. G.; Russell, C. T.; Phillips, J. L.; Barnes, A.

    1987-01-01

    Previous observations at Venus show convincing evidence of planetary O(+) ion pickup by the largescale motional -V x B electric field in the magnetosheath when the interplanetary magnetic field is perpendicular to the solar wind flow. However, the presence of magnetic field fluctuations in the magnetosheath downstream from the quasi-parallel bow shock should allow pickup to occur even when the upstream magnetic field B and plasma velocity V are practically coaligned. Single-particle calculations are used to demonstrate the convecting magnetic field fluctuations similar to those observed in the Venus magnetosheath when the subsolar bow shock is quasi-parallel can efficiently accelerate cold planetary ions by means of the electric field associated with their transverse components. This ion pickup process, which is characterized by a spatial dependence determined by the bow shock shape and the orientation of the upstream magnetic field, is likely also to occur at Mars and may be effective at comets.

  4. Assessing tether anchor labeling and usability in pickup trucks.

    PubMed

    Klinich, Kathleen D; Manary, Miriam A; Malik, Laura A; Flannagan, Carol A; Jermakian, Jessica S

    2018-04-03

    The objective of this study was to investigate vehicle factors associated with child restraint tether use and misuse in pickup trucks and evaluate 4 labeling interventions designed to educate consumers on proper tether use. Volunteer testing was performed with 24 subjects and 4 different pickup trucks. Each subject performed 8 child restraint installations among the 4 pickups using 2 forward-facing restraints: a Britax Marathon G4.1 and an Evenflo Triumph. Vehicles were selected to represent 4 different implementations of tether anchors among pickups: plastic loop routers (Chevrolet Silverado), webbing routers (Ram), back wall anchors (Nissan Frontier), and webbing routers plus metal anchors (Toyota Tundra). Interventions included a diagram label, Quick Response (QR) Code linked to video instruction, coordinating text label, and contrasting text tag. Subjects used the child restraint tether in 93% of trials. However, tether use was completely correct in only 9% of trials. An installation was considered functional if the subject attached the tether to a tether anchor and had a tight installation (ignoring routing and head restraint position); 28% of subjects achieved a functional installation. The most common installation error was attaching the tether hook to the anchor/router directly behind the child restraint (near the top of the seatback) rather than placing the tether through the router and attaching it to the anchor in the adjacent seating position. The Nissan Frontier, with the anchor located on the back wall of the cab, had the highest rate of correct installations but also had the highest rate of attaching the tether to components other than the tether anchor (seat adjustor, child restraint storage hook, around head restraint). None of the labeling interventions had a significant effect on correct installation; not a single subject scanned the QR Code to access the video instruction. Subjects with the most successful installations spent extensive time reviewing the vehicle manuals. Current implementations of tether anchors among pickup trucks are not intuitive for child restraint installations, and alternate designs should be explored. Several different labeling interventions were ineffective at achieving correct tether use in pickup trucks.

  5. Development of a superconducting position sensor for the Satellite Test of the Equivalence Principle

    NASA Astrophysics Data System (ADS)

    Clavier, Odile Helene

    The Satellite Test of the Equivalence Principle (STEP) is a joint NASA/ESA mission that proposes to measure the differential acceleration of two cylindrical test masses orbiting the earth in a drag-free satellite to a precision of 10-18 g. Such an experiment would conceptually reproduce Galileo's tower of Pisa experiment with a much longer time of fall and greatly reduced disturbances. The superconducting test masses are constrained in all degrees of freedom except their axial direction (the sensitive axis) using superconducting bearings. The STEP accelerometer measures the differential position of the masses in their sensitive direction using superconducting inductive pickup coils coupled to an extremely sensitive magnetometer called a DC-SQUID (Superconducting Quantum Interference Device). Position sensor development involves the design, manufacture and calibration of pickup coils that will meet the acceleration sensitivity requirement. Acceleration sensitivity depends on both the displacement sensitivity and stiffness of the position sensor. The stiffness must kept small while maintaining stability of the accelerometer. Using a model for the inductance of the pickup coils versus displacement of the test masses, a computer simulation calculates the sensitivity and stiffness of the accelerometer in its axial direction. This simulation produced a design of pickup coils for the four STEP accelerometers. Manufacture of the pickup coils involves standard photolithography techniques modified for superconducting thin-films. A single-turn pickup coil was manufactured and produced a successful superconducting coil using thin-film Niobium. A low-temperature apparatus was developed with a precision position sensor to measure the displacement of a superconducting plate (acting as a mock test mass) facing the coil. The position sensor was designed to detect five degrees of freedom so that coupling could be taken into account when measuring the translation of the plate relative to the coil. The inductance was measured using a DC-SQUID coupled to the pickup coil. The experimental results agree with the model used in the simulation thereby validating the concept used for the design. The STEP program now has the confidence necessary to design and manufacture a position sensor for the flight accelerometer.

  6. Shear bond strength comparison of implant-retained overdenture attachment pickup materials.

    PubMed

    Cayouette, Monica J; Barnes, Logan; Vuthiganon, Jompobe; McPherson, Karen

    2016-01-01

    This study evaluated the shear bond strength (SBS) of 4 different retentive materials for the chairside pickup of dental implant attachments. Shear force was applied to determine the SBS of each material to denture acrylic resin. The difference between SBSs of polymethyl methacrylate and UBAR (claimed to bond to metal) to metal housings was also evaluated. There were no statistically significant differences among the SBSs of Jet Denture Repair Acrylic, EZ PickUp, and UBAR, but Quick Up had an SBS that was significantly lower than that of the other 3 materials. In addition, UBAR had a higher SBS to metal housings than did processed polymethyl methacrylate.

  7. Solar minimum Lyman alpha sky background observations from Pioneer Venus orbiter ultraviolet spectrometer - Solar wind latitude variation

    NASA Technical Reports Server (NTRS)

    Ajello, J. M.

    1990-01-01

    Measurements of interplanetary H I Lyman alpha over a large portion of the celestial sphere were made at the recent solar minimum by the Pioneer Venus orbiter ultraviolet spectrometer. These measurements were performed during a series of spacecraft maneuvers conducted to observe Halley's comet in early 1986. Analysis of these data using a model of the passage of interstellar wind hydrogen through the solar system shows that the rate of charge exchange with solar wind protons is 30 percent less over the solar poles than in the ecliptic. This result is in agreement with a similar experiment performed with Mariner 10 at the previous solar minimum.

  8. 47 CFR 101.813 - Remote control operation of mobile television pickup stations.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 47 Telecommunication 5 2010-10-01 2010-10-01 false Remote control operation of mobile television pickup stations. 101.813 Section 101.813 Telecommunication FEDERAL COMMUNICATIONS COMMISSION (CONTINUED) SAFETY AND SPECIAL RADIO SERVICES FIXED MICROWAVE SERVICES Local Television Transmission Service § 101...

  9. 47 CFR 101.813 - Remote control operation of mobile television pickup stations.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 47 Telecommunication 5 2014-10-01 2014-10-01 false Remote control operation of mobile television pickup stations. 101.813 Section 101.813 Telecommunication FEDERAL COMMUNICATIONS COMMISSION (CONTINUED) SAFETY AND SPECIAL RADIO SERVICES FIXED MICROWAVE SERVICES Local Television Transmission Service § 101...

  10. 47 CFR 101.813 - Remote control operation of mobile television pickup stations.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 47 Telecommunication 5 2013-10-01 2013-10-01 false Remote control operation of mobile television pickup stations. 101.813 Section 101.813 Telecommunication FEDERAL COMMUNICATIONS COMMISSION (CONTINUED) SAFETY AND SPECIAL RADIO SERVICES FIXED MICROWAVE SERVICES Local Television Transmission Service § 101...

  11. 47 CFR 101.813 - Remote control operation of mobile television pickup stations.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 47 Telecommunication 5 2011-10-01 2011-10-01 false Remote control operation of mobile television pickup stations. 101.813 Section 101.813 Telecommunication FEDERAL COMMUNICATIONS COMMISSION (CONTINUED) SAFETY AND SPECIAL RADIO SERVICES FIXED MICROWAVE SERVICES Local Television Transmission Service § 101...

  12. 47 CFR 101.813 - Remote control operation of mobile television pickup stations.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 47 Telecommunication 5 2012-10-01 2012-10-01 false Remote control operation of mobile television pickup stations. 101.813 Section 101.813 Telecommunication FEDERAL COMMUNICATIONS COMMISSION (CONTINUED) SAFETY AND SPECIAL RADIO SERVICES FIXED MICROWAVE SERVICES Local Television Transmission Service § 101...

  13. Positive and negative ion outflow at Rhea as observed by Cassini

    NASA Astrophysics Data System (ADS)

    Desai, Ravindra; Jones, Geraint; Regoli, Leonardo; Cowee, Misa; Coates, Andrew; Kataria, Dhiren

    2017-04-01

    Rhea is Saturn's largest icy moon and hosts an ethereal oxygen and carbon-dioxide atmosphere as was detected when Cassini observed positive and negative pickup ions outflowing from the moon and an extended neutral exosphere. These pickup ions can form current systems which, with the resulting jxB force, act to slow-down the incident magneto-plasma and cause field-line draping. As well as impacting the plasma interaction, the composition and density of picked up ions provide key diagnostics of the moon's sputter-induced atmosphere and surface. During the first Cassini-Rhea encounter (R1), the Cassini Plasma Spectrometer (CAPS) observed positively and negatively charged pickup ions before and after passing through the moon's plasma wake respectively, in agreement with their anticipated cycloidal trajectories. On the subsequent more distant wake encounter (R1.5) however, only positively charged pickup ions were observed, indicating high loss rates of the negative ions in Saturn's magnetosphere. Here, using an updated model of Cassini's Electron Spectrometer response function, we are able to estimate the outward flux of negatively charged pickup ions, the first time such a plasma population has been constrained. Using test-particle simulations we trace both the positive and negative particles back to Rhea's exobase to better understand their production and loss processes and the implications for Rhea's sputter-induced exosphere. We also look to examine whether the calculated ion densities could generate ion cyclotron wave activity.

  14. Size-Induced Segregation in the Stepwise Microhydration of Hydantoin and Its Role in Proton-Induced Charge Transfer

    NASA Astrophysics Data System (ADS)

    Calvo, Florent; Bacchus-Montabonel, Marie-Christine

    2018-01-01

    Recent photochemistry experiments provided evidence for the formation of hydantoin by irradiation of interstellar ice analogues. The significance of these results and the importance of hydantoin in prebiotic chemistry and polypeptide synthesis motivate the present theoretical investigation, in which we analyzed the effects of stepwise hydration on the electronic and thermodynamical properties of the structure of microhydrated hydantoin using a variety of computational approaches. We generally find microhydration to proceed around the hydantoin heterocycle until 5 water molecules are reached, at which stage hydration becomes segregated with a water cluster forming aside the heterocycle. The reactivity of microhydrated hydantoin caused by an impinging proton was evaluated through charge transfer collision cross sections for microhydrated compounds but also for hydantoin on icy grains modeled using a cluster approach mimicking the true hexagonal ice surface. The effects of hydration on charge transfer efficiency are mostly significant when few water molecules are present, and they progressively weaken and stabilize in larger clusters. On the ice substrate, charge transfer essentially contributes to a global increase in the cross sections.

  15. Trapping of noble gases in proton-irradiated silicate smokes

    NASA Technical Reports Server (NTRS)

    Nichols, R. H., Jr.; Nuth, J. A., III; Hohenberg, C. M.; Olinger, C. T.; Moore, M. H.

    1992-01-01

    We have measured Ne, Ar, Kr, and Xe in Si2O3 'smokes' that were condensed on Al substrates, vapor-deposited with various mixtures of CH4, NH3, H2O3 and noble gases at 10 K and subsequently irradiated with 1 MeV protons to simulate conditions during grain mantle formation in interstellar clouds. Neither Ne nor Ar is retained by the samples upon warming to room temperature, but Xe is very efficiently trapped and retained. Kr is somewhat less effectively retained, typically depleted by factors of about 10-20 relative to Xe. Isotopic fractionation favoring the heavy isotopes of Xe and Kr of about 5-10-percent/amu is observed. Correlations between the specific chemistry of the vapor deposition and heavy noble gas retention are most likely the result of competition by the various species for irradiation-produced trapping sites. The concentration of Xe retained by some of these smokes exceeds that observed in phase Q of meteorites and, like phase Q, they do not seem to be carriers of the light noble gases.

  16. Visual Persistence and Information Pick-up in Learning Disabled Children.

    ERIC Educational Resources Information Center

    Mazer, Suzanne R.; And Others

    1983-01-01

    Two experiments tested possible explanations for previous research demonstrating lower span of apprehension for learning disabled students. In experiment 1, the length of visual persistence was less for LD subjects, while in experiment 2, the rate of information pick-up was slower for LD subjects. (CL)

  17. 47 CFR 78.109 - Major and minor modifications to stations.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... modulation; (4) Any change in the location of a station transmitter, other than a CARS pickup station... operation of a CARS pickup station; (5) Any change in frequency assignment, including polarization; (6) Any... addition or change in frequency, excluding removing a frequency; (9) Any modification or amendment...

  18. Astronauts Borman and Lovell sit in life raft while awaiting pickup

    NASA Technical Reports Server (NTRS)

    1965-01-01

    Astronauts Frank Borman, command pilot, and James A. Lovell Jr., pilot, sit in life raft while awaiting pickup by a helicopter from the aircraft carrier U.S.S. Wasp. The three man Navy frogman team attached the flotation collar to increase the spacecraft's buoyancy prior to recovery.

  19. Astrochemistry

    NASA Astrophysics Data System (ADS)

    Millar, T. J.

    2015-08-01

    In the last 40 years a wide range of molecules, including neutrals, cations and anions, containing up to 13 atoms—in addition to detections of {{\\text{C}}60} and {{\\text{C}}70} —have been found in the harsh environment of the interstellar medium. The exquisite sensitivity and very high spectral and, more recently, spatial resolution, of modern telescopes has enabled the physics of star formation to be probed through rotational line emission. In this article, I review the basic properties of interstellar clouds and the processes that initiate the chemistry and generate chemical complexity, particularly in regions of star and planet formation. Our understanding of astrochemistry has evolved over the years. Before 1990, the general consensus was that molecules were formed in binary, gas-phase, or volume, reactions, most importantly ion-neutral reactions despite the very low ionization in clouds. Since then, observations have indicated unambiguously that there is also a contribution from surface processes, particularly on the icy mantles that form around refractory grain cores in cold, dense gas. The balance between these two processes depends on particular physical conditions and can vary during the life cycle of a particular volume of interstellar cloud. The complex chemistry that occurs in space is driven mostly through interaction of the gas with cosmic ray protons, a source of ionization that enables a rich ion-neutral chemistry. In addition, I show that the interaction between the gas and the dust in cold, dense regions also leads to additional chemical complexity through reactions that take place in ices at only a few tens of degrees above absolute zero. Although densities are low compared to those in terrestrial environments, the extremely long life times of interstellar clouds and their enormous sizes, enable complex molecules to be synthesised and detected. I show that in some instances, particularly in reactions involving deuterium, the rotational populations of reactants, together with spin-selection rules, can determine the detailed abundances. Although the review is mainly focused on regions associated with star formation, I also consider chemistry in other interesting astronomical regions—in the early Universe and in the envelopes formed by mass loss during the final stages of stellar evolution.

  20. Handling of Polyvinylsiloxane Versus Polyether for Implant Impressions.

    PubMed

    Farhan, Daniel; Lauer, Wiebke; Heydecke, Guido; Aarabi, Ghazal; Reissmann, Daniel R

    2016-01-01

    This study compared polyvinylsiloxane with polyether in handling dental impressions. Each participant (N = 39) made four impressions, each a combination of pickup and reseating techniques with polyether or polyvinylsiloxane, of one implant cast representing a specific clinical situation (tooth gaps, limited residual dentition, or edentulous jaw). Handling of impressions was subsequently rated by using a 12-item questionnaire with 100-mm visual analog scales. While mean satisfaction scores were higher for polyvinylsiloxane than for polyether (69.5/63.0, P < .001), differences among subgroups were statistically significant only for pickup technique, limited residual dentition, and edentulous jaw. Implant impressions made with polyvinylsiloxane using a pickup technique seem to be the best option for most clinical situations.

  1. Precision imaging of 4.4 MeV gamma rays using a 3-D position sensitive Compton camera.

    PubMed

    Koide, Ayako; Kataoka, Jun; Masuda, Takamitsu; Mochizuki, Saku; Taya, Takanori; Sueoka, Koki; Tagawa, Leo; Fujieda, Kazuya; Maruhashi, Takuya; Kurihara, Takuya; Inaniwa, Taku

    2018-05-25

    Imaging of nuclear gamma-ray lines in the 1-10 MeV range is far from being established in both medical and physical applications. In proton therapy, 4.4 MeV gamma rays are emitted from the excited nucleus of either 12 C* or 11 B* and are considered good indicators of dose delivery and/or range verification. Further, in gamma-ray astronomy, 4.4 MeV gamma rays are produced by cosmic ray interactions in the interstellar medium, and can thus be used to probe nucleothynthesis in the universe. In this paper, we present a high-precision image of 4.4 MeV gamma rays taken by newly developed 3-D position sensitive Compton camera (3D-PSCC). To mimic the situation in proton therapy, we first irradiated water, PMMA and Ca(OH)2 with a 70 MeV proton beam, then we identified various nuclear lines with the HPGe detector. The 4.4 MeV gamma rays constitute a broad peak, including single and double escape peaks. Thus, by setting an energy window of 3D-PSCC from 3 to 5 MeV, we show that a gamma ray image sharply concentrates near the Bragg peak, as expected from the minimum energy threshold and sharp peak profile in the cross section of 12 C(p,p) 12 C*.

  2. Is the dissociation of coronene in stellar winds a source of molecular hydrogen? application to the HD 44179 nebula

    NASA Astrophysics Data System (ADS)

    Champeaux, J.-P.; Moretto-Capelle, P.; Cafarelli, P.; Deville, C.; Sence, M.; Casta, R.

    2014-06-01

    The physical interactions of polycyclic aromatic hydrocarbons (PAHs) with stellar particular radiation are key to understanding the life cycle of PAHs, their abundance and their role in the complex astrochemistry of the interstellar medium. In this context, we present experimental results on the ionization/fragmentation of isolated coronene by a 100-keV proton, reproducing interactions between stellar winds and PAH molecules in the star's environment. In particular, we show, without ambiguity, that such ionization/fragmentation induces intense dehydrogenation processes for which the loss of even numbers of hydrogen atoms and the detection of CH_2+ cations as a possible H2 precursor strongly suggest the formation of H2 neutral molecules along a scenario revealed by a quantum chemical calculation. We have evaluated the H2 emission cross-section from the coronene/proton interaction at 100 and 1.6 keV to be 2.97 × 10-16 and 3.3 × 10-16 cm2, respectively. A qualitative discussion on the formation rate of H2 in the HD 44179 Red Rectangle (RR) nebula leads to the conclusion that such processes could be very efficient, especially inside planetary nebulae rich in PAH molecules interacting with high proton mass-loss rate stars (such as post-asymptotic giant branch stars) or high velocity jets produced by an accretion disc.

  3. Problematization as Activism: Disrupting the Neoliberal Education Project through the "Work of Thought"

    ERIC Educational Resources Information Center

    Pickup, Austin

    2017-01-01

    In this article, Austin Pickup centers Foucault's concept of "problematization" as an important methodological tool for displacing neoliberalism from its stable perch atop a perceived absence of other possibilities. According to Pickup, the genealogical analysis envisaged and practiced by Foucault opens up new avenues by indicating not…

  4. Implementing PICKUP in LEA Colleges under the Education Reform Act 1988. A Guidance Manual.

    ERIC Educational Resources Information Center

    Thomas, David

    This manual on the provision of Professional, Industrial, and Commercial Updating (PICKUP) programming by colleges in England, Scotland, and Wales consists of a summary of recommendations, an introduction, 8 sections, and 11 appendices. Section 1 discusses planning; the requirements of the 1988 Education Reform Act; provision of programming;…

  5. RF Telemetry System for an Implantable Bio-MEMS Sensor

    NASA Technical Reports Server (NTRS)

    Simons, Rainee N.; Hall, David G.; Miranda, Felix A.

    2004-01-01

    In this paper, a novel miniature inductor and a pick-up antenna for contact less powering and RF telemetry from implantable bio-MEMS sensors are presented. The design of the inductor and the pick-up antenna are discussed. In addition, the measured characteristics at the design frequency of 330 MHz have been shown.

  6. 47 CFR 74.1290 - FM translator and booster station information available on the Internet.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... Additional orders by FCC (All Services) 74.28 Antenna, Directional (Aural STL/Relays) 74.536 Antenna location... frequencies (remote broadcast pickup) 74.402 Automatic relay stations (Remote pickup) 74.436 Avoidance of....1201 Directional antenna required (Aural STL/Relays) 74.536 E Emergency information Broadcasting (All...

  7. Re-examining the Non-Linear Moisture-Precipitation Relationship over the Tropical Oceans

    PubMed Central

    Rushley, S. S.; Kim, D.; Bretherton, C. S.; Ahn, M.-S.

    2018-01-01

    Bretherton et al. (2004) used the Special Sensor Microwave Imager (SSM/I) version 5 product to derive an exponential curve that describes the relationship between precipitation and column relative humidity (CRH) over the tropical oceans. The curve, which features a precipitation pickup at a CRH of about 0.75 and a rapid increase of precipitation with CRH after the pickup, has been widely used in the studies of the tropical atmosphere. This study re-examines the moisture-precipitation relationship by using the version 7 SSM/I data, in which several biases in the previous version are corrected, and evaluates the relationship in the Coupled Model Intercomparison Project phase 5 (CMIP5) models. In the revised exponential curve derived using the updated satellite data, the precipitation pick-up occurs at a higher CRH (~0.8), and precipitation increases more slowly with CRH than in the previous curve. In most CMIP5 models, the precipitation pickup is too early due to the common model bias of overestimated (underestimated) precipitation in the dry (wet) regime. PMID:29503484

  8. Normative values and the effects of age, gender, and handedness on the Moberg Pick-Up Test.

    PubMed

    Amirjani, Nasim; Ashworth, Nigel L; Gordon, Tessa; Edwards, David C; Chan, K Ming

    2007-06-01

    The Moberg Pick-Up Test is a standardized test for assessing hand dexterity. Although reduction of sensation in the hand occurs with aging, the effect of age on a subject's performance of the Moberg Pick-Up Test has not been examined. The primary goal of this study was to examine the impact of aging and, secondarily, the impact of gender and handedness, on performance of the Moberg Pick-Up Test in 116 healthy subjects. The average time to complete each of the four subsets of the test was analyzed using the Kruskal-Wallis, Mann-Whitney U, and Wilcoxon signed-rank tests. The results show that hand dexterity of the subjects was significantly affected by age, with young subjects being the fastest and elderly subjects the slowest. Women accomplished the test faster than men, and task performance with the dominant hand was faster than with the non-dominant hand. Use of normative values established based on age and gender is a valuable objective tool to gauge hand function in patients with different neurologic disorders.

  9. Capacitively readout multi-element sensor array with common-mode cancellation

    DOEpatents

    Britton, Jr., Charles L.; Warmack, Robert J.; Bryan, William L.; Jones, Robert L.; Oden, Patrick Ian; Thundat, Thomas

    2001-01-01

    An improved multi-element apparatus for detecting the presence of at least one chemical, biological or physical component in a monitored area comprising an array or single set of the following elements: a capacitive transducer having at least one cantilever spring element secured thereto, the cantilever element having an area thereof coated with a chemical having an affinity for the component to be detected; a pick-up plate positioned adjacent to the cantilever element at a distance such that a capacitance between the cantilever element and the pick-up plate changes as the distance between the cantilever element and the pick-up plate varies, the change in capacitance being a measurable variation; a detection means for measuring the measurable variation in the capacitance between the cantilever element and the pick-up plate that forms a measurement channel signal; and at least one feedback cantilever spring element positioned apart from the coated cantilever element, the cantilever element substantially unaffected by the component being monitored and providing a reference channel signal to the detection means that achieves a common mode cancellation between the measurement channel signal and reference channel signal.

  10. The interaction of hydrogen with the {010} surfaces of Mg and Fe olivine as models for interstellar dust grains: a density functional theory study

    PubMed Central

    Downing, C. A.; Ahmady, B.; Catlow, C. R. A.; de Leeuw, N. H.

    2013-01-01

    There is no consensus as yet to account for the significant presence of water on the terrestrial planets, but suggested sources include direct hydrogen adsorption from the parent molecular cloud after the planets’ formation, and delivery of hydrous material via comets or asteroids external to the zone of the terrestrial planets. Alternatively, a more recent idea is that water may have directly adsorbed onto the interstellar dust grains involved in planetary formation. In this work, we use electronic structure calculations based on the density functional theory to investigate and compare the bulk and {010} surface structures of the magnesium and iron end-members of the silicate mineral olivine, namely forsterite and fayalite, respectively. We also report our results on the adsorption of atomic hydrogen at the mineral surfaces, where our calculations show that there is no activation barrier to the adsorption of atomic hydrogen at these surfaces. Furthermore, different surface sites activate the atom to form either adsorbed hydride or proton species in the form of hydroxy groups on the same surface, which indicates that these mineral surfaces may have acted as catalytic sites in the immobilization and reaction of hydrogen atoms to form dihydrogen gas or water molecules. PMID:23734054

  11. Extraterrestrial Radiation Chemistry and Molecular Astronomy

    NASA Technical Reports Server (NTRS)

    Hudson, Reggie L.; Moore, Marla H.

    2009-01-01

    Astronomical observations of both solar system and interstellar regions have revealed a rich chemical inventory that includes most classes of organic molecules and selected inorganics. For example, gas-phase ethylene glycol and SOz have been observed by astronomers, while solidphase detections include OCS, H2O2 , and the cyanate anion.' All of these are found in environments that are, by earthly standards, exceedingly hostile: temperatures of 10 - 100 K, miniscule densities, and near-ubiquitous ionizing-radiation fields. Beyond the simplest chemical species, these conditions have made it difficult-to-impassible to account for the observed molecular abundances using gas-phase chemistry, suggesting solid-phase reactions play an important role. In extraterrestrial environments, cosmic rays, UV photons, and magnetospheric radiation all drive chemical reactions, even at cryogenic temperatures. To study this chemistry, radiation astrochemists conduct experiments on icy materials, frozen under vacuum and exposed to sources such as keV electrons and MeV protons. Compositional changes usually are followed with IR spectroscopy and, in selected cases, more-sensitive mass-spectral techniques. This talk will review some recent results on known and suspected extraterrestrial molecules and ions. Spectra and reaction pathways will be presented, and predictions made for interstellar chemistry and the chemistry of selected solar system objects. Some past radiation-chemical contributions, and future needs, will be explored.

  12. Photochemistry of Coronene in Cosmic Water Ice Analogs at Different Concentrations

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    De Barros, A. L. F.; Mattioda, A. L.; Ricca, A.

    This work presents the photochemistry of ultraviolet (UV) irradiated coronene in water ices at 15 K studied using mid-infrared Fourier transform (FTIR) spectroscopy for C{sub 24}H{sub 12}:H{sub 2}O at concentrations of (1:50), (1:150), (1:200), (1:300), and (1:400). Previous UV irradiation studies of anthracene:H{sub 2}O, pyrene:H{sub 2}O, and benzo[ghi]perylene:H{sub 2}O ices at 15 K have shown that aromatic alcohols and ketones, as well as CO{sub 2} and H{sub 2}CO, are formed at very low temperatures. Likewise, here, in addition to the coronene cation, hydroxy-, keto-, and protonated coronene (coronene H{sup +}) are formed. The rate constants for the decay of neutralmore » coronene and for the formation of photoproducts have been derived. It is shown that Polycyclic Aromatic Hydrocarbons (PAHs) and their UV induced PAH:H{sub 2}O photoproducts have mid-infrared spectroscopic signatures in the 5–8 μ m region that can contribute to the interstellar ice components described by Boogert et al. as C1–C5. Our results suggest that oxygenated and hydrogenated PAHs could be in UV-irradiated regions of the interstellar medium where water-rich ices are important.« less

  13. Expertise and the spatio-temporal characteristics of anticipatory information pick-up from complex movement patterns.

    PubMed

    Müller, Sean; Abernethy, Bruce; Eid, Michael; McBean, Rohan; Rose, Matthew

    2010-01-01

    Groups of high- (n = 14), intermediate- (n = 12), and low-skilled (n = 15) cricket batsmen participated in two experiments to examine expertise-related differences in anticipatory information pick-up that combined temporal and spatial occlusion methodologies. In experiment 1 participants were shown video displays of a bowler delivering one of three different types of delivery with the display manipulated so that only selected local features of the bowler's movement pattern (bowling hand, bowling hand and arm, trunk, lower body, or whole body) were visible and then only for specific time periods prior to ball release. Only the highly-skilled players were able to produce better-than-chance predictions of ball type and then only under a limited set of display conditions. Information from bowling hand and arm cues was particularly critical although continuous visibility of these cues was apparently not essential for information pick-up. In experiment 2 the order in which particular features were made visible throughout the bowler's movement pattern was varied in an attempt to find the sequence of cues that was most favourable for effective information pick-up. The necessity in this experiment to switch vision between different features eliminated the highly-skilled players' capability to anticipate. Expert anticipation is dependent on sensitivity to information arising from a select set of local cues, and forced attentional switches between different cues negate effective information pick-up and, with it, the expert advantage.

  14. Numerical study of alfvénic wave activity in the solar wind as a cause for pitch angle scattering with focus on kinetic processes

    NASA Astrophysics Data System (ADS)

    Keilbach, D.; Berger, L.; Drews, C.; Marsch, E.; Wimmer-Schweingruber, R. F.

    2017-12-01

    Recent studies, that determined the inflow longitude of the local interstellar medium from the anisotropy of interstellar pickup ion (PUI) radial velocity, have once again raised the question, how transport effects and especially wave activity in the solar wind modifies the velocity distribution function of PUIs.This study investigates the modification of an oxygen PUI torus distribution by alfvénic waves qualitatively with a numerical approach. The focus of this study is to understand this modification kinetically, which means, that instead of describing the PUI transport through diffusion approaches, we trace the trajectories of test particles in pitch angle space with a time resolution of at least 100 time steps per gyro orbit in order to find first principles of wave particle interactions on the most basic scale.Therefore we have implemented a Leapfrog solver of the Lorentz-Newton equations of motion for a charged test particle in a electro-magnetic field. The alfvénic waves were represented through a continuous circularly polarized wave superimposed to a constant 5 nT background magnetic field. In addition an electric field arising from induction has been added to the simulation's boundary conditions. The simulation code computes the particles' trajectories in the solar wind bulk system.Upon interaction with mono frequent single-frequency waves, the particles are found to perform stationary trajectories in pitch angle space, so that the pitch angle distribution of a conglomerate of test particles does not experience a systematic broadening over time. Also the particles do not react most strongly with waves at resonant frequencies, since the pitch angle modification by the waves sweeps their parallel velocity out of resonance quickly. However, within frequencies close to first order resonance, strong interactions between waves and particles are observed.Altogether the framework of our simulation is readily expandable to simulate additional effects, which may modify the test particles' pitch angle distribution strongly (e.g. collisions with solar wind particles or gradient drifts). So far we have expanded the simulation to support intermittent waves, where we have observed, that the pitch angle distribution of the test particles broadens systematically over time.

  15. Power, Space and Resistance: Foucauldian Reading of "The Pickup"

    ERIC Educational Resources Information Center

    Babapi, Nasrin; Parvaneh, Farid

    2015-01-01

    The present article is an attempt to read Nadin Gordimer's "The Pickup" from the lens of Foucault. It starts with Foucault's assumption that power is everything and any kind of relation in the world is defined through the discourses of power. It discusses the techniques through which the power dominates its authority over the subjects…

  16. Develop and pilot test smart phone/tablet app for paratransit demand-response passenger pick-up alerts to assist passengers with disabilities and reduce no-shows and dwell times.

    DOT National Transportation Integrated Search

    2016-12-01

    This research produced an arrival notification system for paratransit passengers with disabilities. Almost all existing curb-to-curb paratransit services have significantly large pick-up time window ranging from 20 to 40 minutes from the scheduled ti...

  17. What Skills and Tactics Are Needed to Play Adult Pick-Up Basketball Games?

    ERIC Educational Resources Information Center

    Wang, Jianyu; Liu, Wenhao; Moffit, Jeffrey

    2010-01-01

    The purpose of this study was to examine skill levels and performance patterns of regular players of pick-up basketball games. By a survey, 65 participants were identified as regular players and participated in the study. An observational instrument used to analyze game performance of the participants was developed and both content and construct…

  18. A Model Recycling Program: UNC Takes Action as Landfill Space Shrinks and Costs Rise.

    ERIC Educational Resources Information Center

    Sherman, Rhonda L.

    1991-01-01

    The University of North Carolina responded to escalating waste disposal costs and shrinking landfill space with a structured program of recycling, including a mobile recycling drop, student family housing recycling, a newspaper drop-off site, high-volume glass pick-up, high-volume newspaper pick-up, and cardboard recycling. Campus-wide cooperation…

  19. Acceleration and Pickup Ring of Energetic Electrons Observed in Relativistic Magnetic Reconnection Simulations

    NASA Astrophysics Data System (ADS)

    Ping, Y. L.; Zhong, J. Y.; Wang, X. G.; Sheng, Z. M.; Zhao, G.

    2017-11-01

    Pickup ring of energetic electrons found in relativistic magnetic reconnection (MR) driven by two relativistic intense femtosecond laser pulses is investigated by particle simulation in 3D geometry. Magnetic reconnection processes and configurations are characterized by plasma current density distributions at different axial positions. Two helical structures associated with the circular polarization of laser pulses break down in the reconnection processes to form a current sheet between them, where energetic electrons are found to pile up and the outflow relativistic electron jets are observed. In the field line diffusion region, electrons are accelerated to multi-MeV with a flatter power-law spectrum due to MR. The development of the pickup ring of energetic electrons is strongly dependent upon laser peak intensities.

  20. Single-cell isolation using a DVD optical pickup

    PubMed Central

    Kasukurti, A.; Potcoava, M.; Desai, S.A.; Eggleton, C.; Marr, D. W. M.

    2011-01-01

    A low-cost single-cell isolation system incorporating a digital versatile disc burner (DVD RW) optical pickup has been developed. We show that these readily available modules have the required laser power and focusing optics to provide a steady Gaussian beam capable of optically trapping micron-sized colloids and red blood cells. Utility of the pickup is demonstrated through the non-destructive isolation of such particles in a laminar-flow based microfluidic device that captures and translates single microscale objects across streamlines into designated channel exits. In this, the integrated objective lens focusing coils are used to steer the optical trap across the channel, resulting in the isolation of colloids and red blood cells using a very inexpensive off-the-shelf optical component. PMID:21643294

  1. Large neighborhood search for the double traveling salesman problem with multiple stacks

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bent, Russell W; Van Hentenryck, Pascal

    This paper considers a complex real-life short-haul/long haul pickup and delivery application. The problem can be modeled as double traveling salesman problem (TSP) in which the pickups and the deliveries happen in the first and second TSPs respectively. Moreover, the application features multiple stacks in which the items must be stored and the pickups and deliveries must take place in reserve (LIFO) order for each stack. The goal is to minimize the total travel time satisfying these constraints. This paper presents a large neighborhood search (LNS) algorithm which improves the best-known results on 65% of the available instances and ismore » always within 2% of the best-known solutions.« less

  2. Improved Simulation of the Pre-equilibrium Triton Emission in Nuclear Reactions Induced by Nucleons

    NASA Astrophysics Data System (ADS)

    Konobeyev, A. Yu.; Fischer, U.; Pereslavtsev, P. E.; Blann, M.

    2014-04-01

    A new approach is proposed for the calculation of non-equilibrium triton energy distributions in nuclear reactions induced by nucleons of intermediate energies. It combines models describing the nucleon pick-up, the coalescence and the triton knock-out processes. Emission and absorption rates for excited particles are represented by the pre-equilibrium hybrid model. The model of Sato, Iwamoto, Harada is used to describe the nucleon pick-up and the coalescence of nucleons from exciton configurations starting from (2p,1h) states. The contribution of the direct nucleon pick-up is described phenomenologically. Multiple pre-equilibrium emission of tritons is accounted for. The calculated triton energy distributions are compared with available experimental data.

  3. The Transport of Density Fluctuations Throughout the Heliosphere

    NASA Technical Reports Server (NTRS)

    Zank, G. P.; Jetha, N.; Hu, Q.; Hunana, P.

    2012-01-01

    The solar wind is recognized as a turbulent magnetofluid, for which the properties of the turbulent velocity and magnetic field fluctuations are often described by the equations of incompressible magnetohydrodynamics (MHD). However, low-frequency density turbulence is also ubiquitous. On the basis of a nearly incompressible formulation of MHD in the expanding inhomogeneous solar wind, we derive the transport equation for the variance of the density fluctuations (Rho(exp 2)). The transport equation shows that density fluctuations behave as a passive scalar in the supersonic solar wind. In the absence of sources of density turbulence, such as within 1AU, the variance (Rho(exp 2)) approximates r(exp -4). In the outer heliosphere beyond 1 AU, the shear between fast and slow streams, the propagation of shocks, and the creation of interstellar pickup ions all act as sources of density turbulence. The model density fluctuation variance evolves with heliocentric distance within approximately 300 AU as (Rho(exp 2)) approximates r(exp -3.3) after which it flattens and then slowly increases. This is precisely the radial profile for the density fluctuation variance observed by Voyager 2. Using a different analysis technique, we confirm the radial profile for Rho(exp 2) of Bellamy, Cairns, & Smith using Voyager 2 data. We conclude that a passive scalar description for density fluctuations in the supersonic solar wind can explain the density fluctuation variance observed in both the inner and the outer heliosphere.

  4. On the Voyager 1 Zero Radial Velocity Measurements in the Inner Heliosheath

    NASA Astrophysics Data System (ADS)

    Pogorelov, N. V.; Borovikov, S. N.; Kryukov, I.; Zank, G. P.

    2011-12-01

    Theoretical analysis of the Voyager 1 data revealed a very small, or even negative, value of the solar wind (SW) radial velocity component. This should not be surprising if we take into account time-dependent processes that take place in the inner heliosheath (IHS). We analyze solar cycle modeling of the SW interaction with the local interstellar medium (LISM) and demonstrate the existence of small and negative values of the SW radial velocity. It shown that, in reality, a similar picture can be observed in the outer heliosheath (OHS), where on the contrary, extended regions of the positive radial velocity are observed. Another scenario discussed in this talk is related to effects of transients, such as global merged interaction regions and corotating interacting regions. Numerical results are obtained with the SW-LISM interaction model developed in the UAHuntsville and implemented in the Multi-Scale Fluid-Kinetic Simulation Suite. This model treats ions magnetohydrodynamically while the transport of neutral atoms is performed kinetically by solving the Boltzmann equation with a Monte Carlo approach or using a multi-fluid approach developed in mid-90's by G. P. Zank. Pickup ions (PUIs) can be treated as a separate fluid. The evolution of the PUI-generated turbulence is addressed on the differential level by adding three additional equations, which are solved self-consistently with the MHD-kinetic system of equations.

  5. New Measurements of Suprathermal Ions, Energetic Particles, and Cosmic Rays in the Outer Heliosphere from the New Horizons PEPSSI Instrument

    NASA Astrophysics Data System (ADS)

    Hill, M. E.; Kollmann, P.; McNutt, R. L., Jr.; Stern, A.; Weaver, H. A., Jr.; Young, L. A.; Olkin, C.; Spencer, J. R.

    2017-12-01

    During the period from January 2012 to December 2017 the New Horizons spacecraft traveled from 22 to 41 AU from the Sun, making nearly continuous interplanetary plasma and particle measurements utilizing the SWAP and PEPSSI instruments. We report on newly extended measurements from PEPSSI (Pluto Energetic Particle Spectrometer Science Investigation) that now bring together suprathermal particles above 2 keV/nuc (including interstellar pickup ions), energetic particles with H, He, and O composition from 30 keV to 1 MeV, and cosmic rays above 65 MeV (with effective count-rate-limited upper energy of 1 GeV). Such a wide energy range allows us to look at the solar wind structures passing over the spacecraft, the energetic particles that are often accelerated by these structures, and the suppression of cosmic rays resulting from the increased turbulence inhibiting cosmic ray transport to the spacecraft position (i.e., Forbush decreases). This broad perspective provides simultaneous, previously unattainable diagnostics of outer heliospheric particle dynamics and acceleration. Besides the benefit of being recent, in-ecliptic measurements, unlike the historic Voyager 1 and 2 spacecraft, these PEPSSI observations are also totally unique in the suprathermal range; in this region only PEPSSI can span the suprathermal range, detecting a population that is a linchpin to understanding the outer heliosphere.

  6. First Mass-resolved Measurement of High-Energy Cosmic-Ray Antiprotons

    NASA Astrophysics Data System (ADS)

    Bergström, D.; Boezio, M.; Carlson, P.; Francke, T.; Grinstein, S.; Khalchukov, F.; Suffert, M.; Hof, M.; Kremer, J.; Menn, W.; Simon, M.; Stephens, S. A.; Ambriola, M. L.; Bellotti, R.; Cafagna, F.; Ciacio, F.; Circella, M.; De Marzo, C.; Finetti, N.; Papini, P.; Piccardi, S.; Spillantini, P.; Bartalucci, S.; Ricci, M.; Casolino, M.; De Pascale, M. P.; Morselli, A.; Picozza, P.; Sparvoli, R.; Bonvicini, V.; Schiavon, P.; Vacchi, A.; Zampa, N.; Mitchell, J. W.; Ormes, J. F.; Streitmatter, R. E.; Bravar, U.; Stochaj, S. J.

    2000-05-01

    We report new results for the cosmic-ray antiproton-to-proton ratio from 3 to 50 GeV at the top of the atmosphere. These results represent the first measurements, on an event-by-event basis, of mass-resolved antiprotons above 18 GeV. The results were obtained with the NMSU-WIZARD/CAPRICE98 balloon-borne magnet spectrometer equipped with a gas-RICH (Ring-Imaging Cerenkov) counter and a silicon-tungsten imaging calorimeter. The RICH detector was the first ever flown that is capable of identifying charge-one particles at energies above 5 GeV. The spectrometer was flown on 1998 May 28-29 from Fort Sumner, New Mexico. The measured p/p ratio is in agreement with a pure secondary interstellar production.

  7. The Notion of Unhomeliness in "The Pickup": Homi Bhabha Revisited

    ERIC Educational Resources Information Center

    Rostami, Ali Akbar Moghaddasi; Parvaneh, Farid

    2016-01-01

    This study centers on two characters in Nadine Gordimer's novel "The Pickup": Abdu and Julie. Abdu is an illegal immigrant in South Africa and is deported from there to his homeland. Julie who is white woman from a high social class in South Africa meets and falls in love with Abdu and moves to Abdu's unknown Islamic country. She finds…

  8. Survey of pickup ion signatures in the vicinity of Titan using CAPS/IMS

    NASA Astrophysics Data System (ADS)

    Regoli, L. H.; Coates, A. J.; Thomsen, M. F.; Jones, G. H.; Roussos, E.; Waite, J. H.; Krupp, N.; Cox, G.

    2016-09-01

    Pickup ion detection at Titan is challenging because ion cyclotron waves are rarely detected in the vicinity of the moon. In this work, signatures left by freshly produced pickup heavy ions (m/q ˜ 16 to m/q ˜ 28) as detected in the plasma data by the Cassini Plasma Spectrometer/Ion Mass Spectrometer (CAPS/IMS) instrument on board Cassini are analyzed. In order to discern whether these correspond to ions of exospheric origin, one of the flybys during which the reported signatures were observed is investigated in detail. For this purpose, ion composition data from time-of-flight measurements and test particle simulations to constrain the ions' origin are used. After being validated, the detection method is applied to all the flybys for which the CAPS/IMS instrument gathered valid data, constraining the region around the moon where the signatures are observed. The results reveal an escape region located in the anti-Saturn direction as expected from the nominal corotation electric field direction. These findings provide new constraints for the area of freshly produced pickup ion escape, giving an approximate escape rate of 3.3-2+3×1023 ions· s-1.

  9. First-Year Wilkinson Microwave Anisotropy Probe (WMAP) Observations: Galactic Signal Contamination from Sidelobe Pickup

    NASA Astrophysics Data System (ADS)

    Barnes, C.; Hill, R. S.; Hinshaw, G.; Page, L.; Bennett, C. L.; Halpern, M.; Jarosik, N.; Kogut, A.; Limon, M.; Meyer, S. S.; Tucker, G. S.; Wollack, E.; Wright, E. L.

    2003-09-01

    Since the Galactic center is ~1000 times brighter than fluctuations in the cosmic microwave background (CMB), CMB experiments must carefully account for stray Galactic pickup. We present the level of contamination due to sidelobes for the first-year CMB maps produced by the Wilkinson Microwave Anisotropy Probe (WMAP) observatory. For each radiometer, full 4π sr antenna gain patterns are determined from a combination of numerical prediction and ground-based and space-based measurements. These patterns are convolved with the WMAP first-year sky maps and observatory scan pattern to generate the expected sidelobe signal contamination, for both intensity and polarized microwave sky maps. When the main beams are outside of the Galactic plane, we find rms values for the expected sidelobe pickup of 15, 2.1, 2.0, 0.3, and 0.5 μK for the K, Ka, Q, V, and W bands, respectively. Except for at the K band, the rms polarized contamination is <<1 μK. Angular power spectra of the Galactic pickup are presented. WMAP is the result of a partnership between Princeton University and the NASA Goddard Space Flight Center. Scientific guidance is provided by the WMAP Science Team.

  10. Iogenic Plasma and its Rotation-Driven Transport in Jupiter's Magnetosphere

    NASA Technical Reports Server (NTRS)

    Smyth, William H.

    2001-01-01

    Model calculations are reported for the Iogenic plasma source created by atomic oxygen and sulfur above Io's exobase in the corona and extended clouds (Outer Region). On a circumplanetary scale, two-dimensional distributions produced by integrating the proper three dimensional rate information for electron impact and charge exchange processes along the magnetic field lines are presented for the pickup ion rates, the net-mass and total-mass loading rates, the mass per unit magnetic flux rate, the pickup conductivity, the radial pickup current, and the net-energy loading rate for the plasma torus. All of the two-dimensional distributions are highly peaked at Io's location and hence highly asymmetric about Jupiter. The Iogenic plasma source is also calculated on a much smaller near-Io scale to investigate the structure of the highly peak rates centered about lo's instantaneous location. The Iogenic plasma source for the Inner Region (pickup rates produced below Io's exobase) is, however, expected to be the dominant source near lo for the formation of the plasma torus ribbon and to be a comparable source, if not a larger contributor, to the energy budget of the plasma torus, so as to provide the necessary power to sustain the plasma torus radiative loss rate.

  11. Pickup Ion Distributions from Three Dimensional Neutral Exospheres

    NASA Technical Reports Server (NTRS)

    Hartle, R. E.; Sarantos, M.; Sittler, E. C., Jr.

    2011-01-01

    Pickup ions formed from ionized neutral exospheres in flowing plasmas have phase space distributions that reflect their source's spatial distributions. Phase space distributions of the ions are derived from the Vlasov equation with a delta function source using three.dimensional neutral exospheres. The ExB drift produced by plasma motion picks up the ions while the effects of magnetic field draping, mass loading, wave particle scattering, and Coulomb collisions near a planetary body are ignored. Previously, one.dimensional exospheres were treated, resulting in closed form pickup ion distributions that explicitly depend on the ratio rg/H, where rg is the ion gyroradius and H is the neutral scale height at the exobase. In general, the pickup ion distributions, based on three.dimensional neutral exospheres, cannot be written in closed form, but can be computed numerically. They continue to reflect their source's spatial distributions in an implicit way. These ion distributions and their moments are applied to several bodies, including He(+) and Na(+) at the Moon, H(+2) and CH(+4) at Titan, and H+ at Venus. The best places to use these distributions are upstream of the Moon's surface, the ionopause of Titan, and the bow shock of Venus.

  12. Angle detector

    NASA Technical Reports Server (NTRS)

    Parra, G. T. (Inventor)

    1978-01-01

    An angle detector for determining a transducer's angular disposition to a capacitive pickup element is described. The transducer comprises a pendulum mounted inductive element moving past the capacitive pickup element. The capacitive pickup element divides the inductive element into two parts L sub 1 and L sub 2 which form the arms of one side of an a-c bridge. Two networks R sub 1 and R sub 2 having a plurality of binary weighted resistors and an equal number of digitally controlled switches for removing resistors from the networks form the arms of the other side of the a-c bridge. A binary counter, controlled by a phase detector, balances the bridge by adjusting the resistance of R sub 1 and R sub 2. The binary output of the counter is representative of the angle.

  13. Is passenger vehicle incompatibility still a problem?

    PubMed

    Teoh, Eric R; Nolan, Joseph M

    2012-01-01

    Passenger cars often are at a disadvantage when colliding with light trucks (sport utility vehicles [SUVs] and pickups) due to differences in mass, vehicle structural alignment, and stiffness. In 2003, vehicle manufacturers agreed to voluntary measures to improve compatibility, especially in front-to-front and front-to-side crashes, with full adherence to be achieved by September 2009. This study examined whether fatality rates are consistent with the expected benefit of this agreement. Analyses examined 2 death rates for 1- to 4-year-old passenger vehicles during 2000-2001 and 2008-2009 in the United States: occupant deaths per million registered vehicle years in these vehicles and deaths in other cars that collided with these vehicles in 2-vehicle crashes per million registered vehicle years. These rates were computed for each study period and for cars/minivans (referred to as cars), SUVs, and pickups by curb weight (in 500-pound increments). The latter death rate, referred to as the car crash partner death rate, also was computed for front-to-front crashes and front-to-side crashes where the front of the 1- to 4-year-old vehicle struck the side of the partner car. In both study periods, occupant death rates generally decreased for each vehicle type both with increasing curb weight and over time. SUVs experienced the greatest declines compared with cars and pickups. This is due in part to the early fitment of electronic stability control in SUVs, which drastically reduced the incidence of single-vehicle rollover crashes. Pickups had the highest death rates in both study periods. Car crash partner death rates generally declined over time for all vehicle categories but more steeply for SUVs and pickups colliding with cars than for cars colliding with cars. In fact, the car crash partner death rates for SUVs and cars were nearly identical during 2008-2009, suggesting that the voluntary design changes for compatibility have been effective. Car crash partner death rates also declined for pickups, but their rates were consistently the highest in both study periods. It is impossible to disentangle the individual contributions of the compatibility agreement, improved crashworthiness of cars, and other factors in reducing car crash partner fatality rates. However, the generally larger reductions in car crash partner death rates for SUVs and pickups indicate the likely benefits of the agreement. Overall, this study finds that the system of regulatory testing, voluntary industry initiatives, and consumer information testing has led to a passenger vehicle fleet that is much more compatible in crashes.

  14. Evidence for the Stochastic Acceleration of Secondary Antiprotons by Supernova Remnants

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cholis, Ilias; Hooper, Dan; Linden, Tim

    2017-01-16

    The antiproton-to-proton ratio in the cosmic-ray spectrum is a sensitive probe of new physics. Using recent measurements of the cosmic-ray antiproton and proton fluxes in the energy range of 1-1000 GeV, we study the contribution to themore » $$\\bar{p}/p$$ ratio from secondary antiprotons that are produced and subsequently accelerated within individual supernova remnants. We consider several well-motivated models for cosmic-ray propagation in the interstellar medium and marginalize our results over the uncertainties related to the antiproton production cross section and the time-, charge-, and energy-dependent effects of solar modulation. We find that the increase in the $$\\bar{p}/p$$ ratio observed at rigidities above $$\\sim$$ 100 GV cannot be accounted for within the context of conventional cosmic-ray propagation models, but is consistent with scenarios in which cosmic-ray antiprotons are produced and subsequently accelerated by shocks within a given supernova remnant. In light of this, the acceleration of secondary cosmic rays in supernova remnants is predicted to substantially contribute to the cosmic-ray positron spectrum, accounting for a significant fraction of the observed positron excess.« less

  15. Universes without the weak force: Astrophysical processes with stable neutrons

    NASA Astrophysics Data System (ADS)

    Grohs, E.; Howe, Alex R.; Adams, Fred C.

    2018-02-01

    We investigate a class of universes in which the weak interaction is not in operation. We consider how astrophysical processes are altered in the absence of weak forces, including big bang nucleosynthesis (BBN), galaxy formation, molecular cloud assembly, star formation, and stellar evolution. Without weak interactions, neutrons no longer decay, and the universe emerges from its early epochs with a mixture of protons, neutrons, deuterium, and helium. The baryon-to-photon ratio must be smaller than the canonical value in our Universe to allow free nucleons to survive the BBN epoch without being incorporated into heavier nuclei. At later times, the free neutrons readily combine with protons to make deuterium in sufficiently dense parts of the interstellar medium, and provide a power source before they are incorporated into stars. Almost all of the neutrons are incorporated into deuterium nuclei before stars are formed. As a result, stellar evolution proceeds primarily through strong interactions, with deuterium first burning into helium, and then helium fusing into carbon. Low-mass deuterium-burning stars can be long-lived, and higher-mass stars can synthesize the heavier elements necessary for life. Although somewhat different from our own, such universes remain potentially habitable.

  16. Status of the Stardust ISPE and the Origin of Four Interstellar Dust Candidates

    NASA Technical Reports Server (NTRS)

    Westphal, A. J.; Allen, C.; Ansari, A.; Bajt, S.; Bastien, R. S.; Bassim, N.; Bechtel, H. A.; Borg, J.; Brenker, F. E.; Bridges, J.; hide

    2012-01-01

    Some bulk properties of interstellar dust are known through infrared and X-ray observations of the interstellar medium. However, the properties of individual interstellar dust particles are largely unconstrained, so it is not known whether individual interstellar dust particles can be definitively distinguished from interplanetary dust particles in the Stardust Interstellar Dust Collector (SIDC) based only on chemical, mineralogical or isotopic analyses. It was therefore understood from the beginning of the Stardust Interstellar Preliminary Examination (ISPE) that identification of interstellar dust candidates would rest on three criteria - broad consistency with known extraterrestrial materials, inconsistency with an origin as secondary ejecta from impacts on the spacecraft, and consistency, in a statistical sense, of observed dynamical properties - that is, trajectory and capture speed - with an origin in the interstellar dust stream. Here we quantitatively test four interstellar dust candidates, reported previously [1], against these criteria.

  17. Somatic symptoms, sleep disturbance and psychological distress among women undergoing oocyte pick-up and in vitro fertilisation-embryo transfer.

    PubMed

    Lin, Ya-Hui; Chueh, Ke-Hsin; Lin, Jia-Ling

    2016-06-01

    This study investigated the relationship between somatic symptoms, sleep disturbance and psychological distress in women who underwent oocyte pick-up and in vitro fertilisation-embryo transfer. According to worldwide research, women receiving assisted reproductive technologies may suffer from somatic and psychological symptoms and even experience sleep disturbance. Apparently, the guilt of infecundity forces Asian women to conceal this scenario and delay the time at which they accept medical assistance and mental support. A longitudinal study. The subjects in this study were infertile female patients who received oocyte pick-up and in vitro fertilisation-embryo transfer therapies in a hospital in northern Taiwan. Data were collected via a structured questionnaire, including somatic symptoms, Pittsburgh Sleep Quality Index and a five-item brief symptom rating scale. Data were analysed using the McNemar's test, Wilcoxon Sign Rank and fully entered multiple regression with spss version 20.0 software. The mean age of 100 participants was 34·54 (SD = 3·94) years old. They experienced abdominal distention, breast engorgement, nausea, faintness, diarrhoea, sleep disturbance and psychological distress when they received in vitro fertilisation-embryo transfer; these results were apparently higher than those receiving oocyte pick-up. In addition, sleep disturbance was the most significant factor involved in psychological distress during oocyte pick-up and in vitro fertilisation-embryo transfer therapies. The most serious indicator of the women's psychological distress during oocyte pick-up and in vitro fertilisation-embryo transfer treatment is anxiety. Sleep disturbance was the most significant factor involved in the psychological distress of women having problems with conception. Assisted reproductive technologies nurses can assess women's psychological distress by caring for their sleep disturbance without directly exploring their mood state. Moreover, these medical personnel should understand infertile female patients' psychological distress is mainly associated with their sleep disturbance. Developing various strategies to improve both sleep quality and psychological distress for infertile female patients should be recognised in future studies. © 2016 John Wiley & Sons Ltd.

  18. Bioremediation of 60Co from simulated spent decontamination solutions.

    PubMed

    Rashmi, K; Sowjanya, T Naga; Mohan, P Maruthi; Balaji, V; Venkateswaran, G

    2004-07-26

    Bioremediation of 60Co from simulated spent decontamination solutions by utilizing different biomass of (Neurospora crassa, Trichoderma viridae, Mucor recemosus, Rhizopus chinensis, Penicillium citrinum, Aspergillus niger and, Aspergillus flavus) fungi is reported. Various fungal species were screened to evaluate their potential for removing cobalt from very low concentrations (0.03-0.16 microM) in presence of a high background of iron (9.33 mM) and nickel (0.93 mM) complexed with EDTA (10.3 mM). The different fungal isolates employed in this study showed a pickup of cobalt in the range 8-500 ng/g of dry biomass. The [Fe]/[Co] and [Ni]/[Co] ratios in the solutions before and after exposure to the fungi were also determined. At micromolar level the cobalt pickup by many fungi especially the mutants of N. crassa is seen to be proportional to the initial cobalt concentration taken in the solution. However, R. chinensis exhibits a low but iron concentration dependent cobalt pickup. Prior saturating the fungi with excess of iron during their growth showed the presence of selective cobalt pickup sites. The existence of cobalt specific sorption sites is shown by a model experiment with R. chinensis wherein at a constant cobalt concentration (0.034 microM) and varying iron concentrations so as to yield [Fe/Co]initial ratios in solution of 10, 100, 1000 and 287000 have all yielded a definite Co pickup capacity in the range 8-47 ng/g. The presence of Cr(III)EDTA (3 mM) in solution along with complexed Fe and Ni has not influenced the cobalt removal. The significant feature of this study is that even when cobalt is present in trace level (sub-micromolar) in a matrix of high concentration (millimolar levels) of iron, nickel and chromium, a situation typically encountered in spent decontamination solutions arising from stainless steel based primary systems of nuclear reactors, a number of fungi studied in this work showed a good sensitivity for cobalt pickup. Copyright 2004 Elsevier B.V.

  19. Detecting dysplasia using white light endoscopy or chromoendoscopy in ulcerative colitis patients without primary sclerosing cholangitis: A systematic review and meta-analysis.

    PubMed

    Azizi, Saeed; Al-Rubaye, Hussein; Turki, Mohammed Adil A; Siddiqui, Muhammad R Sameem; Shanmuganandan, Arun P; Ehsanullah, Bushra; Brar, Ranjeet; Abulafi, Al-Mutaz

    2018-04-01

    Endoscopic examinations are a vital diagnostic tool for dysplasia. Establishing the precision of different modes of examination is essential due to the disparate pick-up rates of dysplasia. The aim of this article was to establish the pick-up rates of dysplastic or cancerous lesions using white light endoscopy (WLE) and random/targeted biopsies, or chromoendoscopy (CE), in patients with ulcerative colitis (UC) without primary sclerosing (PSC) or Crohn's disease (CD). A systematic review to identify all studies up to November 2017, without language restriction, was conducted from PubMed, the Cochrane Controlled Trials Register (1960-2017), MEDLINE, CINAHL and EMBASE (1981-2017). MeSH and text word terms used included "ulcerative colitis", "dysplasia", "random biopsy", "targeted biopsy", "colonoscopy", "white light", and "chromoendoscopy". Further searches were performed using the bibliographies of these articles. All studies reporting on colonoscopy detection rates of dysplasia and cancers in UC without involvement of PSC or CD were included. There was no age restriction to include patients. Outcome data were extracted by 2 authors independently using outcome measures defined a priori. Quality assessment was performed using the Newcastle-Ottawa scales. Data were extracted and analysed according to meta-analytical techniques using comprehensive meta-analysis. The pooled overall pick-up rate of dysplastic/cancerous lesions on WLE random biopsies was 5.6% [Event rate 0.06 (0.01, 0.23), df = 4, I2 = 94%]. Using a combined random and targeted approach with WLE the incidence was 5.1% [Event rate 0.05 (0.03, 0.09), df = 4, I2 = 96%]. One study reported on CE and found a 7% pick-up rate for dysplastic lesions. Endoscopic examination of UC patients without PSC identifies dysplastic or cancerous lesions in 5-7% of cases. WLE and random biopsies may pick-up a similar number of lesions to targeted biopsies, however the number of biopsies may need to be greater to achieve this equivalence. CE has a slightly higher pick-up rate. Further comparative studies are required to strengthen the body of evidence. Copyright © 2018. Published by Elsevier Ltd.

  20. Route optimization as an instrument to improve animal welfare and economics in pre-slaughter logistics.

    PubMed

    Frisk, Mikael; Jonsson, Annie; Sellman, Stefan; Flisberg, Patrik; Rönnqvist, Mikael; Wennergren, Uno

    2018-01-01

    Each year, more than three million animals are transported from farms to abattoirs in Sweden. Animal transport is related to economic and environmental costs and a negative impact on animal welfare. Time and the number of pick-up stops between farms and abattoirs are two key parameters for animal welfare. Both are highly dependent on efficient and qualitative transportation planning, which may be difficult if done manually. We have examined the benefits of using route optimization in cattle transportation planning. To simulate the effects of various planning time windows and transportation time regulations and number of pick-up stops along each route, we have used data that represent one year of cattle transport. Our optimization model is a development of a model used in forestry transport that solves a general pick-up and delivery vehicle routing problem. The objective is to minimize transportation costs. We have shown that the length of the planning time window has a significant impact on the animal transport time, the total driving time and the total distance driven; these parameters that will not only affect animal welfare but also affect the economy and environment in the pre-slaughter logistic chain. In addition, we have shown that changes in animal transportation regulations, such as minimizing the number of allowed pick-up stops on each route or minimizing animal transportation time, will have positive effects on animal welfare measured in transportation hours and number of pick-up stops. However, this leads to an increase in working time and driven distances, leading to higher transportation costs for the transport and negative environmental impact.

  1. Primary adherence to antidepressant prescriptions in primary health care: a population-based study in Sweden.

    PubMed

    Freccero, Carl; Sundquist, Kristina; Sundquist, Jan; Ji, Jianguang

    2016-01-01

    Medical adherence is important in the treatment of depression. Primary medical adherence, i.e. patients collecting their newly prescribed medications from pharmacies, is very different depending on the drug prescribed To assess the rate of primary medical adherence in patients prescribed antidepressants and to identify characteristics that make patients less likely to pick up prescriptions. An observational study was performed using primary health care data from Sweden on patients who were prescribed antidepressants. Univariate and multivariate logistic regression was used to determine differences in pick-up rate according to patient characteristics. Pick-up rate, defined as collection of a prescription within 30 days. A total of 11 624 patients received an antidepressant prescription during the study period, and the overall pick-up rate was 85.1%. The pick-up rate differed according to country of birth: individuals born in the Middle East and other countries outside Europe had lower primary medical adherence than Swedes, with adjusted odds ratios (ORs) of 0.58 and 0.67, respectively. Patients at ages 64-79 years had a higher pick-up rate compared with those aged 25-44 years (OR 1.71). Divorced patients had a lower rate compared with married patients (OR 0.80). Immigrants from the Middle East and other countries outside Europe and younger and divorced patients had lower primary medical adherence, which calls for clinical attention and preventive measures. KEY POINTS Primary medical adherence is important in the treatment of depression. Are patient characteristics associated with primary medical adherence? The overall primary medical adherence rate was 85%. The rate differed by country of birth, age at diagnosis of depression, and marital status. Clinical attention is needed in patients who do not pick up their antidepressants.

  2. Influence of color on dielectric properties of marinated poultry breast meat.

    PubMed

    Samuel, D; Trabelsi, S

    2012-08-01

    The dielectric behavior of foods when exposed to radio-frequency and microwave electric fields is highly influenced by moisture content and the degree of water binding with constituents of the food materials. The ability to correlate specific food quality characteristics with the dielectric properties can lead to the development of rapid, nondestructive techniques for such quality measurements. Water-holding capacity is a critical attribute in meat quality. Up to 50% of raw poultry meat in the United States is marinated with mixtures of water, salts, and phosphates. The objective of this study was to determine if variations in breast meat color would affect the dielectric properties of marinated poultry meat over a broad frequency range from 500 MHz to 50 GHz. Poultry meat was obtained from a local commercial plant in Georgia (USA). Color and pH measurements were taken on the breast filets. Groups of breast filets were sorted into classes of pale and normal before adding marination pickup percentages of 0, 5, 10, and 15. Breast filets were vacuum-tumbled and weighed for pickup percentages. Dielectric properties of the filets were measured with a coaxial open-ended probe on samples equilibrated to 25°C. Samples from pale meat exhibited higher dielectric properties than samples from normal meat. No differences could be observed between samples from pale and normal meat after marination of the samples. Overall, dielectric properties increased as the marination pickup increased (α=0.05). Marination pickup strongly influenced the dielectric loss factor. Differences between samples marinated at different pickup levels were more pronounced at lower frequencies for the dielectric loss factor. As frequency increased, the differences between samples decreased. Differences in dielectric constant between samples were not as consistent as those seen with the dielectric loss factor.

  3. Route optimization as an instrument to improve animal welfare and economics in pre-slaughter logistics

    PubMed Central

    2018-01-01

    Each year, more than three million animals are transported from farms to abattoirs in Sweden. Animal transport is related to economic and environmental costs and a negative impact on animal welfare. Time and the number of pick-up stops between farms and abattoirs are two key parameters for animal welfare. Both are highly dependent on efficient and qualitative transportation planning, which may be difficult if done manually. We have examined the benefits of using route optimization in cattle transportation planning. To simulate the effects of various planning time windows and transportation time regulations and number of pick-up stops along each route, we have used data that represent one year of cattle transport. Our optimization model is a development of a model used in forestry transport that solves a general pick-up and delivery vehicle routing problem. The objective is to minimize transportation costs. We have shown that the length of the planning time window has a significant impact on the animal transport time, the total driving time and the total distance driven; these parameters that will not only affect animal welfare but also affect the economy and environment in the pre-slaughter logistic chain. In addition, we have shown that changes in animal transportation regulations, such as minimizing the number of allowed pick-up stops on each route or minimizing animal transportation time, will have positive effects on animal welfare measured in transportation hours and number of pick-up stops. However, this leads to an increase in working time and driven distances, leading to higher transportation costs for the transport and negative environmental impact. PMID:29513704

  4. Primary adherence to antidepressant prescriptions in primary health care: a population-based study in Sweden

    PubMed Central

    Freccero, Carl; Sundquist, Kristina; Sundquist, Jan; Ji, Jianguang

    2016-01-01

    Background Medical adherence is important in the treatment of depression. Primary medical adherence, i.e. patients collecting their newly prescribed medications from pharmacies, is very different depending on the drug prescribed Objective To assess the rate of primary medical adherence in patients prescribed antidepressants and to identify characteristics that make patients less likely to pick up prescriptions. Methods An observational study was performed using primary health care data from Sweden on patients who were prescribed antidepressants. Univariate and multivariate logistic regression was used to determine differences in pick-up rate according to patient characteristics. Main outcome Pick-up rate, defined as collection of a prescription within 30 days. Results A total of 11 624 patients received an antidepressant prescription during the study period, and the overall pick-up rate was 85.1%. The pick-up rate differed according to country of birth: individuals born in the Middle East and other countries outside Europe had lower primary medical adherence than Swedes, with adjusted odds ratios (ORs) of 0.58 and 0.67, respectively. Patients at ages 64–79 years had a higher pick-up rate compared with those aged 25–44 years (OR 1.71). Divorced patients had a lower rate compared with married patients (OR 0.80). Conclusion Immigrants from the Middle East and other countries outside Europe and younger and divorced patients had lower primary medical adherence, which calls for clinical attention and preventive measures. Key pointsPrimary medical adherence is important in the treatment of depression.Are patient characteristics associated with primary medical adherence?The overall primary medical adherence rate was 85%.The rate differed by country of birth, age at diagnosis of depression, and marital status.Clinical attention is needed in patients who do not pick up their antidepressants. PMID:26828942

  5. Development of 80- and 100- Mile Work Day Cycles Representative of Commercial Pickup and Delivery Operation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Duran, Adam W; Kelly, Kenneth J; Kresse, John

    When developing and designing new technology for integrated vehicle systems deployment, standard cycles have long existed for chassis dynamometer testing and tuning of the powertrain. However, to this day with recent developments and advancements in plug-in hybrid and battery electric vehicle technology, no true 'work day' cycles exist with which to tune and measure energy storage control and thermal management systems. To address these issues and in support of development of a range-extended pickup and delivery Class 6 commercial vehicle, researchers at the National Renewable Energy Laboratory in collaboration with Cummins analyzed 78,000 days of operational data captured from moremore » than 260 vehicles operating across the United States to characterize the typical daily performance requirements associated with Class 6 commercial pickup and delivery operation. In total, over 2.5 million miles of real-world vehicle operation were condensed into a pair of duty cycles, an 80-mile cycle and a 100-mile cycle representative of the daily operation of U.S. class 3-6 commercial pickup and delivery trucks. Using novel machine learning clustering methods combined with mileage-based weighting, these composite representative cycles correspond to 90th and 95th percentiles for daily vehicle miles traveled by the vehicles observed. In addition to including vehicle speed vs time drive cycles, in an effort to better represent the environmental factors encountered by pickup and delivery vehicles operating across the United States, a nationally representative grade profile and key status information were also appended to the speed vs. time profiles to produce a 'work day' cycle that captures the effects of vehicle dynamics, geography, and driver behavior which can be used for future design, development, and validation of technology.« less

  6. The Ionic Building Blocks of Life: Exploring Astrochemistry through Mass Spectrometry

    NASA Astrophysics Data System (ADS)

    Cole, Callie A.

    The first polyatomic molecule was discovered in interstellar space in 1968, catalyzing the growth of a new scientific field called astrochemistry. Since its inception, collaborations among laboratory chemists, astrophysical modelers, and observational astronomers in this field have led to the detection of nearly 200 molecules in the interstellar medium (ISM). Similarly, detections of complex biomolecules in cometary dust and meteorites have sparked theories of the origin of terrestrial life, a central focus of the recently-established field of astrobiology. Chemical processing occurs in a variety of environments within our galaxy. The purpose of this work is to explore the chemistry of ions and molecules that are pertinent to a multitude of these regions including nebulae, prestellar cores, and the atmosphere of Saturn's moon, Titan. This thesis presents mass spectrometric investigations of gas-phase ion chemistry that contribute to the fields of both astrochemistry and astrobiology. Many gas-phase chemical reactions are initiated by ions due to the attractive forces induced by their charge on a reacting partner. This attraction often lowers the barriers of ion-neutral reactions, and can lead to high reaction rates even at low temperatures. The ions examined herein increase in complexity starting with simple species (CN-) and concluding with larger biomolecules, the deprotonated nucleobases. This work begins with a series of Flowing Afterglow-Selected Ion Flow Tube (FA-SIFT) experiments exploring nitrogen-containing carbanion (C xNy-) chemistry and the formation of interstellar propene and methyl formate (Chapters 3 and 4). Reactions between CxN y- and H atoms reveal pathways for destruction of several CxN- and CxN2 - anions, but no reactions are observed for CxN3 - species. Two previously-proposed reactions between organic cations and H2 are shown to be immeasurably slow and unlikely to produce propene. Lastly, a reaction pathway producing protonated trans-methyl formate is experimentally and computationally verified. The later chapters describe studies of heterocyclic biomolecules performed using a modified ion trap apparatus. These ions include deprotonated azoles, pyrimidines, and purines (Chapters 5-7). In addition to their reactivity, the dissociation processes and fragments of these anions provide clues to potential precursors and abiotic syntheses. Notably, nearly all fragments observed are detected interstellar species.

  7. Improvement of the thermo-mechanical position stability of the beam position monitor in the PLS-II

    NASA Astrophysics Data System (ADS)

    Ha, Taekyun; Hong, Mansu; Kwon, Hyuckchae; Han, Hongsik; Park, Chongdo

    2016-09-01

    In the storage ring of the Pohang Light Source-II (PLS-II), we reduced the mechanical displacement of the electron-beam position monitors (e-BPMs) that is caused by heating during e-beam storage. The BPM pickup itself must be kept stable to sub-micrometer precision in order for a stable photon beam to be provided to beamlines because the orbit feedback system is programmed to make the electron beam pass through the center of the BPM. Thermal deformation of the vacuum chambers on which the BPM pickups are mounted is inevitable when the electron beam current is changed by an unintended beam abort. We reduced this deformation by improving the vacuum chamber support and by enhancing the water cooling. We report a thermo-mechanical analysis and displacement measurements for the BPM pickups after improvements.

  8. Pediatric prescription pick-up rates after ED visits.

    PubMed

    Kajioka, Eric H; Itoman, Erick M; Li, M Lily; Taira, Deborah A; Li, Gaylyn G; Yamamoto, Loren G

    2005-07-01

    To determine the compliance rate in filling outpatient medication prescriptions written upon discharge from the emergency department (ED). Emergency department records of children during a 3-month period were examined along with pharmacy claim data obtained in cooperation with the largest insurance carrier in the community (private and Medicaid). Pharmacy claim data were used to validate the prescription pick-up date. Overall, 65% of high-urgency prescriptions were filled. The prescription pick-up rate in the 0-to 3-year age group (75%) was significantly higher than in the rest of the cohort (55%) ( P < .001). Children with private insurance were more likely to fill their prescriptions (68%) compared to children with Medicaid insurance (57%) ( P = .03). This study demonstrates that filling a prescription after discharge from an ED represents a substantial barrier to medication compliance.

  9. A Possible Progenitor of the Interstellar Sulfide Bond: Rovibrational Characterization of the Hydrogen Disulfide Cation HSSH+

    NASA Astrophysics Data System (ADS)

    Fortenberry, Ryan C.; Francisco, Joseph S.

    2018-03-01

    {\\tilde{X}}2A\\prime\\prime S2H (HSS) has been observed very recently in the interstellar medium, specifically in the Horsehead nebula. The protonated form, S2H2 +, is believed to be a necessary intermediate in its creation in the gas phase in UV-irradiated regions. However, little is known about this radical cation. This work showcases that the trans-HSSH+ isomer is 0.12 eV lower in energy than the cis with a 1.05 eV upper limit to the torsional rotation barrier. Additionally, the vibrational frequencies and rotational constants for both structures are provided in full here for the first time. The cis isomer is likely the more detectable since it possesses a permanent dipole moment and has a high-intensity vibrational frequency for the antisymmetric H‑S‑S bend at 926 cm‑1 (10.8 μm), in the heart of the mid-IR spectral range. A third isomer, H2S‑S+ is also reported herein lying ∼0.9 eV in energy above trans-HSSH+. This isomer could play a role in the formation of S2H since it would be kinetically favored in the reaction of sulfur cations with hydrogen sulfide. Further assessment of this third, higher-energy isomer is left for future work.

  10. Computational Confirmation of the Carrier for the ``XCN'' Interstellar Ice Band: OCN- Charge Transfer Complexes

    NASA Astrophysics Data System (ADS)

    Park, Jin-Young; Woon, David E.

    2004-01-01

    Recent experimental studies provide evidence that the carrier for the so-called XCN feature at 2165 cm-1 (4.62 μm) in young stellar objects is an OCN-/NH+4 charge transfer (CT) complex that forms in energetically processed interstellar icy grain mantles. Although other RCN nitriles and RNC isonitriles have been considered, Greenberg's conjecture that OCN- is associated with the XCN feature has persisted for over 15 years. In this work, we report a computational investigation that thoroughly confirms the hypothesis that the XCN feature observed in laboratory studies can result from OCN-/NH+4 CT complexes arising from HNCO and NH3 in a water ice environment. Density functional theory calculations with HNCO, NH3, and up to 12 waters reproduce seven spectroscopic measurements associated with XCN: the band origin of the asymmetric stretching mode of OCN-, shifts due to isotopic substitutions of C, N, O, and H, and two weak features. However, very similar values are also found for the OCN-/NH+4 CT complex arising from HOCN and NH3. In both cases, the complex forms by barrierless proton transfer from HNCO or HOCN to NH3 during the optimization of the solvated system. Scaled B3LYP/6-31+G** harmonic frequencies for the HNCO and HOCN cases are 2181 and 2202 cm-1, respectively.

  11. Constraining the Molecular Complexity in the Interstellar Medium—The Formation of Ethyl Methyl Ether (CH3OCH2CH3) in Star-forming Regions

    NASA Astrophysics Data System (ADS)

    Bergantini, Alexandre; Frigge, Robert; Kaiser, Ralf I.

    2018-05-01

    We report the first confirmed synthesis of ethyl methyl ether (EME, CH3CH2OCH3) within astrophysical model ices containing water (H2O) and methane (CH4) exposed to ionizing radiation at ultra-low temperatures of 5 K. EME (also known as methoxyethane), was recently observed toward Orion KL and currently is the largest confirmed oxygen-bearing molecule found in the interstellar medium. Exploiting isomer-selective photoionization (PI) of the subliming molecules in the temperature-programmed desorption phase at 10.49, 9.92, and 9.70 eV, coupled with reflectron time-of-flight mass spectrometry and isotopic substitution experiments (H2 18O–CH4), the detection of fragment ions of EME at m/z = 45 (C2H5O+) and m/z = 59 (C3H7O+), and probing the proton transfer in subliming ethanol–EME complexes via m/z = 61 (C3H9O+), the present study reveals that EME can be formed from suprathermal reactions initiated by cosmic rays and secondary electrons generated within astrophysical ices. The detection of EME in our experiments represents a significant advance in the understanding of formation pathways of complex organic molecules present in hot cores and helps to constrain astrochemical models on the formation of such species within molecular clouds.

  12. Computational Confirmation of the Carrier for the "XCN" Interstellar Ice Bank: OCN(-) Charge Transfer Complexes

    NASA Technical Reports Server (NTRS)

    Park, J.-Y.; Woon, D. E.

    2004-01-01

    Recent experimental studies provide evidence that carrier for the so-called XCN feature at 2165 cm(exp -1) (4.62 micron) in young stellar objects is an OCN(-)/NH4(+) charge transfer (CT) complex that forms in energetically processed interstellar icy grain mantles. Although other RCN nitriles and RCN iosonitriles have been considered, Greenberg's conjecture that OCN(-) is associated with the XCN feature has persisted for over 15 years. In this work we report a computational investigation that thoroughly confirms the hypothesis that the XCN feature observed in laboratory studies can result from OCN(-)/NH4(+) CT complexes arising from HNCO and NH3, in a water ice environment. Density functional theory calculations with theory calculations with HNCO, NH3, and up to 12 waters reproduce seven spectroscopic measurements associated with XCN: the band origin of the asymmetric stretching mode of OCN(-), shifts due to isotopic substitutions of C, N, O, and H, and two weak features. However, very similar values are also found for the OCN(-)/NH4(+) CT complex arising from HOCN and NH3. In both cases, the complex forms by barrierless proton transfer from HNCO or HOCN to NH3 during the optimization of the solvated system. Scaled B3LYP/6-31+G** harmonic frequencies for HNCO and HOCN cases are 2181 and 2202 cm(exp -1), respectively.

  13. Monte Carlo calculation of the radiation field at aircraft altitudes.

    PubMed

    Roesler, S; Heinrich, W; Schraube, H

    2002-01-01

    Energy spectra of secondary cosmic rays are calculated for aircraft altitudes and a discrete set of solar modulation parameters and rigidity cut-off values covering all possible conditions. The calculations are based on the Monte Carlo code FLUKA and on the most recent information on the interstellar cosmic ray flux including a detailed model of solar modulation. Results are compared to a large variety of experimental data obtained on the ground and aboard aircraft and balloons, such as neutron, proton, and muon spectra and yields of charged particles. Furthermore, particle fluence is converted into ambient dose equivalent and effective dose and the dependence of these quantities on height above sea level, solar modulation, and geographical location is studied. Finally, calculated dose equivalent is compared to results of comprehensive measurements performed aboard aircraft.

  14. Astronauts Stafford and Young await pickup by recovery helicopter

    NASA Technical Reports Server (NTRS)

    1969-01-01

    Astronauts Thomas P. Stafford, commander; and John W. Young, command module pilot, await pickup by the recovery helicopter from the prime recovery ship, U.S.S. Pinceton. Astronaut Eugene A. Cernan, lunar module pilot, is already hoisted aboard the helicopter. U.S. Navy underwater demolition team swimmers assist in the recovery operations. Splashdown occurred at 11:53 a.m., May 26, 1969, about 400 miles east of American Samoa.

  15. Approach for removing ghost-images in remote field eddy current testing of ferromagnetic pipes

    NASA Astrophysics Data System (ADS)

    Luo, Q. W.; Shi, Y. B.; Wang, Z. G.; Zhang, W.; Zhang, Y.

    2016-10-01

    In the non-destructive testing of ferromagnetic pipes based on remote field eddy currents, an array of sensing coils is often used to detect local defects. While testing, the image that is obtained by sensing coils exhibits a ghost-image, which originates from both the transmitter and sensing coils passing over the same defects in pipes. Ghost-images are caused by transmitters and lead to undesirable assessments of defects. In order to remove ghost-images, two pickup coils are coaxially set to each other in remote field. Due to the time delay between differential signals tested by the two pickup coils, a Wiener deconvolution filter is used to identify the artificial peaks that lead to ghost-images. Because the sensing coils and two pickup coils all receive the same signal from one transmitter, they all contain the same artificial peaks. By subtracting the artificial peak values obtained by the two pickup coils from the imaging data, the ghost-image caused by the transmitter is eliminated. Finally, a relatively highly accurate image of local defects is obtained by these sensing coils. With proposed method, there is no need to subtract the average value of the sensing coils, and it is sensitive to ringed defects.

  16. High-performance integrated pick-up circuit for SPAD arrays in time-correlated single photon counting

    NASA Astrophysics Data System (ADS)

    Acconcia, Giulia; Cominelli, Alessandro; Peronio, Pietro; Rech, Ivan; Ghioni, Massimo

    2017-05-01

    The analysis of optical signals by means of Single Photon Avalanche Diodes (SPADs) has been subject to a widespread interest in recent years. The development of multichannel high-performance Time Correlated Single Photon Counting (TCSPC) acquisition systems has undergone a fast trend. Concerning the detector performance, best in class results have been obtained resorting to custom technologies leading also to a strong dependence of the detector timing jitter from the threshold used to determine the onset of the photogenerated current flow. In this scenario, the avalanche current pick-up circuit plays a key role in determining the timing performance of the TCSPC acquisition system, especially with a large array of SPAD detectors because of electrical crosstalk issues. We developed a new current pick-up circuit based on a transimpedance amplifier structure able to extract the timing information from a 50-μm-diameter custom technology SPAD with a state-of-art timing jitter as low as 32ps and suitable to be exploited with SPAD arrays. In this paper we discuss the key features of this structure and we present a new version of the pick-up circuit that also provides quenching capabilities in order to minimize the number of interconnections required, an aspect that becomes more and more crucial in densely integrated systems.

  17. Approach for removing ghost-images in remote field eddy current testing of ferromagnetic pipes.

    PubMed

    Luo, Q W; Shi, Y B; Wang, Z G; Zhang, W; Zhang, Y

    2016-10-01

    In the non-destructive testing of ferromagnetic pipes based on remote field eddy currents, an array of sensing coils is often used to detect local defects. While testing, the image that is obtained by sensing coils exhibits a ghost-image, which originates from both the transmitter and sensing coils passing over the same defects in pipes. Ghost-images are caused by transmitters and lead to undesirable assessments of defects. In order to remove ghost-images, two pickup coils are coaxially set to each other in remote field. Due to the time delay between differential signals tested by the two pickup coils, a Wiener deconvolution filter is used to identify the artificial peaks that lead to ghost-images. Because the sensing coils and two pickup coils all receive the same signal from one transmitter, they all contain the same artificial peaks. By subtracting the artificial peak values obtained by the two pickup coils from the imaging data, the ghost-image caused by the transmitter is eliminated. Finally, a relatively highly accurate image of local defects is obtained by these sensing coils. With proposed method, there is no need to subtract the average value of the sensing coils, and it is sensitive to ringed defects.

  18. The Interstellar Conspiracy

    NASA Technical Reports Server (NTRS)

    Johnson, Les; Matloff, Gregory L.

    2005-01-01

    If we were designing a human-carrying starship that could be launched in the not-too-distant future, it would almost certainly not use a warp drive to instantaneously bounce around the universe, as is done in Isaac Asimov's classic Foundation series or in episodes of Star Trek or Star Wars. Sadly, those starships that seem to be within technological reach could not even travel at high relativistic speeds, as does the interstellar ramjet in Poul Anderson's Tau Zero. Warp-speeds seem to be well outside the realm of currently understood physical law; proton-fusing ramjets may never be technologically feasible. Perhaps fortunately in our terrorist-plagued world, the economics of antimatter may never be attractive for large-scale starship propulsion. But interstellar travel will be possible within a few centuries, although it will certainly not be as fast as we might prefer. If humans learn how to hibernate, perhaps we will sleep our way to the stars, as do the crew in A. E. van Vogt's Far Centaurus. However, as discussed in a landmark paper in The Journal of the British Interplanetary Society, the most feasible approach to transporting a small human population to the planets (if any) of Alpha Centauri is the worldship. Such craft have often been featured in science fiction. See for example Arthur C. Clarke's Rendezvous with Rama, and Robert A. Heinlein's Orphans of the Sky. Worldships are essentially mobile versions of the O Neill free-space habitats. Constructed mostly from lunar and/or asteroidal materials, these solar-powered, multi-kilometer-dimension structures could house 10,000 to 100,000 humans in Earth-approximating environments. Artificial gravity would be provided by habitat rotation, and cosmic ray shielding would be provided by passive methods, such as habitat atmosphere and mass shielding, or magnetic fields. A late 21st century space-habitat venture might support itself economically by constructing large solar-powered satellites to beam energy back to Earth.

  19. First time-dependent study of H{sub 2} and H{sub 3}{sup +} ortho-para chemistry in the diffuse interstellar medium: Observations meet theoretical predictions

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Albertsson, T.; Semenov, D.; Henning, Th.

    The chemistry in the diffuse interstellar medium (ISM) initiates the gradual increase of molecular complexity during the life cycle of matter. A key molecule that enables build-up of new molecular bonds and new molecules via proton donation is H{sub 3}{sup +}. Its evolution is tightly related to molecular hydrogen and thought to be well understood. However, recent observations of ortho and para lines of H{sub 2} and H{sub 3}{sup +} in the diffuse ISM showed a puzzling discrepancy in nuclear spin excitation temperatures and populations between these two key species. H{sub 3}{sup +}, unlike H{sub 2}, seems to be outmore » of thermal equilibrium, contrary to the predictions of modern astrochemical models. We conduct the first time-dependent modeling of the para-fractions of H{sub 2} and H{sub 3}{sup +} in the diffuse ISM and compare our results to a set of line-of-sight observations, including new measurements presented in this study. We isolate a set of key reactions for H{sub 3}{sup +} and find that the destruction of the lowest rotational states of H{sub 3}{sup +} by dissociative recombination largely controls its ortho/para ratio. A plausible agreement with observations cannot be achieved unless a ratio larger than 1:5 for the destruction of (1, 1)- and (1, 0)-states of H{sub 3}{sup +} is assumed. Additionally, an increased cosmic-ray ionization rate to 10{sup –15} s{sup –1} further improves the fit whereas variations of other individual physical parameters, such as density and chemical age, have only a minor effect on the predicted ortho/para ratios. Thus, our study calls for new laboratory measurements of the dissociative recombination rate and branching ratio of the key ion H{sub 3}{sup +} under interstellar conditions.« less

  20. Isolation and Spectroscopic Characterization of Reactive Species in Atmospheric and Interstellar Reactions

    NASA Astrophysics Data System (ADS)

    Relph, Rachael A.

    2011-12-01

    A critical element to the study of chemical reactions is the characterization of reaction intermediates. Methods have been developed to isolate these transient species in the gas phase and when combined with infrared spectroscopy have proven to be excellent tools for determining the structure and reactivity of key intermediates. The studies presented here exploit these technologies to better understand the chemistry of species involved in atmospheric and interstellar reactions. An excellent example of their utility is in the study of the formation of proton hydrates and HONO in the upper atmosphere by sequential addition of water molecules onto the nitrosonium ion. This reaction only proceeds to products after addition of the fourth water molecule, and isolation and characterization of the intermediate trihydrate, NO+(H 2O)3, shows that this species is formed in three isomeric forms, each with a different water network that controls the degree of bond formation between the nitrosonium ion and an activated water molecule. Many isomeric structures are also seen in the clustering reactions of acetylene which may be a mechanism for the formation of benzene cation in interstellar space. The spectroscopy of the trimer, (C2H2)3 + indicates that this species exists in two major isomer classes; covalent forms, one of which may be benzene, and an ion-molecule complex, comprised of a loosely bound acetylene on a dimer core. Interestingly, this dimer core is different from the cyclobutadiene-like structure observed in dimerized acetylene, and proves to be a robust species on the potential energy surface as it survives further clustering events. Two structural isomers of CO3 -and NO3 - are also investigated, and found to have drastically different infrared spectra which are analyzed in the context of their electronic structure. Isomers in these systems are prepared under different expansion conditions which accounts for their unique spectral signatures.

  1. First Time-dependent Study of H2 and H_3^+ Ortho-Para Chemistry in the Diffuse Interstellar Medium: Observations Meet Theoretical Predictions

    NASA Astrophysics Data System (ADS)

    Albertsson, T.; Indriolo, N.; Kreckel, H.; Semenov, D.; Crabtree, K. N.; Henning, Th.

    2014-05-01

    The chemistry in the diffuse interstellar medium (ISM) initiates the gradual increase of molecular complexity during the life cycle of matter. A key molecule that enables build-up of new molecular bonds and new molecules via proton donation is H_3^+. Its evolution is tightly related to molecular hydrogen and thought to be well understood. However, recent observations of ortho and para lines of H2 and H_3^+ in the diffuse ISM showed a puzzling discrepancy in nuclear spin excitation temperatures and populations between these two key species. H_3^+, unlike H2, seems to be out of thermal equilibrium, contrary to the predictions of modern astrochemical models. We conduct the first time-dependent modeling of the para-fractions of H2 and H_3^+ in the diffuse ISM and compare our results to a set of line-of-sight observations, including new measurements presented in this study. We isolate a set of key reactions for H_3^+ and find that the destruction of the lowest rotational states of H_3^+ by dissociative recombination largely controls its ortho/para ratio. A plausible agreement with observations cannot be achieved unless a ratio larger than 1:5 for the destruction of (1, 1)- and (1, 0)-states of H_3^+ is assumed. Additionally, an increased cosmic-ray ionization rate to 10-15 s-1 further improves the fit whereas variations of other individual physical parameters, such as density and chemical age, have only a minor effect on the predicted ortho/para ratios. Thus, our study calls for new laboratory measurements of the dissociative recombination rate and branching ratio of the key ion H_{3}^{+} under interstellar conditions. Partly based on observations collected at the European Organization for Astronomical Research in the Southern Hemisphere, Chile, as part of program 088.C-0351.

  2. Investigations of Nuclear Structure

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sarantites, Demetrios; Reviol, W.

    The proposal addresses studies of nuclear structure at low-energies and development of instrumentation for that purpose. The structure studies deal with features of neutron-rich nuclei with unexplored shapes (football- or pear-shaped nuclei). The regions of interest are: neutron rich nuclei like 132-138Sn, or 48-54Ca, and the Zr, Mo, and Ru isotopes. The tools used can be grouped as follows: either Gammasphere or Gretina multi-gamma detector arrays and auxiliary detectors (Microball, Neutron Shell, and the newly completed Phoswich Wall).The neutron-rich nuclei are accessed by radioactive-beam binary reactions or by 252Cf spontaneous fission. The experiments with heavy radioactive beams aim at excitingmore » the beam nuclei by pick-up or transfer a neutron or a proton from a light target like 13C, 9Be, 11B or 14N .For these binary-reaction studies the Phoswich Wall detector system is essential. It is based on four multi-anode photomultiplier tubes on which CsI and thin fast-timing plastic scintillators are attached. Their signals are digitized with a high density microchip system.« less

  3. Detection of singly ionized energetic lunar pick-up ions upstream of earth's bow shock

    NASA Technical Reports Server (NTRS)

    Hilchenbach, M.; Hovestadt, D.; Klecker, B.; Moebius, E.

    1992-01-01

    Singly ionized suprathermal ions upstream of the earth's bow shock have been detected by using the time-of-flight spectrometer SULEICA on the AMPTE/IRM satellite. The data were collected between August and December 1985. The flux of the ions in the mass range between 23 and 37 amu is highly anisotropic towards the earth. The ions are observed with a period of about 29 days around new moon (+/- 3 days). The correlation of the energy of the ions with the solar wind speed and the interplanetary magnetic field orientation indicates the relation to the pick-up process. We conclude that the source of these pick-up ions is the moon. We argue that due to the impinging solar wind, atoms are sputtered off the lunar surface, ionized in the sputtering process or by ensuing photoionization and picked up by the solar wind.

  4. Note: Low temperature superconductor superconducting quantum interference device system with wide pickup coil for detecting small metallic particles

    NASA Astrophysics Data System (ADS)

    Kandori, Akihiko; Ogata, Kuniomi; Kawabata, Ryuzo; Tanimoto, Sayaka; Seki, Yusuke

    2012-07-01

    A one-channel low temperature superconductor superconducting quantum interference device system comprising a second-order axial gradiometer with a sensing area of 10 mm × 190 mm was developed. The gradiometer was mounted in a liquid-helium dewar (450-mm diameter; 975-mm length), with a gap of 12 mm between the pickup coil and the dewar-tail surface. The magnetic field sensitivity was measured to be 16 fT/Hz1/2 in the white noise regime above 2 Hz. The system was used to measure stainless steel particles of different sizes passing through the sensing area. A 100-μm diameter SUS304 particle was readily detected passing at different positions underneath the large pickup coil by measuring its 1.3-pT magnetic field. Thus, the system was shown to be applicable to quality control of lamination sheet products such as lithium ion batteries.

  5. Summer School on Interstellar Processes: Abstracts of contributed papers

    NASA Technical Reports Server (NTRS)

    Hollenbach, D. J. (Editor); Thronson, H. A., Jr. (Editor)

    1986-01-01

    The Summer School on Interstellar Processes was held to discuss the current understanding of the interstellar medium and to analyze the basic physical processes underlying interstellar phenomena. Extended abstracts of the contributed papers given at the meeting are presented. Many of the papers concerned the local structure and kinematics of the interstellar medium and focused on such objects as star formation regions, molecular clouds, HII regions, reflection nebulae, planetary nebulae, supernova remnants, and shock waves. Other papers studied the galactic-scale structure of the interstellar medium either in the Milky Way or other galaxies. Some emphasis was given to observations of interstellar grains and

  6. Interstellar Dust: Contributed Papers

    NASA Technical Reports Server (NTRS)

    Tielens, Alexander G. G. M. (Editor); Allamandola, Louis J. (Editor)

    1989-01-01

    A coherent picture of the dust composition and its physical characteristics in the various phases of the interstellar medium was the central theme. Topics addressed included: dust in diffuse interstellar medium; overidentified infrared emission features; dust in dense clouds; dust in galaxies; optical properties of dust grains; interstellar dust models; interstellar dust and the solar system; dust formation and destruction; UV, visible, and IR observations of interstellar extinction; and quantum-statistical calculations of IR emission from highly vibrationally excited polycyclic aromatic hydrocarbon (PAH) molecules.

  7. Properties of planetward ion flows in Venus' magnetotail

    NASA Astrophysics Data System (ADS)

    Kollmann, P.; Brandt, P. C.; Collinson, G.; Rong, Z. J.; Futaana, Y.; Zhang, T. L.

    2016-08-01

    Venus is gradually losing some of its atmosphere in the form of ions through its induced magnetotail. Some of these ions have been reported previously to flow back to the planet. Proposed drivers are magnetic reconnection and deflection of pickup ions in the magnetic field. We analyze protons and oxygen ions with eV to keV energies acquired by the ASPERA-4/IMA instrument throughout the entire Venus Express mission. We find that venusward flowing ions are important in the sense that their density and deposition rate into the atmosphere is of the same order of magnitude as the density and escape rate of downtail flowing ions. Our analysis shows that during strong EUV irradiance, which occurs during solar maximum, the flux of venusward flowing protons is weaker and of oxygen ions is stronger than during weak irradiance. Since such a behavior was observed when tracing oxygen ions through a MHD model, the ultimate driver of the venusward flowing ions may simply be the magnetic field configuration around Venus. Although the pure downtail oxygen flux stays mostly unchanged for all observed EUV conditions, the increase in venusward oxygen flux for high irradiance results in a lower net atmospheric escape rate. Venusward bulk flows are mostly found in locations where the magnetic field is weak relative to the interplanetary conditions. Although a weak field is generally an indicator of proximity to the magnetotail current sheet, these flows do not cluster around current sheet crossings, as one may expect if they would be driven by magnetic reconnection.

  8. Limiting Charged Particle Flux Spectrum at the Heliopause and Beyond

    NASA Astrophysics Data System (ADS)

    Cooper, J. F.

    2009-04-01

    Ongoing Voyager 1 and 2 measurements show proton and heavier ion flux spectra unfolding upwards at MeV energies and in time with presumably decreasing distance to the heliopause interface of the heliosheath and local interstellar medium (LISM) plasma environments. Despite large spatial separation between the two spacecraft, the respective flux measurements are converging to a common spectrum consistent with a source beyond both spacecraft. This trend may conceivably reverse in response to increasing solar modulation of the new sunspot cycle but otherwise it must approach some limiting form of the plasma and energetic particle spectra near and beyond the heliopause. If an outer heliosheath region is bounded outwards by a postulated heliospheric bow shock, there could be an intermediate spectrum of shock-accelerated particles, but otherwise the limiting spectrum is that of the LISM. As reported earlier, a simple power-law extrapolation from known LISM plasma distributions at eV energies to the relatively unmodulated fluxes of galactic protons at GeV energies yields the "universal" stochastic cascade spectrum of Fisk and Gloeckler. Although the heliopause interface of the inner heliosheath and LISM plasma flow environments is usually visualized as laminar with little flow across the interface, boundary instabilities and charge exchange processes at a more chaotic and realistic boundary could enable interpenetrating flows. The limiting heliosheath spectrum now being approached by measurements from both spacecraft is suggested to be the LISM spectrum. Lack of significant and sustained spectral changes in response to increasing solar modulation within the supersonic heliosphere, and continuity of the unfolded spectral form for future measurements across the heliopause, would support direct LISM and/or outer heliosheath origins for the suprathermal ions of the inner heliosheath. This could further require modification of source and transport models for the so-called "anomalous component" ions at higher MeV energies. Unlimited extension of the presently observed suprathermal ion spectrum into the neutral gas environment beyond the heliopause, e.g. within the hydrogen wall region, would also impact energy and directional distributions of energetic neutral atoms now being measured from Earth orbit by the Interstellar Boundary Explorer (IBEX) mission.

  9. Cosmic-ray ionisation of dense molecular clouds

    NASA Astrophysics Data System (ADS)

    Vaupre, Solenn

    2015-07-01

    Cosmic rays (CR) are of tremendous importance in the dynamical and chemical evolution of interstellar molecular clouds, where stars and planets form. CRs are likely accelerated in the shells of supernova remnants (SNR), thus molecular clouds nearby can be irradiated by intense fluxes of CRs. CR protons have two major effects on dense molecular clouds: 1) when they encounter the dense medium, high-energy protons (>280 MeV) create pions that decay into gamma-rays. This process makes SNR-molecular cloud associations intense GeV and/or TeV sources whose spectra mimic the CR spectrum. 2) at lower energies, CRs penetrate the cloud and ionise the gas, leading to the formation of molecular species characteristic of the presence of CRs, called tracers of the ionisation. Studying these tracers gives information on low-energy CRs that are unaccessible to any other observations. I studied the CR ionisation of molecular clouds next to three SNRs: W28, W51C and W44. These SNRs are known to be interacting with the nearby clouds, from the presence of shocked gas, OH masers and pion-decay induced gamma-ray emission. My work includes millimeter observations and chemical modeling of tracers of the ionisation in these dense molecular clouds. In these three regions, we determined an enhanced CR ionisation rate, supporting the hypothesis of an origin of the CRs in the SNR nearby. The evolution of the CR ionisation rate with the distance to the SNR brings valuable constraints on the propagation properties of low-energy CRs. The method used relies on observations of the molecular ions HCO+ and DCO+, which shows crucial limitations at high ionisation. Therefore, I investigated, both through modeling and observations, the chemical abundances of several other species to try and identity alternative tracers of the ionisation. In particular, in the W44 region, observations of N2H+ bring additional constraints on the physical conditions, volatile abundances in the cloud, and the ionisation state. This research brought valuable insight in to the CR induced chemistry in the interstellar medium. It also brought new perspectives of interdisciplinary research towards the understanding of CRs, from millimeter to gamma-ray observations.

  10. Interstellar hydrogen bonding

    NASA Astrophysics Data System (ADS)

    Etim, Emmanuel E.; Gorai, Prasanta; Das, Ankan; Chakrabarti, Sandip K.; Arunan, Elangannan

    2018-06-01

    This paper reports the first extensive study of the existence and effects of interstellar hydrogen bonding. The reactions that occur on the surface of the interstellar dust grains are the dominant processes by which interstellar molecules are formed. Water molecules constitute about 70% of the interstellar ice. These water molecules serve as the platform for hydrogen bonding. High level quantum chemical simulations for the hydrogen bond interaction between 20 interstellar molecules (known and possible) and water are carried out using different ab-intio methods. It is evident that if the formation of these species is mainly governed by the ice phase reactions, there is a direct correlation between the binding energies of these complexes and the gas phase abundances of these interstellar molecules. Interstellar hydrogen bonding may cause lower gas abundance of the complex organic molecules (COMs) at the low temperature. From these results, ketenes whose less stable isomers that are more strongly bonded to the surface of the interstellar dust grains have been observed are proposed as suitable candidates for astronomical observations.

  11. Four Interstellar Dust Candidates from the Stardust Interstellar Dust Collector

    NASA Astrophysics Data System (ADS)

    Westphal, A. J.; Allen, C.; Bajt, S.; Bechtel, H. A.; Borg, J.; Brenker, F.; Bridges, J.; Brownlee, D. E.; Burchell, M.; Burghammer, M.; Butterworth, A. L.; Cloetens, P.; Davis, A. M.; Floss, C.; Flynn, G. J.; Fougeray, P.; Frank, D.; Gainsforth, Z.; Grün, E.; Heck, P. R.; Hillier, J. K.; Hoppe, P.; Howard, L.; Hudson, B.; Huss, G. R.; Huth, J.; Kearsley, A.; King, A. J.; Lai, B.; Leitner, J.; Lemelle, L.; Leroux, H.; Lettieri, R.; Marchant, W.; Nittler, L. R.; Ogliore, R. C.; Postberg, F.; Price, M. C.; Sandford, S. A.; Sans Tresseras, J. A.; Schmitz, S.; Schoonjans, T.; Silversmit, G.; Simionovici, A.; Srama, R.; Stadermann, F. J.; Stephan, T.; Stodolna, J.; Stroud, R. M.; Sutton, S. R.; Toucoulou, R.; Trieloff, M.; Tsou, P.; Tsuchiyama, A.; Tyliczszak, T.; Vekemans, B.; Vincze, L.; Wordsworth, N.; Zevin, D.; Zolensky, M. E.; 29,000 Stardust@Home Dusters

    2011-03-01

    We report the discovery of two new interstellar dust candidates in the aerogel collectors of the Stardust Interstellar Dust Collector, and the analyses of these and two previously identified candidates.

  12. Organic chemistry and biology of the interstellar medium

    NASA Technical Reports Server (NTRS)

    Sagan, C.

    1973-01-01

    Interstellar organic chemistry is discussed as the field of study emerging from the discovery of microwave lines of formaldehyde and of hydrogen cyanide in the interstellar medium. The reliability of molecular identifications and comparisons of interstellar and cometary compounds are considered, along with the degradational origin of simple organics. It is pointed out that the contribution of interstellar organic chemistry to problems in biology is not substantive but analogical. The interstellar medium reveals the operation of chemical processes which, on earth and perhaps on vast numbers of planets throughout the universe, led to the origin of life, but the actual molecules of the interstellar medium are unlikely to play any significant biological role.

  13. Time-dependent interstellar chemistry

    NASA Technical Reports Server (NTRS)

    Glassgold, A. E.

    1985-01-01

    Some current problems in interstellar chemistry are considered in the context of time-dependent calculations. The limitations of steady-state models of interstellar gas-phase chemistry are discussed, and attempts to chemically date interstellar clouds are reviewed. The importance of studying the physical and chemical properties of interstellar dust is emphasized. Finally, the results of a series of studies of collapsing clouds are described.

  14. Processing Mechanisms for Interstellar Ices: Connections to the Solar System

    NASA Technical Reports Server (NTRS)

    Pendleton, Y. J.; Cuzzi, Jeffrey N. (Technical Monitor)

    1995-01-01

    The organic component of the interstellar medium, which has revealed itself through the ubiquitous 3.4 micrometers hydrocarbon absorption feature, is widespread throughout the disk of our galaxy and has been attributed to dust grains residing in the diffuse interstellar medium. The absorption band positions near 3.4 micrometers are characteristic of C-H stretching vibrations in the -CH3 and -CH2- groups of saturated aliphatic hydrocarbons associated with perturbing chemical groups. The production of complex molecules is thought to occur within dense molecular clouds when ice-mantled grains are processed by various energetic mechanisms. Studies of the processing of interstellar ices and the subsequent production of organic residues have relevance to studies of ices in the solar system, because primitive, icy solar system bodies such as those in the Kuiper belt are likely reservoirs of organic material, either preserved from the interstellar medium or produced in situ. Connections between the interstellar medium and the early solar nebula have long been a source of interest. A comparison of the interstellar organics and the Murchison meteorite illustrates the importance of probing the interstellar connection to the solar system, because although the carbonaceous meteorites are undoubtedly highly processed, they do retain specific interstellar signatures (such as diamonds, SiC grains, graphite and enriched D/H). The organic component, while not proven interstellar, has a remarkable similarity to the interstellar organics observed in over a dozen sightlines through our galaxy. This paper compares spectra from laboratory organics produced through the processing of interstellar ice analog materials with the high resolution infrared observations of the interstellar medium in order to investigate the mechanisms (such as ion bombardment, plasma processing, and UV photolysis) that may be producing the organics in the ISM.

  15. Properties of interstellar wind leading to shape morphology of the dust surrounding HD 61005

    NASA Astrophysics Data System (ADS)

    Pástor, P.

    2017-08-01

    Aims: A structure formed by dust particles ejected from the debris ring around HD 61005 is observed in the scattered light. The main aim here is to constrain interstellar wind parameters that lead to shape morphology in the vicinity of HD 61005 using currently available observational data for the debris ring. Methods: Equation of motion of 2 × 105 dust particles ejected from the debris ring under the action of the electromagnetic radiation, stellar wind, and interstellar wind is solved. A two-dimensional (2D) grid is placed in a given direction for accumulation of the light scattered on the dust particles in order to determine the shape morphology. The interaction of the interstellar wind and the stellar wind is considered. Results: Groups of unknown properties of the interstellar wind that create the observed morphology are determined. A relation between number densities of gas components in the interstellar wind and its relative velocity is found. Variations of the shape morphology caused by the interaction with the interstellar clouds of various temperatures are studied. When the interstellar wind velocity is tilted from debris ring axis a simple relation between the properties of the interstellar wind and an angle between the line of sight and the interstellar wind velocity exists. Dust particles that are most significantly influenced by stellar radiation move on the boundary of observed structure. Conclusions: Observed structure at HD 61005 can be explained as a result of dust particles moving under the action of the interstellar wind. Required number densities or velocities of the interstellar wind are much higher than that of the interstellar wind entering the solar system.

  16. Interstellar matter research with the Copernicus satellite

    NASA Technical Reports Server (NTRS)

    Spitzer, L., Jr.

    1976-01-01

    The use of the Copernicus satellite in an investigation of interstellar matter makes it possible to study absorption lines in the ultraviolet range which cannot be observed on the ground because of atmospheric absorption effects. A brief description is given of the satellite and the instrument used in the reported studies of interstellar matter. The results of the studies are discussed, giving attention to interstellar molecular hydrogen, the chemical composition of the interstellar gas, the coronal gas between the stars, and the interstellar abundance ratio of deuterium to hydrogen.

  17. Truck accident and fatality rates calculated from California highway accident statistics for 1980 and 1981

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Smith, R.N.; Wilmot, E.L.

    California state highway accident rates for three types of truck vehicles (pickup, truck without trailer, and truck with trailer) were analyzed for 1980 and 1981 and for various road types in each of eleven state highway districts. Accident rates have not been available previously that are specific to truck vehicles, particularly truck with trailer. Reported data are presented that lead to several significant observations about truck accident rates: pickup truck accident rates are about twice the composite rates for all vehicle types; the fatality rates for trucks with trailer are nearly twice that for all vehicle types; fatality rates formore » trucks (without trailer) are comparable to the composite rates; and total accident and fatal-plus-injury rates for trucks with trailer are close to the composite rates in urban areas but higher in rural areas. The values for average total accident rates reported in 1981 are: 2.2 accidents per million vehicle miles (mvm) for pickups, 1.5 accidents per mvm for trucks, and 1.4 accidents per mvm for trucks with trailer. The values for average fatality rates reported in 1981 are: 3.8 fatalities per 100 mvm for pickups, 2.8 fatalities per 100 mvm for trucks, and 4.3 fatalities per 100 mvm for trucks with trailer. The reported rates for 1980 are approximately the same.« less

  18. New Large Interstellar Molecules Detected with the GBT

    NASA Technical Reports Server (NTRS)

    Hollis, Jan M.

    2005-01-01

    At present, more than 135 different molecules have been identified in interstellar clouds. The newest instrument in the interstellar molecule search arsenal is the recently commissioned Green Bank Telescope (GBT). In 2004, the large aldehydes propenal (CH2CHCHO) and propanal (CH3CH2CHO) were the first new interstellar molecules discovered with the GBT. At the same time, the GBT was used to observe interstellar glycolaldehyde (CH2OHCHO), which is the simplest possible aldehyde sugar; interstellar ethylene glycol (HOCH2CH2OH), which is the sugar alcohol of glycolaldehyde; and interstellar methylcyanodiacetylene (CH3C5N). These new GBT observations suggest that successive atomic addition reactions are common in the formation of larger related species. The observations will be presented and discussed.

  19. Comparative pick-up ion distributions at Mars and Venus: Consequences for atmospheric deposition and escape

    NASA Astrophysics Data System (ADS)

    Curry, Shannon M.; Luhmann, Janet; Ma, Yingjuan; Liemohn, Michael; Dong, Chuanfei; Hara, Takuya

    2015-09-01

    Without the shielding of a substantial intrinsic dipole magnetic field, the atmospheres of Mars and Venus are particularly susceptible to similar atmospheric ion energization and scavenging processes. However, each planet has different attributes and external conditions controlling its high altitude planetary ion spatial and energy distributions. This paper describes analogous test particle simulations in background MHD fields that allow us to compare the properties and fates, precipitation or escape, of the mainly O+ atmospheric pick-up ions at Mars and Venus. The goal is to illustrate how atmospheric and planetary scales affect the upper atmospheres and space environments of our terrestrial planet neighbors. The results show the expected convection electric field-related hemispheric asymmetries in both precipitation and escape, where the degree of asymmetry at each planet is determined by the planetary scale and local interplanetary field strength. At Venus, the kinetic treatment of O+ reveals a strong nightside source of precipitation while Mars' crustal fields complicate the simple asymmetry in ion precipitation and drive a dayside source of precipitation. The pickup O+ escape pattern at both Venus and Mars exhibits low energy tailward escape, but Mars exhibits a prominent, high energy 'polar plume' feature in the hemisphere of the upward convection electric field while the Venus ion wake shows only a modest poleward concentration. The overall escape is larger at Venus than Mars (2.1 ×1025 and 4.3 ×1024 at solar maximum, respectively), but the efficiency (likelihood) of O+ escaping is 2-3 times higher at Mars. The consequences of these comparisons for pickup ion related atmospheric energy deposition, loss rates, and detection on spacecraft including PVO, VEX, MEX and MAVEN are considered. In particular, both O+ precipitation and escape show electric field controlled asymmetries that grow with energy, while the O+ fluxes and energy spectra at selected spatial locations show characteristic signatures of the pickup related acceleration and precipitation.

  20. High-resolution spectroscopy of jet-cooled CH5+: Progress

    NASA Astrophysics Data System (ADS)

    Savage, C.; Dong, F.; Nesbitt, D. J.

    2015-01-01

    Protonated methane (CH5+) is thought to be a highly abundant molecular ion in interstellar medium, as well as a potentially bright μwave- mm wave emitter that could serve as a tracer for methane. This paper describes progress and first successful efforts to obtain a high resolution, supersonically cooled spectrum of CH5+ in the 2900-3100 cm-1 region, formed in a slit supersonic discharge at low jet temperatures and with sub-Doppler resolution. Short term precision in frequency measurement (< 5 MHz on an hour time scale) is obtained from a thermally controlled optical transfer cavity servoloop locked onto a frequency stabilized HeNe laser. Long term precision (< 20 MHz day-to-day) due to pressure, temperature and humidity dependent index of refraction effects in the optical transfer cavity is also present and discussed.

  1. Research in cosmic and gamma ray astrophysics

    NASA Technical Reports Server (NTRS)

    Stone, Edward C.; Mewaldt, Richard A.; Prince, Thomas A.

    1992-01-01

    Discussed here is research in cosmic ray and gamma ray astrophysics at the Space Radiation Laboratory (SRL) of the California Institute of Technology. The primary activities discussed involve the development of new instrumentation and techniques for future space flight. In many cases these instrumentation developments were tested in balloon flight instruments designed to conduct new investigations in cosmic ray and gamma ray astrophysics. The results of these investigations are briefly summarized. Specific topics include a quantitative investigation of the solar modulation of cosmic ray protons and helium nuclei, a study of cosmic ray positron and electron spectra in interplanetary and interstellar space, the solar modulation of cosmic rays, an investigation of techniques for the measurement and interpretation of cosmic ray isotopic abundances, and a balloon measurement of the isotopic composition of galactic cosmic ray boron, carbon, and nitrogen.

  2. Gamma-ray emission from the shell of supernova remnant W44 revealed by the Fermi LAT.

    PubMed

    Abdo, A A; Ackermann, M; Ajello, M; Baldini, L; Ballet, J; Barbiellini, G; Baring, M G; Bastieri, D; Baughman, B M; Bechtol, K; Bellazzini, R; Berenji, B; Blandford, R D; Bloom, E D; Bonamente, E; Borgland, A W; Bregeon, J; Brez, A; Brigida, M; Bruel, P; Burnett, T H; Buson, S; Caliandro, G A; Cameron, R A; Caraveo, P A; Casandjian, J M; Cecchi, C; Celik, O; Chekhtman, A; Cheung, C C; Chiang, J; Ciprini, S; Claus, R; Cognard, I; Cohen-Tanugi, J; Cominsky, L R; Conrad, J; Cutini, S; Dermer, C D; de Angelis, A; de Palma, F; Digel, S W; do Couto e Silva, E; Drell, P S; Dubois, R; Dumora, D; Espinoza, C; Farnier, C; Favuzzi, C; Fegan, S J; Focke, W B; Fortin, P; Frailis, M; Fukazawa, Y; Funk, S; Fusco, P; Gargano, F; Gasparrini, D; Gehrels, N; Germani, S; Giavitto, G; Giebels, B; Giglietto, N; Giordano, F; Glanzman, T; Godfrey, G; Grenier, I A; Grondin, M-H; Grove, J E; Guillemot, L; Guiriec, S; Hanabata, Y; Harding, A K; Hayashida, M; Hays, E; Hughes, R E; Jackson, M S; Jóhannesson, G; Johnson, A S; Johnson, T J; Johnson, W N; Kamae, T; Katagiri, H; Kataoka, J; Katsuta, J; Kawai, N; Kerr, M; Knödlseder, J; Kocian, M L; Kramer, M; Kuss, M; Lande, J; Latronico, L; Lemoine-Goumard, M; Longo, F; Loparco, F; Lott, B; Lovellette, M N; Lubrano, P; Lyne, A G; Madejski, G M; Makeev, A; Mazziotta, M N; McEnery, J E; Meurer, C; Michelson, P F; Mitthumsiri, W; Mizuno, T; Monte, C; Monzani, M E; Morselli, A; Moskalenko, I V; Murgia, S; Nakamori, T; Nolan, P L; Norris, J P; Noutsos, A; Nuss, E; Ohsugi, T; Omodei, N; Orlando, E; Ormes, J F; Paneque, D; Parent, D; Pelassa, V; Pepe, M; Pesce-Rollins, M; Piron, F; Porter, T A; Rainò, S; Rando, R; Razzano, M; Reimer, A; Reimer, O; Reposeur, T; Rochester, L S; Rodriguez, A Y; Romani, R W; Roth, M; Ryde, F; Sadrozinski, H F-W; Sanchez, D; Sander, A; Saz Parkinson, P M; Scargle, J D; Sgrò, C; Siskind, E J; Smith, D A; Smith, P D; Spandre, G; Spinelli, P; Stappers, B W; Stecker, F W; Strickman, M S; Suson, D J; Tajima, H; Takahashi, H; Takahashi, T; Tanaka, T; Thayer, J B; Thayer, J G; Theureau, G; Thompson, D J; Tibaldo, L; Tibolla, O; Torres, D F; Tosti, G; Tramacere, A; Uchiyama, Y; Usher, T L; Vasileiou, V; Venter, C; Vilchez, N; Vitale, V; Waite, A P; Wang, P; Winer, B L; Wood, K S; Yamazaki, R; Ylinen, T; Ziegler, M

    2010-02-26

    Recent observations of supernova remnants (SNRs) hint that they accelerate cosmic rays to energies close to ~10(15) electron volts. However, the nature of the particles that produce the emission remains ambiguous. We report observations of SNR W44 with the Fermi Large Area Telescope at energies between 2 x 10(8) electron volts and 3 x10(11) electron volts. The detection of a source with a morphology corresponding to the SNR shell implies that the emission is produced by particles accelerated there. The gamma-ray spectrum is well modeled with emission from protons and nuclei. Its steepening above approximately 10(9) electron volts provides a probe with which to study how particle acceleration responds to environmental effects such as shock propagation in dense clouds and how accelerated particles are released into interstellar space.

  3. The Diffuse Interstellar Bands: Solving a Century Old Problem

    NASA Technical Reports Server (NTRS)

    Salama, Farid

    2017-01-01

    The Diffuse Interstellar Bands (DIBs) are a set of apporoximately 500 absorption bands that are seen in the spectra of reddened stars (i.e., stars obscured by the presence of interstellar clouds in their line of sight). The first DIBs were detected in the visible over a century ago. Diffuse Interstellar Bands are now detected from the near ultraviolet to the near infrared in the spectra of reddened stars spanning a variety of interstellar environments in our local, and in other galaxies. Although DIB carriers are a significant part of the interstellar chemical inventory as they account for a noticeable fraction of the interstellar extinction, the nature of their carriers is still unknown over a century after the detection of the first bands. DIB carriers are stable and ubiquitous in a broad variety of interstellar environments and play a unique role in interstellar physics and chemistry. It has long been realized that the solving of the DIB problem requires a strong synergy between astronomical observations, laboratory astrophysics and astrochemistry, quantum chemistry calculations and astrophysical modeling of line-of-sights. In this review, we'll present and discuss the current state of this perplexing problem. We'll review the progress and the failures that have been encountered in the long quest for the identification of the carriers of these ubiquitous interstellar bands.

  4. Physical limitations in sensors for a drag-free deep space probe

    NASA Technical Reports Server (NTRS)

    Juillerat, R.

    1971-01-01

    The inner perturbing forces acting on sensors were analyzed, taking into account the technological limitations imposed on the proof mass position pickup and proof mass acquisition system. The resulting perturbing accelerations are evaluated as a function of the drag-free sensor parameters. Perturbations included gravitational attraction, electrical action, magnetic action, pressure effects, radiation effects, and action of the position pickup. These data can be used to study the laws of guidance, providing an optimization of the space probe as a whole.

  5. Measuring g Using a Magnetic Pendulum and Telephone Pickup

    NASA Astrophysics Data System (ADS)

    Sinacore, J.; Takai, H.

    2010-10-01

    The simple pendulum has long been used to measure g, the acceleration due to gravity, with a precision of a few percent. Achieving agreement with the accepted value of less than 1% is feasible in the high school laboratory, though it requires some care. The precision of the measurement is bound by how accurately the period and the pendulum length are determined. To improve on the period measurement, we have developed a simple and inexpensive method using a magnet and telephone pickup.2

  6. Unipolar Electric Machines with Liquid-Metal Current Pickup,

    DTIC Science & Technology

    1984-03-08

    stationary electrode of current pickup; 5 - main bearing ; 6 - thrust bearing ; 7 - elastic coupling; 8 - multiplexing; 9- rotor; 10, 11- discharge...inclusion/connection of load current UG eV U R. +R R.’ where e.,U- emf with the load and voltage/stress of UG; R., Rh - resistance/resistor of load and...with the load of UM to a certain extent is similar to the field of the system of rectilinear and circular currents, by the specific form of those

  7. iWander: Dynamics of interstellar wanderers

    NASA Astrophysics Data System (ADS)

    Zuluaga, Jorge I.; Sanchez-Hernandez, Oscar; Sucerquia, Mario; Ferrin, Ignacio

    2018-01-01

    iWander assesses the origin of interstellar small bodies such as asteroids and comets. It includes a series of databases and tools that can be used in general for studying the dynamics of an interstellar vagabond object (small‑body, interstellar spaceship and even stars).

  8. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bzowski, M.; Kubiak, M. A.; Sokol, J. M.

    Because of its high ionization potential and weak interaction with hydrogen, neutral interstellar helium (NISHe) is almost unaffected at the heliospheric interface with the interstellar medium and freely enters the solar system. This second most abundant species provides some of the best information on the characteristics of the interstellar gas in the local interstellar cloud. The Interstellar Boundary Explorer (IBEX) is the second mission to directly detect NISHe. We present a comparison between recent IBEX NISHe observations and simulations carried out using a well-tested quantitative simulation code. Simulation and observation results compare well for times when measured fluxes are dominatedmore » by NISHe (and contributions from other species are small). Differences between simulations and observations indicate a previously undetected secondary population of neutral helium, likely produced by interaction of interstellar helium with plasma in the outer heliosheath. Interstellar neutral parameters are statistically different from previous in situ results obtained mostly from the GAS/Ulysses experiment, but they do agree with the local interstellar flow vector obtained from studies of interstellar absorption: the newly established flow direction is ecliptic longitude 79.{sup 0}2, latitude -5.{sup 0}1, the velocity is {approx}22.8 km s{sup -1}, and the temperature is 6200 K. These new results imply a markedly lower absolute velocity of the gas and thus significantly lower dynamic pressure on the boundaries of the heliosphere and different orientation of the Hydrogen Deflection Plane compared to prior results from Ulysses. A different orientation of this plane also suggests a new geometry of the interstellar magnetic field, and the lower dynamic pressure calls for a compensation by other components of the pressure balance, most likely a higher density of interstellar plasma and strength of interstellar magnetic field.« less

  9. LOCAL INTERSTELLAR MEDIUM: SIX YEARS OF DIRECT SAMPLING BY IBEX

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    McComas, D. J.; Fuselier, S. A.; Schwadron, N. A., E-mail: dmccomas@swri.edu, E-mail: sfuselier@swri.edu, E-mail: Nathan.schwadron@unh.edu

    2015-10-15

    The Interstellar Boundary Explorer (IBEX) has been directly observing neutral atoms from the local interstellar medium for the last six years (2009–2014). This paper ties together the 14 studies in this Astrophysical Journal Supplement Series Special Issue, which collectively describe the IBEX interstellar neutral results from this epoch and provide a number of other relevant theoretical and observational results. Interstellar neutrals interact with each other and with the ionized portion of the interstellar population in the “pristine” interstellar medium ahead of the heliosphere. Then, in the heliosphere's close vicinity, the interstellar medium begins to interact with escaping heliospheric neutrals. Inmore » this study, we compare the results from two major analysis approaches led by IBEX groups in New Hampshire and Warsaw. We also directly address the question of the distance upstream to the pristine interstellar medium and adjust both sets of results to a common distance of ∼1000 AU. The two analysis approaches are quite different, but yield fully consistent measurements of the interstellar He flow properties, further validating our findings. While detailed error bars are given for both approaches, we recommend that for most purposes, the community use “working values” of ∼25.4 km s{sup −1}, ∼75.°7 ecliptic inflow longitude, ∼ −5.°1 ecliptic inflow latitude, and ∼7500 K temperature at ∼1000 AU upstream. Finally, we briefly address future opportunities for even better interstellar neutral observations to be provided by the Interstellar Mapping and Acceleration Probe mission, which was recommended as the next major Heliophysics mission by the NRC's 2013 Decadal Survey.« less

  10. Observational aspects of polycyclic aromatic hydrocarbon charging in the Interstellar Medium

    NASA Technical Reports Server (NTRS)

    Bakes, E. L. O.; Tielens, Alexander G. G. M.

    1995-01-01

    We have investigated the charging processes which affect small carbonaceous dust grains and polycyclic aromatic hydrocarbons (PAH's). Because of their high abundance, interstellar PAH molecules can dominate the charge balance of the interstellar medium (ISM), which controls the heating and cooling interstellar gas and interstellar chemistry. We present the results of our model, which compare well with observations and suggest further applications to both laboratory measurements and data obtainable from the KAO.

  11. Sub-Doppler slit jet infrared spectroscopy of astrochemically relevant cations: Symmetric (ν1) and antisymmetric (ν6) NH stretching modes in ND2H2+

    NASA Astrophysics Data System (ADS)

    Chang, Chih-Hsuan; Nesbitt, David J.

    2018-01-01

    Sub-Doppler infrared rovibrational transitions in the symmetric (v1) and antisymmetric (v6) NH stretch modes of the isotopomerically substituted ND2H2+ ammonium cation are reported for the first time in a slit jet discharge supersonic expansion spectrometer. The partially H/D substituted cation is generated by selective isotopic exchange of ND3 with H2O to form NHD2, followed by protonation with H3+ formed in the NHD2/H2/Ne slit-jet discharge expansion environment. Rotational assignment for ND2H2+ is confirmed rigorously by four line ground state combination differences, which agree to be within the sub-Doppler precision in the slit jet (˜9 MHz). Observation of both b-type (ν1) and c-type (ν6) bands enables high precision determination of the ground and vibrationally excited state rotational constants. From an asymmetric top Watson Hamiltonian analysis, the ground state constants are found to be A″ = 4.856 75(4) cm-1, B″ = 3.968 29(4) cm-1, and C″ = 3.446 67(6) cm-1, with band origins at 3297.5440(1) and 3337.9050(1) cm-1 for the v1 and v6 modes, respectively. This work permits prediction of precision microwave/mm-wave transitions, which should be invaluable in facilitating ongoing spectroscopic searches for partially deuterated ammonium cations in interstellar clouds and star-forming regions of the interstellar medium.

  12. Formation of complex precursors of amino acids by irradiation of simulated interstellar media with heavy ions

    NASA Astrophysics Data System (ADS)

    Kobayashi, K.; Suzuki, N.; Taniuchi, T.; Kaneko, T.; Yoshida, S.

    A wide variety of organic compounds have been detected in such extraterrestrial bodies as meteorites and comets Amino acids were identified in the extracts from Murchison meteorite and other carbonaceous chondrites It is hypothesized that these compounds are originally formed in ice mantles of interstellar dusts ISDs in molecular clouds by cosmic rays and ultraviolet light UV Formation of amino acid precursors by high energy protons or UV irradiation of simulated ISDs was reported by several groups The amino acid precursors were however not well-characterized We irradiated a frozen mixture of methanol ammonia and water with heavy ions to study possible organic compounds abiotically formed in molecular clouds by cosmic rays A mixture of methanol ammonia and water was irradiated with carbon beams 290 MeV u from a heavy ion accelerator HIMAC of National Institute of Radiological Sciences Japan Irradiation was performed either at room temperature liquid phase or at 77 K solid phase The products were characterized by gel filtration chromatography GFC FT-IR pyrolysis PY -GC MS etc Amino acids were analyzed by HPLC and GC MS after acid hydrolysis or the products Amino acids such as glycine and alanine were identified in the products in both the cases of liquid phase and solid phase irradiation Energy yields G-values of glycine were 0 014 liquid phase and 0 007 solid phase respectively Average molecular weights of the products were estimated as to 2300 in both the case Aromatic hydrocarbons N-containing heterocyclic

  13. Physical Processing of Cometary Nuclei

    NASA Technical Reports Server (NTRS)

    Weissman, Paul R.; Stern, S. Alan

    1997-01-01

    Cometary nuclei preserve a cosmo-chemical record of conditions and processes in the primordial solar nebula, and possibly even the interstellar medium. However, that record is not perfectly preserved over the age of the solar system due to a variety of physical processes which act to modify cometary surfaces and interiors. Possible structural and/or internal processes include: collisional accretion, disruption, and reassembly during formation; internal heating by long and short-lived radionuclides; amorphous to crystalline phase transitions, and thermal stresses. Identified surface modification processes include: irradiation by galactic cosmic rays, solar protons, UV photons, and the Sun's T Tauri stage mass outflow; heating by passing stars and nearby supernovae; gardening by debris impacts; the accretion of interstellar dust and gas and accompanying erosion by hypervelocity dust impacts and sputtering; and solar heating with accompanying crust formation. These modification processes must be taken into account in both the planning and the interpretation of the results of a Comet Nucleus Sample Return Mission. Sampling of nuclei should be done at as great a depth below the surface crust as technically feasible, and at vents or fissures leading to exposed volatiles at depth. Samples of the expected cometary crust and near-surface layers also need to be returned for analysis to achieve a better understanding of the effects of these physical processes. We stress that comets are still likely less modified dm any other solar system bodies, but the degree of modification can vary greatly from one comet to the next.

  14. Structure and spectroscopic propierties of imine acetaldehyde: a possible interstellar molecule

    NASA Astrophysics Data System (ADS)

    Redondo, Pilar; Largo, Antonio; Barrientos, Carmen

    2018-05-01

    A previous theoretical study shows that imine acetaldehyde can be obtained from the reaction between protonated vinyl alcohol and azanone. Therefore, imine acetaldehyde could be considered as a good molecule candidate to be found in space and could evolve to more complex organic molecules of prebiotic interest. In the present work, we carried out a computational study of the different conformers of imine acetaldehyde. For characterize its conformers we apply a composite approach which considers the extrapolation to the complete basis set (CBS) limit and core-valence (CV) electron correlation corrections at the at the CC level including single and double excitations and a perturbative treatment of triple excitations (CCSD(T)). This approach provides bond distances with an accuracy of 0.001-0.002 Åand angles accurate to 0.05-0.1°. Vibrational harmonic and anharmonic frequencies and IR intensities are also reported at the CCSD level. The most stable structure corresponds to an antiperiplanar disposition of the oxygen atom and of NH group with the hydrogen atom of the NH group addressed outside the skeleton. Interconversion processes between the four conformers characterized are studied. The lowest isomerization barrier is estimated to be around 1.2 kcal mol-1, making these processes unlikely under low temperature conditions, such as those reigning in the interstellar medium. The reported, at "spectroscopic" accuracy, stabilities, molecular structures, as well as spectroscopic parameters for the four imine acetaldehyde conformers that could help in their laboratory or astronomical detection.

  15. Measurements of H(+), He(2+), and He(+), in Corotating Interaction Regions at 1 AU

    NASA Astrophysics Data System (ADS)

    Chotoo, Kancham

    Using the Supra-Thermal Ion Composition Spectrometer (STICS) from the SMS experiment on the WIND spacecraft, measurements of H+, He2+, and He+ were made during two corotating interacting regions (CIRs) at 1 AU. The unique energy range of STICS (6-198 keV/e) allowed simultaneous observation of the pre- and post-accelerated ions. These observations gave important clues about the source population, injection, acceleration mechanism, and ion transport in CIRs. The abundance of He2+ relative to H+ in the velocity range 2.5-6.0 times the solar wind velocity, VSW, (5-90 keV/amu) was between 0.11-0.18, which is more than double the solar wind values. However, the same ratio was observed in the suprathermal tail above 1.4 VSW in the spacecraft frame or above ~0.4 VSW in the solar wind frame. This suggests that the H+ and He2+ ions are injected equally into the CIR acceleration process from the suprathermal tail of the solar wind. At 1 AU the H+ and He2+ ions are primarily from the solar wind, but the He+ ions are interstellar pickup ions. The He+/He2+ ratio at 1 AU was ~0.15 for the same velocity range as above. However, this ratio was greater than 1.0 at 4.5 AU as measured previously (Gloeckler et al., 1994). This shows that the relative contribution of the pickup He+ ions to the seed population increases with radial distance away from the Sun. By combining data from three separate sensors on WIND (SMS-MASS, SMS-STICS, and EPACT-STEP), the extended helium distribution was presented for solar wind ions (~1 keV/amu) through energetic particles up to ~1 MeV/amu. The distribution covered 14 orders of magnitude in phase space density. This is the first time such an extended helium distribution is being reported at any radial distance. Using the Fisk and Lee (1980) model to fit the data between ~10-1000 keV/amu, the energetic particles were found to originate from 1.0-1.2 AU and not from beyond 2 AU, as is conventional believed. Anisotropy measurements were made using STICS for both the H+ and He2+ ions in the solar wind frame, and the results were compared to those made by EPACT-STEP. For both time intervals, the anisotropy directions showed significant deviations away from the average magnetic field direction in agreement with the STEP observations of Dwyer et al. (1997).

  16. Cometary water-group ions in the region surrounding Comet Giacobini-Zinner - Distribution functions and bulk parameter estimates

    NASA Astrophysics Data System (ADS)

    Staines, K.; Balogh, A.; Cowley, S. W. H.; Hynds, R. J.; Yates, T. S.; Richardson, I. G.; Sanderson, T. R.; Wenzel, K. P.; McComas, D. J.; Tsurutani, B. T.

    1991-03-01

    The bulk parameters (number density and thermal energy density) of cometary water-group ions in the region surrounding Comet Giacobini-Zinner have been derived using data from the EPAS instrument on the ICE spacecraft. The derivation is based on the assumption that the pick-up ion distribution function is isotropic in the frame of the bulk flow, an approximation which has previously been shown to be reasonable within about 400,000 km of the comet nucleus along the spacecraft trajectory. The transition between the pick-up and mass-loaded regions occurs at the cometary shock, which was traversed at a cometocentric distance of about 100,000 km along the spacecraft track. Examination of the ion distribution functions in this region, transformed to the bulk flow frame, indicates the occurrence of a flattened distribution in the vicinity of the local pick-up speed, and a steeply falling tail at speeds above, which may be approximated as an exponential in ion speed.

  17. Enhancement of Optical Adaptive Sensing by Using a Dual-Stage Seesaw-Swivel Actuator with a Tunable Vibration Absorber

    PubMed Central

    Chou, Po-Chien; Lin, Yu-Cheng; Cheng, Stone

    2011-01-01

    Technological obstacles to the use of rotary-type swing arm actuators to actuate optical pickup modules in small-form-factor (SFF) disk drives stem from a hinge’s skewed actuation, subsequently inducing off-axis aberrations and deteriorating optical quality. This work describes a dual-stage seesaw-swivel actuator for optical pickup actuation. A triple-layered bimorph bender made of piezoelectric materials (PZTs) is connected to the suspension of the pickup head, while the tunable vibration absorber (TVA) unit is mounted on the seesaw swing arm to offer a balanced force to reduce vibrations in a focusing direction. Both PZT and TVA are designed to satisfy stable focusing operation operational requirements and compensate for the tilt angle or deformation of a disc. Finally, simulation results verify the performance of the dual-stage seesaw-swivel actuator, along with experimental procedures and parametric design optimization confirming the effectiveness of the proposed system. PMID:22163877

  18. The violent interstellar medium

    NASA Technical Reports Server (NTRS)

    Mccray, R.; Snow, T. P., Jr.

    1979-01-01

    Observational evidence for high-velocity and high-temperature interstellar gas is reviewed. The physical processes that characterize this gas are described, including the ionization and emissivity of coronal gas, the behavior and appearance of high-velocity shocks, and interfaces between coronal gas and cooler interstellar gas. Hydrodynamical models for the action of supernova explosions and stellar winds on the interstellar medium are examined, and recent attempts to synthesize all the processes considered into a global model for the interstellar medium are discussed.

  19. The interstellar depletion mystery, or where have all those atoms gone. [cosmic abundance as grain model evidence

    NASA Technical Reports Server (NTRS)

    Greenberg, J. M.

    1974-01-01

    The observed depletion of intermediate-weight elements O, C, and N from the interstellar medium is shown to be significantly greater than can be accounted for by accretion on interstellar dust. A number of possible explanations are presented, ranging from the existence in interstellar space of many 'snowballs' intermediate in size between dust grains and comets to the existence of many far more complicated interstellar molecules than have been detected.

  20. Wind Enhanced Escape, Ion Pickup and the Evolution of Water on Mars

    NASA Technical Reports Server (NTRS)

    Hartle, Richard

    1999-01-01

    Preferential loss of hydrogen over deuterium from Mars has produced a deuterium rich atmosphere possessing a D/B ratio 5.2 times that of terrestrial water. Rayleigh fractionation is applied, constrained by the deuterium enrichment factor, to determine the magnitudes of ancient and present water reservoirs on the planet. The dominant lose mechanisms of R and D from the current atmosphere are thought to be thermal escape and solar wind ion pickup of the neutral and ion forms of theme constituents, respectively. During an earlier martian epoch, only thermal escape was significant because Mars had a terrestrial sized magnetosphere that protected the atmosphere from solar wind scavenging processes. The magnitudes of present and ancient water reservoirs are estimated when thermal escape is considered alone and subsequently when the effects of ion pickup are added. The escape fluxes of R and D are significantly increased above the respective Jeans fluxes when the effects of thermospheric winds and planetary rotation are accounted for at the exobase. Such wind enhanced escape also increases as the mass of an escaping constituent increases; thus, the increase in the escape flux of D is greater than that of H. When the fractionation process is also constrained by the D/H ratio observed in hydrous minerals of SNC meteorites, an ancient crustal reservoir of Martian water in derived, tens of meters in global-equivalent depth, considerably exceeding that obtained with no winds. The reservoir becomes even larger when ion pickup processes are added.

  1. Estimating dermal transfer from PCB-contaminated porous surfaces.

    PubMed

    Slayton, T M; Valberg, P A; Wait, A D

    1998-06-01

    Health risks posed by dermal contact with PCB-contaminated porous surfaces have not been directly demonstrated and are difficult to estimate indirectly. Surface contamination by organic compounds is commonly assessed by collecting wipe samples with hexane as the solvent. However, for porous surfaces, hexane wipe characterization is of limited direct use when estimating potential human exposure. Particularly for porous surfaces, the relationship between the amount of organic material collected by hexane and the amount actually picked up by, for example, a person's hand touch is unknown. To better mimic PCB pickup by casual hand contact with contaminated concrete surfaces, we used alternate solvents and wipe application methods that more closely mimic casual dermal contact. Our sampling results were compared to PCB pickup using hexane-wetted wipes and the standard rubbing protocol. Dry and oil-wetted samples, applied without rubbing, picked up less than 1% of the PCBs picked up by the standard hexane procedure; with rubbing, they picked up about 2%. Without rubbing, saline-wetted wipes picked up 2.5%; with rubbing, they picked up about 12%. While the nature of dermal contact with a contaminated surface cannot be perfectly reproduced with a wipe sample, our results with alternate wiping solvents and rubbing methods more closely mimic hand contact than the standard hexane wipe protocol. The relative pickup estimates presented in this paper can be used in conjunction with site-specific PCB hexane wipe results to estimate dermal pickup rates at sites with PCB-contaminated concrete.

  2. [Current program of in-vitro fertilization at the Erasmus Hospital: initial results and original ethical aspects].

    PubMed

    Englert, Y; Van den Bergh, M; Rodesch, C; Van der Vorst, P; Berberoglugil, P; Laruelle, C; Biramane, J; Gervy, C; Schwers, J

    1991-10-01

    The clinical results including all in vitro fertilization (IVF) cycles with oocyte pick-up in 1990 are presented. Different types of treatment including classical IVF and embryo transfer, laparoscopic replacement of zygotes in the fallopian tube (ZIFT), IVF with donor sperm (IVF-D), cross fertilization test, embryo freezing, oocyte donation and IVF with epididymal sperm were performed. The total pregnancy rate obtained reaches 38% per oocyte pick-up, 30% of clinical pregnancies (including 4 pregnancies obtained with frozen and thawed embryos). The anticipated "Take Home Baby Rate" will be around 25% per oocyte pick-up, 26 of these 40 pregnancies being today over 20 weeks of gestation. Particular ethical aspects of the program are presented: a study on couple's attitudes regarding embryo freezing as well as the final destination of possibly remaining supernumerary embryos will stress the importance of a precise clear decision on that matter before entering IVF treatment. Indeed the couple's idea on embryo destiny were very precise but also very different. The oocyte donation program has the originality of preserving the donor's anonymity by exchanging the donors recruited by the patients. It will be stressed that this kind of approach combines higher pregnancy chances for the patients, respect of ethical principles linked to gamete donation and gives satisfaction to the patients. The global normalized pregnancy cumulative curve shows that 60% of the couples entering IVF treatment will obtain a child within the first three pick-up cycles.

  3. ON THE ENERGY SPECTRA OF GeV/TeV COSMIC RAY LEPTONS

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Stawarz, Lukasz; Petrosian, Vahe; Blandford, Roger D., E-mail: stawarz@slac.stanford.ed

    2010-02-10

    Recent observations of cosmic ray (CR) electrons from several instruments have revealed various degrees of deviation in the measured electron energy distribution from a simple power law, in the form of an excess around 0.1-1 TeV energies. An even more prominent deviation and excess has been observed in the fraction of CR positrons around 10 and 100 GeV energies. These observations have received considerable attention and many theoretical models have been proposed to explain them. The models rely on either dark matter annihilation/decay or specific nearby astrophysical sources, and involve several additional assumptions regarding dark matter distribution or particle acceleration.more » In this paper, we show that the observed excesses in the electron spectrum may be easily re-produced without invoking any unusual sources other than the general diffuse Galactic components of CRs. The model presented here assumes a power-law injection of electrons (and protons) by supernova remnants (SNRs), and evaluates their expected energy spectrum based on a simple kinetic equation describing the propagation of charged particles in the interstellar medium (ISM). The primary physical effect involved is the Klein-Nishina suppression of the electron cooling rate around TeV energies. With a very reasonable choice of the model parameters characterizing the local ISM, we can reproduce the most recent observations by the Fermi and HESS experiments. Interestingly, in our model the injection spectral index of CR electrons becomes comparable to, or even equal to that of CR protons. The Klein-Nishina effect may also affect the propagation of the secondary e {sup +}- pairs, and therefore modify the CR positron-to-electron ratio. We have explored this possibility by considering two mechanisms for production of e {sup +}- pairs within the Galaxy. The first is due to the decay of pi{sup +}-'s produced by interaction of CR nuclei with ambient protons. The second source discussed here is due to the annihilation of the diffuse Galactic gamma-rays on the stellar photon field. We find that high positron fraction increasing with energy, as claimed by the PAMELA experiment, cannot be explained in our model with the conservative set of the model parameters. We are able, however, to reproduce the PAMELA (as well as the Fermi and HESS) results assuming high values of the starlight and interstellar gas densities, which would be more appropriate for vicinities of SNRs. A possible solution to this problem may be that CRs undergo most of their interactions near their sources due to the efficient trapping in the far upstream of supernova shocks by self-generated, CR-driven turbulence.« less

  4. Interstellar molecules and dense clouds.

    NASA Technical Reports Server (NTRS)

    Rank, D. M.; Townes, C. H.; Welch, W. J.

    1971-01-01

    Current knowledge of the interstellar medium is discussed on the basis of recent published studies. The subjects considered include optical identification of interstellar molecules, radio molecular lines, interstellar clouds, isotopic abundances, formation and disappearance of interstellar molecules, and interstellar probing techniques. Diagrams are plotted for the distribution of galactic sources exhibiting molecular lines, for hydrogen molecule, hydrogen atom and electron abundances due to ionization, for the densities, velocities and temperature of NH3 in the direction of Sagitarius B2, for the lower rotational energy levels of H2CO, and for temporal spectral variations in masing H2O clouds of the radio source W49. Future applications of the maser and of molecular microscopy in this field are visualized.

  5. Analysis of "Midnight" Tracks in the Stardust Interstellar Dust Collector: Possible Discovery of a Contemporary Interstellar Dust Grain

    NASA Technical Reports Server (NTRS)

    Westphal, A. J.; Allen, C.; Bajit, S.; Bastien, R.; Bechtel, H.; Bleuet, P.; Borg, J.; Brenker, F.; Bridges, J.; Brownlee, D. E.; hide

    2010-01-01

    In January 2006, the Stardust sample return capsule returned to Earth bearing the first solid samples from a primitive solar system body, Comet 81P/Wild2, and a collector dedicated to the capture and return of contemporary interstellar dust. Both collectors were approximately 0.1m(exp 2) in area and were composed of aerogel tiles (85% of the collecting area) and aluminum foils. The Stardust Interstellar Dust Collector (SIDC) was exposed to the interstellar dust stream for a total exposure factor of 20 m(exp 2) day. The Stardust Interstellar Preliminary Examination (ISPE) is a three-year effort to characterize the collection using nondestructive techniques.

  6. The interstellar N2 abundance towards HD 124314 from far-ultraviolet observations.

    PubMed

    Knauth, David C; Andersson, B-G; McCandliss, Stephan R; Moos, H Warren

    2004-06-10

    The abundance of interstellar molecular nitrogen (N2) is of considerable importance: models of steady-state gas-phase interstellar chemistry, together with millimetre-wavelength observations of interstellar N2H+ in dense molecular clouds predict that N2 should be the most abundant nitrogen-bearing molecule in the interstellar medium. Previous attempts to detect N2 absorption in the far-ultraviolet or infrared (ice features) have hitherto been unsuccessful. Here we report the detection of interstellar N2 at far-ultraviolet wavelengths towards the moderately reddened star HD 124314 in the constellation of Centaurus. The N2 column density is larger than expected from models of diffuse clouds and significantly smaller than expected for dense molecular clouds. Moreover, the N2 abundance does not explain the observed variations in the abundance of atomic nitrogen (N I) towards high-column-density sightlines, implying that the models of nitrogen chemistry in the interstellar medium are incomplete.

  7. Copernicus observations of interstellar matter in the direction of HR 1099

    NASA Technical Reports Server (NTRS)

    Anderson, R. C.; Weiler, E. J.

    1978-01-01

    Results are reported for high-resolution Copernicus U1 and V2 scans of the bright RS CVn spectroscopic binary HR 1099. The observations reveal strong UV emission lines at L-alpha and Mg II h and k from the stars as well as interstellar H I and D I L-alpha absorption lines and interstellar Mg II h and k absorption in the direction of the binary system. Column densities, bulk velocities, and temperatures are derived for the interstellar features. A comparison of the derived number density of interstellar H I with data for the nearby star Epsilon Eri indicates an inhomogeneous distribution of interstellar hydrogen along the line of sight. The range of values obtained for the D/H ratio is shown to be consistent with results of other studies. A depletion factor of at least 5 with respect to the solar abundance is estimated for the interstellar magnesium.

  8. Excess depletion of Al, Ca, Ti from interstellar gas

    NASA Technical Reports Server (NTRS)

    Clayton, D. D.

    1986-01-01

    Thermal condensation, cold sticking, and sputtering by interstellar shock are combined with a chemical memory of the condensation sequence to account for depletion of aluminum, calcium, and titanium in interstellar gas. The extra depletion of aluminum and calcium becomes an indicator of the structural history of the refractory parts of interstellar grains.

  9. Where is the Most Likely Location Where the Secondary Interstellar Oxygen Atoms Are Created Around the Heliosheath?

    NASA Astrophysics Data System (ADS)

    Park, J.; Kucharek, H.; Szabo, A.; Paschalidis, N.; Grocer, A.; Jones, S.

    2017-12-01

    The secondary component of the interstellar neutral gas flow is originated from charge exchange between the undisturbed primary interstellar neutrals and the ions that have been deflected as they approach the heliopause. The secondary neutrals that are emitted from the interstellar ion flow through charge exchange carry information on the diverted flow and a fraction of them can travel to the Sun. Therefore, the secondary component of the interstellar neutrals is an excellent diagnostic tool to provide important information to constrain the shape of the heliopause. The presence of the secondary neutrals was predicted in the global heliospheric models and they are observed by Interstellar Boundary Explorer (IBEX) at Earth's orbit. Using the IBEX observations of neutral helium atoms, Kubiak et al. (2016, ApJS, 223, 25) approximated the parent distribution of the secondary interstellar He atoms (so-called Warm Breeze) with a homogeneous Maxwellian distribution function. Park et al. (2016, ApJ, 833, 130) analyzed IBEX observations of secondary interstellar helium and oxygen distributions at Earth's orbit. Lee et al. (2012, ApJS, 198, 10) constructed the heliospheric phase-space distribution function of an interstellar gas species in the Earth frame as a function of solar longitude. In this distribution, the authors assume that the distribution is a drifting Maxwellian at large distances from the Sun. In this study, we assume that a fraction of the secondary neutral atoms has a velocity vector toward the Sun and they can be described as a flow with a drifting Maxwellian distribution near the heliopause. Unlike the primary interstellar gas flow, the distribution of the secondary neutrals is expected to have a wide width and their bulk speeds are slower than the bulk speed of the primary interstellar gas flow. We compare Lee's distribution and IBEX observations of neutral oxygen atoms and then estimate the most likely direction where the secondary interstellar oxygen atoms are created near the heliopause.

  10. Diffractive Optics: Design, Fabrication, and Applications, Technical Digest Series, Volume 9, 1992

    DTIC Science & Technology

    1992-01-01

    integration of optoelec- lens are presented and discussed. (p. 8) tronic chips with the passive glass optics. (p. 26) 10:00 am-10:30 am Coffee Break 2...optical pickup, Wai-Hon Lee, HOETRON, Inc. This paper discusses the recent pro- 3:30 pm-4:00 pm COFFEE BREAK gress in miniaturization of optical pickup...compared to 0th-order EMT and to 10:00 am-10:30 am COFFEE BREAK a rigorous coupled wave approach. (p. 44) 5:10 pm CABILDO ROOM MD4 Filter properties of

  11. M113 Electric Land Drive Demonstration Project. Volume 1: Vehicle Systems Design and Integration

    DTIC Science & Technology

    1992-08-01

    pickup for L-final drive output speed MP-5 Magnetic pickup for engine speed Pressure Switches PS-I Pressure switch for gearbox pressure (5 lb/in2 ) PS...2 Pressure switch for ac generator pressure (5 lb/in 2 ) PS-3 Pressure switch for dc generator pressure (5 lb/in2 ) PS-4 Pressure switch for ac...generator-i scavenge pressure (5 lb/in 2 ) PS-5 Pressure switch for ac generator-2 scavenge pressure (5 lb/in2 ) PS-6 Pressure switch for engine

  12. Cometary kilometric radio waves and plasma waves correlated with ion pick-up effect at Comet Halley

    NASA Technical Reports Server (NTRS)

    Oya, H.; Morioka, A.; Miyake, W.; Smith, E. J.; Tsurutani, B. T.

    1985-01-01

    Bow-shock movements at Comet Halley are inferred from the discrete spectra of the cometary kilometric radiation (30-195 kHz); the observed emissions can be interpreted as being generated and propagating from the moving shock. The shock motion is possibly associated with the time variation of the solar wind and cometary outgassing. It is concluded that these plasma wave phenomena are manifestations of ion pick-up processes, which occur even in a remote region 7 million to 10 million km from the cometary nucleus.

  13. An Adaptive Tabu Search Heuristic for the Location Routing Pickup and Delivery Problem with Time Windows with a Theater Distribution Application

    DTIC Science & Technology

    2006-08-01

    much easier to interpret . In this representation, only one depot (1) was selected and vehicle 10 27 traveled to customers 3 – 7 – 4 – 8 – 5 – 9...Problem ( HTP ). The last section reviews the literature relevant to the PDP. The objective of this section is to discuss methods that researchers have...Handicapped person Transportation Problem ( HTP ), and the Pick-up and Delivery Problem (PDP). The first two instances deal with the transportation of

  14. Astronauts Stafford and Young await pickup by recovery helicopter

    NASA Image and Video Library

    1969-05-26

    S69-36595 (26 May 1969) --- Astronauts Thomas P. Stafford, Apollo 10 commander; and John W. Young, command module pilot, await pickup by the recovery helicopter from the prime recovery ship, USS Princeton. Astronaut Eugene A. Cernan, lunar module pilot, is already hoisted aboard the helicopter. U.S. Navy underwater demolition team swimmers assist in the recovery operations. Splashdown occurred at 11:53 a.m., May 26, 1969, about 400 miles east of American Samoa and about four miles from the recovery ship, to conclude a successful eight-day lunar orbit mission.

  15. [The monodigital recognition test (MRT)--a sensitivity-specific variant of Moberg's pick-up test].

    PubMed

    Clemens, R

    1979-01-01

    The Test for Mono-digital Recognition (MRT) is a procedure specifically designed for the measurement of gnostic performance. The new test was derived from MOBERG's Pick-up Test with the aim of eliminating its shortcomings. Additional injuries do not restrict the applicability of the MRT and the test is not confined to the skin area supplied by the median nerve. The MRT expresses the degree of gnostic disturbances by means of a point system. For testing a patient only two to four minutes are needed.

  16. Shaft transducer having dc output proportional to angular velocity

    NASA Technical Reports Server (NTRS)

    Handlykken, M. B. (Inventor)

    1984-01-01

    A brushless dc tachometer is disclosed that includes a high strength toroidal permanent magnet for providing a uniform magnetic field in an air gap, an annular pole piece opposite the magnet, and a pickup coil wound around the pole piece and adapted to rotate about the axis of the pole piece. The pickup coil is rotated by an input shaft to which the coil is coupled with the friction clip. The output of the coil is conducted to circuitry by a twisted wire pair. The input shaft also activates a position transducing potentiometer.

  17. Vehicle test report: Battronic pickup truck

    NASA Technical Reports Server (NTRS)

    Price, T. W.; Shain, T. W.; Freeman, R. J.; Pompa, M. F.

    1982-01-01

    An electric pickup truck was tested to characterize certain parameters and to provide baseline data that can be used for the comparison of improved batteries that may be incorporated into the vehicle at a later time. The vehicle tests were concentrated on the electrical drive subsystem; i.e., the batteries, controller, and motor. The tests included coastdowns to characterize the road load and range evaluations for both cyclic and constant speed conditions. A qualitative evaluation of the vehicle's performance was made by comparing its constant speed range performance with other vehicles.

  18. Prism-type holographic optical element design and verification for the blue-light small-form-factor optical pickup head.

    PubMed

    Shih, Hsi-Fu; Chiu, Yi; Cheng, Stone; Lee, Yuan-Chin; Lu, Chun-Shin; Chen, Yung-Chih; Chiou, Jin-Chern

    2012-08-20

    This paper presents the prism-type holographic optical element (PT-HOE) design for a small-form-factor (SFF) optical pickup head (OPH). The surface of the PT-HOE was simulated by three steps of optimization and generated by binary optics. Its grating pattern was fabricated on the inclined plane of a microprism by using the standard photolithography and specific dicing procedures. The optical characteristics of the device were verified. Based on the virtual image method, the SFF-OPH with the device was assembled and realized.

  19. Beam position monitor for energy recovered linac beams

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Powers, Thomas; Evtushenko, Pavel

    A method of determining the beam position in an energy recovered linac (ERL). The method makes use of in phase and quadrature (I/Q) demodulation techniques to separate the pickup signal generated by the electromagnetic fields generated by the first and second pass beam in the energy recovered linac. The method includes using analog or digital based I/Q demodulation techniques in order to measure the relative amplitude of the signals from a position sensitive beam pickup such as a button, strip line or microstripline beam position monitor.

  20. Experimental interstellar organic chemistry - Preliminary findings

    NASA Technical Reports Server (NTRS)

    Khare, B. N.; Sagan, C.

    1973-01-01

    Review of the results of some explicit experimental simulation of interstellar organic chemistry consisting in low-temperature high-vacuum UV irradiation of condensed simple gases known or suspected to be present in the interstellar medium. The results include the finding that acetonitrile may be present in the interstellar medium. The implication of this and other findings are discussed.

  1. Comets, carbonaceous chondrites, and interstellar clouds: Condensation of carbon

    NASA Technical Reports Server (NTRS)

    Field, G. B.

    1979-01-01

    Comets, carbonaceous chondrites, and interstellar clouds are discussed in relation to information on interstellar dust. The formation and presence of carbon in stars, comets, and meteorites is investigated. The existence of graphite in the interstellar medium, though it is predicted from thermodynamic calculations, is questioned and the form of carbon contained in comets is considered.

  2. Four Interstellar Dust Candidates from the Stardust Interstellar Dust Collector

    NASA Technical Reports Server (NTRS)

    Westphal, A. J.; Allen, C.; Bajt, S.; Bechtel, H. A.; Borg, J.; Brenker, F.; Bridges, J.; Brownlee, D. E.; Burchell, M.; Burghammer, M.; hide

    2011-01-01

    In January 2006, the Stardust sample return capsule returned to Earth bearing the first solid samples from a primitive solar system body, Comet 81P/Wild2, and a collector dedicated to the capture and return of contemporary interstellar dust. Both collectors were approx. 0.1 sq m in area and were composed of aerogel tiles (85% of the collecting area) and aluminum foils. The Stardust Interstellar Dust Collector (SIDC) was exposed to the interstellar dust stream for a total exposure factor of 20 sq m/day. The Stardust Interstellar Preliminary Examination (ISPE) is a consortium-based project to characterize the collection using nondestructive techniques. The goals and restrictions of the ISPE are described . A summary of analytical techniques is described.

  3. Ion acceleration by multiple reflections at Martian bow shock

    NASA Astrophysics Data System (ADS)

    Yamauchi, M.; Futaana, Y.; Fedorov, A.; Frahm, R. A.; Dubinin, E.; Lundin, R.; Sauvaud, J.-A.; Winningham, J. D.; Barabash, S.; Holmström, M.

    2012-02-01

    The ion mass analyzer (IMA) on board Mars Express revealed bundled structures of ions in the energy domain within a distance of a proton gyroradius from the Martian bow shock. Seven prominent traversals during 2005 were examined when the energy-bunched structure was observed together with pick-up ions of exospheric origin, the latter of which is used to determine the local magnetic field orientation from its circular trajectory in velocity space. These seven traversals include different bow shock configurations: (a) quasi-perpendicular shock with its specular direction of the solar wind more perpendicular to the magnetic field (QT), (b) quasi-perpendicular shock with its specular reflection direction of the solar wind more along the magnetic field (FS), and (c) quasi-parallel (QL) shock. In all seven cases, the velocity components of the energy-bunched structure are consistent with multiple specular reflections of the solar wind at the bow shock up to at least two reflections. The accelerated solar wind ions after two specular reflections have large parallel components with respect to the magnetic field for both QL cases whereas the field-aligned speed is much smaller than the perpendicular speed for all QT cases.

  4. Multi-species first-principles simulations of particle acceleration at shocks

    NASA Astrophysics Data System (ADS)

    Caprioli, Damiano

    Astrophysical shocks are known to be prominent sources of non-thermal particles and emission. In particular, strong shocks at supernova remnant blast waves are thought to accelerate Galactic cosmic rays (CRs) up to about 10^17eV via diffusive shock acceleration (DSA). The chemical composition of Galactic CRs, now measured with great accuracy by payloads and satellites, is reminiscent of that of the typical interstellar medium, although with some significant deviations. Observations reveal: 1) an electron/proton ratio of about 1% at about 10 GeV, (2) a general enhancement of the refractory elements relative to the volatile ones, (3) among the volatile elements, an enhancement of the heavier elements relative to the lighter ones, and (4) a discrepant hardening of CR nuclei heavier than hydrogen. Such peculiar trends contain precious information about the dependence of the acceleration process on the particle mass/charge ratio, a trend that has no theoretical counterpart in the DSA theory, yet. Building on our recent successes in modeling electron and proton DSA at non-relativistic astrophysical shocks via first-principles kinetic simulations, we will perform multispecies particle-in-cells simulations of such systems also including nuclei heavier than hydrogen, in order to investigate thermalization, injection, and acceleration of species with different mass/charge ratio. We will also analyze how the simulation outputs compare with the observed CR abundances, in order to build a model for DSA that accounts for the relative acceleration efficiency of energetic electrons, protons, and heavier ions. Finally, we will assess the possible contribution of accelerated heavy ions, especially helium, to the generation of magnetic turbulence via CR-driven instabilities - crucial to foster rapid particle energgization- and to the hadronic gamma-ray emission from young supernova remnants.

  5. XUV-Exposed, Non-Hydrostatic Hydrogen-Rich Upper Atmospheres of Terrestrial Planets. Part II: Hydrogen Coronae and Ion Escape

    PubMed Central

    Lammer, Helmut; Holmström, Mats; Panchenko, Mykhaylo; Odert, Petra; Erkaev, Nikolai V.; Leitzinger, Martin; Khodachenko, Maxim L.; Kulikov, Yuri N.; Güdel, Manuel; Hanslmeier, Arnold

    2013-01-01

    Abstract We studied the interactions between the stellar wind plasma flow of a typical M star, such as GJ 436, and the hydrogen-rich upper atmosphere of an Earth-like planet and a “super-Earth” with a radius of 2 REarth and a mass of 10 MEarth, located within the habitable zone at ∼0.24 AU. We investigated the formation of extended atomic hydrogen coronae under the influences of the stellar XUV flux (soft X-rays and EUV), stellar wind density and velocity, shape of a planetary obstacle (e.g., magnetosphere, ionopause), and the loss of planetary pickup ions on the evolution of hydrogen-dominated upper atmospheres. Stellar XUV fluxes that are 1, 10, 50, and 100 times higher compared to that of the present-day Sun were considered, and the formation of high-energy neutral hydrogen clouds around the planets due to the charge-exchange reaction under various stellar conditions was modeled. Charge-exchange between stellar wind protons with planetary hydrogen atoms, and photoionization, lead to the production of initially cold ions of planetary origin. We found that the ion production rates for the studied planets can vary over a wide range, from ∼1.0×1025 s−1 to ∼5.3×1030 s−1, depending on the stellar wind conditions and the assumed XUV exposure of the upper atmosphere. Our findings indicate that most likely the majority of these planetary ions are picked up by the stellar wind and lost from the planet. Finally, we estimated the long-time nonthermal ion pickup escape for the studied planets and compared them with the thermal escape. According to our estimates, nonthermal escape of picked-up ionized hydrogen atoms over a planet's lifetime within the habitable zone of an M dwarf varies between ∼0.4 Earth ocean equivalent amounts of hydrogen (EOH) to <3 EOH and usually is several times smaller in comparison to the thermal atmospheric escape rates. Key Words: Stellar activity—Low-mass stars—Early atmospheres—Earth-like exoplanets—Energetic neutral atoms—Ion escape—Habitability. Astrobiology 13, 1030–1048. PMID:24283926

  6. XUV-exposed, non-hydrostatic hydrogen-rich upper atmospheres of terrestrial planets. Part II: hydrogen coronae and ion escape.

    PubMed

    Kislyakova, Kristina G; Lammer, Helmut; Holmström, Mats; Panchenko, Mykhaylo; Odert, Petra; Erkaev, Nikolai V; Leitzinger, Martin; Khodachenko, Maxim L; Kulikov, Yuri N; Güdel, Manuel; Hanslmeier, Arnold

    2013-11-01

    We studied the interactions between the stellar wind plasma flow of a typical M star, such as GJ 436, and the hydrogen-rich upper atmosphere of an Earth-like planet and a "super-Earth" with a radius of 2 R(Earth) and a mass of 10 M(Earth), located within the habitable zone at ∼0.24 AU. We investigated the formation of extended atomic hydrogen coronae under the influences of the stellar XUV flux (soft X-rays and EUV), stellar wind density and velocity, shape of a planetary obstacle (e.g., magnetosphere, ionopause), and the loss of planetary pickup ions on the evolution of hydrogen-dominated upper atmospheres. Stellar XUV fluxes that are 1, 10, 50, and 100 times higher compared to that of the present-day Sun were considered, and the formation of high-energy neutral hydrogen clouds around the planets due to the charge-exchange reaction under various stellar conditions was modeled. Charge-exchange between stellar wind protons with planetary hydrogen atoms, and photoionization, lead to the production of initially cold ions of planetary origin. We found that the ion production rates for the studied planets can vary over a wide range, from ∼1.0×10²⁵ s⁻¹ to ∼5.3×10³⁰ s⁻¹, depending on the stellar wind conditions and the assumed XUV exposure of the upper atmosphere. Our findings indicate that most likely the majority of these planetary ions are picked up by the stellar wind and lost from the planet. Finally, we estimated the long-time nonthermal ion pickup escape for the studied planets and compared them with the thermal escape. According to our estimates, nonthermal escape of picked-up ionized hydrogen atoms over a planet's lifetime within the habitable zone of an M dwarf varies between ∼0.4 Earth ocean equivalent amounts of hydrogen (EO(H)) to <3 EO(H) and usually is several times smaller in comparison to the thermal atmospheric escape rates.

  7. Abiogenic synthesis of nucleotides on the surface of small space bodies with high energy particles

    NASA Astrophysics Data System (ADS)

    Simakov, M. B.; Kuzicheva, E. A.; Antropov, A. E.; Dodonova, N. Ya

    Abiotic formation of such complex biochemical compounds as nucleotides and oligopeptides on the surface of interstellar and interplanetary dust particles (IDP) by cosmic radiation was examined. In order to study the formation of organic compounds on IDPs, solid films prepared from nucleososide and inorganic phosphate were irradiated with high energy protons. Irradiated products were analyzed with HPLC. The natural nucleotides were detected. The main products were 5' AMP (3.2%) and 2'3' cAMP (2.7%). The results were compared with others experiments on the action of ultraviolet radiation with different wavelengths, γ-radiation and heat on solid mixtures of biologically significant compounds. The experiment on abiogenic synthesis of nucleotides on board of space satellite "BION-11" was compared also. The present results suggest that a considerable amount of complex biochemical compounds formed in extraterrestrial environments could have been supplied to the primitive earth before the origin of life.

  8. Discovery of very-high-energy gamma-rays from the Galactic Centre ridge.

    PubMed

    Aharonian, F; Akhperjanian, A G; Bazer-Bachi, A R; Beilicke, M; Benbow, W; Berge, D; Bernlöhr, K; Boisson, C; Bolz, O; Borrel, V; Braun, I; Breitling, F; Brown, A M; Chadwick, P M; Chounet, L-M; Cornils, R; Costamante, L; Degrange, B; Dickinson, H J; Djannati-Ataï, A; Drury, L O'C; Dubus, G; Emmanoulopoulos, D; Espigat, P; Feinstein, F; Fontaine, G; Fuchs, Y; Funk, S; Gallant, Y A; Giebels, B; Gillessen, S; Glicenstein, J F; Goret, P; Hadjichristidis, C; Hauser, D; Hauser, M; Heinzelmann, G; Henri, G; Hermann, G; Hinton, J A; Hofmann, W; Holleran, M; Horns, D; Jacholkowska, A; de Jager, O C; Khélifi, B; Klages, S; Komin, Nu; Konopelko, A; Latham, I J; Le Gallou, R; Lemière, A; Lemoine-Goumard, M; Leroy, N; Lohse, T; Marcowith, A; Martin, J M; Martineau-Huynh, O; Masterson, C; McComb, T J L; de Naurois, M; Nolan, S J; Noutsos, A; Orford, K J; Osborne, J L; Ouchrif, M; Panter, M; Pelletier, G; Pita, S; Pühlhofer, G; Punch, M; Raubenheimer, B C; Raue, M; Raux, J; Rayner, S M; Reimer, A; Reimer, O; Ripken, J; Rob, L; Rolland, L; Rowell, G; Sahakian, V; Saugé, L; Schlenker, S; Schlickeiser, R; Schuster, C; Schwanke, U; Siewert, M; Sol, H; Spangler, D; Steenkamp, R; Stegmann, C; Tavernet, J-P; Terrier, R; Théoret, C G; Tluczykont, M; van Eldik, C; Vasileiadis, G; Venter, C; Vincent, P; Völk, H J; Wagner, S J

    2006-02-09

    The source of Galactic cosmic rays (with energies up to 10(15) eV) remains unclear, although it is widely believed that they originate in the shock waves of expanding supernova remnants. At present the best way to investigate their acceleration and propagation is by observing the gamma-rays produced when cosmic rays interact with interstellar gas. Here we report observations of an extended region of very-high-energy (> 10(11) eV) gamma-ray emission correlated spatially with a complex of giant molecular clouds in the central 200 parsecs of the Milky Way. The hardness of the gamma-ray spectrum and the conditions in those molecular clouds indicate that the cosmic rays giving rise to the gamma-rays are likely to be protons and nuclei rather than electrons. The energy associated with the cosmic rays could have come from a single supernova explosion around 10(4) years ago.

  9. Diffuse flux of galactic neutrinos and gamma rays

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Carceller, J.M.; Masip, M., E-mail: jmcarcell@correo.ugr.es, E-mail: masip@ugr.es

    We calculate the fluxes of neutrinos and gamma rays from interactions of cosmic rays with interstellar matter in our galaxy. We use EPOS-LHC, SIBYLL and GHEISHA to parametrize the yield of these particles in proton, helium and iron collisions at kinetic energies between 1 and 10{sup 8} GeV, and we correlate the cosmic ray density with the mean magnetic field strength in the disk and the halo of our galaxy. We find that at E > 1 PeV the fluxes depend very strongly on the cosmic-ray composition, whereas at 1–5 GeV the main source of uncertainty is the cosmic-ray spectrummore » out of the heliosphere. We show that the diffuse flux of galactic neutrinos becomes larger than the conventional atmospheric one at E >1 PeV, but that at all IceCube energies it is 4 times smaller than the atmospheric flux from forward-charm decays.« less

  10. Analysis of Mars magnetosphere structure near terminator using MAVEN measurements

    NASA Astrophysics Data System (ADS)

    Vaisberg, O. L.; Zelenyi, L. M.; Ermakov, V.; Shuvalov, S.; Dubinin, E.; Znobischev, A.; McFadden, J. P.; Halekas, J. S.; Connerney, J. E. P.

    2017-12-01

    Magnetosphere of Mars first observed on Mars-2, -3 and -5 in 1970th forms from solar wind magnetic flux tubes loaded by heavy planetary ions. These flux tubes decelerate on the dayside of Mars forming magnetic barrier forming an obstacle to the supersonic solar wind. Magnetic flux tubes pick-up planetary ions while drifting around the planet and form dynamic magnetosphere of Mars. Review of 100 MAVEN crossings of flank magnetic barrier and magnetosphere showed a variety of their properties. Magnetosphere is identified by domination of O+ and O2+ ions. The energy of these ions at the external boundary is close to the energy of ionosheath ions and decreases to the energy of ionospheric ions at the inner boundary. The number density of magnetospheric ions is close to the number density of ionosheath ions and increases by 2 orders of magnitude towards the inner boundary. From varying magnetic barrier/magnetosphere configurations and properties two types of were observed more frequently. First one has smooth profile of magnetic field and plasma characteristics with magnetic field increase starting in ionosheath and reaching maximal and nearly constant magnitude within magnetosphere. The number density and energy of protons are smoothly decreasing through ionosheath and magnetic barrier/magnetosphere. Pitch angles of planetary ions are close to 90°. Second barrier/magnetosphere structure is characterized by relatively sharp transition from ionosheath to magnetosphere. Magnetic field of barrier starts to increase far from magnetosphere and reaches maximum value at this boundary. The energy of the protons only slightly decreases in the magnetic barrier and may increase just before this boundary. Protons number density within magnetic barrier is smaller than in upstream flow but often increases just before magnetospheric boundary. Magnetic field magnitude drops within magnetosphere. The number densities of O+ and O2+ ions within magnetosphere strongly increase from upper boundary to inner boundary of magnetosphere. The magnetosphere in the second case is thinner than the magnetosphere in the first case. We discuss the influence of the upstream conditions and the dependence of the magnetosphere structure on MSE coordinates.

  11. Enabling the First Interstellar Missions

    NASA Astrophysics Data System (ADS)

    Lubin, P.

    2017-12-01

    All propulsion systems that leave the Earth are based on chemical reactions. Chemical reactions, at best, have an efficiency compared to rest mass of 10-10 (or about 1eV per bond). All the mass in the universe converted to chemical reactions would not propel even a single proton to relativistic speeds. While chemistry will get us to Mars it will not allow interstellar capability in any reasonable mission time. Barring new physics we are left with few realistic solutions. None of our current propulsion systems, including nuclear, are capable of the relativistic speeds needed for exploring the many nearby stellar systems and exo-planets. However recent advances in photonics and directed energy systems now allow us to realize what was only a decade ago, simply science fiction, namely the ability to seriously conceive of and plan for relativistic flight. From fully-functional gram-level wafer-scale spacecraft capable of speeds greater than c/4 that could reach the nearest star in 20 years to spacecraft for large missions capable of supporting human life with masses more than 105 kg (100 tons) for rapid interplanetary transit that could reach speeds of greater than 1000 km/s can be realized. With this technology spacecraft can be propelled to speeds currently unimaginable. Photonics, like electronics, and unlike chemical propulsion is an exponential technology with a current double time of about 20 months. This is the key. The cost of such a system is amortized over the essentially unlimited number of launches. In addition, the same photon driver can be used for many other purposes including beamed energy to power high Isp ion engines, remote asteroid composition analysis and planetary defense. This would be a profound change in human capability with enormous implications. Known as Starlight we are now in a NASA Phase II study. The FY 2017 congressional appropriations request directs NASA to study the feasibility of an interstellar mission to coincide with the 100th anniversary of the moon landing quoting our NASA program as one option. We will discuss the many technical challenges ahead, our current laboratory prototypes and recent data as well as the transformative implications of this program.

  12. Aliphatic Hydrocarbon Content of Interstellar Dust

    NASA Astrophysics Data System (ADS)

    Günay, B.; Schmidt, T. W.; Burton, M. G.; Afşar, M.; Krechkivska, O.; Nauta, K.; Kable, S. H.; Rawal, A.

    2018-06-01

    There is considerable uncertainty as to the amount of carbon incorporated in interstellar dust. The aliphatic component of the carbonaceous dust is of particular interest because it produces a significant 3.4 μm absorption feature when viewed against a background radiation source. The optical depth of the 3.4 μm absorption feature is related to the number of aliphatic carbon C-H bonds along the line of sight. It is possible to estimate the column density of carbon locked up in the aliphatic hydrocarbon component of interstellar dust from quantitative analysis of the 3.4 μm interstellar absorption feature providing that the absorption coefficient of aliphatic hydrocarbons incorporated in the interstellar dust is known. We report laboratory analogues of interstellar dust by experimentally mimicking interstellar/circumstellar conditions. The resultant spectra of these dust analogues closely match those from astronomical observations. Measurements of the absorption coefficient of aliphatic hydrocarbons incorporated in the analogues were carried out by a procedure combining FTIR and 13C NMR spectroscopies. The absorption coefficients obtained for both interstellar analogues were found to be in close agreement (4.76(8) × 10-18 cm group-1 and 4.69(14) × 10-18 cm group-1), less than half those obtained in studies using small aliphatic molecules. The results thus obtained permit direct calibration of the astronomical observations, providing rigorous estimates of the amount of aliphatic carbon in the interstellar medium.

  13. Kramers-Kronig relations for interstellar polarization

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Martin, P.G.

    1975-12-01

    The difficulties encountered in using the Kramers-Kronig relations to predict the behavior of interstellar polarization are pointed out, while at the same time their value in an interpretive role is acknowledged. Observations of interstellar circular polarization lead to restrictions on the interstellar grain composition, and additional constraints should be possible through measurement of linear polarization in the infrared and the ultraviolet. (AIP)

  14. Gas Phase Spectroscopy of Cold PAH Ions: Contribution to the Interstellar Extinction and the Diffuse Interstellar Bands

    NASA Technical Reports Server (NTRS)

    Biennier, L.; Salama, F.; Allamandola, L. J.; Scherer, J. J.; OKeefe, A.

    2002-01-01

    Polycyclic Aromatic Hydrocarbon molecules (PAHs) are ubiquitous in the interstellar medium (ISM) and constitute the building blocks of interstellar dust grains. Despite their inferred important role in mediating the energetic and chemical processes in thc ISM, their exact contribution to the interstellar extinction, and in particular to the diffuse interstellar bands (DIBs) remains unclear. The DIBs are spectral absorption features observed in the line of sight of stars that are obscured by diffuse interstellar clouds. More than 200 bands have been reported to date spanning from the near UV to the near IR with bandwidths ranging from 0.4 to 40 Angstroms (Tielens & Snow 1995). The present consensus is that the DIBs arise from free flying, gas-phase, organic molecules and/or ions that are abundant under the typical conditions reigning in the diffuse ISM. PAHs have been proposed as possible carriers (Allamandola et al. 1985; Leger & DHendecourt 1985). The PAH hypothesis is consistent with the cosmic abundance of Carbon and Hydrogen and with the required photostability of the DIB carriers against the strong VUV radiation field in the diffuse interstellar clouds. A significant fraction of PAHs is expected to be ionized in the diffuse ISM.

  15. Corrosion Detection in Airframes Using a New Flux-Focusing Eddy Current Probe

    NASA Technical Reports Server (NTRS)

    Fulton, James P.; Wincheski, Buzz; Nath, Shridhar; Namkung, Min

    1994-01-01

    A new flux-focusing eddy current probe was recently developed at NASA Langley Research Center. The new probe is similar in design to a reflection type eddy current probe, but is unique in that it does not require the use of an impedance bridge for balancing. The device monitors the RMS output voltage of a pickup coil and, as a result, is easier to operate and interpret than traditional eddy current instruments. The unique design feature of the probe is a ferromagnetic cylinder, typically 1020 steel, which separates a concentrically positioned drive and pickup coil. The increased permeability of the steel causes the magnetic flux produced by the drive coil to be focused in a ring around the pickup coil. At high frequencies the eddy currents induced in both the sample and the cylinder allow little or no flux to link with the pickup coil. This results in a self-nulling condition which has been shown to be useful for the unambiguous detection of cracks in conducting materials. As the frequency is lowered the flux produced by the drive coil begins to link with the pickup coil causing an output which, among other things, is proportional to the thickness of the test specimen. This enables highly accurate measurements of the thickness of conducting materials and helps to facilitate the monitoring of thickness variations in a conducting structure such as an aircraft fuselage. Under ideal laboratory conditions the probe can sense thickness changes on the order of 1% as illustrated. However, this is highly dependent upon the thickness, and the geometric complexity of the sample being tested and for practical problems the sensitivity is usually much less. In this presentation we highlight some of the advantages and limitations in using the probe to inspect aircraft panels for corrosion and other types of material nonuniformities. In particular, we present preliminary results which illustrate the probes capabilities for detecting first and second layer corrosion in aircraft panels which may contain air gaps between the layers. Since the probe utilized eddy currents its corrosion detection capabilities are similar to convectional eddy current techniques, but the new probe is much easier to use.

  16. The ESO Diffuse Interstellar Band Large Exploration Survey (EDIBLES)

    NASA Astrophysics Data System (ADS)

    Cami, J.; Cox, N. L.; Farhang, A.; Smoker, J.; Elyajouri, M.; Lallement, R.; Bacalla, X.; Bhatt, N. H.; Bron, E.; Cordiner, M. A.; de Koter, A..; Ehrenfreund, P.; Evans, C.; Foing, B. H.; Javadi, A.; Joblin, C.; Kaper, L.; Khosroshahi, H. G.; Laverick, M.; Le Petit, F..; Linnartz, H.; Marshall, C. C.; Monreal-Ibero, A.; Mulas, G.; Roueff, E.; Royer, P.; Salama, F.; Sarre, P. J.; Smith, K. T.; Spaans, M.; van Loon, J. T..; Wade, G.

    2018-03-01

    The ESO Diffuse Interstellar Band Large Exploration Survey (EDIBLES) is a Large Programme that is collecting high-signal-to-noise (S/N) spectra with UVES of a large sample of O and B-type stars covering a large spectral range. The goal of the programme is to extract a unique sample of high-quality interstellar spectra from these data, representing different physical and chemical environments, and to characterise these environments in great detail. An important component of interstellar spectra is the diffuse interstellar bands (DIBs), a set of hundreds of unidentified interstellar absorption lines. With the detailed line-of-sight information and the high-quality spectra, EDIBLES will derive strong constraints on the potential DIB carrier molecules. EDIBLES will thus guide the laboratory experiments necessary to identify these interstellar “mystery molecules”, and turn DIBs into powerful diagnostics of their environments in our Milky Way Galaxy and beyond. We present some preliminary results showing the unique capabilities of the EDIBLES programme.

  17. TRACKING THE SOLAR CYCLE THROUGH IBEX OBSERVATIONS OF ENERGETIC NEUTRAL ATOM FLUX VARIATIONS AT THE HELIOSPHERIC POLES

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Reisenfeld, D. B.; Janzen, P. H.; Bzowski, M., E-mail: dan.reisenfeld@umontana.edu, E-mail: paul.janzen@umontana.edu, E-mail: bzowski@cbk.waw.pl

    With seven years of Interstellar Boundary Explorer ( IBEX ) observations, from 2009 to 2015, we can now trace the time evolution of heliospheric energetic neutral atoms (ENAs) through over half a solar cycle. At the north and south ecliptic poles, the spacecraft attitude allows for continuous coverage of the ENA flux; thus, signal from these regions has much higher statistical accuracy and time resolution than anywhere else in the sky. By comparing the solar wind dynamic pressure measured at 1 au with the heliosheath plasma pressure derived from the observed ENA fluxes, we show that the heliosheath pressure measuredmore » at the poles correlates well with the solar cycle. The analysis requires time-shifting the ENA measurements to account for the travel time out and back from the heliosheath, which allows us to estimate the scale size of the heliosphere in the polar directions. We arrive at an estimated distance to the center of the ENA source region in the north of 220 au and in the south a distance of 190 au. We also find a good correlation between the solar cycle and the ENA energy spectra at the poles. In particular, the ENA flux for the highest IBEX energy channel (4.3 keV) is quite closely correlated with the areas of the polar coronal holes, in both the north and south, consistent with the notion that polar ENAs at this energy originate from pickup ions of the very high speed wind (∼700 km s{sup −1}) that emanates from polar coronal holes.« less

  18. Stardust Interstellar Preliminary Examination II: Curating the Interstellar Dust Collector, Picokeystones, and Sources of Impact Tracks

    NASA Technical Reports Server (NTRS)

    Frank, David R.; Westphal, Andrew J.; Zolensky, Michael E.; Gainsforth, Zack; Butterworth, Anna L.; Bastien, Ronald K.; Allen, Carlton; Anderson, David; Bechtel, Hans A.; Sandford, Scott A.

    2013-01-01

    We discuss the inherent difficulties that arise during "ground truth" characterization of the Stardust interstellar dust collector. The challenge of identifying contemporary interstellar dust impact tracks in aerogel is described within the context of background spacecraft secondaries and possible interplanetary dust particles and beta-meteoroids. In addition, the extraction of microscopic dust embedded in aerogel is technically challenging. Specifically, we provide a detailed description of the sample preparation techniques developed to address the unique goals and restrictions of the Interstellar Preliminary Exam. These sample preparation requirements and the scarcity of candidate interstellar impact tracks exacerbate the difficulties. We also illustrate the role of initial optical imaging with critically important examples, and summarize the overall processing of the collection to date.

  19. Thermodynamics and Charging of Interstellar Iron Nanoparticles

    NASA Astrophysics Data System (ADS)

    Hensley, Brandon S.; Draine, B. T.

    2017-01-01

    Interstellar iron in the form of metallic iron nanoparticles may constitute a component of the interstellar dust. We compute the stability of iron nanoparticles to sublimation in the interstellar radiation field, finding that iron clusters can persist down to a radius of ≃4.5 Å, and perhaps smaller. We employ laboratory data on small iron clusters to compute the photoelectric yields as a function of grain size and the resulting grain charge distribution in various interstellar environments, finding that iron nanoparticles can acquire negative charges, particularly in regions with high gas temperatures and ionization fractions. If ≳10% of the interstellar iron is in the form of ultrasmall iron clusters, the photoelectric heating rate from dust may be increased by up to tens of percent relative to dust models with only carbonaceous and silicate grains.

  20. Decades-long changes of the interstellar wind through our solar system.

    PubMed

    Frisch, P C; Bzowski, M; Livadiotis, G; McComas, D J; Moebius, E; Mueller, H-R; Pryor, W R; Schwadron, N A; Sokół, J M; Vallerga, J V; Ajello, J M

    2013-09-06

    The journey of the Sun through the dynamically active local interstellar medium creates an evolving heliosphere environment. This motion drives a wind of interstellar material through the heliosphere that has been measured with Earth-orbiting and interplanetary spacecraft for 40 years. Recent results obtained by NASA's Interstellar Boundary Explorer mission during 2009-2010 suggest that neutral interstellar atoms flow into the solar system from a different direction than found previously. These prior measurements represent data collected from Ulysses and other spacecraft during 1992-2002 and a variety of older measurements acquired during 1972-1978. Consideration of all data types and their published results and uncertainties, over the three epochs of observations, indicates that the trend for the interstellar flow ecliptic longitude to increase linearly with time is statistically significant.

Top