Voyager 1 Entering Interstellar Space Artist Concept
2013-09-12
This artist concept depicts NASA Voyager 1 spacecraft entering interstellar space. Interstellar space is dominated by the plasma, or ionized gas, that was ejected by the death of nearby giant stars millions of years ago.
Voyager 1: Three "Tsunami Waves" in Interstellar Space
2017-03-22
Voyager 1: Three "Tsunami Waves" in Interstellar Space. The Voyager 1 spacecraft has experienced three "tsunami waves" in interstellar space. Listen to how these waves cause surrounding ionized matter to ring. More details on this sound can be found here: www.nasa.gov/jpl/nasa-voyager-t…nterstellar-space/
Molecular Spectroscopy in Astrophysics: Interstellar PAHs
NASA Technical Reports Server (NTRS)
Salama, Farid; DeVincenzi, Donald L. (Technical Monitor)
2000-01-01
Polycyclic aromatic hydrocarbons (PAHs) are now considered to be an important and ubiquitous component of the organic material in space. PAHs are found in a large variety of extraterrestrial materials such as interplanetary dust particles (IDPs) and meteoritic materials. PAHs are also good candidates to account for the infrared emission bands (UIRs) and the diffuse interstellar optical absorption bands (DIBs) detected in various regions of the interstellar medium. The recent observations made with the Infrared Space Observatory (ISO) have confirmed the ubiquitous nature of the UIR bands and their carriers. PAHs are thought to form through chemical reactions in the outflow from carbon-rich stars in a process similar to soot formation. Once injected in the interstellar medium, PAHs are further processed by the interstellar radiation field, interstellar shocks and energetic particles. A long-term laboratory effort has been undertaken to measure the physical and chemical characteristics of these carbon molecules and their ions under experimental conditions that mimic the interstellar conditions. These measurements require collision-free conditions where the molecules and ions are cold and chemically isolated. The spectroscopy of PAHs under controlled conditions represents an essential diagnostic tool to study the evolution of extraterrestrial PAHs. The laboratory results will be discussed as well as the implications for astronomy and for molecular spectroscopy. A review of the data generated through laboratory simulations of space environments and the role these data have played in our current understanding of the properties of interstellar PAHs will be presented. We will also present the new generation of laboratory experiments that are currently being developed in order to provide a closer simulation of space environments and a better support to space missions.
Laboratory Astrochemistry: Interstellar PAH Analogs
NASA Technical Reports Server (NTRS)
Salama, Farid; DeVincenzi, Donald L. (Technical Monitor)
2000-01-01
Polycyclic aromatic hydrocarbons (PAHs) are now considered to be an important and ubiquitous component of the organic material in space. PAHs are found in a large variety of extraterrestrial materials such as interplanetary dust particles (IDPs) and meteoritic materials. PAHs are also good candidates to account for the infrared emission bands (UIRs) and the diffuse interstellar optical absorption bands (DIBs) detected in various regions of the interstellar medium. The recent observations made with the Infrared Space Observatory (ISO) have confirmed the ubiquitous nature of the UIR bands and their carriers. PAHs are though to form through chemical reactions in the outflow from carbon-rich stars in a process similar to soot formation. Once injected in the interstellar medium, PAHs are further processed by the interstellar radiation field, interstellar shocks and energetic particles. A major, dedicated, laboratory effort has been undertaken over the past years to measure the physical and chemical characteristics of these complex molecules and their ions under experimental conditions that mimic the interstellar conditions. These measurements require collision-free conditions where the molecules and ions are cold and chemically isolated. The spectroscopy of PAHs under controlled conditions represents an essential diagnostic tool to study the evolution of extraterrestrial PAHs. The Astrochemistry Laboratory program will be discussed through its multiple aspects: objectives, approach and techniques adopted, adaptability to the nature of the problem(s), results and implications for astronomy as well as for molecular spectroscopy. A review of the data generated through laboratory simulations of space environments and the role these data have played in our current understanding of the properties of interstellar PAHs will be presented. The discussion will also introduce the newest generation of laboratory experiments that are currently being developed in order to provide a closer simulation of space environments and a better support to space missions.
Laboratory Studies of Interstellar PAH Analogs
NASA Technical Reports Server (NTRS)
Salama, Farid; DeVincenzi, Donald (Technical Monitor)
2000-01-01
Polycyclic aromatic hydrocarbons (PAHs) are now considered to be an important and ubiquitous component of the organic material in space. PAHs are found in a large variety of extraterrestrial materials such as interplanetary dust particles (IDPs) and meteoritic materials. PAHs are also good candidates to account for the infrared emission bands (UIRs) and the diffuse interstellar optical absorption bands (DIBs) detected in various regions of the interstellar medium. The recent observations made with the Infrared Space Observatory (ISO) have confirmed the ubiquitous nature of the UIR bands and their carriers. PAHs are though to form through chemical reactions in the outflow from carbon-rich stars in a process similar to soot formation. Once injected in the interstellar medium, PAHs are further processed by the interstellar radiation field, interstellar shocks and energetic particles. A major, dedicated, laboratory effort has been undertaken over the past years to measure the physical and chemical characteristics of these complex molecules and their ions under experimental conditions that mimic the interstellar conditions. These measurements require collision-free conditions where the molecules and ions are cold and chemically isolated. The spectroscopy of PAHs under controlled conditions represents an essential diagnostic tool to study the evolution of extraterrestrial PAHs. The Astrochemistry Laboratory program will be discussed through its multiple aspects: objectives, approach and techniques adopted, adaptability to the nature of the problem(s), results and implications for astronomy as well as for molecular spectroscopy. A review of the data generated through laboratory simulations of space environments and the role these data have played in our current understanding of the properties of interstellar PAHs will be presented. The discussion will also introduce the newest generation of laboratory experiments that are currently being developed in order to provide a closer simulation of space environments and a better support to space missions.
A new way to measure the composition of the interstellar gas surrounding the heliosphere
NASA Technical Reports Server (NTRS)
Gruntman, Michael A.
1993-01-01
The composition of neutral gas in the Local Interstellar Medium can be studied by direct, in situ measuring of interstellar neutral atoms penetrating into interplanetary space. A novel experimental approach for in situ atom detection, which has never been used earlier in space, is proposed. The technique is based on the conversion of neutral atoms to negative ions at a specially prepared sensitive surface. Negative ions are subsequently analyzed and detected in an essentially noise-free, multicoincidence mode. It is shown that interstellar hydrogen, deuterium, and oxygen atoms can be measured by the proposed technique. The experiment can be performed from a high-apogee Earth-orbiting satellite or from a deep space probe.
Some Thoughts on the Implications of Faster-Than-Light Interstellar Space Travel
NASA Astrophysics Data System (ADS)
Crawford, I. A.
1995-09-01
There are reasons for believing that faster-than-light (FTL) interstellar space travel may be consistent with the laws of physics, and a brief review of various FTL travel concepts is presented. It is argued that FTL travel would revolutionise the scientific exploration of the Universe, but would only significantly shorten the Galactic colonisation timescale from the 106 years estimated on the assumption of sub-light interstellar travel if the mass-production of FTL space vehicles proves to be practical. FTL travel would permit the development of interstellar social and political institutions which would probably be impossible otherwise, and may therefore strengthen the 'zoo hypothesis' as an explanation for the apparent absence of extraterrestrial beings in the Solar System.
NASA Astrophysics Data System (ADS)
Rabayda, Adam; Keller, Luke
Interstellar space travel is a topic that is often dismissed as highly unlikely due to the vast distances involved and to considerable engineering and socioeconomic challenges. Some are left believing that it may be far from possible for us, as a species, to go anywhere beyond our solar system. We demonstrate not only the possibility of covering interstellar distances in decades or less, but also that interstellar travel is possible (in principle) with existing technology. For example: Using only special relativity and calculus, we calculated that an interstellar spacecraft could reach the Andromeda Galaxy (2.5 Million light-years from Earth) in just over 28 years at an acceleration of 9 . 81m/s , which would emulate Earth gravity. We also calculated that the energy required for interstellar space travel, often deemed impossible with current technology, is, in fact, possible through certain methods such as nuclear fusion.
Website for the Astrochemistry Laboratory, Astrophysics Branch, Space Sciences Division
NASA Technical Reports Server (NTRS)
Sandford, Scott; DeVincenzi, D. (Technical Monitor)
2002-01-01
The Astrochemistry Laboratory in the Astrophysics Branch (SSA) of the Space Sciences Division at NASA's Ames Research Center specializes in the study of extraterrestrial materials and their analogs. The staff has pioneered laboratory studies of space environments including interstellar, cometary, and planetary ices, simulations of the so-called 'Unidentified' Infrared Emission Bands and Diffuse Interstellar Bands using PAHs (Polycyclic Aromatic Hydrocarbons) and PAH-related materials, and has extensive experience with low-temperature spectroscopy and astronomical observation. Important discoveries made by the Astrochemistry Group include: (1) The recognition that polycyclic aromatic hydrocarbons and their ions are common in space; (2) The identification of a major fraction of the known molecular species frozen in interstellar/pre-cometary ices; (3) The recognition that a significant fraction of the carbon in the interstellar medium is carried by both microdiamonds and organic materials; (4) The expansion of the types of molecules expected to be synthesized in interstellar/pre-cometary ices. These could be delivered to the early Earth (or other body) and influence the origin or early evolution of life.
Space exploration: The interstellar goal and Titan demonstration
NASA Technical Reports Server (NTRS)
1982-01-01
Automated interstellar space exploration is reviewed. The Titan demonstration mission is discussed. Remote sensing and automated modeling are considered. Nuclear electric propulsion, main orbiting spacecraft, lander/rover, subsatellites, atmospheric probes, powered air vehicles, and a surface science network comprise mission component concepts. Machine, intelligence in space exploration is discussed.
Space Congress, 29th, Cocoa Beach, FL, Apr. 21-24, 1992, Proceedings
NASA Technical Reports Server (NTRS)
1992-01-01
The present volume on the quest for new frontiers in space discusses weather impacts on space operations, planning for the performance of future space bases, a new guidance and control unit for the Titan IV vehicle, and nondestructive evaluation of Shuttle Columbia tiles. Attention is given to Space Shuttle payload accommodations and trends in customer demands, a generic propellants transfer unit, making space part of general education, space station on-orbit solar array loads during assembly, and dimensional stability of the attitude reference assembly on SSF. Topics addressed include National Launch System payload accommodations and launch operations, the integrated factory/launch site processing concept, Pioneer 10 interstellar studies, and the role of advanced nuclear propulsion systems in precursor interstellar missions. Also discussed are legal challenges in realizing interstellar initiatives, Mars transportation system synthesis, and NASA's commercial space program.
Voyager Captures Sounds of Interstellar Space
2013-09-12
The plasma wave instrument on NASA's Voyager 1 spacecraft captured these sounds of dense plasma, or ionized gas, vibrating in interstellar space. There were two times the instrument heard these vibrations: October to November 2012 and April to May 2013.
NASA Astrophysics Data System (ADS)
Silin, D. V.
Manned interstellar spaceflight is facing multiple challenges of great magnitude; among them are extremely large distances and the lack of known habitable planets other than Earth. Many of these challenges are applicable to manned space exploration within the Solar System to the same or lesser degree. If these issues are resolved on an interplanetary scale, better position to pursue interstellar exploration can be reached. However, very little progress (if any) was achieved in manned space exploration since the end of Space Race. There is no lack of proposed missions, but all of them require considerable technological and financial efforts to implement while yielding no tangible benefits that would justify their costs. To overcome this obstacle highest priority in future space exploration plans should be assigned to the creation of added value in outer space. This goal can be reached if reductions in space transportation, construction and maintenance of space-based structures costs are achieved. In order to achieve these requirements several key technologies have to be mastered, such as near-Earth object mining, space- based manufacturing, agriculture and structure assembly. To keep cost and difficulty under control next exploration steps can be limited to nearby destinations such as geostationary orbit, low lunar orbit, Moon surface and Sun-Earth L1 vicinity. Completion of such a program will create a solid foundation for further exploration and colonization of the Solar System, solve common challenges of interplanetary and interstellar spaceflight and create useful results for the majority of human population. Another important result is that perception of suitable destinations for interstellar missions will change significantly. If it becomes possible to create habitable and self-sufficient artificial environments in the nearby interplanetary space, Earth-like habitable planets will be no longer required to expand beyond our Solar System. Large fraction of the stars in the observable Universe will become valid targets for interstellar missions.
Diatoms on Earth, Comets, Europa and in Interstellar Space
NASA Astrophysics Data System (ADS)
Hoover, Richard B.; Hoyle, Fred; Wickramasinghe, N. C.; Hoover, Miriam J.; Al-Mufti, S.
There exists a close correspondence between the measured infrared properties of diatoms and the infrared spectrum of interstellar dust as observed in the Trapezium nebula and toward the galactic center source GC-IRS 7. Diatoms and bacteria also exhibit an absorbance peak near 2200 Å, which is found to agree with the observed ultraviolet absorbance properties of interstellar grains. We review the observational data and consider the known properties of diatoms and bacteria. It is suggested that these characteristics are consistent with the concept of a cosmic microbiological system in which these or similar microorganisms might exist on comets, Europa and in interstellar space.
Chemistry in interstellar space. [environment characteristics influencing reaction dynamics
NASA Technical Reports Server (NTRS)
Donn, B.
1973-01-01
The particular characteristics of chemistry in interstellar space are determined by the unique environmental conditions involved. Interstellar matter is present at extremely low densities. Large deviations from thermodynamic equilibrium are, therefore, to be expected. A relatively intense ultraviolet radiation is present in many regions. The temperatures are in the range from 5 to 200 K. Data concerning the inhibiting effect of small activation energies in interstellar clouds are presented in a table. A summary of measured activation energies or barrier heights for exothermic exchange reactions is also provided. Problems of molecule formation are discussed, taking into account gas phase reactions and surface catalyzed processes.
NASA Technical Reports Server (NTRS)
Hudgins, D. M.; Allamandola, L. J.
1999-01-01
A database of astrophysically relevant, infrared spectral measurements on a wide variety of neutral as well as positively and negatively charged polycyclic aromatic hydrocarbons (PAHs), ranging in size from C10H8 through C48H20, is now available to extend the interstellar PAH model. Beyond simply indicating general characteristics of the carriers, this collection of data now makes it possible to conduct a more thorough interpretation of the details of the interstellar spectra and thereby derive deeper insights into the nature of the emitting material and conditions in the emission zones. This Letter is the first such implementation of this spectral database. The infrared spectra of PAH cations, the main PAH form in the most energetic emission zones, are usually dominated by a few strong features in the 1650-1100 cm-1 (6.1-9.1 microns) region that tend to cluster the vicinity of the interstellar emission bands at 1610 and 1320 cm-1 (6.2 and 7.6 microns), but with spacings typically somewhat less than that observed in the canonical interstellar spectrum. However, the spectra in the database show that this spacing increases steadily with molecular size. Extrapolation of this trend indicates that PAHs in the 50-80 carbon atom size range are entirely consistent with the observed interstellar spacing. Furthermore, the profile of the 1610 cm-1 (6.2 microns) interstellar band indicates that PAHs containing as few as 20 carbon atoms contribute to this feature.
NASA Technical Reports Server (NTRS)
Hudgins, Douglas M.; Allamandola, L. J.; Mead, Susan (Technical Monitor)
1998-01-01
A database of astrophysically relevant, infrared spectral measurements on a wide variety of neutral as well as positively and negatively charged polycyclic aromatic hydrocarbons ranging in size from C10H8 through C48H20 is now available to extend the interstellar PAH model. Beyond simply indicating general characteristics of the carriers, this collection of data now makes it possible to conduct a more thorough interpretation of the details of the interstellar spectra and thereby derive deeper insights into the nature of the emitting material and conditions in the emission zones. This paper is the first such implementation of this spectral database. The infrared spectra of PAH cations, the main PAH form in the most energetic emission zones, are usually dominated by a few strong features in the 1650 - 1100 per centimeter (6.1 - 9.1 microns) region which tend to cluster in the vicinity of the interstellar emission bands at 1610 per centimeter and 1320 per centimeter (6.2 and 7.6 microns) but with spacings typically somewhat less than that observed in the canonical interstellar spectrum. However, the spectra in the database show that this spacing increases steadily with molecular size. Extrapolation of this trend indicates that PAHS in the 50 to 80 carbon atom size range are entirely consistent with the observed interstellar spacing. Furthermore, the profile of the 1610 per centimeter (6.2 microns) interstellar band indicates that PAHS containing as few as 20 carbon atoms contribute to this feature.
Interstellar Probe: First Step to the Stars
NASA Astrophysics Data System (ADS)
McNutt, R. L., Jr.
2017-12-01
The idea of an "Interstellar Probe," a robotic spacecraft traveling into the nearby interstellar medium for the purpose of scientific investigation, dates to the mid-1960s. The Voyager Interstellar Mission (VIM), an "accidental" 40-year-old by-product of the Grand Tour of the solar system, has provided initial answers to the problem of the global heliospheric configuration and the details of its interface with interstellar space. But the twin Voyager spacecraft have, at most, only another decade of lifetime, and only Voyager 1 has emerged from the heliosheath interaction region. To understand the nature of the interaction, a near-term mission to the "near-by" interstellar medium with modern and focused instrumentation remains a compelling priority. Imaging of energetic neutral atoms (ENAs) by the Ion Neutral CAmera (INCA) on Cassini and from the Interstellar Boundary Explorer (IBEX) in Earth orbit have provided significant new insights into the global interaction region but point to discrepancies with our current understanding. Exploring "as far as possible" into "pristine" interstellar space can resolve these. Hence, reaching large heliocentric distances rapidly is a driver for an Interstellar Probe. Such a mission is timely; understanding the interstellar context of exoplanet systems - and perhaps the context for the emergence of life both here and there - hinges upon what we can discover within our own stellar neighborhood. With current spacecraft technology and high-capability launch vehicles, such as the Space Launch System (SLS), a small, but extremely capable spacecraft, could be dispatched to the near-by interstellar medium with at least twice the speed of the Voyagers. Challenges remain with payload mass and power constraints for optimized science measurements. Mission longevity, as experienced by, but not designed into, the Voyagers, communications capability, and radioisotope power system performance and lifetime are solvable engineering challenges. Such a robotic craft can be built, and could be built and launched soon - to enable our first deliberate step to the stars.
NASA Technical Reports Server (NTRS)
Greenberg, J. M.
1974-01-01
The observed depletion of intermediate-weight elements O, C, and N from the interstellar medium is shown to be significantly greater than can be accounted for by accretion on interstellar dust. A number of possible explanations are presented, ranging from the existence in interstellar space of many 'snowballs' intermediate in size between dust grains and comets to the existence of many far more complicated interstellar molecules than have been detected.
Oka, Takeshi
2006-01-01
Protonated molecular hydrogen, H3+, is the simplest polyatomic molecule. It is the most abundantly produced interstellar molecule, next only to H2, although its steady state concentration is low because of its extremely high chemical reactivity. H3+ is a strong acid (proton donor) and initiates chains of ion-molecule reactions in interstellar space thus leading to formation of complex molecules. Here, I summarize the understandings on this fundamental species in interstellar space obtained from our infrared observations since its discovery in 1996 and discuss the recent observations and analyses of H3+ in the Central Molecular Zone near the Galatic center that led to a revelation of a vast amount of warm and diffuse gas existing in the region. PMID:16894171
NASA Astrophysics Data System (ADS)
Long, K.
2017-12-01
The ability to send a space probe beyond the Voyager probes, through the interstellar medium and towardsthe distant stars, has long been the ambition of both the science ction literature but also a small community ofadvocates that have argued for a broader and deeper vision of space exploration that goes outside of our SolarSystem. In this paper we discuss some of the historical interstellar probe concepts which are propelled usingdierent types of propulsion technology, from energetic reaction engines to directed energy beaming, and considerthe payload mass associated with such concepts. We compare and contrast the dierent design concepts, payloadmass fractions, powers and energies and discuss the implications for robotic space exploration within the stellarneighbourhood. Finally, we consider the Breakthrough Starshot initiative, which proposes to send a Gram-scalelaser driven spacecraft to the Alpha Centauri system in a 20 year mission travelling at v 0.2c. We show howthis is a good start in pushing our robotic probes towards interstellar destinations, but also discuss the potentialfor scaling up this systems architecture to missions closer at home, or higher mass missions wider aeld. This is apresentation for the American Geophysical Union at the AGU Fall meeting, New Orleans, 11-15 December 2017,Special Session on the Interstellar Probe Missions.Keywords: Interstellar Probe, Breakthrough Starshot
NASA Technical Reports Server (NTRS)
Gammon, R. H.
1976-01-01
A unit is presented for the secondary school teacher of physics, chemistry, astronomy, or earth sciences. Included are a list of reference materials, teaching aids, and projects. Discussion questions and a glossary are also provided. Concepts developed are: the nature of interstellar space, spectroscopy, molecular signals from space and interstellar molecules and other areas of astronomy.
Interstellar Travel without 'Magic'
NASA Astrophysics Data System (ADS)
Woodcock, G.
The possibility of interstellar space travel has become a popular subject. Distances of light years are an entirely new realm for human space travel. New means of propulsion are needed. Speculation about propulsion has included "magic", space warps, faster-than-light travel, known physics such as antimatter for which no practical implementation is known and also physics for which current research offers at least a hint of implementation, i.e. fusion. Performance estimates are presented for the latter and used to create vehicle concepts. Fusion propulsion will mean travel times of hundreds of years, so we adopt the "space colony" concepts of O'Neill as a ship design that could support a small civilization indefinitely; this provides the technical means. Economic reasoning is presented, arguing that development and production of "space colony" habitats for relief of Earth's population, with addition of fusion engines, will lead to vessels that can go interstellar. Scenarios are presented and a speculative estimate of a timetable is given.
NASA Astrophysics Data System (ADS)
Mendez, Bryan J.; Westphal, A. J.; Butterworth, A. L.; Craig, N.
2006-12-01
On January 15, 2006, NASA’s Stardust mission returned to Earth after nearly seven years in interplanetary space. During its journey, Stardust encountered comet Wild 2, collecting dust particles from it in a special material called aerogel. At two other times in the mission, aerogel collectors were also opened to collect interstellar dust. The Stardust Interstellar Dust Collector is being scanned by an automated microscope at the Johnson Space Center. There are approximately 700,000 fields of view needed to cover the entire collector, but we expect only a few dozen total grains of interstellar dust were captured within it. Finding these particles is a daunting task. We have recruited many thousands of volunteers from the public to aid in the search for these precious pieces of space dust trapped in the collectors. We call the project Stardust@home. Through Stardust@home, volunteers from the public search fields of view from the Stardust aerogel collector using a web-based Virtual Microscope. Volunteers who discover interstellar dust particles have the privilege of naming them. The interest and response to this project has been extraordinary. Many people from all walks of life are very excited about space science and eager to volunteer their time to contribute to a real research project such as this. We will discuss the progress of the project and the education and outreach activities being carried out for it.
Stardust@home: An Interactive Internet-based Search for Interstellar Dust
NASA Astrophysics Data System (ADS)
Mendez, B. J.; Westphal, A. J.; Butterworth, A. L.; Craig, N.
2006-12-01
On January 15, 2006, NASA's Stardust mission returned to Earth after nearly seven years in interplanetary space. During its journey, Stardust encountered comet Wild 2, collecting dust particles from it in a special material called aerogel. At two other times in the mission, aerogel collectors were also opened to collect interstellar dust. The Stardust Interstellar Dust Collector is being scanned by an automated microscope at the Johnson Space Center. There are approximately 700,000 fields of view needed to cover the entire collector, but we expect only a few dozen total grains of interstellar dust were captured within it. Finding these particles is a daunting task. We have recruited many thousands of volunteers from the public to aid in the search for these precious pieces of space dust trapped in the collectors. We call the project Stardust@home. Through Stardust@home, volunteers from the public search fields of view from the Stardust aerogel collector using a web-based Virtual Microscope. Volunteers who discover interstellar dust particles have the privilege of naming them. The interest and response to this project has been extraordinary. Many people from all walks of life are very excited about space science and eager to volunteer their time to contribute to a real research project such as this. We will discuss the progress of the project and the education and outreach activities being carried out for it.
Human factors issues for interstellar spacecraft
NASA Technical Reports Server (NTRS)
Cohen, Marc M.; Brody, Adam R.
1991-01-01
Developments in research on space human factors are reviewed in the context of a self-sustaining interstellar spacecraft based on the notion of traveling space settlements. Assumptions about interstellar travel are set forth addressing costs, mission durations, and the need for multigenerational space colonies. The model of human motivation by Maslow (1970) is examined and directly related to the design of space habitat architecture. Human-factors technology issues encompass the human-machine interface, crew selection and training, and the development of spaceship infrastructure during transtellar flight. A scenario for feasible instellar travel is based on a speed of 0.5c, a timeframe of about 100 yr, and an expandable multigenerational crew of about 100 members. Crew training is identified as a critical human-factors issue requiring the development of perceptual and cognitive aids such as expert systems and virtual reality.
NASA Astrophysics Data System (ADS)
Cooper, John F.; Papitashvili, Natalia E.; Johnson, Rita C.; Lal, Nand; McGuire, Robert E.
2015-04-01
NASA now has a large collection of solar, heliospheric, and local interstellar (Voyager 1) cosmic ray particle data sets that can be accessed through the data system services of the NASA Virtual Energetic Particle Observatory (VEPO) in collaboration with the NASA Space Physics Data Facility SPDF), respectively led by the first and last authors. The VEPO services were developed to enhance the long-existing OMNIWeb solar wind and energetic particle services of SPDF for on-line browse, correlative, and statistical analysis of NASA and ESA mission fields, plasma, and energetic particle data. In this presentation we take of tour through VEPO and SPDF of SEP reservoir events, the outer heliosphere earlier surveyed by the Pioneer, Voyager, and Ulysses spacecraft and now being probed by New Horizons, and the heliosheath-heliopause-interstellar regions now being explored by the Voyagers and IBEX. Implications of the latter measurements are also considered for the flux spectra of low to high energy cosmic rays in interstellar space.
NASA Technical Reports Server (NTRS)
Longair, M. S.; Warner, J. W.
1979-01-01
The application of the space telescope for extragalactic astronomy, planetary research, and stellar, interstellar, and galactic structural problems is discussed. Topics include investigations of small solar system objects, the physical characteristics of ionized gaseous nebulae, the central regions of active galaxies and quasars, problems of cosmology, and the distribution and composition of interstellar matter.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hazi, A
2006-01-25
Images taken of interstellar space often display a colorful canvas of portions of the electromagnetic spectrum. Dispersed throughout the images are interstellar clouds of dust and gas--remnants ejected from stars and supernovae over billions and billions of years. For more than 40 years, astronomers have observed that interstellar dust exhibits a consistent effect at a spectral wavelength of 2,175 angstroms, the equivalent of 5.7 electronvolts in energy on the electromagnetic spectrum. At this wavelength, light from stars is absorbed by dust in the interstellar medium, blocking the stars light from reaching Earth. The 2,175-angstrom feature, which looks like a bumpmore » on spectra, is the strongest ultraviolet-visible light spectral signature of interstellar dust and is visible along nearly every observational line of sight. Scientists have sought to solve the mystery of what causes the 2,175-angstrom feature by reproducing the effect in the laboratory. They speculated a number of possibilities, including fullerenes (buckyballs), nanodiamonds, and even interstellar organisms. However, none of these materials fits the data for the unique spectral feature. Limitations in the energy and spatial resolution achievable with electron microscopes and ion microprobes--the two main instruments used to study samples of dust--have also prevented scientists from finding the answer. A collaborative effort led by Livermore physicist John Bradley and funded by the National Aeronautics and Space Administration (NASA) has used a new-generation transmission electron microscope (TEM) and nanoscale ion microprobe to unlock the mystery. The Livermore group includes physicists Zu Rong Dai, Ian Hutcheon, Peter Weber, and Sasa Bajt and postdoctoral researchers Hope Ishii, Giles Graham, and Julie Smith. They collaborated with the University of California at Davis (UCD), Lawrence Berkeley National Laboratory, Washington University's Laboratory for Space Sciences in St. Louis, and NASA's Ames Research Center for their discovery. The team analyzed micrometer-size interplanetary dust particles (IDPs), each about one-tenth the diameter of a human hair. Within the particles, they found carriers of the 2,175-angstrom feature: organic carbon mixed with amorphous silicates (glass with embedded metals and sulfides, GEMS), two of the most common materials in interstellar space. Ishii says, ''Organic carbon and amorphous silicates are abundant in interstellar dust clouds, and abundant carriers are needed to account for the frequent astronomical observation of the 2,175-angstrom feature. It makes sense that this ubiquitous feature would come from common materials in interstellar space''. The group's results increase scientific understanding of the starting materials for the formation of the Sun, solar system, and life on Earth.« less
NASA Technical Reports Server (NTRS)
Hazi, A.
2006-01-01
Images taken of interstellar space often display a colorful canvas of portions of the electromagnetic spectrum. Dispersed throughout the images are interstellar clouds of dust and gas--remnants ejected from stars and supernovae over billions and billions of years. For more than 40 years, astronomers have observed that interstellar dust exhibits a consistent effect at a spectral wavelength of 2,175 angstroms, the equivalent of 5.7 electronvolts in energy on the electromagnetic spectrum. At this wavelength, light from stars is absorbed by dust in the interstellar medium, blocking the stars light from reaching Earth. The 2,175-angstrom feature, which looks like a bump on spectra, is the strongest ultraviolet-visible light spectral signature of interstellar dust and is visible along nearly every observational line of sight. Scientists have sought to solve the mystery of what causes the 2,175-angstrom feature by reproducing the effect in the laboratory. They speculated a number of possibilities, including fullerenes (buckyballs), nanodiamonds, and even interstellar organisms. However, none of these materials fits the data for the unique spectral feature. Limitations in the energy and spatial resolution achievable with electron microscopes and ion microprobes--the two main instruments used to study samples of dust--have also prevented scientists from finding the answer. A collaborative effort led by Livermore physicist John Bradley and funded by the National Aeronautics and Space Administration (NASA) has used a new-generation transmission electron microscope (TEM) and nanoscale ion microprobe to unlock the mystery. The Livermore group includes physicists Zu Rong Dai, Ian Hutcheon, Peter Weber, and Sasa Bajt and postdoctoral researchers Hope Ishii, Giles Graham, and Julie Smith. They collaborated with the University of California at Davis (UCD), Lawrence Berkeley National Laboratory, Washington University's Laboratory for Space Sciences in St. Louis, and NASA's Ames Research Center for their discovery. The team analyzed micrometer-size interplanetary dust particles (IDPs), each about one-tenth the diameter of a human hair. Within the particles, they found carriers of the 2,175-angstrom feature: organic carbon mixed with amorphous silicates (glass with embedded metals and sulfides, GEMS), two of the most common materials in interstellar space. Ishii says, 'Organic carbon and amorphous silicates are abundant in interstellar dust clouds, and abundant carriers are needed to account for the frequent astronomical observation of the 2,175-angstrom feature. It makes sense that this ubiquitous feature would come from common materials in interstellar space'. The group's results increase scientific understanding of the starting materials for the formation of the Sun, solar system, and life on Earth.
Ideal Biological Characteristics for Long-Duration Manned Space Travel
NASA Astrophysics Data System (ADS)
Cardion, A. L.
As we consider the technical challenges we will overcome to launch our first interstellar mission, it is natural that we envision our own view from the deck of that starship. However, the cold reality of the vast distances of interstellar space, in keeping with the history of space flight, clearly indicates that our first forays into such missions will likely be unmanned probes. Indeed, it is the limitations of our own biology and psychology, primarily in their fragility and brevity, that anchor us to the terrestrial environment upon which we depend. But by considering the diversity of biological adaptation documented on Earth, in combination with the promise of an advanced bioengineering program, we can begin to imagine how evolution or design could adapt the intrepid travellers to long-duration stresses inherent to interstellar flight.
Solar and Interstellar Magnetic Fields Artist Concept
2012-12-03
This artist concept shows the different expected directions of the magnetic fields in interstellar space black lines and the magnetic field emanating from our sun white lines as NASA Voyager 1 spacecraft travels northward out of the heliosphere.
Instellar Exploration: Propulsion Options for Precursors and Beyond
NASA Technical Reports Server (NTRS)
Johnson, Charles Les; Leifer, Stephanie
1999-01-01
NASA is considering a mission to explore near-interstellar space early in the next decade as the first step toward a vigorous interstellar exploration program. A key enabling technology for such an ambitious science and exploration effort is the development of propulsion systems capable of providing fast trip times; mission duration should not exceed the professional lifetime of the investigative team. Advanced propulsion technologies that might support an interstellar precursor mission early in the next century include some combination of solar sails, nuclear electric propulsion systems, and aerogravity assists. Follow-on missions to far beyond the heliopause will require the development of propulsion technologies that are only at the conceptual stage today. These include 1) matter-antimatter annihilation, 2) beamed-energy sails, and 3) fusion systems. For years, the scientific community has been interested in the development of solar sail technology to support exploration of the inner and outer planets. Progress in thin-film technology and the development of technologies that may enable the remote assembly of large sails in space are only now maturing to the point where ambitious interstellar precursor missions can be considered. Electric propulsion is now being demonstrated for planetary exploration by the Deep Space 1 mission. The primary issues for it's adaptation to interstellar precursor applications include the nuclear reactor that would be required and the engine lifetime. For further term interstellar missions, matter-antimatter annihilation propulsion system concepts have the highest energy density of any propulsion systems using onboard propellants. However, there are numerous challenges to production and storage of antimatter that must be overcome before it can be seriously considered for interstellar flight. Off-board energy systems (laser sails) are candidates for long-distance interstellar flight but development of component technologies and necessary infrastructure have not begun.. Fusion propulsion has been studied extensively. However, fusion technology is still considered immature, even after many decades of well-funded research. Furthermore, fusion alone does not offer high enough energy density to make it a viable candidate for interstellar propulsion unless propellant can be collected in situ, as was considered by R. Bussard for his interstellar ramjet concept. The current research in investigating these propulsion systems will be described, and the range of application of each technology will be explored.
Deuterium Abundance in the Local Interstellar Medium
NASA Technical Reports Server (NTRS)
Ferlet, R.; Gry, C.; Vidal-Madjar, A.
1984-01-01
The present situation of deuterium abundance evaluation in interstellar space is discussed, and it is shown that it should be or = .00001 by studying in more detail lambda the Sco line of sight and by observing two NaI interstellar components toward that star, it can be shown that the D/H evaluation made toward lambda Sco is in fact related to the local interstellar medium (less than 10 pc from the Sun). Because this evaluation is also or = .00001 it is in striking contrast with the one made toward alpha Aur (D/H or = .000018 confirming the fact that the deuterium abundance in the local interstellar medium varies by at least a factor of two over few parsecs.
Origins Space Telescope: Nearby Galaxies, the Milky Way, and the Interstellar Medium
NASA Astrophysics Data System (ADS)
Battersby, Cara; Sandstrom, Karin; Origins Space Telescope Science and Technology Definition Team
2018-01-01
The Origins Space Telescope (OST) is the mission concept for the Far-Infrared Surveyor, one of the four science and technology definition studies of NASA Headquarters for the 2020 Astronomy and Astrophysics Decadal survey. Origins will enable flagship-quality general observing programs led by the astronomical community in the 2030s. We welcome you to contact the Science and Technology Definition Team (STDT) with your science needs and ideas by emailing us at ost_info@lists.ipac.caltech.eduThis presentation will summarize the science case related to Nearby Galaxies, the Milky Way, and the Interstellar Medium (Interstellar Medium). The Origins Space Telescope will enable a wealth of unprecedented scientific advances in this area, both those we know to expect, and the discovery space that lies unexplored. Origins will enable a comprehensive view of magnetic fields, turbulence, and the multiphase ISM; connecting these physics across scales of galaxies to protostellar cores. With unprecedented sensitivity, Origins will measure and characterize the mechanisms of feedback from star formation and Active Galactic Nuclei, and their interplay, over cosmic time. Origins will unveil the abundance and availability of water for habitable planets by allowing us to trace the trail of water from interstellar clouds to protoplanetary disks, to Earth itself.
Maier, John P; Campbell, Ewen K
2017-04-24
In 1985 the football structure of C 60 , buckminsterfullerene was proposed and subsequently confirmed following its macroscopic synthesis in 1990. From the very beginning the role of C 60 and C 60 + in space was considered, particularly in the context of the enigmatic diffuse interstellar bands. These are absorption features found in the spectra of reddened star light. The first astronomical observations were made around one hundred years ago and despite significant efforts none of the interstellar molecules responsible have been identified. The absorption spectrum of C 60 + was measured in a 5 K neon matrix in 1993 and two prominent bands near 9583 Å and 9645 Å were observed. On the basis of this data the likely wavelength range in which the gas phase C 60 + absorptions should lie was predicted. In 1994 two diffuse interstellar bands were found in this spectral region and proposed to be due to C 60 + . It took over 20 years to measure the absorption spectrum of C 60 + under conditions similar to those prevailing in diffuse clouds. In 2015, sophisticated laboratory experiments led to the confirmation that these two interstellar bands are indeed caused by C 60 + , providing the first answer to this century old puzzle. Here, we describe the experiments, concepts and astronomical observations that led to the detection of C 60 + in interstellar space. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.
NASA Technical Reports Server (NTRS)
Robertson, P. C.
1978-01-01
Abstracts of 25 papers relating to condensation processes in the early solar system are presented. Special emphasis is given to the transition of an initial vapor phase in the space medium, the characterization of condensation environments, and condensation processes in the space medium. The question of whether some fraction of the solar system solids (particularly exemplified by meteoritic solids) may be interstellar grains that gathered in the region of the proto-sun, rather than being products of local condensation is addressed.
Strategic Roadmap for the Development of an Interstellar Space Program
NASA Astrophysics Data System (ADS)
Gifra, M.; Peeters, W.
Recent technological advances and scientific discoveries, particularly in astronomy and space technology, are opening our minds into the deepest realms of the universe, and also they are bringing a new era of space exploration and development. This sense of entering into a new era of space exploration is being boosted by the permanent discovery of new planets - to date, there are 684 confirmed extrasolar planets [1] - outside our solar system. The possibility that astronomers may soon find a habitable extrasolar planet near Earth and the recent advances in space propulsion that could reduce travel times have stimulated the space community to consider the development of an interstellar manned mission. But this scenario of entering into a new era of space development is ultimately contingent on the outcome of the actual world's economic crisis. The current financial crisis, on top of recent national and sovereign debts problems, could have serious consequences for space exploration and development as the national budgets for space activities are to freeze [2].This paper proposes a multi-decade space program for an interstellar manned mission. It designs a roadmap for the achievement of interstellar flight capability within a timeframe of 40 years, and also considers different scenarios where various technological and economical constraints are taken into account in order to know if such a space endeavour could be viable. It combines macro-level scenarios with a strategic roadmap to provide a framework for condensing all information in one map and timeframe, thus linking decision-making with plausible scenarios. The paper also explores the state of the art of space technologies 20 to 40 years in the future and its potential economic impact. It estimates the funding requirements, possible sources of funds, and the potential returns.The Interstellar Space Program proposed in this paper has the potential to help solve the global crisis by bringing a new landscape of opportunities and challenges for the world as a whole. According to the first preliminary estimates, the total funding required would be of the order of US1.2 trillion over a period of 40 years (NASA has spent a total of US800 billion in today's money in its entire 50-year history [3]), or an average of US$30 billion per year (which equals to one third of the current global government space spending [4]). Such an ambitious and long-term space program would create millions of jobs, and thus generate a real impact in the global economy.
Laboratory Spectroscopy of Large Carbon Molecules and Ions in Support of Space Missions
NASA Technical Reports Server (NTRS)
Salana, Farid; Tan, X.; Cami, J.; Remy, J.
2006-01-01
One of the major objectives of Laboratory Astrophysics is the optimization of data return from space missions by measuring spectra of atomic and molecular species in laboratory environments that mimic interstellar conditions (WhitePaper (2002, 2006)). Among interstellar species, PAHs are an important and ubiquitous component of carbon-bearing materials that represents a particularly difficult challenge for gas-phase laboratory studies. We present the absorption spectra of jet-cooled neutral and ionized PAHs and discuss the implications for astrophysics. The harsh physical conditions of the interstellar medium have been simulated in the laboratory. We are now, for the first time, in the position to directly compare laboratory spectra of PAHs and carbon nanoparticles with astronomical observations. This new phase offers tremendous opportunities for the data analysis of current and upcoming space missions geared toward the detection of large aromatic systems (HST/COS, FUSE, JWST, Spitzer).
Solid State Pathways towards Molecular Complexity in Space
NASA Astrophysics Data System (ADS)
Linnartz, Harold; Bossa, Jean-Baptiste; Bouwman, Jordy; Cuppen, Herma M.; Cuylle, Steven H.; van Dishoeck, Ewine F.; Fayolle, Edith C.; Fedoseev, Gleb; Fuchs, Guido W.; Ioppolo, Sergio; Isokoski, Karoliina; Lamberts, Thanja; Öberg, Karin I.; Romanzin, Claire; Tenenbaum, Emily; Zhen, Junfeng
2011-12-01
It has been a long standing problem in astrochemistry to explain how molecules can form in a highly dilute environment such as the interstellar medium. In the last decennium more and more evidence has been found that the observed mix of small and complex, stable and highly transient species in space is the cumulative result of gas phase and solid state reactions as well as gas-grain interactions. Solid state reactions on icy dust grains are specifically found to play an important role in the formation of the more complex ``organic'' compounds. In order to investigate the underlying physical and chemical processes detailed laboratory based experiments are needed that simulate surface reactions triggered by processes as different as thermal heating, photon (UV) irradiation and particle (atom, cosmic ray, electron) bombardment of interstellar ice analogues. Here, some of the latest research performed in the Sackler Laboratory for Astrophysics in Leiden, the Netherlands is reviewed. The focus is on hydrogenation, i.e., H-atom addition reactions and vacuum ultraviolet irradiation of interstellar ice analogues at astronomically relevant temperatures. It is shown that solid state processes are crucial in the chemical evolution of the interstellar medium, providing pathways towards molecular complexity in space.
Radiative Cooling of Warm Molecular Gas
NASA Technical Reports Server (NTRS)
Neufeld, David A.; Kaufman, Michael J.
1993-01-01
We consider the radiative cooling of warm (T >= 100 K), fully molecular astrophysical gas by rotational and vibrational transitions of the molecules H2O, CO, and H2. Using an escape probability method to solve for the molecular level populations, we have obtained the cooling rate for each molecule as a function of temperature, density, and an optical depth parameter. A four-parameter expression proves useful in fitting the run of cooling rate with density for any fixed values of the temperature and optical depth parameter. We identify the various cooling mechanisms which are dominant in different regions of the astrophysically relevant parameter space. Given the assumption that water is very abundant in warm regions of the interstellar medium, H2O rotational transitions are found to dominate the cooling of warm interstellar gas over a wide portion of the parameter space considered. While chemical models for the interstellar medium make the strong prediction that water will be produced copiously at temperatures above a few hundred degrees, our assumption of a high water abundance has yet to be tested observationally. The Infrared Space Observatory and the Submillimeter Wave Astronomy Satellite will prove ideal instruments for testing whether water is indeed an important coolant of interstellar and circumstellar gas.
Astrochemistry: Recent Advances in the Study of Carbon Molecules in Space
NASA Technical Reports Server (NTRS)
Salama, Farid
2006-01-01
Carbon molecules and ions play an important role in space. Polycyclic Aromatic Hydrocarbons (PAHs) are the best-known candidates to account for the infrared emission bands (UIR bands) and PAH spectral features are now being used as probes of the interstellar medium in Galactic and extra-galactic environments. PAHs are also thought to be among the carriers of the diffuse interstellar absorption bands (DIBs). In the model dealing with the interstellar spectral features, PAHs are present as a mixture of radicals, ions and neutral species. PAH ionization states reflect the ionization balance of the medium while PAH size, composition, and structure reflect the energetic and chemical history of the medium. A major challenge for laboratory Astrochemistry is to reproduce (in a realistic way) the physical conditions that exist in the emission and absorption interstellar zones. An extensive laboratory program has been developed in various laboratories to characterize the physical and chemical properties of PAHs in astrophysical environments and to describe how they influence the radiation and energy balance in space and the interstellar chemistry. In particular, laboratory experiments provide measurements of the spectral characteristics of interstellar PAH analogs from the ultraviolet and visible range to the infrared range for comparison with astronomical data. The harsh physical conditions of the interstellar medium - characterized by a low temperature, an absence of collisions and strong ultraviolet radiation fields - are simulated in the laboratory by associating a molecular beam with an ionizing discharge to generate a cold plasma expansion. PAH ions are formed from the neutral precursors in an isolated environment at low temperature (of the order of 100 K). The spectra of neutral and ionized PAHs are measured using the high sensitivity methods of cavity ring down spectroscopy (CRDS). These experiments provide unique information on the spectra of free, cold large carbon molecules and ions in the gas phase.
Environmental Impact Specification for Direct Space Weathering of Kuiper Belt and Oort Cloud Objects
NASA Technical Reports Server (NTRS)
Cooper, John F.
2010-01-01
The Direct Space Weathering Project of NASA's Outer Planets Research Program addresses specification of the plasma and energetic particle environments for irradiation and surface chemical processing of icy bodies in the outer solar system and the local interstellar medium. Knowledge of the radiation environments is being expanded by ongoing penetration of the twin Voyager spacecraft into the heliosheath boundary region of the outer heliosphere and expected emergence within the next decade into the very local interstellar medium. The Voyager measurements are being supplemented by remote sensing from Earth orbit of energetic neutral atom emission from this boundary region by NASA's Interstellar Boundary Explorer (IBEX). Although the Voyagers long ago passed the region of the Classical Kuiper Belt, the New Horizons spacecraft will encounter Pluto in 2015 and thereafter explore one or more KBOs, meanwhile providing updated measurements of the heliospheric radiation environment in this region. Modeling of ion transport within the heliosphere allows specification of time-integrated irradiation effects while the combination of Voyager and IBEX data supports projection of the in-situ measurements into interstellar space beyond the heliosheath. Transformation of model ion flux distributions into surface sputtering and volume ionization profiles provides a multi-layer perspective for space weathering impact on the affected icy bodies and may account for some aspects of color and compositional diversity. Other important related factors may include surface erosion and gardening by meteoritic impacts and surface renewal by cryovolcanism. Chemical products of space weathering may contribute to energy resources for the latter.
NASA Astrophysics Data System (ADS)
Gupta, V. P.; Tandon, Poonam; Mishra, Priti
2013-03-01
The detection of nucleic acid bases in carbonaceous meteorites suggests that their formation and survival is possible outside of the Earth. Small N-heterocycles, including pyrimidine, purines and nucleobases, have been extensively sought in the interstellar medium. It has been suggested theoretically that reactions between some interstellar molecules may lead to the formation of cytosine, uracil and thymine though these processes involve significantly high potential barriers. We attempted therefore to use quantum chemical techniques to explore if cytosine can possibly form in the interstellar space by radical-radical and radical-molecule interaction schemes, both in the gas phase and in the grains, through barrier-less or low barrier pathways. Results of DFT calculations for the formation of cytosine starting from some of the simple molecules and radicals detected in the interstellar space are being reported. Global and local descriptors such as molecular hardness, softness and electrophilicity, and condensed Fukui functions and local philicity indices were used to understand the mechanistic aspects of chemical reaction. The presence and nature of weak bonds in the molecules and transition states formed during the reaction process have been ascertained using Bader's quantum theory of atoms in molecules (QTAIMs). Two exothermic reaction pathways starting from propynylidyne (CCCH) and cyanoacetylene (HCCCN), respectively, have been identified. While the first reaction path is found to be totally exothermic, it involves a barrier of 12.5 kcal/mol in the gas phase against the lowest value of about 32 kcal/mol reported in the literature. The second path is both exothermic and barrier-less. The later has, therefore, a greater probability of occurrence in the cold interstellar clouds (10-50 K).
Insights into H2 formation in space from ab initio molecular dynamics
Casolo, Simone; Tantardini, Gian Franco; Martinazzo, Rocco
2013-01-01
Hydrogen formation is a key process for the physics and the chemistry of interstellar clouds. Molecular hydrogen is believed to form on the carbonaceous surface of dust grains, and several mechanisms have been invoked to explain its abundance in different regions of space, from cold interstellar clouds to warm photon-dominated regions. Here, we investigate direct (Eley–Rideal) recombination including lattice dynamics, surface corrugation, and competing H-dimers formation by means of ab initio molecular dynamics. We find that Eley–Rideal reaction dominates at energies relevant for the interstellar medium and alone may explain observations if the possibility of facile sticking at special sites (edges, point defects, etc.) on the surface of the dust grains is taken into account. PMID:23572584
NASA Astrophysics Data System (ADS)
Singh, Amresh; Shivani; Misra, Alka; Tandon, Poonam
2014-03-01
The interstellar medium, filling the vast space between stars, is a rich reservoir of molecular material ranging from simple diatomic molecules to more complex, astrobiologically important molecules such as vinylcyanide, methylcyanodiaccetylene, cyanoallene, etc. Interstellar molecular cyanoallene is one of the most stable isomers of methylcynoacetylene. An attempt has been made to explore the possibility of forming cyanoallene in interstellar space by radical-radical and radical-molecule interaction schemes in the gaseous phase. The formation of cyanoallene starting from some simple, neutral interstellar molecules and radicals has been studied using density functional theory. The reaction energies and structures of the reactants and products show that the formation of cyanoallene is possible in the gaseous phase. Both of the considered reaction paths are totally exothermic and barrierless, thus giving rise to a high probability of occurrence. Rate constants for each step in the formation process of cyanoallene in both the reaction paths are estimated. A full vibrational analysis has been attempted for cyanoallene in the harmonic and anharmonic approximations. Anharmonic spectroscopic parameters such as rotational constants, rotation-vibration coupling constants and centrifugal distortion constants have been calculated.
Prospective of Photon Propulsion for Interstellar Flight
NASA Astrophysics Data System (ADS)
Bae, Young K.
Mastering photon propulsion is proposed to be the key to overcoming the limit of the current propulsion technology based on conventional rocketry and potentially opening a new space era. A perspective on photon propulsion is presented here to elucidate that interstellar manned roundtrip flight could be achievable in a century within a frame of exiting scientific principles, once the required existing technologies are further developed. It is shown that the developmental pathway towards the interstellar flight demands not only technological breakthroughs, but consistent long-term world-scale economic interest and investment. Such interest and investment will result from positive financial returns from routine interstellar commutes that can transport highly valuable commodities in a profitable manner. The Photonic Railway, a permanent energy-efficient transportation structure based on the Beamed-Laser Propulsion (BLP) by Forward and the Photonic Laser Thruster (PLT) by the author, is proposed to enable such routine interstellar commutes via Spacetrains. A four-phased evolutionary developmental pathway towards the Interstellar Photonic Railway is proposed. Each phase poses evolutionary, yet daunting, technological and financial challenges that need to be overcome within each time frame of 20 _ 30 years, and is projected to generate multitudes of applications that would lead to sustainable reinvestment into its development. If successfully developed, the Photonic Railway would bring about a quantum leap in the human economic and social interests in space from explorations to terraforming, mining, colonization, and permanent habitation in exoplanets.
NASA Technical Reports Server (NTRS)
Salama, Farid; Tan, Xiaofeng; Cami, Jan; Biennier, Ludovic; Remy, Jerome
2006-01-01
Polycyclic Aromatic Hydrocarbons (PAHs) are an important and ubiquitous component of carbon-bearing materials in space. A long-standing and major challenge for laboratory astrophysics has been to measure the spectra of large carbon molecules in laboratory environments that mimic (in a realistic way) the physical conditions that are associated with the interstellar emission and absorption regions [1]. This objective has been identified as one of the critical Laboratory Astrophysics objectives to optimize the data return from space missions [2]. An extensive laboratory program has been developed to assess the properties of PAHs in such environments and to describe how they influence the radiation and energy balance in space. We present and discuss the gas-phase electronic absorption spectra of neutral and ionized PAHs measured in the UV-Visible-NIR range in astrophysically relevant environments and discuss the implications for astrophysics [1]. The harsh physical conditions of the interstellar medium characterized by a low temperature, an absence of collisions and strong VUV radiation fields - have been simulated in the laboratory by associating a pulsed cavity ringdown spectrometer (CRDS) with a supersonic slit jet seeded with PAHs and an ionizing, penning-type, electronic discharge. We have measured for the {\\it first time} the spectra of a series of neutral [3,4] and ionized [5,6] interstellar PAHs analogs in the laboratory. An effort has also been attempted to quantify the mechanisms of ion and carbon nanoparticles production in the free jet expansion and to model our simulation of the diffuse interstellar medium in the laboratory [7]. These experiments provide {\\it unique} information on the spectra of free, large carbon-containing molecules and ions in the gas phase. We are now, for the first time, in the position to directly compare laboratory spectral data on free, cold, PAH ions and carbon nano-sized carbon particles with astronomical observations in the UV-NIR range (interstellar UV extinction, DIBs in the NUV-NIR range). This new phase offers tremendous opportunities for the data analysis of current and upcoming space missions geared toward the detection of large aromatic systems Le., the "new frontier space missions" (Spitzer, HST, COS, JWST, SOFIA,...).
NASA Astrophysics Data System (ADS)
Kennedy, A.
This paper summarises the wait calculation [1] of interstellar voyagers which finds the minimum time to destination given exponential growth in the rate of travel available to a civilisation. The minimum time obliges stellar system colonisers to consider departure times a significant risk factor in their voyages since a departure then to a destination will beat a departure made at any other time before or after. Generalised conclusions will be drawn about the significant impact that departures to interstellar destinations before, at, or after the minimum time will have on the economic potential of missions and on the inevitability of competition between them. There will be no international law operating in interstellar space and an ability to escape predatory actions en route, or at the destination, can only be done by precise calculations of departure times. Social and economic forces affecting the factors in the growth equation are discussed with reference to the probability of accelerating growth reaching the technological Singularity and strengthening the growth incentive trap. Islamic banking practices are discussed as a credible alternative to compounding interest bearing paper for funding the space economy in the long term and for supporting stakeholder investment in such long term mission development. The paper considers the essential free productivity of the Earth's biosphere and the capital accumulations made possible by land productivity are essential components to a viable long term space economy and that research into re-creating the costless productivity of the biosphere at a destination will determine both the mission's ultimate success and provide means of returns for stakeholders during the long build up. Conclusions of these arguments suggest that the Icarus project should ignore a robotic interstellar mission concept and develop a manned colonising mission from now.
Black Holes, Worm Holes, and Future Space Propulsion
NASA Technical Reports Server (NTRS)
Barret, Chris
2000-01-01
NASA has begun examining the technologies needed for an Interstellar Mission. In 1998, a NASA Interstellar Mission Workshop was held at the California Institute of Technology to examine the technologies required. Since then, a spectrum of research efforts to support such a mission has been underway, including many advanced and futuristic space propulsion concepts which are being explored. The study of black holes and wormholes may provide some of the breakthrough physics needed to travel to the stars. The first black hole, CYGXI, was discovered in 1972 in the constellation Cygnus X-1. In 1993, a black hole was found in the center of our Milky Way Galaxy. In 1994, the black hole GRO J1655-40 was discovered by the NASA Marshall Space Flight center using the Gamma Ray Observatory. Today, we believe we have found evidence to support the existence of 19 black holes, but our universe may contain several thousands. This paper discusses the dead star states - - both stable and unstable, white dwarfs, neutron stars, pulsars, quasars, the basic features and types of black holes: nonspinning, nonspinning with charge, spinning, and Hawking's mini black holes. The search for black holes, gravitational waves, and Laser Interferometer Gravitational Wave Observatory (LIGO) are reviewed. Finally, concepts of black hole powered space vehicles and wormhole concepts for rapid interstellar travel are discussed in relation to the NASA Interstellar Mission.
NASA Astrophysics Data System (ADS)
Redfield, Seth; Linsky, Jeffrey L.
2015-10-01
Ultraviolet and optical spectra of interstellar gas along the lines of sight to nearby stars have been interpreted by Redfield & Linsky and previous studies as a set of discrete warm, partially ionized clouds each with a different flow vector, temperature, and metal depletion. Recently, Gry & Jenkins proposed a fundamentally different model consisting of a single cloud with nonrigid flows filling space out to 9 pc from the Sun that they propose better describes the local ISM. Here we test these fundamentally different morphological models against the spatially unbiased Malamut et al. spectroscopic data set, and find that the multiple cloud morphology model provides a better fit to both the new and old data sets. The detection of three or more velocity components along the lines of sight to many nearby stars, the presence of nearby scattering screens, the observed thin elongated structures of warm interstellar gas, and the likely presence of strong interstellar magnetic fields also support the multiple cloud model. The detection and identification of intercloud gas and the measurement of neutral hydrogen density in clouds beyond the Local Interstellar Cloud could provide future morphological tests. Based on observations made with the NASA/ESA Hubble Space Telescope, obtained from the Data Archive at the Space Telescope Science Institute, which is operated by the Association of Universities for Research in Astronomy, Inc., under NASA contract NAS AR-09525.01A. These observations are associated with programs #11568.
The Journey of Interstellar Dust
NASA Technical Reports Server (NTRS)
Dwek, Eliahu
2007-01-01
Interstellar dust particles undergo a complex journey in space. It commences with their formation in stellar outflows or outbursts, but may end in very different ways. Their fates range from sudden "death by destruction" promptly after their formation to maturity and inclusion in protoplanetary objects in stellar nursery homes. Throughout this journey dust grains are subjected to a host of interstellar processes in different astrophysical environments which leave their imprint on the dust and affects their surrounding environment. In this review I will summarize our current knowledge of the field, emphasizing what we still need to know to gain a full understanding of interstellar dust grains and their journey through the ISM.
Radioastronomical Searches for Instellar Biomolecules
NASA Technical Reports Server (NTRS)
Kuan, Y.-J.; Huang, H.-C.; Charnley, S. B.; Markwick, A.; Botta, O.; Ehrenfreund, P.; Kisiel, Z.; Butner, H. M.
2003-01-01
Impacts of comets and asteroids could have delivered large amounts of organic matter to the early Earth. to retain a significant interstellar signature; observations of recent bright comets indicate that they have a molecular inventory consistent with their ices being largely unmodified interstellar material. Many simple organic molecules with biochemical significance observed in circumstellar envelopes and in molecular clouds, similar to that from which the Solar System formed, may have acted as the precursors of the more complex organics found in meteorites. Therefore, there is potentially a strong link between interstellar organics and prebiotic chemical evolution. Radioastronomical observations, particularly at millimeter wavelengths, allow us to determine the chemical composition and characteristics of the molecular inventory in interstellar space. Here we report some of our recent results from extensive astronomical searches for astrobiologically-important interstellar organics.
The Laboratory Production of Complex Organic Molecules in Simulated Interstellar Ices
NASA Technical Reports Server (NTRS)
Dworkin, J. P.; Sandford, S. A.; Bernstein, M. P.; Allamandola, L. J.
2002-01-01
Much of the volatiles in interstellar dense clouds exist in ices surrounding dust grains. Their low temperatures preclude most chemical reactions, but ionizing radiation can drive reactions that produce a suite of new species, many of which are complex organics. The Astrochemistry Lab at NASA Ames studies the UV radiation processing of interstellar ice analogs to better identify the resulting products and establish links between interstellar chemistry, the organics in meteorites, and the origin of life on Earth. Once identified, the spectral properties of the products can be quantified to assist with the search for these species in space. Of particular interest are findings that UV irradiation of interstellar ice analogs produces molecules of importance in current living organisms, including quinones, amphiphiles, and amino acids.
The Copernicus observations - Interstellar or circumstellar material. [UV spectra of early stars
NASA Technical Reports Server (NTRS)
Steigman, G.; Strittmatter, P. A.; Williams, R. E.
1975-01-01
It is suggested that the sharp absorption lines observed in the ultraviolet spectra of early-type stars by the Copernicus satellite may be entirely accounted for by the circumstellar material in the H II regions and associated transition zones around the observed stars. If this interpretation is correct, the Copernicus results yield little information on the state of any interstellar (as opposed to circumstellar) gas and, in particular, shed little light on the degree of element depletion in interstellar space.
Low-energy cosmic ray protons from nuclear interactions of cosmic rays with the interstellar medium.
NASA Technical Reports Server (NTRS)
Wang, H. T.
1973-01-01
The intensity of low-energy (less than 100 MeV) protons from nuclear interactions of higher-energy (above 100 MeV) cosmic rays with the interstellar medium is calculated. The resultant intensity in the 10- to 100-MeV range is larger by a factor of 3-5 than the observed proton intensity near earth. The calculated intensity from nuclear interactions constitutes a lower limit on the actual proton intensity in interstellar space.
Origin of organic matter in the protosolar nebula and in comets
NASA Technical Reports Server (NTRS)
Greenberg, J. M.; Shalabiea, O. M.; Mendoza-Gomez, C. X.; Schutte, W.; Gerakines, P. A.
1994-01-01
Comet organics are traced to their origin in interstellar space. Possible sources of comet organics from solar nebula chemistry are briefly discussed. The infrared spectra of interstellar dust are compared with spectra of solar (space) irradiated laboratory organic residues and with meteorites. The spectra compare very favorably. The atomic composition of first generation laboratory organic residues compares favorably with that of comet Halley organics if divided into approrpriate 'volatile' (less refreactory) and 'refractory' (more refractory) complex organics.
NASA Astrophysics Data System (ADS)
Smirnova, Tatiana; Andrianov, Andrey; Shishov, Vladimir
We present results obtained from analysis of our observations carried out on the space-ground interferometer RadioAstron at frequency of 324 MHz. Observations were conducted on 04.07.12 with a baseline projection of 60000 km. We used two ground telescopes: GBT and WSRT with the space radio telescope (SRT). Notable visibility amplitudes were detected at all baseline projections. We found that frequency structure of interstellar scintillation for pulsar B1919+21 is defined by angular refraction with refractive angle: θref ≈ 60 mas. Cosmic prism is located near to observer with a distance of about 10 pc. The scattering angle is resolved by cosmic interferometer and θsc is about 1 mas. The temporal structure of scintillation is mainly defined by interstellar plasma of extended media, but frequency structure - by extended media and prism influence. We detected also the influence of ionosphere on a phase variations of interferometer.
Dust Spectroscopy and the Nature of Grains
NASA Technical Reports Server (NTRS)
Tielens, A. G. G. M.
2006-01-01
Ground-based, air-borne and space-based, infrared spectra of a wide variety of objects have revealed prominent absorption and emission features due to large molecules and small dust grains. Analysis of this data reveals a highly diverse interstellar and circumstellar grain inventory, including both amorphous materials and highly crystalline compounds (silicates and carbon). This diversity points towards a wide range of physical and chemical birthsites as well as a complex processing of these grains in the interstellar medium. In this talk, I will review the dust inventory contrasting and comparing both the interstellar and circumstellar reservoirs. The focus will be on the processes that play a role in the lifecycle of dust in the interstellar medium.
Carbon molecules in space: from astrochemistry to astrobiology.
Ehrenfreund, Pascale; Sephton, Mark A
2006-01-01
How complex carbonaceous molecules in space are, what their abundance is and on what timescales they form are crucial questions within cosmochemistry. Despite the large heterogeneity of galactic and interstellar regions the organic chemistry in the universe seems to follow common pathways. The largest fraction of carbon in the universe is incorporated into aromatic molecules (gaseous polycyclic aromatic hydrocarbon as well as solid macromolecular aromatic structures). Macromolecular carbon constitutes more than half of the interstellar carbon, approximately 80% of the carbon in meteorites, and is likely to be present in comets. Molecules of high astrobiological relevance such as N-heterocycles, amino acids and pre-sugars have all been identified in trace quantities (ppb) in extracts of carbonaceous meteorites. Their presence in inter- and circumstellar regions is either unknown or contentious. In any event such fragile species are easily destroyed by UV radiation, shocks and thermal processing and are unlikely to survive incorporation into Solar System material without some degradation. The more refractory material, in particular macromolecular carbon may retain an interstellar heritage more faithfully. We present laboratory measurements on the photostability of organic compounds and discuss their survival in regions with elevated UV radiation. We also show recent observations of diffuse interstellar bands indicating the presence of fullerenes. We investigate the link between the carbon chemistry in interstellar space and in the Solar System by analyzing the carbonaceous fraction of meteorites and by reviewing stable isotopic data. It also seems evident that both volatile and refractory material from carbonaceous meteoritic has been substantially altered owing to thermal and aqueous processing within the Solar System.
2013-09-12
Dwayne Brown, Senior Public Affairs Officer, NASA Science Mission Directorate at NASA Headquarters, kicks off a news conference on NASA's Voyager 1 spacecraft, Thursday, Sept. 12, 2013 in Washington. NASA's Voyager 1 spacecraft officially is the first human-made object to venture into interstellar space. The 36-year-old probe is about 12 billion miles (19 billion kilometers) from our sun. New and unexpected data indicate Voyager 1 has been traveling for about one year through plasma, or ionized gas, present in the space between stars. A report on the analysis of this new data is published in Thursday's edition of the journal Science. Photo Credit: (NASA/Carla Cioffi)
2013-09-12
Ed Stone, Voyager project scientist, California Institute of Technology, is seen as he speaks at a news conference on NASA's Voyager 1 spacecraft, Thursday, Sept. 12, 2013 at NASA Headquarters in Washington. NASA's Voyager 1 spacecraft officially is the first human-made object to venture into interstellar space. The 36-year-old probe is about 12 billion miles (19 billion kilometers) from our sun. New and unexpected data indicate Voyager 1 has been traveling for about one year through plasma, or ionized gas, present in the space between stars. A report on the analysis of this new data is published in Thursday's edition of the journal Science. Photo Credit: (NASA/Carla Cioffi)
2013-09-12
Ed Stone, Voyager project scientist, California Institute of Technology, holds a model of NASA's Voyager spacecraft at a news conference, Thursday, Sept. 12, 2013 at NASA Headquarters in Washington. NASA's Voyager 1 spacecraft officially is the first human-made object to venture into interstellar space. The 36-year-old probe is about 12 billion miles (19 billion kilometers) from our sun. New and unexpected data indicate Voyager 1 has been traveling for about one year through plasma, or ionized gas, present in the space between stars. A report on the analysis of this new data is published in Thursday's edition of the journal Science. Photo Credit: (NASA/Carla Cioffi)
Micro-ion Traps for Detection of (Pre)-Biotic Organic Compounds on Comets
NASA Technical Reports Server (NTRS)
vanAmerom, Friso H. W.; Chaudhary, A.; Short, R. T.; Brinkerhoff, William; Glavin, Daniel; Mahaffy, Paul R.; Roman, Patrick A.
2013-01-01
Comets are currently believed to be a mixture of interstellar and nebular material. Many of the volatiles in comets are attributed to interstellar chemistry, because the same species of carbonaceous compounds are also observed in ices in interstellar molecular (ISM) clouds. Comets are thus likely to be a relatively pristine reservoir of primitive material and carbonaceous compounds in our solar system. They could be a major contributor to the delivery of prebiotic organic compounds, from which life emerged through impacts on early Earth. Mass spectrometers are very powerful tools to identify unknown chemicals, and much progress bas been made in miniaturizing mas spectrometers for space applications. Most miniatu rized mass spectrometers developed to date, however, are still relatively large, power hungry, complicated to assemble, and would have significant impact on space flight vehicle total payload and resource allocations.
NASA Technical Reports Server (NTRS)
Donn, B.; Khanna, R. K.
1980-01-01
The visible and infrared spectra and thermal behavior of the bis-pyridal-magnesium-tetrabenz-porphyrin molecule proposed as the carrier of the diffuse interstellar bands were measured. Of the six band coincidences reported by Johnson (1977), only one, 4430 A, occurs in these experiments. This coincidence requires a special environment, not likely to occur in interstellar space but the infrared spectrum does not support Johnson's vibrational scheme. These spectroscopic and thermal measurements contradict the hypothesis that this molecule causes the diffuse bands.
Scientific returns from a program of space missions to comets
NASA Technical Reports Server (NTRS)
Delsemme, A. H.
1979-01-01
A program of cometary missions is proposed. The nature and size of interstellar dust, its origin and evolution; identification of new interstellar molecules; clarification of interstellar chemistry; accretion of grains into protosolar cometesimals; role of a T Tauri wind in the dissipation of the protosolar nebula; record of isotopic anomalies, better preserved in comets than in meteorites; cosmogenic and radiogenic dating of comets; cosmochronology and mineralogy of meteorites, as compared with that of cometary samples; origin of the earth's biosphere, and the origin of life are topics discussed in relation to comet exploration.
NASA Technical Reports Server (NTRS)
1975-01-01
Future plans and programs of the space agency are discussed. Topics discussed include solar energy, space stations, planetary exploration, interstellar exploration, the space shuttles, and satellites.
Status of Solar Sail Propulsion Within NASA - Moving Toward Interstellar Travel
NASA Technical Reports Server (NTRS)
Johnson, Les
2015-01-01
NASA is developing solar sail propulsion for two near-term missions and laying the groundwork for their future use in deep space and interstellar precursor missions. Solar sails use sunlight to propel vehicles through space by reflecting solar photons from a large, mirror-like sail made of a lightweight, highly reflective material. This continuous photon pressure provides propellantless thrust, allowing for very high (Delta)V maneuvers on long-duration, deep space exploration. Since reflected light produces thrust, solar sails require no onboard propellant. The Near Earth Asteroid (NEA) Scout mission, managed by MSFC, will use the sail as primary propulsion allowing it to survey and image one or more NEA's of interest for possible future human exploration. Lunar Flashlight, managed by JPL, will search for and map volatiles in permanently shadowed Lunar craters using a solar sail as a gigantic mirror to steer sunlight into the shaded craters. The Lunar Flashlight spacecraft will also use the propulsive solar sail to maneuver into a lunar polar orbit. Both missions use a 6U cubesat architecture, a common an 85 sq m solar sail, and will weigh less than 12 kilograms. Both missions will be launched on the first flight of the Space Launch System in 2018. NEA Scout and Lunar Flashlight will serve as important milestones in the development of solar sail propulsion technology for future, more ambitious missions including the Interstellar Probe - a mission long desired by the space science community which would send a robotic probe beyond the edge of the solar system to a distance of 250 Astronomical Units or more. This paper will summarize the development status of NEA Scout and Lunar Flashlight and describe the next steps required to enable an interstellar solar sail capability.
Interstellar scintillations of PSR B1919+21: space-ground interferometry
NASA Astrophysics Data System (ADS)
Shishov, V. I.; Smirnova, T. V.; Gwinn, C. R.; Andrianov, A. S.; Popov, M. V.; Rudnitskiy, A. G.; Soglasnov, V. A.
2017-07-01
We carried out observations of pulsar PSR B1919+21 at 324 MHz to study the distribution of interstellar plasma in the direction of this pulsar. We used the RadioAstron (RA) space radio telescope, together with two ground telescopes: Westerbork (WB) and Green Bank (GB). The maximum baseline projection for the space-ground interferometer was about 60 000 km. We show that interstellar scintillation of this pulsar consists of two components: diffractive scintillations from inhomogeneities in a layer of turbulent plasma at a distance z1 = 440 pc from the observer or homogeneously distributed scattering material to the pulsar; and weak scintillations from a screen located near the observer at z2 = 0.14 ± 0.05 pc. Furthermore, in the direction to the pulsar we detected a prism that deflects radiation, leading to a shift in observed source position. We show that the influence of the ionosphere can be ignored for the space-ground baseline. Analysis of the spatial coherence function for the space-ground baseline (RA-GB) yielded a scattering angle in the observer plane of θscat = 0.7 mas. An analysis of the time-frequency correlation function for weak scintillations yielded an angle of refraction in the direction to the pulsar θref, 0 = 110 ms and a distance to the prism zprism ≤ 2 pc.
PAH in the laboratory and interstellar space
NASA Technical Reports Server (NTRS)
Wdowiak, Thomas J.; Flickinger, Gregory C.; Boyd, David A.
1989-01-01
The theory that polycyclic aromatic hydrocarbons (PAHs) are a constituent of the interstellar medium, and a source of the IR emission bands at 3.3, 6.2, 7.7, 8.6, and 11.3 microns is being studied using PAH containing acid insoluble residue of the Orgueil CI meteorite and coal tar. FTIR spectra of Orgueil PAH material that has undergone thermal treatment, and a solvent insoluble fraction of coal tar that has been exposed to hydrogen plasma are presented. The UV excided luminescence spectrum of a solvent soluble coal tar film is also shown. Comparison of the lab measurements with observations appears to support the interstellar PAH theory, and shows the process of dehydrogenation expected to take place in the interstellar medium.
JPL-20170720-VOYAGEs-0001-Voyager Media Reel 3
2017-07-20
The continuing mission of Voyager 1 and Voyager 2 to Jupiter, Saturn, Uranus, Neptune and interstellar space is documented. Included: construction and launch of the spacecraft. Movies made by the spacecraft. Animation of the Voyagers at the outer planets. A description of the "solar system portrait." The sounds recorded by Voyager 1 passing through dense interstellar plasma.
A Heliosphere Buffeted by Interstellar Turbulence?
NASA Astrophysics Data System (ADS)
Jokipii, J. R.; Giacalone, J.
2014-12-01
Recent observations from IBEX combined with previous measurements from other sources suggest new, local, effects of interstellar turbulence. Observations of various interstellar parameters such as the magnetic field, fluid velocity and electron density, over large spatial scales, have revealed a broadband Kolmogorov spectrum of interstellar turbulence which pervades most of interstellar space. The outer scale (or coherence scale of this turbulence) is found to be approximately 10^19 cm and the inner cutoff scale is less than 1000 km. The root-mean-square relative fluctuation in the fluid and the magnetic-field parameters is of order unity. If this turbulence exists at the heliosphere, the root-mean-square relative fluctuations at 100 (heliospheric) AU scales is approximately 0.1. The recently published value for the change In observed velocity direction for the interstellar flow relative to the heliosphere (Frisch, etal, 2014)is consistent with this. Similarly, interpreting the width of the IBEX ribbon in terms of a fluctuating magnetic field also is in agreement with this picture. Observations of TeV cosmic rays can also be explained. Potential effects of these fluctuations in the interstellar medium on the heliosphere will be discussed. Reference: Frisch, etal, Science, 341, 480
Use of magnetic sails for advanced exploration missions
NASA Technical Reports Server (NTRS)
Andrews, Dana G.; Zubrin, Robert M.
1990-01-01
The magnetic sail, or magsail, is a field effect device which interacts with the ambient solar wind or interstellar medium over a considerable volume of space to generate drag and lift forces. Two theories describing the method of thrust generation are analyzed and data results are presented. The techniques for maintaining superconductor temperatures in interplanetary space are analyzed and low risk options presented. Comparisons are presented showing mission performance differences between currently proposed spacecraft using chemical and electric propulsion systems, and a Magsail propelled spacecraft capable of generating an average thrust of 250 Newtons at a radius of one A.U. The magsail also provides unique capabilities for interstellar missions, in that at relativistic speeds the magnetic field would ionize and deflect the interstellar medium producing a large drag force. This would make it an ideal brake for decelerating a spacecraft from relativistic speeds and then maneuvering within the target star system.
NASA Astrophysics Data System (ADS)
Andrianov, A. S.; Smirnova, T. V.; Shishov, V. I.; Gwinn, C.; Popov, M. V.
2017-06-01
Observations on the RadioAstron ground-space interferometer with the participation of the Green Bank and Arecibo ground telescopes at 1668 MHz have enabled studies of the characteristics of the interstellar plasma in the direction of the pulsar PSR B0525+21. The maximum projected baseline for the ground-space interferometer was 233 600 km. The scintillations in these observations were strong, and the spectrum of inhomogeneties in the interstellar plasma was a power law with index n = 3.74, corresponding to a Kolmogorov spectrum. A new method for estimating the size of the scattering disk was applied to estimate the scattering angle (scattering disk radius) in the direction toward PSR B0525+21, θ scat = 0.028 ± 0.002 milliarcsecond. The scattering in this direction occurs in a plasma layer located at a distance of 0.1 Z from the pulsar, where Z is the distance from the pulsar to the observer. For the adopted distance Z = 1.6 kpc, the screen is located at a distance of 1.44 kpc from the observer.
Interstellar Propulsion Research Within NASA
NASA Technical Reports Server (NTRS)
Johnson, Les; Cook, Stephen (Technical Monitor)
2001-01-01
NASA is actively conducting advanced propulsion research and technology development in various in-space transportation technologies with potential application to interstellar missions and precursors. Within the last few years, interest in the scientific community in interstellar missions as well as outer heliospheric missions, which could function as interstellar precursor missions, has increased. A mission definition team was charted by NASA to define such a precursor, The Interstellar Probe, which resulted in a prioritization of relatively near-term transportation technologies to support its potential implementation. In addition, the goal of finding and ultimately imaging extra solar planets has raised the issue of our complete inability to mount an expedition to such as planet, should one be found. Even contemplating such a mission with today's technology is a stretch of the imagination. However, there are several propulsion concepts, based on known physics, that have promise to enable interstellar exploration in the future. NASA is making small, incremental investments in some key advanced propulsion technologies in an effort to advance their state-of-the-art in support potential future mission needs. These technologies, and their relative maturity, are described.
Cosmic Carbon Chemistry: From the Interstellar Medium to the Early Earth
Ehrenfreund, Pascale; Cami, Jan
2010-01-01
Astronomical observations have shown that carbonaceous compounds in the gas and solid state, refractory and icy are ubiquitous in our and distant galaxies. Interstellar molecular clouds and circumstellar envelopes are factories of complex molecular synthesis. A surprisingly large number of molecules that are used in contemporary biochemistry on Earth are found in the interstellar medium, planetary atmospheres and surfaces, comets, asteroids and meteorites, and interplanetary dust particles. In this article we review the current knowledge of abundant organic material in different space environments and investigate the connection between presolar and solar system material, based on observations of interstellar dust and gas, cometary volatiles, simulation experiments, and the analysis of extraterrestrial matter. Current challenges in astrochemistry are discussed and future research directions are proposed. PMID:20554702
NASA Astrophysics Data System (ADS)
Melosso, Mattia; Degli Esposti, Claudia; Tamassia, Filippo; Canè, Elisabetta; Dore, Luca
2017-11-01
The deuteration mechanism of molecules in the interstellar medium (ISM) is still being debated. Observations of deuterium-bearing species in several astronomical sources represent a powerful tool to improve our understanding of the interstellar chemistry. In this scenario, the doubly-deuterated form of the amidogen radical could be a target of detection in space.
NASA Astrophysics Data System (ADS)
Savage, B.; Murdin, P.
2000-11-01
The enormous volume of space between the stars in the Milky Way Galaxy is filled with interstellar matter (ISM). The ISM plays a central role in the processes of STAR FORMATION and GALAXY EVOLUTION. Stars form from the ISM in dense molecular clouds. The radiant and mechanical energy produced by stars heats, ionizes, and produces structures in the ISM. Gradual or catastrophic mass loss from stars ...
On the Organisation of World Ships and Other Gigascale Interstellar Space Exploration Projects
NASA Astrophysics Data System (ADS)
Ceyssens, F.; Driesen, M.; Wouters, K.
The development and deployment of world ships or other feats of interstellar exploration will without doubt require orders of magnitude more resources than needed for current or past megaprojects (Apollo, Iter, LHC,...). Question is how enough resources for such gigaprojects can be found in a scenario assuming limited, moderate economic growth throughout the next centuries, i.e. without human population and productivity continuing to grow exponentially, and without extreme events such as economic collapse or singularity.Three defining features of gigascale space projects are identified, which should be recognized to the fullest: their almost absolute nonprofit character, their massive cost in terms of time and resources and their non-urgency leading to procrastina- tion. It will be argued that the best chance of getting a world ship or another interstellar project started in this generation is to establish an international network of non governmental organizations (NGOs) focused on private and public fundraising for interstellar exploration and supporting a bottom-up societal movement, similar to e.g. the WWF. It will be shown that this path can reduce the massive barriers to entry as well as the level of governmental support needed.
Vector space methods of photometric analysis - Applications to O stars and interstellar reddening
NASA Technical Reports Server (NTRS)
Massa, D.; Lillie, C. F.
1978-01-01
A multivariate vector-space formulation of photometry is developed which accounts for error propagation. An analysis of uvby and H-beta photometry of O stars is presented, with attention given to observational errors, reddening, general uvby photometry, early stars, and models of O stars. The number of observable parameters in O-star continua is investigated, the way these quantities compare with model-atmosphere predictions is considered, and an interstellar reddening law is derived. It is suggested that photospheric expansion affects the formation of the continuum in at least some O stars.
NASA Technical Reports Server (NTRS)
Goldstein, M. L.
1977-01-01
In a study of cosmic ray propagation in interstellar and interplanetary space, a perturbed orbit resonant scattering theory for pitch angle diffusion in a slab model of magnetostatic turbulence is slightly generalized and used to compute the diffusion coefficient for spatial propagation parallel to the mean magnetic field. This diffusion coefficient has been useful for describing the solar modulation of the galactic cosmic rays, and for explaining the diffusive phase in solar flares in which the initial anisotropy of the particle distribution decays to isotropy.
Interstellar Gas Flow Vector and Temperature Determination over 5 Years of IBEX Observations
NASA Astrophysics Data System (ADS)
Möbius, E.; Bzowski, M.; Fuselier, S. A.; Heirtzler, D.; Kubiak, M. A.; Kucharek, H.; Lee, M. A.; Leonard, T.; McComas, D. J.; Schwadron, N.; Sokół, J. M.; Wurz, P.
2015-01-01
The Interstellar Boundary Explorer (IBEX) observes the interstellar neutral gas flow trajectories at their perihelion in Earth's orbit every year from December through early April, when the Earth's orbital motion is into the oncoming flow. These observations have defined a narrow region of possible, but very tightly coupled interstellar neutral flow parameters, with inflow speed, latitude, and temperature as well-defined functions of inflow longitude. The best- fit flow vector is different by ≈ 3° and lower by ≈ 3 km/s than obtained previously with Ulysses GAS, but the temperature is comparable. The possible coupled parameter space reaches to the previous flow vector, but only for a substantially higher temperature (by ≈ 2000 K). Along with recent pickup ion observations and including historical observations of the interstellar gas, these findings have led to a discussion, whether the interstellar gas flow into the solar system has been stable or variable over time. These intriguing possibilities call for more detailed analysis and a longer database. IBEX has accumulated observations over six interstellar flow seasons. We review key observations and refinements in the analysis, in particular, towards narrowing the uncertainties in the temperature determination. We also address ongoing attempts to optimize the flow vector determination through varying the IBEX spacecraft pointing and discuss related implications for the local interstellar cloud and its interaction with the heliosphere.
Studies of solid carbon dioxide in interstellar ice analogs subject to thermal processing
NASA Astrophysics Data System (ADS)
White, Douglas W.
2010-09-01
Solid CO2 has been detected in many lines of sight in the interstellar medium from infrared observatories. Spectral profiles from space-based observatories have suggested that CO2 on icy grain mantles is mixed with other common molecules such as H2O and CH 3OH in interstellar regions and that thermal annealing has occurred. The vibrational mode at 658 cm-1 (15.2 mum) is suspected to be a powerful diagnostic tool as to the composition of species on icy grain mantles as well as thermal histories. However, previous studies have not systematically investigated ice composition and temperature. Laboratory spectra of interstellar ice analogs have been created in this study order to better understand the physical properties of solid CO2 in these interstellar environments. Existing databases of ice composition studies and effects of ice thermal history were updated in this study to include a more systematic approach. The 658 cm-1 (15.2 mum) bending mode feature of CO2 is examined here and the subsequent astrophysical implications stated. In the first set of experiments, 47 mixtures of H2O,CH3OH, andCO2 were slowly warmed and mid-infrared absorption spectra were recorded at 5K intervals. The second set of experiments involved examining the CO2 bending mode feature of 10 different CO2-containing ice mixtures at different temperatures where ice segregation was suspected. In these experiments, the ice mixtures were slowly heated to the desired temperature for increasing time intervals before cooling down and recording mid-IR absorption spectra. These studies may be used to analyze IR data from space-based observatories such as the Spitzer Space Telescope Infrared Spectrograph as well other future IR observations of the interstellar medium. Finally, mass spectroscopy measurements were taken from temperature programmed desorption (TPD) experiments performed on several binary mixtures of H2O + CO2 and CH 3OH + CO2. Physical properties such as desorption energy of CO2 can be determined from the TPD traces of these experiments. The work provided here addresses the physical properties of solid CO 2 thermally processed in ice mixtures in interstellar environments by laboratory simulations spectroscopically analyzed by mid-infrared absorption profiles and TPD.
Interstellar Probe: The Next Step To Flight
NASA Astrophysics Data System (ADS)
McNutt, Ralph; Zurbuchen, Thomas H.
2016-07-01
In the years following the discovery of the solar wind, the term "heliosphere" was coined and defined as "the region of interplanetary space where the solar wind is flowing supersonically." In June 1971, with the development of the Pioneer probes to Jupiter and beyond well underway, a session of the American Astronautical Society meeting considered scientific exploration reaching beyond the solar system and into the interstellar medium. Despite many discussions, studies, and meetings since, the most recent held under the auspices of the Keck Institute for Space Studies (8-11 September 2014 and 13-15 January 2015), such missions have been relegated to the '"future" due to the large distances and solar system escape speeds contemplated for their execution. In the meantime, the Voyager Interstellar Mission (VIM), consisting of the twin Voyager spacecraft almost 40 years since their respective launches, are making inroads into this region beyond the termination shock of the solar wind, a new region of the solid bodies of the solar system has been opened by the New Horizons flyby of the Pluto system, and the Cassini Ion and Neutral CAmera (INCA) and Interstellar Boundary Explorer (IBEX) have remotely sensed neutral atoms that have provided significant clues to the global structure of the interaction of the solar wind and interstellar medium. It is now time for a dedicated mission to the regime beyond the solar system to explore our galactic environment. A first, near-term implementation can be carried out with the near-current flight system technology. What is also clear is that the high speeds required will limit the spacecraft to a relatively small mass of no more than ~500 kg, regardless of the propulsion details. The recent success of the New Horizons mission at the Pluto system illustrates that with modern technologies, such spacecraft sizes can still accommodate the means to produce paradigm-shifting science, providing for a compelling scientific mission. The Committee on Space Research (COSPAR) has recently established a new Panel on Interstellar Research (PIR) to consider the next steps toward finally making a dedicated Interstellar Probe mission a reality. Crucial tasks are to build consensus amongst the international scientific community for the appropriate scientific campaigns and measurements to be carried out for such a mission, taking into account the new and continuing results from the outer solar system and beyond by VIM, IBEX, New Horizons, and exoplanet observations and studies.
Interstellar PAH Analogs in the Laboratory: Comparison with Astronomical Data
NASA Technical Reports Server (NTRS)
Salama, Farid
2005-01-01
Polycyclic Aromatic Hydrocarbons (PAHs) are an important and ubiquitous component of carbon-bearing materials in space. PAHs are the best-known candidates to account for the IR emission bands (UIR bands) and PAH spectral features are now being used as new probes of the ISM. PAHs are also thought to be among the carriers of the diffuse interstellar absorption bands (DIBs). In the model dealing with the interstellar spectral features, PAHs are present as a mixture of radicals, ions and neutral species. PAH ionization states reflect the ionization balance of the medium while PAH size, composition, and structure reflect the energetic and chemical history of the medium. A major challenge for laboratory astrophysics is to reproduce (in a realistic way) the physical conditions that exist in the emission and/or absorption interstellar zones. An extensive laboratory program has been developed at NASA Ames to assess the physical and chemical properties of PAHs in such environments and to describe how they influence the radiation and energy balance in space and the interstellar chemistry. In particular, laboratory experiments provide measurements of the spectral characteristics of interstellar PAH analogs from the ultraviolet and visible range to the infrared range for comparison with astronomical data. This paper will focus on the recent progress made in the laboratory to measure the direct absorption spectra of neutral and ionized PAHs in the near-UV and visible range. Intrinsic band profiles and band positions of cold gas-phase PAHs can now be measured with high-sensitivity spectroscopy and directly compared to the astronomical data. Preliminary conclusions from the comparison of the laboratory data with astronomical observations will also be presented.
Properties of nearby interstellar hydrogen deduced from Lyman-alpha sky background measurements
NASA Technical Reports Server (NTRS)
Thomas, G. E.
1972-01-01
For a sufficiently rapid relative motion of the solar system and the nearby interstellar gas, neutral atoms may be expected to penetrate the heliosphere before becoming ionized. Recent satellite measurements of the Lyman alpha emission above the geocorona indicate such an interstellar wind of neutral hydrogen emerging from the direction of Sagittarius and reaching to within a few astronomical units of the sun. A detailed model of the scattering of solar Lyman alpha from the spatial distribution of neutral hydrogen in interplanetary space is presented. This asymmetric distribution is established by solar wind and solar ultraviolet ionization processes along the trajectories of the incoming hydrogen atoms. The values of the interstellar density, the relative velocity, and the gas temperature are adjusted to agree with the Lyman alpha measurements. The results may be interpreted in terms of two models, the cold model and the hot model of the interstellar gas, depending on whether galactic Lyman alpha emission is present at its maximum allowable value or negligibly small.
NASA Astrophysics Data System (ADS)
Popov, Mikhail V.; Bartel, Norbert; Gwinn, Carl R.; Johnson, Michael D.; Andrianov, Andrey; Fadeev, Evgeny; Joshi, Bhal Chandra; Kardashev, Nikolay; Karuppusamy, Ramesh; Kovalev, Yuri Y.; Kramer, Michael; Rudnitskiy, Alexey; Shishov, Vladimir; Smirnova, Tatiana; Soglasnov, Vladimir A.; Zensus, J. Anton
2017-02-01
We have resolved the scatter-broadened image of PSR B0329+54 and detected a substructure within it. These results are not influenced by any extended structure of a source but instead are directly attributed to the interstellar medium. We obtained these results at 324 MHz with the ground-space interferometer RadioAstron, which included the Space Radio Telescope, ground-based Westerbork Synthesis Radio Telescope and 64-m Kalyazin Radio Telescope on baseline projections up to 330 000 km in 2013 November 22 and 2014 January 1 to 2. At short 15 000 to 35 000 km ground-space baseline projections, the visibility amplitude decreases with baseline length, providing a direct measurement of the size of the scattering disc of 4.8 ± 0.8 mas. At longer baselines, no visibility detections from the scattering disc would be expected. However, significant detections were obtained with visibility amplitudes of 3 to 5 per cent of the maximum scattered around a mean and approximately constant up to 330 000 km. These visibilities reflect a substructure from scattering in the interstellar medium and offer a new probe of ionized interstellar material. The size of the diffraction spot near Earth is 17 000 ± 3 000 km. With the assumption of turbulent irregularities in the plasma of the interstellar medium, we estimate that the effective scattering screen is located 0.6 ± 0.1 of the distance from the Earth towards the pulsar.
NASA Astrophysics Data System (ADS)
van Marle, A. J.; Cox, N. L. J.; Decin, L.
2014-10-01
Context. The extended circumstellar envelopes (CSEs) of evolved low-mass stars display a large variety of morphologies. Understanding the various mechanisms that give rise to these extended structures is important to trace their mass-loss history. Aims: Here, we aim to examine the role of the interstellar magnetic field in shaping the extended morphologies of slow dusty winds of asymptotic giant branch (AGB) stars in an effort to pin-point the origin of so-called eye shaped CSEs of three carbon-rich AGB stars. In addition, we seek to understand if this pre-planetary nebula (PN) shaping can be responsible for asymmetries observed in PNe. Methods: Hydrodynamical simulations are used to study the effect of typical interstellar magnetic fields on the free-expanding spherical stellar winds as they sweep up the local interstellar medium (ISM). Results: The simulations show that typical Galactic interstellar magnetic fields of 5 to 10 μG are sufficient to alter the spherical expanding shells of AGB stars to appear as the characteristic eye shape revealed by far-infrared observations. The typical sizes of the simulated eyes are in accordance with the observed physical sizes. However, the eye shapes are transient in nature. Depending on the stellar and interstellar conditions, they develop after 20 000 to 200 000 yrs and last for about 50 000 to 500 000 yrs, assuming that the star is at rest relative to the local interstellar medium. Once formed, the eye shape develops lateral outflows parallel to the magnetic field. The explosion of a PN in the centre of the eye-shaped dust shell gives rise to an asymmetrical nebula with prominent inward pointing Rayleigh-Taylor instabilities. Conclusions: Interstellar magnetic fields can clearly affect the shaping of wind-ISM interaction shells. The occurrence of the eyes is most strongly influenced by stellar space motion and ISM density. Observability of this transient phase is favoured for lines-of-sight perpendicular to the interstellar magnetic field direction. The simulations indicate that shaping of the pre-PN envelope can strongly affect the shape and size of PNe. Herschel is an ESA space observatory with science instruments provided by European-led Principal Investigator consortia and with important participation from NASA.Movies are available in electronic form at http://www.aanda.org
NASA Astrophysics Data System (ADS)
Park, J.; Kucharek, H.; Szabo, A.; Paschalidis, N.; Grocer, A.; Jones, S.
2017-12-01
The secondary component of the interstellar neutral gas flow is originated from charge exchange between the undisturbed primary interstellar neutrals and the ions that have been deflected as they approach the heliopause. The secondary neutrals that are emitted from the interstellar ion flow through charge exchange carry information on the diverted flow and a fraction of them can travel to the Sun. Therefore, the secondary component of the interstellar neutrals is an excellent diagnostic tool to provide important information to constrain the shape of the heliopause. The presence of the secondary neutrals was predicted in the global heliospheric models and they are observed by Interstellar Boundary Explorer (IBEX) at Earth's orbit. Using the IBEX observations of neutral helium atoms, Kubiak et al. (2016, ApJS, 223, 25) approximated the parent distribution of the secondary interstellar He atoms (so-called Warm Breeze) with a homogeneous Maxwellian distribution function. Park et al. (2016, ApJ, 833, 130) analyzed IBEX observations of secondary interstellar helium and oxygen distributions at Earth's orbit. Lee et al. (2012, ApJS, 198, 10) constructed the heliospheric phase-space distribution function of an interstellar gas species in the Earth frame as a function of solar longitude. In this distribution, the authors assume that the distribution is a drifting Maxwellian at large distances from the Sun. In this study, we assume that a fraction of the secondary neutral atoms has a velocity vector toward the Sun and they can be described as a flow with a drifting Maxwellian distribution near the heliopause. Unlike the primary interstellar gas flow, the distribution of the secondary neutrals is expected to have a wide width and their bulk speeds are slower than the bulk speed of the primary interstellar gas flow. We compare Lee's distribution and IBEX observations of neutral oxygen atoms and then estimate the most likely direction where the secondary interstellar oxygen atoms are created near the heliopause.
An astrosphere around the blue supergiant κ Cas: possible explanation of its filamentary structure
NASA Astrophysics Data System (ADS)
Katushkina, O. A.; Alexashov, D. B.; Gvaramadze, V. V.; Izmodenov, V. V.
2018-01-01
High-resolution mid-infrared observations carried out by the Spitzer Space Telescope allowed one to resolve the fine structure of many astrospheres. In particular, they showed that the astrosphere around the B0.7 Ia star κ Cas (HD 2905) has a clear-cut arc structure with numerous cirrus-like filaments beyond it. Previously, we suggested a physical mechanism for the formation of such filamentary structures. Namely, we showed theoretically that they might represent the non-monotonic spatial distribution of the interstellar dust in astrospheres (viewed as filaments) caused by interaction of the dust grains with the interstellar magnetic field disturbed in the astrosphere due to colliding of the stellar and interstellar winds. In this paper, we invoke this mechanism to explain the structure of the astrosphere around κ Cas. We performed 3D magnetohydrodynamic modelling of the astrosphere for realistic parameters of the stellar wind and space velocity. The dust dynamics and the density distribution in the astrosphere were calculated in the framework of a kinetic model. It is found that the model results with the classical MRN (Mathis, Rumpl & Nordsieck 1977) size distribution of dust in the interstellar medium do not match the observations, and that the observed filamentary structure of the astrosphere can be reproduced only if the dust is composed mainly of big (μm-sized) grains. Comparison of the model results with observations allowed us to estimate parameters (number density and magnetic field strength) of the surrounding interstellar medium.
NASA Astrophysics Data System (ADS)
Clements, Aspen R.; Berk, Brandon; Cooke, Ilsa R.; Garrod, Robin T.
2018-02-01
Using an off-lattice kinetic Monte Carlo model we reproduce experimental laboratory trends in the density of amorphous solid water (ASW) for varied deposition angle, rate and surface temperature. Extrapolation of the model to conditions appropriate to protoplanetary disks and interstellar dark clouds indicate that these ices may be less porous than laboratory ices.
From Interstellar Polycyclic Aromatic Hydrocarbons and Ice to the Origin of Life
NASA Technical Reports Server (NTRS)
Allamandola, Louis
2004-01-01
Tremendous strides have been made in our understanding of interstellar material over the past twenty years thanks to significant, parallel developments in observational astronomy and laboratory astrophysics. Twenty years ago the composition of interstellar dust was largely guessed at, the concept of ices in dense molecular clouds ignored, and the notion of large, abundant, gas phase, carbon rich molecules widespread throughout the interstellar medium (ISM) considered impossible. Today the composition of dust in the diffuse ISM is reasonably well constrained to cold refractory materials comprised of amorphous and crystalline silicates mixed with an amorphous carbonaceous material containing aromatic structural units and short, branched aliphatic chains. In the dense ISM, the birthplace of stars and planets, these cold dust particles are coated with mixed molecular ices whose composition is very well constrained. Lastly, the signature of carbon-rich polycyclic aromatic hydrocarbons (PAHs), shockingly large molecules by early interstellar chemistry standards, is widespread throughout the Universe. The first part of this talk will describe how infrared studies of interstellar space, combined with laboratory simulations, have revealed the composition of interstellar ices (the building blocks of comets) and the high abundance and nature of interstellar PAHs. The laboratory database has now enabled us to gain insight into the identities, abundances, and physical state of many interstellar materials. Within a dense molecular cloud, and especially in the presolar nebula, the materials frozen into the interstellar/precometary ices are photoprocessed by ultraviolet light and produce more complex molecules. The remainder of the presentation will focus on the photochemical evolution of these materials and the possible role of these compounds on the to the carbonaceous components of micrometeorites, they are likely to have been important sources of complex materials on the early Earth and their composition may be related to the origin of life.
Observations of Nitrogen Fractionation in Prestellar Cores: Nitriles Tracing Interstellar Chemistry
NASA Technical Reports Server (NTRS)
Milam, S. N.; Charnley, S. B.
2012-01-01
Primitive materials provide important clues on the processes that occurred during the formation and early evolution of the Solar System. Space-based and ground-based observations of cometary comae show that comets appear to contain a mixture of the products of both interstellar and nebular chemistries. Significant 15-nitrogen enrichments have been measured in CN and HCN towards a number of comets and may suggest an origin of interstellar chemical fractionation. Additionally, large N-15 enhancements are found in meteorites and has also led to to the view that the N-15 traces material formed in the interstellar medium (ISM), although multiple sources cannot be excluded. Here, we show the results of observations of the nitrogen and carbon fractionation in prestellar cores for various N-bearing species to decipher the origin of primitive material isotopic enrichments.
2002-11-11
KENNEDY SPACE CENTER, FLA. - The Cosmic Hot Interstellar Plasma Spectrometer, or CHIPSat, undergoes final processing before launch. CHIPSat, a suitcase-size 131-pound satellite, will provide invaluable information into the origin, physical processes and properties of the hot gas contained in the interstellar medium. This can provide important clues about the formation and evolution of galaxies since the interstellar medium literally contains the seeds of future stars. CHIPSat is scheduled for launch, with the Ice, Cloud, and Land Elevation Satellite (ICESat), on a Delta II expendable launch vehicle from Vandenberg Air Force Base, Calif., on Jan. 11, 2003, between 4:45 p.m. - 5:30 p.m. PST.
2002-11-11
KENNEDY SPACE CENTER, FLA. - The Cosmic Hot Interstellar Plasma Spectrometer, or CHIPSat, undergoes final processing before launch. CHIPSat, a suitcase-size 131-pound satellite, will provide invaluable information into the origin, physical processes and properties of the hot gas contained in the interstellar medium. This can provide important clues about the formation and evolution of galaxies since the interstellar medium literally contains the seeds of future stars. CHIPSat is scheduled for launch, with the Ice, Cloud, and Land Elevation Satellite (ICESat), on a Delta II expendable launch vehicle from Vandenberg Air Force Base, Calif., on Jan. 11, 2003, between 4:45 p.m. - 5:30 p.m. PST.
2002-11-11
KENNEDY SPACE CENTER, FLA. - The Cosmic Hot Interstellar Plasma Spectrometer, or CHIPSat, undergoes final processing before launch. CHIPSat, a suitcase-size 131-pound satellite, will provide invaluable information into the origin, physical processes and properties of the hot gas contained in the interstellar medium. This can provide important clues about the formation and evolution of galaxies since the interstellar medium literally contains the seeds of future stars. CHIPSat is scheduled for launch, with the Ice, Cloud, and Land Elevation Satellite (ICESat), on a Delta II expendable launch vehicle from Vandenberg Air Force Base, Calif., on Jan. 11, 2003, between 4:45 p.m. - 5:30 p.m. PST.
2002-11-11
KENNEDY SPACE CENTER, FLA. - The Cosmic Hot Interstellar Plasma Spectrometer, or CHIPSat, undergoes final processing before launch. CHIPSat, a suitcase-size 131-pound satellite, will provide invaluable information into the origin, physical processes and properties of the hot gas contained in the interstellar medium. This can provide important clues about the formation and evolution of galaxies since the interstellar medium literally contains the seeds of future stars. CHIPSat is scheduled for launch, with the Ice, Cloud, and Land Elevation Satellite (ICESat), on a Delta II expendable launch vehicle from Vandenberg Air Force Base, Calif., on Jan. 11, 2003, between 4:45 p.m. - 5:30 p.m. PST.
The Interstellar Ethics of Self-Replicating Probes
NASA Astrophysics Data System (ADS)
Cooper, K.
Robotic spacecraft have been our primary means of exploring the Universe for over 50 years. Should interstellar travel become reality it seems unlikely that humankind will stop using robotic probes. These probes will be able to replicate themselves ad infinitum by extracting raw materials from the space resources around them and reconfiguring them into replicas of themselves, using technology such as 3D printing. This will create a colonising wave of probes across the Galaxy. However, such probes could have negative as well as positive consequences and it is incumbent upon us to factor self-replicating probes into our interstellar philosophies and to take responsibility for their actions.
Sub-microradian pointing for deep space optical telecommunications network
NASA Technical Reports Server (NTRS)
Ortiz, G.; Lee, S.; Alexander, J.
2001-01-01
This presentation will cover innovative hardware, algorithms, architectures, techniques and recent laboratory results that are applicable to all deep space optical communication links, such as the Mars Telecommunication Network to future interstellar missions.
NASA Astrophysics Data System (ADS)
Tomic, A. T.
2018-04-01
I do not believe that humans in current form are able to reach any interstellar distances. Probably genetic and cyber biology will come up with the solutions, but until then we still can try to grow plants in space.
NASA Technical Reports Server (NTRS)
Johnson, R. D.
1977-01-01
Organic cosmochemistry, organic materials in space exploration, and biochemistry of man in space are briefly surveyed. A model of Jupiter's atmosphere is considered, and the search for organic molecules in the solar system and in interstellar space is discussed. Materials and analytical techniques relevant to space exploration are indicated, and the blood and urine analyses performed on Skylab are described.
Embryo Space Colonisation to Overcome the Interstellar Time Distance Bottleneck
NASA Astrophysics Data System (ADS)
Crowl, A.; Hunt, J.; Hein, A. M.
The immense distances to neighbouring star systems pose the single greatest challenge to a true interstellar mission. The challenge is made even greater if the purpose of the mission is scientific in which it is commonly stated that the mission should last no longer than the career of a participating scientist. This imposes speed requirements with a host of well-known problems of propulsion, immense vehicle mass, need for in-space infrastructure, impact hazards, proton flux, and deceleration. If instead the purpose of the interstellar mission is to ensure the survival of humanity by establishing a viable colony using frozen embryos, these many problems are potentially mitigated due to the fact that the speeds can be much slower. Sleeper ships are a suggested low speed alternative, but cosmic ray damage to suspended/frozen humans could place a limit on the acceptable duration of the mission thereby necessitating greater speed with the aforementioned challenges. Near-term solar-sail technology could be sufficient to launch an ESC mission once human ectogenetic technology has matured.
2008-04-30
VANDENBERG AIR FORCE BASE, Calif. – In Building 1555, workers check the movement of the wing toward the Pegasus XL launch vehicle. The Pegasus will launch NASA's Interstellar Boundary Explorer Mission, or IBEX, satellite from Kwajalein Island in the Marshall Islands, South Pacific. IBEX will make the first map of the boundary between the solar system and interstellar space. IBEX is the first mission designed to detect the edge of the solar system. As the solar wind from the sun flows out beyond Pluto, it collides with the material between the stars, forming a shock front. IBEX contains two neutral atom imagers designed to detect particles from the termination shock at the boundary between the solar system and interstellar space. IBEX also will study galactic cosmic rays, energetic particles from beyond the solar system that pose a health and safety hazard for humans exploring beyond Earth orbit. IBEX will make these observations from a highly elliptical orbit that takes it beyond the interference of the Earth's magnetosphere. Photo credit: NASA/Randy Beaudoin
2008-07-30
VANDENBERG AIR FORCE BASE, Calif. – At Vandenberg Air Force Base in California, technicians follow the movement of NASA's Interstellar Boundary Explorer, or IBEX, mission spacecraft toward the mobile stand in the foreground. The IBEX satellite will make the first map of the boundary between the Solar System and interstellar space. IBEX is the first mission designed to detect the edge of the Solar System. As the solar wind from the sun flows out beyond Pluto, it collides with the material between the stars, forming a shock front. IBEX contains two neutral atom imagers designed to detect particles from the termination shock at the boundary between the Solar System and interstellar space. IBEX also will study galactic cosmic rays, energetic particles from beyond the Solar System that pose a health and safety hazard for humans exploring beyond Earth orbit. IBEX will make these observations from a highly elliptical orbit that takes it beyond the interference of the Earth's magnetosphere. IBEX is targeted for launch from the Pegasus XL rocket on Oct. 5. Photo credit: NASA
2008-07-30
VANDENBERG AIR FORCE BASE, Calif. – At Vandenberg Air Force Base in California, technicians prepare a mobile stand to receive NASA's Interstellar Boundary Explorer, or IBEX, mission spacecraft. The IBEX satellite will make the first map of the boundary between the Solar System and interstellar space. IBEX is the first mission designed to detect the edge of the Solar System. As the solar wind from the sun flows out beyond Pluto, it collides with the material between the stars, forming a shock front. IBEX contains two neutral atom imagers designed to detect particles from the termination shock at the boundary between the Solar System and interstellar space. IBEX also will study galactic cosmic rays, energetic particles from beyond the Solar System that pose a health and safety hazard for humans exploring beyond Earth orbit. IBEX will make these observations from a highly elliptical orbit that takes it beyond the interference of the Earth's magnetosphere. IBEX is targeted for launch from the Pegasus XL rocket on Oct. 5. Photo credit: NASA
Trans-cis molecular photoswitching in interstellar space
NASA Astrophysics Data System (ADS)
Cuadrado, S.; Goicoechea, J. R.; Roncero, O.; Aguado, A.; Tercero, B.; Cernicharo, J.
2016-11-01
As many organic molecules, formic acid (HCOOH) has two conformers (trans and cis). The energy barrier to internal conversion from trans to cis is much higher than the thermal energy available in molecular clouds. Thus, only the most stable conformer (trans) is expected to exist in detectable amounts. We report the first interstellar detection of cis-HCOOH. Its presence in ultraviolet (UV) irradiated gas exclusively (the Orion Bar photodissociation region), with a low trans-to-cis abundance ratio of 2.8 ± 1.0, supports a photoswitching mechanism: a given conformer absorbs a stellar photon that radiatively excites the molecule to electronic states above the interconversion barrier. Subsequent fluorescent decay leaves the molecule in a different conformer form. This mechanism, which we specifically study with ab initio quantum calculations, was not considered in Space before but likely induces structural changes of a variety of interstellar molecules submitted to UV radiation. This paper makes use of observations obtained with the IRAM-30 m telescope. IRAM is supported by INSU/CNRS (France), MPG (Germany), and IGN (Spain).
Detection of Buckminsterfullerene emission in the diffuse interstellar medium.
Berné, O; Cox, N L J; Mulas, G; Joblin, C
2017-09-01
Emission of fullerenes in their infrared vibrational bands has been detected in space near hot stars. The proposed attribution of the diffuse interstellar bands at 9577 and 9632 Å to electronic transitions of the buckminsterfullerene cation (i.e. [Formula: see text]) was recently supported by new laboratory data, confirming the presence of this species in the diffuse interstellar medium (ISM). In this letter, we present the detection, also in the diffuse ISM, of the 17.4 and 18.9 μ m emission bands commonly attributed to vibrational bands of neutral C 60 . According to classical models that compute the charge state of large molecules in space, C 60 is expected to be mostly neutral in the diffuse ISM. This is in agreement with the abundances of diffuse C 60 we derive here from observations. We also find that C 60 is less abundant in the diffuse ISM than in star-forming regions, supporting the theory that C 60 can be formed in these regions.
2008-04-30
VANDENBERG AIR FORCE BASE, Calif. – In Building 1555, workers help guide a wing toward the Pegasus XL launch vehicle for a fit check. The Pegasus will launch NASA's Interstellar Boundary Explorer Mission, or IBEX, satellite from Kwajalein Island in the Marshall Islands, South Pacific. IBEX will make the first map of the boundary between the solar system and interstellar space. IBEX is the first mission designed to detect the edge of the solar system. As the solar wind from the sun flows out beyond Pluto, it collides with the material between the stars, forming a shock front. IBEX contains two neutral atom imagers designed to detect particles from the termination shock at the boundary between the solar system and interstellar space. IBEX also will study galactic cosmic rays, energetic particles from beyond the solar system that pose a health and safety hazard for humans exploring beyond Earth orbit. IBEX will make these observations from a highly elliptical orbit that takes it beyond the interference of the Earth's magnetosphere. Photo credit: NASA/Randy Beaudoin
2008-04-28
VANDENBERG AIR FORCE BASE, Calif. – In Building 1555, the wings of the Pegasus XL launch vehicle are checked for fit. The Pegasus will launch NASA's Interstellar Boundary Explorer Mission, or IBEX, satellite from Kwajalein Island in the Marshall Islands, South Pacific. IBEX will make the first map of the boundary between the solar system and interstellar space. IBEX is the first mission designed to detect the edge of the solar system. As the solar wind from the sun flows out beyond Pluto, it collides with the material between the stars, forming a shock front. IBEX contains two neutral atom imagers designed to detect particles from the termination shock at the boundary between the solar system and interstellar space. IBEX also will study galactic cosmic rays, energetic particles from beyond the solar system that pose a health and safety hazard for humans exploring beyond Earth orbit. IBEX will make these observations from a highly elliptical orbit that takes it beyond the interference of the Earth's magnetosphere. Photo credit: NASA/Randy Beaudoin
2008-04-30
VANDENBERG AIR FORCE BASE, Calif. – In Building 1555, workers check the fit of the wing on the Pegasus XL launch vehicle. The Pegasus will launch NASA's Interstellar Boundary Explorer Mission, or IBEX, satellite from Kwajalein Island in the Marshall Islands, South Pacific. IBEX will make the first map of the boundary between the solar system and interstellar space. IBEX is the first mission designed to detect the edge of the solar system. As the solar wind from the sun flows out beyond Pluto, it collides with the material between the stars, forming a shock front. IBEX contains two neutral atom imagers designed to detect particles from the termination shock at the boundary between the solar system and interstellar space. IBEX also will study galactic cosmic rays, energetic particles from beyond the solar system that pose a health and safety hazard for humans exploring beyond Earth orbit. IBEX will make these observations from a highly elliptical orbit that takes it beyond the interference of the Earth's magnetosphere. Photo credit: NASA/Randy Beaudoin
2008-04-30
VANDENBERG AIR FORCE BASE, Calif. – In Building 1555, workers help guide a wing toward the Pegasus XL launch vehicle in the background for a fit check. The Pegasus will launch NASA's Interstellar Boundary Explorer Mission, or IBEX, satellite from Kwajalein Island in the Marshall Islands, South Pacific. IBEX will make the first map of the boundary between the solar system and interstellar space. IBEX is the first mission designed to detect the edge of the solar system. As the solar wind from the sun flows out beyond Pluto, it collides with the material between the stars, forming a shock front. IBEX contains two neutral atom imagers designed to detect particles from the termination shock at the boundary between the solar system and interstellar space. IBEX also will study galactic cosmic rays, energetic particles from beyond the solar system that pose a health and safety hazard for humans exploring beyond Earth orbit. IBEX will make these observations from a highly elliptical orbit that takes it beyond the interference of the Earth's magnetosphere. Photo credit: NASA/Randy Beaudoin
2008-04-28
VANDENBERG AIR FORCE BASE, Calif. – In Building 1555, the wings of the Pegasus XL launch vehicle are checked for fit. The Pegasus will launch NASA's Interstellar Boundary Explorer Mission, or IBEX, satellite from Kwajalein Island in the Marshall Islands, South Pacific. IBEX will make the first map of the boundary between the solar system and interstellar space. IBEX is the first mission designed to detect the edge of the solar system. As the solar wind from the sun flows out beyond Pluto, it collides with the material between the stars, forming a shock front. IBEX contains two neutral atom imagers designed to detect particles from the termination shock at the boundary between the solar system and interstellar space. IBEX also will study galactic cosmic rays, energetic particles from beyond the solar system that pose a health and safety hazard for humans exploring beyond Earth orbit. IBEX will make these observations from a highly elliptical orbit that takes it beyond the interference of the Earth's magnetosphere. Photo credit: NASA/Randy Beaudoin
2008-04-30
VANDENBERG AIR FORCE BASE, Calif. – In Building 1555, workers help guide a wing toward the Pegasus XL launch vehicle in the background for a fit check. The Pegasus will launch NASA's Interstellar Boundary Explorer Mission, or IBEX, satellite from Kwajalein Island in the Marshall Islands, South Pacific. IBEX will make the first map of the boundary between the solar system and interstellar space. IBEX is the first mission designed to detect the edge of the solar system. As the solar wind from the sun flows out beyond Pluto, it collides with the material between the stars, forming a shock front. IBEX contains two neutral atom imagers designed to detect particles from the termination shock at the boundary between the solar system and interstellar space. IBEX also will study galactic cosmic rays, energetic particles from beyond the solar system that pose a health and safety hazard for humans exploring beyond Earth orbit. IBEX will make these observations from a highly elliptical orbit that takes it beyond the interference of the Earth's magnetosphere. Photo credit: NASA/Randy Beaudoin
The Emergence of the Worldship (I): The Shift from Planet-Based to Space-Based Civilisation
NASA Astrophysics Data System (ADS)
Ashworth, S.
Design concepts for passenger-carrying interstellar vehicles may be organised according to speed of travel and payload mass. The most likely design solutions fall on a scale which ranges from the high speed, low mass rapid transport at one end to the low speed, high mass multi-generation worldship at the other. The medium speed, medium mass cruiser is defined as an intermediate case. Using an energy-based analysis, it is shown that the rapid transport is a less plausible case. The more credible options for human interstellar flight are the multi-generation cruiser and worldship, in either case requiring the construction of an artificial mobile world-like environment for the sustainable support of a town- to city-sized community of travellers. This could be made possible by a shift in the dominant mode of human civilisation from planetary to space-based life. The long-term consequences for interstellar colonisation are illustrated with reference to the percolation theory presented by Geoffrey Landis.
A new technique for in situ measurement of the composition of neutral gas in interplanetary space
NASA Technical Reports Server (NTRS)
Gruntman, Michael A.
1993-01-01
Neutral atoms in interplanetary space play an important role in many processes relevant to the formation and evolution of the Solar System. An experimental approach is proposed for in situ atom detection based on the conversion of neutral atoms to negative ions at a specially prepared sensitive surface. Negative ions are subsequently analyzed and detected in an essentially noise-free mode. The use of the technique for in situ study of the composition of neutral interstellar atoms is considered. It is shown that interstellar H, D, and O atoms and possibly H2 molecules can be measured by the proposed technique. The experiment can be performed from a high-apogee Earth-orbiting satellite or from a deep space probe. Possible applications of the technique are discussed.
2013-09-12
Suzanne Dodd, Voyager project manager, NASA's Jet Propulsion Lab (JPL) holds a replica of the golden record carried on Voyager at a news conference on NASA's Voyager 1 spacecraft, Thursday, Sept. 12, 2013 at NASA Headquarters in Washington. The Golden Record was intended to communicate a story of our world to extraterrestrials. NASA's Voyager 1 spacecraft officially is the first human-made object to venture into interstellar space. The 36-year-old probe is about 12 billion miles (19 billion kilometers) from our sun. New and unexpected data indicate Voyager 1 has been traveling for about one year through plasma, or ionized gas, present in the space between stars. A report on the analysis of this new data is published in Thursday's edition of the journal Science. Photo Credit: (NASA/Carla Cioffi)
2013-07-03
This artist concept shows NASA Voyager spacecraft against a field of stars in the darkness of space as they travel farther away from Earth, on a journey to interstellar space, and will eventually circle around the center of the Milky Way galaxy.
NASA Astrophysics Data System (ADS)
Zubrin, Robert
1994-07-01
This paper examines the possibility of detecting extraterrestrial civilizations by means of searching for the spectral signature of their interstellar transportation systems. The advantage of such an approach is that the characteristic power levels associated with interstellar transportation systems are many orders of magnitude greater than those required for communication, and so the signal strength may be much greater. Furthermore, unlike communication which is governed by a fairly arbitrary selection of technology and mutually agreed upon conventions, interstellar transportation systems are governed much more stringently by the laws of physics. For purposes of the present analysis we consider 4 methods of interstellar propulsion, the principles of which are fairly well understood. These are anti-matter rockets, fusion rockets, fission rockets, all of which can be used to either accelerate or decelerate a spacecraft, and magnetic sails, which can be used to decelerate a spacecraft by creating drag against the interstellar medium. The types of radiation emitted by each of these propulsion systems is described, and the signal strength for starships of a characteristic mass of 1 million tonnes traveling at speeds and acceleration levels characteristic of the various propulsion systems is estimated. It is shown that for the power level of ships considered, the high energy gamma radiation emitted by the anti-matter, fusion and fission propulsion systems would be undetectable at interstellar distances. Better opportunities for detection would be the bremsstrahlung radiation from the plasma confinement systems of fusion devices, which might be detectable at distances of about 1 light year, and visible light emitted from the radiators of anti-matter driven photon rocket, which might be detectable by the Hubble Space Telescope at a distance of several hundred light years provided the rocket nozzle is oriented towards the Earth. The most detectable form of starship radiation, however, was found to be the low frequency radio emissions of cyclotron radiation caused by interaction of the interstellar medium with a magnetic sail. The frequency of such radiation is given approximately by f=120(v/c)kHz, where v is the starship's velocity. Because the frequency of this radiation is lower than the Earth's ionospheric cut-off, an antenna for its reception would have to be space-based. However such a space-based antenna with a 6 km effective diameter could detect the magsail emission of a characteristic starship at distances of up to several thousand light years. Both photon rockets and magnetic sails would emit a signal that could easily be distinguished from natural sources. We conclude that the detection of extraterrestrial civilizations via the spectral signature of their spacecraft is possible in principle and recommend that the approach be studied further.
NASA Astrophysics Data System (ADS)
McComas, D. J.
2009-12-01
The Sun moves through the local interstellar medium, continuously emitting ionized, supersonic solar wind plasma and carving out a cavity in interstellar space, called the heliosphere. The Interstellar Boundary Explorer (IBEX) spacecraft has just completed the first all-sky maps of the interstellar interaction at the edge of the heliosphere, by imaging energetic neutral atoms (ENAs) emanating from this region. IBEX all-sky maps and energy spectra provide detailed information about the interaction. Our observations show globally distributed fluxes ordered by the solar wind structure, which are superposed by another, unexpected feature, which is neither seen by the Voyager spacecraft nor predicted by any current model or theory. This talk summarizes the IBEX observations, shares our unexpected results, and discusses some of the possible ideas for what may be missing in our current understanding of the heliosphere’s global interaction. IBEX Science Team: D.J. McComas1,2, F. Allegrini1,2, P. Bochsler3, M. Bzowski4, E.R. Christian5, G.B. Crew6, R. DeMajistre7, H. Fahr8, H. Fichtner9, P.C. Frisch10, H.O. Funsten11, S. A. Fuselier12, G. Gloeckler13, M. Gruntman14, J. Heerikhuisen15, V. Izmodenov16, P. Janzen17, P. Knappenberger18, S. Krimigis7,19, H. Kucharek20, M. Lee20, G. Livadiotis1, S. Livi1,2, R.J. MacDowall5, D. Mitchell7, E. Möbius20, T. Moore5, N.V. Pogorelov15, D. Reisenfeld17, E. Roelof7, L. Saul3, N.A. Schwadron21, P.W. Valek1,2, R. Vanderspek6, P. Wurz3, G.P. Zank15 (1)Southwest Research Institute, San Antonio, TX, USA (2) University of Texas at San Antonio, San Antonio, TX, USA (3)University of Bern, Physikalisches Institut, CH-3012 Bern, Switzerland (4)Space Research Centre of the Polish Academy of Sciences, Warsaw, Poland (5)NASA Goddard Space Flight Center, Greenbelt, MD, USA (6)Massachusetts Institute of Technology, Cambridge, MA, USA (7)Applied Physics Laboratory, Johns Hopkins University, Laurel, MD, USA (8)University of Bonn, Bonn, Germany (9)Ruhr-Universitaet Bochum, Bochum, Germany (10)University of Chicago, Chicago, IL, USA (11)Los Alamos National Laboratory, Los Alamos, NM, USA (12)Lockheed Martin Advanced Technology Center, Palo Alto, CA, USA (13)University of Michigan, Ann Arbor, MI, USA (14)University of Southern California, Los Angeles, CA, USA (15)University of Alabama, Huntsville, AL, USA (16) Moscow State University; Space Research Institute (IKI) and Institute for Problems in Mechanics Russian Academy of Sciences, Moscow, Russia (17)University of Montana, Missoula, MT, USA (18)Adler Planetarium, Chicago, IL, USA (19)Office for Space Research and Technology, Academy of Athens, Athens, Greece (20)University of New Hampshire, Space Science Center, Durham, NH, USA (21) Boston University, Boston, MA, USA
Scientists Toast the Discovery of Vinyl Alcohol in Interstellar Space
NASA Astrophysics Data System (ADS)
2001-10-01
Astronomers using the National Science Foundation's 12 Meter Telescope at Kitt Peak, AZ, have discovered the complex organic molecule vinyl alcohol in an interstellar cloud of dust and gas near the center of the Milky Way Galaxy. The discovery of this long-sought compound could reveal tantalizing clues to the mysterious origin of complex organic molecules in space. Vinyl Alcohol and its fellow isomers "The discovery of vinyl alcohol is significant," said Barry Turner, a scientist at the National Radio Astronomy Observatory (NRAO) in Charlottesville, Va., "because it gives us an important tool for understanding the formation of complex organic compounds in interstellar space. It may also help us better understand how life might arise elsewhere in the Cosmos." Vinyl alcohol is an important intermediary in many organic chemistry reactions on Earth, and the last of the three stable members of the C2H4O group of isomers (molecules with the same atoms, but in different arrangements) to be discovered in interstellar space. Turner and his colleague A. J. Apponi of the University of Arizona's Steward Observatory in Tucson detected the vinyl alcohol in Sagittarius B -- a massive molecular cloud located some 26,000 light-years from Earth near the center of our Galaxy. The astronomers were able to detect the specific radio signature of vinyl alcohol during the observational period of May and June of 2001. Their results have been accepted for publication in the Astrophysical Journal Letters. Of the approximately 125 molecules detected in interstellar space, scientists believe that most are formed by gas-phase chemistry, in which smaller molecules (and occasionally atoms) manage to "lock horns" when they collide in space. This process, though efficient at creating simple molecules, cannot explain how vinyl alcohol and other complex chemicals are formed in detectable amounts. For many years now, scientists have been searching for the right mechanism to explain how the building blocks for vinyl alcohol and other chemicals are able to form the necessary chemical bonds to make larger molecules - those containing as many as six or more atoms. "It has been an ongoing quest to understand exactly how these more complex molecules form and become distributed throughout the interstellar medium," said Turner. Since the 1970s, scientists have speculated that molecules could form on the microscopic dust grains in interstellar clouds. These dust grains are thought to trap the fast-moving molecules. The surface of these grains would then act as a catalyst, similar to a car's catalytic converter, and enable the chemical reactions that form vinyl alcohol and the other complex molecules. The problem with this theory, however, is that the newly formed molecules would remain trapped on the dust grains at the low temperature characteristic of most of interstellar space, and the energy necessary to "knock them off" would also be strong enough to break the chemical bonds that formed them. "This last process has not been well understood," explained Turner. "The current theory explains well how molecules like vinyl alcohol could form, but it doesn't address how these new molecules are liberated from the grains where they are born." To better understand how this might be accomplished, the scientists considered the volatile and highly energetic region of space where these molecules were detected. Turner and others speculate that since this cloud lies near an area of young, energetic star formation, the energy from these stars could evaporate the icy surface layers of the grains. This would liberate the molecules from their chilly nurseries, depositing them into interstellar space where they can be detected by sensitive radio antennas on Earth. Astronomers are able to detect the faint radio signals that these molecules emit as they jump between quantum energy states in the act of rotating or vibrating. Turner cautions, however, that even though this discovery has shed new light on how certain highly complex species form in space, the final answer is still not in hand. "Although vinyl alcohol and its isomeric partners may well have formed on grains," said Turner "another important possibility has been found. The grain evaporative processes near star formation appear to release copious amounts of somewhat simpler molecules such as formaldehyde (H2CO) and methanol (CH3OH), which may be reacting in the gas phase to produce detectable amounts of vinyl alcohol and its isomers." A program to search for other families of isomers is planned, which the astronomers believe could distinguish between these two possibilities. The astronomers used 2- and 3-mm band radio frequencies to make their observations with the 12 Meter Telescope. This telescope was taken off-line by the NRAO to make way for the Atacama Large Millimeter Array, and is now operated by the Steward Observatory of the University of Arizona. Built in 1967, the telescope has had a long and productive history in detecting molecules in space. The National Radio Astronomy Observatory is a facility of the National Science Foundation, operated under cooperative agreement by Associated Universities, Inc.
Recent Progress in Laboratory Astrophysics and Astrochemistry Achieved with the COSmIC Facility
NASA Technical Reports Server (NTRS)
Salama, Farid; Sciamma-O'Brien, Ella; Bejaoui, Salma
2017-01-01
We describe the characteristics and the capabilities of the laboratory facility, COSmIC, that was developed at NASA Ames to generate, process and analyze interstellar, circumstellar and planetary analogs in the laboratory. COSmIC stands for "Cosmic Simulation Chamber" and is dedicated to the study of neutral and ionized molecules and nanoparticles under the low temperature and high vacuum conditions that are required to simulate various space environments such as diffuse interstellar clouds, circumstellar outflows and planetary atmospheres. COSmIC integrates a variety of state-of-the-art instruments that allow recreating simulated space conditions to generate, process and monitor cosmic analogs in the laboratory. The COSmIC experimental setup is composed of a Pulsed Discharge Nozzle (PDN) expansion, that generates a plasma in the stream of a free supersonic jet expansion, coupled to high-sensitivity, complementary in situ diagnostics: cavity ring down spectroscopy (CRDS) and laser induced fluorescence (LIF) systems for photonic detection, and Reflectron Time-Of-Flight Mass Spectrometer (ReTOF-MS) for mass detection. Recent results obtained using COSmIC will be highlighted. In particular, the progress that has been achieved in the domain of the diffuse interstellar bands (DIBs) and in monitoring, in the laboratory, the formation of circumstellar dust grains and planetary atmosphere aerosols from their gas-phase molecular precursors. Plans for future laboratory experiments on interstellar and planetary molecules and grains will also be addressed, as well as the implications of the studies underway for astronomical observations and past and future space mission data analysis.
NASA Astrophysics Data System (ADS)
Carelli, F.; Gianturco, F. A.
2011-12-01
Free, gas-phase polycyclic aromatic hydrocarbons (PAHs) are understood to play an important role in the interstellar medium (ISM), as they are thought to significantly contribute to both diffused and unidentified infrared interstellar bands. They are also considered fundamental blocks of the interstellar dust, whose nature has important implications for a plethora of physical and chemical nanoscopic processes within the ISM. Since free electrons represent a versatile alternative way to transport energy in the interstellar space, in this paper we compute from quantum scattering methods the angular redistributions of free electrons by gas-phase coronene molecules, the latter of which are believed to be one of the most representative PAHs, in order to assess their role in describing the efficiency of electron deflection by this molecule. The associated rates can provide useful information about the coupling mechanism between external radio-frequency fields and complex molecular plasmas containing neutral and ionized PAHs. They can also yield information on the possible presence of such species in the dust phase of the medium.
Development of a high resolution interstellar dust engineering model - overview of the project
NASA Astrophysics Data System (ADS)
Sterken, V. J.; Strub, P.; Soja, R. H.; Srama, R.; Krüger, H.; Grün, E.
2013-09-01
Beyond 3 AU heliocentric distance, the flow of interstellar dust through the solar system is a dominant component of the total dust population. The modulation of this flux with the solar cycle and the position in the solar system has been predicted by theoretical studies since the seventies. The modulation was proven to exist by matching dust trajectory simulations with real spacecraft data from Ulysses in 1998. The modulations were further analyzed and studies in detail in 2012. The current ESA interplanetary meteoroid model IMEM includes an interstellar dust component, but this component was modelled only with straight line trajectories through the solar system. For the new ESA IMEX model, a high-resolution interstellar dust component is implemented separately from a dust streams module. The dust streams module focuses on dust in streams that was released from comets (cf. Abstract R. Soja). Parallel processing techniques are used to improve computation time (cf. Abstract P. Strub). The goal is to make predictions for the interstellar dust flux as close to the Sun as 1 AU or closer, for future space mission design.
NASA Astrophysics Data System (ADS)
Schwadron, N.
2017-12-01
Our piece of cosmic real-estate, the heliosphere, is the domain of all human existence - an astrophysical case-history of the successful evolution of life in a habitable system. The Interstellar Boundary Explorer (IBEX) was the first mission to explore the global heliosphere and in concert with Voyager 1 and Voyager 2 is discovering a fundamentally new and uncharted physical domain of the outer heliosphere. In parallel, Cassini/INCA maps the global heliosphere at energies ( 5-55 keV) above those measured by IBEX. The enigmatic IBEX ribbon and the INCA belt were unanticipated discoveries demonstrating that much of what we know or think we understand about the outer heliosphere needs to be revised. The global structure of the heliosphere is highly complex and influenced by competing factors ranging from the local interstellar magnetic field, suprathermal populations both within and beyond the heliopause, and the detailed flow properties of the LISM. Global heliospheric structure and microphysics in turn influences the acceleration of energetic particles and creates feedbacks that modify the interstellar interaction as a whole. The next quantum leap enabled by IMAP will open new windows on the frontier of Heliophysics and probe the acceleration of suprathermal and higher energy particles at a time when the space environment is rapidly evolving. IMAP ultimately connects the acceleration processes observed directly at 1 AU with unprecedented sensitivity and temporal resolution with the global structure of our heliosphere. The remarkable synergy between IMAP, Voyager 1 and Voyager 2 will remain for at least the next decade as Voyager 1 pushes further into the interstellar domain and Voyager 2 moves through the heliosheath. IMAP, like ACE before it, will be a keystone of the Heliophysics System Observatory by providing comprehensive energetic particle, pickup ion, suprathermal ion, neutral atom, solar wind, solar wind heavy ion, and magnetic field observations to diagnose the changing space environment, to discover the fundamental origins of particle acceleration, while discerning the physical processes that control our global heliosphere's interactions with the local interstellar medium.
Trajectories for High Specific Impulse High Specific Power Deep Space Exploration
NASA Technical Reports Server (NTRS)
Polsgrove, T.; Adams, R. B.; Brady, Hugh J. (Technical Monitor)
2002-01-01
Preliminary results are presented for two methods to approximate the mission performance of high specific impulse high specific power vehicles. The first method is based on an analytical approximation derived by Williams and Shepherd and can be used to approximate mission performance to outer planets and interstellar space. The second method is based on a parametric analysis of trajectories created using the well known trajectory optimization code, VARITOP. This parametric analysis allows the reader to approximate payload ratios and optimal power requirements for both one-way and round-trip missions. While this second method only addresses missions to and from Jupiter, future work will encompass all of the outer planet destinations and some interstellar precursor missions.
NASA Astrophysics Data System (ADS)
Koike, J.; Oshima, T.
We have been studying the survival rates of some species of terrestrial unicellular and multicellular organism (viruses, bacteria, yeasts, fungi, algae, etc.) under simulated interstellar conditions, in connection with planetary quarantine. The interstellar environment in the solar system has been simulated by low temperature, high vacuum (77 K, 4 × 10 -8 torr), and proton irradiation from a Van de Graaff generator. After exposure to a barrage of protons corresponding to about 250 years of irradiation in solar space, tobacco mosaic virus, Bacillus subtilis spores, Staphylococcus aureus, Micrococcus flavus, Aspergillus niger spores, and Clostridium mangenoti spores showed survival rates of 82, 45, 74, 13, 28, and 25%, respectively.
Formation of buckminsterfullerene (C60) in interstellar space
Berné, Olivier; Tielens, A. G. G. M.
2012-01-01
Buckminsterfullerene (C60) was recently confirmed as the largest molecule identified in space. However, it remains unclear how and where this molecule is formed. It is generally believed that C60 is formed from the buildup of small carbonaceous compounds in the hot and dense envelopes of evolved stars. Analyzing infrared observations, obtained by Spitzer and Herschel, we found that C60 is efficiently formed in the tenuous and cold environment of an interstellar cloud illuminated by strong ultraviolet (UV) radiation fields. This implies that another formation pathway, efficient at low densities, must exist. Based on recent laboratory and theoretical studies, we argue that polycyclic aromatic hydrocarbons are converted into graphene, and subsequently C60, under UV irradiation from massive stars. This shows that alternative—top-down—routes are key to understanding the organic inventory in space. PMID:22198841
Formation of buckminsterfullerene (C60) in interstellar space.
Berné, Olivier; Tielens, A G G M
2012-01-10
Buckminsterfullerene (C(60)) was recently confirmed as the largest molecule identified in space. However, it remains unclear how and where this molecule is formed. It is generally believed that C(60) is formed from the buildup of small carbonaceous compounds in the hot and dense envelopes of evolved stars. Analyzing infrared observations, obtained by Spitzer and Herschel, we found that C(60) is efficiently formed in the tenuous and cold environment of an interstellar cloud illuminated by strong ultraviolet (UV) radiation fields. This implies that another formation pathway, efficient at low densities, must exist. Based on recent laboratory and theoretical studies, we argue that polycyclic aromatic hydrocarbons are converted into graphene, and subsequently C(60), under UV irradiation from massive stars. This shows that alternative--top-down--routes are key to understanding the organic inventory in space.
Formation of buckminsterfullerene (C60) in interstellar space
NASA Astrophysics Data System (ADS)
Berné, Olivier; Tielens, Alexander G. G. M.
2012-01-01
Buckminsterfullerene (C60) was recently confirmed to be the largest molecule identified in space. However, it remains unclear how, and where this molecule is formed. It is generally believed that C60 is formed from the build up of small carbonaceous compounds, in the hot and dense envelopes of evolved stars. Analyzing infrared observations, obtained by Spitzer and Herschel, we found that C60 is efficiently formed in the tenuous and cold environment of an interstellar cloud illuminated by strong ultraviolet (UV) radiation fields. This implies that another formation pathway, efficient at low densities, must exist. Based on recent laboratory and theoretical studies, we argue that Polycyclic Aromatic Hydrocarbons are converted into graphene, and subsequently C60, under UV irradiation from massive stars. This shows that alternative - top-down - routes are key to understanding the organic inventory in space.
From Interstellar PAHs and Ices to the Origin of Life
NASA Technical Reports Server (NTRS)
Allamandola, Louis J.; DeVincenzi, Donald L. (Technical Monitor)
2000-01-01
Tremendous strides have been made in our understanding of interstellar material over the past twenty years thanks to significant, parallel developments in observational astronomy and laboratory astrophysics. Twenty years ago the composition of interstellar dust was largely guessed at, the concept of ices in dense molecular clouds ignored, and the notion of large, abundant, gas phase, carbon rich molecules widespread throughout the interstellar medium (ISM) considered impossible. Today the composition of dust in the diffuse ISM is reasonably well constrained to micron-sized cold refractory materials comprised of amorphous and crystalline silicates mixed with an amorphous carbonaceous material containing aromatic structural units and short, branched aliphatic chains. In dense molecular clouds, the birthplace of stars and planets, these cold dust particles are coated with mixed molecular ices whose composition is very well constrained. Lastly, the signature of carbon-rich polycyclic aromatic hydrocarbons (PAHs), shockingly large molecules by earlier interstellar chemistry standards, is widespread throughout the Universe. The first part of this lecture will describe how infrared studies of interstellar space, combined with laboratory simulations, have revealed the composition of interstellar ices (the building blocks of comets) and the high abundance and nature of interstellar PAHs. The laboratory database has now enabled us to gain insight into the identities, concentrations, and physical state of many interstellar materials. Within a dense molecular cloud, and especially in the solar nebula during the star and planet formation stage, the materials frozen into interstellar/precometary ices are photoprocessed by ultraviolet light, producing more complex molecules. The remainder of the presentation will focus on the photochemical evolution of these materials and the possible role of these compounds on the early Earth. As these materials are thought to be the building blocks of comets and related to the carbonaceous components of micrometeorites, they are likely to have been important sources of complex organic materials on the early Earth and their composition may be related to the origin of life.
Editorial: Interstellar Boundary Explorer (IBEX): Direct Sampling of the Interstellar Medium
NASA Astrophysics Data System (ADS)
McComas, D. J.
2012-02-01
This special supplement issue of the Astrophysical Journal comprises six coordinated papers that provide the first detailed analyses of the direct sampling of interstellar neutral atoms by the Interstellar Boundary Explorer (IBEX). Interstellar atoms are the detritus of older stars—their stellar winds, novae, and supernovae—spread across the galaxy, which fill the vast interstellar space between the stars. The very local interstellar medium around the Sun is filled with both ionized and neutral atoms with approximately equal numbers, and occasional ionization, charge exchange, and recombination makes them a single interacting material over large distances. IBEX (McComas et al. 2009a) is a NASA Small Explorer mission with the sole, focused science objective to discover the global interaction between the solar wind and the interstellar medium; this objective has primarily been achieved by taking the first global energetic neutral atom (ENA) images, which provide detailed ENA fluxes and energy spectra over all look directions in space. IBEX was launched 2008 October 19 and subsequently maneuvered into a high-altitude, highly elliptical (~15,000 × 300,000 km), roughly week-long orbit. The payload comprises two very high sensitivity, single-pixel ENA cameras: IBEX-Hi (Funsten et al. 2009a), which measures ENAs from ~300 eV to 6 keV, and IBEX-Lo (Fuselier et al. 2009a), which measures ENAs from ~10 eV to 2 keV. The initial IBEX ENA results were published together in a special issue of Science magazine (McComas et al. 2009b; Funsten et al. 2009b; Fuselier et al. 2009b; Schwadron et al. 2009). Since then there have been numerous additional studies of the IBEX ENA observations of the heliosphere, as well as ENAs from the Moon and Earth's magnetosphere (see recent review by McComas et al. 2011 and references therein). Prior to IBEX, the only interstellar neutral atoms to be directly sampled were He, observed by the Ulysses spacecraft a decade ago (Witte et al. 1996; Witte 2004). The first paper published on IBEX observations of interstellar neutral atoms (Möbius et al. 2009) used observations from the spring of 2009, shortly after IBEX achieved its first long-term orbit; that study showed that IBEX is able to directly observe interstellar H and O in addition to He, but provided only limited analysis of these measurements. IBEX has now completed a second full annual season of neutral observations in 2010, which together with the independent 2009 observations provide data adequate to carry out the first round of detailed, quantitative analyses of the IBEX interstellar neutral observations. In this special supplement issue, the IBEX Science Team presents a coordinated series of six articles that focus on various synergistic aspects of these observations, their analyses, and their implications. A critical foundational paper in this volume, Hlond et al. (2012), analyzes the angular pointing knowledge of IBEX observations and demonstrates that the arrival direction knowledge of neutral atoms can be determined to ~0.1° in both spin angle and elevation. This is no mean feat for a Small Explorer mission designed to measure ENAs in 7° × 7° pixels, and largely at much higher energies than the direct interstellar neutrals. In addition, these authors demonstrate that the in-space (post-launch) bore sight of the IBEX-Lo instrument can achieve this accuracy with either the spacecraft's on board attitude control system or an independent Star Sensor that was designed and built directly into the IBEX-Lo instrument. Lee et al. (2012) derive the analytical solution for the hyperbolic trajectories of individual neutral atoms by using Liouville's theorem, including solar gravity and radiation pressure, photoionization and charge exchange, to produce interstellar neutral atom phase-space distributions. These distributions are then transformed into the IBEX reference frame and integrated over the IBEX-Lo instrumental acceptance to provide an analytic solution for the predicted fluid moments of the interstellar neutral atom distributions. This analytic solution for the interstellar neutral parameters provides the basis for a companion paper by Möbius et al. (2012), who analyze the IBEX He (and Ne+O) measurements using the Lee et al. analytic solutions. This approach allows for physical insights into the dominant physical processes, while in another related paper Bzowski et al. (2012) describe a detailed forward model of the interstellar helium from the edge of the heliosphere all the way through the IBEX instrument geometry. Together, these papers show that the prior values for the interstellar flow speed and direction from Ulysses are inconsistent with our new IBEX observations. Möbius et al. (2012) compare the He and O+Ne flow distributions for both 2009 and 2010 and find interstellar flow parameters of ecliptic longitude at ∞ = 79.0° + 3.0°/-3.5°, ecliptic latitude at ∞ = -4.9° ± 0.2°, ISM speed at ∞ = 23.5 + 3.0/-2.0 km s-1, and neutral He temperature = 5000-8200 K. They also find a combined O+Ne temperature of 5300-9000 K, consistent with an isothermal medium for He, O, and Ne. Bzowski et al. (2012) develop and extensively test a detailed forward model simulation of the interstellar He propagation, losses, and measurement in the IBEX-Lo instrument. These simulations start particles at 150 AU and include more detailed physics than the analytic solutions; they therefore complement the analytic method by allowing detailed mapping of the multi-dimensional space of possible solutions. These authors show that the IBEX results are not in statistical agreement with the Ulysses values and provide new best-fit values of ecliptic longitude 79.2°, ecliptic latitude of -5.1°, speed of ~22.8 km s-1, and He temperature is 6200 K. The values obtained with both complementary methods agree with each other and are in agreement with the flow vector of the local interstellar cloud obtained from studies of interstellar absorption (Redfield & Linsky 2008). Bzowski et al. also show evidence for a previously unknown and unanticipated secondary population of helium. Together, the Möbius et al. (2012) and Bzowski et al. (2012) results provide a new interstellar flow direction and a significantly lower velocity of the incoming gas and therefore significantly lower dynamic pressure on the heliosphere, which translates into a heliospheric interaction that is even less dominated by the external dynamic pressure and clearly lies squarely in the middle ground of astrospheres dominated by the external magnetic and dynamic pressures (McComas et al. 2009b). On another topic, Bochsler et al. (2012) report the first direct measurements of interstellar Ne and estimate the interstellar Ne/O abundance ratio, showing a gas-phase Ne/O ratio for the LISM of 0.27 ± 0.10. This value agrees with results obtained from pickup ion observations (Gloeckler & Geiss 2004; Gloeckler & Fisk 2007) and is significantly larger than the solar abundance ratio, indicating that the LISM is different than the Sun's formation region and/or that a substantial portion of the O in the LISM is tied up (and thus "hidden") in grains and/or ices. Finally, Saul et al. (2012) provide the first detailed analysis of the new interstellar H measurements from IBEX. These authors confirm that the arrival direction of interstellar H is offset from that of He. They further show a variation in the strength of the radiation pressure and thus a change in the apparent arrival direction of H penetrating to 1 AU between the first two years of IBEX observations; these results are consistent with solar cycle variations in the radiation pressure, which works opposite to the Sun's gravitational force to effect the penetration of H into the inner heliosphere. Together, these six studies provide the first detailed analyses of the multi-component local interstellar medium—a medium that both effects us by bounding and interacting with our heliosphere, and a medium that gives us a first direct glimpse of non-solar material from the rest of the galaxy.
Identifying Organic Molecules in Space: The AstroBiology Explorer (ABE) Mission Concept
NASA Technical Reports Server (NTRS)
Ennico, K. A.; Sandford, S. A.; Allamandola, L.; Bregman, J.; Cohen, M.; Cruikshank, D.; Dumas, C.; Greene, T.; Hudgins, D.; Kwok, S.
2004-01-01
The AstroBiology Explorer (ABE) mission concept consists of a dedicated space observatory having a 60 cm class primary mirror cooled to T < 50 K equipped with medium resolution cross-dispersed spectrometers having cooled large format near- and mid-infrared detector arrays. Such a system would be capable of addressing outstanding problems in Astrochemistry and Astrophysics that are particularly relevant to Astrobiology and addressable via astronomical observation. The mission s observational program would make fundamental scientific progress in establishing the nature, distribution, formation and evolution of organic and other molecular materials in the following extra-terrestrial environments: 1) The Outflow of Dying Stars, 2) The Diffuse Interstellar Medium, 3) Dense Molecular Clouds, Star Formation Regions, and Young StellarPlanetary Systems, 4) Planets, Satellites, and Small Bodies within the Solar System, and 5 ) The Interstellar Media of Other Galaxies. ABE could make fundamental progress in all of these areas by conducting a 1 to 2 year mission to obtain a coordinated set of infrared spectroscopic observations over the 2.5-20 micron spectral range at a spectral resolution of R > 2000 of about 1500 objects including galaxies, stars, planetary nebulae, young stellar objects, and solar system objects. Keywords: Astrobiology, infrared, Explorers, interstellar organics, telescope, spectrometer, space, infrared detectors
NASA Astrophysics Data System (ADS)
Obousy, R.
While interstellar missions have been explored in the literature, one mission architecture has not received much attention, namely the interstellar rendezvous and return mission that could be accomplished on timescales comparable with a working scientist's career. Such a mission would involve an initial boost phase followed by a coasting phase to the target system. Next would be the deceleration and rendezvous phase, which would be followed by a period of scientific data gathering. Finally, there would be a second boost phase, aimed at returning the spacecraft back to the solar system, and subsequent coasting and deceleration phases upon return to our solar system. Such a mission would represent a precursor to a future manned interstellar mission; which in principle could safely return any astronauts back to Earth. In this paper a novel architecture is proposed that would allow for an unmanned interstellar rendezvous and return mission. The approach utilized for the Vacuum to Antimatter-Rocket Interstellar Explorer System (VARIES) would lead to system components and mission approaches that could be utilized for autonomous operation of other deep-space probes. Engineering solutions for such a mission will have a significant impact on future exploration and sample return missions for the outer planets. This paper introduces the general concept, with a mostly qualitative analysis. However, a full research program is introduced, and as this program progresses, more quantitative papers will be released.
IBEX Observations and Simulations of the Ribbon: Implications for the Very Local Interstellar Medium
NASA Astrophysics Data System (ADS)
Zirnstein, E.
2017-12-01
The crossing of the Voyager 1 spacecraft into the very local interstellar medium (VLISM) in 2012 August opened a new chapter in humankind's exploration of space. Voyager 1 has been measuring interstellar plasma properties outside the heliosphere, including the galactic cosmic ray flux, (indirectly) the compressed interstellar plasma, as well as the compressed interstellar magnetic field draped around the heliosphere. Interstellar Boundary Explorer (IBEX) neutral atom observations complement the only in situ observations of the VLISM made by Voyager 1. IBEX is an Earth-orbiting spacecraft equipped with two single-pixel cameras that detect neutral atoms produced by the interaction of the solar wind (SW) with the VLISM, as well as neutral atoms flowing into the heliosphere from the VLISM itself. After its launch in 2009, IBEX discovered the unexpected existence of the "ribbon," a nearly circular arc across the sky of enhanced hydrogen ENA fluxes observed at keV energies. The ribbon fluxes originate from look directions perpendicular to the local interstellar magnetic field draped around the heliosphere, and can be used to derive the VLISM magnetic field magnitude and direction far from the heliopause. Thus, IBEX observations of the ribbon complement Voyager 1 in situ observations of the VLISM magnetic field, and provide insight into what Voyager 2 will observe after it crosses the heliopause. This talk will review key IBEX observations of the VLISM environment related to the ribbon and the VLISM magnetic field observed by Voyager 1, and their implications for the VLISM environment.
Observation of Lyman-alpha emission in interplanetary space
NASA Technical Reports Server (NTRS)
Bertaux, J. L.; Blamont, J. E.
1972-01-01
The extraterrestrial Lyman-alpha emission was mapped by the OGO 5 satellite, when it was outside the geocorona. Three maps, obtained at different periods of the year, are presented and analyzed. The results suggest that at least half of the emission takes place in the solar system, and give strong support to the theory that in its motion toward the apex, the sun crosses neutral atomic hydrogen of interstellar origin, giving rise to an apparent interstellar wind.
Delta II Stardust Mission Briefing
NASA Technical Reports Server (NTRS)
1999-01-01
An overview of the Stardust Mission is shown. NASA personnel is seen discussing and explaining the path of the probe. An animated clip is presented to demonstrate how the probe will collect interstellar dust materials, and space particles by using an aerogel. The animation also described the process by which the probe will take photographs of the comets from the on board camera. The dust samples and the photographs will be analyzed in order to learn more about interstellar materials.
New astronomy space experiments with television scanning.
NASA Technical Reports Server (NTRS)
Davis, R. J.
1971-01-01
Application of data from the Celescope Catalog of Ultraviolet Observations to various problems of stellar and interstellar astrophysics. These include refinements in the incorporation of line blanketing in theoretical stellar-atmosphere models, variations in the law of interstellar extinction from one region of the sky to another, and selection and identification of various types of peculiar stars for further investigation. In addition, the data were analyzed to determine the photometric and astrometric accuracy of the Celescope equipment.
Clustering in the stellar abundance space
NASA Astrophysics Data System (ADS)
Boesso, R.; Rocha-Pinto, H. J.
2018-03-01
We have studied the chemical enrichment history of the interstellar medium through an analysis of the n-dimensional stellar abundance space. This work is a non-parametric analysis of the stellar chemical abundance space. The main goal is to study the stars from their organization within this abundance space. Within this space, we seek to find clusters (in a statistical sense), that is, stars likely to share similar chemo-evolutionary history, using two methods: the hierarchical clustering and the principal component analysis. We analysed some selected abundance surveys available in the literature. For each sample, we labelled the group of stars according to its average abundance curve. In all samples, we identify the existence of a main enrichment pattern of the stars, which we call chemical enrichment flow. This flow is set by the structured and well-defined mean rate at which the abundances of the interstellar medium increase, resulting from the mixture of the material ejected from the stars and stellar mass-loss and interstellar medium gas. One of the main results of our analysis is the identification of subgroups of stars with peculiar chemistry. These stars are situated in regions outside of the enrichment flow in the abundance space. These peculiar stars show a mismatch in the enrichment rate of a few elements, such as Mg, Si, Sc and V, when compared to the mean enrichment rate of the other elements of the same stars. We believe that the existence of these groups of stars with peculiar chemistry may be related to the accretion of planetary material on to stellar surfaces or may be due to production of the same chemical element by different nucleosynthetic sites.
Morphology and ionization of the interstellar cloud surrounding the solar system.
Frisch, P C
1994-09-02
The first encounter between the sun and the surrounding interstellar cloud appears to have occurred 2000 to 8000 years ago. The sun and cloud space motions are nearly perpendicular, an indication that the sun is skimming the cloud surface. The electron density derived for the surrounding cloud from the carbon component of the anomalous cosmic ray population in the solar system and from the interstellar ratio of Mg(+) to Mg degrees toward Sirius support an equilibrium model for cloud ionization (an electron density of 0.22 to 0.44 per cubic centimeter). The upwind magnetic field direction is nearly parallel to the cloud surface. The relative sun-cloud motion indicates that the solar system has a bow shock.
NASA Technical Reports Server (NTRS)
Malroy, Eric T.
2010-01-01
This paper presents the analysis examining the feasibility of interstellar travel using laser sail probes ranging in size from the nano to the macro. The relativistic differential equations of motion for a laser sail are set up and solved using the Pasic Method. The limitations of the analysis are presented and discussed. The requirements for the laser system are examined, including the thermal analysis of the laser sails. Black holes, plasma fields, atmospheric collisions and sun light are several methods discussed to enable the deceleration of the interstellar probe. A number of novel mission scenarios are presented including the embryonic transport of plant life as a precursor to the arrival of space colonies
The Enzmann Starship: History and Engineering Appraisal
NASA Astrophysics Data System (ADS)
Crowl, A.; Long, K. F.; Obousy, R.
During his student days Robert Duncan-Enzmann imagined a space vehicle design which he depicted in a watercolour painting and apparently dated 1949. In the 1960s he was heavily involved in space-mission design and introduced the concept of a fusion powered interstellar spacecraft design which utilised a 305 m diameter sphere of frozen Deuterium and a long cylindrical habitat/propulsion section joined onto it by a connecting structural column. The spacecraft was to be manned by a small community of people setting out to colonise nearby stars and the entire vessel would have a launch mass of between 3-12 million tons, most of which would be the propellant. Long time space advocate G. Harry Stine, presented the concept to a wider audience via ``Analog Science Fact & Science Fiction '' magazine in 1973. Stine envisioned the Starship to be part of a wider programme of interstellar exploration, beginning in the 1990s. Although the Enzmann Starship is relatively well known in science fiction circles, it is not well known within the interstellar research community and indeed just as little is known about its creator, Robert Enzmann. Very little has been written about the concept in the academic literature and no modern assessment of its engineering credibility exists. This paper sets out to reliably describe what is known about the Enzmann Starship design and also how the idea originated, based upon what is known to date. In this paper the engineering configuration is described, and a performance assessment is given in the context of modern scientific knowledge. Further information on the history and design of the Enzmann Starship is invited so that this concept can take its rightful place in the history of interstellar spacecraft design proposals.
Prospects for Studying Interstellar Magnetic Fields with a Far-Infrared Polarimeter for SAFIR
NASA Technical Reports Server (NTRS)
Dowell, C. Darren; Chuss, D. T.; Dotson, J. L.
2008-01-01
Polarimetry at mid-infrared through millimeter wavelengths using airborne and ground-based telescopes has revealed magnetic structures in dense molecular clouds in the interstellar medium, primarily in regions of star formation. Furthermore, spectropolarimetry has offered clues about the composition of the dust grains and the mechanism by which they are aligned with respect to the local magnetic field. The sensitivity of the observations to date has been limited by the emission from the atmosphere and warm telescopes. A factor of 1000 in sensitivity can be gained by using instead a cold space telescope. With 5 arcminute resolution, Planck will make the first submillimeter polarization survey of the full Galaxy early in the next decade. We discuss the science case for and basic design of a far-infrared polarimeter on the SAFIR space telescope, which offers resolution in the few arcsecond range and wavelength selection of cold and warm dust components. Key science themes include the formation and evolution of molecular clouds in nearby spiral galaxies, the magnetic structure of the Galactic center, and interstellar turbulence.
Project Icarus: The First Unmanned Interstellar Mission - Robotic Expansion and Technological Growth
NASA Astrophysics Data System (ADS)
Long, K. F.
This paper discusses the important role of `disruptive technology' in altering the assessment on when the first unmanned interstellar probe mission is possible. Historical estimates suggest that such a mission is likely possible in the 23rd or 24th century. This paper argues that if such assessments also consider the role of high-growth exponential technology trends then in fact the first unmanned mission may be possible much earlier. The case study of a 100 year flyby space probe mission to Alpha Centauri 4.3 light years distance is examined, with an ideal cruise speed of 2,700 AU/year. Starting from an assumed mission capacity of 5 AU/year in 2020 a simple assessment shows that assuming a greater than ~8% technology growth annually in mission capacity (as measured by the attainment of cruise speed) it may be possible to launch an interstellar probe by around the year 2100. This depends upon significant and sustained science and technology research investment being made, particularly into space propulsion engineering in the near-term. This paper is a submission of the Project Icarus Study Group.
Radiation-pressure-driven dust waves inside bursting interstellar bubbles
NASA Astrophysics Data System (ADS)
Ochsendorf, B. B.; Verdolini, S.; Cox, N. L. J.; Berné, O.; Kaper, L.; Tielens, A. G. G. M.
2014-06-01
Massive stars drive the evolution of the interstellar medium through their radiative and mechanical energy input. After their birth, they form "bubbles" of hot gas surrounded by a dense shell. Traditionally, the formation of bubbles is explained through the input of a powerful stellar wind, even though direct evidence supporting this scenario is lacking. Here we explore the possibility that interstellar bubbles seen by the Spitzer- and Herschel space telescopes, blown by stars with log (L/L⊙) ≲ 5.2, form and expand because of the thermal pressure that accompanies the ionization of the surrounding gas. We show that density gradients in the natal cloud or a puncture in the swept-up shell lead to an ionized gas flow through the bubble into the general interstellar medium, which is traced by a dust wave near the star, which demonstrates the importance of radiation pressure during this phase. Dust waves provide a natural explanation for the presence of dust inside H II bubbles, offer a novel method to study dust in H II regions and provide direct evidence that bubbles are relieving their pressure into the interstellar medium through a champagne flow, acting as a probe of the radiative interaction of a massive star with its surroundings. We explore a parameter space connecting the ambient density, the ionizing source luminosity, and the position of the dust wave, while using the well studied H II bubbles RCW 120 and RCW 82 as benchmarks of our model. Finally, we briefly examine the implications of our study for the environments of super star clusters formed in ultraluminous infrared galaxies, merging galaxies, and the early Universe, which occur in very luminous and dense environments and where radiation pressure is expected to dominate the dynamical evolution.
Spectroscopy of neutral and ionized PAHs. From laboratory studies to astronomical observations
NASA Technical Reports Server (NTRS)
Salama, Farid
2005-01-01
Polycyclic Aromatic Hydrocarbons (PAHs) are an important and ubiquitous component of carbon-bearing materials in space. PAHs are the best-known candidates to account for the IR emission bands (UIR bands) and PAH spectral features are now being used as new probes of the ISM. PAHs are also thought to be among the carriers of the diffuse interstellar absorption bands (DIBs). In the model dealing with the interstellar spectral features, PAHs are present as a mixture of radicals, ions and neutral species. PAH ionization states reflect the ionization balance of the medium while PAH size, composition, and structure reflect the energetic and chemical history of the medium. A major challenge for laboratory astrochemistry is to reproduce (in a realistic way) the physical conditions that are associated with the emission and absorption interstellar zones. An extensive laboratory program has been developed at NASA Ames to assess the physical and chemical properties of PAHs in such environments and to describe how they influence the radiation and energy balance in space and the interstellar chemistry. PAHs, neutrals and ions, are expanded through a pulsed discharge nozzle (PDN) and probed with high-sensitivity cavity ringdown spectroscopy (CRDS). These laboratory experiments provide unique information on the spectra of free, cold large carbon molecules and ions in the gas phase from the ultraviolet and visible range to the near-infrared range. Intrinsic band profiles and band positions of cold gas-phase PAHs can now be measured with high-sensitivity spectroscopy and directly compared to the astronomical data. Preliminary conclusions from the comparison of the laboratory data with astronomical observations of interstellar and circumstellar environments will also be discussed.
Extraterrestrial Samples at JSC
NASA Technical Reports Server (NTRS)
Allen, Carlton C.
2007-01-01
A viewgraph presentation on the curation of extraterrestrial samples at NASA Johnson Space Center is shown. The topics include: 1) Apollo lunar samples; 2) Meteorites from Antarctica; 3) Cosmic dust from the stratosphere; 4) Genesis solar wind ions; 5) Stardust comet and interstellar grains; and 5) Space-Exposed Hardware.
NASA Astrophysics Data System (ADS)
Frisch, P. C.; Hanson, A. J.; Fu, P. C.
2008-12-01
A scientifically accurate visualization of the Journey of the Sun through deep space has been created in order to share the excitement of heliospheric physics and scientific discovery with the non-expert. The MHD heliosphere model of Linde (1998) displays the interaction of the solar wind with the interstellar medium for a supersonic heliosphere traveling through a low density magnetized interstellar medium. The camera viewpoint follows the solar motion through a virtual space of the Milky Way Galaxy. This space is constructed from real data placed in the three-dimensional solar neighborhood, and populated with Hipparcos stars in front of a precisely aligned image of the Milky Way itself. The celestial audio track of this three minute movie includes the music of the heliosphere, heard by the two Voyager satellites as 3 kHz emissions from the edge of the heliosphere. This short heliosphere visualization can be downloaded from http://www.cs.indiana.edu/~soljourn/pub/AstroBioScene7Sound.mov, and the full scientific data visualization of the Solar Journey is available commercially.
NASA Technical Reports Server (NTRS)
Wood, Brian E.; Alexander, William R.; Linsky, Jeffrey L.
1996-01-01
We present new observations of the Ly alpha lines of Epsilon Indi (K5 5) and A Andromedae (G8 4-3 + ?) These data were obtained by the Goddard High Resolution Spectrograph (GHRS) on the Hubble Space Telescope. Analysis of the interstellar H 1 and D 1 absorption lines reveals that the velocities and temperatures inferred from the H 1 lines are inconsistent with the parameters inferred from the D 1 lines, unless the H 1 absorption is assumed to be produced by two absorption components. One absorption component is produced by interstellar material. For both lines of sight observed, the velocity of this component is consistent with the velocity predicted by the local flow vector. For the Epsilon Indi data, the large velocity separation between the stellar emission and the interstellar absorption allows us to measure the H 1 column density independent of the shape of the intrinsic stellar Ly alpha profile. This approach permits us to quote an accurate column density and to assess its uncertainty with far more confidence than in previous analyses, for which the errors were dominated by uncertainties in the assumed stellar profiles.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Redfield, Seth; Linsky, Jeffrey L., E-mail: sredfield@wesleyan.edu, E-mail: jlinsky@jila.colorado.edu
Ultraviolet and optical spectra of interstellar gas along the lines of sight to nearby stars have been interpreted by Redfield and Linsky and previous studies as a set of discrete warm, partially ionized clouds each with a different flow vector, temperature, and metal depletion. Recently, Gry and Jenkins proposed a fundamentally different model consisting of a single cloud with nonrigid flows filling space out to 9 pc from the Sun that they propose better describes the local ISM. Here we test these fundamentally different morphological models against the spatially unbiased Malamut et al. spectroscopic data set, and find that themore » multiple cloud morphology model provides a better fit to both the new and old data sets. The detection of three or more velocity components along the lines of sight to many nearby stars, the presence of nearby scattering screens, the observed thin elongated structures of warm interstellar gas, and the likely presence of strong interstellar magnetic fields also support the multiple cloud model. The detection and identification of intercloud gas and the measurement of neutral hydrogen density in clouds beyond the Local Interstellar Cloud could provide future morphological tests.« less
The Diffuse Interstellar Bands: an Elderly Astro-Puzzle Rejuvenated
NASA Astrophysics Data System (ADS)
Cox, Nick L. J.
2011-12-01
The interstellar medium constitutes a physically and chemically complex component of galaxies and is important in the cycle of matter and the evolution of stars. From various spectroscopic clues we now know that the interstellar medium is rich in organic compounds. However, identifying the exact nature of all these components remains a challenge. In particular the identification of the so-called diffuse band carriers has been alluding astronomers for almost a century. In recent decades, observational, experimental and theoretical advances have rapidly lead to renewed interest in the diffuse interstellar bands (DIBs). This has been instigated partly by their perceived relation to the infrared aromatic emission bands, the UV extinction bump and far-UV rise, and the growing number of (small) organic molecules identified in space. This chapter gives an overview of the observational properties and behaviour of the DIBs, and their presence throughout the Universe. I will highlight recent progress in identifying their carriers and discuss their potential as tracers and probes of (extra)-Galactic ISM conditions.
NASA Astrophysics Data System (ADS)
Jackson, Alan P.; Tamayo, Daniel; Hammond, Noah; Ali-Dib, Mohamad; Rein, Hanno
2018-06-01
In single-star systems like our own Solar system, comets dominate the mass budget of bodies ejected into interstellar space, since they form further away and are less tightly bound. However, 1I/`Oumuamua, the first interstellar object detected, appears asteroidal in its spectra and lack of detectable activity. We argue that the galactic budget of interstellar objects like 1I/`Oumuamua should be dominated by planetesimal material ejected during planet formation in circumbinary systems, rather than in single-star systems or widely separated binaries. We further show that in circumbinary systems, rocky bodies should be ejected in comparable numbers to icy ones. This suggests that a substantial fraction of interstellar objects discovered in future should display an active coma. We find that the rocky population, of which 1I/`Oumuamua seems to be a member, should be predominantly sourced from A-type and late B-star binaries.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lees, R. M.; Xu, Li-Hong; Appadoo, D. R. T.
New astronomical facilities such as HIFI on the Herschel Space Observatory, the SOFIA airborne IR telescope and the ALMA sub-mm telescope array will yield spectra from interstellar and protostellar sources with vastly increased sensitivity and frequency coverage. This creates the need for major enhancements to laboratory databases for the more prominent interstellar 'weed' species in order to model and account for their lines in observed spectra in the search for new and more exotic interstellar molecular 'flowers'. With its large-amplitude internal torsional motion, methanol has particularly rich spectra throughout the FIR and IR regions and, being very widely distributed throughoutmore » the galaxy, is perhaps the most notorious interstellar weed. Thus, we have recorded new spectra for a variety of methanol isotopic species on the high-resolution FTIR spectrometer on the CLS FIR beamline. The aim is to extend quantum number coverage of the data, improve our understanding of the energy level structure, and provide the astronomical community with better databases and models of the spectral patterns with greater predictive power for a range of astrophysical conditions.« less
NO ICE HYDROGENATION: A SOLID PATHWAY TO NH{sub 2}OH FORMATION IN SPACE
DOE Office of Scientific and Technical Information (OSTI.GOV)
Congiu, Emanuele; Dulieu, Francois; Chaabouni, Henda
2012-05-01
Icy dust grains in space act as catalytic surfaces onto which complex molecules form. These molecules are synthesized through exothermic reactions from precursor radicals and, mostly, hydrogen atom additions. Among the resulting products are species of biological relevance, such as hydroxylamine-NH{sub 2}OH-a precursor molecule in the formation of amino acids. In this Letter, laboratory experiments are described that demonstrate NH{sub 2}OH formation in interstellar ice analogs for astronomically relevant temperatures via successive hydrogenation reactions of solid nitric oxide (NO). Inclusion of the experimental results in an astrochemical gas-grain model proves the importance of a solid-state NO+H reaction channel as amore » starting point for prebiotic species in dark interstellar clouds and adds a new perspective to the way molecules of biological importance may form in space.« less
Turbulence in space plasmas and beyond
NASA Astrophysics Data System (ADS)
Galtier, S.
2018-07-01
Most of the visible matter in the Universe is in the form of highly turbulent plasmas. For a long time the turbulent character of astrophysical fluids has been neglected and not well understood. One reason for this is the extremely complicated physics involved in astrophysical processes ranging from the machinery of stars, solar and stellar winds, accretion disks to interstellar clouds and galaxies. The other reason is that turbulence constitutes in itself a difficult subject where most of the fundamental results belongs to the incompressible hydrodynamics. Nevertheless, significant theoretical progress has been made during the last years to incorporate some ingredients like compressibility or small-scale plasma physics which are fundamental in astrophysics. This paper reviews some of these results with a strong focus on space plasmas (solar wind, solar corona). Turbulence in interstellar clouds (supersonic flows) and cosmology (space-time fluctuations) are also briefly mentioned.
Impacto ambiental de los remanentes de supernova
NASA Astrophysics Data System (ADS)
Dubner, G. M.
2015-08-01
The explosion of a supernovae (SN) represents the sudden injection of about ergs of thermal and mechanical energy in a small region of space, causing the formation of powerful shock waves that propagate through the interstellar medium at speeds of several thousands of km/s. These waves sweep, compress and heat the interstellar material that they encounter, forming the supernova remnants. Their evolution over thousands of years change forever, irreversibly, not only the physical but also the chemical properties of a vast region of space that can span hundreds of parsecs. This contribution briefly analyzes the impact of these explosions, discussing the relevance of some phenomena usually associated with SNe and their remnants in the light of recent theoretical and observational results.
Atomic and molecular_diagnostics of the interstellar medium
NASA Astrophysics Data System (ADS)
Roueff, E.
1987-08-01
Ever since molecular species have been discovered in space in the 30's and early 40's by the optical identification of CH, CH+ and CN in absorption towards nearby hot stars, the question of molecule formation has accompanied the observational efforts. The purpose of this paper is to point out presently existing observational constraints and the limits they may cast on our knowledge of the interstellar medium. The need for reliable atomic and molecular data will be emphasized with some specific examples.
Life from the stars?. [extraterrestrial sources contributing to chemical evolution on Earth
NASA Technical Reports Server (NTRS)
Pendleton, Yvonne J.; Cruikshank, Dale P.
1994-01-01
Scientists are now seriously considering the possibility that organic matter from interstellar space could have influenced, or even spurred, the origin of life on Earth. Various aspects of chemical evolution are discussed along with possible extraterrestrial sources responsible for contributing to Earth's life-producing, chemical composition. Specific topics covered include the following: interstellar matter, molecular clouds, asteroid dust, organic molecules in our solar system, interplanetary dust and comets, meteoritic composition, and organic-rich solar-system bodies.
Working Group on Circumstellar/Interstellar Relationships
NASA Technical Reports Server (NTRS)
Glassgold, A. E.
1986-01-01
Stars of various types are believed to be the main source of interstellar (IS) dust grans. The most important confirmed source is evolved giant and supergiant stars. Supernovae also contribute to the mass loss. The differences between circumstellar (CS) and IS dust were reviewed using the following topics: alteration of CS dust grains, size distribution, space observation of CS and IS dust, comparison of infrared spectra, isotopic signatures, Magellanic clouds and nearby galaxies, life cycles of dust grains, and physical and chemical data.
Spectroscopy and thermal modelling of the first interstellar object 1I/2017 U1 `Oumuamua
NASA Astrophysics Data System (ADS)
Fitzsimmons, Alan; Snodgrass, Colin; Rozitis, Ben; Yang, Bin; Hyland, Méabh; Seccull, Tom; Bannister, Michele T.; Fraser, Wesley C.; Jedicke, Robert; Lacerda, Pedro
2018-02-01
During the formation and evolution of the Solar System, significant numbers of cometary and asteroidal bodies were ejected into interstellar space1,2. It is reasonable to expect that the same happened for planetary systems other than our own. Detection of such interstellar objects would allow us to probe the planetesimal formation processes around other stars, possibly together with the effects of long-term exposure to the interstellar medium. 1I/2017 U1 `Oumuamua is the first known interstellar object, discovered by the Pan-STARRS1 telescope in October 2017 (ref. 3). The discovery epoch photometry implies a highly elongated body with radii of 200 × 20 m when a comet-like geometric albedo of 0.04 is assumed. The observable interstellar object population is expected to be dominated by comet-like bodies in agreement with our spectra, yet the reported inactivity of 'Oumuamua implies a lack of surface ice. Here, we report spectroscopic characterization of `Oumuamua, finding it to be variable with time but similar to organically rich surfaces found in the outer Solar System. We show that this is consistent with predictions of an insulating mantle produced by long-term cosmic ray exposure4. An internal icy composition cannot therefore be ruled out by the lack of activity, even though `Oumuamua passed within 0.25 au of the Sun.
Heliospheric and Local Interstellar Space Weathering Environments of Extreme Kuiper Belt Objects
NASA Astrophysics Data System (ADS)
Cooper, J. F.; Sturner, S. J.
2017-12-01
Since the first direct detection of a Kuiper Belt Object (KBO), (15760) 1992 QB1, in 1992, observational evidence via direct detection has accumulated for thousands (and via inference for hundreds of thousands) of small to large icy bodies that populate the solar system from within the supersonic heliosphere out into the local interstellar medium (LISM). These objects have mainly been discovered when within the heliosphere but the orbits of the more extreme KBOs, fifteen percent of the total known KBO population, take them out into the heliosheath and about half of these continue further out into the LISM. Continuing observations will inevitably increase the known inventory of extreme KBOs, possibly including a few that may be accessible as near-encounter targets for a future interstellar probe mission directed beyond 200 AU into the upstream LISM. Here we review the known population of extreme KBOs and address the properties of the heliospheric and LISM environments that could potentially affect object visibility and surface composition. The twin Voyager spacecraft are our present source of in-situ measurements for the plasma and energetic particle environments, except that there are no plasma data from Voyager 1. Voyager 1 and 2 are now respectively in the LISM and the heliosheath after earlier passing through the outer regions of the supersonic heliosphere upstream of the solar wind termination shock. The Voyager data coverage is complemented by energetic neutral atom (ENA) measurements of the Interstellar Background Explorer (IBEX) and Cassini Orbiter spacecraft that can be used to infer proton flux spectra from models of ENA production in the outer heliosphere. High radiation background in the LISM has precluded sub-MeV energetic ion measurements by Voyager 1, so we use limits from Cummings et al. (ApJ, 2016) for molecular cloud ionization. This would be an important energy region to cover with interstellar probe measurements. These sources of plasma and energetic particle flux measurements are used to estimate values for space weathering parameters including surface energy flux and pressure, dosage vs. depth profiles for chemical processing of mixed ice surfaces, and ion sputtering rates. We further consider other space weathering processes including ultraviolet irradiation and meteoritic impact gardening.
Science From Beyond: NASA's Pioneer Plaque and the History of Interstellar Communication, 1957- 1972
NASA Astrophysics Data System (ADS)
Macauley, William
2012-05-01
In the late twentieth century, science and technology facilitated exploration beyond the Solar System and extended human knowledge through messages comprised of pictures and mathematical symbols, transmitted from radio telescopes and inscribed on material artifacts attached to spacecraft. ‘Interstellar communication' refers to collective efforts by scientists and co-workers to detect and transmit intelligible messages between humans and supposed extraterrestrial intelligence in remote star systems. Interstellar messages are designed to communicate universal knowledge without recourse to text, human linguistic systems or anthropomorphic content because it is assumed that recipients have no prior knowledge of humankind or the planet we inhabit. Scientists must therefore imagine how extraterrestrials will relate to human knowledge and culture. The production and transmission of interstellar messages became interdisciplinary design problems that involved collaboration and exchange of ideas between scientists, visual artists, and others. My proposed paper will review sociocultural aspects of interstellar communication since the late 1950s and focus on key issues regarding conception, design and production of a specific interstellar message launched into space during the early 1970s - NASA's Pioneer plaque. The paper will explore how research on the history of interstellar communication relates to previous historical and sociological studies on rhetorical aspects of visual representation and mathematics in scientific practice. In particular, I will explain how the notion of ‘inscription' is an appropriate conceptual tool for analyzing how scientists have used pictures to articulate and validate knowledge claims and scientific facts. I argue that scientific knowledge carried on interstellar messages such as the Pioneer plaque is constituted in material practices and inscription technologies that translate natural objects, agency and culture into legible forms. Graphical techniques for creating pictorial interstellar messages are enmeshed with contemporaneous methods for creating displays and images in routine scientific work, in fields such as radio astronomy and planetary science.
NASA Technical Reports Server (NTRS)
Freitag, R. F.
1975-01-01
Studies evaluating potential operational and commercial uses of space are being conducted, taking into account astronomy, astrophysics, manned bases and laboratories in earth orbit, space colonization, terrestrial communications, space processing and manufacturing, interstellar probes, planetary exploration, and the use of space for terrestrial energy supply. The present status in the exploration of the solar system is examined, giving attention to Jupiter, Venus, Mars, and Mercury. A brief outline of the development of human colonies on Mars is presented.
Interstellar Flight, Imagination and Myth Creation as an Effective Means for Enduring Inspiration
NASA Astrophysics Data System (ADS)
Padowitz, G. H.
Interstellar travel to faraway star systems is humanity's most crucial mission, but we habitually focus on technological and funding challenges instead of deeply exploring the rare essence of creativity that is the source that enables us to ultimately solve all problems. Certainly, if Interstellar space flight is to succeed, inspiring and maintaining global and multigenerational support is primary to long-term development. To attract and sustain such extraordinary support the creative power of the imagination must be harnessed through independent artists. By first attracting and encouraging visionaries it's possible that we can awaken in the public a new, invigorating sense of adventure with lasting power. Going beyond our solar system to a nearby star is in reality a mythic quest and should be treated as such.
Polycyclic Aromatic Hydrocarbons and Infrared Astrophysics with Spitzer
NASA Technical Reports Server (NTRS)
Hudgins, Douglas M.; Allamandola, L. J.
2004-01-01
Over the past fifteen years, thanks to significant, parallel advancements in observational, experimental, and theoretical techniques, tremendous strides have been made in our understanding of the role that carbon-rich plays in the interstellar medium (ISM). Twenty years ago, the possible existence of an abundant population of large, carbon-rich molecules in the ISM was unthinkable. Today, the unmistakable spectroscopic signatures of polycyclic aromatic hydrocarbons (PAHs) - shockingly large molecules by the standards of traditional interstellar chemistry -are recognized throughout the Universe. In this presentation, we will examine the current state of the interstellar PAH model and explore how this data, in conjunction with the unparalleled observational data provided by the Spitzer Space Telescope, can be used to draw ever-deeper insights into the physical and chemical natures of a wide range of astrophysical environments.
Interstellar abundances - Gas and dust
NASA Technical Reports Server (NTRS)
Field, G. B.
1974-01-01
Data on abundances of interstellar atoms, ions and molecules in front of zeta Oph are assembled and analyzed. The gas-phase abundances of at least 11 heavy elements are significantly lower, relative to hydrogen, than in the solar system. The abundance deficiencies of certain elements correlate with the temperatures derived theoretically for particle condensation in stellar atmospheres or nebulae, suggesting that these elements have condensed into dust grains near stars. There is evidence that other elements have accreted onto such grains after their arrival in interstellar space. The extinction spectrum of zeta Oph can be explained qualitatively and, to a degree, quantitatively by dust grains composed of silicates, graphite, silicon carbide, and iron, with mantles composed of complex molecules of H, C, N, and O. This composition is consistent with the observed gas-phase deficiencies.
Kinetic Properties of the Neutral Solar Wind
NASA Astrophysics Data System (ADS)
Florinski, V.; Heerikhuisen, J.
2017-03-01
Charge-exchange collisions between the solar wind protons and interstellar hydrogen produce a distinctive population of neutral hydrogen streaming radially at nearly the solar-wind speed. This tenuous population, known as the neutral solar wind (NSW) is thought to play a key role in the appearance of the Interplanetary Boundary EXplorer ribbon, a bright circular band in the sky that is the source of neutral hydrogen with energies near 1 keV. According to the leading model of the ribbon, the velocity distribution of NSW hydrogen is imparted on the pickup ions (PUIs) generated via charge exchange with the interstellar protons beyond the heliopause, and in this way controls the stability of the resulting ring distribution of PUIs against hydromagnetic wave generation. In this paper, we examine the velocity distributions of the NSW atoms in the heliosphere and the outer heliosheath regions by following the phase-space trajectories of the Boltzmann equation. It is demonstrated that these distributions are highly anisotropic, with the parallel (radial) temperature greatly exceeding the perpendicular temperature. Ions picked up near 90° from the anisotropic NSW would form a stable ring distribution capable of generating the ribbon flux. We also discuss a second population of neutrals born in charge transfer collisions with interstellar PUIs, the so-called neutralized pickup ion (NPI) component. Their high thermal velocities translate into large parallel velocity spread of the daughter ribbon PUIs, which would adversely affect plasma stability in local interstellar space.
Interstellar Message Plaques: Application of White-Light Holography
NASA Astrophysics Data System (ADS)
Matloff, G. L.
2002-01-01
During Spring / Summer 2001, a prototype white-light holographic interstellar-probe message plaque was created under Contract H-29712D of NASA Marshall Spaceflight Center (MSFC), and commercial white-light holograms were tested for space-radiation tolerance at the MSFC Space Environment Facility (SEF) in Huntsville, AL, USA. Artist C Bangs' message plaque was created at the Center for Holographic Arts in Long Island City, NY. The 57.5 X 47.5 cm rainbow hologram was delivered to MSFC after framing by Simon Liu Inc., Brooklyn, NY, USA. The prototype message plaque, which is in the collection of the MSFC Space Transportation Directorate, has six multiplexed 2-D and 3-D images representing humans, the hypothetical interstellar spacecraft, and our position in the galaxy. Consultation with John Caulfield of Fisk University, an expert in holography, revealed that micron-thick holograms not much larger than a sheet of paper could contain hundreds of thousands of images, which opens the me ssage-plaque field considerably so that work of many artists could be included. Tests of commercial holograms at up to 100 MRad of simulated solar-wind radiation were performed at MSFC / SEF. Image-quality deterioriation was monitored using the image-color- histogram of the (trademarked) Adobe Photoshop software package. No significant deterioration occurred, which is in agreement with the literature. Holographic solar sails may be a propulsive application of this technology.
Researchers Use NRAO Telescope to Study Formation Of Chemical Precursors to Life
NASA Astrophysics Data System (ADS)
2006-08-01
In just two years of work, an international research team has discovered eight new complex, biologically-significant molecules in interstellar space using the National Science Foundation's Robert C. Byrd Green Bank Telescope (GBT) in West Virginia. "This is a feat unprecedented in the 35-year history of searching for complex molecules in space and suggests that a universal prebiotic chemistry is at work," said Jan M. Hollis of the NASA Goddard Space Flight Center, leader of the research team. Chemistry Cycle The Cosmic Chemistry Cycle CREDIT: Bill Saxton, NRAO/AUI/NSF Full Size Image Files Interactive Graphic With "Mouseover" Text Blocks Chemical Cycle Graphic (above image, JPEG, 129K) Graphic With Text Blocks (JPEG, 165K) High-Res TIFF (44.2M) High-Res TIFF With Text Blocks (44.2M) Green Bank Telescope and Molecule Diagrams (JPEG, 58K) Green Bank Telescope and Molecule Diagrams (TIFF, 21M) New Molecules: Chemical Diagrams (PDF, 64K) The new discoveries are helping scientists unlock the secrets of how the molecular precursors to life can form in the giant clouds of gas and dust in which stars and planets are born. "The first of the many chemical processes that ultimately led to life on Earth probably took place even before our planet was formed. The GBT has taken the leading role in exploring the origin of biomolecules in interstellar clouds," said Phil Jewell of the National Radio Astronomy Observatory (NRAO). The eight new molecules discovered with the GBT bring the total to 141 different molecular species found in interstellar space. About 90 percent of those interstellar molecules contain carbon, which is required for a molecule to be classified as organic. The newly-discovered molecules all contain carbon and are composed of 6 to 11 atoms each. These results suggest, the scientists say, that chemical evolution occurs routinely in the gas and dust from which stars and planets eventually are born. The mass of an interstellar cloud is 99 percent gas and one percent dust. The GBT discoveries have been made in just two prototypical interstellar clouds. The molecules acetamide (CH3CONH2), cyclopropenone (H2C3O), propenal (CH2CHCHO), propanal (CH3CH2CHO), and ketenimine (CH2CNH) were found in a cloud called Sagittarius B2(N), which is near the center of our Milky Way Galaxy some 26,000 light years from Earth. This star-forming region is the largest repository of complex interstellar molecules known. The molecules methyl-cyano-diacetylene (CH3C5N), methyl-triacetylene (CH3C6H), and cyanoallene (CH2CCHCN) were found in the Taurus Molecular Cloud (TMC-1), which is relatively nearby at a distance of 450 light years. The starless TMC-1 cloud is dark and cold with a temperature of only 10 degrees above absolute zero and may eventually evolve into a star-forming region. "The discovery of these large organic molecules in the coldest regions of the interstellar medium has certainly changed the belief that large organic molecules would only have their origins in hot molecular cores. It has forced us to rethink the paradigms of interstellar chemistry," said Anthony Remijan of the NRAO. These large molecules found with the GBT are built up from smaller ones, the scientists say, by two principal mechanisms. In the first, simple chemical reactions add an atom to a molecular structure residing on the surface of a dust grain. As an example of this process, the researchers cite a molecule called cyclopropenylidene (c-C3H2, where "c-" means cyclic), which contains three carbon atoms in a ring. Cyclopropenylidene was discovered in interstellar space in 1987, and is known to be highly reactive. In 2005, using the GBT, scientists discovered another molecule, cyclopropenone (c-H2C3O), which can be produced by adding an oxygen atom to cyclopropenylidene. The second method for constructing larger molecules from smaller ones involves neutral-radical reactions that can occur within the gas in an interstellar cloud. For example, in 2006, the scientists discovered acetamide (CH3CONH2), which can be formed when a previously-discovered neutral molecule called formamide (HCONH2) combines with radicals such as CH2 and CH3, also previously discovered. Acetamide is particularly interesting because it contains a peptide bond which is the means for linking amino acids together to form proteins. Once interstellar molecules are ejected from dust grains into the gas phase, presumably by shock waves, they are free to rotate end-over-end. As gas molecules change their rotational modes, they can emit or absorb radiation at precise radio frequencies, called transitions, that are unique to each type of molecule. By detecting several rotational transitions, astronomers can unambiguously identify a specific interstellar molecule. "It is important to note that likely interstellar molecule candidates are first studied in gas-phase laboratory experiments so that transition frequencies are known in advance of an interstellar experiment," said Frank Lovas of the National Institute of Standards and Technology. Along the line of sight from the interstellar cloud to the telescope, thousands of billions of molecules undergo the exact same transition, producing a signal strong enough to be detected by sensitive equipment. For this type of work, the GBT is the world's most sensitive tool that can be accurately pointed and track astronomical objects. In addition to Hollis, Jewell, Remijan, and Lovas, the research team included Lewis Snyder of the University of Illinois; Harald Mollendal of the University of Oslo, Norway; Vadim Ilyushin of the Institute of Radio Astronomy of the National Academy of Sciences of the Ukraine; and Isabell Kleiner of the Universite Paris, France. The astronomers' reports on their results appeared in 8 separate editions of the Astrophysical Journal. The National Radio Astronomy Observatory is a facility of the National Science Foundation, operated under cooperative agreement by Associated Universities, Inc.
UV observations of local interstellar medium.
NASA Astrophysics Data System (ADS)
Kurt, V.; Mironova, E.; Fadeev, E.
2008-12-01
The methods of the interstellar matter study are described. The brief information of space missions aimed at observations in the unreachable for ground based telescopes UV spectral range (IUE, As- tron, HST and GALEX.) is presented. The history of discovery of H and He atoms entering the Solar System from the local interstellar medium (LISM) is given in brief. The results of observations performed by the group from Stern- berg Astronomical Institute (SAI MSU) and Space Research Institute (IKI RAS) performed with the help of the missions Prognoz-5, Prognoz-6 and the stations Zond-1, Venera and Mars and aimed at estimation of all basic LISM parameters (the velocity of the Sun in relation to LISM, directions of movement, densities of H and He atoms, LISM temperature) are presented. We also describe the present-day investigations of LISM performed with SOHO and ULYSSES mis- sions including the direct registration of He atoms entering the Solar System. The problem of interaction between the incoming flow of the ISM atoms ("in- terstellar wind") and the area of two shocks at the heliopause border (100-200 AU) is discussed. The LISM parameters obtained using the available data are presented in two tables.
Laboratory Formation of Fullerenes from PAHs: Top-down Interstellar Chemistry
NASA Astrophysics Data System (ADS)
Zhen, Junfeng; Castellanos, Pablo; Paardekooper, Daniel M.; Linnartz, Harold; Tielens, Alexander G. G. M.
2014-12-01
Interstellar molecules are thought to build up in the shielded environment of molecular clouds or in the envelope of evolved stars. This follows many sequential reaction steps of atoms and simple molecules in the gas phase and/or on (icy) grain surfaces. However, these chemical routes are highly inefficient for larger species in the tenuous environment of space as many steps are involved and, indeed, models fail to explain the observed high abundances. This is definitely the case for the C60 fullerene, recently identified as one of the most complex molecules in the interstellar medium. Observations have shown that, in some photodissociation regions, its abundance increases close to strong UV-sources. In this Letter we report laboratory findings in which C60 formation can be explained by characterizing the photochemical evolution of large polycyclic aromatic hydrocarbons (PAHs). Sequential H losses lead to fully dehydrogenated PAHs and subsequent losses of C2 units convert graphene into cages. Our results present for the first time experimental evidence that PAHs in excess of 60 C-atoms efficiently photo-isomerize to buckminsterfullerene, C60. These laboratory studies also attest to the importance of top-down synthesis routes for chemical complexity in space.
2008-07-09
VANDENBERG AIR FORCE BASE, Calif. -- Avionics shelf flatness and fillet gap measurements are conducted on the wing of a Pegasus rocket in Building 1555 at Vandenberg AFB. The testing was performed by workers from Advanced Digital Measuring Works using an API laser tracker. The Pegasus will launch NASA's Interstellar Boundary Explorer Mission, or IBEX, satellite from Kwajalein Island in the Marshall Islands, South Pacific. IBEX will make the first map of the boundary between the solar system and interstellar space. IBEX is the first mission designed to detect the edge of the solar system. As the solar wind from the sun flows out beyond Pluto, it collides with the material between the stars, forming a shock front. IBEX contains two neutral atom imagers designed to detect particles from the termination shock at the boundary between the solar system and interstellar space. IBEX also will study galactic cosmic rays, energetic particles from beyond the solar system that pose a health and safety hazard for humans exploring beyond Earth orbit. IBEX will make these observations from a highly elliptical orbit that takes it beyond the interference of the Earth's magnetosphere. IBEX is targeted for launch in October 2008. Photo credit: NASA/Randy Beaudoin
2008-07-11
VANDENBERG AIR FORCE BASE, Calif. -- Avionics shelf flatness and fillet gap measurements are conducted on the wing of a Pegasus rocket in Building 1555 at Vandenberg AFB. The testing was performed by workers from Advanced Digital Measuring Works using an API laser tracker. The Pegasus will launch NASA's Interstellar Boundary Explorer Mission, or IBEX, satellite from Kwajalein Island in the Marshall Islands, South Pacific. IBEX will make the first map of the boundary between the solar system and interstellar space. IBEX is the first mission designed to detect the edge of the solar system. As the solar wind from the sun flows out beyond Pluto, it collides with the material between the stars, forming a shock front. IBEX contains two neutral atom imagers designed to detect particles from the termination shock at the boundary between the solar system and interstellar space. IBEX also will study galactic cosmic rays, energetic particles from beyond the solar system that pose a health and safety hazard for humans exploring beyond Earth orbit. IBEX will make these observations from a highly elliptical orbit that takes it beyond the interference of the Earth's magnetosphere. IBEX is targeted for launch in October 2008. Photo credit: NASA/Randy Beaudoin
DOE Office of Scientific and Technical Information (OSTI.GOV)
Acero, F.; Ballet, J.; Ackermann, M.
2016-04-01
Most of the celestial γ rays detected by the Large Area Telescope (LAT) on board the Fermi Gamma-ray Space Telescope originate from the interstellar medium when energetic cosmic rays interact with interstellar nucleons and photons. Conventional point-source and extended-source studies rely on the modeling of this diffuse emission for accurate characterization. Here, we describe the development of the Galactic Interstellar Emission Model (GIEM), which is the standard adopted by the LAT Collaboration and is publicly available. This model is based on a linear combination of maps for interstellar gas column density in Galactocentric annuli and for the inverse-Compton emission producedmore » in the Galaxy. In the GIEM, we also include large-scale structures like Loop I and the Fermi bubbles. The measured gas emissivity spectra confirm that the cosmic-ray proton density decreases with Galactocentric distance beyond 5 kpc from the Galactic Center. The measurements also suggest a softening of the proton spectrum with Galactocentric distance. We observe that the Fermi bubbles have boundaries with a shape similar to a catenary at latitudes below 20° and we observe an enhanced emission toward their base extending in the north and south Galactic directions and located within ∼4° of the Galactic Center.« less
Project Icarus: Stakeholder Scenarios for an Interstellar Exploration Program
NASA Astrophysics Data System (ADS)
Hein, A. M.; Tziolas, A. C.; Osborne, R.
The Project Icarus Study Group's objective is to design a mainly fusion-propelled interstellar probe. The starting point are the results of the Daedalus study, which was conducted by the British Interplanetary Society during the 1970's. As the Daedalus study already indicated, interstellar probes will be the result of a large scale, decade-long development program. To sustain a program over such long periods, the commitment of key stakeholders is vital. Although previous publications identified political and societal preconditions to an interstellar exploration program, there is a lack of more specific scientific and political stakeholder scenarios. This paper develops stakeholder scenarios which allow for a more detailed sustainability assessment of future programs. For this purpose, key stakeholder groups and their needs are identified and scientific and political scenarios derived. Political scenarios are based on patterns of past space programs but unprecedented scenarios are considered as well. Although it is very difficult to sustain an interstellar exploration program, there are scenarios in which this seems to be possible, e.g. the discovery of life within the solar system and on an exoplanet, a global technology development program, and dual-use of technologies for defence and security purposes. This is a submission of the Project Icarus Study Group.
Acero, F.
2016-04-22
Most of the celestial γ rays detected by the Large Area Telescope (LAT) aboard the Fermi Gamma-ray Space Telescope originate from the interstellar medium when energetic cosmic rays interact with interstellar nucleons and photons. Conventional point and extended source studies rely on the modeling of this diffuse emission for accurate characterization. We describe here the development of the Galactic Interstellar Emission Model (GIEM) that is the standard adopted by the LAT Collaboration and is publicly available. The model is based on a linear combination of maps for interstellar gas column density in Galactocentric annuli and for the inverse Compton emissionmore » produced in the Galaxy. We also include in the GIEM large-scale structures like Loop I and the Fermi bubbles. The measured gas emissivity spectra con rm that the cosmic-ray proton density decreases with Galactocentric distance beyond 5 kpc from the Galactic Center. The measurements also suggest a softening of the proton spectrum with Galactocentric distance. We observe that the Fermi bubbles have boundaries with a shape similar to a catenary at latitudes below 20° and we observe an enhanced emission toward their base extending in the North and South Galactic direction and located within ~4° of the Galactic Center.« less
NASA Technical Reports Server (NTRS)
Acero, F.; Ackermann, M.; Ajello, M.; Albert, A.; Baldini, L.; Ballet, J.; Barbiellini, G.; Bastieri, D.; Bellazzini, R.; Brandt, T. J.;
2016-01-01
Most of the celestial gamma rays detected by the Large Area Telescope (LAT) on board the Fermi Gamma-ray Space Telescope originate from the interstellar medium when energetic cosmic rays interact with interstellar nucleons and photons. Conventional point-source and extended-source studies rely on the modeling of this diffuse emission for accurate characterization. Here, we describe the development of the Galactic Interstellar Emission Model (GIEM),which is the standard adopted by the LAT Collaboration and is publicly available. This model is based on a linear combination of maps for interstellar gas column density in Galactocentric annuli and for the inverse-Compton emission produced in the Galaxy. In the GIEM, we also include large-scale structures like Loop I and the Fermi bubbles. The measured gas emissivity spectra confirm that the cosmic-ray proton density decreases with Galactocentric distance beyond 5 kpc from the Galactic Center. The measurements also suggest a softening of the proton spectrum with Galactocentric distance. We observe that the Fermi bubbles have boundaries with a shape similar to a catenary at latitudes below 20deg and we observe an enhanced emission toward their base extending in the north and south Galactic directions and located within approximately 4deg of the Galactic Center.
NASA Astrophysics Data System (ADS)
Abplanalp, Matthew J.; Förstel, Marko; Kaiser, Ralf I.
2016-01-01
Complex organic molecules (COM) such as aldehydes, ketones, carboxylic acids, esters, and amides are ubiquitous in the interstellar medium, but traditional gas phase astrochemical models cannot explain their formation routes. By systematically exploiting on line and in situ vacuum ultraviolet photoionization coupled with reflectron time of flight mass spectrometry (PI-ReTOF-MS) and combining these data with infrared spectroscopy (FTIR), we reveal that complex organic molecules can be synthesized within interstellar ices that are condensed on interstellar grains via non-equilibrium reactions involving suprathermal hydrogen atoms at temperatures as low as 5 K. By probing for the first time specific structural isomers without their degradation (fragment-free), the incorporation of tunable vacuum ultraviolet photoionization allows for a much greater understanding of reaction mechanisms that exist in interstellar ices compared to traditional methods, thus eliminating the significant gap between observational and laboratory data that existed for the last decades. With the commission of the Atacama Large Millimeter/Submillimeter Array (ALMA), the number of detections of more complex organic molecules in space will continue to grow including biorelevant molecules connected to the Origins of Life theme and an understanding of these data will rely on future advances in sophisticated physical chemistry laboratory experiments.
Ionization of Interstellar Hydrogen
NASA Astrophysics Data System (ADS)
Whang, Y. C.
1996-09-01
Interstellar hydrogen can penetrate through the heliopause, enter the heliosphere, and may become ionized by photoionization and by charge exchange with solar wind protons. A fluid model is introduced to study the flow of interstellar hydrogen in the heliosphere. The flow is governed by moment equations obtained from integration of the Boltzmann equation over the velocity space. Under the assumption that the flow is steady axisymmetric and the pressure is isotropic, we develop a method of solution for this fluid model. This model and the method of solution can be used to study the flow of neutral hydrogen with various forms of ionization rate β and boundary conditions for the flow on the upwind side. We study the solution of a special case in which the ionization rate β is inversely proportional to R2 and the interstellar hydrogen flow is uniform at infinity on the upwind side. We solve the moment equations directly for the normalized density NH/NN∞, bulk velocity VH/VN∞, and temperature TH/TN∞ of interstellar hydrogen as functions of r/λ and z/λ, where λ is the ionization scale length. The solution is compared with the kinetic theory solution of Lallement et al. The fluid solution is much less time-consuming than the kinetic theory solutions. Since the ionization rate for production of pickup protons is directly proportional to the local density of neutral hydrogen, the high-resolution solution of interstellar neutral hydrogen obtained here will be used to study the global distribution of pickup protons.
The Interstellar Probe (ISP): Pre-Perihelion Trajectories and Application of Holography
NASA Technical Reports Server (NTRS)
Matloff, G. L.; Vulpetti, G.; Bangs, C.; Haggerty, R.; Johnson, L. (Technical Monitor)
2002-01-01
Between February and September 2001, a number of aspects of the solar-sail-launched Interstellar probe (ISP), which is under consideration by NASA for launch in the 2010-2015 timeframe, were researched. The effort was conducted in New York City (NYC) February-May, at Marshall Space Flight Center (MSFC) May-July (when the PI served as a NASA Summer 2001 Faculty Fellow), and in NYC August-September. In addition to the people listed on the title sheet, many people in NYC and at MSFC participated in this research.
Interstellar Propulsion Research: Realistic Possibilities and Idealistic Dreams
NASA Technical Reports Server (NTRS)
Johnson, Les
2009-01-01
Though physically possible, interstellar travel will be exceedingly difficult. Both the known laws of physics and the limits of our current understanding of engineering place extreme limits on what may actually be possible. Our remote ancestors looked at the night sky and assumed those tiny points of light were campfires around which other tribes were gathered -- and they dreamed of someday making the trip to visit them. In our modern era, we've grown accustomed to humans regularly traveling into space and our robots voyaging ever-deeper into the outer edges of our solar system. Traveling to those distant campfires (stars) has been made to look easy by the likes of Captains Kirk and Picard as well as Han Solo and Commander Adama. Our understanding of physics and engineering has not kept up with our imaginations and many are becoming frustrated with the current pace at which we are exploring the universe. Fortunately, there are ideas that may one day lead to new physical theories about how the universe works and thus potentially make rapid interstellar travel possible -- but many of these are just ideas and are not even close to being considered a scientific theory or hypothesis. Absent any scientific breakthroughs, we should not give up hope. Nature does allow for interstellar travel, albeit slowly and requiring an engineering capability far beyond what we now possess. Antimatter, fusion and photon sail propulsion are all candidates for relatively near-term interstellar missions. The plenary lecture will discuss the dreams and challenges of interstellar travel, our current understanding of what may be possible and some of the "out of the box" ideas that may allow us to become an interstellar species someday in the future.
NASA Astrophysics Data System (ADS)
Gurnett, D. A.
2017-12-01
Voyager 1, which is now 140 AU (Astronomical Units) from the Sun, crossed the heliopause into interstellar space in 2012 at a heliospheric radial distance of 121 AU. Since crossing the heliopause the plasma wave instrument has on several occasions detected plasma oscillations and radio emissions at or near the electron plasma frequency. The most notable of these events occurred in Oct.-Nov. 2012, April-May 2013, Feb.-Nov. 2014, and Sept.-Nov. 2015. Most recently, a very weak emission has been observed at or near the electron plasma frequency through most of 2016. These emissions are all believed to be produced by shock waves propagating into the interstellar medium from energetic solar events. The oscillation frequency of the plasma indicates that the electron density in the interstellar plasma has gradually increased from about 0.06 cm-3 near the heliopause to about 0.12 cm-3 in the most recent data. The plasma wave instrument also continues to detect impacts of what are believed to be interstellar dust grains at an impact rate of a few per year. Comparisons with Ulysses observations of similar interstellar dust near 5 AU suggest that the dust grains have sizes in the range from about 0.1 to 1 micrometer. Although the statistics are poor due to the low count rate, the dust flux observed in the outer heliosphere appears to be as much as a factor of two greater than that observed in the interstellar medium. Since the dust particles are likely to be charged, this increase in the heliosphere suggests that there may be a significant electrodynamic interaction of the dust particles with the heliospheric magnetic field.
Status of Solar Sail Propulsion: Moving Toward an Interstellar Probe
NASA Technical Reports Server (NTRS)
Johnson, Les; Young, Roy M.; Montgomery, Edward E., IV
2006-01-01
NASA's In-Space Propulsion Technology Program has developed the first-generation of solar sail propulsion systems sufficient to accomplish inner solar system science and exploration missions. These first-generation solar sails, when operational, will range in size from 40 meters to well over 100 meters in diameter and have an areal density of less than 13 grams-per-square meter. A rigorous, multiyear technology development effort culminated last year in the testing of two different 20-meter solar sail systems under thermal vacuum conditions. This effort provided a number of significant insights into the optimal design and expected performance of solar sails as well as an understanding of the methods and costs of building and using them. In a separate effort, solar sail orbital analysis tools for mission design were developed and tested. Laboratory simulations of the effects of long-term space radiation exposure were also conducted on two candidate solar sail materials. Detailed radiation and charging environments were defined for mission trajectories outside the protection of the earth's magnetosphere, in the solar wind environment. These were used in other analytical tools to prove the adequacy of sail design features for accommodating the harsh space environment. Preceding, and in conjunction with these technology efforts, NASA sponsored several mission application studies for solar sails, including one that would use an evolved sail capability to support humanity's first mission into nearby interstellar space. The proposed mission is called the Interstellar Probe. The Interstellar Probe might be accomplished in several ways. A 200-meter sail, with an areal density approaching 1 gram-per-square meter, could accelerate a robotic probe to the very edge of the solar system in just under 20 years from launch. A sail using the technology just demonstrated could make the same mission, but take significantly longer. Conventional chemical propulsion systems would require even longer flight times. Spinner sails of the type being explored by the Japanese may also be a good option, but the level of maturity in that technology is not clear. While the technology to support a 200-meter, ultralightweight sail mission is not yet in hand, the recent NASA investments in solar sail technology are an essential first step toward making it a reality. This paper will describe the status of solar sail propulsion within NASA, near-term solar sail mission applications, and the plan to advance the technology to the point where the Interstellar Probe mission can be flown.
Design of interstellar digital communication links: Some insights from communication engineering
NASA Astrophysics Data System (ADS)
Messerschmitt, David G.; Morrison, Ian S.
2012-09-01
The design of an end-to-end digital interstellar communication system at radio frequencies is discussed, drawing on the disciplines of digital communication engineering and computer network engineering in terrestrial and near-space applications. One goal is a roadmap to the design of such systems, aimed at future designers of either receivers (SETI) or transmitters (METI). In particular we emphasize the implications arising from the impossibility of coordination between transmitter and receiver prior to a receiver's search for a signal. A system architecture based on layering, as commonly used in network and software design, assists in organizing and categorizing the various design issues and identifying dependencies. Implications of impairments introduced in the interstellar medium, such as dispersion, scattering, Doppler, noise, and signal attenuation are discussed. Less fundamental (but nevertheless influential) design issues are the motivations of the transmitter designers and associated resource requirements at both transmitter and receiver. Unreliability is inevitably imposed by non-idealities in the physical communication channel, and this unreliability will have substantial implications for those seeking to convey interstellar messages.
SWCX Emission from the Helium Focusing Cone - Preliminary Results
NASA Technical Reports Server (NTRS)
Snowden, S. L.; Kuntz, K. D.; Collier, M. R.
2008-01-01
Preliminary results from an XMM-Newton campaign to study solar wind charge exchange (SWCX) emission from the heliospheric focusing cone of interstellar helium are presented. The detections of enhanced O VII and O VIII emission from the cone are at the 2(sigma) and 4(sigma) levels. The solar wind charge exchange (SWCX) emission in the heliosphere not associated with distinct objects (e.g., comets and planets including exospheric material in and near Earth s magnetosheath) is proportional to the flux of the solar wind and the space density of neutral material. The neutral material originates in the interstellar medium (ISM) and passes through the solar system due to the relative motion of the Sun and the ISM. The flow of the neutral material through the solar system is strongly perturbed by the Sun both by gravity and by radiation pressure. Because of the relative radiative scattering cross sections and the effect of solar gravitation the density of interstellar hydrogen near the Sun is reduced while interstellar helium is gravitationally focused. This creates a helium focusing cone downstream of the Sun [e.g., 1, and references therein].
Speed Kills: Highly Relativistic Spaceflight Would be Fatal for People and Instruments
NASA Astrophysics Data System (ADS)
Edelstein, William; Edelstein, Arthur
2010-02-01
Stories, books and movies about space travel often describe journeys at near-light velocities. Such high speed is desirable, as the resulting relativistic time dilation reduces the duration of the trip, at least for the travelers, so that they can cover interstellar distances in a reasonable amount of time (by their own clocks) and live long enough to reach their destination. The relativistic rocket equation shows the enormous difficulty of achieving such velocities. As spaceship velocities approach the speed of light, interstellar hydrogen, although only present on average at a density of about 2 atoms per cm^3, impinges on the spacecraft and turns into intense radiation (Purcell, 1963) that would quickly kill passengers and destroy instrumentation. In addition, the energy loss of ionizing radiation passing through the ship's hull represents an increasing heat load which necessitates large expenditures of energy to cool the ship. Preventing this irradiation by the use of material or electromagnetic shields is a daunting and, as far as we know, unsolvable problem. The presence of interstellar hydrogen is yet another formidable obstacle to interstellar travel. )
Radical formation, chemical processing, and explosion of interstellar grains
NASA Technical Reports Server (NTRS)
Greenberg, J. M.
1976-01-01
The ultraviolet radiation in interstellar space is shown to create a sufficient steady-state density of free radicals in the grain mantle material consisting of oxygen, carbon, nitrogen, and hydrogen to satisfy the critical condition for initiation of chain reactions. The criterion for minimum critical particle size for maintaining the chain reaction is of the order of the larger grain sizes in a distribution satisfying the average extinction and polarization measures. The triggering of the explosion of interstellar grains leading to the ejection of complex interstellar molecules is shown to be most probable where the grains are largest and where radiation is suddenly introduced; i.e., in regions of new star formation. Similar conditions prevail at the boundaries between very dark clouds and H II regions. When the energy released by the chemical activity of the free radicals is inadequate to explode the grain, the resulting mantle material must consist of extremely large organic molecules which are much more resistant to the hostile environment of H II regions than the classical dirty-ice mantles made up of water, methane, and ammonia.
Ionization of Local Interstellar Gas Based on STIS and FUSE spectra of Nearby Stars
NASA Astrophysics Data System (ADS)
Redfield, Seth; Linsky, J. L.
2009-01-01
The ultraviolet contains many resonance line transitions that are sensitive to a range of ionization stages of ions present in the local interstellar medium (LISM). We couple observations of high resolution ultraviolet spectrographs, STIS and GHRS on the Hubble Space Telescope (HST) and the Far-Ultraviolet Spectroscopic Explorer (FUSE) in order to make a comprehensive survey of the ionization structure of the local interstellar medium. In particular, we focus on the sight line toward G191-B2B, a nearby (69 pc) white dwarf. We present interstellar detections of highly ionized elements (e.g., SiIII, CIII, CIV, etc) and compare them directly to neutral or singly ionized LISM detections (e.g., SiII, CII, etc). The extensive observations of G191-B2B provides an opportunity for a broad study of ionization stages of several elements, while a survey of several sight lines provides a comprehensive look at the ionization structure of the LISM. We acknowledge support for this project through NASA FUSE Grant NNX06AD33G.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Cooke, Ilsa R.; Fayolle, Edith C.; Öberg, Karin I., E-mail: irc5zb@virginia.edu
CO{sub 2} ice is an important reservoir of carbon and oxygen in star- and planet-forming regions. Together with water and CO, CO{sub 2} sets the physical and chemical characteristics of interstellar icy grain mantles, including desorption and diffusion energies for other ice constituents. A detailed understanding of CO{sub 2} ice spectroscopy is a prerequisite to characterize CO{sub 2} interactions with other volatiles both in interstellar ices and in laboratory experiments of interstellar ice analogs. We report laboratory spectra of the CO{sub 2} longitudinal optical (LO) phonon mode in pure CO{sub 2} ice and in CO{sub 2} ice mixtures with H{submore » 2}O, CO, and O{sub 2} components. We show that the LO phonon mode position is sensitive to the mixing ratio of various ice components of astronomical interest. In the era of the James Webb Space Telescope , this characteristic could be used to constrain interstellar ice compositions and morphologies. More immediately, LO phonon mode spectroscopy provides a sensitive probe of ice mixing in the laboratory and should thus enable diffusion measurements with higher precision than has been previously possible.« less
NASA Technical Reports Server (NTRS)
Chaban, Galina M.
2004-01-01
Anharmonic vibrational frequencies and intensities are calculated for OH(H2O)n and H(H2O)n radicals (that form on icy particles of the interstellar medium), HCO radical (the main intermediate in the synthesis of organic molecules in space), NH2(-) and C2H(-) anions, H5(+) cation, and other systems relevant to interstellar chemistry. In addition to pure ions and radicals, their complexes with water are studied to assess the effects of water environment on infrared spectra. The calculations are performed using the correlation-corrected vibrational self-consistent field (CC-VSCF) method with ab initio potential surfaces at the MP2 and CCSD(T) levels. Fundamental, overtone, and combination excitations are computed. The results are in good agreement with available experimental data and provide reliable predictions for vibrational excitations not yet measured in laboratory experiments. The data should be useful for interpretation of astronomically observed spectra and identification of ions and radicals present in the interstellar medium and in planetary atmospheres.
Deciphering the Local Interstellar Spectra of Primary Cosmic-Ray Species with HELMOD
NASA Astrophysics Data System (ADS)
Boschini, M. J.; Della Torre, S.; Gervasi, M.; Grandi, D.; Jóhannesson, G.; La Vacca, G.; Masi, N.; Moskalenko, I. V.; Pensotti, S.; Porter, T. A.; Quadrani, L.; Rancoita, P. G.; Rozza, D.; Tacconi, M.
2018-05-01
Local interstellar spectra (LIS) of primary cosmic ray (CR) nuclei, such as helium, oxygen, and mostly primary carbon are derived for the rigidity range from 10 MV to ∼200 TV using the most recent experimental results combined with the state-of-the-art models for CR propagation in the Galaxy and in the heliosphere. Two propagation packages, GALPROP and HELMOD, are combined into a single framework that is used to reproduce direct measurements of CR species at different modulation levels, and at both polarities of the solar magnetic field. The developed iterative maximum-likelihood method uses GALPROP-predicted LIS as input to HELMOD, which provides the modulated spectra for specific time periods of the selected experiments for model–data comparison. The interstellar and heliospheric propagation parameters derived in this study are consistent with our prior analyses using the same methodology for propagation of CR protons, helium, antiprotons, and electrons. The resulting LIS accommodate a variety of measurements made in the local interstellar space (Voyager 1) and deep inside the heliosphere at low (ACE/CRIS, HEAO-3) and high energies (PAMELA, AMS-02).
IBEX: The Evolving Global View and Synergies with In Situ Voyager Observations
NASA Astrophysics Data System (ADS)
McComas, D. J.
2015-12-01
The Interstellar Boundary Explorer (IBEX) has now returned nearly seven years of observations, which comprise 14 full sets of energy resolved all-sky maps and provide the global view of our Sun's interaction with very local part of the galaxy. With such a long baseline of observations, we are able to examine time variations in the outer heliosphere as it responds to both 11-year solar cycle variations and longer term secular evolution of the three dimensional solar wind. Now that we have collected over half a solar cycle of observations, IBEX is beginning to show us how the heliosphere - our home in the galaxy - varies in time as well as space. In this talk we present the most recent observations and review some other recent discoveries from IBEX. We also examine the synergy between the global view provided by IBEX and the in situ observations form the Voyager 1 and 2 spacecraft. Finally, we discuss the incredible improvement in interstellar observations - and our understanding of the local interstellar medium - that the Interstellar Mapping and Acceleration Probe (IMAP) will provide.
High Resolution FIR and IR Spectroscopy of Methanol Isotopologues
NASA Astrophysics Data System (ADS)
Lees, R. M.; Xu, Li-Hong; Appadoo, D. R. T.; Billinghurst, B.
2010-02-01
New astronomical facilities such as HIFI on the Herschel Space Observatory, the SOFIA airborne IR telescope and the ALMA sub-mm telescope array will yield spectra from interstellar and protostellar sources with vastly increased sensitivity and frequency coverage. This creates the need for major enhancements to laboratory databases for the more prominent interstellar "weed" species in order to model and account for their lines in observed spectra in the search for new and more exotic interstellar molecular "flowers." With its large-amplitude internal torsional motion, methanol has particularly rich spectra throughout the FIR and IR regions and, being very widely distributed throughout the galaxy, is perhaps the most notorious interstellar weed. Thus, we have recorded new spectra for a variety of methanol isotopic species on the high-resolution FTIR spectrometer on the CLS FIR beamline. The aim is to extend quantum number coverage of the data, improve our understanding of the energy level structure, and provide the astronomical community with better databases and models of the spectral patterns with greater predictive power for a range of astrophysical conditions.
Guido von Pirquet: Austrian pioneer of astronautics
NASA Technical Reports Server (NTRS)
Sykora, F.
1977-01-01
The works of Guido von Pirquet, Austrian pioneer of rocketry, were assessed. Major emphasis was given to Pirquet's calculation of the route to Venus which in fact was followed by the first Russian rocket to Venus. Of interest also is Pirquet's valuable construction of a space station and his analysis of interstellar space flight.
NASA Astrophysics Data System (ADS)
Berné, O.; Montillaud, J.; Mulas, G.; Joblin, C.
2015-12-01
In 1985, ``During experiments aimed at understanding the mechanisms by which long-chain carbon molecules are formed in interstellar space and circumstellar shells'', Harry Kroto and his collaborators serendipitously discovered a new form of carbon: fullerenes. The most emblematic fullerene (i.e. C_{60} ``buckminsterfullerene''), contains exactly 60 carbon atoms organized in a cage-like structure similar to a soccer ball. Since their discovery impacted the field of nanotechnologies, Kroto and colleagues received the Nobel prize in 1996. The cage-like structure, common to all fullerene molecules, gives them unique properties, in particular an extraordinary stability. For this reason and since they were discovered in experiments aimed to reproduce conditions in space, fullerenes were sought after by astronomers for over two decades, and it is only recently that they have been firmly identified by spectroscopy, in evolved stars and in the interstellar medium. This identification offered the opportunity to study the molecular physics of fullerenes in the unique physical conditions provided by space, and to make the link with other large carbonaceous molecules thought to be present in space : polycyclic aromatic hydrocarbons.
NASA Astrophysics Data System (ADS)
Dann, Julian; Redfield, Seth; Ayres, Thomas R.
2017-01-01
The Local Interstellar Medium (LISM), a region extending about 100 parsecs and in which the Sun is currently immersed, can only be studied using UV/optical absorption features against bright background stars. Perhaps in the future in-situ measurements will be possible (e.g., the Voyager spacecraft or Breakthrough Starshot-style missions). Using high-resolution observations with the Space Telescope Imaging Spectrograph (STIS) on-board the Hubble Space Telescope (HST), we have analyzed several very nearby sight lines to measure physical properties of the LISM. The data used in this study is a part of the Advanced Spectral Library (ASTRAL) Project, an HST Large Treasury Project, in which we have analyzed the spectra of fourteen nearby stars. LISM absorption features in these stellar spectra reveal key information about the abundances, temperature, and turbulence in the intervening gas. We have fit ion transitions in the near-UV for MgII, FeII, CII, DI, SiII, and OII. These absorption features provide direct measurements of the radial velocity, Doppler broadening parameter, and the column density along the line of sight. The presence of multiple local minima in the deep and narrow ISM profile is evidence of multiple clouds moving at different radial velocities.Included in our data set is the a Centauri sight line. We provide a detailed analysis of these new observations and a comparison with previous HST observations that were observed more than 20 years ago. A discussion of the physical properties along this line of sight is provided within the context of a Breakthrough Starshot mission. These high resolution and high signal-to-noise spectra will be important for making accurate estimations of the interstellar environment to help inform such an interstellar mission.We would like to acknowledge NASA HST Grant GO-12278 and GO-13346 awarded by the Space Telescope Science Institute, which is operated by the Association of Universities for Research in Astronomy, Inc., for NASA, under contract NAS 5-26555, and a student fellowship from the Connecticut Space Grant Consortium for their support of this research.
NASA Technical Reports Server (NTRS)
Salama, Farid
2005-01-01
Polycyclic Aromatic Hydrocarbons (PAHs) are an important and ubiquitous component of carbon-bearing materials in space. PAHs are the best-known candidates to account for the IR emission bands (UIR bands) and PAH spectral features are now being used as new probes of the ISM. PAHs are also thought to be among the carriers of the diffuse interstellar absorption bands (DIBs). In the model dealing with the interstellar spectral features, PAHs are present as a mixture of radicals, ions and neutral species. PAH ionization states reflect the ionization balance of the medium while PAH size, composition, and structure reflect the energetic and chemical history of the medium. A major challenge for laboratory astrophysics is to reproduce (in a realistic way) the physical conditions that exist in the emission and/or absorption interstellar zones. An extensive laboratory program has been developed at NASA Ames to assess the physical and chemical properties of PAHs in such environments and to describe how they influence the radiation and energy balance in space and the interstellar chemistry. In particular, laboratory experiments provide measurements of the spectral characteristics of interstellar PAH analogs from the ultraviolet and visible range to the infrared range for comparison with astronomical data. This paper will focus on the recent progress made in the laboratory to measure the direct absorption spectra of neutral and ionized PAHs in the gas phase in the near-UV and visible range in astrophysically relevant environments. These measurements provide data on PAHs and nanometer-sized particles that can now be directly compared to astronomical observations. The harsh physical conditions of the IS medium - characterized by a low temperature, an absence of collisions and strong VUV radiation fields - are simulated in the laboratory by associating a molecular beam with an ionizing discharge to generate a cold plasma expansion. PAH ions are formed from the neutral precursors in an isolated environment at low temperature (of the order of 100 K). The spectra of neutral and ionized PAHs are measured using the high sensitivity methods of cavity ring down spectroscopy (CRDS). These experiments provide unique information on the spectra of free, cold large carbon molecules and ions in the gas phase. Intrinsic band profiles and band positions of cold gas-phase PAHs can now be measured with high-sensitivity spectroscopy and directly compared to the astronomical data. The electronic bands measured for ionized PAH are found to be intrinsically broad (about 20 cm(sup -1)) while the bands associated with the neutral precursors are narrower (of the order of 2 - 10 cm(sup -1)). The laboratory data are discussed and compared with recent astronomical spectra of large and narrow DIBs and with the spectra of circumstellar environments of selected carbon stars and the implications for the interstellar PAH population are derived. Preliminary results also show that carbon nanoparticles are formed during the short residence time of the precursors in the plasma.
Space physics and policy for contemporary society
NASA Astrophysics Data System (ADS)
Cassak, P. A.; Emslie, A. G.; Halford, A. J.; Baker, D. N.; Spence, H. E.; Avery, S. K.; Fisk, L. A.
2017-04-01
Space physics is the study of Earth's home in space. Elements of space physics include how the Sun works from its interior to its atmosphere, the environment between the Sun and planets out to the interstellar medium, and the physics of the magnetic barriers surrounding Earth and other planets. Space physics is highly relevant to society. Space weather, with its goal of predicting how Earth's technological infrastructure responds to activity on the Sun, is an oft-cited example, but there are many more. Space physics has important impacts in formulating public policy.
Cirrus and Future Space Based Astronomy
NASA Technical Reports Server (NTRS)
Gautier, T. N.
1993-01-01
Astronomical observations from space make possible observations of sensitivity and spatial resolution impossible in the past. This increase in sensitivity will both make possible the observation of new phenomena and will bring observations against limitations not encountered before. This paper discusses the effects that infrared cirrus and diffuse interstellar clouds will have on space based observations. Some special opportunities provided by space observations of cirrus are presented and a partial list of currently planned observations of cirrus by space telescopes is given.
THz Time-Domain Spectroscopy of Interstellar Ice Analogs
NASA Astrophysics Data System (ADS)
Ioppolo, Sergio; McGuire, Brett A.; de Vries, Xander; Carroll, Brandon; Allodi, Marco; Blake, Geoffrey
2015-08-01
The unambiguous identification of nearly 200 molecular species in different astronomical environments proves that our cosmos is a ‘Molecular Universe’. The cumulative outcome of recent observations, laboratory studies, and astrochemical models indicates that there is a strong interplay between the gas and the solid phase throughout the process of forming molecules in space. Observations of interstellar ices are generally limited to lines-of-sight along which infrared absorption spectroscopy is possible. Therefore, the identification of more complex prebiotic molecules in the mid-IR is difficult because of their low expected interstellar abundances and the overlap of their absorption features with those from the more abundant species. In the THz region, telescopes can detect Interstellar ices in emission or absorption against dust continuum. Thus, THz searches do not require a background point source. Moreover, since THz spectra are the fingerprint of inter- and intramolecular forces, complex species can present unique modes that do not overlap with those from simpler, more abundant molecules. THz modes are also sensitive to temperature and phase changes in the ice. Therefore, spectroscopy at THz frequencies has the potential to better characterize the physics and chemistry of the ISM. Currently, the Herschel Space Telescope, SOFIA, and ALMA databases contain a vast amount of new THz spectral data that require THz laboratory spectra for interpretation. The latter, however, are largely lacking. We have recently constructed a new THz time-domain spectroscopy system operating in the range between 0.3 - 7.5 THz. This work focuses on the laboratory investigation of the composition and structure of the most abundant interstellar ice analogs compared to some more complex species. Different temperatures, mixing ratios, and matrix isolation experiments will be shown. The ultimate goal of this research is to provide the scientific community with an extensive THz ice-database, which will allow quantitative studies of the ISM, and guide future astronomical observations of species in the solid phase.
Long Term Perspective On Interstellar Flight
NASA Astrophysics Data System (ADS)
Millis, M. G.
2017-12-01
The process and interim findings of a broad interstellar flight assessment is presented. In contrast to precursor mission studies, this assessment takes a longer view and also considers factors that have been underrepresented in prior studies. The goal is to chart a conceptual roadmap for interstellar flight development that takes all the factors into account and ultimately identifies which research options, today, might have the greatest overall impact on future progress. Three envisioned flight eras are examined, the "era of precursors," the "era of infrastructure," and the "unforeseeable future." Several influential factors have typically been missing from prior studies that will now be assessed; a) the impact of different, often implicit, motivations, b) the interdependency of infrastructure with vehicle design, c) the pace of different developments, and d) the enormous energy required for any interstellar mission. Regarding motivations for example, if the driving motivation is to launch soon, then the emphasis is on existing technologies. In contrast, if the motivation is the survival of humanity, then the emphasis would be on 'world ships.' Infrastructure considerations are included in a broader system-level context. Future infrastructure will support multiple in-space activities, not just one mission-vehicle development. Though it may be too difficult to successfully assess, the study will attempt to compare the rates of different developments, such as the pace of Earth-based astronomy, miniaturization, artificial intelligence, infrastructure development, transhumanism, and others. For example, what new information could be acquired after 30 years of further advances in astronomy compared to a space probe with current technology and a 30 year flight time? The final factor of the study is to assess the pace and risks of the enormous energy levels required for interstellar flight. To compare disparate methods, a set of 'meta measures' will be defined and calculated for all the different approaches. For example, rather than comparing performance in terms of rocket specific impulse or sail reflectivity, more general measures like mass, energy, power, time, and efficiency will be used.
Interstellar Chemistry Gets More Complex With New Charged-Molecule Discovery
NASA Astrophysics Data System (ADS)
2007-07-01
Astronomers using data from the National Science Foundation's Robert C. Byrd Green Bank Telescope (GBT) have found the largest negatively-charged molecule yet seen in space. The discovery of the third negatively-charged molecule, called an anion, in less than a year and the size of the latest anion will force a drastic revision of theoretical models of interstellar chemistry, the astronomers say. Molecule formation Formation Process of Large, Negatively-Charged Molecule in Interstellar Space CREDIT: Bill Saxton, NRAO/AUI/NSF Click on image for page of graphics and detailed information "This discovery continues to add to the diversity and complexity that is already seen in the chemistry of interstellar space," said Anthony J. Remijan of the National Radio Astronomy Observatory (NRAO). "It also adds to the number of paths available for making the complex organic molecules and other large molecular species that may be precursors to life in the giant clouds from which stars and planets are formed," he added. Two teams of scientists found negatively-charged octatetraynyl, a chain of eight carbon atoms and one hydrogen atom, in the envelope of gas around an old, evolved star and in a cold, dark cloud of molecular gas. In both cases, the molecule had an extra electron, giving it a negative charge. About 130 neutral and about a dozen positively-charged molecules have been discovered in space, but the first negatively-charged molecule was not discovered until late last year. The largest previously-discovered negative ion found in space has six carbon atoms and one hydrogen atom. "Until recently, many theoretical models of how chemical reactions evolve in interstellar space have largely neglected the presence of anions. This can no longer be the case, and this means that there are many more ways to build large organic molecules in cosmic environments than have been explored," said Jan M. Hollis of NASA's Goddard Space Flight Center (GSFC). Ultraviolet light from stars can knock an electron off a molecule, creating a positively-charged ion. Astronomers had thought that molecules would not be able to retain an extra electron, and thus a negative charge, in interstellar space for a significant time. "That obviously is not the case," said Mike McCarthy of the Harvard-Smithsonian Center for Astrophysics. "Anions are surprisingly abundant in these regions." Remijan and his colleagues found the octatetraynyl anions in the envelope of the evolved giant star IRC +10 216, about 550 light-years from Earth in the constellation Leo. They found radio waves emitted at specific frequencies characteristic of the charged molecule by searching archival data from the GBT, the largest fully-steerable radio telescope in the world. Another team from the Harvard-Smithsonian Center for Astrophysics (CfA) found the same characteristic emission when they observed a cold cloud of molecular gas called TMC-1 in the constellation Taurus. These observations also were done with the GBT. In both cases, preceding laboratory experiments by the CfA team showed which radio frequencies actually are emitted by the molecule, and thus told the astronomers what to look for. "It is essential that likely interstellar molecule candidates are first studied in laboratory experiments so that the radio frequencies they can emit are known in advance of an astronomical observation," said Frank Lovas of the National Institute of Standards and Technology (NIST). Both teams announced their results in the July 20 edition of the Astrophysical Journal Letters. "With three negatively-charged molecules now found in a short period of time, and in very different environments, it appears that many more probably exist. We believe that we can discover more new species using very sensitive and advanced radio telescopes such as the GBT, once they have been characterized in the laboratory," said Sandra Bruenken of the CfA. "Further detailed studies of anions, including astronomical observations, laboratory studies, and theoretical calculations, will allow us to use them to reveal new information about the physical and chemical processes going on in interstellar space," said Martin Cordiner, of Queen's University in Belfast, Northern Ireland. "The GBT continues to take a leading role in discovering, identifying and mapping the distribution of the largest molecules ever found in astronomical environments and will continue to do so for the next several decades," said Phil Jewell of NRAO. In addition to Hollis, Lovas, Cordiner and Jewell, Remijan worked with Tom Millar of Queen's University in Belfast, Northern Ireland, and Andrew Markwick-Kemper of the University of Manchester in the UK. Bruenken worked with McCarthy, Harshal Gupta, Carl Gottlieb, and Patrick Thaddeus, all of the Harvard-Smithsonian Center for Astrophysics. The National Radio Astronomy Observatory is a facility of the National Science Foundation, operated under cooperative agreement by Associated Universities, Inc. Headquartered in Cambridge, Mass., the Harvard-Smithsonian Center for Astrophysics is a joint collaboration between the Smithsonian Astrophysical Observatory and the Harvard College Observatory. CfA scientists, organized into six research divisions, study the origin, evolution and ultimate fate of the universe.
Our Solar System, from the Outside
2011-04-28
This graphic, based on data from NASA Voyager spacecraft, shows a model of what our solar system looks like to an observer outside in interstellar space, watching our solar system fly towards the observer.
NASA Technical Reports Server (NTRS)
Salama, Farid
2014-01-01
We present and discuss the unique characteristics and capabilities of the laboratory facility, COSmIC, that was developed at NASA Ames to generate, process and analyze interstellar, circumstellar and planetary analogs in the laboratory. COSmIC stands for Cosmic Simulation Chamber and is dedicated to the study of molecules and ions under the low temperature and high vacuum conditions that are required to simulate interstellar, circumstellar and planetary physical environments in space. COSmIC integrates a variety of state-of-the-art instruments that allow forming, processing and monitoring simulated space conditions for planetary, circumstellar and interstellar materials in the laboratory. COSmIC is composed of a Pulsed Discharge Nozzle (PDN) expansion that generates a free jet supersonic expansion coupled to two ultrahigh-sensitivity, complementary in situ diagnostics: a Cavity Ring Down Spectroscopy (CRDS) system for photonic detection and a Reflectron Time-Of-Flight Mass Spectrometer (ReTOF-MS) for mass detection. Recent, unique, laboratory astrophysics results that were obtained using the capabilities of COSmIC will be discussed, in particular the progress that have been achieved in monitoring in the laboratory the formation of solid gains from their gas-phase molecular precursors in environments as varied as stellar/circumstellar outflow and planetary atmospheres. Plans for future, next generation, laboratory experiments on cosmic molecules and grains in the growing field of laboratory astrophysics will also be addressed as well as the implications of these studies for current and upcoming space missions.
NASA's In-Space Propulsion Technology Program: A Step Toward Interstellar Exploration
NASA Technical Reports Server (NTRS)
Johnson, Les; James, Bonnie; Baggett, Randy; Montgomery, Sandy
2005-01-01
NASA's In-Space Propulsion Technology Program is investing in technologies that have the potential to revolutionize the robotic exploration of deep space. For robotic exploration and science missions, increased efficiencies of future propulsion systems are critical to reduce overall life-cycle costs and, in some cases, enable missions previously considered impossible. Continued reliance on conventional chemical propulsion alone will not enable the robust exploration of deep space. The maximum theoretical efficiencies have almost been reached and are insufficient to meet needs for many ambitious science missions currently being considered. By developing the capability to support mid-term robotic mission needs, the program is laying the technological foundation for travel to nearby interstellar space. The In-Space Propulsion Technology Program s technology portfolio includes many advanced propulsion systems. From the next-generation ion propulsion systems operating in the 5-10 kW range, to solar sail propulsion, substantial advances in spacecraft propulsion performance are anticipated. Some of the most promising technologies for achieving these goals use the environment of space itself for energy and propulsion and are generically called "propellantless" because they do not require onboard fuel to achieve thrust. Propellantless propulsion technologies include scientific innovations, such as solar sails, electrodynamic and momentum transfer tethers, and aerocapture. This paper will provide an overview of those propellantless and propellant-based advanced propulsion technologies that will most significantly advance our exploration of deep space.
Wang, Zhe-Chen; Cole, Callie A; Demarais, Nicholas J; Snow, Theodore P; Bierbaum, Veronica M
2015-08-26
Azines are important in many extraterrestrial environments, from the atmosphere of Titan to the interstellar medium. They have been implicated as possible carriers of the diffuse interstellar bands in astronomy, indicating their persistence in interstellar space. Most importantly, they constitute the basic building blocks of DNA and RNA, so their chemical reactivity in these environments has significant astrobiological implications. In addition, N and O atoms are widely observed in the ISM and in the ionospheres of planets and moons. However, the chemical reactions of molecular anions with abundant interstellar and atmospheric atomic species are largely unexplored. In this paper, gas-phase reactions of deprotonated anions of benzene, pyridine, pyridazine, pyrimidine, pyrazine, and s-triazine with N and O atoms are studied both experimentally and computationally. In all cases, the major reaction channel is associative electron detachment; these reactions are particularly important since they control the balance between negative ions and free electron densities. The reactions of the azine anions with N atoms exhibit larger rate constants than reactions of corresponding chain anions. The reactions of azine anions with O atoms are even more rapid, with complex product patterns for different reactants. The mechanisms are studied theoretically by employing density functional theory; spin conversion is found to be important in determining some product distributions. The rich gas-phase chemistry observed in this work provides a better understanding of ion-atom reactions and their contributions to ionospheric chemistry as well as the chemical processing that occurs in the boundary layers between diffuse and dense interstellar clouds.
NASA Astrophysics Data System (ADS)
Zuluaga, Jorge I.; Sánchez-Hernández, Oscar; Sucerquia, Mario; Ferrín, Ignacio
2018-06-01
With the advent of more and deeper sky surveys, the discovery of interstellar small objects entering into the solar system has been finally possible. In 2017 October 19, using observations of the Pan-STARRS survey, a fast moving object, now officially named 1I/2017 U1 (‘Oumuamua), was discovered in a heliocentric unbound trajectory, suggesting an interstellar origin. Assessing the provenance of interstellar small objects is key for understanding their distribution, spatial density, and the processes responsible for their ejection from planetary systems. However, their peculiar trajectories place a limit on the number of observations available to determine a precise orbit. As a result, when its position is propagated ∼105–106 years backward in time, small errors in orbital elements become large uncertainties in position in the interstellar space. In this paper we present a general method for assigning probabilities to nearby stars of being the parent system of an observed interstellar object. We describe the method in detail and apply it for assessing the origin of ‘Oumuamua. A preliminary list of potential progenitors and their corresponding probabilities is provided. In the future, when further information about the object and/or the nearby stars be refined, the probabilities computed with our method can be updated. We provide all the data and codes we developed for this purpose in the form of an open source C/C++/Python package, iWander, which is publicly available at http://github.com/seap-udea/iWander.
NASA Technical Reports Server (NTRS)
Malhotra, S.; Hollenbach, D.; Helou, D.; Silbermann, N.; Valjavec, E.; Rubin, R.; Dale, D.; Hunter, D.; Lu, N.; Lord, S.;
2000-01-01
Four IRAS-detected early-type galaxies were observed with the Infrared Space Observatory (ISO). With the exception of the 15 mu m image of NGC 1052, the mid-IR images of NGC 1052, NGC 1155, NGC 5866, and NGC 6958 at 4.5, 7, and 15 mu m show extended emission.
Laboratory Analysis of Silicate Stardust Grains of Diverse Stellar Origins
NASA Technical Reports Server (NTRS)
Nguyen, Ann N.; Keller, Lindsay P.; Nakamura-Messenger, Keiko
2016-01-01
Silicate dust is ubiquitous in a multitude of environments across the cosmos, including evolved oxygen-rich stars, interstellar space, protoplanetary disks, comets, and asteroids. The identification of bona fide silicate stardust grains in meteorites, interplanetary dust particles, micrometeorites, and dust returned from comet Wild 2 by the Stardust spacecraft has revolutionized the study of stars, interstellar space, and the history of dust in the Galaxy. These stardust grains have exotic isotopic compositions that are records of nucleosynthetic processes that occurred in the depths of their now extinct parent stars. Moreover, the chemical compositions and mineralogies of silicate stardust are consequences of the physical and chemical nature of the stellar condensation environment, as well as secondary alteration processes that can occur in interstellar space, the solar nebula, and on the asteroid or comet parent body in which they were incorporated. In this talk I will discuss our use of advanced nano-scale instrumentation in the laboratory to conduct coordinated isotopic, chemical, and mineralogical analyses of silicate stardust grains from AGB stars, supernovae, and novae. By analyzing the isotopic compositions of multiple elements in individual grains, we have been able to constrain their stellar sources, explore stellar nucleosynthetic and mixing processes, and Galactic chemical evolution. Through our mineralogical studies, we have found these presolar silicate grains to have wide-ranging chemical and mineral characteristics. This diversity is the result of primary condensation characteristics and in some cases secondary features imparted by alteration in space and in our Solar System. The laboratory analysis of actual samples of stars directly complements astronomical observations and astrophysical models and offers an unprecedented level of detail into the lifecycles of dust in the Galaxy.
NASA Technical Reports Server (NTRS)
Charnley, Steven
2009-01-01
Astronomical observations, theoretical modeling, laboratory simulation and analysis of extraterrestrial material have enhanced our knowledge of the inventory of organic matter in the interstellar medium (ISM) and on small bodies such as comets and asteroids (Ehrenfreund & Charnley 2000). Comets, asteroids and their fragments, meteorites and interplanetary dust particles (IDPs), contributed significant amounts of extraterrestrial organic matter to the young Earth. This material degraded and reacted in a terrestrial prebiotic chemistry to form organic structures that may have served as building blocks for life on the early Earth. In this talk I will summarize our current understanding of the organic composition and chemistry of interstellar clouds. Molecules of astrobiological relevance include the building blocks of our genetic material: nucleic acids, composed of subunits such as N-heterocycles (purines and pyrimidines), sugars and amino acids. Signatures indicative of inheritance of pristine and modified interstellar material in comets and meteorites will also be discussed.
C60+ - looking for the bucky-ball in interstellar space
NASA Astrophysics Data System (ADS)
Galazutdinov, G. A.; Shimansky, V. V.; Bondar, A.; Valyavin, G.; Krełowski, J.
2017-03-01
The laboratory gas-phase spectrum recently published by Campbell et al. has reinvigorated attempts to confirm the presence of the C_{60}^+ cation in the interstellar medium, through an analysis of the spectra of hot, reddened stars. This search is hindered by at least two issues that need to be addressed: (I) the wavelength range of interest is severely polluted by strong water-vapour lines coming from the Earth's atmosphere; (II) one of the major bands attributed to C_{60}^+, at 9633 Å, is blended with the stellar Mg II line, which is susceptible to non-local thermodynamic equilibrium effects in hot stellar atmospheres. Both these issues are carefully considered here for the first time, based on high-resolution and high signal-to-noise ratio echellé spectra for 19 lines of sight. The result is that the presence of C_{60}^+ in interstellar clouds is brought into question.
The rate of the reaction between CN and C2H2 at interstellar temperatures.
Woon, D E; Herbst, E
1997-03-01
The rate coefficient for the important interstellar reaction between CN and C2H2 has been calculated as a function of temperature between 10 and 300 K. The potential surface for this reaction has been determined through ab initio quantum chemical techniques; the potential exhibits no barrier in the entrance channel but does show a small exit channel barrier, which lies below the energy of reactants. Phase-space calculations for the reaction dynamics, which take the exit channel barrier into account, show the same unusual temperature dependence as determined by experiment, in which the rate coefficient at first increases as the temperature is reduced below room temperature and then starts to decrease as the temperature drops below 50-100 K. The agreement between theory and experiment provides strong confirmation that the reaction occurs appreciably at cool interstellar temperatures.
Interstellar Matters: Neutral Hydrogen and the Galactic Magnetic Field
NASA Astrophysics Data System (ADS)
Verschuur, Gerrit; Schmelz, Joan T.; Asgari-Targhi asgari-Targhi, M.
2018-01-01
The physics of the interstellar medium was revolutionized by the observations of the Galactic Arecibo L-Band Feed Array (GALFA) HI survey done at the Arecibo Observatory. The high-resolution, high-sensitivity, high-dynamic- range images show complex, tangled, extended filaments, and reveal that the fabric of the neutral interstellar medium is deeply tied to the structure of the ambient magnetic field. This discovery prompts an obvious question – how exactly is the interstellar {\\it neutral} hydrogen being affected by the galactic magnetic field? We look into this question by examining a set of GALFA-HI data in great detail. We have chosen a long, straight filament in the southern galactic sky. This structure is both close by and isolated in velocity space. Gaussian analysis of profiles both along and across the filament reveal internal structure – braided strands that can be traced through the simplest part, but become tangled in more complex segments. These braids do not resemble in any way the old spherical HI clouds and rudimentary pressure balance models that were used to explain the pre-GALFA- HI interstellar medium. It is clear that these structures are created, constrained, and dominated by magnetic fields. Like many subfields of astronomy before it, e.g., physics of the solar coronal, extragalactic radio jets, and pulsar environment, scientists are confronted with observations that simply cannot be explained by simple hydrodynamics and are forced to consider magneto-hydrodynamics.
2011-04-28
This graphic shows the different streams of charged particles inside the bubble around our sun and outside, in the unexplored territory of interstellar space. The heliosheath, where NASA two Voyager spacecraft are now traveling, is shown in red.
An Unusual Apporach to the Elementary Qualitative Physics Course: Introduction to Space Science
ERIC Educational Resources Information Center
Moore, E. Neal
1975-01-01
Describes a course, without laboratory, using rudimentary algebra and covering such topics as gravitation, orbital mechanics, atomic structure, geomagnetism, electromagnetic spectrum, theory of relativity, extraterrestrial life, and interstellar travel. (GH)
Organic compounds in the Murchison meteorite.
NASA Technical Reports Server (NTRS)
Ponnamperuma, C.
1972-01-01
Impressive supporting evidence for the concept of the chemical evolution of life has appeared in the discovery of biologically important compounds in extraterrestrial samples. The approaches pursued to detect extraterrestrial organic compounds include the study of interstellar space by radioastronomy, the evaluation of the Apollo lunar samples, and the analysis of meteorites, both ancient and recent. It has been found that the clouds of gas in the interstellar medium contain a wide variety of molecules, most of which are organic in nature. The carbonaceous chondrites contain polymeric organic matter. Amino acids have been detected in the Murchison meteorite.
The Origin of Cosmic Rays: What can GLAST Say?
NASA Technical Reports Server (NTRS)
Ormes, Jonathan F.; Digel, Seith; Moskalenko, Igor V.; Moiseev, Alexander; Williamson, Roger
2000-01-01
Gamma rays in the band from 30 MeV to 300 GeV, used in combination with direct measurements and with data from radio and X-ray bands, provide a powerful tool for studying the origin of Galactic cosmic rays. Gamma-ray Large Area Space Telescope (GLAST) with its fine 10-20 arcmin angular resolution will be able to map the sites of acceleration of cosmic rays and their interactions with interstellar matter, It will provide information that is necessary to study the acceleration of energetic particles in supernova shocks, their transport in the interstellar medium and penetration into molecular clouds.
Beyond Pluto: The Search for the Edge of the Solar System
DOE Office of Scientific and Technical Information (OSTI.GOV)
Funsten, Herb
In July, we finally visited the last major body of our solar system, Pluto. But what lies beyond? The stellar wind from our Sun forms an enormous bubble in interstellar space. This “sphere of our Sun,” or heliosphere, extends far beyond Pluto and forms a protective cocoon that shields us from cosmic radiation. In this talk, we will travel to the edge of the solar system, peer into the structure and dynamics of the outer heliosphere as it interacts with the interstellar medium and anticipate the future of the solar system as it moves through our galactic neighborhood.
2002-10-25
KENNEDY SPACE CENTER, FLA. - A second stage is lifted at NASA's Space Launch Complex 2 (SLC-2) at Vandenberg Air Force Base, Calif., for placement atop a Delta II rocket. The rocket will carry the ICESat and CHIPSat satellites into Earth orbits. The Ice, Cloud, and Land Elevation Satellite, or ICESat, is a 661-pound satellite carrying the Geoscience Laser Altimeter System (GLAS) that will revolutionize our understanding of ice and its role in global climate change and how we protect and understand our home planet. It will help scientists determine if the global sea level is rising or falling. It will look at the ice sheets that blanket the Earth's poles to see if they are growing or shrinking. It will assist in developing an understanding of how changes in the Earth's atmosphere and climate effect polar ice masses and global sea level. The Cosmic Hot Interstellar Plasma Spectrometer, or CHIPSat, a suitcase-size 131-pound satellite, will provide invaluable information into the origin, physical processes and properties of the hot gas contained in the interstellar medium. This can provide important clues about the formation and evolution of galaxies since the interstellar medium literally contains the seeds of future stars. The Delta II launch is scheduled for Jan. 11, 2003, between 4:45 p.m. - 5:30 p.m. PST.
2002-10-25
KENNEDY SPACE CENTER, FLA. - At NASA's Space Launch Complex 2 (SLC-2), Vandenberg Air Force Base, Calif., the launch tower has been rolled back to reveal a Delta II rocket with its solid rocket boosters attached. The rocket will carry the ICESat and CHIPSat satellites into Earth orbits. The Ice, Cloud, and Land Elevation Satellite, or ICESat, is a 661-pound satellite known as Geoscience Laser Altimeter System (GLAS) that will revolutionize our understanding of ice and its role in global climate change and how we protect and understand our home planet. It will help scientists determine if the global sea level is rising or falling. It will look at the ice sheets that blanket the Earth's poles to see if they are growing or shrinking. It will assist in developing an understanding of how changes in the Earth's atmosphere and climate effect polar ice masses and global sea level. The Cosmic Hot Interstellar Plasma Spectrometer, or CHIPSat, a suitcase-size 131-pound satellite, will provide invaluable information into the origin, physical processes and properties of the hot gas contained in the interstellar medium. This can provide important clues about the formation and evolution of galaxies since the interstellar medium literally contains the seeds of future stars. The Delta II launch is scheduled for Jan. 11, 2003, between 4:45 p.m. - 5:30 p.m. PST.
2002-10-25
KENNEDY SPACE CENTER, FLA. - A second stage is lifted into place at NASA's Space Launch Complex 2 (SLC-2) at Vandenberg Air Force Base, Calif., atop a Delta II rocket. The rocket will carry the ICESat and CHIPSat satellites into Earth orbits. The Ice, Cloud, and Land Elevation Satellite, or ICESat, is a 661-pound satellite carrying the Geoscience Laser Altimeter System (GLAS) that will revolutionize our understanding of ice and its role in global climate change and how we protect and understand our home planet. It will help scientists determine if the global sea level is rising or falling. It will look at the ice sheets that blanket the Earth's poles to see if they are growing or shrinking. It will assist in developing an understanding of how changes in the Earth's atmosphere and climate effect polar ice masses and global sea level. The Cosmic Hot Interstellar Plasma Spectrometer, or CHIPSat, a suitcase-size 131-pound satellite, will provide invaluable information into the origin, physical processes and properties of the hot gas contained in the interstellar medium. This can provide important clues about the formation and evolution of galaxies since the interstellar medium literally contains the seeds of future stars. The Delta II launch is scheduled for Jan. 11, 2003, between 4:45 p.m. - 5:30 p.m. PST.
2002-10-25
KENNEDY SPACE CENTER, FLA. - A second stage is lifted at NASA's Space Launch Complex 2 (SLC-2) at Vandenberg Air Force Base, Calif., for placement on a Delta II rocket The rocket will carry the ICESat and CHIPSat satellites into Earth orbits. The Ice, Cloud, and Land Elevation Satellite, or ICESat, is a 661-pound satellite carrying the Geoscience Laser Altimeter System (GLAS) that will revolutionize our understanding of ice and its role in global climate change and how we protect and understand our home planet. It will help scientists determine if the global sea level is rising or falling. It will look at the ice sheets that blanket the Earth's poles to see if they are growing or shrinking. It will assist in developing an understanding of how changes in the Earth's atmosphere and climate effect polar ice masses and global sea level. The Cosmic Hot Interstellar Plasma Spectrometer, or CHIPSat, a suitcase-size 131-pound satellite, will provide invaluable information into the origin, physical processes and properties of the hot gas contained in the interstellar medium. This can provide important clues about the formation and evolution of galaxies since the interstellar medium literally contains the seeds of future stars. The Delta II launch is scheduled for Jan. 11, 2003, between 4:45 p.m. - 5:30 p.m. PST.
2002-10-25
KENNEDY SPACE CENTER, FLA. - A second stage is inserted into an interstage atop a Delta II rocket at NASA's Space Launch Complex 2 (SLC-2) at Vandenberg Air Force Base, Calif. The rocket will carry the ICESat and CHIPSat satellites into Earth orbits. The Ice, Cloud, and Land Elevation Satellite, or ICESat, is a 661-pound satellite carrying the Geoscience Laser Altimeter System (GLAS) that will revolutionize our understanding of ice and its role in global climate change and how we protect and understand our home planet. It will help scientists determine if the global sea level is rising or falling. It will look at the ice sheets that blanket the Earth's poles to see if they are growing or shrinking. It will assist in developing an understanding of how changes in the Earth's atmosphere and climate effect polar ice masses and global sea level. The Cosmic Hot Interstellar Plasma Spectrometer, or CHIPSat, a suitcase-size 131-pound satellite, will provide invaluable information into the origin, physical processes and properties of the hot gas contained in the interstellar medium. This can provide important clues about the formation and evolution of galaxies since the interstellar medium literally contains the seeds of future stars. The Delta II launch is scheduled for Jan. 11, 2003, between 4:45 p.m. - 5:30 p.m. PST.
2002-10-25
KENNEDY SPACE CENTER, FLA. - The second stage arrives at NASA's Space Launch Complex 2 (SLC-2) at Vandenberg Air Force Base, Calif., for placement on a Delta II rocket The rocket will carry the ICESat and CHIPSat satellites into Earth orbits. The Ice, Cloud, and Land Elevation Satellite, or ICESat, is a 661-pound satellite carrying the Geoscience Laser Altimeter System (GLAS) that will revolutionize our understanding of ice and its role in global climate change and how we protect and understand our home planet. It will help scientists determine if the global sea level is rising or falling. It will look at the ice sheets that blanket the Earth's poles to see if they are growing or shrinking. It will assist in developing an understanding of how changes in the Earth's atmosphere and climate effect polar ice masses and global sea level. The Cosmic Hot Interstellar Plasma Spectrometer, or CHIPSat, a suitcase-size 131-pound satellite, will provide invaluable information into the origin, physical processes and properties of the hot gas contained in the interstellar medium. This can provide important clues about the formation and evolution of galaxies since the interstellar medium literally contains the seeds of future stars. The Delta II launch is scheduled for Jan. 11, 2003, between 4:45 p.m. - 5:30 p.m. PST.
2002-10-25
KENNEDY SPACE CENTER, FLA. - A second stage is inserted and secured into an interstage atop a Delta II rocket at NASA's Space Launch Complex 2 (SLC-2) at Vandenberg Air Force Base, Calif. The rocket will carry the ICESat and CHIPSat satellites into Earth orbits. The Ice, Cloud, and Land Elevation Satellite, or ICESat, is a 661-pound satellite carrying the Geoscience Laser Altimeter System (GLAS) that will revolutionize our understanding of ice and its role in global climate change and how we protect and understand our home planet. It will help scientists determine if the global sea level is rising or falling. It will look at the ice sheets that blanket the Earth's poles to see if they are growing or shrinking. It will assist in developing an understanding of how changes in the Earth's atmosphere and climate effect polar ice masses and global sea level. The Cosmic Hot Interstellar Plasma Spectrometer, or CHIPSat, a suitcase-size 131-pound satellite, will provide invaluable information into the origin, physical processes and properties of the hot gas contained in the interstellar medium. This can provide important clues about the formation and evolution of galaxies since the interstellar medium literally contains the seeds of future stars. The Delta II launch is scheduled for Jan. 11, 2003, between 4:45 p.m. - 5:30 p.m. PST.
2008-08-05
VANDENBERG AIR FORCE BASE, Calif. – At Vandenberg Air Force Base in California, the Star-27 kick motor and nozzle for NASA's Interstellar Boundary Explorer, or IBEX, spacecraft are “on top” and part of the IBEX flight system, known as the adapter cone, is in the foreground/bottom. The Star-27 motor has a silver tank that contains the solid propellant. The nozzle fits down inside the adapter cone. The IBEX satellite will make the first map of the boundary between the Solar System and interstellar space. IBEX is the first mission designed to detect the edge of the Solar System. As the solar wind from the sun flows out beyond Pluto, it collides with the material between the stars, forming a shock front. IBEX contains two neutral atom imagers designed to detect particles from the termination shock at the boundary between the Solar System and interstellar space. IBEX also will study galactic cosmic rays, energetic particles from beyond the Solar System that pose a health and safety hazard for humans exploring beyond Earth orbit. IBEX will make these observations from a highly elliptical orbit that takes it beyond the interference of the Earth's magnetosphere. IBEX is targeted for launch from the Pegasus XL rocket on Oct. 5. Photo credit: NASA/R. Bledsoe
Cosmic Rays in the Heliosphere: Requirements for Future Observations
NASA Astrophysics Data System (ADS)
Mewaldt, R. A.
2013-06-01
Since the publication of Cosmic Rays in the Heliosphere in 1998 there has been great progress in understanding how and why cosmic rays vary in space and time. This paper discusses measurements that are needed to continue advances in relating cosmic ray variations to changes in solar and interplanetary activity and variations in the local interstellar environment. Cosmic ray acceleration and transport is an important discipline in space physics and astrophysics, but it also plays a critical role in defining the radiation environment for humans and hardware in space, and is critical to efforts to unravel the history of solar activity. Cosmic rays are measured directly by balloon-borne and space instruments, and indirectly by ground-based neutron, muon and neutrino detectors, and by measurements of cosmogenic isotopes in ice cores, tree-rings, sediments, and meteorites. The topics covered here include: what we can learn from the deep 2008-2009 solar minimum, when cosmic rays reached the highest intensities of the space era; the implications of 10Be and 14C isotope archives for past and future solar activity; the effects of variations in the size of the heliosphere; opportunities provided by the Voyagers for discovering the origin of anomalous cosmic rays and measuring cosmic-ray spectra in interstellar space; and future space missions that can continue the exciting exploration of the heliosphere that has occurred over the past 50 years.
Ackermann, M.
2012-02-01
Context. The Cygnus region hosts a giant molecular-cloud complex that actively forms massive stars. Interactions of cosmic rays with interstellar gas and radiation fields make it shine at γ-ray energies. Several γ-ray pulsars and other energetic sources are seen in this direction. Aims. In this paper we analyze the γ-ray emission measured by the Fermi Large Area Telescope in the energy range from 100 MeV to 100 GeV in order to probe the gas and cosmic-ray content on the scale of the whole Cygnus complex. The γ-ray emission on the scale of the central massive stellar clusters and from individualmore » sources is addressed elsewhere. Methods. The signal from bright pulsars is greatly reduced by selecting photons in their off-pulse phase intervals. We compare the diffuse γ-ray emission with interstellar gas maps derived from radio/mm-wave lines and visual extinction data. A general model of the region, including other pulsars and γ-ray sources, is sought. Results. The integral Hi emissivity above 100 MeV averaged over the whole Cygnus complex amounts to [2.06 ± 0.11 (stat.) +0.15 -0.84 (syst.)] × 10 -26 photons s -1 sr -1 H-atom -1, where the systematic error is dominated by the uncertainty on the Hi opacity to calculate its column densities. The integral emissivity and its spectral energy distribution are both consistent within the systematics with LAT measurements in the interstellar space near the solar system. The average XCO = N(H2)/WCO ratio is found to be [1.68 ± 0.05 (stat.) +0.87 -0.10 (Hi opacity)] × 1020 molecules cm -2 (K km s -1) -1, consistent with other LAT measurements in the Local Arm. We detect significant γ-ray emission from dark neutral gas for a mass corresponding to ~ 40% of what is traced by CO. The total interstellar mass in the Cygnus complex inferred from its γ-ray emission amounts to 8 +5 -1 × 106M⊙ at a distance of 1.4 kpc. Conclusions. Despite the conspicuous star formation activity and high masses of the interstellar clouds, the cosmic-ray population in the Cygnus complex averaged over a few hundred parsecs is similar to that of the local interstellar space.« less
NASA Technical Reports Server (NTRS)
Ackermann, M.; Ajello, M.; Allafort, A.; Baldini, L.; Ballet, J.; Barbiellini, G.; Bastieri, D.; Belfiore, A.; Bellazzini, R.; Berenji, B.;
2011-01-01
Context. The Cygnus region hosts a giant molecular-cloud complex which actively forms massive stars. Interactions of cosmic rays with interstellar gas and radiation fields make it shine at y-ray energies. Several gamma-ray pulsars and other energetic sources are seen in this direction. Aims. In this paper we analyse the gamma-ray emission measured by the Fermi Large Area Telescope in the energy range from 100 Me V to 100 Ge V in order to probe the gas and cosmic-ray content over the scale of the whole Cygnus complex. The gamma-ray emission on the scale of the central massive stellar clusters and from individual sources is addressed elsewhere. Methods. The signal from bright pulsars is largely reduced by selecting photons in their off-pulse phase intervals. We compare the diffuse gamma-ray emission with interstellar gas maps derived from radio/mm-wave lines and visual extinction data. and a global model of the region, including other pulsars and gamma-ray sources, is sought. Results. The integral H I emissivity above 100 MeV averaged over the whole Cygnus complex amounts to 12.06 +/- 0.11 (stat.) (+0.15 -0.84) (syst.J] x 10(exp -26) photons /s / sr / H-atom, where the systematic error is dominated by the uncertainty on the H I opacity to calculate its column densities. The integral emissivity and its spectral energy distribution are both consistent within the systematics with LAT measurements in the interstellar space near the solar system. The average X(sub co) N(H2)/W(sub co) ratio is found to be [1.68 +/- 0.05 (stat.) (H I opacity)] x 1020 molecules cm-2 (K km/s /r, consistent with other LAT measurements in the Local Arm. We detect significant gamma-ray emission from dark neutral gas for a mass corresponding to approx 40% of that traced by CO. The total interstellar mass in the Cygnus complex inferred from its gamma-ray emission amounts to 8(+5 -1) x 10(exp 6) Solar M at a distance of 1.4 kpc. Conclusions. Despite the conspicuous star formation activity and large masses of the interstellar clouds, the cosmic-ray population in the Cygnus complex averaged over a few hundred parsecs is similar to that of the local interstellar space.
Implications for Planetary System Formation from Interstellar Object 1I/2017 U1 (‘Oumuamua)
NASA Astrophysics Data System (ADS)
Trilling, David E.; Robinson, Tyler; Roegge, Alissa; Chandler, Colin Orion; Smith, Nathan; Loeffler, Mark; Trujillo, Chad; Navarro-Meza, Samuel; Glaspie, Lori M.
2017-12-01
The recently discovered minor body 1I/2017 U1 (‘Oumuamua) is the first known object in our solar system that is not bound by the Sun’s gravity. Its hyperbolic orbit (eccentricity greater than unity) strongly suggests that it originated outside our solar system; its red color is consistent with substantial space weathering experienced over a long interstellar journey. We carry out a simple calculation of the probability of detecting such an object. We find that the observed detection rate of 1I-like objects can be satisfied if the average mass of ejected material from nearby stars during the process of planetary formation is ˜20 Earth masses, similar to the expected value for our solar system. The current detection rate of such interstellar interlopers is estimated to be 0.2 yr-1, and the expected number of detections over the past few years is almost exactly one. When the Large Synoptic Survey Telescope begins its wide, fast, deep all-sky survey, the detection rate will increase to 1 yr-1. Those expected detections will provide further constraints on nearby planetary system formation through a better estimate of the number and properties of interstellar objects.
The Interstellar Heliopause Probe/Heliospheric Explorer: IHP/HEX
NASA Astrophysics Data System (ADS)
Wimmer-Schweingruber, Robert F.; McNutt, Ralph L.
2010-03-01
The Sun, driving a supersonic solar wind, cuts out of the local interstellar medium a giant plasma bubble, the heliosphere. Dedicated deep-space missions have greatly enhanced our understanding of our immediate neighborhood. Ulysses is the only spacecraft exploring the third, out-of-ecliptic dimension, while SOHO has allowed us to better understand the influence of the Sun and to image the glow of interstellar matter in the heliosphere. Both Voyager spacecraft have recently encountered the innermost boundary of this plasma bubble, the termination shock, and are returning exciting yet puzzling data of this remote region. The next logical step is to leave the heliosphere and to thereby map out in unprecedented detail the structure of the outer heliosphere and its boundaries, the termination shock, the heliosheath, the heliopause, and, after leaving the heliosphere, to discover the true nature of the hydrogen wall, the bow shock, and the local interstellar medium beyond. This will greatly advance our understanding of the heliosphere that is the best-known example for astrospheres as found around other stars. Thus, IHP/HEX will allow us to discover, explore, and understand fundamental astrophysical processes in the largest accessible plasma laboratory, the heliosphere.
The influence of the ionized medium on synchrotron emission in interstellar space.
NASA Technical Reports Server (NTRS)
Ramaty, R.
1972-01-01
The effect of the ionized gas on synchrotron emission in the interstellar medium is investigated. A detailed calculation of the synchrotron emissivity of cosmic electrons, assumed to have an isotropic pitch-angle distribution in a uniform magnetic field, is made as a function of frequency and observation angle with respect to the field. The results are presented both as a local emissivity and as an intensity, the latter obtained by neglecting free-free absorption in the interstellar medium and by assuming that the emissivity is constant along the line of sight. The comparison of these results with previous studies on the nature of the low-frequency turnover of the galactic nonthermal radio background reveals that, except if the component perpendicular to the line of sight of the interstellar magnetic field is small (less than 1 microgauss), or if the cosmic-ray electron spectrum is cut off at energies below a few hundred MeV, the suppression of synchrotron emission by the ambient electrons has in general a lesser effect than free-free absorption by these electrons, and that in some cases this suppression effect is almost entirely negligible.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Acero, F.
Most of the celestial γ rays detected by the Large Area Telescope (LAT) aboard the Fermi Gamma-ray Space Telescope originate from the interstellar medium when energetic cosmic rays interact with interstellar nucleons and photons. Conventional point and extended source studies rely on the modeling of this diffuse emission for accurate characterization. We describe here the development of the Galactic Interstellar Emission Model (GIEM) that is the standard adopted by the LAT Collaboration and is publicly available. The model is based on a linear combination of maps for interstellar gas column density in Galactocentric annuli and for the inverse Compton emissionmore » produced in the Galaxy. We also include in the GIEM large-scale structures like Loop I and the Fermi bubbles. The measured gas emissivity spectra con rm that the cosmic-ray proton density decreases with Galactocentric distance beyond 5 kpc from the Galactic Center. The measurements also suggest a softening of the proton spectrum with Galactocentric distance. We observe that the Fermi bubbles have boundaries with a shape similar to a catenary at latitudes below 20° and we observe an enhanced emission toward their base extending in the North and South Galactic direction and located within ~4° of the Galactic Center.« less
Chirality, photochemistry and the detection of amino acids in interstellar ice analogues and comets.
Evans, Amanda C; Meinert, Cornelia; Giri, Chaitanya; Goesmann, Fred; Meierhenrich, Uwe J
2012-08-21
The primordial appearance of chiral amino acids was an essential component of the asymmetric evolution of life on Earth. In this tutorial review we will explore the original life-generating, symmetry-breaking event and summarise recent thoughts on the origin of enantiomeric excess in the universe. We will then highlight the transfer of asymmetry from chiral photons to racemic amino acids and elucidate current experimental data on the photochemical synthesis of amino and diamino acid structures in simulated interstellar and circumstellar ice environments. The chirality inherent within actual interstellar (cometary) ice environments will be considered in this discussion: in 2014 the Rosetta Lander Philae onboard the Rosetta space probe is planned to detach from the orbiter and soft-land on the surface of the nucleus of comet 67P/Churyumov-Gerasimenko. It is equipped for the in situ enantioselective analysis of chiral prebiotic organic species in cometary ices. The scientific design of this mission will therefore be presented in the context of analysing the formation of amino acid structures within interstellar ice analogues as a means towards furthering understanding of the origin of asymmetric biological molecules.
The Starflight Handbook: A Pioneer's Guide to Interstellar Travel
NASA Astrophysics Data System (ADS)
Mallove, Eugene F.; Matloff, Gregory L.
1989-06-01
The Starflight Handbook A Pioneer's Guide to Interstellar Travel "The Starflight Handbook is an indispensable compendium of the many and varied methods for traversing the vast interstellar gulf--don't leave the Solar System without it!" --Robert Forward "Very sensible, very complete and useful. Its good use of references and technical `sidebars' adds to the book and allows the nontechnical text to be used by ordinary readers in an easy fashion. I certainly would recommend this book to anyone doing any thinking at all about interstellar flight or the notion of possibilities of contacts between hypothetical civilizations in different stat systems." --Louis Friedman Executive Director, The Planetary Society The Starflight Handbook is the first and only compendium on planet Earth of the radical new technologies now on the drawing boards of some of our smartest and most imaginative space scientists and engineers. Scientists and engineers as well as general readers will be captivated by its: In-depth discussions of everything from nuclear pulse propulsion engines to in-flight navigation, in flowing, non-technical language Sidebars and appendices cover technical and mathematical concepts in detail Seventy-five elegant and enlightening illustrations depicting starships and their hardware
NASA Technical Reports Server (NTRS)
Ruiterkamp, R.; Ehrenfreund, P.; Halasinski, T.; Salama, F.; Foing, B.; Schmidt, W.
2002-01-01
This paper describes the scientific overview and current status of ORGANICS an exposure experiment performed on the International Space Station (ISS) to study the evolution of organic matter in space (PI: P. Ehrenfreund), with supporting laboratory experiments performed at NASA Ames. ORGANICS investigates the chemical evolution of samples submitted to long-duration exposure to space environment in near-Earth orbit. This experiment will provide information on the nature, evolution, and survival of carbon species in the interstellar medium (ISM) and in solar system targets.
Bruce Wiegman with a tether for the Electostatic Propulsion System.
2015-09-30
BRUCE WIEGMANN, AN ENGINEER AT NASA'S MARSHALL SPACE FLIGHT CENTER IN HUNTSVILLE, ALABAMA, EXAMINES A HAIR-THIN TETHER THAT WILL BE PART OF AN ELECTROSTATIC PROPULSION SYSTEM THAT COULD SEND SPACECRAFT ON INTERSTELLAR MISSIONS.
Star-Studded Strings around Cocoon Nebula
2011-04-13
Dense filaments of gas in the IC5146 interstellar cloud can be seen clearly in this image taken in infrared light by the Herschel space observatory. The blue region is a stellar nursery known as the Cocoon nebula.
One Voyager Out, One Voyager In Artist Concept
2013-09-12
This artist concept shows the general locations of NASA two Voyager spacecraft. Voyager 1 top has sailed beyond our solar bubble into interstellar space. Voyager 2 bottom is still exploring the outer layer of the solar bubble.
New Details about Interstellar Visitor on This Week @NASA – November 24, 2017
2017-11-24
New data reveal that the interstellar asteroid that recently zipped through our solar system is rocky, cigar-shaped, and has a somewhat reddish hue. It’s the first confirmed object from another star observed in our solar system, and was discovered Oct. 19 by the University of Hawaii’s Pan-STARRS1 telescope team, funded by NASA’s Near-Earth Object Observations Program. The telescope team named it ‘Oumuamua (oh MOO-uh MOO-uh) – Hawaiian for “a messenger from afar arriving first.” The unusually-shaped asteroid, which is up to a quarter mile long and perhaps 10 times as long as it is wide, may provide new clues into how other solar systems formed. Also, Advanced Weather Satellite Launched, James Webb Space Telescope Completes Final Cryogenic Testing, Recurring Martian Streaks: Flowing Sand, Not Water? and Happy Thanksgiving, from Space!
NASA Astrophysics Data System (ADS)
Bartolone, L.; Nichols-Yehling, M.; Davis, H. B.; Davey, B.
2014-07-01
The Interstellar Boundary Explorer mission includes a comprehensive Education and Public Outreach (EPO) program in heliophysics that is overseen and implemented by the Adler Planetarium and evaluated by Technology for Learning Consortium, Inc. Several components of the IBEX EPO program were developed during the prime phase of the mission that were specifically designed for use in informal institutions, especially museums and planetaria. The program included a widely distributed planetarium show with accompanying informal education activities, printed posters, lithographs and other resources, funding for the development of the GEMS Space Science Sequence for Grades 6-8 curriculum materials, development of the IBEX mission website, development of materials for people with special needs, participation in the Heliophysics Educator Ambassador program, and support for the Space Explorers Afterschool Science Club for Chicago Public Schools. In this paper, we present an overview of the IBEX EPO program summative evaluation techniques and results for 2008 through 2012.
Paradigm transition in cosmic plasma physics
NASA Technical Reports Server (NTRS)
Alfven, H.
1982-01-01
New discoveries in cosmic plasma physics are described, and their applications to solar, interstellar, galactic, and cosmological problems are discussed. The new discoveries include the existence of double layers in magnetized plasmas and in the low magnetosphere, and energy transfer by electric current in the auroral circuit. It is argued that solar flares and the solar wind-magnetosphere interaction should not be interpreted in terms of magnetic merging theories, and that electric current needs to be explicitly taken account of in understanding these phenomena. The filamentary structure of cosmic plasmas may be caused by electric currents in space, and the pinch effect may have a central role to play in the evolutionary history of interstellar clouds, stars, and solar systems. Space may have a cellular structure, with the cell walls formed by thin electric current layers. Annihilation may be the source of energy for quasars and the Hubble expansion, and the big bang cosmology may well be wrong.
Solar lens mission concept for interstellar exploration
NASA Astrophysics Data System (ADS)
Brashears, Travis; Lubin, Philip; Turyshev, Slava; Shao, Michael; Zhang, Qicheng
2015-09-01
The long standing approach to space travel has been to incorporate massive on-board electronics, probes and propellants to achieve space exploration. This approach has led to many great achievements in science, but will never help to explore the interstellar medium. Fortunately, a paradigm shift is upon us in how a spacecraft is constructed and propelled. This paper describes a mission concept to get to our Sun's Gravity Lens at 550AU in less than 10 years. It will be done by using DE-STAR, a scalable solar-powered phased-array laser in Earth Orbit, as a directed energy photon drive of low-mass wafersats. [1] [2] [3] [4] [5] With recent technologies a complete mission can be placed on a wafer including, power from an embedded radio nuclear thermal generator (RTG), PV, laser communications, imaging, photon thrusters for attitude control and other sensors. As one example, a futuristic 200 MW laser array consisting of 1 - 10 kw meter scale sub elements with a 100m baseline can propel a 10 gram wafer scale spacecraft with a 3m laser sail to 60AU/Year. Directed energy propulsion of low-mass spacecraft gives us an opportunity to capture images of Alpha Centauri and its planets, detailed imaging of the cosmic microwave background, set up interstellar communications by using gravity lenses around nearby stars to boost signals from interstellar probes, and much more. This system offers a very large range of missions allowing hundreds of wafer scale payload launches per day to reach this cosmological data reservoir. Directed Energy Propulsion is the only current technology that can provide a near-term path to utilize our Sun's Gravity Lens.
Canada's Dominion Astrophysical Observatory and the rise of 20th Century Astrophysics and Technology
NASA Astrophysics Data System (ADS)
Hesser, James E.; Bohlender, David; Crabtree, Dennis
2015-08-01
Construction of Canada’s Dominion Astrophysical Observatory (DAO) commenced in 1914 with first light on 6 May 1918. Its varied, rich contributions to the astronomical heritage of the 20th century continue into the 21st century. The first major research observatory built with public funding on the West Coast of North America, it was Canada’s first ‘big science’ project. DAO welcomed scientists from around the world to use its 1.8m telescope designed by John Stanley Plaskett working in close collaboration with the Warner and Swasey Company of Cleveland, OH. Their original design was copied seven times around the globe, the last occasion being in the 1960s. From Day 1 the DAO welcomed the public for viewing and interaction with the small scientific staff whose early efforts would today be characterized as ‘Key Projects’. Those efforts included measuring the radial velocities of O and B stars that, interpreted through Oort’s ideas of differential rotation, determined the most reliable estimate of the size and mass of the Milky Way available until radio astronomical techniques emerged in the 1950s. The first organic molecule in interstellar space, CH, was discovered by a DAO astronomer. The first, very puzzling estimate of ~3K for the temperature of interstellar space was deduced from interstellar CN observations a year after interstellar CH and CN were discovered. DAO’s heritage of innovative instrumentation continues to the present day where expertise in optically efficient, mechanically stable spectrographs and adaptive optics are much in evidence at Mauna Kea’s CFHT, Gemini and Subaru observatories. In 2009 the DAO was designated a National Historic Site. This presentation will draw links between DAO, developments of Canadian astronomy and the emergence of Mauna Kea as an exceptional global astronomical reserve.
Recent Advances in Organic Cosmochemistry
NASA Technical Reports Server (NTRS)
Sandford, Scott A.; Witteborn, Fred C. (Technical Monitor)
1994-01-01
The Astrochemistry Laboratory at NASA's Ames Research Center pursues a variety of activities, most of which center around the use of spectroscopy (ultraviolet to far-infrared) for the interpretation of astronomical and meteoritic data. One of our key activities is the study of the chemical and physical properties of cometary, interstellar, and planetary ice analogs and matrix-isolated molecules of astrophysical interest. As a result of these studies it is now known that a significant fraction of the carbon in the interstellar medium (ISM) is in reasonably complex forms, some of which are clearly of interest for exobiology. Examples of compounds known or suspected to be present in space include polycyclic aromatic hydrocarbons (PAHs), microdiamonds, an aliphatic-rich component found in the diffuse interstellar medium, and a variety of molecular species produced by the irradiation of mixed molecular ices in dense clouds. A number of the species produced by irradiation contain nitrogen and appear to offer an additional means of producing some of the amino acids found in meteorites. I will review these complex carbonaceous materials and discuss how they are connected with each other and the organic materials that ultimately ended up as part of our own Solar System. Specific points that will probably be covered include: (1) the composition of the ices in interstellar dense molecular clouds; (2) the more complex organic compounds produced when these ices are irradiated and/or warmed; (3) the detection of microdiamonds in space; (4) the discovery that aliphatic materials may constitute as much as 15% of all the carbon in the diffuse ISM, appears to be present everywhere in the galaxy, and yet seems to be present everywhere in the galaxy, and yet seems to be significantly concentrated towards the center of the galaxy.
Update on IBEX and the outer boundary of the space radiation environment
NASA Astrophysics Data System (ADS)
McComas, D. J.; IBEX Science Team
2012-11-01
The Interstellar Boundary Explorer (IBEX) mission has been remotely observing the global interaction of our heliosphere with the local interstellar medium for over three years. Initially, IBEX generated the first all-sky maps of Energetic Neutral Atoms (ENAs) emanating in from the boundaries of our heliosphere over the energy range from ˜0.1-6 keV. Using these observations, the IBEX team discovered a smoothly varying, globally distributed ENA flux overlaid by a narrow "ribbon" of significantly enhanced ENA emissions. Since the initial publication of these results in a special issue of Science magazine (November 2009), IBEX has completed five more energy-resolved sets of sky maps and discovered small but important time variations in the interaction, separated the ribbon from globally distributed ENA fluxes, measured the energy spectral shape and inferred ion source temperatures, and carried out many other observational and theoretical studies of the outer heliosphere. In a second major area of observations - direct measurements of Interstellar Neutral (ISN) atoms - just published, IBEX observations of ISN He atoms show that the speed and direction (the motion of the heliosphere with respect to the interstellar medium) is slower and from a somewhat different direction than that thought from prior Ulysses observations. These observations also show evidence for a previously unknown and unanticipated secondary population of Helium. In addition, IBEX is providing the first direct quantitative measurements of the ISN H parameters and the first direct measurements of interstellar Ne and the interstellar Neon/Oxygen abundance ratio; this ratio is significantly different than the solar abundance ratio. Finally, IBEX was recently maneuvered into a unique, long-term stable orbit, which has a very low radiation environment and requires no orbit maintenance. Thus, IBEX will likely continue to provide revolutionary observations of the outer heliosphere and local interstellar medium for many years to come.
Synthesis and chirality of amino acids under interstellar conditions.
Giri, Chaitanya; Goesmann, Fred; Meinert, Cornelia; Evans, Amanda C; Meierhenrich, Uwe J
2013-01-01
Amino acids are the fundamental building blocks of proteins, the biomolecules that provide cellular structure and function in all living organisms. A majority of amino acids utilized within living systems possess pre-specified orientation geometry (chirality); however the original source for this specific orientation remains uncertain. In order to trace the chemical evolution of life, an appreciation of the synthetic and evolutional origins of the first chiral amino acids must first be gained. Given that the amino acids in our universe are likely to have been synthesized in molecular clouds in interstellar space, it is necessary to understand where and how the first synthesis might have occurred. The asymmetry of the original amino acid synthesis was probably the result of exposure to chiral photons in the form of circularly polarized light (CPL), which has been detected in interstellar molecular clouds. This chirality transfer event, from photons to amino acids, has been successfully recreated experimentally and is likely a combination of both asymmetric synthesis and enantioselective photolysis. A series of innovative studies have reported successful simulation of these environments and afforded production of chiral amino acids under realistic circumstellar and interstellar conditions: irradiation of interstellar ice analogues (CO, CO2, NH3, CH3OH, and H2O) with circularly polarized ultraviolet photons at low temperatures does result in enantiomer enriched amino acid structures (up to 1.3% ee). This topical review summarizes current knowledge and recent discoveries about the simulated interstellar environments within which amino acids were probably formed. A synopsis of the COSAC experiment onboard the ESA cometary mission ROSETTA concludes this review: the ROSETTA mission will soft-land on the nucleus of the comet 67P/Churyumov-Gerasimenko in November 2014, anticipating the first in situ detection of asymmetric organic molecules in cometary ices.
NASA Astrophysics Data System (ADS)
Taut, A.; Berger, L.; Drews, C.; Bower, J.; Keilbach, D.; Lee, M. A.; Moebius, E.; Wimmer-Schweingruber, R. F.
2017-12-01
Complementary to the direct neutral particle measurements performed by e.g. IBEX, the measurement of PickUp Ions (PUIs) constitutes a diagnostic tool to investigate the local interstellar medium. PUIs are former neutral particles that have been ionized in the inner heliosphere. Subsequently, they are picked up by the solar wind and its frozen-in magnetic field. Due to this process, a characteristic Velocity Distribution Function (VDF) with a sharp cutoff evolves, which carries information about the PUI's injection speed and thus the former neutral particle velocity. The symmetry of the injection speed about the interstellar flow vector is used to derive the interstellar flow longitude from PUI measurements. Using He PUI data obtained by the PLASTIC sensor on STEREO A, we investigate how this concept may be affected by systematic errors. The PUI VDF strongly depends on the orientation of the local interplanetary magnetic field. Recently injected PUIs with speeds just below the cutoff speed typically form a highly anisotropic torus distribution in velocity space, which leads to a longitudinal transport for certain magnetic field orientation. Therefore, we investigate how the selection of magnetic field configurations in the data affects the result for the interstellar flow longitude that we derive from the PUI cutoff. Indeed, we find that the results follow a systematic trend with the filtered magnetic field angles that can lead to a shift of the result up to 5°. In turn, this means that every value for the interstellar flow longitude derived from the PUI cutoff is affected by a systematic error depending on the utilized magnetic field orientations. Here, we present our observations, discuss possible reasons for the systematic trend we discovered, and indicate selections that may minimize the systematic errors.
Plasma Flow Near Voyager 1 Artist Animation
2012-12-03
This artist concept shows plasma flows around NASA Voyager 1 spacecraft as it approaches interstellar space. Voyager 1 low-energy charged particle instrument detects the speed of the wind of plasma, or hot ionized gas, streaming off the sun.
Gas-Phase Ion Chemistry in Interstellar, Circumstellar, and Planetary Environments
NASA Astrophysics Data System (ADS)
Demarais, Nicholas J.
In the last century, astronomers, physicists, and chemists have shown that the environments of space are complex. Although we have learned a great amount about the interstellar medium, circumstellar medium, and atmospheres of other planets and moons, many mysteries still remain unsolved. The cooperation of astronomers, modelers, and chemists has lead to the detection of over 180 molecules in the interstellar and circumstellar medium, and the evolution of the new scientific field of astrochemistry. Gas-phase ion chemistry can determine the stability of ions in these complex environments, provide chemical networks, and guide searches for new interstellar molecules. Using the flowing afterglow-selected ion flow tube (FA-SIFT), we have characterized the reactions of positive and negative ions that are important in a variety of astrochemical environments. The detection of CF+ in photodissociation regions highlights the importance of fluorinated species in the interstellar medium. The viability of CF+ as a possible diffuse interstellar band (DIB) carrier is discussed as related to reactions with neutral molecules in various interstellar conditions; the reactions of CF+ with twenty-two molecules of interstellar relevance were investigated. The chemical reactions of HCNH+ with H2, CH 4, C2H2, and C2H4 were reexamined to provide insight into the overprediction of HCNH+ in Titan's ionosphere by current astrochemical models. In addition, this work suggests other chemical reactions that should be included in the current models to fully describe the destruction rates of HCNH+ in Titan's ionosphere. The reactions of polycyclic aromatic hydrocarbon (PAH) ions with H atoms and other small molecules were carried out to determine the stability of these species. In diffuse regions, where the photon flux is high, PAH cations are the dominant ionization state. This work continues our previous research to include PAHs of differing geometries as well as nitrogen-containing PAHs. Extension to larger PAH cations was made possible by the integration of the laser induced acoustic desorption (LIAD) source with the FA-SIFT. In addition, in dense environments, where the photon flux is low, anionic PAHs may exist. The detection of negative ions in the past 10 years has highlighted the importance of their inclusion in astrochemical models. We have investigated the chemistry of deprotonated PAHs with molecules of interstellar relevance to determine their chemical stability in dense regions of the interstellar and circumstellar medium. In addition to PAH anions, H- is an important species in dense interstellar environments. While the reaction of hydride anion has been recognized as a critical mechanism in the initial cooling immediately after the Big Bang, H- + H → H2 + e-, chemistry with neutral molecules was largely unknown. The chemistry of H- with various classes of organic molecules was investigated and conclusions are drawn based on reaction mechanisms.
NASA Technical Reports Server (NTRS)
Bejaoui, Salma; Salama, Farid; Contreras, Cesar; Sciamma O'Brien, Ella; Foing, Bernard; Pascale, Ehrenfreund
2015-01-01
Polycyclic aromatic hydrocarbon (PAH) molecules are considered the best carriers to account for the ubiquitous infrared emission bands. PAHs have also been proposed as candidates to explain the diffuse interstellar bands (DIBs), a series of absorption features seen on the interstellar extinction curve and are plausible carriers for the extended red emission (ERE), a photoluminescent process associated with a wide variety of interstellar environments. Extensive efforts have been devoted over the past two decades to characterize the physical and chemical properties of PAH molecules and ions in space. Absorption spectra of PAH molecules and ions trapped in solid matrices have been compared to the DIBs. Absorption spectra of several cold, isolated gas-phase PAHs have also been measured under experimental conditions that mimic the interstellar conditions. The purpose of this study is to provide a new dimension to the existing spectroscopic database of neutral and single ionized PAHs that is largely based on absorption spectra by adding emission spectroscopy data. The measurements are based on the laser induced fluorescence (LIF) technique and are performed with the Pulsed Discharge Nozzle (PDN) of the COSmIC laboratory facility at NASA Ames laboratory. The PDN generates a plasma in a free supersonic jet expansion to simulate the physical and the chemical conditions in interstellar environments. We focus, here, on the fluorescence spectra of large neutral PAHs and their cations where there is a lack of fluorescence spectroscopy data. The astronomical implications of the data (e.g., ERE) are examined.
NASA Technical Reports Server (NTRS)
Milam, Stefanie N.; Weaver, Susanna Widicus
2012-01-01
Over 150 molecular species have been confirmed in space, primarily by their rotational spectra at millimeter/submillimeter wavelengths, which yield an unambiguous identification. Many of the known interstellar organic molecules cannot be explained by gas-phase chemistry. It is now presumed that they are produced by surface reactions of the simple ices and/or grains observed and released into the gas phase by sublimation, sputtering, etc. Additionally, the chemical complexity found in meteorites and samples returned from comets far surpasses that of the remote detections for the interstellar medium (ISM), comets, and planetary atmospheres. Laboratory simulations of interstellar/cometary ices have found, from the analysis of the remnant residue of the warmed laboratory sample, that such molecules are readily formed; however, it has yet to be determined if they are formed during the warm phase or within the ice during processing. Most analysis of the ice during processing reveals molecular changes, though the exact quantities and species formed are highly uncertain with current techniques due to overwhelming features of simple ices. Remote sensing with high resolution spectroscopy is currently the only method to detect trace species in the ISM and the primary method for comets and icy bodies in the Solar System due to limitations of sample return. We have recently designed an experiment to simulate interstellar/cometary/planetary ices and detect trace species employing the same techniques used for remote observations. Preliminary results will be presented.
2008-10-06
VANDENBERG AIR FORCE BASE, Fla. -- NASA’s Interstellar Boundary Explorer, or IBEX, spacecraft and mated Pegasus XL rocket are being attached to Orbital Sciences’ L-1011 aircraft for launch. IBEX is targeted for launch from the Kwajalein Atoll, a part of the Marshall Islands in the Pacific Ocean, on Oct. 19. IBEX will be launched aboard the Pegasus rocket dropped from under the wing of the L-1011 aircraft flying over the Pacific Ocean. The Pegasus will carry the spacecraft approximately 130 miles above Earth and place it in orbit. The IBEX satellite will make the first map of the boundary between the Solar System and interstellar space. Photo credit: NASA/Mark Mackley, VAFB
2008-10-06
VANDENBERG AIR FORCE BASE, Fla. -- NASA’s Interstellar Boundary Explorer, or IBEX, spacecraft and mated Pegasus XL rocket are being attached to Orbital Sciences’ L-1011 aircraft for launch. IBEX is targeted for launch from the Kwajalein Atoll, a part of the Marshall Islands in the Pacific Ocean, on Oct. 19. IBEX will be launched aboard the Pegasus rocket dropped from under the wing of the L-1011 aircraft flying over the Pacific Ocean. The Pegasus will carry the spacecraft approximately 130 miles above Earth and place it in orbit. The IBEX satellite will make the first map of the boundary between the Solar System and interstellar space. Photo credit: NASA/Mark Mackley, VAFB
2008-10-06
VANDENBERG AIR FORCE BASE, Fla. -- NASA’s Interstellar Boundary Explorer, or IBEX, spacecraft and mated Pegasus XL rocket are being attached to Orbital Sciences’ L-1011 aircraft for launch. IBEX is targeted for launch from the Kwajalein Atoll, a part of the Marshall Islands in the Pacific Ocean, on Oct. 19. IBEX will be launched aboard the Pegasus rocket dropped from under the wing of the L-1011 aircraft flying over the Pacific Ocean. The Pegasus will carry the spacecraft approximately 130 miles above Earth and place it in orbit. The IBEX satellite will make the first map of the boundary between the Solar System and interstellar space. Photo credit: NASA/Mark Mackley, VAFB
2008-10-06
VANDENBERG AIR FORCE BASE, Fla. -- NASA’s Interstellar Boundary Explorer, or IBEX, spacecraft and mated Pegasus XL rocket are being attached to Orbital Sciences’ L-1011 aircraft for launch. IBEX is targeted for launch from the Kwajalein Atoll, a part of the Marshall Islands in the Pacific Ocean, on Oct. 19. IBEX will be launched aboard the Pegasus rocket dropped from under the wing of the L-1011 aircraft flying over the Pacific Ocean. The Pegasus will carry the spacecraft approximately 130 miles above Earth and place it in orbit. The IBEX satellite will make the first map of the boundary between the Solar System and interstellar space. Photo credit: NASA/Mark Mackley, VAFB
Beyond Pluto: The Search for the Edge of the Solar System
Funsten, Herb
2018-01-16
In July, we finally visited the last major body of our solar system, Pluto. But what lies beyond? The stellar wind from our Sun forms an enormous bubble in interstellar space. This âsphere of our Sun,â or heliosphere, extends far beyond Pluto and forms a protective cocoon that shields us from cosmic radiation. In this talk, we will travel to the edge of the solar system, peer into the structure and dynamics of the outer heliosphere as it interacts with the interstellar medium and anticipate the future of the solar system as it moves through our galactic neighborhood.
NASA Astrophysics Data System (ADS)
Bejaoui, Salma; Salama, Farid
2015-08-01
Polycyclic aromatic hydrocarbon (PAH) molecules are considered the best carriers to account for the ubiquitous infrared emission bands. PAHs have also been proposed as candidates to explain the diffuse interstellar bands (DIBs), a series of absorption features seen on the interstellar extinction curve and are plausible carriers for the extended red emission (ERE), a photoluminescent process associated with a wide variety of interstellar environments. Extensive efforts have been devoted over the past two decades to characterize the physical and chemical properties of PAH molecules and ions in space. Absorption spectra of PAH molecules and ions trapped in solid matrices have been compared to the DIBs [1, 2]. Absorption spectra of several cold, isolated gas-phase PAHs have also been measured under experimental conditions that mimic the interstellar conditions [see 3 for a review]. The purpose of this study is to provide a new dimension to the existing spectroscopic database of neutral and single ionized PAHs that is largely based on absorption spectra by adding emission spectroscopy data. The measurements are based on the laser-induced fluorescence (LIF) technique [4] and are performed with the Pulsed Discharge Nozzle (PDN) of the COSmIC laboratory facility at NASA Ames laboratory. The PDN generates plasma in a free supersonic jet expansion to simulate the physical and the chemical conditions in interstellar environments. We focus, here, on the fluorescence spectra of large neutral PAHs and their cations where there is a lack of fluorescence spectroscopy data. The astronomical implications of the data (e.g., ERE) are examinedReferences[1] F. Salama, E. Bakes, L.J. Allamandola, A.G.G.M. Tielens, Astrophys. J., 458 (1996) p.621[2] F. Salama, The ISO Revolution, EDP Sciences, Les Ulis, France (1999) p.65[3] Salama F., In Organic Matter in Space, IAU Symposium 251, Kwok & Sandford Eds.Cambridge University Press,4, S251,(2008), p. 357 (2008) and references therein.[4] Salma Bejaoui, Xavier Mercier, Pascale Desgroux, Eric Therssen, Comb.& Fl, 161 (2014) p. 2479
UV-visible spectroscopy of PAHs and PAHNs in supersonic jet. Astrophysical Implications
NASA Astrophysics Data System (ADS)
Salma, Bejaoui; Salama, Farid
2017-06-01
Polycyclic Aromatic Hydrocarbon (PAHs) molecules are attracting much attention of the astrophysical and astrochemical communities since they are ubiquitous presence in space and could survive in the harsh interstellar medium (ISM). They are proposed as plausible carriers of the still unassigned diffuse interstellar bands (DIBs) for more than two decades now. The so-called PAH - DIB proposal has been based on the abundance of PAHs in the ISM and their stability against the photo and thermo dissociation. Nitrogen is one of the most abundant elements after hydrogen, helium, and carbon [1]. PANHs exhibit spectral features similar to PAHs and may also contribute to unidentified spectral bands.To prove PAHs-DIBs hypothesis, laboratory absorption spectra of aromatic under astrophysical relevant conditions are of crucial importance to compare with the observed DIBs spectra. The most challenging task is to reproduce as closely as technically possible, the physical and chemical conditions that are present in space. Interstellar PAHs are expected to be present as free, cold, neutral molecules and/or charged species [2]. In our laboratory, comparable conditions are achieved using an excellent platform developed in NASA Ames. Our cosmic simulation chamber (COSmIC) allow the measurements of gas phase spectra of neutral and ionized interstellar PAHs analogs by associating a molecular beam with an ionizing discharge to generate a cold plasma expansion (˜ 100 K) [3]. Our approach to assign PAH as carriers of some DIBs is record the electronic spectra of cold PAHs in gas phase and systematic search for a possible correspondence in astronomical DIBs spectra. We report in this work UV-visible absorption spectra of neutral PAHs and PAHNs using the cavity ring down spectroscopy (CRDS) technique. We discuss the effect of the substitution of C-H bond(s) by a nitrogen atom(s) in spectroscopic features of PAHs and their astrophysical application.[1] L. Spitzer, 1978, Physical processes in the interstellar medium. New York Wiley-Interscience[2] F. Salama, E. Bakes, L.J. Allamandola, A.G.G.M. Tielens, Astrophys. J. 458 (1996) 621[3] L. Biennier, F. Salama, L. J. Allamandola, & J. J. Scherer, (2003) J. of Chemical Physics, 118(17), 7863-7872
The Role of Grain Surface Reactions in the Chemistry of Star Forming Regions
NASA Technical Reports Server (NTRS)
Kress, M. E.; Tielens, A. G. G. M.; Roberge, W. G.
1998-01-01
The importance of reactions at the surfaces of dust grains has long been recognized to be one of the two main chemical processes that form molecules in cold, dark interstellar clouds where simple, saturated (fully-hydrogenated) molecules such as H2 water, methanol, H2CO, H2S, ammonia and CH4 are present in quantities far too high to be consistent with their extremely low gas phase formation rates. In cold dark regions of interstellar space, dust grains provide a substrate onto which gas-phase species can accrete and react. Grains provide a "third body" or a sink for the energy released in the exothermic reactions that form chemical bonds. In essence, the surfaces of dust grains open up alternative reaction pathways to form observed molecules whose abundances cannot be explained with gas-phase chemistry alone. This concept is taken one step further in this work: instead of merely acting as a substrate onto which radicals and molecules may physically adsorb, some grains may actively participate in the reaction itself, forming chemical bonds with the accreting species. Until recently, surface chemical reactions had not been thought to be important in warm circumstellar media because adspecies rapidly desorb from grains at very low temperatures; thus, the residence times of molecules and radicals on the surface of grains at all but the lowest temperatures are far too short to allow these reactions to occur. However, if the adspecies could adsorb more strongly, via a true chemical bond with surfaces of some dust grains, then grain surface reactions will play an important role in warm circumstellar regions as well. In this work, the surface-catalyzed reaction CO + 3 H2 yields CH4 + H2O is studied in the context that it may be very effective at converting the inorganic molecule CO into the simplest organic compound, methane. H2 and CO are the most abundant molecules in space, and the reaction converting them to methane, while kinetically inhibited in the gas phase under most astrophysical conditions, is catalyzed by iron, an abundant constituent of interstellar dust. At temperatures between 600 and 1000 K, which occur in the outflows from red giants and near luminous young stars, this reaction readily proceeds in the presence of an iron catalyst. Iron is one of the more abundant elements composing interstellar dust. Its abundance relative to hydrogen is almost that of silicon, and both of these heavy elements are primarily locked up in dust at all but the hottest regions of interstellar space.
2013-11-25
How did scientists know that NASA Voyager spacecraft entered interstellar space? Increase in the density of charged particles was the key piece of evidence. Our sun sits in a bubble, called the heliosphere, carved out by wind emitted from the hot sun.
Origins Space Telescope: Interstellar Medium, Milky Way, and Nearby Galaxies
NASA Astrophysics Data System (ADS)
Battersby, Cara; Origins Space Telescope Study Team
2017-01-01
The Origins Space Telescope (OST) is the mission concept for the Far-Infrared Surveyor, a study in development by NASA in preparation for the 2020 Astronomy and Astrophysics Decadal Survey. Origins is planned to be a large aperture, actively-cooled telescope covering a wide span of the mid- to far-infrared spectrum. Its imagers and spectrographs will enable a variety of surveys of the sky that will discover and characterize the most distant galaxies, Milky-Way, exoplanets, and the outer reaches of our Solar system. Origins will enable flagship-quality general observing programs led by the astronomical community in the 2030s. The Science and Technology Definition Team (STDT) would like to hear your science needs and ideas for this mission. The team can be contacted at firsurveyor_info@lists.ipac.caltech.edu.This presentation will provide a summary of the science case related to the Interstellar Medium (ISM), the Milky Way, and Nearby Galaxies. Origins will enable a comprehensive view of magnetic fields, turbulence, and the multi-phase ISM; connecting physics at all scales, from galaxies to protostellar cores. With unprecedented sensitivity, Origins will measure and characterize the mechanisms of feedback from star formation and Active Galactic Nuclei (AGN) over cosmic time and trace the trail of water from interstellar clouds, to protoplanetary disks, to Earth itself in order to understand the abundance and availability of water for habitable planets.
NASA Astrophysics Data System (ADS)
Jonusas, Mindaugas; Krim, Lahouari
2016-06-01
The presence of NH2OH, one of the main precursors in the formation of amino-acids, on dust grain mantles, may be the most obvious elucidation for the creation of large pre-biotic molecules in the interstellar medium. However, while many laboratory experimental studies, to simulate the icy grain chemistry in space, found that NH2OH molecules may be easily formed in solid phase with high abundances and then they should desorb, through a temperature-induced desorption into the gas phase, with the same high abundances; all the spatial observations conclude that NH2OH is not detected in gas phase within any of the explored astronomical sources. Such inconsistencies between laboratory experiment simulations and spatial observations lead our investigations towards this experimental study to see if there is any chemical transformation of NH2OH, occurring in the solid phase before the desorption processes of NH2OH from the mantle of interstellar icy grains. Our experimental results show that the heating of NH2OH-H2O ices lead to a decomposition of NH2OH into HNO, NH3 and O2, even before reaching its desorption temperature. We show through this work that the NH2OH non-detection from previous examined astronomical sources could mainly due to its high reactivity in solid phase on the icy interstellar grains.
Learning about the very local interstellar medium from the Voyagers
NASA Astrophysics Data System (ADS)
Florinski, V. A.; Guo, X.; Burlaga, L. F.
2017-12-01
The outer heliosheath is the region in front of the heliopause affected by the interaction between the solar wind and the flow of interstellar gas. Voyager 1 has been exploring this region for over five years uncovering a number of remarkable phenomena not present elsewhere in space directly accessible by spacecraft. The very local interstellar medium (VLISM) is characterized by remarkably low levels of magnetic fluctuation intensities presenting a nearly scatter free environment for energetic particle propagation. The fluctuations have power law spectra and probably belong to the inertial range of a turbulent cascade fed by a variety of sources, including large and kinetic scale instabilities and the inner heliosheath structures transmitted across the heliopause. While the fluxes of galactic cosmic rays are, on average, very steady in the VLISM, in agreement with theoretical expectations, they also show episodic depletions at the 90 degree pitch angle. These anisotropy events may be associated with the passage of weak compressive magnetic structures resembling shock waves, but with ramp widths orders of magnitude broader than the relevant kinetic plasma scales. The key to understanding the VLISM lies in recognizing the interconnections between the magnetic field data, which has a "local" character, the highly mobile cosmic rays that sample vast regions of space along magnetic field lines, and neutral atom populations measured by IBEX that can reveal kinetic scale physics of energetic ions produced in charge exchange events.
PROBING THE ROLE OF CARBON IN ULTRAVIOLET EXTINCTION ALONG GALACTIC SIGHT LINES
DOE Office of Scientific and Technical Information (OSTI.GOV)
Parvathi, V. S.; Babu, B. R. S.; Sofia, U. J.
2012-11-20
We report previously undetermined interstellar gas and dust-phase carbon abundances along 15 Galactic sight lines based on archival data of the strong 1334.5323 A transition observed with the Space Telescope Imaging Spectrograph. These are combined with previously reported carbon measurements along six sight lines to produce a complete sample of interstellar C II measurements determined with the 1334 A transition. Our data set includes a variety of Galactic disk environments characterized by different extinctions and samples paths ranging over three orders of magnitude in average density of hydrogen ((n(H))). Our data support the idea that dust, specifically carbon-based grains, aremore » processed in the neutral interstellar medium. We, however, do not find that the abundance of carbon in dust or the grain-size distribution is related to the strength of the 2175 A bump. This is surprising, given that many current models have polycyclic aromatic hydrocarbons as the bump-producing dust.« less
Hot interstellar tunnels. 1: Simulation of interacting supernova remnants
NASA Technical Reports Server (NTRS)
Smith, B. W.
1976-01-01
The theory required to build a numerical simulation of interacting supernova remnants is developed. The hot cavities within a population of remnants will become connected, with varying ease and speed, for a variety of assumed conditions in the outer shells of old remnants. Apparently neither radiative cooling nor thermal conduction in a large-scale galactic magnetic field can destroy hot cavity regions, if they grow, faster than they are reheated by supernova shock waves, but interstellar mass motions disrupt the contiguity of extensive cavities necessary for the dispersal of these shocks over a wide volume. Monte Carlo simulations show that a quasi-equilibrium is reached in the test space within 10 million yrs of the first supernova and is characterized by an average cavity filling fraction of the interstellar volume. Aspects of this equilibrium are discussed for a range of supernova rates. Two predictions are not confirmed within this range: critical growth of hot regions to encompass the entire medium, and the efficient quenching of a remnant's expansion by interaction with other cavities.
Primary gamma rays. [resulting from cosmic ray interaction with interstellar matter
NASA Technical Reports Server (NTRS)
Fichtel, C. E.
1974-01-01
Within this galaxy, cosmic rays reveal their presence in interstellar space and probably in source regions by their interactions with interstellar matter which lead to gamma rays with a very characteristic energy spectrum. From the study of the intensity of the high energy gamma radiation as a function of galactic longitude, it is already clear that cosmic rays are almost certainly not uniformly distributed in the galaxy and are not concentrated in the center of the galaxy. The galactic cosmic rays appear to be tied to galactic structural features, presumably by the galactic magnetic fields which are in turn held by the matter in the arm segments and the clouds. On the extragalactic scale, it is now possible to say that cosmic rays are not universal at the density seen near the earth. The diffuse celestial gamma ray spectrum that is observed presents the interesting possibility of cosmological studies and possible evidence for a residual universal cosmic ray density, which is much lower than the present galactic cosmic ray density.
NASA Astrophysics Data System (ADS)
Sato, Akimasa; Kitazawa, Yuya; Ochi, Toshiro; Shoji, Mitsuo; Komatsu, Yu; Kayanuma, Megumi; Aikawa, Yuri; Umemura, Masayuki; Shigeta, Yasuteru
2018-03-01
Glycine, the simplest amino acid, has been intensively searched for in molecular clouds, and the comprehensive clarification of the formation path of interstellar glycine is now imperative. Among all the possible glycine formation pathways, we focused on the radical pathways revealed by Garrod (2013). In the present study, we have precisely investigated all the chemical reaction steps related to the glycine formation processes based on state-of-the-art density functional theory (DFT) calculations. We found that two reaction pathways require small activation barriers (ΔE‡ ≤ 7.75 kJ mol-1), which demonstrates the possibility of glycine formation even at low temperatures in interstellar space if the radical species are generated. The origin of carbon and nitrogen in the glycine backbone and their combination patterns are further discussed in relation to the formation mechanisms. According to the clarification of the atomic correspondence between glycine and its potential parental molecules, it is shown that the nitrogen and two carbons in the glycine can originate in three common interstellar molecules, methanol, hydrogen cyanide, and ammonia, and that the source molecules of glycine can be described by any of their combinations. The glycine formation processes can be categorized into six patterns. Finally, we discussed two other glycine formation pathways expected from the present DFT calculation results.
NASA Technical Reports Server (NTRS)
1991-01-01
Space physics is defined as the study of the heliosphere as one system; that is, of the Sun and solar wind, and their interactions with the upper atmospheres, ionospheres, and magnetospheres of the planets and comets, with energetic particles, and with the interstellar medium. This report contains a number of reports by different panels on the major topics in the space physics program including: (1) the cosmic and heliospheric physics program for the years 1995 to 2010; (2) ionosphere, thermosphere, and mesosphere studies; (3) magnetospheric physics; (4) solar physics; and (5) space physics theory.
Chemical evolution in space--a source of prebiotic molecules.
Greenberg, J M
1983-01-01
In Laboratory Astrophysics at Leiden University a laboratory analog for following the chemical evolution of interstellar dust in space shows that the dust contains the bulk of organic material in the universe. We follow the photoprocessing of low temperature (10 K) mixtures of ices subjected to vacuum ultraviolet radiation in simulation of interstellar conditions. The most important, but necessary, difference is in the time scales for photo-processing. One hour in the laboratory is equivalent to one thousand years in low density regions of space and as much as, or greater than, ten thousand to one million years in the depths of dense molecular clouds. The ultimate product of photoprocessing of grain material in the laboratory is a complex nonvolatile residue which is yellow in color and soluble in water and methanol. The molecular weight is greater than the mid-hundreds. The infrared absorption spectra indicate the presence of carboxylic acid and amino groups resembling those of other molecules of presumably prebiological significance produced by more classical methods. One of our residues, when subjected to high resolution mass spectroscopy gave a mass of 82 corresponding to C4H6H2 after release of CO2 and trace ammounts of urea suggesting amino pyroline rings. The deposit of prebiotic dust molecules occurred as many as 5 times in the first 500-700 million years on a primitive Earth by accretion during the passage of the solar system through a dense interstellar cloud. The deposition rate during each passage is estimated to be between 10(9) and 10(10) g per year during the million or so years of each passage; i.e., a total deposition of 1O(9)-10(10) metric tons of complex organic material per passage.
Galactic Observations of Terahertz C+ (GOT C+): Inner Galaxy Survey
NASA Astrophysics Data System (ADS)
Yorke, Harold; Langer, William; Velusamy, T.; Pineda, J. L.; Goldsmith, P. F.; Li, D.
To understand the lifecycle of the interstellar gas and star formation we need detailed information about the diffuse atomic and diffuse molecular gas cloud properties. The ionized carbon [CII] 1.9 THz fine structure line is an important tracer of the atomic gas in the diffuse regions and the interface regions of atomic gas to molecular clouds. Furthermore, C+ is a major ISM coolant and among the Galaxy's strongest far-IR emission lines, and thus controls the thermal conditions throughout large parts of the Galaxy. Until now our knowledge of interstellar gas has been limited to the diffuse atomic phase traced by HI and to the dense molecular H2 phase traced by CO. However, we are missing an important phase of the ISM, called "dark gas" in which there is no or little, HI, and mostly molecular hydrogen but with insufficient shielding of UV to allow CO to form. C+ emission and absorption lines at 1.9 THz have the potential to trace such cloud transitions and evolution. Galactic Observations of the Terahertz C+ Line (GOT C+) is a Herschel Space Observatory Open Time Key Program to study the diffuse interstellar medium by sampling [CII] 1.9 THz line emission throughout the Galactic disk. We discuss the broader perspective of this survey and the first results of GOT C+ obtained during the Science Demonstration Phase (SDP) and Priority Science Phase (PSP) of HIFI, which focus on approximately 100 lines of sight in the inner galaxy. These observations are being carried out with the Herschel Space Observatory, which is an ESA cornerstone mission, with contributions from NASA. This research was conducted at the Jet Propulsion Laboratory, California Institute of Technology under contract with the National Aeronautics and Space Administration. JLP is a Caltech-JPL Postdoctoral Associate.
REVISITING THE ISN FLOW PARAMETERS, USING A VARIABLE IBEX POINTING STRATEGY
DOE Office of Scientific and Technical Information (OSTI.GOV)
Leonard, T. W.; Möbius, E.; Heirtzler, D.
2015-05-01
The Interstellar Boundary Explorer (IBEX) has observed the interstellar neutral (ISN) gas flow over the past 6 yr during winter/spring when the Earth’s motion opposes the ISN flow. Since IBEX observes the interstellar atom trajectories near their perihelion, we can use an analytical model based upon orbital mechanics to determine the interstellar parameters. Interstellar flow latitude, velocity, and temperature are coupled to the flow longitude and are restricted by the IBEX observations to a narrow tube in this parameter space. In our original analysis we found that pointing the spacecraft spin axis slightly out of the ecliptic plane significantly influencesmore » the ISN flow vector determination. Introducing the spacecraft spin axis tilt into the analytical model has shown that IBEX observations with various spin axis tilt orientations can substantially reduce the range of acceptable solutions to the ISN flow parameters as a function of flow longitude. The IBEX operations team pointed the IBEX spin axis almost exactly within the ecliptic plane during the 2012–2014 seasons, and about 5° below the ecliptic for half of the 2014 season. In its current implementation the analytical model describes the ISN flow most precisely for the spin axis orientation exactly in the ecliptic. This analysis refines the derived ISN flow parameters with a possible reconciliation between velocity vectors found with IBEX and Ulysses, resulting in a flow longitude λ{sub ∞} = 74.°5 ± 1.°7 and latitude β{sub ∞} = −5.°2 ± 0.°3, but at a substantially higher ISN temperature than previously reported.« less
NASA Astrophysics Data System (ADS)
Frisch, P. C.; Berdyugin, A.; Piirola, V.; Magalhaes, A. M.; Seriacopi, D. B.; Wiktorowicz, S. J.; Andersson, B.-G.; Funsten, H. O.; McComas, D. J.; Schwadron, N. A.; Slavin, J. D.; Hanson, A. J.; Fu, C.-W.
2015-12-01
The interstellar magnetic field (ISMF) near the heliosphere is a fundamental component of the solar galactic environment that can only be studied using polarized starlight. The results of an ongoing survey of the linear polarizations of local stars are analyzed with the goal of linking the ISMF that shapes the heliosphere to the nearby field in interstellar space. We present new results on the direction of the magnetic field within 40 pc obtained from analyzing polarization data using a merit function that determines the field direction that provides the best fit to the polarization data. Multiple magnetic components are identified, including a dominant interstellar field, {B}{POL}, that is aligned with the direction ℓ, b = 36.°2, 49.°0 (±16.°0). Stars tracing {B}{POL} have the same mean distance as stars that do not trace {B}{POL}, but show weaker average polarizations consistent with a smaller column density of polarizing material. {B}{POL} is aligned with the ISMF traced by the IBEX Ribbon to within {7.6}-7.6+14.9 degrees. The variations in the polarization position angle directions derived from the data that best match {B}{POL} indicate a low level of magnetic turbulence, ˜9° ± 1°. The direction of {B}{POL} is obtained after excluding polarization data tracing a separate magnetic structure that appears to be associated with interstellar dust deflected around the heliosphere. The velocities of local interstellar clouds relative to the Local Standard of Rest (LSR) increase with the angles between the LSR velocities and {B}{POL}, indicating that the kinematics of local interstellar material is ordered by the ISMF. The Loop I superbubble that extends close to the Sun contains dust that reddens starlight and whose distance is determined by the color excess E(B - V) of starlight. Polarizations caused by grains aligned with respect to {B}{POL} are consistent with the location of the Sun in the rim of the Loop I superbubble. An angle of {76.8}-27.6+23.5 between {B}{POL} and the bulk LSR velocity the local interstellar material indicates a geometry that is consistent with an expanding superbubble. The efficiency of grain alignment in the local interstellar medium has been assessed using stars where both polarization data and hydrogen column density data are available. Nearby stars appear to have larger polarizations than expected based on reddened sightlines, which is consistent with previous results, but uncertainties are large. Optical polarization and color excess E(B - V) data indicate the presence of nearby interstellar dust in the BICEP2 field. Color excess E(B - V) indicates an optical extinction of AV > 0.6 in the BICEP2 field, while the polarization data indicate that AV > 0.09 mag. The IBEX Ribbon ISMF extends to the boundaries of the BICEP2 region.
NASA Astrophysics Data System (ADS)
Hudson, Reggie
Infrared (IR) telescopes, such as ISO, Spitzer, KAO, Keck, VLT, and IRTF, have revealed a rich variety of molecules trapped in interstellar ices. However, quantifying the abundances of these molecules has been difficult because reference IR data, such as band strengths and optical constants, often are poorly known. This scarcity of data has severe implications for the study of sulfur-containing molecules, such as OCS and SO2, since accurate molecular abundances are needed to address the missing-sulfur problem in interstellar space. The expected abundances of sulfur-containing species in dense molecular clouds are much higher than reported from telescopic observations, although the latter are based on laboratory data of questionable relevance, such as with liquids at room temperature compared to the 10 K ices of some interstellar regions. Exacerbating the problem is that few sulfur-containing molecules of any type have been examined in the laboratory under the necessary, relevant icy conditions. We propose to address and correct the problems associated with abundance determinations of interstellar sulfur-containing ices. We will combine several recent successful efforts from our laboratory and measure near- and mid-IR spectral intensities for ices containing SO2, OCS, H2S, CS2, CH3SH, and C2H5SH both in the presence and absence of H2O-ice. This work will be done at multiple temperatures and ice phases to generate reference IR spectra and band strengths, accompanied by refractive indices, and optical constants. Moreover, we will study the radiation chemistry of these molecules to determine their radiolytic half-lives (stabilities) and uncover product molecules that can become candidates for future searches and perhaps help better understand the missingsulfur problem. This proposal is a convergence of three lines of work in our laboratory: recent successes in deriving IR optical constants of interstellar molecular ices (Hudson et al. 2014a, 2014b), measurements of radiolytic stabilities of interstellar and planetary molecules (Gerakines & Hudson 2013, 2015), and our long history of working with sulfur-containing molecules and ions (Moore et al. 1988; Loeffler & Hudson 2010, 2012). Our collaborators were selected specifically for their interest in this proposal's focus and for their expertise in interstellar chemistry.
NASA Technical Reports Server (NTRS)
Chang, S.
1981-01-01
The course of organic chemical evolution preceding the emergence of life on earth is discussed based on evidence of processes occurring in interstellar space, the solar system and the primitive earth. Following a brief review of the equilibrium condensation model for the origin and evolution of the solar system, consideration is given to the nature and organic chemistry of interstellar clouds, comets, Jupiter, meteorites, Venus and Mars, and the prebiotic earth. Major issues to be resolved in the study of organic chemical evolution on earth are identified regarding condensation and accretion in the solar nebula, early geological evolution, the origin and evolution of the atmosphere, organic production rates, organic-inorganic interactions, environmental fluctuations, phase separation and molecular selectivity.
Interstellar Processes Leading to Molecular Deuterium Enrichment and Their Detection
NASA Technical Reports Server (NTRS)
Sandford, Scott A.; Kliss, Mark (Technical Monitor)
2001-01-01
Large deuterium (D) enrichments in meteoritic materials indicate that interstellar organic materials survived incorporation into parent bodies within the forming Solar System. These enrichments are likelier due to one or more of four distinct astrochemical processes. These are (1) low temperature gas phase ion-molecule reactions; (2) low temperature gas-grain reactions; (3) gas phase unimolecular photodissociation, and (4) ultraviolet photolysis in D-enriched ice mantles. Each of these processes should be associated with molecular carriers having, distinct regiochemical signatures (D placement on the product molecules, correlation with specific chemical functionalities, etc.). These processes are reviewed and specific spectroscopic signatures for the detection of these processes in space are identified and described.
NASA Astrophysics Data System (ADS)
Cataldo, Franco; Iglesias-Groth, Susana
After a general introduction to the problem of formation of molecular hydrogen from atomic hydrogen in the interstellar medium and in the dense molecular clouds in particular, and after the explanation of the key role played by the surfaces on this process, it is proposed that the most suitable carbon surface for the formation of molecular hydrogen (from the radiative association process of atomic hydrogen) can be represented by carbon black rather than by graphite. Furthermore, it is proposed that the fullerene-like structures present in the carbon black graphene sheets are the reaction sites where molecular hydrogen may be formed.
Zeta Ophiuchi -- Runaway Star Plowing through Space Dust
2011-01-24
The blue star near the center of this image is Zeta Ophiuchi. Zeta Ophiuchi is actually a very massive, hot, bright blue star plowing its way through a large cloud of interstellar dust and gas in this image from NASA Wide-field Infrared Survey Explorer.
NASA Technical Reports Server (NTRS)
1975-01-01
Topics covered are: (1) earth resources (climatology, oceanography, soils, strip mines), and (2) astronomy (magnetic fields and atmospheres of the planets and the sun; galactic and interstellar gas; cosmic and X-ray radiation). Photographs of satellite observations are included.
NASA Technical Reports Server (NTRS)
Mohan, H.; SHARDANAND
1975-01-01
The chemistry and physics of the gaseous OH free radical as it applies to interstellar space, planetary atmospheres, and the sun is presented. Topics considered are: (1) rotational-vibrational transitions; (2) dissociation and ionization processes; (3) spectral characteristics.
New results and techniques in space radio astronomy.
NASA Technical Reports Server (NTRS)
Alexander, J. K.
1971-01-01
The methods and results of early space radioastronomy experiments are reviewed, with emphasis on the RAE 1 spacecraft which was designed specifically and exclusively for radio astronomical studies. The RAE 1 carries two gravity-gradient-stabilized 229-m traveling-wave V-antennas, a 37-m dipole antenna, and a number of radiometer systems to provide measurements over the 0.2 to 9.2 MHz frequency range with a time resolution of 0.5 sec and an absolute accuracy of plus or minus 25%. Observations of solar bursts at frequencies down to 0.2 MHz provide new information on the density, plasma velocity, and dynamics of coronal streamers out to distances greater than 50 solar radii. New information on the distribution of the ionized component of the interstellar medium is being obtained from galactic continuum background maps at frequencies around 4 MHz. Cosmic noise background spectra measured down to 0.5 MHz produce new estimates on the interstellar flux of cosmic rays, on magnetic fields in the galactic halo, and on distant extragalactic radio sources.
SpaceScience@Home: Authentic Research Projects that Use Citizen Scientists
NASA Astrophysics Data System (ADS)
Méndez, B. J. H.
2008-06-01
In recent years, several space science research projects have enlisted the help of large numbers of non-professional volunteers, ``citizen scientists'', to aid in performing tasks that are critical to a project, but require more person-time (or computing time) than a small professional research team can practically perform themselves. Examples of such projects include SETI@home, which uses time from volunteers computers to process radio-telescope observation looking for signals originating from extra-terrestrial intelligences; Clickworkers, which asks volunteers to review images of the surface of Mars to identify craters; Spacewatch, which used volunteers to review astronomical telescopic images of the sky to identify streaks made by possible Near Earth Asteroids; and Stardust@home, which asks volunteers to review ``focus movies'' taken of the Stardust interstellar dust aerogel collector to search for possible impacts from interstellar dust particles. We shall describe these and other similar projects and discuss lessons learned from carrying out such projects, including the educational opportunities they create.
Tetrahedral hydrocarbon nanoparticles in space: X-ray spectra
NASA Astrophysics Data System (ADS)
Bilalbegović, G.; Maksimović, A.; Valencic, L. A.
2018-06-01
It has been proposed, or confirmed, that diamond nanoparticles exist in various environments in space: close to active galactic nuclei, in the vicinity of supernovae and pulsars, in the interior of several planets in the Solar system, in carbon planets, and other exoplanets, carbon-rich stars, meteorites, in X-ray active Herbig Ae/Be stars, and in the interstellar medium. Using density functional theory methods, we calculate the carbon K-edge X-ray absorption spectrum of two large tetrahedral nanodiamonds: C26H32 and C51H52. We also study and test our methods on the astrophysical molecule CH4, the smallest C-H tetrahedral structure. A possible detection of nanodiamonds from X-ray spectra by future telescopes, such as the project Arcus, is proposed. Simulated spectra of the diffuse interstellar medium using Cyg X-2 as a source show that nanodiamonds studied in this work can be detected by Arcus, a high-resolution X-ray spectrometer mission selected by NASA for a Phase A concept study.
NASA Astrophysics Data System (ADS)
Bouwman, J.; Cuppen, H. M.; Steglich, M.; Allamandola, L. J.; Linnartz, H.
2011-05-01
Context. Mid-infrared emission features originating from polycyclic aromatic hydrocarbons (PAHs) are observed towards photon dominated regions in space. Towards dense clouds, however, these emission features are quenched. Observations of dense clouds show that many simple volatile molecules are frozen out on interstellar grains, forming thin layers of ice. Recently, observations have shown that more complex non-volatile species, presumably including PAHs, also freeze out and contribute to the ongoing solid-state chemistry. Aims: The study presented here aims at obtaining reaction rate data that characterize PAH photochemistry upon vacuum ultraviolet (VUV) irradiation in an interstellar H2O ice analogue to explore the potential impact of PAH:H2O ice reactions on overall interstellar ice chemistry. To this end, the experimental results are implemented in a chemical model under simple interstellar cloud conditions. Methods: Time-dependent near-UV/VIS spectroscopy on the VUV photochemistry of anthracene, pyrene, benzo[ghi]perylene and coronene containing interstellar H2O ice analogs is performed at 25 and 125 K, using an optical absorption setup. Results: Near-UV/VIS absorption spectra are presented for these four PAHs and their photoproducts including cationic species trapped in H2O ice. Oscillator strengths of the cation absorption bands are derived relative to the oscillator strength of the neutral parent PAH. The loss of the parent and growth of PAH photoproducts are measured as a function of VUV dose, yielding solid state reaction constants. The rate constants are used in an exploratory astrochemical model, to assess the importance of PAH:H2O ice photoprocessing in UV exposed interstellar environments, compared with the timescales in which PAH molecules are incorporated in interstellar ices. Conclusions: All four PAHs studied here are found to be readily ionized upon VUV photolysis when trapped in H2O ice and exhibit similar rates for ionization at astronomically relevant temperatures. Depending on the relative efficiency of H2O photodesorption and PAH photoionization in H2O ice, the latter may trigger a charge induced aromatic solid state chemistry, in which PAH cations play a central role.
Scientists Discover Sugar in Space
NASA Astrophysics Data System (ADS)
2000-06-01
The prospects for life in the Universe just got sweeter, with the first discovery of a simple sugar molecule in space. The discovery of the sugar molecule glycolaldehyde in a giant cloud of gas and dust near the center of our own Milky Way Galaxy was made by scientists using the National Science Foundation's 12 Meter Telescope, a radio telescope on Kitt Peak, Arizona. "The discovery of this sugar molecule in a cloud from which new stars are forming means it is increasingly likely that the chemical precursors to life are formed in such clouds long before planets develop around the stars," said Jan M. Hollis of the NASA Goddard Space Flight Center in Greenbelt, MD. Hollis worked with Frank J. Lovas of the University of Illinois and Philip R. Jewell of the National Radio Astronomy Observatory (NRAO) in Green Bank, WV, on the observations, made in May. The scientists have submitted their results to the Astrophysical Journal Letters. "This discovery may be an important key to understanding the formation of life on the early Earth," said Jewell. Conditions in interstellar clouds may, in some cases, mimic the conditions on the early Earth, so studying the chemistry of interstellar clouds may help scientists understand how bio-molecules formed early in our planet's history. In addition, some scientists have suggested that Earth could have been "seeded" with complex molecules by passing comets, made of material from the interstellar cloud that condensed to form the Solar System. Glycolaldehyde, an 8-atom molecule composed of carbon, oxygen and hydrogen, can combine with other molecules to form the more-complex sugars Ribose and Glucose. Ribose is a building block of nucleic acids such as RNA and DNA, which carry the genetic code of living organisms. Glucose is the sugar found in fruits. Glycolaldehyde contains exactly the same atoms, though in a different molecular structure, as methyl formate and acetic acid, both of which were detected previously in interstellar clouds. Glycolaldehyde is a simpler molecular cousin to table sugar, the scientists say. The sugar molecule was detected in a large cloud of gas and dust some 26,000 light-years away, near the center of our Galaxy. Such clouds, often many light-years across, are the material from which new stars are formed. Though very rarified by Earth standards, these interstellar clouds are the sites of complex chemical reactions that occur over hundreds of thousands or millions of years. So far, about 120 different molecules have been discovered in these clouds. Most of these molecules contain a small number of atoms, and only a few molecules with eight or more atoms have been found in interstellar clouds. The 12 Meter Telescope "Finding glycolaldehyde in one of these interstellar clouds means that such molecules can be formed even in very rarified conditions," said Hollis. "We don't yet understand how it could be formed there," he added. "A combination of more astronomical observations and theoretical chemistry work will be required to resolve the mystery of how this molecule is formed in space." "We hope this discovery inspires renewed efforts to find even more kinds of molecules, so that, with a better idea of the total picture, we may be able to deduce the details of the prebiotic chemistry taking place in interstellar clouds," Hollis said. The discovery was made by detecting faint radio emission from the sugar molecules in the interstellar cloud. Molecules rotate end-for-end, and as they change from one rotational energy state to another, they emit radio waves at precise frequencies. The "family" of radio frequencies emitted by a particular molecule forms a unique "fingerprint" that scientists can use to identify that molecule. The scientists identified glycolaldehyde by detecting six frequencies of radio emission in what is termed the millimeter-wavelength region of the electromagnetic spectrum -- a region between more-familiar microwaves and infrared radiation. The NRAO 12 Meter Telescope used to detect the sugar molecule has been a pioneer instrument in the detection of molecules in space. Built in 1967, it made the first detections of dozens of the molecules now known to exist in space, including the important first discovery of carbon monoxide, now widely used by astronomers as a signpost showing regions where stars are being formed. The 12 Meter Telescope is scheduled to be closed at the end of July, in preparation for the Atacama Large Millimeter Array, an advanced system of 64 radio-telescope antennas in northern Chile now being developed by an international partnership. The National Radio Astronomy Observatory is a facility of the National Science Foundation, operated under cooperative agreement by Associated Universities, Inc. Giant Molecular Cloud Near Milky Way's Center The giant molecular cloud, known as Sagittarius B2 (North), as seen by the NSF's Very Large Array (VLA) radio telescope in New Mexico. This is the cloud in which scientists using the 12 Meter Telescope detected the simple sugar molecule glycolaldehyde. This VLA image shows hydrogen gas in a region nearly 3 light-years across. In this image, red indicates stronger radio emission; blue weaker. The 12 Meter Telescope studied this region at much shorter wavelengths, which revealed the evidence of sugar molecules. CREDIT: R. Gaume, M. Claussen, C. De Pree, W.M. Goss, D. Mehringer, NRAO/AUI/NSF.
NASA Astrophysics Data System (ADS)
McKee, Christopher F.
2011-09-01
Most of the ordinary matter in the universe is hydrogen and helium. In galaxies such as ours, heavier elements make up only about 1% of the mass, and about half of this is tied up in small particles, termed dust grains, that range in size from a nanometer to a fraction of a micrometer. Interstellar dust contains an appreciable fraction of the carbon and most of the refractory elements, such as magnesium, silicon, and iron. Because these particles are comparable in size to the wavelength of light, they are very effective at absorbing it. As a result, the Milky Way is much fainter in the night sky than it would otherwise be. This absorbed light is reradiated, but because the dust in the interstellar medium is so cold - about 20° above absolute zero - it is radiated at very long wavelengths, at around 200 μm. Such radiation can be observed only from space, and the European Space Agency's Herschel Space Observatory was designed to do just that. On page 1258 of this issue, Matsuura et al. (1) present Herschel observations showing that substantial amounts of dust are created in the aftermath of a supernova, the titanic explosion that terminates the life of a massive star.
[Problems of exobiology: the origin of life on Earth].
Tairbekov, M G; Klimovitskiĭ, V Ia; Il'in, E A
2003-01-01
The basic problem of exobiology is origin and evolution of life as a space phenomenon. Consideration is given to the facts for the space origin, spreading in the interstellar space of and invasion of the surface of planets by organic compounds, constituents of archetypes of living systems. The authors bring up to discussion the issues of life development under the conditions of Earth, and formation of the main properties of the living organisms differing in the level of organization. Outlined are some international projects on exobiological research in experiments with bio-objects on space platforms.
NASA Scientists Witness a Supernova Cosmic Rite of Passage
NASA Astrophysics Data System (ADS)
2005-11-01
Scientists using NASA's Chandra X-ray Observatory have witnessed a cosmic rite of passage, the transition from a supernova to a supernova remnant, a process that has never been seen in much detail until now, leaving it poorly defined. A supernova is a massive star explosion; the remnant is the beautiful glowing shell that evolves afterwards. When does a supernova become supernova remnant? When does the shell appear and what powers its radiant glow? A science team led by Dr. Stefan Immler of NASA's Goddard Space Flight Center, Greenbelt, Md., has taken a fresh look at a supernova that exploded in 1970, called SN 1970G, just off the handle of the Big Dipper. This is the oldest supernova ever seen by X-ray telescopes. Chandra X-ray Image of SN 1970G Chandra X-ray Image of SN 1970G "Some astronomers have thought there's a moment when the supernova remnant magically turns on years after the supernova itself has faded away, when the shock wave of the explosion finally hits and lights up the interstellar medium," said Immler. "By contrast, our results show that a new supernova quickly and seamlessly evolves into a supernova remnant. The star's own debris, and not the interstellar medium gas, fuels the remnant." These results appear in The Astrophysical Journal, co-authored by Dr. Kip Kuntz, also of Goddard. They support previous Chandra observations of SN 1987A by Dr. Sangwook Park of Penn State. Using new data from Chandra and archived data from the European-led ROSAT and XMM-Newton observatories, Immler and Kuntz pieced together how SN 1970G evolved over the years. They found telltale signs of a supernova remnant - bright X-ray light - yet no evidence of interstellar gas, even across a distance around the site of the explosion 35 times larger than our solar system. Instead, the material that is heated by the supernova shock to glow in X-ray light, what we call the remnant, is from the stellar wind of the star itself and not distant gas in the interstellar medium. This wind, comprising energetic ions, was shed by the progenitor star thousands to million of years before the explosion. If this were from the interstellar medium, it would be much denser than this stellar wind. NOAO Optical Image of SN 1970G NOAO Optical Image of SN 1970G Immler and Kuntz next studied the density profiles of all other supernovae that have been detected over the past two decades. Sure enough, the low-density circumstellar matter from the stellar wind was the source of X-rays, not the interstellar medium. Immler said that historical supernova remnants such as Cassiopeia A, which exploded some 320 years ago, also show no signs of activity from the interstellar medium. This is more than just a name game, more than hypothetically changing SN 1970G to SNR 1970G. "We have to rethink this notion that a shock wave from the supernova crashes into the interstellar medium to create a supernova remnant," said Immler. "The luminous supernova remnants that we see can be created without the need of a dense interstellar medium. In fact, our study showed that all supernovae detected in X-rays over the past 25 years live in a low-density environment." SN 1970G is located in the galaxy M101, also called the Pinwheel Galaxy, a stunning spiral galaxy about 22 million light years away in the constellation Ursa Major, home of the Big Dipper. Although the galaxy itself is visible from dark skies with binoculars, telescopes cannot resolve much structure in SN 1970G, unlike for supernova remnants in our Milky Way galaxy. Discovered with an optical telescope in 1970, SN 1970G was not seen with X-ray telescopes until the 1990s. Immler's work at NASA Goddard is supported through the Universities Space Research Association. Kuntz is supported through University of Maryland, Baltimore County. NASA's Marshall Space Flight Center in Huntsville, Ala., manages the Chandra program for the Agency's Science Mission Directorate. The Smithsonian Astrophysical Observatory controls science and flight operations from the Chandra X-ray Center in Cambridge, Mass. Additional information and images are available at: http://chandra.harvard.edu and http://chandra.nasa.gov
Use of Mini-Mag Orion and superconducting coils for near-term interstellar transportation
NASA Astrophysics Data System (ADS)
Lenard, Roger X.; Andrews, Dana G.
2007-06-01
Interstellar transportation to nearby star systems over periods shorter than the human lifetime requires speeds in the range of 0.1-0.15 c and relatively high accelerations. These speeds are not attainable using rockets, even with advanced fusion engines because at these velocities, the energy density of the spacecraft approaches the energy density of the fuel. Anti-matter engines are theoretically possible but current physical limitations would have to be suspended to get the mass densities required. Interstellar ramjets have not proven practicable, so this leaves beamed momentum propulsion or a continuously fueled Mag-Orion system as the remaining candidates. However, deceleration is also a major issue, but part of the Mini-Mag Orion approach assists in solving this problem. This paper reviews the state of the art from a Phases I and II SBIT between Sandia National Laboratories and Andrews Space, applying our results to near-term interstellar travel. A 1000 T crewed spacecraft and propulsion system dry mass at .1c contains ˜9×1021J. The author has generated technology requirements elsewhere for use of fission power reactors and conventional Brayton cycle machinery to propel a spacecraft using electric propulsion. Here we replace the electric power conversion, radiators, power generators and electric thrusters with a Mini-Mag Orion fission-fusion hybrid. Only a small fraction of fission fuel is actually carried with the spacecraft, the remainder of the propellant (macro-particles of fissionable material with a D-T core) is beamed to the spacecraft, and the total beam energy requirement for an interstellar probe mission is roughly 1020J, which would require the complete fissioning of 1000 ton of Uranium assuming 35% power plant efficiency. This is roughly equivalent to a recurring cost per flight of 3.0 billion dollars in reactor grade enriched uranium using today's prices. Therefore, interstellar flight is an expensive proposition, but not unaffordable, if the nonrecurring costs of building the power plant can be minimized.
Cosmic-ray effects in the Gum nebula
NASA Technical Reports Server (NTRS)
Ramaty, R.; Boldt, E. A.
1971-01-01
The effects of low energy heavy nuclei from the supernova explosion on nearby interstellar space were investigated. In addition to the ionization and heating of the Gum nebula, these particles may produce detectable fluxes of X-rays and gamma rays, both as continuum radiation and line emission.
ERIC Educational Resources Information Center
Gammon, Richard H.
This booklet is part of an American Astronomical Society curriculum project designed to provide teaching materials to teachers of secondary school chemistry, physics, and earth science. The following topics are covered: the physical conditions in interstellar space in comparison with those of the earth, particularly in regard to gas density,…
Interstellar Mapping and Acceleration Probe (IMAP)
NASA Astrophysics Data System (ADS)
Schwadron, N. A.; Opher, M.; Kasper, J.; Mewaldt, R.; Moebius, E.; Spence, H. E.; Zurbuchen, T. H.
2016-11-01
Our piece of cosmic real estate, the heliosphere, is the domain of all human existence - an astrophysical case history of the successful evolution of life in a habitable system. By exploring our global heliosphere and its myriad interactions, we develop key physical knowledge of the interstellar interactions that influence exoplanetary habitability as well as the distant history and destiny of our solar system and world. IBEX is the first mission to explore the global heliosphere and in concert with Voyager 1 and Voyager 2 is discovering a fundamentally new and uncharted physical domain of the outer heliosphere. In parallel, Cassini/INCA maps the global heliosphere at energies (˜5-55 keV) above those measured by IBEX. The enigmatic IBEX ribbon and the INCA belt were unanticipated discoveries demonstrating that much of what we know or think we understand about the outer heliosphere needs to be revised. This paper summarizes the next quantum leap enabled by IMAP that will open new windows on the frontier of Heliophysics at a time when the space environment is rapidly evolving. IMAP with 100 times the combined resolution and sensitivity of IBEX and INCA will discover the substructure of the IBEX ribbon and will reveal, with unprecedented resolution, global maps of our heliosphere. The remarkable synergy between IMAP, Voyager 1 and Voyager 2 will remain for at least the next decade as Voyager 1 pushes further into the interstellar domain and Voyager 2 moves through the heliosheath. Voyager 2 moves outward in the same region of sky covered by a portion of the IBEX ribbon. Voyager 2’s plasma measurements will create singular opportunities for discovery in the context of IMAP's global measurements. IMAP, like ACE before, will be a keystone of the Heliophysics System Observatory by providing comprehensive measurements of interstellar neutral atoms and pickup ions, the solar wind distribution, composition, and magnetic field, as well as suprathermal ion, energetic particle, and cosmic ray distributions to diagnose the changing space environment and understand the fundamental origins of particle acceleration. This paper, the first citable reference for IMAP, is similar to an unpublished whitepaper that was presented to the National Academies of Sciences, Engineering and Medicine Committee for Solar and Space Physics. We provide the IMAP objectives and instrument straw man traced from the Solar and Space Physics Decadal Survey. It is fitting that our paper is published in the volume of papers that celebrates the 80th birthday of Ed Stone.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Poteet, Charles A.; Whittet, Douglas C. B.; Draine, Bruce T., E-mail: charles.poteet@gmail.com
2015-03-10
We investigate the composition of interstellar grains along the line of sight toward ζ Ophiuchi, a well-studied environment near the diffuse-dense cloud transition. A spectral decomposition analysis of the solid-state absorbers is performed using archival spectroscopic observations from the Spitzer Space Telescope and Infrared Space Observatory. We find strong evidence for the presence of sub-micron-sized amorphous silicate grains, principally comprised of olivine-like composition, with no convincing evidence of H{sub 2}O ice mantles. However, tentative evidence for thick H{sub 2}O ice mantles on large (a ≈ 2.8 μm) grains is presented. Solid-state abundances of elemental Mg, Si, Fe, and O aremore » inferred from our analysis and compared to standard reference abundances. We find that nearly all of the Mg and Si atoms along the line of sight reside in amorphous silicate grains, while a substantial fraction of the elemental Fe resides in compounds other than silicates. Moreover, we find that the total abundance of elemental O is largely inconsistent with the adopted reference abundances, indicating that as much as ∼156 ppm of interstellar O is missing along the line of sight. After taking into account additional limits on the abundance of elemental O in other O-bearing solids, we conclude that any missing reservoir of elemental O must reside on large grains that are nearly opaque to infrared radiation.« less
NASA Astrophysics Data System (ADS)
Jäger, C.; Mutschke, H.; Henning, Th.; Huisken, F.
2008-12-01
Carbon solids are ubiquitous material in interstellar space. However, the formation pathway of carbonaceous matter in astrophysical environments, as well as in terrestrial gas-phase condensation reactions, is not yet understood. Laser ablation of graphite in different quenching gas atmospheres, such as pure He, He/H2, and He/H2O at varying pressures, is used to synthesize very small, fullerene-like carbon nanoparticles. The particles are characterized by very small diameters between 1 and 4 nm and a disturbed onion-like structure. The soot particles extracted from the condensation zone obviously represent a very early stage of particle condensation. The spectral properties have been measured from the far-ultraviolet (FUV; λ = 120 nm) to the mid-infrared (MIR; λ = 15 μm). The seedlike soot particles show strong absorption bands in the 3.4 μm range. The profile and the intensity pattern of the 3.4 μm band of the diffuse interstellar medium can be well reproduced by the measured 3.4 μm profile of the condensed particles; however, all the carbon which is left to form solids is needed to fit the intensity of the interstellar bands. In contrast to the assumption that onion-like soot particles could be the carriers of the interstellar ultraviolet (UV) bump, our very small onion-like carbon nanoparticles do not show distinct UV bands due to (π-π*) transitions.
Telescopes and space exploration
NASA Technical Reports Server (NTRS)
Brandt, J. C.; Maran, S. P.
1976-01-01
The necessity for different types of telescopes for astronomical investigations is discussed. Major findings in modern astronomy by ground-based and spaceborne telescopes are presented. Observations of the Crab Nebula, solar flares, interstellar gas, and the Black Hole are described. The theory of the oscillating universe is explored. Operating and planned telescopes are described.
LDEF: 69 Months in Space. First Post-Retrieval Symposium, part 2
NASA Technical Reports Server (NTRS)
Levine, Arlene S. (Editor)
1992-01-01
A compilation of papers from the symposium is presented. The preliminary data analysis is presented of the 57 experiments flown on the LDEF. The experiments include materials, coatings, thermal systems, power and propulsion, science (cosmic ray, interstellar gas, heavy ions, and micrometeoroid), electronics, optics, and life science.
Spitzer Observations of Dust Destruction in the Puppis A Supernova Remnant
NASA Technical Reports Server (NTRS)
Arendt, Richard G.; Dweek, Eli; Blair, William P.; Ghavamian, Parviz; Hwang, Una; Long, Knox X.; Petre, Robert; Rho, Jeonghee; Winkler, P. Frank
2010-01-01
The interaction of the Puppis A supernova remnant (SNR) with a neighboring molecular cloud provides a unique opportunity to measure the amount of grain destruction in an SNR shock. Spitzer Space Telescope MIPS imaging of the entire SNR at 24, 70, and 160 micrometers shows an extremely good correlation with X-ray emission, indicating that the SNR's IR radiation is dominated by the thermal emission of swept-up interstellar dust, collisionally heated by the hot shocked gas. Spitzer IRS spectral observations targeted both the Bright Eastern Knot (BEK) of the SNR where a small cloud has been engulfed by the supernova blast wave and outlying portions of the associated molecular cloud that are yet to be hit by the shock front. Modeling the spectra from both regions reveals the composition and the grain size distribution of the interstellar dust, both in front of and behind the SNR shock front. The comparison shows that the ubiquitous polycyclic aromatic hydrocarbons of the interstellar medium are destroyed within the BEK, along with nearly 25% of the mass of graphite and silicate dust grains.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Xiang, F. Y.; Zhong, J. X.; Li Aigen, E-mail: jxzhong@xtu.edu.cn, E-mail: lia@missouri.edu
2011-06-01
The diffuse interstellar bands (DIBs) are ubiquitous absorption spectral features arising from the tenuous material in the space between stars-the interstellar medium (ISM). Since their first detection nearly nine decades ago, over 400 DIBs have been observed in the visible and near-infrared wavelength range in both the Milky Way and external galaxies, both nearby and distant. However, the identity of the species responsible for these bands remains as one of the most enigmatic mysteries in astrophysics. An equally mysterious interstellar spectral signature is the 2175 A extinction bump, the strongest absorption feature observed in the ISM. Its carrier also remainsmore » unclear since its first detection 46 years ago. Polycyclic aromatic hydrocarbon (PAH) molecules have long been proposed as a candidate for DIBs as their electronic transitions occur in the wavelength range where DIBs are often found. In recent years, the 2175 A extinction bump is also often attributed to the {pi}-{pi}* transition in PAHs. If PAHs are indeed responsible for both the 2175 A extinction feature and DIBs, their strengths may correlate. We perform an extensive literature search for lines of sight for which both the 2175 A extinction feature and DIBs have been measured. Unfortunately, we found no correlation between the strength of the 2175 A feature and the equivalent widths of the strongest DIBs. A possible explanation might be that DIBs are produced by small free gas-phase PAH molecules and ions, while the 2175 A bump is mainly from large PAHs or PAH clusters in condensed phase so that there is no tight correlation between DIBs and the 2175 A bump.« less
Spectroscopy of PAHs with carbon side chains
NASA Astrophysics Data System (ADS)
Rouille, G.; Steglich, M.; Carpentier, Y.; Huisken, F.; Henning, T.
2011-05-01
The presence of polycyclic aromatic hydrocarbons (PAHs) in space has been inferred ever since sp ecific infrared emission bands were interpreted as their collective fingerprint. In parallel, it has been admitted that the famous diffuse interstellar bands (DIBs), which are absorption features observed in the visible wavelength range, are bands belonging to the electronic spectra of free-flying interstellar molecules yet to be identified. As neutral PAHs of medium and large sizes exhibit absorption bands in the range where the DIBs are found, these molecules, which also fulfill other criteria, have been proposed as potential carriers. Studies of small PAHs in solutions have shown that adding an ethynyl side chain (--CCH) to their structure causes their electronic transitions to shift toward longer wavelengths. This fact, added to the observations of interstellar polyynyl radicals, motivated our current research project on PAHs carrying polyynyl side chains. In a first stage, we are measuring the electronic spectra of small PAHs and of their ethynyl and butadiynyl (--CCCCH) derivatives at cryogenic temperatures in rare gas matrices. Then, measurements will be carried out in supersonic jets, providing us with spectra obtained under conditions relevant to the study of free-flying interstellar molecules. The results of IR absorption measurements will be included in our set of new data. As a complement to our laboratory study on the substituted PAHs, quantum chemical calculations are carried out to interprete and simulate their IR and vibronic spectra. We use the density functional theory approach and its time-dependent extension for calculating the electronic ground states and the electronically excited states, respectively. Through the analysis of the new data, it will be determined whether PAHs carrying polyynyl side chains can play a role in interstellar phenomena. The latest results of this on-going project will be presented.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Pogorelov, N. V.; Heerikhuisen, J.; Roytershteyn, V.
The heliosphere is formed due to interaction between the solar wind (SW) and local interstellar medium (LISM). The shape and position of the heliospheric boundary, the heliopause, in space depend on the parameters of interacting plasma flows. The interplay between the asymmetrizing effect of the interstellar magnetic field and charge exchange between ions and neutral atoms plays an important role in the SW–LISM interaction. By performing three-dimensional, MHD plasma/kinetic neutral atom simulations, we determine the width of the outer heliosheath—the LISM plasma region affected by the presence of the heliosphere—and analyze quantitatively the distributions in front of the heliopause. Itmore » is shown that charge exchange modifies the LISM plasma to such extent that the contribution of a shock transition to the total variation of plasma parameters becomes small even if the LISM velocity exceeds the fast magnetosonic speed in the unperturbed medium. By performing adaptive mesh refinement simulations, we show that a distinct boundary layer of decreased plasma density and enhanced magnetic field should be observed on the interstellar side of the heliopause. We show that this behavior is in agreement with the plasma oscillations of increasing frequency observed by the plasma wave instrument onboard Voyager 1. We also demonstrate that Voyager observations in the inner heliosheath between the heliospheric termination shock and the heliopause are consistent with dissipation of the heliospheric magnetic field. The choice of LISM parameters in this analysis is based on the simulations that fit observations of energetic neutral atoms performed by Interstellar Boundary Explorer .« less
2008-10-06
VANDENBERG AIR FORCE BASE, Fla. -- On the ramp on Vandenberg Air Force Base in California, the Orbital Sciences’ L-1011 aircraft is being prepared to receive the Pegasus XL rocket and NASA’s Interstellar Boundary Explorer, or IBEX, spacecraft. IBEX is targeted for launch from the Kwajalein Atoll, a part of the Marshall Islands in the Pacific Ocean, on Oct. 19. IBEX will be launched aboard the Pegasus rocket dropped from under the wing of the L-1011 aircraft flying over the Pacific Ocean. The Pegasus will carry the spacecraft approximately 130 miles above Earth and place it in orbit. The IBEX satellite will make the first map of the boundary between the Solar System and interstellar space. Photo credit: NASA/Mark Mackley, VAFB
Modeling the Variable Heliopause Location
NASA Astrophysics Data System (ADS)
Hensley, Kerry
2018-03-01
In 2012, Voyager 1 zipped across the heliopause. Five and a half years later, Voyager 2 still hasnt followed its twin into interstellar space. Can models of the heliopause location help determine why?How Far to the Heliopause?Artists conception of the heliosphere with the important structures and boundaries labeled. [NASA/Goddard/Walt Feimer]As our solar system travels through the galaxy, the solar outflow pushes against the surrounding interstellar medium, forming a bubble called the heliosphere. The edge of this bubble, the heliopause, is the outermost boundary of our solar system, where the solar wind and the interstellar medium meet. Since the solar outflow is highly variable, the heliopause is constantly moving with the motion driven by changes inthe Sun.NASAs twin Voyager spacecraft were poisedto cross the heliopause after completingtheir tour of the outer planets in the 1980s. In 2012, Voyager 1 registered a sharp increase in the density of interstellar particles, indicating that the spacecraft had passed out of the heliosphere and into the interstellar medium. The slower-moving Voyager 2 was set to pierce the heliopause along a different trajectory, but so far no measurements have shown that the spacecraft has bid farewell to oursolar system.In a recent study, ateam of scientists led by Haruichi Washimi (Kyushu University, Japan and CSPAR, University of Alabama-Huntsville) argues that models of the heliosphere can help explain this behavior. Because the heliopause location is controlled by factors that vary on many spatial and temporal scales, Washimiand collaborators turn to three-dimensional, time-dependent magnetohydrodynamics simulations of the heliosphere. In particular, they investigate how the position of the heliopause along the trajectories of Voyager 1 and Voyager 2 changes over time.Modeled location of the heliopause along the paths of Voyagers 1 (blue) and 2 (orange). Click for a closer look. The red star indicates the location at which Voyager 1 crossed the heliopause. The current location of Voyager 2 is marked with a red circle. [Washimi et al. 2017]A Time-Varying BarrierThe authorsconsider the impact that solar flares, coronal mass ejections, and other disturbances in the solar outflow have on the heliopause distance. These solar disturbances intermingle as they travel outward to form what the authors call global merged interaction regions.Using their hydrodynamical simulations, Washimi and collaborators capture the complex behavior of the global merged interaction regions as they propagate through the termination shock and collide with the heliopause. Part of the shock is transmitted into the local interstellar medium, while part of it is reflected back toward and collides with the termination shock, which is pushed toward the Sun. This complex interplay of transmitted and reflected shocks combined with the nonuniformity of the local interstellar medium causes the heliopause location to vary dramatically in time as well as space.What Does this Mean for Voyager 2?Washimi and collaborators find that the location of the heliopause along the trajectories of Voyagers 1 and 2 has changed considerably over the past decade. In particular, they find that the heliopause has been pushed outward over the past few years due to an increase in the solar wind ram pressure. According to their simulations, Voyager 2 is currently traveling outward faster than the heliopause is advancing, which means that the spacecraft should soon cross the boundary perhaps even thisyear to become Earths second interstellar messenger.CitationHaruichi Washimi et al 2017 ApJL 846 L9. doi:10.3847/2041-8213/aa8556
Is life the rule or the exception? The answer may be in the interstellar clouds
NASA Astrophysics Data System (ADS)
2002-05-01
Credits: ESA 2002. Illustration by Medialab Did the main ingredients for life come from outer space? In addition to forming in comets and asteroids, amino acids, the 'building blocks' of life, may form in dust grains in the space between the stars Rosetta artist view hi-res Size hi-res: 397 kb Credits: ESA Rosetta’s mission to a comet An artist's impression of the Rosetta spacecraft, its target Comet 67P/Churyumov-Gerasimenko, and the Philae lander being delivered onto its surface. Rosetta’s 11-year expedition began in March 2004, with an Ariane 5 launch from Kourou in French Guiana, and the spacecraft was then sent towards the outer Solar System. The long journey includes three gravity assists at Earth (2004, 2007, 2009), one at Mars (2007), and two asteroid encounters: (2867) Steins (2008) and (21) Lutetia (2010). Rosetta will reach Comet 67/P Churyumov-Gerasimenko in 2014, and will be the first mission ever to orbit a comet’s nucleus and to deliver a lander, called Philae, on its surface. Artist's Impression of the Herschel Spacecraft hi-res Size hi-res: 138 Kb Artist's Impression of the Herschel Spacecraft Herschel is the only space facility dedicated to the submillimetre and far infrared part of the spectrum. Its vantage point in space provides several decisive advantages, including a low and stable background and full access to this part of the spectrum. Herschel has the potential of discovering the earliest epoch proto-galaxies, revealing the cosmologically evolving AGN-starburst symbiosis, and unraveling the mechanisms involved in the formation of stars and planetary system bodies. The key science objectives emphasise specifically the formation of stars and galaxies, and the interrelation between the two, but also includes the physics of the interstellar medium, astrochemistry, and solar system studies. Herschel will carry a 3.5 metre diameter passively cooled telescope. The science payload complement - two cameras/medium resolution spectrometers (PACS and SPIRE) and a very high resolution heterodyne spectrometer (HIFI) - will be housed in a superfluid helium cryostat. Herschel will be placed in a transfer trajectory towards its operational orbit around the Earth-Sun L2 point by an Ariane 5 (shared with Planck) in early 2007. Once operational FIRST will offer a minimum of 3 years of routine observations; roughly 2/3 of the available observing time is open to the general astronomical community through a standard competitive proposal procedure. This result is consistent with (although of course does not prove) the theory that the main ingredients for life came from outer space, and therefore that chemical processes leading to life are likely to have occurred elsewhere. This reinforces the interest in an already 'hot' research field, astrochemistry. ESA's forthcoming missions Rosetta and Herschel will provide a wealth of new information for this topic. Amino acids are the 'bricks' of the proteins, and proteins are a type of compound present in all living organisms. Amino acids have been found in meteorites that have landed on Earth, but never in space. In meteorites amino acids are generally thought to have been produced soon after the formation of the Solar System, by the action of aqueous fluids on comets and asteroids - objects whose fragments became today's meteorites. However, new results published recently in Nature by two independent groups show evidence that amino acids can also form in space. Between stars there are huge clouds of gas and dust, the dust consisting of tiny grains typically smaller than a millionth of a millimetre. The teams reporting the new results, led by a United States group and a European group, reproduced the physical steps leading to the formation of these grains in the interstellar clouds in their laboratories, and found that amino acids formed spontaneously in the resulting artificial grains. The researchers started with water and a variety of simple molecules that are known to exist in the 'real' clouds, such as carbon monoxide, carbon dioxide, ammonia and hydrogen cyanide. Although these initial ingredients were not exactly the same in each experiment, both groups 'cooked' them in a similar way. In specific chambers in the laboratory they reproduced the common conditions of temperature and pressure known to exist in interstellar clouds, which is, by the way, quite different from our 'normal' conditions. Interstellar clouds have a temperature of 260 °C below zero, and the pressure is also very low (almost zero). Great care was taken to exclude contamination. As a result, grains analogous to those in the clouds were formed. The researchers illuminated the artificial grains with ultraviolet radiation, a process that typically triggers chemical reactions between molecules and that also happens naturally in the real clouds. When they analysed the chemical composition of the grains, they found that amino acids had formed. The United States team detected glycine, alanine and serine, while the European team listed up to 16 amino acids. The differences are not considered relevant since they can be attributed to differences in the initial ingredients. According to the authors, what is relevant is the demonstration that amino acids can indeed form in space, as a by-product of chemical processes that take place naturally in the interstellar clouds of gas and dust. Max P. Bernstein from the United States team points out that the gas and dust in the interstellar clouds serve as 'raw material' to build stars and planetary systems such as our own. These clouds "are thousands of light years across; they are vast, ubiquitous, chemical reactors. As the materials from which all stellar systems are made pass through such clouds, amino acids should have been incorporated into all other planetary systems, and thus been available for the origin of life." The view of life as a common event would therefore be favoured by these results. However, many doubts remain. For example, can these results really be a clue to what happened about four billion years ago on the early Earth? Can researchers be truly confident that the conditions they recreate are those in the interstellar space? Guillermo M. Muñoz Caro from the European team writes "several parameters still need to be better constrained (...) before a reliable estimation on the extraterrestrial delivery of amino acids to the early Earth can be made. To this end, in situ analysis of cometary material will be performed in the near future by space probes such as Rosetta ..." The intention for ESA's spacecraft Rosetta is to provide key data for this question. Rosetta, to be launched next year, will be the first mission ever to orbit and land on a comet, namely Comet 46P/Wirtanen. Starting in 2011, Rosetta will have two years to examine in deep detail the chemical composition of the comet. As Rosetta's project scientist Gerhard Schwehm has stated, "Rosetta will carry sophisticated payloads that will study the composition of the dust and gas released from the comet's nucleus and help to answer the question: did comets bring water and organics to Earth?" If amino acids can also form in the space amid the stars, as the new evidence suggests, research should also focus on the chemistry in the interstellar space. This is exactly one of the main goals of the astronomers preparing for ESA's space telescope Herschel. Herschel, with its impressive mirror of 3.5 metres in diameter (the largest of any imaging space telescope) is due to be launched in 2007. One of its strengths is that it will 'see' a kind of radiation that has never been detected before. This radiation is far-infrared and submillimetre light, precisely what you need to detect if you are searching for complex chemical compounds such as the organic molecules.
NASA Technical Reports Server (NTRS)
Salama, Farid
2005-01-01
Polycyclic Aromatic Hydrocarbons (PAHs) are an important and ubiquitous component of carbon-bearing materials in space. PAHs are the best-known candidates to account for the IR emission bands (UIR bands) and PAH spectral features are now being used as new probes of the ISM. PAHs are also thought to be among the carriers of the diffuse interstellar absorption bands (DIBs). In the model dealing with the interstellar spectral features, PAHs are present as a mixture of radicals, ions and neutral species. PAH ionization states reflect the ionization balance of the medium while PAH size, composition, and structure reflect the energetic and chemical history of the medium. A major challenge for laboratory astrophysics is to reproduce (in a realistic way) the physical conditions that exist in the emission and/or absorption interstellar zones, An extensive laboratory program has been developed at NASA Ames to characterize the physical and chemical properties of PAHs in astrophysical environments and to describe how they influence the radiation and energy balance in space and the interstellar chemistry. In particular, laboratory experiments provide measurements of the spectral characteristics of interstellar PAH analogs from the ultraviolet and visible range to the infrared range for comparison with astronomical data. This paper will focus on the recent progress made in the laboratory to measure the direct absorption spectra of neutral and ionized PAHs in the gas phase in the near-W and visible range in astrophysically relevant environments. These measurements provide data on PAHs and nanometer-sized particles that can now be directly compared to astronomical observations. The harsh physical conditions of the IS medium - characterized by a low temperature, an absence of collisions and strong V W radiation fields - are simulated in the laboratory by associating a molecular beam with an ionizing discharge to generate a cold plasma expansion. PAH ions are formed from the neutral precursors in an isolated environment at low temperature (of the order of 100 K). The spectra of neutral and ionized PAHs are measured using the high sensitivity methods of cavity ring down spectroscopy (CRDS). These experiments provide unique information on the spectra of free, cold large carbon molecules and ions in the gas phase. Intrinsic band profiles and band positions of cold gas-phase PAHs can now be measured with high- sensitivity spectroscopy and directly compared to the astronomical data. The electronic bands measured for ionized PAH are found to be intrinsically broad (about 20/cm) while the bands associated with the neutral precursors are narrower (of the order of 2 - 10/cm).
NASA Technical Reports Server (NTRS)
Grishin, S. D.; Chekalin, S. V.
1984-01-01
Prospects for the mastery of space and the basic problems which must be solved in developing systems for both manned and cargo spacecraft are examined. The achievements and flaws of rocket boosters are discussed as well as the use of reusable spacecraft. The need for orbiting satellite solar power plants and related astrionics for active control of large space structures for space stations and colonies in an age of space industrialization is demonstrated. Various forms of spacecraft propulsion are described including liquid propellant rocket engines, nuclear reactors, thermonuclear rocket engines, electrorocket engines, electromagnetic engines, magnetic gas dynamic generators, electromagnetic mass accelerators (rail guns), laser rocket engines, pulse nuclear rocket engines, ramjet thermonuclear rocket engines, and photon rockets. The possibilities of interstellar flight are assessed.
ESA sees stardust storms heading for Solar System
NASA Astrophysics Data System (ADS)
2003-08-01
The Sun's galactic environment Credits: P.C. Frisch, University of Chicago The Sun's galactic environment The Sun and the nearest stars move through filaments of galactic clouds. Ulysses and the heliosphere hi-res Size hi-res: 1337 kb Credits: ESA (image by D. Hardy) Ulysses and the heliosphere Over more than 17 years of observations above and below the poles of the Sun, the ESA/NASA Ulysses mission has made fundamental contributions to our understanding of the Sun itself, its sphere of influence (the heliosphere), and our local interstellar neighbourhood. The mission provided the first-ever map of the heliosphere in the four dimensions of space and time. Ulysses was launched by Space Shuttle Discovery in October 1990. It headed out to Jupiter, arriving in February 1992 for the gravity-assist manoeuvre that swung the craft into its unique solar orbit. It orbited the Sun three times and performed six polar passes. The mission concludes on 1 July 2008. Since its launch in 1990, Ulysses has constantly monitored how much stardust enters the Solar System from the interstellar space around it. Using an on-board instrument called DUST, scientists have discovered that stardust can actually approach the Earth and other planets, but its flow is governed by the Sun's magnetic field, which behaves as a powerful gate-keeper bouncing most of it back. However, during solar maximum - a phase of intense activity inside the Sun that marks the end of each 11-year solar cycle - the magnetic field becomes disordered as its polarity reverses. As a result, the Sun's shielding power weakens and more stardust can sneak in. What is surprising in this new Ulysses discovery is that the amount of stardust has continued to increase even after the solar activity calmed down and the magnetic field resumed its ordered shape in 2001. Scientists believe that this is due to the way in which the polarity changed during solar maximum. Instead of reversing completely, flipping north to south, the Sun's magnetic poles have only rotated at halfway and are now more or less lying sideways along the Sun's equator. This weaker configuration of the magnetic shield is letting in two to three times more stardust than at the end of the 1990s. Moreover, this influx could increase by as much as ten times until the end of the current solar cycle in 2012. The stardust itself is very fine - just one-hundredth of the width of a human hair. It is unlikely to have much effect on the planets but it is bound to collide with asteroids, chipping off larger dust particles, again increasing the amount of dust in the inner Solar System. On the one hand, this means that the solar panels of spacecraft may be struck more frequently by dust, eventually causing a gradual loss of power, and that space observatories looking in the plane of the planets may have to cope with the haze of more sunlight diffused by the dust. On the other hand, this astronomical occurrence could offer a powerful new way to look at the icy comets in the Kuiper Belt region of the outer Solar System. Stardust colliding with them will chip off fragments that can be studied collectively with ESA's forthcoming infrared space telescope, Herschel. This might provide vital insight into a poorly understood region of the Solar System, where the debris from the formation of the planets has accumulated. Back down on Earth, everyone may notice an increase in the number of sporadic meteors that fall from the sky every night. These meteors, however, will be rather faint. Astronomers still do not know whether the current stardust influx, apart from being favoured by the particular configuration of the Sun's magnetic field, is also enhanced by the thickness of the interstellar clouds into which the Solar System is moving. Currently located at the edge of what astronomers call the local interstellar cloud, our Sun is about to join our closest stellar neighbour Alpha Centauri in its cloud, which is less hot but denser. ESA's Ulysses data make it finally possible to study how stardust is distributed along the path of the Solar System through the local galactic environment. However, as it takes over 70 thousand years to traverse a typical galactic cloud, no abrupt changes are expected in the short term. Notes to editors The results of this investigation will appear in the October 2003 issue of Journal of Geophysical Research. The investigation has been conducted by a team lead by Markus Landgraf of ESA's European Space Operation Centre in Darmstadt (Germany) and including Harald Krüger, Nicolas Altobelli, and Eberhard Grün of the Max Planck Institute for Nuclear Physics in Heidelberg (Germany). Ulysses is the first mission to study the environment of space above and below the Sun's poles. It is a joint mission with NASA and has been in space since 1990, after a mission extension agreed in 2000. Launched from the Space Shuttle Discovery in October 1990, Ulysses has now completed two orbits, passing both the Sun's north and south pole on each occasion. Its data gave scientists their first look at the variable effect that the Sun has on the space that surrounds it. The Ulysses DUST experiment provides direct observations of dust grains weighing less than a millionth of a gram in interplanetary space as Ulysses moves along an orbit that takes it periodically away from the Sun and from the plane of the planets - a disc known as the ecliptic. DUST measures the mass, speed, flight direction, and electric charge of individual dust particles. Astronomers wanted to know what portion of dust is provided by comets and asteroids and what, instead, comes directly from interstellar space. By taking measurements when Ulysses was farthest from the Sun and high above the ecliptic, in regions where cometary dust can hardly reach, scientists were able to detect and isolate particles of stardust entering the Solar System from the outer space. To confirm that these dust grains are indeed of interstellar origin, Landgraf and his collaborators verified that the dust had the same flight direction and speed as the atoms of helium which are known to come exclusively from interstellar space.
NASA Astrophysics Data System (ADS)
Thorne, Kip
2014-11-01
Thanks to theoretical physicist Kip Thorne, real science is embedded in Christopher Nolan's film Interstellar, in which explorers seek a new home for humankind. Thorne talks about what he learned from the film's unprecedented visualizations of black holes and wormholes, what it and his accompanying book can teach, and the likelihood of humans escaping the Solar System.
LDEF: 69 Months in Space. First Post-Retrieval Symposium, part 1
NASA Technical Reports Server (NTRS)
Levine, Arlene S. (Editor)
1992-01-01
A compilation of papers from the symposium is presented. The papers represent the preliminary data analysis of the 57 experiments flown on the Long Duration Exposure Facility (LDEF). The experiments include materials, coatings, thermal systems, power and propulsion, science (cosmic ray, interstellar gas, heavy ions, and micrometeoroids), electronics, optics, and life sciences.
NASA Technical Reports Server (NTRS)
Neufeld, David
2005-01-01
The research conducted during the reporting period is grouped into three sections: 1) Warm molecular gas in the interstellar medium (ISM); 2) Absorption line studies of "cold" molecular clouds; 3) Vaporization of comets around the AGB star IRC+10216.
Architecture Of A Sciencecraft To Fly Past Pluto
NASA Technical Reports Server (NTRS)
Price, Humphrey W.; Staehle, Robert L.; Alkalaj, Leon; Terrile, Richard J.; Miyake, Robert N.
1995-01-01
Two reports discuss architecture of proposed small sciencecraft carrying scientific instruments on trajectory passing near Pluto and continuing into interstellar space. Emphasizes those aspects of design pertaining to compactness, efficiency, and small mass (dry mass less than 100 kg). System block diagram of sciencecraft divided into blocks for sensors, integrated microelectronics, and motive effectors.
ERIC Educational Resources Information Center
Terry, Dorothy Givens
2012-01-01
Dr. Mae Jemison is the world's first woman astronaut of color who continues to reach for the stars. Jemison was recently successful in leading a team that has secured a $500,000 federal grant to make interstellar space travel a reality. The Dorothy Jemison Foundation for Excellence (named after Jemison's mother) was selected in June by the Defense…
History of Chandra X-Ray Observatory
2004-09-24
Astronomers have used an x-ray image to make the first detailed study of the behavior of high-energy particles around a fast moving pulsar. This image, from NASA's Chandra X-Ray Observatory (CXO), shows the shock wave created as a pulsar plows supersonically through interstellar space. These results will provide insight into theories for the production of powerful winds of matter and antimatter by pulsars. Chandra's image of the glowing cloud, known as the Mouse, shows a stubby bright column of high-energy particles, about four light years in length, swept back by the pulsar's interaction with interstellar gas. The intense source at the head of the X-ray column is the pulsar, estimated to be moving through space at about 1.3 million miles per hour. A cone-shaped cloud of radio-wave-emitting particles envelopes the x-ray column. The Mouse, a.k.a. G359.23-0.82, was discovered in 1987 by radio astronomers using the National Science Foundation's Very Large Array in New Mexico. G359.23-0.82 gets its name from its appearance in radio images that show a compact snout, a bulbous body, and a remarkable long, narrow, tail that extends for about 55 light years. NASA’s Marshall Space Flight Center in Huntsville, Alabama manages the Chandler program.
NASA Technical Reports Server (NTRS)
2004-01-01
Astronomers have used an x-ray image to make the first detailed study of the behavior of high-energy particles around a fast moving pulsar. This image, from NASA's Chandra X-Ray Observatory (CXO), shows the shock wave created as a pulsar plows supersonically through interstellar space. These results will provide insight into theories for the production of powerful winds of matter and antimatter by pulsars. Chandra's image of the glowing cloud, known as the Mouse, shows a stubby bright column of high-energy particles, about four light years in length, swept back by the pulsar's interaction with interstellar gas. The intense source at the head of the X-ray column is the pulsar, estimated to be moving through space at about 1.3 million miles per hour. A cone-shaped cloud of radio-wave-emitting particles envelopes the x-ray column. The Mouse, a.k.a. G359.23-0.82, was discovered in 1987 by radio astronomers using the National Science Foundation's Very Large Array in New Mexico. G359.23-0.82 gets its name from its appearance in radio images that show a compact snout, a bulbous body, and a remarkable long, narrow, tail that extends for about 55 light years. NASA's Marshall Space Flight Center in Huntsville, Alabama manages the Chandler program.
NASA Astrophysics Data System (ADS)
Destefano, Anthony; Heerikhuisen, Jacob
2015-04-01
Fully 3D particle simulations can be a computationally and memory expensive task, especially when high resolution grid cells are required. The problem becomes further complicated when parallelization is needed. In this work we focus on computational methods to solve these difficulties. Hilbert curves are used to map the 3D particle space to the 1D contiguous memory space. This method of organization allows for minimized cache misses on the GPU as well as a sorted structure that is equivalent to an octal tree data structure. This type of sorted structure is attractive for uses in adaptive mesh implementations due to the logarithm search time. Implementations using the Message Passing Interface (MPI) library and NVIDIA's parallel computing platform CUDA will be compared, as MPI is commonly used on server nodes with many CPU's. We will also compare static grid structures with those of adaptive mesh structures. The physical test bed will be simulating heavy interstellar atoms interacting with a background plasma, the heliosphere, simulated from fully consistent coupled MHD/kinetic particle code. It is known that charge exchange is an important factor in space plasmas, specifically it modifies the structure of the heliosphere itself. We would like to thank the Alabama Supercomputer Authority for the use of their computational resources.
Polycyclic aromatic hydrocarbon molecules in astrophysics
NASA Astrophysics Data System (ADS)
Rastogi, Shantanu; Pathak, Amit; Maurya, Anju
2013-06-01
Polycyclic aromatic hydrocarbon (PAH) molecules are responsible for the mid-infrared emission features. Their ubiquitous presence in almost all types of astrophysical environments and related variations in their spectral profilesmake them an important tool to understand the physics and chemistry of the interstellar medium. The observed spectrum is generally a composite superposition of all different types of PAHs possible in the region. In the era of space telescopes the spectral richness of the emission features has enhanced their importance as probe and also the need to understand the variations with respect to PAH size, type and ionic state. Quantum computational studies of PAHs have proved useful in elucidating the profile variations and put constraints on the possible types of PAHs in different environments. The study of PAHs has also significantly contributed to the problems of diffuse interstellar bands (DIBs), UV extinction and understanding the chemistry of the formation of complex organics in space. The review highlights the results of various computational models for the understanding of infrared emission features, the PAH-DIB relation, formation of prebiotics and possible impact in the understanding of far-infrared features.
Extraterrestrial Organic Chemistry: From the Interstellar Medium to the Origins of Life
NASA Technical Reports Server (NTRS)
Pohorille, Andrew; DeVincenzi, Donald L. (Technical Monitor)
2000-01-01
Extraterrestrially delivered organics in the origin of cellular life. Various processes leading to the emergence of cellular life from organics delivered from space to earth or other planetary bodies in the solar system will be reviewed. The focus will be on: (1) self-assembly of amphiphilic material to vesicles and other structures, such as micelles and multilayers, and its role in creating environments suitable for chemical catalysis, (2) a possible role of extraterrestrial delivery of organics in the formation of the simplest bioenergetics (3) mechanisms leading from amino acids or their precursors to simple peptides and, subsequently, to the evolution of metabolism. These issues will be discussed from two opposite points of view: (1) Which molecules could have been particularly useful in the protobiological evolution; this may provide focus for searching for these molecules in interstellar media. (2) Assuming that a considerable part of the inventory of organic matter on the early earth was delivered extraterrestrially, what does relative abundance of different organics in space tell us about the scenario leading to the origin of life.
Cosmic Journeys: To the Edge of Gravity, Space and Time...
NASA Technical Reports Server (NTRS)
Wanjek, Christopher
2000-01-01
A star explodes, blowing its contents into interstellar space. At its core, a black hole may form. Or maybe a neutron star or white dwarf, depending on the size of the original star. Over the next million years, a new star may form from the left over gas. The ever-changing Universe is the ultimate recycler. NASA's Cosmic Journeys is a set of missions that will of explore the Universe's many mysteries. An summary of future missions is presented.
Useful Sensor Web Capabilities to Enable Progressive Mission Autonomy
NASA Technical Reports Server (NTRS)
Mandl, Dan
2007-01-01
This viewgraph presentation reviews using the Sensor Web capabilities as an enabling technology to allow for progressive autonomy of NASA space missions. The presentation reviews technical challenges for future missions, and some of the capabilities that exist to meet those challenges. To establish the ability of the technology to meet the challenges, experiments were conducted on three missions: Earth Observing 1 (EO-1), Cosmic Hot Interstellar Plasma Spectrometer (CHIPS) and Space Technology 5 (ST-5). These experiments are reviewed.
NASA Astrophysics Data System (ADS)
Wolverton, Mark
2002-03-01
Launched in March 1972, the Pioneer 10 spacecraft has far exceeded scientists' expectations. It was designed to study Jupiter and interplanetary space, especially the asteroid belt between Mars and Jupiter. Engineered on proven technology, it had no on-board computer and was controlled remotely from Earth. It also carried an aluminum plaque as a message for any extraterrestrial beings who might encounter the spacecraft. The article celebrates the ongoing mission's 30th anniversary as it travels out of the solar system looking for the heliopause, where the solar wind meets interstellar space.
NASA Astrophysics Data System (ADS)
Agúndez, M.; Marcelino, N.; Cernicharo, J.; Tafalla, M.
2018-03-01
We present the first identification in interstellar space of the thioformyl radical (HCS) and its metastable isomer HSC. These species were detected toward the molecular cloud L483 through observations carried out with the IRAM 30 m telescope in the λ3 mm band. We derive beam-averaged column densities of 7 × 1012 cm-2 for HCS and 1.8 × 1011 cm-2 for HSC, which translate into fractional abundances relative to H2 of 2 × 10-10 and 6 × 10-12, respectively. Although the amount of sulfur locked by these radicals is low, their detection allows placing interesting constraints on the chemistry of sulfur in dark clouds. Interestingly, the H2CS/HCS abundance ratio is found to be quite low, 1, in contrast with the oxygen analog case, in which the H2CO/HCO abundance ratio is around 10 in dark clouds. Moreover, the radical HCS is found to be more abundant than its oxygen analog, HCO. The metastable species HOC, the oxygen analog of HSC, has not yet been observed in space. These observational constraints are compared with the outcome of a recent model of the chemistry of sulfur in dark clouds. The model underestimates the fractional abundance of HCS by at least one order of magnitude, overestimates the H2CS/HCS abundance ratio, and does not provide an abundance prediction for the metastable isomer HSC. These observations should prompt a revision of the chemistry of sulfur in interstellar clouds.
Galactic Observations of Terahertz C+ (GOT C+): First Results: Inner Galaxy Survey
NASA Astrophysics Data System (ADS)
Langer, William; Velusamy, T.; Pineda, J. L.; Goldsmith, P. F.; Li, D.; Yorke, H. W.
2010-05-01
To understand the lifecycle of the interstellar gas and star formation we need detailed information about the diffuse atomic and diffuse molecular gas cloud properties. The ionized carbon [CII] 1.9 THz fine structure line is an important tracer of the atomic gas in the diffuse regions and the interface regions of atomic gas to molecular clouds. Furthermore, C+ is a major ISM coolant and among the Galaxy's strongest far-IR emission lines, and thus controls the thermal conditions throughout large parts of the Galaxy. Until now our knowledge of interstellar gas has been limited to the diffuse atomic phase traced by HI and to the dense molecular H2 phase traced by CO. However, we are missing an important phase of the ISM called "dark gas” in which there is no or little, HI, and mostly molecular hydrogen but with insufficient shielding of UV to allow CO to form. C+ emission and absorption lines at 1.9 THz have the potential to trace this gas. Galactic Observations of the Terahertz C+ Line (GOT C+) is a Herschel Space Observatory Open Time Key Program to study the diffuse interstellar medium by sampling [CII] 1.9 THz line emission throughout the Galactic disk. We discuss the broader perspective of this survey and the first results of GOT C+ obtained during the Science Demonstration Phase (SDP) and Priority Science Phase (PSP) of HIFI, which focus on approximately 100 lines of sight in the inner galaxy. This research was conducted at the Jet Propulsion Laboratory, California Institute of Technology under contract with the National Aeronautics and Space Administration.
The Velocity Distribution Of Pickup He+ Measured at 0.3 AU by MESSENGER
NASA Astrophysics Data System (ADS)
Gershman, Daniel J.; Fisk, Lennard A.; Gloeckler, George; Raines, Jim M.; Slavin, James A.; Zurbuchen, Thomas H.; Solomon, Sean C.
2014-06-01
During its interplanetary trajectory in 2007-2009, the MErcury Surface, Space ENvrionment, GEochemistry, and Ranging (MESSENGER) spacecraft passed through the gravitational focusing cone for interstellar helium multiple times at a heliocentric distance R ≈ 0.3 AU. Observations of He+ interstellar pickup ions made by the Fast Imaging Plasma Spectrometer sensor on MESSENGER during these transits provide a glimpse into the structure of newly formed inner heliospheric pickup-ion distributions. This close to the Sun, these ions are picked up in a nearly radial interplanetary magnetic field. Compared with the near-Earth environment, pickup ions observed near 0.3 AU will not have had sufficient time to be energized substantially. Such an environment results in a nearly pristine velocity distribution function that should depend only on pickup-ion injection velocities (related to the interstellar gas), pitch-angle scattering, and cooling processes. From measured energy-per-charge spectra obtained during multiple spacecraft observational geometries, we have deduced the phase-space density of He+ as a function of magnetic pitch angle. Our measurements are most consistent with a distribution that decreases nearly monotonically with increasing pitch angle, rather than the more commonly modeled isotropic or hemispherically symmetric forms. These results imply that pitch-angle scattering of He+ may not be instantaneous, as is often assumed, and instead may reflect the velocity distribution of initially injected particles. In a slow solar wind stream, we find a parallel-scattering mean free path of λ || ~ 0.1 AU and a He+ production rate of ~0.05 m-3 s-1 within 0.3 AU.
Laboratory Rotational Spectroscopy of the Interstellar Diatomic Hydride Ion SH+ (X 3Σ-)
NASA Astrophysics Data System (ADS)
Halfen, DeWayne; Ziurys, Lucy M.
2016-06-01
Diatomic hydride are among the most common molecular species in the interstellar medium (ISM). The low molecular mass and thus moments of inertia cause their rotational spectra to lie principally in the submillimeter and far-infrared regions. Diatomic hydrides, both neutral (MH) and ionic (MH+) forms, are also basic building blocks of interstellar chemistry. In ionic form, they may be the “hidden” carriers of refractory elements in dense gas. They are therefore extremely good targets for space-borne and airborne platforms such as Herschel, SOFIA, and SAFIR. However, in order to detect these species in the ISM, their rotational spectra must first be measured in the laboratory. To date, there is very little high resolution data available for many hydride species, in particular the ionic form. Using submillimeter/THz direct absorption methods in the Ziurys laboratory, spectra of the interstellar diatomic hydride SH+ (X 3Σ-) have been recorded. Recent work has concerned measurement of all three fine structure components of the fundamental rotational transition N = 1 ← 0 in the range 345 - 683 GHz. SH+ was generated from H2S and argon in an AC discharge. The data have been analyzed, and spectroscopic constants for this species have been refined. SH+ is found in Photon Dominated Regions (PDRs) and X-ray Dominated Regions (XDRs) and is thought to trace energetic processes in the ISM. These current measurements confirm recent observations of this species at submillimeter/THz wavelengths with ALMA and other ground-based telescopes.
Pogorelov, N. V.; Borovikov, S. N.; Heerikhuisen, J.; ...
2015-10-06
The heliotail is formed when the solar wind (SW) interacts with the local interstellar medium (LISM) and is shaped by the interstellar magnetic field (ISMF). And while there are no spacecraft available to perform in situ measurements of the SW plasma and heliospheric magnetic field (HMF) in the heliotail, it is of importance for the interpretation of measurements of energetic neutral atom fluxes performed by Interstellar Boundary Explorer. It has been shown recently that the orientation of the heliotail in space and distortions of the unperturbed LISM caused by its presence may explain the anisotropy in the TeV cosmic raymore » flux detected in air shower observations. The SW flow in the heliotail is a mystery itself because it is strongly affected by charge exchange between the SW ions and interstellar neutral atoms. If the angle between the Sun’s magnetic and rotation axes is constant, the SW in the tail tends to be concentrated inside the HMF spirals deflected tailward. But, the twisted field soon becomes unstable and the reason for the SW collimation within a two-lobe structure vanishes. We demonstrate that kinetic treatment of the H atom transport becomes essential in this case for explaining the lobe absence further along the tail. We show that the heliotail flow is strongly affected by the solar cycle that eliminates artifacts, which is typical of solutions based on simplifying assumptions. And while its orientation and shape are determined by the ISMF direction and strength the heliopause in the tail is subject to Kelvin–Helmholtz instability.« less
NASA Astrophysics Data System (ADS)
Gomez, R. G.; Fuselier, S. A.; Mukherjee, J.; Gonzalez, C. A.
2017-12-01
Pickup ions found near the earth are generally picked up in the rest frame of the solar wind, and propagate radially outward from their point of origin. While propagating, they simultaneously gyrate about the magnetic field. Pickup ions come in two general populations; interstellar and inner source ions. Interstellar ions originate in the interstellar medium, enter the solar system in a neutral charge state, are gravitationally focused on the side of the sun opposite their arrival direction and, are ionized when they travel near the sun. Inner-source ions originate at a location within the solar system and between the sun and the observation point. Both pickup ion populations share similarities in composition and charge states, so measuring of their dynamics, using their velocity distribution functions, f(v)'s, is absolutely essential to distinguishing them, and to determining their spatial and temporal origins. Presented here will be the results of studies conducted with the four Hot Plasma Composition Analyzers of the Magnetospheric Multiscale Mission (MMS-HPCA). These instruments measure the full sky (4π steradians) distribution functions of near earth plasmas at a 10 second cadence in an energy-to-charge range 0.001-40 keV/e. The instruments are also capable of parsing this combined energy-solid angle phase space with 22.5° resolution polar angle, and 11.25° in azimuthal angle, allowing for clear measurement of the pitch angle scattering of the ions.
Parameterizing the interstellar dust temperature
NASA Astrophysics Data System (ADS)
Hocuk, S.; Szűcs, L.; Caselli, P.; Cazaux, S.; Spaans, M.; Esplugues, G. B.
2017-08-01
The temperature of interstellar dust particles is of great importance to astronomers. It plays a crucial role in the thermodynamics of interstellar clouds, because of the gas-dust collisional coupling. It is also a key parameter in astrochemical studies that governs the rate at which molecules form on dust. In 3D (magneto)hydrodynamic simulations often a simple expression for the dust temperature is adopted, because of computational constraints, while astrochemical modelers tend to keep the dust temperature constant over a large range of parameter space. Our aim is to provide an easy-to-use parametric expression for the dust temperature as a function of visual extinction (AV) and to shed light on the critical dependencies of the dust temperature on the grain composition. We obtain an expression for the dust temperature by semi-analytically solving the dust thermal balance for different types of grains and compare to a collection of recent observational measurements. We also explore the effect of ices on the dust temperature. Our results show that a mixed carbonaceous-silicate type dust with a high carbon volume fraction matches the observations best. We find that ice formation allows the dust to be warmer by up to 15% at high optical depths (AV> 20 mag) in the interstellar medium. Our parametric expression for the dust temperature is presented as Td = [ 11 + 5.7 × tanh(0.61 - log 10(AV) ]χuv1/5.9, where χuv is in units of the Draine (1978, ApJS, 36, 595) UV field.
Polycyclic Aromatic Hydrocarbons
NASA Technical Reports Server (NTRS)
Salama, Farid
2010-01-01
Carbonaceous materials play an important role in space. Polycyclic Aromatic Hydrocarbons (PAHs) are a ubiquitous component of the carbonaceous materials. PAHs are the best-known candidates to account for the IR emission bands. They are also thought to be among the carriers of the diffuse interstellar absorption bands (DIBs). PAH ionization states reflect the ionization balance of the medium while PAH size, composition, and structure reflect the energetic and chemical history of the medium. A major challenge is to reproduce in the laboratory the physical conditions that exist in the emission and absorption interstellar zones. The harsh physical conditions of the ISM -low temperature, collisionless, strong UV radiation fields- are simulated in the laboratory by associating a molecular beam with an ionizing discharge to generate a cold plasma expansion. PAH ions and radicals are formed from the neutral precursors in an isolated environment at low temperature and probed with high-sensitivity cavity ringdown spectroscopy in the NUV-NIR range. Carbon nanoparticles are also formed during the short residence time of the precursors in the plasma and are characterized with time-offlight mass spectrometry. These experiments provide unique information on the spectra of large carbonaceous molecules and ions in the gas phase that can now be directly compared to interstellar and circumstellar observations (IR emission bands, DIBs, extinction curve). These findings also hold great potential for understanding the formation process of interstellar carbonaceous grains. We will review recent progress in the experimental and theoretical studies of PAHs, compare the laboratory data with astronomical observations and discuss the global implications.
Magnetic Flux Compression Concept for Aerospace Propulsion and Power
NASA Technical Reports Server (NTRS)
Litchford, Ron J.; Robertson, Tony; Hawk, Clark W.; Turner, Matt; Koelfgen, Syri
2000-01-01
The objective of this research is to investigate system level performance and design issues associated with magnetic flux compression devices for aerospace power generation and propulsion. The proposed concept incorporates the principles of magnetic flux compression for direct conversion of nuclear/chemical detonation energy into electrical power. Specifically a magnetic field is compressed between an expanding detonation driven diamagnetic plasma and a stator structure formed from a high temperature superconductor (HTSC). The expanding plasma cloud is entirely confined by the compressed magnetic field at the expense of internal kinetic energy. Electrical power is inductively extracted, and the detonation products are collimated and expelled through a magnetic nozzle. The long-term development of this highly integrated generator/propulsion system opens up revolutionary NASA Mission scenarios for future interplanetary and interstellar spacecraft. The unique features of this concept with respect to future space travel opportunities are as follows: ability to implement high energy density chemical detonations or ICF microfusion bursts as the impulsive diamagnetic plasma source; high power density system characteristics constrain the size, weight, and cost of the vehicle architecture; provides inductive storage pulse power with a very short pulse rise time; multimegajoule energy bursts/terawatt power bursts; compact pulse power driver for low-impedance dense plasma devices; utilization of low cost HTSC material and casting technology to increase magnetic flux conservation and inductive energy storage; improvement in chemical/nuclear-to-electric energy conversion efficiency and the ability to generate significant levels of thrust with very high specific impulse; potential for developing a small, lightweight, low cost, self-excited integrated propulsion and power system suitable for space stations, planetary bases, and interplanetary and interstellar space travel; potential for attaining specific impulses approaching 10 (exp 6) seconds, which would enable missions to the outer planets within ten years and missions at interstellar distances within fifty years.
NASA Astrophysics Data System (ADS)
Youngblood, Allison; France, Kevin; Loyd, R. O. Parke; Linsky, Jeffrey L.; Redfield, Seth; Schneider, P. Christian; Wood, Brian E.; Brown, Alexander; Froning, Cynthia; Miguel, Yamila; Rugheimer, Sarah; Walkowicz, Lucianne
2016-06-01
The ultraviolet (UV) spectral energy distributions (SEDs) of low-mass (K- and M-type) stars play a critical role in the heating and chemistry of exoplanet atmospheres, but are not observationally well-constrained. Direct observations of the intrinsic flux of the Lyα line (the dominant source of UV photons from low-mass stars) are challenging, as interstellar H I absorbs the entire line core for even the closest stars. To address the existing gap in empirical constraints on the UV flux of K and M dwarfs, the MUSCLES Hubble Space Telescope Treasury Survey has obtained UV observations of 11 nearby M and K dwarfs hosting exoplanets. This paper presents the Lyα and extreme-UV spectral reconstructions for the MUSCLES targets. Most targets are optically inactive, but all exhibit significant UV activity. We use a Markov Chain Monte Carlo technique to correct the observed Lyα profiles for interstellar absorption, and we employ empirical relations to compute the extreme-UV SED from the intrinsic Lyα flux in ˜100 Å bins from 100-1170 Å. The reconstructed Lyα profiles have 300 km s-1 broad cores, while >1% of the total intrinsic Lyα flux is measured in extended wings between 300 and 1200 km s-1. The Lyα surface flux positively correlates with the Mg II surface flux and negatively correlates with the stellar rotation period. Stars with larger Lyα surface flux also tend to have larger surface flux in ions formed at higher temperatures, but these correlations remain statistically insignificant in our sample of 11 stars. We also present H I column density measurements for 10 new sightlines through the local interstellar medium. Based on observations made with the NASA/ESA Hubble Space Telescope, obtained from the data archive at the Space Telescope Science Institute. STScI is operated by the Association of Universities for Research in Astronomy, Inc. under NASA contract NAS 5-26555.
2008-10-06
VANDENBERG AIR FORCE BASE, Fla. -- A closeup of Orbital Sciences’ Pegasus XL rocket for NASA’s Interstellar Boundary Explorer, or IBEX, spacecraft as it is enroute to the ramp on Vandenberg Air Force Base in California. There, the rocket will be attached to Orbital Sciences’ L-1011 aircraft for launch. IBEX is targeted for launch from the Kwajalein Atoll, a part of the Marshall Islands in the Pacific Ocean, on Oct. 19. IBEX will be launched aboard the Pegasus rocket dropped from under the wing of the L-1011 aircraft flying over the Pacific Ocean. The Pegasus will carry the spacecraft approximately 130 miles above Earth and place it in orbit. The IBEX satellite will make the first map of the boundary between the Solar System and interstellar space. Photo credit: NASA/Mark Mackley, VAFB
NASA Technical Reports Server (NTRS)
Gudipati, Murthy S.
2002-01-01
Among the various spectroscopic features of the second most abundant molecule in the space, CO, "the triplet - triplet transitions involving the lowest triplet state a(sup 3)II and the higher-lying a(sup 1)3 SIGMA (sup +), d(sup 3) (DELTA), e (sup 3) SIGMA (sup -) states spanning near-UV to mid-IR spectral range" have so far not been explored in astrophysical observations. The energies of these transitions are highly sensitive to the surroundings in which CO exists, i.e. gas-phase, polar or non-polar condensed phase. It is proposed here that these triplet-triplet emission/absorption bands can be used as a sensitive probe to investigate the local environments of CO, whether in the planetary atmosphere, stellar atmosphere or interstellar medium.
X-Ray Background Survey Spectrometer (XBSS)
NASA Technical Reports Server (NTRS)
Sanders, W. T. (Principal Investigator); Paulos, R. J.
1996-01-01
The objective of this investigation was to perform a spectral survey of the low energy diffuse X-ray background using the X-ray Background Survey Spectrometer (XBSS) on board the Space Station Freedom (SSF). XBSS obtains spectra of the X-ray diffuse background in the 11-24 A and 44-84 A wavelength intervals over the entire sky with 15 deg spatial resolution. These X-rays are almost certainly from a very hot (10(exp 6) K) component of the interstellar medium that is contained in regions occupying a large fraction of the interstellar volume near the Sun. Astrophysical plasmas near 10(exp 6) K are rich in emission lines, and the relative strengths of these lines, besides providing information about the physical conditions of the emitting gas, also provide information about its history and heating mechanisms.
NASA Astrophysics Data System (ADS)
Koenigsberger, Gloria; Georgiev, Leonid; Peimbert, Manuel; Walborn, Nolan R.; Barbá, Rodolfo; Niemela, Virpi S.; Morrell, Nidia; Tsvetanov, Zlatan; Schulte-Ladbeck, Regina
2001-01-01
Observations of the interstellar and circumstellar absorption components obtained with the Hubble Space Telescope Space Telescope Imaging Spectrograph (STIS) along the line of sight toward the Wolf-Rayet-luminous blue variable (LBV) system HD 5980 in the Small Magellanic Cloud are analyzed. Velocity components from C I, C I*, C II, C II*, C IV, N I, N V, O I, Mg II, Al II, Si II, Si II*, Si III, Si IV, S II, S III, Fe II, Ni II, Be I, Cl I, and CO are identified, and column densities estimated. The principal velocity systems in our data are (1) interstellar medium (ISM) components in the Galactic disk and halo (Vhel=1.1+/-3, 9+/-2 km s-1) (2) ISM components in the SMC (Vhel=+87+/-6, +110+/-6, +132+/-6, +158+/-8, +203+/-15 km s-1) (3) SMC supernova remnant SNR 0057-7226 components (Vhel=+312+/-3, +343+/-3, +33, +64 km s-1) (4) circumstellar (CS) velocity systems (Vhel=-1020, -840, -630, -530, -300 km s-1) and (5) a possible system at -53+/-5 km s-1 (seen only in some of the Si II lines and marginally in Fe II) of uncertain origin. The supernova remnant SNR 0057-7226 has a systemic velocity of +188 km s-1, suggesting that its progenitor was a member of the NGC 346 cluster. Our data allow estimates to be made of Te~40,000 K, ne~100 cm-3, N(H)~(4-12)×1018 cm-2 and a total mass between 400 and 1000 Msolar for the supernova remnant (SNR) shell. We detect C I absorption lines primarily in the +132 and +158 km s-1 SMC velocity systems. As a result of the LBV-type eruptions in HD 5980, a fast-wind/slow-wind circumstellar interaction region has appeared, constituting the earliest formation stages of a windblown H II bubble surrounding this system. Variations over a timescale of 1 year in this circumstellar structure are detected. Based on observations with the NASA/ESA Hubble Space Telescope, obtained at the Space Telescope Science Institute, which is operated by the Association of Universities for Research in Astronomy, Inc., under NASA contract NAS 5-26555.
ISO finds a very steamy cloud in interstellar space
NASA Astrophysics Data System (ADS)
1998-04-01
The discovery, which may provide an important clue to the origin of water in the Solar System, is reported in an article in Astrophysical Journal Letters, to be published on 20 April. This Information Note is distributed simultaneously with a Press Release on the same subject from Cornell University, Johns Hopkins University, the Harvard/Smithsonian Center for Astrophysics, and NASA's Ames Research Center. The water vapour is in the Orion Molecular Cloud, a giant interstellar mass composed primarily of hydrogen molecules. The observations were carried out in October 1997 with the Long Wavelength Spectrometer, devised by a British-led team as one of four instruments on board ISO. Looking at long infrared wavelengths, the astronomers saw the characteristic signature of emission by water vapour. "The interstellar gas cloud that we observed is being pummelled by shock waves that compress and heat the gas," says Martin Harwit of Cornell University, an ISO mission scientist and lead author on the article reporting the finding. "These shock waves are the result of the violent early stages of starbirth, in which a young star spews out gas that slams into its surroundings at high speed. The heated water vapour that we observed is the result of that collision." Harwit also suggests that shock waves are a cause of starbirth as well as a result. "In the future," he says, "they may also trigger the formation of additional stars and planets as they compress the gas cloud that we observed, but only if surplus heat can be radiated away. Even though the interstellar gas is composed primarily of hydrogen molecules, water vapour is a particularly efficient radiator at far-infrared wavelengths and plays a critical role in cooling the gas and facilitating the star formation process. Because the Earth's own wet atmosphere is completely opaque at the wavelengths of interest, the observations that we are reporting today are possible only from space with the use of the ISO satellite." A correct prediction The concentration of water vapour measured by the US team was roughly one part in 2000 by volume, far larger than any measured previously in interstellar space. But the strength of the water radiation detected from Orion was in perfect agreement with theoretical predictions in the PhD thesis of team member Michael Kaufman, a former Johns Hopkins graduate student now at NASA's Ames Research Center. "An enhanced concentration of water is precisely what we expected in this gas cloud," comments team member Gary Melnick of the Harvard-Smithsonian Center for Astrophysics. "We are looking at a region of interstellar space where shock waves have made the gas abnormally warm. For the past 25 years, astrophysicists have been predicting that whenever the temperature exceeds about 100 °C, chemical reactions will convert most of the oxygen atoms in the interstellar gas into water. And that's exactly what we've observed in Orion." The source of the water we live by The high concentration of water measured in Orion may have also had implications for the origin of water in the Solar System and on the Earth itself, according to team member David Neufeld of Johns Hopkins University. "The interstellar gas cloud that we observed in Orion seems to be a huge chemical factory," Neufeld says, "generating enough water molecules in a single day to fill the Earth's oceans sixty times over. Eventually that water vapour will cool and freeze, turning into small solid particles of ice. Similar ice particles were presumably present within the gas cloud from which the Solar System originally formed. It seems quite plausible that much of the water in the Solar System was originally produced in a giant water-vapour factory like the one we have observed in Orion." A footnote about ISO ISO was put into orbit in November 1995, by an Ariane 44PP launcher at the European space base at Kourou in French Guiana. As an unprecedented observatory for infrared astronomy, able to examine cool and hidden places in the Universe, ISO has observed more than 26,000 individual objects. A supply of liquid helium, used to cool the telescope and instruments close to the absolute zero of temperature, has lasted much longer than expected, but ran out on 8 April 1998 (see ESA Press Information Note N°11-98 of 9 April). Further information is available from: ESA Public Relations Division Tel: +33(0)1.53.69.71.55 Fax : +33(0)1.53.69.76.90 ESA ISO: Dr Martin Kessler at +34.(9)1.813.12.53 or mkessler@iso.vilspa.esa.es And from US team members: Prof. Martin Harwit at +1 202-479-6877 or mharwit@ibm.net Prof. David Neufeld at +1 410-516-8582 or neufeld@pha.jhu.edu Dr Gary Melnick at +1 617-495-7388 or gmelnick@cfa.harvard.edu Dr Michael Kaufman at +1 650-604-0320 or kaufman@warped.arc.nasa.gov ISO on the Internet For more details about ISO, and a picture gallery, visit the website: http://isowww.estec.esa.nl Panels showing two examples of measurements carried out on board the ISO, together with an image of the Orion nebula taken with the Wide Field Planetary Camera 2 on NASA's Hubble Space Telescope can be seen on the World Wide Web at http://www.pha.jhu.edu/~neufeld/orionwater.html.
A Multi-Wavelength Study of the Hot Component of the Interstellar Medium
NASA Technical Reports Server (NTRS)
Nichols, Joy; Oliversen, Ronald K. (Technical Monitor)
2002-01-01
The goals of this research are as follows: (1) Using the large number of lines of sight available in the ME database, identify the lines of sight with high-velocity components in interstellar lines, from neutral species through Si VI, C IV, and N V; (2) Compare the column density of the main components (i.e. low velocity components) of the interstellar lines with distance, galactic longitude and latitude, and galactic radial position. Derive statistics on the distribution of components in space (e.g. mean free path, mean column density of a component). Compare with model predictions for the column densities in the walls of old SNR bubbles and superbubbles, in evaporating cloud boundaries and in turbulent mixing layers; (3) For the lines of sight associated with multiple high velocity, high ionization components, model the shock parameters for the associated superbubble and SNR to provide more accurate energy input information for hot phase models and galactic halo models. Thus far 49 lines of sight with at least one high velocity component to the C IV lines have been identified; and (4) Obtain higher resolution data for the lines of sight with high velocity components (and a few without) to further refine these models.
Solar System Connections to the Organic Material In the ISM
NASA Technical Reports Server (NTRS)
Pendleton, Yvonne J.
2003-01-01
The organic component of the interstellar medium (ISM) has relevance to the formation of the early solar nebula, since our solar system formed out of ISM material. Comparisons of near infrared spectra of the diffuse ISM dust with those of primitive solar system bodies (such as comets and meteorites) show a remarkable similarity, suggesting that perhaps some of the interstellar organic material made its way, unaltered, into our solar system. Tracing the interstellar organic material is necessary to understand how these materials may be important links in the development of prebiotic phenomena. Studies of the ISM reveal that the organic refractory component of the diffuse ISM is largely hydrocarbon in nature, possessing little N or O, with carbon distributed between the aromatic and aliphatic forms. There is a strong similarity in the near IR spectra of the diffuse ISM (the 3.4 micron hydrocarbon bands) and those seen in the Murchison and Orgueil meteorites, however, detailed comparisons at longer wavelengths reveal critical dissimilarities. Here we will present comparisons and discussion of relevant spectra. As we continue to explore, we will gain insight into the connection between planetesimals in the solar system and chemistry in the dusty space between the stars.
On Ion Clusters in the Interstellar Gas
NASA Technical Reports Server (NTRS)
Donn, Bertram
1960-01-01
In a recent paper V.I. Krassovsky (1958) predicts the occurrence of clusters of large numbers of atoms and molecules around ions in the interstellar gas. He then proposes a number of physicochemical processes that would be considerably enhanced by the high particle density in such clusters. In particular, he suggests that absorption by negative ions formed in the clusters would account for the interstellar extinction without any necessity for the presence of grains. Because of the important consequences that ion clusters could have, it is necessary to examine their occurrence more fully. This note re-examines the formation of ion clusters in space and shows that even ion-molecule pairs are essentially non-existent. Ion clusters have been considered by Bloom and Margenau (1952) from the same point of view as that used by Krassovsky, whose basic reference (Joffe and Semenov 1933) unfortunately is not available. A different approach has been used by Eyring, Hirschfelder, and Taylor (1936) following the methods of chemical equilibrium. Both the references cited here enable one to conclude that clustering is negligible. Therefore, the treatment of Eyring et al. is more appropriate than the method of Bloom and Margenau, which depends on the statistical equilibrium of an atmosphere in a force field.
Study of the formation of interstellar CF+ from the HF + C + →CF+ + H reaction
NASA Astrophysics Data System (ADS)
Denis-Alpizar, Otoniel; Guzmán, Viviana V.; Inostroza, Natalia
2018-06-01
The detection of the carbon monofluoride cation CF+ was considered as a support of the theories of the fluorine chemistry in the interstellar medium (ISM). This molecule is formed by the reaction of HF with C+. The rates of this reaction have been estimated previously by two different groups. However, these two estimations led to different results. The main goal of the present work is to study the HF + C+ reaction and determine new reactive rate coefficients. A large set of ab initio energies at the MRCI-F12/cc-pVQZ-F12 level was computed. The first reactive potential energy surface (PES) for the HF + C+ → CF+ + H reaction was developed using a reproducing kernel Hilbert space (RKHS) based method. The dynamics of the reaction was followed from quasiclassical trajectories (QCT). The results of such calculations showed that CF+ is produced in excited vibrational states. The rate coefficients for the HF + C+ → CF+ + H reaction from 50 K up to 2000 K are reported. The impact of these new data in the astrophysical models for the determination of the interstellar conditions is also explored.
On the Detectability of Interstellar Objects Like 1I/'Oumuamua
NASA Astrophysics Data System (ADS)
Ragozzine, Darin
2018-04-01
Almost since Oort's 1950 hypothesis of a tenuously bound cloud of comets, planetary formation theorists have realized that the process of planet formation must have ejected very large numbers of planetesimals into interstellar space. Unforunately, these objects are distributed over galactic volumes, while they are only likely to be detectable if they pass within a few AU of Earth, resulting in an incredibly sparse detectable population. Furthermore, hypotheses for the formation and distribution of these bodies allows for uncertainties of orders of magnitude in the expected detection rate: our analysis suggested LSST would discover 0.01-100 objects during its lifetime (Cook et al. 2016). The discovery of 1I/'Oumuamua by a survey less powerful that LSST indicates either a low probability event and/or that properties of this population are on the more favorable end of the spectrum. We revisit the detailed detection analysis of Cook et al. 2016 in light of the detection of 1I/'Oumuamua. We use these results to better understand 1I/'Oumuamua and to update our assessment of future detections of interstellar objects. We highlight some key questions that can be answered only by additional discoveries.
NASA Technical Reports Server (NTRS)
Smith, Peter L. (Editor); Wiese, Wolfgang L. (Editor)
1992-01-01
The present volume on atomic and molecular spectroscopic data for space astrophysics discusses scientific problems and laboratory data needs associated with the Hubble Space Telescope, atomic data needed for far ultraviolet astronomy with HUT and FUSE and for analysis of EUV and X-ray spectra, and data for observations of interstellar medium with the Hubble Space Telescope. Attention is also given to atomic and molecular data for analysis of IR spectra from ISO and SIRTF, atomic data from the opacity project, sources of atomic spectroscopic data for astrophysics, and summary of current molecular data bases.
LDEF: 69 Months in Space. Part 4: Second Post-Retrieval Symposium
NASA Technical Reports Server (NTRS)
Levine, Arlene S. (Editor)
1993-01-01
A compilation of papers presented at the Second Long Duration Exposure Facility (LDEF) Post-Retrieval Symposium are presented. The papers represent the data analysis of the 57 experiments flown on the LDEF. The experiments include materials, coatings, thermal systems, power and propulsion, science (cosmic ray, interstellar gas, heavy ions, micrometeoroid, etc.), electronics, optics, and life sciences.
LDEF: 69 Months in Space. Part 1: Second Post-Retrieval Symposium
NASA Technical Reports Server (NTRS)
Levine, Arlene S. (Editor)
1993-01-01
A compilation of papers presented at the Second Long Duration Exposure Facility (LDEF) Post-Retrieval Symposium is included. The papers represent the data analysis of the 57 experiments flown on the LDEF. The experiments include materials, coatings, thermal systems, power and propulsion, science (cosmic ray, interstellar gas, heavy ions, micrometeoroid, etc.), electronics, optics, and life sciences.
NASA Technical Reports Server (NTRS)
Mendis, A.; Alfven, H.
1976-01-01
Physico-chemical processes leading to the dynamic formation and physical evolution of comets are reviewed in relationship to the various theories that propose solar origins, protoplanetary origins, planetary origins and interstellar origins. Evidence points to the origins of comets by the growth and agglomeration of small particles from gas and dust at very low temperatures at undetermined regions in space.
NASA Technical Reports Server (NTRS)
Mckay, C. P.
1987-01-01
The following types of experiments for a proposed Space Station Microgravity Particle Research Facility are described: (1) biogenic elements in the interstellar medium; (2) organic material in the solar nebula; (3) volatiles in comets and icy planetesimals; (4) pre-biotic atmospheric chemistry; (5) analysis of cosmic dust particles; and (6) microbial exposure. The required capabilities and desired hardware for the facility are detailed.
LDEF: 69 Months in Space. Part 3: Second Post-Retrieval Symposium
NASA Technical Reports Server (NTRS)
Levine, Arlene S. (Editor)
1993-01-01
Papers presented at the Second Long Duration Exposure Facility (LDEF) Post-Retrieval Symposium are included. The papers represent the data analysis of the 57 experiments flown on the LDEF. The experiments include materials, coatings, thermal systems, power and propulsion, science (cosmic ray, interstellar gas, heavy ions, micrometeoroid, etc.), electronics, optics, and life science.
Prebiotic molecules formation through the gas-phase reaction between HNO and CH2CHOH2+
NASA Astrophysics Data System (ADS)
Redondo, Pilar; Martínez, Henar; Largo, Antonio; Barrientos, Carmen
2017-07-01
Context. Knowing how the molecules that are present in the ISM can evolve to more complex ones is an interesting topic in interstellar chemistry. The study of possible reactions between detected species can help to understand the evolution in complexity of the interstellar matter and also allows knowing the formation of new molecules which could be candidates to be detected. We focus our attention on two molecules detected in space, vinyl alcohol (CH2CHOH) and azanone (HNO). Aims: We aim to carry out a theoretical study of the ion-molecule reaction between protonated vinyl alcohol and azanone. The viability of formation of complex organic molecules (COMs) from these reactants is expected to provide some insight into the formation of prebiotic species through gas phase reactions. Methods: The reaction of protonated vinyl alcohol with azanone has been theoretically studied by using ab initio methods. Stationary points on the potential energy surface (PES) were characterized at the second-order Moller-Plesset level in conjunction with the aug-cc-pVTZ (correlation-consistent polarized valence triple-zeta) basis set. In addition, the electronic energies were refined by means of single-point calculations at the CCSD(T) level (coupled cluster single and double excitation model augmented with a non-iterative treatment of triple excitations) with the same basis set. Results: From a thermodynamic point of view, twelve products, composed of carbon, oxygen, nitrogen, and hydrogen which could be precursors in the formation of more complex biological molecules, can be obtained from this reaction. Among these, we focus especially on ionized glycine and two of its isomers. The analysis of the PES shows that only formation of cis- and trans-O-protonated imine acetaldehyde, CH2NHCOH+ and, CHNHCHOH+, are viable under interstellar conditions. Conclusions: The reaction of protonated vinyl alcohol with azanone can evolve in the interstellar medium to more complex organic molecules of prebiotic interest. Our results suggest that imine acetaldehyde could be a feasible candidate molecule to be searched for in space.
Status of the Stardust ISPE and the Origin of Four Interstellar Dust Candidates
NASA Technical Reports Server (NTRS)
Westphal, A. J.; Allen, C.; Ansari, A.; Bajt, S.; Bastien, R. S.; Bassim, N.; Bechtel, H. A.; Borg, J.; Brenker, F. E.; Bridges, J.;
2012-01-01
Some bulk properties of interstellar dust are known through infrared and X-ray observations of the interstellar medium. However, the properties of individual interstellar dust particles are largely unconstrained, so it is not known whether individual interstellar dust particles can be definitively distinguished from interplanetary dust particles in the Stardust Interstellar Dust Collector (SIDC) based only on chemical, mineralogical or isotopic analyses. It was therefore understood from the beginning of the Stardust Interstellar Preliminary Examination (ISPE) that identification of interstellar dust candidates would rest on three criteria - broad consistency with known extraterrestrial materials, inconsistency with an origin as secondary ejecta from impacts on the spacecraft, and consistency, in a statistical sense, of observed dynamical properties - that is, trajectory and capture speed - with an origin in the interstellar dust stream. Here we quantitatively test four interstellar dust candidates, reported previously [1], against these criteria.
Space missions to the exoplanets: Will they ever be possible
NASA Astrophysics Data System (ADS)
Genta, Giancarlo
There is no doubt that the discovery of exoplanets has made interstellar space mission much more interesting than they were in the past. The possible discovery of a terrestrial type plane at a reasonable distance will give a strong impulse in this direction. However, there are doubts that such long range space mission will ever become feasible at all and, in case they will be, it is impossible to forecast a timeframe for them. At present, precursor interstellar missions are planned, but they fall way short from yielding interesting information about exoplanets, except perhaps in the case of missions to the focal line of the Sun’s gravitational lens, whose usefulness in this context is still to be demonstrated. They are anyway an essential step in the roadmap toward interstellar missions. Often the difficulties linked with interstellar missions are considered as related with the huge quantity of energy required for reaching the target star system within a reasonable timeframe. While this may well be a showstopper, it is not the only problem to be solved to make them possible. Two other issues are those linked with the probe’s autonomy and the telecommunications required to transmit large quantities of information at those distances. Missions to the exoplanets may be subdivided in the following categories: 1) robotic missions to the destination system, including flybys; 2) robotic missions including landing on an exoplanet; 3) robotic sample return missions; 4) human missions. The main problem to be solved for missions of type 1 is linked with propulsion and with energy availability, while autonomy (artificial intelligence) and telecommunication problems are more or less manageable with predictable technologies. Missions of type 2 are more demanding for what propulsion is concerned, but above all require a much larger artificial intelligence and also will generate a large amount of data, whose transmission back to Earth may become a problem. The suggestion of using a spacecraft to physically transfer back the information on a support of some type (the so called data clippers) may make missions of type 2 to be only marginally less complex than missions of type 3. Missions of type 3 are at least twice as demanding than those of type 2 for what propulsion is required, and are also much more demanding also from the viewpoint of autonomy. On the contrary, they may be simpler from the viewpoint of communications. Finally, missions of type 4 are often regarded as belonging to the science fiction domain more than to that of feasible realities. However, they might be the only possibility if the progress in the field of robotics and artificial intelligence will fall short from making it possible to proceed with robotic missions. As a conclusion, we can assess that, short of unpredictable technological breakthroughs, missions to the exoplanets are still far away in the future and educated guesses can set them centuries away from now. What can be done is to identify critical technologies and assess a roadmap to increase their technological readiness. This effort is really worthwhile, since aiming at a very difficult task like interstellar missions, will yield a positive fallout on space exploration in general. --- This paper is meant for the Panel on Exoplanetary Exploration (PEPE) which is not included in the list above, so it was included in PEX.1
Spaceport operations for deep space missions
NASA Technical Reports Server (NTRS)
Holt, Alan C.
1990-01-01
Space Station Freedom is designed with the capability to cost-effectively evolve into a transportation node which can support manned lunar and Mars missions. To extend a permanent human presence to the outer planets (moon outposts) and to nearby star systems, additional orbiting space infrastructure and great advances in propulsion system and other technologies will be required. To identify primary operations and management requirements for these deep space missions, an interstellar design concept was developed and analyzed. The assembly, test, servicing, logistics resupply, and increment management techniques anticipated for lunar and Mars missions appear to provide a pattern which can be extended in an analogous manner to deep space missions. A long range, space infrastructure development plan (encompassing deep space missions) coupled with energetic, breakthrough level propulsion research should be initiated now to assist in making the best budget and schedule decisions.
NASA Astrophysics Data System (ADS)
Salama, Farid; Galazutdinov, G.; Krelowski, J.; Biennier, L.; Beletsky, Y.; Song, I.
2013-06-01
The spectra of neutral and ionized PAHs isolated in the gas phase at low temperature have been measured in the laboratory under conditions that mimic interstellar conditions and are compared with a set of astronomical spectra of reddened, early type stars. The comparisons of astronomical and laboratory data provide upper limits for the abundances of neutral PAH molecules and ions along specific lines-of-sight. Something that is not attainable from infrared observations. We present the characteristics of the laboratory facility (COSmIC) that was developed for this study and discuss the findings resulting from the comparison of the laboratory data with high resolution, high S/N ratio astronomical observations. COSmIC combines a supersonic jet expansion with discharge plasma and cavity ringdown spectroscopy and provides experimental conditions that closely mimic the interstellar conditions. The column densities of the individual PAH molecules and ions probed in these surveys are derived from the comparison of the laboratory data with high resolution, high S/N ratio astronomical observations. The comparisons of astronomical and laboratory data lead to clear conclusions regarding the expected abundances for PAHs in the interstellar environments probed in the surveys. Band profile comparisons between laboratory and astronomical spectra lead to information regarding the molecular structures and characteristics associated with the DIB carriers in the corresponding lines-of-sight. These quantitative surveys of neutral and ionized PAHs in the optical range open the way for quantitative searches of PAHs and complex organics in a variety of interstellar and circumstellar environments. Acknowledgements: F.S. acknowledges the support of the Astrophysics Research and Analysis Program of the NASA Space Mission Directorate and the technical support provided by R. Walker at NASA ARC. J.K. acknowledges the financial support of the Polish State. The authors are deeply grateful to the ESO archive as well as to the ESO staff members for their active support.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Schwadron, N. A., E-mail: nschwadron@unh.edu; Southwest Research Institute, San Antonio, TX, 78238; McComas, D. J.
2016-03-25
Since launch in Oct. 2008, IBEX, with its two energetic neutral atom (ENA) cameras, has provided humankind with the first-ever global images of the complex boundary separating the heliosphere from the local interstellar medium (LISM). IBEX’s energy-resolved all-sky maps, collected every six months, are yielding remarkable new insights into the heliospheres structure as it is shaped by the combined forces of the local interstellar flow, the local interstellar magnetic field (LISMF), and the evolving solar wind. IBEX has also acquired the first images of ENAs backscattered from the surface of the moon as well as global images of the magnetosphericmore » response to solar wind disturbances. IBEX thus addresses all three Heliophysics science objectives set forth in the 2014 Science Plan for NASAs Science Mission Directorate (SMD) as well as the goals in the recent Solar and Space Physics Decadal Survey (NRC 2012). In addition, with the information it provides on the properties of the LISM and the LISMF, IBEX represents a unique bridge between heliophysics and astrophysics, and fills in critical knowledge for understanding the habitability of exoplanetary systems and the future habitability of Earth and the solar system. Because of the few-year time lag due to solar wind and ENA transport, IBEX observed the solar wind/ LISM interaction characteristic of declining phase/solar minimum conditions. In the continuing mission, IBEX captures the response of the interstellar boundaries to the changing structure of the solar wind in its transition toward the “mini” solar maximum and possibly the decline into the next solar minimum. The continuing IBEX mission affords never-to-be-repeated opportunities to coordinate global imaging of the heliospheric boundary with in-situ measurements by the Voyagers as they pass beyond the heliopause and start to directly sample the LISM.« less
Astrophysical radiation environments of habitable worlds
NASA Astrophysics Data System (ADS)
Smith, David Samuel
Numerous astrophysical sources of radiation affect the environment of planets orbiting within the liquid-water habitable zone of main-sequence stars. This dissertation reaches a number of conclusions about the ionizing radiation environment of the habitable zone with respect to X-rays and gamma-rays from stellar flares and background Galactic cosmic rays. Gamma-rays and X-rays incident on terrestrial-like exoplanet atmospheres can be efficiently reprocessed into diffuse UV emission that, depending on the presence of atmospheric UV absorbers, can reach the surface. Extreme solar X-ray flares over the last 4.6 Gyr could have delivered large enough radiation doses to the Martian surface to sterilize any unprotected organisms, depending on the largest energy releases possible. These flares also pose a significant hazard to manned space missions, since a large flare can occur with little or no warning during an extravehicular activity. A flare as large as the largest observed could deliver radiation doses exceeding safety limits to an astronaut protected by only a spacesuit. With respect to particle radiation, the nature of Galactic cosmic-ray modulation by astrospheres means that habitable-zone cosmic-ray fluxes change by much larger magnitudes when passing through low- densities regions of the interstellar medium. In contrast to the popular idea that passages through dense molecular clouds are required to significantly enhance Galactic cosmic-ray fluxes and affect planets' electrical circuits, background mutation rates, and climates, we find that densities of only 0.1-10 cm -3 , the densities of most interstellar clouds, are sufficient to bring fluxes close to the full, interstellar level. Finally, passages through dense molecular clouds are necessary to shrink astrospheres to within the habitable zone, but such events produce even higher interstellar hydrogen and dust accretion rates than have been estimated because of the combination of enhanced charge-exchange rates between stellar-wind ions and interstellar neutrals and the growing importance of the central star's gravity on particle trajectories as the astrosphere shrinks.
A brief visit from a red and extremely elongated interstellar asteroid.
Meech, Karen J; Weryk, Robert; Micheli, Marco; Kleyna, Jan T; Hainaut, Olivier R; Jedicke, Robert; Wainscoat, Richard J; Chambers, Kenneth C; Keane, Jacqueline V; Petric, Andreea; Denneau, Larry; Magnier, Eugene; Berger, Travis; Huber, Mark E; Flewelling, Heather; Waters, Chris; Schunova-Lilly, Eva; Chastel, Serge
2017-12-21
None of the approximately 750,000 known asteroids and comets in the Solar System is thought to have originated outside it, despite models of the formation of planetary systems suggesting that orbital migration of giant planets ejects a large fraction of the original planetesimals into interstellar space. The high predicted number density of icy interstellar objects (2.4 × 10 -4 per cubic astronomical unit) suggests that some should have been detected, yet hitherto none has been seen. Many decades of asteroid and comet characterization have yielded formation models that explain the mass distribution, chemical abundances and planetary configuration of the Solar System today, but there has been no way of telling whether the Solar System is typical of planetary systems. Here we report observations and analysis of the object 1I/2017 U1 ('Oumuamua) that demonstrate its extrasolar trajectory, and that thus enable comparisons to be made between material from another planetary system and from our own. Our observations during the brief visit by the object to the inner Solar System reveal it to be asteroidal, with no hint of cometary activity despite an approach within 0.25 astronomical units of the Sun. Spectroscopic measurements show that the surface of the object is spectrally red, consistent with comets or organic-rich asteroids that reside within the Solar System. Light-curve observations indicate that the object has an extremely oblong shape, with a length about ten times its width, and a mean radius of about 102 metres assuming an albedo of 0.04. No known objects in the Solar System have such extreme dimensions. The presence of 'Oumuamua in the Solar System suggests that previous estimates of the number density of interstellar objects, based on the assumption that all such objects were cometary, were pessimistically low. Planned upgrades to contemporary asteroid survey instruments and improved data processing techniques are likely to result in the detection of more interstellar objects in the coming years.
NASA Technical Reports Server (NTRS)
Schulte-Ladbeck, R. E.; Nordsieck, K. H.; Code, A. D.; Anderson, C. M.; Babler, B. L.; Bjorkman, K. S.; Clayton, G. C.; Magalhaes, A. M.; Meade, M. R.; Shepherd, D.
1992-01-01
During the 1990 December Astro-1 Space Shuttle mission, spectropolarimetry was conducted in the wavelength region from 1400 to 3200 A of the Wolf-Rayet stars EZ CMa (WN5) and Theta Mus (WC6 + O9.5I) with the Wisconsin Ultraviolet Photo-Polarimeter Experiment. The UV polarization of EZ CMa displays features which correspond to emission lines. This indicates a large, about 0.8 percent, intrinsic UV-continuum polarization, and provides further evidence that the wind of EZ CMa is highly distorted. The polarization of Theta Mus does not change across emission lines, or the strong interstellar 2200 A feature. The polarization decreases smoothly to shorter wavelengths, at constant position angle. The combined UV-optical polarization spectrum of Theta Mus can be described well with interstellar polarization following a Serkowski law.
Weakly ionized cosmic gas: Ionization and characterization
NASA Technical Reports Server (NTRS)
Rosenberg, M.; Mendis, D. A.; Chow, V. W.
1994-01-01
Since collective plasma behavior may determine important transport processes (e.g., plasma diffusion across a magnetic field) in certain cosmic environments, it is important to delineate the parameter space in which weakly ionized cosmic gases may be characterized as plasmas. In this short note, we do so. First, we use values for the ionization fraction given in the literature, wherein the ionization is generally assumed to be due primarily to ionization by cosmic rays. We also discuss an additional mechanism for ionization in such environments, namely, the photoelectric emission of electrons from cosmic dust grains in an interstellar Far Ultra Violet (FUV) radiation field. Simple estimates suggest that under certain conditions this mechanism may dominate cosmic ray ionization, and possibly also the photoionization of metal atoms by the interstellar FUV field, and thereby lead to an enhanced ionization level.
Vibrational Product States from Reactions of CN(-) with the Hydrogen Halides and Hydrogen Atoms,
1981-01-15
in these Several of the postulated schemes to synthesize CNH distributions. Each distribution is normalized to 1.0 ignoring in outer space are based on...been observed in interstellar space . 22-24 (3) One major advantage of studying HCN instead of, say, CO 2 is that the V3 mode of HCN is very anharmonic... Nebula by radio emission. 22,54-58 (Table IV) for the P3 modes of HCN and CNH in Reactions to- (6). The hatched areas are indications of the errors
2014 Summer Series - Harold (Sonny) White - Eaglework Laboratories: Advanced Propulsion
2014-08-12
Human space exploration is currently still in Low Earth Orbit. Although this is much further in the future, we still can ask what would it eventually take for humans to explore the outer solar system? How hard is interstellar flight? We will open with a brief discussion on the types of things we have been thinking about for the next endeavor for human space exploration, and then lean forward and discuss a couple of advanced propulsion concepts that may one day be useful for helping us reach the stars.
Far-ultraviolet astronomy on the Astro-1 space shuttle mission
NASA Technical Reports Server (NTRS)
Davidsen, Arthur F.
1993-01-01
The Astro-1 mission obtained observations related to a wide variety of current problems in astronomy during a 9-day flight of the space shuttle Columbia. Early results from one of the instruments, the Hopkins Ultraviolet Telescope, are reviewed here. Among these are new insights concerning the origin of the ultraviolet light from the old stellar population in elliptical galaxies, new evidence for a hot, gaseous corona surrounding the Milky Way, improved views of the physical conditions in active galactic nuclei, and a measurement of the ionization state of the local interstellar medium.
Tumbling motion of 1I/`Oumuamua and its implications for the body's distant past
NASA Astrophysics Data System (ADS)
Drahus, Michał; Guzik, Piotr; Waniak, Wacław; Handzlik, Barbara; Kurowski, Sebastian; Xu, Siyi
2018-05-01
Models of the Solar System's evolution show that almost all the primitive material leftover from the formation of the planets was ejected to the interstellar space as a result of dynamical instabilities1. Accordingly, minor bodies should also be ejected from other planetary systems and should be abundant in the interstellar space2, giving hope for their direct detection and detailed characterization as they penetrate through the Solar System3,4. These expectations materialized on 19 October 2017 ut with the Panoramic Survey Telescope and Rapid Response System's discovery of 1I/`Oumuamua5. Here, we report homogeneous photometric observations of this body from Gemini North, which densely cover a total of 8.06 h over two nights. A combined ultra-deep image of 1I/`Oumuamua shows no signs of cometary activity, confirming the results from other, less sensitive searches6-9. Our data also show an enormous range of rotational brightness variations of 2.6 ± 0.2 mag, larger than ever observed in the population of small Solar System objects, suggesting a very elongated shape of the body. Most significantly, the light curve does not repeat exactly from one rotation cycle to another and its double-peaked periodicity of 7.56 ± 0.01 h from our data is inconsistent with earlier determinations6,7,10-12. These are clear signs of a tumbling motion, a remarkable characteristic of 1I/`Oumuamua's rotation that is consistent with a collision in the distant past. Bearing marks of a violent history, this first-known interstellar visitor tells us that collisional evolution of minor body populations in other planetary systems might be common.
Infrared Photometric Properties of 709 Candidate Stellar Bowshock Nebulae
NASA Astrophysics Data System (ADS)
Kobulnicky, Henry A.; Schurhammer, Danielle P.; Baldwin, Daniel J.; Chick, William T.; Dixon, Don M.; Lee, Daniel; Povich, Matthew S.
2017-11-01
Arcuate infrared nebulae are ubiquitous throughout the Galactic Plane and are candidates for partial shells, bubbles, or bowshocks produced by massive runaway stars. We tabulate infrared photometry for 709 such objects using images from the Spitzer Space Telescope, the Wide-field Infrared Explorer, and the Herschel Space Observatory (HSO). Of the 709 objects identified at 24 or 22 μm, 422 are detected at the HSO 70 μm bandpass. Of these, only 39 are detected at HSO 160 μm. The 70 μm peak surface brightnesses are 0.5-2.5 Jy arcmin-2. Color temperatures calculated from the 24 to 70 μm ratios range from 80 to 400 K. Color temperatures from 70 to 160 μm ratios are systematically lower, 40-200 K. Both of these temperature are, on average, 75% higher than the nominal temperatures derived by assuming that dust is in steady-state radiative equilibrium. This may be evidence of stellar wind bowshocks sweeping up and heating—possibly fragmenting but not destroying—interstellar dust. Infrared luminosity correlates with standoff distance, R 0, as predicted by published hydrodynamical models. Infrared spectral energy distributions are consistent with interstellar dust exposed to either single radiant energy density, U={10}3{--}{10}5 (in more than half of the objects) or a range of radiant energy densities U min = 25 to U max = 103-105 times the mean interstellar value for the remainder. Hence, the central OB stars dominate the energetics, making these enticing laboratories for testing dust models in constrained radiation environments. The spectral energy densities are consistent with polycyclic aromatic hydrocarbon fractions {q}{PAH}≲ 1 % in most objects.
The Ortho-to-para Ratio of Water Molecules Desorbed from Ice Made from Para-water Monomers at 11 K
NASA Astrophysics Data System (ADS)
Hama, Tetsuya; Kouchi, Akira; Watanabe, Naoki
2018-04-01
Water has two nuclear-spin isomers: ortho- and para-H2O. Some observations of interstellar space and cometary comae have reported the existence of gaseous H2O molecules with anomalous ortho-to-para ratios (OPRs) less than the statistical value of three. This has been often used to estimate the formation temperature of ice on dust, which is inferred to be below 50 K. The relation between the nuclear-spin dynamics of H2O in ice at low temperatures and the OPR of gaseous H2O desorbed from the ice has yet to be explored in a laboratory. Consequently, the true meaning of the observed OPRs remains debated. We measure the OPR of H2O photodesorbed from ice made from para-H2O monomers at 11 K, which was prepared by the sublimation of Ne from a para-H2O/Ne matrix. The photodesorbed H2O molecules from the ice have the statistical OPR value of three, demonstrating the immediate nuclear-spin-state mixing of H2O toward the statistical value of ice even at 11 K. The OPR of H2O thermally desorbed from the ice also shows the expected statistical value. Our results indicate that the OPR of H2O desorbed from interstellar ice should be the statistical value regardless of the formation process of the ice, which cannot be used to deduce the ice-formation temperature. This study highlights the importance of interstellar gas-phase processes in understanding anomalous abundance ratios of nuclear-spin isomers of molecules in space.
NASA Astrophysics Data System (ADS)
Zwitter, T.; Kos, J.; Žerjal, M.; Traven, G.
2016-10-01
Current ongoing stellar spectroscopic surveys (RAVE, GALAH, Gaia-ESO, LAMOST, APOGEE, Gaia) are mostly devoted to studying Galactic archaeology and the structure of the Galaxy. But they allow also for important auxiliary science: (i) the Galactic interstellar medium can be studied in four dimensions (position in space plus radial velocity) through weak but numerous diffuse interstellar bands and atomic absorptions seen in spectra of background stars, (ii) emission spectra which are quite frequent even in field stars can serve as a good indicator of their youth, pointing e.g. to stars recently ejected from young stellar environments, (iii) an astrometric solution of the photocenter of a binary to be obtained by Gaia can yield accurate masses when joined by spectroscopic information obtained serendipitously during a survey. These points are illustrated by first results from the first three surveys mentioned above. These hint at the near future: spectroscopic studies of the dynamics of the interstellar medium can identify and quantify Galactic fountains which may sustain star formation in the disk by entraining fresh gas from the halo; RAVE already provided a list of ˜ 14,000 field stars with chromospheric emission in Ca II lines, to be supplemented by many more observations by Gaia in the same band, and by GALAH and Gaia-ESO observations of Balmer lines; several millions of astrometric binaries with periods up to a few years which are being observed by Gaia can yield accurate masses when supplemented with measurements from only a few high-quality ground based spectra.
Physical Processes in the Heliospheric Interface Region and their Implications for ENA Images
NASA Astrophysics Data System (ADS)
Gruntman, M.; Roelof, E. C.; McComas, D. J.; Funsten, H. O.; Krimigis, S. M.; Mitchell, D. G.
2009-12-01
The recent in situ measurements of particles and fields by Voyager 1 and 2 spacecraft and global heliospheric maps in fluxes of energetic neutral atoms (ENAs) obtained by IBEX and Cassini/INCA have challenged our established concepts of the heliosphere interaction with the surrounding local interstellar medium. We review the physics of the interaction in an attempt to identify most important processes determining the dynamics and properties of the heliospheric sheath region. The non-thermal ion component and interstellar magnetic field clearly play significant roles in the interaction, as well as the flow of the warm interstellar plasma. We stress here that the basic conservation laws for energetic ions and neutrals constrain the processes that must be included in any valid formulation of particle transport. The termination shock can be viewed as a continuous source of energetic ions that are transported throughout the inner heliosheath, through the heliopause, and outward through the outer heliosheath and into the local interstellar medium. ENA images integrate the ENA production by energetic ions along lines of sight (LOS) that extend in principle to infinity, and hence are quite sensitive to the way that energetic ions and ENAs eventually escape this huge (~1000AU) system. Non-thermal ion and ENA space densities can be changed by three mechanisms: spatial transport (which by itself only rearranges the numbers of energetic ions and ENAs), energy gain and loss of ions in electric field, and elastic and inelastic collisions. Thus, only if these mechanisms are properly included in computational models can the salient features observed ENA images be replicated by the model simulations.
A Test of the Interstellar Boundary EXplorer Ribbon Formation in the Outer Heliosheath
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gamayunov, Konstantin V.; Rassoul, Hamid; Heerikhuisen, Jacob, E-mail: kgamayunov@fit.edu
NASA’s Interstellar Boundary EXplorer ( IBEX ) mission is imaging energetic neutral atoms (ENAs) propagating to Earth from the outer heliosphere and local interstellar medium (LISM). A dominant feature in all ENA maps is a ribbon of enhanced fluxes that was not predicted before IBEX . While more than a dozen models of the ribbon formation have been proposed, consensus has gathered around the so-called secondary ENA model. Two classes of secondary ENA models have been proposed; the first class assumes weak scattering of the energetic pickup protons in the LISM, and the second class assumes strong but spatially localizedmore » scattering. Here we present a numerical test of the “weak scattering” version of the secondary ENA model using our gyro-averaged kinetic model for the evolution of the phase-space distribution of protons in the outer heliosheath. As input for our test, we use distributions of the primary ENAs from our MHD-plasma/kinetic-neutral model of the heliosphere-LISM interaction. The magnetic field spectrum for the large-scale interstellar turbulence and an upper limit for the amplitude of small-scale local turbulence (SSLT) generated by protons are taken from observations by Voyager 1 in the LISM. The hybrid simulations of energetic protons are also used to set the bounding wavenumbers for the spectrum of SSLT. Our test supports the “weak scattering” version. This makes an additional solid step on the way to understanding the origin and formation of the IBEX ribbon and thus to improving our understanding of the interaction between the heliosphere and the LISM.« less
NASA Astrophysics Data System (ADS)
Perakis, Nikolaos; Schrenk, Lukas E.; Gutsmiedl, Johannes; Koop, Artur; Losekamm, Martin J.
2016-12-01
Light sail-based propulsion systems are a candidate technology for interplanetary and interstellar missions due to their flexibility and the fact that no fuel has to be carried along. In 2014, the Initiative for Interstellar Studies (i4is) hosted the Project Dragonfly Design Competition, which aimed at assessing the feasibility of sending an interstellar probe propelled by a laser-powered light sail to another star system. We analyzed and designed a mission to the Alpha Centauri system, with the objective to carry out science operations at the destination. Based on a comprehensive evaluation of currently available technologies and possible locations, we selected a lunar architecture for the laser system. It combines the advantages of surface- and space-based systems, as it requires no station keeping and suffers no atmospheric losses. We chose a graphene-based sandwich material for the light sail because of its low density. Deceleration of the spacecraft sufficient for science operations at the target system is achieved using both magnetic and electric sails. Applying these assumptions in a simulation leads to the conclusion that 250 kg of scientific payload can be sent to Alpha Centauri within the Project Dragonfly Design Competition's constraints of 100 year travel duration and 100 GW laser beam power. This is only sufficient to fulfill parts of the identified scientific objectives, and therefore renders the usefulness of such a mission questionable. A better sail material or higher laser power would improve the acceleration behavior, an increase in the mission time would allow for larger spacecraft masses.
THz and mid-IR spectroscopy of interstellar ice analogs: methyl and carboxylic acid groups.
Ioppolo, S; McGuire, B A; Allodi, M A; Blake, G A
2014-01-01
A fundamental problem in astrochemistry concerns the synthesis and survival of complex organic molecules (COMs) throughout the process of star and planet formation. While it is generally accepted that most complex molecules and prebiotic species form in the solid phase on icy grain particles, a complete understanding of the formation pathways is still largely lacking. To take full advantage of the enormous number of available THz observations (e.g., Herschel Space Observatory, SOFIA, and ALMA), laboratory analogs must be studied systematically. Here, we present the THz (0.3-7.5 THz; 10-250 cm(-1)) and mid-IR (400-4000 cm(-1)) spectra of astrophysically-relevant species that share the same functional groups, including formic acid (HCOOH) and acetic acid (CH3COOH), and acetaldehyde (CH3CHO) and acetone ((CH3)2CO), compared to more abundant interstellar molecules such as water (H2O), methanol (CH3OH), and carbon monoxide (CO). A suite of pure and mixed binary ices are discussed. The effects on the spectra due to the composition and the structure of the ice at different temperatures are shown. Our results demonstrate that THz spectra are sensitive to reversible and irreversible transformations within the ice caused by thermal processing, suggesting that THz spectra can be used to study the composition, structure, and thermal history of interstellar ices. Moreover, the THz spectrum of an individual species depends on the functional group(s) within that molecule. Thus, future THz studies of different functional groups will help in characterizing the chemistry and physics of the interstellar medium (ISM).
NASA Technical Reports Server (NTRS)
Nuevo, Michel; Milam, Stefanie N.; Sandford, Scott A.; Elsila, Jamie E.; Dworkin, Jason P.
2010-01-01
Astrochemistry laboratory experiments recently showed that molecules of prebiotic interest can potentially form in space, as supported by the detection of amino acids in organic residues formed by the UV photolysis of ices simulating interstellar and cometary environments (H2O, CO, CO2, CH3OH, NH3, etc.). Although the presence of amino acids in the interstellar medium (ISM) is still under debate, experiments and the detection of amino acids in meteorites both support a scenario in which prebiotic molecules could be of extraterrestrial origin, before they are delivered to planets by comets, asteroids, and interplanetary dust particles. Nucleobases, the informational subunits of DNA and RNA, have also been detected in meteorites, although they have not yet been observed in the ISM. Thus, these molecules constitute another family of prebiotic compounds that can possibly form via abiotical processes in astrophysical environments. Nucleobases are nitrogen-bearing cyclic aromatic species with various functional groups attached, which are divided into two classes: pyrimidines (uracil, cytosine, and thymine) and purines (adenine and guanine). In this work, we study how UV irradiation affects pyrimidine mixed in interstellar ice analogs (H2O, NH3, CH3OH). In particular, we show that the UV irradiation of H2O:pyrimidine mixtures leads to the production of oxidized compounds including uracil, and show that both uracil and cytosine are formed upon irradiation of H2O:NH3:pyrimidine mixtures. We also study the photostability of pyrimidine and its photoproducts formed during these experiments.
Hubble views a spectacular supernova with interstellar material over 160,000 light-years away
2017-12-08
This NASA/ESA Hubble Space Telescope image captures the remnants of a long-dead star. These rippling wisps of ionized gas, named DEM L316A, are located some 160,000 light-years away within one of the Milky Way’s closest galactic neighbors — the Large Magellanic Cloud (LMC). The explosion that formed DEM L316A was an example of an especially energetic and bright variety of supernova, known as a Type Ia. Such supernova events are thought to occur when a white dwarf star steals more material than it can handle from a nearby companion, and becomes unbalanced. The result is a spectacular release of energy in the form of a bright, violent explosion, which ejects the star’s outer layers into the surrounding space at immense speeds. As this expelled gas travels through the interstellar material, it heats up and ionizes it, producing the faint glow that Hubble’s Wide Field Camera 3 has captured here. The LMC orbits the Milky Way as a satellite galaxy and is the fourth largest in our group of galaxies, the Local Group. DEM L316A is not the only supernova remnant in the LMC; Hubble came across another one in 2010 with SNR 0509, and in 2013 it snapped SNR 0519. Image credit: ESA (European Space Agency)/Hubble & NASA, Y. Chu
Three-Dimensional Messages for Interstellar Communication
NASA Astrophysics Data System (ADS)
Vakoch, Douglas A.
One of the challenges facing independently evolved civilizations separated by interstellar distances is to communicate information unique to one civilization. One commonly proposed solution is to begin with two-dimensional pictorial representations of mathematical concepts and physical objects, in the hope that this will provide a foundation for overcoming linguistic barriers. However, significant aspects of such representations are highly conventional, and may not be readily intelligible to a civilization with different conventions. The process of teaching conventions of representation may be facilitated by the use of three-dimensional representations redundantly encoded in multiple formats (e.g., as both vectors and as rasters). After having illustrated specific conventions for representing mathematical objects in a three-dimensional space, this method can be used to describe a physical environment shared by transmitter and receiver: a three-dimensional space defined by the transmitter--receiver axis, and containing stars within that space. This method can be extended to show three-dimensional representations varying over time. Having clarified conventions for representing objects potentially familiar to both sender and receiver, novel objects can subsequently be depicted. This is illustrated through sequences showing interactions between human beings, which provide information about human behavior and personality. Extensions of this method may allow the communication of such culture-specific features as aesthetic judgments and religious beliefs. Limitations of this approach will be noted, with specific reference to ETI who are not primarily visual.
Engineering planetary lasers for interstellar communication. M.S. Thesis
NASA Technical Reports Server (NTRS)
Sherwood, Brent
1988-01-01
Transmitting large amounts of data efficiently among neighboring stars will vitally support any eventual contact with extrasolar intelligence, whether alien or human. Laser carriers are particularly suitable for high-quality, targeted links. Space laser transmitter systems designed by this work, based on both demonstrated and imminent advanced space technology, could achieve reliable data transfer rates as high as 1 kb/s to matched receivers as far away as 25 pc, a distance including over 700 approximately solar-type stars. The centerpiece of this demonstration study is a fleet of automated spacecraft incorporating adaptive neural-net optical processing active structures, nuclear electric power plants, annular momentum control devices, and ion propulsion. Together the craft sustain, condition, modulate, and direct to stellar targets an infrared laser beam extracted from the natural mesospheric, solar-pumped, stimulated CO2 emission recently discovered at Venus. For a culture already supported by mature interplanetary industry, the cost of building planetary or high-power space laser systems for interstellar communication would be marginal, making such projects relevant for the next human century. Links using high-power lasers might support data transfer rates as high as optical frequencies could ever allow. A nanotechnological society such as we might become would inevitably use 10 to the 20th power b/yr transmission to promote its own evolutionary expansion out of the galaxy.
NASA Astrophysics Data System (ADS)
McComas, D. J.; Carrico, J. P.; Hautamaki, B.; Intelisano, M.; Lebois, R.; Loucks, M.; Policastri, L.; Reno, M.; Scherrer, J.; Schwadron, N. A.; Tapley, M.; Tyler, R.
2011-11-01
NASA's Interstellar Boundary Explorer (IBEX) mission was recently maneuvered into a unique long-term stable Earth orbit, with apogee at ˜50 Earth radii (RE). The Moon's (˜65 RE) gravity disrupts most highly elliptical Earth orbits, leading to (1) chaotic orbital solutions, (2) the inability to predict orbital positions more than a few years into the future, and ultimately (3) mission-ending possibilities of atmospheric reentry or escape from Earth orbit. By synchronizing the satellite's orbital period to integer fractions of the Moon's sidereal period, PM = 27.3 days (e.g., PM/2 = 13.6 days, PM/3 = 9.1 days), and phasing apogee to stay away from the Moon, very long term stability can be achieved. Our analysis indicates orbital stability for well over a decade, and these IBEX-like orbits represent a new class of Earth orbits that are stable far longer than typical satellite lifetimes. These orbits provide cost-effective and nearly ideal locations for long-term space weather observations from spacecraft that can remotely image the Earth's magnetosphere from outside its boundaries while simultaneously providing external (solar wind or magnetosheath) observation over most of their orbits. Utilized with multiple spacecraft, such orbits would allow continuous and simultaneous monitoring of the magnetosphere in order to help predict and mitigate adverse space weather-driven effects.
Achievable space elevators for space transportation and starship acceleration
NASA Technical Reports Server (NTRS)
Pearson, Jerome
1990-01-01
Space elevator concepts for low-cost space launches are reviewed. Previous concepts suffered from requirements for ultra-high-strength materials, dynamically unstable systems, or from danger of collision with space debris. The use of magnetic grain streams solves these problems. Magnetic grain streams can support short space elevators for lifting payloads cheaply into Earth orbit, overcoming the material strength problem in building space elevators. Alternatively, the stream could support an international spaceport circling the Earth daily tens of miles above the equator, accessible to advanced aircraft. Mars could be equipped with a similar grain stream, using material from its moons Phobos and Deimos. Grain-stream arcs about the sun could be used for fast launches to the outer planets and for accelerating starships to near lightspeed for interstellar reconnaisance. Grain streams are essentially impervious to collisions, and could reduce the cost of space transportation by an order of magnitude.
Cross section parameterizations for cosmic ray nuclei. 1: Single nucleon removal
NASA Technical Reports Server (NTRS)
Norbury, John W.; Townsend, Lawrence W.
1992-01-01
Parameterizations of single nucleon removal from electromagnetic and strong interactions of cosmic rays with nuclei are presented. These parameterizations are based upon the most accurate theoretical calculations available to date. They should be very suitable for use in cosmic ray propagation through interstellar space, the Earth's atmosphere, lunar samples, meteorites, spacecraft walls and lunar and martian habitats.
NASA Celebrates 40 Years of the Voyager Mission
2017-09-05
NASA celebrates 40 years of the Voyager 1 and 2 spacecraft -- humanity's farthest and longest-lived mission -- on Tuesday, Sept. 5. The Voyagers’ original mission was to explore Jupiter and Saturn. Although the twin spacecraft are now far beyond the planets in the solar system, NASA continues to communicate with them daily as they explore the frontier where interstellar space begins.
2003-01-12
KENNEDY SPACE CENTER, FLA. - NASA's Ice, Cloud and Land Elevation satellite (ICESat) and Cosmic Hot Interstellar Spectrometer (CHIPS) satellite lifted off from Vandenberg Air Force Base, Calif at 4:45 p.m. PST aboard Boeing's Delta II rocket. ICESat will examine the role that ice plays in global climate change, while CHIPSat will explore the composition of our galaxy. [Photo Credit: NASA/Bill Ingalls
2003-01-12
KENNEDY SPACE CENTER, FLA. - NASA's Ice, Cloud and Land Elevation satellite (ICESat) and Cosmic Hot Interstellar Spectrometer (CHIPS) satellite lifted off from Vandenberg Air Force Base, Calif at 4:45 p.m. PST aboard Boeing's Delta II rocket. ICESat will examine the role that ice plays in global climate change, while CHIPSat will explore the composition of our galaxy. [Photo Credit: NASA/Bill Ingalls
2003-01-12
KENNEDY SPACE CENTER, FLA. - NASA's Ice, Cloud and Land Elevation satellite (ICESat) and Cosmic Hot Interstellar Spectrometer (CHIPS) satellite lifted off from Vandenberg Air Force Base, Calif at 4:45 p.m. PST aboard Boeing's Delta II rocket. ICESat will examine the role that ice plays in global climate change, while CHIPSat will explore the composition of our galaxy. [Photo Credit: NASA/Bill Ingalls
LDEF: 69 Months in Space. Second Post-Retrieval Symposium, part 2
NASA Technical Reports Server (NTRS)
Levine, Arlene S. (Editor)
1993-01-01
This document is a compilation of papers presented at the Second Long Duration Exposure Facility (LDEF) Post-Retrieval Symposium. The papers represent the data analysis of the 57 experiments flown on the LDEF. The experiments include materials, coatings, thermal systems, power and propulsion, science (cosmic ray, interstellar gas, heavy ions, micrometeoroid, etc.), electronics, optics, and life science.
LDEF: 69 Months in Space. First Post-Retrieval Symposium, part 3
NASA Technical Reports Server (NTRS)
Levine, Arlene S. (Editor)
1992-01-01
A compilation of papers presented at the First Long Duration Exposure Facility (LDEF) Post-Retrieval Symposium is presented. The papers represent the preliminary data analysis of the 57 experiments flown on the LDEF. The experiments include materials, coatings, thermal systems, power and propulsion, science (cosmic ray, interstellar gas, heavy ions, and micrometeoroid), electronics, optics, and life sciences.
Nick Sagan Reflects on Voyager 1 and the Golden Record
NASA Astrophysics Data System (ADS)
Showstack, Randy
2013-10-01
When scientists confirmed on 12 September that NASA's Voyager 1 spacecraft had entered interstellar space (Eos, 94(39), 339, doi:10.1002/2013EO390003), the probe was acknowledged as the first human-made object to travel into that realm. The probe and its twin, Voyager 2, each carry a 12-inch gold-plated copper disk, known as the Golden Record.
Eta Carinae: At the Crossroads of becoming a Supernova
NASA Technical Reports Server (NTRS)
Gull, Theodore
2007-01-01
Since the 1840's, when Eta Carinae's visual magnitude rivaled Sirius, the brightest star in the night sky, astronomers have wondered what major event took place. Today with the Hubble Space Telescope Imaging Spectrograph, with CHANDRA X-ray spectroscopy and the Very Large Telescope spectrographs and interferometers, we have learned that over 12 solar masses of material was ejected at 500 to 700 km/s into interstellar space. This ejecta is quite different from the normal interstellar medium. It is rich in nitrogen, poor in oxygen and carbon. The dust properties are quite peculiar and many metals such as vanadium, strontium, cadmium are seen in both absorption against the central source, plus a number of molecules. The chemical and dust formation is likely dominated by nitrogen as we see H_2, CH, CH+, OH, NH, HCl and NH-3, but no CO. Other metals and molecules are being searched out in the FUSE, HST/STIS, VLT/UVES and VLT/CRIRES spectra. I will describe what we know about the massive binary stellar system, how it changes every 5.54 year in UV and X-ray output and how the massive ejecta responds in this astrophysical laboratory.
2002-10-23
KENNEDY SPACE CENTER, FLA. - The first stage of a Delta II rocket arrives at NASA's Space Launch Complex 2 (SLC-2) at Vandenberg Air Force Base, Calif. The rocket will carry the ICESat and CHIPSat satellites into Earth orbits. ICESat is a 661-pound satellite known as Geoscience Laser Altimeter System (GLAS) that will revolutionize our understanding of ice and its role in global climate change and how we protect and understand our home planet. It will help scientists determine if the global sea level is rising or falling. It will look at the ice sheets that blanket the Earth's poles to see if they are growing or shrinking. It will assist in developing an understanding of how changes in the Earth's atmosphere and climate effect polar ice masses and global sea level. CHIPSat, a suitcase-size 131-pound satellite, will provide invaluable information into the origin, physical processes and properties of the hot gas contained in the interstellar medium. This can provide important clues about the formation and evolution of galaxies since the interstellar medium literally contains the seeds of future stars. The Delta II launch is scheduled for Jan. 11 between 4:45 p.m. - 5:30 p.m. PST.
2002-10-23
KENNEDY SPACE CENTER, FLA. - Workers at NASA's Space Launch Complex 2 (SLC-2) at Vandenberg Air Force Base, Calif., watch as the first stage of the Delta II rocket is raised to a vertical position. The rocket will carry the ICESat and CHIPSat satellites into Earth orbits. ICESat is a 661-pound satellite known as Geoscience Laser Altimeter System (GLAS) that will revolutionize our understanding of ice and its role in global climate change and how we protect and understand our home planet. It will help scientists determine if the global sea level is rising or falling. It will look at the ice sheets that blanket the Earth's poles to see if they are growing or shrinking. It will assist in developing an understanding of how changes in the Earth's atmosphere and climate effect polar ice masses and global sea level. CHIPSat, a suitcase-size 131-pound satellite, will provide invaluable information into the origin, physical processes and properties of the hot gas contained in the interstellar medium. This can provide important clues about the formation and evolution of galaxies since the interstellar medium literally contains the seeds of future stars. The Delta II launch is scheduled for Jan. 11 between 4:45 p.m. - 5:30 p.m. PST.
2002-10-23
KENNEDY SPACE CENTER, FLA. - On the launch tower on NASA's Space Launch Complex 2 (SLC-2), Vandenberg Air Force Base, Calif., the second stage of a Delta II rocket sits mated with the first stage. The rocket will carry the ICESat and CHIPSat satellites into Earth orbits. ICESat is a 661-pound satellite known as Geoscience Laser Altimeter System (GLAS) that will revolutionize our understanding of ice and its role in global climate change and how we protect and understand our home planet. It will help scientists determine if the global sea level is rising or falling. It will look at the ice sheets that blanket the Earth's poles to see if they are growing or shrinking. It will assist in developing an understanding of how changes in the Earth's atmosphere and climate effect polar ice masses and global sea level. CHIPSat, a suitcase-size 131-pound satellite, will provide invaluable information into the origin, physical processes and properties of the hot gas contained in the interstellar medium. This can provide important clues about the formation and evolution of galaxies since the interstellar medium literally contains the seeds of future stars. The Delta II launch is scheduled for Jan. 11 between 4:45 p.m. - 5:30 p.m. PST.
2002-10-23
KENNEDY SPACE CENTER, FLA. - The first stage of the Delta II rocket is ready to be lifted up the tower on NASA's Space Launch Complex 2 (SLC-2), Vandenberg Air Force Base, Calif. The rocket will carry the ICESat and CHIPSat satellites into Earth orbits. ICESat is a 661-pound satellite known as Geoscience Laser Altimeter System (GLAS) that will revolutionize our understanding of ice and its role in global climate change and how we protect and understand our home planet. It will help scientists determine if the global sea level is rising or falling. It will look at the ice sheets that blanket the Earth's poles to see if they are growing or shrinking. It will assist in developing an understanding of how changes in the Earth's atmosphere and climate effect polar ice masses and global sea level. CHIPSat, a suitcase-size 131-pound satellite, will provide invaluable information into the origin, physical processes and properties of the hot gas contained in the interstellar medium. This can provide important clues about the formation and evolution of galaxies since the interstellar medium literally contains the seeds of future stars. The Delta II launch is scheduled for Jan. 11 between 4:45 p.m. - 5:30 p.m. PST.
2002-10-23
KENNEDY SPACE CENTER, FLA. - The interstage of the Delta II rocket arrives at NASA's Space Launch Complex 2 (SLC-2), Vandenberg Air Force Base, Calif. The rocket will carry the ICESat and CHIPSat satellites into Earth orbits. ICESat is a 661-pound satellite known as Geoscience Laser Altimeter System (GLAS) that will revolutionize our understanding of ice and its role in global climate change and how we protect and understand our home planet. It will help scientists determine if the global sea level is rising or falling. It will look at the ice sheets that blanket the Earth's poles to see if they are growing or shrinking. It will assist in developing an understanding of how changes in the Earth's atmosphere and climate effect polar ice masses and global sea level. CHIPSat, a suitcase-size 131-pound satellite, will provide invaluable information into the origin, physical processes and properties of the hot gas contained in the interstellar medium. This can provide important clues about the formation and evolution of galaxies since the interstellar medium literally contains the seeds of future stars. The Delta II launch is scheduled for Jan. 11 between 4:45 p.m. - 5:30 p.m. PST.
2002-10-23
KENNEDY SPACE CENTER, FLA. - The first stage of the Delta II rocket is moved into place in the tower on NASA's Space Launch Complex 2 (SLC-2), Vandenberg Air Force Base, Calif. The rocket will carry the ICESat and CHIPSat satellites into Earth orbits. ICESat is a 661-pound satellite known as Geoscience Laser Altimeter System (GLAS) that will revolutionize our understanding of ice and its role in global climate change and how we protect and understand our home planet. It will help scientists determine if the global sea level is rising or falling. It will look at the ice sheets that blanket the Earth's poles to see if they are growing or shrinking. It will assist in developing an understanding of how changes in the Earth's atmosphere and climate effect polar ice masses and global sea level. CHIPSat, a suitcase-size 131-pound satellite, will provide invaluable information into the origin, physical processes and properties of the hot gas contained in the interstellar medium. This can provide important clues about the formation and evolution of galaxies since the interstellar medium literally contains the seeds of future stars. The Delta II launch is scheduled for Jan. 11 between 4:45 p.m. - 5:30 p.m. PST.
Metal-Containing Molecules Beyond the Solar System: a Laboratory and Radio Astronomical Perspective
NASA Astrophysics Data System (ADS)
Ziurys, L. M.
2010-06-01
Although the history of interstellar molecules began around 1970, with the millimeter-wave detection of CO in the Orion Nebula, metal-containing species have been somewhat elusive for astronomical searches. Only in the past two decades have metal-bearing molecules been identified in space, starting with metal halides (NaCl, KCl, AlCl, and AlF), and then metal cyanide and isocyanide species (MgNC, MgCN, NaCN, and AlNC). Moreover, the metal-containing molecules seemed to be present in a single astronomical object: the envelope of a dying, carbon-rich star, IRC+10216. However, with improvements both in laboratory spectroscopy and telescope sensitivity, it is becoming clear that the relevance of metal-containing species in astrophysics is increasing. Metal oxide and hydroxide species, such as AlO and AlOH, have recently been identified in interstellar space. Metal-containing molecules are now being found in other astronomical sources, such as the oxygen-rich shell surrounding VY Canis Majoris, a supergiant star. These new astronomical discoveries will be presented, as well as the laboratory measurements that made them possible. New directions in rotational spectroscopy of metal-bearing molecules will also be discussed.
Solar photoionization as a loss mechanism of neutral interstellar hydrogen in interplanetary space
NASA Technical Reports Server (NTRS)
Ogawa, H. S.; Wu, C. Y. Robert; Gangopadhyay, P.; Judge, D. L.
1995-01-01
Two primary loss mechanisms of interstellar neutral hydrogen in interplanetary space are resonance charge exchange ionization with solar wind protons and photoionization by solar EUV radiation. The later process has often been neglected since the average photoionization rate has been estimated to be as much as 5 to 10 times smaller than the charge exchange rate. These factors are based on ionization rates from early measurements of solar EUV and solar wind fluxes. Using revised solar EUV and solar wind fluxes measured near the ecliptic plane we have reinvestigated the ionization rates of interplanetary hydrogen. The result of our analysis indicates that indeed the photoionization rate during solar minimum can be smaller than charge exchange by a factor of 5; however, during solar maximum conditions when solar EUV fluxes are high, and solar wind fluxes are low, photoionization can be over 60% of the charge exchange rate at Earth orbit. To obtain an accurate estimate of the importance of photoionization relative to charge exchange, we have included photoionization from both the ground and metastable states of hydrogen. We find, however, that the photoionization from the metastable state does not contribute significantly to the overall photoionization rate.
A conceptual design for cosmo-biology experiments in Earth's Orbit.
Hashimoto, H; Greenberg, M; Brack, A; Colangeli, L; Horneck, G; Navarro-Gonzalez, R; Raulin, F; Kouchi, A; Saito, T; Yamashita, M; Kobayashi, K
1998-06-01
A conceptual design was developed for a cosmo-biology experiment. It is intended to expose simulated interstellar ice materials deposited on dust grains to the space environment. The experimental system consists of a cryogenic system to keep solidified gas sample, and an optical device to select and amplify the ultraviolet part of the solar light for irradiation. By this approach, the long lasting chemical evolution of icy species could be examined in a much shorter time of exposure by amplification of light intensity. The removal of light at longer wavelength, which is ineffective to induce photochemical reactions, reduces the heat load to the cryogenic system that holds solidified reactants including CO as a constituent species of interstellar materials. Other major hardware components were also defined in order to achieve the scientific objectives of this experiment. Those are a cold trap maintained at liquid nitrogen temperature to prevent the contamination of the sample during the exposure, a mechanism to exchange multiple samples, and a system to perform bake-out of the sample exposure chamber. This experiment system is proposed as a candidate payload implemented on the exposed facility of Japanese Experiment Module on International Space Station.
The evolution of organic matter in space.
Ehrenfreund, Pascale; Spaans, Marco; Holm, Nils G
2011-02-13
Carbon, and molecules made from it, have already been observed in the early Universe. During cosmic time, many galaxies undergo intense periods of star formation, during which heavy elements like carbon, oxygen, nitrogen, silicon and iron are produced. Also, many complex molecules, from carbon monoxide to polycyclic aromatic hydrocarbons, are detected in these systems, like they are for our own Galaxy. Interstellar molecular clouds and circumstellar envelopes are factories of complex molecular synthesis. A surprisingly high number of molecules that are used in contemporary biochemistry on the Earth are found in the interstellar medium, planetary atmospheres and surfaces, comets, asteroids and meteorites and interplanetary dust particles. Large quantities of extra-terrestrial material were delivered via comets and asteroids to young planetary surfaces during the heavy bombardment phase. Monitoring the formation and evolution of organic matter in space is crucial in order to determine the prebiotic reservoirs available to the early Earth. It is equally important to reveal abiotic routes to prebiotic molecules in the Earth environments. Materials from both carbon sources (extra-terrestrial and endogenous) may have contributed to biochemical pathways on the Earth leading to life's origin. The research avenues discussed also guide us to extend our knowledge to other habitable worlds.
Identifying Organic Molecules in Space: The AstroBiology Explorer (ABE) Mission Concept
NASA Technical Reports Server (NTRS)
Ennico, Kimberly; Sandford, S.; Allamandola, L.; Bregman, J.; Cohen, M.; Cruikshank, D.; Dumas, C.; Greene, T.; Hudgins, D.; Kwok, S.
2004-01-01
The AstroBiology Explorer (ABE) mission concept consists of a modest dedicated space observatory having a 60 cm class primary mirror cooled to T less than 50 K equipped with medium resolution cross-dispersed spectrometers having cooled large format near- and mid-infrared detector arrays. Such a system would be capable of addressing outstanding problems in Astrochemistry and Astrophysics that are particularly relevant to Astrobiology and addressable via astronomical observation. The mission's observaticxiai program woiild make fundamental scieztific: prngress in establishing the nature, distribution, formation and evolution of organic and other molecular materials in the following extra-terrestrial environments: 1) The Outflow of Dying Stars; 2) The Diffuse Interstellar Medium (DISM); 3) Dense Molecular Clouds, Star Formation Regions, and Young Stellar/Planetary Systems; 4) Planets, Satellites, and Small Bodies within the Solar System; and 5) The Interstellar Media of Other Galaxies ABE could make fundamental progress in all of these area by conducting a 1 to 2 year mission to obtain a coordinated set of infrared spectroscopic observations over the 2.5 - 20 micron spectral range at a spectral resolution of R greater than 2500 of about 1500 galaxies, stars, planetary nebulae, young stellar objects, and solar system objects.
2002-10-23
KENNEDY SPACE CENTER, FLA. - The first stage of the Delta II rocket is raised to a vertical position at NASA's Space Launch Complex 2 (SLC-2) at Vandenberg Air Force Base, Calif. The rocket will carry the ICESat and CHIPSat satellites into Earth orbits. ICESat is a 661-pound satellite known as Geoscience Laser Altimeter System (GLAS) that will revolutionize our understanding of ice and its role in global climate change and how we protect and understand our home planet. It will help scientists determine if the global sea level is rising or falling. It will look at the ice sheets that blanket the Earth's poles to see if they are growing or shrinking. It will assist in developing an understanding of how changes in the Earth's atmosphere and climate effect polar ice masses and global sea level. CHIPSat, a suitcase-size 131-pound satellite, will provide invaluable information into the origin, physical processes and properties of the hot gas contained in the interstellar medium. This can provide important clues about the formation and evolution of galaxies since the interstellar medium literally contains the seeds of future stars. The Delta II launch is scheduled for Jan. 11 between 4:45 p.m. - 5:30 p.m. PST.
2002-10-23
KENNEDY SPACE CENTER, FLA. - Workers on the launch tower on NASA's Space Launch Complex 2 (SLC-2), Vandenberg Air Force Base, Calif., help guide the interstage of the Delta II rocket toward the first stage. The rocket will carry the ICESat and CHIPSat satellites into Earth orbits. ICESat is a 661-pound satellite known as Geoscience Laser Altimeter System (GLAS) that will revolutionize our understanding of ice and its role in global climate change and how we protect and understand our home planet. It will help scientists determine if the global sea level is rising or falling. It will look at the ice sheets that blanket the Earth's poles to see if they are growing or shrinking. It will assist in developing an understanding of how changes in the Earth's atmosphere and climate effect polar ice masses and global sea level. CHIPSat, a suitcase-size 131-pound satellite, will provide invaluable information into the origin, physical processes and properties of the hot gas contained in the interstellar medium. This can provide important clues about the formation and evolution of galaxies since the interstellar medium literally contains the seeds of future stars. The Delta II launch is scheduled for Jan. 11 between 4:45 p.m. - 5:30 p.m. PST.
Effects of a Single Water Molecule on the Reaction Barrier of Interstellar CO2 Formation Reaction.
Tachikawa, Hiroto; Kawabata, Hiroshi
2016-08-25
The mechanism by which CO2 is formed in the interstellar space remains a mystery. The most likely reaction is collision between CO and OH; however, previous theoretical works have shown that the activation barrier for CO2 formation is high enough to prevent the reaction at the low thermal conditions of space (∼10 K). The effects of single water molecule on the reaction barrier of CO2 formation from reaction between CO and OH have been investigated here by means of ab initio calculation. The barrier height along the lowest-energy pathway in the reaction between CO and OH in the absence of the H2O molecule was calculated to be 2.3 kcal/mol when CCSD(T) energy corrections are combined with the MP2 basis set limit. In the case of the hydrated (H2O-CO-OH) system, the inclusion of a single H2O molecule into the system significantly decreased the barrier height to 0.2 kcal/mol. This suggests that CO2 can be formed when CO and OH react in the presence of H2O, even under thermal conditions as low as 10 K.
Search for Hydrogenated C60 (Fulleranes) in Circumstellar Envelopes
NASA Astrophysics Data System (ADS)
Zhang, Yong; Sadjadi, SeyedAbdolreza; Hsia, Chih-Hao; Kwok, Sun
2017-08-01
The recent detection of fullerene (C60) in space and the positive assignment of five diffuse interstellar bands to {{{C}}}60+ reinforce the notion that fullerene-related compounds can be efficiently formed in circumstellar envelopes and be present in significant quantities in the interstellar medium. Experimental studies have shown that C60 can be readily hydrogenated, raising the possibility that hydrogenated fullerenes (or fulleranes, C60H m , m = 1-60) may be abundant in space. In this paper, we present theoretical studies of the vibrational modes of isomers of C60H m . Our results show that the four mid-infrared bands from the C60 skeletal vibrations remain prominent in slightly hydrogenated C60, but their strengths diminish in different degrees with increasing hydrogenation. It is therefore possible that the observed infrared bands assigned to C60 could be due to a mixture of fullerenes and fulleranes. This provides a potential explanation for the observed scatter of the C60 band ratios. Our calculations suggest that a feature around 15 μm due to the breathing mode of heavily hydrogenated C60 may be detectable astronomically. A preliminary search for this feature in 35 C60 sources is reported.
Fuel Effective Photonic Propulsion
NASA Astrophysics Data System (ADS)
Rajalakshmi, N.; Srivarshini, S.
2017-09-01
With the entry of miniaturization in electronics and ultra-small light-weight materials, energy efficient propulsion techniques for space travel can soon be possible. We need to go for such high speeds so that the generation’s time long interstellar missions can be done in incredibly short time. Also renewable energy like sunlight, nuclear energy can be used for propulsion instead of fuel. These propulsion techniques are being worked on currently. The recently proposed photon propulsion concepts are reviewed, that utilize momentum of photons generated by sunlight or onboard photon generators, such as blackbody radiation or lasers, powered by nuclear or solar power. With the understanding of nuclear photonic propulsion, in this paper, a rough estimate of nuclear fuel required to achieve the escape velocity of Earth is done. An overview of the IKAROS space mission for interplanetary travel by JAXA, that was successful in demonstrating that photonic propulsion works and also generated additional solar power on board, is provided; which can be used as a case study. An extension of this idea for interstellar travel, termed as ‘Star Shot’, aims to send a nanocraft to an exoplanet in the nearest star system, which could be potentially habitable. A brief overview of the idea is presented.
NASA Astrophysics Data System (ADS)
Melosso, Mattia; Degli Esposti, Claudio; Dore, Luca
2017-11-01
The deuteration mechanism of molecules in the interstellar medium is still being debated. Observations of deuterium-bearing species in several astronomical sources represent a powerful tool to improve our understanding of the interstellar chemistry. The doubly deuterated form of the astrophysically interesting amidogen radical could be a target of detection in space. In this work, the rotational spectrum of the ND2 radical in its ground vibrational and electronic {X}2{B}1 state has been investigated between 588 and 1131 GHz using a frequency modulation millimeter/submillimeter-wave spectrometer. The ND2 molecule has been produced in a free-space glass absorption cell by discharging a mixture of ND3 and Ar. Sixty-four new transition frequencies involving J values from 2 to 5 and K a values from 0 to 4 have been measured. A global analysis including all the previous field-free pure rotational data has been performed, allowing for a more precise determination of a very large number of spectroscopic parameters. Accurate predictions of rotational transition frequencies of ND2 are now available from a few gigahertz up to several terahertz.
Curation of Microscopic Astromaterials by NASA: "Gathering Dust Since 1981"
NASA Technical Reports Server (NTRS)
Frank, D. R.; Bastien, R. K.; Rodriguez, M.; Gonzalez, C.; Zolensky, M. E.
2013-01-01
Employing the philosophy that "Small is Beautiful", NASA has been collecting and curating microscopic astromaterials since 1981. These active collections now include interplanetary dust collected in Earth's stratosphere by U-2, ER-2 and WB-57F aircraft (the Cosmic Dust Program - our motto is "Gathering dust since 1981"), comet Wild-2 coma dust (the Stardust Mission), modern interstellar dust (also the Stardust Mission), asteroid Itokawa regolith dust (the Hayabusa Mission - joint curation with JAXA-ISAS), and interplanetary dust impact features on recovered portions of the following spacecraft: Skylab, the Solar Maximum Satellite, the Palapa Satellite, the Long Duration Exposure Facility (LDEF), the MIR Space Station, the International Space Station, and the Hubble Space Telescope (all in the Space Exposed Hardware Laboratory).
The Long-Term Growth Prospects for Planetary and Space Colonies
NASA Astrophysics Data System (ADS)
Ashworth, S.
In order to live and function, multicellular creatures such as human beings need land area with gravity, an atmosphere and plentiful liquid water. The resources of the Solar System offer opportunities for extraterrestrial colonisation at locations where these basic services may be found or engineered. Two different patterns of activity are possible: planetary versus space colonisation, and these are compared. It is concluded that space colonisation, based on asteroidal resources, offers a prospect of growth greater than that of planetary settlement by three orders of magnitude, as well as a better springboard to growth on an interstellar scale. The space-based rather than planet-based mode of technological life is therefore likely to predominate in the long-term future of successful industrial species.
When Earth Songs Filled the Void of Space
NASA Technical Reports Server (NTRS)
Gallagher, Dennis L.
2003-01-01
Before the late 50's we had the planets, our Sun, the stars, galaxies, spectacular clouds of dust and very little else in our universe. There was evidence for a highly tenuous "sea" of dust in interstellar space, but little else. Space was empty above the ionized gases of our upper atmosphere, a little like there was no color in the world before the 40's. The clues were there to think otherwise, however, and in the late 50's and early 60's a few researchers dared to challenge the conventional ideas about space. It was a time of discovery and, with our new ability to fly in space, a time that launched a new science. Today that science makes it possible to literally see some of the plasmas that populate near-Earth space, which are now known to exist everywhere.
NASA Astrophysics Data System (ADS)
Baliukin, I. I.; Izmodenov, V. V.; Möbius, E.; Alexashov, D. B.; Katushkina, O. A.; Kucharek, H.
2017-12-01
Quantitative analysis of the interstellar heavy (oxygen and neon) atom fluxes obtained by the Interstellar Boundary Explorer (IBEX) suggests the existence of the secondary interstellar oxygen component. This component is formed near the heliopause due to charge exchange of interstellar oxygen ions with hydrogen atoms, as was predicted theoretically. A detailed quantitative analysis of the fluxes of interstellar heavy atoms is only possible with a model that takes into account both the filtration of primary and the production of secondary interstellar oxygen in the boundary region of the heliosphere as well as a detailed simulation of the motion of interstellar atoms inside the heliosphere. This simulation must take into account photoionization, charge exchange with the protons of the solar wind and solar gravitational attraction. This paper presents the results of modeling interstellar oxygen and neon atoms through the heliospheric interface and inside the heliosphere based on a three-dimensional kinetic-MHD model of the solar wind interaction with the local interstellar medium and a comparison of these results with the data obtained on the IBEX spacecraft.
Interstellar/Precometary Organic Material and the Photochemical Evolution of Complex Organics
NASA Technical Reports Server (NTRS)
Allamandola, Lou J.; Bernstein, Max; Sandford, Scott; Witteborn, Fred (Technical Monitor)
1996-01-01
During the past two decades ground-, air-, and space-based infrared spectroscopic observations, combined with realistic laboratory simulations, have revolutionized our understanding of interstellar ice and dust, the raw materials from which planets, comets and stars form. Most interstellar material is concentrated in Large molecular clouds where simple molecules are formed by dust grain and gas phase reactions. Gaseous species striking the cold (10 K) dust will stick, forming an icy grain mantle. This accretion, coupled with energetic particle bombardment and UV photolysis, will produce a complex chemical mixture containing volatile, non-volatile, and isotopically fractionated species. Ices in molecular clouds contain the very simple molecules H2O, CH3OH, CO, CO2, H2, and perhaps some NH3 and H2CO, as well as more complex species including nitriles and ketones or esters. The evidence for these compounds as well as carbon rich materials such as polycyclic aromatic hydrocarbons (PAHs), microdiamonds, and amorphous carbon will be reviewed and the possible connections with comets and meteorites will be presented in the first part of the talk. The second part of the presentation will focus on interstellar/precometary ice photochemical evolution. The chemical composition and photochemical evolution of realistic interstellar/pre-cometary ice analogs containing methanol will be discussed. ultraviolet photolysis of these ices produces H2, H2CO, CO2, CO, CH4, HCO, and more complex molecules. Infrared spectroscopy, H-1 and C-13 nuclear magnetic resonance (NMR) spectroscopy, and gas chromatography-mass spectrometry demonstrate that when ices representative of interstellar grains and comets are exposed to UV radiation at low temperature a series of moderately complex organic molecules are formed in the ice including: CH3CH2OH (ethanol), HC(=O)NH2 (formamide), CH3C(=O)NH2 (acetamide), and R-C(integral)N (nitriles). Several of these are already known to be in the interstellar medium, and their presence indicates the importance of grain processing. After warming to room temperature what remains is an organic residue composed primarily of Hexamethylenetetramine (HMT, C6H12N4), with lesser amounts of polyoxymethylene related species (POMs), amides, and ketones. This is in sharp contrast to the organic residues produced by irradiating ices which do not contain methanol (unrealistic interstellar ice analogs) or thermally promoted polymerization-type reactions in unirradiated realistic ice mixtures. Here HMT is only a minor product in a residue dominated by a mixture of polyoxymethylene related species. The implications, for infrared astronomy and astrochemistry, of high concentrations of HMT in interstellar and cometary ices may be profound. The ultraviolet photolysis of HMT frozen in H20 ice produces the "XCN" band observed in the spectra of protostellar objects and laboratory ices, as well as carbon oxides and other nitriles. Thus, HMT may be a precursor of XCN in protostellar objects and a source of CN and CO in the tail of comets. Also, HMT is known to hydrolyze under acidic conditions to yield ammonia and formaldehyde as well as amino acids. Thus, HMT may have been a source of organic material delivered to the early earth by comets.
Summer School on Interstellar Processes: Abstracts of contributed papers
NASA Technical Reports Server (NTRS)
Hollenbach, D. J. (Editor); Thronson, H. A., Jr. (Editor)
1986-01-01
The Summer School on Interstellar Processes was held to discuss the current understanding of the interstellar medium and to analyze the basic physical processes underlying interstellar phenomena. Extended abstracts of the contributed papers given at the meeting are presented. Many of the papers concerned the local structure and kinematics of the interstellar medium and focused on such objects as star formation regions, molecular clouds, HII regions, reflection nebulae, planetary nebulae, supernova remnants, and shock waves. Other papers studied the galactic-scale structure of the interstellar medium either in the Milky Way or other galaxies. Some emphasis was given to observations of interstellar grains and
Interstellar Dust: Contributed Papers
NASA Technical Reports Server (NTRS)
Tielens, Alexander G. G. M. (Editor); Allamandola, Louis J. (Editor)
1989-01-01
A coherent picture of the dust composition and its physical characteristics in the various phases of the interstellar medium was the central theme. Topics addressed included: dust in diffuse interstellar medium; overidentified infrared emission features; dust in dense clouds; dust in galaxies; optical properties of dust grains; interstellar dust models; interstellar dust and the solar system; dust formation and destruction; UV, visible, and IR observations of interstellar extinction; and quantum-statistical calculations of IR emission from highly vibrationally excited polycyclic aromatic hydrocarbon (PAH) molecules.
NASA Astrophysics Data System (ADS)
Kohler, Susanna
2015-10-01
The objective of the Interstellar Boundary Explorer, or IBEX, is to study the interaction between the solar wind and the interstellar medium (ISM) at the outer boundary of our solar system. In a special issue of the Astrophysical Journal Supplement Series, a set of 14 papers presents some of the most recent scientific results to come from the first six years of IBEX data.The Heliosphere and IBEXThe IBEX spacecraft, launched in October 2008. [NASA]As the solar wind streams outward, it blows a bubble into the ISM known as the heliosphere. The outer boundary of the heliosphere, where the solar wind is no longer able to push the ISM out of the way, marks the edge of our solar system. Wed like to understand the composition and properties of both the heliosphere and the local interstellar environment, as well as the processes at work in the interstellar space around our Sun.How do we learn about these things? One approach is to send spacecraft to the edge of the heliosphere to make measurements, such as Voyagers 1 and 2. But these spacecraft are only able to measure properties at their specific locations and since the heliosphere doesnt appear to be symmetric, this is a major limitation. This is where IBEX comes in.IBEXs orbit around the Earth, at various stages in the Earths orbit around the Sun. IBEX makes its observations while outside of the Earths magnetosphere (purple shaded region). [SwRI/IBEX Team]IBEX is a spacecraft on a highly elliptical orbit around Earth. Its orbit takes it outside of the Earths magnetosphere, where its able to detect neutral atoms of varying energies that have traveled from the outer edges of our solar system. IBEXs observations are therefore of particles rather than light; the spacecraft detects the directions and energies of roughly 600 particles per day. This data has provided us with a full 3D view of the outer boundary of the heliosphere.IBEXs detections rely on two types of particles: 1) energetic neutral atoms, which are produced by charge exchange at the solar system boundary when the solar wind ions and the neutral ISM gas interact, and 2) various species of interstellar neutral atoms themselves that pass through the heliosphere and stream toward Earth. Detections of the latter type are the focus of the papers in this special issue of ApJS.Latest ResultsIn the overview paper of this ApJS issue, PI David McComas (Southwest Research Institute) and coauthors outline the recent science results of IBEX. The major outcomes include:Resolution of the differences between IBEXs and Ulyssess measurements of helium atoms in the ISMThe space mission Ulysses, which gathered data while orbiting the Sun until 2009, measured a different temperature and direction for the interstellar flow of helium atoms than IBEX did. These two studies have now been reconciled and confirm that the local interstellar wind is significantly hotter than originally measured by Ulysses.Determination of where the pristine ISM startsUnderstanding the properties of the ISM outside of our solar system requires knowing how far out we need to look to observe ISM that hasnt been mixed with atoms from our solar system. The studies presented here find that the distance to the pristine ISM is 1000 AU (thats more than 30 times the distance to Neptune!). The temperature, speed, and direction of the ISM flow at that location are also presented.Measurement of other interstellar neutral atomsIBEX has gathered neutral hydrogen, oxygen, and neon particles, helping to identify the flows of these interstellar neutral atoms and the composition of the local region surrounding the heliosphere.These results are the latest in a long stream of important scientific findings from IBEX and as the mission has been extended through at least 2017, it seems likely that there will be many more!CitationD. J. McComas et al 2015 ApJS 220 22. doi:10.1088/0067-0049/220/2/22The entire ApJS issue can be found here: http://iopscience.iop.org/0067-0049/220/2
Formation and processing of organics in the early solar system.
Kerridge, J F
1999-01-01
Until pristine samples can be returned from cometary nuclei, primitive meteorites represent our best source of information about organic chemistry in the early solar system. However, this material has been affected by secondary processing on asteroidal parent bodies which probably did not affect the material now present in cometary nuclei. Production of meteoritic organic matter apparently involved the following sequence of events: Molecule formation by a variety of reaction pathways in dense interstellar clouds; Condensation of those molecules onto refractory interstellar grains; Irradiation of organic-rich interstellar-grain mantles producing a range of molecular fragments and free radicals; Inclusion of those interstellar grains into the protosolar nebula with probable heating of at least some grain mantles during passage through the shock wave bounding the solar accretion disc; Agglomeration of residual interstellar grains and locally produced nebular condensates into asteroid-sized planetesimals; Heating of planetesimals by decay of extinct radionuclides; Melting of ice to produce liquid water within asteroidal bodies; Reaction of interstellar molecules, fragments and radicals with each other and with the aqueous environment, possibly catalysed by mineral grains; Loss of water and other volatiles to space yielding a partially hydrated lithology containing a complex suite of organic molecules; Heating of some of this organic matter to generate a kerogen-like complex; Mixing of heated and unheated material to yield the meteoritic material now observed. Properties of meteoritic organic matter believed to be consistent with this scenario include: Systematic decrease of abundance with increasing C number in homologous series of characterisable molecules; Complete structural diversity within homologous series; Predominance of branched-chain isomers; Considerable isotopic variability among characterisable molecules and within kerogen-like material; Substantial deuterium enrichment in all organic fractions; Some fractions significantly enriched in nitrogen-15; Modest excesses of L-enantiomers in some racemisation-resistant molecules but no general enantiomeric preference. Despite much speculation about the possible role of Fischer-Tropsch catalytic hydrogenation of CO in production of organic molecules in the solar nebula, no convincing evidence for such material has been found in meteorites. A similarity between some meteoritic organics and those produced by Miller-Urey discharge synthesis may reflect involvement of common intermediates rather than the operation of electric discharges in the early solar system. Meteoritic organic matter constitutes a useful, but not exact, guide to what we shall find with in situ analytical and sample-return missions to cometary nuclei.
NASA Astrophysics Data System (ADS)
Etim, Emmanuel E.; Gorai, Prasanta; Das, Ankan; Chakrabarti, Sandip K.; Arunan, Elangannan
2018-06-01
This paper reports the first extensive study of the existence and effects of interstellar hydrogen bonding. The reactions that occur on the surface of the interstellar dust grains are the dominant processes by which interstellar molecules are formed. Water molecules constitute about 70% of the interstellar ice. These water molecules serve as the platform for hydrogen bonding. High level quantum chemical simulations for the hydrogen bond interaction between 20 interstellar molecules (known and possible) and water are carried out using different ab-intio methods. It is evident that if the formation of these species is mainly governed by the ice phase reactions, there is a direct correlation between the binding energies of these complexes and the gas phase abundances of these interstellar molecules. Interstellar hydrogen bonding may cause lower gas abundance of the complex organic molecules (COMs) at the low temperature. From these results, ketenes whose less stable isomers that are more strongly bonded to the surface of the interstellar dust grains have been observed are proposed as suitable candidates for astronomical observations.
Infrared, Submillimeter, and RadioAstronomy Program Astophysics Division
NASA Technical Reports Server (NTRS)
Oka, Takeshi
1996-01-01
The object of my research for the NASA grant NAGW-4769 was to observe infrared spectra of molecular ions with special astrophysical interest in plasmas both in the laboratory and in space. Progress made during the period from September 1995 to September 1996 is summarized in the following: 1. Detection of Interstellar H3(+) The discovery of interstellar H3(+) through its mid-infrared absorption spectrum was by far the most inspiring development during this fiscal year. H3(+), the simplest stable polyatomic system, has been postulated to play the central role in the ion-neutral reaction scheme of interstellar chemistry, but its presence had not been directly observed in spite of intensive searches by several groups. 2. Observation of High Revibrational States of H3(+). The initial discovery of H3(+) in the Jovian aurora region was made through the identification of the 2(nu)(sub 2)(sup 2) approaches O overtone band indicating the population of H3(+) in high revibration state. 3. Observation of Ortho-Para H3(+) selection rules in plasma chemistry. Celection rules that relate quantum states before and ufter various processes are fascinating subject based on the symmetry argument. 4. Spectroscopy of other ions. Spectroscopy of carbocations ch3(+), CH2(+), C2H3(+) and C2H2(+) has been continued.
Four Interstellar Dust Candidates from the Stardust Interstellar Dust Collector
NASA Astrophysics Data System (ADS)
Westphal, A. J.; Allen, C.; Bajt, S.; Bechtel, H. A.; Borg, J.; Brenker, F.; Bridges, J.; Brownlee, D. E.; Burchell, M.; Burghammer, M.; Butterworth, A. L.; Cloetens, P.; Davis, A. M.; Floss, C.; Flynn, G. J.; Fougeray, P.; Frank, D.; Gainsforth, Z.; Grün, E.; Heck, P. R.; Hillier, J. K.; Hoppe, P.; Howard, L.; Hudson, B.; Huss, G. R.; Huth, J.; Kearsley, A.; King, A. J.; Lai, B.; Leitner, J.; Lemelle, L.; Leroux, H.; Lettieri, R.; Marchant, W.; Nittler, L. R.; Ogliore, R. C.; Postberg, F.; Price, M. C.; Sandford, S. A.; Sans Tresseras, J. A.; Schmitz, S.; Schoonjans, T.; Silversmit, G.; Simionovici, A.; Srama, R.; Stadermann, F. J.; Stephan, T.; Stodolna, J.; Stroud, R. M.; Sutton, S. R.; Toucoulou, R.; Trieloff, M.; Tsou, P.; Tsuchiyama, A.; Tyliczszak, T.; Vekemans, B.; Vincze, L.; Wordsworth, N.; Zevin, D.; Zolensky, M. E.; 29,000 Stardust@Home Dusters
2011-03-01
We report the discovery of two new interstellar dust candidates in the aerogel collectors of the Stardust Interstellar Dust Collector, and the analyses of these and two previously identified candidates.
Organic chemistry and biology of the interstellar medium
NASA Technical Reports Server (NTRS)
Sagan, C.
1973-01-01
Interstellar organic chemistry is discussed as the field of study emerging from the discovery of microwave lines of formaldehyde and of hydrogen cyanide in the interstellar medium. The reliability of molecular identifications and comparisons of interstellar and cometary compounds are considered, along with the degradational origin of simple organics. It is pointed out that the contribution of interstellar organic chemistry to problems in biology is not substantive but analogical. The interstellar medium reveals the operation of chemical processes which, on earth and perhaps on vast numbers of planets throughout the universe, led to the origin of life, but the actual molecules of the interstellar medium are unlikely to play any significant biological role.
Time-dependent interstellar chemistry
NASA Technical Reports Server (NTRS)
Glassgold, A. E.
1985-01-01
Some current problems in interstellar chemistry are considered in the context of time-dependent calculations. The limitations of steady-state models of interstellar gas-phase chemistry are discussed, and attempts to chemically date interstellar clouds are reviewed. The importance of studying the physical and chemical properties of interstellar dust is emphasized. Finally, the results of a series of studies of collapsing clouds are described.
Processing Mechanisms for Interstellar Ices: Connections to the Solar System
NASA Technical Reports Server (NTRS)
Pendleton, Y. J.; Cuzzi, Jeffrey N. (Technical Monitor)
1995-01-01
The organic component of the interstellar medium, which has revealed itself through the ubiquitous 3.4 micrometers hydrocarbon absorption feature, is widespread throughout the disk of our galaxy and has been attributed to dust grains residing in the diffuse interstellar medium. The absorption band positions near 3.4 micrometers are characteristic of C-H stretching vibrations in the -CH3 and -CH2- groups of saturated aliphatic hydrocarbons associated with perturbing chemical groups. The production of complex molecules is thought to occur within dense molecular clouds when ice-mantled grains are processed by various energetic mechanisms. Studies of the processing of interstellar ices and the subsequent production of organic residues have relevance to studies of ices in the solar system, because primitive, icy solar system bodies such as those in the Kuiper belt are likely reservoirs of organic material, either preserved from the interstellar medium or produced in situ. Connections between the interstellar medium and the early solar nebula have long been a source of interest. A comparison of the interstellar organics and the Murchison meteorite illustrates the importance of probing the interstellar connection to the solar system, because although the carbonaceous meteorites are undoubtedly highly processed, they do retain specific interstellar signatures (such as diamonds, SiC grains, graphite and enriched D/H). The organic component, while not proven interstellar, has a remarkable similarity to the interstellar organics observed in over a dozen sightlines through our galaxy. This paper compares spectra from laboratory organics produced through the processing of interstellar ice analog materials with the high resolution infrared observations of the interstellar medium in order to investigate the mechanisms (such as ion bombardment, plasma processing, and UV photolysis) that may be producing the organics in the ISM.
Properties of interstellar wind leading to shape morphology of the dust surrounding HD 61005
NASA Astrophysics Data System (ADS)
Pástor, P.
2017-08-01
Aims: A structure formed by dust particles ejected from the debris ring around HD 61005 is observed in the scattered light. The main aim here is to constrain interstellar wind parameters that lead to shape morphology in the vicinity of HD 61005 using currently available observational data for the debris ring. Methods: Equation of motion of 2 × 105 dust particles ejected from the debris ring under the action of the electromagnetic radiation, stellar wind, and interstellar wind is solved. A two-dimensional (2D) grid is placed in a given direction for accumulation of the light scattered on the dust particles in order to determine the shape morphology. The interaction of the interstellar wind and the stellar wind is considered. Results: Groups of unknown properties of the interstellar wind that create the observed morphology are determined. A relation between number densities of gas components in the interstellar wind and its relative velocity is found. Variations of the shape morphology caused by the interaction with the interstellar clouds of various temperatures are studied. When the interstellar wind velocity is tilted from debris ring axis a simple relation between the properties of the interstellar wind and an angle between the line of sight and the interstellar wind velocity exists. Dust particles that are most significantly influenced by stellar radiation move on the boundary of observed structure. Conclusions: Observed structure at HD 61005 can be explained as a result of dust particles moving under the action of the interstellar wind. Required number densities or velocities of the interstellar wind are much higher than that of the interstellar wind entering the solar system.
NASA Astrophysics Data System (ADS)
Pilipenko, S. V.; Kovalev, Y. Y.; Andrianov, A. S.; Bach, U.; Buttaccio, S.; Cassaro, P.; Cimò, G.; Edwards, P. G.; Gawroński, M. P.; Gurvits, L. I.; Hovatta, T.; Jauncey, D. L.; Johnson, M. D.; Kovalev, Yu A.; Kutkin, A. M.; Lisakov, M. M.; Melnikov, A. E.; Orlati, A.; Rudnitskiy, A. G.; Sokolovsky, K. V.; Stanghellini, C.; de Vicente, P.; Voitsik, P. A.; Wolak, P.; Zhekanis, G. V.
2018-03-01
The high brightness temperatures, Tb ≳ 1013 K, detected in several active galactic nuclei by RadioAstron space VLBI observations challenge theoretical limits. Refractive scattering by the interstellar medium may affect such measurements. We quantify the scattering properties and the sub-mas scale source parameters for the quasar B0529+483. Using RadioAstron correlated flux density measurements at 1.7, 4.8, and 22 GHz on projected baselines up to 240 000 km we find two characteristic angular scales in the quasar core, about 100 and 10 μas. Some indications of scattering substructure are found. Very high brightness temperatures, Tb ≥ 1013 K, are estimated at 4.8 and 22 GHz even taking into account the refractive scattering. Our findings suggest a clear dominance of the particle energy density over the magnetic field energy density in the core of this quasar.
Statistical time-dependent model for the interstellar gas
NASA Technical Reports Server (NTRS)
Gerola, H.; Kafatos, M.; Mccray, R.
1974-01-01
We present models for temperature and ionization structure of low, uniform-density (approximately 0.3 per cu cm) interstellar gas in a galactic disk which is exposed to soft X rays from supernova outbursts occurring randomly in space and time. The structure was calculated by computing the time record of temperature and ionization at a given point by Monte Carlo simulation. The calculation yields probability distribution functions for ionized fraction, temperature, and their various observable moments. These time-dependent models predict a bimodal temperature distribution of the gas that agrees with various observations. Cold regions in the low-density gas may have the appearance of clouds in 21-cm absorption. The time-dependent model, in contrast to the steady-state model, predicts large fluctuations in ionization rate and the existence of cold (approximately 30 K), ionized (ionized fraction equal to about 0.1) regions.
NASA Astrophysics Data System (ADS)
Peek, Joshua E. G.; Hargis, Jonathan R.; Jones, Craig K.
2018-01-01
Astronomical instruments produce petabytes of images every year, vastly more than can be inspected by a member of the astronomical community in search of a specific population of structures. Fortunately, the sky is mostly black and source extraction algorithms have been developed to provide searchable catalogs of unconfused sources like stars and galaxies. These tools often fail for studies of more diffuse structures like the interstellar medium and unresolved stellar structures in nearby galaxies, leaving astronomers interested in observations of photodissociation regions, stellar clusters, diffuse interstellar clouds without the crucial ability to search. In this work we present a new path forward for finding structures in large data sets similar to an input structure using convolutional neural networks, transfer learning, and machine learning clustering techniques. We show applications to archival data in the Mikulski Archive for Space Telescopes (MAST).
2008-10-08
VANDENBERG AIR FORCE BASE, Calif. – On the ramp of Vandenberg Air Force Base in California, a Boeing 737 aircraft waits to accompany Orbital Sciences’ L-1011 aircraft when it takes off with NASA’s Interstellar Boundary Explorer, or IBEX, spacecraft and Pegasus XL rocket. The L-1011 will head for the Reagan Test Site at Kwajalein Atoll in the South Pacific. The 737 will fly ahead of the L-1011 as a pathfinder. Launch vehicle engineers are aboard in the unlikely event their expertise is needed. The IBEX satellite will make the first map of the boundary between the Solar System and interstellar space. IBEX is targeted for launch Oct. 19. The Pegasus rocket will be dropped from under the wing of the L-1011 over the Pacific Ocean to carry the spacecraft approximately 130 miles above Earth and place it in orbit. Photo credit: NASA/Randy Beaudoin, VAFB
2008-10-11
VANDENBERG AIR FORCE BASE, Calif. – Orbital Sciences’ L-1011 aircraft takes off from Vandenberg Air Force Base in California for the Kwajalein Atoll, a part of the Marshall Islands in the Pacific Ocean. Under its wing is NASA’s Interstellar Boundary Explorer, or IBEX, spacecraft and Pegasus XL rocket. Departing from Kwajalein, the Pegasus rocket will be dropped from under the wing of the L-1011 over the Pacific Ocean to carry the spacecraft approximately 130 miles above Earth and place it in orbit. Then, the spacecraft’s own engine will boost it to its final high-altitude orbit (about 200,000 miles high) — most of the way to the Moon. The IBEX satellite will make the first map of the boundary between the Solar System and interstellar space. IBEX science will be led by the Southwest Research Institute of San Antonio, Texas. IBEX is targeted for launch over the Pacific Oct. 19. Photo credit: NASA/Randy Beaudoin, VAFB
2008-10-11
VANDENBERG AIR FORCE BASE, Calif. – Orbital Sciences’ L-1011 aircraft begins rolling for takeoff from Vandenberg Air Force Base in California to the Kwajalein Atoll, a part of the Marshall Islands in the Pacific Ocean. Under its wing is NASA’s Interstellar Boundary Explorer, or IBEX, spacecraft and Pegasus XL rocket. Departing from Kwajalein, the Pegasus rocket will be dropped from under the wing of the L-1011 over the Pacific Ocean to carry the spacecraft approximately 130 miles above Earth and place it in orbit. Then, the spacecraft’s own engine will boost it to its final high-altitude orbit (about 200,000 miles high) — most of the way to the Moon. The IBEX satellite will make the first map of the boundary between the Solar System and interstellar space. IBEX science will be led by the Southwest Research Institute of San Antonio, Texas. IBEX is targeted for launch over the Pacific Oct. 19. Photo credit: NASA/Randy Beaudoin, VAFB
2008-10-11
VANDENBERG AIR FORCE BASE, Calif. – Orbital Sciences’ L-1011 aircraft takes off from Vandenberg Air Force Base in California for the Kwajalein Atoll, a part of the Marshall Islands in the Pacific Ocean. Under its wing is NASA’s Interstellar Boundary Explorer, or IBEX, spacecraft and Pegasus XL rocket. Departing from Kwajalein, the Pegasus rocket will be dropped from under the wing of the L-1011 over the Pacific Ocean to carry the spacecraft approximately 130 miles above Earth and place it in orbit. Then, the spacecraft’s own engine will boost it to its final high-altitude orbit (about 200,000 miles high) — most of the way to the Moon. The IBEX satellite will make the first map of the boundary between the Solar System and interstellar space. IBEX science will be led by the Southwest Research Institute of San Antonio, Texas. IBEX is targeted for launch over the Pacific Oct. 19. Photo credit: NASA/Randy Beaudoin, VAFB
2008-10-11
VANDENBERG AIR FORCE BASE, Calif. – Orbital Sciences’ L-1011 aircraft begins rolling for takeoff from Vandenberg Air Force Base in California to the Kwajalein Atoll, a part of the Marshall Islands in the Pacific Ocean. Under its wing is NASA’s Interstellar Boundary Explorer, or IBEX, spacecraft and Pegasus XL rocket. Departing from Kwajalein, the Pegasus rocket will be dropped from under the wing of the L-1011 over the Pacific Ocean to carry the spacecraft approximately 130 miles above Earth and place it in orbit. Then, the spacecraft’s own engine will boost it to its final high-altitude orbit (about 200,000 miles high) — most of the way to the Moon. The IBEX satellite will make the first map of the boundary between the Solar System and interstellar space. IBEX science will be led by the Southwest Research Institute of San Antonio, Texas. IBEX is targeted for launch over the Pacific Oct. 19. Photo credit: NASA/Randy Beaudoin, VAFB
2008-10-11
VANDENBERG AIR FORCE BASE, Calif. – Orbital Sciences’ L-1011 aircraft takes off from Vandenberg Air Force Base in California for the Kwajalein Atoll, a part of the Marshall Islands in the Pacific Ocean. Under its wing is NASA’s Interstellar Boundary Explorer, or IBEX, spacecraft and Pegasus XL rocket. Departing from Kwajalein, the Pegasus rocket will be dropped from under the wing of the L-1011 over the Pacific Ocean to carry the spacecraft approximately 130 miles above Earth and place it in orbit. Then, the spacecraft’s own engine will boost it to its final high-altitude orbit (about 200,000 miles high) — most of the way to the Moon. The IBEX satellite will make the first map of the boundary between the Solar System and interstellar space. IBEX science will be led by the Southwest Research Institute of San Antonio, Texas. IBEX is targeted for launch over the Pacific Oct. 19. Photo credit: NASA/Randy Beaudoin, VAFB
2008-10-11
VANDENBERG AIR FORCE BASE, Calif. – Orbital Sciences’ L-1011 aircraft takes off from Vandenberg Air Force Base in California for the Kwajalein Atoll, a part of the Marshall Islands in the Pacific Ocean. Under its wing is NASA’s Interstellar Boundary Explorer, or IBEX, spacecraft and Pegasus XL rocket. Departing from Kwajalein, the Pegasus rocket will be dropped from under the wing of the L-1011 over the Pacific Ocean to carry the spacecraft approximately 130 miles above Earth and place it in orbit. Then, the spacecraft’s own engine will boost it to its final high-altitude orbit (about 200,000 miles high) — most of the way to the Moon. The IBEX satellite will make the first map of the boundary between the Solar System and interstellar space. IBEX science will be led by the Southwest Research Institute of San Antonio, Texas. IBEX is targeted for launch over the Pacific Oct. 19. Photo credit: NASA/Randy Beaudoin, VAFB
NASA Technical Reports Server (NTRS)
Van Buren, Dave
1986-01-01
Equivalent width data from Copernicus and IUE appear to have an exponential, rather than a Gaussian distribution of errors. This is probably because there is one dominant source of error: the assignment of the background continuum shape. The maximum likelihood method of parameter estimation is presented for the case of exponential statistics, in enough generality for application to many problems. The method is applied to global fitting of Si II, Fe II, and Mn II oscillator strengths and interstellar gas parameters along many lines of sight. The new values agree in general with previous determinations but are usually much more tightly constrained. Finally, it is shown that care must be taken in deriving acceptable regions of parameter space because the probability contours are not generally ellipses whose axes are parallel to the coordinate axes.
Interstellar matter research with the Copernicus satellite
NASA Technical Reports Server (NTRS)
Spitzer, L., Jr.
1976-01-01
The use of the Copernicus satellite in an investigation of interstellar matter makes it possible to study absorption lines in the ultraviolet range which cannot be observed on the ground because of atmospheric absorption effects. A brief description is given of the satellite and the instrument used in the reported studies of interstellar matter. The results of the studies are discussed, giving attention to interstellar molecular hydrogen, the chemical composition of the interstellar gas, the coronal gas between the stars, and the interstellar abundance ratio of deuterium to hydrogen.
The LDEF benefits. [planned experiments
NASA Technical Reports Server (NTRS)
Kinard, W. H.
1982-01-01
The Long Duration Exposure Facility (LDEF) is described, and experiments planned for the first LDEF mission are discussed. Four of the eight involve scientific studies of interstellar gas, micrometeoroids, cosmic rays, and crystal growth in zero gravity, and four involve technology studies of the space environmental effects on solar cells, composite materials, thermal coatings, fiber optics, and electronic instruments. For each experiment, the objectives and methods are discussed.
HPCO—A Phosphorus‐Containing Analogue of Isocyanic Acid
Hinz, Alexander; Labbow, René; Rennick, Chris; Schulz, Axel
2017-01-01
Abstract We describe the isolation and spectroscopic characterization of the heavier phosphorus‐containing analogue of isocyanic acid (HPCO), and its isotopologue (DPCO). This fundamental small molecule, which has been postulated to exist in interstellar space, has thus far only been observed at low gas phase concentrations or in inert gas matrices. In this report we describe its synthesis, spectroscopic properties, and reactivity in solution. PMID:28252258
Advances in Interstellar and Planetary Laboratory Astrophysics with Ames’ COSmIC Facility
NASA Astrophysics Data System (ADS)
Salama, Farid; Sciamma-O'Brien, Ella; Bejaoui, Salma
2017-06-01
The COSmIC facility was developed at NASA Ames to study interstellar, circumstellar and planetary analogs in the laboratory [1]. COSmIC stands for “Cosmic Simulation Chamber” and is dedicated to the study of neutral and ionized molecules and nanoparticles under the low temperature and high vacuum conditions that are required to simulate space environments. COSmIC integrates a variety of instruments that allow forming, processing and monitoring simulated space conditions in the laboratory. It is composed of a Pulsed Discharge Nozzle (PDN) expansion that generates a plasma in a free supersonic jet expansion coupled to high-sensitivity, complementary in situ diagnostics tools, used for the detection and characterization of the species present in the expansion: a Cavity Ring Down Spectroscopy (CRDS) and fluorescence spectroscopy systems for photonic detection and a Reflectron Time-Of-Flight Mass Spectrometer (ReTOF-MS) for mass detection [2].Recent advances achieved in laboratory astrophysics using COSmIC will be presented, in particular the advances that have been achieved in the domain of the diffuse interstellar bands (DIBs) [3] and in monitoring, in the laboratory, the formation of dust grains and aerosols from their gas-phase molecular precursors in environments as varied as circumstellar outflows [4] and planetary atmospheres [5, 6]. Plans for future laboratory experiments on cosmic molecules and grains in the growing field of laboratory astrophysics (NIR-MIR CRDS, Laser Induced Fluorescence spectra of cosmic molecule analogs and the laser induced incandescence spectra of cosmic grain analogs will also be addressed as well as the implications of the on-going studies for astronomy.References: [1] Salama F., In Organic Matter in Space, IAU S251, Kwok & Sandford eds.CUP, 4, 357 (2008).[2] Ricketts C., Contreras C., Walker, R., Salama F., Int. J. Mass Spec, 300, 26 (2011)[3] Salama F., Galazutdinov G., Krelowski J., Biennier L., Beletsky Y., In-Ok Song, The Astrophys. J., 728, 154 (2011)[4] Cesar Contreras & Farid Salama, The Astrophys. J. Suppl. Ser., 208, 6 (2013)[5] Sciamma-O'Brien E., Ricketts C., and Salama F. Icarus, 243, 325 (2014)[6] Sciamma-O'Brien E., Upton K. and Salama F. Icarus, in press (2017)
Exotic Molecules in Space: A Coordinated Astronomical Laboratory and Theoretical Study
NASA Technical Reports Server (NTRS)
Thaddeus, Patrick
1999-01-01
The past three years have been a period of great progress in our laboratory investigation of molecules of astrophysical interest-the most productive by far in the 20-year history of a research program which has led to the discovery of over 20% of the 123 known interstellar and circumstellar molecules. Most of the discoveries made during this period have been the result of the construction in late 1995 and early 1996 of a Fourier transform microwave spectrometer working in the centimeter-wave band. The sensitivity of this instrument from the moment that it was turned on has exceeded our expectations by an order of magnitude. The Table below shows the 46 new molecules which have been discovered. Most are carbon chains, the dominant type of molecule which has been found in space. Several comments with respect to these molecules should be made: 1. There are probably no mistakes in any of the identifications, since these have been confirmed by the standard, powerful assays and tests used to check spectroscopic identifications: isotopic substitution, quantum calculations of the expected molecular structures, detection of hyperfine structure, Zeeman effect, etc. 2. The radio laboratory astrophysics of the entire set is complete for the time being, in the sense that essentially all the astronomically interesting radio transitions (including hfs when present) are either directly measured or can now be calculated from the derived spectroscopic constants to better than 1 part per million (or 0.3 km s-1 in radial velocity, and often much better than that). 3. Six of the forty six new molecules have already been identified in space, in every case but one on the basis of our laboratory measurements. 4. Sensitive as they are, our laboratory techniques are far from fundamental limits on sensitivity, and 5. One of the principal motivations of our research is to close the fairly small mass and size gap, now only a factor of a few, between the smallest postulated interstellar grains and the largest identified interstellar molecules.
Recent Progresses in Laboratory Astrophysics with Ames’ COSmIC Facility
NASA Astrophysics Data System (ADS)
Salama, Farid; Contreras, Cesar; Sciamma-O'Brien, Ella; Bejaoui, Salma
2016-06-01
We present and discuss the characteristics and the capabilities of the laboratory facility, COSmIC, that was developed at NASA Ames to generate, process and analyze interstellar, circumstellar and planetary analogs in the laboratory [1]. COSmIC stands for “Cosmic Simulation Chamber” and is dedicated to the study of neutral and ionized molecules and nano particles under the low temperature and high vacuum conditions that are required to simulate space environments. COSmIC integrates a variety of state-of-the-art instruments that allow forming, processing and monitoring simulated space conditions for planetary, circumstellar and interstellar materials in the laboratory. COSmIC is composed of a Pulsed Discharge Nozzle (PDN) expansion that generates a plasma in free supersonic jet expansion coupled to two high-sensitivity, complementary in situ diagnostics: a Cavity Ring Down Spectroscopy (CRDS) and laser induced fluorescence (LIF) systems for photonic detection and a Reflectron Time-Of-Flight Mass Spectrometer (ReTOF-MS) for mass detection [2].Recent laboratory results that were obtained using COSmIC will be presented, in particular the progress that has been achieved in the domain of the diffuse interstellar bands (DIBs) [3] and in monitoring, in the laboratory, the formation of dust grains and aerosols from their gas-phase molecular precursors in environments as varied as stellar/circumstellar outflows [4] and planetary atmospheres [5]. Plans for future, next generation, laboratory experiments on cosmic molecules and grains in the growing field of laboratory astrophysics will also be addressed as well as the implications of the current studies for astronomy.References: [1] Salama F., In Organic Matter in Space, IAU Symposium 251, Kwok & Sandford Eds.Cambridge University Press, Vol. 4, S251, p. 357 (2008) and references therein.[2] Ricketts C., Contreras C., Walker, R., Salama F., Int. J. Mass Spec, 300, 26 (2011)[3] Salama F., Galazutdinov G., Krelowski J., Biennier L., Beletsky Y., In-Ok Song, The Astrophys. J., 728, 154 (2011)[4] Cesar Contreras and Farid Salama, The Astrophys. J. Suppl. Ser., 208, 6 (2013)[5] Sciamma-O'Brien E., Ricketts C., and Salama F. Icarus, 243, 325 (2014)Acknowledgements: The authors acknowledge the support of NASA SMD.
IRAS 08572+3915: constraining the aromatic versus aliphatic content of interstellar HACs
NASA Astrophysics Data System (ADS)
Dartois, E.; Geballe, T. R.; Pino, T.; Cao, A.-T.; Jones, A.; Deboffle, D.; Guerrini, V.; Bréchignac, Ph.; D'Hendecourt, L.
2007-02-01
We analyze dust features present in the mid-infrared (Spitzer) and recently published L-band (UKIRT) spectra of the infrared galaxy IRAS 08572+3915. The line of sight toward the AGN nucleus crosses a high column density of carbonaceous dust whose characteristic absorption features appear clearly. They provide a real insight into the chemical environment of the diffuse interstellar medium. Thanks to the moderate redshift of IRAS 08572+3915, the wavelength of the aromatic CH stretching mode is free of major telluric lines, and a strong observational constraint of Hsp2 /Hsp3 ≤ 0.08 has been determined. This limit clearly shows that the bonding of hydrogen atoms in interstellar hydrogenated amorphous carbon is highly aliphatic. The presence of a broad absorption feature centered at 6.2 μm, probably arising from olefinic/aromatic structures, corresponds to the backbone of this carbonaceous material, which is the major carbon-containing component of the interstellar medium along this line of sight. Based on observations made with the Spitzer Space Telescope (GO-3336 program), which is operated by the Jet Propulsion Laboratory, California Institute of Technology under NASA contract 1407. Based on data obtained at the United Kingdom Infrared Telescope, which is operated by the Joint Astronomy Center on behalf of the UK Particle Physics and Astronomy Research Council. Part of this work has been financed by the french CNRS program "Physique et Chimie du Milieu Interstellaire" (PCMI-CNRS). TRG's esearch is supported by the Gemini Observatory, which is operated by the Association of Universities for Research in Astronomy, Inc., on behalf of the international Gemini partnership of Argentina, Australia, Brazil, Canada, Chile, the United Kingdom, and the United States of America.
NASA Astrophysics Data System (ADS)
Adande, Gilles Rapotchombo
Progress in our understanding of the chemical composition of the interstellar medium leans both on laboratory analyses of high resolution rotational spectra from molecules that may be present in these regions, and on radio astronomical observations of molecular tracers to constrain astrochemical models. Due to the thermodynamic conditions in outer space, some molecules likely to be found in interstellar regions in relevant abundances are open shell radicals. In a series of laboratory studies, the pure rotational spectra of the transition metal containing radicals sulfur species ScS, YS, VS and ZnSH were obtained for the first time. In addition to accurate and precise rest frequencies for these species, bonding characteristics were determined from fine and hyperfine molecular parameters. It was found that these sulfides have a higher degree of covalent bonding than their mostly ionic oxide counterparts. Isomers and isotope ratios are excellent diagnostic tools for a variety of astrochemical models. From radio observations of isotopes of nitrile species, the galactic gradient of 14N/15N was accurately established. A further study of this ratio in carbon rich asymptotic giant branch stars provided observational evidence for an unknown process in J type carbon stars, and highlighted the need to update stellar nucleosynthesis models. Proper radiative transfer modeling of the emission spectra of interstellar molecules can yield a wealth of information about the abundance and distribution of these species within the observed sources. To model the asymmetric emission of SO and SO2 in oxygen-rich supergiants, an in-house code was developed, and successfully applied to gain insight into circumstellar sulfur chemistry of VY Canis Majoris. It was concluded that current astrochemistry kinetic models, based on spherical symmetry assumptions, need to be revisited.
Clements, Aspen R; Berk, Brandon; Cooke, Ilsa R; Garrod, Robin T
2018-02-21
Dust grains in cold, dense interstellar clouds build up appreciable ice mantles through the accretion and subsequent surface chemistry of atoms and molecules from the gas. These mantles, of thicknesses on the order of 100 monolayers, are primarily composed of H 2 O, CO, and CO 2 . Laboratory experiments using interstellar ice analogues have shown that porosity could be present and can facilitate diffusion of molecules along the inner pore surfaces. However, the movement of molecules within and upon the ice is poorly described by current chemical kinetics models, making it difficult either to reproduce the formation of experimental porous ice structures or to extrapolate generalized laboratory results to interstellar conditions. Here we use the off-lattice Monte Carlo kinetics model MIMICK to investigate the effects that various deposition parameters have on laboratory ice structures. The model treats molecules as isotropic spheres of a uniform size, using a Lennard-Jones potential. We reproduce experimental trends in the density of amorphous solid water (ASW) for varied deposition angle, rate and surface temperature; ice density decreases when the incident angle or deposition rate is increased, while increasing temperature results in a more-compact water ice. The models indicate that the density behaviour at higher temperatures (≥80 K) is dependent on molecular rearrangement resulting from thermal diffusion. To reproduce trends at lower temperatures, it is necessary to take account of non-thermal diffusion by newly-adsorbed molecules, which bring kinetic energy both from the gas phase and from their acceleration into a surface binding site. Extrapolation of the model to conditions appropriate to protoplanetary disks, in which direct accretion of water from the gas-phase may be the dominant ice formation mechanism, indicate that these ices may be less porous than laboratory ices.
Tracking interstellar space weather toward timing-array millisecond pulsars
NASA Astrophysics Data System (ADS)
Bhat, N. D. R.; Ord, S. M.; Tremblay, S. E.; Shannon, R. M.; van Straten, W.; Kaplan, D. L.; Macquart, J.-P.; Kirsten, F.
2016-07-01
Recent LIGO detection of milli-Hertz gravitational wave (GW) signals from a black-hole merger event has further reinforced the important role of Pulsar timing array (PTA) experiments in the GW astronomy. PTAs exploit the clock-like stability of fast-spinning millisecond pulsars (MSPs) to make a direct detection of ultra-low frequency (nano-Hertz) gravitational waves. The science enabled by PTAs is thus highly complementary to that possible by LIGO-like detectors. PTAs are also a key science objective for the SKA. PTA efforts over the past few years suggest that interstellar propagation effects on pulsar signals may ultimately limit the detection sensitivity of PTAs unless they are accurately measured and corrected for in timing measurements. Interstellar medium (ISM) effects are much stronger at lower radio frequencies and therefore the MWA presents an exciting and unique opportunity to calibrate interstellar propagation delays. This will potentially lead to enhanced sensitivity and scientific impact of PTA projects. Since our first demonstration of ability to form a coherent (tied-array) beam by reprocessing the recorded VCS data (Bhat et al. 2016), we have successfully ported the full processing chain to the Galaxy cluster of Pawsey and demonstrated the value of high-sensitivity multi-band pulsar observations that are now possible with the MWA. Here we propose further observations of two most promising PTA pulsars that will be nightly objects in the 2016B period. Our main science driver is to characterise the nature of the turbulent ISM through high-quality scintillation and dispersion studies including the investigation of chromatic (frequency-dependent) DMs. Success of these efforts will define the breadth and scope of a more ambitious program in the future, bringing in a new science niche for the MWA and SKA-low.
New Large Interstellar Molecules Detected with the GBT
NASA Technical Reports Server (NTRS)
Hollis, Jan M.
2005-01-01
At present, more than 135 different molecules have been identified in interstellar clouds. The newest instrument in the interstellar molecule search arsenal is the recently commissioned Green Bank Telescope (GBT). In 2004, the large aldehydes propenal (CH2CHCHO) and propanal (CH3CH2CHO) were the first new interstellar molecules discovered with the GBT. At the same time, the GBT was used to observe interstellar glycolaldehyde (CH2OHCHO), which is the simplest possible aldehyde sugar; interstellar ethylene glycol (HOCH2CH2OH), which is the sugar alcohol of glycolaldehyde; and interstellar methylcyanodiacetylene (CH3C5N). These new GBT observations suggest that successive atomic addition reactions are common in the formation of larger related species. The observations will be presented and discussed.
Extraterrestrial intelligence: an observational approach.
Murray, B; Gulkis, S; Edelson, R E
1978-02-03
The microwave region of the electromagnetic spectrum, a plausible regime for signals from extraterrestrial intelligences, is largely unexplored. With new technology, particularly in data processing and low-noise reception, surveys can be conducted over broad regions of frequency and space with existing antennas at flux densities plausible for interstellar signals. An all-sky, broad-band survey lasting perhaps 5 years can be structured so that even negative results would establish significant boundaries on the regime in which such signals may be found. The technology and techniques developed and much of the data acquired would be applicable to radio astronomy and deep-space communications.
The Diffuse Interstellar Bands: Solving a Century Old Problem
NASA Technical Reports Server (NTRS)
Salama, Farid
2017-01-01
The Diffuse Interstellar Bands (DIBs) are a set of apporoximately 500 absorption bands that are seen in the spectra of reddened stars (i.e., stars obscured by the presence of interstellar clouds in their line of sight). The first DIBs were detected in the visible over a century ago. Diffuse Interstellar Bands are now detected from the near ultraviolet to the near infrared in the spectra of reddened stars spanning a variety of interstellar environments in our local, and in other galaxies. Although DIB carriers are a significant part of the interstellar chemical inventory as they account for a noticeable fraction of the interstellar extinction, the nature of their carriers is still unknown over a century after the detection of the first bands. DIB carriers are stable and ubiquitous in a broad variety of interstellar environments and play a unique role in interstellar physics and chemistry. It has long been realized that the solving of the DIB problem requires a strong synergy between astronomical observations, laboratory astrophysics and astrochemistry, quantum chemistry calculations and astrophysical modeling of line-of-sights. In this review, we'll present and discuss the current state of this perplexing problem. We'll review the progress and the failures that have been encountered in the long quest for the identification of the carriers of these ubiquitous interstellar bands.
Size distribution of dust grains: A problem of self-similarity
NASA Technical Reports Server (NTRS)
Henning, TH.; Dorschner, J.; Guertler, J.
1989-01-01
Distribution functions describing the results of natural processes frequently show the shape of power laws, e.g., mass functions of stars and molecular clouds, velocity spectrum of turbulence, size distributions of asteroids, micrometeorites and also interstellar dust grains. It is an open question whether this behavior is a result simply coming about by the chosen mathematical representation of the observational data or reflects a deep-seated principle of nature. The authors suppose the latter being the case. Using a dust model consisting of silicate and graphite grains Mathis et al. (1977) showed that the interstellar extinction curve can be represented by taking a grain radii distribution of power law type n(a) varies as a(exp -p) with 3.3 less than or equal to p less than or equal to 3.6 (example 1) as a basis. A different approach to understanding power laws like that in example 1 becomes possible by the theory of self-similar processes (scale invariance). The beta model of turbulence (Frisch et al., 1978) leads in an elementary way to the concept of the self-similarity dimension D, a special case of Mandelbrot's (1977) fractal dimension. In the frame of this beta model, it is supposed that on each stage of a cascade the system decays to N clumps and that only the portion beta N remains active further on. An important feature of this model is that the active eddies become less and less space-filling. In the following, the authors assume that grain-grain collisions are such a scale-invarient process and that the remaining grains are the inactive (frozen) clumps of the cascade. In this way, a size distribution n(a) da varies as a(exp -(D+1))da (example 2) results. It seems to be highly probable that the power law character of the size distribution of interstellar dust grains is the result of a self-similarity process. We can, however, not exclude that the process leading to the interstellar grain size distribution is not fragmentation at all. It could be, e.g., diffusion-limited growth discussed by Sander (1986), who applied the theory of fractal geometry to the classification of non-equilibrium growth processes. He received D=2.4 for diffusion-limited aggregation in 3d-space.
DAPHNE: Energy Generation and storage, using Solar Sails
NASA Astrophysics Data System (ADS)
Argelagós Palau, Ana Maria; Savio Bradford, Brandon
Space travel is still in it's adolescent stages. Having embarked beyond the limit of our atmosphere for a mere 50 years, it is easy to imagine how much is yet to be discovered, in other solar systems and our own. One of the main factors that slow us down is the need for Energy. Long distance space travel requires a lot of energy, both for propulsion and operations alike. The principle of solar sails shows that the momentum of solar energy can be used beneficially, as can be seen in NASA's Sun-Jammer project. So, why not generate energy from this system? The DAPHNE system will utilize the simple principle of wind mills that is used here on Earth; using the force created by Solar wind to rotate an axle that in turn, generates energy. And this mill can be used to recharge spacecraft that need to fly further than it's own initial energy system will allow. Another benefit to developing this system is the fact that it is an alternative to nuclear energy generation for space, that a lot of modern research is being done on. The DAPHNE system can be considered a solution to long term propellant storage in space for interplanetary and interstellar travel. This paper proposes the design of an energy recharge technology, we called DAPHNE, which will utilize Nanotechnology, using solar sails to generate and store energy for future long-distance space craft to dock with, recharge and continue on their journey/mission. Examples of spacecraft in development that might benefit from a recharging station are the LISA Pathfinder, terrestrial exploration missions and eventually, the long interstellar missions that will be launched in the distant future. Thereby, allowing mankind to push the boundaries of our solar system and accelerate our ability to know what's out there. This technology would help the future generations of Space researchers move further than we can.
iWander: Dynamics of interstellar wanderers
NASA Astrophysics Data System (ADS)
Zuluaga, Jorge I.; Sanchez-Hernandez, Oscar; Sucerquia, Mario; Ferrin, Ignacio
2018-01-01
iWander assesses the origin of interstellar small bodies such as asteroids and comets. It includes a series of databases and tools that can be used in general for studying the dynamics of an interstellar vagabond object (small‑body, interstellar spaceship and even stars).
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bzowski, M.; Kubiak, M. A.; Sokol, J. M.
Because of its high ionization potential and weak interaction with hydrogen, neutral interstellar helium (NISHe) is almost unaffected at the heliospheric interface with the interstellar medium and freely enters the solar system. This second most abundant species provides some of the best information on the characteristics of the interstellar gas in the local interstellar cloud. The Interstellar Boundary Explorer (IBEX) is the second mission to directly detect NISHe. We present a comparison between recent IBEX NISHe observations and simulations carried out using a well-tested quantitative simulation code. Simulation and observation results compare well for times when measured fluxes are dominatedmore » by NISHe (and contributions from other species are small). Differences between simulations and observations indicate a previously undetected secondary population of neutral helium, likely produced by interaction of interstellar helium with plasma in the outer heliosheath. Interstellar neutral parameters are statistically different from previous in situ results obtained mostly from the GAS/Ulysses experiment, but they do agree with the local interstellar flow vector obtained from studies of interstellar absorption: the newly established flow direction is ecliptic longitude 79.{sup 0}2, latitude -5.{sup 0}1, the velocity is {approx}22.8 km s{sup -1}, and the temperature is 6200 K. These new results imply a markedly lower absolute velocity of the gas and thus significantly lower dynamic pressure on the boundaries of the heliosphere and different orientation of the Hydrogen Deflection Plane compared to prior results from Ulysses. A different orientation of this plane also suggests a new geometry of the interstellar magnetic field, and the lower dynamic pressure calls for a compensation by other components of the pressure balance, most likely a higher density of interstellar plasma and strength of interstellar magnetic field.« less
LOCAL INTERSTELLAR MEDIUM: SIX YEARS OF DIRECT SAMPLING BY IBEX
DOE Office of Scientific and Technical Information (OSTI.GOV)
McComas, D. J.; Fuselier, S. A.; Schwadron, N. A., E-mail: dmccomas@swri.edu, E-mail: sfuselier@swri.edu, E-mail: Nathan.schwadron@unh.edu
2015-10-15
The Interstellar Boundary Explorer (IBEX) has been directly observing neutral atoms from the local interstellar medium for the last six years (2009–2014). This paper ties together the 14 studies in this Astrophysical Journal Supplement Series Special Issue, which collectively describe the IBEX interstellar neutral results from this epoch and provide a number of other relevant theoretical and observational results. Interstellar neutrals interact with each other and with the ionized portion of the interstellar population in the “pristine” interstellar medium ahead of the heliosphere. Then, in the heliosphere's close vicinity, the interstellar medium begins to interact with escaping heliospheric neutrals. Inmore » this study, we compare the results from two major analysis approaches led by IBEX groups in New Hampshire and Warsaw. We also directly address the question of the distance upstream to the pristine interstellar medium and adjust both sets of results to a common distance of ∼1000 AU. The two analysis approaches are quite different, but yield fully consistent measurements of the interstellar He flow properties, further validating our findings. While detailed error bars are given for both approaches, we recommend that for most purposes, the community use “working values” of ∼25.4 km s{sup −1}, ∼75.°7 ecliptic inflow longitude, ∼ −5.°1 ecliptic inflow latitude, and ∼7500 K temperature at ∼1000 AU upstream. Finally, we briefly address future opportunities for even better interstellar neutral observations to be provided by the Interstellar Mapping and Acceleration Probe mission, which was recommended as the next major Heliophysics mission by the NRC's 2013 Decadal Survey.« less
Observational aspects of polycyclic aromatic hydrocarbon charging in the Interstellar Medium
NASA Technical Reports Server (NTRS)
Bakes, E. L. O.; Tielens, Alexander G. G. M.
1995-01-01
We have investigated the charging processes which affect small carbonaceous dust grains and polycyclic aromatic hydrocarbons (PAH's). Because of their high abundance, interstellar PAH molecules can dominate the charge balance of the interstellar medium (ISM), which controls the heating and cooling interstellar gas and interstellar chemistry. We present the results of our model, which compare well with observations and suggest further applications to both laboratory measurements and data obtainable from the KAO.
NASA Technical Reports Server (NTRS)
Salama, F.; Biennier, L.
2004-01-01
The study of the formation and destruction processes of cosmic dust is essential to understand and to quantify the budget of extraterrestrial organic molecules. interstellar dust presents a continuous size distribution from large molecules, radicals and ions to nanometer-sized particles to micron-sized grains. The lower end of the dust size distribution is thought to be responsible for the ubiquitous spectral features that are seen in emission in the IR (UIBs) and in absorption in the visible (DIBs). The higher end of the dust-size distribution is thought to be responsible for the continuum emission plateau that is seen in the IR and for the strong absorption seen in the interstellar UV extinction curve. All these spectral signatures are characteristic of cosmic organic materials that are ubiquitous and present in various forms from gas-phase molecules to solid-state grains. Although dust with all its components plays an important role in the evolution of interstellar chemistry and in the formation of organic molecules, little is known on the formation and destruction processes of dust. Recent space observations in the UV (HST) and in the IR (ISO) help place size constraints on the molecular component of carbonaceous IS dust and indicate that small (ie., subnanometer) PAHs cannot contribute significantly to the IS features in the UV and in the IR. Studies of large molecular and nano-sized IS dust analogs formed from PAH precursors have been performed in our laboratory under conditions that simulate diffuse ISM environments (the particles are cold -100 K vibrational energy, isolated in the gas phase and exposed to a high-energy discharge environment in a cold plasma). The species (molecules, molecular fragments, ions, nanoparticles, etc) formed in the pulsed discharge nozzle (PDN) plasma source are detected with a high-sensitivity cavity ring-down spectrometer (CRDS). We will present new experimental results that indicate that nanoparticles are generated in the plasma. From these unique measurements, we derive information on the nature, the size and the structure of interstellar dust particles, the growth and the destruction processes of IS dust and the resulting budget of extraterrestrial organic molecules.
The violent interstellar medium
NASA Technical Reports Server (NTRS)
Mccray, R.; Snow, T. P., Jr.
1979-01-01
Observational evidence for high-velocity and high-temperature interstellar gas is reviewed. The physical processes that characterize this gas are described, including the ionization and emissivity of coronal gas, the behavior and appearance of high-velocity shocks, and interfaces between coronal gas and cooler interstellar gas. Hydrodynamical models for the action of supernova explosions and stellar winds on the interstellar medium are examined, and recent attempts to synthesize all the processes considered into a global model for the interstellar medium are discussed.
Parameterized spectral distributions for meson production in proton-proton collisions
NASA Technical Reports Server (NTRS)
Schneider, John P.; Norbury, John W.; Cucinotta, Francis A.
1995-01-01
Accurate semiempirical parameterizations of the energy-differential cross sections for charged pion and kaon production from proton-proton collisions are presented at energies relevant to cosmic rays. The parameterizations, which depend on both the outgoing meson parallel momentum and the incident proton kinetic energy, are able to be reduced to very simple analytical formulas suitable for cosmic ray transport through spacecraft walls, interstellar space, the atmosphere, and meteorites.
Back to the future: SETI before the space age
NASA Astrophysics Data System (ADS)
Dick, Steven J.
1995-02-01
In the late 1890s and early 1900s, before the advent of formalized search for extraterrestrial intelligence (SETI) programs, scientists such as Nikola Tesla and Gulielmo Marconi reported evidence of extraterrestrial radio signals. This paper reviews the history of 'interstellar/interplanetary radio communication'. The investigations of David P. Todd and Donald Menzel are discussed, and the fields of radio communication and radio astronomy are mentioned briefly.
2002-10-23
KENNEDY SPACE CENTER, FLA. - Workers on the launch tower on NASA's Space Launch Complex 2 (SLC-2), Vandenberg Air Force Base, Calif., watch as the interstage of the Delta II rocket is lifted to a level where it can be mated with the first stage. The rocket will carry the ICESat and CHIPSat satellites into Earth orbits. ICESat is a 661-pound satellite known as Geoscience Laser Altimeter System (GLAS) that will revolutionize our understanding of ice and its role in global climate change and how we protect and understand our home planet. It will help scientists determine if the global sea level is rising or falling. It will look at the ice sheets that blanket the Earth's poles to see if they are growing or shrinking. It will assist in developing an understanding of how changes in the Earth's atmosphere and climate effect polar ice masses and global sea level. CHIPSat, a suitcase-size 131-pound satellite, will provide invaluable information into the origin, physical processes and properties of the hot gas contained in the interstellar medium. This can provide important clues about the formation and evolution of galaxies since the interstellar medium literally contains the seeds of future stars. The Delta II launch is scheduled for Jan. 11 between 4:45 p.m. - 5:30 p.m. PST.
2002-10-23
KENNEDY SPACE CENTER, FLA. - The interstage of the Delta II rocket is lifted up the launch tower on NASA's Space Launch Complex 2 (SLC-2), Vandenberg Air Force Base, Calif. The interstage will eventually house the second stage and will be mated with the first stage. The rocket will carry the ICESat and CHIPSat satellites into Earth orbits. ICESat is a 661-pound satellite known as Geoscience Laser Altimeter System (GLAS) that will revolutionize our understanding of ice and its role in global climate change and how we protect and understand our home planet. It will help scientists determine if the global sea level is rising or falling. It will look at the ice sheets that blanket the Earth's poles to see if they are growing or shrinking. It will assist in developing an understanding of how changes in the Earth's atmosphere and climate effect polar ice masses and global sea level. CHIPSat, a suitcase-size 131-pound satellite, will provide invaluable information into the origin, physical processes and properties of the hot gas contained in the interstellar medium. This can provide important clues about the formation and evolution of galaxies since the interstellar medium literally contains the seeds of future stars. The Delta II launch is scheduled for Jan. 11 between 4:45 p.m. - 5:30 p.m. PST.
2002-10-23
KENNEDY SPACE CENTER, FLA. - Workers on the launch tower on NASA's Space Launch Complex 2 (SLC-2), Vandenberg Air Force Base, Calif., help guide the interstage of the Delta II rocket into position for mating with the first stage. The rocket will carry the ICESat and CHIPSat satellites into Earth orbits. ICESat is a 661-pound satellite known as Geoscience Laser Altimeter System (GLAS) that will revolutionize our understanding of ice and its role in global climate change and how we protect and understand our home planet. It will help scientists determine if the global sea level is rising or falling. It will look at the ice sheets that blanket the Earth's poles to see if they are growing or shrinking. It will assist in developing an understanding of how changes in the Earth's atmosphere and climate effect polar ice masses and global sea level. CHIPSat, a suitcase-size 131-pound satellite, will provide invaluable information into the origin, physical processes and properties of the hot gas contained in the interstellar medium. This can provide important clues about the formation and evolution of galaxies since the interstellar medium literally contains the seeds of future stars. The Delta II launch is scheduled for Jan. 11 between 4:45 p.m. - 5:30 p.m. PST.
2002-10-23
KENNEDY SPACE CENTER, FLA. - The first stage of the Delta II rocket is in the process of being raised to a vertical position on NASA's Space Launch Complex 2 (SLC-2) at Vandenberg Air Force Base, Calif. The rocket will carry the ICESat and CHIPSat satellites into Earth orbits. ICESat is a 661-pound satellite known as Geoscience Laser Altimeter System (GLAS) that will revolutionize our understanding of ice and its role in global climate change and how we protect and understand our home planet. It will help scientists determine if the global sea level is rising or falling. It will look at the ice sheets that blanket the Earth's poles to see if they are growing or shrinking. It will assist in developing an understanding of how changes in the Earth's atmosphere and climate effect polar ice masses and global sea level. CHIPSat, a suitcase-size 131-pound satellite, will provide invaluable information into the origin, physical processes and properties of the hot gas contained in the interstellar medium. This can provide important clues about the formation and evolution of galaxies since the interstellar medium literally contains the seeds of future stars. The Delta II launch is scheduled for Jan. 11 between 4:45 p.m. - 5:30 p.m. PST.
2002-10-24
KENNEDY SPACE CENTER, FLA. - On the launch tower on NASA's Space Launch Complex 2 (SLC-2), Vandenberg Air Force Base, Calif., a solid rocket booster is lifted into an upright position beside the Delta II rocket to which it will be attached. The rocket will carry the ICESat and CHIPSat satellites into Earth orbits. ICESat is a 661-pound satellite known as Geoscience Laser Altimeter System (GLAS) that will revolutionize our understanding of ice and its role in global climate change and how we protect and understand our home planet. It will help scientists determine if the global sea level is rising or falling. It will look at the ice sheets that blanket the Earth's poles to see if they are growing or shrinking. It will assist in developing an understanding of how changes in the Earth's atmosphere and climate effect polar ice masses and global sea level. CHIPSat, a suitcase-size 131-pound satellite, will provide invaluable information into the origin, physical processes and properties of the hot gas contained in the interstellar medium. This can provide important clues about the formation and evolution of galaxies since the interstellar medium literally contains the seeds of future stars. The Delta II launch is scheduled for Jan. 11 between 4:45 p.m. - 5:30 p.m. PST.
2002-10-23
KENNEDY SPACE CENTER, FLA. - On NASA's Space Launch Complex 2 (SLC-2), Vandenberg Air Force Base, Calif., the interstage of the Delta II rocket is ready to be lifted up the tower for mating with the first stage (seen behind it). The rocket will carry the ICESat and CHIPSat satellites into Earth orbits. ICESat is a 661-pound satellite known as Geoscience Laser Altimeter System (GLAS) that will revolutionize our understanding of ice and its role in global climate change and how we protect and understand our home planet. It will help scientists determine if the global sea level is rising or falling. It will look at the ice sheets that blanket the Earth's poles to see if they are growing or shrinking. It will assist in developing an understanding of how changes in the Earth's atmosphere and climate effect polar ice masses and global sea level. CHIPSat, a suitcase-size 131-pound satellite, will provide invaluable information into the origin, physical processes and properties of the hot gas contained in the interstellar medium. This can provide important clues about the formation and evolution of galaxies since the interstellar medium literally contains the seeds of future stars. The Delta II launch is scheduled for Jan. 11 between 4:45 p.m. - 5:30 p.m. PST.
2002-10-24
KENNEDY SPACE CENTER, FLA. - On the launch tower on NASA's Space Launch Complex 2 (SLC-2), Vandenberg Air Force Base, Calif., a solid rocket booster is lifted into an upright position as preparations continue to mate it to a Delta II rocket. The rocket will carry the ICESat and CHIPSat satellites into Earth orbits. ICESat is a 661-pound satellite known as Geoscience Laser Altimeter System (GLAS) that will revolutionize our understanding of ice and its role in global climate change and how we protect and understand our home planet. It will help scientists determine if the global sea level is rising or falling. It will look at the ice sheets that blanket the Earth's poles to see if they are growing or shrinking. It will assist in developing an understanding of how changes in the Earth's atmosphere and climate effect polar ice masses and global sea level. CHIPSat, a suitcase-size 131-pound satellite, will provide invaluable information into the origin, physical processes and properties of the hot gas contained in the interstellar medium. This can provide important clues about the formation and evolution of galaxies since the interstellar medium literally contains the seeds of future stars. The Delta II launch is scheduled for Jan. 11 between 4:45 p.m. - 5:30 p.m. PST.
2002-10-23
KENNEDY SPACE CENTER, FLA. - Workers on the launch tower on NASA's Space Launch Complex 2 (SLC-2), Vandenberg Air Force Base, Calif., help guide the interstage of the Delta II rocket into position for mating with the first stage. The rocket will carry the ICESat and CHIPSat satellites into Earth orbits. ICESat is a 661-pound satellite known as Geoscience Laser Altimeter System (GLAS) that will revolutionize our understanding of ice and its role in global climate change and how we protect and understand our home planet. It will help scientists determine if the global sea level is rising or falling. It will look at the ice sheets that blanket the Earth's poles to see if they are growing or shrinking. It will assist in developing an understanding of how changes in the Earth's atmosphere and climate effect polar ice masses and global sea level. CHIPSat, a suitcase-size 131-pound satellite, will provide invaluable information into the origin, physical processes and properties of the hot gas contained in the interstellar medium. This can provide important clues about the formation and evolution of galaxies since the interstellar medium literally contains the seeds of future stars. The Delta II launch is scheduled for Jan. 11 between 4:45 p.m. - 5:30 p.m. PST.
2002-10-23
KENNEDY SPACE CENTER, FLA. - With the transporter moved from below, the first stage of the Delta II rocket is suspended in air waiting to be lifted up the tower on NASA's Space Launch Complex 2 (SLC-2), Vandenberg Air Force Base, Calif. The rocket will carry the ICESat and CHIPSat satellites into Earth orbits. ICESat is a 661-pound satellite known as Geoscience Laser Altimeter System (GLAS) that will revolutionize our understanding of ice and its role in global climate change and how we protect and understand our home planet. It will help scientists determine if the global sea level is rising or falling. It will look at the ice sheets that blanket the Earth's poles to see if they are growing or shrinking. It will assist in developing an understanding of how changes in the Earth's atmosphere and climate effect polar ice masses and global sea level. CHIPSat, a suitcase-size 131-pound satellite, will provide invaluable information into the origin, physical processes and properties of the hot gas contained in the interstellar medium. This can provide important clues about the formation and evolution of galaxies since the interstellar medium literally contains the seeds of future stars. The Delta II launch is scheduled for Jan. 11 between 4:45 p.m. - 5:30 p.m. PST.
2002-10-23
KENNEDY SPACE CENTER, FLA. - Workers check the lower end of the first stage of the Delta II rocket before it is lifted up the tower on NASA's Space Launch Complex 2 (SLC-2), Vandenberg Air Force Base, Calif. The rocket will carry the ICESat and CHIPSat satellites into Earth orbits. ICESat is a 661-pound satellite known as Geoscience Laser Altimeter System (GLAS) that will revolutionize our understanding of ice and its role in global climate change and how we protect and understand our home planet. It will help scientists determine if the global sea level is rising or falling. It will look at the ice sheets that blanket the Earth's poles to see if they are growing or shrinking. It will assist in developing an understanding of how changes in the Earth's atmosphere and climate effect polar ice masses and global sea level. CHIPSat, a suitcase-size 131-pound satellite, will provide invaluable information into the origin, physical processes and properties of the hot gas contained in the interstellar medium. This can provide important clues about the formation and evolution of galaxies since the interstellar medium literally contains the seeds of future stars. The Delta II launch is scheduled for Jan. 11 between 4:45 p.m. - 5:30 p.m. PST.
2002-10-24
KENNEDY SPACE CENTER, FLA. - On the launch tower on NASA's Space Launch Complex 2 (SLC-2), Vandenberg Air Force Base, Calif., a solid rocket booster is lifted into an upright position for mating to a Delta II rocket. The rocket will carry the ICESat and CHIPSat satellites into Earth orbits. ICESat is a 661-pound satellite known as Geoscience Laser Altimeter System (GLAS) that will revolutionize our understanding of ice and its role in global climate change and how we protect and understand our home planet. It will help scientists determine if the global sea level is rising or falling. It will look at the ice sheets that blanket the Earth's poles to see if they are growing or shrinking. It will assist in developing an understanding of how changes in the Earth's atmosphere and climate effect polar ice masses and global sea level. CHIPSat, a suitcase-size 131-pound satellite, will provide invaluable information into the origin, physical processes and properties of the hot gas contained in the interstellar medium. This can provide important clues about the formation and evolution of galaxies since the interstellar medium literally contains the seeds of future stars. The Delta II launch is scheduled for Jan. 11 between 4:45 p.m. - 5:30 p.m. PST.
The Origin of the Local 1/4-KeV X-Ray Flux in Both Charge Exhange and a Hot Bubble
NASA Technical Reports Server (NTRS)
Galeazzi, M.; Chiao, M.; Collier, M. R.; Cravens, T.; Koutroumpa, D.; Kuntz, K. D.; Lallement, R.; Lepri, S. T.; McCammon, D.; Morgan, K.;
2014-01-01
The solar neighbourhood is the closest and most easily studied sample of the Galactic interstellar medium, an understanding of which is essential for models of star formation and galaxy evolution. Observations of an unexpectedly intense diffuse flux of easily absorbed 1/4-kiloelectronvolt X-rays coupled with the discovery that interstellar space within about a hundred parsecs of the Sun is almost completely devoid of cool absorbing gas, led to a picture of a 'local cavity' filled with X-ray-emitting hot gas, dubbed the local hot bubble. This model was recently challenged by suggestions that the emission could instead be readily produced within the Solar System by heavy solar-wind ions exchanging electrons with neutral H and He in interplanetary space, potentially removing the major piece of evidence for the local existence of million-degree gas within the Galactic disk. Here we report observations showing that the total solar wind charge-exchange contribution is approximately 40 percent of the 1/4-keV flux in the Galactic plane. The fact that the measured flux is not dominated by charge exchange supports the notion of a million-degree hot bubble extending about a hundred parsecs from the Sun.
The origin of the local 1/4-keV X-ray flux in both charge exchange and a hot bubble.
Galeazzi, M; Chiao, M; Collier, M R; Cravens, T; Koutroumpa, D; Kuntz, K D; Lallement, R; Lepri, S T; McCammon, D; Morgan, K; Porter, F S; Robertson, I P; Snowden, S L; Thomas, N E; Uprety, Y; Ursino, E; Walsh, B M
2014-08-14
The solar neighbourhood is the closest and most easily studied sample of the Galactic interstellar medium, an understanding of which is essential for models of star formation and galaxy evolution. Observations of an unexpectedly intense diffuse flux of easily absorbed 1/4-kiloelectronvolt X-rays, coupled with the discovery that interstellar space within about a hundred parsecs of the Sun is almost completely devoid of cool absorbing gas, led to a picture of a 'local cavity' filled with X-ray-emitting hot gas, dubbed the local hot bubble. This model was recently challenged by suggestions that the emission could instead be readily produced within the Solar System by heavy solar-wind ions exchanging electrons with neutral H and He in interplanetary space, potentially removing the major piece of evidence for the local existence of million-degree gas within the Galactic disk. Here we report observations showing that the total solar-wind charge-exchange contribution is approximately 40 per cent of the 1/4-keV flux in the Galactic plane. The fact that the measured flux is not dominated by charge exchange supports the notion of a million-degree hot bubble extending about a hundred parsecs from the Sun.
Astronomers Unveiling Life's Cosmic Origins
NASA Astrophysics Data System (ADS)
2009-02-01
Processes that laid the foundation for life on Earth -- star and planet formation and the production of complex organic molecules in interstellar space -- are yielding their secrets to astronomers armed with powerful new research tools, and even better tools soon will be available. Astronomers described three important developments at a symposium on the "Cosmic Cradle of Life" at the annual meeting of the American Association for the Advancement of Science in Chicago, IL. Chemistry Cycle The Cosmic Chemistry Cycle CREDIT: Bill Saxton, NRAO/AUI/NSF Full Size Image Files Chemical Cycle Graphic (above image, JPEG, 129K) Graphic With Text Blocks (JPEG, 165K) High-Res TIFF (44.2M) High-Res TIFF With Text Blocks (44.2M) In one development, a team of astrochemists released a major new resource for seeking complex interstellar molecules that are the precursors to life. The chemical data released by Anthony Remijan of the National Radio Astronomy Observatory (NRAO) and his university colleagues is part of the Prebiotic Interstellar Molecule Survey, or PRIMOS, a project studying a star-forming region near the center of our Milky Way Galaxy. PRIMOS is an effort of the National Science Foundation's Center for Chemistry of the Universe, started at the University of Virginia (UVa) in October 2008, and led by UVa Professor Brooks H. Pate. The data, produced by the NSF's Robert C. Byrd Green Bank Telescope (GBT) in West Virginia, came from more than 45 individual observations totalling more than nine GigaBytes of data and over 1.4 million individual frequency channels. Scientists can search the GBT data for specific radio frequencies, called spectral lines -- telltale "fingerprints" -- naturally emitted by molecules in interstellar space. "We've identified more than 720 spectral lines in this collection, and about 240 of those are from unknown molecules," Remijan said. He added, "We're making available to all scientists the best collection of data below 50 GHz ever produced for the study of interstellar chemistry," Remijan said. Astronomers have already identified more than 150 molecules in interstellar space in the past 40 years, including complex organic compounds such as sugars and alcohols. "This is a major change in how we search for molecules in space," Remijan explained. "Before, people decided beforehand which molecules they were looking for, then searched in a very narrow band of radio frequencies emitted by those molecules. In this GBT survey, we've observed a wide range of frequencies, collected the data and immediately made it publicly available. Scientists anywhere can 'mine' this resource to find new molecules," he said. Another key development, presented by Crystal Brogan of the NRAO, showed that highly-detailed images of "protoclusters" of massive young stars reveal a complex mix of stars in different stages of formation, complicated gas motions, and numerous chemical clues to the physical conditions in such stellar nurseries. "We saw a much more complex picture than we had expected and now have new questions to answer," she said. Using the Smithsonian Astrophysical Observatory's Submillimeter Array (SMA) in Hawaii, Brogan and her colleagues studied a nebula 5,500 light-years from Earth in the constellation Scorpius where stars significantly more massive than our Sun are forming. "It's essential to understand what's going on in systems like this because most stars, Sun-like stars included, form in clusters," Brogan said. "The most massive stars in the cluster have a tremendous impact on the formation and environment of the rest of the cluster, including the less-massive stars and their planets," Brogan said, adding that "if we want to understand how solar systems that could support life form and evolve, we need to know how these giant stars affect their environment." Also, Brogan said, the massive young stars are surrounded by "hot cores" that include copious organic material that later may be spewed into interstellar space by stellar winds and other processes. This can help "seed" star-forming regions with some of the chemicals found by the GBT and other telescopes. Narrowing in on the problem of how planets form around young stars, David Wilner of the Harvard-Smithsonian Center for Astrophysics presented observations with the SMA that revealed new details of solar systems in the earliest stages of their formation. Wilner and his colleagues studied nine dusty disks surrounding young stars in a region in the constellation Ophiuchus. "These are the most detailed images of such disks made at these wavelengths," Wilner said. The images show the distribution of material on the same size scale as our own Solar System, and indicate that these disks are capable of producing planetary systems. Two of the disks show large central cavities where young planets may already have swept out the material from their neighborhoods. "Before, we knew that such disks have enough material to form solar systems. These new images tell us that material is in the right places to form solar systems. We're getting a tantalizing peek at the very earliest stages of planet formation," said Sean Andrews, a Hubble Fellow at the CfA. All three areas of study are poised for major advances with the impending arrival of powerful new radio-telescope facilities such as the Atacama Large Millimeter/submillimeter Array (ALMA) and the Expanded Very Large Array (EVLA), and new capabilities for the GBT. Studies of protoplanetary disks and young solar systems will benefit greatly from the groundbreaking new capabilities of ALMA, Wilner said. "While we've been able to study a few of these objects so far, ALMA will be able to give us highly-detailed images of many more that we can't study today," he said. Wilner added that ALMA also will likely provide new information on the chemicals in those still-forming planetary systems. The complex motions and chemistry of Brogan's protoclusters of young, massive stars, also will become much clearer with ALMA. "Both the detail of the images and the ability to find molecular spectral lines will improve by a factor of at least 25 with ALMA," she said. In addition, the increased power of the EVLA will give astronomers a far better look into the inner regions of the disks around young stars -- regions obscured to telescopes operating at shorter wavelengths. "We know that complex chemicals exist in interstellar space before stars and planets form. With the new research tools coming in the next few years, we're on the verge of learning how the chemistry of the interstellar clouds, the young stars and their environments, and the disks from which planets are formed is all linked together to provide the chemical basis for life on those planets," Remijan explained. Astrophysicist Neil deGrasse Tyson of the American Museum of Natural History noted, "Like no other science, astrophysics cross-pollinates the expertise of chemists, biologists, geologists and physicists, all to discover the past, present, and future of the cosmos -- and our humble place within it."
Interstellar molecules and dense clouds.
NASA Technical Reports Server (NTRS)
Rank, D. M.; Townes, C. H.; Welch, W. J.
1971-01-01
Current knowledge of the interstellar medium is discussed on the basis of recent published studies. The subjects considered include optical identification of interstellar molecules, radio molecular lines, interstellar clouds, isotopic abundances, formation and disappearance of interstellar molecules, and interstellar probing techniques. Diagrams are plotted for the distribution of galactic sources exhibiting molecular lines, for hydrogen molecule, hydrogen atom and electron abundances due to ionization, for the densities, velocities and temperature of NH3 in the direction of Sagitarius B2, for the lower rotational energy levels of H2CO, and for temporal spectral variations in masing H2O clouds of the radio source W49. Future applications of the maser and of molecular microscopy in this field are visualized.
NASA Technical Reports Server (NTRS)
Westphal, A. J.; Allen, C.; Bajit, S.; Bastien, R.; Bechtel, H.; Bleuet, P.; Borg, J.; Brenker, F.; Bridges, J.; Brownlee, D. E.;
2010-01-01
In January 2006, the Stardust sample return capsule returned to Earth bearing the first solid samples from a primitive solar system body, Comet 81P/Wild2, and a collector dedicated to the capture and return of contemporary interstellar dust. Both collectors were approximately 0.1m(exp 2) in area and were composed of aerogel tiles (85% of the collecting area) and aluminum foils. The Stardust Interstellar Dust Collector (SIDC) was exposed to the interstellar dust stream for a total exposure factor of 20 m(exp 2) day. The Stardust Interstellar Preliminary Examination (ISPE) is a three-year effort to characterize the collection using nondestructive techniques.
NASA Astrophysics Data System (ADS)
Fedoseev, G.; Ioppolo, S.; Lamberts, T.; Zhen, J. F.; Cuppen, H. M.; Linnartz, H.
2012-08-01
Hydroxylamine (NH2OH) is one of the potential precursors of complex pre-biotic species in space. Here, we present a detailed experimental study of hydroxylamine formation through nitric oxide (NO) surface hydrogenation for astronomically relevant conditions. The aim of this work is to investigate hydroxylamine formation efficiencies in polar (water-rich) and non-polar (carbon monoxide-rich) interstellar ice analogues. A complex reaction network involving both final (N2O, NH2OH) and intermediate (HNO, NH2O., etc.) products is discussed. The main conclusion is that hydroxyl-amine formation takes place via a fast and barrierless mechanism and it is found to be even more abundantly formed in a water-rich environment at lower temperatures. In parallel, we experimentally verify the non-formation of hydroxylamine upon UV photolysis of NO ice at cryogenic temperatures as well as the non-detection of NC- and NCO-bond bearing species after UV processing of NO in carbon monoxide-rich ices. Our results are implemented into an astrochemical reaction model, which shows that NH2OH is abundant in the solid phase under dark molecular cloud conditions. Once NH2OH desorbs from the ice grains, it becomes available to form more complex species (e.g., glycine and β-alanine) in gas phase reaction schemes.
Studies of Interstellar Pickup Ions in the Solar Wind
NASA Technical Reports Server (NTRS)
Isenberg, Philip A.; Lee, Martin A.; Mobius, Eberhard
1996-01-01
The work under this grant involves studies of the interaction of interstellar pickup ions with the solar wind, with the goal of a comprehensive model of the particle distributions and wave intensities to be expected throughout the heliosphere, as well as the interactions of those distributions with the solar wind termination shock. In the past year, we have completed a number of projects, including observations and modeling of the effects of a large scattering mean free path on the pickup He(+) seen at AMPTE, an analytical model of anisotropic pickup tons in a steady radial magnetic field, and a derivation of a reduced solar wind Mach number due to increased estimates on the inflowing hydrogen density allowing for a weak termination shock. In the next year, we plan to investigate in more detail the correspondence between our models of anisotropic pickup ions and the data on spectra, variations, and proton-He(+) correlation provided by AMPTE, Ulysses, and our instrument on SOHO. We will model the time-dependent pickup ion density resulting from finite periods of radial magnetic field. We will also incorporate the effects of a large mean free path into our analysis of the He(+) focusing cone, leading to more accurate parameter values for the interstellar helium gas. This progress report also includes a discussion of our Space Physics Educational Outreach activities in the past year and plans for the next year.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Jones, M. L.; McLaughlin, M. A.; Lam, M. T.
We analyze dispersion measure (DM) variations of 37 millisecond pulsars in the nine-year North American Nanohertz Observatory for Gravitational Waves (NANOGrav) data release and constrain the sources of these variations. DM variations can result from a changing distance between Earth and the pulsar, inhomogeneities in the interstellar medium, and solar effects. Variations are significant for nearly all pulsars, with characteristic timescales comparable to or even shorter than the average spacing between observations. Five pulsars have periodic annual variations, 14 pulsars have monotonically increasing or decreasing trends, and 14 pulsars show both effects. Of the four pulsars with linear trends thatmore » have line-of-sight velocity measurements, three are consistent with a changing distance and require an overdensity of free electrons local to the pulsar. Several pulsars show correlations between DM excesses and lines of sight that pass close to the Sun. Mapping of the DM variations as a function of the pulsar trajectory can identify localized interstellar medium features and, in one case, an upper limit to the size of the dispersing region of 4 au. Four pulsars show roughly Kolmogorov structure functions (SFs), and another four show SFs less steep than Kolmogorov. One pulsar has too large an uncertainty to allow comparisons. We discuss explanations for apparent departures from a Kolmogorov-like spectrum, and we show that the presence of other trends and localized features or gradients in the interstellar medium is the most likely cause.« less
Seven Years of Imaging the Global Heliosphere with IBEX
DOE Office of Scientific and Technical Information (OSTI.GOV)
McComas, D. J.; Zirnstein, E. J.; Bzowski, M.
2017-04-01
The Interstellar Boundary Explorer ( IBEX ) has now operated in space for 7 years and returned nearly continuous observations that have led to scientific discoveries and reshaped our entire understanding of the outer heliosphere and its interaction with the local interstellar medium. Here we extend prior work, adding the 2014–2015 data for the first time, and examine, validate, initially analyze, and provide a complete 7-year set of Energetic Neutral Atom (ENA) observations from ∼0.1 to 6 keV. The data, maps, and documentation provided here represent the 10th major release of IBEX data and include improvements to various prior correctionsmore » to provide the citable reference for the current version of IBEX data. We are now able to study time variations in the outer heliosphere and interstellar interaction over more than half a solar cycle. We find that the Ribbon has evolved differently than the globally distributed flux (GDF), with a leveling off and partial recovery of ENAs from the GDF, owing to solar wind output flattening and recovery. The Ribbon has now also lost its latitudinal ordering, which reflects the breakdown of solar minimum solar wind conditions and exhibits a greater time delay than for the surrounding GDF. Together, the IBEX observations strongly support a secondary ENA source for the Ribbon, and we suggest that this be adopted as the nominal explanation of the Ribbon going forward.« less
NASA Astrophysics Data System (ADS)
Jenkins, Edward B.; Reale, Michael A.; Zucchino, Paul M.; Sofia, Ulysses J.
1996-09-01
The Interstellar Medium Absorption Profile Spectrograph (IMAPS) is an objectivegrating, echelle spectrograph built to observe the spectra of bright, hot stars over the spectral region 950 1150Å, below the wavelength coverage of HST. This instrument has a high wavelength resolving power, making it especially well suited for studies of interstellar absorption lines. Following a series of sounding rocket flights in the 1980's, IMAPS flew on its first Shuttle-launched orbital mission in September 1993, as a partner in the ORFEUS-SPAS program sponsored by the US and German Space Agencies, NASA and DARA. On ORFEUS-SPAS, IMAPS spent one day of orbital time observing the spectra of 10 O- and early B-type stars. In addition to outlining how IMAPS works, we document some special problems that had an influence on the data, and we explain the specific steps in data reduction that were employed to overcome them. This discussion serves as a basic source of information for people who may use archival data from this flight, as well as those who are interested in some specific properties of the data that will be presented in forthcoming research papers. IMAPS is scheduled to fly once again on ORFEUS-SPAS in late 1996. On this flight, 50% of the observing time available for IMAPS and two other spectrographs on the mission will be available to guest observers.
NASA Astrophysics Data System (ADS)
Nuevo, Michel; Bredehöft, Jan Hendrik; Meierhenrich, Uwe J.; d'Hendecourt, Louis; Thiemann, Wolfram H.-P.
2010-03-01
More than 50 stable organic molecules have been detected in the interstellar medium (ISM), from ground-based and onboard-satellite astronomical observations, in the gas and solid phases. Some of these organics may be prebiotic compounds that were delivered to early Earth by comets and meteorites and may have triggered the first chemical reactions involved in the origin of life. Ultraviolet irradiation of ices simulating photoprocesses of cold solid matter in astrophysical environments have shown that photochemistry can lead to the formation of amino acids and related compounds. In this work, we experimentally searched for other organic molecules of prebiotic interest, namely, oxidized acid labile compounds. In a setup that simulates conditions relevant to the ISM and Solar System icy bodies such as comets, a condensed CH3OH:NH3â = 1:1 ice mixture was UV irradiated at ˜80 K. The molecular constituents of the nonvolatile organic residue that remained at room temperature were separated by capillary gas chromatography and identified by mass spectrometry. Urea, glycolic acid, and glycerol were detected in this residue, as well as hydroxyacetamide, glycerolic acid, and glycerol amide. These organics are interesting target molecules to be searched for in space. Finally, tentative mechanisms of formation for these compounds under interstellar/pre-cometary conditions are proposed.
NASA Astrophysics Data System (ADS)
Cartin, Daniel
2015-10-01
At this point in time, there is very little empirical evidence on the likelihood of a space-faring species originating in the biosphere of a habitable world. However, there is a tension between the expectation that such a probability is relatively high (given our own origins on Earth), and the lack of any basis for believing the Solar System has ever been visited by an extraterrestrial colonization effort. From the latter observational fact, this paper seeks to place upper limits on the probability of an interstellar civilization arising on a habitable planet in its stellar system, using a percolation model to simulate the progress of such a hypothetical civilization's colonization efforts in the local Solar neighbourhood. To be as realistic as possible, the actual physical positions and characteristics of all stars within 40 parsecs of the Solar System are used as possible colony sites in the percolation process. If an interstellar civilization is very likely to have such colonization programmes, and they can travel over large distances, then the upper bound on the likelihood of such a species arising per habitable world is of the order of 10-3 on the other hand, if civilizations are not prone to colonize their neighbours, or do not travel very far, then the upper limiting probability is much larger, even of order one.
Spectral Study of A 1Π–X 1Σ+ Transitions of CO Relevant to Interstellar Clouds
NASA Astrophysics Data System (ADS)
Cheng, Junxia; Zhang, Hong; Cheng, Xinlu
2018-05-01
Highly correlated ab initio calculations were performed for an accurate determination of the A 1Π–X 1Σ+ system of the CO molecule. A highly accurate multi-reference configuration interaction approach was used to investigate the potential energy curves (PECs) and the transition dipole moment curve (TDMC). The resultant PECs and TDMC found by using the aug-cc-pV5Z (aV5Z) basis set and 5330 active spaces are in good agreement with the experimental data. Moreover, the Einstein A coefficients, lifetimes, ro-vibrational intensities, absorption oscillator strengths, and integrated cross sections are calculated so that the vibrational bands include v″ = 0–39 \\to v‧ = 0–23. For applications in the atmosphere and interstellar clouds, we studied the transition lineshapes to Gaussian and Lorentzian profiles at different temperatures and pressures. The intensities were calculated at high temperature that was used to satisfy some astrophysical applications, such as in planetary atmospheres. The results are potentially useful for important SAO/NASA Astrophysics Data System and databases such as HITRAN, HITEMP, and the National Institute of Standards and Technology. Because the results from many laboratory techniques and our calculations now agree, analyses of interstellar CO based on absorption from A 1Π–X 1Σ+ are no longer hindered by present spectral parameters.
The interstellar N2 abundance towards HD 124314 from far-ultraviolet observations.
Knauth, David C; Andersson, B-G; McCandliss, Stephan R; Moos, H Warren
2004-06-10
The abundance of interstellar molecular nitrogen (N2) is of considerable importance: models of steady-state gas-phase interstellar chemistry, together with millimetre-wavelength observations of interstellar N2H+ in dense molecular clouds predict that N2 should be the most abundant nitrogen-bearing molecule in the interstellar medium. Previous attempts to detect N2 absorption in the far-ultraviolet or infrared (ice features) have hitherto been unsuccessful. Here we report the detection of interstellar N2 at far-ultraviolet wavelengths towards the moderately reddened star HD 124314 in the constellation of Centaurus. The N2 column density is larger than expected from models of diffuse clouds and significantly smaller than expected for dense molecular clouds. Moreover, the N2 abundance does not explain the observed variations in the abundance of atomic nitrogen (N I) towards high-column-density sightlines, implying that the models of nitrogen chemistry in the interstellar medium are incomplete.
Copernicus observations of interstellar matter in the direction of HR 1099
NASA Technical Reports Server (NTRS)
Anderson, R. C.; Weiler, E. J.
1978-01-01
Results are reported for high-resolution Copernicus U1 and V2 scans of the bright RS CVn spectroscopic binary HR 1099. The observations reveal strong UV emission lines at L-alpha and Mg II h and k from the stars as well as interstellar H I and D I L-alpha absorption lines and interstellar Mg II h and k absorption in the direction of the binary system. Column densities, bulk velocities, and temperatures are derived for the interstellar features. A comparison of the derived number density of interstellar H I with data for the nearby star Epsilon Eri indicates an inhomogeneous distribution of interstellar hydrogen along the line of sight. The range of values obtained for the D/H ratio is shown to be consistent with results of other studies. A depletion factor of at least 5 with respect to the solar abundance is estimated for the interstellar magnesium.
Excess depletion of Al, Ca, Ti from interstellar gas
NASA Technical Reports Server (NTRS)
Clayton, D. D.
1986-01-01
Thermal condensation, cold sticking, and sputtering by interstellar shock are combined with a chemical memory of the condensation sequence to account for depletion of aluminum, calcium, and titanium in interstellar gas. The extra depletion of aluminum and calcium becomes an indicator of the structural history of the refractory parts of interstellar grains.
NASA Technical Reports Server (NTRS)
Johnson, Les; Matloff, Gregory L.
2005-01-01
If we were designing a human-carrying starship that could be launched in the not-too-distant future, it would almost certainly not use a warp drive to instantaneously bounce around the universe, as is done in Isaac Asimov's classic Foundation series or in episodes of Star Trek or Star Wars. Sadly, those starships that seem to be within technological reach could not even travel at high relativistic speeds, as does the interstellar ramjet in Poul Anderson's Tau Zero. Warp-speeds seem to be well outside the realm of currently understood physical law; proton-fusing ramjets may never be technologically feasible. Perhaps fortunately in our terrorist-plagued world, the economics of antimatter may never be attractive for large-scale starship propulsion. But interstellar travel will be possible within a few centuries, although it will certainly not be as fast as we might prefer. If humans learn how to hibernate, perhaps we will sleep our way to the stars, as do the crew in A. E. van Vogt's Far Centaurus. However, as discussed in a landmark paper in The Journal of the British Interplanetary Society, the most feasible approach to transporting a small human population to the planets (if any) of Alpha Centauri is the worldship. Such craft have often been featured in science fiction. See for example Arthur C. Clarke's Rendezvous with Rama, and Robert A. Heinlein's Orphans of the Sky. Worldships are essentially mobile versions of the O Neill free-space habitats. Constructed mostly from lunar and/or asteroidal materials, these solar-powered, multi-kilometer-dimension structures could house 10,000 to 100,000 humans in Earth-approximating environments. Artificial gravity would be provided by habitat rotation, and cosmic ray shielding would be provided by passive methods, such as habitat atmosphere and mass shielding, or magnetic fields. A late 21st century space-habitat venture might support itself economically by constructing large solar-powered satellites to beam energy back to Earth.
10 years of Cassini/VIMS observations at Titan
NASA Astrophysics Data System (ADS)
Sotin, C.; Brown, R. H.; Baines, K. H.; Barnes, J.; Buratti, B. J.; Clark, R. N.; Jaumann, R.; LeMouelic, S.; Nicholson, P. D.; Rodriguez, S.; Soderblom, J.; Soderblom, L.; Stephan, K.
2014-04-01
The interplanetary space probe Cassini/Huygens reached Saturn in July 2004 after seven years of cruise phase. Today, the German-lead Cosmic Dust Analyser (CDA) is operated continuously for 10 years in orbit around Saturn. During the cruise phase CDA measured the interstellar dust flux at one AU distance from the Sun, the charge and composition of interplanetary dust grains and the composition of the Jovian nanodust streams. The first discovery of CDA related to Saturn was the measurement of nanometer sized dust particles ejected by its magnetosphere to interplanetary space with speeds higher than 100 km/s. Their origin and composition was analysed and an their dynamical studies showed a strong link to the conditions of the solar wind plasma flow. A recent surprising result was, that stream particles stem from the interior of Enceladus. Since 2004 CDA measured millions of dust impacts characterizing the dust environment of Saturn. The instrument showed strong evidence for ice geysers located at the south pole of Saturn's moon Enceladus in 2005. Later, a detailed compositional analysis of the salt-rich water ice grains in Saturn's E ring system lead to the discovery of liquid water below the icy crust connected to an ocean at depth feeding the icy jets. CDA was even capable to derive a spatially resolved compositional profile of the plume during close Enceladus flybys. A determination of the dust-magnetosphere interaction and the discovery of the extended E ring allowed the definition of a dynamical dust model of Saturn's E ring describing the observed properties. The measured dust density profiles in the dense E ring revealed geometric asymmetries. Cassini performed shadow crossings in the ring plane and dust grain charges were measured in shadow regions delivering important data for dust-plasma interaction studies. In the last years, dedicated measurement campaigns were executed by CDA to monitor the flux of interplanetary and interstellar dust particles reaching Saturn. Currently, the composition of interstellar grains and the meteoroid flux into the Saturnian system are in analysis.
V838 Monocerotis revisited: Space phenomenon imitates art
NASA Astrophysics Data System (ADS)
2004-03-01
V838 Monocerotis revisited: Space phenomenon imitates art hi-res Size hi-res: 558 Kb Credits: NASA, the Hubble Heritage Team (AURA/STScI) and ESA V838 Monocerotis revisited: Space phenomenon imitates art "Starry Night", Vincent van Gogh's famous painting, is renowned for its bold whorls of light sweeping across a raging night sky. Although this image of the heavens came only from the artist's restless imagination, a new picture from the NASA/ESA Hubble Space Telescope bears remarkable similarities to the van Gogh work, complete with never-before-seen spirals of dust swirling across trillions of kilometres of interstellar space. This image, obtained with the Advanced Camera for Surveys on February 8, 2004, is Hubble's latest view of an expanding halo of light around a distant star, named V838 Monocerotis (V838 Mon). The illumination of interstellar dust comes from the red supergiant star at the middle of the image, which gave off a flashbulb-like pulse of light two years ago. V838 Mon is located about 20,000 light-years away from Earth in the direction of the constellation Monoceros, placing the star at the outer edge of our Milky Way galaxy V838 Monocerotis revisited: Space phenomenon imitates art hi-res Size hi-res: 1989 kb Credits: NASA, the Hubble Heritage Team (AURA/STScI) and ESA V838 Monocerotis revisited: Space phenomenon imitates art "Starry Night", Vincent van Gogh's famous painting, is renowned for its bold whorls of light sweeping across a raging night sky. Although this image of the heavens came only from the artist's restless imagination, a new picture from the NASA/ESA Hubble Space Telescope bears remarkable similarities to the van Gogh work, complete with never-before-seen spirals of dust swirling across trillions of kilometres of interstellar space. This image, obtained with the Advanced Camera for Surveys on February 8, 2004, is Hubble's latest view of an expanding halo of light around a distant star, named V838 Monocerotis (V838 Mon). The illumination of interstellar dust comes from the red supergiant star at the middle of the image, which gave off a flashbulb-like pulse of light two years ago. V838 Mon is located about 20,000 light-years away from Earth in the direction of the constellation Monoceros, placing the star at the outer edge of our Milky Way galaxy This image, obtained with the Advanced Camera for Surveys on 8 February 2004, is Hubble's latest view of an expanding halo of light around a distant star, named V838 Monocerotis (V838 Mon). The illumination of interstellar dust comes from the red supergiant star at the middle of the image, which gave off a flashbulb-like pulse of light two years ago. V838 Mon is located about 20 000 light-years away from Earth in the direction of the constellation Monoceros, placing the star at the outer edge of our Milky Way galaxy. Called a 'light echo', the expanding illumination of a dusty cloud around the star has been revealing remarkable structures ever since the star suddenly brightened for several weeks in early 2002. Though Hubble has followed the light echo in several snapshots, this new image shows swirls or eddies in the dusty cloud for the first time. These eddies are probably caused by turbulence in the dust and gas around the star as they slowly expand away. The dust and gas were likely ejected from the star in a previous explosion, similar to the 2002 event, which occurred some tens of thousands of years ago. The surrounding dust remained invisible and unsuspected until suddenly illuminated by the brilliant explosion of the central star two years ago. The Hubble Space Telescope has imaged V838 Mon and its light echo several times since the star's outburst in January 2002, in order to follow the constantly changing appearance of the dust as the pulse of illumination continues to expand away from the star at the speed of light. During the outburst event, the normally faint star suddenly brightened, becoming 600 000 times more luminous than our Sun. It was thus one of the most luminous stars in the entire Milky Way, until it faded away again in April 2002. The star has some similarities to a class of objects called 'novae', which suddenly increase in brightness due to thermonuclear explosions at their surfaces; however, the detailed behaviour of V838 Mon, in particular its extremely red colour, has been completely different from any previously known nova. Nature's own piece of performance art, this structure will continue to change its appearance in coming years as the light from the stellar outburst continues to propagate outward and bounce off more distant black clouds of dust. Astronomers expect the echoes to remain visible for at least the rest of the current decade. The colour image is composed of three different exposures through a blue filter (5250 seconds), a green filter (1050 seconds) and a near-infrared filter (300 seconds). Notes for editors: Animations of the discovery and general Hubble Space Telescope background footage are available from: http://www.spacetelescope.org/bin/videos.pl?&string=heic0405 Image credit: NASA, the Hubble Heritage Team (AURA/STScI) and ESA The Hubble Space Telescope is a project of international cooperation between ESA and NASA.
Polycyclic Aromatic Hydrocarbons and Infrared Astrophysics with Spitzer
NASA Technical Reports Server (NTRS)
Allamandola, L. J.; Hudgins, D. M.
2004-01-01
PAH spectral features are now being used as new probes of the ISM. PAH ionization states reflect the ionization balance of the medium while PAH size and structure reflect the energetic and chemical history of the medium. This paper will focus on recent applications of the NASA Ames PAH IR spectral Database to interpret astronomical observations made by the Spitzer Space telescope and other space based infrared instruments. Examples will be given showing how changes in the spectral characteristics of different objects reveal interstellar PAH characteristics such as structure, size and composition, as well as provide insight into the chemical history and physical nature of the emission zones.
The windows of SETI - Frequency and time in the search for extraterrestrial intelligence
NASA Technical Reports Server (NTRS)
Oliver, Bernard M.
1987-01-01
Since interstellar travel is not economically possible on the time scale of a human lifetime, communication with extraterrestrials can be achieved only by sending some form of energy or matter across space; photons (electromagnetic waves) are best. Of particular interest to SETI is the region from about 1,000-60,000 MHz known as the free-space microwave window. During the course of NASA's Cyclops program, it was pointed out that the hydrogen and hydroxyl lines bounded a band in which there were no other known lines. The threatened loss of the microwave window to earth-based services is discussed.
NASA Technical Reports Server (NTRS)
Henize, K. G.
1985-01-01
The Spacelab 2 mission, which is scheduled for Space Shuttle Challenger launch in July of 1985, will carry four telescopes for solar study, a dual X-ray telescope for observation of galaxy clusters, and a helium-cooled IR telescope for studies of interstellar clouds and other extended sources. The largest cosmic ray detector carried to space thus far will also be part of the payload. Life science experiment packages will examine the vitamin D chemistry of human blood under zero-G conditions, and the manner in which pine tree seedlings sense gravity and respond to it. Spacelab 2 will carry a crew of seven, including three mission specialists and two payload specialists.
Experimental interstellar organic chemistry - Preliminary findings
NASA Technical Reports Server (NTRS)
Khare, B. N.; Sagan, C.
1973-01-01
Review of the results of some explicit experimental simulation of interstellar organic chemistry consisting in low-temperature high-vacuum UV irradiation of condensed simple gases known or suspected to be present in the interstellar medium. The results include the finding that acetonitrile may be present in the interstellar medium. The implication of this and other findings are discussed.
Comets, carbonaceous chondrites, and interstellar clouds: Condensation of carbon
NASA Technical Reports Server (NTRS)
Field, G. B.
1979-01-01
Comets, carbonaceous chondrites, and interstellar clouds are discussed in relation to information on interstellar dust. The formation and presence of carbon in stars, comets, and meteorites is investigated. The existence of graphite in the interstellar medium, though it is predicted from thermodynamic calculations, is questioned and the form of carbon contained in comets is considered.
Four Interstellar Dust Candidates from the Stardust Interstellar Dust Collector
NASA Technical Reports Server (NTRS)
Westphal, A. J.; Allen, C.; Bajt, S.; Bechtel, H. A.; Borg, J.; Brenker, F.; Bridges, J.; Brownlee, D. E.; Burchell, M.; Burghammer, M.;
2011-01-01
In January 2006, the Stardust sample return capsule returned to Earth bearing the first solid samples from a primitive solar system body, Comet 81P/Wild2, and a collector dedicated to the capture and return of contemporary interstellar dust. Both collectors were approx. 0.1 sq m in area and were composed of aerogel tiles (85% of the collecting area) and aluminum foils. The Stardust Interstellar Dust Collector (SIDC) was exposed to the interstellar dust stream for a total exposure factor of 20 sq m/day. The Stardust Interstellar Preliminary Examination (ISPE) is a consortium-based project to characterize the collection using nondestructive techniques. The goals and restrictions of the ISPE are described . A summary of analytical techniques is described.
Direct Observations of Interstellar H, He, and O by the Interstellar Boundary Explorer (Invited)
NASA Astrophysics Data System (ADS)
Moebius, E.; Bochsler, P. A.; Bzowski, M.; Crew, G. B.; Funsten, H. O.; Fuselier, S. A.; Ghielmetti, A.; Heirtzler, D.; Izmodenov, V.; Kubiak, M.; Kucharek, H.; Lee, M. A.; Leonard, T.; McComas, D. J.; Petersen, L.; Saul, L. A.; Scheer, J.; Schwadron, N. A.; Witte, M.; Wurz, P.
2009-12-01
Due to the motion of the Sun relative to its neighborhood, the neutral gas of the local in-terstellar medium (LISM) flows through the inner heliosphere where it is subject to ioni-zation, the Sun’s gravity, and radiation pressure. Observing the resulting spatial distribu-tion and flow pattern of several interstellar gas species with UV backscatter, pickup ion, and neutral atom imaging techniques allows us to unravel the physical conditions of the LISM and its interaction with the heliosphere. Imaging of the neutral gas flow directly with energetic neutral atom (ENA) cameras yields the most accurate account of the ki-netic parameters of the interstellar gas, but so far this has been carried out only for He using Ulysses GAS. IBEX, which was launched in October 2008, provides the capability for simultaneous flow observations of several interstellar species with its triple-time-of-flight IBEX-Lo sensor. Because H and O are strongly affected by the heliospheric inter-face while He is not, a direct comparison between these species enables an independent assessment of the slowdown and heating processes in the outer heliosheath. Likewise, IBEX observations will constrain models of the heliospheric interaction and provide a test of the heliospheric asymmetry - recently inferred from Voyager and SOHO SWAN observations - that is seen as an indicator for the interstellar magnetic field direction. During the first half year of its mission IBEX has observed the interstellar He, O, and H flow. We will present an overview and preliminary analysis of these first interstellar mul-tispecies scans of the interstellar gas flow in spring and fall 2009.
The Curators of the University of Missouri Modeling the Infrared Emission of C_60 in Space
NASA Astrophysics Data System (ADS)
Li, Aigen
Fullerenes are cage-like molecules of pure carbon, such as C_60, C_70, C_76, and C_84. C_60, also known as buckminsterfullerene, is the most stable fullerene and has a soccer- ball like structure. The presence of fullerenes in space has been suggested and observationally explored since their first synthesis in the laboratory in 1985 by Harry Kroto and his colleagues which earned them the 1996 Nobel prize in chemistry. C_60 (as well as C_70) has recently been detected in reflection nebulae, post-AGB stars, protoplanetary nebulae, planetary nebulae, Herbig Ae/Be stars, and young stellar objects through their characteristic infrared emission bands. The formation of C_60 in interstellar and circumstellar environments is not firmly established. Experimental studies have shown that C_60 can be made by gas-phase condensation (e.g. through vaporization of graphite) in a hydrogen-poor environment. In view of the simultaneous detection of C_60 and PAHs in hydrogen-rich interstellar and circumstellar regions, it has also been suggested that C_60 could be generated by the decomposition of hydrogenated amorphous carbon, or the destruction of PAHs, both induced by shocks and/or UV photoprocessing. The phase (gas or solid) and excitation mechanism of C_60 in interstellar and circumstellar conditions are also hotly debated in the literature. One model suggests that C_60 is attached to dust and emits in solid-phase at the equilibrium temperature of the dust. Another model suggests that C_60 is stochastically excited by UV photons and emits in the gas-phase. We prefer the latter model as in interstellar and circumstellar conditions the energy content of a C_60 molecule is often smaller than the energy of a single starlight photon and C_60 is expected to undergo stochastical heating. We propose a two-year project to model the vibrational excitation of C_60 and calculate its infrared emission spectra in a wide variety of regions (e.g. reflection nebulae excited by stars of a range of effective temperatures, protoplanetary nebulae, planetary nebulae, the diffuse interstellar medium, and protoplanetary disks around Herbig Ae/Be stars), using the ``exact-statistical'' method developed by Draine & Li (2001) for modeling the photoexcitation of PAHs. We will calculate the intensity of each vibrational band of C_60 excited by a given-type radiation field of a given radiation strength. These results will be tabulated and made available to the community through the PI's website. We will use the calculated C_60 band intensities to analyze the observed C_60 spectra. This will allow us to derive the C_60 abundance and the emitting condition (e.g. starlight intensities) of the regions where C_60 is observed. Similarly, the same research will be applied to C_70 as well. This research supports the NASA Strategic Subgoal 3C: Discover the origin, structure, evolution, and destiny of the universe.
Aliphatic Hydrocarbon Content of Interstellar Dust
NASA Astrophysics Data System (ADS)
Günay, B.; Schmidt, T. W.; Burton, M. G.; Afşar, M.; Krechkivska, O.; Nauta, K.; Kable, S. H.; Rawal, A.
2018-06-01
There is considerable uncertainty as to the amount of carbon incorporated in interstellar dust. The aliphatic component of the carbonaceous dust is of particular interest because it produces a significant 3.4 μm absorption feature when viewed against a background radiation source. The optical depth of the 3.4 μm absorption feature is related to the number of aliphatic carbon C-H bonds along the line of sight. It is possible to estimate the column density of carbon locked up in the aliphatic hydrocarbon component of interstellar dust from quantitative analysis of the 3.4 μm interstellar absorption feature providing that the absorption coefficient of aliphatic hydrocarbons incorporated in the interstellar dust is known. We report laboratory analogues of interstellar dust by experimentally mimicking interstellar/circumstellar conditions. The resultant spectra of these dust analogues closely match those from astronomical observations. Measurements of the absorption coefficient of aliphatic hydrocarbons incorporated in the analogues were carried out by a procedure combining FTIR and 13C NMR spectroscopies. The absorption coefficients obtained for both interstellar analogues were found to be in close agreement (4.76(8) × 10-18 cm group-1 and 4.69(14) × 10-18 cm group-1), less than half those obtained in studies using small aliphatic molecules. The results thus obtained permit direct calibration of the astronomical observations, providing rigorous estimates of the amount of aliphatic carbon in the interstellar medium.
Kramers-Kronig relations for interstellar polarization
DOE Office of Scientific and Technical Information (OSTI.GOV)
Martin, P.G.
1975-12-01
The difficulties encountered in using the Kramers-Kronig relations to predict the behavior of interstellar polarization are pointed out, while at the same time their value in an interpretive role is acknowledged. Observations of interstellar circular polarization lead to restrictions on the interstellar grain composition, and additional constraints should be possible through measurement of linear polarization in the infrared and the ultraviolet. (AIP)
NASA Technical Reports Server (NTRS)
Biennier, L.; Salama, F.; Allamandola, L. J.; Scherer, J. J.; OKeefe, A.
2002-01-01
Polycyclic Aromatic Hydrocarbon molecules (PAHs) are ubiquitous in the interstellar medium (ISM) and constitute the building blocks of interstellar dust grains. Despite their inferred important role in mediating the energetic and chemical processes in thc ISM, their exact contribution to the interstellar extinction, and in particular to the diffuse interstellar bands (DIBs) remains unclear. The DIBs are spectral absorption features observed in the line of sight of stars that are obscured by diffuse interstellar clouds. More than 200 bands have been reported to date spanning from the near UV to the near IR with bandwidths ranging from 0.4 to 40 Angstroms (Tielens & Snow 1995). The present consensus is that the DIBs arise from free flying, gas-phase, organic molecules and/or ions that are abundant under the typical conditions reigning in the diffuse ISM. PAHs have been proposed as possible carriers (Allamandola et al. 1985; Leger & DHendecourt 1985). The PAH hypothesis is consistent with the cosmic abundance of Carbon and Hydrogen and with the required photostability of the DIB carriers against the strong VUV radiation field in the diffuse interstellar clouds. A significant fraction of PAHs is expected to be ionized in the diffuse ISM.
The ESO Diffuse Interstellar Band Large Exploration Survey (EDIBLES)
NASA Astrophysics Data System (ADS)
Cami, J.; Cox, N. L.; Farhang, A.; Smoker, J.; Elyajouri, M.; Lallement, R.; Bacalla, X.; Bhatt, N. H.; Bron, E.; Cordiner, M. A.; de Koter, A..; Ehrenfreund, P.; Evans, C.; Foing, B. H.; Javadi, A.; Joblin, C.; Kaper, L.; Khosroshahi, H. G.; Laverick, M.; Le Petit, F..; Linnartz, H.; Marshall, C. C.; Monreal-Ibero, A.; Mulas, G.; Roueff, E.; Royer, P.; Salama, F.; Sarre, P. J.; Smith, K. T.; Spaans, M.; van Loon, J. T..; Wade, G.
2018-03-01
The ESO Diffuse Interstellar Band Large Exploration Survey (EDIBLES) is a Large Programme that is collecting high-signal-to-noise (S/N) spectra with UVES of a large sample of O and B-type stars covering a large spectral range. The goal of the programme is to extract a unique sample of high-quality interstellar spectra from these data, representing different physical and chemical environments, and to characterise these environments in great detail. An important component of interstellar spectra is the diffuse interstellar bands (DIBs), a set of hundreds of unidentified interstellar absorption lines. With the detailed line-of-sight information and the high-quality spectra, EDIBLES will derive strong constraints on the potential DIB carrier molecules. EDIBLES will thus guide the laboratory experiments necessary to identify these interstellar “mystery molecules”, and turn DIBs into powerful diagnostics of their environments in our Milky Way Galaxy and beyond. We present some preliminary results showing the unique capabilities of the EDIBLES programme.
NASA Technical Reports Server (NTRS)
Wiedenbeck, M. E.
1977-01-01
An instrument, the Caltech High Energy Isotope Spectrometer Telescope was developed to measure isotopic abundances of cosmic ray nuclei by employing an energy loss - residual energy technique. A detailed analysis was made of the mass resolution capabilities of this instrument. A formalism, based on the leaky box model of cosmic ray propagation, was developed for obtaining isotopic abundance ratios at the cosmic ray sources from abundances measured in local interstellar space for elements having three or more stable isotopes, one of which is believed to be absent at the cosmic ray sources. It was shown that the dominant sources of uncertainty in the derived source ratios are uncorrelated errors in the fragmentation cross sections and statistical uncertainties in measuring local interstellar abundances. These results were applied to estimate the extent to which uncertainties must be reduced in order to distinguish between cosmic ray production in a solar-like environment and in various environments with greater neutron enrichments.
Measurement of cosmic ray positron and negatron spectra between 50 and 800 MeV. Ph.D. Thesis
NASA Technical Reports Server (NTRS)
Daugherty, J. K.
1974-01-01
A balloon-borne magnetic spectrometer was used to measure the spectra of cosmic ray positrons and negatrons at energies between 50 and 800 MeV. Comparisons of the separate positron and negatron spectra observed near the earth with their expected intensities in interstellar space can be used to investigate the complex (and variable) interaction of galactic cosmic rays with the expanding solar wind. The present measurements, which have established finite values or upper limits for the positron and negatron spectral between 50 and 800 MeV, have confirmed earlier evidence for the existence of a dominant component of negatrons from primary sources in the galaxy. The present results are shown to be consistent with the hypothesis that the positron component is in fact mainly attributable to collisions between cosmic ray nuclei and the interstellar gas. The estimate of the absolute intensities confirm the indications from neutron monitors that in 1972 the interplanetary cosmic ray intensities were already recovering toward their high levels observed in 1965.
High-Resolution Imaging of the Multiphase Interstellar Thick Disk in Two Edge-On Spiral Galaxies
NASA Astrophysics Data System (ADS)
Howk, J. Christopher; Rueff, K.
2009-01-01
We present broadband and narrow-band images, acquired from Hubble Space Telescope WFPC2 and WIYN 3.5 m telescope respectively, of two edge-on spiral galaxies, NGC 4302 and NGC 4013. These high-resolution images (BVI + H-alpha) provide a detailed view of the thick disk interstellar medium (ISM) in these galaxies. Both galaxies show prominent extraplanar dust-bearing clouds viewed in absorption against the background stellar light. Individual clouds are found to z 2 kpc in each galaxy. These clouds each contain >10^4 to >10^5 solar masses of gas. Both galaxies have extraplanar diffuse ionized gas (DIG), as seen in our H-alpha images and earlier work. In addition to the DIG, discrete H II regions are found at heights up to 1 kpc from both galaxies. We compare the morphologies of the dusty clouds with the DIG in these galaxies and discuss the relationship between these components of the thick disk ISM.
The interplanetary exchange of photosynthesis.
Cockell, Charles S
2008-02-01
Panspermia, the transfer of organisms from one planet to another, either through interplanetary or interstellar space, remains speculation. However, its potential can be experimentally tested. Conceptually, it is island biogeography on an interplanetary or interstellar scale. Of special interest is the possibility of the transfer of oxygenic photosynthesis between one planet and another, as it can initiate large scale biospheric productivity. Photosynthetic organisms, which must live near the surface of rocks, can be shown experimentally to be subject to destruction during atmospheric transit. Many of them grow as vegetative cells, which are shown experimentally to be susceptible to destruction by shock during impact ejection, although the effectiveness of this dispersal filter can be shown to be mitigated by the characteristics of the cells and their local environment. Collectively these, and other, experiments reveal the particular barriers to the cross-inoculation of photosynthesis. If oxygen biosignatures are eventually found in the atmospheres of extrasolar planets, understanding the potential for the interplanetary exchange of photosynthesis will aid in their interpretation.
A Voyage through the Heliosphere (Invited)
NASA Astrophysics Data System (ADS)
Burlaga, L. F.
2009-12-01
Parker adopted the word “Heliosphere” to denote “the region of interstellar space swept out by the solar wind” His book “Interplanetary Dynamical Processes” (1963) provided “a comprehensive self-consistent dynamical picture of interplanetary activity” on spatial scales from the Larmor radius to the outermost limits of the heliosphere and over a broad range of temporal scales. The spacecraft Voyagers 1 and 2 have taken us on a journey through much of the heliosphere: from Earth, past the termination shock near 90 AU, and into the inner heliosheath. This talk will use magnetic field observations from V1 and V2 to illustrate how Parker’s dynamical picture has been largely confirmed by observations out to ~100 AU. It will also discuss some “complicating aspects of the dynamics…which will turn up in future observations…” that Parker envisaged. With continued funding, the Voyager spacecraft will allow us to explore the heliosheath, cross the boundary of the heliosphere, and sample the local interstellar medium, guided by still untested predictions of Parker.
Spectroscopic diagnostics of organic chemistry in the protostellar environment
NASA Technical Reports Server (NTRS)
Charnley, S. B.; Ehrenfreund, P.; Kuan, Y. J.
2001-01-01
A combination of astronomical observations, laboratory studies, and theoretical modelling is necessary to determine the organic chemistry of dense molecular clouds. We present spectroscopic evidence for the composition and evolution of organic molecules in protostellar environments. The principal reaction pathways to complex molecule formation by catalysis on dust grains and by reactions in the interstellar gas are described. Protostellar cores, where warming of dust has induced evaporation of icy grain mantles, are excellent sites in which to study the interaction between gas phase and grain-surface chemistries. We investigate the link between organics that are observed as direct products of grain surface reactions and those which are formed by secondary gas phase reactions of evaporated surface products. Theory predicts observable correlations between specific interstellar molecules, and also which new organics are viable for detection. We discuss recent infrared observations obtained with the Infrared Space Observatory, laboratory studies of organic molecules, theories of molecule formation, and summarise recent radioastronomical searches for various complex molecules such as ethers, azaheterocyclic compounds, and amino acids.
2008-10-11
VANDENBERG AIR FORCE BASE, Calif. – On the ramp of Vandenberg Air Force Base in California, Orbital Sciences’ L-1011 aircraft awaits departure for the Kwajalein Atoll, a part of the Marshall Islands in the Pacific Ocean, with NASA’s Interstellar Boundary Explorer, or IBEX, spacecraft and Pegasus XL rocket. The Pegasus is attached under the wing of the aircraft for launch. Departing from Kwajalein, the Pegasus rocket will be dropped from under the wing of the L-1011 over the Pacific Ocean to carry the spacecraft approximately 130 miles above Earth and place it in orbit. Then, the spacecraft’s own engine will boost it to its final high-altitude orbit (about 200,000 miles high) — most of the way to the Moon. The IBEX satellite will make the first map of the boundary between the Solar System and interstellar space. IBEX science will be led by the Southwest Research Institute of San Antonio, Texas. IBEX is targeted for launch over the Pacific Oct. 19. Photo credit: NASA/Randy Beaudoin, VAFB
2008-10-11
VANDENBERG AIR FORCE BASE, Calif. – On the ramp of Vandenberg Air Force Base in California, Orbital Sciences’ L-1011 aircraft awaits departure for the Kwajalein Atoll, a part of the Marshall Islands in the Pacific Ocean, with NASA’s Interstellar Boundary Explorer, or IBEX, spacecraft and Pegasus XL rocket. The Pegasus is attached under the wing of the aircraft for launch. Departing from Kwajalein, the Pegasus rocket will be dropped from under the wing of the L-1011 over the Pacific Ocean to carry the spacecraft approximately 130 miles above Earth and place it in orbit. Then, the spacecraft’s own engine will boost it to its final high-altitude orbit (about 200,000 miles high) — most of the way to the Moon. The IBEX satellite will make the first map of the boundary between the Solar System and interstellar space. IBEX science will be led by the Southwest Research Institute of San Antonio, Texas. IBEX is targeted for launch over the Pacific Oct. 19. Photo credit: NASA/Randy Beaudoin, VAFB
2008-10-11
VANDENBERG AIR FORCE BASE, Calif. – Orbital Sciences’ L-1011 aircraft begins to taxi for takeoff from Vandenberg Air Force Base in California to the Kwajalein Atoll, a part of the Marshall Islands in the Pacific Ocean. Under its wing is NASA’s Interstellar Boundary Explorer, or IBEX, spacecraft and Pegasus XL rocket. Departing from Kwajalein, the Pegasus rocket will be dropped from under the wing of the L-1011 over the Pacific Ocean to carry the spacecraft approximately 130 miles above Earth and place it in orbit. Then, the spacecraft’s own engine will boost it to its final high-altitude orbit (about 200,000 miles high) — most of the way to the Moon. The IBEX satellite will make the first map of the boundary between the Solar System and interstellar space. IBEX science will be led by the Southwest Research Institute of San Antonio, Texas. IBEX is targeted for launch over the Pacific Oct. 19. Photo credit: NASA/CIV USAF/Daniel Liberotti
2008-10-11
VANDENBERG AIR FORCE BASE, Calif. – On the ramp of Vandenberg Air Force Base in California, Orbital Sciences’ L-1011 aircraft awaits departure for the Kwajalein Atoll, a part of the Marshall Islands in the Pacific Ocean, with NASA’s Interstellar Boundary Explorer, or IBEX, spacecraft and Pegasus XL rocket. The Pegasus is attached under the wing of the aircraft for launch. Departing from Kwajalein, the Pegasus rocket will be dropped from under the wing of the L-1011 over the Pacific Ocean to carry the spacecraft approximately 130 miles above Earth and place it in orbit. Then, the spacecraft’s own engine will boost it to its final high-altitude orbit (about 200,000 miles high) — most of the way to the Moon. The IBEX satellite will make the first map of the boundary between the Solar System and interstellar space. IBEX science will be led by the Southwest Research Institute of San Antonio, Texas. IBEX is targeted for launch over the Pacific Oct. 19. Photo credit: NASA/CIV USAF/Daniel Liberotti
2008-10-11
VANDENBERG AIR FORCE BASE, Calif. – On the ramp of Vandenberg Air Force Base in California, Orbital Sciences’ L-1011 aircraft awaits departure for the Kwajalein Atoll, a part of the Marshall Islands in the Pacific Ocean, with NASA’s Interstellar Boundary Explorer, or IBEX, spacecraft and Pegasus XL rocket. The Pegasus is attached under the wing of the aircraft for launch. Departing from Kwajalein, the Pegasus rocket will be dropped from under the wing of the L-1011 over the Pacific Ocean to carry the spacecraft approximately 130 miles above Earth and place it in orbit. Then, the spacecraft’s own engine will boost it to its final high-altitude orbit (about 200,000 miles high) — most of the way to the Moon. The IBEX satellite will make the first map of the boundary between the Solar System and interstellar space. IBEX science will be led by the Southwest Research Institute of San Antonio, Texas. IBEX is targeted for launch over the Pacific Oct. 19. Photo credit: NASA/CIV USAF/Daniel Liberotti