Diffusion and interactions of interstitials in hard-sphere interstitial solid solutions
NASA Astrophysics Data System (ADS)
van der Meer, Berend; Lathouwers, Emma; Smallenburg, Frank; Filion, Laura
2017-12-01
Using computer simulations, we study the dynamics and interactions of interstitial particles in hard-sphere interstitial solid solutions. We calculate the free-energy barriers associated with their diffusion for a range of size ratios and densities. By applying classical transition state theory to these free-energy barriers, we predict the diffusion coefficients, which we find to be in good agreement with diffusion coefficients as measured using event-driven molecular dynamics simulations. These results highlight that transition state theory can capture the interstitial dynamics in the hard-sphere model system. Additionally, we quantify the interactions between the interstitials. We find that, apart from excluded volume interactions, the interstitial-interstitial interactions are almost ideal in our system. Lastly, we show that the interstitial diffusivity can be inferred from the large-particle fluctuations alone, thus providing an empirical relationship between the large-particle fluctuations and the interstitial diffusivity.
NASA Astrophysics Data System (ADS)
Behera, Rakesh K.; Watanabe, Taku; Andersson, David A.; Uberuaga, Blas P.; Deo, Chaitanya S.
2016-04-01
Oxygen interstitials in UO2+x significantly affect the thermophysical properties and microstructural evolution of the oxide nuclear fuel. In hyperstoichiometric Urania (UO2+x), these oxygen interstitials form different types of defect clusters, which have different migration behavior. In this study we have used kinetic Monte Carlo (kMC) to evaluate diffusivities of oxygen interstitials accounting for mono- and di-interstitial clusters. Our results indicate that the predicted diffusivities increase significantly at higher non-stoichiometry (x > 0.01) for di-interstitial clusters compared to a mono-interstitial only model. The diffusivities calculated at higher temperatures compare better with experimental values than at lower temperatures (< 973 K). We have discussed the resulting activation energies achieved for diffusion with all the mono- and di-interstitial models. We have carefully performed sensitivity analysis to estimate the effect of input di-interstitial binding energies on the predicted diffusivities and activation energies. While this article only discusses mono- and di-interstitials in evaluating oxygen diffusion response in UO2+x, future improvements to the model will primarily focus on including energetic definitions of larger stable interstitial clusters reported in the literature. The addition of larger clusters to the kMC model is expected to improve the comparison of oxygen transport in UO2+x with experiment.
Time scales of transient enhanced diffusion: Free and clustered interstitials
NASA Astrophysics Data System (ADS)
Cowern, N. E. B.; Huizing, H. G. A.; Stolk, P. A.; Visser, C. C. G.; de Kruif, R. C. M.; Kyllesbech Larsen, K.; Privitera, V.; Nanver, L. K.; Crans, W.
1996-12-01
Transient enhanced diffusion (TED) and electrical activation after nonamorphizing Si implantations into lightly B-doped Si multilayers shows two distinct timescales, each related to a different class of interstitial defect. At 700°C, ultrafast TED occurs within the first 15 s with a B diffusivity enhancement of > 2 × 10 5. Immobile clustered B is present at low concentration levels after the ultrafast transient and persists for an extended period (˜ 10 2-10 3 s). The later phase of TED exhibits a near-constant diffusivity enhancement of ≈ 1 × 10 4, consistent with interstitial injection controlled by dissolving {113} interstitial clusters. The relative contributions of the ultrafast and regular TED regimes to the final diffusive broadening of the B profile depends on the proportion of interstitials that escape capture by {113} clusters growing within the implant damage region upon annealing. Our results explain the ultrafast TED recently observed after medium-dose B implantation. In that case there are enough B atoms to trap a large proportion of interstitials in SiB clusters, and the remaining interstitials contribute to TED without passing through an intermediate {113} defect stage. The data on the ultrafast TED pulse allows us to extract lower limits for the diffusivities of the Si interstitial ( DI > 2 × 10 -10 cm 2s -1) and the B interstitial(cy) defect ( DBi > 2 × 10 -13 cm 2s -1) at 700°C.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sathiyanarayanan, Rajesh, E-mail: rajessat@in.ibm.com, E-mail: rajesh.sathiyanarayanan@gmail.com; Pandey, R. K.; Murali, K. V. R. M.
2015-01-21
Using first-principles simulations, we have computed incorporation energies and diffusion barriers of ammonia, the nitrogen molecule and atomic nitrogen in monoclinic hafnia (m-HfO{sub 2}). Our calculations show that ammonia is likely to dissociate into an NH{sub 2} molecular unit, whereas the nitrogen molecule remains as a molecule either in the interstitial space or at an oxygen lattice site. The lowest energy pathway for the diffusion of atomic nitrogen interstitials consists of the hopping of the nitrogen interstitial between neighboring three-coordinated lattice oxygen atoms that share a single Hf atom, and the barrier for such hops is determined by a switchingmore » mechanism. The substitutional nitrogen atom shows a preference for diffusion through the doubly positive oxygen vacancy-mediated mechanism. Furthermore, we have investigated the impact of nitrogen atoms on the diffusion barriers of oxygen and hydrogen interstitials in m-HfO{sub 2}. Our results show that nitrogen incorporation has a significant impact on the barriers for oxygen and hydrogen diffusion: nitrogen atoms attract oxygen and hydrogen interstitials diffusing in the vicinity, thereby slowing down (reducing) their diffusion (diffusion length)« less
Kinetic Monte Carlo (kMC) simulation of carbon co-implant on pre-amorphization process.
Park, Soonyeol; Cho, Bumgoo; Yang, Seungsu; Won, Taeyoung
2010-05-01
We report our kinetic Monte Carlo (kMC) study of the effect of carbon co-implant on the pre-amorphization implant (PAL) process. We employed BCA (Binary Collision Approximation) approach for the acquisition of the initial as-implant dopant profile and kMC method for the simulation of diffusion process during the annealing process. The simulation results implied that carbon co-implant suppresses the boron diffusion due to the recombination with interstitials. Also, we could compare the boron diffusion with carbon diffusion by calculating carbon reaction with interstitial. And we can find that boron diffusion is affected from the carbon co-implant energy by enhancing the trapping of interstitial between boron and interstitial.
Zinc diffusion in gallium arsenide and the properties of gallium interstitials
NASA Astrophysics Data System (ADS)
Bracht, H.; Brotzmann, S.
2005-03-01
We have performed zinc diffusion experiments in gallium arsenide at temperatures between 620°C and 870°C with a dilute Ga-Zn source. The low Zn partial pressure established during annealing realizes Zn surface concentrations of ⩽2×1019cm-3 , which lead to the formation of characteristic S-shaped diffusion profiles. Accurate modeling of the Zn profiles, which were measured by means of secondary ion mass spectroscopy, shows that Zn diffusion under the particular doping conditions is mainly mediated by neutral and singly positively charged Ga interstitials via the kick-out mechanism. We determined the temperature dependence of the individual contributions of neutral and positively charged Ga interstitials to Ga diffusion for electronically intrinsic conditions. The data are lower than the total Ga self-diffusion coefficient and hence consistent with the general interpretation that Ga diffusion under intrinsic conditions is mainly mediated by Ga vacancies. Our results disprove the general accepted interpretation of Zn diffusion in GaAs via doubly and triply positively charged Ga interstitials and solves the inconsistency related to the electrical compensation of the acceptor dopant Zn by the multiply charged Ga interstitials.
The multiple roles of small-angle tilt grain boundaries in annihilating radiation damage in SiC
Jiang, Hao; Wang, Xing; Szlufarska, Izabela
2017-02-09
Lattice defects generated by radiation damage can diffuse to grain boundaries (GBs) and be annihilated at GBs. However, the precise role of GBs in annihilating the segregated defects remains unclear. Here, we employed multi-scale models to determine how interstitials are annihilated at small-angle tilt GBs (STGBs) in SiC. First of all, we found the pipe diffusion of interstitials in STGBs is slower than bulk diffusion. This is because the increased interatomic distance at dislocation cores raises the migration barrier of interstitial dumbbells. Furthermore, we found both the annihilation of interstitials at jogs and jog nucleation from clusters are diffusion-controlled andmore » can occur under off-stoichiometric interstitial fluxes. Finally, a dislocation line model is developed to predict the role of STGBs in annihilating radiation damage. This model includes defect flux to GBs, pipe diffusion in STGBs, and the interaction of defects with jogs. The model predicts the role of STGBs in annihilating defects depends on the rate of defects segregation to and diffusion along STGBs. STGBs mainly serve as diffusion channel for defects to reach other sinks when defect diffusivity is high at boundaries. As a result, when defect diffusivity is low, most of the defects segregated to STGBs are annihilated by dislocation climb.« less
The multiple roles of small-angle tilt grain boundaries in annihilating radiation damage in SiC
DOE Office of Scientific and Technical Information (OSTI.GOV)
Jiang, Hao; Wang, Xing; Szlufarska, Izabela
Lattice defects generated by radiation damage can diffuse to grain boundaries (GBs) and be annihilated at GBs. However, the precise role of GBs in annihilating the segregated defects remains unclear. Here, we employed multi-scale models to determine how interstitials are annihilated at small-angle tilt GBs (STGBs) in SiC. First of all, we found the pipe diffusion of interstitials in STGBs is slower than bulk diffusion. This is because the increased interatomic distance at dislocation cores raises the migration barrier of interstitial dumbbells. Furthermore, we found both the annihilation of interstitials at jogs and jog nucleation from clusters are diffusion-controlled andmore » can occur under off-stoichiometric interstitial fluxes. Finally, a dislocation line model is developed to predict the role of STGBs in annihilating radiation damage. This model includes defect flux to GBs, pipe diffusion in STGBs, and the interaction of defects with jogs. The model predicts the role of STGBs in annihilating defects depends on the rate of defects segregation to and diffusion along STGBs. STGBs mainly serve as diffusion channel for defects to reach other sinks when defect diffusivity is high at boundaries. As a result, when defect diffusivity is low, most of the defects segregated to STGBs are annihilated by dislocation climb.« less
Kinetic Monte Carlo Simulation of Oxygen Diffusion in Ytterbium Disilicate
NASA Technical Reports Server (NTRS)
Good, Brian S.
2015-01-01
Ytterbium disilicate is of interest as a potential environmental barrier coating for aerospace applications, notably for use in next generation jet turbine engines. In such applications, the transport of oxygen and water vapor through these coatings to the ceramic substrate is undesirable if high temperature oxidation is to be avoided. In an effort to understand the diffusion process in these materials, we have performed kinetic Monte Carlo simulations of vacancy-mediated and interstitial oxygen diffusion in Ytterbium disilicate. Oxygen vacancy and interstitial site energies, vacancy and interstitial formation energies, and migration barrier energies were computed using Density Functional Theory. We have found that, in the case of vacancy-mediated diffusion, many potential diffusion paths involve large barrier energies, but some paths have barrier energies smaller than one electron volt. However, computed vacancy formation energies suggest that the intrinsic vacancy concentration is small. In the case of interstitial diffusion, migration barrier energies are typically around one electron volt, but the interstitial defect formation energies are positive, with the result that the disilicate is unlikely to exhibit experience significant oxygen permeability except at very high temperature.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Yang, Ying; Field, Kevin G.; Allen, Todd R.
2016-02-23
A detailed analysis of the diffusion fluxes near and at grain boundaries of irradiated Fe–Cr–Ni alloys, induced by preferential atom-vacancy and atom-interstitial coupling, is presented. The diffusion flux equations were based on the Perks model formulated through the linear theory of the thermodynamics of irreversible processes. The preferential atom-vacancy coupling was described by the mobility model, whereas the preferential atom-interstitial coupling was described by the interstitial binding model. The composition dependence of the thermodynamic factor was modeled using the CALPHAD approach. The calculated fluxes up to 10 dpa suggested the dominant diffusion mechanism for chromium and iron is via vacancy,more » while that for nickel can swing from the vacancy to the interstitial dominant mechanism. The diffusion flux in the vicinity of a grain boundary was found to be greatly modified by the segregation induced by irradiation, leading to the oscillatory behavior of alloy compositions in this region.« less
Radiation-enhanced self- and boron diffusion in germanium
NASA Astrophysics Data System (ADS)
Schneider, S.; Bracht, H.; Klug, J. N.; Hansen, J. Lundsgaard; Larsen, A. Nylandsted; Bougeard, D.; Haller, E. E.
2013-03-01
We report experiments on proton radiation-enhanced self- and boron (B) diffusion in germanium (Ge) for temperatures between 515 ∘C and 720 ∘C. Modeling of the experimental diffusion profiles measured by means of secondary ion mass spectrometry is achieved on the basis of the Frenkel pair reaction and the interstitialcy and dissociative diffusion mechanisms. The numerical simulations ascertain concentrations of Ge interstitials and B-interstitial pairs that deviate by several orders of magnitude from their thermal equilibrium values. The dominance of self-interstitial related defects under irradiation leads to an enhanced self- and B diffusion in Ge. Analysis of the experimental profiles yields data for the diffusion of self-interstitials (I) and the thermal equilibrium concentration of BI pairs in Ge. The temperature dependence of these quantities provides the migration enthalpy of I and formation enthalpy of BI that are compared with recent results of atomistic calculations. The behavior of self- and B diffusion in Ge under concurrent annealing and irradiation is strongly affected by the property of the Ge surface to hinder the annihilation of self-interstitials. The limited annihilation efficiency of the Ge surface can be caused by donor-type surface states favored under vacuum annealing, but the physical origin remains unsolved.
Annihilating vacancies via dynamic reflection and emission of interstitials in nano-crystal tungsten
NASA Astrophysics Data System (ADS)
Li, Xiangyan; Duan, Guohua; Xu, Yichun; Zhang, Yange; Liu, Wei; Liu, C. S.; Liang, Yunfeng; Chen, Jun-Ling; Luo, G.-N.
2017-11-01
Radiation damage not only seriously degrades the mechanical properties of tungsten (W) but also enhances hydrogen retention in the material. Introducing a large amount of defect sinks, e.g. grain boundaries (GBs) is an effective method for improving radiation-resistance of W. However, the mechanism by which the vacancies are dynamically annihilated at long timescale in nano-crystal W is still not clear. The dynamic picture for eliminating vacancies with single interstitials and small interstitial-clusters has been investigated by combining molecular dynamics, molecular statics and object Kinetic Monte Carlo methods. On one hand, the annihilation of bulk vacancies was enhanced due to the reflection of an interstitial-cluster of parallel ≤ft< 1 1 1 \\right> crowdions by the GB. The interstitial-cluster was observed to be reflected back into the grain interior when approaching a locally dense GB region. Near this region, the energy landscape for the interstitial was featured by a shoulder, different to the decreasing energy landscape of the interstitial near a locally loose region as indicative of the sink role of the GB. The bulk vacancy on the reflection path was annihilated. On the other hand, the dynamic interstitial emission efficiently anneals bulk vacancies. The single interstitial trapped at the GB firstly moved along the GB quickly and clustered to be the di-interstitial therein, reducing its mobility to a value comparable to that that for bulk vacancy diffusion. Then, the bulk vacancy was recombined via the coupled motion of the di-interstitial along the GB, the diffusion of the vacancy towards the GB and the accompanying interstitial emission. These results suggest that GBs play an efficient role in improving radiation-tolerance of nano-crystal W via reflecting highly-mobile interstitials and interstitial-clusters into the bulk and annihilating bulk vacancies, and via complex coupling of in-boundary interstitial diffusion, clustering of the interstitial and vacancy diffusion in the bulk.
Liang, Xing; Wang, Ken Kang-Hsin; Zhu, Timothy C.
2013-01-01
Interstitial diffuse optical tomography (DOT) has been used to characterize spatial distribution of optical properties for prostate photodynamic therapy (PDT) dosimetry. We have developed an interstitial DOT method using cylindrical diffuse fibers (CDFs) as light sources, so that the same light sources can be used for both DOT measurement and PDT treatment. In this novel interstitial CDF-DOT method, absolute light fluence per source strength (in unit of 1/cm2) is used to separate absorption and scattering coefficients. A mathematical phantom and a solid prostate phantom including anomalies with known optical properties were used, respectively, to test the feasibility of reconstructing optical properties using interstitial CDF-DOT. Three dimension spatial distributions of the optical properties were reconstructed for both scenarios. Our studies show that absorption coefficient can be reliably extrapolated while there are some cross talks between absorption and scattering properties. Even with the suboptimal reduced scattering coefficients, the reconstructed light fluence rate agreed with the measured values to within ±10%, thus the proposed CDF-DOT allows greatly improved light dosimetry calculation for interstitial PDT. PMID:23629149
The relevance of light diffusion profiles for interstitial PDT using light-diffusing optical fibers
NASA Astrophysics Data System (ADS)
Stringasci, Mirian D.; Fortunato, Thereza C.; Moriyama, Lilian T.; Vollet Filho, José Dirceu; Bagnato, Vanderlei S.; Kurachi, Cristina
2017-02-01
Photodynamic therapy (PDT) is a technique used for several tumor types treatment. Light penetration on biological tissue is one limiting factor for PDT applied to large tumors. An alternative is using interstitial PDT, in which optical fibers are inserted into tumors. Cylindrical diffusers have been used in interstitial PDT. Light emission of different diffusers depends on the manufacturing process, size and optical properties of fibers, which make difficult to establish an adequate light dosimetry, since usually light profile is not designed for direct tissue-fiber contact. This study discusses the relevance of light distribution by a cylindrical diffuser into a turbid lipid emulsion solution, and how parts of a single diffuser contribute to illumination. A 2 cm-long cylindrical diffuser optical fiber was connected to a diode laser (630 nm), and the light spatial distribution was measured by scanning the solution with a collection probe. From the light field profile generated by a 1 mm-long intermediary element of a 20 mm-long cylindrical diffuser, recovery of light distribution for the entire diffuser was obtained. PDT was performed in rat healthy liver for a real treatment outcome analysis. By using computational tools, a typical necrosis profile generated by the irradiation with such a diffuser fiber was reconstructed. The results showed that it was possible predicting theoretically the shape of a necrosis profile in a healthy, homogeneous tissue with reasonable accuracy. The ability to predict the necrosis profile obtained from an interstitial illumination by optical diffusers has the potential improve light dosimetry for interstitial PDT.
NASA Astrophysics Data System (ADS)
Ngau, Julie L.; Griffin, Peter B.; Plummer, James D.
2001-08-01
Recent work has indicated that the suppression of boron transient enhanced diffusion (TED) in carbon-rich Si is caused by nonequilibrium Si point defect concentrations, specifically the undersaturation of Si self-interstitials, that result from the coupled out-diffusion of carbon interstitials via the kick-out and Frank-Turnbull reactions. This study of boron TED reduction in Si1-x-yGexCy during 750 °C inert anneals has revealed that the use of an additional reaction that further reduces the Si self-interstitial concentration is necessary to describe accurately the time evolved diffusion behavior of boron. In this article, we present a comprehensive model which includes {311} defects, boron-interstitial clusters, a carbon kick-out reaction, a carbon Frank-Turnbull reaction, and a carbon interstitial-carbon substitutional (CiCs) pairing reaction that successfully simulates carbon suppression of boron TED at 750 °C for anneal times ranging from 10 s to 60 min.
NASA Astrophysics Data System (ADS)
Bonafos, C.; Alquier, D.; Martinez, A.; Mathiot, D.; Claverie, A.
1996-05-01
When end-of-range defects are located close to or within doping profiles they render diffusion "anomalous" by both enhancing the dopant diffusivity and trapping it, both phenomena decreasing with time. Upon annealing, these defects grow in size and their density is reduced through the emission and capture of Si-interstitial atoms by a coarsening process called Ostwald ripening. In this paper, we report on how, by coupling the Ostwald ripening theory with TEM observations of the time evolution of the dislocation loops upon annealing, quantitative information allowing the enhanced diffusivity to be understood can be extracted. Indeed, during the coarsening process, a supersaturation, {C}/{C e}, of Si self-interstitial atoms is maintained between the loops and decreases with time. The enhanced diffusivity is assumed to be linked to the evolution of this interstitial supersaturation during annealing through the interstitial component of boron diffusion. We show that C drastically decreases during the first second of the anneal to asymptotically reach a value just above the equilibrium concentration Ce. This rapid decay is precisely at the origin of the transient enhanced diffusivity of dopants in the vicinity of the loops.
Interstitial pneumonitis after acetylene welding: a case report.
Brvar, Miran
2014-01-01
Acetylene is a colorless gas commonly used for welding. It acts mainly as a simple asphyxiant. In this paper, however, we present a patient who developed a severe interstitial pneumonitis after acetylene exposure during aluminum welding. A 44-year old man was welding with acetylene, argon and aluminum electrode sticks in a non-ventilated aluminum tank for 2 h. Four hours after welding dyspnea appeared and 22 h later he was admitted at the Emergency Department due to severe respiratory insufficiency with pO2 = 6.7 kPa. Chest X-ray showed diffuse interstitial infiltration. Pulmonary function and gas diffusion tests revealed a severe restriction (55% of predictive volume) and impaired diffusion capacity (47% of predicted capacity). Toxic interstitial pneumonitis was diagnosed and high-dose systemic corticosteroid methylprednisolone and inhalatory corticosteroid fluticasone therapy was started. Computed Tomography (CT) of the lungs showed a diffuse patchy ground-glass opacity with no signs of small airway disease associated with interstitial pneumonitis. Corticosteroid therapy was continued for the next 8 weeks gradually reducing the doses. The patient's follow-up did not show any deterioration of respiratory function. In conclusion, acetylene welding might result in severe toxic interstitial pneumonitis that improves after an early systemic and inhalatory corticosteroid therapy.
Symmetry and diffusivity of the interstitial hydrogen shallow-donor center in In 2O 3
Weiser, Philip; Qin, Ying; Yin, Weikai; ...
2016-11-16
Uniaxial stress experiments performed for the 3306 cm -1 vibrational line assigned to the interstitial-hydrogen, shallow-donor center in In 2O 3 reveal its symmetry and transition- moment direction. The defect alignment that can be produced by a [001] stress applied at 165 K is due to a process that is also a hydrogen- diffusion jump, providing a microscopic determination of the diffusion constant for H in In 2O 3 and its mechanism. Lastly, our experimental results strongly complement theoretical predictions for the structure and diffusion of the interstitial hydrogen donor center in In 2O 3.
Oxygen transport in off-stoichiometric uranium dioxide mediated by defect clustering dynamics
Yu, Jianguo; Bai, Xian -Ming; El-Azab, Anter; ...
2015-03-05
In this study, oxygen transport is central to many properties of oxides such as stoichiometric changes, phase transformation and ionic conductivity. In this paper, we report a mechanism for oxygen transport in uranium dioxide (UO 2) in which the kinetics is mediated by defect clustering dynamics. In particular, the kinetic Monte Carlo (KMC) method has been used to investigate the kinetics of oxygen transport in UO 2 under the condition of creation and annihilation of oxygen vacancies and interstitials as well as oxygen interstitial clustering, with variable offstoichiometry and temperature conditions. It is found that in hypo-stoichiometric UO 2-x, oxygenmore » transport is well described by the vacancy diffusion mechanism while in hyper-stoichiometric UO 2+x, oxygen interstitial cluster diffusion contributes significantly to oxygen transport kinetics, particularly at high temperatures and high off-stoichiometry levels. It is also found that diinterstitial clusters and single interstitials play dominant roles in oxygen diffusion while other larger clusters have negligible contributions. However, the formation, coalescence and dissociation of these larger clusters indirectly affects the overall oxygen diffusion due to their interactions with mono and di-interstitials, thus providing a explanation of the experimental observation of saturation or even drop of oxygen diffusivity at high off-stoichiometry.« less
Dissociative diffusion mechanism in vacancy-rich materials according to mass action kinetics
DOE Office of Scientific and Technical Information (OSTI.GOV)
Biderman, N. J.; Sundaramoorthy, R.; Haldar, Pradeep
We conducted two sets of diffusion-reaction numerical simulations using a finite difference method (FDM) in order to investigate fast impurity diffusion via interstitial sites in vacancy-rich materials such as Cu(In,Ga)Se 2 (CIGS) and Cu 2ZnSn(S, Se) 4 (CZTSSe or CZTS) via the dissociative diffusion mechanism where the interstitial diffuser ultimately reacts with a vacancy to produce a substitutional. The first set of simulations extends the standard interstitial-limited dissociative diffusion theory to vacancy-rich material conditions where vacancies are annihilated in large amounts, introducing non-equilibrium vacancy concentration profiles. The second simulation set explores the vacancy-limited dissociative diffusion where impurity incorporation increases themore » equilibrium vacancy concentration. In addition to diffusion profiles of varying concentrations and shapes that were obtained in all simulations, some of the profiles can be fitted with the constant- and limited-source solutions of Fick’s second law despite the non-equilibrium condition induced by the interstitial-vacancy reaction. The first set of simulations reveals that the dissociative diffusion coefficient in vacancy-rich materials is inversely proportional to the initial vacancy concentration. In the second set of numerical simulations, impurity-induced changes in the vacancy concentration lead to distinctive diffusion profile shapes. The simulation results are also compared with published data of impurity diffusion in CIGS. And according to the characteristic properties of diffusion profiles from the two set of simulations, experimental detection of the dissociative diffusion mechanism in vacancy-rich materials may be possible.« less
Dissociative diffusion mechanism in vacancy-rich materials according to mass action kinetics
Biderman, N. J.; Sundaramoorthy, R.; Haldar, Pradeep; ...
2016-05-13
We conducted two sets of diffusion-reaction numerical simulations using a finite difference method (FDM) in order to investigate fast impurity diffusion via interstitial sites in vacancy-rich materials such as Cu(In,Ga)Se 2 (CIGS) and Cu 2ZnSn(S, Se) 4 (CZTSSe or CZTS) via the dissociative diffusion mechanism where the interstitial diffuser ultimately reacts with a vacancy to produce a substitutional. The first set of simulations extends the standard interstitial-limited dissociative diffusion theory to vacancy-rich material conditions where vacancies are annihilated in large amounts, introducing non-equilibrium vacancy concentration profiles. The second simulation set explores the vacancy-limited dissociative diffusion where impurity incorporation increases themore » equilibrium vacancy concentration. In addition to diffusion profiles of varying concentrations and shapes that were obtained in all simulations, some of the profiles can be fitted with the constant- and limited-source solutions of Fick’s second law despite the non-equilibrium condition induced by the interstitial-vacancy reaction. The first set of simulations reveals that the dissociative diffusion coefficient in vacancy-rich materials is inversely proportional to the initial vacancy concentration. In the second set of numerical simulations, impurity-induced changes in the vacancy concentration lead to distinctive diffusion profile shapes. The simulation results are also compared with published data of impurity diffusion in CIGS. And according to the characteristic properties of diffusion profiles from the two set of simulations, experimental detection of the dissociative diffusion mechanism in vacancy-rich materials may be possible.« less
NASA Technical Reports Server (NTRS)
Kitabatake, M.; Fons, P.; Greene, J. E.
1991-01-01
The relaxation, diffusion, and annihilation of split and hexagonal interstitials resulting from 10 eV Si irradiation of (2x1)-terminated Si(100) are investigated. Molecular dynamics and quasidynamics simulations, utilizing the Tersoff many-body potential are used in the investigation. The interstitials are created in layers two through six, and stable atomic configurations and total potential energies are derived as a function of site symmetry and layer depth. The interstitial Si atoms are allowed to diffuse, and the total potential energy changes are calculated. Lattice configurations along each path, as well as the starting configurations, are relaxed, and minimum energy diffusion paths are derived. The results show that the minimum energy paths are toward the surface and generally involved tetrahedral sites. The calculated interstitial migration activation energies are always less than 1.4 eV and are much lower in the near-surface region than in the bulk.
Kinetics of self-interstitial migration in bcc and fcc transition metals
NASA Astrophysics Data System (ADS)
Bukkuru, S.; Bhardwaj, U.; Srinivasa Rao, K.; Rao, A. D. P.; Warrier, M.; Valsakumar, M. C.
2018-03-01
Radiation damage is a multi-scale phenomenon. A thorough understanding of diffusivities and the migration energies of defects is a pre-requisite to quantify the after-effects of irradiation. We investigate the thermally activated mobility of self-interstitial atom (SIA) in bcc transition metals Fe, Mo, Nb and fcc transition metals Ag, Cu, Ni, Pt using molecular dynamics (MD) simulations. The self-interstitial diffusion involves various mechanisms such as interstitialcy, dumbbell or crowdion mechanisms. Max-Space Clustering (MSC) method has been employed to identify the interstitial and its configuration over a wide range of temperature. The self-interstitial diffusion is Arrhenius like, however, there is a slight deviation at high temperatures. The migration energies, pre-exponential factors of diffusion and jump-correlation factors, obtained from these simulations can be used as inputs to Monte Carlo simulations of defect transport. The jump-correlation factor shows the degree of preference of rectilinear or rotational jumps. We obtain the average jump-correlation factor of 1.4 for bcc metals and 0.44 for fcc metals. It indicates that rectilinear jumps are preferred in bcc metals and rotational jumps are preferred in fcc metals.
Boron diffusion in bcc-Fe studied by first-principles calculations
NASA Astrophysics Data System (ADS)
Xianglong, Li; Ping, Wu; Ruijie, Yang; Dan, Yan; Sen, Chen; Shiping, Zhang; Ning, Chen
2016-03-01
The diffusion mechanism of boron in bcc-Fe has been studied by first-principles calculations. The diffusion coefficients of the interstitial mechanism, the B-monovacancy complex mechanism, and the B-divacancy complex mechanism have been calculated. The calculated diffusion coefficient of the interstitial mechanism is D0 = 1.05 × 10-7 exp (-0.75 eV/kT) m2 · s-1, while the diffusion coefficients of the B-monovacancy and the B-divacancy complex mechanisms are D1 = 1.22 × 10-6 f1 exp (-2.27 eV/kT) m2 · s-1 and D2 ≈ 8.36 × 10-6 exp (-4.81 eV/kT) m2 · s-1, respectively. The results indicate that the dominant diffusion mechanism in bcc-Fe is the interstitial mechanism through an octahedral interstitial site instead of the complex mechanism. The calculated diffusion coefficient is in accordance with the reported experiment results measured in Fe-3%Si-B alloy (bcc structure). Since the non-equilibrium segregation of boron is based on the diffusion of the complexes as suggested by the theory, our calculation reasonably explains why the non-equilibrium segregation of boron is not observed in bcc-Fe in experiments. Project supported by the National Natural Science Foundation of China (Grant No. 51276016) and the National Basic Research Program of China (Grant No. 2012CB720406).
2014-01-01
Background Acute interstitial pneumonia is a rare interstitial lung disease that rapidly progresses to respiratory failure or death. Several studies showed that myofibroblast plays an important role in the evolution of diffuse alveolar damage, which is the typical feature of acute interstitial pneumonia. However, no evidence exists whether alveolar epithelial cells are an additional source of myofibroblasts via epithelial-mesenchymal transition in acute interstitial pneumonia. Case presentation In this report, we present a case of acute interstitial pneumonia in a previously healthy 28-year-old non-smoking woman. Chest high-resolution computed tomography scan showed bilateral and diffusely ground-glass opacification. The biopsy was performed on the fifth day of her hospitalization, and results showed manifestation of acute exudative phase of diffuse alveolar damage characterized by hyaline membrane formation. On the basis of the preliminary diagnosis of acute interstitial pneumonia, high-dose glucocorticoid was used. However, this drug showed poor clinical response and could improve the patient’s symptoms only during the early phase. The patient eventually died of respiratory dysfunction. Histological findings in autopsy were consistent with the late form of acute interstitial pneumonia. Conclusions The results in this study revealed that alveolar epithelial cells underwent epithelial-mesenchymal transition and may be an important origin of myofibroblasts in the progression of acute interstitial pneumonia. Conducting research on the transformation of alveolar epithelial cells into myofibroblasts in the lung tissue of patients with acute interstitial pneumonia may be beneficial for the treatment of this disease. However, to our knowledge, no research has been conducted on this topic. PMID:24755111
Formation and Migration Energies of Interstitials in Silicon Under Strain Conditions
NASA Technical Reports Server (NTRS)
Halicioglu, Timur; Barnett, David M.
1999-01-01
Simulation calculations are conducted for Si substrates to analyze formation and diffusion energies of interstitials under strain condition using statics methods .based on a Stillinger-Weber type potential function. Defects in the vicinity of the surface region and in the bulk are examined, and the role played by compressive and tensile strains on the energetics of interstitials is investigated. Results indicate that strain alters defect energetics which, in turn, modifies their diffusion characteristics.
Two-length-scale turbulence model for self-similar buoyancy-, shock-, and shear-driven mixing
DOE Office of Scientific and Technical Information (OSTI.GOV)
Morgan, Brandon E.; Schilling, Oleg; Hartland, Tucker A.
The three-equation k-L-a turbulence model [B. Morgan and M. Wickett, Three-equation model for the self-similar growth of Rayleigh-Taylor and Richtmyer-Meshkov instabilities," Phys. Rev. E 91 (2015)] is extended by the addition of a second length scale equation. It is shown that the separation of turbulence transport and turbulence destruction length scales is necessary for simultaneous prediction of the growth parameter and turbulence intensity of a Kelvin-Helmholtz shear layer when model coeficients are constrained by similarity analysis. Constraints on model coeficients are derived that satisfy an ansatz of self-similarity in the low-Atwood-number limit and allow the determination of model coeficients necessarymore » to recover expected experimental behavior. The model is then applied in one-dimensional simulations of Rayleigh-Taylor, reshocked Richtmyer-Meshkov, Kelvin{Helmholtz, and combined Rayleigh-Taylor/Kelvin-Helmholtz instability mixing layers to demonstrate that the expected growth rates are recovered numerically. Finally, it is shown that model behavior in the case of combined instability is to predict a mixing width that is a linear combination of Rayleigh-Taylor and Kelvin-Helmholtz mixing processes.« less
Two-length-scale turbulence model for self-similar buoyancy-, shock-, and shear-driven mixing
Morgan, Brandon E.; Schilling, Oleg; Hartland, Tucker A.
2018-01-10
The three-equation k-L-a turbulence model [B. Morgan and M. Wickett, Three-equation model for the self-similar growth of Rayleigh-Taylor and Richtmyer-Meshkov instabilities," Phys. Rev. E 91 (2015)] is extended by the addition of a second length scale equation. It is shown that the separation of turbulence transport and turbulence destruction length scales is necessary for simultaneous prediction of the growth parameter and turbulence intensity of a Kelvin-Helmholtz shear layer when model coeficients are constrained by similarity analysis. Constraints on model coeficients are derived that satisfy an ansatz of self-similarity in the low-Atwood-number limit and allow the determination of model coeficients necessarymore » to recover expected experimental behavior. The model is then applied in one-dimensional simulations of Rayleigh-Taylor, reshocked Richtmyer-Meshkov, Kelvin{Helmholtz, and combined Rayleigh-Taylor/Kelvin-Helmholtz instability mixing layers to demonstrate that the expected growth rates are recovered numerically. Finally, it is shown that model behavior in the case of combined instability is to predict a mixing width that is a linear combination of Rayleigh-Taylor and Kelvin-Helmholtz mixing processes.« less
First-principles multiple-barrier diffusion theory. The case study of interstitial diffusion in CdTe
Yang, Ji -Hui; Park, Ji -Sang; Kang, Joongoo; ...
2015-02-17
The diffusion of particles in solid-state materials generally involves several sequential thermal-activation processes. However, presently, diffusion coefficient theory only deals with a single barrier, i.e., it lacks an accurate description to deal with multiple-barrier diffusion. Here, we develop a general diffusion coefficient theory for multiple-barrier diffusion. Using our diffusion theory and first-principles calculated hopping rates for each barrier, we calculate the diffusion coefficients of Cd, Cu, Te, and Cl interstitials in CdTe for their full multiple-barrier diffusion pathways. As a result, we found that the calculated diffusivity agrees well with the experimental measurement, thus justifying our theory, which is generalmore » for many other systems.« less
Influence of dislocation strain fields on the diffusion of interstitial iron impurities in silicon
NASA Astrophysics Data System (ADS)
Ziebarth, Benedikt; Mrovec, Matous; Elsässer, Christian; Gumbsch, Peter
2015-09-01
The efficiency of silicon (Si)-based solar cells is strongly affected by crystal defects and impurities. Metallic impurities, in particular interstitial iron (Fe) atoms, cause large electric losses because they act as recombination centers for photogenerated charge carriers. Here, we present a systematic first-principles density functional theory (DFT) study focusing on the influence of hydrostatic, uniaxial, and shear strains on the thermodynamic stability and the diffusivity of Fe impurities in crystalline Si. Our calculations show that the formation energy of neutral Fe interstitials in tetrahedral interstitial sites is almost unaffected by uniform deformations of the Si crystal up to strains of 5%. In contrast, the migration barrier varies significantly with strain, especially for hydrostatic deformation. In order to determine effective diffusion coefficients for different strain states, a kinetic Monte Carlo (kMC) model was set up based on the activation energy barriers and frequency factors obtained from the DFT simulations. By using the strain dependence of the migration barrier, we examined the migration of Fe interstitials in the vicinity of perfect 1 /2 <110 > screw and 60∘ mixed dislocations, and 1 /6 <112 > 90∘ and 30∘ partial dislocations. While the strain field of the perfect screw dislocation always enhances the local Fe diffusion, the existence of tensile and compressive regions around the 60∘ mixed dislocation results in a strong anisotropic diffusion profile with significantly faster and slower diffusivities on its tensile and compressive sides. The influences of the partial dislocations are qualitatively similar to that of the 60∘ mixed dislocation.
Effect of nickel on point defects diffusion in Fe – Ni alloys
Anento, Napoleon; Serra, Anna; Osetsky, Yury N.
2017-05-05
Iron-Nickel alloys are perspective alloys as nuclear energy structural materials because of their good radiation damage tolerance and mechanical properties. Understanding of experimentally observed features such as the effect of Ni content to radiation defects evolution is essential for developing predictive models of radiation. Recently an atomic-scale modelling study has revealed one particular mechanism of Ni effect related to the reduced mobility of clusters of interstitial atoms in Fe-Ni alloys. In this paper we present results of the microsecond-scale molecular dynamics study of point defects, i.e. vacancies and self-interstitial atoms, diffusion in Fe-Ni alloys. It is found that the additionmore » of Ni atoms affects diffusion processes: diffusion of vacancies is enhanced in the presence of Ni, whereas diffusion of interstitials is reduced and these effects increase at high Ni concentration and low temperature. As a result, the role of Ni solutes in radiation damage evolution in Fe-Ni alloys is discussed.« less
First-principles study of fission gas incorporation and migration in zirconium nitride
Mei, Zhi-Gang; Liang, Linyun; Yacout, Abdellatif M.
2017-03-24
To evaluate the effectiveness of ZrN as a diffusion barrier against fission gases, we investigate in this paper the incorporation and migration of fission gas atoms, with a focus on Xe, in ZrN by first-principles calculations. The formations of point defects in ZrN, including vacancies, interstitials, divacancies, Frenkel pairs, and Schottky defects, are first studied. Among all the defects, the Schottky defect with two vacancies as first nearest neighbor is predicted to be the most favorable incorporation site for fission gas Xe in ZrN. The migration of Xe gas atom in ZrN is investigated through two diffusion mechanisms, i.e., interstitialmore » and vacancy-assisted diffusions. The migration barrier of Xe gas atom through the intrinsic interstitials in ZrN is considerably lower than that through vacancies. Finally, therefore, at low temperatures fission gas Xe atoms diffuse mainly through interstitials in single crystal ZrN, whereas at high temperatures Xe may diffuse in ZrN assisted by vacancies.« less
Jelic, Tomislav M; Estalilla, Oscar C; Sawyer-Kaplan, Phyllis R; Plata, Milton J; Powers, Jeremy T; Emmett, Mary; Kuenstner, John T
2017-07-01
Diseases associated with coal mine dust continue to affect coal miners. Elucidation of initial pathological changes as a precursor of coal dust-related diffuse fibrosis and emphysema, may have a role in treatment and prevention. To identify the precursor of dust-related diffuse fibrosis and emphysema. Birefringent silica/silicate particles were counted by standard microscope under polarized light in the alveolar macrophages and fibrous tissue in 25 consecutive autopsy cases of complicated coal worker's pneumoconiosis and in 21 patients with tobacco-related respiratory bronchiolitis. Coal miners had 331 birefringent particles/high power field while smokers had 4 (p<0.001). Every coal miner had intra-alveolar macrophages with silica/silicate particles and interstitial fibrosis ranging from minimal to extreme. All coal miners, including those who never smoked, had emphysema. Fibrotic septa of centrilobular emphysema contained numerous silica/silicate particles while only a few were present in adjacent normal lung tissue. In coal miners who smoked, tobacco-associated interstitial fibrosis was replaced by fibrosis caused by silica/silicate particles. The presence of silica/silicate particles and anthracotic pigment-laden macrophages inside the alveoli with various degrees of interstitial fibrosis indicated a new disease: coal mine dust desquamative chronic interstitial pneumonia, a precursor of both dust-related diffuse fibrosis and emphysema. In studied coal miners, fibrosis caused by smoking is insignificant in comparison with fibrosis caused by silica/silicate particles. Counting birefringent particles in the macrophages from bronchioalveolar lavage may help detect coal mine dust desquamative chronic interstitial pneumonia, and may initiate early therapy and preventive measures.
Diffuse Alveolar Damage: A Common Phenomenon in Progressive Interstitial Lung Disorders
Kaarteenaho, Riitta; Kinnula, Vuokko L.
2011-01-01
It has become obvious that several interstitial lung diseases, and even viral lung infections, can progress rapidly, and exhibit similar features in their lung morphology. The final histopathological feature, common in these lung disorders, is diffuse alveolar damage (DAD). The histopathology of DAD is considered to represent end stage phenomenon in acutely behaving interstitial pneumonias, such as acute interstitial pneumonia (AIP) and acute exacerbations of idiopathic pulmonary fibrosis (IPF). Acute worsening and DAD may occur also in patients with nonspecific interstitial pneumonias (NSIPs), and even in severe viral lung infections where there is DAD histopathology in the lung. A better understanding of the mechanisms underlying the DAD reaction is needed to clarify the treatment for these serious lung diseases. There is an urgent need for international efforts for studying DAD-associated lung diseases, since the prognosis of these patients has been and is still dismal. PMID:21637367
NASA Astrophysics Data System (ADS)
DSouza, Alisha V.; Marra, Kayla; Gunn, Jason R.; Samkoe, Kimberley S.; Pogue, Brian W.
2016-10-01
Lymphatic uptake of interstitially administered agents occurs by passive convective-diffusive inflow driven by interstitial concentration and pressure, while the downstream lymphatic transport is facilitated by active propulsive contractions of lymphatic vessel walls. Near-infrared fluorescence imaging in mice was used to measure these central components of lymphatic transport for the first time, using two different-sized molecules-methylene blue (MB) and fluorescence-labeled antibody immunoglobulin G (IgG)-IRDye 680RD. This work confirms the hypothesis that lymphatic passive inflow and active propulsion rates can be separated based upon the relative differences in Stokes-Einstein diffusion coefficient. This coefficient specifically affects the passive-diffusive uptake when the interstitial volume and pressure are constant. Parameters such as mean time-to-peak signal, overall fluorescence signal intensities, and number of active peristaltic pulses, were estimated from temporal imaging data. While the mean time to attain peak signal representative of diffusion-dominated flow in the lymph vessels was 0.6±0.2 min for MB and 8±6 min for IgG, showing a size dependence, the active propulsion rates were 3.4±0.8 pulses/min and 3.3±0.5 pulses/min, respectively, appearing size independent. The propulsion rates for both dyes decreased with clearance from the interstitial injection-site, indicating intrinsic control of the smooth muscles in response to interstitial pressure. This approach to size-comparative agent flow imaging of lymphatic function can enable noninvasive characterization of diseases related to uptake and flow in lymph networks.
Barashev, A. V.; Golubov, S. I.; Stoller, R. E.
2015-06-01
We studied the radiation growth of zirconium using a reaction–diffusion model which takes into account intra-cascade clustering of self-interstitial atoms and one-dimensional diffusion of interstitial clusters. The observed dose dependence of strain rates is accounted for by accumulation of sessile dislocation loops during irradiation. Moreover, the computational model developed and fitted to available experimental data is applied to study deformation of Zr single crystals under irradiation up to hundred dpa. Finally, the effect of cold work and the reasons for negative prismatic strains and co-existence of vacancy and interstitial loops are elucidated.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Yang, Ying; Field, Kevin G; Allen, Todd R.
2015-09-01
Irradiation-assisted stress corrosion cracking (IASCC) of austenitic stainless steels in Light Water Reactor (LWR) components has been linked to changes in grain boundary composition due to irradiation induced segregation (RIS). This work developed a robust RIS modeling tool to account for thermodynamics and kinetics of the atom and defect transportation under combined thermal and radiation conditions. The diffusion flux equations were based on the Perks model formulated through the linear theory of the thermodynamics of irreversible processes. Both cross and non-cross phenomenological diffusion coefficients in the flux equations were considered and correlated to tracer diffusion coefficients through Manning’s relation. Themore » preferential atomvacancy coupling was described by the mobility model, whereas the preferential atom-interstitial coupling was described by the interstitial binding model. The composition dependence of the thermodynamic factor was modeled using the CALPHAD approach. Detailed analysis on the diffusion fluxes near and at grain boundaries of irradiated austenitic stainless steels suggested the dominant diffusion mechanism for chromium and iron is via vacancy, while that for nickel can swing from the vacancy to the interstitial dominant mechanism. The diffusion flux in the vicinity of a grain boundary was found to be greatly influenced by the composition gradient formed from the transient state, leading to the oscillatory behavior of alloy compositions in this region. This work confirms that both vacancy and interstitial diffusion, and segregation itself, have important roles in determining the microchemistry of Fe, Cr, and Ni at irradiated grain boundaries in austenitic stainless steels.« less
NASA Technical Reports Server (NTRS)
Goesele, U.; Ast, D. G.
1983-01-01
Some background information on intrinsic point defects is provided and on carbon and oxygen in silicon in so far as it may be relevant for the efficiency of solar cells fabricated from EFG ribbon material. The co-precipitation of carbon and oxygen and especially of carbon and silicon self interstitials are discussed. A simple model for the electrical activity of carbon-self-interstitial agglomerates is presented. The self-interstitial content of these agglomerates is assumed to determine their electrical activity and that both compressive stresses (high self-interstitial content) and tensile stresses (low self-interstitial content) give rise to electrical activity of the agglomerates. The self-interstitial content of these carbon-related agglomerates may be reduced by an appropriate high temperature treatment and enhanced by a supersaturation of self-interstitials generated during formation of the p-n junction of solar cells. Oxygen present in supersaturation in carbon-rich silicon may be induced to form SiO, precipitates by self-interstitials generated during phosphorus diffusion. It is proposed that the SiO2-Si interface of the precipates gives rise to a continuum of donor stables and that these interface states are responsible for at least part of the light inhancement effects observed in oxygen containing EFG silicon after phosphorus diffusion.
[Modern Views on Children's Interstitial Lung Disease].
Boĭtsova, E V; Beliashova, M A; Ovsiannikov, D Iu
2015-01-01
Interstitial lung diseases (ILD, diffuse lung diseases) are a heterogeneous group of diseases in which a pathological process primarily involved alveoli and perialveolar interstitium, resulting in impaired gas exchange, restrictive changes of lung ventilation function and diffuse interstitial changes detectable by X-ray. Children's interstitial lung diseases is an topical problem ofpediatricpulmonoogy. The article presents current information about classification, epidemiology, clinical presentation, diagnostics, treatment and prognosis of these rare diseases. The article describes the differences in the structure, pathogenesis, detection of various histological changes in children's ILD compared with adult patients with ILD. Authors cite an instance of registers pediatric patients with ILD. The clinical semiotics of ILD, the possible results of objective research, the frequency of symptoms, the features of medical history, the changes detected on chest X-rays, CT semiotics described in detail. Particular attention was paid to interstitial lung diseases, occurring mainly in newborns and children during the first two years of life, such as congenital deficiencies of surfactant proteins, neuroendocrine cell hyperplasia of infancy, pulmonary interstitial glycogenosis. The diagnostic program for children's ILD, therapy options are presented in this article.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Weiser, Philip; Qin, Ying; Yin, Weikai
Uniaxial stress experiments performed for the 3306 cm -1 vibrational line assigned to the interstitial-hydrogen, shallow-donor center in In 2O 3 reveal its symmetry and transition- moment direction. The defect alignment that can be produced by a [001] stress applied at 165 K is due to a process that is also a hydrogen- diffusion jump, providing a microscopic determination of the diffusion constant for H in In 2O 3 and its mechanism. Lastly, our experimental results strongly complement theoretical predictions for the structure and diffusion of the interstitial hydrogen donor center in In 2O 3.
Holter, Karl Erik; Kehlet, Benjamin; Devor, Anna; Sejnowski, Terrence J; Dale, Anders M; Omholt, Stig W; Ottersen, Ole Petter; Nagelhus, Erlend Arnulf; Mardal, Kent-André; Pettersen, Klas H
2017-09-12
The brain lacks lymph vessels and must rely on other mechanisms for clearance of waste products, including amyloid [Formula: see text] that may form pathological aggregates if not effectively cleared. It has been proposed that flow of interstitial fluid through the brain's interstitial space provides a mechanism for waste clearance. Here we compute the permeability and simulate pressure-mediated bulk flow through 3D electron microscope (EM) reconstructions of interstitial space. The space was divided into sheets (i.e., space between two parallel membranes) and tunnels (where three or more membranes meet). Simulation results indicate that even for larger extracellular volume fractions than what is reported for sleep and for geometries with a high tunnel volume fraction, the permeability was too low to allow for any substantial bulk flow at physiological hydrostatic pressure gradients. For two different geometries with the same extracellular volume fraction the geometry with the most tunnel volume had [Formula: see text] higher permeability, but the bulk flow was still insignificant. These simulation results suggest that even large molecule solutes would be more easily cleared from the brain interstitium by diffusion than by bulk flow. Thus, diffusion within the interstitial space combined with advection along vessels is likely to substitute for the lymphatic drainage system in other organs.
NASA Astrophysics Data System (ADS)
Sangiovanni, Davide G.; Alling, Björn; Hultman, Lars; Abrikosov, Igor A.
2015-03-01
We use ab-initio and classical molecular dynamics (AIMD, CMD) to simulate diffusion of N vacancy and N self-interstitial point-defects in B1 TiN. The physical properties of TiN, important material system for thin film and coatings applications, are largely dictated by concentration and mobility of point defects. We determine N dilute-point-defect diffusion pathways, activation energies, attempt frequencies, and diffusion coefficients as a function of temperature. In addition, MD simulations reveal an unanticipated atomistic process, which controls the spontaneous formation of N-self-interstitial/N-vacancy pairs (Frenkel pairs) in defect-free TiN. This entails that a N lattice atom leaves its bulk position and bonds to a neighboring N lattice atom. In most cases, Frenkel-pair NI and NV recombine within a fraction of ns; 50% of these processes result in the exchange of two nitrogen lattice atoms. Occasionally, however, Frenkel-pair N-interstitial atoms permanently escape from the anion vacancy site, thus producing unpaired NI and NV point defects. The Knut and Alice Wallenberg foundation (Isotope Project, 2011.0094), the Swedish Research Council (VR) Linköping Linnaeus Initiative LiLi-NFM (Grant 2008-6572), and the Swedish Government Strategic Research (Grant MatLiU 2009-00971).
NASA Astrophysics Data System (ADS)
Sangiovanni, D. G.; Alling, B.; Steneteg, P.; Hultman, L.; Abrikosov, I. A.
2015-02-01
We use ab initio and classical molecular dynamics (AIMD and CMD) based on the modified embedded-atom method (MEAM) potential to simulate diffusion of N vacancy and N self-interstitial point defects in B 1 TiN. TiN MEAM parameters are optimized to obtain CMD nitrogen point-defect jump rates in agreement with AIMD predictions, as well as an excellent description of Ti Nx(˜0.7
Desquamative interstitial pneumonia associated with chrysotile asbestos fibres.
Freed, J A; Miller, A; Gordon, R E; Fischbein, A; Kleinerman, J; Langer, A M
1991-01-01
The drywall construction trade has in the past been associated with exposure to airborne asbestos fibres. This paper reports a drywall construction worker with 32 years of dust exposure who developed dyspnoea and diminished diffusing capacity, and showed diffuse irregular opacities on chest radiography. He did not respond to treatment with corticosteroids. Open lung biopsy examination showed desquamative interstitial pneumonia. Only a single ferruginous body was seen on frozen section, but tissue examination by electron microscopy showed an extraordinary pulmonary burden of mineral dust with especially high concentrations of chrysotile asbestos fibres. This report emphasises the need to consider asbestos fibre as an agent in the aetiology of desquamative interstitial pneumonia. The coexistent slight interstitial fibrosis present in this case is also considered to have resulted from exposure to mineral dust, particularly ultramicroscopic asbestos fibres. Images PMID:1645584
High-power diffusing-tip fibers for interstitial photocoagulation
NASA Astrophysics Data System (ADS)
Sinofsky, Edward L.; Farr, Norman; Baxter, Lincoln; Weiler, William
1997-05-01
A line of optical fiber based diffusing tips has been designed, developed, and tested that are capable of distributing tens of watts of cw laser power over lengths ranging from two millimeters to over 10 cm. The result is a flexible non-stick diffuser capable of coagulating large volumes of tissue in reasonably short exposures of 3 - 5 minutes. Sub-millimeter diameter devices have a distinct effect on reducing the force needed to insert the applicator interstitially into tissue. Utilizing our design approach, we have produced diffusers based on 200 micrometer core fiber that has delivered over 35 watts of Nd:YAG energy over diffusion lengths as short as 4 mm. These applicators are being tested for applications in oncology, cardiology, electrophysiology, urology and gynecology.
NASA Astrophysics Data System (ADS)
Fang, Tilden T.; Fang, Wingra T. C.; Griffin, Peter B.; Plummer, James D.
1996-02-01
Investigation of boron diffusion in strained silicon germanium buried layers reveals a fractional interstitial component of boron diffusion (fBI) in Se0.8Ge0.2 approximately equal to the fBI value in silicon. In conjunction with computer-simulated boron profiles, the results yield an absolute lower-bound of fBI in Si0.8Ge0.2 of ˜0.8. In addition, the experimental methodology provides a unique vehicle for measuring the segregation coefficient; oxidation-enhanced diffusion is used instead of an extended, inert anneal to rapidly diffuse the dopant to equilibrium levels across the interface, allowing the segregation coefficient to be measured more quickly.
dos Santos, G.C.; Parra, E.R.; Stegun, F.W.; Cirqueira, C.S.; Capelozzi, V.L.
2013-01-01
Idiopathic interstitial pneumonias include complex diseases that have a strong interaction between genetic makeup and environmental factors. However, in many cases, no infectious agent can be demonstrated, and these clinical diseases rapidly progress to death. Theoretically, idiopathic interstitial pneumonias could be caused by the Epstein-Barr virus, cytomegalovirus, adenovirus, hepatitis C virus, respiratory syncytial virus, and herpesvirus, which may be present in such small amounts or such configuration that routine histopathological analysis or viral culture techniques cannot detect them. To test the hypothesis that immunohistochemistry provides more accurate results than the mere histological demonstration of viral inclusions, this method was applied to 37 open lung biopsies obtained from patients with idiopathic interstitial pneumonias. As a result, immunohistochemistry detected measles virus and cytomegalovirus in diffuse alveolar damage-related histological patterns of acute exacerbation of idiopathic pulmonary fibrosis and nonspecific interstitial pneumonia in 38 and 10% of the cases, respectively. Alveolar epithelium infection by cytomegalovirus was observed in 25% of organizing pneumonia patterns. These findings were coincident with nuclear cytopathic effects but without demonstration of cytomegalovirus inclusions. These data indicate that diffuse alveolar damage-related cytomegalovirus or measles virus infections enhance lung injury, and a direct involvement of these viruses in diffuse alveolar damage-related histological patterns is likely. Immunohistochemistry was more sensitive than the histological demonstration of cytomegalovirus or measles virus inclusions. We concluded that all patients with diffuse alveolar damage-related histological patterns should be investigated for cytomegalovirus and measles virus using sensitive immunohistochemistry in conjunction with routine procedures. PMID:24270907
Phosphorus-defect interactions during thermal annealing of ion implanted silicon
NASA Astrophysics Data System (ADS)
Keys, Patrick Henry
Ion implantation of dopant atoms into silicon generates nonequilibrium levels of crystal defects that can lead to the detrimental effects of transient enhanced diffusion (TED), incomplete dopant activation, and p-n junction leakage. In order to control these effects, it is vital to have a clear understanding of dopant-defect interactions and develop models that account for these interactions. This research focuses on experimentally investigating and modeling the clustering of phosphorus dopant atoms with silicon interstitials. Damage recovery of 40keV Si+ implants in phosphorus doped wells is experimentally analyzed. The effects of background phosphorus concentration, self implant dose, and anneal temperature are investigated. Phosphorus concentrations ranging from 2.0 x 1017 to 4.0 x 1019 cm-3 and Si+ doses ranging from 5.0 x 1013 cm-2 to 2.0 x 1014 cm-2 are studied during 650-800°C anneals. A dramatic reduction in the number of interstitials bound in {311} defects with increasing phosphorus background concentration is observed. It is suggested that the reduction of interstitials in {311} defects at high phosphorus concentrations is due to the formation of phosphorus-interstitial clusters (PICs). The critical concentration for clustering (approximately 1.0 x 1019 cm-3 at 750°C) is strongly temperature dependent and in close agreement with the kink concentration of phosphorus diffusion. Information gained from these "well experiments" is applied to the study of direct phosphorus implantation. An experimental study is conducted on 40keV phosphorus implanted to a dose of 1.0 x 1014 cm-2 during 650-800°C anneals. Electrically inactive PICs are shown to form at concentrations below the solid solubility limit due to high interstitial supersaturations. Data useful for developing a model to accurately predict phosphorus diffusion under nonequilibrium conditions are extracted from the experimental results. A cluster-mediated diffusion model is developed using the Florida Object Oriented Process Simulator (FLOOPS). The nucleation of defects is controlled by the diffusion-limited competition for excess interstitials between PICs and {311} clusters. The release of interstitials is driven by cluster dissolution. Modeling results show a strong correlation to those experimentally observed over a wide temporal and thermal domain using a single set of parameters. Improvements in process simulator accuracy are demonstrated with respect to dopant activation, TED, and dose loss.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Isoda, Taiga; Uematsu, Masashi; Itoh, Kohei M., E-mail: kitoh@appi.keio.ac.jp
2015-09-21
Si self-diffusion in the presence of end-of-range (EOR) defects is investigated using {sup nat}Si/{sup 28}Si isotope multilayers. The isotope multilayers were amorphized by Ge ion implantation, and then annealed at 800–950 °C. The behavior of Si self-interstitials is investigated through the {sup 30}Si self-diffusion. The experimental {sup 30}Si profiles show further enhancement of Si self-diffusion at the EOR defect region, in addition to the transient enhanced diffusion via excess Si self-interstitials by EOR defects. To explain this additional enhanced diffusion, we propose a model which takes into account enhanced diffusion by tensile strain originated from EOR defects. The calculation results basedmore » on this model have well reproduced the experimental {sup 30}Si profiles.« less
NASA Astrophysics Data System (ADS)
Tikhonchev, M.; Svetukhin, V.; Kapustin, P.
2017-09-01
Ab initio calculations predict high positive binding energy (˜1 eV) between niobium atoms and self-interstitial configurations in hcp zirconium. It allows the expectation of increased niobium fraction in self-interstitials formed under neutron irradiation in atomic displacement cascades. In this paper, we report the results of molecular dynamics simulation of atomic displacement cascades in Zr-0.5%Nb binary alloy and pure Zr at the temperature of 300 K. Two sets of n-body interatomic potentials have been used for the Zr-Nb system. We consider a cascade energy range of 2-20 keV. Calculations show close estimations of the average number of produced Frenkel pairs in the alloy and pure Zr. A high fraction of Nb is observed in the self-interstitial configurations. Nb is mainly detected in single self-interstitial configurations, where its fraction reaches tens of percent, i.e. more than its tenfold concentration in the matrix. The basic mechanism of this phenomenon is the trapping of mobile self-interstitial configurations by niobium. The diffusion of pure zirconium and mixed zirconium-niobium self-interstitial configurations in the zirconium matrix at 300 K has been simulated. We observe a strong dependence of the estimated diffusion coefficients and fractions of Nb in self-interstitials produced in displacement cascades on the potential.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Varley, J. B.; Lordi, V.; He, X.
2016-01-14
We investigate point defects in CdS buffer layers that may arise from intermixing with Cu(In,Ga)Se{sub 2} (CIGSe) or Cu{sub 2}ZnSn(S,Se){sub 4} (CZTSSe) absorber layers in thin-film photovoltaics (PV). Using hybrid functional calculations, we characterize the migration barriers of Cu, In, Ga, Se, Sn, Zn, Na, and K impurities and assess the activation energies necessary for their diffusion into the bulk of the buffer. We find that Cu, In, and Ga are the most mobile defects in CIGS-derived impurities, with diffusion expected to proceed into the buffer via interstitial-hopping and cadmium vacancy-assisted mechanisms at temperatures ∼400 °C. Cu is predicted to stronglymore » favor migration paths within the basal plane of the wurtzite CdS lattice, which may facilitate defect clustering and ultimately the formation of Cu-rich interfacial phases as observed by energy dispersive x-ray spectroscopic elemental maps in real PV devices. Se, Zn, and Sn defects are found to exhibit much larger activation energies and are not expected to diffuse within the CdS bulk at temperatures compatible with typical PV processing temperatures. Lastly, we find that Na interstitials are expected to exhibit slightly lower activation energies than K interstitials despite having a larger migration barrier. Still, we find both alkali species are expected to diffuse via an interstitially mediated mechanism at slightly higher temperatures than enable In, Ga, and Cu diffusion in the bulk. Our results indicate that processing temperatures in excess of ∼400 °C will lead to more interfacial intermixing with CdS buffer layers in CIGSe devices, and less so for CZTSSe absorbers where only Cu is expected to significantly diffuse into the buffer.« less
Cs diffusion in SiC high-energy grain boundaries
NASA Astrophysics Data System (ADS)
Ko, Hyunseok; Szlufarska, Izabela; Morgan, Dane
2017-09-01
Cesium (Cs) is a radioactive fission product whose release is of concern for Tristructural-Isotropic fuel particles. In this work, Cs diffusion through high energy grain boundaries (HEGBs) of cubic-SiC is studied using an ab-initio based kinetic Monte Carlo (kMC) model. The HEGB environment was modeled as an amorphous SiC, and Cs defect energies were calculated using the density functional theory (DFT). From defect energies, it was suggested that the fastest diffusion mechanism is the diffusion of Cs interstitial in an amorphous SiC. The diffusion of Cs interstitial was simulated using a kMC model, based on the site and transition state energies sampled from the DFT. The Cs HEGB diffusion exhibited an Arrhenius type diffusion in the range of 1200-1600 °C. The comparison between HEGB results and the other studies suggests not only that the GB diffusion dominates the bulk diffusion but also that the HEGB is one of the fastest grain boundary paths for the Cs diffusion. The diffusion coefficients in HEGB are clearly a few orders of magnitude lower than the reported diffusion coefficients from in- and out-of-pile samples, suggesting that other contributions are responsible, such as radiation enhanced diffusion.
Low Temperature Diffusion Transformations in Fe-Ni-Ti Alloys During Deformation and Irradiation
NASA Astrophysics Data System (ADS)
Sagaradze, Victor; Shabashov, Valery; Kataeva, Natalya; Kozlov, Kirill; Arbuzov, Vadim; Danilov, Sergey; Ustyugov, Yury
2018-03-01
The deformation-induced dissolution of Ni3Ti intermetallics in the matrix of austenitic alloys of Fe-36Ni-3Ti type was revealed in the course of their cascade-forming neutron irradiation and cold deformation at low temperatures via employment of Mössbauer method. The anomalous deformation-related dissolution of the intermetallics has been explained by the migration of deformation-induced interstitial atoms from the particles into a matrix in the stress field of moving dislocations. When rising the deformation temperature, this process is substituted for by the intermetallics precipitation accelerated by point defects. A calculation of diffusion processes has shown the possibility of the realization of the low-temperature diffusion of interstitial atoms in configurations of the crowdions and dumbbell pairs at 77-173 K. The existence of interstitial atoms in the Fe-36Ni alloy irradiated by electrons or deformed at 77 K was substantiated in the experiments of the electrical resistivity measurements.
Transient enhanced diffusion in preamorphized silicon: the role of the surface
NASA Astrophysics Data System (ADS)
Cowern, N. E. B.; Alquier, D.; Omri, M.; Claverie, A.; Nejim, A.
1999-01-01
Experiments on the depth dependence of transient enhanced diffusion (TED) of boron during rapid thermal annealing of Ge-preamorphized layers reveal a linear decrease in the diffusion enhancement between the end-of-range (EOR) defect band and the surface. This behavior, which indicates a quasi-steady-state distribution of excess interstitials, emitted from the EOR band and absorbed at the surface, is observed for annealing times as short as 1 s at 900°C. Using an etching procedure we vary the distance xEOR from the EOR band to the surface in the range 80-175 nm, and observe how this influences the interstitial supersaturation, s( x). The supersaturations at the EOR band and the surface remain unchanged, while the gradient d s/d x, and thus the flux to the surface, varies inversely with xEOR. This confirms the validity of earlier modelling of EOR defect evolution in terms of Ostwald ripening, and provides conclusive evidence that the surface is the dominant sink for interstitials during TED.
NASA Astrophysics Data System (ADS)
Le, Kelvin; Johsi, Chet; Figueroa, Daniel; Goddard, Jessica; Li, Xiaosong; Towner, Rheal A.; Saunders, Debra; Smith, Nataliya; Liu, Hong; Hode, Tomas; Nordquist, Robert E.; Chen, Wei R.
2011-03-01
Laser immunotherapy (LIT), using non-invasive laser irradiation, has resulted in promising outcomes in the treatment of late-stage cancer patients. However, the tissue absorption of laser light limits the clinical applications of LIT in patients with dark skin, or with deep tumors. The present study is designed to investigate the thermal effects of interstitial irradiation using an 805-nm laser with a cylindrical diffuser, in order to overcome the limitations of the non-invasive mode of treatment. Cow liver and rat tumors were irradiated using interstitial fiber. The temperature increase was monitored by thermocouples that were inserted into the tissue at different sites around the cylinder fiber. Three-dimensional temperature distribution in target tissues during and after interstitial laser irradiation was also determined by Proton Resonance Frequency. The preliminary results showed that the output power of laser and the optical parameters of the target tissue determined the light distribution in the tissue. The temperature distributions varied in the tissue according to the locations relative to the active tip of the cylindrical diffuser. The temperature increase is strongly related to the laser power and irradiation time. Our results using thermocouples and optical sensors indicated that the PRF method is reliable and accurate for temperature determination. Although the inhomogeneous biological tissues could result in temperature fluctuation, the temperature trend still can be reliable enough for the guidance of interstitial irradiation. While this study provides temperature profiles in tumor tissue during interstitial irradiation, the biological effects of the irradiation remain unclear. Future studies will be needed, particularly in combination with the application of immunostimulant for inducing tumor-specific immune responses in the treatment of metastatic tumors.
First-principles investigation of diffusion and defect properties of Fe and Ni in Cr2O3
NASA Astrophysics Data System (ADS)
Rak, Zs.; Brenner, D. W.
2018-04-01
Diffusion of Fe and Ni and the energetics of Fe- and Ni-related defects in chromium oxide (α-Cr2O3) are investigated using first-principles Density Functional Theory calculations in combination with the climbing-image nudged elastic band method. The orientations of the spin magnetic moments of the migrating ions are taken into account and their effects on migration barriers are examined. Several possible diffusion pathways were explored through interstitial and vacancy mechanisms, and it was found that the principal mode of ion transport in Cr2O3 is via vacancies. Both interstitial- and vacancy-mediated diffusions are anisotropic, with diffusion being faster in the z-direction. The energetics of defect formation indicates that the Ni-related defects are less stable than the Fe-related ones. This is consistent with Ni-diffusion being faster than Fe-diffusion. The results are compared with previous theoretical and experimental data and possible implications in corrosion control are discussed.
Quantitative dual-probe microdialysis: mathematical model and analysis.
Chen, Kevin C; Höistad, Malin; Kehr, Jan; Fuxe, Kjell; Nicholson, Charles
2002-04-01
Steady-state microdialysis is a widely used technique to monitor the concentration changes and distributions of substances in tissues. To obtain more information about brain tissue properties from microdialysis, a dual-probe approach was applied to infuse and sample the radiotracer, [3H]mannitol, simultaneously both in agar gel and in the rat striatum. Because the molecules released by one probe and collected by the other must diffuse through the interstitial space, the concentration profile exhibits dynamic behavior that permits the assessment of the diffusion characteristics in the brain extracellular space and the clearance characteristics. In this paper a mathematical model for dual-probe microdialysis was developed to study brain interstitial diffusion and clearance processes. Theoretical expressions for the spatial distribution of the infused tracer in the brain extracellular space and the temporal concentration at the probe outlet were derived. A fitting program was developed using the simplex algorithm, which finds local minima of the standard deviations between experiments and theory by adjusting the relevant parameters. The theoretical curves accurately fitted the experimental data and generated realistic diffusion parameters, implying that the mathematical model is capable of predicting the interstitial diffusion behavior of [3H]mannitol and that it will be a valuable quantitative tool in dual-probe microdialysis.
Oxidative Corrosion of the UO 2 (001) Surface by Nonclassical Diffusion
DOE Office of Scientific and Technical Information (OSTI.GOV)
Stubbs, Joanne E.; Biwer, Craig A.; Chaka, Anne M.
Uranium oxide is central to every stage of the nuclear fuel cycle, from mining through fuel fabrication and use, to waste disposal and environmental cleanup. Its chemical and mechanical stability are intricately linked to the concentration of interstitial O atoms within the structure and the oxidation state of U. We have previously shown that during corrosion of the UO2 (111) surface under either 1 atm O2 gas or oxygenated water at room temperature, oxygen interstitials diffuse into the substrate to form a superlattice with three-layer periodicity. In the current study, we present results from surface x-ray scattering that reveal themore » structure of the oxygen diffusion profile beneath the (001) surface. The first few layers below the surface oscillate strongly in their surface-normal lattice parameters, suggesting preferential interstitial occupation of every other layer below the surface, which is geometrically consistent with the interstitial network that forms below the oxidized (111) surface. Deeper layers are heavily contracted and indicate that the oxidation front penetrates ~52 Å below the (001) surface after 21 days of dry O2 gas exposure at ambient pressure and temperature. X-ray photoelectron spectroscopy indicates U is present as U(IV), U(V), and U(VI).« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Koumetz, Serge D., E-mail: Serge.Koumetz@univ-rouen.fr; Martin, Patrick; Murray, Hugues
Experimental results on the diffusion of grown-in beryllium (Be) in indium gallium arsenide (In{sub 0.53}Ga{sub 0.47}As) and indium gallium arsenide phosphide (In{sub 0.73}Ga{sub 0.27}As{sub 0.58}P{sub 0.42}) gas source molecular beam epitaxy alloys lattice-matched to indium phosphide (InP) can be successfully explained in terms of a combined kick-out and dissociative diffusion mechanism, involving neutral Be interstitials (Be{sub i}{sup 0}), singly positively charged gallium (Ga), indium (In) self-interstitials (I{sub III}{sup +}) and singly positively charged Ga, In vacancies (V{sub III}{sup +}). A new numerical method of solution to the system of diffusion equations, based on the finite difference approximations and Bairstow's method,more » is proposed.« less
Diffuse Parenchymal Diseases Associated With Aluminum Use and Primary Aluminum Production
2014-01-01
Aluminum use and primary aluminum production results in the generation of various particles, fumes, gases, and airborne materials with the potential for inducing a wide range of lung pathology. Nevertheless, the presence of diffuse parenchymal or interstitial lung disease related to these processes remains controversial. The relatively uncommon occurrence of interstitial lung diseases in aluminum-exposed workers—despite the extensive industrial use of aluminum—the potential for concurrent exposure to other fibrogenic fibers, and the previous use of inhaled aluminum powder for the prevention of silicosis without apparent adverse respiratory effects are some of the reasons for this continuing controversy. Specific aluminum-induced parenchymal diseases described in the literature, including existing evidence of interstitial lung diseases, associated with primary aluminum production are reviewed. PMID:24806728
Kinetics of oxygen interstitial injection and lattice exchange in rutile TiO{sub 2}
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gorai, Prashun; Hollister, Alice G.; Pangan-Okimoto, Kristine
2014-05-12
The existence of a facile surface pathway for generation of O interstitials (O{sub i}) in rutile that can facilitate annihilation of O undesirable vacancies has been demonstrated recently. Through isotopic self-diffusion experiments, the present work determines a value of approximately 1.8 eV for the activation energy of O{sub i} injection from TiO{sub 2} (110). The mean path length for O{sub i} diffusion decreases by nearly an order of magnitude upon adsorption of 0.1 monolayer of sulfur. Sulfur apparently inhibits the surface annihilation rate of Ti interstitials, lowering their bulk concentration and the corresponding catalytic effect they seem to exert upon O{submore » i} exchange with the lattice.« less
Microdefects and self-interstitial diffusion in crystalline silicon
NASA Astrophysics Data System (ADS)
Knowlton, William Barthelemy
In this thesis, a study is presented of D-defects and self-interstitial diffusion in silicon using Li ion (Lisp+) drifting in an electric field and transmission electron microscopy (TEM). Obstruction of Lisp+ drifting has been found in wafers from certain but not all FZ p-type Si. Incomplete Lisp+ drifting always occurs in the central region of the wafers. This work established that interstitial oxygen is not responsible for hindering Lisp+ drifting. The Osb i concentration was measured ({˜}2× 10sp{15}\\ cmsp{-3}) by local vibrational mode Fourier transform infrared spectroscopy and did not vary radially across the wafer. TEM was performed on a samples from the partially Lisp+ drifted area and compared to regions without D-defects. Precipitates were found only in the region containing D-defects that had partially Lisp+ drifted. This result indicates D-defects are responsible for the precipitation that halts the Lisp+ drift process. The precipitates were characterized using selected area diffraction (SAD) and image contrast analysis. The results suggested that the precipitates may cause stacking faults and their identity may be lithium silicides such as Lisb{21}Sisb5\\ and\\ Lisb{13}Sisb4. TEM revealed a decreasing distribution of Li precipitates as a function of Lisp+ drift depth along the growth direction. A preliminary model is presented that simulates Lisp+ drifting. The objective of the model is to incorporate the Li precipitate density distribution and Lisp+ drift depth to extract the size and capture cross-section of the D-defects. Nitrogen (N) doping has been shown to eliminate D-defects as measured by conventional techniques. However, Lisp+ drifting has shown that D-defects are indeed still present. Lisp+ drifting is able to detect D-defects at concentrations lower than conventional techniques. Lisp+ drifting and D-defects provide a useful means to study Si self-interstitial diffusion. The process modeling program SUPREM-IV was used to simulate the results of Si self-interstitial diffusion obtained from Lisp+ drifting experiments. Anomalous results from the Si self-interstitial diffusion experiments forced a re-examination of the possibility of thermal dissociation of D-defects. Thermal annealing experiments that were performed support this possibility. A review of the current literature illustrates the need for more research on the effects of thermal processing on FZ Si to understand the dissolution kinetics of D-defects.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hu, Shenyang; Joshi, Vineet; Lavender, Curt A.
Experiments showed that recrystallization dramatically speeds up the gas bubble swelling kinetics in metallic UMo fuels. In this work a recrystallization model is developed to study the effect of microstructures and radiation conditions on recrystallization kinetics. The model integrates the rate theory of intra-granular gas bubble and interstitial loop evolution and a phase field model of recrystallization zone evolution. A fast passage method is employed to describe one dimensional diffusion of interstitials which have diffusivity several order magnitude larger than that of the fission gas Xe. With the model, the effect of grain sizes on recrystallization kinetics is simulated.
Sethmann, Ingo; Wendt-Nordahl, Gunnar; Knoll, Thomas; Enzmann, Frieder; Simon, Ludwig; Kleebe, Hans-Joachim
2017-06-01
Randall's plaques (RP) are preferred sites for the formation of calcium oxalate monohydrate (COM) kidney stones. However, although processes of interstitial calcium phosphate (CaP) plaque formation are not well understood, the potential of plaque microstructures as indicators of CaP precipitation conditions received only limited attention. We investigated RP-associated COM stones for structural details of the calcified tissues and microstructural features of plaque-stone interfaces as indicators of the initial processes of stone formation. Significantly increased CaP supersaturation can be expected for interstitial fluid, if reabsorbed ions from the tubular system continuously diffuse into the collagenous connective tissue. Densely packed, fine-grained CaP particles were found in dense textures of basement membranes while larger, laminated particles were scattered in coarse-meshed interstitial tissue, which we propose to be due to differential spatial confinements and restrictions of ion diffusion. Particle morphologies suggest an initial precipitation as metastable amorphous calcium phosphate (ACP). Morphologies and arrangements of first COM crystals at the RP-stone interface ranged from stacked euhedral platelets to skeletal morphologies and even porous, dendritic structures, indicating, in this order, increasing levels of COM supersaturation. Furthermore, these first COM crystals were often coated with CaP. On this basis, we propose that ions from CaP-supersaturated interstitial fluid may diffuse through porous RP into the urine, where a resulting local increase in COM supersaturation could trigger crystal nucleation and, hence, initiate stone formation. Ion-depleted fluid in persistent pores of initial COM layers may get replenished from interstitial fluid, leading to CaP precipitation in porous COM.
Prediction of oxygen distribution in aortic valve leaflet considering diffusion and convection.
Wang, Ling; Korossis, Sotirios; Fisher, John; Ingham, Eileen; Jin, Zhongmin
2011-07-01
Oxygen supply and transport is an important consideration in the development of tissue engineered constructs. Previous studies from our group have focused on the effect of tissue thickness on the oxygen diffusion within a three-dimensional aortic valve leaflet model, and highlighted the necessity for additional transport mechanisms such as oxygen convection. The aims of this study were to investigate the effect of interstitial fluid flow within the aortic valve leaflet, induced by the cyclic loading of the leaflet, on oxygen transport. Indentation testing and finite element modelings were employed to derive the biphasic properties of the leaflet tissue. The biphasic properties were subsequently used in the computational modeling of oxygen convection in the leaflet, which was based on the effective interstitial fluid velocity and the tissue deformation. Subsequently, the oxygen profile was predicted within the valve leaflet model by solving the diffusion and convection equation simultaneously utilizing the finite difference method. The compression modulus (E) and hydraulic permeability were determined by adapting a finite element model to the experimental indentation test on valvular tissue, E = 0.05MPa, and k =2.0 mm4/Ns. Finite element model of oxygen convection in valvular tissue incorporating the predicted biphasic properties was developed and the interstitial fluid flow rate was calculated falling in range of 0.025-0.25 mm/s depending on the tissue depth. Oxygen distribution within valvular tissue was predicted using one-dimensional oxygen diffusion model taking into consider the interstitial fluid effect. It was found that convection did enhance the oxygen transport in valvular tissue by up to 68% increase in the minimum oxygen tension within the tissue, depending on the strain level of the tissue as reaction of the magnitude and frequencies of the cardiac loading. The effective interstitial fluid velocity was found to play an important role in enhancing the oxygen transport within the valve leaflet. Such an understanding is important in the development of valvular tissue engineered constructs.
Specific features of defect and mass transport in concentrated fcc alloys
Osetsky, Yuri N.; Béland, Laurent K.; Stoller, Roger E.
2016-06-15
We report that diffusion and mass transport are basic properties that control materials performance, such as phase stability, solute decomposition and radiation tolerance. While understanding diffusion in dilute alloys is a mature field, concentrated alloys are much less studied. Here, atomic-scale diffusion and mass transport via vacancies and interstitial atoms are compared in fcc Ni, Fe and equiatomic Ni-Fe alloy. High temperature properties were determined using conventional molecular dynamics on the microsecond timescale, whereas the kinetic activation-relaxation (k-ART) approach was applied at low temperatures. The k-ART was also used to calculate transition states in the alloy and defect transport coefficients.more » The calculations reveal several specific features. For example, vacancy and interstitial defects migrate via different alloy components, diffusion is more sluggish in the alloy and, notably, mass transport in the concentrated alloy cannot be predicted on the basis of diffusion in its pure metal counterparts. Lastly, the percolation threshold for the defect diffusion in the alloy is discussed and it is suggested that this phenomenon depends on the properties and diffusion mechanisms of specific defects.« less
Predicting vacancy-mediated diffusion of interstitial solutes in α -Fe
NASA Astrophysics Data System (ADS)
Barouh, Caroline; Schuler, Thomas; Fu, Chu-Chun; Jourdan, Thomas
2015-09-01
Based on a systematic first-principles study, the lowest-energy migration mechanisms and barriers for small vacancy-solute clusters (VnXm ) are determined in α -Fe for carbon, nitrogen, and oxygen, which are the most frequent interstitial solutes in several transition metals. We show that the dominant clusters present at thermal equilibrium (V X and V X2 ) have very reduced mobility compared to isolated solutes, while clusters composed of a solute bound to a small vacancy cluster may be significantly more mobile. In particular, V3X is found to be the fastest cluster for all three solutes. This result relies on the large diffusivity of the most compact trivacancy in a bcc lattice. Therefore, it may also be expected for interstitial solutes in other bcc metals. In the case of iron, we find that V3X may be as fast as or even more mobile than an interstitial solute. At variance with common assumptions, the trapping of interstitial solutes by vacancies does not necessarily decrease the mobility of the solute. Additionally, cluster dynamics simulations are performed considering a simple iron system with supersaturation of vacancies, in order to investigate the impacts of small mobile vacancy-solute clusters on properties such as the transport of solute and the cluster size distributions.
Near-infrared fiber delivery systems for interstitial photothermal therapy
NASA Astrophysics Data System (ADS)
Slatkine, Michael; Mead, Douglass S.; Konwitz, Eli; Rosenberg, Zvi
1995-05-01
Interstitial photothermal coagulation has long been recognized as a potential important, minimally invasive modality for treating a variety of pathologic conditions. We present two different technologies for interstitial photothermal coagulation of tissue with infrared lasers: An optical fiber with a radially symmetric diffusing tip for deep coagulation, and a flat bare fiber for the coagulation of thin and long lesions by longitudinally moving the fiber while lasing in concert. Urology and Gynecology Fibers: The fibers are 600 microns diameter with 20 - 40 mm frosted distal tips protected by a smooth transparent cover. When used with a Neodymium:YAG (Nd:YAG) laser, the active fiber surface diffuses optical radiation in a radial pattern, delivering up to 40 W power, and thus providing consistent and uniform interstitial photothermal therapy. Coagulation depth ranges from 4 to 15 mm. Animal studies in the United States and clinical studies in Europe have demonstrated the feasibility of using these fibers to treat benign prostatic hyperplasia and endometrial coagulation. Rhinology Fiber: The fiber is an 800 micron diameter flat fiber operated at 8 W power level while being interstitially pushed and pulled along its axis. A long and thin coagulated zone is produced. The fiber is routinely used for the shrinking of hypertrophic turbinates without surrounding and bone mucusal damage in ambulatory environments.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Riise, Heine Nygard, E-mail: h.n.riise@fys.uio.no; Azarov, Alexander; Svensson, Bengt G.
2015-07-13
Shallow, Boron (B)-doped p{sup +} emitters have been realized using spin-on deposition and Flash Lamp Annealing (FLA) to diffuse B into monocrystalline float zone Silicon (Si). The emitters extend between 50 and 140 nm in depth below the surface, have peak concentrations between 9 × 10{sup 19 }cm{sup –3} and 3 × 10{sup 20 }cm{sup –3}, and exhibit sheet resistances between 70 and 3000 Ω/□. An exceptionally large increase in B diffusion occurs for FLA energy densities exceeding ∼93 J/cm{sup 2} irrespective of 10 or 20 ms pulse duration. The effect is attributed to enhanced diffusion of B caused by Si interstitial injection following a thermally activated reaction betweenmore » the spin-on diffusant film and the silicon wafer.« less
Carbon diffusion in bulk hcp zirconium: A multi-scale approach
NASA Astrophysics Data System (ADS)
Xu, Y.; Roques, J.; Domain, C.; Simoni, E.
2016-05-01
In the framework of the geological repository of the used fuel claddings of pressurized water reactor, carbon behavior in bulk zirconium is studied by periodic Density Functional Theory calculations. The C interstitial sites were investigated and it was found that there are two possible carbon interstitial sites: a distorted basal tetragonal site and an octahedral site. There are four types of possible atomic jumps between them. After calculating the migration energies, the attempt frequencies and the jump probabilities for each possible migration path, kinetic Monte Carlo (KMC) simulations were performed to simulate carbon diffusion at the macroscopic scale. The results show that carbon diffusion in pure Zr bulk is extremely limited at the storage temperature (50 °C). Since there are defects in Zr bulk, in a second step, the effect of atomic vacancy was studied and it was proved that vacancies cannot increase carbon diffusion.
First principles study of intrinsic defects in hexagonal tungsten carbide
NASA Astrophysics Data System (ADS)
Kong, Xiang-Shan; You, Yu-Wei; Xia, J. H.; Liu, C. S.; Fang, Q. F.; Luo, G.-N.; Huang, Qun-Ying
2010-11-01
The characteristics of intrinsic defects are important for the understanding of self-diffusion processes, mechanical strength, brittleness, and plasticity of tungsten carbide, which are present in the divertor of fusion reactors. Here, we use first-principles calculations to investigate the stability of point defects and their complexes in tungsten carbide. Our results confirm that the defect formation energies of carbon are much lower than that of tungsten and reveal the carbon vacancy to be the dominant defect in tungsten carbide. The C sbnd C dimer configuration along the dense a direction is the most stable configuration of carbon interstitial defect. The results of carbon defect diffusion show that the carbon vacancy stay for a wide range of temperature because of extremely high diffusion barriers, while carbon interstitial migration is activated at lower temperatures for its considerably lower activation energy. Both of them prefer to diffusion in carbon basal plane.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Andersson, Anders D.; Tonks, Michael R.; Casillas, Luis
2014-10-31
In light water reactor fuel, gaseous fission products segregate to grain boundaries, resulting in the nucleation and growth of large intergranular fission gas bubbles. Based on the mechanisms established from density functional theory (DFT) and empirical potential calculations 1, continuum models for diffusion of xenon (Xe), uranium (U) vacancies and U interstitials in UO 2 have been derived for both intrinsic conditions and under irradiation. Segregation of Xe to grain boundaries is described by combining the bulk diffusion model with a model for the interaction between Xe atoms and three different grain boundaries in UO 2 ( Σ5 tilt, Σ5more » twist and a high angle random boundary),as derived from atomistic calculations. All models are implemented in the MARMOT phase field code, which is used to calculate effective Xe and U diffusivities as well as redistribution for a few simple microstructures.« less
Gyulassy, Attila; Knoll, Aaron; Lau, Kah Chun; Wang, Bei; Bremer, Peer-Timo; Papka, Michael E; Curtiss, Larry A; Pascucci, Valerio
2016-01-01
Large-scale molecular dynamics (MD) simulations are commonly used for simulating the synthesis and ion diffusion of battery materials. A good battery anode material is determined by its capacity to store ion or other diffusers. However, modeling of ion diffusion dynamics and transport properties at large length and long time scales would be impossible with current MD codes. To analyze the fundamental properties of these materials, therefore, we turn to geometric and topological analysis of their structure. In this paper, we apply a novel technique inspired by discrete Morse theory to the Delaunay triangulation of the simulated geometry of a thermally annealed carbon nanosphere. We utilize our computed structures to drive further geometric analysis to extract the interstitial diffusion structure as a single mesh. Our results provide a new approach to analyze the geometry of the simulated carbon nanosphere, and new insights into the role of carbon defect size and distribution in determining the charge capacity and charge dynamics of these carbon based battery materials.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gyulassy, Attila; Knoll, Aaron; Lau, Kah Chun
2016-01-01
Large-scale molecular dynamics (MD) simulations are commonly used for simulating the synthesis and ion diffusion of battery materials. A good battery anode material is determined by its capacity to store ion or other diffusers. However, modeling of ion diffusion dynamics and transport properties at large length and long time scales would be impossible with current MD codes. To analyze the fundamental properties of these materials, therefore, we turn to geometric and topological analysis of their structure. In this paper, we apply a novel technique inspired by discrete Morse theory to the Delaunay triangulation of the simulated geometry of a thermallymore » annealed carbon nanosphere. We utilize our computed structures to drive further geometric analysis to extract the interstitial diffusion structure as a single mesh. Our results provide a new approach to analyze the geometry of the simulated carbon nanosphere, and new insights into the role of carbon defect size and distribution in determining the charge capacity and charge dynamics of these carbon based battery materials.« less
Gyulassy, Attila; Knoll, Aaron; Lau, Kah Chun; ...
2016-01-31
Large-scale molecular dynamics (MD) simulations are commonly used for simulating the synthesis and ion diffusion of battery materials. A good battery anode material is determined by its capacity to store ion or other diffusers. However, modeling of ion diffusion dynamics and transport properties at large length and long time scales would be impossible with current MD codes. To analyze the fundamental properties of these materials, therefore, we turn to geometric and topological analysis of their structure. In this paper, we apply a novel technique inspired by discrete Morse theory to the Delaunay triangulation of the simulated geometry of a thermallymore » annealed carbon nanosphere. We utilize our computed structures to drive further geometric analysis to extract the interstitial diffusion structure as a single mesh. Lastly, our results provide a new approach to analyze the geometry of the simulated carbon nanosphere, and new insights into the role of carbon defect size and distribution in determining the charge capacity and charge dynamics of these carbon based battery materials.« less
Trochet, Mickaël; Béland, Laurent Karim; Joly, Jean -François; ...
2015-06-16
We study point-defect diffusion in crystalline silicon using the kinetic activation-relaxation technique (k-ART), an off-lattice kinetic Monte Carlo method with on-the-fly catalog building capabilities based on the activation-relaxation technique (ART nouveau), coupled to the standard Stillinger-Weber potential. We focus more particularly on the evolution of crystalline cells with one to four vacancies and one to four interstitials in order to provide a detailed picture of both the atomistic diffusion mechanisms and overall kinetics. We show formation energies, activation barriers for the ground state of all eight systems, and migration barriers for those systems that diffuse. Additionally, we characterize diffusion pathsmore » and special configurations such as dumbbell complex, di-interstitial (IV-pair+2I) superdiffuser, tetrahedral vacancy complex, and more. In conclusion, this study points to an unsuspected dynamical richness even for this apparently simple system that can only be uncovered by exhaustive and systematic approaches such as the kinetic activation-relaxation technique.« less
Direct evidence of the recombination of silicon interstitial atoms at the silicon surface
NASA Astrophysics Data System (ADS)
Lamrani, Y.; Cristiano, F.; Colombeau, B.; Scheid, E.; Calvo, P.; Schäfer, H.; Claverie, Alain
2004-02-01
In this experiment, a Si wafer containing four lightly doped B marker layers epitaxially grown by CVD has been implanted with 100 keV Si + ions to a dose of 2 × 10 14 ions/cm 2 and annealed at 850 °C for several times in an RTA system in flowing N 2. TEM and SIMS analysis, in conjunction with a transient enhanced diffusion (TED) evaluation method based on the kick-out diffusion mechanism, have allowed us to accurately study the boron TED evolution in presence of extended defects. We show that the silicon surface plays a key role in the recombination of Si interstitial atoms by providing the first experimental evidence of the resulting Si ints supersaturation gradient between the defect region and the surface. Our results indicate an upper limit of about 200 nm for the surface recombination length of Si interstitials at 850 °C in a N 2 ambient.
Experimental and theoretical comparison of Sb, As, and P diffusion mechanisms and doping in CdTe
NASA Astrophysics Data System (ADS)
Colegrove, E.; Yang, J.-H.; Harvey, S. P.; Young, M. R.; Burst, J. M.; Duenow, J. N.; Albin, D. S.; Wei, S.-H.; Metzger, W. K.
2018-02-01
Fundamental material doping challenges have limited CdTe electro-optical applications. In this work, the As atomistic diffusion mechanisms in CdTe are examined by spatially resolving dopant incorporation in both single-crystalline and polycrystalline CdTe over a range of experimental conditions. Density-functional theory calculations predict experimental activation energies and indicate that As diffuses slowly through the Te sublattice and quickly along GBs similar to Sb. Because of its atomic size and associated defect chemistry, As does not have a fast interstitial diffusion component similar to P. Experiments to incorporate and activate P, As, and Sb in polycrystalline CdTe are conducted to examine if ex situ Group V doping can overcome historic polycrystalline doping limits. The distinct P, As, and Sb diffusion characteristics create different strategies for increasing hole density. Because fast interstitial diffusion is prominent for P, less aggressive diffusion conditions followed by Cd overpressure to relocate the Group V element to the Te lattice site is effective. For larger atoms, slower diffusion through the Te sublattice requires more aggressive diffusion, however further activation is not always necessary. Based on the new physical understanding, we have obtained greater than 1016 cm-3 hole density in polycrystalline CdTe films by As and P diffusion.
Experimental and theoretical comparison of Sb, As, and P diffusion mechanisms and doping in CdTe
DOE Office of Scientific and Technical Information (OSTI.GOV)
Colegrove, E.; Yang, J-H; Harvey, S. P.
Fundamental material doping challenges have limited CdTe electro-optical applications. In this work, the As atomistic diffusion mechanisms in CdTe are examined by spatially resolving dopant incorporation in both single-crystalline and polycrystalline CdTe over a range of experimental conditions. Density-functional theory calculations predict experimental activation energies and indicate As diffuses slowly through the Te sublattice and quickly along GBs similar to Sb. Because of its atomic size and associated defect chemistry, As does not have a fast interstitial diffusion component similar to P. Experiments to incorporate and activate P, As, and Sb in polycrystalline CdTe are conducted to examine if ex-situmore » Group V doping can overcome historic polycrystalline doping limits. The distinct P, As, and Sb diffusion characteristics create different strategies for increasing hole density. Because fast interstitial diffusion is prominent for P, less aggressive diffusion conditions followed by Cd overpressure to relocate the Group V element to the Te lattice site is effective. For larger atoms, slower diffusion through the Te sublattice requires more aggressive diffusion, however further activation is not always necessary. Based on the new physical understanding, we have obtained greater than 10^16 cm^-3 hole density in polycrystalline CdTe films by As and P diffusion.« less
Experimental and theoretical comparison of Sb, As, and P diffusion mechanisms and doping in CdTe
Colegrove, E.; Yang, J-H; Harvey, S. P.; ...
2018-01-29
Fundamental material doping challenges have limited CdTe electro-optical applications. In this work, the As atomistic diffusion mechanisms in CdTe are examined by spatially resolving dopant incorporation in both single-crystalline and polycrystalline CdTe over a range of experimental conditions. Density-functional theory calculations predict experimental activation energies and indicate As diffuses slowly through the Te sublattice and quickly along GBs similar to Sb. Because of its atomic size and associated defect chemistry, As does not have a fast interstitial diffusion component similar to P. Experiments to incorporate and activate P, As, and Sb in polycrystalline CdTe are conducted to examine if ex-situmore » Group V doping can overcome historic polycrystalline doping limits. The distinct P, As, and Sb diffusion characteristics create different strategies for increasing hole density. Because fast interstitial diffusion is prominent for P, less aggressive diffusion conditions followed by Cd overpressure to relocate the Group V element to the Te lattice site is effective. For larger atoms, slower diffusion through the Te sublattice requires more aggressive diffusion, however further activation is not always necessary. Based on the new physical understanding, we have obtained greater than 10^16 cm^-3 hole density in polycrystalline CdTe films by As and P diffusion.« less
Molecular dynamics simulations of the diffusion and coalescence of helium in tungsten
NASA Astrophysics Data System (ADS)
Zhou, Y. L.; Wang, J.; Hou, Q.; Deng, A. H.
2014-03-01
Molecular dynamics (MD) simulations are performed on the diffusion and coalescence of helium in tungsten. A new method for determining the effective capture radii (ECRs) and the dissociation energies of helium-related defects is proposed in this work. It is observed that the ECR of an interstitial helium atom trapping helium interstitials (denoted as He-Hen, n = 1-3) decreases with increasing temperature, except for He-He2 at T < 400 K. The traditional view that the ECR is approximately equal to the lattice constant, which has been widely used in kinetic Monte Carlo (KMC) and rate theory (RT) models, is only valid in some cases. However, the ECR between an interstitial helium atom and a substitutional helium atom (denoted as He-HeV) always approximates the third nearest-neighbor tetrahedral positions of the HeV. The diffusion coefficients Dn for helium clusters are also investigated. He2 migrates more quickly than a single He atom does at T < 400 K, whereas the diffusion path of He2 changes at higher temperatures. Another counterintuitive observation is that D5 > D3 > D4 at T < 500 K, which can be attributed to the disordered structure of He5. The Arrhenius relation describes the diffusion of Hen well in the temperature range from 300 K to 550 K, whereas the diffusion is not a standard thermally activated process at higher temperatures. Taken together, these results help elucidate the initial stage of helium bubble formation in tungsten as well as the requirements of long-term evolution methods such as KMC or RT models.
New insights into canted spiro carbon interstitial in graphite
NASA Astrophysics Data System (ADS)
EL-Barbary, A. A.
2017-12-01
The self-interstitial carbon is the key to radiation damage in graphite moderator nuclear reactor, so an understanding of its behavior is essential for plant safety and maximized reactor lifetime. The density functional theory is applied on four different graphite unit cells, starting from of 64 carbon atoms up to 256 carbon atoms, using AIMPRO code to obtain the energetic, athermal and mechanical properties of carbon interstitial in graphite. This study presents first principles calculations of the energy of formation that prove its high barrier to athermal diffusion (1.1 eV) and the consequent large critical shear stress (39 eV-50 eV) necessary to shear graphite planes in its presence. Also, for the first time, the gamma surface of graphite in two dimensions is calculated and found to yield the critical shear stress for perfect graphite. Finally, in contrast to the extensive literature describing the interstitial of carbon in graphite as spiro interstitial, in this work the ground state of interstitial carbon is found to be canted spiro interstitial.
Interstitial fluid flow and drug delivery in vascularized tumors: a computational model.
Welter, Michael; Rieger, Heiko
2013-01-01
Interstitial fluid is a solution that bathes and surrounds the human cells and provides them with nutrients and a way of waste removal. It is generally believed that elevated tumor interstitial fluid pressure (IFP) is partly responsible for the poor penetration and distribution of therapeutic agents in solid tumors, but the complex interplay of extravasation, permeabilities, vascular heterogeneities and diffusive and convective drug transport remains poorly understood. Here we consider-with the help of a theoretical model-the tumor IFP, interstitial fluid flow (IFF) and its impact upon drug delivery within tumor depending on biophysical determinants such as vessel network morphology, permeabilities and diffusive vs. convective transport. We developed a vascular tumor growth model, including vessel co-option, regression, and angiogenesis, that we extend here by the interstitium (represented by a porous medium obeying Darcy's law) and sources (vessels) and sinks (lymphatics) for IFF. With it we compute the spatial variation of the IFP and IFF and determine its correlation with the vascular network morphology and physiological parameters like vessel wall permeability, tissue conductivity, distribution of lymphatics etc. We find that an increased vascular wall conductivity together with a reduction of lymph function leads to increased tumor IFP, but also that the latter does not necessarily imply a decreased extravasation rate: Generally the IF flow rate is positively correlated with the various conductivities in the system. The IFF field is then used to determine the drug distribution after an injection via a convection diffusion reaction equation for intra- and extracellular concentrations with parameters guided by experimental data for the drug Doxorubicin. We observe that the interplay of convective and diffusive drug transport can lead to quite unexpected effects in the presence of a heterogeneous, compartmentalized vasculature. Finally we discuss various strategies to increase drug exposure time of tumor cells.
Alpha-particle radiotherapy: For large solid tumors diffusion trumps targeting.
Zhu, Charles; Sempkowski, Michelle; Holleran, Timothy; Linz, Thomas; Bertalan, Thomas; Josefsson, Anders; Bruchertseifer, Frank; Morgenstern, Alfred; Sofou, Stavroula
2017-06-01
Diffusion limitations on the penetration of nanocarriers in solid tumors hamper their therapeutic use when labeled with α-particle emitters. This is mostly due to the α-particles' relatively short range (≤100 μm) resulting in partial tumor irradiation and limited killing. To utilize the high therapeutic potential of α-particles against solid tumors, we designed non-targeted, non-internalizing nanometer-sized tunable carriers (pH-tunable liposomes) that are triggered to release, within the slightly acidic tumor interstitium, highly-diffusive forms of the encapsulated α-particle generator Actinium-225 ( 225 Ac) resulting in more homogeneous distributions of the α-particle emitters, improving uniformity in tumor irradiation and increasing killing efficacies. On large multicellular spheroids (400 μm-in-diameter), used as surrogates of the avascular areas of solid tumors, interstitially-releasing liposomes resulted in best growth control independent of HER2 expression followed in performance by (a) the HER2-targeting radiolabeled antibody or (b) the non-responsive liposomes. In an orthotopic human HER2-negative mouse model, interstitially-releasing 225 Ac-loaded liposomes resulted in the longest overall and median survival. This study demonstrates the therapeutic potential of a general strategy to bypass the diffusion-limited transport of radionuclide carriers in solid tumors enabling interstitial release from non-internalizing nanocarriers of highly-diffusing and deeper tumor-penetrating molecular forms of α-particle emitters, independent of cell-targeting. Copyright © 2017 Elsevier Ltd. All rights reserved.
Agut, Amalia; Talavera, Jesus; Buendia, Antonio; Anson, Agustina; Santarelli, Giorgia; Gomez, Serafin
2015-01-01
A 1.5-year-old, 23 kg intact male Dalmatian dog was evaluated for acute respiratory insufficiency without a previous history of trauma or toxic exposition. Imaging revealed pneumomediastinum, pneumothorax, diffuse unstructured interstitial pulmonary pattern, pulmonary interstitial emphysema, and pneumoretroperitoneum. Histopathological evaluation of the lungs revealed perivascular and peribronchial emphysema, mild lymphocytic interstitial pneumonia with atypical proliferation of type II pneumocytes in bronchioles and alveoli. A lung disease resembling fibrosing interstitial pneumonia in man and cats has been previously reported in Dalmatians and should be included as a differential diagnosis for Dalmatians with this combination of clinical and imaging characteristics. © 2014 American College of Veterinary Radiology.
Substitutional and Interstitial Diffusion in alpha2-Ti3Al(O)
NASA Technical Reports Server (NTRS)
Copland, Evan; Young, David J.; Gleeson, Brian; Jacobson, Nathan
2007-01-01
The reaction between Al2O3 and alpha2-Ti3Al was studied with a series of Al2O3/alpha2-Ti3Al multiphase diffusion couples annealed at 900, 1000 and 1100 C. The diffusion-paths were found to strongly depend on alpha2- Ti3Al(O) composition. For alloys with low oxygen concentrations the reaction involved the reduction of Al2O3, the formation of a gamma-TiAl reaction-layer and diffusion of Al and O into the alpha2-Ti3Al substrate. Measured concentration profiles across the interaction-zone showed "up-hill" diffusion of O in alpha2-Ti3Al(O) indicating a significant thermodynamic interaction between O and Al, Ti or both. Diffusion coefficients for the interstitial O in alpha2-Ti3Al(O) were determined independently from the interdiffusion of Ti and Al on the substitutional lattice. Diffusion coefficients are reported for alpha2-Ti3Al(O) as well as gamma-TiAl. Interpretation of the results were aided with the subsequent measurement of the activities of Al, Ti and O in alpha 2-Ti3Al(O) by Knudsen effusion-cell mass spectrometry.
Chino, Haruka; Sekine, Akimasa; Baba, Tomohisa; Iwasawa, Tae; Okudela, Koji; Takemura, Tamiko; Itoh, Harumi; Sato, Shinji; Suzuki, Yasuo; Ogura, Takashi
2016-01-01
We herein present the first case of rapidly progressive interstitial lung disease (RP-ILD) with anti-melanoma differentiation-associated protein 5 (MDA5) antibody evaluated by surgical lung biopsy (SLB). High-resolution CT scan revealed perilobular opacities, which rapidly became thicker and formed consolidation, resulting in remarkable loss of lung volume. Specimens taken from SLB revealed membranous organization with alveolar occlusion, dilation of alveolar ducts, and sacs with collapsed alveoli, which are typical features of diffuse alveolar damage (DAD). Rapidly progressive perilobular opacities may be characteristic of RP-ILD with anti-MDA5 antibody and DAD.
Barrier Coatings for Refractory Metals and Superalloys
DOE Office of Scientific and Technical Information (OSTI.GOV)
SM Sabol; BT Randall; JD Edington
2006-02-23
In the closed working fluid loop of the proposed Prometheus space nuclear power plant (SNPP), there is the potential for reaction of core and plant structural materials with gas phase impurities and gas phase transport of interstitial elements between superalloy and refractory metal alloy components during service. Primary concerns are surface oxidation, interstitial embrittlement of refractory metals and decarburization of superalloys. In parallel with kinetic investigations, this letter evaluates the ability of potential coatings to prevent or impede communication between reactor and plant components. Key coating requirements are identified and current technology coating materials are reviewed relative to these requirements.more » Candidate coatings are identified for future evaluation based on current knowledge of design parameters and anticipated environment. Coatings were identified for superalloys and refractory metals to provide diffusion barriers to interstitial transport and act as reactive barriers to potential oxidation. Due to their high stability at low oxygen potential, alumina formers are most promising for oxidation protection given the anticipated coolant gas chemistry. A sublayer of iridium is recommended to provide inherent diffusion resistance to interstitials. Based on specific base metal selection, a thin film substrate--coating interdiffusion barrier layer may be necessary to meet mission life.« less
Quantum statistical effects in the mass transport of interstitial solutes in a crystalline solid
NASA Astrophysics Data System (ADS)
Woo, C. H.; Wen, Haohua
2017-09-01
The impact of quantum statistics on the many-body dynamics of a crystalline solid at finite temperatures containing an interstitial solute atom (ISA) is investigated. The Mori-Zwanzig theory allows the many-body dynamics of the crystal to be formulated and solved analytically within a pseudo-one-particle approach using the Langevin equation with a quantum fluctuation-dissipation relation (FDR) based on the Debye model. At the same time, the many-body dynamics is also directly solved numerically via the molecular dynamics approach with a Langevin heat bath based on the quantum FDR. Both the analytical and numerical results consistently show that below the Debye temperature of the host lattice, quantum statistics significantly impacts the ISA transport properties, resulting in major departures from both the Arrhenius law of diffusion and the Einstein-Smoluchowski relation between the mobility and diffusivity. Indeed, we found that below one-third of the Debye temperature, effects of vibrations on the quantum mobility and diffusivity are both orders-of-magnitude larger and practically temperature independent. We have shown that both effects have their physical origin in the athermal lattice vibrations derived from the phonon ground state. The foregoing theory is tested in quantum molecular dynamics calculation of mobility and diffusivity of interstitial helium in bcc W. In this case, the Arrhenius law is only valid in a narrow range between ˜300 and ˜700 K. The diffusivity becomes temperature independent on the low-temperature side while increasing linearly with temperature on the high-temperature side.
Lohmann, Katharina L.; Allen, Andrew L.
2015-01-01
A mature Quarter horse was euthanized following colic of 3 days duration. Postmortem, the large intestine, except the descending colon, was diffusely distended and associated with adhesion of the transverse colon to the pancreas, which had changes consistent with chronic active interstitial pancreatitis. Other lesions included hepatic fibrosis, erosive gastritis, and bilateral adrenal cortical hyperplasia. PMID:26538675
Mukhopadhyay, Sanjay; Parambil, Joseph G
2012-10-01
Acute interstitial pneumonia (AIP) is a term used for an idiopathic form of acute lung injury characterized clinically by acute respiratory failure with bilateral lung infiltrates and histologically by diffuse alveolar damage (DAD), a combination of findings previously known as the Hamman-Rich syndrome. This review aims to clarify the diagnostic criteria of AIP, its relationship with DAD and acute respiratory distress syndrome (ARDS), key etiologies that need to be excluded before making the diagnosis, and the salient clinical features. Cases that meet clinical and pathologic criteria for AIP overlap substantially with those that fulfill clinical criteria for ARDS. The main differences between AIP and ARDS are that AIP requires a histologic diagnosis of DAD and exclusion of known etiologies. AIP should also be distinguished from "acute exacerbation of IPF," a condition in which acute lung injury (usually DAD) supervenes on underlying usual interstitial pneumonia (UIP)/idiopathic pulmonary fibrosis (IPF). Thieme Medical Publishers 333 Seventh Avenue, New York, NY 10001, USA.
Kanchustambham, Venkat Kiran; Saladi, Swetha; Mahmoudassaf, Sarah; Patolia, Setu
2016-12-09
A woman aged 61 years presented to the emergency room with a 1-week history of dyspnoea on exertion and dry cough. X-ray of the chest showed diffuse interstitial opacities and was started on antibiotics and furosemide, and despite these measures, patient's respiratory status worsened, prompting endotracheal intubation. CT of the chest showed diffuse bilateral ground glass opacities and underwent bronchoscope with trans-bronchial biopsy that showed chronic bronchitis. Pt was empirically started on intravenous steroids due to concerns for interstitial lung disease (ILD). Autoimmune work up was sent and underwent video-assisted thoracoscopic surgery-guided biopsy of the lung that showed non-specific interstitial pattern with fibrosis. The patient was diagnosed as having antisynthetase syndrome with pulmonary involvement (ILD) as the cause of her acute respiratory failure. Azathioprine was started as steroid-sparing agent and was weaned off the ventilator to a tracheostomy collar and discharged to long-term rehabilitation centre. 2016 BMJ Publishing Group Ltd.
NASA Astrophysics Data System (ADS)
Fernández-Lajús, E.; Gamen, R.; Sánchez, M.; Scalia, M. C.; Baume, G. L.
2016-08-01
From observations made with the ``Jorge Sahade'' telescope of the Complejo Astronomico El Leoncito, the UBVRI-band extinction coeficients were measured, and some parameters and characteristics of the direct-image CCD camera ROPER 2048B were determined.
Evolution of Radiation Induced Defects in SiC: A Multiscale Simulation Approach
NASA Astrophysics Data System (ADS)
Jiang, Hao
Because of various excellent properties, SiC has been proposed for many applications in nuclear reactors including cladding layers in fuel rod, fission products container in TRISO fuel, and first wall/blanket in magnetic controlled fusion reactors. Upon exposure to high energy radiation environments, point defects and defect clusters are generated in materials in amounts significantly exceeding their equilibrium concentrations. The accumulation of defects can lead to undesired consequences such as crystalline-to-amorphous transformation1, swelling, and embrittlement, and these phenomena can adversely affect the lifetime of SiC based components in nuclear reactors. It is of great importance to understand the accumulation process of these defects in order to estimate change in properties of this material and to design components with superior ability to withstand radiation damages. Defect clusters are widely in SiC irradiated at the operation temperatures of various reactors. These clusters are believed to cause more than half of the overall swelling of irradiated SiC and can potentially lead to lowered thermal conductivity and mechanical strength. It is critical to understand the formation and growth of these clusters. Diffusion of these clusters is one importance piece to determine the growth rate of clusters; however it is unclear so far due to the challenges in simulating rare events. Using a combination of kinetic Activation Relaxation Technique with empirical potential and ab initio based climbing image nudged elastic band method, I performed an extensive search of the migration paths of the most stable carbon tri-interstitial cluster in SiC. This research reveals paths with the lowest energy barriers to migration, rotation, and dissociation of the most stable cluster. Based on these energy barriers, I concluded defect clusters are thermally immobile at temperatures lower than 1500 K and can dissociate into smaller clusters and single interstitials at temperatures beyond that. Even though clusters cannot diffuse by thermal vibrations, we found they can migrate at room temperature under the influence of electron radiation. This is the first direct observation of radiation-induced diffusion of defect clusters in bulk materials. We show that the underlying mechanism of this athermal diffusion is elastic collision between incoming electrons and cluster atoms. Our findings suggest that defect clusters may be mobile under certain irradiation conditions, changing current understanding of cluster annealing process in irradiated SiC. With the knowledge of cluster diffusion in SiC demonstrated in this thesis, we now become able to predict cluster evolution in SiC with good agreement with experimental measurements. This ability can enable us to estimate changes in many properties of irradiated SiC relevant for its applications in reactors. Internal interfaces such as grain boundaries can behave as sinks to radiation induced defects. The ability of GBs to absorb, transport, and annihilate radiation-induced defects (sink strength) is important to understand radiation response of polycrystalline materials and to better design interfaces for improved resistance to radiation damage. Nowadays, it is established GBs' sink strength is not a static property but rather evolves with many factors, including radiation environments, grain size, and GB microstructure. In this thesis, I investigated the response of small-angle tilt and twist GBs to point defects fluxes in SiC. First of all, I found the pipe diffusion of interstitials in tilt GBs is slower than bulk diffusion. This is because the increased interatomic distance at dislocation cores raises the migration barrier of interstitial dumbbells. Furthermore, I show that both the annihilation of interstitials at jogs and jog nucleation from clusters are diffusion-controlled and can occur under off-stoichiometric interstitial fluxes. Finally, a dislocation line model is developed to predict the role of tilt GBs in annihilating radiation damage. The model predicts the role of tilt GBs in annihilating defects depends on the rate of defects segregation to and diffusion along tilt GBs. Tilt GBs mainly serve as diffusion channel for defects to reach other sinks when defect diffusivity is high at boundaries. When defect diffusivity is low, most of the defects segregated to tilt GBs are annihilated by dislocation climb. Up-to-date, the response of twist GBs under irradiation has been rarely reported in literature and is still unclear. It is important to develop atom scale insight on this question in order to predict twist GBs' sink strength for a better understanding of radiation response of polycrystalline materials. By using a combination of molecular dynamics and grand canonical Monte Carlo, here I demonstrate the defect kinetics in {001} and {111} twist GBs and the microstructural evolution of these GBs under defect fluxes in SiC. I found due to the deep potential well for interstitials at dislocation intersections within the interface, the mobility of defects on dislocation grid is retard and this leads to defect accumulation at GBs for many cases. Furthermore, I conclude both types of twist GBs have to form mixed dislocations with edge component in order to absorb accumulated interstitials at the interface. The formation of mixed dislocation is either by interstitial loop nucleation or by dislocation reactions at the interface. The continuous formation and climb of these mixed dislocations make twist GBs unsaturatable sinks to radiation induced defects.
Damage to the Silicon Substrate by Reactive Ion Etching Detected by a Slow Positron Beam
NASA Astrophysics Data System (ADS)
Wei, Long; Tabuki, Yasushi; Tanigawa, Shoichiro
1993-01-01
Defects in reactive ion-etched Si have been investigated by means of a slow positron beam. A thin carbon-containing film (<30 Å) was formed on the Si surface after reactive ion etching (RIE). Vacancy-type defects, which were estimated to distribute over 1200 Å in depth by numerical fitting using the positron trapping model, were observed in the damaged subsurface region of Si. Aside from ion bombardment, ultraviolet radiation is also presumed to affect the formation of vacancies, interstitials in oxide and the formation of vacancies in Si substrate. The ionization-enhanced diffusion (IED) mechanism is expected to promote the diffusion of vacancies and interstitials into Si substrate.
Crystal defect studies using x-ray diffuse scattering
DOE Office of Scientific and Technical Information (OSTI.GOV)
Larson, B.C.
1980-01-01
Microscopic lattice defects such as point (single atom) defects, dislocation loops, and solute precipitates are characterized by local electronic density changes at the defect sites and by distortions of the lattice structure surrounding the defects. The effect of these interruptions of the crystal lattice on the scattering of x-rays is considered in this paper, and examples are presented of the use of the diffuse scattering to study the defects. X-ray studies of self-interstitials in electron irradiated aluminum and copper are discussed in terms of the identification of the interstitial configuration. Methods for detecting the onset of point defect aggregation intomore » dislocation loops are considered and new techniques for the determination of separate size distributions for vacancy loops and interstitial loops are presented. Direct comparisons of dislocation loop measurements by x-rays with existing electron microscopy studies of dislocation loops indicate agreement for larger size loops, but x-ray measurements report higher concentrations in the smaller loop range. Methods for distinguishing between loops and three-dimensional precipitates are discussed and possibilities for detailed studies considered. A comparison of dislocation loop size distributions obtained from integral diffuse scattering measurements with those from TEM show a discrepancy in the smaller sizes similar to that described above.« less
NASA Astrophysics Data System (ADS)
Roehl, Jason L.
Diffusion of point defects on crystalline surfaces and in their bulk is an important and ubiquitous phenomenon affecting film quality, electronic properties and device functionality. A complete understanding of these diffusion processes enables one to predict and then control those processes. Such understanding includes knowledge of the structural, energetic and electronic properties of these native and non-native point defect diffusion processes. Direct experimental observation of the phenomenon is difficult and microscopic theories of diffusion mechanisms and pathways abound. Thus, knowing the nature of diffusion processes, of specific point defects in given materials, has been a challenging task for analytical theory as well as experiment. The recent advances in computing technology have been a catalyst for the rise of a third mode of investigation. The advent of tremendous computing power, breakthroughs in algorithmic development in computational applications of electronic density functional theory now enables direct computation of the diffusion process. This thesis demonstrates such a method applied to several different examples of point defect diffusion on the (001) surface of gallium arsenide (GaAs) and the bulk of cadmium telluride (CdTe) and cadmium sulfide (CdS). All results presented in this work are ab initio, total-energy pseudopotential calculations within the local density approximation to density-functional theory. Single particle wavefunctions were expanded in a plane-wave basis and reciprocal space k-point sampling was achieved by Monkhorst-Pack generated k-point grids. Both surface and bulk computations employed a supercell approach using periodic boundary conditions. Ga adatom adsorption and diffusion processes were studied on two reconstructions of the GaAs(001) surface including the c(4x4) and c(4x4)-heterodimer surface reconstructions. On the GaAs(001)- c(4x4) surface reconstruction, two distinct sets of minima and transition sites were discovered for a Ga adatom relaxing from heights of 3 and 0.5 A from the surface. These two sets show significant differences in the interaction of the Ga adatom with surface As dimers and an electronic signature of the differences in this interaction was identified. The energetic barriers to diffusion were computed between various adsorption sites. Diffusion profiles for native Cd and S, adatom and vacancy, and non-native interstitial adatoms of Te, Cu and Cl were investigated in bulk wurtzite CdS. The interstitial diffusion paths considered in this work were chosen parallel to c-axis as it represents the path encountered by defects diffusing from the CdTe layer. Because of the lattice mismatch between zinc-blende CdTe and hexagonal wurtzite CdS, the c-axis in CdS is normal to the CdTe interface. The global minimum and maximum energy positions in the bulk unit cell vary for different diffusing species. This results in a significant variation, in the bonding configurations and associated strain energies of different extrema positions along the diffusion paths for various defects. The diffusion barriers range from a low of 0.42 eV for an S interstitial to a high of 2.18 eV for a S vacancy. The computed 0.66 eV barrier for a Cu interstitial is in good agreement with experimental values in the range of 0.58 - 0.96 eV reported in the literature. There exists an electronic signature in the local density of states for the s- and d-states of the Cu interstitial at the global maximum and global minimum energy position. The work presented in this thesis is an investigation into diffusion processes for semiconductor bulk and surfaces. The work provides information about these processes at a level of control unavailable experimentally giving an elaborate description into physical and electronic properties associated with diffusion at its most basic level. Not only does this work provide information about GaAs, CdTe and CdS, it is intended to contribute to a foundation of knowledge that can be extended to other systems to expand our overall understanding into the diffusion process. (Abstract shortened by UMI.)
Effects of applied strain on nanoscale self-interstitial cluster formation in BCC iron
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gao, Ning; Setyawan, Wahyu; Kurtz, Richard J.
2017-09-01
The effect of applied strains on the configurational evolution of self-interstitial clusters in BCC iron (Fe) is explored with atomistic simulations. A novel cluster configuration is discovered at low temperatures (<600 K), which consists of <110> dumbbells and <111> crowdions in a specific configuration, resulting in an immobile defect. The stability and diffusion of this cluster at higher temperatures is explored. In addition, an anisotropy distribution factor of a particular [hkl] interstitial loop within the family of loops is calculated as a function of strain. The results show that loop anisotropy is governed by the angle between the stress directionmore » and the orientation of the <111> crowdions in the loop, and directly linked to the stress induced preferred nucleation of self-interstitial atoms.« less
Interstitial Fluid Flow and Drug Delivery in Vascularized Tumors: A Computational Model
Welter, Michael; Rieger, Heiko
2013-01-01
Interstitial fluid is a solution that bathes and surrounds the human cells and provides them with nutrients and a way of waste removal. It is generally believed that elevated tumor interstitial fluid pressure (IFP) is partly responsible for the poor penetration and distribution of therapeutic agents in solid tumors, but the complex interplay of extravasation, permeabilities, vascular heterogeneities and diffusive and convective drug transport remains poorly understood. Here we consider–with the help of a theoretical model–the tumor IFP, interstitial fluid flow (IFF) and its impact upon drug delivery within tumor depending on biophysical determinants such as vessel network morphology, permeabilities and diffusive vs. convective transport. We developed a vascular tumor growth model, including vessel co-option, regression, and angiogenesis, that we extend here by the interstitium (represented by a porous medium obeying Darcy's law) and sources (vessels) and sinks (lymphatics) for IFF. With it we compute the spatial variation of the IFP and IFF and determine its correlation with the vascular network morphology and physiological parameters like vessel wall permeability, tissue conductivity, distribution of lymphatics etc. We find that an increased vascular wall conductivity together with a reduction of lymph function leads to increased tumor IFP, but also that the latter does not necessarily imply a decreased extravasation rate: Generally the IF flow rate is positively correlated with the various conductivities in the system. The IFF field is then used to determine the drug distribution after an injection via a convection diffusion reaction equation for intra- and extracellular concentrations with parameters guided by experimental data for the drug Doxorubicin. We observe that the interplay of convective and diffusive drug transport can lead to quite unexpected effects in the presence of a heterogeneous, compartmentalized vasculature. Finally we discuss various strategies to increase drug exposure time of tumor cells. PMID:23940570
[Lung is also involved in juvenile dermatomyositis].
Pouessel, G; Thumerelle, C; Nève, V; Santangelo, T; Flammarion, S; Pruvot, I; Tillie-Leblond, I; Deschildre, A
2014-07-01
Juvenile dermatomyositis is the leading cause of chronic idiopathic inflammatory myopathy of auto-immune origin in children. Lung involvement in inflammatory myopathies is well described in adults, involving mostly interstitial lung disease, aspiration pneumonia and alveolar hypoventilation. We propose to describe its specificities in children. Pulmonary involvement may be asymptomatic and therefore must be systematically screened for. In case of clinical or functional respiratory abnormality, a chest computed tomographic (CT) scan is necessary. In children, a decrease of respiratory muscle strength seems common and should be systematically and specifically searched for by non-invasive and reproducible tests (sniff test). Interstitial lung disease usually associates restrictive functional defect, impairment of carbon monoxide diffusion and interstitial lung disease on CT scan. As in adults, the first-line treatment of juvenile dermatomyositis is based on corticosteroids. Corticosteroid resistant forms require corticosteroid bolus or adjuvant immunosuppressive drugs (methotrexate or cyclosporine). There is no consensus in pediatrics for the treatment of diffuse interstitial lung disease. Complications of treatment, including prolonged steroid therapy, are frequent and therefore a careful assessment of the treatments risk-benefit ratio is necessary, especially in growing children. Copyright © 2014 Société nationale française de médecine interne (SNFMI). Published by Elsevier SAS. All rights reserved.
Mizuno, Ryuichi; Asano, Koichiro; Mikami, Shuji; Nagata, Hirohiko; Kaneko, Gou; Oya, Mototsugu
2012-05-01
To elucidate the patterns of interstitial lung disease during everolimus treatment in patients with metastatic renal cell carcinoma, we reviewed seven cases of everolimus-induced interstitial lung disease. Seven patients with metastatic renal cell carcinoma, which continued to progress despite treatment with sunitinib or sorafenib, developed interstitial lung disease after treatment with everolimus. Chest X-ray demonstrated diffuse infiltrates in lung fields, and chest computed tomography showed bilateral reticular and ground-glass opacities. Serum levels of lactate dehydrogenase (7/7), C-reactive protein (6/7), pulmonary surfactant associated protein D (1/7) and Krebs von den Lungen 6 (5/7) were elevated. The bronchoalveolar lavage fluid obtained from four patients with Grade 3 interstitial lung disease showed lymphocytosis. The transbronchial lung biopsy specimens showed interstitial lymphocytic infiltration and septal thickening of alveolar walls. In two cases with mild interstitial lung disease, the everolimus therapy was successfully continued. In four cases with Grade 3 interstitial lung disease, the drug was discontinued and steroid therapy was initiated. Pulmonary symptoms and radiological abnormalities resolved within 2 months. Serum Krebs von den Lungen 6 was elevated compared with baseline in all cases with interstitial lung disease. Some patients who developed mild interstitial lung disease during everolimus treatment could continue to receive the treatment. Even when severe interstitial lung disease developed, withdrawal of the drug and short-term use of high-dose steroids resulted in rapid recovery. Prompt recognition of interstitial lung disease exacerbation as well as exclusion of progressive disease or infection is of primary importance.
Use of cylindrical diffusing fibers as detectors for interstitial tissue spectroscopy
NASA Astrophysics Data System (ADS)
Baran, Timothy M.; Foster, Thomas H.
2015-03-01
Interstitial photodynamic therapy (iPDT) describes the use of implanted optical fibers for delivery of treatment light to activate photosensitizer in regions that can be located deep within the body. Since sensitive healthy structures are often located nearby, this requires careful treatment planning that is dependent on tissue optical properties. Determination of these values usually involves the insertion of additional fibers into the volume, or the use of flat-cleaved optical fibers as both treatment sources and detectors. The insertion of additional fibers is undesirable, and cylindrical diffusers have been shown to offer superior treatment characteristics compared to flat-cleaved fibers. Using cylindrical diffusers as detectors for spectroscopic measurement is therefore attractive. We describe the determination of the detection profile for a particular cylindrical diffuser design and derive the scatterer concentration gradient within the diffuser core. This detection profile is compared to previously characterized diffusers, and is shown to be dependent on the diffuser design. For diffusers with a constant scatterer concentration and distal mirror, the detection profile is localized to the proximal end of the diffusing region. For diffusers with variable scattering concentration along their length and no distal mirror, the detection profile is shown to be more uniform along the diffusing region. We also present preliminary results showing the recovery of optical properties using arrays of cylindrical diffusing fibers as sources and detectors, with a mean error of 4.4% in the determination of μeff. The accuracy of these results is comparable to those obtained with other methods of optical property recovery.
Inferring diameters of spheres and cylinders using interstitial water.
Herrera, Sheryl L; Mercredi, Morgan E; Buist, Richard; Martin, Melanie
2018-06-04
Most early methods to infer axon diameter distributions using magnetic resonance imaging (MRI) used single diffusion encoding sequences such as pulsed gradient spin echo (SE) and are thus sensitive to axons of diameters > 5 μm. We previously simulated oscillating gradient (OG) SE sequences for diffusion spectroscopy to study smaller axons including the majority constituting cortical connections. That study suggested the model of constant extra-axonal diffusion breaks down at OG accessible frequencies. In this study we present data from phantoms to test a time-varying interstitial apparent diffusion coefficient. Diffusion spectra were measured in four samples from water packed around beads of diameters 3, 6 and 10 μm; and 151 μm diameter tubes. Surface-to-volume ratios, and diameters were inferred. The bead pore radii estimates were 0.60±0.08 μm, 0.54±0.06 μm and 1.0±0.1 μm corresponding to bead diameters ranging from 2.9±0.4 μm to 5.3±0.7 μm, 2.6±0.3 μm to 4.8±0.6 μm, and 4.9±0.7 μm to 9±1 μm. The tube surface-to-volume ratio estimate was 0.06±0.02 μm -1 corresponding to a tube diameter of 180±70 μm. Interstitial models with OG inferred 3-10 μm bead diameters from 0.54±0.06 μm to 1.0±0.1 μm pore radii and 151 μm tube diameters from 0.06±0.02 μm -1 surface-to-volume ratios.
Mixed germ cell-sex cord-stromal tumor with a concurrent interstitial cell tumor in a ferret
INOUE, Saki; YONEMARU, Kayoko; YANAI, Tokuma; SAKAI, Hiroki
2014-01-01
A 5-year-old male ferret presented with an enlarged canalicular testis in the left inguinal region. Microscopically, the enlarged testis consisted of a diffuse intimately admixed proliferation of c-kit-positive germ cell-like and Wilms tumor-1 protein-positive Sertoli cell-like components, but no Call-Exner body was detected. In addition, the compact proliferation of steroidogenic acute regulatory protein-intense positive interstitial cells was identified in a separate peripheral area of the mass. Based on histopathological and immunohistochemical findings, the tumor was diagnosed as a mixed germ cell-sex cord-stromal tumor with a concurrent interstitial cell tumor. PMID:25311985
NASA Astrophysics Data System (ADS)
Zhang, X.; Connelly, D.; Takeuchi, H.; Hytha, M.; Mears, R. J.; Rubin, L. M.; Liu, T.-J. K.
2018-03-01
The effects of oxygen-inserted (OI) layers on the diffusion of boron (B), phosphorus (P), and arsenic (As) in silicon (Si) are investigated, for ultra-shallow junction formation by high-dose ion implantation followed by rapid thermal annealing. The projected range (Rp) of the implanted dopants is shallower than the depth of the OI layers. Secondary ion mass spectrometry is used to compare the dopant profiles in silicon samples that have OI layers against the dopant profiles in control samples that do not have OI layers. Diffusion is found to be substantially retarded by the OI layers for B and P, and less for As, providing shallower junction depth. The experimental results suggest that the OI layers serve to block the diffusion of Si self-interstitials and thereby effectively reduce interstitial-aided diffusion beyond the depth of the OI layers. The OI layers also help to retain more dopants within the Si, which technology computer-aided design simulations indicate to be beneficial for achieving shallower junctions with lower sheet resistance to enable further miniaturization of planar metal-oxide-semiconductor field-effect transistors for improved integrated-circuit performance and cost per function.
NASA Astrophysics Data System (ADS)
Lampin, E.; Cristiano, F.; Lamrani, Y.; Colombeau, B.
2004-02-01
We present simulations of B TED based on a complete calculation of the extended defect growth/shrinkage during annealing. The Si self-interstitial supersaturation calculated at the extended defect depth is coupled to the set of equations for the B kick-out diffusion through a generation/recombination term in the diffusion equation of the Si self-interstitials. The simulations are compared to the measurements performed on a Si wafer containing several B marker layers, where the amount of TED varies from one peak to the other. The good agreement obtained on this experiment is very promising for the application of these calculations to the case of ultra-shallow B + implants.
NASA Astrophysics Data System (ADS)
Volkov, Vladimir V.; Loshchenov, V. B.; Konov, Vitalii I.; Kononenko, Vitalii V.
2010-10-01
We report techniques for the fabrication of laser radiation diffusers for interstitial photodynamic therapy. Using chemical etching of the distal end of silica fibre with a core diameter of 200 — 600 μm, we have obtained long (up to 40 mm) diffusers with good scattering uniformity. Laser ablation has been used to produce cylindrical diffusers with high emission contrast and a scattering uniformity no worse than ~10 % in their middle part. The maximum length of the diffusers produced by this method is 20 — 25 mm.
Olsen, Raina J.; Jin, Ke; Lu, Chenyang; ...
2015-11-23
The nature of defect clusters in Ni and Nimore » $$_{50}$$Co$$_{50}$$ (NiCo) irradiated at room temperature with 2–16 MeV Ni ions is studied using asymptotic diffuse X-ray scattering and transmission electron microscopy (TEM). Analysis of the scattering data provides separate size distributions for vacancy and interstitial type defect clusters, showing that both types of defect clusters have a smaller size and higher density in NiCo than in Ni. Diffuse scattering results show good quantitative agreement with TEM results for cluster sizes greater than 4 nm diameter, but find that the majority of vacancy clusters are under 2 nm in NiCo, which, if not detected, would lead to the conclusion that defect density was actually lower in the alloy. Interstitial dislocation loops and stacking fault tetrahedra are identified by TEM. Lastly comparison of diffuse scattering lineshapes to those calculated for dislocation loops and SFTs indicates that most of the vacancy clusters are SFTs.« less
Effects of applied strain on nanoscale self-interstitial cluster formation in BCC iron
NASA Astrophysics Data System (ADS)
Gao, Ning; Setyawan, Wahyu; Kurtz, Richard J.; Wang, Zhiguang
2017-09-01
The effect of applied strains on the configurational evolution of self-interstitial clusters in BCC iron (Fe) is explored with atomistic simulations. A novel cluster configuration is discovered at low temperatures (<600 K), which consists of 〈 110 〉 dumbbells and 〈 111 〉 crowdions in a specific configuration, resulting in an immobile defect. The stability and diffusion of this cluster at higher temperatures is explored. In addition, an anisotropy distribution factor of a particular [ hkl ] interstitial loop within the family of 〈 hkl 〉 loops is calculated as a function of strain. The results show that loop anisotropy is governed by the angle between the stress direction and the orientation of the 〈 111 〉 crowdions in the loop, and directly linked to the stress induced preferred nucleation of self-interstitial atoms.
Miller, Albert; Warshaw, Raphael; Nezamis, James
2013-12-01
Asbestosis is an interstitial lung disease whose radiographic severity has long been graded by the International Labour Office (ILO) profusion score. Its effect on pulmonary function is further impacted by asbestos related pleural thickening. This report aims to describe the relationships between radiographic grading of interstitial and pleural fibrosis and a key test of pulmonary function, the diffusing capacity, which measures gas exchange and has rarely been assessed in large groups, and to confirm the relationship to an independent test of pulmonary function, the vital capacity, which measures a mechanical property of the lungs. The data were derived from a survey during the period 1997-2004 of 5,003 workers (all white males) exposed to asbestos in various trades. Tests included chest radiographs read by a certified expert ("B") reader, forced vital capacity (FVC), and carbon monoxide diffusing capacity (DLco). Cigarette smoking was adjusted for in the predictive equation for DLCO . Workers were evaluated at a mobile facility at work sites in four southern states. Both diffusing capacity and vital capacity were negatively correlated with profusion score over the full spectrum of radiographic severity. ILO profusion scores 0/1 (conventionally classified as normal) and 1/0 (conventionally classified as abnormal) were associated with similar diffusing capacity and vital capacity values. The highest profusion scores were associated with a greater proportionate decrease in diffusing capacity than in FVC. Both tests showed an effect of pleural fibrosis. Both radiographic severity graded by the profusion score and pleural thickening are correlated with two independent measures of pulmonary function. FVC (which had been reported in smaller work forces) and DLCO (which has not been reported). Both measures show a decrease from normal to intermediate (0/1, 1/0) scores and a further decrease with greater scores, demonstrating the consistency of radiographic and functional assessments. © 2013 Wiley Periodicals, Inc.
[New toxicity of fotemustine: diffuse interstitial lung disease].
Bertrand, M; Wémeau-Stervinou, L; Gauthier, S; Auffret, M; Mortier, L
2012-04-01
Fotemustine is an alkylating cytostatic drug belonging to the nitrosourea family and is used in particular in the treatment of disseminated malignant melanoma. Herein, we report a case of interstitial lung disease associated with fotemustine. An 81-year-old man treated with fotemustine for metastatic melanoma presented acute interstitial lung disease 20 days after a fourth course of fotemustine monotherapy. The condition regressed spontaneously, with the patient returning to the clinical, radiological and blood gas status that had preceded fotemustine treatment. After other potential aetiologies had been ruled out, acute fotemustine-induced lung toxicity was considered and this treatment was definitively withdrawn. Other cytostatic agents belonging to the nitrosourea family can cause similar pictures, with a number of cases of interstitial lung disease thus being ascribed to fotemustine and dacarbazine. To our knowledge, this is the first case of interstitial lung disease induced by fotemustine monotherapy. This diagnosis should be considered where respiratory signs appear in melanoma patients undergoing fotemustine treatment. Copyright © 2012 Elsevier Masson SAS. All rights reserved.
Barisione, Giovanni; Brusasco, Claudia; Garlaschi, Alessandro; Baroffio, Michele; Brusasco, Vito
2016-05-01
Lung diffusing capacity for carbon monoxide (DLCO) is decreased in both usual interstitial pneumonia-idiopathic pulmonary fibrosis (UIP-IPF) and nonspecific interstitial pneumonia (NSIP), but is moderately related to computed tomography (CT)-determined fibrotic changes. This may be due to the relative insensitivity of DLCO to changes in alveolar membrane diffusive conductance (DMCO). The purpose of this study was to determine whether measurement of lung diffusing capacity for nitric oxide (DLNO) better reflects fibrotic changes than DLCO DLNO-DLCO were measured simultaneously in 30 patients with UIP-IPF and 30 with NSIP. Eighty-one matched healthy subjects served as a control group. The amount of pulmonary fibrosis was estimated by CT volumetric analysis of visually bounded areas showing reticular opacities and honeycombing. DMCO and pulmonary capillary volume (VC) were calculated. DLNO was below the lower limit of normal in all patients irrespective of extent and nature of disease, whereas DLCO was within the normal range in a nonnegligible number of patients. Both DLNO and DLCO were significantly correlated with visual assessment of fibrosis but DLNO more closely than DLCO DMCO was also below the lower limit of normal in all UIP-IPF and NSIP patients and significantly correlated with fibrosis extent in both diseases, whereas VC was weakly correlated with fibrosis in UIP-IPF and uncorrelated in NSIP, with normal values in half of patients. In conclusion, measurement of DLNO may provide a more sensitive evaluation of fibrotic changes than DLCO in either UIP-IPF or NSIP, because it better reflects DMCO. Copyright © 2016 the American Physiological Society.
Nepheline rock dust pneumoconiosis. A report of 2 cases
DOE Office of Scientific and Technical Information (OSTI.GOV)
Olscamp, G.; Herman, S.J.; Weisbrod, G.L.
1982-01-01
Two cases of nepheline rock dust pneumoconiosis are presented. Radiologically, this is seen as a diffuse increase in interstitial lung markings, lymphadenopathy, air-space disease, and atelectasis secondary to extrinsic compression by enlarged hilar lymph nodes. Major differential diagnoses include carcinoma of the lung, sarcoidosis, and interstitial lung disease caused by other inorganic dusts. Nepheline rock dust pneumoconiosis should be considered when the above radiological changes are observed and an occupational exposure to inorganic dust is documented.
Nepheline rock dust pneumoconiosis: a report of 2 cases
DOE Office of Scientific and Technical Information (OSTI.GOV)
Olscamp, G.; Herman, S.J.; Weisbrod, G.L.
1982-01-01
Two cases of nepheline rock dust pneumoconiosis are presented. Radiologically, this is seen as a diffuse increase in interstitial lung markings, lymphadenopathy air-space disease, and atelectasis secondary to extrinsic compression by enlarged hilar lymph nodes. Major differential diagnoses include carcinoma of the lung, sarcoidosis, and interstitial lung disease caused by other inorganic dusts. Nepheline rock dust pneumoconiosis should be considered when the above radiological changes are observed and an occupational exposure to inorganic dust is documented.
Acute Exacerbation in Interstitial Lung Disease
Leuschner, Gabriela; Behr, Jürgen
2017-01-01
Acute exacerbation of idiopathic pulmonary fibrosis (AE-IPF) has been defined as an acute, clinically significant deterioration that develops within less than 1 month without obvious clinical cause like fluid overload, left heart failure, or pulmonary embolism. Pathophysiologically, damage of the alveoli is the predominant feature of AE-IPF which manifests histopathologically as diffuse alveolar damage and radiologically as diffuse, bilateral ground-glass opacification on high-resolution computed tomography. A growing body of literature now focuses on acute exacerbations of interstitial lung disease (AE-ILD) other than idiopathic pulmonary fibrosis. Based on a shared pathophysiology it is generally accepted that AE-ILD can affect all patients with interstitial lung disease (ILD) but apparently occurs more frequently in patients with an underlying usual interstitial pneumonia pattern. The etiology of AE-ILD is not fully understood, but there are distinct risk factors and triggers like infection, mechanical stress, and microaspiration. In general, AE-ILD has a poor prognosis and is associated with a high mortality within 6–12 months. Although there is a lack of evidence based data, in clinical practice, AE-ILD is often treated with a high dose corticosteroid therapy and antibiotics. This article aims to provide a summary of the clinical features, diagnosis, management, and prognosis of AE-ILD as well as an update on the current developments in the field. PMID:29109947
Yokohori, Naoko; Sato, Akitoshi; Hasegawa, Mizue; Katsura, Hideki; Hiroshima, Kenzo; Takemura, Tamiko
2017-01-01
Human T-cell lymphotropic virus type 1 (HTLV-1) is a retrovirus involved in the pathogenesis of adult T-cell leukemia (ATL) and HTVL-1-associated bronchioloalveolar disorder (HABA). The clinical and pathological findings of HABA have been characterized as either a diffuse panbronchiolitis (DPB) pattern or idiopathic interstitial pneumonia (IIP) pattern. Treatments for HABA include corticosteroids for the IIP pattern and erythromycin for the DPB pattern. We herein report a case of HABA-associated unclassifiable interstitial pneumonia that improved with combined therapy with pirfenidone and erythromycin. This is the first report on the effectiveness of combined therapy with pirfenidone and erythromycin for HABA. PMID:28050003
Hwang, Jeong-Hwa; Misumi, Shigeki; Sahin, Hakan; Brown, Kevin K; Newell, John D; Lynch, David A
2009-01-01
To compare the computed tomographic (CT) features of idiopathic fibrosing interstitial pneumonia with those of pulmonary fibrosis related to collagen vascular disease (CVD). We reviewed the CT scans of 177 patients with diffuse interstitial pulmonary fibrosis, of which 97 had idiopathic fibrosing interstitial pneumonia and 80 had CVD. The CT images were systematically scored for the presence and extent of pulmonary and extrapulmonary abnormalities. Computed tomographic diagnosis of usual interstitial pneumonia (UIP) or nonspecific interstitial pneumonia (NSIP) was assigned. A CT pattern of UIP was identified in 59 (60.8%) of patients with idiopathic fibrosing interstitial pneumonia compared with 15 (18.7%) of those patients with CVD; conversely, the CT diagnosis of NSIP was made in 51 (64%) of patients with CVD compared with 36 (37%) of patients with idiopathic disease (P < 0.01). In 113 patients who had lung biopsy, the CT diagnoses of UIP and NSIP were concordant with the histologic diagnoses in 36 of 50 patients and 34 of 41 patients, respectively. Pleural effusions, esophageal dilation, and pericardial abnormalities were more frequent in patients with CVD than in patients with idiopathic fibrosing interstitial pneumonia. Compared with patients with CVD, those patients with an idiopathic fibrosing interstitial pneumonia showed a higher prevalence of a UIP pattern and lower prevalence of an NSIP pattern as determined by CT. Identification of coexisting extrapulmonary abnormalities on CT can support a diagnosis of CVD.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Schrof, Julian; Müller, Ralph; Reedy, Robert C.
2015-07-28
Boron diffusivity reduction in extrinsically doped silicon was investigated in the context of a process combination consisting of BBr3 furnace diffusion and preceding Phosphorus ion implantation. The implantation of Phosphorus leads to a substantial blocking of Boron during the subsequent Boron diffusion. First, the influences of ion implantation induced point defects as well as the initial P doping on B diffusivity were studied independently. Here, it was found that not the defects created during ion implantation but the P doping itself results in the observed B diffusion retardation. The influence of the initial P concentration was investigated in more detailmore » by varying the P implantation dose. A secondary ion mass spectrometry (SIMS) analysis of the BSG layer after the B diffusion revealed that the B diffusion retardation is not due to potential P content in the BSG layer but rather caused by the n-type doping of the crystalline silicon itself. Based on the observations the B diffusion retardation was classified into three groups: (i) no reduction of B diffusivity, (ii) reduced B diffusivity, and (iii) blocking of the B diffusion. The retardation of B diffusion can well be explained by the phosphorus doping level resulting in a Fermi level shift and pairing of B and P ions, both reducing the B diffusivity. Besides these main influences, there are probably additional transient phenomena responsible for the blocking of boron. Those might be an interstitial transport mechanism caused by P diffusion that reduces interstitial concentration at the surface or the silicon/BSG interface shift due to oxidation during the BBr3 diffusion process. Lifetime measurements revealed that the residual (non-blocked) B leads to an increased dark saturation current density in the P doped region. Nevertheless, electrical quality is on a high level and was further increased by reducing the B dose as well as by removing the first few nanometers of the silicon surface after the BBr3 diffusion« less
Electrode assembly for use in a solid polymer electrolyte fuel cell
Raistrick, Ian D.
1989-01-01
A gas reaction fuel cell may be provided with a solid polymer electrolyte membrane. Porous gas diffusion electrodes are formed of carbon particles supporting a catalyst which is effective to enhance the gas reactions. The carbon particles define interstitial spaces exposing the catalyst on a large surface area of the carbon particles. A proton conducting material, such as a perfluorocarbon copolymer or ruthenium dioxide contacts the surface areas of the carbon particles adjacent the interstitial spaces. The proton conducting material enables protons produced by the gas reactions adjacent the supported catalyst to have a conductive path with the electrolyte membrane. The carbon particles provide a conductive path for electrons. A suitable electrode may be formed by dispersing a solution containing a proton conducting material over the surface of the electrode in a manner effective to coat carbon surfaces adjacent the interstitial spaces without impeding gas flow into the interstitial spaces.
Sekimoto, Yasuhito; Kato, Motoyasu; Shukuya, Takehiko; Koyama, Ryo; Nagaoka, Tetsutaro; Takahashi, Kazuhisa
2016-04-01
Bevacizumab is a monoclonal antibody targeting the vascular endothelial growth factor receptor and a key drug for advanced non-small cell lung cancer. There are few reports describing bevacizumab-induced chronic interstitial pneumonia. A 62-year-old man with advanced non-small cell lung cancer was admitted to our hospital with dyspnea. He previously received four courses of carboplatin plus paclitaxel with bevacizumab combination therapy and thereafter received four courses of maintenance bevacizumab monotherapy. A chest-computed tomography scan on admission revealed diffuse ground glass opacity. He had not received any other drugs and did not have pneumonia. Thus, he was diagnosed with bevacizumab-induced chronic interstitial pneumonia and was treated with a high dose of corticosteroids. After steroid treatment, his dyspnea and radiological findings improved. This case report is the first description of bevacizumab-induced chronic interstitial pneumonia during maintenance therapy in a patient with non-small cell lung cancer.
Dukhin, Stanislav S.; Labib, Mohamed E.
2016-01-01
Current drug delivery devices (DDD) are mainly based on the use of diffusion as the main transport process. Diffusion-driven processes can only achieve low release rate because diffusion is a slow process. This represents a serious obstacle in the realization of recent successes in the suppression of lymphatic metastasis and in the prevention of limb and organ transplant rejection. Surprisingly, it was overlooked that there is a more favorable drug release mode which can be achieved when a special DDD is implanted near lymphatics. This opportunity can be realized when the interstitial fluid flow penetrates a drug delivery device of proper design and allows such fluid to flow out of it. This design is based on hollow fibers loaded with drug and whose hydrodynamic permeability is much higher than that of the surrounding tissue. The latter is referred to as hollow fiber of high hydrodynamic permeability (HFHP). The interstitial flow easily penetrates the hollow fiber membrane as well as its lumen with a higher velocity than that in the adjacent tissue. The interstitial liquid stream entering the lumen becomes almost saturated with drug as it flows out of the HFHP. This is due to the drug powder dissolution in the lumens of HFHP which forms a strip of drug solution that crosses the interstitium and finally enters the lymphatics. This hydrodynamically-driven release (HDR) may exceed the concomitant diffusion-driven release (DDR) by one or even two orders of magnitude. The hydrodynamics of the two-compartment media is sufficient for developing the HDR theory which is detailed in this paper. Convective diffusion theory for two compartments (membrane of hollow fiber and adjacent tissue) is required for exact quantification when a small contribution of DDR to predominating HDR is present. Hence, modeling is important for HDR which would lead to establishing a new branch in physico-chemical hydrodynamics. The release rate achieved with the use of HFHP increases proportional to the number of hollow fibers in the fabric employed in drug delivery. Based on this contribution, it is now possible to simultaneously provide high release rates and long release durations, thus overcoming a fundamental limitation in drug delivery. Perhaps this breakthrough in long-term drug delivery has potential applications in targeting lymphatics and in treating cancer and cancer metastasis without causing the serious side effects of systemic drugs. PMID:28579697
Effects of Molybdenum Addition on Hydrogen Desorption of TiC Precipitation-Hardened Steel
NASA Astrophysics Data System (ADS)
Song, Eun Ju; Baek, Seung-Wook; Nahm, Seung Hoon; Suh, Dong-Woo
2018-05-01
The hydrogen-trap states in TiC and MoC that have coherent interfaces with ferrite were investigated using first-principles calculation. The trapping sites of TiC were the interfaces and interstitial sites of ferrite. On the other hand, the trapping sites of MoC were ferrite interstitial sites; the interface had a negative binding energy with H. Thermal desorption analysis confirms that the amounts of diffusible hydrogen were significantly reduced by addition of Mo in Ti-bearing steel.
Chambers, Scott A; Gu, Meng; Sushko, Peter V; Yang, Hao; Wang, Chongmin; Browning, Nigel D
2013-08-07
Heteroepitaxial growth of Cr metal on Nb-doped SrTiO₃(001) is accompanied by Cr diffusion to interstitial sites within the first few atomic planes, an anchoring of the Cr film to the substrate, charge transfer from Cr to Ti, and metallization of the near-surface region, as depicted in the figure. The contact resistance of the resulting interface is exceedingly low. Copyright © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
2015-09-21
and metal organic chemical vapor deposition (MOCVD) [18]. In the former case, carbon can contaminate the material during air exposure in standard... gallium . In addition, carbon can be found as a contaminant in the source gases or it can be etched off the susceptor that transfers heat to the substrate...split interstitial Figure 1: Split interstitials of carbon (yellow) and nitrogen (blue) surrounded by four gallium atoms (red). energy differences of
2014-10-01
fibrosis, interstitial lung diseases 16. SECURITY CLASSIFICATION OF: 17. LIMITATION OF ABSTRACT 18. NUMBER OF PAGES 19a. NAME OF RESPONSIBLE PERSON...cadherin-11 in scleroderma patients with interstitial lung disease . We have been working with our collaborators at UTHSC to identify and sera that...83% female, avg age 49, avg disease duration 2.5 years, 59% with diffuse SSc, 28% with ILD and avg skin score of 16 at enrollment). Since there is
NASA Astrophysics Data System (ADS)
Wen, Haohua; Semenov, A. A.; Woo, C. H.
2017-09-01
The many-body dynamics of a crystalline solid containing an interstitial solute atom (ISA) is usually interpreted within the one-particle approximation as a random walker hopping among trapping centers at periodic lattice sites. The corresponding mobility and diffusivity can be formulated based on the transition-state theory in the form of the Arrhenius law. Possible issues arising from the many-body nature of the dynamics may need to be understood and resolved both scientifically and technologically. Noting the congruence between the dynamics of the many-body and stochastic systems within the Mori-Zwanzig theory, we analyzed the dynamics of a model particle subjected to a saw-tooth potential in a noisy medium. The ISA mobility is found to be governed by two sources of dissipative friction: that which is produced by the scattering of lattice waves by the moving ISA (phonon wind), and that which is derived from the energy dissipation associated with overcoming the migration barrier screened by lattice waves (i.e., phonon screened). The many-body effect in both cases increases with temperature, so that the first component of the friction is important at high temperatures and the second component is important at low temperatures. A formulation built on this mechanistic structure of the dissipative friction requires the mobility and diffusivity to be expressed not only in terms of the migration enthalpy and entropy, but also of the phonon drag coefficient. As a test, the complex temperature dependence of the mobility and diffusivity of interstitial helium in BCC W obtained from molecular-dynamics simulation is very well reproduced.
020. Coexistence of lung adenocarcinoma and usual interstitial pneumonia: a case report
Baliaka, Aggeliki; Papaemmanouil, Styliani; Spyratos, Dionysis; Zarogoulidis, Paul; Sakkas, Leonidas
2015-01-01
Background Usual interstitial pneumonia (UIP)/idiopathic pulmonary fibrosis (IPF) is a chronic fibrosing interstitial pneumonia of unknown cause. The most common symptoms are progressively increased shortness of breath and dry cough. Some studies suggest an association between usual interstitial pneumonia and lung cancer through different pathogenetic mechanisms. Objective The case presentation of a patient with lung adenocarcinoma and UIP. Methods A 66-year-old male presented with persistent dry cough, hemoptysis and dyspnea. The chest radiographs revealed a mass in the lower lobe of the left lung, measuring 3 cm, as well as diffuse interstitial changes in the same lobe. Two partial lobectomies were performed. Results Histological examination of the mass showed moderately differentiated adenocarcinoma, focally with bronchoalveolar pattern (Immunohistochemical detection of EGFR: positive). The rest lung parenchyma presented histological appearance of UIP. Conclusions According to clinicopathological studies, the prevalence of lung cancer among patients with UIP/IPF varies between 4% and 9%. The overall median survival of IPF-Ca patients is seven months in comparison with IPF only patients (14 months).
Average structure and local configuration of excess oxygen in UO(2+x).
Wang, Jianwei; Ewing, Rodney C; Becker, Udo
2014-03-19
Determination of the local configuration of interacting defects in a crystalline, periodic solid is problematic because defects typically do not have a long-range periodicity. Uranium dioxide, the primary fuel for fission reactors, exists in hyperstoichiometric form, UO(2+x). Those excess oxygen atoms occur as interstitial defects, and these defects are not random but rather partially ordered. The widely-accepted model to date, the Willis cluster based on neutron diffraction, cannot be reconciled with the first-principles molecular dynamics simulations present here. We demonstrate that the Willis cluster is a fair representation of the numerical ratio of different interstitial O atoms; however, the model does not represent the actual local configuration. The simulations show that the average structure of UO(2+x) involves a combination of defect structures including split di-interstitial, di-interstitial, mono-interstitial, and the Willis cluster, and the latter is a transition state that provides for the fast diffusion of the defect cluster. The results provide new insights in differentiating the average structure from the local configuration of defects in a solid and the transport properties of UO(2+x).
Pierce, Elizabeth M.; Carpenter, Kristin; Jakubzick, Claudia; Kunkel, Steven L.; Flaherty, Kevin R.; Martinez, Fernando J.; Hogaboam, Cory M.
2007-01-01
Idiopathic interstitial pneumonias (IIPs) are a collection of pulmonary fibrotic diseases of unknown etiopathogenesis. CC chemokine receptor 7 (CCR7) is expressed in IIP biopsies and primary fibroblast lines, but its role in pulmonary fibrosis was not previously examined. To study the in vivo role of CCR7 in a novel model of pulmonary fibrosis, 1.0 × 106 primary fibroblasts grown from idiopathic pulmonary fibrosis/usual interstitial pneumonia, nonspecific interstitial pneumonia, or histologically normal biopsies were injected intravenously into C.B-17 severe combined immunodeficiency (SCID)/beige (bg) mice. At days 35 and 63 after idiopathic pulmonary fibrosis/usual interstitial pneumonia fibroblast injection, patchy interstitial fibrosis and increased hydroxyproline were present in the lungs of immunodeficient mice. Adoptively transferred nonspecific interstitial pneumonia fibroblasts caused a more diffuse interstitial fibrosis and increased hydroxyproline levels at both times, but injected normal human fibroblasts did not induce interstitial remodeling changes in C.B-17SCID/bg mice. Systemic therapeutic immunoneutralization of either human CCR7 or CC ligand 21, its ligand, significantly attenuated the pulmonary fibrosis in groups of C.B-17SCID/bg mice that received either type of IIP fibroblasts. Thus, the present study demonstrates that pulmonary fibrosis is initiated by the intravenous introduction of primary human fibroblast lines into immunodeficient mice, and this fibrotic response is dependent on the interaction between CC ligand 21 and CCR7. PMID:17392156
Current understanding of point defects and diffusion processes in silicon
NASA Technical Reports Server (NTRS)
Tan, T. Y.; Goesele, U.
1985-01-01
The effects of oxidation of Si which established that vacancies (V) and Si self interstitials (I) coexist in Si at high temperatures under thermal equilibrium and oxidizing conditions are discussed. Some essential points associated with Au diffusion in Si are then discussed. Analysis of Au diffusion results allowed a determination of the I component and an estimate of the V component of the Si self diffusion coefficient. A discussion of theories on high concentration P diffusion into Si is then presented. Although presently there still is no theory that is completely satisfactory, significant progresses are recently made in treating some essential aspects of this subject.
Revisiting the diffusion mechanism of helium in UO2: A DFT+U study
NASA Astrophysics Data System (ADS)
Liu, X.-Y.; Andersson, D. A.
2018-01-01
The understanding of migration properties of helium atoms after their generation through α-decay of actinides in spent nuclear fuels is important for the safety of nuclear fuel storage and disposal. The diffusion of helium in UO2 is revisited by using the DFT+U simulation methodology employing the "U-ramping" method to address the issue of metastable energy states. A novel diffusion mechanism by helium interstitials, the "asymmetric hop" mechanism, is reported and compared to other diffusion mechanisms including an oxygen vacancy mediated mechanism and available experimental diffusion data. The new mechanism is shown to be the dominant one over a wide temperature range.
NASA Astrophysics Data System (ADS)
Carroll, M. S.; Chang, C.-L.; Sturm, J. C.; Büyüklimanli, T.
1998-12-01
In this letter, we show the ability, through introduction of a thin Si1-x-yGexCy layer, to eliminate the enhancement of enhanced boron diffusion in silicon due to an oxidizing surface or ion implant damage. This reduction of diffusion is accomplished through a low-temperature-grown thin epitaxial Si1-x-yGexCy layer which completely filters out excess interstitials introduced by oxidation or ion implant damage. We also quantify the oxidation-enhanced diffusion (OED) and transient-enhanced diffusion (TED) dependence on substitutional carbon level, and further report both the observation of carbon TED and OED, and its dependence on carbon levels.
Atomic diffusion in strain fields near solutes
NASA Astrophysics Data System (ADS)
Shropshire, Steven L.; Collins, Gary S.
1993-03-01
Annihilation reactions between mobile self-interstitial defects and complexes of vacancies with111In probe solutes in Au were studied. Measurements were made using the technique of perturbed angular correlations of gamma rays (PAC). Au samples were doped with complexes and plastically deformed at a low temperature to generate fluxes of self-interstitials. Changes in the concentrations of monovacancy (1V) to tetravacancy (4V) complexes induced by annihilation reactions were measured. These are now analysed using a system of coupled first-order equations in order to obtain interstitial annihilation cross sections of the complexes and the fractional amounts of different interstitial clusters in the flux. Relative cross sections obtained for Au are 1.0(1), 3.3(3), 1.2(2) and 7.5(2.5), respectively, for 1V to 4V complexes. The large increase in the cross sections with vacancy number is attributed to a progressive relaxation of the dilatational strain surrounding the oversized In solute as more vacancies are trapped. Also obtained from the analysis are values 0.34(5), 0.66(7), 0.0(1) and 0.0(2), respectively, for the fractions of mobile 1I to 4I clusters in deformed Au, indicating that di-interstitials are produced more readily than mono-interstitials during plastic deformation.
Anomalous Kinetics of Diffusion-Controlled Defect Annealing in Irradiated Ionic Solids.
Kotomin, Eugene; Kuzovkov, Vladimir; Popov, Anatoli I; Maier, Joachim; Vila, Rafael
2018-01-11
The annealing kinetics of the primary electronic F-type color centers (oxygen vacancies with trapped one or two electrons) is analyzed for three ionic materials (Al 2 O 3 , MgO, and MgF 2 ) exposed to intensive irradiation by electrons, neutrons, and heavy swift ions. Phenomenological theory of diffusion-controlled recombination of the F-type centers with much more mobile interstitial ions (complementary hole centers) allows us to extract from experimental data the migration energy of interstitials and pre-exponential factor of diffusion. The obtained migration energies are compared with available first-principles calculations. It is demonstrated that with the increase of radiation fluence both the migration energy and pre-exponent are decreasing in all three materials, irrespective of the type of irradiation. Their correlation satisfies the Meyer-Neldel rule observed earlier in glasses, liquids, and disordered materials.The origin of this effect is discussed. This study demonstrates that in the quantitative analysis of the radiation damage of real materials the dependence of the defect migration parameters on the radiation fluence plays an important role and cannot be neglected.
Sulfur doping of GaAs with (NH4)2Sx solution
NASA Astrophysics Data System (ADS)
Lee, Jong-Lam
1999-01-01
A novel technique for sulfur doping to GaAs was demonstrated. The surface of GaAs was treated with (NH4)2Sx solution, subsequent to annealing using either furnace or rapid thermal processing. Sulfur atoms adsorbed at the surface of GaAs during the (NH4)2Sx treatment diffuse into GaAs during the annealing. The diffusion profiles of sulfur in both types of annealing treatments show a concave shape from the GaAs surface. Diffusion constants of sulfur determined using the Boltzmann-Matano technique increase with the decrease of sulfur concentration via the depth from the surface of GaAs. This suggests that immobile sulfur donor SAs+ forms at the near surface interacts with a Ga divacancy, and results in the production of mobile As interstitials, IAs. The IAs moves fast toward the inside of GaAs and kickout the SAs+ donor, producing a fast diffusing species of interstitial S atoms. The diffusion coefficients of sulfur determined are 2.5×10-14 cm2/s at 840 °C and 5×10-12 cm2/s at 900 °C. The sulfur doping technique is applied to the fabrication of metal-semiconductor field-effect transistors (MESFETs). The MESFETs with 1.0 μm gate length exhibit transconductance of 190 mS/mm, demonstrating the applicability of this technique to the formation of active channel layer of MESFETs.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Schrof, Julian, E-mail: julian.schrof@ise.fraunhofer.de; Müller, Ralph; Benick, Jan
2015-07-28
Boron diffusivity reduction in extrinsically doped silicon was investigated in the context of a process combination consisting of BBr{sub 3} furnace diffusion and preceding Phosphorus ion implantation. The implantation of Phosphorus leads to a substantial blocking of Boron during the subsequent Boron diffusion. First, the influences of ion implantation induced point defects as well as the initial P doping on B diffusivity were studied independently. Here, it was found that not the defects created during ion implantation but the P doping itself results in the observed B diffusion retardation. The influence of the initial P concentration was investigated in moremore » detail by varying the P implantation dose. A secondary ion mass spectrometry (SIMS) analysis of the BSG layer after the B diffusion revealed that the B diffusion retardation is not due to potential P content in the BSG layer but rather caused by the n-type doping of the crystalline silicon itself. Based on the observations the B diffusion retardation was classified into three groups: (i) no reduction of B diffusivity, (ii) reduced B diffusivity, and (iii) blocking of the B diffusion. The retardation of B diffusion can well be explained by the phosphorus doping level resulting in a Fermi level shift and pairing of B and P ions, both reducing the B diffusivity. Besides these main influences, there are probably additional transient phenomena responsible for the blocking of boron. Those might be an interstitial transport mechanism caused by P diffusion that reduces interstitial concentration at the surface or the silicon/BSG interface shift due to oxidation during the BBr{sub 3} diffusion process. Lifetime measurements revealed that the residual (non-blocked) B leads to an increased dark saturation current density in the P doped region. Nevertheless, electrical quality is on a high level and was further increased by reducing the B dose as well as by removing the first few nanometers of the silicon surface after the BBr{sub 3} diffusion.« less
Children's Interstitial and Diffuse Lung Disease. Progress and Future Horizons.
Deterding, Robin R
2015-10-01
Children's interstitial and diffuse lung disease (chILD) is a term that encompasses a large and diverse group of rare pediatric diseases and disorders. Significant progress has been made over the last 2 decades in classification, clinical care, research, and organizational structure to enhance the care of children with these high-morbidity and -mortality diseases. New diseases have been defined clinically and genetically, classification systems developed and applied, organizations formed such as the chILD Research Network (chILDRN) and chILD Foundation, and basic and translational science expanded to focus on chILD diseases. Multidisciplinary collaborations and efforts to advance understanding and treatment of chILD have been extended worldwide. The future horizon holds great promise to expand scientific discoveries, collaborate more broadly, and bring new treatment to these children. An overview of key historical past developments, major clinical and research updates, and opportunities for the future in chILD is reviewed in this Perspective.
A Rate-Theory-Phase-Field Model of Irradiation-Induced Recrystallization in UMo Nuclear Fuels
NASA Astrophysics Data System (ADS)
Hu, Shenyang; Joshi, Vineet; Lavender, Curt A.
2017-12-01
In this work, we developed a recrystallization model to study the effect of microstructures and radiation conditions on recrystallization kinetics in UMo fuels. The model integrates the rate theory of intragranular gas bubble and interstitial loop evolutions and a phase-field model of recrystallization zone evolution. A first passage method is employed to describe one-dimensional diffusion of interstitials with a diffusivity value several orders of magnitude larger than that of fission gas xenons. With the model, the effect of grain sizes on recrystallization kinetics is simulated. The results show that (1) recrystallization in large grains starts earlier than that in small grains, (2) the recrystallization kinetics (recrystallization volume fraction) decrease as the grain size increases, (3) the predicted recrystallization kinetics are consistent with the experimental results, and (4) the recrystallization kinetics can be described by the modified Avrami equation, but the parameters of the Avrami equation strongly depend on the grain size.
Pulmonary tissue volume, cardiac output, and diffusing capacity in sustained microgravity
NASA Technical Reports Server (NTRS)
Verbanck, S.; Larsson, H.; Linnarsson, D.; Prisk, G. K.; West, J. B.; Paiva, M.
1997-01-01
In microgravity (microG) humans have marked changes in body fluids, with a combination of an overall fluid loss and a redistribution of fluids in the cranial direction. We investigated whether interstitial pulmonary edema develops as a result of a headward fluid shift or whether pulmonary tissue fluid volume is reduced as a result of the overall loss of body fluid. We measured pulmonary tissue volume (Vti), capillary blood flow, and diffusing capacity in four subjects before, during, and after 10 days of exposure to microG during spaceflight. Measurements were made by rebreathing a gas mixture containing small amounts of acetylene, carbon monoxide, and argon. Measurements made early in flight in two subjects showed no change in Vti despite large increases in stroke volume (40%) and diffusing capacity (13%) consistent with increased pulmonary capillary blood volume. Late in-flight measurements in four subjects showed a 25% reduction in Vti compared with preflight controls (P < 0.001). There was a concomittant reduction in stroke volume, to the extent that it was no longer significantly different from preflight control. Diffusing capacity remained elevated (11%; P < 0.05) late in flight. These findings suggest that, despite increased pulmonary perfusion and pulmonary capillary blood volume, interstitial pulmonary edema does not result from exposure to microG.
Out-diffusion of deep donors in nitrogen-doped silicon and the diffusivity of vacancies
NASA Astrophysics Data System (ADS)
Voronkov, V. V.; Falster, R.
2012-07-01
A strong resistivity increase in annealed nitrogen-doped silicon samples was reported long ago—but has remained not fully understood. It is now shown that the complicated evolution of the resistivity depth profiles observed can be reproduced by a simple model based on the out-diffusion of some relevant species. Two versions of such an approach were analyzed: (A) out-diffusion of deep donors treated as VN (off-centre substitutional nitrogen), (B) out-diffusion of vacancies (V) and interstitial trimers (N3) produced by dissociation of VN3. Version B, although more complicated, is attractive due to a coincidence of the deduced vacancy diffusivity DV at 1000 °C with the value extrapolated from low-temperature data by Watkins.
Oxidation Resistant Ti-Al-Fe Diffusion Barrier for FeCrAlY Coatings on Titanium Aluminides
NASA Technical Reports Server (NTRS)
Brady, Michael P. (Inventor); Smialke, James L. (Inventor); Brindley, William J. (Inventor)
1996-01-01
A diffusion barrier to help protect titanium aluminide alloys, including the coated alloys of the TiAl gamma + Ti3Al (alpha2) class, from oxidative attack and interstitial embrittlement at temperatures up to at least 1000 C is disclosed. The coating may comprise FeCrAlX alloys. The diffusion barrier comprises titanium, aluminum, and iron in the following approximate atomic percent: Ti-(50-55)Al-(9-20)Fe. This alloy is also suitable as an oxidative or structural coating for such substrates.
Revisiting the diffusion mechanism of helium in UO 2 : A DFT+ U study
DOE Office of Scientific and Technical Information (OSTI.GOV)
Liu, X. -Y.; Andersson, D. A.
The understanding of migration properties of helium atoms after their generation through α-decay of actinides in spent nuclear fuels is important for the safety of nuclear fuel storage and disposal. The diffusion of helium in UO 2 is revisited by using the DFT+U simulation methodology employing the “U-ramping” method to address the issue of metastable energy states. A novel diffusion mechanism by helium interstitials, the “asymmetric hop” mechanism, is reported and compared to other diffusion mechanisms including an oxygen vacancy mediated mechanism and available experimental diffusion data. We show that the new mechanism is the dominant one over a widemore » temperature range.« less
Revisiting the diffusion mechanism of helium in UO 2 : A DFT+ U study
Liu, X. -Y.; Andersson, D. A.
2017-11-03
The understanding of migration properties of helium atoms after their generation through α-decay of actinides in spent nuclear fuels is important for the safety of nuclear fuel storage and disposal. The diffusion of helium in UO 2 is revisited by using the DFT+U simulation methodology employing the “U-ramping” method to address the issue of metastable energy states. A novel diffusion mechanism by helium interstitials, the “asymmetric hop” mechanism, is reported and compared to other diffusion mechanisms including an oxygen vacancy mediated mechanism and available experimental diffusion data. We show that the new mechanism is the dominant one over a widemore » temperature range.« less
First principles study of hydrogen behaviors in hexagonal tungsten carbide
NASA Astrophysics Data System (ADS)
Kong, Xiang-Shan; You, Yu-Wei; Liu, C. S.; Fang, Q. F.; Chen, Jun-Ling; Luo, G.-N.
2011-11-01
Understanding the behaviors of hydrogen in hexagonal tungsten carbide (WC) is of particular interest for fusion reactor design due to the presence of WC in the divertor of fusion reactors. Here, we have used first principles calculations to study the hydrogen behavior in WC. It is found that the most stable interstitial site for the hydrogen atom is the projection of the octahedral interstitial site on tungsten basal plane, followed by the site near the projection of the octahedral interstitial site on carbon basal plane. The binding energy between two interstitial hydrogen atoms is negative, suggesting that hydrogen itself is not capable of trapping another hydrogen atoms to form hydrogen molecule. The calculated results on the interaction between hydrogen and vacancy indicate that hydrogen atom is preferably trapped by vacancy defects and hydrogen molecule can not be formed in mono-vacancy. In addition, the hydrogen atom bound to carbon is only found in tungsten vacancy. We also study the migrations of hydrogen in WC and find that the interstitial hydrogen atom prefers to diffuse along the c-axis. Our studies provide some explanations for the results of the thermal desorption process of energetic hydrogen ion implanted into WC.
Ventilation-perfusion matching during exercise
NASA Technical Reports Server (NTRS)
Wagner, P. D.
1992-01-01
In normal subjects, exercise widens the alveolar-arterial PO2 difference (P[A-a]O2) despite a more uniform topographic distribution of ventilation-perfusion (VA/Q) ratios. While part of the increase in P(A-a)O2 (especially during heavy exercise) is due to diffusion limitation, a considerable amount is caused by an increase in VA/Q mismatch as detected by the multiple inert gas elimination technique. Why this occurs is unknown, but circumstantial evidence suggests it may be related to interstitial pulmonary edema rather than to factors dependent on ventilation, airway gas mixing, airway muscle tone, or pulmonary vascular tone. In patients with lung disease, the gas exchange consequences of exercise are variable. Thus, arterial PO2 may increase, remain the same, or fall. In general, patients with advanced chronic obstructive pulmonary disease (COPD) or interstitial fibrosis who exercise show a fall in PO2. This is usually not due to worsening VA/Q relationships but mostly to the well-known fall in mixed venous PO2, which itself results from a relatively smaller increase in cardiac output than VO2. However, in interstitial fibrosis (but not COPD), there is good evidence that a part of the fall in PO2 on exercise is caused by alveolar-capillary diffusion limitation of O2 transport; in COPD (but not interstitial fibrosis), a frequent additional contributing factor to the hypoxemia of exercise is an inadequate ventilatory response, such that minute ventilation does not rise as much as does CO2 production or O2 uptake, causing arterial PCO2 to increase and PO2 to fall.
Parallel computation of multigroup reactivity coefficient using iterative method
NASA Astrophysics Data System (ADS)
Susmikanti, Mike; Dewayatna, Winter
2013-09-01
One of the research activities to support the commercial radioisotope production program is a safety research target irradiation FPM (Fission Product Molybdenum). FPM targets form a tube made of stainless steel in which the nuclear degrees of superimposed high-enriched uranium. FPM irradiation tube is intended to obtain fission. The fission material widely used in the form of kits in the world of nuclear medicine. Irradiation FPM tube reactor core would interfere with performance. One of the disorders comes from changes in flux or reactivity. It is necessary to study a method for calculating safety terrace ongoing configuration changes during the life of the reactor, making the code faster became an absolute necessity. Neutron safety margin for the research reactor can be reused without modification to the calculation of the reactivity of the reactor, so that is an advantage of using perturbation method. The criticality and flux in multigroup diffusion model was calculate at various irradiation positions in some uranium content. This model has a complex computation. Several parallel algorithms with iterative method have been developed for the sparse and big matrix solution. The Black-Red Gauss Seidel Iteration and the power iteration parallel method can be used to solve multigroup diffusion equation system and calculated the criticality and reactivity coeficient. This research was developed code for reactivity calculation which used one of safety analysis with parallel processing. It can be done more quickly and efficiently by utilizing the parallel processing in the multicore computer. This code was applied for the safety limits calculation of irradiated targets FPM with increment Uranium.
Ash, Samuel Y; Harmouche, Rola; Ross, James C; Diaz, Alejandro A; Rahaghi, Farbod N; Sanchez-Ferrero, Gonzalo Vegas; Putman, Rachel K; Hunninghake, Gary M; Onieva, Jorge Onieva; Martinez, Fernando J; Choi, Augustine M; Bowler, Russell P; Lynch, David A; Hatabu, Hiroto; Bhatt, Surya P; Dransfield, Mark T; Wells, J Michael; Rosas, Ivan O; San Jose Estepar, Raul; Washko, George R
2018-06-05
Purpose To determine if interstitial features at chest CT enhance the effect of emphysema on clinical disease severity in smokers without clinical pulmonary fibrosis. Materials and Methods In this retrospective cohort study, an objective CT analysis tool was used to measure interstitial features (reticular changes, honeycombing, centrilobular nodules, linear scar, nodular changes, subpleural lines, and ground-glass opacities) and emphysema in 8266 participants in a study of chronic obstructive pulmonary disease (COPD) called COPDGene (recruited between October 2006 and January 2011). Additive differences in patients with emphysema with interstitial features and in those without interstitial features were analyzed by using t tests, multivariable linear regression, and Kaplan-Meier analysis. Multivariable linear and Cox regression were used to determine if interstitial features modified the effect of continuously measured emphysema on clinical measures of disease severity and mortality. Results Compared with individuals with emphysema alone, those with emphysema and interstitial features had a higher percentage predicted forced expiratory volume in 1 second (absolute difference, 6.4%; P < .001), a lower percentage predicted diffusing capacity of lung for carbon monoxide (DLCO) (absolute difference, 7.4%; P = .034), a 0.019 higher right ventricular-to-left ventricular (RVLV) volume ratio (P = .029), a 43.2-m shorter 6-minute walk distance (6MWD) (P < .001), a 5.9-point higher St George's Respiratory Questionnaire (SGRQ) score (P < .001), and 82% higher mortality (P < .001). In addition, interstitial features modified the effect of emphysema on percentage predicted DLCO, RVLV volume ratio, 6WMD, SGRQ score, and mortality (P for interaction < .05 for all). Conclusion In smokers, the combined presence of interstitial features and emphysema was associated with worse clinical disease severity and higher mortality than was emphysema alone. In addition, interstitial features enhanced the deleterious effects of emphysema on clinical disease severity and mortality. © RSNA, 2018 Online supplemental material is available for this article.
NASA Astrophysics Data System (ADS)
Dardano, P.; Caliò, A.; Politi, J.; Di Palma, V.; Bevilacqua, M. F.; Rea, I.; Casalino, M.; Di Matteo, A.; Rendina, I.; De Stefano, L.
2015-06-01
Microneedles are newly developed biomedical devices, whose advantages are mainly in the non-invasiveness, discretion and versatility of use both as diagnostics and as therapeutics tool. In fact, they can be used both for drugs delivery in the interstitial fluids and for the analysis of the interstitial fluid. In this work we present the preliminary results for two devices based on micro needles in PolyEthylene (Glycol). The first for the drugs delivery includes a membrane whose optical reflected wavelength is related to the concentration of drug. Here, we present our preliminary result in diffusion of drugs between the membrane and the microneedles. The second device is gold coated and it works as electrode for the electrochemical detection of species in the interstitial fluid. A preliminary result in detection of glucose will be shown.
Diffusion of vaporous guests into a seemingly non-porous organic crystal
DOE Office of Scientific and Technical Information (OSTI.GOV)
Herbert, Simon A.; Janiak, Agnieszka; Thallapally, Praveen K.
2014-10-07
In this research, the tetragonal apohost phase of p-tert-butyltetramethoxythiacalix[4]arene absorbs hydrochloric acid and iodine. These guest molecules occupy different sites in the solid-state structure -- either within the small intrinsic voids of the macrocycle or within the interstitial spaces between the host molecules. This study illustrates the dynamic deformation of the host, providing strong mechanistic insight into the diffusion of guests into this seemingly non-porous material.
NASA Astrophysics Data System (ADS)
Grabtchak, Serge; Montgomery, Logan G.; Whelan, William M.
2014-05-01
We demonstrated the application of relative radiance-based continuous wave (cw) measurements for recovering absorption and scattering properties (the effective attenuation coefficient, the diffusion coefficient, the absorption coefficient and the reduced scattering coefficient) of bulk porcine muscle phantoms in the 650-900 nm spectral range. Both the side-firing fiber (the detector) and the fiber with a spherical diffuser at the end (the source) were inserted interstitially at predetermined locations in the phantom. The porcine phantoms were prostate-shaped with ˜4 cm in diameter and ˜3 cm thickness and made from porcine loin or tenderloin muscles. The described method was previously validated using the diffusion approximation on simulated and experimental radiance data obtained for homogenous Intralipid-1% liquid phantom. The approach required performing measurements in two locations in the tissue with different distances to the source. Measurements were performed on 21 porcine phantoms. Spectral dependences of the effective attenuation and absorption coefficients for the loin phantom deviated from corresponding dependences for the tenderloin phantom for wavelengths <750 nm. The diffusion constant and the reduced scattering coefficient were very close for both phantom types. To quantify chromophore presence, the plot for the absorption coefficient was matched with a synthetic absorption spectrum constructed from deoxyhemoglobin, oxyhemoglobin and water. The closest match for the porcine loin spectrum was obtained with the following concentrations: 15.5 µM (±30% s.d.) Hb, 21 µM (±30% s.d.) HbO2 and 0.3 (±30% s.d.) fractional volume of water. The tenderloin absorption spectrum was best described by 30 µM Hb (±30% s.d), 19 µM (±30% s.d.) HbO2 and 0.3 (±30% s.d.) fractional volume of water. The higher concentration of Hb in tenderloin was consistent with a dark-red appearance of the tenderloin phantom. The method can be applied to a number of biological tissues and organs for interstitial optical interrogation.
Le, Kelvin; Li, Xiaosong; Figueroa, Daniel; Towner, Rheal A.; Garteiser, Philippe; Saunders, Debra; Smith, Nataliya; Liu, Hong; Hode, Tomas; Nordquist, Robert E.; Chen, Wei R.
2011-01-01
Laser immunotherapy (LIT) uses a synergistic approach to treat cancer systemically through local laser irradiation and immunological stimulation. Currently, LIT utilizes dye-assisted noninvasive laser irradiation to achieve selective photothermal interaction. However, LIT faces difficulties treating deeper tumors or tumors with heavily pigmented overlying skin. To circumvent these barriers, we use interstitial laser irradiation to induce the desired photothermal effects. The purpose of this study is to analyze the thermal effects of interstitial irradiation using proton resonance frequency (PRF). An 805-nm near-infrared laser with an interstitial cylindrical diffuser was used to treat rat mammary tumors. Different power settings (1.0, 1.25, and 1.5 W) were applied with an irradiation duration of 10 min. The temperature distributions of the treated tumors were measured by a 7 T magnetic resonance imager using PRF. We found that temperature distributions in tissue depended on both laser power and time settings, and that variance in tissue composition has a major influence in temperature elevation. The temperature elevations measured during interstitial laser irradiation by PRF and thermocouple were consistent, with some variations due to tissue composition and the positioning of the thermocouple's needle probes. Our results indicated that, for a tissue irradiation of 10 min, the elevation of rat tumor temperature ranged from 8 to 11°C for 1 W and 8 to 15°C for 1.5 W. This is the first time a 7 T magnetic resonance imager has been used to monitor interstitial laser irradiation via PRF. Our work provides a basic understanding of the photothermal interaction needed to control the thermal damage inside a tumor using interstitial laser treatment. Our work may lead to an optimal protocol for future cancer treatment using interstitial phototherapy in conjunction with immunotherapy. PMID:22191937
Mechanism of anisotropic surface self-diffusivity at the prismatic ice-vapor interface.
Gladich, Ivan; Oswald, Amrei; Bowens, Natalie; Naatz, Sam; Rowe, Penny; Roeselova, Martina; Neshyba, Steven
2015-09-21
Predictive theoretical models for mesoscopic roughening of ice require improved understanding of attachment kinetics occurring at the ice-vapor interface. Here, we use classical molecular dynamics to explore the generality and mechanics of a transition from anisotropic to isotropic self-diffusivity on exposed prismatic surfaces. We find that self-diffusion parallel to the crystallographic a-axis is favored over the c-axis at sub-melt temperatures below about -35 °C, for three different representations of the water-water intermolecular potential. In the low-temperature anisotropic regime, diffusion results from interstitial admolecules encountering entropically distinct barriers to diffusion in the two in-plane directions. At higher temperatures, isotropic self-diffusion occurring deeper within the quasi-liquid layer becomes the dominant mechanism, owing to its larger energy of activation.
NASA Astrophysics Data System (ADS)
Nakamura, Minoru; Murakami, Susumu; Udono, Haruhiko
2018-03-01
We investigate the relationship between the intensity of band-edge (BDE) photoluminescence (PL) from 10 to 70 K and the concentration of iron diffused in boron-doped p-type silicon. Because of the nonradiative recombination activity of the interstitial iron-boron complex (FeiB center), the BDE-PL intensity at each temperature varies distinctively and systematically with the iron concentration, which means that this method has the potential to make the accurate measurements of a wide range of interstitial iron concentrations in silicon. The iron precipitates formed in the bulk and/or at the surface are found to exert much weaker recombination activity for excess carriers than FeiB center by exploiting both PL and deep-level transient spectroscopy (DLTS) measurements. The unexpected enhancement in BDE-PL intensity from iron-diffused silicon between 20 and 50 K is attributed to the passivation of the Si-oxide/Si interface by iron. For the samples diffused with trace amounts of iron, the iron concentration within 20 μm of the surface is significantly greater than that in the bulk, as measured by DLTS. This result is tentatively attributed to the affinity of iron with the Si-oxide.
Fabrication and characterization of cylindrical light diffusers comprised of shape memory polymer.
Small, Ward; Buckley, Patrick R; Wilson, Thomas S; Loge, Jeffrey M; Maitland, Kristen D; Maitland, Duncan J
2008-01-01
We developed a technique for constructing light diffusing devices comprised of a flexible shape memory polymer (SMP) cylindrical diffuser attached to the tip of an optical fiber. The devices are fabricated by casting an SMP rod over the cleaved tip of an optical fiber and media blasting the SMP rod to create a light diffusing surface. The axial and polar emission profiles and circumferential (azimuthal) uniformity are characterized for various blasting pressures, nozzle-to-sample distances, and nozzle translation speeds. The diffusers are generally strongly forward-directed and consistently withstand over 8 W of incident IR laser light without suffering damage when immersed in water. These devices are suitable for various endoluminal and interstitial biomedical applications.
Fabrication and characterization of cylindrical light diffusers comprised of shape memory polymer
Small, Ward; Buckley, Patrick R.; Wilson, Thomas S.; Loge, Jeffrey M.; Maitland, Kristen D.; Maitland, Duncan J.
2009-01-01
We developed a technique for constructing light diffusing devices comprised of a flexible shape memory polymer (SMP) cylindrical diffuser attached to the tip of an optical fiber. The devices are fabricated by casting an SMP rod over the cleaved tip of an optical fiber and media blasting the SMP rod to create a light diffusing surface. The axial and polar emission profiles and circumferential (azimuthal) uniformity are characterized for various blasting pressures, nozzle-to-sample distances, and nozzle translation speeds. The diffusers are generally strongly forward-directed and consistently withstand over 8 W of incident IR laser light without suffering damage when immersed in water. These devices are suitable for various endoluminal and interstitial biomedical applications. PMID:18465981
Ungprasert, Patompong; Wilton, Katelynn M; Ernste, Floranne C; Kalra, Sanjay; Crowson, Cynthia S; Rajagopalan, Srinivasan; Bartholmai, Brian J
2017-10-01
To evaluate the correlation between measurements from quantitative thoracic high-resolution CT (HRCT) analysis with "Computer-Aided Lung Informatics for Pathology Evaluation and Rating" (CALIPER) software and measurements from pulmonary function tests (PFTs) in patients with idiopathic inflammatory myopathies (IIM)-associated interstitial lung disease (ILD). A cohort of patients with IIM-associated ILD seen at Mayo Clinic was identified from medical record review. Retrospective analysis of HRCT data and PFTs at baseline and 1 year was performed. The abnormalities in HRCT were quantified using CALIPER software. A total of 110 patients were identified. At baseline, total interstitial abnormalities as measured by CALIPER, both by absolute volume and by percentage of total lung volume, had a significant negative correlation with diffusing capacity for carbon monoxide (DLCO), total lung capacity (TLC), and oxygen saturation. Analysis by subtype of interstitial abnormality revealed significant negative correlations between ground glass opacities (GGO) and reticular density (RD) with DLCO and TLC. At one year, changes of total interstitial abnormalities compared with baseline had a significant negative correlation with changes of TLC and oxygen saturation. A negative correlation between changes of total interstitial abnormalities and DLCO was also observed, but it was not statistically significant. Analysis by subtype of interstitial abnormality revealed negative correlations between changes of GGO and RD and changes of DLCO, TLC, and oxygen saturation, but most of the correlations did not achieve statistical significance. CALIPER measurements correlate well with functional measurements in patients with IIM-associated ILD.
UO(2) Oxidative Corrosion by Nonclassical Diffusion.
Stubbs, Joanne E; Chaka, Anne M; Ilton, Eugene S; Biwer, Craig A; Engelhard, Mark H; Bargar, John R; Eng, Peter J
2015-06-19
Using x-ray scattering, spectroscopy, and density-functional theory, we determine the structure of the oxidation front when a UO(2) (111) surface is exposed to oxygen at ambient conditions. In contrast to classical diffusion and previously reported bulk UO(2+x) structures, we find oxygen interstitials order into a nanoscale superlattice with three-layer periodicity and uranium in three oxidation states: IV, V, and VI. This oscillatory diffusion profile is driven by the nature of the electron transfer process, and has implications for understanding the initial stages of oxidative corrosion in materials at the atomistic level.
Pham, Ngot Thi; Lee, Seul Lee; Park, Suhyun; Lee, Yong Wook; Kang, Hyun Wook
2017-04-01
High-sensitivity temperature sensors have been used to validate real-time thermal responses in tissue during photothermal treatment. The objective of the current study was to evaluate the feasible application of a fiber Bragg grating (FBG) sensor for diffuser-assisted laser-induced interstitial thermotherapy (LITT) particularly to treat tubular tissue disease. A 600 - ? m core-diameter diffuser was employed to deliver 980-nm laser light for coagulation treatment. Both a thermocouple and a FBG were comparatively tested to evaluate temperature measurements in ex vivo liver tissue. The degree of tissue denaturation was estimated as a function of irradiation times and quantitatively compared with light distribution as well as temperature development. At the closer distance to a heat source, the thermocouple measured up to 41% higher maximum temperature than the FBG sensor did after 120-s irradiation (i.e., 98.7 ° C ± 6.1 ° C for FBG versus 131.0 ° C ± 5.1 ° C for thermocouple; p < 0.001 ). Ex vivo porcine urethra tests confirmed the real-time temperature measurements of the FBG sensor as well as consistently circumferential tissue denaturation after 72-s irradiation ( coagulation thickness = 2.2 ± 0.3 ?? mm ). The implementation of FBG can be a feasible sensing technique to instantaneously monitor the temperature developments during diffuser-assisted LITT for treatment of tubular tissue structure.
Mok, Wilson; Stylianopoulos, Triantafyllos; Boucher, Yves; Jain, Rakesh K.
2010-01-01
Purpose Although oncolytic viral vectors show promise for the treatment of various cancers, ineffective initial distribution and propagation throughout the tumor mass often limit the therapeutic response. A mathematical model is developed to describe the spread of herpes simplex virus from the initial injection site. Experimental Design The tumor is modeled as a sphere of radius R. The model incorporates reversible binding, interstitial diffusion, viral degradation, and internalization and physiologic parameters. Three species are considered as follows: free interstitial virus, virus bound to cell surfaces, and internalized virus. Results This analysis reveals that both rapid binding and internalization as well as hindered diffusion contain the virus to the initial injection volume, with negligible spread to the surrounding tissue. Unfortunately, increasing the dose to saturate receptors and promote diffusion throughout the tumor is not a viable option: the concentration necessary would likely compromise safety. However, targeted modifications to the virus that decrease the binding affinity have the potential to increase the number of infected cells by 1.5-fold or more. An increase in the effective diffusion coefficient can result in similar gains. Conclusions This analysis suggests criteria by which the potential response of a tumor to oncolytic herpes simplex virus therapy can be assessed. Furthermore, it reveals the potential of modifications to the vector delivery method, physicochemical properties of the virus, and tumor extracellular matrix composition to enhance efficacy. PMID:19318482
Effect of tumor shape, size, and tissue transport properties on drug delivery to solid tumors
2014-01-01
Background The computational methods provide condition for investigation related to the process of drug delivery, such as convection and diffusion of drug in extracellular matrices, drug extravasation from microvessels or to lymphatic vessels. The information of this process clarifies the mechanisms of drug delivery from the injection site to absorption by a solid tumor. In this study, an advanced numerical method is used to solve fluid flow and solute transport equations simultaneously to investigate the effect of tumor shape and size on drug delivery to solid tumor. Methods The advanced mathematical model used in our previous work is further developed by adding solute transport equation to the governing equations. After applying appropriate boundary and initial conditions on tumor and surrounding tissue geometry, the element-based finite volume method is used for solving governing equations of drug delivery in solid tumor. Also, the effects of size and shape of tumor and some of tissue transport parameters such as effective pressure and hydraulic conductivity on interstitial fluid flow and drug delivery are investigated. Results Sensitivity analysis shows that drug delivery in prolate shape is significantly better than other tumor shapes. Considering size effect, increasing tumor size decreases drug concentration in interstitial fluid. This study shows that dependency of drug concentration in interstitial fluid to osmotic and intravascular pressure is negligible. Conclusions This study shows that among diffusion and convection mechanisms of drug transport, diffusion is dominant in most different tumor shapes and sizes. In tumors in which the convection has considerable effect, the drug concentration is larger than that of other tumors at the same time post injection. PMID:24987457
Li, Zhifang; Chen, Haiyu; Zhou, Feifan; Li, Hui; Chen, Wei R.
2015-01-01
Photothermal therapy is an effective means to induce tumor cell death, since tumor tissue is more sensitive to temperature increases than normal tissue. Biological responses depend on tissue temperature; target tissue temperature needs to be precisely measured and controlled to achieve desired thermal effects. In this work, a unique photoacoustic (PA) sensor is proposed for temperature measurement during interstitial laser phototherapy. A continuous-wave laser light and a pulsed laser light, for photothermal irradiation and photoacoustic temperature measurement, respectively, were delivered to the target tissue through a fiber coupler. During laser irradiation, the PA amplitude was measured. The Grüneisen parameter and the bioheat equation were used to determine the temperature in strategic positions in the target tissue. Our results demonstrate that the interstitial PA amplitude is a linear function of temperature in the range of 22 to 55 °C, as confirmed by thermocouple measurement. Furthermore, by choosing appropriate laser parameters, the maximum temperature surrounding the active diffuse fiber tip in tissue can be controlled in the range of 41 to 55 °C. Thus, this sensor could potentially be used for fast, accurate, and convenient three-dimensional temperature measurement, and for real-time feedback and control of interstitial laser phototherapy in cancer treatment. PMID:25756865
The evaluation of interstitial Cajal cells distribution in non-tumoral colon disorders.
Becheanu, G; Manuc, M; Dumbravă, Mona; Herlea, V; Hortopan, Monica; Costache, Mariana
2008-01-01
Interstitial cells of Cajal (ICC) are pacemakers that generate electric waves recorded from the gut and are important for intestinal motility. The aim of the study was to evaluate the distribution of interstitial cells of Cajal in colon specimens from patients with idiopathic chronic pseudo-obstruction and other non-tumoral colon disorders as compared with samples from normal colon. The distribution pattern of ICC in the normal and pathological human colon was evaluated by immunohistochemistry using antibodies for CD117, CD34, and S-100. In two cases with intestinal chronic idiopathic pseudo-obstruction we found a diffuse or focal reducing number of Cajal cells, the loss of immunoreactivity for CD117 being correlated with loss of immunoreactivity for CD34 marker. Our study revealed that the number of interstitial cells of Cajal also decrease in colonic diverticular disease and Crohn disease (p<0.05), whereas the number of enteric neurones appears to be normal. These findings might explain some of the large bowel motor abnormalities known to occur in these disorders. Interstitial Cajal cells may play an important role in pathogenesis and staining for CD117 on transmural intestinal surgical biopsies could allow a more extensive diagnosis in evaluation of chronic intestinal pseudo-obstruction.
Laserthermia: a new computer-controlled contact Nd: YAG system for interstitial local hyperthermia.
Daikuzono, N; Suzuki, S; Tajiri, H; Tsunekawa, H; Ohyama, M; Joffe, S N
1988-01-01
Contact Nd:YAG laser surgery is assuming a greater importance in endoscopic and open surgery, allowing coagulation, cutting, and vaporization with greater precision and safety. A new contact probe allows a wider angle of irradiation and diffusion of low-power laser energy (less than 5 watts), using the interstitial technique for producing local hyperthermia. Temperature sensors that monitor continuously can be placed directly into the surrounding tissue or tumor. Using a computer program interfaced with the laser and sensors, a controlled and stable temperature (e.g., 42 degrees C) can be produced in a known volume of tissue over a prolonged period of time (e.g., 20-40 min). This new laserthermia system, using a single low-power Nd:YAG laser for interstitial local hyperthermia, may offer many new advantages in the experimental treatment and clinical management of carcinoma. A multiple system is now being developed.
NASA Astrophysics Data System (ADS)
Mølholt, T. E.; Mantovan, R.; Gunnlaugsson, H. P.; Svane, A.; Masenda, H.; Naidoo, D.; Bharuth-Ram, K.; Fanciulli, M.; Gislason, H. P.; Johnston, K.; Langouche, G.; Ólafsson, S.; Sielemann, R.; Weyer, G.
2014-01-01
Isolated 57Fe atoms were studied in MgO single-crystals by emission Mössbauer spectroscopy following implantation of 57Mn decaying to 57Fe. Four Mössbauer spectral components were found corresponding to different Fe lattice positions and/or charge states. Two components represent Fe atoms substituting Mg as Fe2+ and Fe3+, respectively; a third component is due to Fe in a strongly implantation-induced disturbed region. The fourth component, which is the focus of this paper, can be assigned to Fe at an interstitial site. Comparison of its measured isomer shift with ab initio calculations suggests that the interstitial Fe is located on, or close to, the face of the rock-salt MgO structure. To harmonize such an assignment with the measured near-zero quadrupole interaction a local motion process (cage motion) of the Fe has to be stipulated. The relation of such a local motion as a starting point for long range diffusion is discussed.
Ichikado, Kazuya
2014-02-01
Diffuse alveolar damage (DAD) is the pathologic feature of rapidly progressive lung diseases, including acute respiratory distress syndrome, acute interstitial pneumonia, and acute exacerbation of idiopathic pulmonary fibrosis. The clinical significance and limitation of high-resolution computed tomography (HRCT) findings in these diseases were reviewed. The HRCT findings correlate well with pathologic phases (exudative, proliferative, and fibrotic) of DAD, although it cannot detect early exudative phase. Traction bronchiolectasis or bronchiectasis within areas of increased attenuation on HRCT scan is a sign of progression from the exudative to the proliferative and fibrotic phase of DAD. Extensive abnormalities seen on HRCT scans, which are indicative of fibroproliferative changes, were independently predictive of poor prognosis in patients with clinically early acute respiratory distress syndrome, acute interstitial pneumonia, and acute exacerbation of idiopathic pulmonary fibrosis. © 2013 Published by Elsevier Inc.
Simon, N.S.; Kennedy, M.M.; Massoni, C.S.
1985-01-01
Field and laboratory evaluations were made of a simple, inexpensive diffusion-controlled sampler with ports on two sides at each interval which incorporates 0.2-??m polycarbonate membrane to filter samples in situ. Monovalent and divalent ions reached 90% of equilibrium between sampler contents and the external solution within 3 and 6 hours, respectively. Sediment interstitial water chemical gradients to depths of tens of centimeters were obtained within several days after placement. Gradients were consistent with those determined from interstitial water obtained by centrifugation of adjacent sediment. Ten milliliter sample volumes were collected at 1-cm intervals to determine chemical gradients and dissolved oxygen profiles at depth and at the interface between the sediment and water column. The flux of dissolved species, including oxygen, across the sediment-water interface can be assessed more accurately using this sampler than by using data collected from benthic cores. ?? 1985 Dr W. Junk Publishers.
Digesting a Path Forward: The Utility of Collagenase Tumor Treatment for Improved Drug Delivery.
Dolor, Aaron; Szoka, Francis C
2018-06-04
Collagen and hyaluronan are the most abundant components of the extracellular matrix (ECM) and their overexpression in tumors is linked to increased tumor growth and metastasis. These ECM components contribute to a protective tumor microenvironment by supporting a high interstitial fluid pressure and creating a tortuous setting for the convection and diffusion of chemotherapeutic small molecules, antibodies, and nanoparticles in the tumor interstitial space. This review focuses on the research efforts to deplete extracellular collagen with collagenases to normalize the tumor microenvironment. Although collagen synthesis inhibitors are in clinical development, the use of collagenases is contentious and clinically untested in cancer patients. Pretreatment of murine tumors with collagenases increased drug uptake and diffusion 2-10-fold. This modest improvement resulted in decreased tumor growth, but the benefits of collagenase treatment are confounded by risks of toxicity from collagen breakdown in healthy tissues. In this review, we evaluate the published in vitro and in vivo benefits and limitations of collagenase treatment to improve drug delivery.
Actividad actual y resultados de las observaciones en Base Belgrano Antártida
NASA Astrophysics Data System (ADS)
Recabarren, P.; Mosconi, M.; Ferreiro, D.; Lazarte, G.; Hutka, J.; García Lambas, D.; Ozu, R.
Several aspects of the experience acquired in ``J. L. Sérsic'' Antarctic Astronomical Station, at 78 degrees South, during the period 1995-1997 are analysed. We show results of 'seeing' measurements, extinction coeficients, monitoring of Eta Carinae, meteorogical conditions and logistic support. Seeing measurements show average values of 4.02" ('95), 5.25" ('96) y 4.43" (till July '97). We have found photometrical variations of Eta Car with a particular behaviour near June 5.
Impulse Response Shaping for Ultra Wide Band SAR in a Circular Flight Path
NASA Technical Reports Server (NTRS)
Jin, Michael Y.
1996-01-01
An ultra wide band SAR (synthetic aperture radar) has potential applications on imaging underground objects. Flying this SAR in a circular flight path is an efficient way to acquire high resolution images from a localized area. This paper characterizes the impulse response of sucha system. The results indicate that to achieve an image with a more uniformed resolution over the entire imaged area, proper weighting coeficients should be applied to both the principle aperture and the complimentary aperture.
Geith, Tobias; Biffar, Andreas; Schmidt, Gerwin; Sourbron, Steven; Dietrich, Olaf; Reiser, Maximilian; Baur-Melnyk, Andrea
2015-01-01
To test the hypothesis that apparent diffusion coefficient (ADC) in vertebral bone marrow of benign and malignant fractures is related to the volume of the interstitial space, determined with dynamic contrast-enhanced (DCE) magnetic resonance imaging. Patients with acute benign (n = 24) and malignant (n = 19) vertebral body fractures were examined at 1.5 T. A diffusion-weighted single-shot turbo-spin-echo sequence (b = 100 to 600 s/mm) and DCE turbo-FLASH sequence were evaluated. Regions of interest were manually selected for each fracture. Apparent diffusion coefficient was determined with a monoexponential decay model. The DCE magnetic resonance imaging concentration-time curves were analyzed using a 2-compartment tracer-kinetic model. Apparent diffusion coefficient showed a significant positive correlation with interstitial volume in the whole study population (Pearson r = 0.66, P < 0.001), as well as in the malignant (Pearson r = 0.64, P = 0.004) and benign (Pearson r = 0.52, P = 0.01) subgroup. A significant correlation between ADC and the permeability-surface area product could be observed when analyzing the whole study population (Spearman rs = 0.40, P = 0.008), but not when separately examining the subgroups. Plasma flow showed a significant correlation with ADC in benign fractures (Pearson r = 0.23, P = 0.03). Plasma volume did not show significant correlations with ADC. The results support the hypothesis that the ADC of a lesion is inversely correlated to its cellularity. This explains previous observations that ADC is reduced in more malignant lesions.
Effects of cation contaminants in conductive TiO2 ceramics
NASA Astrophysics Data System (ADS)
Yan, M. F.; Rhodes, W. W.
1982-12-01
Ten cation contaminants, namely Al, Ga, Co, Fe, Mg, Zn, Zr, Ca, Sr, and Ba were investigated for their effects on the electrical properties, microstructures, and discoloration of conductive TiO2 ceramics. It was found that Al, Ga, Co, Fe, and Mg cause discoloration and increase the electrical resistivity by a factor of 104 to 106 in Nb-doped TiO2 ceramics. The other dopants do not introduce such changes in TiO2. The electrical properties, microstructures, and discoloration were measured in specimens of AlxNb0.007Ti0.993-xO2 with 0≤x≤0.01. When the Al content exceeds a critical value, ranging from 0.48% at 1400 °C to 0.25% at 1200 °C, the electrical resistivities and grain size increase rapidly, and the specimen is discolored from the original black to an ivory white color. Color boundary migration induced by Al diffusion in Nb-doped TiO2 was quantitatively measured. From the kinetics of the boundary migration, the Al diffusivity (D) was calculated to be D=2.67 exp(-53.3 kcal/mole/RT) cm2/s in the temperature range of 1200 to 1400 °C. The rapid diffusion of the small cations, namely Al, Ga, Co, Fe, and Mg, results from an interstitial diffusion mechanism. However, other cations, having a radius larger than the interstitial channel (˜0.77 Å radius), cannot diffuse by this mechanism. Defect reactions are proposed to explain the increase in the electrical resistivity and microstructural changes due to Al diffusion. These defect reactions also show that the problem of acceptor contamination cannot be avoided by adding an excess quantity of donor dopant if the solubility of the donor is much less than that of the acceptor contaminant.
Molecular dynamics simulations of substitutional diffusion
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zhou, Xiaowang; Jones, Reese E.; Gruber, Jacob
2016-12-18
In atomistic simulations, diffusion energy barriers are usually calculated for each atomic jump path using a nudged elastic band method. Practical materials often involve thousands of distinct atomic jump paths that are not known a priori. Hence, it is often preferred to determine an overall diffusion energy barrier and an overall pre-exponential factor from the Arrhenius equation constructed through molecular dynamics simulations of mean square displacement of the diffusion species at different temperatures. This approach has been well established for interstitial diffusion, but not for substitutional diffusion at the same confidence. Using In 0.1 Ga 0.9 N as an example,more » we have identified conditions where molecular dynamics simulations can be used to calculate highly converged Arrhenius plots for substitutional alloys. As a result, this may enable many complex diffusion problems to be easily and reliably studied in the future using molecular dynamics, provided that moderate computing resources are available.« less
Cortexin diffusion in human eye sclera
DOE Office of Scientific and Technical Information (OSTI.GOV)
Genina, Elina A; Bashkatov, A N; Tuchin, Valerii V
2011-05-31
Investigation of the diffusion of cytamines, a typical representative of which is cortexin, is important for evaluating the drug dose, necessary to provide sufficient concentration of the preparation in the inner tissues of the eye. In the present paper, the cortexin diffusion rate in the eye sclera is measured using the methods of optical coherence tomography (OCT) and reflectance spectroscopy. The technique for determining the diffusion coefficient is based on the registration of temporal dependence of the eye sclera scattering parameters caused by partial replacement of interstitial fluid with the aqueous cortexin solution, which reduces the level of the OCTmore » signal and decreases the reflectance of the sclera. The values of the cortexin diffusion coefficient obtained using two independent optical methods are in good agreement. (optical technologies in biophysics and medicine)« less
“Conjugate Channeling” Effect in Dislocation Core Diffusion: Carbon Transport in Dislocated BCC Iron
Ishii, Akio; Li, Ju; Ogata, Shigenobu
2013-01-01
Dislocation pipe diffusion seems to be a well-established phenomenon. Here we demonstrate an unexpected effect, that the migration of interstitials such as carbon in iron may be accelerated not in the dislocation line direction , but in a conjugate diffusion direction. This accelerated random walk arises from a simple crystallographic channeling effect. is a function of the Burgers vector b, but not , thus a dislocation loop possesses the same everywhere. Using molecular dynamics and accelerated dynamics simulations, we further show that such dislocation-core-coupled carbon diffusion in iron has temperature-dependent activation enthalpy like a fragile glass. The 71° mixed dislocation is the only case in which we see straightforward pipe diffusion that does not depend on dislocation mobility. PMID:23593255
Ishii, Akio; Li, Ju; Ogata, Shigenobu
2013-01-01
Dislocation pipe diffusion seems to be a well-established phenomenon. Here we demonstrate an unexpected effect, that the migration of interstitials such as carbon in iron may be accelerated not in the dislocation line direction ξ, but in a conjugate diffusion direction. This accelerated random walk arises from a simple crystallographic channeling effect. c is a function of the Burgers vector b, but not ξ, thus a dislocation loop possesses the same everywhere. Using molecular dynamics and accelerated dynamics simulations, we further show that such dislocation-core-coupled carbon diffusion in iron has temperature-dependent activation enthalpy like a fragile glass. The 71° mixed dislocation is the only case in which we see straightforward pipe diffusion that does not depend on dislocation mobility.
NASA Astrophysics Data System (ADS)
Mang, Thomas S.; Nava, Hector R.; Regal, Anne-Marie
1989-06-01
Clinical studies in photodynamic therapy (PDT) have utilized lasers to take advantage of coupling efficiencies to optical fibers allowing light to be delivered to many areas of the body. This is particularly true in endoscopic PDT. Both interstitial and superficial delivery techniques can be applied using one of a variety of delivery fibers available. A fiber with an optically flat end with a lens to produce a spot with a homogeneous intensity is used for superficial applications. Diffusers of various lengths, at the tip of a fiber, produce a cylindrical isotropic pattern and are suited for either intraluminal or interstitial illuminations.
Gallium uptake in tryptophan-related pulmonary disease
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kim, S.M.; Park, C.H.; Intenzo, C.M.
1991-02-01
We describe a patient who developed fever, fatigue, muscle weakness, dyspnea, skin rash, and eosinophilia after taking high doses of tryptophan for insomnia for two years. A gallium-67 scan revealed diffuse increased uptake in the lung and no abnormal uptake in the muscular distribution. Bronchoscopy and biopsy confirmed inflammatory reactions with infiltration by eosinophils, mast cells, and lymphocytes. CT scan showed an interstitial alveolar pattern without fibrosis. EMG demonstrated diffuse myopathy. Muscle biopsy from the right thigh showed an inflammatory myositis with eosinophilic and lymphocytic infiltrations.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Yang, Xiao-Yong; Lu, Yong; Zhang, Ping, E-mail: zhang-ping@iapcm.ac.cn
2015-04-28
The temperature-dependent diffusion coefficient of interstitial helium in zirconium carbide (ZrC) matrix is calculated based on the transition state theory. The microscopic parameters in the activation energy and prefactor are obtained from first-principles total energy and phonon frequency calculations including the all atoms. The obtained activation energy is 0.78 eV, consistent with experimental value. Besides, we evaluated the influence of C and Zr vacancies as the perturbation on helium diffusion, and found the C vacancy seems to confine the mobility of helium and the Zr vacancy promotes helium diffusion in some extent. These results provide a good reference to understand themore » behavior of helium in ZrC matrix.« less
Imaging diagnosis--pulmonary metastases in New World camelids.
Gall, David A; Zekas, Lisa J; Van Metre, David; Holt, Timothy
2006-01-01
The radiographic appearance of pulmonary metastatic disease from carcinoma is described in a llama and an alpaca. In one, a diffuse miliary pattern was seen. In the other, a more atypical unstructured interstitial pattern was recognized. Metastatic pulmonary neoplasia in camelids may assume a generalized miliary or unstructured pattern.
Linear feasibility algorithms for treatment planning in interstitial photodynamic therapy
NASA Astrophysics Data System (ADS)
Rendon, A.; Beck, J. C.; Lilge, Lothar
2008-02-01
Interstitial Photodynamic therapy (IPDT) has been under intense investigation in recent years, with multiple clinical trials underway. This effort has demanded the development of optimization strategies that determine the best locations and output powers for light sources (cylindrical or point diffusers) to achieve an optimal light delivery. Furthermore, we have recently introduced cylindrical diffusers with customizable emission profiles, placing additional requirements on the optimization algorithms, particularly in terms of the stability of the inverse problem. Here, we present a general class of linear feasibility algorithms and their properties. Moreover, we compare two particular instances of these algorithms, which are been used in the context of IPDT: the Cimmino algorithm and a weighted gradient descent (WGD) algorithm. The algorithms were compared in terms of their convergence properties, the cost function they minimize in the infeasible case, their ability to regularize the inverse problem, and the resulting optimal light dose distributions. Our results show that the WGD algorithm overall performs slightly better than the Cimmino algorithm and that it converges to a minimizer of a clinically relevant cost function in the infeasible case. Interestingly however, treatment plans resulting from either algorithms were very similar in terms of the resulting fluence maps and dose volume histograms, once the diffuser powers adjusted to achieve equal prostate coverage.
Grain growth and pore coarsening in dense nano-crystalline UO 2+x fuel pellets
DOE Office of Scientific and Technical Information (OSTI.GOV)
Yao, Tiankai; Mo, Kun; Yun, Di
Dense nano-sized UO 2+x pellets are synthesized by spark plasma sintering with controlled stoichiometries (UO 2.03 and UO 2.11) and grain sizes (~100 nm), and subsequently isothermally annealed to study their effects on grain growth kinetics and microstructure stability. The grain growth kinetics is determined and analyzed focusing on the interaction between grain boundary migration, pore growth and coalescence. Grains grow much bigger in nano-sized UO 2.11 than UO 2.03 upon thermal annealing, consistent with the fact that hyper-stoichiometric UO 2+x is beneficial for sintering due to enhanced U ion diffusion from excessive O ion interstitials. The activation energies ofmore » the grain growth for UO 2.03 and UO 2.11 are determined as ~1.0 and 1.3~2.0 eV, respectively. As compared with the micron-sized UO 2 in which volumetric diffusion dominates the grain coarsening with an activation energy of ~3.0 eV, the enhanced grain growth kinetics in nano-sized UO 2+x suggests that grain boundary diffusion controls grain growth. Lastly, the higher activation energy of more hyper-stoichiometric nano-sized UO 2.11 may be attributed to the excessive O interstitials pinning grain boundary migration.« less
Grain growth and pore coarsening in dense nano-crystalline UO 2+x fuel pellets
Yao, Tiankai; Mo, Kun; Yun, Di; ...
2017-03-25
Dense nano-sized UO 2+x pellets are synthesized by spark plasma sintering with controlled stoichiometries (UO 2.03 and UO 2.11) and grain sizes (~100 nm), and subsequently isothermally annealed to study their effects on grain growth kinetics and microstructure stability. The grain growth kinetics is determined and analyzed focusing on the interaction between grain boundary migration, pore growth and coalescence. Grains grow much bigger in nano-sized UO 2.11 than UO 2.03 upon thermal annealing, consistent with the fact that hyper-stoichiometric UO 2+x is beneficial for sintering due to enhanced U ion diffusion from excessive O ion interstitials. The activation energies ofmore » the grain growth for UO 2.03 and UO 2.11 are determined as ~1.0 and 1.3~2.0 eV, respectively. As compared with the micron-sized UO 2 in which volumetric diffusion dominates the grain coarsening with an activation energy of ~3.0 eV, the enhanced grain growth kinetics in nano-sized UO 2+x suggests that grain boundary diffusion controls grain growth. Lastly, the higher activation energy of more hyper-stoichiometric nano-sized UO 2.11 may be attributed to the excessive O interstitials pinning grain boundary migration.« less
NASA Astrophysics Data System (ADS)
Shropshire, Steven Leslie
Point defects in plastically deformed Au, Pt, and Ni were studied with atomic-scale sensitivity using the perturbed gamma-gamma angular correlations (PAC) technique by monitoring formation and transformation of complexes of vacancy defects with very dilute ^{111}In/ ^{111}Cd solute probes. Three topics were investigated: (1) Production of vacancy defects during plastic deformation of Au was investigated to differentiate models of defect production. Concentrations of mono-, di-, and tri-vacancy species were measured in Au, and the ratio of mono- to di-vacancies was found to be independent of the amount of deformation. Results indicate that point defects are produced in correlated lattice locations, such as in "strings", as a consequence of dislocation interactions and not at random locations. (2) Hydrogen interactions with vacancy-solute complexes were studied in Pt. From thermal detrapping experiments, binding of hydrogen in complexes with mono-, di- and tri-vacancies was determined using a model for hydrogen diffusing in a medium with traps, with enthalpies all measured in the narrow range 0.23-0.28 eV, proving that the binding is insensitive to the precise structure of small vacancy clusters. Nuclear relaxation of the probe in a trivacancy complex in Pt was studied as a function of temperature, from which an activation energy of 0.34 eV was measured. This value is inconsistent with relaxation caused by diffusion or trapping of hydrogen, but explainable by dynamical hopping of the PAC probe atom in a cage of vacancies. (3) By observing transformations between vacancy-solute complexes induced by annihilation reactions, it was demonstrated that interstitials are produced during plastic deformation. The evolution of concentrations of the different vacancy complexes under an interstitial flux was measured and analyzed using a kinetic-rate model, from which interstitial capture cross-sections for the different vacancy complexes and the relative quantities of interstitial species in the flux were determined. Deformation of Au was found to produce only mono- and di-interstitial fluxes in a 1:2 ratio. Cross-sections increased rapidly with the number of vacancies, which is attributed to the amount of relaxation of lattice strains around solute-vacancy complexes.
Effects of hydration on steric and electric charge-induced interstitial volume exclusion--a model.
Øien, Alf H; Justad, Sigrid R; Tenstad, Olav; Wiig, Helge
2013-09-03
The presence of collagen and charged macromolecules like glycosaminoglycans (GAGs) in the interstitial space limits the space available for plasma proteins and other macromolecules. This phenomenon, known as interstitial exclusion, is of importance for interstitial fluid volume regulation. Physical/mathematical models are presented for calculating the exclusion of electrically charged and neutral macromolecules that equilibrate in the interstitium under various degrees of hydration. Here, a central hypothesis is that the swelling of highly electrically charged GAGs with increased hydration shields parts of the neutral collagen of the interstitial matrix from interacting with electrically charged macromolecules, such that exclusion of charged macromolecules exhibits change due to steric and charge effects. GAGs are also thought to allow relatively small neutral, but also charged macromolecules neutralized by a very high ionic strength, diffuse into the interior of GAGs, whereas larger macromolecules may not. Thus, in the model, relatively small electrically charged macromolecules, such as human serum albumin, and larger neutral macromolecules such as IgG, will have quite similar total volume exclusion properties in the interstitium. Our results are in agreement with ex vivo and in vivo experiments, and suggest that the charge of GAGs or macromolecular drugs may be targeted to increase the tissue uptake of macromolecular therapeutic agents. Copyright © 2013 Biophysical Society. Published by Elsevier Inc. All rights reserved.
NASA Astrophysics Data System (ADS)
Li, Hong; Qin, Yuan; Yang, Yingying; Yao, Man; Wang, Xudong; Xu, Haixuan; Phillpot, Simon R.
2018-03-01
Molecular dynamics method is used and scheme of calculational tests is designed. The atomic evolution view of the interaction between grain boundary (GB) and irradiation-induced point defects is given in six symmetric tilt GB structures of bcc tungsten with the energy of the primary knock-on atom (PKA) EPKA of 3 and 5 keV and the simulated temperature of 300 K. During the collision cascade with GB structure there are synergistic mechanisms to reduce the number of point defects: one is vacancies recombine with interstitials, and another is interstitials diffuse towards the GB with vacancies almost not move. The larger the ratio of the peak defect zone of the cascades overlaps with the GB region, the statistically relative smaller the number of surviving point defects in the grain interior (GI); and when the two almost do not overlap, vacancy-intensive area generally exists nearby GBs, and has a tendency to move toward GB with the increase of EPKA. In contrast, the distribution of interstitials is relatively uniform nearby GBs and is affected by the EPKA far less than the vacancy. The GB has a bias-absorption effect on the interstitials compared with vacancies. It shows that the number of surviving vacancies statistically has increasing trend with the increase of the distance between PKA and GB. While the number of surviving interstitials does not change much, and is less than the number of interstitials in the single crystal at the same conditions. The number of surviving vacancies in the GI is always larger than that of interstitials. The GB local extension after irradiation is observed for which the interstitials absorbed by the GB may be responsible. The designed scheme of calculational tests in the paper is completely applicable to the investigation of the interaction between other types of GBs and irradiation-induced point defects.
Foster, Derek M.; Martin, Luke G.; Papich, Mark G.
2016-01-01
Bacterial pneumonia is the most common reason for parenteral antimicrobial administration to beef cattle in the United States. Yet there is little information describing the antimicrobial concentrations at the site of action. The objective of this study was to compare the active drug concentrations in the pulmonary epithelial lining fluid and interstitial fluid of four antimicrobials commonly used in cattle. After injection, plasma, interstitial fluid, and pulmonary epithelial lining fluid concentrations and protein binding were measured to determine the plasma pharmacokinetics of each drug. A cross-over design with six calves per drug was used. Following sample collection and drug analysis, pharmacokinetic calculations were performed. For enrofloxacin and metabolite ciprofloxacin, the interstitial fluid concentration was 52% and 78% of the plasma concentration, while pulmonary fluid concentrations was 24% and 40% of the plasma concentration, respectively. The pulmonary concentrations (enrofloxacin + ciprofloxacin combined) exceeded the MIC90 of 0.06 μg/mL at 48 hours after administration. For florfenicol, the interstitial fluid concentration was almost 98% of the plasma concentration, and the pulmonary concentrations were over 200% of the plasma concentrations, exceeding the breakpoint (≤ 2 μg/mL), and the MIC90 for Mannheimia haemolytica (1.0 μg/mL) for the duration of the study. For ceftiofur, penetration to the interstitial fluid was only 5% of the plasma concentration. Pulmonary epithelial lining fluid concentration represented 40% of the plasma concentration. Airway concentrations exceeded the MIC breakpoint for susceptible respiratory pathogens (≤ 2 μg/mL) for a short time at 48 hours after administration. The plasma and interstitial fluid concentrations of tulathromcyin were lower than the concentrations in pulmonary fluid throughout the study. The bronchial concentrations were higher than the plasma or interstitial concentrations, with over 900% penetration to the airways. Despite high diffusion into the bronchi, the tulathromycin concentrations achieved were lower than the MIC of susceptible bacteria at most time points. PMID:26872361
Plasek, Jiri; Dvorackova, Jana; Jahoda, Jan; Trulikova, Kristina; Mokosova, Radka; Danek, Tomas; Hrabovsky, Vladimir; Martinek, Arnost
2011-12-01
Acute interstitial pneumonia is characterized by rapid progressive dyspnoea degenerating into respiratory failure requiring mechanical ventilation. Acute interstitial pneumonia (AIP) and idiopathic pulmonary fibrosis (IPF) are separate clinic/pathological entities although overlap may be present. It is well-known that patients with IPF have increased risk of lung carcinoma; Adenocarcinoma in connection with IPF is less common. Moreover the subtype of adenocarcinoma, diffuse bronchoalveolar carcinoma has not yet been described. We report the case of 45 yr old former hockey player with increased bilateral reticular shadowing on chest radiograph, dyspnoea, velcro-like crackles, restrictive respiratory disease and mixed high-resolution computed tomography finding. During brief in-patient treatment the patient developed acute respiratory failure accompanied by multiorgan failure and disseminated coagulopathy. Deterioration of the microcirculation was followed by loss of peripheral vascular resistance, which was irreversible even with normalization of the blood gases achieved by extracorporeal membrane oxygenation. At autopsy, bronchoalveolar carcinoma in usual interstitial pneumonia (UIP) combined with areas of alveolar damage with hyaline membranes was found. This case alerts clinicians to unusual idiopathic pulmonary fibrosis manifestations and its complications. Close collaboration between clinicians, pathologists and laboratory physicians is highly recommended for early diagnosis and appropriate treatment.
Interstitial loop transformations in FeCr
Béland, Laurent Karim; Osetsky, Yuri N.; Stoller, Roger E.; ...
2015-03-27
Here, we improve the Self-Evolving Atomistic Kinetic Monte Carlo (SEAKMC) algorithm by integrating the Activation Relaxation Technique nouveau (ARTn), a powerful open-ended saddle-point search method, into the algorithm. We use it to investigate the reaction of 37-interstitial 1/2[1 1 1] and 1/2[View the MathML source] loops in FeCr at 10 at.% Cr. They transform into 1/2[1 1 1], 1/2[View the MathML source], [1 0 0] and [0 1 0] 74-interstitial clusters with an overall barrier of 0.85 eV. We find that Cr decoration locally inhibits the rotation of crowdions, which dictates the final loop orientation. Moreover, the final loop orientationmore » depends on the details of the Cr decoration. Generally, a region of a given orientation is favored if Cr near its interface with a region of another orientation is able to inhibit reorientation at this interface more than the Cr present at the other interfaces. Also, we find that substitutional Cr atoms can diffuse from energetically unfavorable to energetically favorable sites within the interlocked 37-interstitial loops conformation with barriers of less than 0.35 eV.« less
Magnetic resonance thermometry for monitoring photothermal effects of interstitial laser irradiation
NASA Astrophysics Data System (ADS)
Goddard, Jessica; Jose, Jessnie; Figueroa, Daniel; Le, Kelvin; Liu, Hong; Nordquist, Robert E.; Hode, Tomas; Chen, Wei R.
2012-03-01
Selective photothermal interaction using dye-assisted non-invasive laser irradiation has limitations when treating deeper tumors or when the overlying skin is heavily pigmented. We developed an interstitial laser irradiation method to induce the desired photothermal effects. An 805-nm near-infrared laser with a cylindrical diffuser was used to treat rat mammary tumors by placing the active tip of the fiber inside the target tumors. Three different power settings (1.0 to 1.5 watts) were applied to treat animal tumors with an irradiation duration of 10 minutes. The temperature distributions of the treated tumors were measured by a 7.1-Tesla magnetic resonance imager using proton resonance frequency (PRF) method. Three-dimensional temperature profiles were reconstructed and assessed using PRF. This is the first time a 7.1-Tesla magnetic resonance imager has been used to monitor interstitial laser irradiation via PRF. This study provides a basic understanding of the photothermal interaction needed to control the thermal damage inside tumor using interstitial laser irradiation. It also shows that PRF can be used effectively in monitoring photothermal interaction. Our long-term goal is to develop a PRF-guided laser therapy for cancer treatment.
Modeling and Measurement of Correlation between Blood and Interstitial Glucose Changes
Shi, Ting; Li, Dachao; Li, Guoqing; Zhang, Yiming; Xu, Kexin; Lu, Luo
2016-01-01
One of the most effective methods for continuous blood glucose monitoring is to continuously measure glucose in the interstitial fluid (ISF). However, multiple physiological factors can modulate glucose concentrations and affect the lag phase between blood and ISF glucose changes. This study aims to develop a compensatory tool for measuring the delay in ISF glucose variations in reference to blood glucose changes. A theoretical model was developed based on biophysics and physiology of glucose transport in the microcirculation system. Blood and interstitial fluid glucose changes were measured in mice and rats by fluorescent and isotope methods, respectively. Computer simulation mimicked curves were fitted with data resulting from fluorescent measurements of mice and isotope measurements of rats, indicating that there were lag times for ISF glucose changes. It also showed that there was a required diffusion distance for glucose to travel from center of capillaries to interstitial space in both mouse and rat models. We conclude that it is feasible with the developed model to continuously monitor dynamic changes of blood glucose concentration through measuring glucose changes in ISF with high accuracy, which requires correct parameters for determining and compensating for the delay time of glucose changes in ISF. PMID:27239479
Yamamoto, Yuzo; Okamoto, Isamu; Otsubo, Kohei; Iwama, Eiji; Hamada, Naoki; Harada, Taishi; Takayama, Koichi; Nakanishi, Yoichi
2015-10-01
Alectinib, the second generation anaplastic lymphoma kinase (ALK) inhibitor, has significant potency in patients with ALK rearrangement positive non-small cell lung cancer (NSCLC), and its toxicity is generally well tolerable. We report a patient who developed severe acute interstitial lung disease after alectinib treatment. An 86-year-old woman with stage IV lung adenocarcinoma positive for rearrangement of ALK gene was treated with alectinib. On the 215th day after initiation of alectinib administration, she was admitted to our hospital with the symptom of progressive dyspnea. Computed tomography (CT) revealed diffuse ground glass opacities and consolidations in both lungs, and analysis of bronchoalveolar lavage fluid revealed pronounced lymphocytosis. There was no evidence of infection or other specific causes of her condition, and she was therefore diagnosed with interstitial lung disease induced by alectinib. Her CT findings and respiratory condition improved after steroid pulse therapy. As far as we are aware, this is the first reported case of alectinib-induced severe interstitial lung disease (ILD). We should be aware of the possibility of such a severe adverse event and should therefore carefully monitor patients treated with this drug.
Ergün, Recai; Evcik, Ender; Ergün, Dilek; Ergan, Begüm; Özkan, Esin; Gündüz, Özge
2017-05-05
The number of studies where non-malignant pulmonary diseases are evaluated after occupational arsenic exposure is very few. To investigate the effects of occupational arsenic exposure on the lung by high-resolution computed tomography and pulmonary function tests. Retrospective cross-sectional study. In this study, 256 workers with suspected respiratory occupational arsenic exposure were included, with an average age of 32.9±7.8 years and an average of 3.5±2.7 working years. Hair and urinary arsenic levels were analysed. High-resolution computed tomography and pulmonary function tests were done. In workers with occupational arsenic exposure, high-resolution computed tomography showed 18.8% pulmonary involvement. In pulmonary involvement, pulmonary nodule was the most frequently seen lesion (64.5%). The other findings of pulmonary involvement were 18.8% diffuse interstitial lung disease, 12.5% bronchiectasis, and 27.1% bullae-emphysema. The mean age of patients with pulmonary involvement was higher and as they smoked more. The pulmonary involvement was 5.2 times higher in patients with skin lesions because of arsenic. Diffusing capacity of lung for carbon monoxide was significantly lower in patients with pulmonary involvement. Besides lung cancer, chronic occupational inhalation of arsenic exposure may cause non-malignant pulmonary findings such as bronchiectasis, pulmonary nodules and diffuse interstitial lung disease. So, in order to detect pulmonary involvement in the early stages, workers who experience occupational arsenic exposure should be followed by diffusion test and high-resolution computed tomography.
Reversible geminate recombination of hydrogen-bonded water molecule pair
NASA Astrophysics Data System (ADS)
Markovitch, Omer; Agmon, Noam
2008-08-01
The (history independent) autocorrelation function for a hydrogen-bonded water molecule pair, calculated from classical molecular dynamics trajectories of liquid water, exhibits a t-3/2 asymptotic tail. Its whole time dependence agrees quantitatively with the solution for reversible diffusion-influenced geminate recombination derived by Agmon and Weiss [J. Chem. Phys. 91, 6937 (1989)]. Agreement with diffusion theory is independent of the precise definition of the bound state. Given the water self-diffusion constant, this theory enables us to determine the dissociation and bimolecular recombination rate parameters for a water dimer. (The theory is indispensable for obtaining the bimolecular rate coefficient.) Interestingly, the activation energies obtained from the temperature dependence of these rate coefficients are similar, rather than differing by the hydrogen-bond (HB) strength. This suggests that recombination requires displacing another water molecule, which meanwhile occupied the binding site. Because these activation energies are about twice the HB strength, cleavage of two HBs may be required to allow pair separation. The autocorrelation function without the HB angular restriction yields a recombination rate coefficient that is larger than that for rebinding to all four tetrahedral water sites (with angular restrictions), suggesting the additional participation of interstitial sites. Following dissociation, the probability of the pair to be unbound but within the reaction sphere rises more slowly than expected, possibly because binding to the interstitial sites delays pair separation. An extended diffusion model, which includes an additional binding site, can account for this behavior.
Tafen, De Nyago
2015-02-14
The diffusion of dilute hydrogen in fcc Ni–Al and Ni–Fe binary alloys was examined using kinetic Monte Carlo method with input kinetic parameters obtained from first-principles density functional theory. The simulation involves the implementation of computationally efficient energy barrier model that describes the configuration dependence of the hydrogen hopping. The predicted hydrogen diffusion coefficients in Ni and Ni 89.4Fe 10.6 are compared well with the available experimental data. In Ni–Al, the model predicts lower hydrogen diffusivity compared to that in Ni. Overall, diffusion prefactors and the effective activation energies of H in Ni–Fe and Ni–Al are concentration dependent of themore » alloying element. Furthermore, the changes in their values are the results of the short-range order (nearest-neighbor) effect on the interstitial diffusion of hydrogen in fcc Ni-based alloys.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Martinavicius, A.; Abrasonis, G.; Moeller, W.
2011-10-01
The nitrogen diffusivity in single-crystalline AISI 316L austenitic stainless steel (ASS) during ion nitriding has been investigated at different crystal orientations ((001), (110), (111)) under variations of ion flux (0.3-0.7 mA cm{sup -2}), ion energy (0.5-1.2 keV), and temperature (370-430 deg. C). The nitrogen depth profiles obtained from nuclear reaction analysis are in excellent agreement with fits using the model of diffusion under the influence of traps, from which diffusion coefficients were extracted. At fixed ion energy and flux, the diffusivity varies by a factor up to 2.5 at different crystal orientations. At (100) orientation, it increases linearly with increasingmore » ion flux or energy. The findings are discussed on the basis of atomistic mechanisms of interstitial diffusion, potential lattice distortions, local decomposition, and ion-induced lattice vibrational excitations.« less
NASA Astrophysics Data System (ADS)
Yang, Jing; Youssef, Mostafa; Yildiz, Bilge
2018-01-01
In this work, we quantify oxygen self-diffusion in monoclinic-phase zirconium oxide as a function of temperature and oxygen partial pressure. A migration barrier of each type of oxygen defect was obtained by first-principles calculations. Random walk theory was used to quantify the diffusivities of oxygen interstitials by using the calculated migration barriers. Kinetic Monte Carlo simulations were used to calculate diffusivities of oxygen vacancies by distinguishing the threefold- and fourfold-coordinated lattice oxygen. By combining the equilibrium defect concentrations obtained in our previous work together with the herein calculated diffusivity of each defect species, we present the resulting oxygen self-diffusion coefficients and the corresponding atomistically resolved transport mechanisms. The predicted effective migration barriers and diffusion prefactors are in reasonable agreement with the experimentally reported values. This work provides insights into oxygen diffusion engineering in Zr O2 -related devices and parametrization for continuum transport modeling.
Activation volume for phosphorus diffusion in silicon and Si0.93Ge0.07
NASA Astrophysics Data System (ADS)
Zhao, Yuechao; Aziz, Michael J.; Zangenberg, Nikolaj R.; Larsen, Arne Nylandsted
2005-04-01
The hydrostatic pressure dependence of the diffusivity of P in compressively strained Si0.93Ge0.07 and unalloyed Si has been measured. In both cases the diffusivity is almost independent of pressure, characterized by an activation volume V* of (+0.09±0.11) times the atomic volume Ω for the unalloyed Si, and (+0.01±0.06) Ω for Si0.93Ge0.07. The results are used in conjunction with the reported effect of biaxial strain on diffusion normal to the surface to test the prediction for an interstitialcy-based mechanism of Aziz's phenomenological thermodynamic treatment of diffusion under uniform nonhydrostatic stress states. The prediction agrees well with measured behavior, lending additional credence to the interstitial-based mechanism and supporting the nonhydrostatic thermodynamic treatment.
NASA Astrophysics Data System (ADS)
Li, Yu-Hao; Zhou, Hong-Bo; Jin, Shuo; Zhang, Ying; Deng, Huiqiu; Lu, Guang-Hong
2017-04-01
We investigate the behaviors of rhenium (Re) and osmium (Os) and their interactions with point defects in tungsten (W) using a first-principles method. We show that Re atoms are energetically favorable to disperse separately in bulk W due to the Re-Re repulsive interaction. Despite the attractive interaction between Os atoms, there is still a large activation energy barrier of 1.10 eV at the critical number of 10 for the formation of Os clusters in bulk W based on the results of the total nucleation free energy change. Interestingly, the presence of vacancy can significantly reduce the total nucleation free energy change of Re/Os clusters, suggesting that vacancy can facilitate the nucleation of Re/Os in W. Re/Os in turn has an effect on the stability of the vacancy clusters (V n ) in W, especially for small vacancy clusters. A single Re/Os atom can raise the total binding energies of V2 and V3 obviously, thus enhancing their formation. Further, we demonstrate that there is a strong attractive interaction between Re/Os and self-interstitial atoms (SIAs). Re/Os could increase the diffusion barrier of SIAs and decrease their rotation barrier, while the interstitial-mediated path may be the optimal diffusion path of Re/Os in W. Consequently, the synergistic effect between Re/Os and point defects plays a key role in Re/Os precipitation and the evolution of defects in irradiated W.
[Measures to be taken in adults with bronchiolitis].
De Crémoux, Hubert
2003-02-22
The majority of bronchial and interstitial diseases of the adult are accompanied by bronchiolar inflammation, but over time the use of the term "bronchiolitis" has been limited to a few specific affections. Bronchiolitis with predominantly alveolar involvement Some "bronchiolites" emphasize the problem of an interstitial pneumopathy, since the disease predominantly involves the alveolar spaces. Only a few bronchiolites are severely damaging: bronchiolitis obliterans with organizing pneumonia and interstitial pneumopathy with respiratory bronchiolitis. These predominantly alveolar affections reveal the clinical (crepitant rales), radiographic (multiple or even diffuse opacities), and functional aspects (restrictive ventilation problems). Brochiolitis with obstructive airway problems In this case the disease predominantly involves the bronchioles and spares the alveolar tissue. The term "bronchiolitis" is in this case perfectly justified. The clinical picture is evocative with obstructed airway and a clear pulmonary parenchyma on the thoracic x-ray. These affections belong to the obstructive broncho-pneumopathy group. The prototype is brochiolitis obliterans, the anatomic correlation of which is generally constrictive bronchiolitis obliterans. Occasionally primitive, it frequently complicates the progression of many morbid states (transplants, collagenosis, inhaled or ingested toxic substances.). Diffuse panbronchiolitis Other "bronchiolites" deviate from this framework and are accompanied by marked lesions of other respiratory tracts (membrane bronchioles, cartilage bronchi, mucosa, ear nose and throat). The prototype is panbronchiolitis, described in the Far East. It is exceptional in Europe, where similar but nosologically different clinical aspects are observed during various diseases: cystic fibrosis, Young's syndrome, hypogammaglobulinemia, bone marrow transplant, context of HIV or haemorrhagic recto-colitis.
NASA Astrophysics Data System (ADS)
Oh, Gyu-Jin; Lee, Kye-Man; Huh, Moo-Young; Park, Jin Eon; Park, Soo Ho; Engler, Olaf
2017-01-01
Three initial tensile specimens having different textures and, in consequence, different r-values were cut from a sheet of an interstitial-free steel. Using these specimens, the effect of r-value and texture on plastic deformation and the necking behavior were studied by tackling the strain state and texture during tensile tests. A reduced decrease in work hardening rate of tensile specimens with higher r-values led to a slower onset of diffuse necking which offers an increased uniform elongation. A slower reduction in thickness of specimens with a higher r-value provided a favorable resistance against onset of failure by localized necking.
Wolf, Michael S.; Chadha, Ashley D.; Carroll, Clinton M.; Borinstein, Scott C.
2014-01-01
Radiation-induced lung disease is a known complication of therapeutic lung irradiation, but the features have not been well described in children. We report the clinical, radiologic and histologic features of interstitial lung disease (ILD) in a 4-year-old child who had previously received lung irradiation as part of successful treatment for metastatic Wilms tumor. Her radiologic abnormalities and clinical symptoms developed in an indolent manner. Clinical improvement gradually occurred with corticosteroid therapy. However, the observed radiologic progression from interstitial and reticulonodular opacities to diffuse cystic lung disease, with subsequent improvement, is striking and has not been previously described in children. PMID:25434733
Review on first-principles study of defect properties of CdTe as a solar cell absorber
DOE Office of Scientific and Technical Information (OSTI.GOV)
Yang, Ji-Hui; Yin, Wan-Jian; Park, Ji-Sang
2016-07-15
CdTe is one of the leading materials for high-efficiency, low-cost, and thin-film solar cells. In this work, we review the recent first-principles study of defect properties of CdTe and present that: (1) When only intrinsic defects are present, p-type doping in CdTe is weak and the hole density is low due to the relatively deep acceptor levels of Cd vacancy. (2) When only intrinsic defects present, the dominant non-radiative recombination center in p-type CdTe is Te-2+/Cd, which limits the carrier lifetime to be around 200 ns. (3) Extrinsic p-type doping in CdTe by replacing Te with group V elements generallymore » will be limited by the formation of AX centers. This could be overcome through a non-equilibrium cooling process and the hole density can achieve 10^17 cm-3. However, the long-term stability will be a challenging issue. (4) Extrinsic p-type doping by replacing Cd with alkaline group I elements is limited by alkaline interstitials and a non-equilibrium cooling process can efficiently enhance the hole density to the order of 10^17 cm-3. (5) Cu and Cl treatments are discussed. In bulk CdTe, Cu can enhance p-type doping, but Cl is found to be unsuitable for this. Both Cu and Cl show segregation at grain boundaries, especially at those with Te-Te wrong bonds. (6) External impurities are usually incorporated by diffusion. Therefore, the diffusion processes in CdTe are investigated. We find that cation interstitial (Nai, Cui) diffusion follows relatively simple diffusion paths, but anion diffusion (Cli, Pi) follows more complicated paths due to the degenerated defect wavefunctions.« less
Framework 'interstitial' oxygen in La(10)(GeO(4))(5-)(GeO(5))O(2) apatite electrolyte.
Pramana, Stevin S; Klooster, Wim T; White, T J
2007-08-01
Oxygen conduction at low temperatures in apatites make these materials potentially useful as electrolytes in solid-oxide fuel cells, but our understanding of the defect structures enabling ion migration is incomplete. While conduction along [001] channels is dominant, considerable inter-tunnel mobility has been recognized. Using neutron powder diffraction of stoichiometric 'La(10)(GeO(4))(6)O(3)', it has been shown that this compound is more correctly described as an La(10)(GeO(4))(5-)(GeO(5))O(2) apatite, in which high concentrations of interstitial oxygen reside within the channel walls. It is suggested that these framework interstitial O atoms provide a reservoir of ions that can migrate into the conducting channels of apatite, via a mechanism of inter-tunnel oxygen diffusion that transiently converts GeO(4) tetrahedra to GeO(5) distorted trigonal bipyramids. This structural modification is consistent with known crystal chemistry and may occur generally in oxide apatites.
Poli, Alessandro; Tozon, Natasa; Guidi, Grazia; Pistello, Mauro
2012-09-01
Human immunodeficiency virus (HIV) is associated with several renal syndromes including acute and chronic renal failures, but the underlying pathogenic mechanisms are unclear. HIV and feline immunodeficiency virus (FIV) share numerous biological and pathological features, including renal alterations. We investigated and compared the morphological changes of renal tissue of 51 experimentally and 21 naturally infected cats. Compared to the latter, the experimentally infected cats exhibited some mesangial widening and glomerulonephritis, milder proteinuria, and lower tubular and interstitial alterations. The numbers of giant protein tubular casts and tubular microcysts were also lower. In contrast, diffuse interstitial infiltrates and glomerular and interstitial amyloidosis were detected only in naturally infected cats. Similar alterations are found in HIV infected patients, thus supporting the idea of a causative role of FIV infection in renal disease, and underlining the relevance of the FIV and its natural host as an animal model for investigating lentivirus-associated nephropathy.
Ali, F S.M.; Stanaway, S E.R.S.; Zakhour, H D.; Spearing, G; Bowen-Jones, D
2003-11-01
Hyperandrogenism in females usually results from ovarian or adrenal pathology. We present a case of virilizaton due to very rare bilateral ovarian diffuse interstitial proliferation of Leydig cells with no tumour or hilar cell hyperplasia identified. Interestingly, the case was further complicated by the finding of high levels of testosterone in one adrenal vein on selective venous sampling (SVS), resulting in an unnecessary unilateral adrenalectomy. Further sampling found high levels also in the ovarian veins, and the condition was finally cured by bilateral oophorectomy.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Xu, Haixuan; Osetskiy, Yury N; Stoller, Roger E
The fundamentals of the framework and the details of each component of the self-evolving atomistic kinetic Monte Carlo (SEAKMC) are presented. The strength of this new technique is the ability to simulate dynamic processes with atomistic fidelity that is comparable to molecular dynamics (MD) but on a much longer time scale. The observation that the dimer method preferentially finds the saddle point (SP) with the lowest energy is investigated and found to be true only for defects with high symmetry. In order to estimate the fidelity of dynamics and accuracy of the simulation time, a general criterion is proposed andmore » applied to two representative problems. Applications of SEAKMC for investigating the diffusion of interstitials and vacancies in bcc iron are presented and compared directly with MD simulations, demonstrating that SEAKMC provides results that formerly could be obtained only through MD. The correlation factor for interstitial diffusion in the dumbbell configuration, which is extremely difficult to obtain using MD, is predicted using SEAKMC. The limitations of SEAKMC are also discussed. The paper presents a comprehensive picture of the SEAKMC method in both its unique predictive capabilities and technically important details.« less
OBJECT KINETIC MONTE CARLO SIMULATIONS OF RADIATION DAMAGE IN BULK TUNGSTEN
DOE Office of Scientific and Technical Information (OSTI.GOV)
Nandipati, Giridhar; Setyawan, Wahyu; Heinisch, Howard L.
2015-09-22
We used our recently developed lattice based OKMC code; KSOME [1] to carryout simulations of radiation damage in bulk W. We study the effect of dimensionality of self interstitial atom (SIA) diffusion i.e. 1D versus 3D on the defect accumulation during irradiation with a primary knock-on atom (PKA) energy of 100 keV at 300 K for the dose rates of 10-5 and 10-6 dpa/s. As expected 3D SIA diffusion significantly reduces damage accumulation due to increased probability of recombination events. In addition, dose rate, over the limited range examined here, appears to have no effect in both cases of SIAmore » diffusion.« less
Fermi level dependence of hydrogen diffusivity in GaN
NASA Astrophysics Data System (ADS)
Polyakov, A. Y.; Smirnov, N. B.; Pearton, S. J.; Ren, F.; Theys, B.; Jomard, F.; Teukam, Z.; Dmitriev, V. A.; Nikolaev, A. E.; Usikov, A. S.; Nikitina, I. P.
2001-09-01
Hydrogen diffusion studies were performed in GaN samples with different Fermi level positions. It is shown that, at 350 °C, hydrogen diffusion is quite fast in heavily Mg doped p-type material with the Fermi level close to Ev+0.15 eV, considerably slower in high-resistivity p-GaN(Zn) with the Fermi level Ev+0.9 eV, while for conducting and semi-insulating n-GaN samples with the Fermi level in the upper half of the band gap no measurable hydrogen diffusion could be detected. For these latter samples it is shown that higher diffusion temperature of 500 °C and longer times (50 h) are necessary to incorporate hydrogen to appreciable depth. These findings are in line with previously published theoretical predictions of the dependence of hydrogen interstitials formation in GaN on the Fermi level position.
NASA Astrophysics Data System (ADS)
Stroh, Mark; Zipfel, Warren R.; Williams, Rebecca M.; Ma, Shu Chin; Webb, Watt W.; Saltzman, W. Mark
2004-07-01
Brain-derived neurotrophic factor (BDNF) is a promising therapeutic agent for the treatment of neurodegenerative diseases. However, the limited distribution of this molecule after administration into the brain tissue considerably hampers its efficacy. Here, we show how multiphoton microscopy of fluorescently tagged BDNF in brain-tissue slices provides a useful and rapid screening method for examining the diffusion of large molecules in tissues, and for studying the effects of chemical modifications-for example, conjugating with polyethylene glycol (PEG)-on the diffusion constant. This single variable, obtained by monitoring short-term diffusion in real time, can be effectively used for rational drug design. In this study on fluorescently tagged BDNF and BDNF-PEG, we identify slow diffusion as a major contributing factor to the limited penetration of BDNF, and demonstrate how chemical modification can be used to overcome this barrier.
Self-diffusion of protons in H{sub 2}O ice VII at high pressures: Anomaly around 10 GPa
DOE Office of Scientific and Technical Information (OSTI.GOV)
Noguchi, Naoki, E-mail: noguchi-n@okayama-u.ac.jp; Okuchi, Takuo
2016-06-21
The self-diffusion of ice VII in the pressure range of 5.5–17 GPa and temperature range of 400–425 K was studied using micro Raman spectroscopy and a diamond anvil cell. The diffusion was monitored by observing the distribution of isotope tracers: D{sub 2}O and H{sub 2}{sup 18}O. The diffusion coefficient of hydrogen reached a maximum value around 10 GPa. It was two orders of magnitude greater at 10 GPa than at 6 GPa. Hydrogen diffusion was much faster than oxygen diffusion, which indicates that protonic diffusion is the dominant mechanism for the diffusion of hydrogen in ice VII. This mechanism ismore » in remarkable contrast to the self-diffusion in ice I{sub h} that is dominated by an interstitial mechanism for the whole water molecule. An anomaly around 10 GPa in ice VII indicates that the rate-determining process for the proton diffusion changes from the diffusion of ionic defects to the diffusion of rotational defects, which was suggested by proton conductivity measurements and molecular dynamics simulations.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Al-Amin, M., E-mail: m.al-amin@warwick.ac.uk; Murphy, J. D., E-mail: john.d.murphy@warwick.ac.uk
2016-06-21
We report a systematic study into the effects of long low temperature (≤500 °C) annealing on the lifetime and interstitial iron distributions in as-grown multicrystalline silicon (mc-Si) from different ingot height positions. Samples are characterised in terms of dislocation density, and lifetime and interstitial iron concentration measurements are made at every stage using a temporary room temperature iodine-ethanol surface passivation scheme. Our measurement procedure allows these properties to be monitored during processing in a pseudo in situ way. Sufficient annealing at 300 °C and 400 °C increases lifetime in all cases studied, and annealing at 500 °C was only found to improve relatively poormore » wafers from the top and bottom of the block. We demonstrate that lifetime in poor as-grown wafers can be improved substantially by a low cost process in the absence of any bulk passivation which might result from a dielectric surface film. Substantial improvements are found in bottom wafers, for which annealing at 400 °C for 35 h increases lifetime from 5.5 μs to 38.7 μs. The lifetime of top wafers is improved from 12.1 μs to 23.8 μs under the same conditions. A correlation between interstitial iron concentration reduction and lifetime improvement is found in these cases. Surprisingly, although the interstitial iron concentration exceeds the expected solubility values, low temperature annealing seems to result in an initial increase in interstitial iron concentration, and any subsequent decay is a complex process driven not only by diffusion of interstitial iron.« less
Caminati, Antonella; Harari, Sergio
2005-12-01
Idiopathic interstitial pneumonias are a group of diffuse, inflammatory and fibrotic disorders of the lung parenchyma that cause restrictive physiology and impair gas exchange. Usual interstitial pneumonia and non-specific interstitial pneumonia comprise the majority of idiopathic interstitial pneumonia cases. Previous studies have identified the histopathologic pattern as the most important baseline factor in determining prognosis. The non-invasive diagnosis of these diseases is sometimes uncertain but histological evaluation is an imperfect gold-standard. In some cases, the biopsy specimen may not be representative of the entire lung. In other cases, there may be differences in interpretation of the histological findings. HRCT has also assumed a greater role in the diagnosis and management of patients with idiopathic interstitial pneumonia. Factors affecting prognosis are discussed controversially. Histological criteria, clinical features, or lung function parameters are not clear prognostic indicators. Increased interstitial abnormalities in the HRCT, parameters indicating restrictive lung function, desaturation at 6MWT and abnormal gas exchange are possible determinants of survival. The prognostic value of pulmonary function trends over time may prove more useful. Longitudinal behavior is a more accurate determinant of outcome than evaluation at a single point in time. It is important to remember that no predictor of survival can ever reliably predict an individual patient's prognosis. Physicians should realize this limitation, and use predictor tools as general prognostic guides, not crystal balls. However, due to the great variability in the natural history of the disease, close monitoring of the patients may be necessary to evaluate the individual course of each patient.
NASA Astrophysics Data System (ADS)
Leroy, Henri-Arthur; Vermandel, Maximilien; Tétard, Marie-Charlotte; Lejeune, Jean-Paul; Mordon, Serge; Reyns, Nicolas
2015-03-01
Background Glioblastoma is a high-grade cerebral tumor with local recurrence and poor outcome. Photodynamic therapy (PDT) is a local treatment based on the light activation of a photosensitizer (PS) in the presence of oxygen to form cytotoxic species. Fractionation of light delivery may enhance treatment efficiency by restoring tissue oxygenation. Objectives To evaluate the efficiency of light fractionation using MRI imaging, including diffusion and perfusion, compared to histological data. Materials and Methods Thirty-nine "Nude" rats were grafted with human U87 cells into the right putamen. After PS precursor intake (5-ALA), an optic fiber was introduced into the tumor. The rats were randomized in three groups: without illumination, with monofractionated illumination and the third one with multifractionated light. Treatment effects were assessed with early MRI including diffusion and perfusion sequences. The animals were eventually sacrificed to perform brain histology. Results On MRI, we observed elevated diffusion values in the center of the tumor among treated animals, especially in multifractionated group. Perfusion decreased around the treatment site, all the more in the multifractionated group. Histology confirmed our MRI findings, with a more extensive necrosis and associated with a rarified angiogenic network in the treatment area, after multifractionated PDT. However, we observed more surrounding edema and neovascularization in the peripheral ring after multifractionated PDT. Conclusion Fractionated interstitial PDT induced specific tumoral lesions. The multifractionated scheme was more efficient, inducing increased tumoral necrosis, but it also caused significant peripheral edema and neovascularization. Diffusion and perfusion MRI imaging were able to predict the histological lesions.
Kong, Xiang; Wen, Ji-qiu; Qi, Rong-feng; Luo, Song; Zhong, Jian-hui; Chen, Hui-juan; Ji, Gong-jun; Lu, Guang Ming; Zhang, Long Jiang
2014-01-01
Abstract To investigate white matter (WM) alterations and their correlation with cognition function in end-stage renal disease (ESRD) patients undergoing hemodialysis (HD) using diffusion tensor imaging (DTI) with tract-based spatial statistics (TBSS) approach. This prospective HIPAA-complaint study was approved by our institutional review board. Eighty HD ESRD patients and 80 sex- and age-matched healthy controls were included. Neuropsychological (NP) tests and laboratory tests, including serum creatinine and urea, were performed. DTI data were processed to obtain fractional anisotropy (FA) and mean diffusivity (MD) maps with TBSS. FA and MD difference between the 2 groups were compared. We also explored the associations of FA values in WM regions of lower FA with ages, NP tests, disease, and dialysis durations, serum creatinine and urea levels of ESRD patients. Compared with controls, HD ESRD patients had lower FA value in the corpus callosum, bilateral corona radiate, posterior thalamic radiation, left superior longitudinal fasciculus, and right cingulum (P < 0.05, FWE corrected). Almost all WM regions had increased MD in HD ESRD patients compared with controls (P < 0.05, FWE corrected). In some regions with lower FA, FA values showed moderate correlations with ages, NP tests, and serum urea levels. There was no correlation between FA values and HD durations, disease durations, and serum creatinine levels of ESRD patients (all P > 0.05). Diffuse interstitial brain edema and moderate WM integrity disruption occurring in HD ESRD patients, which correlated with cognitive dysfunction, and serum urea levels might be a risk factor for these WM changes. PMID:25526483
Toussaint, Magali; Pinel, Sophie; Auger, Florent; Durieux, Nicolas; Thomassin, Magalie; Thomas, Eloise; Moussaron, Albert; Meng, Dominique; Plénat, François; Amouroux, Marine; Bastogne, Thierry; Frochot, Céline; Tillement, Olivier; Lux, François; Barberi-Heyob, Muriel
2017-01-01
Despite recent progress in conventional therapeutic approaches, the vast majority of glioblastoma recur locally, indicating that a more aggressive local therapy is required. Interstitial photodynamic therapy (iPDT) appears as a very promising and complementary approach to conventional therapies. However, an optimal fractionation scheme for iPDT remains the indispensable requirement. To achieve that major goal, we suggested following iPDT tumor response by a non-invasive imaging monitoring. Nude rats bearing intracranial glioblastoma U87MG xenografts were treated by iPDT, just after intravenous injection of AGuIX® nanoparticles, encapsulating PDT and imaging agents. Magnetic Resonance Imaging (MRI) and Magnetic Resonance Spectroscopy (MRS) allowed us an original longitudinal follow-up of post-treatment effects to discriminate early predictive markers. We successfully used conventional MRI, T2 star (T2*), Diffusion Weighted Imaging (DWI) and MRS to extract relevant profiles on tissue cytoarchitectural alterations, local vascular disruption and metabolic information on brain tumor biology, achieving earlier assessment of tumor response. From one day post-iPDT, DWI and MRS allowed us to identify promising markers such as the Apparent Diffusion Coefficient (ADC) values, lipids, choline and myoInositol levels that led us to distinguish iPDT responders from non-responders. All these responses give us warning signs well before the tumor escapes and that the growth would be appreciated.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hsu, William, E-mail: william.hsu@utexas.edu; Kim, Taegon; Chou, Harry
2016-07-07
Although the diffusion control and dopant activation of Ge p-type junctions are straightforward when using B{sup +} implantation, the use of the heavier BF{sub 2}{sup +} ions or even BF{sup +} is still favored in terms of shallow junction formation and throughput—because implants can be done at higher energies, which can give higher beam currents and beam stability—and thus the understanding of the effect of F co-doping becomes important. In this work, we have investigated diffusion and end-of-range (EOR) defect formation for B{sup +}, BF{sup +}, and BF{sub 2}{sup +} implants in crystalline and pre-amorphized Ge, employing rapid thermal annealingmore » at 600 °C and 800 °C for 10 s. It is demonstrated that the diffusion of B is strongly influenced by the temperature, the presence of F, and the depth of amorphous/crystalline interface. The B and F diffusion profiles suggest the formation of B–F complexes and enhanced diffusion by interaction with point defects. In addition, the strong chemical effect of F is found only for B in Ge, while such an effect is vanishingly small for samples implanted with F alone, or co-implanted with P and F, as evidenced by the high residual F concentration in the B-doped samples after annealing. After 600 °C annealing for 10 s, interstitial-induced compressive strain was still observed in the EOR region for the sample implanted with BF{sup +}, as measured by X-ray diffraction. Further analysis by cross-sectional transmission electron microscopy showed that the {311} interstitial clusters are the majority type of EOR defects. The impact of these {311} defects on the electrical performance of Ge p{sup +}/n junctions formed by BF{sup +} implantation was evaluated.« less
Determination of krypton diffusion coefficients in uranium dioxide using atomic scale calculations
Vathonne, Emerson; Andersson, David Ragnar Anders; Freyss, Michel; ...
2016-12-16
We present a study of the diffusion of krypton in UO 2 using atomic scale calculations combined with diffusion models adapted to the system studied. The migration barriers of the elementary mechanisms for interstitial or vacancy assisted migration are calculated in the DFT + U framework using the nudged elastic band method. The attempt frequencies are obtained from the phonon modes of the defect at the initial and saddle points using empirical potential methods. The diffusion coefficients of Kr in UO 2 are then calculated by combining this data with diffusion models accounting for the concentration of vacancies and themore » interaction of vacancies with Kr atoms. We determined the preferred mechanism for Kr migration and the corresponding diffusion coefficient as a function of the oxygen chemical potential μ O or nonstoichiometry. For very hypostoichiometric (or U-rich) conditions, the most favorable mechanism is interstitial migration. For hypostoichiometric UO 2, migration is assisted by the bound Schottky defect and the charged uranium vacancy, V U 4–. Around stoichiometry, migration assisted by the charged uranium–oxygen divacancy (V UO 2–) and V U 4– is the favored mechanism. Finally, for hyperstoichiometric or O-rich conditions, the migration assisted by two V U 4– dominates. Kr migration is enhanced at higher μ O, and in this regime, the activation energy will be between 4.09 and 0.73 eV depending on nonstoichiometry. The experimental values available are in the latter interval. Since it is very probable that these values were obtained for at least slightly hyperstoichiometric samples, our activation energies are consistent with the experimental data, even if further experiments with precisely controlled stoichiometry are needed to confirm these results. Finally, the mechanisms and trends with nonstoichiometry established for Kr are similar to those found in previous studies of Xe.« less
Experimental studies of aerosol- cloud droplet interactions at the puy de Dome observatory (France)
NASA Astrophysics Data System (ADS)
Laj, P.; Dupuy, R.; Sellegri, K.; Pichon, J.; Fournol, J.; Cortes, L.; Preunkert, S.; Legrand, M.
2001-05-01
The interactions between aerosol particles, gases and cloud droplets were studied at the puy de Dome cloud station (France, 1465 a.s.l.) during winter 2000. The partitioning of gas and aerosol species between interstitial and condensed phases is achieved using a series of instrumentation including a newly developed dual counter-flow virtual impactor (CVI)/ Round jet impactor (RJI) system. The RJI/CVI system, coupled with measurement of cloud microphysical properties, provided direct observation of number and mass partitioning of aerosols under different air mass conditions. Preliminary results from this field experiment allowed for the characterization of size segregated chemical composition of CCNs and of interstitial aerosols by means of gravimetric analysis and ion chromatography. It appears that CCNs are clearly enriched in soluble species as respect to interstitial aerosols. We found evidences of limited growth of Ca2+ - rich coarse particles (>1 μm) that did not form droplets larger than the 5 μm CVI cut-off. The number partitioning of aerosol particles between interstitial and condensed phases clearly depends upon cloud microphysics and aerosol properties and therefore undergoes different behaviour according to air mass origin. However, results cannot be fully explained by diffusion growth alone, in particular for high cloud LWC.
Stochastic annealing simulations of defect interactions among subcascades
DOE Office of Scientific and Technical Information (OSTI.GOV)
Heinisch, H.L.; Singh, B.N.
1997-04-01
The effects of the subcascade structure of high energy cascades on the temperature dependencies of annihilation, clustering and free defect production are investigated. The subcascade structure is simulated by closely spaced groups of lower energy MD cascades. The simulation results illustrate the strong influence of the defect configuration existing in the primary damage state on subsequent intracascade evolution. Other significant factors affecting the evolution of the defect distribution are the large differences in mobility and stability of vacancy and interstitial defects and the rapid one-dimensional diffusion of small, glissile interstitial loops produced directly in cascades. Annealing simulations are also performedmore » on high-energy, subcascade-producing cascades generated with the binary collision approximation and calibrated to MD results.« less
Dutta, Priyanka; Botlani, Mohsen; Varma, Sameer
2014-12-26
The dynamical properties of water at protein-water interfaces are unlike those in the bulk. Here we utilize molecular dynamics simulations to study water dynamics in interstitial regions between two proteins. We consider two natural protein-protein complexes, one in which the Nipah virus G protein binds to cellular ephrin B2 and the other in which the same G protein binds to ephrin B3. While the two complexes are structurally similar, the two ephrins share only a modest sequence identity of ∼50%. X-ray crystallography also suggests that these interfaces are fairly extensive and contain exceptionally large amounts of waters. We find that while the interstitial waters tend to occupy crystallographic sites, almost all waters exhibit residence times of less than hundred picoseconds in the interstitial region. We also find that while the differences in the sequence of the two ephrins result in quantitative differences in the dynamics of interstitial waters, the trends in the shifts with respect to bulk values are similar. Despite the high wetness of the protein-protein interfaces, the dynamics of interstitial waters are considerably slower compared to the bulk-the interstitial waters diffuse an order of magnitude slower and have 2-3 fold longer hydrogen bond lifetimes and 2-1000 fold slower dipole relaxation rates. To understand the role of interstitial waters, we examine how implicit solvent models compare against explicit solvent models in producing ephrin-induced shifts in the G conformational density. Ephrin-induced shifts in the G conformational density are critical to the allosteric activation of another viral protein that mediates fusion. We find that in comparison with the explicit solvent model, the implicit solvent model predicts a more compact G-B2 interface, presumably because of the absence of discrete waters at the G-B2 interface. Simultaneously, we find that the two models yield strikingly different induced changes in the G conformational density, even for those residues whose conformational densities in the apo state are unaffected by the treatment of the bulk solvent. Together, these results show that the explicit treatment of interstitial water molecules is necessary for a proper description of allosteric transitions.
Diffuse idiopathic pulmonary neuroendocrine cell hyperplasia: Report of two cases.
García-Fontán, Eva; Blanco Ramos, Montserrat; García, Jose Soro; Carrasco, Rommel; Cañizares, Miguel Ángel; González Piñeiro, Ana
2018-05-19
Diffuse idiopathic pulmonary neuroendocrine cell hyperplasia (DIPNECH) is a rare disorder characterized by a proliferation of neuroendocrine cells within the lung. It is classically described as a disease with persistent cough, dyspnea and wheezing in non-smoker middle aged females. CT of the chest reveals diffuse air trapping with mosaic pattern. We present two cases of DIPNECH that were sent to our department to perform a lung biopsy with the diagnostic suspicion of diffuse interstitial disease. Both cases were women with a history of chronic cough and moderate effort dyspnea. The aim of this paper is that physicians take into account this diagnostic entity before treating as an asthmatic a patient with these characteristics, not forgetting that they are prenoplastic lesions. Copyright © 2018 Elsevier España, S.L.U. All rights reserved.
Insights into dynamic processes of cations in pyrochlores and other complex oxides
Uberuaga, Blas Pedro; Perriot, Romain
2015-08-26
Complex oxides are critical components of many key technologies, from solid oxide fuel cells and superionics to inert matrix fuels and nuclear waste forms. In many cases, understanding mass transport is important for predicting performance and, thus, extensive effort has been devoted to understanding mass transport in these materials. However, most work has focused on the behavior of oxygen while cation transport has received relatively little attention, even though cation diffusion is responsible for many phenomena, including sintering, radiation damage evolution, and deformation processes. Here, we use accelerated molecular dynamics simulations to examine the kinetics of cation defects in onemore » class of complex oxides, A₂B₂O₇ pyrochlore. In some pyrochlore chemistries, B cation defects are kinetically unstable, transforming to A cation defects and antisites at rates faster than they can diffuse. When this occurs, transport of B cations occurs through defect processes on the A sublattice. Further, these A cation defects, either interstitials or vacancies, can interact with antisite disorder, reordering the material locally, though this process is much more efficient for interstitials than vacancies. Whether this behavior occurs in a given pyrochlore depends on the A and B chemistry. Pyrochlores with a smaller ratio of cation radii exhibit this complex behavior, while those with larger ratios exhibit direct migration of B interstitials. Similar behavior has been reported in other complex oxides such as spinels and perovskites, suggesting that this coupling of transport between the A and B cation sublattices, while not universal, occurs in many complex oxide.« less
Stephen, Michael J; Emami, Kiarash; Woodburn, John M; Chia, Elaine; Kadlecek, Stephen; Zhu, Jianliang; Pickup, Stephen; Ishii, Masaru; Rizi, Rahim R; Rossman, Milton
2010-11-01
The use of hyperpolarized (3)He magnetic resonance imaging as a quantitative lung imaging tool has progressed rapidly in the past decade, mostly in the assessment of the airway diseases chronic obstructive pulmonary disease and asthma. This technique has shown potential to assess both structural and functional information in healthy and diseased lungs. In this study, the regional measurements of structure and function were applied to a bleomycin rat model of interstitial lung disease. Male Sprague-Dawley rats (weight, 300-350 g) were administered intratracheal bleomycin. After 3 weeks, apparent diffusion coefficient and fractional ventilation were measured by (3)He magnetic resonance imaging and pulmonary function testing using a rodent-specific plethysmography chamber. Sensitized and healthy animals were then compared using threshold analysis to assess the potential sensitivity of these techniques to pulmonary abnormalities. No significant changes were observed in total lung volume and compliance between the two groups. Airway resistance elevated and forced expiratory volume significantly declined in the 3-week bleomycin rats, and fractional ventilation was significantly decreased compared to control animals (P < .0004). The apparent diffusion coefficient of (3)He showed a smaller change but still a significant decrease in 3-week bleomycin animals (P < .05). Preliminary results suggest that quantitative (3)He magnetic resonance imaging can be a sensitive and noninvasive tool to assess changes in an animal interstitial lung disease model. This technique may be useful for longitudinal animal studies and also in the investigation of human interstitial lung diseases. Copyright © 2010 AUR. Published by Elsevier Inc. All rights reserved.
Kinetic Monte Carlo Simulations of Oxygen Diffusion in Environmental Barrier Coating Materials
NASA Technical Reports Server (NTRS)
Good, Brian S.
2017-01-01
Ceramic Matrix Composite (CMC) materials are of interest for use in next-generation turbine engine components, offering a number of significant advantages, including reduced weight and high operating temperatures. However, in the hot environment in which such components operate, the presence of water vapor can lead to corrosion and recession, limiting the useful life of the components. Such degradation can be reduced through the use of Environmental Barrier Coatings (EBCs) that limit the amount of oxygen and water vapor reaching the component. Candidate EBC materials include Yttrium and Ytterbium silicates. In this work we present results of kinetic Monte Carlo (kMC) simulations of oxygen diffusion, via the vacancy mechanism, in Yttrium and Ytterbium disilicates, along with a brief discussion of interstitial diffusion.
Ab initio modeling of point defects, self-diffusion, and incorporation of impurities in thorium
NASA Astrophysics Data System (ADS)
Daroca, D. Pérez
2017-02-01
Research on Generation-IV nuclear reactors has boosted the investigation of thorium as nuclear fuel. By means of first-principles calculations within the framework of density functional theory, structural properties and phonon dispersion curves of Th are obtained. These results agreed very well with previous ones. The stability and formation energies of vacancies, interstitial and divacancies are studied. It is found that vacancies are the energetically preferred defects. The incorporation energies of He, Xe, and Kr atoms in Th defects are analyzed. Self-diffusion, migration paths and activation energies are also calculated.
NASA Astrophysics Data System (ADS)
Charniy, L. A.; Morozov, A. N.; Bublik, V. T.; Scherbachev, K. D.; Stepantsova, I. V.; Kaganer, V. M.
1992-03-01
Microdefects in dislocation-free Si-doped (n = (1-3) × 10 18cm-3) HB GaAs crystals were studied by X-ray diffuse scattering measured with the help of a triple-crystal diffractometer. The intensity of the diffuse scattering as well as the isointensity contours around different reciprocal lattice points were analysed. A comparison of the measured isointensity contours with the theoretically calculated ones showed that the microdefects detected are interstitial dislocation loops with the Burgers vectors b = {1}/{2}<110 #3862;; lying in the planes #38;{110} and {111}. The mean radius of the dislocation loops R0 was determined using the wave vector q0 alpha; R-10 corresponding to the transmition point where the Huang diffuse scattering I( q) alpha q-2 ( q < q0) changed to the asymptotic scattering I( q) alpha q-4 ( q #62 q0). The analysis of a D-shaped cross-sectional (111) wafer cut from the end part of the HB ingot showed that R0 changed smoothly along the [ overline211] symmetry axis of the wafer. The highly inhomogeneous "new-moon"-like distribution of the non-dislocational etch-pits was also obtained. The maximal loop radius obtained at the edges of the wafer, R 0 = 1 μm, corresponds to the wafer area enriched with etch-pits and the minimal one, R 0 = 0.3 μm, corresponds to the bound of the new-moon-like area denuded from etch-pits. Microdefects of a new type were detected in the denuded area. These microdefects consist of nuclei, 0.1 μm in radius, and an extended atmosphere of interstitials. The minimal microdefect radius in the centre of the wafer corresponds to the maximum local value of the lattice parameter a = 5.655380 Å, and the minimum local value a = 5.65372 Å was obtained at the wafer edges enriched with microdefect-related etch-pits. Absolute X-ray diffuse intensity measurements were used for microdefect concentration determination. Normalization of I( q) was based on the comparison of the Huang intensity with the thermal diffuse scattering intensity which is predominant for the wave vector q å R-10. The microdefect concentration determined in this way appeared to be 4 × 10 9 cm -3 at the edges of the wafer and 4 × 10 11 cm -3 at the centre of the new-moon-like etch-pit denuded zone. The number of interstitial atoms forming dislocation loops is shown to be the same across the area of the wafer and equal to 10 16 cm -3.
Diffusion in coastal and harbour zones, effects of Waves,Wind and Currents
NASA Astrophysics Data System (ADS)
Diez, M.; Redondo, J. M.
2009-04-01
As there are multiple processes at different scales that produce turbulent mixing in the ocean, thus giving a large variation of horizontal eddy diffusivities, we use a direct method to evaluate the influence of different ambient parameters such as wave height and wind on coastal dispersion. Measurements of the diffusivity are made by digital processing of images taken from from video recordings of the sea surface near the coast. The use of image analysis allows to estimate both spatial and temporal characteristics of wave fields, surface circulation and mixing in the surf zone, near Wave breakers and inside Harbours. The study of near-shore dispersion [1], with the added complexity of the interaction between wave fields, longshore currents, turbulence and beach morphology, needs detailed measurements of simple mixing processes to compare the respective influences of forcings at different scales. The measurements include simultaneous time series of waves, currents, wind velocities from the studied area. Cuantitative information from the video images is accomplished using the DigImage video processing system [3], and a frame grabber. The video may be controlled by the computer, allowing, remote control of the processing. Spectral analysis on the images has also used n order to estimate dominant wave periods as well as the dispersion relations of dominant instabilities. The measurements presented here consist mostly on the comarison of difussion coeficients measured by evaluating the spread of blobs of dye (milk) as well as by measuring the separation between different buoys released at the same time. We have used a techniques, developed by Bahia(1997), Diez(1998) and Bezerra(2000)[1-3] to study turbulent diffusion by means of digital processing of images taken from remote sensing and video recordings of the sea surface. The use of image analysis allows to measure variations of several decades in horizontal diffusivity values, the comparison of the diffusivities between different sites is not direct and a good understanding of the dominant mixing processes is needed. There is an increase of diffusivity with wave height but only for large Wave Reynolds numbers. Other important factors are wind speed and tidal currents. The horizontal diffusivity shows a marked anisotropy as a function of wave height and distance from the coast. The measurements were performed under a variety of weather conditions conditional sampling has been used to identify the different influences of the environmental agents on the actual effective horizontal diffusion[4]. [1] Bahia E. (1998) "Un estudio numerico experimental de la dispersion de contaminantes en aguas costeras, PhD Tesis UPC, Barcelona. [2] Bezerra M.O., (2000) "Diffusion de contaminantes en la costa. , PhD Tesis Uni. De Barcelona, Barcelona. [3] Diez M. (1998) "Estudio de la Hidrodinamica de la zona de rompientes mediante el analisis digital de imagenes. Master Thesis, UPC, Barcelona. [4] Artale V., Boffetta G., Celani A., Cencini M. and Vulpiani A., 1997, "Dispersion of passive tracers in closed basins: Beyond the diffusion coefficient", Physics of Fluids, vol 9, pp 3162-1997
Improving nanoparticle diffusion through tumor collagen matrix by photo-thermal gold nanorods
NASA Astrophysics Data System (ADS)
Raeesi, Vahid; Chan, Warren C. W.
2016-06-01
Collagen (I) impairs the targeting of nanoparticles to tumor cells by obstructing their diffusion inside dense tumor interstitial matrix. This potentially makes large nanoparticles (>50 nm) reside near the tumor vessels and thereby compromises their functionality. Here we propose a strategy to locally improve nanoparticle transport inside collagen (I) component of the tumor tissue. We first used heat generating gold nanorods to alter collagen (I) matrix by local temperature elevation. We then explored this impact on the transport of 50 nm and 120 nm inorganic nanoparticles inside collagen (I). We demonstrated an increase in average diffusivity of 50 nm and 120 nm in the denatured collagen (I) by ~14 and ~21 fold, respectively, compared to intact untreated collagen (I) matrix. This study shows how nanoparticle-mediated hyperthermia inside tumor tissue can improve the transport of large nanoparticles through collagen (I) matrix. The ability to increase nanoparticles diffusion inside tumor stroma allows their targeting or other functionalities to take effect, thereby significantly improving cancer therapeutic or diagnostic outcome.Collagen (I) impairs the targeting of nanoparticles to tumor cells by obstructing their diffusion inside dense tumor interstitial matrix. This potentially makes large nanoparticles (>50 nm) reside near the tumor vessels and thereby compromises their functionality. Here we propose a strategy to locally improve nanoparticle transport inside collagen (I) component of the tumor tissue. We first used heat generating gold nanorods to alter collagen (I) matrix by local temperature elevation. We then explored this impact on the transport of 50 nm and 120 nm inorganic nanoparticles inside collagen (I). We demonstrated an increase in average diffusivity of 50 nm and 120 nm in the denatured collagen (I) by ~14 and ~21 fold, respectively, compared to intact untreated collagen (I) matrix. This study shows how nanoparticle-mediated hyperthermia inside tumor tissue can improve the transport of large nanoparticles through collagen (I) matrix. The ability to increase nanoparticles diffusion inside tumor stroma allows their targeting or other functionalities to take effect, thereby significantly improving cancer therapeutic or diagnostic outcome. Electronic supplementary information (ESI) available. See DOI: 10.1039/c5nr08463f
NASA Astrophysics Data System (ADS)
Ohta, Hiromichi; Watanabe, Takanobu; Ohdomari, Iwao
2008-10-01
Potential energy distribution of interstitial O2 molecule in the vicinity of SiO2/Si(001) interface is investigated by means of classical molecular simulation. A 4-nm-thick SiO2 film model is built by oxidizing a Si(001) substrate, and the potential energy of an O2 molecule is calculated at Cartesian grid points with an interval of 0.05 nm in the SiO2 film region. The result shows that the potential energy of the interstitial site gradually rises with approaching the interface. The potential gradient is localized in the region within about 1 nm from the interface, which coincides with the experimental thickness of the interfacial strained layer. The potential energy is increased by about 0.62 eV at the SiO2/Si interface. The result agrees with a recently proposed kinetic model for dry oxidation of silicon [Phys. Rev. Lett. 96, 196102 (2006)], which argues that the oxidation rate is fully limited by the oxidant diffusion.
Release of enzymes from cells: transport and distribution within the extracellular space.
Mattenheimer, H; Friedel, R
1977-01-01
The distribution in the extracellular space of enzymes released from organ cells was investigated using three models: (1) comparison of enzyme activities in blood plasma and lymph of the ductus thoracicus (dog) and plasma and intestinal lymph (rat); (2) i.v. injection of heterologous, homologous and autologous enzymes in order to increase acutely the activities and to measure the rate constants for the distribution and elimination of the enzymes (rat); or (3) plasmapheresis in order to create an enzyme activity gradient from the interstitial space and to determine the rate constants for the reestablishment of the equilibrium between the extra and intravascular compartments (rat). The results suggest that the enzymes are mainly released into the interstitial fluid and transported via the lymph into the intravascular compartment. From there the enzymes diffuse back into the interstitial compartment and are eliminated by a yet unknown mechanism. Transport of enzymes across the capillary membranes in both directions depends on (1) the permeability of the capillary membranes, which varies from region to region and (2) the molecular seizes of the enzymes.
Modelling mass and heat transfer in nano-based cancer hyperthermia.
Nabil, M; Decuzzi, P; Zunino, P
2015-10-01
We derive a sophisticated mathematical model for coupled heat and mass transport in the tumour microenvironment and we apply it to study nanoparticle delivery and hyperthermic treatment of cancer. The model has the unique ability of combining the following features: (i) realistic vasculature; (ii) coupled capillary and interstitial flow; (iii) coupled capillary and interstitial mass transfer applied to nanoparticles; and (iv) coupled capillary and interstitial heat transfer, which are the fundamental mechanisms governing nano-based hyperthermic treatment. This is an improvement with respect to previous modelling approaches, where the effect of blood perfusion on heat transfer is modelled in a spatially averaged form. We analyse the time evolution and the spatial distribution of particles and temperature in a tumour mass treated with superparamagnetic nanoparticles excited by an alternating magnetic field. By means of numerical experiments, we synthesize scaling laws that illustrate how nano-based hyperthermia depends on tumour size and vascularity. In particular, we identify two distinct mechanisms that regulate the distribution of particle and temperature, which are characterized by perfusion and diffusion, respectively.
Interstitial lung disease induced by alectinib (CH5424802/RO5424802).
Ikeda, Satoshi; Yoshioka, Hiroshige; Arita, Machiko; Sakai, Takahiro; Sone, Naoyuki; Nishiyama, Akihiro; Niwa, Takashi; Hotta, Machiko; Tanaka, Tomohiro; Ishida, Tadashi
2015-02-01
A 75-year-old woman with anaplastic lymphoma kinase (ALK)-rearranged Stage IV lung adenocarcinoma was administered the selective anaplastic lymphoma kinase inhibitor, alectinib, as a third-line treatment in a Phase 1-2 study. On the 102nd day, chest computed tomography showed diffuse ground glass opacities. Laboratory data revealed high serum levels of KL-6, SP-D and lactate dehydrogenase without any clinical symptoms. There was no evidence of infection. Marked lymphocytosis was seen in bronchoalveolar lavage fluid analysis, and transbronchial lung biopsy showed mild thickening of alveolar septa and lymphocyte infiltration. Interstitial lung disease was judged to be related to alectinib based on improvements in imaging findings and serum biomarkers after discontinuation of alectinib. To our knowledge, this is the first reported case of alectinib-induced interstitial lung disease. Alectinib is a promising drug for ALK-rearranged non-small cell lung cancer. Clinical trials of this selective anaplastic lymphoma kinase inhibitor will facilitate the meticulous elucidation of its long-term safety profile. © The Author 2014. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com.
NASA Astrophysics Data System (ADS)
Hwang, T. Y.; Schoenberger, R. J.; Torgeson, D. R.; Barnes, R. G.
1983-01-01
We report the results of a proton-magnetic-resonance investigation of hydrogen location and motion in the hemihydrides ZrXH0.5 of the metallic layer-structured monohalides ZrX of zirconium (X=Br,Cl). Wide-line and pulsed NMR methods were employed to measure the temperature dependence of the linewidth and second moment and of the spin-lattice relaxation time in the laboratory and rotating frames. The results indicate that hydrogen forms an ordered structure on the tetrahedral (T) interstitial sublattice within the Zr metal bilayers, with some (small) random occupancy of octahedral (O) sites. Two stages of motional narrowing observed in the wide-line measurements and double minima found in the relaxation times are consistent with the occurrence of essentially independent hydrogen motional processes on the T and O interstitial sublattices. Hydrogen site occupancy probabilities, jump frequencies, activation energies for hydrogen diffusion, and conduction-electron contributions to the proton spin-lattice relaxation rate are deduced from the measurements.
Cosgrove, Gregory P.; Janssen, William J.; Huie, Tristan J.; Burnham, Ellen L.; Heinz, David E.; Curran-Everett, Douglas; Sahin, Hakan; Schwarz, Marvin I.; Cool, Carlyne D.; Groshong, Steve D.; Geraci, Mark W.; Tuder, Rubin M.; Hyde, Dallas M.; Henson, Peter M.
2012-01-01
Background: Lymphangiogenesis responds to tissue injury as a key component of normal wound healing. The development of fibrosis in the idiopathic interstitial pneumonias may result from abnormal wound healing in response to injury. We hypothesize that increased lymphatic vessel (LV) length, a marker of lymphangiogenesis, is associated with parenchymal components of the fibroblast reticulum (organizing collagen, fibrotic collagen, and fibroblast foci), and its extent correlates with disease severity. Methods: We assessed stereologically the parenchymal structure of fibrotic lungs and its associated lymphatic network, which was highlighted immunohistochemically in age-matched samples of usual interstitial pneumonia (UIP), nonspecific interstitial pneumonia (NSIP) with FVC < 80%, COPD with a Global Initiative for Obstructive Lung Disease stage 0, and normal control lungs. Results: LV length density, as opposed to vessel volume density, was found to be associated with organizing and fibrotic collagen density (P < .0001). Length density of LVs and the volume density of organizing and fibrotic collagen were significantly associated with severity of both % FVC (P < .001) and diffusing capacity of the lung for carbon monoxide (P < .001). Conclusions: Severity of disease in UIP and NSIP is associated with increased LV length and is strongly associated with components of the fibroblast reticulum, namely organizing and fibrotic collagen, which supports a pathogenic role of LVs in these two diseases. Furthermore, the absence of definable differences between UIP and NSIP suggests that LVs are a unifying mechanism for the development of fibrosis in these fibrotic lung diseases. PMID:22797508
Araki, Tetsuro; Nishino, Mizuki; Zazueta, Oscar E.; Gao, Wei; Dupuis, Josée; Okajima, Yuka; Latourelle, Jeanne C.; Rosas, Ivan O.; Murakami, Takamichi; O’Connor, George T.; Washko, George R.; Hunninghake, Gary M.; Hatabu, Hiroto
2015-01-01
Objective To investigate the prevalence and distribution of paraseptal emphysema on chest CT images in the Framingham Heart Study (FHS) population, and assess its impact on pulmonary function. Also pursued was the association with interstitial lung abnormalities. Materials and Methods We assessed 2633 participants in the FHS for paraseptal emphysema on chest CT. Characteristics of participants, including age, sex, smoking status, clinical symptoms, and results of pulmonary function tests, were compared between those with and without paraseptal emphysema. The association between paraseptal emphysema and interstitial lung abnormalities was investigated. Results Of the 2633 participants, 86 (3%) had pure paraseptal emphysema (defined as paraseptal emphysema with no other subtypes of emphysema other than paraseptal emphysema or a very few centrilobular emphysema involved) in at least one lung zone. The upper zone of the lungs was almost always involved. Compared to the participants without paraseptal emphysema, those with pure paraseptal emphysema were significantly older, and were more frequently male and smokers (mean 64 years, 71% male, mean 36 pack-years, p<0.001) and had significantly decreased FEV1/FVC% (p=0.002), and diffusion capacity of carbon monoxide (DLCO) (p=0.002). There was a significant association between pure paraseptal emphysema and interstitial lung abnormalities (p<0.001). Conclusions The prevalence of pure paraseptal emphysema was 3% in the FHS population, predominantly affects the upper lung zone, and contributes to decreased pulmonary function. Cigarette smoking, aging, and male gender were the factors associated with the presence of paraseptal emphysema. Significant association between paraseptal emphysema and interstitial lung abnormalities was observed. PMID:25868675
Arcadu, Antonella; Byrne, Suzanne C; Pirina, Pietro; Hartman, Thomas E; Bartholmai, Brian J; Moua, Teng
2017-08-01
Little is known about presenting 'inconsistent' or 'possible' usual interstitial pneumonia (UIP) computed tomography (CT) patterns advancing to 'consistent' UIP as disease progresses in idiopathic pulmonary fibrosis (IPF). We hypothesized that if 'consistent' UIP represented more advanced disease, such a pattern on presentation should also correlate with more severe pulmonary function test (PFT) abnormalities. Consecutive IPF patients (2005-2013) diagnosed by international criteria with baseline PFT and CT were included. Presenting CTs were assessed by three expert radiologists for consensus UIP pattern ('consistent', 'possible', and 'inconsistent'). Approximation of individual and combined interstitial abnormalities was also performed with correlation of interstitial abnormalities and UIP CT pattern made with PFT findings and survival. Three-hundred and fifty patients (70% male) were included with a mean age of 68.3 years. Mean percent predicted forced vital capacity (FVC%) and diffusion capacity (DLCO%) was 64% and 45.5% respectively. Older age and male gender correlated more with 'consistent' UIP CT pattern. FVC% was not associated with any UIP pattern but did correlate with total volume of radiologist assessed interstitial abnormalities. DLCO% was lower in those with 'consistent' UIP pattern. A 'consistent' UIP CT pattern was also not independently predictive of survival after correction for age, gender, FVC%, and DLCO%. PFT findings appear to correlate with extent of radiologic disease but not specific morphologic patterns. Whether such UIP patterns represent different stages of disease severity or radiologic progression is not supported by coinciding pulmonary function decline. Copyright © 2017 Elsevier Ltd. All rights reserved.
Post-processing interstitialcy diffusion from molecular dynamics simulations
NASA Astrophysics Data System (ADS)
Bhardwaj, U.; Bukkuru, S.; Warrier, M.
2016-01-01
An algorithm to rigorously trace the interstitialcy diffusion trajectory in crystals is developed. The algorithm incorporates unsupervised learning and graph optimization which obviate the need to input extra domain specific information depending on crystal or temperature of the simulation. The algorithm is implemented in a flexible framework as a post-processor to molecular dynamics (MD) simulations. We describe in detail the reduction of interstitialcy diffusion into known computational problems of unsupervised clustering and graph optimization. We also discuss the steps, computational efficiency and key components of the algorithm. Using the algorithm, thermal interstitialcy diffusion from low to near-melting point temperatures is studied. We encapsulate the algorithms in a modular framework with functionality to calculate diffusion coefficients, migration energies and other trajectory properties. The study validates the algorithm by establishing the conformity of output parameters with experimental values and provides detailed insights for the interstitialcy diffusion mechanism. The algorithm along with the help of supporting visualizations and analysis gives convincing details and a new approach to quantifying diffusion jumps, jump-lengths, time between jumps and to identify interstitials from lattice atoms.
Post-processing interstitialcy diffusion from molecular dynamics simulations
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bhardwaj, U., E-mail: haptork@gmail.com; Bukkuru, S.; Warrier, M.
2016-01-15
An algorithm to rigorously trace the interstitialcy diffusion trajectory in crystals is developed. The algorithm incorporates unsupervised learning and graph optimization which obviate the need to input extra domain specific information depending on crystal or temperature of the simulation. The algorithm is implemented in a flexible framework as a post-processor to molecular dynamics (MD) simulations. We describe in detail the reduction of interstitialcy diffusion into known computational problems of unsupervised clustering and graph optimization. We also discuss the steps, computational efficiency and key components of the algorithm. Using the algorithm, thermal interstitialcy diffusion from low to near-melting point temperatures ismore » studied. We encapsulate the algorithms in a modular framework with functionality to calculate diffusion coefficients, migration energies and other trajectory properties. The study validates the algorithm by establishing the conformity of output parameters with experimental values and provides detailed insights for the interstitialcy diffusion mechanism. The algorithm along with the help of supporting visualizations and analysis gives convincing details and a new approach to quantifying diffusion jumps, jump-lengths, time between jumps and to identify interstitials from lattice atoms. -- Graphical abstract:.« less
Office of Naval Research Overview of Corrosion S&T Program
2010-12-02
a carbon induced passivity for LTCSS treated austenitic stainless steels - Low temp. allows interstitial C diffusion, but not substitutional...paraequilibrium carburization mechanism(s) that lead to the enhanced corrosion resistance seaw ater crevice corrosion on 316 Stainless Steel LTC...Treated 316 untreated LTC process TTT diagram LTCSS Surface Modification: • Carbon concentrations > 12 at. % in 316 stainless steel while maintaining
Impurity and Defect Interactions in GaAs.
1982-09-30
motivated :* 1. The actual transport of Cr occurs interstitially. The * diffusion and drift of the substitutional and complexed Cr are negligible. This is...of impurity 3 for the growth I case listed in Table 1, after 1, 5, and 10 minutes. Ps4 C 2- U I3 Nmil I Figur ~0i . . , 0 O20 30 4 5 O 60 080 90
Aguilera-Pickens, Georgina; Abud-Mendoza, Carlos
2018-05-14
Systemic lupus erythematosus is the diffuse autoimmune connective tissue disease that most frequently involves pulmonary involvement, affecting 20% of 90% of the patients. The percentage varies depending on the defining criteria (symptoms, pulmonary tests or histopathological studies). At least once during the disease course, 50% of those affected have pleural and/or pulmonary manifestations, which are associated with higher morbidity and mortality. Pulmonary involvement has no correlation with lupus activity biomarkers, and it is necessary to rule out infectious processes in the initial approach. Bacterial infection is most frequently the cause of lung involvement in lupus and is one of the most important causes of death. Pulmonary involvement is considered to be primary when it is associated with disease activity, and secondary when other causes participate. Drugs have been reported to be associated with pulmonary damage, including interstitial disease. The incidence of malignant lung diseases is increased in systemic lupus erythematosus. Treatment depends on the type and severity of pulmonary involvement. Copyright © 2018 Sociedad Española de Reumatología y Colegio Mexicano de Reumatología. Publicado por Elsevier España, S.L.U. All rights reserved.
Asbestos bodies and the diagnosis of asbestosis in chrysotile workers
DOE Office of Scientific and Technical Information (OSTI.GOV)
Holden, J.; Churg, A.
1986-01-01
It has been suggested that because chrysotile asbestos forms asbestos bodies poorly, use of the traditional histologic requirements (diffuse interstitial fibrosis plus asbestos bodies) for the diagnosis of asbestosis, may lead to an underdiagnosis of this condition in workers exposed only to chrysotile. Lungs from 25 chrysotile miners with diffuse interstitial fibrosis were examined. Asbestos bodies were found easily in histologic section using hematoxylin and eosin stains in all cases. Mineralogic analysis of four cases showed that 46 of 72 (64%) bodies isolated and examined contained chrysotile cores, and 21 of 72 (29%) bodies contained cores of the amphiboles tremolitemore » and actinolite. By contrast, tremolite and actinolite constituted the majority of uncoated fibers in these cases. The mean length for bodies formed on chrysotile was 35 ..mu..m, and for bodies formed on tremolite or actinolite, 36 ..mu..m. The authors conclude that (1) the usual histologic criteria for the diagnosis of asbestos are applicable to chrysotile-exposed workers; (2) in workers with occupational chrysotile exposure, bodies form readily on this mineral; and (3) asbestos bodies in these lungs reflect the presence of long asbestos fibers.« less
Oxygen-related vacancy-type defects in ion-implanted silicon
NASA Astrophysics Data System (ADS)
Pi, X. D.; Burrows, C. P.; Coleman, P. G.; Gwilliam, R. M.; Sealy, B. J.
2003-10-01
Czochralski silicon samples implanted to a dose of 5 × 1015 cm-2 with 0.5 MeV O and to a dose of 1016 cm-2 with 1 MeV Si, respectively, have been studied by positron annihilation spectroscopy. The evolution of divacancies to vacancy (V)-O complexes is out-competed by V-interstitial (I) recombination at 400 and 500 °C in the Si- and O-implanted samples; the higher oxygen concentration makes the latter temperature higher. The defective region shrinks as the annealing temperature increases as interstitials are injected from the end of the implantation range (Rp). VmOn (m> n) are formed in the shallow region most effectively at 700 °C for both Si and O implantation. VxOy (x< y) are produced near Rp by the annealing. At 800 °C, implanted Si ions diffuse and reduce m and implanted O ions diffuse and increase n in VmOn. All oxygen-related vacancy-type defects appear to begin to dissociate at 950 °C, with the probable formation of oxygen clusters. At 1100 °C, oxygen precipitates appear to form just before Rp in O-implanted silicon.
NASA Astrophysics Data System (ADS)
Wu, Xuebang; Kong, Xiang-Shan; You, Yu-Wei; Liu, C. S.; Fang, Q. F.; Chen, Jun-Ling; Luo, G.-N.; Wang, Zhiguang
2013-07-01
The behaviour of helium in metals is particularly significant in fusion research due to the He-induced degradation of materials. A small amount of impurities introduced either by intentional alloying or by transmutation reactions, will interact with He and lead the microstructure and mechanical properties of materials to change. In this paper, we present the results of first-principles calculations on the interactions of He with impurities and He diffusion around them in tungsten (W), including the interstitials Be, C, N, O, and substitutional solutes Re, Ta, Tc, Nb, V, Os, Ti, Si, Zr, Y and Sc. We find that the trapping radii of interstitial atoms on He are much larger than those of substitutional solutes. The binding energies between the substitutional impurities and He increase linearly with the relative charge densities at the He occupation site, indicating that He atoms easily aggregate at the low charge density site. The sequence of diffusion energy barriers of He around the possible alloying elements is Ti > V > Os > Ta > Re. The present results suggest that Ta might be chosen as a relatively suitable alloying element compared with other possible ones.
Phase-field modeling of void anisotropic growth behavior in irradiated zirconium
DOE Office of Scientific and Technical Information (OSTI.GOV)
Han, G. M.; Wang, H.; Lin, De-Ye
2017-06-01
A three-dimensional (3D) phase field model was developed to study the effects of surface energy and diffusivity anisotropy on void growth behavior in irradiated Zr. The gamma surface energy function, which is used in the phase field model, was developed with the surface energy anisotropy calculated from the molecular dynamics (MD) simulations. It is assumed that vacancies have much larger mobility in c-axis than a- and b- axes while interstitials have much larger mobility in basal plane then that in c-axis. With the model, the equilibrium void morphology and the effect of defect concentrations and defect mobility anisotropy on voidmore » growth behavior were simulated. The simulations demonstrated that 1) The developed phase-field model can correctly reproduce the faceted void morphology predicted by the Wullf construction. 2) With isotropic diffusivity the void prefers to grow on the basal plane. 3) When the vacancy has large mobility along c-axis and interstitial has a large mobility on the basal plane of hexagonal closed packed (hcp) Zr alloys a platelet void grows in c-direction and shrinks on the basal plane, which is in agreement with the experimental observation of void growth behavior in irradiated Zr.« less
Meyer, Keith C; Nathanson, Ian; Angel, Luis; Bhorade, Sangeeta M; Chan, Kevin M; Culver, Daniel; Harrod, Christopher G; Hayney, Mary S; Highland, Kristen B; Limper, Andrew H; Patrick, Herbert; Strange, Charlie; Whelan, Timothy
2012-01-01
Objectives: Immunosuppressive pharmacologic agents prescribed to patients with diffuse interstitial and inflammatory lung disease and lung transplant recipients are associated with potential risks for adverse reactions. Strategies for minimizing such risks include administering these drugs according to established, safe protocols; monitoring to detect manifestations of toxicity; and patient education. Hence, an evidence-based guideline for physicians can improve safety and optimize the likelihood of a successful outcome. To maximize the likelihood that these agents will be used safely, the American College of Chest Physicians established a committee to examine the clinical evidence for the administration and monitoring of immunosuppressive drugs (with the exception of corticosteroids) to identify associated toxicities associated with each drug and appropriate protocols for monitoring these agents. Methods: Committee members developed and refined a series of questions about toxicities of immunosuppressives and current approaches to administration and monitoring. A systematic review was carried out by the American College of Chest Physicians. Committee members were supplied with this information and created this evidence-based guideline. Conclusions: It is hoped that these guidelines will improve patient safety when immunosuppressive drugs are given to lung transplant recipients and to patients with diffuse interstitial lung disease. PMID:23131960
Diffusion of rod-like nanoparticles in non-adhesive and adhesive porous polymeric gels
NASA Astrophysics Data System (ADS)
Wang, Jiuling; Yang, Yiwei; Yu, Miaorong; Hu, Guoqing; Gan, Yong; Gao, Huajian; Shi, Xinghua
2018-03-01
It is known that rod-like nanoparticles (NPs) can achieve higher diffusivity than their spherical counterparts in biological porous media such as mucus and tumor interstitial matrix, but the underlying mechanisms still remain elusive. Here, we present a joint experimental and theoretical study to show that the aspect ratio (AR) of NPs and their adhesive interactions with the host medium play key roles in such anomalous diffusion behaviors of nanorods. In an adhesive polymer solution/gel (e.g., mucus), hopping diffusion enables nanorods to achieve higher diffusivity than spherical NPs with diameters equal to the minor axis of the rods, and there exists an optimal AR that leads to maximum diffusivity. In contrast, the diffusivity of nanorods decreases monotonically with increasing AR in a non-adhesive polymer solution/gel (e.g., hydroxyethyl cellulose, HEC). Our theoretical model, which captures all the experimental observations, generalizes the so-called obstruction-scaling model by incorporating the effects of the NPs/matrix interaction via the mean first passage time (MFPT) theory. This work reveals the physical origin of the anomalous diffusion behaviors of rod-like NPs in biological gels and may provide guidelines for a range of applications that involve NPs diffusion in complex porous media.
NASA Astrophysics Data System (ADS)
Zhang, Yongfeng; Jiang, Chao; Bai, Xianming
2017-01-01
This report presents an accelerated kinetic Monte Carlo (KMC) method to compute the diffusivity of hydrogen in hcp metals and alloys, considering both thermally activated hopping and quantum tunneling. The acceleration is achieved by replacing regular KMC jumps in trapping energy basins formed by neighboring tetrahedral interstitial sites, with analytical solutions for basin exiting time and probability. Parameterized by density functional theory (DFT) calculations, the accelerated KMC method is shown to be capable of efficiently calculating hydrogen diffusivity in α-Zr and Zircaloy, without altering the kinetics of long-range diffusion. Above room temperature, hydrogen diffusion in α-Zr and Zircaloy is dominated by thermal hopping, with negligible contribution from quantum tunneling. The diffusivity predicted by this DFT + KMC approach agrees well with that from previous independent experiments and theories, without using any data fitting. The diffusivity along
Zhang, Yongfeng; Jiang, Chao; Bai, Xianming
2017-01-01
This report presents an accelerated kinetic Monte Carlo (KMC) method to compute the diffusivity of hydrogen in hcp metals and alloys, considering both thermally activated hopping and quantum tunneling. The acceleration is achieved by replacing regular KMC jumps in trapping energy basins formed by neighboring tetrahedral interstitial sites, with analytical solutions for basin exiting time and probability. Parameterized by density functional theory (DFT) calculations, the accelerated KMC method is shown to be capable of efficiently calculating hydrogen diffusivity in α-Zr and Zircaloy, without altering the kinetics of long-range diffusion. Above room temperature, hydrogen diffusion in α-Zr and Zircaloy is dominated by thermal hopping, with negligible contribution from quantum tunneling. The diffusivity predicted by this DFT + KMC approach agrees well with that from previous independent experiments and theories, without using any data fitting. The diffusivity along
Zhang, Yongfeng; Jiang, Chao; Bai, Xianming
2017-01-20
Here, this report presents an accelerated kinetic Monte Carlo (KMC) method to compute the diffusivity of hydrogen in hcp metals and alloys, considering both thermally activated hopping and quantum tunneling. The acceleration is achieved by replacing regular KMC jumps in trapping energy basins formed by neighboring tetrahedral interstitial sites, with analytical solutions for basin exiting time and probability. Parameterized by density functional theory (DFT) calculations, the accelerated KMC method is shown to be capable of efficiently calculating hydrogen diffusivity in α-Zr and Zircaloy, without altering the kinetics of long-range diffusion. Above room temperature, hydrogen diffusion in α-Zr and Zircaloy ismore » dominated by thermal hopping, with negligible contribution from quantum tunneling. The diffusivity predicted by this DFT + KMC approach agrees well with that from previous independent experiments and theories, without using any data fitting. The diffusivity along < c > is found to be slightly higher than that along < a >, with the anisotropy saturated at about 1.20 at high temperatures, resolving contradictory results in previous experiments. Demonstrated using hydrogen diffusion in α-Zr, the same method can be extended for on-lattice diffusion in hcp metals, or systems with similar trapping basins.« less
Self-diffusion in 69Ga121Sb/71Ga123Sb isotope heterostructures
NASA Astrophysics Data System (ADS)
Bracht, H.; Nicols, S. P.; Haller, E. E.; Silveira, J. P.; Briones, F.
2001-05-01
Gallium and antimony self-diffusion experiments have been performed in undoped 69Ga121Sb/71Ga123Sb isotope heterostructures at temperatures between 571 and 708 °C under Sb- and Ga-rich ambients. Ga and Sb profiles measured with secondary ion mass spectrometry reveal that Ga diffuses faster than Sb by several orders of magnitude. This strongly suggests that the two self-atom species diffuse independently on their own sublattices. Experimental results lead us to conclude that Ga and Sb diffusion are mediated by Ga vacancies and Sb interstitials, respectively, and not by the formation of a triple defect proposed earlier by Weiler and Mehrer [Philos. Mag. A 49, 309 (1984)]. The extremely slow diffusion of Sb up to the melting temperature of GaSb is proposed to be a consequence of amphoteric transformations between native point defects which suppress the formation of those native defects which control Sb diffusion. Preliminary experiments exploring the effect of Zn indiffusion at 550 °C on Ga and Sb diffusion reveal an enhanced intermixing of the Ga isotope layers compared to undoped GaSb. However, under the same conditions the diffusion of Sb was not significantly affected.
Matsumoto, Yoshiya; Kawaguchi, Tomoya; Yamamoto, Norio; Sawa, Kenji; Yoshimoto, Naoki; Suzumura, Tomohiro; Watanabe, Tetsuya; Mitsuoka, Shigeki; Asai, Kazuhisa; Kimura, Tatsuo; Yoshimura, Naruo; Kuwae, Yuko; Hirata, Kazuto
2017-09-01
A 75-year-old man with stage IV lung adenocarcinoma was treated with osimertinib due to disease progression despite having been administered erlotinib. Both an epidermal growth factor receptor (EGFR) L858R mutation on exon 21 and a T790M mutation on exon 20 were detected in a specimen from a recurrent primary tumor. Five weeks after osimertinib initiation, he developed general fatigue and dyspnea. Chest computed tomography scan revealed diffuse ground glass opacities and consolidation on both lungs. An analysis of the bronchoalveolar lavage fluid revealed marked lymphocytosis, and a transbronchial lung biopsy specimen showed a thickened interstitium with fibrosis and prominent lymphocytic infiltration. We diagnosed the patient to have interstitial lung disease induced by osimertinib.
Matsumoto, Yoshiya; Kawaguchi, Tomoya; Yamamoto, Norio; Sawa, Kenji; Yoshimoto, Naoki; Suzumura, Tomohiro; Watanabe, Tetsuya; Mitsuoka, Shigeki; Asai, Kazuhisa; Kimura, Tatsuo; Yoshimura, Naruo; Kuwae, Yuko; Hirata, Kazuto
2017-01-01
A 75-year-old man with stage IV lung adenocarcinoma was treated with osimertinib due to disease progression despite having been administered erlotinib. Both an epidermal growth factor receptor (EGFR) L858R mutation on exon 21 and a T790M mutation on exon 20 were detected in a specimen from a recurrent primary tumor. Five weeks after osimertinib initiation, he developed general fatigue and dyspnea. Chest computed tomography scan revealed diffuse ground glass opacities and consolidation on both lungs. An analysis of the bronchoalveolar lavage fluid revealed marked lymphocytosis, and a transbronchial lung biopsy specimen showed a thickened interstitium with fibrosis and prominent lymphocytic infiltration. We diagnosed the patient to have interstitial lung disease induced by osimertinib. PMID:28794368
Optimal doping control of magnetic semiconductors via subsurfactant epitaxy.
Zeng, Changgan; Zhang, Zhenyu; van Benthem, Klaus; Chisholm, Matthew F; Weitering, Hanno H
2008-02-15
"Subsurfactant epitaxy" is established as a conceptually new approach for introducing manganese as a magnetic dopant into germanium. A kinetic pathway is devised in which the subsurface interstitial sites on Ge(100) are first selectively populated with Mn, while lateral diffusion and clustering on or underneath the surface are effectively suppressed. Subsequent Ge deposition as a capping layer produces a novel surfactantlike phenomenon as the interstitial Mn atoms float towards newly defined subsurface sites at the growth front. Furthermore, the Mn atoms that failed to float upwards are uniformly distributed within the Ge capping layer. The resulting doping levels of order 0.25 at. % would normally be considered too low for ferromagnetic ordering, but the Curie temperature exceeds room temperature by a comfortable margin. Subsurfactant epitaxy thus enables superior dopant control in magnetic semiconductors.
Kang, E H; Lee, E B; Shin, K C; Im, C H; Chung, D H; Han, S K; Song, Y W
2005-10-01
To assess the prevalence, characteristics and prognostic factors of interstitial lung disease (ILD) in Korean patients with polymyositis (PM), dermatomyositis (DM) and amyopathic dermatomyositis (ADM). We reviewed the medical records of 72 consecutive PM and DM patients, including six patients with ADM, who were seen at the Rheumatology Clinic of Seoul National University Hospital between 1984 and 2003. Twenty-nine PM/DM patients (40.3%) developed ILD. Anti-Jo-1 antibody and arthralgia were associated with the presence of ILD (P = 0.022 and P = 0.041, respectively), whereas dysphagia was more frequently found in patients without ILD (P = 0.041). Lung biopsies revealed diffuse alveolar damage (DAD) (n = 2), usual interstitial pneumonia (UIP) with DAD (n = 2), UIP (n = 1), and non-specific interstitial pneumonia (n = 2). Of the 29 patients, 11 (37.9%) died. The mean survival time in ILD patients was significantly shorter than in those without ILD (13.8+/-1.8 vs 19.2+/-0.9 yr, P = 0.017). Poor survival in ILD patients was associated with a Hamman-Rich-like presentation (P = 0.0000), ADM features (P = 0.0001) and an initial forced vital capacity (FVC) < or =60% (P = 0.024). ILD was observed in 40.3% of Korean PM/DM patients and was associated with poor survival. A Hamman-Rich-like presentation, ADM features and an initial FVC < or =60% were associated with poor survival in ILD.
A first-principles and experimental study of helium diffusion in periclase MgO
NASA Astrophysics Data System (ADS)
Song, Zhewen; Wu, Henry; Shu, Shipeng; Krawczynski, Mike; Van Orman, James; Cherniak, Daniele J.; Bruce Watson, E.; Mukhopadhyay, Sujoy; Morgan, Dane
2018-02-01
The distribution of He isotopes is used to trace heterogeneities in the Earth's mantle, and is particularly useful for constraining the length scale of heterogeneity due to the generally rapid diffusivity of helium. However, such an analysis is challenging because He diffusivities are largely unknown in lower mantle phases, which can influence the He profiles in regions that cycle through the lower mantle. With this motivation, we have used first-principles simulations based on density functional theory to study He diffusion in MgO, an important lower mantle phase. We first studied the case of interstitial helium diffusion in perfect MgO and found a migration barrier of 0.73 eV at zero pressure. Then we used the kinetic Monte Carlo method to study the case of substitutional He diffusion in MgO, where we assumed that He diffuses on the cation sublattice through cation vacancies. We also performed experiments on He diffusion at atmospheric pressure using ion implantation and nuclear reaction analysis in both as-received and Ga-doped samples. A comparison between the experimental and simulation results are shown. This work provides a foundation for further studies at high-pressure.
Investigation of Oxygen Diffusion in Irradiated UO2 with MD Simulation
NASA Astrophysics Data System (ADS)
Günay, Seçkin D.
2016-11-01
In this study, irradiated UO2 is analyzed by atomistic simulation method to obtain diffusion coefficient of oxygen ions. For this purpose, a couple of molecular dynamics (MD) supercells containing Frenkel, Schottky, vacancy and interstitial types for both anion and cation defects is constructed individually. Each of their contribution is used to calculate the total oxygen diffusion for both intrinsic and extrinsic ranges. The results display that irradiation-induced defects contribute the most to the overall oxygen diffusion at temperatures below 800-1,200 K. This result is quite sensible because experimental data shows that, from room temperature to about 1,500 K, irradiation-induced swelling decreases and irradiated UO2 lattice parameter is gradually recovered because defects annihilate each other. Another point is that, concentration of defects enhances the irradiation-induced oxygen diffusion. Irradiation type also has the similar effect, namely oxygen diffusion in crystals irradiated with α-particles is more than the crystals irradiated with neutrons. Dynamic Frenkel defects dominate the oxygen diffusion data above 1,500—1,800 K. In all these temperature ranges, thermally induced Frenkel defects make no significant contribution to overall oxygen diffusion.
Diffusivity of the interstitial hydrogen shallow donor in In2O3
NASA Astrophysics Data System (ADS)
Qin, Ying; Weiser, Philip; Villalta, Karla; Stavola, Michael; Fowler, W. Beall; Biaggio, Ivan; Boatner, Lynn
2018-04-01
Hydrogen has been found to be an n-type dopant in In2O3 that gives rise to unintentional conductivity. An infrared (IR) absorption line observed at 3306 cm-1 has been assigned to the Hi+ center. Two types of experiments have been performed to determine the diffusivity of Hi+ in In2O3 from its IR absorption spectra. (i) At temperatures near 700 K, the O-H line at 3306 cm-1 has been used to determine the diffusivity of Hi+ from its in-diffusion and out-diffusion behaviors. (ii) At temperatures near 160 K, stress has been used to produce a preferential alignment of the Hi+ center that has been detected in IR absorption experiments made with polarized light. With the help of theory, the kinetics with which a stress-induced alignment can be produced yield the time constant for a single jump of the Hi+ center and also the diffusivity of Hi+ near 160 K. The combination of the diffusivity of Hi+ found near 700 K by mass-transport measurements and that found near 160 K from the time constant for a single Hi+ jump determines the diffusivity for Hi+ over eleven decades!
Furuichi, Kengo; Shimizu, Miho; Yuzawa, Yukio; Hara, Akinori; Toyama, Tadashi; Kitamura, Hiroshi; Suzuki, Yoshiki; Sato, Hiroshi; Uesugi, Noriko; Ubara, Yoshifumi; Hohino, Junichi; Hisano, Satoshi; Ueda, Yoshihiko; Nishi, Shinichi; Yokoyama, Hitoshi; Nishino, Tomoya; Kohagura, Kentaro; Ogawa, Daisuke; Mise, Koki; Shibagaki, Yugo; Makino, Hirofumi; Matsuo, Seiichi; Wada, Takashi
2018-06-01
The Japanese classification of diabetic nephropathy reflects the risks of mortality, cardiovascular events and kidney prognosis and is clinically useful. Furthermore, pathological findings of diabetic nephropathy are useful for predicting prognoses. In this study, we evaluated the characteristics of pathological findings in relation to the Japanese classification of diabetic nephropathy and their ability to predict prognosis. The clinical data of 600 biopsy-confirmed diabetic nephropathy patients were collected retrospectively from 13 centers across Japan. Composite kidney events, kidney death, cardiovascular events, all-cause mortality, and decreasing rate of estimated GFR (eGFR) were evaluated based on the Japanese classification of diabetic nephropathy. The median observation period was 70.4 (IQR 20.9-101.0) months. Each stage had specific characteristic pathological findings. Diffuse lesions, interstitial fibrosis and/or tubular atrophy (IFTA), interstitial cell infiltration, arteriolar hyalinosis, and intimal thickening were detected in more than half the cases, even in Stage 1. An analysis of the impacts on outcomes in all data showed that hazard ratios of diffuse lesions, widening of the subendothelial space, exudative lesions, mesangiolysis, IFTA, and interstitial cell infiltration were 2.7, 2.8, 2.7, 2.6, 3.5, and 3.7, respectively. Median declining speed of eGFR in all cases was 5.61 mL/min/1.73 m 2 /year, and the median rate of declining kidney function within 2 years after kidney biopsy was 24.0%. This study indicated that pathological findings could categorize the high-risk group as well as the Japanese classification of diabetic nephropathy. Further study using biopsy specimens is required to clarify the pathogenesis of diabetic kidney disease.
Bilateral pneumothorax, lung cavitations, and pleural empyema in a cocaine addict.
Solaini, Leonardo; Solini, Leonardo; Gourgiotis, Stavros; Salemis, Nikolaos S; Koukis, Ioannis
2008-12-01
A case of bilateral pneumothorax, lung cavitations, and pleural empyema in a cocaine user is described. The patient was treated by left tube thoracostomy and right lower lobectomy. The postoperative course was uneventful. Six months later, the patient remains asymptomatic. The pathology examination of the specimen revealed infected bronchiectasis, interstitial desquamative pneumonia, diffuse alveolar damage, subsegmental arterial thrombosis, and consequent areas of pulmonary infarction.
McColl, Kit; Johnson, Ian; Corà, Furio
2018-05-25
A systematic study of the location and energetics of cation dopants in α-V2O5 has been conducted using pair-potential methods, supplemented by first-principles calculations. The consequences of doping on intrinsic defect equilibria have been discussed and the effects of selected dopants on Li+ and Mg2+ diffusion energy barriers have been investigated.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Biderman, N. J.; Sundaramoorthy, R.; Haldar, Pradeep
Cadmium diffusion experiments were performed on polished copper indium gallium diselenide (Cu(In,Ga)Se{sub 2} or CIGS) samples with resulting cadmium diffusion profiles measured by time-of-flight secondary ion mass spectroscopy. Experiments done in the annealing temperature range between 275 °C and 425 °C reveal two-stage cadmium diffusion profiles which may be indicative of multiple diffusion mechanisms. Each stage can be described by the standard solutions of Fick's second law. The slower cadmium diffusion in the first stage can be described by the Arrhenius equation D{sub 1} = 3 × 10{sup −4} exp (− 1.53 eV/k{sub B}T) cm{sup 2} s{sup −1}, possibly representing vacancy-meditated diffusion. The faster second-stage diffusion coefficients determined in these experiments matchmore » the previously reported cadmium diffusion Arrhenius equation of D{sub 2} = 4.8 × 10{sup −4} exp (−1.04 eV/k{sub B}T) cm{sup 2} s{sup −1}, suggesting an interstitial-based mechanism.« less
NASA Astrophysics Data System (ADS)
Janavičius, A. J.; Mekys, A.; Purlys, R.; Norgėla, Ž.; Daugėla, S.; Rinkūnas, R.
2015-10-01
The soft X-ray photons absorbed in the inner K, L, M shells of Si atoms produce photoelectrons and Auger electrons, thus generating vacancies, interstitials and metastable oxygen complexes. The samples of Czochralski silicon crystals covered with 0.1 μm thickness layer of carbon have been irradiated by X-rays using different voltages of Cu anode of the Russian diffractometer DRON-3M. The influence of X-rays on the formation of point defects and vacancy complexes, and their dynamics in Cz-Si crystals have been studied by infrared absorption. We have measured and calculated dynamics of concentration of carbon and interstitial oxygen using FTIR spectroscopy at room temperature after irradiation by soft X-rays. Using transmittance measurements and nonlinear diffusion theory we have calculated densities increasing for substitutional carbon and interstitial oxygen by reactions and very fast diffusion. The superdiffusion coefficients of carbon in silicon at room temperature generated by X-rays are about hundred thousand times greater than diffusion coefficients obtained for thermodiffusion. Rezumējums: Rentgena staru fotoni, absorbēti Si atoma iekšējos slāņos, izstaro fotoelektronus un Ožē elektronus, ģenerējot vakances, starpmezglu silīcija atomus, vakanču un skābekļa kompleksus. Čohraļska silīcija kristāli, kas pārklāti ar oglekli 0.1 μm biezuma kārtā, tika apstaroti ar rentgena stariem, izmantojot krievu difraktometru DRON-3M. Oglekļa un skābekļa difūzija un koncentrāciju izmaiņa silīcijā tika izmērīta izmantojot infrasarkano staru FTIR spektroskopiju. Rentgena staru ģenerētās ļoti ātrās oglekļa difūzijas vai superdifūzijas koeficients istabas temperatūrā silīcijā ir simtiem tūkstošu reižu lielāks nekā termodifūzijas gadījumā.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Yang, Ji-Hui; Yin, Wan-Jian; Park, Ji-Sang
2016-01-01
The stability of organic-inorganic halide perovskites is a major challenge for their applications and has been extensively studied. Among the possible underlying reasons, ion self-diffusion has been inferred to play important roles. While theoretical studies congruously support that iodine is more mobile, experimental studies only observe the direct diffusion of the MA ion and possible diffusion of iodine. The discrepancy may result from the incomplete understanding of ion diffusion mechanisms. With the help of first-principles calculations, we studied ion diffusion in CH3NH3PbI3 (MAPbI3) through not only the vacancy-assisted mechanisms presumed in previous theoretical studies, but also the neglected interstiticaly mechanisms.more » We found that compared to the diffusion through the vacancy-assisted mechanism, MA ion diffusion through the interstiticaly mechanism has a much smaller barrier which could explain experimental observations. For iodine diffusion, both mechanisms can yield relatively small barriers. Depending on the growth conditions, defect densities of vacancies and interstitials can vary and so do the diffusion species as well as diffusion mechanisms. Our work thus supports that both MA and iodine ion diffusion could contribute to the performance instability of MAPbI3. While being congruous with experimental results, our work fills the research gap by providing a full understanding of ion diffusion in halide perovskites.« less
Obara-Michlewska, Marta; Ding, Fengfei; Popek, Mariusz; Verkhratsky, Alexei; Nedergaard, Maiken; Zielinska, Magdalena; Albrecht, Jan
2018-05-14
Acute toxic liver failure (ATLF) rapidly leads to brain oedema and neurological decline. We evaluated the ability of ATLF-affected brain to control the ionic composition and acid-base balance of the interstitial fluid. ATLF was induced in 10-12 weeks old male C57Bl mice by single intraperitoneal (i.p.) injection of 100 μg/g azoxymethane (AOM). Analyses were carried out in cerebral cortex of precomatous mice 20-24 h after AOM administration. Brain fluid status was evaluated by measuring apparent diffusion coefficient [ADC] using NMR spectroscopy, Evans Blue extravasation, and accumulation of an intracisternally-injected fluorescent tracer. Extracellular pH ([pH] e ) and ([K + ] e ) were measured in situ with ion-sensitive microelectrodes. Cerebral cortical microdialysates were subjected to photometric analysis of extracellular potassium ([K + ] e ), sodium ([Na + ] e ) and luminometric assay of extracellular lactate ([Lac] e ). Potassium transport in cerebral cortical slices was measured ex vivo as 86 Rb uptake. Cerebral cortex of AOM-treated mice presented decreased ADC supporting the view that ATLF-induced brain oedema is primarily cytotoxic in nature. In addition, increased Evans blue extravasation indicated blood brain barrier leakage, and increased fluorescent tracer accumulation suggested impaired interstitial fluid passage. However, [K + ] e , [Na + ] e , [Lac] e , [pH] e and potassium transport in brain of AOM-treated mice was not different from control mice. We conclude that in spite of cytotoxic oedema and deregulated interstitial fluid passage, brain of mice with ATLF retains the ability to maintain interstitial ion homeostasis and acid-base balance. Tentatively, uncompromised brain ion homeostasis and acid-base balance may contribute to the relatively frequent brain function recovery and spontaneous survival rate in human patients with ATLF. Copyright © 2018. Published by Elsevier Ltd.
Soltani, M.; Chen, P.
2013-01-01
Modeling of interstitial fluid flow involves processes such as fluid diffusion, convective transport in extracellular matrix, and extravasation from blood vessels. To date, majority of microvascular flow modeling has been done at different levels and scales mostly on simple tumor shapes with their capillaries. However, with our proposed numerical model, more complex and realistic tumor shapes and capillary networks can be studied. Both blood flow through a capillary network, which is induced by a solid tumor, and fluid flow in tumor’s surrounding tissue are formulated. First, governing equations of angiogenesis are implemented to specify the different domains for the network and interstitium. Then, governing equations for flow modeling are introduced for different domains. The conservation laws for mass and momentum (including continuity equation, Darcy’s law for tissue, and simplified Navier–Stokes equation for blood flow through capillaries) are used for simulating interstitial and intravascular flows and Starling’s law is used for closing this system of equations and coupling the intravascular and extravascular flows. This is the first study of flow modeling in solid tumors to naturalistically couple intravascular and extravascular flow through a network. This network is generated by sprouting angiogenesis and consisting of one parent vessel connected to the network while taking into account the non-continuous behavior of blood, adaptability of capillary diameter to hemodynamics and metabolic stimuli, non-Newtonian blood flow, and phase separation of blood flow in capillary bifurcation. The incorporation of the outlined components beyond the previous models provides a more realistic prediction of interstitial fluid flow pattern in solid tumors and surrounding tissues. Results predict higher interstitial pressure, almost two times, for realistic model compared to the simplified model. PMID:23840579
NASA Astrophysics Data System (ADS)
You, Y.; Yan, M. F.
2013-05-01
C and N atoms are the most frequent foreign interstitial atoms (FIAs), and often incorporated into the surface layers of steels to enhance their properties by thermochemical treatments. Al, Si, Ti, V, Cr, Mn, Co, Ni, Cu, Nb and Mo are the most common alloying elements in steels, also can be called foreign substitutional atoms (FSAs). The FIA and FSA interactions play an important role in the diffusion of C and N atoms, and the microstructures and mechanical properties of surface modified layers. Ab initio calculations based on the density functional theory are carried out to investigate FIA interactions with FSA in ferromagnetic bcc iron. The FIA-FSA interactions are analyzed systematically from five aspects, including interaction energies, density of states (DOS), bond populations, electron density difference maps and local magnetic moments.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Heinisch, H.L.
1997-04-01
The intracascade evolution of the defect distributions of cascades in copper is investigated using stochastic annealing simulations applied to cascades generated with molecular dynamics (MD). The temperature and energy dependencies of annihilation, clustering and free defect production are determined for individual cascades. The annealing simulation results illustrate the strong influence on intracascade evolution of the defect configuration existing in the primary damage state. Another factor significantly affecting the evolution of the defect distribution is the rapid one-dimensional diffusion of small, glissile interstitial loops produced directly in cascades. This phenomenon introduces a cascade energy dependence of defect evolution that is apparentmore » only beyond the primary damage state, amplifying the need for further study of the annealing phase of cascade evolution and for performing many more MD cascade simulations at higher energies.« less
[Presence of islands of fatty tissue in struma].
Lax, S; Beham, A; Langsteger, W; Schmid, C
1988-04-01
We examined 929 surgically obtained thyroid glands derived from 791 female and 138 male patients and found intrathyroidal adipose tissue in 18 cases (1.94%). Only the thyroid glands of middle aged and older women (mean age 51 years) were affected, as well as in the case of follicular adenomas and nodular and diffuse hyperplasia. With respect to localization in the interstitial connective tissue, as well as between thyroid follicles, interstitial, parenchymatous and mixed types are proposed. In addition to sex and age there is a high correlation with obesity, which is suggestive of hormonal influences. Knowledge of the presence of intrathyroidal fat tissue is of interest to the pathologist since it may lead to erroneous interpretations of histological and cytological specimens of the thyroid gland. In conclusion, not one case of hypothyroidism was detected amongst the 18 cases investigated in this study.
Diffusivity of the interstitial hydrogen shallow donor in In 2 O 3
DOE Office of Scientific and Technical Information (OSTI.GOV)
Qin, Ying; Weiser, Philip; Villalta, Karla
Hydrogen has been found to be an n-type dopant in In2O3 that gives rise to unintentional conductivity. An infrared (IR) absorption line observed at 3306 cm-1 has been assigned to the Hi+ center. Two types of experiments have been performed to determine the diffusivity of Hi+ in In2O3 from its IR absorption spectra. (i) At temperatures near 700 K, the O-H line at 3306 cm-1 has been used to determine the diffusivity of Hi+ from its in-diffusion and out-diffusion behavior. (ii) At temperatures near 160 K, stress has been used to produce a preferential alignment of the Hi+ center thatmore » has been detected in IR absorption experiments made with polarized light. With the help of theory, the kinetics with which a stress-induced alignment can be produced yield the time constant for a single jump of the Hi+ center and also the diffusivity of Hi+ near 160 K. The combination of the diffusivity of Hi+ found near 700 K by mass-transport measurements along with the diffusivity found near 160 K from the time constant for a single Hi+ jump determines the diffusivity for Hi+ over eleven decades!« less
Antisynthetase syndrome: Analysis of 11 cases.
Zamarrón-de Lucas, Ester; Gómez Carrera, Luis; Bonilla, Gema; Petit, Dessiree; Mangas, Alberto; Álvarez-Sala, Rodolfo
2017-02-23
Antisynthetase syndrome (ASS) is characterised by a series of clinical manifestations such as myositis, fever, mechanic's hands and diffuse interstitial lung disease (ILD), all associated with positivity to antisynthetase antibodies. The presence of ILD will be that, to a great extent it will mark the response to treatment and prognosis. Eleven cases of patients with ASS and pulmonary involvement in monitoring at a Pulmonary monographic consult in a third level hospital consult are described. Nine patients presented positivity to anti-Jo antibody and 2 to anti-PL12. Four patients' HRCT pattern showed NSIP, four UIP, one COP and 2 ground-glass opacity. A percentage of 73 were accompanied by bronchiectasis and bronchiolectasis and 27% honeycombing. Functional exploration was mainly affected by DLCO with up to 45% of the positive walking test. Corticodependence is highlighted, often requiring immunosuppressive treatment both chronically and in exacerbations. All patients maintain good prognosis so far. Patients with interstitial lung disease should have at least a determination of antisynthetase antibodies in order to identify this disease, better prognosis than other interstitial diseases such as idiopathic pulmonary fibrosis. Copyright © 2016 Elsevier España, S.L.U. All rights reserved.
Pneumocyte injury and ubiquitin-positive pneumocytes in interstitial lung diseases*
Yamada, Tsutomu; Kawabata, Yoshinori
2015-01-01
Pneumocyte injury is a characteristic of pulmonary interstitial pneumonias (IPs). Histological markers of pneumocyte injury and inflammation include pneumocyte necrosis, erosion, hyaline membrane and fibrin exudation with subsequent intraluminal granulation tissue formation. We found that intracytoplasmic inclusions in pneumocytes are ubiquitin-positive (Ub+) and that the number of Ub+ pneumocytes shows positive correlation with the extent of diffuse alveolar damage (DAD). To determine the role of Ub+ pneumocytes and inclusions in IPs, we studied their relationship with pathological and clinical features of DAD, usual interstitial pneumonia (UIP) and organizing pneumonia (OP), including airspace enlargement with fibrosis (AEF). We analysed Ub+ pneumocytes, inclusions, erosions and intraluminal granulation tissue in relation to pneumocyte injury. The numbers of immunohistochemically identified Ub+ inclusions in each IP were higher than the number of inclusions detected by light microscopy. The inclusions detected by Ub+ immunostaining were identical to the inclusions observed by light microscopy. UIP and DAD had many Ub+ inclusions, while OP and AEF had fewer Ub+ inclusions. These results suggest that the extent of Ub+ inclusions reflects the severity of pneumocyte injury among IPs. Thus, Ub+ inclusions are a histological marker of pneumocyte injury that may be helpful in determining the severity and prognosis of IPs. PMID:25123224
The effects of cation–anion clustering on defect migration in MgAl 2O 4
Zamora, Richard J.; Voter, Arthur F.; Perez, Danny; ...
2016-06-28
Magnesium aluminate spinel (MgAl 2O 4), like many other ceramic materials, offers a range of technological applications, from nuclear reactor materials to military body armor. For many of these applications, it is critical to understand both the formation and evolution of lattice defects throughout the lifetime of the material. We use the Speculatively Parallel Temperature Accelerated Dynamics (SpecTAD) method to investigate the effects of di-vacancy and di-interstitial formation on the mobility of the component defects. From long-time trajectories of the state-to-state dynamics, we characterize the migration pathways of defect clusters, and calculate their self-diffusion constants across a range of temperatures.more » We find that the clustering of Al and O vacancies drastically reduces the mobility of both defects, while the clustering of Mg and O vacancies completely immobilizes them. For interstitials, we find that the clustering of Mg and O defects greatly reduces O interstitial mobility, but has only a weak effect on Mg. Lastly, these findings illuminate important new details regarding defect kinetics relevant to the application of MgAl 2O 4 in extreme environments.« less
Toxic Inhalational Injury-Associated Interstitial Lung Disease in Children
Lee, Eun; Seo, Ju-Hee; Kim, Hyung Young; Yu, Jinho; Jhang, Won-Kyoung; Park, Seong-Jong; Kwon, Ji-Won; Kim, Byoung-Ju; Do, Kyung-Hyun; Cho, Young Ah; Kim, Sun-A; Jang, Se Jin
2013-01-01
Interstitial lung disease in children (chILD) is a group of disorders characterized by lung inflammation and interstitial fibrosis. In the past recent years, we noted an outbreak of child in Korea, which is possibly associated with inhalation toxicity. Here, we report a series of cases involving toxic inhalational injury-associated chILD with bronchiolitis obliterans pattern in Korean children. This study included 16 pediatric patients confirmed by lung biopsy and chest computed tomography, between February 2006 and May 2011 at Asan Medical Center Children's Hospital. The most common presenting symptoms were cough and dyspnea. The median age at presentation was 26 months (range: 12-47 months), with high mortality (44%). Histopathological analysis showed bronchiolar destruction and centrilobular distribution of alveolar destruction by inflammatory and fibroproliferative process with subpleural sparing. Chest computed tomography showed ground-glass opacities and consolidation in the early phase and diffuse centrilobular nodular opacity in the late phase. Air leak with severe respiratory difficulty was associated with poor prognosis. Although respiratory chemicals such as humidifier disinfectants were strongly considered as a cause of this disease, further studies are needed to understand the etiology and pathophysiology of the disease to improve the prognosis and allow early diagnosis and treatment. PMID:23772158
Predictive models for pressure-driven fluid infusions into brain parenchyma
NASA Astrophysics Data System (ADS)
Raghavan, Raghu; Brady, Martin
2011-10-01
Direct infusions into brain parenchyma of biological therapeutics for serious brain diseases have been, and are being, considered. However, individual brains, as well as distinct cytoarchitectural regions within brains, vary in their response to fluid flow and pressure. Further, the tissue responds dynamically to these stimuli, requiring a nonlinear treatment of equations that would describe fluid flow and drug transport in brain. We here report in detail on an individual-specific model and a comparison of its prediction with simulations for living porcine brains. Two critical features we introduced into our model—absent from previous ones, but requirements for any useful simulation—are the infusion-induced interstitial expansion and the backflow. These are significant determinants of the flow. Another feature of our treatment is the use of cross-property relations to obtain individual-specific parameters that are coefficients in the equations. The quantitative results are at least encouraging, showing a high fraction of overlap between the computed and measured volumes of distribution of a tracer molecule and are potentially clinically useful. Several improvements are called for; principally a treatment of the interstitial expansion more fundamentally based on poroelasticity and a better delineation of the diffusion tensor of a particle confined to the interstitial spaces.
Transcapillary protein flux following blood volume modification in dog.
Miki, K; Nose, H; Tanaka, Y; Morimoto, T
1984-01-01
The net fluid and protein movements between intravascular and interstitial space following blood withdrawal and retransfusion of 15% of circulating blood volume were measured in dogs using a continuous monitoring method of circulating blood volume. A significant (p less than 0.01) increase in transvascular fluid shift was observed after the start of blood withdrawal and a new equilibrium state was reached within 15 to 20 min. Associated with the fluid shift, a significant increase in plasma protein of about 1 g was observed. On the other hand, blood retransfusion caused significant (p less than 0.01) increases in the shift of fluid and protein from intravascular space to interstitial space. The magnitudes of the shift of fluid and protein were almost identical in both blood withdrawal and retransfusion. The Kedem-Katchalsky transport equation was applied to the results obtained in the present study in order to analyze the relative role of diffusion and convection and to estimate the reflection coefficient for protein. A significant (p less than 0.01) linear relationship was observed between fluid and protein movement. These results suggest that the convective process is involved in the shift of protein between intravascular and interstitial space observed after blood volume modification.
Baran, Timothy M; Foster, Thomas H
2014-02-01
For interstitial photodynamic therapy (iPDT) of bulky tumors, careful treatment planning is required in order to ensure that a therapeutic dose is delivered to the tumor, while minimizing damage to surrounding normal tissue. In clinical contexts, iPDT has typically been performed with either flat cleaved or cylindrical diffusing optical fibers as light sources. Here, the authors directly compare these two source geometries in terms of the number of fibers and duration of treatment required to deliver a prescribed light dose to a tumor volume. Treatment planning software for iPDT was developed based on graphics processing unit enhanced Monte Carlo simulations. This software was used to optimize the number of fibers, total energy delivered by each fiber, and the position of individual fibers in order to deliver a target light dose (D90) to 90% of the tumor volume. Treatment plans were developed using both flat cleaved and cylindrical diffusing fibers, based on tissue volumes derived from CT data from a head and neck cancer patient. Plans were created for four cases: fixed energy per fiber, fixed number of fibers, and in cases where both or neither of these factors were fixed. When the number of source fibers was fixed at eight, treatment plans based on flat cleaved fibers required each to deliver 7180-8080 J in order to deposit 90 J/cm(2) in 90% of the tumor volume. For diffusers, each fiber was required to deliver 2270-2350 J (333-1178 J/cm) in order to achieve this same result. For the case of fibers delivering a fixed 900 J, 13 diffusers or 19 flat cleaved fibers at a spacing of 1 cm were required to deliver the desired dose. With energy per fiber fixed at 2400 J and the number of fibers fixed at eight, diffuser fibers delivered the desired dose to 93% of the tumor volume, while flat cleaved fibers delivered this dose to 79%. With both energy and number of fibers allowed to vary, six diffusers delivering 3485-3600 J were required, compared to ten flat cleaved fibers delivering 2780-3600 J. For the same number of fibers, cylindrical diffusers allow for a shorter treatment duration compared to flat cleaved fibers. For the same energy delivered per fiber, diffusers allow for the insertion of fewer fibers in order to deliver the same light dose to a target volume.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Baran, Timothy M., E-mail: timothy.baran@rochester.edu; Foster, Thomas H.
Purpose: For interstitial photodynamic therapy (iPDT) of bulky tumors, careful treatment planning is required in order to ensure that a therapeutic dose is delivered to the tumor, while minimizing damage to surrounding normal tissue. In clinical contexts, iPDT has typically been performed with either flat cleaved or cylindrical diffusing optical fibers as light sources. Here, the authors directly compare these two source geometries in terms of the number of fibers and duration of treatment required to deliver a prescribed light dose to a tumor volume. Methods: Treatment planning software for iPDT was developed based on graphics processing unit enhanced Montemore » Carlo simulations. This software was used to optimize the number of fibers, total energy delivered by each fiber, and the position of individual fibers in order to deliver a target light dose (D{sub 90}) to 90% of the tumor volume. Treatment plans were developed using both flat cleaved and cylindrical diffusing fibers, based on tissue volumes derived from CT data from a head and neck cancer patient. Plans were created for four cases: fixed energy per fiber, fixed number of fibers, and in cases where both or neither of these factors were fixed. Results: When the number of source fibers was fixed at eight, treatment plans based on flat cleaved fibers required each to deliver 7180–8080 J in order to deposit 90 J/cm{sup 2} in 90% of the tumor volume. For diffusers, each fiber was required to deliver 2270–2350 J (333–1178 J/cm) in order to achieve this same result. For the case of fibers delivering a fixed 900 J, 13 diffusers or 19 flat cleaved fibers at a spacing of 1 cm were required to deliver the desired dose. With energy per fiber fixed at 2400 J and the number of fibers fixed at eight, diffuser fibers delivered the desired dose to 93% of the tumor volume, while flat cleaved fibers delivered this dose to 79%. With both energy and number of fibers allowed to vary, six diffusers delivering 3485–3600 J were required, compared to ten flat cleaved fibers delivering 2780–3600 J. Conclusions: For the same number of fibers, cylindrical diffusers allow for a shorter treatment duration compared to flat cleaved fibers. For the same energy delivered per fiber, diffusers allow for the insertion of fewer fibers in order to deliver the same light dose to a target volume.« less
Serosurvey for the Prevalence of Brucella Canis Antibodies in Dogs in Central Ohio
1983-01-01
negative urease production ...................... positive indol production ....................... negative1 0 ,58 ,6 2 citrate utilization...retained its spermatogenic ability. The epididymides had ac- cumulations of lymphocytes in the interstitial cell layers ranging from a few cells to large...There was diffuse in- filtration of plasma cells between the inner plexiform layer and the nerve fiber layer of the retina. Some serous exudate and a few
Thermodynamic Modelling of Phase Transformation in a Multi-Component System
NASA Astrophysics Data System (ADS)
Vala, J.
2007-09-01
Diffusion in multi-component alloys can be characterized by the vacancy mechanism for substitutional components, by the existence of sources and sinks for vacancies and by the motion of atoms of interstitial components. The description of diffusive and massive phase transformation of a multi-component system is based on the thermodynamic extremal principle by Onsager; the finite thickness of the interface between both phases is respected. The resulting system of partial differential equations of evolution with integral terms for unknown mole fractions (and additional variables in case of non-ideal sources and sinks for vacancies), can be analyzed using the method of lines and the finite difference technique (or, alternatively, the finite element one) together with the semi-analytic and numerical integration formulae and with certain iteration procedure, making use of the spectral properties of linear operators. The original software code for the numerical evaluation of solutions of such systems, written in MATLAB, offers a chance to simulate various real processes of diffusional phase transformation. Some results for the (nearly) steady-state real processes in substitutional alloys have been published yet. The aim of this paper is to demonstrate that the same approach can handle both substitutional and interstitial components even in case of a general system of evolution.
NASA Astrophysics Data System (ADS)
Shultz, Kimberly M.; Debreczeny, Martin P.; Dorshow, Richard B.; Keating, Jennifer E.; Bechtel, Kate L.
2017-02-01
The fluorescent tracer agent 3,6-diamino-2,5-bisN-[(1R)-1-carboxy-2-hydroxyethyl]carbamoylpyrazine, designated MB-102, is cleared from the body solely by the kidneys. A prototype noninvasive fluorescence detection device has been developed for monitoring transdermal fluorescence after bolus intravenous injection of MB-102 in order to measure kidney function. A mathematical model of the detected fluorescence signal was created for evaluation of observed variations in agent kinetics across body locations and for analysis of candidate instrument geometries. The model comprises pharmacokinetics of agent distribution within body compartments, local diffusion of the agent within the skin, Monte Carlo photon transport through tissue, and ray tracing of the instrument optics. Data from eight human subjects with normal renal function and a range of skin colors shows good agreement with simulated data. Body site dependence of equilibration kinetics was explored using the model to find the local vasculature-to-interstitial diffusion time constant, blood volume fraction, and interstitial volume fraction. Finally, candidate instrument geometries were evaluated using the model. While an increase in source-detector separation was found to increase sensitivity to tissue optical properties, it reduced the relative intensity of the background signal with minimal effect on the measured equilibration kinetics.
Fluid flow and convective transport of solutes within the intervertebral disc.
Ferguson, Stephen J; Ito, Keita; Nolte, Lutz P
2004-02-01
Previous experimental and analytical studies of solute transport in the intervertebral disc have demonstrated that for small molecules diffusive transport alone fulfils the nutritional needs of disc cells. It has been often suggested that fluid flow into and within the disc may enhance the transport of larger molecules. The goal of the study was to predict the influence of load-induced interstitial fluid flow on mass transport in the intervertebral disc. An iterative procedure was used to predict the convective transport of physiologically relevant molecules within the disc. An axisymmetric, poroelastic finite-element structural model of the disc was developed. The diurnal loading was divided into discrete time steps. At each time step, the fluid flow within the disc due to compression or swelling was calculated. A sequentially coupled diffusion/convection model was then employed to calculate solute transport, with a constant concentration of solute being provided at the vascularised endplates and outer annulus. Loading was simulated for a complete diurnal cycle, and the relative convective and diffusive transport was compared for solutes with molecular weights ranging from 400 Da to 40 kDa. Consistent with previous studies, fluid flow did not enhance the transport of low-weight solutes. During swelling, interstitial fluid flow increased the unidirectional penetration of large solutes by approximately 100%. Due to the bi-directional temporal nature of disc loading, however, the net effect of convective transport over a full diurnal cycle was more limited (30% increase). Further study is required to determine the significance of large solutes and the timing of their delivery for disc physiology.
Hart, Samantha K; Waddell, Lori
2016-11-01
To describe a case of suspected drug-induced infiltrative lung disease (ILD) and acute respiratory failure associated with the administration of cytarabine and prednisone in a dog requiring mechanical ventilation. A 4.5-year-old, female spayed Yorkshire Terrier presented to the ICU with acute onset of respiratory distress following a 24-hour cytarabine infusion. The patient was previously diagnosed with meningoencephalitis of unknown etiology (MUO), caudal occipital malformation, and syringohydromyelia, and was being treated with oral prednisone and levetiracetam, and cytarabine infusions. The patient developed tachypnea and dyspnea, and had diffuse crackles on auscultation of all lung fields, and hypoxemia 6 hours following completion of the fourth cytarabine infusion (300 mg/m 2 ). Thoracic radiographs revealed diffuse, bilateral infiltrates consistent with noncardiogenic pulmonary edema or acute respiratory distress syndrome. Respiratory distress and hypoxemia persisted despite oxygen supplementation and furosemide therapy and led to initiation of mechanical ventilation. Approximately 12 hours later, the dog became progressively hypoxemic with worsening pulmonary edema. The owners elected euthanasia. Postmortem examination revealed pulmonary edema and diffuse interstitial pneumonia. Histopathologic evaluation revealed pulmonary edema, severe acute neutrophilic and histiocytic pneumonia, and multifocal interstitial fibrosis. Bacterial culture yielded no growth. Drug-induced ILD is rarely reported in the veterinary literature, and has not previously been reported in dogs receiving cytarabine. As with administration of any medication, adverse events may occur. While ILD is unlikely to be commonly recognized, it may be considered in veterinary patients receiving chemotherapy that acutely become dyspneic. © Veterinary Emergency and Critical Care Society 2016.
Cigarette smoking and pulmonary diffusion defects in rheumatoid arthritis.
Westedt, M L; Hazes, J M; Breedveld, F C; Sterk, P J; Dijkman, J H
1998-01-01
The pathogenesis of lung disease in rheumatoid arthritis (RA) has still to be defined. Risk factors associated with lung involvement in RA were investigated by means of pulmonary function studies in 40 RA patients without apparent lung disease. A decreased carbon monoxide (CO) diffusion capacity indicative of interstitial lung disease (ILD) was the main pulmonary function defect found in the first 20 patients. The occurrence was associated with current cigarette smoking. This association was confirmed in a case control study performed subsequently. These data suggest that ILD in RA is stimulated by smoking and provide an additional argument that modification of smoking behaviour in RA patients might lead to less severe complications.
Mechanism for transient migration of xenon in UO{sub 2}
DOE Office of Scientific and Technical Information (OSTI.GOV)
Liu, X.-Y.; Uberuaga, B. P.; Andersson, D. A.
2011-04-11
In this letter, we report recent work on atomistic modeling of diffusion migration events of the fission gas product xenon in UO{sub 2} nuclear fuel. Under nonequilibrium conditions, Xe atoms can occupy the octahedral interstitial site, in contrast to the thermodynamically most stable uranium substitutional site. A transient migration mechanism involving Xe and two oxygen atoms is identified using basin constrained molecular dynamics employing a Buckingham type interatomic potential. This mechanism is then validated using density functional theory calculations using the nudged elastic band method. An overall reduction in the migration barrier of 1.6-2.7 eV is obtained compared to vacancy-mediatedmore » diffusion on the uranium sublattice.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Abere, Michael J.; Yalisove, Steven M.; Torralva, Ben
2016-04-11
The formation of high spatial frequency laser induced periodic surface structures (HSFL) with period <0.3 λ in GaAs after irradiation with femtosecond laser pulses in air is studied. We have identified a point defect generation mechanism that operates in a specific range of fluences in semiconductors between the band-gap closure and ultrafast-melt thresholds that produces vacancy/interstitial pairs. Stress relaxation, via diffusing defects, forms the 350–400 nm tall and ∼90 nm wide structures through a bifurcation process of lower spatial frequency surface structures. The resulting HSFL are predominately epitaxial single crystals and retain the original GaAs stoichiometry.
NASA Astrophysics Data System (ADS)
Luebbert, D.; Arthur, J.; Sztucki, M.; Metzger, T. H.; Griffin, P. B.; Patel, J. R.
2002-10-01
Stacking faults in boron-implanted silicon give rise to streaks or rods of scattered x-ray intensity normal to the stacking fault plane. We have used the diffuse scattering rods to follow the growth of faults as a function of time when boron-implanted silicon is annealed in the range of 925 to 1025 degC. From the growth kinetics we obtain an activation energy for interstitial migration in silicon: EI=1.98plus-or-minus0.06 eV. Fault intensity and size versus time results indicate that faults do not shrink and disappear, but rather are annihilated by a dislocation reaction mechanism.
Preferential diffusion in concentrated solid solution alloys: NiFe, NiCo and NiCoCr
Zhao, Shijun; Osetsky, Yuri; Zhang, Yanwen
2017-02-13
In single-phase concentrated solid-solution alloys (CSAs), including high entropy alloys (HEAs), remarkable mechanical properties are exhibited, as well as extraordinary corrosion and radiation resistance compared to pure metals and dilute alloys. But, the mechanisms responsible for these properties are unknown in many cases. In this work, we employ ab initio molecular dynamics based on density functional theory to study the diffusion of interstitial atoms in Ni and Ni-based face-centered cubic CSAs including NiFe, NiCo and NiCoCr. We model the defect trajectories over >100 ps and estimate tracer diffusion coefficients, correlation factors and activation energies. Furthermore, we found that the diffusionmore » mass transport in CSAs is not only slower than that in pure components, i.e. sluggish diffusion, but also chemically non-homogeneous. The results obtained here can be used in understanding and predicting the atomic segregation and phase separation in CSAs under irradiation conditions.« less
BCA-kMC Hybrid Simulation for Hydrogen and Helium Implantation in Material under Plasma Irradiation
NASA Astrophysics Data System (ADS)
Kato, Shuichi; Ito, Atsushi; Sasao, Mamiko; Nakamura, Hiroaki; Wada, Motoi
2015-09-01
Ion implantation by plasma irradiation into materials achieves the very high concentration of impurity. The high concentration of impurity causes the deformation and the destruction of the material. This is the peculiar phenomena in the plasma-material interaction (PMI). The injection process of plasma particles are generally simulated by using the binary collision approximation (BCA) and the molecular dynamics (MD), while the diffusion of implanted atoms have been traditionally solved by the diffusion equation, in which the implanted atoms is replaced by the continuous concentration field. However, the diffusion equation has insufficient accuracy in the case of low concentration, and in the case of local high concentration such as the hydrogen blistering and the helium bubble. The above problem is overcome by kinetic Monte Carlo (kMC) which represents the diffusion of the implanted atoms as jumps on interstitial sites in a material. In this paper, we propose the new approach ``BCA-kMC hybrid simulation'' for the hydrogen and helium implantation under the plasma irradiation.
Large disparity between gallium and antimony self-diffusion in gallium antimonide.
Bracht, H; Nicols, S P; Walukiewicz, W; Silveira, J P; Briones, F; Haller, E E
2000-11-02
The most fundamental mass transport process in solids is self-diffusion. The motion of host-lattice ('self-') atoms in solids is mediated by point defects such as vacancies or interstitial atoms, whose formation and migration enthalpies determine the kinetics of this thermally activated process. Self-diffusion studies also contribute to the understanding of the diffusion of impurities, and a quantitative understanding of self- and foreign-atom diffusion in semiconductors is central to the development of advanced electronic devices. In the past few years, self-diffusion studies have been performed successfully with isotopically controlled semiconductor heterostructures of germanium, silicon, gallium arsenide and gallium phosphide. Self-diffusion studies with isotopically controlled GaAs and GaP have been restricted to Ga self-diffusion, as only Ga has two stable isotopes, 69Ga and 71Ga. Here we report self-diffusion studies with an isotopically controlled multilayer structure of crystalline GaSb. Two stable isotopes exist for both Ga and Sb, allowing the simultaneous study of diffusion on both sublattices. Our experiments show that near the melting temperature, Ga diffuses more rapidly than Sb by over three orders of magnitude. This surprisingly large difference in atomic mobility requires a physical explanation going beyond standard diffusion models. Combining our data for Ga and Sb diffusion with related results for foreign-atom diffusion in GaSb (refs 8, 9), we conclude that the unusually slow Sb diffusion in GaSb is a consequence of reactions between defects on the Ga and Sb sublattices, which suppress the defects that are required for Sb diffusion.
An Adult Case of Chronic Active Epstein-Barr Virus Infection with Interstitial Pneumonitis
Joo, Eun-Jeong; Ha, Young Eun; Jung, Dong Sik; Cheong, Hae Suk; Wi, Yu Mi; Song, Jae-Hoon
2011-01-01
Chronic active Epstein-Barr virus (CAEBV) infection is characterized by persistent infectious mononucleosis-like symptoms, an unusual pattern of Epstein-Barr virus (EBV) antibodies, detection of the EBV genome in affected tissues or peripheral blood, and chronic illness that cannot be attributed to any other known disease. This is the first reported Korean case of an immunocompetent adult with CAEBV-associated interstitial pneumonitis. A 28-year-old female was admitted with a fever that persisted for 3 weeks. She had multiple lymphadenopathy, hepatosplenomegaly, pancytopenia, and elevated serum aminotransferase levels. Serology for antibodies was positive and chest computed tomography showed diffuse ground glass opacities in both lungs. Histopathology of the lung tissue showed lymphocyte infiltration, and EBV DNA was detected in those lymphocytes using in situ hybridization with an EBV-encoded RNA probe. After 1 month of hospitalization, she improved without specific treatment. PMID:22205850
An adult case of chronic active Epstein-Barr virus infection with interstitial pneumonitis.
Joo, Eun-Jeong; Ha, Young Eun; Jung, Dong Sik; Cheong, Hae Suk; Wi, Yu Mi; Song, Jae-Hoon; Peck, Kyong Ran
2011-12-01
Chronic active Epstein-Barr virus (CAEBV) infection is characterized by persistent infectious mononucleosis-like symptoms, an unusual pattern of Epstein-Barr virus (EBV) antibodies, detection of the EBV genome in affected tissues or peripheral blood, and chronic illness that cannot be attributed to any other known disease. This is the first reported Korean case of an immunocompetent adult with CAEBV-associated interstitial pneumonitis. A 28-year-old female was admitted with a fever that persisted for 3 weeks. She had multiple lymphadenopathy, hepatosplenomegaly, pancytopenia, and elevated serum aminotransferase levels. Serology for antibodies was positive and chest computed tomography showed diffuse ground glass opacities in both lungs. Histopathology of the lung tissue showed lymphocyte infiltration, and EBV DNA was detected in those lymphocytes using in situ hybridization with an EBV-encoded RNA probe. After 1 month of hospitalization, she improved without specific treatment.
Zehnder, Ralph A.; Jenkins, James; Zeller, Matthias; ...
2017-11-26
Here, using slow diffusion methods at room temperature (RT), we obtained four isomorphous lanthanide glutarate chlorides, accommodating interstitial THF and water molecules, [Ln 2(Glut) 2Cl 2(H 2O) 8]·2H 2O·THF, with Ln = La , Ce, Pr, Nd. They assemble as 3-dimensional (3D) lanthanide (Ln) coordination polymers with LnO 10 coordination polyhedra. Their topology was elucidated to be a 4-coordinated sql net. slowly dissolve in water liberating the entrapped THF molecules and reassemble as regular Ln-glutarate hydrates when the solution is deprived of THF and water by slow evaporation. The new products crystallize as [Ln 2(Glut) 3(H 2O) 3]·5H 2O, withmore » Ln = La, Ce, Pr, and [Nd 2(Glut) 3(H 2O) 2]·3.5H 2O.« less
Massive ovarian edema associated with a broad ligament leiomyoma: a case report and review.
Harrison, Beth T; Berg, Robert E; Mittal, Khush
2014-07-01
Massive ovarian edema is a rare disorder in which there is marked accumulation of interstitial fluid in the stroma of the ovary. Grossly, the involved ovary is an enlarged solid mass with a smooth tan-white surface, easily confused with a neoplasm. Microscopically, it features diffuse interstitial edema sparing follicles and outer cortex, dilated lymphatic vessels, thick-walled veins, fibromatosis, and luteinized stromal cells. It is believed that massive ovarian edema arises from interference in lymphatic drainage and venous return of the ovary secondary to partial torsion among other etiologies. Herein we provide the first description of unilateral ovarian edema in association with a large leiomyoma in the ipsilateral broad ligament. It is important to recognize the various presentations of this benign entity and to consider it in the differential diagnosis of an adnexal mass in a reproductive age woman.
Collapsing granular beds: the role of interstitial air.
Homan, Tess; Gjaltema, Christa; van der Meer, Devaraj
2014-05-01
A prefluidized sand bed consisting of fine particles compactifies when it is subjected to a shock. We observe that the response depends on both the shock strength and the ambient pressure, where, counterintuitively, at high ambient pressure the compaction is larger, which we connect to a decrease of the static friction inside the bed. We find that the interstitial air is trapped inside the bed during and long after compaction. We deduce this from measuring the pressure changes above and below the bed: The top pressure decreases abruptly, on the time scale of the compaction, whereas that below the bed slowly rises to a maximum. Subsequently, both gently relax to ambient values. We formulate a one-dimensional diffusion model that uses only the change in bed height and the ambient pressure as an input, and we show that it leads to a fully quantitative understanding of the measured pressure variations.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zehnder, Ralph A.; Jenkins, James; Zeller, Matthias
Here, using slow diffusion methods at room temperature (RT), we obtained four isomorphous lanthanide glutarate chlorides, accommodating interstitial THF and water molecules, [Ln 2(Glut) 2Cl 2(H 2O) 8]·2H 2O·THF, with Ln = La , Ce, Pr, Nd. They assemble as 3-dimensional (3D) lanthanide (Ln) coordination polymers with LnO 10 coordination polyhedra. Their topology was elucidated to be a 4-coordinated sql net. slowly dissolve in water liberating the entrapped THF molecules and reassemble as regular Ln-glutarate hydrates when the solution is deprived of THF and water by slow evaporation. The new products crystallize as [Ln 2(Glut) 3(H 2O) 3]·5H 2O, withmore » Ln = La, Ce, Pr, and [Nd 2(Glut) 3(H 2O) 2]·3.5H 2O.« less
Multiscale simulation of xenon diffusion and grain boundary segregation in UO₂
Andersson, David A.; Tonks, Michael R.; Casillas, Luis; ...
2015-07-01
In light water reactor fuel, gaseous fission products segregate to grain boundaries, resulting in the nucleation and growth of large intergranular fission gas bubbles. The segregation rate is controlled by diffusion of fission gas atoms through the grains and interaction with the boundaries. Based on the mechanisms established from earlier density functional theory (DFT) and empirical potential calculations, diffusion models for xenon (Xe), uranium (U) vacancies and U interstitials in UO₂ have been derived for both intrinsic (no irradiation) and irradiation conditions. Segregation of Xe to grain boundaries is described by combining the bulk diffusion model with a model formore » the interaction between Xe atoms and three different grain boundaries in UO₂ (Σ5 tilt, Σ5 twist and a high angle random boundary), as derived from atomistic calculations. The present model does not attempt to capture nucleation or growth of fission gas bubbles at the grain boundaries. The point defect and Xe diffusion and segregation models are implemented in the MARMOT phase field code, which is used to calculate effective Xe and U diffusivities as well as to simulate Xe redistribution for a few simple microstructures.« less
Pluen, Alain; Boucher, Yves; Ramanujan, Saroja; McKee, Trevor D.; Gohongi, Takeshi; di Tomaso, Emmanuelle; Brown, Edward B.; Izumi, Yotaro; Campbell, Robert B.; Berk, David A.; Jain, Rakesh K.
2001-01-01
The large size of many novel therapeutics impairs their transport through the tumor extracellular matrix and thus limits their therapeutic effectiveness. We propose that extracellular matrix composition, structure, and distribution determine the transport properties in tumors. Furthermore, because the characteristics of the extracellular matrix largely depend on the tumor–host interactions, we postulate that diffusion of macromolecules will vary with tumor type as well as anatomical location. Diffusion coefficients of macromolecules and liposomes in tumors growing in cranial windows (CWs) and dorsal chambers (DCs) were measured by fluorescence recovery after photobleaching. For the same tumor types, diffusion of large molecules was significantly faster in CW than in DC tumors. The greater diffusional hindrance in DC tumors was correlated with higher levels of collagen type I and its organization into fibrils. For molecules with diameters comparable to the interfibrillar space the diffusion was 5- to 10-fold slower in DC than in CW tumors. The slower diffusion in DC tumors was associated with a higher density of host stromal cells that synthesize and organize collagen type I. Our results point to the necessity of developing site-specific drug carriers to improve the delivery of molecular medicine to solid tumors. PMID:11274375
DOE Office of Scientific and Technical Information (OSTI.GOV)
Li, Yulan; Hu, Shenyang Y.; Sun, Xin
2011-06-15
Microstructure evolution kinetics in irradiated materials has strongly spatial correlation. For example, void and second phases prefer to nucleate and grow at pre-existing defects such as dislocations, grain boundaries, and cracks. Inhomogeneous microstructure evolution results in inhomogeneity of microstructure and thermo-mechanical properties. Therefore, the simulation capability for predicting three dimensional (3-D) microstructure evolution kinetics and its subsequent impact on material properties and performance is crucial for scientific design of advanced nuclear materials and optimal operation conditions in order to reduce uncertainty in operational and safety margins. Very recently the meso-scale phase-field (PF) method has been used to predict gas bubblemore » evolution, void swelling, void lattice formation and void migration in irradiated materials,. Although most results of phase-field simulations are qualitative due to the lake of accurate thermodynamic and kinetic properties of defects, possible missing of important kinetic properties and processes, and the capability of current codes and computers for large time and length scale modeling, the simulations demonstrate that PF method is a promising simulation tool for predicting 3-D heterogeneous microstructure and property evolution, and providing microstructure evolution kinetics for higher scale level simulations of microstructure and property evolution such as mean field methods. This report consists of two parts. In part I, we will present a new phase-field model for predicting interstitial loop growth kinetics in irradiated materials. The effect of defect (vacancy/interstitial) generation, diffusion and recombination, sink strength, long-range elastic interaction, inhomogeneous and anisotropic mobility on microstructure evolution kinetics is taken into account in the model. The model is used to study the effect of elastic interaction on interstitial loop growth kinetics, the interstitial flux, and sink strength of interstitial loop for interstitials. In part II, we present a generic phase field model and discuss the thermodynamic and kinetic properties in phase-field models including the reaction kinetics of radiation defects and local free energy of irradiated materials. In particular, a two-sublattice thermodynamic model is suggested to describe the local free energy of alloys with irradiated defects. Fe-Cr alloy is taken as an example to explain the required thermodynamic and kinetic properties for quantitative phase-field modeling. Finally the great challenges in phase-field modeling will be discussed.« less
Glymphatic solute transport does not require bulk flow
Asgari, Mahdi; de Zélicourt, Diane; Kurtcuoglu, Vartan
2016-01-01
Observations of fast transport of fluorescent tracers in mouse brains have led to the hypothesis of bulk water flow directed from arterial to venous paravascular spaces (PVS) through the cortical interstitium. At the same time, there is evidence for interstitial solute transport by diffusion rather than by directed bulk fluid motion. It has been shown that the two views may be consolidated by intracellular water flow through astrocyte networks combined with mainly diffusive extracellular transport of solutes. This requires the presence of a driving force that has not been determined to date, but for which arterial pulsation has been suggested as the origin. Here we show that arterial pulsation caused by pulse wave propagation is an unlikely origin of this hypothetical driving force. However, we further show that such pulsation may still lead to fast para-arterial solute transport through dispersion, that is, through the combined effect of local mixing and diffusion in the para-arterial space. PMID:27929105
Lithium-ion diffusion mechanisms in the battery anode material Li(1+x)V(1-x)O₂.
Panchmatia, Pooja M; Armstrong, A Robert; Bruce, Peter G; Islam, M Saiful
2014-10-21
Layered Li(1+x)V(1-x)O2 has attracted recent interest as a potential low voltage and high energy density anode material for lithium-ion batteries. A greater understanding of the lithium-ion transport mechanisms is important in optimising such oxide anodes. Here, stoichiometric LiVO2 and Li-rich Li1.07V0.93O2 are investigated using atomistic modelling techniques. Lithium-ion migration is not found in LiVO2, which has also previously shown to be resistant to lithium intercalation. Molecular dynamics simulations of lithiated non-stoichiometric Li(1.07+y)V0.93O2 suggest cooperative interstitial Li(+) diffusion with favourable migration barriers and diffusion coefficients (D(Li)), which are facilitated by the presence of lithium in the transition metal layers; such transport behaviour is important for high rate performance as a battery anode.
Oxygen diffusion model of the mixed (U,Pu)O2 ± x: Assessment and application
NASA Astrophysics Data System (ADS)
Moore, Emily; Guéneau, Christine; Crocombette, Jean-Paul
2017-03-01
The uranium-plutonium (U,Pu)O2 ± x mixed oxide (MOX) is used as a nuclear fuel in some light water reactors and considered for future reactor generations. To gain insight into fuel restructuring, which occurs during the fuel lifetime as well as possible accident scenarios understanding of the thermodynamic and kinetic behavior is crucial. A comprehensive evaluation of thermo-kinetic properties is incorporated in a computational CALPHAD type model. The present DICTRA based model describes oxygen diffusion across the whole range of plutonium, uranium and oxygen compositions and temperatures by incorporating vacancy and interstitial migration pathways for oxygen. The self and chemical diffusion coefficients are assessed for the binary UO2 ± x and PuO2 - x systems and the description is extended to the ternary mixed oxide (U,Pu)O2 ± x by extrapolation. A simulation to validate the applicability of this model is considered.
Computational Modeling of Radiation Phenomenon in SiC for Nuclear Applications
NASA Astrophysics Data System (ADS)
Ko, Hyunseok
Silicon carbide (SiC) material has been investigated for promising nuclear materials owing to its superior thermo-mechanical properties, and low neutron cross-section. While the interest in SiC has been increasing, the lack of fundamental understanding in many radiation phenomena is an important issue. More specifically, these phenomena in SiC include the fission gas transport, radiation induced defects and its evolution, radiation effects on the mechanical stability, matrix brittleness of SiC composites, and low thermal conductivities of SiC composites. To better design SiC and SiC composite materials for various nuclear applications, understanding each phenomenon and its significance under specific reactor conditions is important. In this thesis, we used various modeling approaches to understand the fundamental radiation phenomena in SiC for nuclear applications in three aspects: (a) fission product diffusion through SiC, (b) optimization of thermodynamic stable self-interstitial atom clusters, (c) interface effect in SiC composite and their change upon radiation. In (a) fission product transport work, we proposed that Ag/Cs diffusion in high energy grain boundaries may be the upper boundary in unirradiated SiC at relevant temperature, and radiation enhanced diffusion is responsible for fast diffusion measured in post-irradiated fuel particles. For (b) the self-interstitial cluster work, thermodynamically stable clusters are identified as a function of cluster size, shape, and compositions using a genetic algorithm. We found that there are compositional and configurational transitions for stable clusters as the cluster size increases. For (c) the interface effect in SiC composite, we investigated recently proposed interface, which is CNT reinforced SiC composite. The analytical model suggests that CNT/SiC composites have attractive mechanical and thermal properties, and these fortify the argument that SiC composites are good candidate materials for the cladding. We used grand canonical monte carlo to optimize the interface, as a part of the stepping stone for further study using the interface.
Chou, Cheng-Ying; Huang, Chih-Kang; Lu, Kuo-Wei; Horng, Tzyy-Leng; Lin, Win-Li
2013-01-01
The transport and accumulation of anticancer nanodrugs in tumor tissues are affected by many factors including particle properties, vascular density and leakiness, and interstitial diffusivity. It is important to understand the effects of these factors on the detailed drug distribution in the entire tumor for an effective treatment. In this study, we developed a small-scale mathematical model to systematically study the spatiotemporal responses and accumulative exposures of macromolecular carriers in localized tumor tissues. We chose various dextrans as model carriers and studied the effects of vascular density, permeability, diffusivity, and half-life of dextrans on their spatiotemporal concentration responses and accumulative exposure distribution to tumor cells. The relevant biological parameters were obtained from experimental results previously reported by the Dreher group. The area under concentration-time response curve (AUC) quantified the extent of tissue exposure to a drug and therefore was considered more reliable in assessing the extent of the overall drug exposure than individual concentrations. The results showed that 1) a small macromolecule can penetrate deep into the tumor interstitium and produce a uniform but low spatial distribution of AUC; 2) large macromolecules produce high AUC in the perivascular region, but low AUC in the distal region away from vessels; 3) medium-sized macromolecules produce a relatively uniform and high AUC in the tumor interstitium between two vessels; 4) enhancement of permeability can elevate the level of AUC, but have little effect on its uniformity while enhancement of diffusivity is able to raise the level of AUC and improve its uniformity; 5) a longer half-life can produce a deeper penetration and a higher level of AUC distribution. The numerical results indicate that a long half-life carrier in plasma and a high interstitial diffusivity are the key factors to produce a high and relatively uniform spatial AUC distribution in the interstitium. PMID:23565142
Diffusion and related transport mechanisms in brain tissue
NASA Astrophysics Data System (ADS)
Nicholson, Charles
2001-07-01
Diffusion plays a crucial role in brain function. The spaces between cells can be likened to the water phase of a foam and many substances move within this complicated region. Diffusion in this interstitial space can be accurately modelled with appropriate modifications of classical equations and quantified from measurements based on novel micro-techniques. Besides delivering glucose and oxygen from the vascular system to brain cells, diffusion also moves informational substances between cells, a process known as volume transmission. Deviations from expected results reveal how local uptake, degradation or bulk flow may modify the transport of molecules. Diffusion is also essential to many therapies that deliver drugs to the brain. The diffusion-generated concentration distributions of well-chosen molecules also reveal the structure of brain tissue. This structure is represented by the volume fraction (void space) and the tortuosity (hindrance to diffusion imposed by local boundaries or local viscosity). Analysis of these parameters also reveals how the local geometry of the brain changes with time or under pathological conditions. Theoretical and experimental approaches borrow from classical diffusion theory and from porous media concepts. Earlier studies were based on radiotracers but the recent methods use a point-source paradigm coupled with micro-sensors or optical imaging of macromolecules labelled with fluorescent tags. These concepts and methods are likely to be applicable elsewhere to measure diffusion properties in very small volumes of highly structured but delicate material.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lin, Yiheng; Xia, Guangrui; Yasuda, Hiroshi
2014-10-14
The use of carbon (C) in SiGe base layers is an important approach to control the base layer dopant phosphorus (P) diffusion and thus enhance PNP heterojunction bipolar transistor (HBT) performance. This work quantitatively investigated the carbon impacts on P diffusion in Si₀.₈₂Ge₀.₁₈:C and Si:C under rapid thermal anneal conditions. The carbon molar fraction is up to 0.32%. The results showed that the carbon retardation effect on P diffusion is less effective for Si₀.₈₂Ge₀.₁₈:C than for Si:C. In Si₀.₈₂Ge₀.₁₈:C, there is an optimum carbon content at around 0.05% to 0.1%, beyond which more carbon incorporation does not retard P diffusionmore » any more. This behavior is different from the P diffusion behavior in Si:C and the B in Si:C and low Ge SiGe:C, which can be explained by the decreased interstitial-mediated diffusion fraction f{sub I}{sup P,SiGe} to 95% as Ge content increases to 18%. Empirical models were established to calculate the time-averaged point defect concentrations and effective diffusivities as a function of carbon and was shown to agree with previous studies on boron, phosphorus, arsenic and antimony diffusion with carbon.« less
Collins, Bridget F; Spiekerman, Charles F; Shaw, Megan A; Ho, Lawrence A; Hayes, Jennifer; Spada, Carolyn A; Stamato, Caroline M; Raghu, Ganesh
2017-07-01
Some patients with autoimmune characteristics and idiopathic interstitial pneumonia, particularly usual interstitial pneumonia (UIP), do not fit neatly into the category of connective tissue disease-associated interstitial lung disease (CTD-ILD), idiopathic pulmonary fibrosis (IPF), or recently proposed yet to be validated criteria for interstitial pneumonia with autoimmune features (IPAF). Outcomes of these patients are unknown. This was a retrospective single-center study. Analyses of variance compared differences in mean change in FVC and diffusion capacity (Dlco) over 1 year among 124 well-defined patients (20 patients with positive autoantibodies with or without symptoms of connective tissue disease [AI-ILD], 15 patients with IPAF, 36 patients with CTD-ILD, and 53 patients with IPF with negative CTD serologies [Lone-IPF]). Of the patients, 75% with AI-ILD, 33% with IPAF, and 33% with CTD-ILD had UIP. Initial FVC and Dlco were similarly moderately reduced across groups. Mean change in FVC over 12 months was as follows: -60 mL (IPAF), -110 mL (AI-ILD), -10 mL (CTD-ILD), and -90 mL (Lone-IPF) (P = .52). Mean change in Dlco was as follows: 2.39 mL/mm Hg/min (IPAF), -1.15 mL/mm Hg/min (AI-ILD), -0.27 mL/mm Hg/min (CTD-ILD), and -1.05 mL/mm Hg/min (Lone-IPF) (P < .001). By pattern of disease, the mean change in FVC was as follows: -140 mL (UIP), 10 mL (nonspecific interstitial pneumonia), and 12 mL (unclassifiable/other) (P = .001). No clinically significant differences in pulmonary function to distinguish between patients with AI-ILD, IPAF, CTD-ILD, and Lone-IPF were observed after 1 year. Longer periods of follow-up are needed to understand the outcomes of these patients. It is not yet clear whether AI-ILD is a distinct phenotype or a variant of the newly proposed entity IPAF. Copyright © 2017 American College of Chest Physicians. Published by Elsevier Inc. All rights reserved.
Baran, Timothy M.; Foster, Thomas H.
2011-01-01
We present a new Monte Carlo model of cylindrical diffusing fibers that is implemented with a graphics processing unit. Unlike previously published models that approximate the diffuser as a linear array of point sources, this model is based on the construction of these fibers. This allows for accurate determination of fluence distributions and modeling of fluorescence generation and collection. We demonstrate that our model generates fluence profiles similar to a linear array of point sources, but reveals axially heterogeneous fluorescence detection. With axially homogeneous excitation fluence, approximately 90% of detected fluorescence is collected by the proximal third of the diffuser for μs'/μa = 8 in the tissue and 70 to 88% is collected in this region for μs'/μa = 80. Increased fluorescence detection by the distal end of the diffuser relative to the center section is also demonstrated. Validation of these results was performed by creating phantoms consisting of layered fluorescent regions. Diffusers were inserted into these layered phantoms and fluorescence spectra were collected. Fits to these spectra show quantitative agreement between simulated fluorescence collection sensitivities and experimental results. These results will be applicable to the use of diffusers as detectors for dosimetry in interstitial photodynamic therapy. PMID:21895311
Donovan, Preston; Chehreghanianzabi, Yasaman; Rathinam, Muruhan; Zustiak, Silviya Petrova
2016-01-01
The study of diffusion in macromolecular solutions is important in many biomedical applications such as separations, drug delivery, and cell encapsulation, and key for many biological processes such as protein assembly and interstitial transport. Not surprisingly, multiple models for the a-priori prediction of diffusion in macromolecular environments have been proposed. However, most models include parameters that are not readily measurable, are specific to the polymer-solute-solvent system, or are fitted and do not have a physical meaning. Here, for the first time, we develop a homogenization theory framework for the prediction of effective solute diffusivity in macromolecular environments based on physical parameters that are easily measurable and not specific to the macromolecule-solute-solvent system. Homogenization theory is useful for situations where knowledge of fine-scale parameters is used to predict bulk system behavior. As a first approximation, we focus on a model where the solute is subjected to obstructed diffusion via stationary spherical obstacles. We find that the homogenization theory results agree well with computationally more expensive Monte Carlo simulations. Moreover, the homogenization theory agrees with effective diffusivities of a solute in dilute and semi-dilute polymer solutions measured using fluorescence correlation spectroscopy. Lastly, we provide a mathematical formula for the effective diffusivity in terms of a non-dimensional and easily measurable geometric system parameter.
Rheological behaviour of egg white and egg yolk from different poultry specimen
NASA Astrophysics Data System (ADS)
Kumbár, V.; Nedomová, Š.; Votava, J.; Buchar, J.
2017-01-01
The main goal of this study is differences in rheological behaviour of hen (ISA BROWN), goose (Anser anser f. domestica) and Japanese quail (Coturnix japonica) egg white and egg yolk. The rheological behaviour of egg white and egg yolk was studied using a concentric cylinder viscometer. Rheological behaviour was pseudoplastic and flow curves were fitted by the Herschel-Bulkley model and Ostwald-de Waele model with high values of coeficients of determination R2. The meaning of rheological parameters on friction factors during flow of egg white and egg yolk in real tube has been shown. Preliminary information on time-dependent behaviour of tested liquids has been also obtained.
Hariri, Lida P.; Applegate, Matthew B.; Mino-Kenudson, Mari; Mark, Eugene J.; Medoff, Benjamin D.; Luster, Andrew D.; Bouma, Brett E.; Tearney, Guillermo J.
2013-01-01
Background: Lung cancer is the leading cause of cancer-related mortality. Radiology and bronchoscopy techniques do not have the necessary resolution to evaluate lung lesions on the microscopic scale, which is critical for diagnosis. Bronchial biopsy specimens can be limited by sampling error and small size. Optical frequency domain imaging (OFDI) provides volumetric views of tissue microstructure at near-histologic resolution and may be useful for evaluating pulmonary lesions to increase diagnostic accuracy. Bronchoscopic OFDI has been evaluated in vivo, but a lack of correlated histopathology has limited the ability to develop accurate image interpretation criteria. Methods: We performed OFDI through two approaches (airway-centered and parenchymal imaging) in 22 ex vivo lung specimens, using tissue dye to precisely correlate imaging and histology. Results: OFDI of normal airway allowed visualization of epithelium, lamina propria, cartilage, and alveolar attachments. Carcinomas exhibited architectural disarray, loss of normal airway and alveolar structure, and rapid light attenuation. Squamous cell carcinomas showed nested architecture. Atypical glandular formation was appreciated in adenocarcinomas, and uniform trabecular gland formation was seen in salivary gland carcinomas. Mucinous adenocarcinomas showed alveolar wall thickening with intraalveolar mucin. Interstitial fibrosis was visualized as signal-dense tissue, with an interstitial distribution in mild interstitial fibrotic disease and a diffuse subpleural pattern with cystic space formation in usual interstitial pneumonitis. Conclusions: To our knowledge, this study is the first demonstration of volumetric OFDI with precise correlation to histopathology in lung pathology. We anticipate that OFDI may play a role in assessing airway and parenchymal pathology, providing fresh insights into the volumetric features of pulmonary disease. PMID:22459781
Myocardial serotonin exchange: negligible uptake by capillary endothelium
DOE Office of Scientific and Technical Information (OSTI.GOV)
Moffett, T.C.; Chan, I.S.; Bassingthwaighte, J.B.
1988-03-01
The extraction of serotonin from the blood during transorgan passage through the heart was studied using Langendorff-perfused rabbit hearts. Outflow dilution curves of /sup 131/I- or /sup 125/I-labeled albumin, (/sup 14/C)sucrose, and (3H)serotonin injected simultaneously into the inflow were fitted with an axially distributed blood-tissue exchange model to examine the extraction process. The model fits of the albumin and sucrose outflow dilution curves were used to define flow heterogeneity, intravascular dispersion, capillary permeability, and the volume of the interstitial space, which reduced the degrees of freedom in fitting the model to the serotonin curves. Serotonin extractions, measured against albumin, duringmore » single transcapillary passage, ranged from 24 to 64%. The ratio of the capillary permeability-surface area products for serotonin and sucrose, based on the maximum instantaneous extraction, was 1.37 +/- 0.2 (n = 18), very close to the predicted value of 1.39, the ratio of free diffusion coefficients calculated from the molecular weights. This result shows that the observed uptake of serotonin can be accounted for solely on the basis of diffusion between endothelial cells into the interstitial space. Thus it appears that the permeability of the luminal surface of the endothelial cell is negligible in comparison to diffusion through the clefts between endothelial cells. In 18 sets of dilution curves, with and without receptor and transport blockers or competitors (ketanserin, desipramine, imipramine, serotonin), the extractions and estimates of the capillary permeability-surface area product were not reduced, nor were the volumes of distribution. The apparent absence of transporters and receptors in rabbit myocardial capillary endothelium contrasts with their known abundance in the pulmonary vasculature.« less
Iron and its complexes in silicon
NASA Astrophysics Data System (ADS)
Istratov, A. A.; Hieslmair, H.; Weber, E. R.
This article is the first in a series of two reviews on the properties of iron in silicon. It offers a comprehensive of the current state of understanding of fundamental physical properties of iron and its complexes in silicon. The first section of this review discusses the position of iron in the silicon lattice and the electrical properties of interstitial iron. Updated expressions for the solubility and the diffusivity of iron in silicon are presented, and possible explanations for conflicting experimental data obtained by different groups are discussed. The second section of the article considers the electrical and the structural properties of complexes of interstitial iron with shallow acceptors (boron, aluminum, indium, gallium, and thallium), shallow donors (phosphorus and arsenic) and other impurities (gold, silver, platinum, palladium, zinc, sulfur, oxygen, carbon, and hydrogen). Special attention is paid to the kinetics of iron pairing with shallow acceptors, the dissociation of these pairs, and the metastability of iron-acceptor pairs. The parameters of iron-related defects in silicon are summarized in tables that include more than 30 complexes of iron as detected by electron paramagnetic resonance (EPR) and almost 20 energy levels in the band gap associated with iron. The data presented in this review illustrate the enormous complexing activity of iron, which is attributed to the partial or complete (depending on the temperature and the conductivity type) ionization of iron as well as the high diffusivity of iron in silicon. It is shown that studies of iron in silicon require exceptional cleanliness of experimental facilities and highly reproducible diffusion and temperature ramping (quenching) procedures. Properties of iron that are not yet completely understood and need further research are outlined.
Comparative study of two models of combined pulmonary fibrosis and emphysema in mice.
Zhang, Wan-Guang; Wu, Si-Si; He, Li; Yang, Qun; Feng, Yi-Kuan; Chen, Yue-Tao; Zhen, Guo-Hua; Xu, Yong-Jian; Zhang, Zhen-Xiang; Zhao, Jian-Ping; Zhang, Hui-Lan
2017-04-01
Combined pulmonary fibrosis and emphysema (CPFE) is an "umbrella term" encompassing emphysema and pulmonary fibrosis, but its pathogenesis is not known. We established two models of CPFE in mice using tracheal instillation with bleomycin (BLM) or murine gammaherpesvirus 68 (MHV-68). Experimental mice were divided randomly into four groups: A (normal control, n=6), B (emphysema, n=6), C (emphysema+MHV-68, n=24), D (emphysema+BLM, n=6). Group C was subdivided into four groups: C1 (sacrificed on day 367, 7 days after tracheal instillation of MHV-68); C2 (day 374; 14days); C3 (day 381; 21days); C4 (day 388; 28days). Conspicuous emphysema and interstitial fibrosis were observed in BLM and MHV-68 CPFE mouse models. However, BLM induced diffuse pulmonary interstitial fibrosis with severely diffuse pulmonary inflammation; MHV-68 induced relatively modest inflammation and fibrosis, and the inflammation and fibrosis were not diffuse, but instead around bronchioles. Inflammation and fibrosis were detectable in the day-7 subgroup and reached a peak in the day-28 subgroup in the emphysema + MHV-68 group. Levels of macrophage chemoattractant protein-1, macrophage inflammatory protein-1α, interleukin-13, and transforming growth factor-β1 in bronchoalveolar lavage fluid were increased significantly in both models. Percentage of apoptotic type-2 lung epithelial cells was significantly higher; however, all four types of cytokine and number of macrophages were significantly lower in the emphysema+MHV-68 group compared with the emphysema +BLM group. The different changes in pathology between BLM and MHV-68 mice models demonstrated different pathology subtypes of CPFE: macrophage infiltration and apoptosis of type-II lung epithelial cells increased with increasing pathology score for pulmonary fibrosis. Copyright © 2017 Elsevier GmbH. All rights reserved.
Radiation tolerance of nanocrystalline ceramics: insights from Yttria Stabilized Zirconia.
Dey, Sanchita; Drazin, John W; Wang, Yongqiang; Valdez, James A; Holesinger, Terry G; Uberuaga, Blas P; Castro, Ricardo H R
2015-01-13
Materials for applications in hostile environments, such as nuclear reactors or radioactive waste immobilization, require extremely high resistance to radiation damage, such as resistance to amorphization or volume swelling. Nanocrystalline materials have been reported to present exceptionally high radiation-tolerance to amorphization. In principle, grain boundaries that are prevalent in nanomaterials could act as sinks for point-defects, enhancing defect recombination. In this paper we present evidence for this mechanism in nanograined Yttria Stabilized Zirconia (YSZ), associated with the observation that the concentration of defects after irradiation using heavy ions (Kr(+), 400 keV) is inversely proportional to the grain size. HAADF images suggest the short migration distances in nanograined YSZ allow radiation induced interstitials to reach the grain boundaries on the irradiation time scale, leaving behind only vacancy clusters distributed within the grain. Because of the relatively low temperature of the irradiations and the fact that interstitials diffuse thermally more slowly than vacancies, this result indicates that the interstitials must reach the boundaries directly in the collision cascade, consistent with previous simulation results. Concomitant radiation-induced grain growth was observed which, as a consequence of the non-uniform implantation, caused cracking of the nano-samples induced by local stresses at the irradiated/non-irradiated interfaces.
Radiation Tolerance of Nanocrystalline Ceramics: Insights from Yttria Stabilized Zirconia
Dey, Sanchita; Drazin, John W.; Wang, Yongqiang; Valdez, James A.; Holesinger, Terry G.; Uberuaga, Blas P.; Castro, Ricardo H. R.
2015-01-01
Materials for applications in hostile environments, such as nuclear reactors or radioactive waste immobilization, require extremely high resistance to radiation damage, such as resistance to amorphization or volume swelling. Nanocrystalline materials have been reported to present exceptionally high radiation-tolerance to amorphization. In principle, grain boundaries that are prevalent in nanomaterials could act as sinks for point-defects, enhancing defect recombination. In this paper we present evidence for this mechanism in nanograined Yttria Stabilized Zirconia (YSZ), associated with the observation that the concentration of defects after irradiation using heavy ions (Kr+, 400 keV) is inversely proportional to the grain size. HAADF images suggest the short migration distances in nanograined YSZ allow radiation induced interstitials to reach the grain boundaries on the irradiation time scale, leaving behind only vacancy clusters distributed within the grain. Because of the relatively low temperature of the irradiations and the fact that interstitials diffuse thermally more slowly than vacancies, this result indicates that the interstitials must reach the boundaries directly in the collision cascade, consistent with previous simulation results. Concomitant radiation-induced grain growth was observed which, as a consequence of the non-uniform implantation, caused cracking of the nano-samples induced by local stresses at the irradiated/non-irradiated interfaces. PMID:25582769
Radiation tolerance of nanocrystalline ceramics: Insights from yttria stabilized zirconia
Dey, Sanchita; Drazin, John W.; Wang, Yongqiang; ...
2015-01-13
Materials for applications in hostile environments, such as nuclear reactors or radioactive waste immobilization, require extremely high resistance to radiation damage, such as resistance to amorphization or volume swelling. Nanocrystalline materials have been reported to present exceptionally high radiation-tolerance to amorphization. In principle, grain boundaries that are prevalent in nanomaterials could act as sinks for point-defects, enhancing defect recombination. In this paper we present evidence for this mechanism in nanograined Yttria Stabilized Zirconia (YSZ), associated with the observation that the concentration of defects after irradiation using heavy ions (Kr⁺, 400 keV) is inversely proportional to the grain size. HAADF imagesmore » suggest the short migration distances in nanograined YSZ allow radiation induced interstitials to reach the grain boundaries on the irradiation time scale, leaving behind only vacancy clusters distributed within the grain. Because of the relatively low temperature of the irradiations and the fact that interstitials diffuse thermally more slowly than vacancies, this result indicates that the interstitials must reach the boundaries directly in the collision cascade, consistent with previous simulation results. Concomitant radiation-induced grain growth was observed which, as a consequence of the non-uniform implantation, caused cracking of the nano-samples induced by local stresses at the irradiated/non-irradiated interfaces.« less
Gonçalves-Venade, Gabriela; Lacerda-Príncipe, Nuno; Roncon-Albuquerque, Roberto; Paiva, José Artur
2018-05-01
Acute interstitial pneumonia (AIP) is a rare idiopathic interstitial lung disease with rapid progressive respiratory failure and high mortality. In the present report, three cases of AIP complicated by refractory respiratory failure supported with extracorporeal membrane oxygenation (ECMO) are presented. One male and two female patients (ages 27-59) were included. Venovenous ECMO support was provided using miniaturized systems, with two-site femoro-jugular circuit configuration. Despite lung protective ventilation, prone position and neuromuscular blockade, refractory respiratory failure of unknown etiology supervened (ratio of arterial oxygen partial pressure to fractional inspired oxygen 46-130) and ECMO was initiated after 3-7 days of mechanical ventilation. AIP diagnosis was established after exclusion of infectious and noninfectious acute respiratory distress syndrome on the basis of clinical and analytical data, bronchoalveolar lavage analysis and lung imaging, with a confirmatory surgical lung biopsy revealing diffuse alveolar damage of unknown etiology. Immunosuppressive treatment consisted in high-dose corticosteroids and cyclophosphamide in one case. Two patients survived to hospital discharge. ECMO allowed AIP diagnosis and treatment in the presence of refractory respiratory failure, therefore reducing ventilator-induced lung injury and bridging lung recovery in two patients. ECMO referral should be considered in refractory respiratory failure if AIP is suspected. © 2018 International Center for Artificial Organs and Transplantation and Wiley Periodicals, Inc.
Guo, Muyi; Cai, Yan; Yao, Xinke; Li, Zhiyong
2018-08-07
Observational studies have identified angiogenesis from the adventitial vasa vasorum and intraplaque hemorrhage (IPH) as critical factors in atherosclerotic plaque progression and destabilization. Here we propose a mathematical model incorporating intraplaque neovascularization and hemodynamic calculation with plaque destabilization for the quantitative evaluation of the role of neoangiogenesis and IPH in the vulnerable atherosclerotic plaque formation. An angiogenic microvasculature is generated by two-dimensional nine-point discretization of endothelial cell proliferation and migration from the vasa vasorum. Three key cells (endothelial cells, smooth muscle cells and macrophages) and three key chemicals (vascular endothelial growth factors, extracellular matrix and matrix metalloproteinase) are involved in the plaque progression model, and described by the reaction-diffusion partial differential equations. The hemodynamic calculation of the microcirculation on the generated microvessel network is carried out by coupling the intravascular, interstitial and transvascular flow. The plasma concentration in the interstitial domain is defined as the description of IPH area according to the diffusion and convection with the interstitial fluid flow, as well as the extravascular movement across the leaky vessel wall. The simulation results demonstrate a series of pathophysiological phenomena during the vulnerable progression of an atherosclerotic plaque, including the expanding necrotic core, the exacerbated inflammation, the high microvessel density (MVD) region at the shoulder areas, the transvascular flow through the capillary wall and the IPH. The important role of IPH in the plaque destabilization is evidenced by simulations with varied model parameters. It is found that the IPH can significantly speed up the plaque vulnerability by increasing necrotic core and thinning fibrous cap. In addition, the decreased MVD and vessel permeability may slow down the process of plaque destabilization by reducing the IPH dramatically. We envision that the present model and its future advances can serve as a valuable theoretical platform for studying the dynamic changes in the microenvironment during the plaque destabilization. Copyright © 2018 Elsevier Ltd. All rights reserved.
Histopathologic lesions in sea otters exposed to crude oil
Lipscomb, T.P.; Harris, R.K.; Moeller, R.B.; Pletcher, J.M.; Haebler, R.J.; Ballachey, Brenda E.
1993-01-01
Following the Exxon Valdez oil spill in Prince William Sound, Alaska, sea otters (Enhydra lutris) that appeared to be contaminated with oil, that were in danger of becoming contaminated, or that were behaving abnormally were captured and taken to rehabilitation centers. Exposure to oil was assessed by visual examination when otters arrived at the centers. Degree of oil exposure was graded according to the following criteria: oil covering greater than 60% of the body - heavily contaminated; oil covering 30–60% of the body - moderately contaminated; oil covering less than 30% of the body or light sheen on fur - lightly contaminated. If there was no oil visible, otters were considered uncontaminated. Tissues from 51 oil-contaminated sea otters (14 males, 37 females) and from six uncontaminated sea otters (three males, three females) that died in rehabilitation centers were examined histologically. Among oil-contaminated sea otters, 19/46 had interstitial pulmonary emphysema, 13/40 had gastric erosion and hemorrhage, 11/47 had centrilobular hepatic necrosis, 14/47 had periportal to diffuse hepatic lipidosis, and 10/42 had renal tubular lipidosis. Of the uncontaminated sea otters, 1/6 had gastric erosion and hemorrhage and 1/6 had diffuse hepatic lipidosis. Histologic examinations were performed on tissues from five sea otters (three males, two females) found dead with external oil present 15 to 16 days after the spill. Periportal hepatic lipidosis and renal tubular lipidosis were found in 3/5, and interstitial pulmonary emphysema was found in 1/5. Tissues from six apparently normal sea otters (four males, two females) collected from an area not affected by an oil spill were examined histologically, and none of these lesions were found. We conclude that interstitial pulmonary emphysema, centrilobular hepatic necrosis, and hepatic and renal lipidosis of sea otters were associated with exposure to crude oil. Gastric erosion and hemorrhage may have been associated with stress of captivity and/or oil exposure.
Ab initio modeling of zincblende AlN layer in Al-AlN-TiN multilayers
Yadav, S. K.; Wang, J.; Liu, X. -Y.
2016-06-13
An unusual growth mechanism of metastable zincblende AlN thin film by diffusion of nitrogen atoms into Al lattice is established. Using first-principles density functional theory, we studied the possibility of thermodynamic stability of AlN as a zincblende phase due to epitaxial strains and interface effect, which fails to explain the formation of zincblende AlN. We then compared the formation energetics of rocksalt and zincblende AlN in fcc Al through direct diffusion of nitrogen atoms to Al octahedral and tetrahedral interstitials. Furthermore, the formation of a zincblende AlN thin film is determined to be a kinetically driven process, not a thermodynamicallymore » driven process.« less
NMR Observation of Mobile Protons in Proton-Implanted ZnO Nanorods
Park, Jun Kue; Kwon, Hyeok-Jung; Lee, Cheol Eui
2016-01-01
The diffusion properties of H+ in ZnO nanorods are investigated before and after 20 MeV proton beam irradiation by using 1H nuclear magnetic resonance (NMR) spectroscopy. Herein, we unambiguously observe that the implanted protons occupy thermally unstable site of ZnO, giving rise to a narrow NMR line at 4.1 ppm. The activation barrier of the implanted protons was found to be 0.46 eV by means of the rotating-frame spin-lattice relaxation measurements, apparently being interstitial hydrogens. High-energy beam irradiation also leads to correlated jump diffusion of the surface hydroxyl group of multiple lines at ~1 ppm, implying the presence of structural disorder at the ZnO surface. PMID:26988733
Hydrogen species motion in piezoelectrics: A quasi-elastic neutron scattering study
NASA Astrophysics Data System (ADS)
Alvine, K. J.; Tyagi, M.; Brown, C. M.; Udovic, T. J.; Jenkins, T.; Pitman, S. G.
2012-03-01
Hydrogen is known to damage or degrade piezoelectric materials, at low pressure for ferroelectric random access memory applications, and at high pressure for hydrogen-powered vehicle applications. The piezoelectric degradation is in part governed by the motion of hydrogen species within the piezoelectric materials. We present here quasi-elastic neutron scattering (QENS) measurements of the local hydrogen species motion within lead zirconate titanate (PZT) and barium titanate (BTO) on samples charged by exposure to high-pressure gaseous hydrogen (≈17 MPa). Neutron vibrational spectroscopy (NVS) studies of the hydrogen-enhanced vibrational modes are presented as well. Results are discussed in the context of theoretically predicted interstitial hydrogen lattice sites and compared to comparable bulk diffusion studies of hydrogen diffusion in lead zirconate titanate.
Hompland, Tord; Ellingsen, Christine; Galappathi, Kanthi; Rofstad, Einar K
2014-01-01
Abstract Background. A high fraction of stroma in malignant tissues is associated with tumor progression, metastasis, and poor prognosis. Possible correlations between the stromal and physiologic microenvironments of tumors and the potential of dynamic contrast-enhanced (DCE) and diffusion-weighted (DW) magnetic resonance imaging (MRI) in quantification of the stromal microenvironment were investigated in this study. Material and methods. CK-160 cervical carcinoma xenografts were used as preclinical tumor model. A total of 43 tumors were included in the study, and of these tumors, 17 were used to search for correlations between the stromal and physiologic microenvironments, 11 were subjected to DCE-MRI, and 15 were subjected to DW-MRI. DCE-MRI and DW-MRI were carried out at 1.5 T with a clinical MR scanner and a slotted tube resonator transceiver coil constructed for mice. Fraction of connective tissue (CTFCol) and fraction of hypoxic tissue (HFPim) were determined by immunohistochemistry. A Millar SPC 320 catheter was used to measure tumor interstitial fluid pressure (IFP). Results. CTFCol showed a positive correlation to IFP and an inverse correlation to HFPim. The apparent diffusion coefficient assessed by DW-MRI was inversely correlated to CTFCol, whereas no correlation was found between DCE-MRI-derived parameters and CTFCol. Conclusion. DW-MRI is a potentially useful method for characterizing the stromal microenvironment of tumors.
NASA Astrophysics Data System (ADS)
He, Jie; Weersink, Robert; Veilleux, Israel; Mayo, Kenwrick; Zhang, Anqi; Piao, Daqing; Alam, Adeel; Trachtenberg, John; Wilson, Brian C.
2013-03-01
Interstitial near-infrared laser thermal therapy (LITT) is currently undergoing clinical trials as an alternative to watchful waiting or radical surgery in patients with low-risk focal prostate cancer. Currently, we use magnetic resonance image (MRI)-based thermography to monitor treatment delivery and determine indirectly the completeness of the target tissue destruction while avoiding damage to adjacent normal tissues, particularly the rectal wall. However, incomplete tumor destruction has occurred in a significant fraction of patients due to premature termination of treatment, since the photocoagulation zone is not directly observed. Hence, we are developing transrectal diffuse optical tomography (TRDOT), in combination with transrectal 3D ultrasound (3D-TRUS), to address his limitation. This is based on the large changes in optical scattering expected upon tissue coagulation. Here, we present forward simulations of a growing coagulated lesion with optical scattering contrast, using an established finite element analysis software platform (NIRFAST). The simulations were validated in tissue-simulating phantoms, with measurements acquired by a state-of-the-art continuous wave (CW) TRDOT system and a recently assembled bench-top CW-DOT system, with specific source-detector configurations. Two image reconstruction schemes were investigated and evaluated, specifically for the accurate delineation of the posterior boundary of the coagulation zone as the critical parameter for treatment guidance in this clinical application.
Retention and diffusion of H, He, O, C impurities in Be
NASA Astrophysics Data System (ADS)
Zhang, Pengbo; Zhao, Jijun; Wen, Bin
2012-04-01
We report the energetics and diffusion behavior of H, He, O, and C impurities in beryllium as fusion materials from first-principles calculations. Among the six interstitial sites in Be, the basal tetrahedral one is most stable for H, He, O, while C prefers to occupy an octahedral site. Solution of O impurity in Be is an exothermic process with solution energy of -2.37 eV, whereas solution of H, C and He is an endothermic process (solution energy: 1.55 eV, 2.46 eV, and 5.70 eV, respectively). Overall speaking, these impurities prefer to diffuse along longer paths. The H and O impurities share the same out-of-plane diffusion path via basal tetrahedral sites, while the He and C impurities in Be mainly diffuse via basal tetrahedral and octahedral sites along the (0 0 1) plane. Diffusion of He in Be is easiest with a lowest barrier of 0.14 eV; whereas H diffusion in Be is also rather fast with migration energies of 0.4 eV. On the contrary, diffusion of C and O impurities is more difficult because of strong bonding with lattice atoms and high energy barriers of 0.42 and 1.63 eV, respectively. Our theoretical results provide the fundamental parameters for understanding the impurity aggregation and bubble formation in early stage of irradiation damage.
Song, G; Luo, T; Dong, L; Liu, Q
2017-07-03
Solution reflux and edema hamper the convection-enhanced delivery of the standard treatment for glioma. Therefore, a real-time magnetic resonance imaging (MRI) method was developed to monitor the dosing process, but a quantitative analysis of local diffusion and clearance parameters has not been assessed. The objective of this study was to compare diffusion into the extracellular space (ECS) at different stages of rat C6 gliomas, and analyze the effects of the extracellular matrix (ECM) on the diffusion process. At 10 and 20 days, after successful glioma modeling, gadolinium-diethylenetriamine pentaacetic acid (Gd-DTPA) was introduced into the ECS of rat C6 gliomas. Diffusion parameters and half-life of the reagent were then detected using MRI, and quantified according to the mathematical model of diffusion. The main ECM components [chondroitin sulfate proteoglycans (CSPGs), collagen IV, and tenascin C] were detected by immunohistochemical and immunoblot analyses. In 20-day gliomas, Gd-DTPA diffused more slowly and derived higher tortuosity, with lower clearance rate and longer half-life compared to 10-day gliomas. The increased glioma ECM was associated with different diffusion and clearance parameters in 20-day rat gliomas compared to 10-day gliomas. ECS parameters were altered with C6 glioma progression from increased ECM content. Our study might help better understand the glioma microenvironment and provide benefits for interstitial drug delivery to treat brain gliomas.
Mulkern, Robert V; Haker, Steven J; Maier, Stephan E
2007-07-01
Tissue water molecules reside in different biophysical compartments. For example, water molecules in the vasculature reside for variable periods of time within arteries, arterioles, capillaries, venuoles and veins, and may be within blood cells or blood plasma. Water molecules outside of the vasculature, in the extravascular space, reside, for a time, either within cells or within the interstitial space between cells. Within these different compartments, different types of microscopic motion that water molecules may experience have been identified and discussed. These range from Brownian diffusion to more coherent flow over the time scales relevant to functional magnetic resonance imaging (fMRI) experiments, on the order of several 10s of milliseconds. How these different types of motion are reflected in magnetic resonance imaging (MRI) methods developed for "diffusion" imaging studies has been an ongoing and active area of research. Here we briefly review the ideas that have developed regarding these motions within the context of modern "diffusion" imaging techniques and, in particular, how they have been accessed in attempts to further our understanding of the various contributions to the fMRI signal changes sought in studies of human brain activation.
Kinetic Monte Carlo Simulation of Oxygen Diffusion in Ytterbium Disilicate
NASA Technical Reports Server (NTRS)
Good, Brian S.
2015-01-01
Silicon-based ceramic components for next-generation jet turbine engines offer potential weight savings, as well as higher operating temperatures, both of which lead to increased efficiency and lower fuel costs. Silicon carbide (SiC), in particular, offers low density, good strength at high temperatures, and good oxidation resistance in dry air. However, reaction of SiC with high-temperature water vapor, as found in the hot section of jet turbine engines in operation, can cause rapid surface recession, which limits the lifetime of such components. Environmental Barrier Coatings (EBCs) are therefore needed if long component lifetime is to be achieved. Rare earth silicates such as Yb2Si2O7 and Yb2SiO5 have been proposed for such applications; in an effort to better understand diffusion in such materials, we have performed kinetic Monte Carlo (kMC) simulations of oxygen diffusion in Ytterbium disilicate, Yb2- Si2O7. The diffusive process is assumed to take place via the thermally activated hopping of oxygen atoms among oxygen vacancy sites or among interstitial sites. Migration barrier energies are computed using density functional theory (DFT).
Evidence for room-temperature in-diffusion of nickel into silicon
DOE Office of Scientific and Technical Information (OSTI.GOV)
Yarykin, Nikolai, E-mail: nay@iptm.ru; Weber, Jörg
2016-09-05
Interstitial nickel in crystalline Si is shown to be a fast diffuser at room temperature. In this study, Ni is incorporated in Si by wet chemical etching in nickel-contaminated alkaline solutions. Nickel in-diffusion is observed by means of detecting the electrically active NiVO defect, which is formed due to Ni capture to the vacancy–oxygen complex in electron-irradiated Si. The depth profiles of the NiVO concentration measured by the deep-level transient spectroscopy technique extend to ∼15 μm in the samples doped with Ni at 35 °C for 30 min. This allows us to get a lower estimate for the nickel diffusivity at this temperaturemore » as 10{sup −9} cm{sup 2}/s. The activation energy for electron emission from the NiVO level and the apparent capture cross section are equal to 371 meV and 3 × 10{sup −15} cm{sup 2}, respectively. The NiVO complex dissociates at 300 °C reestablishing the initial concentration of the VO centers.« less
Kinetic Monte Carlo Simulations of Oxygen Diffusion in Environmental Barrier Coating Materials
NASA Technical Reports Server (NTRS)
Good, Brian S.
2017-01-01
Ceramic Matrix Composite (CMC) materials are of interest for use in next-generation turbine engine components, offering a number of significant advantages, including reduced weight and high operating temperatures. However, in the hot environment in which such components operate, the presence of water vapor can lead to corrosion and recession, limiting the useful life of the components. Such degradation can be reduced through the use of Environmental Barrier Coatings (EBCs) that limit the amount of oxygen and water vapor reaching the component. Candidate EBC materials include Yttrium and Ytterbium silicates. In this work we present results of kinetic Monte Carlo (kMC) simulations of oxygen diffusion, via the vacancy mechanism, in Yttrium and Ytterbium disilicates, along with a brief discussion of interstitial diffusion. An EBC system typically includes a bond coat located between the EBC and the component surface. Bond coat materials are generally chosen for properties other than low oxygen diffusivity, but low oxygen diffusivity is nevertheless a desirable characteristic, as the bond coat could provide some additional component protection, particularly in the case where cracks in the coating system provide a direct path from the environment to the bond coat interface. We have therefore performed similar kMC simulations of oxygen diffusion in this material.
Vacancies and Vacancy-Mediated Self Diffusion in Cr 2 O 3 : A First-Principles Study
DOE Office of Scientific and Technical Information (OSTI.GOV)
Medasani, Bharat; Sushko, Maria L.; Rosso, Kevin M.
Charged and neutral vacancies and vacancy mediated self diffusion in alpha-Cr2O3 were investigated using first principles density functional theory (DFT) and periodic supercell formalism. The vacancy formation energies of charged defects were calculated using the electrostatic finite-size corrections to account for electrostatic interactions between supercells and the corrections for the bandgap underestimation in DFT. Calculations predict that neutral oxygen (O) vacancies are predominant in chromium (Cr)-rich conditions and Cr vacancies with -2 charge state are the dominant defects in O-rich conditions. The charge transition levels of both O and Cr vacancies are deep within the bandgap indicating the stability ofmore » these defects. Transport calculations indicate that vacancy mediated diffusion along the basal plane has lower energy barriers for both O and Cr ions. The most favorable vacancy mediated self diffusion processes correspond to the diffusion of Cr ion in 3+ charge state and O ion in 2- state, respectively. Our calculations reveal that Cr triple defects comprised of Cr in octahedral interstitial sites with two adjacent Cr vacancies along the c-axis have a lower formation energy compared to that of charged Cr vacancies. The formation of such triple defects facilitate Cr self diffusion along the c-axis.« less
Xiao, Fanrong; Nicholson, Charles; Hrabe, Jan; Hrabetová, Sabina
2008-08-01
There are a limited number of methods available to quantify the extracellular diffusion of macromolecules in an anisotropic brain region, e.g., an area containing numerous aligned fibers where diffusion is faster along the fibers than across. We applied the integrative optical imaging method to measure diffusion of the fluorophore Alexa Fluor 488 (molecular weight (MW) 547) and fluorophore-labeled flexible random-coil dextran polymers (dex3, MW 3000; dex75, MW 75,000; dex282, MW 282,000; dex525, MW 525,000) in the extracellular space (ECS) of the anisotropic molecular layer of the isolated turtle cerebellum. For all molecules, two-dimensional images acquired an elliptical shape with major and minor axes oriented along and across, respectively, the unmyelinated parallel fibers. The effective diffusion coefficients, D*(major) and D*(minor), decreased with molecular size. The diffusion anisotropy ratio (DAR = D*(major)/D*(minor)) increased for Alexa Fluor 488 through dex75 but then unexpectedly reached a plateau. We argue that dex282 and dex525 approach the ECS width and deform to diffuse. In support of this concept, scaling theory shows the diffusion behavior of dex282 and dex525 to be consistent with transition to a reptation regime, and estimates the average ECS width at approximately 31 nm. These findings have implications for the interstitial transport of molecules and drugs, and for modeling neurotransmitter diffusion during ectopic release and spillover.
Carlson, J A; Day, T G; Kuhns, J G; Howell, R S; Masterson, B J
1984-02-01
A previously healthy gravida 4, para 3, developed preclampsia and progressive dyspnea at the 37th gestational week and had bilateral pulmonary infiltrates on chest roentgenogram. She delivered a healthy, term, male infant with a normal appearing placenta. Postpartum, her respiratory status gradually worsened. A lung biopsy on the 20th postpartum day revealed intravascular trophoblasts, diffuse arteriolar thrombosis with pulmonary infarction, and subacute interstitial pneumonitis. Combination chemotherapy was instituted, but the patient died from respiratory insufficiency.
Acute pleurisy in sarcoidosis.
Gardiner, I T; Uff, J S
1978-01-01
A 47-year-old white man with sarcoidosis presented with a six-week history of acute painful pleurisy. On auscultation a loud pleural rub was heard at the left base together with bilateral basal crepitations. The chest radiograph showed hilar enlargement as well as diffuse lung shadowing. A lung biopsy showed the presence of numerous epithelioid and giant-cell granulomata, particularly subpleurally. A patchy interstitial pneumonia was also present. He was given a six-month course of prednisolone, and lung function returned to normal. Images PMID:644534
Effect of reversal of double-implantation schedule of boron in mercury cadmium telluride
NASA Astrophysics Data System (ADS)
Kumar, Rakesh; Dutt, M. B.; Nath, R.; Gopal, Vishnu; Khosla, Y. P.; Sharma, K. K.
1992-02-01
Radiation damage due to B+ ion implantation in p-type HgCdTe has been found to create Hg interstitials giving rise to n-type conversion. The implantation energies were kept at 50 and 100 keV with a dose of 1 X 1013 cm-2 each. The effect of implantation with ascending and descending orders of energies were found to be quite different from each other. Radiation enhanced diffusion is thought to be responsible for this anomaly.
2013-01-01
An approximately 20-year-old, female Leopard tortoise (Geochelone pardalis pardalis) was presented with dypsnea, wheezing, anorexia and depression. Whole body radiographs revealed generalized diffuse unstructured ‘interstitial lung pattern’ with thickened pulmonary septae while computed tomography (CT) showed emphysematous lung parenchyma and thickened pulmonary septae bordered by irregular ground-glass opacity with smaller areas of ‘honeycombing’. These imaging findings together with histopathologic findings were compatible with chronic, extensive ‘interstitial’ pulmonary fibrosis. PMID:23618386
Donovan, Preston; Chehreghanianzabi, Yasaman; Rathinam, Muruhan; Zustiak, Silviya Petrova
2016-01-01
The study of diffusion in macromolecular solutions is important in many biomedical applications such as separations, drug delivery, and cell encapsulation, and key for many biological processes such as protein assembly and interstitial transport. Not surprisingly, multiple models for the a-priori prediction of diffusion in macromolecular environments have been proposed. However, most models include parameters that are not readily measurable, are specific to the polymer-solute-solvent system, or are fitted and do not have a physical meaning. Here, for the first time, we develop a homogenization theory framework for the prediction of effective solute diffusivity in macromolecular environments based on physical parameters that are easily measurable and not specific to the macromolecule-solute-solvent system. Homogenization theory is useful for situations where knowledge of fine-scale parameters is used to predict bulk system behavior. As a first approximation, we focus on a model where the solute is subjected to obstructed diffusion via stationary spherical obstacles. We find that the homogenization theory results agree well with computationally more expensive Monte Carlo simulations. Moreover, the homogenization theory agrees with effective diffusivities of a solute in dilute and semi-dilute polymer solutions measured using fluorescence correlation spectroscopy. Lastly, we provide a mathematical formula for the effective diffusivity in terms of a non-dimensional and easily measurable geometric system parameter. PMID:26731550
Buda, N; Piskunowicz, M; Porzezińska, M; Kosiak, W; Zdrojewski, Z
2016-08-01
Patients with a diagnosed systemic connective tissue disease require regular monitoring from the point of view of interstitial lung disease. The main aim of this work is a description of the criteria for pulmonary fibrosis and the degree of the severity of the fibrosis during the course of interstitial lung disease through the TLU (transthoracic lung ultrasound). 52 patients with diagnosed diffuse interstitial lung disease were qualified for this research, together with 50 volunteers in the control group. The patients in both groups were over 18 years of age and were of both sexes. The results of the TLU of the patients underwent statistical analysis and were compared to High-Resolution Computed Tomography (HRCT) results. As a consequence of the statistical analysis, we defined our own criteria for pulmonary fibrosis in TLU: irregularity of the pleura line, tightening of the pleura line, the fragmentary nature of the pleura line, blurring of the pleura line, thickening of the pleura line, artifacts of line B ≤ 3 and ≥ 4, artifacts of Am line and subpleural consolidations < 5 mm. As a result of the conducted research, a scale of severity of pulmonary fibrosis in TLU was devised (UFI - Ultrasound Fibrosis Index), enabling a division to be made into mild, moderate and severe cases. Transthoracic Lung Ultrasonography (TLU) gives a new outlook on the diagnostic possibilities, non-invasive and devoid of ionising radiation, of pulmonary fibrosis. This research work has allowed to discover two new ultrasound symptoms of pulmonary fibrosis (blurred pleural line and Am lines). © Georg Thieme Verlag KG Stuttgart · New York.
Hydrogenated vacancies lock dislocations in aluminium
Xie, Degang; Li, Suzhi; Li, Meng; Wang, Zhangjie; Gumbsch, Peter; Sun, Jun; Ma, Evan; Li, Ju; Shan, Zhiwei
2016-01-01
Due to its high diffusivity, hydrogen is often considered a weak inhibitor or even a promoter of dislocation movements in metals and alloys. By quantitative mechanical tests in an environmental transmission electron microscope, here we demonstrate that after exposing aluminium to hydrogen, mobile dislocations can lose mobility, with activating stress more than doubled. On degassing, the locked dislocations can be reactivated under cyclic loading to move in a stick-slip manner. However, relocking the dislocations thereafter requires a surprisingly long waiting time of ∼103 s, much longer than that expected from hydrogen interstitial diffusion. Both the observed slow relocking and strong locking strength can be attributed to superabundant hydrogenated vacancies, verified by our atomistic calculations. Vacancies therefore could be a key plastic flow localization agent as well as damage agent in hydrogen environment. PMID:27808099
Numerical and Experimental Study on the Residual Stresses in the Nitrided Steel
NASA Astrophysics Data System (ADS)
Song, X.; Zhang, Zhi-Qian; Narayanaswamy, S.; Huang, Y. Z.; Zarinejad, M.
2016-09-01
In the present work, residual stresses distribution in the gas nitrided AISI 4140 sample has been studied using finite element (FE) simulation. The nitrogen concentration profile is obtained from the diffusion-controlled compound layer growth model, and nitrogen concentration controls the material volume change through phase transformation and lattice interstitials which results in residual stresses. Such model is validated through residual stress measurement technique—micro-ring-core method, which is applied to the nitriding process to obtain the residual stresses profiles in both the compound and diffusion layer. The numerical and experimental results are in good agreement with each other; they both indicate significant stress variation in the compound layer, which was not captured in previous research works due to the resolution limit of the traditional methods.
Multicomponent phase-field model for extremely large partition coefficients
DOE Office of Scientific and Technical Information (OSTI.GOV)
Welland, Michael J.; Wolf, Dieter; Guyer, Jonathan E.
2014-01-01
We develop a multicomponent phase-field model specially formulated to robustly simulate concentration variations from molar to atomic magnitudes across an interlace, i.e., partition coefficients in excess of 10±23 such as may be the case with species which are predominant in one phase and insoluble in the other. Substitutional interdiffusion on a normal lattice and concurrent interstitial diffusion are included. The composition in the interlace follows the approach of Kim. Kim, and Suzuki [Phys. Rev. E 60, 7186 (1999)] and is compared to that of Wheeler, Boettinger, and McFadden [Phys. Rev. A 45, 7424 (1992)] in the context of large partitioning.more » The model successfully reproduces analytical solutions for binary diffusion couples and solute trapping for the demonstrated cases of extremely large partitioning.« less
Recombination luminescence from electron-irradiated Li-diffused Si
NASA Technical Reports Server (NTRS)
Johnson, E. S.; Compton, W. D.; Noonan, J. R.; Streetman, B. G.
1973-01-01
Lithium doping has a dramatic effect on the low-temperature photoluminescence of electron-irradiated Si. In oxigen-lean Si with Li doping, a new irradiation-dependent luminescence band between 0.75 and 1.05 eV is observed, which is dominated by a zero-phonon peak at 1.045 eV. This band is believed to be due to radiative transitions involving a Li-modified divacancy. This band is present also in oxygen-rich, Li-diffused Si and is accompanied by bands previously related to the Si-G15(K) center and the divacancy. The intensities of the Li-modified divacancy and Si-G15(K) center bands are relatively weak in the oxygen-rich material, apparently due to the formation of lithium-oxygen complexes which reduce the concentration of unassociated interstitial Li and O.
NASA Astrophysics Data System (ADS)
Liang, Y. L.; Wang, Z. B.; Zhang, J. B.; Lu, K.
2015-06-01
By means of cold spray, a Zn-Al coating was successfully deposited on an interstitial-free (IF) steel sheet. The formation of interfacial compounds between the coating and the IF steel was studied during diffusion annealing at 400 °C. And its correlations with the stripping behaviors of the coating were investigated by using a three-point bending method. The results showed that Fe-Zn and Fe-Al-Zn compounds begin to form at the coating/substrate interface after an annealing duration of 60 min, and the stripping resistance increases slightly before that duration and then decreases significantly by further increasing annealing duration. The enhanced stripping resistance at the earlier stage might be due to the modifications of microstructure and deformation compatibility of the sprayed coating, while the decreased stripping resistance at the later stage is related to the high stress concentration at the interface of the formed brittle Fe-Al-Zn phase and the Zn-Al coating.
Hydrogen migration modeling in a symmetric tilt boundary of the Iron-Chromium system
NASA Astrophysics Data System (ADS)
Ramunni, V. P.
2018-03-01
Previous experimental studies of H permeation in 9%Cr-Fe alloys have found a permeation coefficient 10 times lower and a diffusion coefficient 200 times lower than in pure annealed Fe. In an effort to shed some light on the microscopic origin of these findings, we perform an extensive study of Fe, Cr, and H migration in a high-angle symmetric tilt grain boundary in bcc Fe, both via vacancy and interstitial mechanism. This is undertaken in the framework of transition state theory with the relevant energies obtained from classical interatomic potentials, and partially from Density Functional Theory calculations, in order to check the consistency of structures. Trapping sites for H and possible migration paths are explored. We find that the presence of Cr and its migration via vacancy and interstitials creates the conditions in produce stable preferential trapping sites for H in the grain boundary, that delay the H migration, thereby explaining the experimental results.
NASA Astrophysics Data System (ADS)
Liang, Y. L.; Wang, Z. B.; Zhang, J.; Zhang, J. B.; Lu, K.
2016-11-01
By means of surface mechanical attrition treatment (SMAT), a gradient nanostructured surface layer was fabricated on a hot-rolled interstitial-free steel plate. A Zn-Al coating was subsequently deposited on the SMAT sample by using cold spray process. The bonding property of the coating on the SMAT substrate was compared with that on the coarse-grained (CG) sample. Stud-pull tests showed that the bonding strength in the as-sprayed SMAT sample is ∼30% higher than that in the as-sprayed CG sample. No further improvement in bonding strength was achieved in the coated SMAT sample after annealing at 400 °C, mostly due to the formation of cracks and intermetallic compounds at the coating/substrate interface in an earlier stage (<30 min) and in a final stage (>90 min), respectively. The enhanced bonding property of the Zn-Al coating on the SMAT sample might be related with the promoted atomic diffusion and hardness in the nanostructured surface layer.
Site occupancy of interstitial deuterium atoms in face-centred cubic iron
Machida, Akihiko; Saitoh, Hiroyuki; Sugimoto, Hidehiko; Hattori, Takanori; Sano-Furukawa, Asami; Endo, Naruki; Katayama, Yoshinori; Iizuka, Riko; Sato, Toyoto; Matsuo, Motoaki; Orimo, Shin-ichi; Aoki, Katsutoshi
2014-01-01
Hydrogen composition and occupation state provide basic information for understanding various properties of the metal–hydrogen system, ranging from microscopic properties such as hydrogen diffusion to macroscopic properties such as phase stability. Here the deuterization process of face-centred cubic Fe to form solid-solution face-centred cubic FeDx is investigated using in situ neutron diffraction at high temperature and pressure. In a completely deuterized specimen at 988 K and 6.3 GPa, deuterium atoms occupy octahedral and tetrahedral interstitial sites with an occupancy of 0.532(9) and 0.056(5), respectively, giving a deuterium composition x of 0.64(1). During deuterization, the metal lattice expands approximately linearly with deuterium composition at a rate of 2.21 Å3 per deuterium atom. The minor occupation of the tetrahedral site is thermally driven by the intersite movement of deuterium atoms along the ‹111› direction in the face-centred cubic metal lattice. PMID:25256789
Eosinophilic gastroenteritis with Splendore-Hoeppli material in the ferret (Mustela putorius furo).
Fox, J G; Palley, L S; Rose, R
1992-01-01
Eosinophilic gastroenteritis, focal or diffuse with eosinophilic infiltrations of the stomach or intestine, has been described in human beings, cats, dogs, and horses. In this paper, we describe infiltration of the gastrointestinal tract with eosinophils accompanied by a circulating eosinophilia in six ferrets (Mustela putorius furo). Clinical signs included chronic weight loss, anorexia, and diarrhea. The small intestines from five ferrets had diffuse infiltrates of eosinophils. This resulted in focal or multifocal loss of the muscular tunic in three ferrets. Two of these ferrets also had eosinophilic gastritis. Eosinophilic granulomas with Splendore-Hoeppli material were present in mesenteric lymph nodes in four ferrets. Two ferrets had multiple organ involvement; one had eosinophilic granulomas in the liver, mesentery, and choroid plexus as well as moderate parapancreatic segmental arteritis with infiltration of eosinophils and mural thrombosis. The second ferret had, in addition to moderate diffuse gastric and small intestinal eosinophilic mucosal infiltrations, interstitial eosinophilic pulmonary infiltrates. Examination of all tissues failed to reveal an infectious agent.
Is Subsurface Oxygen Necessary for the Electrochemical Reduction of CO 2 on Copper?
DOE Office of Scientific and Technical Information (OSTI.GOV)
Garza, Alejandro J.; Bell, Alexis T.; Head-Gordon, Martin
It has recently been proposed that subsurface oxygen is crucial for the adsorption and subsequent electroreduction of CO 2 on copper. Using density functional theory, we have studied the stability and diffusion of subsurface oxygen in single crystals of copper exposing (111) and (100) facets. Oxygen is at least 1.5 eV more stable on the surface than beneath it for both crystal orientations; interstitial sites are too small to accommodate oxygen. Here, the rate of atomic oxygen diffusion from one layer below a Cu(111) surface to the surface is 5 × 10 3 s –1. Oxygen can survive longer inmore » deeper layers, but it does not promote CO 2 adsorption there. Diffusion of subsurface oxygen is easier to the less-dense Cu(100) surface, even from lower layers (rate ≈ 1 × 107 s–1). Finally, once the applied voltage and dispersion forces are properly modeled, we find that subsurface oxygen is unnecessary for CO 2 adsorption on copper.« less
Is Subsurface Oxygen Necessary for the Electrochemical Reduction of CO 2 on Copper?
Garza, Alejandro J.; Bell, Alexis T.; Head-Gordon, Martin
2018-01-17
It has recently been proposed that subsurface oxygen is crucial for the adsorption and subsequent electroreduction of CO 2 on copper. Using density functional theory, we have studied the stability and diffusion of subsurface oxygen in single crystals of copper exposing (111) and (100) facets. Oxygen is at least 1.5 eV more stable on the surface than beneath it for both crystal orientations; interstitial sites are too small to accommodate oxygen. Here, the rate of atomic oxygen diffusion from one layer below a Cu(111) surface to the surface is 5 × 10 3 s –1. Oxygen can survive longer inmore » deeper layers, but it does not promote CO 2 adsorption there. Diffusion of subsurface oxygen is easier to the less-dense Cu(100) surface, even from lower layers (rate ≈ 1 × 107 s–1). Finally, once the applied voltage and dispersion forces are properly modeled, we find that subsurface oxygen is unnecessary for CO 2 adsorption on copper.« less
Pulmonary function tests as outcomes for systemic sclerosis interstitial lung disease.
Caron, Melissa; Hoa, Sabrina; Hudson, Marie; Schwartzman, Kevin; Steele, Russell
2018-06-30
Interstitial lung disease (ILD) is the leading cause of morbidity and mortality in systemic sclerosis (SSc). We performed a systematic review to characterise the use and validation of pulmonary function tests (PFTs) as surrogate markers for systemic sclerosis-associated interstitial lung disease (SSc-ILD) progression.Five electronic databases were searched to identify all relevant studies. Included studies either used at least one PFT measure as a longitudinal outcome for SSc-ILD progression ( i.e. outcome studies) and/or reported at least one classical measure of validity for the PFTs in SSc-ILD ( i.e. validation studies).This systematic review included 169 outcome studies and 50 validation studies. Diffusing capacity of the lung for carbon monoxide ( D LCO ) was cumulatively the most commonly used outcome until 2010 when it was surpassed by forced vital capacity (FVC). FVC (% predicted) was the primary endpoint in 70.4% of studies, compared to 11.3% for % predicted D LCO Only five studies specifically aimed to validate the PFTs: two concluded that D LCO was the best measure of SSc-ILD extent, while the others did not favour any PFT. These studies also showed respectable validity measures for total lung capacity (TLC).Despite the current preference for FVC, available evidence suggests that D LCO and TLC should not yet be discounted as potential surrogate markers for SSc-ILD progression. Copyright ©ERS 2018.
Sajisevi, Mirabelle; Rigual, Nestor R; Bellnier, David A.; Seshadri, Mukund
2014-01-01
Objective Photodynamic therapy (PDT) is a clinically approved minimally invasive treatment for cancer. In this preclinical study, using an imaging-guided approach, we examined the potential utility of PDT in the management of bulky squamous cell carcinomas (SCCs). Methods To mimic bulky oropharyngeal cancers seen in the clinical setting, intramuscular SCCs were established in six-to-eight week old female C3H mice. Animals were injected with the photosensitizer, 2-[hexyloxyethyl]-2-devinyl pyropheophorbide-a (HPPH; 0.4 μmol/kg, i.v.) and tumors were illuminated 24 hours post injection with 665 nm light. PDT as a single treatment modality was administered by surface illumination or by interstitial placement of fibers (iPDT). Magnetic resonance imaging was used to guide treatment and assess tumor response to PDT along with correlative histopathologic assessment. Results Interstitial HPPH-PDT resulted in a marked change on T2 maps 24 hours post treatment compared to untreated controls or transcutaneous illumination. Corresponding apparent diffusion coefficient maps also showed hyperintense areas in tumors following iPDT suggestive of effective photodynamic cell kill. Histologic sections (H&E) confirmed presence of extensive tumor necrosis following iPDT. Conclusions These results highlight the potential utility of PDT in the treatment of bulky oropharyngeal cancers. The findings of our study also demonstrate the utility of MRI as a non-invasive tool for mapping of early tissue response to PDT. PMID:25750858
Auscultation of Velcro Crackles is Associated With Usual Interstitial Pneumonia
Sellarés, Jacobo; Hernández-González, Fernanda; Lucena, Carmen Mª; Paradela, Marina; Brito-Zerón, Pilar; Prieto-González, Sergio; Benegas, Mariana; Cuerpo, Sandra; Espinosa, Gerard; Ramírez, José; Sánchez, Marcelo; Xaubet, Antoni
2016-01-01
Abstract Auscultation of Velcro crackles has been proposed as a key finding in physical lung examination in patients with interstitial lung diseases (ILDs), especially in idiopathic pulmonary fibrosis (IPF). However, no studies have been carried out to assess the association of Velcro crackles with other clinical variables. We evaluated a cohort of 132 patients, prospectively and consecutively included in our ILD diagnostic program at a tertiary referral center. All patients were auscultated during the physical examination. The patients were divided into 2 groups: “presence” or “nonpresence” of bilateral Velcro crackles. Of all patients assessed, 83 (63%) presented Velcro crackles in the respiratory auscultation. Patients with Velcro crackles usually had more frequently cough and dyspnea at the moment of diagnosis. Forced vital capacity (P = 0.002) and lung diffusion capacity for carbon monoxide (P = 0.04) was lower in these patients. The ILD-GAP index was higher in the group with Velcro crackles (P = 0.01). All patients with usual interstitial pneumonia (UIP) in high-resolution computed tomography and all patients with final IPF diagnosis presented Velcro crackles. In multivariate analysis, the presence of Velcro crackles was independently associated with an UIP pattern. In patients suspected of having ILD, the auscultation of Velcro crackles was associated with UIP, a possibility which must be taken into consideration in early ILD detection in primary care. PMID:26844464
Auscultation of Velcro Crackles is Associated With Usual Interstitial Pneumonia.
Sellarés, Jacobo; Hernández-González, Fernanda; Lucena, Carmen M; Paradela, Marina; Brito-Zerón, Pilar; Prieto-González, Sergio; Benegas, Mariana; Cuerpo, Sandra; Espinosa, Gerard; Ramírez, José; Sánchez, Marcelo; Xaubet, Antoni
2016-02-01
Auscultation of Velcro crackles has been proposed as a key finding in physical lung examination in patients with interstitial lung diseases (ILDs), especially in idiopathic pulmonary fibrosis (IPF). However, no studies have been carried out to assess the association of Velcro crackles with other clinical variables.We evaluated a cohort of 132 patients, prospectively and consecutively included in our ILD diagnostic program at a tertiary referral center. All patients were auscultated during the physical examination. The patients were divided into 2 groups: "presence" or "nonpresence" of bilateral Velcro crackles.Of all patients assessed, 83 (63%) presented Velcro crackles in the respiratory auscultation. Patients with Velcro crackles usually had more frequently cough and dyspnea at the moment of diagnosis. Forced vital capacity (P = 0.002) and lung diffusion capacity for carbon monoxide (P = 0.04) was lower in these patients. The ILD-GAP index was higher in the group with Velcro crackles (P = 0.01). All patients with usual interstitial pneumonia (UIP) in high-resolution computed tomography and all patients with final IPF diagnosis presented Velcro crackles. In multivariate analysis, the presence of Velcro crackles was independently associated with an UIP pattern.In patients suspected of having ILD, the auscultation of Velcro crackles was associated with UIP, a possibility which must be taken into consideration in early ILD detection in primary care.
NASA Astrophysics Data System (ADS)
Rigual, Nestor; Dildeep, Ambujakshan; Shafirstein, Gal
2013-03-01
Background and Purpose: Combination therapy of interstitial photodynamic therapy (iPDT) with Cetuximab to attain symptomatic control of recurrent head and neck cancer. Methods: Two patients with Unresectable recurrent Head and Neck SCC were treated with iPDT alone and iPDT and cetuximab. Treatments were administered in an outpatient setting. A single dose of Photofrin at 2 mg per kilogram of body weight was administered intravenously two days prior to laser illumination. The iPDT was accomplished by delivering 630-nm laser light through two laser fibers with 2.5 and 5 cm long diffusive ends. Light irradiance of 400 mW/cm for 250 seconds was used to deliver a total of 100 J/cm, during the iPDT. Light applications were conducted, twice, at 3-4 days interval. One of the patients was treated with cetuximab along with iPDT. Results: Near total resolution of tumor was observed in the patient treated with iPDT and cetuximab, and partial resolution was seen in the patient treated with iPDT alone. Conclusion: Interstitial photodynamic therapy may be used to treat patients with recurrent unresectable head and neck cancer. The combination of iPDT with Cetuximab has the potential to improve tumor response in the patient population for whom there is no effective therapies. This observation merits further studies.
A Two-Phase Intergrowth in Genthelvite from Mont Saint-Hilaire, Quebec
DOE Office of Scientific and Technical Information (OSTI.GOV)
Antao, Sytle M.; Hassan, Ishmael; West Indies)
Synchrotron high-resolution powder X-ray-diffraction (HRPXRD) data and Rietveld structure refinement were used to examine a two-phase intergrowth of genthelvite, ideally Zn{sub 8}[Be{sub 6}Si{sub 6}O{sub 24}]S{sub 2}, from the alkaline intrusive complex at Mont Saint-Hilaire, Quebec, where genthelvite occurs in nepheline syenite pegmatites. The structural parameters obtained for the two phases are slightly different from each other. The unit-cell parameters are 8.119190(7) {angstrom} (51% phase 1) and 8.128914(9) {angstrom} (49% phase 2). The refinement gives the chemical formulae and interstitial M cation in terms of Zn and Mn (the Fe content is practically zero) for the Mn-poor genthelvite phase 1 asmore » (Zn{sub 7.8}Mn{sub 0.2}){Sigma}{sub 8}[Be{sub 6}Si{sub 6}O{sub 24}]S{sub 2}, and the Mn-rich genthelvite phase 2 as (Zn{sub 7.0}Mn{sub 1.0}){Sigma}{sub 8}[Be{sub 6}Si{sub 6}O{sub 24}]S{sub 2}. These formulae are comparable to the Mn-poor and Mn-rich phases obtained by electron-microprobe analysis. The intergrowth indicates that diffusion is absent among the interstitial M cations of similar size (Zn{sup 2+}, Fe{sup 2+} and Mn{sup 2+}). Such intergrowths may form under distinct f(O{sub 2}) conditions and probably low temperature of crystallization that inhibits diffusion of M cations.« less
Papah, Michael B; Brannick, Erin M; Schmidt, Carl J; Abasht, Behnam
2017-12-01
Wooden Breast Disease (WBD), a myopathy that frequently affects modern broiler chickens, is a disorder that has been associated with significant economic losses in the poultry industry. To examine tissue changes associated with the onset and early pathogenesis of this disorder, a time-series experiment was conducted using chickens from a high-breast-muscle-yield, purebred commercial broiler line. Birds were raised for up to seven weeks, with a subset of birds sampled weekly. Breast muscle tissues were extracted at necropsy and processed for analysis by light microscopy and transmission electron microscopy. Histologic presentation indicated localized phlebitis with lipogranulomas in Week 1, focal single-myofibril degeneration in Week 2 preceding an inflammatory response that started in Week 3. Lesions in Week 4 were characterized by multifocal to diffuse muscle fibre degeneration, necrosis, interstitial oedema accompanied by increased lipid and inflammatory cell infiltration. Lesions in Weeks 5-7 revealed diffuse muscle degeneration, necrosis, fibrosis and fatty infiltration with lipogranulomas. Ultrastructural examination showed myofibrillar splitting and degeneration, irregular, displaced and degenerated Z-lines, mitochondrial degeneration and interstitial fibrosis with dense regular collagen fibres. This study, therefore, demonstrates that WBD exhibits an earlier onset in modern broilers than when detectable by clinical examination. Further, this study shows that the disease assumes a progressive course with acute vasculitis, lipid deposition and myodegeneration occurring in the earlier stages, followed by a chronic fibrotic phase.
Structural Stability and Defect Energetics of ZnO from Diffusion Quantum Monte Carlo
Santana Palacio, Juan A.; Krogel, Jaron T.; Kim, Jeongnim; ...
2015-04-28
We have applied the many-body ab-initio diffusion quantum Monte Carlo (DMC) method to study Zn and ZnO crystals under pressure, and the energetics of the oxygen vacancy, zinc interstitial and hydrogen impurities in ZnO. We show that DMC is an accurate and practical method that can be used to characterize multiple properties of materials that are challenging for density functional theory approximations. DMC agrees with experimental measurements to within 0.3 eV, including the band-gap of ZnO, the ionization potential of O and Zn, and the atomization energy of O2, ZnO dimer, and wurtzite ZnO. DMC predicts the oxygen vacancy asmore » a deep donor with a formation energy of 5.0(2) eV under O-rich conditions and thermodynamic transition levels located between 1.8 and 2.5 eV from the valence band maximum. Our DMC results indicate that the concentration of zinc interstitial and hydrogen impurities in ZnO should be low under n-type, and Zn- and H-rich conditions because these defects have formation energies above 1.4 eV under these conditions. Comparison of DMC and hybrid functionals shows that these DFT approximations can be parameterized to yield a general correct qualitative description of ZnO. However, the formation energy of defects in ZnO evaluated with DMC and hybrid functionals can differ by more than 0.5 eV.« less
NASA Astrophysics Data System (ADS)
Lassiter, J. C.
2016-12-01
The use of isotope variations in basalts to probe the composition and evolution of the mantle is predicated on the assumption of local (i.e., grain-scale) isotopic equilibrium during mantle melting (Hofmann & Hart, 1978). However, several studies report Os-isotope disequilibrium in distinct populations of sulfides in some peridotites. In principle, grain-scale isotopic heterogeneity could reflect variable radiogenic ingrowth in ancient sulfides with variable Re/Os, or partial re-equilibration of low-Re/Os sulfides with high-Re/Os silicate phases along grain boundaries during mantle melting (e.g., Alard et al., 2005). Both cases require that sulfides fail to maintain isotopic equilibrium with neighboring phases over geologically long ( Ga) time scales. The preservation of Os-isotope disequilibrium in peridotites has been ascribed to the armoring effect of low-[Os] silicates, which limit diffusive exchange between isolated Os-rich phases. This raises the prospect that peridotite-derived melts may not inherit the Os-isotope composition of their source. The timescale required for diffusive equilibration between separate sulfide grains or between Os-rich sulfides and Os-poor silicates is a function of average sulfide size and spacing, Os diffusivity in armoring silicate minerals, and Os partitioning between silicate and sulfide phases. For typical sulfide abundances and sizes in mantle peridotites, neighboring sulfides are expected to re-equilibrate in less than a few 10s of m.y. at adiabatic mantle temperatures, even for very high (>106) sulfide/silicate KD values. Maintenance of disequilibrium requires very large sulfides (>100 um) separated by several mm and diffusion rates (D < 10-20 m2/s) slower than for most other elements in olivine. Equilibration timescales between sulfides and surrounding silicates are similar, so that large-scale isotopic disequilibrium between sulfides and silicates is also unlikely within the convecting mantle. Instead, observed grain-scale Os-isotope disequilibrium in mantle peridotites likely reflects recent sulfide metasomatism linked to interaction with eclogite- or pyroxenite-derived melts. Interstitial sulfides with radiogenic Os-isotopes provide further evidence for a role of eclogite melting in MORB genesis.
[Diffusion of fluorescent and magnetic molecular probes in brain interstitial space].
Li, Huai-ye; Zhao, Yue; Zuo, Long; Fu, Yu; Li, Nan; Yuan, Lan; Zhang, Shu-jia; Han, Hong-bin
2015-08-18
To compare the diffusion properties of fluorescent probes dextran-tetramethylrhodamine (DT) and lucifer yellow CH (LY) and magnetic probe gadolinium-diethylene triamine pentaacetic acid (Gd-DTPA) in porous media and to screen out a suitable fluorescent probe for optical imaging of brain interstitial space (ISS). Agarose gels sample were divided into DT group, LY group and Gd-DTPA group, and the corresponding molecular probes were imported in each group. The dynamic diffusions of DT and LY in agarose gels at different time points (15, 30, 45, 60, 90, and 120 min) were scanned with laser scanning confocal microscope, the dynamic diffusion of Gd-DTPA was imaged with magnetic resonance imaging. The average diffusion speed of LY were demonstrated to be consistent with those of Gd-DTPA. The LY was introduced into caudate putamen of 18 rats, respectively, the diffusion of LY in the sequential slices of rat brain at different time points (0.5, 1, 2, 3, 7, 11 h) were scanned, and the results were compared with those of rats' brain with Gd-DTPA imported and imaged in vivo with magnetic resonance imaging. The diffusions of the three probes were isotropic in the agarose gels, and the average diffusion speeds of DT, LY and Gd-DTPA were: (0.07±0.02)×10(-2) mm2/s, (1.54±0.47)×10(-2) mm2/s, (1.45±0.50)×10(-2) mm2/s, respectively. The speed of DT was more slower than both LY and Gd-DTPA (ANOVA, F=367.15, P<0.001; Post-Hoc LSD, P<0.001), and there was no significant difference between the speeds of LY and Gd-DTPA (Post-Hoc LSD, P=0.091). The variation tendency of diffusion area of DT was different with both that of LY and that of Gd-DTPA (Bonferroni correction, α=0.0125, P<0.001), and there was no significant difference between LY and Gd-DTPA (Bonferroni correction, α=0.0125, P=0.203), in analysis by repeated measures data of ANOVA. The diffusions of LY and Gd-DTPA were anisotropy in rat caudate putamen,and the average diffusion speeds of LY and Gd-DTPA were: (1.03±0.29)×10(-3) mm2/s, (0.81±0.27)×10(-3) mm2/s, respectively, no significant difference was demonstrated (t=0.759, P=0.490); half-time of single intensity of LY and Gd-DTPA was (2.58±0.04) h, (2.46±0.10) h, respectively, no significant difference was found (t=2.025, P=0.113). The diffusion area ratios between LY and Gd-DTPA in rat caudate putamen was not statistically different at hours 0.5, 1, 2, 3 and 7 (t=2.249, P=0.088; t=2.582, P=0.061; t=1.966, P=0.121; t=0.132, P=0.674; t=0.032, P=0.976), while, a slightly difference was found at 11 h (t=2.917, P=0.043,in analysis by t test). LY present the same diffusion property with Gd-DTPA in porous media witch including agarose gels and live rat brain tissue, indicates that LY is a suitable fluorescent probe for optical imaging of brain ISS, and it can be used for microscopic, macro and in vitro measure of brain ISS.
NASA Astrophysics Data System (ADS)
Bartels-Rausch, T.; Wren, S. N.; Schreiber, S.; Riche, F.; Schneebeli, M.; Ammann, M.
2013-07-01
Release of trace gases from surface snow on earth drives atmospheric chemistry, especially in the polar regions. The gas-phase diffusion of methanol and of acetone through the interstitial air of snow was investigated in a well-controlled laboratory study in the temperature range of 223 to 263 K. The aim of this study was to evaluate how the structure of the snowpack, the interaction of the trace gases with the snow surface, and the grain boundaries influence the diffusion on timescales up to 1 h. The diffusive loss of these two volatile organics into packed snow samples was measured using a chemical ionization mass spectrometer. The structure of the snow was analysed by means of X-ray-computed micro-tomography. The observed diffusion profiles could be well described based on gas-phase diffusion and the known structure of the snow sample at temperatures ≥ 253 K. At colder temperatures, surface interactions start to dominate the diffusive transport. Parameterizing these interactions in terms of adsorption to the solid ice surface, i.e. using temperature-dependent air-ice partitioning coefficients, better described the observed diffusion profiles than the use of air-liquid partitioning coefficients. No changes in the diffusive fluxes were observed by increasing the number of grain boundaries in the snow sample by a factor of 7, indicating that for these volatile organic trace gases, uptake into grain boundaries does not play a role on the timescale of diffusion through porous surface snow. For this, a snow sample with an artificially high amount of ice grains was produced and the grain boundary surface measured using thin sections. In conclusion, we have shown that the diffusivity can be predicted when the structure of the snowpack and the partitioning of the trace gas to solid ice is known.
NASA Astrophysics Data System (ADS)
Bartels-Rausch, T.; Wren, S. N.; Schreiber, S.; Riche, F.; Schneebeli, M.; Ammann, M.
2013-03-01
Release of trace gases from surface snow on Earth drives atmospheric chemistry, especially in the polar regions. The gas-phase diffusion of methanol and of acetone through the interstitial air of snow was investigated in a well-controlled laboratory study in the temperature range of 223 to 263 K. The aim of this study was to evaluate how the structure of the snowpack, the interaction of the trace gases with the snow surface, and the grain boundaries influence the diffusion on timescales up to 1 h. The diffusive loss of these two volatile organics into packed snow samples was measured using a chemical ionization mass spectrometer. The structure of the snow was analyzed by means of X-ray computed micro-tomography. The observed diffusion profiles could be well described based on gas-phase diffusion and the known structure of the snow sample at temperatures ≥ 253 K. At colder temperatures surface interactions start to dominate the diffusive transport. Parameterizing these interactions in terms of adsorption to the solid ice surface, i.e. using temperature dependent air-ice partitioning coefficients, better described the observed diffusion profiles than the use of air-liquid partitioning coefficients. No changes in the diffusive fluxes were observed by increasing the number of grain boundaries in the snow sample by a factor of 7, indicating that for these volatile organic trace gases, uptake into grain boundaries does not play a role on the timescale of diffusion through porous surface snow. In conclusion, we have shown that the diffusivity can be predicted when the structure of the snowpack and the partitioning of the trace gas to solid ice is known.
Thermal diffusivity of four Apollo 17 rock samples
DOE Office of Scientific and Technical Information (OSTI.GOV)
Horai, K.; Winkler, J.L. Jr.
1976-01-01
The thermal diffusivities of four Apollo 17 rock samples (70017,77; 70215,18; 72395,14; and 77035,44) are measured in the temperature range between 180/sup 0/K and 460/sup 0/K at interstitial gaseous pressures of 1 atm and 10/sup -6/ torr of air. The thermal diffusivities at 1 atm are decreasing functions of temperature. Basalt samples (70017,77 and 70215,18) show higher thermal diffusivities than breccias (72395,14 and 77035,44), indicating that the thermal contact between mineral grains is better in crystalline rocks than in breccias. The magnitude of thermal diffusivities of the Apollo 17 basalt samples is intermediate between published diffusivities of Apollo 11 andmore » 12 basalts, suggesting that the intergranular cohesion of Apollo 17 basalts is weaker than that of Apollo 11 basalts but is stronger than that of Apollo 12 basalt. The thermal diffusivities measured at 10/sup -6/ torr are less temperature dependent. The basalt samples still show higher thermal diffusivities than the breccias, however. The low thermal diffusivity of the porous breccia sample (72395,14) is comparable to the lunar anorthositic gabbro (77017,24) studied by Mizutani and Osako (1974) that has the lowest thermal diffusivity of lunar rock samples ever reported. The difference between the thermal diffusivities the samples exhibit under atmospheric and vacuum conditions cannot be explained by the effect of thermal conduction through the gas medium filling the interstices of the samples that are absent under vacuum condition. A hypothesis is presented that the thermal conduction across the intergranular contact surfaces is strongly influenced by the adsorption of gas molecules on the surfaces of mineral grains. Measurements are also made in carbon dioxide atmosphere, in the temperature range between 200/sup 0/K and 460/sup 0/K.« less
X-ray analysis of temperature induced defect structures in boron implanted silicon
NASA Astrophysics Data System (ADS)
Sztucki, M.; Metzger, T. H.; Kegel, I.; Tilke, A.; Rouvière, J. L.; Lübbert, D.; Arthur, J.; Patel, J. R.
2002-10-01
We demonstrate the application of surface sensitive diffuse x-ray scattering under the condition of grazing incidence and exit angles to investigate growth and dissolution of near-surface defects after boron implantation in silicon(001) and annealing. Silicon wafers were implanted with a boron dose of 6×1015 ions/cm2 at 32 keV and went through different annealing treatments. From the diffuse intensity close to the (220) surface Bragg peak we reveal the nature and kinetic behavior of the implantation induced defects. Analyzing the q dependence of the diffuse scattering, we are able to distinguish between point defect clusters and extrinsic stacking faults on {111} planes. Characteristic for stacking faults are diffuse x-ray intensity streaks along <111> directions, which allow for the determination of their growth and dissolution kinetics. For the annealing conditions of our crystals, we conclude that the kinetics of growth can be described by an Ostwald ripening model in which smaller faults shrink at the expense of the larger stacking faults. The growth is found to be limited by the self-diffusion of silicon interstitials. After longer rapid thermal annealing the stacking faults disappear almost completely without shrinking, most likely by transformation into perfect loops via a dislocation reaction. This model is confirmed by complementary cross-sectional transmission electron microscopy.
Interstitial pneumonia and pulmonary hypertension associated with suspected ehrlichiosis in a dog.
Toom, Marjolein Lisette den; Dobak, Tetyda Paulina; Broens, Els Marion; Valtolina, Chiara
2016-07-07
In dogs with canine monocytic ehrlichiosis (CME), respiratory signs are uncommon and clinical and radiographic signs of interstitial pneumonia are poorly described. However, in human monocytic ehrlichiosis, respiratory signs are common and signs of interstitial pneumonia are well known. Pulmonary hypertension (PH) is classified based on the underlying disease and its treatment is aimed at reducing the clinical signs and, if possible, addressing the primary disease process. PH is often irreversible, but can be reversible if it is secondary to a treatable underlying etiology. CME is currently not generally recognized as one of the possible diseases leading to interstitial pneumonia and secondary PH in dogs. Only one case of PH associated with CME has been reported worldwide. A seven-year-old, male intact, mixed breed dog was presented with 2 weeks history of lethargy and dyspnea. The dog previously lived in the Cape Verdean islands. Physical examination showed signs of right-sided congestive heart failure and poor peripheral perfusion. Thoracic radiography showed moderate right-sided cardiomegaly with dilation of the main pulmonary artery and a mild diffuse interstitial lung pattern with peribronchial cuffing. Echocardiography showed severe pulmonary hypertension with an estimated pressure gradient of 136 mm Hg. On arterial blood gas analysis, severe hypoxemia was found and complete blood count revealed moderate regenerative anemia and severe thrombocytopenia. A severe gamma hyperglobulinemia was also documented. Serology for Ehrlichia canis was highly positive. Treatment with oxygen supplementation, a typed packed red blood cell transfusion and medical therapy with doxycycline, pimobendan and sildenafil was initiated and the dog improved clinically. Approximately 2 weeks later, there was complete resolution of all clinical signs and marked improvement of the PH. This report illustrates that CME might be associated with significant pulmonary disease and should be considered as a possible differential diagnosis in dogs presenting with dyspnea and secondary pulmonary hypertension, especially in dogs that have been in endemic areas. This is important because CME is a treatable disease and its secondary lung and cardiac manifestations may be completely reversible.
Hybrid functional studies of stability and diffusion of hydrogen in Mg-doped GaN
NASA Astrophysics Data System (ADS)
Park, Ji-Sang; Chang, K. J.
2012-02-01
Nitride semiconductors are known to suffer from low p-type doping efficiency due to the high activation energy of Mg acceptors and the compensation of hole carriers. To enhance hole carrier concentration, the hydrogen co-doping method is widely used, in which hydrogen is intentionally doped with Mg dopants and removed by subsequent thermal annealing. In this work, we perform first-principles density functional calculations to study the stability and diffusion of hydrogen in Mg-doped GaN. For the exchange-correlation potential, we employ both the generalized gradient approximation (GGA) proposed by Perdew, Burke, and Ernzerhof and the hybrid density functional of Heyd, Scuseria, and Ernzerhof. We examine the diffusion pathways and dissociation barriers of H from the Mg-H complex using the nudged elastic band and dimer methods. We compare the results of the GGA and hybrid density functional calculations for the stability of various H interstitial configurations and the migration barriers for H diffusion. Finally, using the calculated migration barriers as inputs, we perform kinetic Monte Carlo simulations for the dissociation of the Mg-H complex and find that the Mg acceptors are activated by thermal annealing up to 700-800 ^oC, in good agreement with experiments.
Hydrogenated vacancies lock dislocations in aluminium
DOE Office of Scientific and Technical Information (OSTI.GOV)
Xie, Degang; Li, Suzhi; Li, Meng
Due to its high diffusivity, hydrogen is often considered a weak inhibitor or even a promoter of dislocation movements in metals and alloys. By quantitative mechanical tests in an environmental transmission electron microscope, here we demonstrate that after exposing aluminium to hydrogen, mobile dislocations can lose mobility, with activating stress more than doubled. On degassing, the locked dislocations can be reactivated under cyclic loading to move in a stick-slip manner. However, relocking the dislocations thereafter requires a surprisingly long waiting time of ~10 3 s, much longer than that expected from hydrogen interstitial diffusion. Both the observed slow relocking andmore » strong locking strength can be attributed to superabundant hydrogenated vacancies, verified by our atomistic calculations. In conclusion, vacancies therefore could be a key plastic flow localization agent as well as damage agent in hydrogen environment.« less
Hydrogenated vacancies lock dislocations in aluminium
Xie, Degang; Li, Suzhi; Li, Meng; ...
2016-11-03
Due to its high diffusivity, hydrogen is often considered a weak inhibitor or even a promoter of dislocation movements in metals and alloys. By quantitative mechanical tests in an environmental transmission electron microscope, here we demonstrate that after exposing aluminium to hydrogen, mobile dislocations can lose mobility, with activating stress more than doubled. On degassing, the locked dislocations can be reactivated under cyclic loading to move in a stick-slip manner. However, relocking the dislocations thereafter requires a surprisingly long waiting time of ~10 3 s, much longer than that expected from hydrogen interstitial diffusion. Both the observed slow relocking andmore » strong locking strength can be attributed to superabundant hydrogenated vacancies, verified by our atomistic calculations. In conclusion, vacancies therefore could be a key plastic flow localization agent as well as damage agent in hydrogen environment.« less
Optical properties of Zn-diffused InP layers for the planar-type InGaAs/InP photodetectors
NASA Astrophysics Data System (ADS)
Chen, Guifeng; Wang, Mengxue; Yang, Wenxian; Tan, Ming; Wu, Yuanyuan; Dai, Pan; Huang, Yuyang; Lu, Shulong
2017-12-01
Zn diffusion into InP was carried out ex-situ using a new Zn diffusion technique with zinc phosphorus particles placed around InP materials as zinc source in a semi-closed chamber formed by a modified diffusion furnace. The optical characteristics of the Zn-diffused InP layer for the planar-type InGaAs/InP PIN photodetectors grown by molecular beam epitaxy (MBE) has been investigated by photoluminescence (PL) measurements. The temperature-dependent PL spectrum of Zn-diffused InP samples at different diffusion temperatures showed that band-to-acceptor transition dominates the PL emission, which indicates that Zn was commendably diffused into InP layer as the acceptor. High quality Zn-diffused InP layer with typically smooth surface was obtained at 580 °C for 10 min. Furthermore, more interstitial Zn atoms were activated to act as acceptors after a rapid annealing process. Based on the above Zn-diffusion technique, a 50 μm planar-type InGaAs/InP PIN photodector device was fabricated and exhibited a low dark current of 7.73 pA under a reverse bias potential of -5 V and a high breakdown voltage of larger than 41 V (I < 10 μA). In addition, a high responsivity of 0.81 A/W at 1.31 μm and 0.97 A/W at 1.55 μm was obtained in the developed PIN photodetector. Project supported by the Key R&D Program of Jiangsu Province (No. BE2016085) , the National Natural Science Foundation of China (Nos. 61674051), and the External Cooperation Program of BIC, Chinese Academy of Sciences (No. 121E32KYSB20160071).
Pulmonary Hypertension in Parenchymal Lung Disease
Tsangaris, Iraklis; Tsaknis, Georgios; Anthi, Anastasia; Orfanos, Stylianos E.
2012-01-01
Idiopathic pulmonary arterial hypertension (IPAH) has been extensively investigated, although it represents a less common form of the pulmonary hypertension (PH) family, as shown by international registries. Interestingly, in types of PH that are encountered in parenchymal lung diseases such as interstitial lung diseases (ILDs), chronic obstructive pulmonary disease (COPD), and many other diffuse parenchymal lung diseases, some of which are very common, the available data is limited. In this paper, we try to browse in the latest available data regarding the occurrence, pathogenesis, and treatment of PH in chronic parenchymal lung diseases. PMID:23094153
II. Inhibited Diffusion Driven Surface Transmutations
NASA Astrophysics Data System (ADS)
Chubb, Talbot A.
2006-02-01
This paper is the second of a set of three papers dealing with the role of coherent partitioning as a common element in Low Energy Nuclear Reactions (LENR), by which is meant cold-fusion related processes. This paper discusses the first step in a sequence of four steps that seem to be necessary to explain Iwamura 2-α-addition surface transmutations. Three concepts are examined: salt-metal interface states, sequential tunneling that transitions D+ ions from localized interstitial to Bloch form, and the general applicability of 2-dimensional vs. 3-dimensional symmetry hosting networks.
[The respiratory effects of smoking].
Peiffer, G; Underner, M; Perriot, J
2018-06-01
A marked increase in the morbidity and mortality of a large number of broncho-pulmonary diseases has been documented in relation to smoking. The influence of tobacco smoking on various respiratory conditions. is discussed: incidence, severity or natural history modification of some respiratory illnesses: obstructive lung diseases (COPD, asthma), lung cancer, bacterial, viral respiratory infections, with the impact of smoking on tuberculosis. Finally, the relationship of tobacco with diffuse interstitial lung disease: protective role of smoking (controversial in sarcoidosis, real in hypersensitivity pneumonitis). The benefits of smoking cessation are described. Copyright © 2018. Published by Elsevier Masson SAS.
Wang, Minghuan; Ding, Fengfei; Deng, SaiYue; Guo, Xuequn; Wang, Wei
2017-01-01
Microinfarcts occur commonly in the aging brain as a consequence of diffuse embolic events and are associated with the development of vascular dementia and Alzheimer's disease. However, the manner in which disperse microscopic lesions reduce global cognitive function and increase the risk for Alzheimer's disease is unclear. The glymphatic system, which is a brain-wide perivascular network that supports the recirculation of CSF through the brain parenchyma, facilitates the clearance of interstitial solutes including amyloid β and tau. We investigated whether glymphatic pathway function is impaired in a murine model of multiple microinfarcts induced by intraarterial injection of cholesterol crystals. The analysis showed that multiple microinfarcts markedly impaired global influx of CSF along the glymphatic pathway. Although suppression of global glymphatic function was transient, resolving within 2 weeks of injury, CSF tracers also accumulated within tissue associated with microinfarcts. The effect of diffuse microinfarcts on global glymphatic pathway function was exacerbated in the mice aged 12 months compared with the 2- to 3-month-old mice. These findings indicate that glymphatic function is focally disrupted around microinfarcts and that the aging brain is more vulnerable to this disruption than the young brain. These observations suggest that microlesions may trap proteins and other interstitial solutes within the brain parenchyma, increasing the risk of amyloid plaque formation. SIGNIFICANCE STATEMENT Microinfarcts, small (<1 mm) ischemic lesions, are strongly associated with age-related dementia. However, how these microscopic lesions affect global cognitive function and predispose to Alzheimer's disease is unclear. The glymphatic system is a brain-wide network of channels surrounding brain blood vessels that allows CSF to exchange with interstitial fluid, clearing away cellular wastes such as amyloid β. We observed that, in mice, microinfarcts impaired global glymphatic function and solutes from the CSF became trapped in tissue associated with microinfarcts. These data suggest that small, disperse ischemic lesions can impair glymphatic function across the brain and trapping of solutes in these lesions may promote protein aggregation and neuroinflammation and eventually lead to neurodegeneration, especially in the aging brain. PMID:28188218
Wang, Minghuan; Ding, Fengfei; Deng, SaiYue; Guo, Xuequn; Wang, Wei; Iliff, Jeffrey J; Nedergaard, Maiken
2017-03-15
Microinfarcts occur commonly in the aging brain as a consequence of diffuse embolic events and are associated with the development of vascular dementia and Alzheimer's disease. However, the manner in which disperse microscopic lesions reduce global cognitive function and increase the risk for Alzheimer's disease is unclear. The glymphatic system, which is a brain-wide perivascular network that supports the recirculation of CSF through the brain parenchyma, facilitates the clearance of interstitial solutes including amyloid β and tau. We investigated whether glymphatic pathway function is impaired in a murine model of multiple microinfarcts induced by intraarterial injection of cholesterol crystals. The analysis showed that multiple microinfarcts markedly impaired global influx of CSF along the glymphatic pathway. Although suppression of global glymphatic function was transient, resolving within 2 weeks of injury, CSF tracers also accumulated within tissue associated with microinfarcts. The effect of diffuse microinfarcts on global glymphatic pathway function was exacerbated in the mice aged 12 months compared with the 2- to 3-month-old mice. These findings indicate that glymphatic function is focally disrupted around microinfarcts and that the aging brain is more vulnerable to this disruption than the young brain. These observations suggest that microlesions may trap proteins and other interstitial solutes within the brain parenchyma, increasing the risk of amyloid plaque formation. SIGNIFICANCE STATEMENT Microinfarcts, small (<1 mm) ischemic lesions, are strongly associated with age-related dementia. However, how these microscopic lesions affect global cognitive function and predispose to Alzheimer's disease is unclear. The glymphatic system is a brain-wide network of channels surrounding brain blood vessels that allows CSF to exchange with interstitial fluid, clearing away cellular wastes such as amyloid β. We observed that, in mice, microinfarcts impaired global glymphatic function and solutes from the CSF became trapped in tissue associated with microinfarcts. These data suggest that small, disperse ischemic lesions can impair glymphatic function across the brain and trapping of solutes in these lesions may promote protein aggregation and neuroinflammation and eventually lead to neurodegeneration, especially in the aging brain. Copyright © 2017 the authors 0270-6474/17/372870-08$15.00/0.
Walsh, Simon L F; Wells, Athol U; Desai, Sujal R; Poletti, Venerino; Piciucchi, Sara; Dubini, Alessandra; Nunes, Hilario; Valeyre, Dominique; Brillet, Pierre Y; Kambouchner, Marianne; Morais, António; Pereira, José M; Moura, Conceição Souto; Grutters, Jan C; van den Heuvel, Daniel A; van Es, Hendrik W; van Oosterhout, Matthijs F; Seldenrijk, Cornelis A; Bendstrup, Elisabeth; Rasmussen, Finn; Madsen, Line B; Gooptu, Bibek; Pomplun, Sabine; Taniguchi, Hiroyuki; Fukuoka, Junya; Johkoh, Takeshi; Nicholson, Andrew G; Sayer, Charlie; Edmunds, Lilian; Jacob, Joseph; Kokosi, Maria A; Myers, Jeffrey L; Flaherty, Kevin R; Hansell, David M
2016-07-01
Diffuse parenchymal lung disease represents a diverse and challenging group of pulmonary disorders. A consistent diagnostic approach to diffuse parenchymal lung disease is crucial if clinical trial data are to be applied to individual patients. We aimed to evaluate inter-multidisciplinary team agreement for the diagnosis of diffuse parenchymal lung disease. We did a multicentre evaluation of clinical data of patients who presented to the interstitial lung disease unit of the Royal Brompton and Harefield NHS Foundation Trust (London, UK; host institution) and required multidisciplinary team meeting (MDTM) characterisation between March 1, 2010, and Aug 31, 2010. Only patients whose baseline clinical, radiological, and, if biopsy was taken, pathological data were undertaken at the host institution were included. Seven MDTMs, consisting of at least one clinician, radiologist, and pathologist, from seven countries (Denmark, France, Italy, Japan, Netherlands, Portugal, and the UK) evaluated cases of diffuse parenchymal lung disease in a two-stage process between Jan 1, and Oct 15, 2015. First, the clinician, radiologist, and pathologist (if lung biopsy was completed) independently evaluated each case, selected up to five differential diagnoses from a choice of diffuse lung diseases, and chose likelihoods (censored at 5% and summing to 100% in each case) for each of their differential diagnoses, without inter-disciplinary consultation. Second, these specialists convened at an MDTM and reviewed all data, selected up to five differential diagnoses, and chose diagnosis likelihoods. We compared inter-observer and inter-MDTM agreements on patient first-choice diagnoses using Cohen's kappa coefficient (κ). We then estimated inter-observer and inter-MDTM agreement on the probability of diagnosis using weighted kappa coefficient (κw). We compared inter-observer and inter-MDTM confidence of patient first-choice diagnosis. Finally, we evaluated the prognostic significance of a first-choice diagnosis of idiopathic pulmonary fibrosis (IPF) versus not IPF for MDTMs, clinicians, and radiologists, using univariate Cox regression analysis. 70 patients were included in the final study cohort. Clinicians, radiologists, pathologists, and the MDTMs assigned their patient diagnoses between Jan 1, and Oct 15, 2015. IPF made up 88 (18%) of all 490 MDTM first-choice diagnoses. Inter-MDTM agreement for first-choice diagnoses overall was moderate (κ=0·50). Inter-MDTM agreement on diagnostic likelihoods was good for IPF (κw=0·71 [IQR 0·64-0·77]) and connective tissue disease-related interstitial lung disease (κw=0·73 [0·68-0·78]); moderate for non-specific interstitial pneumonia (NSIP; κw=0·42 [0·37-0·49]); and fair for hypersensitivity pneumonitis (κw=0·29 [0·24-0·40]). High-confidence diagnoses (>65% likelihood) of IPF were given in 68 (77%) of 88 cases by MDTMs, 62 (65%) of 96 cases by clinicians, and in 57 (66%) of 86 cases by radiologists. Greater prognostic separation was shown for an MDTM diagnosis of IPF than compared with individual clinician's diagnosis of this disease in five of seven MDTMs, and radiologist's diagnosis of IPF in four of seven MDTMs. Agreement between MDTMs for diagnosis in diffuse lung disease is acceptable and good for a diagnosis of IPF, as validated by the non-significant greater prognostic separation of an IPF diagnosis made by MDTMs than the separation of a diagnosis made by individual clinicians or radiologists. Furthermore, MDTMs made the diagnosis of IPF with higher confidence and more frequently than did clinicians or radiologists. This difference is of particular importance, because accurate and consistent diagnoses of IPF are needed if clinical outcomes are to be optimised. Inter-multidisciplinary team agreement for a diagnosis of hypersensitivity pneumonitis is low, highlighting an urgent need for standardised diagnostic guidelines for this disease. National Institute of Health Research, Imperial College London. Copyright © 2016 Elsevier Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Legrain, Fleur; Manzhos, Sergei
2017-01-01
Thermodynamics and kinetics of Li, Na, and Mg storage in Ge are studied ab initio. The most stable configurations can consist of tetrahedral, substitutional, or a combination of the two types of sites. In the dilute limit, Li and Na prefer interstitial, while Mg prefers substitutional sites. At higher concentrations of Li, Na, and Mg, there is a combination of interstitial and substitutional sites. This is an important finding, as most previous ab initio studies of alloying type electrode materials ignored substitutional sites. Insertion energies computed at dilute concentration (x = 1/64) show that Na and Mg insertion are not thermodynamically favored in Ge vs. the formation of bulk Na and Mg, as opposed to Li insertion which is favored. We investigate the effect of p-doping of Ge (with Ga) on the thermodynamics and find that it considerably lowers the defect formation energies associated with the insertion of Li/Na/Mg at tetrahedral sites. On the other hand, the energetics associated with Li/Na/Mg insertion at substitutional sites are not significantly affected. In addition, we compute the migration energy barriers for Li/Na/Mg diffusion between two tetrahedral sites (0.38/0.79/0.66 eV), between two substitutional sites (0.77/0.93/1.83 eV), and between two sites of different types (2.15/1.75/0.85 eV).
Legrain, Fleur; Manzhos, Sergei
2017-01-21
Thermodynamics and kinetics of Li, Na, and Mg storage in Ge are studied ab initio. The most stable configurations can consist of tetrahedral, substitutional, or a combination of the two types of sites. In the dilute limit, Li and Na prefer interstitial, while Mg prefers substitutional sites. At higher concentrations of Li, Na, and Mg, there is a combination of interstitial and substitutional sites. This is an important finding, as most previous ab initio studies of alloying type electrode materials ignored substitutional sites. Insertion energies computed at dilute concentration (x = 1/64) show that Na and Mg insertion are not thermodynamically favored in Ge vs. the formation of bulk Na and Mg, as opposed to Li insertion which is favored. We investigate the effect of p-doping of Ge (with Ga) on the thermodynamics and find that it considerably lowers the defect formation energies associated with the insertion of Li/Na/Mg at tetrahedral sites. On the other hand, the energetics associated with Li/Na/Mg insertion at substitutional sites are not significantly affected. In addition, we compute the migration energy barriers for Li/Na/Mg diffusion between two tetrahedral sites (0.38/0.79/0.66 eV), between two substitutional sites (0.77/0.93/1.83 eV), and between two sites of different types (2.15/1.75/0.85 eV).
Kohashi, Yasuo; Arai, Toru; Sugimoto, Chikatoshi; Tachibana, Kazunobu; Akira, Masanori; Kitaichi, Masanori; Hayashi, Seiji; Inoue, Yoshikazu
2016-01-01
The prognosis of combined cases of pulmonary fibrosis and emphysema is unresolved partially because radiological differentiation between usual interstitial pneumonia and nonspecific interstitial pneumonia is difficult in coexisting emphysema cases. The purpose of this study was to clarify the clinical impact of emphysema on the survival of patients with idiopathic pulmonary fibrosis (IPF). One hundred and seven patients with interstitial lung diseases were diagnosed by surgical lung biopsies between 2006 and 2012, and 47 patients were diagnosed with IPF through multidisciplinary discussion. Emphysema on high-resolution computed tomography scans was evaluated semiquantitatively by visual scoring. Eight out of the 47 IPF patients showed a higher emphysema score (>3) and were diagnosed to have IPF-emphysema. The median survival time of patients with IPF-emphysema (1,734 days) from the initial diagnosis was significantly shorter than that of patients with IPF alone (2,229 days) by Kaplan-Meier analysis (p = 0.007, log-rank test). Univariate Cox proportional hazard regression analyses revealed that a higher total emphysema score (>3.0) was a significantly poor prognostic factor in addition to Krebs von den Lungen-6, surfactant protein-D, arterial oxygen tension, percent forced vital capacity, and percent diffusing capacity of carbon monoxide (%DLCO). Multivariate Cox proportional hazard regression analyses with the stepwise method showed that higher total emphysema score (>3) and %DLCO were significantly poor prognostic factors. The prognosis of IPF-emphysema was significantly worse than that of IPF alone. © 2016 S. Karger AG, Basel.
Diffusion of nitrogen oxides and oxygenated volatile organic compounds through snow
NASA Astrophysics Data System (ADS)
Bartels-Rausch, T.; Ammann, M.; Schneebeli, M.; Riche, F.; Wren, S. N.
2013-12-01
Release of trace gases from surface snow on Earth drives atmospheric chemistry, especially in the Polar Regions. The exchange of atmospheric trace gases between snow or firn and atmosphere can also determine how these species are incorporated into glacial ice, which serves as archive. At low wind conditions, such fluxes between the porous surface snow and the overlaying atmosphere are driven by diffusion through the interstitial air. Here we present results from two laboratory studies where we looked at how the structure of the snowpack, the interaction of the trace gases with the snow surface, and the grain boundaries influence the diffusion of NO, NO2, HONO, methanol, and acetone on time scales up to 1 h. The diffusion through a snow sample was the direct observable of the experiments. Results for different snow types are presented, the structures of which were analysed by means of X-ray computed micro-tomography. Grain boundary content was quantified in one sample using a stereological method. The observed diffusion profiles were very well reproduced in simulations based on gas-phase diffusion and the known structure of the snow sample at temperatures above 253 K. At colder temperatures surface interactions start to dominate the diffusion. Parameterizing these in terms of adsorption to the solid ice surface gave much better agreement to the observations than the use of air - liquid partitioning coefficients. This is a central result as field and modelling studies have indicated that the partitioning to liquid water might describe the diffusion through snow much better even at cold temperatures. This will be discussed using our recent results from surface sensitive spectroscopy experiments. No changes in the diffusion was observed by increasing the number of grain boundaries in the snow sample by a factor of 7.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Perriot, Romain; Uberuaga, Blas P.
We use molecular dynamics simulations to investigate the role of cation disorder on oxygen diffusion in Gd 2Zr 2O 7 (GZO) and Gd 2Ti 2O 7 (GTO) pyrochlores, a class of complex oxides which contain a structural vacancy relative to the basic fluorite structure. The introduction of disorder has distinct effects depending on the chemistry of the material, increasing the mobility of structural carriers by up to four orders of magnitude in GZO. In contrast, in GTO, there is no mobility at zero or low disorder on the ns timescale, but higher disorder liberates the otherwise immobile carriers, allowing diffusionmore » with rates comparable to GZO for the fully disordered material. Here, we show that the cation disorder enhances the diffusivity by both increasing the concentration of mobile structural carriers and their individual mobility. The disorder also influences the diffusion in materials containing intrinsic carriers, such as additional vacancies VO or oxygen interstitials OI. And while in ordered GZO and GTO the contribution of the intrinsic carriers dominates the overall diffusion of oxygen, OI in GZO contributes along with structural carriers, and the total diffusion rate can be calculated by assuming simple additive contributions from the two sources. Although the disorder in the materials with intrinsic defects usually enhances the diffusivity as in the defect-free case, in low concentrations, cation antisites AB or BA, where A = Gd and B = Zr or Ti, can act as traps for fast intrinsic defects. The trapping results in a lowering of the diffusivity, and causes a non-monotonic behavior of the diffusivity with disorder. Conversely, in the case of slow intrinsic defects, the main effect of the disorder is to liberate the structural carriers, resulting in an increase of the diffusivity regardless of the defect trapping.« less
Sliding enhances fluid and solute transport into buried articular cartilage contacts.
Graham, B T; Moore, A C; Burris, D L; Price, C
2017-12-01
Solutes and interstitial water are naturally transported from cartilage by load-induced interstitial fluid pressures. Fluid and solute recovery during joint articulation have been primarily attributed to passive diffusion and mechanical 'pumping' from dynamic loading. This paper tests if the sliding action of articulation is a significant and independent driver of fluid and solute transport in cartilage. The large osteochondral samples utilized in the present study preserve the convergent wedges necessary for physiological hydrodynamics. Following static load-induced fluid exudation and prior to sliding, a fluorescent solute (AlexaFluor 633) was added to the lubricant bath. In situ confocal microscopy was used to quantify the transport of solute from the bath into the buried stationary contact area (SCA) during sliding. Following static exudation, significant reductions in friction and strain during sliding at 60 mm/s were accompanied by significant solute transport into the inaccessible center of the buried contact; no such transport was detected for the 0- or 1 mm/s sliding conditions. The results suggest that external hydrodynamic pressures from sliding induced advective flows that carried solutes from the bath toward the center of contact. These results provide the first direct evidence that the action of sliding is a significant contributor to fluid and solute recovery by cartilage. Furthermore, they indicate that the sliding-induced transport of solutes into the buried interface was orders of magnitude greater than that attributable to diffusion alone, a result with critical implications for disease prevention and tissue engineering. Copyright © 2017 Osteoarthritis Research Society International. Published by Elsevier Ltd. All rights reserved.
Blanco, Isabel; Villaquirán, Claudio; Valera, José Luis; Molina-Molina, María; Xaubet, Antoni; Rodríguez-Roisin, Robert; Barberà, Joan A; Roca, Josep
2010-03-01
The six-minute walk test (6MWT) is widely used in evaluating diffuse interstitial lung disease (ILD) and pulmonary hypertension (PH). However, their physiological determining factors have not been well defined. To evaluate the physiological changes that occur in ILD and PH during the 6MWT, and compare them with the cardiopulmonary exercise test (CPET). Thirteen patients with ILD and 14 with PH were studied using the 6MWT and CPET on an ergometer cycle. The respiratory variables were recorded by means of telemetry during the 6MWT. Oxygen consumption (VO(2)), respiratory and heart rate reached a plateau from minute 3 of the 6MWT in both diseases. The VO(2) did not differ from the peak value in the CPET (14+/-2 and 15+/-2 ml/kg/min, respectively, in ILD; 16+/-6 and 16+/-6 ml/kg/min, in PH). The arterial oxygen saturation decreased in both diseases, although it was more marked in ILD (-12+/-5%, p<0,01). The ventilatory equivalent for CO(2) (V(E)/VCO(2)) in PH during the 6MWT was strongly associated with functional class (FC) (85+/-14 in FC III-IV, 44+/-6 in FC I-II; p<0,001). The 6MWT in ILD and PH behaves like a maximal effort test, with similar VO(2) to the CPET, demonstrating a limit in oxygen transport capacity. Monitoring using telemetry during the 6MWT may be useful for the clinical evaluation of patients with ILD or PH. Copyright 2009 SEPAR. Published by Elsevier Espana. All rights reserved.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sandoval, J.; Salas, J.; Martinez-Guerra, M.L.
1993-01-01
We describe the clinical, radiologic, functional, and pulmonary hemodynamic characteristics of a group of 30 nonsmoking patients with a lung disease that may be related to intense, long-standing indoor wood-smoke exposure. The endoscopic and some of the pathologic findings are also presented. Intense and prolonged wood-smoke inhalation may produce a chronic pulmonary disease that is similar in many aspects to other forms of inorganic dust-exposure interstitial lung disease. It affects mostly country women in their 60s, and severe dyspnea and cough are the outstanding complaints. The chest roentgenograms show a diffuse, bilateral, reticulonodular pattern, combined with normalized or hyperinflated lungs,more » as well as indirect signs of pulmonary arterial hypertension (PAH). On the pulmonary function test the patients show a mixed restrictive-obstructive pattern with severe hypoxemia and variable degrees of hypercapnia. Endoscopic findings are those of acute and chronic bronchitis and intense anthracotic staining of the airways appears to be quite characteristic. Fibrous and inflammatory focal thickening of the alveolar septa as well as diffuse parenchymal anthracotic deposits are the most prominent pathologic findings, although inflammatory changes of the bronchial epithelium are also present. The patients had severe PAH in which, as in other chronic lung diseases, chronic alveolar hypoxia may play the main pathogenetic role. However, PAH in wood-smoke inhalation-associated lung disease (WSIALD) appears to be more severe than in other forms of interstitial lung disease and tobacco-related COPD. The patients we studied are a selected group and they may represent one end of the spectrum of the WSIALD.« less
Treatment of solid tumors by interstitial release of recoiling short-lived alpha emitters
NASA Astrophysics Data System (ADS)
Arazi, L.; Cooks, T.; Schmidt, M.; Keisari, Y.; Kelson, I.
2007-08-01
A new method utilizing alpha particles to treat solid tumors is presented. Tumors are treated with interstitial radioactive sources which continually release short-lived alpha emitting atoms from their surface. The atoms disperse inside the tumor, delivering a high dose through their alpha decays. We implement this scheme using thin wire sources impregnated with 224Ra, which release by recoil 220Rn, 216Po and 212Pb atoms. This work aims to demonstrate the feasibility of our method by measuring the activity patterns of the released radionuclides in experimental tumors. Sources carrying 224Ra activities in the range 10-130 kBq were used in experiments on murine squamous cell carcinoma tumors. These included gamma spectroscopy of the dissected tumors and major organs, Fuji-plate autoradiography of histological tumor sections and tissue damage detection by Hematoxylin-Eosin staining. The measurements focused on 212Pb and 212Bi. The 220Rn/216Po distribution was treated theoretically using a simple diffusion model. A simplified scheme was used to convert measured 212Pb activities to absorbed dose estimates. Both physical and histological measurements confirmed the formation of a 5-7 mm diameter necrotic region receiving a therapeutic alpha-particle dose around the source. The necrotic regions shape closely corresponded to the measured activity patterns. 212Pb was found to leave the tumor through the blood at a rate which decreased with tumor mass. Our results suggest that the proposed method, termed DART (diffusing alpha-emitters radiation therapy), may potentially be useful for the treatment of human patients.
Park, Silvia; Kang, Cheol-In; Chung, Doo Ryeon; Peck, Kyong Ran; Kim, Won Seog; Kim, Seok Jin
2015-07-01
Rituximab plus cyclophosphamide, doxorubicin, vincristine, and prednisone (R-CHOP) is the standard chemotherapy in diffuse large B-cell lymphoma (DLBCL) patients. Although febrile neutropenia (FN) is the major toxicity of this regimen, non-neutropenic fever (NNF) becomes an emerging issue. We analyzed clinical features and outcomes of febrile complications from 397 patients with newly diagnosed DLBCL who were registered in the prospective cohort study. They had completed R-CHOP between September 2008 and January 2013. Thirty-nine patients (9.8%) had NNF whereas 160 patients (40.3%) had FN. Among them, 24 patients (6.0%) had both during their treatment. Compared to frequent occurrence of initial FN after the first cycle (> 50% of total events), more than 80% of NNF cases occurred after the third cycle. Interstitial pneumonitis comprised the highest proportion of NNF cases (54.8%), although the causative organism was not identified in the majority of cases. Thus, pathogen was identified in a limited number of patients (n=9), and Pneumocystis jiroveci pneumonia (PJP) was the most common. Considering that interstitial pneumonitis without documented pathogen could be clinically diagnosed with PJP, the overall rate of PJP including probable cases was 4.5% (18 cases from 397 patients). The NNF-related mortality rate was 10.3% (four deaths from 39 patients with NNF) while the FN-related mortality rate was only 1.3%. NNF was observed with incidence of 10% during R-CHOP treatment, and showed different clinical manifestations with respect to the time of initial episode and causes.
Park, Joong-Min; Hwang, In Gyu; Suh, Suk-Won; Chi, Kyong-Choun
2011-12-01
TS-1 is an oral anti-cancer agent for gastric cancer with a high response rate and low toxicity. We report a case of long-term drug retention of TS-1 causing interstitial lung disease (ILD) as a fatal adverse reaction. A 65-year-old woman underwent a total gastrectomy with pathologic confirmation of gastric adenocarcinoma. She received 6 cycles of TS-1 and low-dose cisplatin for post-operative adjuvant chemotherapy followed by single-agent maintenance therapy with TS-1. After 8 months, the patient complained of a productive cough with sputum and mild dyspnea. A pulmonary evaluation revealed diffuse ILD in the lung fields, bilaterally. In spite of discontinuing chemotherapy and the administration of corticosteroids, the pulmonary symptoms did not improve, and the patient died of pulmonary failure. TS-1-induced ILD can be caused by long-term drug retention that alters the lung parenchyma irreversibly, the outcome of which can be life-threatening. Pulmonary evaluation for early detection of disease is recommended.
Aidhy, Dilpuneet S.; Lu, Chenyang; Jin, Ke; ...
2015-08-08
Using molecular dynamics simulations, we elucidate irradiation-induced point defect evolution in fcc pure Ni, Ni 0.5Fe 0.5, and Ni 0.8Cr 0.2 solid solution alloys. We find that irradiation-induced interstitials form dislocation loops that are of 1/3 <111>{111}-type, consistent with our experimental results. While the loops are formed in all the three materials, the kinetics of formation is considerably slower in NiFe and NiCr than in pure Ni, indicating that defect migration barriers and extended defect formation energies could be higher in the alloys than pure Ni. As a result, while larger size clusters are formed in pure Ni, smaller andmore » more clusters are observed in the alloys. The vacancy diffusion occurs at relatively higher temperatures than interstitials, and their clustering leads to formation of stacking fault tetrahedra, also consistent with our experiments. The results also show that the surviving Frenkel pairs are composition-dependent and are largely Ni dominated.« less
Dynamic strain-aging effect on fracture toughness of vessel steels
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kang, S.S.; Kim, I.S.
1992-03-01
In this paper the effect of dynamic strain aging (DSA) on fracture is investigated on the quenched and tempered specimens of American Society of Mechanical Engineers (ASME) standard SA508 class 3 nuclear pressure vessel steel. Serrated flow by DSA is observed between 180 and 340{degrees}C at a tensile strain rate of 2.08 {times} 10{sup {minus}4}/s and 1.25 {times} 10{sup {minus}3}/s. The DSA causes a sharp rise in the ultimate tensile strength and a marked decrease in ductility. The DSA range shifts to higher temperatures with increased strain rates. The temperature and strain rate dependence of the onset of serrations yieldsmore » an activation energy of 16.2 kcal/mol, which suggests that the process is controlled by interstitial diffusion of carbon and nitrogen in ferrite. The J{sub i} value obtained from the direct current potential drop (DCPD) method, for true crack initiation, is lowered by DSA. The drop in J{sub i} at elevated temperatures may be because of the interaction of the interstitial impurities with dislocations at the crack front.« less
NASA Astrophysics Data System (ADS)
You, Yan; Yoshida, Katsumi; Yano, Toyohiko
2018-05-01
Boron carbide (B4C) is a leading candidate neutron absorber material for sodium-cooled fast nuclear reactors owing to its excellent neutron-capture capability. The formation and migration energies of the neutron-irradiation-induced defects, including vacancies, neutron-capture reaction products, and knocked-out atoms were studied by density functional theory calculations. The vacancy-type defects tend to migrate to the C–B–C chains of B4C, which indicates that the icosahedral cage structures of B4C have strong resistance to neutron irradiation. We found that lithium and helium atoms had significantly lower migration barriers along the rhombohedral (111) plane of B4C than perpendicular to this plane. This implies that the helium and lithium interstitials tended to follow a two-dimensional diffusion regime in B4C at low temperatures which explains the formation of flat disk like helium bubbles experimentally observed in B4C pellets after neutron irradiation. The knocked-out atoms are considered to be annihilated by the recombination of the close pairs of self-interstitials and vacancies.
Heathcote, Karen L; Cockcroft, Donald W; Fladeland, Derek A; Fenton, Mark E
2011-01-01
Pulmonary function tests in patients with idiopathic pulmonary fibrosis characteristically show a restrictive pattern including small lung volumes and increased expiratory flow rates resulting from a reduction in pulmonary compliance due to diffuse fibrosis. Conversely, an obstructive pattern with hyperinflation results in emphysema by loss of elastic recoil, expiratory collapse of the peripheral airways and air trapping. When the diseases coexist, pulmonary volumes are compensated, and a smaller than expected reduction or even normal lung volumes can be found. The present report describes 10 patients with progressive breathlessness, three of whom experienced severe limitation in their quality of life. All patients showed lung interstitial involvement and emphysema on computed tomography scan of the chest. The 10 patients showed normal spirometry and lung volumes with severe compromise of gas exchange. Normal lung volumes do not exclude diagnosis of idiopathic pulmonary fibrosis in patients with concomitant emphysema. The relatively preserved lung volumes may underestimate the severity of idiopathic pulmonary fibrosis and attenuate its effects on lung function parameters.
Kinetics of new thermal donors (NTDs) in CZ-silicon based on FTIR analysis
NASA Astrophysics Data System (ADS)
Singh, Rajeev; Singh, Shyam; Yadav, Bal Chandra
2018-05-01
Oxygen is quite friendly to silicon and is interstitially positioned well guarded by neighbouring silicon atoms on regular sites, provides mechanical strength to the silicon wafers and helps in internal gettering. Oxygen dimers are a fast diffusing species. Presence of trimers provides a wider platform for interconversion of dimer-trimer and V-O interaction. Oxygen atoms in isomeric positions really play a trick in the formation of TDD0 - TDD16. Other members of the donor species are likely due to the addition of dimers/trimers. FTIR analysis of boron-doped CZ-silicon annealed at 495 °C revealed a unique feature that the nature of 999 cm-1 absorption peak corresponding to TDD3 is contrary to 1107 cm-1 absorption peak corresponding to interstitial oxygen in silicon. Isothermal annealing at different temperatures also indicates slow disappearance of one donor species and emergence of other donor species. Thermal acceptors and recombination centers intrinsically present in the as grown silicon crystal and/or generated as a result of annealing do contribute to lower the donor concentration.
Unilateral lung transplantation for pulmonary fibrosis.
1986-05-01
Improvements in immunosuppression and surgical techniques have made unilateral lung transplantation feasible in selected patients with end-stage interstitial lung disease. We report two cases of successful unilateral lung transplantation for end-stage respiratory failure due to pulmonary fibrosis. The patients, both oxygen-dependent, had progressive disease refractory to all treatment, with an anticipated life expectancy of less than one year on the basis of the rate of progression of the disease. Both patients were discharged six weeks after transplantation and returned to normal life. They are alive and well at 26 months and 14 months after the procedure. Pulmonary-function studies have shown substantial improvement in their lung volumes and diffusing capacities. For both patients, arterial oxygen tension is now normal and there is no arterial oxygen desaturation with exercise. This experience shows that unilateral lung transplantation, for selected patients with end-stage interstitial lung disease, provides a good functional result. Moreover, it avoids the necessity for cardiac transplantation, as required by the combined heart-lung procedure, and permits the use of the donor heart for another recipient.
Novel cylindrical illuminator tip for ultraviolet light delivery
NASA Astrophysics Data System (ADS)
Shangguan, HanQun; Haw, Thomas E.; Gregory, Kenton W.; Casperson, Lee W.
1993-06-01
The design, processing, and sequential testing of a novel cylindrical diffusing optical fiber tip for ultraviolet light delivery is described. This device has been shown to uniformly (+/- 15%) illuminate angioplasty balloons, 20 mm in length, that are used in an experimental photochemotherapeutic treatment of swine intimal hyperplasia. Our experiments show that uniform diffusing tips of < 400 micron diameter can be reliably constructed for this and other interstitial applications. Modeling results indicate that this design is scalable to smaller diameters. The diffusing tips are made by stripping the protective buffer and etching away the cladding over a length of 20 mm from the fiber tip and replacing it with a thin layer of optical epoxy mixed with Al2O3 powder. To improve the uniformity and ease of fabrication, we have evaluated a new device configuration where the tip is etched into a modified conical shape, and the distal end face is polished and then coated with an optically opaque epoxy. This is shown to uniformly scatter approximately 70% of the light launched into the fiber without forward transmission.
NASA Technical Reports Server (NTRS)
Albert, Mary R.
2012-01-01
Dr. Albert's current research is centered on transfer processes in porous media, including air-snow exchange in the Polar Regions and in soils in temperate areas. Her research includes field measurements, laboratory experiments, and theoretical modeling. Mary conducts field and laboratory measurements of the physical properties of natural terrain surfaces, including permeability, microstructure, and thermal conductivity. Mary uses the measurements to examine the processes of diffusion and advection of heat, mass, and chemical transport through snow and other porous media. She has developed numerical models for investigation of a variety of problems, from interstitial transport to freezing of flowing liquids. These models include a two-dimensional finite element code for air flow with heat, water vapor, and chemical transport in porous media, several multidimensional codes for diffusive transfer, as well as a computational fluid dynamics code for analysis of turbulent water flow in moving-boundary phase change problems.
NASA Astrophysics Data System (ADS)
Bauer, Daniel R.; Stevens, Benjamin; Taft, Jefferson; Chafin, David; Petre, Vinnie; Theiss, Abbey P.; Otter, Michael
2014-03-01
Recently, it has been demonstrated that the preservation of cancer biomarkers, such as phosphorylated protein epitopes, in formalin-fixed paraffin-embedded tissue is highly dependent on the localized concentration of the crosslinking agent. This study details a real-time diffusion monitoring system based on the acoustic time-of-flight (TOF) between pairs of 4 MHz focused transducers. Diffusion affects TOF because of the distinct acoustic velocities of formalin and interstitial fluid. Tissue is placed between the transducers and vertically translated to obtain TOF values at multiple locations with a spatial resolution of approximately 1 mm. Imaging is repeated for several hours until osmotic equilibrium is reached. A post-processing technique, analogous to digital acoustic interferometry, enables detection of subnanosecond TOF differences. Reference subtraction is used to compensate for environmental effects. Diffusion measurements with TOF monitoring ex vivo human tonsil tissue are well-correlated with a single exponential curve (R2>0.98) with a magnitude of up to 50 ns, depending on the tissue size (2-6 mm). The average exponential decay constant of 2 and 6 mm diameter samples are 20 and 315 minutes, respectively, although times varied significantly throughout the tissue (σmax=174 min). This technique can precisely monitor diffusion progression and could be used to mitigate effects from tissue heterogeneity and intersample variability, enabling improved preservation of cancer biomarkers distinctly sensitive to degradation during preanalytical tissue processing.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Yildirim, Handan; Kinaci, Alper; Chan, Maria K. Y.
The formation mechanism and composition of the solid electrolyte interphase (SEI) in lithium ion batteries has been widely explored. However, relatively little is known about the function of the SEI as a transport medium. Such critical information is directly relevant to battery rate performance, power loss, and capacity fading. To partially bridge this gap in the case of inorganic SEI compounds, we report herein the results of first-principles calculations on the defect thermodynamics, the dominant diffusion carriers, and the diffusion pathways associated with crystalline LiF and NaF, which are stable components of the SEI in Li-ion and Na-ion batteries, respectively.more » The thermodynamics of common point defects are computed, and the dominant diffusion carriers are determined over a voltage range of 0-4 V, corresponding to conditions relevant to both anode and cathode SEI's. Our analyses reveal that for both compounds, vacancy defects are energetically more favorable, therefore form more readily than interstitials, due to the close-packed nature of the crystal structures. However, the vacancy concentrations are very small for the diffusion processes facilitated by defects. Ionic conductivities are calculated as a function of voltage, considering the diffusion carrier concentration and the diffusion barriers as determined by nudged elastic band calculations. These conductivities are more than ten orders of magnitude smaller in NaF than in LiF. As compared to the diffusivity of Li in other common inorganic SEI compounds, such as Li2CO3 and Li2O,the cation diffusivity in LiF and NaF is quite low, with at least three orders of magnitude lower ionic conductivities. The results quantify the extent to which fluorides pose rate limitations in Li and Na batteries.« less
Phosphorus ionization in silicon doped by self-assembled macromolecular monolayers
NASA Astrophysics Data System (ADS)
Wu, Haigang; Li, Ke; Gao, Xuejiao; Dan, Yaping
2017-10-01
Individual dopant atoms can be potentially controlled at large scale by the self-assembly of macromolecular dopant carriers. However, low concentration phosphorus dopants often suffer from a low ionization rate due to defects and impurities introduced by the carrier molecules. In this work, we demonstrated a nitrogen-free macromolecule doping technique and investigated the phosphorus ionization process by low temperature Hall effect measurements. It was found that the phosphorus dopants diffused into the silicon bulk are in nearly full ionization. However, the electrons ionized from the phosphorus dopants are mostly trapped by deep level defects that are likely carbon interstitials.
Diffusion of Mg dopant in metal-organic vapor-phase epitaxy grown GaN and AlxGa1-xN
NASA Astrophysics Data System (ADS)
Köhler, K.; Gutt, R.; Wiegert, J.; Kirste, L.
2013-02-01
Diffusion of the p-type dopant Mg in GaN and AlxGa1-xN which is accompanied by segregation and affected by transient effects in metal-organic vapor-phase epitaxy reactors is investigated. We have grown 110 nm thick Mg doped GaN and Al0.1Ga0.9N layers on top of undoped GaN and Al0.1Ga0.9N layers, respectively, in a temperature range between 925 °C and 1050 °C where we placed special emphasis on the lower temperature limit without diffusion to allow separation of Mg transients, diffusion, and segregation. Hereby, AlxGa1-xN layers enable monitoring of the resolution limit by secondary ion mass spectrometry analyses for the respective samples; therefore, thin AlxGa1-xN marker layers are incorporated in the thick GaN layers. We found an upper limit of 1.25 × 1019 cm-3 for diffusing Mg atoms in both sample types. Owing to the marked influence of Mg segregation in Al0.1Ga0.9N, diffusion is only seen by using a GaN cap on top of the Al0.1Ga0.9N layer sequence. Diffusion in Al0.1Ga0.9N is shown to be increased by about 25%-30% compared to GaN. Post growth annealing experiments under conditions equivalent to those used for growth of the Mg doped samples showed negligible diffusion. Comparing the results to well established findings on other doped III-V compounds, diffusion is explained by an interstitial-substitutional mechanism with a diffusion coefficient, which is concentration dependent. Analysis of the temperature dependent diffusivity revealed an activation energy of 5.0 eV for GaN:Mg and 5.2 eV for Al0.1Ga0.9N:Mg.
Towards the use of bioresorbable fibers in time-domain diffuse optics.
Di Sieno, Laura; Boetti, Nadia G; Dalla Mora, Alberto; Pugliese, Diego; Farina, Andrea; Konugolu Venkata Sekar, Sanathana; Ceci-Ginistrelli, Edoardo; Janner, Davide; Pifferi, Antonio; Milanese, Daniel
2018-01-01
In the last years bioresorbable materials are gaining increasing interest for building implantable optical components for medical devices. In this work we show the fabrication of bioresorbable optical fibers designed for diffuse optics applications, featuring large core diameter (up to 200 μm) and numerical aperture (0.17) to maximize the collection efficiency of diffused light. We demonstrate the suitability of bioresorbable fibers for time-domain diffuse optical spectroscopy firstly checking the intrinsic performances of the setup by acquiring the instrument response function. We then validate on phantoms the use of bioresorbable fibers by applying the MEDPHOT protocol to assess the performance of the system in measuring optical properties (namely, absorption and scattering coefficients) of homogeneous media. Further, we show an ex-vivo validation on a chicken breast by measuring the absorption and scattering spectra in the 500-1100 nm range using interstitially inserted bioresorbable fibers. This work represents a step toward a new way to look inside the body using optical fibers that can be implanted in patients. These fibers could be useful either for diagnostic (e. g. for monitoring the evolution after surgical interventions) or treatment (e. g. photodynamic therapy) purposes. Picture: Microscopy image of the 100 μm core bioresorbable fiber. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
NASA Astrophysics Data System (ADS)
Liu, Peitao; Xing, Weiwei; Cheng, Xiyue; Li, Dianzhong; Li, Yiyi; Chen, Xing-Qiu
2014-07-01
By means of first-principles calculations coupled with the kinetic Monte Carlo simulations, we have systematically investigated the effects of dilute substitutional solutes on the behaviors of carbon in α-Fe. Our results uncover the following. (i) Without the Fe vacancy the interactions between most solutes and carbon are repulsive due to the strain relief, whereas Mn has a weak attractive interaction with its nearest-neighbor carbon due to the local ferromagnetic coupling effect. (ii) The presence of the Fe vacancy results in attractive interactions of all the solutes with carbon. In particular, the Mn-vacancy pair shows an exceptionally large binding energy of -0.81 eV with carbon. (iii) The alloying addition significantly impacts the atomic-scale concentration distributions and chemical potential of carbon in the Fe matrix. Among them, Mn and Cr increase the carbon chemical potential, whereas Al and Si reduce it. (iv) Within the dilute scale of the alloying solution, the solute concentration- and temperature-dependent carbon diffusivities demonstrate that Mn has a little impact on the carbon diffusion, whereas Cr (Al or Si) remarkably retards the carbon diffusion. Our results provide a certain implication for better understanding the experimental observations related with the carbon solubility limit, carbon microsegregation, and carbide precipitations in the ferritic steels.
NASA Astrophysics Data System (ADS)
Weersink, Robert A.; Chaudhary, Sahil; Mayo, Kenwrick; He, Jie; Wilson, Brian C.
2017-04-01
We develop and demonstrate a simple shape-based approach for diffuse optical tomographic reconstruction of coagulative lesions generated during interstitial photothermal therapy (PTT) of the prostate. The shape-based reconstruction assumes a simple ellipsoid shape, matching the general dimensions of a cylindrical diffusing fiber used for light delivery in current clinical studies of PTT in focal prostate cancer. The specific requirement is to accurately define the border between the photothermal lesion and native tissue as the photothermal lesion grows, with an accuracy of ≤1 mm, so treatment can be terminated before there is damage to the rectal wall. To demonstrate the feasibility of the shape-based diffuse optical tomography reconstruction, simulated data were generated based on forward calculations in known geometries that include the prostate, rectum, and lesions of varying dimensions. The only source of optical contrast between the lesion and prostate was increased scattering in the lesion, as is typically observed with coagulation. With noise added to these forward calculations, lesion dimensions were reconstructed using the shape-based method. This approach for reconstruction is shown to be feasible and sufficiently accurate for lesions that are within 4 mm from the rectal wall. The method was also robust for irregularly shaped lesions.
Solution and diffusion of hydrogen isotopes in tungsten-rhenium alloy
NASA Astrophysics Data System (ADS)
Ren, Fei; Yin, Wen; Yu, Quanzhi; Jia, Xuejun; Zhao, Zongfang; Wang, Baotian
2017-08-01
Rhenium is one of the main transmutation elements forming in tungsten under neutron irradiation. Therefore, it is essential to understand the influence of rhenium impurity on hydrogen isotopes retention in tungsten. First-principle calculations were used to study the properties of hydrogen solution and diffusion in perfect tungsten-rhenium lattice. The interstitial hydrogen still prefers the tetrahedral site in presence of rhenium, and rhenium atom cannot act directly as a trapping site of hydrogen. The presence of rhenium in tungsten raises the solution energy and the real normal modes of vibration on the ground state and the transition state, compared to hydrogen in pure tungsten. Without zero point energy corrections, the presence of rhenium decreases slightly the migration barrier. It is found that although the solution energy would tend to increase slightly with the rising of the concentration of rhenium, but which does not influence noticeably the solution energy of hydrogen in tungsten-rhenium alloy. The solubility and diffusion coefficient of hydrogen in perfect tungsten and tungsten-rhenium alloy have been estimated, according to Sievert's law and harmonic transition state theory. The results show the solubility of hydrogen in tungsten agrees well the experimental data, and the presence of Re would decrease the solubility and increase the diffusivity for the perfect crystals.
Das, Hiranmoy; Wang, Zhihui; Niazi, M Khalid Khan; Aggarwal, Reeva; Lu, Jingwei; Kanji, Suman; Das, Manjusri; Joseph, Matthew; Gurcan, Metin; Cristini, Vittorio
2013-01-01
Molecular-focused cancer therapies, e.g., molecularly targeted therapy and immunotherapy, so far demonstrate only limited efficacy in cancer patients. We hypothesize that underestimating the role of biophysical factors that impact the delivery of drugs or cytotoxic cells to the target sites (for associated preferential cytotoxicity or cell signaling modulation) may be responsible for the poor clinical outcome. Therefore, instead of focusing exclusively on the investigation of molecular mechanisms in cancer cells, convection-diffusion of cytotoxic molecules and migration of cancer-killing cells within tumor tissue should be taken into account to improve therapeutic effectiveness. To test this hypothesis, we have developed a mathematical model of the interstitial diffusion and uptake of small cytotoxic molecules secreted by T-cells, which is capable of predicting breast cancer growth inhibition as measured both in vitro and in vivo. Our analysis shows that diffusion barriers of cytotoxic molecules conspire with γδ T-cell scarcity in tissue to limit the inhibitory effects of γδ T-cells on cancer cells. This may increase the necessary ratios of γδ T-cells to cancer cells within tissue to unrealistic values for having an intended therapeutic effect, and decrease the effectiveness of the immunotherapeutic treatment.
Keyes, Joseph T.; Simon, Bruce R.; Vande Geest, Jonathan P.
2013-01-01
Purpose Arterial wall mass transport properties dictate local distribution of biomolecules or locally delivered dugs. Knowing how these properties vary between coronary artery locations could provide insight into how therapy efficacy is altered between arterial locations. Methods We introduced an indocarbocyanine drug surrogate to the lumens of left anterior descending and right coronary (LADC; RC) arteries from pigs with or without a pressure gradient. Interstitial fluorescent intensity was measured on live samples with multiphoton microscopy. We also measured binding to porcine coronary SMCs in monoculture. Results Diffusive transport constants peaked in the middle sections of the LADC and RC arteries by 2.09 and 2.04 times, respectively, compared to the proximal and distal segments. There was no statistical difference between the average diffusivity value between LADC and RC arteries. The convection coefficients had an upward trend down each artery, with the RC being higher than the LADC by 3.89 times. Conclusions This study demonstrates that the convective and diffusive transport of lipophilic molecules changes between the LADC and the RC arteries as well as along their length. These results may have important implications in optimizing drug delivery for the treatment of coronary artery disease. PMID:23224981
Advances in the treatment of rheumatic interstitial lung disease.
Vassallo, Robert; Thomas, Charles F
2004-05-01
Interstitial lung disease frequently complicates the rheumatic diseases. The purpose of this review is to outline recent advances and current concepts regarding the management of these interstitial lung diseases. Several histologic lesions cause interstitial lung disease in rheumatic diseases, including nonspecific interstitial pneumonia, usual interstitial pneumonia, organizing pneumonia, lymphocytic interstitial pneumonia, desquamative interstitial pneumonia, and acute interstitial pneumonia. Although the relative frequency of occurrence of these histopathologic lesions is not definitively established, it seems that nonspecific interstitial pneumonia accounts for a large proportion of rheumatic disease-associated interstitial lung diseases. Although usual interstitial pneumonia generally responds poorly to corticosteroid therapy, other forms of interstitial pneumonia are often steroid responsive and have a more favorable long-term prognosis. Pulmonary hypertension is increasingly recognized as a complication of these interstitial lung diseases. Treatment of pulmonary hypertension in these patients provides clinical benefit and may suppress pulmonary inflammation and fibrosis. Lung transplantation is a treatment option for selected patients with severe pulmonary involvement and limited life expectancy. Interstitial lung disease is common in the rheumatic diseases, may be caused by a variety of lesions that respond differently to treatment, and may lead to the development of pulmonary hypertension. Whether the prognosis of interstitial lung disease associated with rheumatic disease is similar to that associated with the idiopathic interstitial pneumonias is not known. Treatment of these interstitial lung diseases should take into account the specific histologic lesion, the activity of the underlying rheumatic disease, and associated pulmonary hypertension, if present. The diagnosis of a rheumatic disease is no longer an absolute contraindication to lung transplantation.
Bardoxolone Methyl Evaluation in Patients With Pulmonary Hypertension (PH) - LARIAT
2018-06-08
Pulmonary Arterial Hypertension; Pulmonary Hypertension; Interstitial Lung Disease; Idiopathic Interstitial Pneumonia; Idiopathic Pulmonary Fibrosis; Sarcoidosis; Respiratory Bronchiolitis Associated Interstitial Lung Disease; Desquamative Interstitial Pneumonia; Cryptogenic Organizing Pneumonia; Acute Interstitial Pneumonitis; Idiopathic Lymphoid Interstitial Pneumonia; Idiopathic Pleuroparenchymal Fibroelastosis
Li, Y Q; Sheng, Y; Liang, L; Zhao, Y; Li, H Y; Bai, N; Wang, T; Yuan, L; Han, H B
2018-04-18
To investigate the application of the optical magnetic bimodal molecular probe Gd-DO3A-ethylthiouret-fluorescein isothiocyanate (Gd -DO3A-EA-FITC) in brain tissue imaging and brain interstitial space (ISS). In the study, 24 male SD rats were randomly divided into 3 groups, including magnetic probe group (n=6), optical probe group (n=6) and optical magnetic bimodal probe group (n=12), then the optical magnetic bimodal probe group was divided equally into magnetic probe subgroup (n=6) and optical probe subgroup (n=6). Referencing the brain stereotaxic atlas, the coronal globus pallidus as center level, the probes including gadolinium-diethylene triamine pentaacetic acid (Gd-DTPA), fluorescein isothiocyanate (FITC) and Gd-DO3A-EA-FITC of 2 μL (10 mmol/L) were injected into the caudate nucleus respectively, magnetic resonance imaging (MRI) was performed in the magnetic probe group and magnetic probe subgroup to image the dynamic diffusion and distribution of the probes in the brain ISS, a self-developed brain ISS image processing system was used to measure the diffusion coefficient, clearance, volume fraction and half-time in these two groups. Laser scanning confocal microscope (LSCM) was performed in vitro in the optical probe group and optical probe subgroup for fluorescence imaging at the time points 2 hours after the injection of the probe, and the distribution in the oblique sagittal slice was compared with the result of the first two groups. For the magnetic probe group and magnetic probe subgroup, there were the same imaging results between the probes of Gd-DTPA and Gd-DO3A-EA-FITC. The diffusion parameters of Gd-DTPA and Gd-DO3A-EA-FITC were as follows: the average diffusion coefficients [(3.31±0.11)×10 -4 mm 2 /s vs. (3.37±0.15)×10 -4 mm 2 /s, t=0.942, P=0.360], the clearance [(3.04±0.37) mmol/L vs. (2.90±0.51) mmol/L, t=0.640, P=0.531], the volume fractions (17.18%±0.14% vs. 17.31%±0.15%, t=1.961, P=0.068), the half-time [(86.58±3.31) min vs. (84.61±2.38) min, t=1.412, P=0.177], the diffusion areas [(23.25±0.68) mm 2 vs. (22.71±1.00) mm 2 , t=1.100, P=0.297]. The statistical analysis of each brain was made by t test, and the diffusion parameters were not statistically significant. Moreover, for the optical probe group and optical probe subgroup, the diffusion area of Gd-DO3A-EA-FITC [(22.61±1.16) mm 2 ] was slightly larger than that of FITC [(22.10±1.29) mm 2 ], the statistical analysis of each brain was made by t test, and the diffusion parameters were not statistically significant (t=0.713, P=0.492). Gd-DO3A-EA-FITC shows the same imaging results as the traditional GD-DTPA, and it can be used in measuring brain ISS.
Magnetic resonance image-guided photodynamic therapy of xenograft pancreas tumors with verteporfin
NASA Astrophysics Data System (ADS)
Samkoe, Kimberley S.; Chen, Alina; Rizvi, Imran; O'Hara, Julia A.; Hoopes, P. Jack; Hasan, Tayyaba; Pogue, Brian W.
2009-02-01
Pancreatic cancer generally has very poor prognosis, with less than 4% survival at 5 years after diagnosis. This dismal survival rate is in part due to the aggressive nature of the adenocarcinoma, leading to a late-stage at diagnosis and exhibits resistance to most therapies. Photodynamic therapy (PDT) is a model cellular and vascular therapy agent, which uses light activation of the delivered drug to photosensitize the local cellular millieu. We suggest that interstitial verteporfin (benzoporphyrin derivative monoacid ring A) PDT has the potential to be an adjuvant therapy to the commonly used Gemcitabine chemotherapy. In the current study, an orthotopic pancreatic cancer model (Panc-1) has undergone interstitial verteporfin PDT (40 J/cm with verteporfin and 40 J/cm without verteporfin). Prior to PDT, magnetic resonance (MR) imaging was used to determine the location and size of the tumor within the pancreas, allowing accurate placement of the diffusing fiber. The success of therapy was monitored in vivo by assessing the total tumor and vascular perfusion volumes 24 hours pre- and 48 hours post-PDT. Total tumor and vascular perfusion volumes were determined using T2 weighted (T2W) and Gd-DTPA difference T1 weighted (T1W) turbo spin echo (TSE) MR imaging sequences, respectively. The validity of the in vivo imaging for therapeutic response was confirmed by ex vivo fluorescence and histological staining of frozen tissue sections. The ex vivo DiOC7(3) fluorescence analysis correlates well with the information provided from the MR images, indicating that MR imaging will be a successful surrogate marker for interstitial PDT.
Chest ultrasonography in health surveillance of asbestos-related lung diseases.
Smargiassi, Andrea; Pasciuto, Giuliana; Pedicelli, Ilaria; Lo Greco, Erminia; Calvello, Mariarosaria; Inchingolo, Riccardo; Schifino, Gioacchino; Capoluongo, Patrizio; Patriciello, Pasquale; Manno, Maurizio; Cirillo, Alfonso; Corbo, Giuseppe Maria; Soldati, Gino; Iavicoli, Ivo
2017-06-01
Exposure to asbestos fibers can lead to different lung diseases, such as pleural thickening and effusion, asbestosis, mesothelioma, and lung cancer. These diseases are expected to peak in the next few years. The aim of the study was to validate ultrasonography (US) as a diagnostic tool in the management of lung diseases in subjects with a history of occupational exposure to asbestos. Fifty-nine retired male workers previously exposed to asbestos were enrolled in the study. Chest US was performed in all the subjects. The US operator was blinded to earlier performed computed tomography (CT) scan reports and images. The sonographic pathological findings were pleural thickening (with or without calcifications), peripheral lung consolidation, and focal sonographic interstitial syndrome and diffuse pneumogenic sonographic interstitial syndrome (pulmonary asbestosis). Significant US findings were recorded, stored, and subsequently compared with CT scans. With some patients falling into more than one category, on CT scan, pleural thickening was reported in 33 cases (56%, 26 with calcifications), focal interstitial peripheral alterations in 23 (39%), asbestosis in 6 (10%), and peripheral lung consolidation in 13 cases (22%). Comparing each pathological condition to CT scan reports, US findings had high levels of sensitivity, specificity, positive, and negative predictive values. US did not prove effective for the detection of central lung nodules or diaphragmatic pleural thickenings. Chest US was considered to be the best technique to detect minimal pleural effusions (six subjects, 10%). Chest US might be considered an additional tool to follow up subjects occupationally exposed to asbestos who have already undergone CT scan examination and whose pathology is detectable by US as well.
Watanabe, Satoshi; Saeki, Keigo; Waseda, Yuko; Murata, Akari; Takato, Hazuki; Ichikawa, Yukari; Yasui, Masahide; Kimura, Hideharu; Hamaguchi, Yasuhito; Matsushita, Takashi; Yamada, Kazunori; Kawano, Mitsuhiro; Furuichi, Kengo; Wada, Takashi; Kasahara, Kazuo
2018-02-01
Lung cancer (LC) adversely impacts survival in patients with idiopathic pulmonary fibrosis. However, little is known about LC in patients with connective tissue disease-associated interstitial lung disease (CTD-ILD). The aim of this study was to evaluate the prevalence of and risk factors for LC in CTD-ILD, and the clinical characteristics and survival of CTD-ILD patients with LC. We conducted a single-center, retrospective review of patients with CTD-ILD from 2003 to 2016. Patients with pathologically diagnosed LC were identified. The prevalence, risk factors, and clinical features of LC and the impact of LC on CTD-ILD patient outcomes were observed. Of 266 patients with CTD-ILD, 24 (9.0%) had LC. CTD-ILD with LC was more likely in patients who were older, male, and smokers; had rheumatoid arthritis, a usual interstitial pneumonia pattern, emphysema on chest computed tomography scan, and lower diffusing capacity of the lung carbon monoxide (DLco)% predicted; and were not receiving immunosuppressive therapy. Multivariate analysis indicated that the presence of emphysema [odds ratio (OR), 8.473; 95% confidence interval (CI), 2.241-32.033] and nonuse of immunosuppressive therapy (OR, 8.111; 95% CI, 2.457-26.775) were independent risk factors for LC. CTD-ILD patients with LC had significantly worse survival than patients without LC (10-year survival rate: 28.5% vs. 81.8%, P<0.001). LC is associated with the presence of emphysema and nonuse of immunosuppressive therapy, and contributes to increased mortality in patients with CTD-ILD.
Kim, Yoong Ahm; Kojima, Masahito; Muramatsu, Hiroyuki; Umemoto, Souichiro; Watanabe, Takaaki; Yoshida, Kazuto; Sato, Keigo; Ikeda, Takuya; Hayashi, Takuya; Endo, Morinobu; Terrones, Mauricio; Dresselhaus, Mildred S
2006-05-01
We investigated the electrochemical lithium ion (Li(+)) insertion/desertion behavior on highly pure and bundled single- and double-walled carbon nanotubes (SWNTs and DWNTs) using an in situ Raman technique. In general, two storage sites could host Li(+) in SWNT and DWNT bundles when varying an external potential: a) the outer surface sites, and b) the interstitial spaces within the bundles. The most sensitive changes in the tangential mode (TM) of the Raman spectra upon doping with Li(+) can be divided into two regions. The first region was found from 2.8 to 1.0 V (the coverage of Li(+) on the outer surface of a bundled nanotube) and was characterized by the loss of resonant conditions via partial charge transfer, where the G(+) line of the SWNT and the TM of the outer tube of DWNTs experienced a highly depressed intensity, but remained almost constant in frequency. The appearance of a Breit-Wigner-Fano (BWF) profile provided strong evidence of metallic inner tubes within DWNTs. The second region was observed when the applied potentials ranged from 0.9 to 0 V and was characterized by Li(+) diffusion into the interstitial sites of the bundled nanotube material. This phenomenon invoked a large downshift of the G(-) band in SWNTs, and a small downshift of the TM of the inner tube of DWNTs caused by expansion of the C--C bonds due to the charge transferred to the nanotubes, and the disappearance of the BWF profile through the screening effect of the interstitial Li(+) layers.
C Diffusion in Fe: Isotope Effects and Other Complexities
NASA Astrophysics Data System (ADS)
Watson, E. B.; Muller, T.; Trail, D.; Van Orman, J. A.; Papineau, D.
2011-12-01
Carbon is a minor but significant component of iron meteorites, and probably also of planetary cores, including that of Earth. Given the dynamical nature of core-forming processes, C diffusion in the metal phase may play a role in C equilibration between Fe-Ni metal and silicate, carbide or oxide at some stage. Despite its relevance to steel-making, C diffusion in Fe is not well characterized over the range of conditions of interest in planetary bodies, and the likelihood of an isotope mass effect on C diffusion has not been explored. The prospect of incomplete diffusive equilibration of carbon in Fe-Ni raises the possibility that carbon isotopes might be fractionated by diffusion during core formation and evolution-perhaps to an extent that could affect the C isotope ratio of the bulk silicate Earth. Here we report results of preliminary experiments addressing the isotopic mass effect on C diffusion in Fe. Initial low-pressure experiments were conducted by placing a layer of ^{13}C-enriched graphite ( 20% ^{13}C) at the end of a high-purity, polycrystalline Fe cylinder in a silica glass container. These diffusion couples were run in a piston-cylinder apparatus at 1.5 GPa and 1000-1100^{o}C for several hours, and the resulting C-uptake profiles in the Fe cylinders were measured by EPMA and SIMS. In traverses moving away from the original C-Fe interface, total carbon decreases monotonically and becomes significantly lighter, indicating that ^{12}C diffuses faster than ^{13}C. Preliminary estimates of β in the relative isotope diffusivity relation D_{1}/D_{2} = [M_{2}/M_{1}]^{β} (where D is diffusivity and M is mass of isotopes 1 and 2) suggest values as high as 0.5, corresponding to predictions for gaseous diffusion. Isotope mass effects approaching this magnitude have been observed previously for diffusion in metals, and are expected to be highest for interstitial diffusion. Such a high β value will lead to major C isotope fractionation in some partial equilibration scenarios in planets and meteorite parent bodies. Caution is warranted at this point, however, because D_{carbon} is sensitive to carbon concentration, complicating quantification of the isotope effect.
Vuong, A.-T.; Rauch, A. D.
2017-01-01
We present a computational model for the interaction of surface- and volume-bound scalar transport and reaction processes with a deformable porous medium. The application in mind is pericellular proteolysis, i.e. the dissolution of the solid phase of the extracellular matrix (ECM) as a response to the activation of certain chemical species at the cell membrane and in the vicinity of the cell. A poroelastic medium model represents the extra cellular scaffold and the interstitial fluid flow, while a surface-bound transport model accounts for the diffusion and reaction of membrane-bound chemical species. By further modelling the volume-bound transport, we consider the advection, diffusion and reaction of sequestered chemical species within the extracellular scaffold. The chemo-mechanical coupling is established by introducing a continuum formulation for the interplay of reaction rates and the mechanical state of the ECM. It is based on known experimental insights and theoretical work on the thermodynamics of porous media and degradation kinetics of collagen fibres on the one hand and a damage-like effect of the fibre dissolution on the mechanical integrity of the ECM on the other hand. The resulting system of partial differential equations is solved via the finite-element method. To the best of our knowledge, it is the first computational model including contemporaneously the coupling between (i) advection–diffusion–reaction processes, (ii) interstitial flow and deformation of a porous medium, and (iii) the chemo-mechanical interaction impelled by the dissolution of the ECM. Our numerical examples show good agreement with experimental data. Furthermore, we outline the capability of the methodology to extend existing numerical approaches towards a more comprehensive model for cellular biochemo-mechanics. PMID:28413347
Pulmonary lymphangitic carcinomatosis (PLC): spectrum of FDG-PET findings.
Acikgoz, Gunsel; Kim, Sung M; Houseni, Mohamed; Cermik, Tevfik F; Intenzo, Charles M; Alavi, Abass
2006-11-01
The lungs are among the most common sites for metastases from a multitude of cancers. The majority of pulmonary metastases appear nodular on radiologic images. Interstitial spread of tumor through pulmonary lymphatics, also known as pulmonary lymphangitic carcinomatosis (PLC), is not uncommon and constitutes approximately 7% of pulmonary metastases. PLC is most often seen with adenocarcinoma of a variety of histologies such as thyroid carcinoma, and melanoma. It is usually noted in late stages of malignancy and therefore is indicative of a poor prognosis. Diagnosis of PLC is usually based on a combination of clinical and radiologic findings. However, the diagnosis is difficult when patients have limited clinical findings or have a history of or the possibility of other interstitial lung diseases. High-resolution computed tomography (HRCT) has been the modality of choice in the radiologic diagnosis of PLC. Imaging features of PLC on HRCT include thickening of interlobular septa, fissures, and bronchovascular bundles. Distribution of PLC may be focal or diffuse, unilateral or bilateral, and symmetric or asymmetric. Although FDG-PET has been extensively used in primary or secondary lung malignancies, its role and appearance in PLC have not been well determined in the literature. In this communication, we describe a spectrum of FDG-PET and CT findings in 5 cases with PLC. Similar to CT, the distribution of PLC can be extensive or limited on the FDG-PET. Diffuse, lobar, or segmental FDG uptake in the lungs is seen in extensive PLC. In limited PLC, a linear or a hazy area of FDG uptake extending from the tumor can be seen. Recognition of various patterns related to PLC on FDG-PET may allow accurate diagnosis of disease and could potentially influence the management of these patients.
Jun, Sanghoon; Kim, Namkug; Seo, Joon Beom; Lee, Young Kyung; Lynch, David A
2017-12-01
We propose the use of ensemble classifiers to overcome inter-scanner variations in the differentiation of regional disease patterns in high-resolution computed tomography (HRCT) images of diffuse interstitial lung disease patients obtained from different scanners. A total of 600 rectangular 20 × 20-pixel regions of interest (ROIs) on HRCT images obtained from two different scanners (GE and Siemens) and the whole lung area of 92 HRCT images were classified as one of six regional pulmonary disease patterns by two expert radiologists. Textual and shape features were extracted from each ROI and the whole lung parenchyma. For automatic classification, individual and ensemble classifiers were trained and tested with the ROI dataset. We designed the following three experimental sets: an intra-scanner study in which the training and test sets were from the same scanner, an integrated scanner study in which the data from the two scanners were merged, and an inter-scanner study in which the training and test sets were acquired from different scanners. In the ROI-based classification, the ensemble classifiers showed better (p < 0.001) accuracy (89.73%, SD = 0.43) than the individual classifiers (88.38%, SD = 0.31) in the integrated scanner test. The ensemble classifiers also showed partial improvements in the intra- and inter-scanner tests. In the whole lung classification experiment, the quantification accuracies of the ensemble classifiers with integrated training (49.57%) were higher (p < 0.001) than the individual classifiers (48.19%). Furthermore, the ensemble classifiers also showed better performance in both the intra- and inter-scanner experiments. We concluded that the ensemble classifiers provide better performance when using integrated scanner images.
Jeon, Byoungseon; Van Overmeere, Quentin; van Duin, Adri C T; Ramanathan, Shriram
2013-02-14
Oxidation of iron surfaces and oxide growth mechanisms have been studied using reactive molecular dynamics. Oxide growth kinetics on Fe(100), (110), and (111) surface orientations has been investigated at various temperatures and/or an external electric field. The oxide growth kinetics decreases in the order of (110), (111), and (100) surfaces at 300 K over 1 ns timescale while higher temperature increases the oxidation rate. The oxidation rate shows a transition after an initial high rate, implying that the oxide formation mechanism evolves, with iron cation re-ordering. In early stages of surface oxide growth, oxygen transport through iron interstitial sites is dominant, yielding non-stoichiometric wüstite characteristics. The dominant oxygen inward transport decreases as the oxide thickens, evolving into more stoichiometric oxide phases such as wüstite or hematite. This also suggests that cation outward transport increases correspondingly. In addition to oxidation kinetics simulations, formed oxide layers have been relaxed in the range of 600-1500 K to investigate diffusion characteristics, fitting these results into an Arrhenius relation. The activation energy of oxygen diffusion in oxide layers formed on Fe(100), (110), and (111) surfaces was estimated to be 0.32, 0.26, and 0.28 eV, respectively. Comparison between our modeling results and literature data is then discussed. An external electric field (10 MV cm(-1)) facilitates initial oxidation kinetics by promoting oxygen transport through iron lattice interstitial sites, but reaches self-limiting thickness, showing that similar oxide formation stages are maintained when cation transport increases. The effect of the external electric field on iron oxide structure, composition, and oxide activation energy is found to be minimal, whereas cation outward migration is slightly promoted.
NASA Astrophysics Data System (ADS)
Zimmermann, Nils E. R.; Horton, Matthew K.; Jain, Anubhav; Haranczyk, Maciej
2017-11-01
Structure-property relationships form the basis of many design rules in materials science, including synthesizability and long-term stability of catalysts, control of electrical and optoelectronic behavior in semiconductors as well as the capacity of and transport properties in cathode materials for rechargeable batteries. The immediate atomic environments (i.e., the first coordination shells) of a few atomic sites are often a key factor in achieving a desired property. Some of the most frequently encountered coordination patterns are tetrahedra, octahedra, body and face-centered cubic as well as hexagonal closed packed-like environments. Here, we showcase the usefulness of local order parameters to identify these basic structural motifs in inorganic solid materials by developing classification criteria. We introduce a systematic testing framework, the Einstein crystal test rig, that probes the response of order parameters to distortions in perfect motifs to validate our approach. Subsequently, we highlight three important application cases. First, we map basic crystal structure information of a large materials database in an intuitive manner by screening the Materials Project (MP) database (61,422 compounds) for element-specific motif distributions. Second, we use the structure-motif recognition capabilities to automatically find interstitials in metals, semiconductor, and insulator materials. Our Interstitialcy Finding Tool (InFiT) facilitates high-throughput screenings of defect properties. Third, the order parameters are reliable and compact quantitative structure descriptors for characterizing diffusion hops of intercalants as our example of magnesium in MnO2-spinel indicates. Finally, the tools developed in our work are readily and freely available as software implementations in the pymatgen library, and we expect them to be further applied to machine-learning approaches for emerging applications in materials science.
Zimmermann, Nils E. R.; Horton, Matthew K.; Jain, Anubhav; ...
2017-11-13
Structure–property relationships form the basis of many design rules in materials science, including synthesizability and long-term stability of catalysts, control of electrical and optoelectronic behavior in semiconductors, as well as the capacity of and transport properties in cathode materials for rechargeable batteries. The immediate atomic environments (i.e., the first coordination shells) of a few atomic sites are often a key factor in achieving a desired property. Some of the most frequently encountered coordination patterns are tetrahedra, octahedra, body and face-centered cubic as well as hexagonal close packed-like environments. Here, we showcase the usefulness of local order parameters to identify thesemore » basic structural motifs in inorganic solid materials by developing classification criteria. We introduce a systematic testing framework, the Einstein crystal test rig, that probes the response of order parameters to distortions in perfect motifs to validate our approach. Subsequently, we highlight three important application cases. First, we map basic crystal structure information of a large materials database in an intuitive manner by screening the Materials Project (MP) database (61,422 compounds) for element-specific motif distributions. Second, we use the structure-motif recognition capabilities to automatically find interstitials in metals, semiconductor, and insulator materials. Our Interstitialcy Finding Tool (InFiT) facilitates high-throughput screenings of defect properties. Third, the order parameters are reliable and compact quantitative structure descriptors for characterizing diffusion hops of intercalants as our example of magnesium in MnO 2-spinel indicates. Finally, the tools developed in our work are readily and freely available as software implementations in the pymatgen library, and we expect them to be further applied to machine-learning approaches for emerging applications in materials science.« less
Microfluidic engineered high cell density three-dimensional neural cultures
NASA Astrophysics Data System (ADS)
Cullen, D. Kacy; Vukasinovic, Jelena; Glezer, Ari; La Placa, Michelle C.
2007-06-01
Three-dimensional (3D) neural cultures with cells distributed throughout a thick, bioactive protein scaffold may better represent neurobiological phenomena than planar correlates lacking matrix support. Neural cells in vivo interact within a complex, multicellular environment with tightly coupled 3D cell-cell/cell-matrix interactions; however, thick 3D neural cultures at cell densities approaching that of brain rapidly decay, presumably due to diffusion limited interstitial mass transport. To address this issue, we have developed a novel perfusion platform that utilizes forced intercellular convection to enhance mass transport. First, we demonstrated that in thick (>500 µm) 3D neural cultures supported by passive diffusion, cell densities <=5.0 × 103 cells mm-3 were required for survival. In 3D neuronal and neuronal-astrocytic co-cultures with increased cell density (>=104 cells mm-3), continuous medium perfusion at 2.0-11.0 µL min-1 improved viability compared to non-perfused cultures (p < 0.01), which exhibited widespread cell death and matrix degradation. In perfused cultures, survival was dependent on proximity to the perfusion source at 2.00-6.25 µL min-1 (p < 0.05); however, at perfusion rates of 10.0-11.0 µL min-1 survival did not depend on the distance from the perfusion source, and resulted in a preservation of cell density with >90% viability in both neuronal cultures and neuronal-astrocytic co-cultures. This work demonstrates the utility of forced interstitial convection in improving the survival of high cell density 3D engineered neural constructs and may aid in the development of novel tissue-engineered systems reconstituting 3D cell-cell/cell-matrix interactions.
Automated diagnosis of interstitial lung diseases and emphysema in MDCT imaging
NASA Astrophysics Data System (ADS)
Fetita, Catalin; Chang Chien, Kuang-Che; Brillet, Pierre-Yves; Prêteux, Françoise
2007-09-01
Diffuse lung diseases (DLD) include a heterogeneous group of non-neoplasic disease resulting from damage to the lung parenchyma by varying patterns of inflammation. Characterization and quantification of DLD severity using MDCT, mainly in interstitial lung diseases and emphysema, is an important issue in clinical research for the evaluation of new therapies. This paper develops a 3D automated approach for detection and diagnosis of diffuse lung diseases such as fibrosis/honeycombing, ground glass and emphysema. The proposed methodology combines multi-resolution 3D morphological filtering (exploiting the sup-constrained connection cost operator) and graph-based classification for a full characterization of the parenchymal tissue. The morphological filtering performs a multi-level segmentation of the low- and medium-attenuated lung regions as well as their classification with respect to a granularity criterion (multi-resolution analysis). The original intensity range of the CT data volume is thus reduced in the segmented data to a number of levels equal to the resolution depth used (generally ten levels). The specificity of such morphological filtering is to extract tissue patterns locally contrasting with their neighborhood and of size inferior to the resolution depth, while preserving their original shape. A multi-valued hierarchical graph describing the segmentation result is built-up according to the resolution level and the adjacency of the different segmented components. The graph nodes are then enriched with the textural information carried out by their associated components. A graph analysis-reorganization based on the nodes attributes delivers the final classification of the lung parenchyma in normal and ILD/emphysematous regions. It also makes possible to discriminate between different types, or development stages, among the same class of diseases.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zimmermann, Nils E. R.; Horton, Matthew K.; Jain, Anubhav
Structure–property relationships form the basis of many design rules in materials science, including synthesizability and long-term stability of catalysts, control of electrical and optoelectronic behavior in semiconductors, as well as the capacity of and transport properties in cathode materials for rechargeable batteries. The immediate atomic environments (i.e., the first coordination shells) of a few atomic sites are often a key factor in achieving a desired property. Some of the most frequently encountered coordination patterns are tetrahedra, octahedra, body and face-centered cubic as well as hexagonal close packed-like environments. Here, we showcase the usefulness of local order parameters to identify thesemore » basic structural motifs in inorganic solid materials by developing classification criteria. We introduce a systematic testing framework, the Einstein crystal test rig, that probes the response of order parameters to distortions in perfect motifs to validate our approach. Subsequently, we highlight three important application cases. First, we map basic crystal structure information of a large materials database in an intuitive manner by screening the Materials Project (MP) database (61,422 compounds) for element-specific motif distributions. Second, we use the structure-motif recognition capabilities to automatically find interstitials in metals, semiconductor, and insulator materials. Our Interstitialcy Finding Tool (InFiT) facilitates high-throughput screenings of defect properties. Third, the order parameters are reliable and compact quantitative structure descriptors for characterizing diffusion hops of intercalants as our example of magnesium in MnO 2-spinel indicates. Finally, the tools developed in our work are readily and freely available as software implementations in the pymatgen library, and we expect them to be further applied to machine-learning approaches for emerging applications in materials science.« less
[Measurement of CO diffusion capacity (II): Standardization and quality criteria].
Salcedo Posadas, A; Villa Asensi, J R; de Mir Messa, I; Sardón Prado, O; Larramona, H
2015-08-01
The diffusion capacity is the technique that measures the ability of the respiratory system for gas exchange, thus allowing a diagnosis of the malfunction of the alveolar-capillary unit. The most important parameter to assess is the CO diffusion capacity (DLCO). New methods are currently being used to measure the diffusion using nitric oxide (NO). There are other methods for measuring diffusion, although in this article the single breath technique is mainly referred to, as it is the most widely used and best standardized. Its complexity, its reference equations, differences in equipment, inter-patient variability and conditions in which the DLCO is performed, lead to a wide inter-laboratory variability, although its standardization makes this a more reliable and reproductive method. The practical aspects of the technique are analyzed, by specifying the recommendations to carry out a suitable procedure, the calibration routine, calculations and adjustments. Clinical applications are also discussed. An increase in the transfer of CO occurs in diseases in which there is an increased volume of blood in the pulmonary capillaries, such as in the polycythemia and pulmonary hemorrhage. There is a decrease in DLCO in patients with alveolar volume reduction or diffusion defects, either by altered alveolar-capillary membrane (interstitial diseases) or decreased volume of blood in the pulmonary capillaries (pulmonary embolism or primary pulmonary hypertension). Other causes of decreased or increased DLCO are also highlighted. Copyright © 2014 Asociación Española de Pediatría. Published by Elsevier España, S.L.U. All rights reserved.
NASA Astrophysics Data System (ADS)
Kimizuka, Hajime; Ogata, Shigenobu; Shiga, Motoyuki
2018-01-01
Understanding the underlying mechanism of the nanostructure-mediated high diffusivity of H in Pd is of recent scientific interest and also crucial for industrial applications. Here, we present a decisive scenario explaining the emergence of the fast lattice-diffusion mode of interstitial H in face-centered cubic Pd, based on the quantum mechanical natures of both electrons and nuclei under finite strains. Ab initio path-integral molecular dynamics was applied to predict the temperature- and strain-dependent free energy profiles for H migration in Pd over a temperature range of 150-600 K and under hydrostatic tensile strains of 0.0%-2.4%; such strain conditions are likely to occur in real systems, especially around the elastic fields induced by nanostructured defects. The simulated results revealed that, for preferential H location at octahedral sites, as in unstrained Pd, the activation barrier for H migration (Q ) was drastically increased with decreasing temperature owing to nuclear quantum effects. In contrast, as tetrahedral sites increased in stability with lattice expansion, nuclear quantum effects became less prominent and ceased impeding H migration. This implies that the nature of the diffusion mechanism gradually changes from quantum- to classical-like as the strain is increased. For H atoms in Pd at the hydrostatic strain of ˜2.4 % , we determined that the mechanism promoted fast lattice diffusion (Q =0.11 eV) of approximately 20 times the rate of conventional H diffusion (Q =0.23 eV) in unstrained Pd at a room temperature of 300 K.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ohori, N.P.; Sciurba, F.C.; Owens, G.R.
We report four cases of giant-cell interstitial pneumonia that occurred in association with exposure to hard metals. All patients presented with chronic interstitial lung disease and had open-lung biopsies that revealed marked interstitial fibrosis, cellular interstitial infiltrates, and prominent intraalveolar macrophages as well as giant cells displaying cellular cannibalism. We also review the literature to determine the sensitivity and specificity of giant-cell interstitial pneumonia for hard-metal pneumoconiosis. Although hard-metal pneumoconiosis may take the form of usual interstitial pneumonia, desquamative interstitial pneumonia, and giant-cell interstitial pneumonia, the finding of giant-cell interstitial pneumonia is almost pathognomonic of hard-metal disease and should provokemore » an investigation of occupational exposure. 25 references.« less
NASA Astrophysics Data System (ADS)
Karato, Shun-ichiro
2015-11-01
Nominally anhydrous minerals such as olivine dissolve hydrogen in a variety of forms including free (or interstitial) proton (Hrad) and two protons trapped at the M-site ((2 H)M×). The strength of chemical bonding between protons and the surrounding atoms are different among different species, and consequently protons belonging to different species likely have different mobility (diffusion coefficients). I discuss the role of diffusion of protons in different species in the isotope exchange and hydrogen-assisted electrical conductivity adding a few notes to the previous work by Karato (2013) including a new way to test the model. I conclude that in the case of isotope exchange, the interaction among these species is strong because diffusion is heterogeneous, whereas there is no strong interaction among different species in electrical conduction where diffusion is homogeneous (in an infinite crystal). Consequently, the slowest diffusing species controls the rate of isotope exchange, whereas the fastest diffusing species controls electrical conductivity leading to a different temperature dependence of activation energy and anisotropy. This model explains the differences in the activation energy and anisotropy between isotope diffusion and electrical conductivity, and predicts that the mechanism of electrical conductivity changes with temperature providing an explanation for most of the discrepancies among different experimental observations at different temperatures except for those by Poe et al. (2010) who reported anomalously high water content dependence and highly anisotropic activation energy. When the results obtained at high temperatures are used, most of the geophysically observed high and highly anisotropic electrical conductivity in the asthenosphere can be explained without invoking partial melting.
Characterization of oxygen and titanium diffusion at the anatase TiO2(001) surface
DOE Office of Scientific and Technical Information (OSTI.GOV)
Herman, Gregory S.; Zehr, Robert T.; Henderson, Michael A.
2013-06-01
The diffusion of intrinsic defects in a single crystal anatase TiO2(001) film was explored by isotopic labeling and static secondary ion mass spectrometry. Using both 46Ti and 18O as isotopic labels, we show that the anatase surface responds to redox imbalances by diffusion of both Ti and O into the bulk under vacuum reduction and (at least) Ti from the bulk to the surface during oxidation. The diffusion of Ti between the bulk and surface in anatase TiO2(001) closely resembles what was observed in the literature for the rutile TiO2(110) surface, however the latter is not known to have oxygenmore » diffusion between the bulk and surface under typical ultrahigh vacuum conditions. We speculate that the open lattice of the anatase bulk structure may facilitate independent diffusion of both point defects (Ti interstitials and O vacancies) or concerted diffusion of "TiO" subunits. The authors gratefully acknowledge S.A. Chambers of Pacific Northwest National Laboratory (PNNL) for providing the anatase samples. This research was supported by the U.S. Department of Energy (DOE) Office of Basic Energy Sciences, Chemical Sciences, Geosciences, and Biosciences Division, the Office of Naval Research Contract Number 200CAR262, and the Oregon Nanoscience and Microtechnologies Institute. PNNL is operated for the U.S. DOE by Battelle under Contract Number DE05-AC76RL0 1830. The research was performed in the William R. Wiley Environmental Molecular Sciences Laboratory, a national scientific user facility funded by the U.S. DOE Office of Biological and Environmental Research.« less
Paulin, Francisco; Doyle, Tracy J; Fletcher, Elaine A; Ascherman, Dana P; Rosas, Ivan O
2015-01-01
The prevalence of clinically evident interstitial lung disease in patients with rheumatoid arthritis is approximately 10%. An additional 33% of undiagnosed patients have interstitial lung abnormalities that can be detected with high-resolution computed tomography. Rheumatoid arthritis-interstitial lung disease patients have three times the risk of death compared to those with rheumatoid arthritis occurring in the absence of interstitial lung disease, and the mortality related to interstitial lung disease is rising. Rheumatoid arthritis-interstitial lung disease is most commonly classified as the usual interstitial pneumonia pattern, overlapping mechanistically and phenotypically with idiopathic pulmonary fibrosis, but can occur in a non-usual interstitial pneumonia pattern, mainly nonspecific interstitial pneumonia. Based on this, we propose two possible pathways to explain the coexistence of rheumatoid arthritis and interstitial lung disease: (i) Rheumatoid arthritis-interstitial lung disease with a non-usual interstitial pneumonia pattern may come about when an immune response against citrullinated peptides taking place in another site (e.g. the joints) subsequently affects the lungs; (ii) Rheumatoid arthritis-interstitial lung disease with a usual interstitial pneumonia pattern may represent a disease process in which idiopathic pulmonary fibrosis-like pathology triggers an immune response against citrullinated proteins that promotes articular disease indicative of rheumatoid arthritis. More studies focused on elucidating the basic mechanisms leading to different sub-phenotypes of rheumatoid arthritis-interstitial lung disease and the overlap with idiopathic pulmonary fibrosis are necessary to improve our understanding of the disease process and to define new therapeutic targets.
Tiffany Win, Theingi; Ambale Venkatesh, Bharath; Volpe, Gustavo J; Mewton, Nathan; Rizzi, Patricia; Sharma, Ravi K; Strauss, David G; Lima, Joao A; Tereshchenko, Larisa G
2015-01-01
Abnormal P-terminal force in lead V1 (PTFV1) is associated with an increased risk of heart failure, stroke, atrial fibrillation, and death. Our goal was to explore associations of left ventricular (LV) diffuse fibrosis with left atrial (LA) function and electrocardiographic (ECG) measures of LA electrical activity. Patients without atrial fibrillation (n = 91; mean age 59.5 years; 61.5% men; 65.9% white) with structural heart disease (spatial QRS-T angle ≥105° and/or Selvester QRS score ≥5 on ECG) but LV ejection fraction >35% underwent clinical evaluation, cardiac magnetic resonance, and resting ECG. LA function indices were obtained by multimodality tissue tracking using 2- and 4-chamber long-axis images. T1 mapping and late gadolinium enhancement were used to assess diffuse LV fibrosis and presence of scar. P-prime in V1 amplitude (PPaV1) and duration (PPdV1), averaged P-wave-duration, PR interval, and P-wave axis were automatically measured using 12 SLTM algorithm. PTFV1 was calculated as a product of PPaV1 and PPdV1. In linear regression after adjustment for demographic characteristics, body mass index, maximum LA volume index, presence of scar, and LV mass index, each decile increase in LV interstitial fibrosis was associated with 0.76 mV*ms increase in negative abnormal PTFV1 (95% confidence interval [CI] -1.42 to -0.09; P = .025), 15.3 ms prolongation of PPdV1 (95% CI 6.9 to 23.8; P = .001) and 5.4 ms prolongation of averaged P-duration (95% CI 0.9-10.0; P = .020). LV fibrosis did not affect LA function. PPaV1 and PTFV1 were associated with an increase in LA volumes and decrease in LA emptying fraction and LA reservoir function. LV interstitial fibrosis is associated with abnormal PTFV1, prolonged PPdV1, and P-duration, but does not affect LA function. Copyright © 2015 Heart Rhythm Society. All rights reserved.
NASA Astrophysics Data System (ADS)
Liu, Shaojie; Doughty, Austin; Mesiya, Sana; Pettitt, Alex; Zhou, Feifan; Chen, Wei R.
2017-02-01
Temperature distribution in tissue is a crucial factor in determining the outcome of photothermal therapy in cancer treatment. In order to investigate the temperature distribution in tumor tissue during laser irradiation, we developed a novel ex vivo device to simulate the photothermal therapy on tumors. A 35°C, a thermostatic incubator was used to provide a simulation environment for body temperature of live animals. Different biological tissues (chicken breast and bovine liver) were buried inside a tissue-simulating gel and considered as tumor tissues. An 805-nm laser was used to irradiate the target tissue. A fiber with an interstitial cylindrical diffuser (10 mm) was directly inserted in the center of the tissue, and the needle probes of a thermocouple were inserted into the tissue paralleling the laser fiber at different distances to measure the temperature distribution. All of the procedures were performed in the incubator. Based on the results of this study, the temperature distribution in bovine liver is similar to that of tumor tissue under photothermal therapy with the same doses. Therefore, the developed model using bovine liver for determining temperature distribution can be used during interstitial photothermal therapy.
NASA Astrophysics Data System (ADS)
Frenkel, Victor; Deng, Cheri; O'Neill, Brian E.; Quijano, Jade; Stone, Michael J.; Dromi, Sergio; Hunter, Finie; Xie, Jianwu; Quinn, Timothy P.; Wood, Bradford J.; Li, King C. P.
2006-05-01
The majority of focused ultrasound applications today involve long, continuous exposures that produce significant temperature elevations for tissue ablation and irreversible coagulative necrosis. Comparatively little has been done with non-continuous (or, pulsed) exposures that can produce primarily mechanical effects with only minimal heat. Our investigations have shown that pulsed-HIFU exposures can non-invasively and non-destructively enhance the delivery of both systemically and locally injected materials (e.g. imaging agents, optical probes, and plasmid DNA) in both normal and cancerous tissues. It is hypothesized that the enhancing effects are directly linked to tissue displacement from locally-generated radiation forces. In normal tissue, it is thought that shear forces are produced between adjacent tissue regions experiencing non-uniform displacement. The resulting strain opens cellular junctions in both the vasculature and the parenchyma, increasing extravasation and interstitial diffusion, respectively. In solid tumors, improved delivery is thought to also be related to both an increase in fluid exchange that leads to decreased interstitial pressure, and disruptions of fibrillar collagen in the extracellular matrix. Preliminary experiments are presented that were carried out to help elucidate the mechanisms by which enhanced delivery was achieved, and possible directions for future investigations are discussed.
Airflow dispersion in unsaturated soil.
Gidda, T; Cann, D; Stiver, W H; Zytner, R G
2006-01-05
Dispersion data is abundant for water flow in the saturated zone but is lacking for airflow in unsaturated soil. However, for remediation processes such as soil vapour extraction, characterization of airflow dispersion is necessary for improved modelling and prediction capabilities. Accordingly, gas-phase tracer experiments were conducted in five soils ranging from uniform sand to clay at air-dried and wetted conditions. The disturbed soils were placed in one-dimensional stainless steel columns, with sulfur hexafluoride used as the inert tracer. The tested interstitial velocities were typical of those present in the vicinity of a soil vapour extraction well, while wetting varied according to the water-holding capacity of the soils. Results gave dispersivities that varied between 0.42 and 2.6 cm, which are typical of values in the literature. In air-dried soils, dispersion was found to increase with the pore size variability of the soil. For wetted soils, particle shape was an important factor at low water contents, while at high water contents, the proportion of macroporous space filled with water was important. The relative importance of diffusion decreased with increasing interstitial velocity and water content and was, in general, found to be minor compared to mechanical mixing across all conditions studied.
Defect stability in thorium monocarbide: An ab initio study
NASA Astrophysics Data System (ADS)
Wang, Chang-Ying; Han, Han; Shao, Kuan; Cheng, Cheng; Huai, Ping
2015-09-01
The elastic properties and point defects of thorium monocarbide (ThC) have been studied by means of density functional theory based on the projector-augmented-wave method. The calculated electronic and elastic properties of ThC are in good agreement with experimental data and previous theoretical results. Five types of point defects have been considered in our study, including the vacancy defect, interstitial defect, antisite defect, schottky defect, and composition-conserving defect. Among these defects, the carbon vacancy defect has the lowest formation energy of 0.29 eV. The second most stable defect (0.49 eV) is one of composition-conserving defects in which one carbon is removed to another carbon site forming a C2 dimer. In addition, we also discuss several kinds of carbon interstitial defects, and predict that the carbon trimer configuration may be a transition state for a carbon dimer diffusion in ThC. Project supported by the International S&T Cooperation Program of China (Grant No. 2014DFG60230), the National Natural Science Foundation of China (Grant No. 91326105), the National Basic Research Program of China (Grant No. 2010CB934504), and the Strategic Priority Research Program of the Chinese Academy of Sciences (Grant No. XDA02040104).
A robotic multi-channel platform for interstitial photodynamic therapy
Sharikova, Anna V.; Finlay, Jarod C.; Dimofte, Andreea; Zhu, Timothy C.
2015-01-01
A custom-made robotic multichannel platform for interstitial photodynamic therapy (PDT) and diffuse optical tomography (DOT) was developed and tested in a phantom experiment. The system, which was compatible with the operating room (OR) environment, had 16 channels for independent positioning of light sources and/or isotropic detectors in separate catheters. Each channel’s motor had an optical encoder for position feedback, with resolution of 1.5 mm, and a maximum speed of 5 cm/s. Automatic calibration of detector positions was implemented using an optical diode beam that defined the starting position of each motor, and by means of feedback algorithms controlling individual channels. As a result, the accuracy of zero position of 0.1 mm for all channels was achieved. We have also employed scanning procedures where detectors automatically covered the appropriate range around source positions. Thus, total scan time for a typical optical properties (OP) measurement throughout the phantom was about 1.5 minutes with point sources. The OP were determined based on the measured light fluence rates. These enhancements allow a tremendous improvement of treatment quality for a bulk tumor compared to the systems employed in previous clinical trials. PMID:25914794
Kuza, Catherine; Matheos, Theofilos; Kathman, Deirdre; Heard, Stephen O
2016-02-01
Acute fibrinous and organizing pneumonia (AFOP) is a rare histologic interstitial pneumonia pattern recently described in the literature with fewer than 120 cases published. AFOP is often difficult to diagnose and may be mistaken for other pulmonary disorders such as interstitial pneumonias or pneumonitides. Patients often present with vague symptoms of cough, dyspnea, hemoptysis, fatigue, and occasionally respiratory failure. Radiological findings show diffuse patchy opacities and ground glass appearance of the lungs. On histologic examination, intra-alveolar fibrin balls are observed. We discuss a case of a man who presented with hemoptysis and dyspnea and whose open lung biopsy revealed AFOP. We will describe the presentation, diagnosis, and post-discharge course, and review the current literature. There are only 4 cases which have reported the patients' course of disease after 1 year, the longest being 2 years. To our knowledge, this is the only case of AFOP in the literature that describes the course of a patient more than 2 years after the diagnosis of AFOP, and is the most comprehensive review of the current literature. Copyright © 2015 Elsevier Inc. All rights reserved.
p-type doping by platinum diffusion in low phosphorus doped silicon
NASA Astrophysics Data System (ADS)
Ventura, L.; Pichaud, B.; Vervisch, W.; Lanois, F.
2003-07-01
In this work we show that the cooling rate following a platinum diffusion strongly influences the electrical conductivity in weakly phosphorus doped silicon. Diffusions were performed at the temperature of 910 °C in the range of 8 32 hours in 0.6, 30, and 60 Ωrm cm phosphorus doped silicon samples. Spreading resistance profile analyses clearly show an n-type to p-type conversion under the surface when samples are cooled slowly. On the other hand, a compensation of the phosphorus donors can only be observed when samples are quenched. One Pt related acceptor deep level at 0.43 eV from the valence band is assumed to be at the origin of the type conversion mechanism. Its concentration increases by lowering the applied cooling rate. A complex formation with fast species such as interstitial Pt atoms or intrinsic point defects is expected. In 0.6 Ωrm cm phosphorus doped silicon, no acceptor deep level in the lower band gap is detected by DLTS measurement. This removes the opportunity of a pairing between phosphorus and platinum and suggests the possibility of a Fermi level controlled complex formation.
Experimental and theoretical studies of novel hydrogen diffuson in fullerite C_60
NASA Astrophysics Data System (ADS)
Fitzgerald, Stephen; Hannachi, Rym; Sholl, David; Sieber, Kurt; Gerogiorgis, Dimitrios
2004-03-01
Given the present interest in hydrogen storage within novel forms of carbon we have investigated the behavior of molecular H2 within solid fullerite C_60. Although C_60 will never be a practical storage medium, it does offer an ideal system to study the interaction of hydrogen within a well-characterized curved graphitic matrix. Our results based on infrared spectroscopy and loading isotherms indicate that isolated interstitial H2 bind preferentially in the lattice octahedral sites and diffuse by hopping between octahedral and tetrahedral sites^1. Parallel replica dynamics and minimum energy path calculations reveal an unexpected diffusion mechanism involving H2 molecules hopping into an already occupied octahedral site^2. This creates a short-lived H2 dimer, with a lower activation barrier for hopping that greatly enhances the diffusion rates. These calculations have been confirmed by experimental isotherm measurements and simulations using a rigorously derived lattice model that show a greatly reduced outgassing life-time with increasing H2 concentrations. ^1 S. A. FitzGerald, S. Forth and M. Rinkoski, Phys. Rev. B, 65, 140302 (2002). ^2 B. P. Uberuaga, A. F. Voter, K. K. Sieber, and D. S. Sholl, Phys. Rev. Lett., 91, 105901 (2003).
NASA Astrophysics Data System (ADS)
McKenna, Keith P.
2018-02-01
First principles calculations are employed to investigate the structure, electronic properties, and oxygen incorporation/diffusion characteristics of the Σ 5 TiN(310) tilt grain boundary with relevance to applications of polycrystalline TiN in microelectronics and protective coatings. We show that the grain boundary does not significantly modify electronic states near the Fermi energy but does induce an upward shift of up to 0.6 eV in a number of deeper occupied bands. We also show that oxygen is preferentially incorporated into the TiN grain boundary (GB) but must overcome relatively high activation energies for further diffusion. These predictions are consistent with the "stuffed barrier model" proposed to explain the good barrier characteristics of TiN. We also show that while the oxidizing power of TiN GBs is not sufficient to reduce HfO2 (a prototypical gate dielectric material), they can act as a scavenger for interstitial oxygen. Altogether, these results provide the much needed atomistic insights into the properties of a model GB in TiN and suggest a number of directions for future investigation.
NASA Astrophysics Data System (ADS)
Honda, Norihiro; Hazama, Hisanao; Awazu, Kunio
2017-02-01
The interstitial photodynamic therapy (iPDT) with 5-aminolevulinic acid (5-ALA) is a safe and feasible treatment modality of malignant glioblastoma. In order to cover the tumour volume, the exact position of the light diffusers within the lesion is needed to decide precisely. The aim of this study is the development of evaluation method of treatment volume with 3D Monte Carlo simulation for iPDT using 5-ALA. Monte Carlo simulations of fluence rate were performed using the optical properties of the brain tissue infiltrated by tumor cells and normal tissue. 3-D Monte Carlo simulation was used to calculate the position of the light diffusers within the lesion and light transport. The fluence rate near the diffuser was maximum and decreased exponentially with distance. The simulation can calculate the amount of singlet oxygen generated by PDT. In order to increase the accuracy of simulation results, the parameter for simulation includes the quantum yield of singlet oxygen generation, the accumulated concentration of photosensitizer within tissue, fluence rate, molar extinction coefficient at the wavelength of excitation light. The simulation is useful for evaluation of treatment region of iPDT with 5-ALA.
Diffusion Mechanisms of Ag atom in ZnO crystal: A First Principles Study
NASA Astrophysics Data System (ADS)
Masoumi, Saeed; Noori, Amirreza; Nadimi, Ebrahim
2017-12-01
Zinc oxide (ZnO) is currently under intensive investigation, as a result of its various applications in micro, nano and optoelectronics. However, a stable and reproducible p-type doping of ZnO is still a main challenging issue. Group IB elements such as Au, Cu and Ag, are promising candidates for p-type doping. Particularly, Ag atoms has been shown to be able to easily diffuse through the crystal structure of ZnO and lead to the p-type doping of the host crystal. However, the current understanding of Ag defects and their mobility in the ZnO crystal is still not fully explored. In this work, we report the results of our first-principles calculations based on density functional theory for Ag defects, particularly the interstitial and substitutional defects in ZnO crystal. Defect formation energies are calculated in different charged states as a function of Fermi energy in order to clarify the p-type behaviour of Ag-doped ZnO. We also investigate the diffusion behaviour and migration paths of Ag in ZnO crystal in the framework of density functional theory applying climbing image (CI) nudged elastic band method (NEB).
Hydrogen Diffusion and Trapping in α -Iron: The Role of Quantum and Anharmonic Fluctuations
NASA Astrophysics Data System (ADS)
Cheng, Bingqing; Paxton, Anthony T.; Ceriotti, Michele
2018-06-01
We investigate the thermodynamics and kinetics of a hydrogen interstitial in magnetic α -iron, taking account of the quantum fluctuations of the proton as well as the anharmonicities of lattice vibrations and hydrogen hopping. We show that the diffusivity of hydrogen in the lattice of bcc iron deviates strongly from an Arrhenius behavior at and below room temperature. We compare a quantum transition state theory to explicit ring polymer molecular dynamics in the calculation of diffusivity. We then address the trapping of hydrogen by a vacancy as a prototype lattice defect. By a sequence of steps in a thought experiment, each involving a thermodynamic integration, we are able to separate out the binding free energy of a proton to a defect into harmonic and anharmonic, and classical and quantum contributions. We find that about 30% of a typical binding free energy of hydrogen to a lattice defect in iron is accounted for by finite temperature effects, and about half of these arise from quantum proton fluctuations. This has huge implications for the comparison between thermal desorption and permeation experiments and standard electronic structure theory. The implications are even greater for the interpretation of muon spin resonance experiments.
Perriot, Romain; Uberuaga, Blas P.
2015-04-21
We use molecular dynamics simulations to investigate the role of cation disorder on oxygen diffusion in Gd 2Zr 2O 7 (GZO) and Gd 2Ti 2O 7 (GTO) pyrochlores, a class of complex oxides which contain a structural vacancy relative to the basic fluorite structure. The introduction of disorder has distinct effects depending on the chemistry of the material, increasing the mobility of structural carriers by up to four orders of magnitude in GZO. In contrast, in GTO, there is no mobility at zero or low disorder on the ns timescale, but higher disorder liberates the otherwise immobile carriers, allowing diffusionmore » with rates comparable to GZO for the fully disordered material. Here, we show that the cation disorder enhances the diffusivity by both increasing the concentration of mobile structural carriers and their individual mobility. The disorder also influences the diffusion in materials containing intrinsic carriers, such as additional vacancies VO or oxygen interstitials OI. And while in ordered GZO and GTO the contribution of the intrinsic carriers dominates the overall diffusion of oxygen, OI in GZO contributes along with structural carriers, and the total diffusion rate can be calculated by assuming simple additive contributions from the two sources. Although the disorder in the materials with intrinsic defects usually enhances the diffusivity as in the defect-free case, in low concentrations, cation antisites AB or BA, where A = Gd and B = Zr or Ti, can act as traps for fast intrinsic defects. The trapping results in a lowering of the diffusivity, and causes a non-monotonic behavior of the diffusivity with disorder. Conversely, in the case of slow intrinsic defects, the main effect of the disorder is to liberate the structural carriers, resulting in an increase of the diffusivity regardless of the defect trapping.« less
Nanoscopic diffusion studies on III-V compound semiconductor structures: Experiment and theory
NASA Astrophysics Data System (ADS)
Gonzalez Debs, Mariam
The electronic structure of multilayer semiconductor heterostructures is affected by the detailed compositional profiles throughout the structure and at critical interfaces. The extent of interdiffusion across these interfaces places limits on both the processing time and temperatures for many applications based on the resultant compositional profile and associated electronic structure. Atomic and phenomenological methods were used in this work through the combination of experiment and theory to understand the nanoscopic mechanisms in complex heterostructures. Two principal studies were conducted. Tin diffusion in GaAs was studied by fitting complex experimental diffusion profiles to a phenomenological model which involved the diffusion of substitutional and interstitial dopant atoms. A methodology was developed combining both the atomistic model and the use of key features within these experimentally-obtained diffusion profiles to determine meaningful values of the transport and defect reaction rate parameters. Interdiffusion across AlSb/GaSb multi-quantum well interfaces was also studied. The chemical diffusion coefficient characterizing the AlSb/GaSb diffusion couple was quantitatively determined by fitting the observed photoluminescence (PL) peak shifts to the solution of the Schrodinger equation using a potential derived from the solution of the diffusion equation to quantify the interband transition energy shifts. First-principles calculations implementing Density Functional Theory were performed to study the thermochemistry of point defects as a function of local environment, allowing a direct comparison of interfacial and bulk diffusion phenomena within these nanoscopic structures. Significant differences were observed in the Ga and Al vacancy formation energies at the AlSb/GaSb interface when compared to bulk AlSb and GaSb with the largest change found for Al vacancies. The AlSb/GaSb structures were further studied using positron annihilation spectroscopy (PAS) to investigate the role of vacancies in the interdiffusion of Al and Ga in the superlattices. The PL and PAS experimental techniques together with the phenomenological and atomistic modeling allowed for the determination of the underlying mass transport mechanisms at the nanoscale.
[Lipoid pneumonia related to workplace exposure to paint].
Abad Fernández, A; de Miguel Díez, J; López Vime, R; Gómez Santos, D; Nájera Botello, L; Jara Chinarro, B
2003-03-01
A 49-year-old man with no known history of pulmonary disease was treated at our hospital after observation of an interstitial pattern on a chest film. The patient was a smoker and professional painter. Computed tomography of the chest showed a diffuse bilateral ground-glass pattern. The lung biopsy showed intra-alveolar lipid accumulation in the form of vacuoles of varying sizes surrounded by numerous focally multinucleated macrophages, establishing a definitive diagnosis of exogenous lipoid pneumonia. Given the patient's profession, he was recommended to avoid workplace exposure to paraffins and oily sprays. The clinical course was favorable after exposure was stopped, with improved lung function and symptoms.
[A case of flomoxef-induced pneumonitis].
Wako, Y; Hamauzu, T; Tamura, M; Yokote, M; Yokote, M; Shoji, S; Takikawa, H; Miyake, K; Yamanaka, M; Goto, H
1992-04-01
We report a case of flomoxef-induced pneumonitis. A 22-year-old man was treated with flomoxef following liver biopsy. A few days later he developed a high fever and severe dyspnea, and his chest X-ray film revealed diffuse reticulo-nodular shadows in both lung fields. We suspected interstitial pneumonitis due to flomoxef, and pulse therapy with methylprednisolone was started. He showed rapid recovery of symptoms and marked regression of pulmonary infiltration in his chest X-ray. Lymphocyte stimulation test was positive to flomoxef, which was compatible with the diagnosis of drug-induced pneumonitis. To our knowledge, there has been no previous case of pulmonary hypersensitivity to flomoxef reported in Japan.
Glucose diffusion in pancreatic islets of Langerhans.
Bertram, R; Pernarowski, M
1998-01-01
We investigate the time required for glucose to diffuse through an isolated pancreatic islet of Langerhans and reach an equilibrium. This question is relevant in the context of in vitro electrophysiological studies of the response of an islet to step changes in the bath glucose concentration. Islet cells are electrically coupled by gap junctions, so nonuniformities in islet glucose concentration may be reflected in the activity of cells on the islet periphery, where electrical recordings are made. Using a mathematical model of hindered glucose diffusion, we investigate the effects of the islet porosity and the permeability of a surrounding layer of acinar cells. A major factor in the determination of the equilibrium time is the transport of glucose into islet beta-cells, which removes glucose from the interstitial spaces where diffusion occurs. This transport is incorporated by using a model of the GLUT-2 glucose transporter. We find that several minutes are required for the islet to equilibrate to a 10 mM change in bath glucose, a typical protocol in islet experiments. It is therefore likely that in electrophysiological islet experiments the glucose distribution is nonuniform for several minutes after a step change in bath glucose. The delay in glucose penetration to the inner portions of the islet may be a major contributing factor to the 1-2-min delay in islet electrical activity typically observed after bath application of a stimulatory concentration of glucose. PMID:9545035
Bronchoalveolar lavage in malignancy.
Poletti, Venerino; Poletti, Giovanni; Murer, Bruno; Saragoni, Luca; Chilosi, Marco
2007-10-01
Bronchoalveolar lavage is a useful diagnostic tool in diffuse or disseminated lung malignancies that do not involve the bronchial structures visible by endoscopy. The neoplastic histotype and the intraparenchymal neoplastic growth pattern are good predictors for diagnostic yield; adenocarcinoma, and tumors with lymphangitic or lepidic growth patterns are more easily diagnosed by bronchoalveolar lavage; in these cases the diagnostic yield reported is higher than 80%. In hematologic malignancies the diagnostic yield is quite good in secondary diffuse indolent B cell lymphomas and in primary B cell lymphomas of mucosa-associated lymphoid tissue (MALT) type but low in Hodgkin disease. Morphological analysis may be implemented by immunocytochemical or molecular tests to identify the cell lineage and the presence of monoclonality. Disorders in which bronchioloalveolar cell hyperplasia/dysplasia is a significant morphological component may have cytological features in bronchoalveolar lavage fluid that mimic lung neoplasms: acute respiratory distress syndrome (ARDS), acute interstitial pneumonitis (AIP), and acute exacerbation of idiopathic pulmonary fibrosis are the most important clinical entities in this group.
Bio-Fluid Dynamics in a Centimeter-Scale Diagnostics Incubator with Integrated Perfusion
NASA Astrophysics Data System (ADS)
Vukasinovic, J.; Cullen, D. K.; Glezer, A.; Laplaca, M. C.
2006-11-01
Growing demands for long-term incubation of biologically faithful, three-dimensional neuronal and other cultures during extended physiological studies require efficient perfusion platforms with functional vasculatures that mimic the in vivo condition in a thermally regulated environment. While thermostatically controlled incubation baths with capillary action perfusion are available, their use is confined to specific experimental conditions. The interstitial nutrient and gas delivery remains diffusion limited over the long term and cultures decay metabolically. To overcome these problems, we describe simple fabrication and experimental characterization of a compact, diagnostics incubator that allows in situ monitoring of culture activity with a superior control of critical biological functions using convectively enhanced heat and mass transport. To overcome intercellular diffusion barriers culture is exposed to a direct flow of media issuing from an array of micro-nozzles that are directed normal to the substrate upholding the culture, and further improved by 3-D convection induced by jet interactions and biased, peripheral perfusate extraction through an array of microchannels as demonstrated by microPIV measurements.
Effects of water immersion to the neck on pulmonary circulation and tissue volume in man
NASA Technical Reports Server (NTRS)
Begin, R.; Epstein, M.; Sackner, M. A.; Levinson, R.; Dougherty, R.; Duncan, D.
1976-01-01
A rapid noninvasive breathing method is used to obtain serial measurements of the pulmonary capillary blood flow, diffusing capacity per unit of alveolar volume, combined pulmonary tissue plus capillary volume, functional residual capacity, and oxygen consumption in five normal subjects undergoing 6 h of sitting, 4 h of sitting while immersed to the neck in thermoneutral water, and 4 h of lying in thermoneutral water to the neck. The rebreathing method employed a test gas mixture containing 0.5% C2H2, 0.3% C(18)O, 10% He, 21% O2, and balance N2. It is shown that immersion to the neck in the seated posture results in significant increases in sodium excretion cardiac output, and diffusing capacity per unit of alveolar volume. The pulmonary tissue plus capillary volume did not change, demonstrating that the central vascular engorgement induced by water immersion is not accompanied by significant extravasation of fluid into the pulmonary interstitial space.
Modification of molybdenum surface by low-energy oxygen implantation at room temperature
NASA Astrophysics Data System (ADS)
Kavre Piltaver, Ivna; Jelovica Badovinac, Ivana; Peter, Robert; Saric, Iva; Petravic, Mladen
2017-12-01
We have studied the initial stages of oxide formation on molybdenum surfaces under 1 keV O2+ ion bombardment at room temperature (RT), using x-ray photoelectron spectroscopy around Mo 3d or O 1s core-levels and the valence band photoemission. The results are compared with the oxidation mechanism of thermally oxidized Mo at RT. The thermal oxidation reveals the formation of a very thin MoO2 layer that prevents any further adsorption of oxygen at higher oxygen doses. Oxygen implantation is more efficient in creating thicker oxide films with the simultaneous formation of several oxide compounds. The oxidation rates of MoO2 and Mo2O5 follow the parabolic growth rate consistent with the mass transport driven by diffusion of either neutral or singly and doubly charged oxygen interstitials. The oxidation of MoO3, which occurs at a later oxidation stage, follows the logarithmic rate driven by the diffusion of cations in an electric field.
Simultaneous specimen current and time-dependent cathodoluminescence measurements on gallium nitride
DOE Office of Scientific and Technical Information (OSTI.GOV)
Campo, E. M., E-mail: e.campo@bangor.ac.uk; Hopkins, L.; Pophristic, M.
2016-06-28
Time-dependent cathodoluminescence (CL) and specimen current (SC) are monitored to evaluate trapping behavior and evolution of charge storage. Examination of CL and SC suggests that the near band edge emission in GaN is reduced primarily by the activation of traps upon irradiation, and Gallium vacancies are prime candidates. At the steady state, measurement of the stored charge by empiric-analytical methods suggests that all available traps within the interaction volume have been filled, and that additional charge is being stored interstitially, necessarily beyond the interaction volume. Once established, the space charge region is responsible for the steady state CL emission and,more » prior to build up, it is responsible for the generation of diffusion currents. Since the non-recombination effects resulting from diffusion currents that develop early on are analogous to those leading to device failure upon aging, this study is fundamental toward a holistic insight into optical properties in GaN.« less
The role of Frenkel defect diffusion in dynamic annealing in ion-irradiated Si
Wallace, J. B.; Aji, L. B. Bayu; Martin, A. A.; ...
2017-01-06
The formation of stable radiation damage in crystalline solids often proceeds via complex dynamic annealing processes, involving migration and interaction of ballistically-generated point defects. The dominant dynamic annealing processes, however, remain unknown even for crystalline Si. Here, we use a pulsed ion beam method to study defect dynamics in Si bombarded in the temperature range from -20 to 140 °C with 500 keV Ar ions. Results reveal a defect relaxation time constant of ~10–0.2 ms, which decreases monotonically with increasing temperature. The dynamic annealing rate shows an Arrhenius dependence with two well-defined activation energies of 73 ± 5 meV andmore » 420 ± 10 meV, below and above 60 °C, respectively. Rate theory modeling, bench-marked against this data, suggests a crucial role of both vacancy and interstitial diffusion, with the dynamic annealing rate limited by the migration and interaction of vacancies.« less
The role of Frenkel defect diffusion in dynamic annealing in ion-irradiated Si
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wallace, J. B.; Aji, L. B. Bayu; Martin, A. A.
The formation of stable radiation damage in crystalline solids often proceeds via complex dynamic annealing processes, involving migration and interaction of ballistically-generated point defects. The dominant dynamic annealing processes, however, remain unknown even for crystalline Si. Here, we use a pulsed ion beam method to study defect dynamics in Si bombarded in the temperature range from -20 to 140 °C with 500 keV Ar ions. Results reveal a defect relaxation time constant of ~10–0.2 ms, which decreases monotonically with increasing temperature. The dynamic annealing rate shows an Arrhenius dependence with two well-defined activation energies of 73 ± 5 meV andmore » 420 ± 10 meV, below and above 60 °C, respectively. Rate theory modeling, bench-marked against this data, suggests a crucial role of both vacancy and interstitial diffusion, with the dynamic annealing rate limited by the migration and interaction of vacancies.« less
Short-lived K2S Molecules in Superionic Potassium Sulfide
NASA Astrophysics Data System (ADS)
Okeya, Yusuke; Tsumuraya, Kazuo
2015-03-01
The first principles molecular dynamics method allows us to elucidate the formation of short-lived K2S molecular states in superionic potassium sulfide. The covalent and the Coulomb bonds exist between the ionized mobile potassiums and the ionized immobile sulfurs. Both the bonds induces indirect covalent and indirect Coulomb attractions between the di-interstitial potassiums on the mid-sulfurs, which forms the short-lived K2S molecular states. The covalent electron density also exists between short-lived potassium dimers. The three attractions reduce Haven's ratios of the potassiums in the conductor. The molecule formation indicates the electronic state of the conductor is intermediate between the ionic and covalent crystals. The absence of the long-lived potassium dimers implies a failure of the caterpillar diffusion model or the Frenkel-Kontorova chain model for the superionic diffusion of the potassiums in the sulfide. The incompletely ionized cations and anions reduce the Coulomb attractions between them which induces the sublattice melting of smaller size of the potassiums than the sulfurs.
The role of Frenkel defect diffusion in dynamic annealing in ion-irradiated Si
NASA Astrophysics Data System (ADS)
Wallace, J. B.; Aji, L. B. Bayu; Martin, A. A.; Shin, S. J.; Shao, L.; Kucheyev, S. O.
2017-01-01
The formation of stable radiation damage in crystalline solids often proceeds via complex dynamic annealing processes, involving migration and interaction of ballistically-generated point defects. The dominant dynamic annealing processes, however, remain unknown even for crystalline Si. Here, we use a pulsed ion beam method to study defect dynamics in Si bombarded in the temperature range from -20 to 140 °C with 500 keV Ar ions. Results reveal a defect relaxation time constant of ~10-0.2 ms, which decreases monotonically with increasing temperature. The dynamic annealing rate shows an Arrhenius dependence with two well-defined activation energies of 73 ± 5 meV and 420 ± 10 meV, below and above 60 °C, respectively. Rate theory modeling, bench-marked against this data, suggests a crucial role of both vacancy and interstitial diffusion, with the dynamic annealing rate limited by the migration and interaction of vacancies.
Localization of lung fields in HRCT images using a deep convolution neural network
NASA Astrophysics Data System (ADS)
Kumar, Abhishek; Agarwala, Sunita; Dhara, Ashis Kumar; Mukhopadhyay, Sudipta; Nandi, Debashis; Garg, Mandeep; Khandelwal, Niranjan; Kalra, Naveen
2018-02-01
Lung field segmentation is a prerequisite step for the development of a computer-aided diagnosis system for interstitial lung diseases observed in chest HRCT images. Conventional methods of lung field segmentation rely on a large gray value contrast between lung fields and surrounding tissues. These methods fail on lung HRCT images with dense and diffused pathology. An efficient prepro- cessing could improve the accuracy of segmentation of pathological lung field in HRCT images. In this paper, a convolution neural network is used for localization of lung fields in HRCT images. The proposed method provides an optimal bounding box enclosing the lung fields irrespective of the presence of diffuse pathology. The performance of the proposed algorithm is validated on 330 lung HRCT images obtained from MedGift database on ZF and VGG networks. The model achieves a mean average precision of 0.94 with ZF net and a slightly better performance giving a mean average precision of 0.95 in case of VGG net.
Biocompatible polymer microneedle for topical/dermal delivery of tranexamic acid.
A Machekposhti, S; Soltani, M; Najafizadeh, P; Ebrahimi, S A; Chen, P
2017-09-10
Recently-introduced biocompatible polymeric microneedles offer an efficient method for drug delivery. Tranexamic acid is a novel drug for treating melasma that is administered both locally and orally and inhibits excessive melanin via melanocyte. The tranexamic acid biocompatible polymer microneedle used in this study was fabricated from PVP and methacrylic acid, using the lithography method. The required mechanical strength to pierce skin was attained by optimizing the ratio of PVP to methacrylic acid. Acute dermal toxicity was done, and drug diffusion in skin layers was simulated by calculating the diffusion coefficient of tranexamic acid in interstitial fluid (plasma). The biocompatible polymer microneedle was fabricated at 60°C. Needles could sustain 0.6N that is enough to pierce stratum corneum. 34% of the released drug was locally effective and the rest permeated through the skin. The pyramidal polymer microneedle in this study was fully released in skin in approx. 7h. This polymer microneedle has no dermal toxicity. Copyright © 2017 Elsevier B.V. All rights reserved.
Park, Sang Ok; Seo, Joon Beom; Kim, Namkug; Lee, Young Kyung; Lee, Jeongjin; Kim, Dong Soon
2011-01-01
To evaluate the usefulness of an automated system for quantification and discrimination of usual interstitial pneumonia (UIP) and nonspecific interstitial pneumonia (NSIP). An automated system to quantify six regional high-resolution CT (HRCT) patterns: normal, NL; ground-glass opacity, GGO; reticular opacity, RO; honeycombing, HC; emphysema, EMPH; and consolidation, CONS, was developed using texture and shape features. Fifty-four patients with pathologically proven UIP (n = 26) and pathologically proven NSIP (n = 28) were included as part of this study. Inter-observer agreement in measuring the extent of each HRCT pattern between the system and two thoracic radiologists were assessed in 26 randomly selected subsets using an interclass correlation coefficient (ICC). A linear regression analysis was used to assess the contribution of each disease pattern to the pulmonary function test parameters. The discriminating capacity of the system between UIP and NSIP was evaluated using a binomial logistic regression. The overall ICC showed acceptable agreement among the system and the two radiologists (r = 0.895 for the abnormal lung volume fraction, 0.706 for the fibrosis fraction, 0.895 for NL, 0.625 for GGO, 0.626 for RO, 0.893 for HC, 0.800 for EMPH, and 0.430 for CONS). The volumes of NL, GGO, RO, and EMPH contribute to forced expiratory volume during one second (FEV₁) (r = 0.72, β values, 0.84, 0.34, 0.34 and 0.24, respectively) and forced vital capacity (FVC) (r = 0.76, β values, 0.82, 0.28, 0.21 and 0.34, respectively). For diffusing capacity (DL(co)), the volumes of NL and HC were independent contributors in opposite directions (r = 0.65, β values, 0.64, -0.21, respectively). The automated system can help discriminate between UIP and NSIP with an accuracy of 82%. The automated quantification system of regional HRCT patterns can be useful in the assessment of disease severity and may provide reliable agreement with the radiologists' results. In addition, this system may be useful in differentiating between UIP and NSIP.
Carreira, Guido Correia; Gemeinhardt, Ole; Gorenflo, Rudolf; Beyersdorff, Dirk; Franiel, Tobias; Plendl, Johanna; Lüdemann, Lutz
2011-06-01
Dynamic contrast-enhanced magnetic resonance imaging commonly uses compartment models to estimate tissue parameters in general and perfusion parameters in particular. Compartment models assume a homogeneous distribution of the injected tracer throughout the compartment volume. Since tracer distribution within a compartment cannot be assessed, the parameters obtained by means of a compartment model might differ from the actual physical values. This work systematically examines the widely used permeability-surface-limited one-compartment model to determine the reliability of the parameters obtained by comparing them with their actual values. A computer simulation was used to model spatial tracer distribution within the interstitial volume using diffusion of contrast agent in tissue. Vascular parameters were varied as well as tissue parameters. The vascular parameters used were capillary radius (4 and 12 μm), capillary permeability (from 0.03 to 3.3 μm/s) and intercapillary distances from 30 to 300 μm. The tissue parameters used were tortuosity (λ), porosity (α) and interstitial volume fraction (v(e)). Our results suggest that the permeability-surface-limited compartment model generally underestimates capillary permeability for capillaries with a radius of 4 μm by factors from ≈0.03 for α=0.04, to ≈ 0.1 for α=0.2, to ≈ 0.5 for α=1.0. An overestimation of actual capillary permeability for capillaries with a radius of 12 μm by a factor of ≥1.3 was found for α=1.0, while α=0.2 yielded an underestimation by a factor of ≈0.3 and α=0.04 by a factor of ≈ 0.03. The interstitial volume fraction, v(e), obtained by the compartment model differed with increasing intercapillary distances and for low vessel permeability, whereas v(e) was found to be estimated approximately accurately for P=0.3 μm/s and P=3.3 μm/s for vessel distances <100 μm. Copyright © 2011 Elsevier Inc. All rights reserved.
Prakash, J; Ganiger, V; Prakash, S; Sivasankar, M; Sunder, S; Singh, U
2017-01-01
Human immunodeficiency virus (HIV) infection can cause a broad spectrum of renal diseases. However, there is paucity of Indian data on the patterns of renal lesions in HIV-seropositive patients. The aim of the present study was to delineate the spectrum of renal lesions in HIV/acquired immunodeficiency syndrome patients. In this prospective study, all HIV-positive patients of both genders aged >18 years were screened for renal disease. Patients with proteinuria of more than 1 g/24 h were subjected to renal biopsy. A total of 293 HIV-positive patients were screened; of these, 136 (46.4%) patients found to have renal involvement. Dipstick-positive proteinuria of 1+ or more was observed in 112 (38.2%) patients, and 16 (14.2%) patients had proteinuria of more than 1 g/24 h. Renal biopsy in 14 cases revealed glomerulonephritis (GN) in 12 (85.7%) (isolated GN in 4 [28.5%] and GN mixed with chronic TIN in 8 [57.1%]) patients. These include mesangioproliferative GN in 5 (35.7%), membranoproliferative GN in 2 (14.2%), focal segmental glomerulosclerosis in 2 (14.2%), diffuse proliferative GN in 2 (14.2%), and diabetic nephropathy in 1 (7.1%) patients. Chronic interstitial nephritis was noted in 10 (71.42%) (superimposed on GN in 8 [57.1%], isolated in 2 [14.2%]) patients. Granulomatous interstitial nephritis was seen in 3 (24.1%) cases. GN and chronic interstitial nephritis were noted in 85.7% and 71.42% of patients, respectively, mostly superimposed on each other. Mesangioproliferative GN was the most common glomerular lesion, but classical HIV-associated nephropathy was not observed.
Hawasli, Ammar H.; Bagade, Swapnil; Shimony, Joshua S.; Miller-Thomas, Michelle
2013-01-01
BACKGROUND: Surgical treatments for deep-seated intracranial lesions have been limited by morbidities associated with resection. Real-time magnetic resonance imaging–guided focused laser interstitial thermal therapy (LITT) offers a minimally invasive surgical treatment option for such lesions. OBJECTIVE: To review treatments and results of patients treated with LITT for intracranial lesions at Washington University School of Medicine. METHODS: In a review of 17 prospectively recruited LITT patients (34-78 years of age; mean, 59 years), we report demographics, treatment details, postoperative imaging characteristics, and peri- and postoperative clinical courses. RESULTS: Targets included 11 gliomas, 5 brain metastases, and 1 epilepsy focus. Lesions were lobar (n = 8), thalamic/basal ganglia (n = 5), insular (n = 3), and corpus callosum (n = 1). Mean target volume was 11.6 cm3, and LITT produced 93% target ablation. Patients with superficial lesions had shorter intensive care unit stays. Ten patients experienced no perioperative morbidities. Morbidities included transient aphasia, hemiparesis, hyponatremia, deep venous thrombosis, and fatal meningitis. Postoperative magnetic resonance imaging showed blood products within the lesion surrounded by new thin uniform rim of contrast enhancement and diffusion restriction. In conjunction with other therapies, LITT targets often showed stable or reduced local disease. Epilepsy focus LITT produced seizure freedom at 8 months. Preliminary overall median progression-free survival and survival from LITT in tumor patients were 7.6 and 10.9 months, respectively. However, this small cohort has not been followed for a sufficient length of time, necessitating future outcomes studies. CONCLUSION: Early peri- and postoperative clinical data demonstrate that LITT is a safe and viable ablative treatment option for intracranial lesions, and may be considered for select patients. ABBREVIATION: LITT, laser interstitial thermal therapy PMID:24056317
De Giacomi, Federica; Raghunath, Sushravya; Karwoski, Ronald; Bartholmai, Brian J; Moua, Teng
2018-03-01
Fibrotic interstitial lung diseases presenting with nonspecific and overlapping radiologic findings may be difficult to diagnose without surgical biopsy. We hypothesized that baseline quantifiable radiologic features and their short-term interval change may be predictive of underlying histologic diagnosis as well as long-term survival in idiopathic pulmonary fibrosis (IPF) presenting without honeycombing versus nonspecific interstitial pneumonia (NSIP). Forty biopsy-confirmed IPF and 20 biopsy-confirmed NSIP patients with available high-resolution chest computed tomography 4 to 24 months apart were studied. CALIPER software was used for the automated characterization and quantification of radiologic findings. IPF subjects were older (66 vs. 48; P<0.0001) with lower diffusion capacity for carbon monoxide and higher volumes of baseline reticulation (193 vs. 83 mL; P<0.0001). Over the interval period, compared with NSIP, IPF patients experienced greater functional decline (forced vital capacity, -6.3% vs. -1.7%; P=0.02) and radiologic progression, as noted by greater increase in reticulation volume (24 vs. 1.74 mL; P=0.048), and decrease in normal (-220 vs. -37.7 mL; P=0.045) and total lung volumes (-198 vs. 58.1 mL; P=0.03). Older age, male gender, higher reticulation volumes at baseline, and greater interval decrease in normal lung volumes were predictive of IPF. Both baseline and short-term changes in quantitative radiologic findings were predictive of mortality. Baseline quantitative radiologic findings and assessment of short-term disease progression may help characterize underlying IPF versus NSIP in those with difficult to differentiate clinicoradiologic presentations. Our study supports the possible utility of assessing serial quantifiable high-resolution chest computed tomographic findings for disease differentiation in these 2 entities.
Tanaka, Mio; Kohashi, Kenichi; Kushitani, Kei; Yoshida, Misa; Kurihara, Sho; Kawashima, Masumi; Ueda, Yuka; Souzaki, Ryota; Kinoshita, Yoshiaki; Oda, Yoshinao; Takeshima, Yukio; Hiyama, Eiso; Taguchi, Tomoaki; Tanaka, Yukichi
2017-08-01
We report 2 infantile cases of pulmonary tumor carrying a chimeric A2M-ALK gene. A2M-ALK is a newly identified anaplastic lymphoma kinase (ALK)-related chimeric gene from a tumor diagnosed as fetal lung interstitial tumor (FLIT). FLIT is a recently recognized infantile pulmonary lesion defined as a mass-like lesion that morphologically resembles the fetal lung. Grossly, FLIT characteristically appears as a well-circumscribed spongy mass, whereas the tumors in these patients were solid and firm. Histologically, the tumors showed intrapulmonary lesions composed of densely proliferating polygonal or spindle-shaped mesenchymal cells with diffuse and dense infiltrations of inflammatory cells forming microcystic or micropapillary structures lined by thyroid transcription factor 1-positive pneumocytes, favoring inflammatory myofibroblastic tumor rather than FLIT. The proliferating cells were immunoreactive for ALK, and A2M-ALK was identified in both tumors with reverse-transcription polymerase chain reaction. The dense infiltration of inflammatory cells, immunoreactivity for ALK, and identification of an ALK-related chimeric gene suggested a diagnosis of inflammatory myofibroblastic tumor. Histologically, most reported FLITs show sparse inflammatory infiltrates and a relatively low density of interstitial cells in the septa, although prominent infiltration of inflammatory cells and high cellularity of interstitial cells are seen in some FLITs. The present cases suggest that ALK rearrangements, including the chimeric A2M-ALK gene, may be present in these infantile pulmonary lesions, especially those with inflammatory cell infiltration. We propose that these infantile pulmonary lesions containing a chimeric A2M-ALK gene be categorized as a specific type of inflammatory myofibroblastic tumor that develops exclusively in neonates and infants. Copyright © 2017 Elsevier Inc. All rights reserved.
Tomii, Keisuke; Kato, Terufumi; Takahashi, Masashi; Noma, Satoshi; Kobashi, Yoichiro; Enatsu, Sotaro; Okubo, Sumiko; Kobayashi, Noriko; Kudoh, Shoji
2017-04-01
Interstitial lung disease (ILD) is important drug related toxicity because it commonly forced to discontinue the treatment. To characterize the prevalence and patterns of pemetrexed induced ILD, an independent ILD advisory board composed of external experts performed reassessment of ILD in two post marketing surveillance (PMS) studies for malignant pleural mesothelioma (MPM) and non-small cell lung cancer (NSCLC). ILD incidences were originally 1.6% and 2.6% in 903 MPM and 683 NSCLC patients in safety analyses, respectively. Based on the reassessment by the board, the incidence was 1.1% MPM and 1.8% NSCLC. Common possible risk factors of ILD in MPM and NSCLC patients were male gender, 60 years or older age, and pre-existing ILD. Asbestosis in MPM, and smoking history in NSCLC are also considered as risk, respectively. In terms of computed tomography (CT) pattern, 7 of 10 cases in MPM patients had acute interstitial pneumonia pattern, which four were fatal. Eight of the 12 NSCLC patients had diffuse grand glass opacity, which all had recovered. Onset of ILD in MPM varied between the first and the fifth courses of pemetrexed treatment, and the latest onset was 48 days after the last administration. For NSCLC, it was between the second and the ninth course, 7 and 56 days after the last administration. The risk of pemetrexed-related ILD is similar level as other anti-cancer drugs under clinical settings. Careful observations continuously during and at least for 2 months after the last administration of pemetrexed are advised. © The Author 2017. Published by Oxford University Press. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.
Microstructure evolution of recrystallized Zircaloy-4 under charged particles irradiation
NASA Astrophysics Data System (ADS)
Gaumé, M.; Onimus, F.; Dupuy, L.; Tissot, O.; Bachelet, C.; Mompiou, F.
2017-11-01
Recrystallized zirconium alloys are used as nuclear fuel cladding tubes of Pressurized Water Reactors. During operation, these alloys are submitted to fast neutron irradiation which leads to their in-reactor deformation and to a change of their mechanical properties. These phenomena are directly related to the microstructure evolution under irradiation and especially to the formation of -type dislocation loops. In the present work, the radiation damage evolution in recrystallized Zircaloy-4 has been studied using charged particles irradiation. The loop nucleation and growth kinetics, and also the helical climb of linear dislocations, were observed in-situ using a High Voltage Electron Microscope (HVEM) under 1 MeV electron irradiation at 673 and 723 K. In addition, 600 keV Zr+ ion irradiations were conducted at the same temperature. Transmission Electron Microscopy (TEM) characterizations have been performed after both types of irradiations, and show dislocation loops with a Burgers vector belonging to planes close to { 10 1 bar 0 } first order prismatic planes. The nature of the loops has been characterized. Only interstitial dislocation loops have been observed after ion irradiation at 723 K. However, after electron irradiation conducted at 673 and 723 K, both interstitial and vacancy loops were observed, the proportion of interstitial loops increasing as the temperature is increased. The loop growth kinetics analysis shows that as the temperature increases, the loop number density decreases and the loop growth rate tends to increase. An increase of the flux leads to an increase of the loop number density and a decrease of the loop growth rate. The results are compared to previous works and discussed in the light of point defects diffusion.
Kidney biopsy in AA amyloidosis: impact of histopathology on prognosis.
Kendi Celebi, Zeynep; Kiremitci, Saba; Ozturk, Bengi; Akturk, Serkan; Erdogmus, Siyar; Duman, Neval; Ates, Kenan; Erturk, Sehsuvar; Nergizoglu, Gokhan; Kutlay, Sim; Sengul, Sule; Ensari, Arzu; Keven, Kenan
2017-09-01
In AA amyloidosis, while kidney biopsy is widely considered for diagnosis by clinicians, there is no evidence that the detailed investigation of renal histopathology can be utilized for the prognosis and clinical outcomes. In this study, we aimed to obtain whether histopathologic findings in kidney biopsy of AA amyloidosis might have prognostic and clinical value. This is a retrospective cohort study that included 38 patients who were diagnosed with AA amyloidosis by kidney biopsy between 2005 and 2013.The kidney biopsy specimens of patients were evaluated and graded for several characteristics of histopathological lesions and their relationship with renal outcomes. Segmental amyloid deposition in the kidney biopsy was seen in 29%, global amyloid deposition in 71, diffuse involvement of glomeruli in 84.2%, focal involvement in 7%, glomerular enlargement in 53%, tubular atrophy in 75% and interstitial fibrosis in 78% of patients. Histopathologically, glomerular enlargement, interstitial fibrosis, tubular atrophy, interstitial inflammation and global amyloid deposition were significantly associated with lower estimated glomerular filtration rate (eGFR) (p = .02, p < .001, p = .001, p = .009, p = .002, respectively) in univariate analysis. In multivariate analysis, tubular atrophy was the only predictor of eGFR (p = .019 B = -20.573). In the follow-up at an average of 27 months, 18 patients developed end-stage renal disease (ESRD). Among them, global amyloid deposition was the only risk factor for the development of ESRD (p = .01, OR = 18.750, %95 CI= 2.021-173.942). This is the first study showing that the histopathological findings in kidney biopsy of AA amyloidosis might have a prognostic and clinical value for renal outcomes.
Galectin-3 Is Associated with Restrictive Lung Disease and Interstitial Lung Abnormalities.
Ho, Jennifer E; Gao, Wei; Levy, Daniel; Santhanakrishnan, Rajalakshmi; Araki, Tetsuro; Rosas, Ivan O; Hatabu, Hiroto; Latourelle, Jeanne C; Nishino, Mizuki; Dupuis, Josée; Washko, George R; O'Connor, George T; Hunninghake, Gary M
2016-07-01
Galectin-3 (Gal-3) has been implicated in the development of pulmonary fibrosis in experimental studies, and Gal-3 levels have been found to be elevated in small studies of human pulmonary fibrosis. We sought to study whether circulating Gal-3 concentrations are elevated early in the course of pulmonary fibrosis. We examined 2,596 Framingham Heart Study participants (mean age, 57 yr; 54% women; 14% current smokers) who underwent Gal-3 assessment using plasma samples and pulmonary function testing between 1995 and 1998. Of this sample, 1,148 underwent subsequent volumetric chest computed tomography. Higher Gal-3 concentrations were associated with lower lung volumes (1.4% decrease in percentage of predicted FEV1 per 1 SD increase in log Gal-3; 95% confidence interval [CI], 0.8-2.0%; P < 0.001; 1.2% decrease in percentage of predicted FVC; 95% CI, 0.6-1.8%; P < 0.001) and decreased diffusing capacity of the lung for carbon monoxide (2.1% decrease; 95% CI, 1.3-2.9%; P < 0.001). These associations remained significant after multivariable adjustment (P ≤ 0.008 for all). Compared with the lowest quartile, participants in the highest Gal-3 quartile were more than twice as likely to have interstitial lung abnormalities visualized by computed tomography (multivariable-adjusted odds ratio, 2.67; 95% CI, 1.49-4.76; P < 0.001). Elevated Gal-3 concentrations are associated with interstitial lung abnormalities coupled with a restrictive pattern, including decreased lung volumes and altered gas exchange. These findings suggest a potential role for Gal-3 in early stages of pulmonary fibrosis.
Galectin-3 Is Associated with Restrictive Lung Disease and Interstitial Lung Abnormalities
Gao, Wei; Levy, Daniel; Santhanakrishnan, Rajalakshmi; Araki, Tetsuro; Rosas, Ivan O.; Hatabu, Hiroto; Latourelle, Jeanne C.; Nishino, Mizuki; Dupuis, Josée; Washko, George R.; O’Connor, George T.; Hunninghake, Gary M.
2016-01-01
Rationale: Galectin-3 (Gal-3) has been implicated in the development of pulmonary fibrosis in experimental studies, and Gal-3 levels have been found to be elevated in small studies of human pulmonary fibrosis. Objectives: We sought to study whether circulating Gal-3 concentrations are elevated early in the course of pulmonary fibrosis. Methods: We examined 2,596 Framingham Heart Study participants (mean age, 57 yr; 54% women; 14% current smokers) who underwent Gal-3 assessment using plasma samples and pulmonary function testing between 1995 and 1998. Of this sample, 1,148 underwent subsequent volumetric chest computed tomography. Measurements and Main Results: Higher Gal-3 concentrations were associated with lower lung volumes (1.4% decrease in percentage of predicted FEV1 per 1 SD increase in log Gal-3; 95% confidence interval [CI], 0.8–2.0%; P < 0.001; 1.2% decrease in percentage of predicted FVC; 95% CI, 0.6–1.8%; P < 0.001) and decreased diffusing capacity of the lung for carbon monoxide (2.1% decrease; 95% CI, 1.3–2.9%; P < 0.001). These associations remained significant after multivariable adjustment (P ≤ 0.008 for all). Compared with the lowest quartile, participants in the highest Gal-3 quartile were more than twice as likely to have interstitial lung abnormalities visualized by computed tomography (multivariable-adjusted odds ratio, 2.67; 95% CI, 1.49–4.76; P < 0.001). Conclusions: Elevated Gal-3 concentrations are associated with interstitial lung abnormalities coupled with a restrictive pattern, including decreased lung volumes and altered gas exchange. These findings suggest a potential role for Gal-3 in early stages of pulmonary fibrosis. PMID:26771117
Sex steroid receptor expression in idiopathic pulmonary fibrosis.
Mehrad, Mitra; Trejo Bittar, Humberto E; Yousem, Samuel A
2017-08-01
Usual interstitial pneumonia (UIP) is characterized by progressive scarring of the lungs and is associated with high morbidity and mortality despite therapeutic interventions. Sex steroid receptors have been demonstrated to play an important role in chronic lung conditions; however, their significance is unknown in patients with UIP. We retrospectively reviewed 40 idiopathic UIP cases for the expression of hormonal receptors. Forty cases including 10 normal lung, 10 cryptogenic organizing pneumonia, 10 idiopathic organizing diffuse alveolar damage, 7 hypersensitivity pneumonitis, and 3 nonspecific interstitial pneumonitis served as controls. Immunohistochemistry for estrogen receptor α, progesterone receptor (PR), and androgen receptor was performed in all groups. Expression of these receptors was assessed in 4 anatomic/pathologic compartments: alveolar and bronchiolar epithelium, arteries/veins, fibroblastic foci/airspace organization, and old scar. All UIPs (100%) stained positive for PR in myofibroblasts in the scarred areas, whereas among the control cases, only 1 nonspecific interstitial pneumonitis case stained focally positive and the rest were negative. PR was positive in myocytes of the large-sized arteries within the fibrotic areas in 31 cases (77.5%). PR was negative within the alveolar and bronchial epithelium, airspace organization, and center of fibroblastic foci; however, weak PR positivity was noted in the peripheral fibroblasts of the fibroblastic foci where they merged with dense fibrous connective tissue scar. All UIP and control cases were negative for androgen receptor and estrogen receptor α. This is the first study to show the expression of PR within the established fibrotic areas of UIP, indicating that progesterone may have profibrotic effects in UIP patients. Hormonal therapy by targeting PR could be of potential benefit in patients with UIP/IPF. Copyright © 2017 Elsevier Inc. All rights reserved.
Radiation damage in cubic ZrO 2 and yttria-stabilized zirconia from molecular dynamics simulations
Aidhy, Dilpuneet S.; Zhang, Yanwen; Weber, William J.
2014-11-20
Here, we perform molecular dynamics simulation on cubic ZrO 2 and yttria-stabilized zirconia (YSZ) to elucidate defect cluster formation resulting from radiation damage, and evaluate the impact of Y-dopants. Interstitial clusters composed of split-interstitial building blocks, i.e., Zr-Zr or Y-Zr are formed. Moreover, oxygen vacancies control cation defect migration; in their presence, Zr interstitials aggregate to form split-interstitials whereas in their absence Zr interstitials remain immobile, as isolated single-interstitials. Y-doping prevents interstitial cluster formation due to sequestration of oxygen vacancies.
Interstitial cystitis - resources
Resources - interstitial cystitis ... The following organizations are good resources for information on interstitial cystitis : Interstitial Cystitis Association -- www.ichelp.org National Institute of Diabetes and Digestive and Kidney Diseases -- www. ...
Understanding the Effect of Na in Improving the Performance of CuInSe 2 Based Photovoltaics
DOE Office of Scientific and Technical Information (OSTI.GOV)
Dobson, Kevin D.
Cu(In,Ga)Se 2 (CIGS) thin film photovoltaic technology is in the early stages of commercialization with an annual manufacturing capacity over 1 GW and has demonstrated the highest module efficiency of any of the thin film technologies. However there still is a lack of fundamental understanding of the relationship between the material properties and solar cell device operation. It is well known that the incorporation of a small amount of Na into the CIGS film during processing is essential for high efficiency devices. However, there are conflicting explanations for how Na behaves at the atomic scale. This report investigates how Namore » is incorporated into the CIGS device structure and evaluates the diffusion of Na into CIGS grain boundaries (GBs) and bulk crystallites. Participants: This project was carried out at the Institute of Energy Conversion at the University of Delaware, collaborating with the Rockett group at the University of Illinois Urbana-Champagne. Significant Findings: The significant outcomes of this project for each task include; Task 1.0: Effect of Na in Devices Fabricated on PVD Deposited CIGS; Na diffusion occurs through the Mo back contact via GBs driven by the presence of oxygen; Na reversibly compensates donor defects in CIGS GBs,Task 2.0: Na Incorporation in Single Crystal CIGS; and bulk Na diffusion proceeds rapidly such that grains are Na-saturated immediately following CIGS thin film manufacture. Industry Guidance: The presented results offer interesting concepts for modification of manufacturing processes of CIGS-based PV modules. Possible approaches to improve control of Na uptake and uniformly increase levels in CIGS films are highlighted for processes that employ either soda-lime glass or NaF as the Na source. Concepts include the potential of O 2 or oxidative based treatments of Mo back contacts to improve Na diffusion through the metal film and increase Na uptake into the growing CIGS. This project has also offered fundamental understanding of the behavior of Na in CIGS grains and GBs, particularly the confirmation that CIGS grains will be saturated with Na immediately following manufacture Summary of Results: Most commercially available CIGS modules are fabricated on soda-lime glass coated with Mo as the back electric contact, and Na in the glass diffuses through the Mo layer into the CIGS during film growth. In Task 1 the transport of Na through Mo was evaluated using x-ray photoelectron surface spectroscopy along with diffusion modeling to obtain diffusion coefficients at several temperatures. It was determined that Na diffusion in Mo only occurs along GBs and that oxygen provides an additional driving force to enhance Na transport. Device data revealed that older Mo substrates with a greater amount of surface oxide resulted in slightly higher efficiencies due to enhanced Na incorporation caused by the oxide. This finding shows that Mo substrates could potentially undergo an oxidation treatment prior to CIGS deposition to further improve and control the incorporation of Na. To determine if in-grain Na affects device performance, in Task 1 Na was selectively removed from GBs using heat/rinse cycles. Due to the low temperature of this treatment, Na at GBS remained mobile while diffusion within the bulk was too slow for Na removal from the grain interiors. Changes in electrical properties were evaluated using conductivity and Seebeck coefficient measurements, with both decreasing as Na was removed to reach values similar to Na-free controls samples. This can be explained by the compensation of donor defects by Na, causing an increase in the free carrier concentration. Devices showed a decrease in open-circuit voltage after Na removal confirming that the beneficial effects of GB Na. The findings of this project will provide guidance for rational optimization of Na incorporation procedures in the manufacturing of CIGS solar cells. While it is known that Na segregates at CIGS GBs, the nature and role of Na diffusion into grain interiors was less clear. In Task 2, single crystal CuInSe 2 was used as a model system to represent the grain interiors of CIGS. Crystals processed by two different methods of different compositions and dislocation densities, were evaluated. Diffusion coefficients were obtained at two temperatures after Na diffusion, giving near identical values, ~2x10 11 cm 2/s and ~6x10 11 cm2/s at 420°C and 480°C, respectively, for each crystal. Characterization confirmed that dislocation densities were too low to significantly impact the effective diffusion coefficient. The Cu-poor crystal had a higher solubility suggesting that Na diffusion is mediated by Cu-vacancies, but was not accompanied by an expected increase in diffusion coefficient. The activation energy for diffusion was similar to values expected for interstitial diffusion, but the large size of Na + ions should result in a solubility that is much lower than what was experimentally measured. A hybrid interstitial-substitutional mechanism is proposed that combines the fast diffusion of interstitial atoms with the high solubility common for substitutional impurities. Lattice diffusion of Na proceeds fast enough that CIGS grain interiors will have Na concentrations near the solubility limit of 1018 cm -3 when manufactured under standard conditions. Na and K treated epitaxial CIS films showed a significant increase in cathodoluminescence emission intensity, indicating a reduction of non-radiative recombination pathways, which is consistent with improvements in CIGS device performance, though the mechanism is not clear. Pathways forward: Despite the success of this project, there are a number of questions remaining related to further the understanding of the chemistry of Na in CIGS films and devices. These include further elucidation of the mechanisms of Na passivation in CIGS GBs, with identification of which defects are involved and confirmation of the possible effects of in-grain Na on device performance. To complete analysis of the cell structure, conformation of the presence and possible chemistries of Na at the CIGS/CdS junction and/or in the front transparent contacts, and its effects on device performance, is needed.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Soltani, M; Sefidgar, M; Bazmara, H
2015-06-15
Purpose: In this study, a mathematical model is utilized to simulate FDG distribution in tumor tissue. In contrast to conventional compartmental modeling, tracer distributions across space and time are directly linked together (i.e. moving beyond ordinary differential equations (ODEs) to utilizing partial differential equations (PDEs) coupling space and time). The diffusion and convection transport mechanisms are both incorporated to model tracer distribution. We aimed to investigate the contributions of these two mechanisms on FDG distribution for various tumor geometries obtained from PET/CT images. Methods: FDG transport was simulated via a spatiotemporal distribution model (SDM). The model is based on amore » 5K compartmental model. We model the fact that tracer concentration in the second compartment (extracellular space) is modulated via convection and diffusion. Data from n=45 patients with pancreatic tumors as imaged using clinical FDG PET/CT imaging were analyzed, and geometrical information from the tumors including size, shape, and aspect ratios were classified. Tumors with varying shapes and sizes were assessed in order to investigate the effects of convection and diffusion mechanisms on FDG transport. Numerical methods simulating interstitial flow and solute transport in tissue were utilized. Results: We have shown the convection mechanism to depend on the shape and size of tumors whereas diffusion mechanism is seen to exhibit low dependency on shape and size. Results show that concentration distribution of FDG is relatively similar for the considered tumors; and that the diffusion mechanism of FDG transport significantly dominates the convection mechanism. The Peclet number which shows the ratio of convection to diffusion rates was shown to be of the order of 10−{sup 3} for all considered tumors. Conclusion: We have demonstrated that even though convection leads to varying tracer distribution profiles depending on tumor shape and size, the domination of the diffusion phenomenon prevents these factors from modulating FDG distribution.« less
Osmosis and solute-solvent drag: fluid transport and fluid exchange in animals and plants.
Hammel, H T; Schlegel, Whitney M
2005-01-01
In 1903, George Hulett explained how solute alters water in an aqueous solution to lower the vapor pressure of its water. Hulett also explained how the same altered water causes osmosis and osmotic pressure when the solution is separated from liquid water by a membrane permeable to the water only. Hulett recognized that the solute molecules diffuse toward all boundaries of the solution containing the solute. Solute diffusion is stopped at all boundaries, at an open-unopposed surface of the solution, at a semipermeable membrane, at a container wall, or at the boundary of a solid or gaseous inclusion surrounded by solution but not dissolved in it. At each boundary of the solution, the solute molecules are reflected, they change momentum, and the change of momentum of all reflected molecules is a pressure, a solute pressure (i.e., a force on a unit area of reflecting boundary). When a boundary of the solution is open and unopposed, the solute pressure alters the internal tension in the force bonding the water in its liquid phase, namely, the hydrogen bond. All altered properties of the water in the solution are explained by the altered internal tension of the water in the solution. We acclaim Hulett's explanation of osmosis, osmotic pressure, and lowering of the vapor pressure of water in an aqueous solution. His explanation is self-evident. It is the necessary, sufficient, and inescapable explanation of all altered properties of the water in the solution relative to the same property of pure liquid water at the same externally applied pressure and the same temperature. We extend Hulett's explanation of osmosis to include the osmotic effects of solute diffusing through solvent and dragging on the solvent through which it diffuses. Therein lies the explanations of (1) the extravasation from and return of interstitial fluid to capillaries, (2) the return of luminal fluid in the proximal and distal convoluted tubules of a kidney nephron to their peritubular capillaries, (3) the return of interstitial fluid to the vasa recta, (4) return of aqueous humor to the episcleral veins, and (5) flow of phloem from source to sink in higher plants and many more examples of fluid transport and fluid exchange in animal and plant physiology. When a membrane is permeable to water only and when it separates differing aqueous solutions, the flow of water is from the solution with the lower osmotic pressure to the solution with the higher osmotic pressure.
Analysis of Dissolved Organic Nutrients in the Interstitial Water of Natural Biofilms.
Tsuchiya, Yuki; Eda, Shima; Kiriyama, Chiho; Asada, Tomoya; Morisaki, Hisao
2016-07-01
In biofilms, the matrix of extracellular polymeric substances (EPSs) retains water in the interstitial region of the EPS. This interstitial water is the ambient environment for microorganisms in the biofilms. The nutrient condition in the interstitial water may affect microbial activity in the biofilms. In the present study, we measured the concentrations of dissolved organic nutrients, i.e., saccharides and proteins, contained in the interstitial water of biofilms formed on the stones. We also analyzed the molecular weight distribution, chemical species, and availability to bacteria of some saccharides in the interstitial water. Colorimetric assays showed that the concentrations of saccharides and proteins in the biofilm interstitial water were significantly higher (ca. 750 times) than those in the surrounding lake waters (p < 0.05). Chromatographic analyses demonstrated that the saccharides in the interstitial waters were mainly of low molecular-weight saccharides such as glucose and maltose, while proteins in the interstitial water were high molecular-weight proteins (over 7000 Da). Bacterial growth and production of EPS occurred simultaneously with the decrease in the low molecular-weight saccharide concentrations when a small portion of biofilm suspension was inoculated to the collected interstitial water, suggesting that the dissolved saccharides in the interstitial water support bacterial growth and formation of biofilms.
Convective diffusion of nanoparticles from the epithelial barrier toward regional lymph nodes.
Dukhin, Stanislav S; Labib, Mohamed E
2013-11-01
Drug delivery using nanoparticles as drug carriers has recently attracted the attention of many investigators. Targeted delivery of nanoparticles to the lymph nodes is especially important to prevent cancer metastasis or infection, and to diagnose disease stage. However, systemic injection of nanoparticles often results in organ toxicity because they reach and accumulate in all the lymph nodes in the body. An attractive strategy would be to deliver the drug-loaded nanoparticles to a subset of draining lymph nodes corresponding to a specific site or organ to minimize systemic toxicity. In this respect, mucosal delivery of nanoparticles to regional draining lymph nodes of a selected site creates a new opportunity to accomplish this task with minimal toxicity. One example is the delivery of nanoparticles from the vaginal lumen to draining lymph nodes to prevent the transmission of HIV in women. Other known examples include mucosal delivery of vaccines to induce immunity. In all cases, molecular and particle transport by means of diffusion and convective diffusion play a major role. The corresponding transport processes have common inherent regularities and are addressed in this review. Here we use nanoparticle delivery from the vaginal lumen to the lymph nodes as an example to address the many aspects of associated transport processes. In this case, nanoparticles penetrate the epithelial barrier and move through the interstitium (tissue) to the initial lymphatics until they finally reach the lymph nodes. Since the movement of interstitial liquid near the epithelial barrier is retarded, nanoparticle transport was found to take place through special foci present in the epithelium. Immediately after nanoparticles emerge from the foci, they move through the interstitium due to diffusion affected by convection (convective diffusion). Specifically, the convective transport of nanoparticles occurs due to their convection together with interstitial fluid through the interstitium toward the initial lymph capillaries. Afterwards, nanoparticles move together with the lymph flow along the initial lymph capillaries and then enter the afferent lymphatics and ultimately reach the lymph node. As the liquid moves through the interstitium toward the initial lymph capillaries due to the axial movement of lymph along the lymphatics, the theory for coupling between lymph flow and concomitant flow through the interstitium is developed to describe this general case. The developed theory is applied to interpret the large uptake of Qdots by lymph nodes during inflammation, which is induced by pre-treating mouse vagina with the surfactant Nonoxynol-9 prior to instilling the Qdots. Inflammation is viewed here to cause broadening of the pores within the interstitium with the concomitant formation of transport channels which function as conduits to transport the nanoparticles to the initial lymph capillaries. We introduced the term "effective channels" to denote those channels which interconnect with foci present in the epithelial barrier and which function to transport nanoparticles to initial lymph capillaries. The time of transport toward the lymph node, predicated by the theory, increases rapidly with increasing the distance y0 between the epithelial barrier and the initial lymph capillaries. Transport time is only a few hours, when y0 is small, about some R (where R is the initial lymph capillary radius), due to the predomination of a rather rapid convection in this case. This transport time to the lymph nodes may be tens of hours (or longer) when y0 is essentially larger and the slow diffusion controls the transport rate in a zone not far from the epithelial barrier, where convection is weak at large y0. Accounting for transport by diffusion only, which is mainly considered in many relevant publications, is not sufficient to explain our nanoparticle uptake kinetics because the possibility of fast transport due to convection is overlooked. Our systematic investigations have revealed that the information about the main transport conditions, namely, y0 and the pore broadening up to the dimension of the interstitial transport channels, is necessary to create the quantitative model of enhanced transport during inflammation with the use of the proposed model as a prerequisite. The modeling for convective diffusion of nanoparticles from the epithelial barrier to the lymph node has been mainly accomplished here, while the diffusion only scenario is accounted for in other studies. This first modeling is a semi-quantitative one. A more rigorous mathematical approach is almost impossible at this stage because the transport properties of the model are introduced here for the first time. These properties include: discovery of foci in the epithelium, formation of transport channels, definition of channels interconnecting with foci (effective foci and channels), generation of flow in the interstitium toward the initial lymph capillaries due to axial flow within afferent lymphatics, deformation of this flow due to hydrodynamic impermeability of the squamous layer with the formation of the hydrodynamic stagnation zone near the epithelial barrier, predomination of slow diffusion transport within the above zone, and predomination of fast convection of nanoparticles near the initial lymph capillaries. Copyright © 2013 Elsevier B.V. All rights reserved.
Convective diffusion of nanoparticles from the epithelial barrier towards regional lymph nodes
Dukhin, Stanislav S; Labib, Mohamed E.
2013-01-01
Drug delivery using nanoparticles as drug carriers has recently attracted the attention of many investigators. Targeted delivery of nanoparticles to lymph nodes is especially important to prevent cancer metastasis or infection, and to diagnose disease stage. However, systemic injection of nanoparticles often results in organ toxicity because they reach and accumulate in all the lymph nodes in the body. An attractive strategy would be to deliver the drug-loaded nanoparticles to a subset of draining lymph nodes corresponding to a specific site or organ to minimize systemic toxicity. In this respect, mucosal delivery of nanoparticles to regional draining lymph nodes of a selected site creates a new opportunity to accomplish this task with minimal toxicity. One example is the delivery of nanoparticles from the vaginal lumen to draining lymph nodes to prevent the transmission of HIV in women. Other known examples include mucosal delivery of vaccines to induce immunity. In all cases, molecular and particle transport by means of diffusion and convective diffusion play a major role. The corresponding transport processes have common inherent regularities and are addressed in this review. Here we use nanoparticles delivery from the vaginal lumen to lymph nodes as an example to address the many aspects of associated transport processes. In this case, nanoparticles penetrate the epithelial barrier and move through the interstitium (tissue) to the initial lymphatics until they finally reach the lymph nodes. Since the movement of interstitial liquid near the epithelial barrier is retarded, nanoparticles transport was found to take place through special foci present in the epithelium. Immediately after nanoparticles emerge from the foci, they move through the interstitium due to diffusion affected by convection (convective diffusion). Specifically, the convective transport of nanoparticles occurs due to their convection together with interstitial fluid through the interstitium towards the initial lymph capillaries. Afterwards, nanoparticles move together with the lymph flow along the initial lymph capillaries and then enter the afferent lymphatics and ultimately reach the lymph node. As the liquid moves through the interstitium towards the initial lymph capillaries due to the axial movement of lymph along the lymphatics, the theory for coupling between lymph flow and concomitant flow through the interstitium is developed to describe this general case. The developed theory is applied to interpret the large uptake of Qdots by lymph nodes during inflammation, which is induced by pre-treating mouse vagina with the surfactant Nonoxynol-9 prior to instilling the Qdots. Inflammation is viewed here to cause broadening of the pores within the interstitium with the concomitant formation of transport channels which function as conduits to transport the nanoparticles to the initial lymph capillaries. We introduced the term “effective channels” to denote those channels which interconnect with foci present in the epithelial barrier and which function to transport nanoparticles to initial lymph capillaries. The time of transport towards the lymph node, predicated by the theory, increases rapidly with increasing the distance y0 between the epithelial barrier and the initial lymph capillaries. Transport time is only a few hours, when y0 is small, about some R (where R is the initial lymph capillary radius), due to the predomination of a rather rapid convection in this case. This transport time to lymph nodes may be tens of hours (or longer) when y0 is essentially larger and the slow diffusion controls the transport rate in a zone not far from the epithelial barrier, where convection is weak at large y0. Accounting for transport by diffusion only, which is mainly considered in many relevant publications, is not sufficient to explain our nanoparticles uptake kinetics because the possibility of fast transport due to convection is overlooked. Our systematic investigations have revealed that the information about the main transport conditions, namely, y0 and the pore broadening up to the dimension of the interstitial transport channels, is necessary to create the quantitative model of enhanced transport during inflammation with the use of the proposed model as a prerequisite. The modeling for convective diffusion of nanoparticles from the epithelial barrier to the lymph node has been mainly accomplished here, while the diffusion only scenario is accounted for in other studies. This first modeling is a semi-quantitative one. A more rigorous mathematical approach is almost impossible at this stage because the transport properties of the model are introduced here for the first time. These properties include: discovery of foci in the epithelium, formation of transport channels, definition of channels interconnecting with foci (effective foci and channels), generation of flow in the interstitium towards the initial lymph capillaries due to axial flow within afferent lymphatics, deformation of this flow due to hydrodynamic impermeability of the squamous layer with the formation of the hydrodynamic stagnation zone near the epithelial barrier, predomination of slow diffusion transport within the above zone, and predomination of fast convection of nanoparticles near the initial lymph capillaries. PMID:23859221
Bo, Shou-Hang; Grey, Clare P.; Khalifah, Peter G.
2015-06-10
The reversible room temperature intercalation of Mg 2+ ions is difficult to achieve, but may offer substantial advantages in the design of next-generation batteries if this electrochemical process can be successfully realized. Two types of quadruple ribbon-type transition metal borates (Mg xFe 2-xB 2O 5 and MgVBO 4) with high theoretical capacities (186 mAh/g and 360 mAh/g) have been synthesized and structurally characterized through the combined Rietveld refinement of synchrotron and time-of-flight neutron diffraction data. Neither MgVBO 4 nor Mg xFe 2-xB 2O 5 can be chemically oxidized at room temperature, though Mg can be dynamically removed from themore » latter phase at elevated temperatures (approximately 200 - 500 °C). Findings show that Mg diffusion in the Mg xFe 2-xB 2O 5 structure is more facile for the inner two octahedral sites than for the two outer octahedral sites in the ribbons, a result supported by both the refined site occupancies after Mg removal and by bond valence sum difference map calculations of diffusion paths in the pristine material. Mg diffusion in this pyroborate Mg xFe 2-xB 2O 5 framework is also found to be tolerant to the presence of Mg/Fe disorder since Mg ions can diffuse through interstitial channels which bypass Fe-containing sites.« less
A Simulation Tool for Dynamic Contrast Enhanced MRI
Mauconduit, Franck; Christen, Thomas; Barbier, Emmanuel Luc
2013-01-01
The quantification of bolus-tracking MRI techniques remains challenging. The acquisition usually relies on one contrast and the analysis on a simplified model of the various phenomena that arise within a voxel, leading to inaccurate perfusion estimates. To evaluate how simplifications in the interstitial model impact perfusion estimates, we propose a numerical tool to simulate the MR signal provided by a dynamic contrast enhanced (DCE) MRI experiment. Our model encompasses the intrinsic and relaxations, the magnetic field perturbations induced by susceptibility interfaces (vessels and cells), the diffusion of the water protons, the blood flow, the permeability of the vessel wall to the the contrast agent (CA) and the constrained diffusion of the CA within the voxel. The blood compartment is modeled as a uniform compartment. The different blocks of the simulation are validated and compared to classical models. The impact of the CA diffusivity on the permeability and blood volume estimates is evaluated. Simulations demonstrate that the CA diffusivity slightly impacts the permeability estimates ( for classical blood flow and CA diffusion). The effect of long echo times is investigated. Simulations show that DCE-MRI performed with an echo time may already lead to significant underestimation of the blood volume (up to 30% lower for brain tumor permeability values). The potential and the versatility of the proposed implementation are evaluated by running the simulation with realistic vascular geometry obtained from two photons microscopy and with impermeable cells in the extravascular environment. In conclusion, the proposed simulation tool describes DCE-MRI experiments and may be used to evaluate and optimize acquisition and processing strategies. PMID:23516414
Pulmonary asbestosis: radiologic-pathologic brief report.
Ahn, C S; Kim, S J; Oh, S J; Park, K J; Kim, H J; Ahn, C M; Kim, H K; Shin, D H; Cho, S H; Yang, K M
1997-10-01
Pulmonary asbestosis is defined as bilateral diffuse interstitial fibrosis of the lungs caused by exposure to asbestos. Many occupations are at risk for asbestos exposure, particularly in the mining, milling, manufacturing, construction, shipbuilding, and automotive industries. Therefore, the prevalence of asbestosis should be fairly widespread. The diagnosis of asbestosis can be made on either clinical or pathological grounds. We recently encountered one case of asbestosis which was confirmed histologically. On HRCT, there was ground-glass opacity with irregular linear shadows, subpleural curvilinear lines and parenchymal bands. Neither plaque nor calcification were noted. The histologic findings observed on open-lung biopsy specimen were well in accord with those in HRCT. Many asbestos-coated bodies were present along with black dust.
Kinetics of the electronic center annealing in Al2O3 crystals
NASA Astrophysics Data System (ADS)
Kuzovkov, V. N.; Kotomin, E. A.; Popov, A. I.
2018-04-01
The experimental annealing kinetics of the primary electronic F, F+ centers and dimer F2 centers observed in Al2O3 produced under neutron irradiation were carefully analyzed. The developed theory takes into account the interstitial ion diffusion and recombination with immobile F-type and F2-centers, as well as mutual sequential transformation with temperature of three types of experimentally observed dimer centers which differ by net charges (0, +1, +2) with respect to the host crystalline sites. The relative initial concentrations of three types of F2 electronic defects before annealing are obtained, along with energy barriers between their ground states as well as the relaxation energies.
Imatinib Treatment of Lymphangiomatosis (Generalized Lymphatic Anomaly).
Libby, Laura J; Narula, Navneet; Fernandes, Helen; Gruden, James F; Wolf, David J; Libby, Daniel M
2016-04-01
Lymphangiomatosis (eg, generalized lymphatic anomaly) is an abnormal proliferation of lymphatic endothelial cells. It is often a childhood disease, but it may present in adulthood by infiltrating organs and cause obstruction, bleeding, or disruption of lymphatic flow. Pulmonary involvement may be mild or cause diffuse interstitial lung disease, airway obstruction, hemoptysis, chylothorax, chylopericardium, and culminate in respiratory failure. Treatment has been limited to surgical resection or drainage procedures because there is no accepted effective systemic therapy. This report presents a patient with lymphangiomatosis and life-threatening hemoptysis in whom positive immunostaining forc-KITsuggested upregulation of tyrosine kinase and whose disease was controlled with imatinib. Copyright © 2016 by the National Comprehensive Cancer Network.
First-principles study of the effect of Cr and Al on the oxidation resistance of WSi2
NASA Astrophysics Data System (ADS)
Wang, Shuanglun; Pan, Yong; Lin, Yuanhua
2018-04-01
By means of first-principles approach, we systematically investigate the effect of Cr and Al on the oxidation resistance of WSi2. The interstice sites oxygen prefers to occupy are considered. Moreover, Cr and Al tend to occupy the Si sites of WSi2, and they are thermodynamically stable. The oxygen diffusion in various interstitial sites of undoped and doped WSi2 are studied, respectively. Importantly, Cr and Al can improve oxidation resistance of WSi2 obviously, and Cr, Al co-doped system has the best oxidation resistance. The improvement of oxidation resistance is attributed to the formation of Alsbnd O and Crsbnd O bonds.
Changes in the interstitial fluid and the muscle water in rabbits in hemorrhagic shock.
Wolcott, M W; Malinin, T I; Wu, N M
1976-01-01
Dynamics and changes in the biochemical composition in the interstitial fluid and the muscle water were studied in hemorrhagic shock. The interstitial fluid was collected from implanted perforated capsules. Muscle biopsies were examined with regard to their water content by the steady state magnetic nuclear resonance spectroscopy. The consistent and what appears to be the most significant changes were the fall in the interstitial fluid pressures, the quantitative reduction of muscle water, a sharp fall in the blood and interstitial blood pH, the moderate hyperkalemia and lack of change in blood an interstitial fluid sodium, and the rise in blood glucose levels not accompanied by a rise in the interstitial fluid glucose levels. PMID:11754
Black silicon significantly enhances phosphorus diffusion gettering.
Pasanen, Toni P; Laine, Hannu S; Vähänissi, Ville; Schön, Jonas; Savin, Hele
2018-01-31
Black silicon (b-Si) is currently being adopted by several fields of technology, and its potential has already been demonstrated in various applications. We show here that the increased surface area of b-Si, which has generally been considered as a drawback e.g. in applications that require efficient surface passivation, can be used as an advantage: it enhances gettering of deleterious metal impurities. We demonstrate experimentally that interstitial iron concentration in intentionally contaminated silicon wafers reduces from 1.7 × 10 13 cm -3 to less than 10 10 cm -3 via b-Si gettering coupled with phosphorus diffusion from a POCl 3 source. Simultaneously, the minority carrier lifetime increases from less than 2 μs of a contaminated wafer to more than 1.5 ms. A series of different low temperature anneals suggests segregation into the phosphorus-doped layer to be the main gettering mechanism, a notion which paves the way of adopting these results into predictive process simulators. This conclusion is supported by simulations which show that the b-Si needles are entirely heavily-doped with phosphorus after a typical POCl 3 diffusion process, promoting iron segregation. Potential benefits of enhanced gettering by b-Si include the possibility to use lower quality silicon in high-efficiency photovoltaic devices.
5-ALA based photodynamic management of glioblastoma
NASA Astrophysics Data System (ADS)
Rühm, Adrian; Stepp, Herbert; Beyer, Wolfgang; Hennig, Georg; Pongratz, Thomas; Sroka, Ronald; Schnell, Oliver; Tonn, Jörg-Christian; Kreth, Friedrich-Wilhelm
2014-03-01
Objective: Improvement of the clinical outcome of glioblastoma (GBM) patients by employment of fluorescence and photosensitization on the basis of 5-aminolevulinic acid (5-ALA) induced protoporphyrin IX (PpIX). Methods: In this report the focus is laid on the use of tumor selective PpIX fluorescence for stereotactic biopsy sampling and intra-operative treatment monitoring. In addition, our current concept for treatment planning is presented. For stereotactic interstitial photodynamic therapy (iPDT), radial diffusers were implanted into the contrast enhancing tumor volume. Spectroscopic measurements of laser light transmission and fluorescence between adjacent fibers were performed prior, during and post PDT. Results: PpIX concentrations in primary glioblastoma tissue show high intra- and inter-patient variability, but are usually sufficient for an effective PDT. During individual treatment attempts with 5-ALA based GBM-iPDT, transmission and fluorescence measurements between radial diffusers gave the following results: 1. In some cases, transmission after PDT is considerably reduced compared to the value before PDT, which may be attributable to a depletion of oxygenated hemoglobin and/or diffuse bleeding. 2. PpIX fluorescence is efficiently photobleached during PDT in all cases. Conclusion: iPDT with assessment of PpIX fluorescence and photobleaching is a promising treatment option. Individualization of treatment parameters appears to bear a potential to further improve clinical outcomes.
Defect chemistry and lithium transport in Li3OCl anti-perovskite superionic conductors.
Lu, Ziheng; Chen, Chi; Baiyee, Zarah Medina; Chen, Xin; Niu, Chunming; Ciucci, Francesco
2015-12-28
Lithium-rich anti-perovskites (LiRAPs) are a promising family of solid electrolytes, which exhibit ionic conductivities above 10(-3) S cm(-1) at room temperature, among the highest reported values to date. In this work, we investigate the defect chemistry and the associated lithium transport in Li3OCl, a prototypical LiRAP, using ab initio density functional theory (DFT) calculations and classical molecular dynamics (MD) simulations. We studied three types of charge neutral defect pairs, namely the LiCl Schottky pair, the Li2O Schottky pair, and the Li interstitial with a substitutional defect of O on the Cl site. Among them the LiCl Schottky pair has the lowest binding energy and is the most energetically favorable for diffusion as computed by DFT. This is confirmed by classical MD simulations, where the computed Li ion diffusion coefficients for LiCl Schottky systems are significantly higher than those for the other two defects considered and the activation energy in LiCl deficient Li3OCl is comparable to experimental values. The high conductivities and low activation energies of LiCl Schottky systems are explained by the low energy pathways of Li between the Cl vacancies. We propose that Li vacancy hopping is the main diffusion mechanism in highly conductive Li3OCl.
Cell Based Metabolic Barriers to Glucose Diffusion: Macrophages and Continuous Glucose Monitoring
Klueh, Ulrike; Frailey, Jackman; Qiao, Yi; Antar, Omar; Kreutzer, Donald L.
2014-01-01
It is assumed that MQ are central to glucose sensor bio-fouling and therefore have a major negative impact on continuous glucose monitoring (CGM) performance in vivo. However to our knowledge there is no data in the literature to directly support or refute this assumption. Since glucose and oxygen (O2) are key to glucose sensor function in vivo, understanding and controlling glucose and O2 metabolic activity of MQ is likely key to successful glucose sensor performance. We hypothesized that the accumulation of MQ at the glucose sensor-tissue interface will act as “Cell Based Metabolic Barriers” (CBMB) to glucose diffusing from the interstitial tissue compartment to the implanted glucose sensor and as such creating an artificially low sensor output, thereby compromising sensor function and CGM. Our studies demonstrated that 1) direct injections of MQ at in vivo sensor implantation sites dramatically decreased sensor output (measured in nA), 2) addition of MQ to glucose sensors in vitro resulted in a rapid and dramatic fall in sensor output and 3) lymphocytes did not affect sensor function in vitro or in vivo. These data support our hypothesis that MQ can act as metabolic barriers to glucose and O2 diffusion in vivo and in vitro. PMID:24461328
Cell based metabolic barriers to glucose diffusion: macrophages and continuous glucose monitoring.
Klueh, Ulrike; Frailey, Jackman T; Qiao, Yi; Antar, Omar; Kreutzer, Donald L
2014-03-01
It is assumed that MQ are central to glucose sensor bio-fouling and therefore have a major negative impact on continuous glucose monitoring (CGM) performance in vivo. However to our knowledge there is no data in the literature to directly support or refute this assumption. Since glucose and oxygen (O2) are key to glucose sensor function in vivo, understanding and controlling glucose and O2 metabolic activity of MQ is likely key to successful glucose sensor performance. We hypothesized that the accumulation of MQ at the glucose sensor-tissue interface will act as "Cell Based Metabolic Barriers" (CBMB) to glucose diffusing from the interstitial tissue compartment to the implanted glucose sensor and as such creating an artificially low sensor output, thereby compromising sensor function and CGM. Our studies demonstrated that 1) direct injections of MQ at in vivo sensor implantation sites dramatically decreased sensor output (measured in nA), 2) addition of MQ to glucose sensors in vitro resulted in a rapid and dramatic fall in sensor output and 3) lymphocytes did not affect sensor function in vitro or in vivo. These data support our hypothesis that MQ can act as metabolic barriers to glucose and O2 diffusion in vivo and in vitro. Copyright © 2014 Elsevier Ltd. All rights reserved.
Synchrotron-based analysis of chromium distributions in multicrystalline silicon for solar cells
DOE Office of Scientific and Technical Information (OSTI.GOV)
Jensen, Mallory Ann; Hofstetter, Jasmin; Morishige, Ashley E.
Chromium (Cr) can degrade silicon wafer-based solar cell efficiencies at concentrations as low as 10(10) cm(-3). In this contribution, we employ synchrotron-based X-ray fluorescence microscopy to study chromium distributions in multicrystalline silicon in as-grown material and after phosphorous diffusion. We complement quantified precipitate size and spatial distribution with interstitial Cr concentration and minority carrier lifetime measurements to provide insight into chromium gettering kinetics and offer suggestions for minimizing the device impacts of chromium. We observe that Cr-rich precipitates in as-grown material are generally smaller than iron-rich precipitates and that Cri point defects account for only one-half of the total Crmore » in the as-grown material. This observation is consistent with previous hypotheses that Cr transport and CrSi2 growth are more strongly diffusion-limited during ingot cooling. We apply two phosphorous diffusion gettering profiles that both increase minority carrier lifetime by two orders of magnitude and reduce [Cr-i] by three orders of magnitude to approximate to 10(10) cm(-3). Some Cr-rich precipitates persist after both processes, and locally high [Cri] after the high-temperature process indicates that further optimization of the chromium gettering profile is possible. (C) 2015 AIP Publishing LLC.« less
Stability and migration of large oxygen clusters in UO(2+x): density functional theory calculations.
Andersson, D A; Espinosa-Faller, F J; Uberuaga, B P; Conradson, S D
2012-06-21
Using ab initio molecular dynamics simulations and nudged elastic band calculations we examine the finite temperature stability, transition pathways, and migration mechanisms of large oxygen clusters in UO(2+x). Here we specifically consider the recently proposed split quad-interstitial and cuboctahedral oxygen clusters. It is shown that isolated cuboctahedral clusters may transform into more stable configurations that are closely linked to the split quad-interstitial. The split quad-interstitial is stable with respect to single interstitials occupying the empty octahedral holes of the UO(2) lattice. In order to better understand discrepancies between theory and experiments, the simulated atomic pair distribution functions for the split quad-interstitial structures are analyzed with respect to the distribution function for U(4)O(9) previously obtained from neutron diffraction data. Our nudged elastic band calculations suggest that the split quad-interstitial may migrate by translating one of its constituent di-interstitial clusters via a barrier that is lower than the corresponding barrier for individual interstitials, but higher than the barrier for the most stable di-interstitial cluster.
NASA Astrophysics Data System (ADS)
Hetzel, Fred W.; Chen, Qun; Luck, David; Beckers, Jill; Huang, Zheng
2004-06-01
Photodynamic therapy (PDT) mediated with vascular acting photosensitizer pd-bacteriopheophorbide (Tookad), is investigated as an alternative modality for the total ablation of prostate cancer. In vivo normal canine prostate is used as the animal model. Interstitial PDT was performed by irradiating the surgically exposed prostates with a diode laser (763 nm, 150 mW/cm) to activate the IV infused photosensitizer drug. The prostate and its adjacent tissues were harvested and subjected to histopathological examination. At one-week post PDT, the animals recovered well with little or no urethral complications. Prostatic urethra and prostate adjacent tissues (bladder and underlying colon) were well preserved. PDT induced prostate lesions were characterized by marked hemorrhagic necrosis. Prostate lesions could be detected by MRI scan as early as 48 h post PDT. Maximum lesion size of 1.5 cm3 and 2.9 cm3 could be achieved at 50 J/cm and 100 J/cm, respectively, with interstitial treatment using a single 1-cm diffuser fiber, suggesting the Tookad-PDT is very effective in ablating prostatic tissue. Pharmacokinetic studies show that the photosensitizer is cleared rapidly from the circulation. In conclusion, the novel photosensitizer Tookad mediated PDT may provide an effective alternative to treat localized prostate cancer.
Faville, R A; Pullan, A J; Sanders, K M; Koh, S D; Lloyd, C M; Smith, N P
2009-06-17
Spontaneously rhythmic pacemaker activity produced by interstitial cells of Cajal (ICC) is the result of the entrainment of unitary potential depolarizations generated at intracellular sites termed pacemaker units. In this study, we present a mathematical modeling framework that quantitatively represents the transmembrane ion flows and intracellular Ca2+ dynamics from a single ICC operating over the physiological membrane potential range. The mathematical model presented here extends our recently developed biophysically based pacemaker unit modeling framework by including mechanisms necessary for coordinating unitary potential events, such as a T-Type Ca2+ current, Vm-dependent K+ currents, and global Ca2+ diffusion. Model simulations produce spontaneously rhythmic slow wave depolarizations with an amplitude of 65 mV at a frequency of 17.4 cpm. Our model predicts that activity at the spatial scale of the pacemaker unit is fundamental for ICC slow wave generation, and Ca2+ influx from activation of the T-Type Ca2+ current is required for unitary potential entrainment. These results suggest that intracellular Ca2+ levels, particularly in the region local to the mitochondria and endoplasmic reticulum, significantly influence pacing frequency and synchronization of pacemaker unit discharge. Moreover, numerical investigations show that our ICC model is capable of qualitatively replicating a wide range of experimental observations.
Photodynamic therapy in neurosurgery: a proof of concept of treatment planning system
NASA Astrophysics Data System (ADS)
Dupont, C.; Reyns, N.; Mordon, S.; Vermandel, M.
2017-02-01
Glioblastoma (GBM) is the most common primary brain tumor. PhotoDynamic Therapy (PDT) appears as an interesting research field to improve GBM treatment. Nevertheless, PDT cannot fit into the current therapeutic modalities according to several reasons: the lack of reliable and reproducible therapy schemes (devices, light delivery system), the lack of consensus on a photosensitizer and the absence of randomized and controlled multicenter clinical trial. The main objective of this study is to bring a common support for PDT planning. Here, we describe a proof of concept of Treatment Planning System (TPS) dedicated to interstitial PDT for GBM treatment. The TPS was developed with the integrated development environment C++ Builder XE8 and the environment ArtiMED, developed in our laboratory. This software enables stereotactic registration of DICOM images, light sources insertion and an accelerated CUDA GPU dosimetry modeling. Although, Monte-Carlo is more robust to describe light diffusion in biological tissue, analytical model accelerated by GPU remains relevant for dose preview or fast reverse planning processes. Finally, this preliminary work proposes a new tool to plan interstitial or intraoperative PDT treatment and might be included in the design of future clinical trials in order to deliver PDT straightforwardly and homogenously in investigator centers.
Zn precipitation and Li depletion in Zn implanted ZnO
DOE Office of Scientific and Technical Information (OSTI.GOV)
Chan, K. S.; Jagadish, C.; Wong-Leung, J., E-mail: jenny.wongleung@anu.edu.au
2016-07-11
Ion implantation of Zn substituting elements in ZnO has been shown to result in a dramatic Li depletion of several microns in hydrothermally grown ZnO. This has been ascribed to a burst of mobile Zn interstials. In this study, we seek to understand the reason behind this interstitial mediated transient enhanced diffusion in Li-containing ZnO samples after Zn implantation. ZnO wafers were implanted with Zn to two doses, 5 × 10{sup 15} cm{sup −2} and 1 × 10{sup 17} cm{sup −2}. Secondary ion mass spectrometry was carried out to profile the Li depletion depth for different annealing temperatures between 600 and 800 °C. The 800 °C annealing hadmore » the most significant Li depletion of close to 60 μm. Transmission electron microscopy (TEM) was carried out in selected samples to identify the reason behind the Li depletion. In particular, TEM investigations of samples annealed at 750 °C show significant Zn precipitation just below the depth of the projected range of the implanted ions. We propose that the Zn precipitation is indicative of Zn supersaturation. Both the Li depletion and Zn precipitation are competing synchronous processes aimed at reducing the excess Zn interstitials.« less
Cr incorporated phase transformation in Y 2O 3 under ion irradiation
DOE Office of Scientific and Technical Information (OSTI.GOV)
Li, Nan; Yadav, Satyesh Kumar; Xu, Yun
Under irradiation, chemical species can redistribute in ways not expected from equilibrium behavior. In oxide-dispersed ferritic alloys, the phenomenon of irradiation-induced Cr redistribution at the metal/oxide interfaces has drawn recent attention. Here, the thermal and irradiation stability of the FeCr/Y 2O 3 interface has been systematically studied. Trilayer thin films of 90 nm Fe - 20 at.% Cr (1 st layer)/100 nm Y 2O 3 (2 nd layer)/135 nm Fe - 20 at.% Cr (3 rd layer) were deposited on MgO substrates at 500 °C. After irradiation, Cr diffuses towards and enriches the FeCr/Y 2O 3 interface. Further, correlated withmore » Cr redistributed into the oxide, an amorphous layer is generated at the interface. In the Y 2O 3 layer, the original cubic phase is observed to transform to the monoclinic phase after irradiation. Meanwhile, nanosized voids, with relatively larger size at interfaces, are also observed in the oxide layer. First-principles calculations reveal that Cr substitution of Y interstitials in Y 2O 3 containing excess Y interstitials is favored and the irradiation-induced monoclinic phase enhances this process. Lastly, our findings provide new insights that may aid in the development of irradiation resistant oxide-dispersed ferritic alloys.« less
Cr incorporated phase transformation in Y2O3 under ion irradiation
Li, N.; Yadav, S. K.; Xu, Y.; Aguiar, J. A.; Baldwin, J. K.; Wang, Y. Q.; Luo, H. M.; Misra, A.; Uberuaga, B. P.
2017-01-01
Under irradiation, chemical species can redistribute in ways not expected from equilibrium behavior. In oxide-dispersed ferritic alloys, the phenomenon of irradiation-induced Cr redistribution at the metal/oxide interfaces has drawn recent attention. Here, the thermal and irradiation stability of the FeCr/Y2O3 interface has been systematically studied. Trilayer thin films of 90 nm Fe - 20 at.% Cr (1st layer)/100 nm Y2O3 (2nd layer)/135 nm Fe - 20 at.% Cr (3rd layer) were deposited on MgO substrates at 500 °C. After irradiation, Cr diffuses towards and enriches the FeCr/Y2O3 interface. Further, correlated with Cr redistributed into the oxide, an amorphous layer is generated at the interface. In the Y2O3 layer, the original cubic phase is observed to transform to the monoclinic phase after irradiation. Meanwhile, nanosized voids, with relatively larger size at interfaces, are also observed in the oxide layer. First-principles calculations reveal that Cr substitution of Y interstitials in Y2O3 containing excess Y interstitials is favored and the irradiation-induced monoclinic phase enhances this process. Our findings provide new insights that may aid in the development of irradiation resistant oxide-dispersed ferritic alloys. PMID:28091522
Electron Microscopic Observations of the Carotid Body of the Cat
Ross, Leonard L.
1959-01-01
Carotid bodies were removed from cats, fixed in buffered 1 per cent osmic acid, embedded in deaerated, nitrogenated methacrylate, and cut into thin sections for electron microscopic study. The carotid body is seen to be composed of islands of chemoreceptor and sustentacular cells surrounded by wide irregular sinusoids. These cells are separated from the sinusoids by relatively broad interstitial spaces which are filled with collagen, fibroblasts, and many unmyelinated nerve fibers with their Schwann cell sheaths. The chemoreceptor cells are surrounded by the flattened, multiprocessed sustentacular cells which serve to convey the axons from an interstitial to a pericellular location. These sustentacular cells are assumed to be lemmoblastic in origin. Relatively few axons are seen to abut on the chemoreceptor cells. The cytoplasm of the chemoreceptor cell is characterized by numerous small mitochondria, units of granular endoplasmic reticulum, a small Golgi complex, and a variety of vesicles. There are many small vesicles diffusely scattered throughout the cytoplasm. In addition, there is a small number of dark-cored vesicles of the type which has been previously described in the adrenal medulla. These are usually associated with the Golgi complex. These findings are discussed in relation to the concepts of the origin of the chemoreceptor cell and the nature of the synapse. PMID:14439171
[The efficacy of phlebotomy with a low iron diet in the management of pulmonary iron overload].
Fukuda, Tomoko; Kimura, Fumiaki; Watanabe, Yoichi; Yoshino, Tadasi; Kimura, Ikuro
2003-05-01
Numerous studies have shown that workers in ferriferous industries have an elevated risk of respiratory tract neoplasia and other airway diseases. Evidence is presented that iron is a carcinogenic and tissue toxic hazard as regarding the inhalation of ferriferous substances. Elimination of the inhaled iron and prevention from accumulation of iron in the lung seems to be very important. A 26-year-old man was admitted to our hospital complaining of right chest pain. He had worked as an arc welder for two years without a mask. A chest CT showed diffuse ground glass opacity in the bilateral lung fields. A transbronchial lung biopsy specimen showed numerous alveolar and interstitial iron-laden macrophages. A 200 ml phlebotomy was carried out biweekly in combination with a low iron diet (8 mg/day). When serum ferritin reached 20 ng/ml, phlebotomy was stopped. After that, serum ferritin level was kept at around 20 ng/ml with the low iron diet alone. A transbronchial lung biopsy was carried out again 7 months later and the specimen showed remarkable reduction in the number of iron-laden alveolar and interstitial macrophages. Phlebotomy in combination with a low iron diet might become a useful strategy in the management of pulmonary conditions associated with iron loading.
NASA Astrophysics Data System (ADS)
Ito, T. U.; Koda, A.; Shimomura, K.; Higemoto, W.; Matsuzaki, T.; Kobayashi, Y.; Kageyama, H.
2017-01-01
Excited configurations of hydrogen in the oxyhydride BaTiO3 -xHx (x =0.1 -0.5 ), which are considered to be involved in its hydrogen transport and exchange processes, were investigated by positive muon spin relaxation spectroscopy using muonium (Mu) as a pseudoisotope of hydrogen. Muons implanted into the BaTiO3 -xHx perovskite lattice were mainly found in two qualitatively different metastable states. One was assigned to a highly mobile interstitial protonic state, which is commonly observed in perovskite oxides. The other was found to form an entangled two spin-1/2 system with the nuclear spin of an H- ion at the anion site. The structure of the (H,Mu) complex agrees well with that of a neutralized center containing two H- ions at a doubly charged oxygen vacancy, which was predicted to form in the SrTiO3 -δ perovskite lattice by a computational study [Y. Iwazaki et al., APL Mater. 2, 012103 (2014), 10.1063/1.4854355]. Above 100 K, interstitial Mu+ diffusion and retrapping to a deep defect were observed, which could be a rate-limiting step of macroscopic Mu/H transport in the BaTiO3 -xHx lattice.
Bargagli, Elena; Lavorini, Federico; Pistolesi, Massimo; Rosi, Elisabetta; Prasse, Antje; Rota, Emilia; Voltolini, Luca
2017-07-01
Idiopathic pulmonary fibrosis (IPF) is an interstitial lung disease with a poor prognosis and an undefined etiopathogenesis. Oxidative stress contributes to alveolar injury and fibrosis development and, because transition metals are essential to the functioning of most proteins involved in redox reactions, a better knowledge of metal concentrations and metabolism in the respiratory system of IPF patients may provide a valuable complementary approach to prevent and manage a disease which is often misdiagnosed or diagnosed in later stages. The present review summarizes and discusses literature data on the elemental composition of bronchoalveolar lavage (BAL), induced sputum and exhaled breath condensate (EBC) from patients affected by IPF and healthy subjects. Available data are scanty and the lack of consistent methods for the collection and analysis of lung and airways lining fluids makes it difficult to compare the results of different studies. However, the elemental composition of BAL samples from IPF patients seems to have a specific profile that can be distinguished from that of patients with other interstitial lung diseases (ILD) or control subjects. Suggestions are given towards standard sampling and analytical procedures of BAL samples, in the aim to assess typical element concentration patterns and their potential role as biomarkers of IPF. Copyright © 2017 Elsevier GmbH. All rights reserved.