NASA Technical Reports Server (NTRS)
Hodge, Andrew J.; Walker, James L., II
2008-01-01
A probability of detection study was performed for the detection of impact damage using flash heating infrared thermography on a full scale honeycomb composite structure. The honeycomb structure was an intertank structure from a previous NASA technology demonstration program. The intertank was fabricated from IM7/8552 carbon fiber/epoxy facesheets and aluminum honeycomb core. The intertank was impacted in multiple locations with a range of impact energies utilizing a spherical indenter. In a single blind study, the intertank was inspected with thermography before and after impact damage was incurred. Following thermographic inspection several impact sites were sectioned from the intertank and cross-sectioned for microscopic comparisons of NDE detection and actual damage incurred. The study concluded that thermographic inspection was a good method of detecting delamination damage incurred by impact. The 90/95 confidence level on the probability of detection was close to the impact energy that delaminations were first observed through cross-sectional analysis.
Stability Analysis of Intertank Formed Skin/Stringer Compression Panel with Simulated Damage
NASA Technical Reports Server (NTRS)
Harper, David W.; Wingate, Robert J.
2012-01-01
The External Tank (ET) is a component of the Space Shuttle launch vehicle that contains fuel and oxidizer. During launch, the ET supplies the space shuttle main engines with liquid hydrogen and liquid oxygen. In addition to supplying fuel and oxidizer, it is the backbone structural component of the Space Shuttle. It is comprised of a liquid hydrogen (LH2) tank and a liquid oxygen (LOX) tank, which are separated by an Intertank. The Intertank is a stringer-stiffened cylindrical structure with hat-section stringers that are roll formed from aluminum-lithium alloy Al-2090. Cracks in the Intertank stringers of the STS-133 ET were noticed after a November 5, 2010 launch attempt. The cracks were approximately nine inches long and occurred on the forward end of the Intertank (near the LOX tank), along the fastener line, and were believed to have occurred while loading the ET with the cryogenic propellants. These cracks generated questions about the structural integrity of the Intertank. In order to determine the structural capability of the Intertank with varying degrees of damage, a finite element model (FEM) simulating a 1995 compression panel test was analyzed and correlated to test data. Varying degrees of damage were simulated in the FEM, and non-linear stability analyses were performed. The high degree of similarity between the compression panel and the Intertank provided confidence that the ET Intertank would have similar capabilities.
Unexpected matching insensitivity in DTL of GTA accelerator
DOE Office of Scientific and Technical Information (OSTI.GOV)
Yuan, V.W.; Gilpatrick, J.D.; Johnson, K.F.
1995-05-01
The Intertank Matching Section (IMS) of the Ground Test Accelerator (GTA) contains four variable-field quadrupoles (VFQs) and is designed to match beam exiting the Radio-Frequency Quadrupole to the first tank of the Drift-tube LINAC (DTL-1). By varying the VFQ field strengths to create a range of beam mismatches at the entrance to DTL-1, one can test the sensitivity of the DTL-1 output beam to variations in the DTL-1 input beam. Experimental studies made during commissioning of the GTA indicate an unexpected result: the beam exiting DTL-1 shows little variation for a range of mismatches produced at the entrance. Results ofmore » the experiment and simulation studies are presented.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Johnson, K.F.; Garcia, R.C.; Rusthoi, D.P.
1995-05-01
The Ground Test Accelerator (GTA) had the objective Of Producing a high-brightness, high-current H-beam. The major components were a 35 keV injector, a Radio Frequency Quadrupole (RFQ), an intertank matching section (IMS), and a drift tube linac (DTL), consisting of 10 modules. A technique for measuring the transverse phase-space of high-power density beams has been developed and tested. This diagnostic has been applied to the GTA H-beam. Experimental results are compared to the slit and collector technique for transverse phase-space measurements and to simulations.
Design development of graphite primary structures enables SSTO success
NASA Astrophysics Data System (ADS)
Biagiotti, V. A.; Yahiro, J. S.; Suh, Daniel E.; Hodges, Eric R.; Prior, Donald J.
1997-01-01
This paper describes the development of a graphite composite wing and a graphite composite intertank primary structure for application toward Single-Stage to Orbit space vehicles such as those under development in NASA's X-33/Reusable Launch Vehicle (RLV) Program. The trade study and designs are based on a Rockwell vertical take-off and horizontal landing (VTHL) wing-body RLV vehicle. Northrop Grumman's approach using a building block development technique is described. Composite Graphite/Bismaleimide (Gr/BMI) material characterization test results are presented. Unique intertank and wing composite subcomponent test article designs are described and test results to date are presented. Wing and intertank Full Scale Section Test Article (FSTA) objectives and designs are outlined. Trade studies, supporting building block testing, and FSTA demonstrations combine to develop graphite primary structure composite technology that enables developing X-33/RLV design programs to meet critical SSTO structural weight and operations performance criteria.
NASA Technical Reports Server (NTRS)
Phillips, Dawn R.; Saxon, Joseph B.; Wingate, Robert J.
2012-01-01
On November 5, 2010, Space Shuttle mission STS-133 was scrubbed due to a hydrogen leak at the Ground Umbilical Carrier Plate (GUCP). After the scrub, a crack in the foam thermal protection system (TPS) was observed on the External Tank (ET) near the interface between the liquid oxygen (LOX) tank and the Intertank. When the damaged foam was removed, two 9-in. long cracks were found on the feet of Intertank stringer S7-2, and the stringer failure was the cause of the TPS crack. An investigation was conducted to determine the root cause of the cracks, establish a remedy/repair for the stringers, and provide flight rationale for the damaged tank, ET-137. The Space Transportation System (STS) Super Lightweight ET (SLWT) is comprised of two propellant tanks (an aft liquid hydrogen (LH2) tank and a forward LOX tank) and an Intertank. The Intertank serves as the structural connection between the two propellant tanks and also functions to receive and distribute all thrust loads from the solid rocket boosters . The Intertank is a stiffened cylinder structure consisting of eight mechanically joined panels (two integrally-stiffened, machined thrust panels to react the booster loads and six stringer-stiffened skin panels). There are one main ring frame, four intermediate ring frames, and forward and aft flange chords that mate to the respective propellant tanks.. The skin/stringer panels utilize external hat-section stringers that are mechanically attached with rivets along most of their length and with specialty fasteners, such as GP Lockbolts and Hi-Loks, at the forward and aft ends where the stringers attach to the flange chords. During the STS-133 Intertank stringer crack investigation, cracks were found on a total of five stringers. All of the cracks were at the LOX end, in the feet of the stringers, and near the forward fasteners (GP Lockbolts). Video of tanking for the November 5 launch attempt was used to determine that the TPS failure, and thus the stringer failure, occurred as the LOX liquid level crossed the LOX tank / Intertank interface ring frame. Hence, cryogenically-induced displacements were suspected as a contributing cause of the stringer cracks. To study the behavior of Intertank stringers subjected to similar displacements, static load tests of individual stringers, colloquially known as "single stringer bending tests" were performed. Approximately thirty stringers were tested, many of which were cut from the partially completed Intertank for what would have been ET-139. In addition to the tests, finite element (FE) analyses of the test configuration were also performed. In this paper, the FE analyses and test-analysis correlation for stringer test S6-8 are presented. Stringer S6-8 is a "short chord" configuration with no doubler panels.
SLS Intertank Test Article, ITA, is attached to crosshead of loa
2018-04-04
SLS Intertank Test Article, ITA, is attached to crosshead of load test Annex, Bldg. 4619, and removed from bed of KMAG transporter. Rob Ziegler, L, and Roger Myrick, R, of Aerie Aerospace attach load lines to Aft Load Ring of Intertank Test Articlle
SLS Intertank Test Article, ITA, is attached to crosshead of loa
2018-04-04
SLS Intertank Test Article, ITA, is attached to crosshead of load test Annex, Bldg. 4619, and removed from bed of KMAG transporter. Rob Ziegler, (L), and Roger Myrick (R), of Aerie Aerospace attach load lines to Aft Load Ring of Intertank Test Article.
STS-133 Space Shuttle External Tank Intertank Stringer Crack Investigation Stress Analysis
NASA Technical Reports Server (NTRS)
Steeve, Brian E.
2012-01-01
The first attempt to launch the STS-133 Space Shuttle mission in the fall of 2010 was halted due to indications of a gaseous hydrogen leak at the External Tank ground umbilical carrier plate seal. Subsequent inspection of the external tank (figure 1) hardware and recorded video footage revealed that the foam insulation covering the forward end of the intertank near the liquid oxygen tank had cracked severely enough to have been cause for halting the launch attempt on its own (figure 2). An investigation into the cause of the insulation crack revealed that two adjacent hat-section sheet metal stringers (figure 3) had cracks up to nine inches long in the forward ends of the stringer flanges, or feet, near the fasteners that attach the stringer to the skin of the intertank (figure 4). A repair of those two stringers was implemented and the investigation effort widened to understand the root cause of the stringer cracks and to determine whether there was sufficient flight rationale to launch with the repairs and the other installed stringers.
NASA Technical Reports Server (NTRS)
Knight, Norman F., Jr.; Warren, Jerry E.; Elliott, Kenny B.; Song, Kyongchan; Raju, Ivatury S.
2012-01-01
Elastic-plastic, large-deflection nonlinear thermo-mechanical stress analyses are performed for the Space Shuttle external tank s intertank stringers. Detailed threedimensional finite element models are developed and used to investigate the stringer s elastic-plastic response for different thermal and mechanical loading events from assembly through flight. Assembly strains caused by initial installation on an intertank panel are accounted for in the analyses. Thermal loading due to tanking was determined to be the bounding loading event. The cryogenic shrinkage caused by tanking resulted in a rotation of the intertank chord flange towards the center of the intertank, which in turn loaded the intertank stringer feet. The analyses suggest that the strain levels near the first three fasteners remain sufficiently high that a failure may occur. The analyses also confirmed that the installation of radius blocks on the stringer feet ends results in an increase in the stringer capability.
SLS Intertank Test Article, ITA, is attached to crosshead of loa
2018-04-04
SLS Intertank Test Article, ITA, is attached to crosshead of load test Annex, Bldg. 4619, and removed from bed of KMAG transporter. ITA is slowly raised from bed of KMAG transporter and KMAG is removed.
The SLS Stages Intertank Structural Test Assembly (STA) arrives at MSFC.
2018-03-06
The SLS Stages Intertank Structural Test Assembly (STA) is rolling off the NASA Pegasus Barge at the MSFC Dock enroute to the MSFC 4619 Load Test Annex test facility for qualification testing. STA emerges from Barge Pegasus.
SLS Intertank Transported to NASA's Barge Pegasus for Shipment, Testing
2018-02-22
A structural test version of the intertank for NASA's new heavy-lift rocket, the Space Launch System, is loaded onto the barge Pegasus Feb. 22, at NASA’s Michoud Assembly Facility in New Orleans. NASA engineers and technicians used the agency's new self-propelled modular transporters -- highly specialized, mobile platforms specifically designed to transport SLS hardware -- to transport the critical test hardware to the barge. The intertank is the second piece of structural hardware for the rocket's massive core stage scheduled for delivery to NASA's Marshall Space Flight Center in Huntsville, Alabama, for testing. Engineers at Marshall will push, pull and bend the intertank with millions of pounds of force to ensure the hardware can withstand the forces of launch and ascent. The flight version of the intertank will connect the core stage's two colossal fuel tanks, serve as the upper-connection point for the two solid rocket boosters and house the avionics and electronics that will serve as the "brains" of the rocket. Pegasus, originally used during the Space Shuttle Program, has been redesigned and extended to accommodate the SLS rocket's massive, 212-foot-long core stage -- the backbone of the rocket. The 310-foot-long barge will ferry the core stage elements from Michoud to other NASA centers for tests and launches.
SLS Intertank Transported to NASA's Barge Pegasus for Shipment, testing
2018-02-22
A structural test version of the intertank for NASA's new heavy-lift rocket, the Space Launch System, is loaded onto the barge Pegasus Feb. 22, at NASA’s Michoud Assembly Facility in New Orleans. NASA engineers and technicians used the agency's new self-propelled modular transporters -- highly specialized, mobile platforms specifically designed to transport SLS hardware -- to transport the critical test hardware to the barge. The intertank is the second piece of structural hardware for the rocket's massive core stage scheduled for delivery to NASA's Marshall Space Flight Center in Huntsville, Alabama, for testing. Engineers at Marshall will push, pull and bend the intertank with millions of pounds of force to ensure the hardware can withstand the forces of launch and ascent. The flight version of the intertank will connect the core stage's two colossal fuel tanks, serve as the upper-connection point for the two solid rocket boosters and house the avionics and electronics that will serve as the "brains" of the rocket. Pegasus, originally used during the Space Shuttle Program, has been redesigned and extended to accommodate the SLS rocket's massive, 212-foot-long core stage -- the backbone of the rocket. The 310-foot-long barge will ferry the core stage elements from Michoud to other NASA centers for tests and launches.
Design Optimization and Analysis of a Composite Honeycomb Intertank
NASA Technical Reports Server (NTRS)
Finckenor, Jeff; Spurrier, Mile
1999-01-01
Intertanks, the structure between tanks of launch vehicles, are prime candidates for weight reduction of rockets. This paper discusses the optimization and detailed follow up analysis and testing of a 96 in. diameter, 77 in. tall intertank. The structure has composite face sheets with an aluminum honeycomb core. The ends taper to a thick built up laminate for a double lap bolted splice joint interface. It is made in 8 full length panels joined with bonded double lap joints. The nominal load is 4000 lb/in. Optimization is by Genetic Algorithm and minimizes weight by varying core thickness, number and orientation of acreage and buildup plies, and the size, number and spacing of bolts. A variety of design cases were run with populations up to 2000 and chromosomes as long as 150 bits. Constraints were buckling; face stresses (normal, shear, wrinkling and dimpling); bolt stress; and bolt hole stresses (bearing, net tension, wedge splitting, shear out and tension/shear out). Analysis is by a combination of elasticity solutions and empirical data. After optimization, a series of coupon tests were performed in conjunction with a rigorous analysis involving a variety of finite element models. This analysis and testing resulted in several small changes to the optimized design. The equation used for hole bearing strength was found to be inadequate, resulting in thicker ends. The core thickness increased 0.05", and potting compound was added in the taper to strengthen the facesheet bond. The intertank has undergone a 250,000 lb limit load test and been mated with a composite liquid hydrogen tank. The tank/intertank unit is being installed in a test stand where it will see 200 thermal/load cycles. Afterwards the intertank will be demated and loaded in compression to failure.
Design Optimization and Analysis of a Composite Honeycomb Intertank
NASA Technical Reports Server (NTRS)
Finckenor, Jeffrey; Spurrier, Mike
1998-01-01
Intertanks, the structure between tanks of launch vehicles, are prime candidates for weight reduction of rockets. This paper discusses the optimization and detailed analysis of a 96 in (2.44 m) diameter, 77 in (1.85 m) tall intertank. The structure has composite face sheets and an aluminum honeycomb core. The ends taper to a thick built up laminate for a double lap bolted shear joint. It is made in 8 full length panels joined with bonded double lap joints. The nominal load is 4000 lb/in (7 x 10(exp 5) N/m). Optimization is by Genetic Algorithm and minimizes weight by varying C, core thickness, number and orientation of acreage and buildup plies, and the size, number and spacing of bolts. A variety of cases were run with populations up to 2000 and chromosomes as long as 150 bits. Constraints were buckling, face stresses (normal, shear, wrinkling and dimpling, bolt stress, and bolt hole stresses (bearing, net tension, wedge splitting, shear out and tension/shear out). Analysis is by a combination of theoretical solutions and empirical data. After optimization, a series of coupon tests were performed in conjunction with a rigorous analysis involving a variety of finite element models. The analysis and test resulted in several small changes to the optimized design. The intertank has undergone a 250,000 lb (1.1 x 10(exp 6) N) limit load test and been mated with a composite liquid hydrogen tank. The tank/intertank unit is being installed in a test stand where it will see 200 thermal/load cycles. Afterwards the intertank will be demated and loaded in compression to failure.
2018-03-28
SLS INTERTANK TEST ARTICLE IS ATTACHED TO CROSSHEAD OF LOAD TEST ANNEX, BLDG. 4619, AND REMOVED FROM BED OF KMAG TRANSPORTER. Matt Cash conducts tag up meeting before lift of ITA from KMAG transporter
The SLS Stages Intertank Structural Test Assembly (STA) arrives at MSFC
2018-03-06
The SLS Stages Intertank Structural Test Assembly (STA) is rolling off the NASA Pegasus Barge at the MSFC Dock enroute to the MSFC 4619 Load Test Annex test facility for qualification testing. STA hardware completely free of barge and flanked by tug boats.
Reusable Launch Vehicle Tank/Intertank Sizing Trade Study
NASA Technical Reports Server (NTRS)
Dorsey, John T.; Myers, David E.; Martin, Carl J.
2000-01-01
A tank and intertank sizing tool that includes effects of major design drivers, and which allows parametric studies to be performed, has been developed and calibrated against independent representative results. Although additional design features, such as bulkheads and field joints, are not currently included in the process, the improved level of fidelity has allowed parametric studies to be performed which have resulted in understanding of key tank and intertank design drivers, design sensitivities, and definition of preferred design spaces. The sizing results demonstrated that there were many interactions between the configuration parameters of internal/external payload, vehicle fineness ratio (half body angle), fuel arrangement (LOX-forward/LOX-aft), number of tanks, and tank shape/arrangement (number of lobes).
Core Stage Inter-Tank Umbilical (CSITU) Lift at ML
2017-10-11
A heavy-lift crane and rigging are used to lift the Core Stage Inter-tank Umbilical (CSITU) up to about the 140-foot level of the mobile launcher (ML) tower at NASA's Kennedy Space Center in Florida. The CSITU is moved into place for a fit check of the attachment hardware. The umbilical will then be lowered down and installed permanently on the ML at a later date. The CSITU is a swing-arm umbilical that will connect to the Space Launch System core stage inter-tank. It will provide conditioned air, pressurized gases and power and data connection to the core stage. The Ground Systems Development and Operations Program is overseeing installation of the umbilicals.
The SLS Stages Intertank Structural Test Assembly (STA) arrives at MSFC
2018-03-08
The SLS Stages Intertank Structural Test Assembly (STA) is rolling off the NASA Pegasus Barge at the MSFC Dock enroute to the MSFC 4619 Load Test Annex test facility for qualification testing via MSFC West Test Area. STA approaches Test Stand 4693, SLS LH2 test Stand, on way to Bldg. 4619
Aerial View: SLS Intertank Arrives at Marshall for Critical Structural Testing
2018-03-08
A structural test version of the intertank for NASA's new deep-space rocket, the Space Launch System, arrives at NASA’s Marshall Space Flight Center in Huntsville, Alabama, March 4, aboard the barge Pegasus. The intertank is the second piece of structural hardware for the massive SLS core stage built at NASA's Michoud Assembly Facility in New Orleans delivered to Marshall for testing. The structural test article will undergo critical testing as engineers push, pull and bend the hardware with millions of pounds of force to ensure it can withstand the forces of launch and ascent. The test hardware is structurally identical to the flight version of the intertank that will connect the core stage's two colossal propellant tanks, serve as the upper-connection point for the two solid rocket boosters and house critical avionics and electronics. Pegasus, originally used during the Space Shuttle Program, has been redesigned and extended to accommodate the SLS rocket's massive, 212-foot-long core stage -- the backbone of the rocket. The 310-foot-long barge will ferry the flight core stage from Michoud to other NASA centers for tests and launch.
The SLS Stages Intertank Structural Test Assembly (STA) arrives at MSFC
2018-03-06
The SLS Stages Intertank Structural Test Assembly (STA) is rolling off the NASA Pegasus Barge at the MSFC Dock enroute to the MSFC 4619 Load Test Annex test facility for qualification testing. Members of MSFC Logistics Office and Move Team members gather for last minute instructions and safety briefing before off-loading STA hardware.
The SLS Stages Intertank Structural Test Assembly (STA) arrives at MSFC
2018-03-08
The SLS Stages Intertank Structural Test Assembly (STA) is rolling off the NASA Pegasus Barge at the MSFC Dock enroute to the MSFC 4619 Load Test Annex test facility for qualification testing via MSFC West Test Area. Historic Saturn 1-C test stand on far left, blockhouse 4670 on far right, SLS LH2 test stand, 4693, in center.
The SLS Stages Intertank Structural Test Assembly (STA) arrives at MSFC
2018-03-08
The SLS Stages Intertank Structural Test Assembly (STA) is rolling off the NASA Pegasus Barge at the MSFC Dock enroute to the MSFC 4619 Load Test Annex test facility for qualification testing via MSFC West Test Area. STA enters West Test Area from intersection of Dodd and Saturn roads. Onlookers take photos with Historic Dynamic Test Stand in background.
Using Aerogel-Based Insulation Material To Prevent Foam Loss on the Liquid-Hydrogen Intertank
NASA Technical Reports Server (NTRS)
2008-01-01
Uninsulated areas on cryogenic propellant tanks and feedlines cause moisture in the air to condense or ice to form. Flange joints, bracket supports, expansion bellows, and other cavities are uninsulated by design. These areas cannot be sealed because conventional thermal insulation materials would restrict mechanical articulations. Aerogel-based thermal insulation systems are able to seal critical locations such as the liquid-oxygen (LO2) feedline bellows. A new thermal insulation system was also necessary between the intertank wall, flange, and the liquid-hydrogen (LH2) tank dome, where there is a cavity (or crevice) with an exposed 20-K surface. When nitrogen gas is used for purging within the intertank volume, it condenses on this cold surface. Some solid nitrogen may also form on the colder side of the crevice. Voids or discontinuities within the foam can pressurize and cause areas of foam to weaken and break off, reducing thermal efficiency and creating potentially dangerous debris. To prevent this foam loss, we developed a thermal insulation system using bulk-fill aerogel material and demonstrated it with a one-tenth-scale model of the LH2 intertank flange area
Space Launch System, Core Stage, Structural Test Design and Implementation
NASA Technical Reports Server (NTRS)
Shaughnessy, Ray
2017-01-01
As part of the National Aeronautics and Space Administration's (NASA) Space Launch System (SLS) Program, engineers at NASA's Marshall Space Flight Center (MSFC) in Huntsville, Alabama are working to design, develop and implement the SLS Core Stage structural testing. The SLS will have the capability to return humans to the Moon and beyond and its first launch is scheduled for December of 2017. The SLS Core Stage consist of five major elements; Forward Skirt, Liquid Oxygen (LOX) tank, Intertank (IT), Liquid Hydrogen (LH2) tank and the Engine Section (ES). Structural Test Articles (STA) for each of these elements are being designed and produced by Boeing at Michoud Assembly Facility located in New Orleans, La. The structural test for the Core Stage STAs (LH2, LOX, IT and ES) are to be conducted by the MSFC Test Laboratory. Additionally, the MSFC Test Laboratory manages the Structural Test Equipment (STE) design and development to support the STAs. It was decided early (April 2012) in the project life that the LH2 and LOX tank STAs would require new test stands and the Engine Section and Intertank would be tested in existing facilities. This decision impacted schedules immediately because the new facilities would require Construction of Facilities (C of F) funds that require congressional approval and long lead times. The Engine Section and Intertank structural test are to be conducted in existing facilities which will limit lead times required to support the first launch of SLS. With a SLS launch date of December, 2017 Boeing had a need date for testing to be complete by September of 2017 to support flight certification requirements. The test facilities were required to be ready by October of 2016 to support test article delivery. The race was on to get the stands ready before Test Article delivery and meet the test complete date of September 2017. This paper documents the past and current design and development phases and the supporting processes, tools, and methodology for supporting the SLS Core Stage STA test stands and related STE. The paper will address key requirements, system development activities and project challenges. Additionally, the interrelationships as well as interdependencies within the SLS project will be discussed.
Design development of graphite primary structures enables SSTO success
DOE Office of Scientific and Technical Information (OSTI.GOV)
Biagiotti, V.A.; Yahiro, J.S.; Suh, D.E.
1997-01-01
This paper describes the development of a graphite composite wing and a graphite composite intertank primary structure for application toward Single-Stage to Orbit space vehicles such as those under development in NASA{close_quote}s X-33/Reusable Launch Vehicle (RLV) Program. The trade study and designs are based on a Rockwell vertical take-off and horizontal landing (VTHL) wing-body RLV vehicle. Northrop Grumman{close_quote}s approach using a building block development technique is described. Composite Graphite/Bismaleimide (Gr/BMI) material characterization test results are presented. Unique intertank and wing composite subcomponent test article designs are described and test results to date are presented. Wing and intertank Full Scale Sectionmore » Test Article (FSTA) objectives and designs are outlined. Trade studies, supporting building block testing, and FSTA demonstrations combine to develop graphite primary structure composite technology that enables developing X-33/RLV design programs to meet critical SSTO structural weight and operations performance criteria. {copyright} {ital 1997 American Institute of Physics.}« less
Animation: What makes up the Space Launch System’s massive core stage
2017-04-24
NASA’s new rocket, the Space Launch System, will be the most powerful rocket ever built for deep-space missions. The 212-foot core stage is the largest rocket stage ever built and will fuel four RS-25 engines that will help launch SLS. This animation depicts the parts that make up the core stage and how these parts will be joined to form the entire stage. The five major parts include: the engine section, the hydrogen tank, the intertank, the liquid oxygen tank and the forward skirt.
Space tug thermal control. [design criteria and specifications
NASA Technical Reports Server (NTRS)
1974-01-01
It was determined that space tug will require the capability to perform its mission within a broad range of thermal environments with currently planned mission durations of up to seven days, so an investigation was conducted to define a thermal design for the forward and intertank compartments and fuel cell heat rejection system that satisfies tug requirements for low inclination geosynchronous deploy and retrieve missions. Passive concepts were demonstrated analytically for both the forward and intertank compartments, and a worst case external heating environment was determined for use during the study. The thermal control system specifications and designs which resulted from the research are shown.
2010-12-29
CAPE CANAVERAL, Fla. -- Inside the intertank of space shuttle Discovery's external fuel tank, a technician holds the film used to project computed radiography scans. The shuttle stack, consisting of the shuttle, external tank and solid rocket boosters, was moved from Launch Pad 39A to the Vehicle Assembly Building at NASA's Kennedy Space Center in Florida so technicians could examine 21-foot-long support beams, called stringers, on the outside of the tank's intertank and re-apply foam insulation. Discovery's next launch opportunity to the International Space Station on the STS-133 mission is no earlier than Feb. 3, 2011. For more information on STS-133, visit www.nasa.gov/mission_pages/shuttle/shuttlemissions/sts133/. Photo credit: NASA/Frankie Martin
NASA Technical Reports Server (NTRS)
Lovejoy, Andrew E.; Rankin, Charles C.
2013-01-01
After propellant was loaded into the external tank (ET), the November 5, 2010 launch of Space Shuttle mission STS-133 was scrubbed due to a gaseous hydrogen leak located in a vent line near the ground umbilical and ET connection. Subsequent visual inspections identified cracks in the sprayed-on foam insulation in the forward end of the ET intertank segment, adjacent to the liquid oxygen (LOX) tank, as shown in Figure 1. These cracks necessitated repair of the foam due to debris concerns that violated launch constraints. As part of the repair process, the affected foam was removed to reveal cracks in the underlying external hat stiffeners on the intertank, as shown in Figure 2. Ultimately, five stiffeners were discovered to be cracked adjacent to the LOX tank. As the managing center for the ET Project, NASA Marshall Space Flight Center (MSFC) coordinated failure investigation and repair activities among multiple organizations, which included the ET prime contractor (Lockheed Martin Space Systems Michoud Operations), the Space Shuttle Program Office at the NASA Johnson Space Center (JSC), the NASA Kennedy Space Center (KSC), and the NASA Engineering and Safety Center (NESC). STS-133 utilized the external tank designated as ET-137. Many aspects of the investigation have been reported previously in Refs. 1-7, which focus on the root cause of the failures, the flight readiness rationale and the local analyses of the stringer failures and repair. This paper summarizes the global analyses that were conducted on ET-137 as part of the NESC effort during the investigation, which was conducted primarily to determine if the repairs that were introduced to the stringers would alter the global response of the ET. In the process of the investigation, a new STAGS tabular input capability was developed to more easily introduce the aerodynamic pressure loads using a method that could easily be extended to incorporate finite element property data such as skin and stiffener thicknesses and beam cross-sectional properties.
2010-11-10
CAPE CANAVERAL, Fla. -- On Launch Pad 39A at NASA's Kennedy Space Center in Florida, a worker examines the foam insulation on space shuttle Discovery's external fuel tank. Two cracks on a section of the tank’s metal exterior were found on one of the stringers, which are the composite aluminum ribs located vertically on the tank’s intertank area. Engineers will review images of the cracks to determine the best possible repair method. Discovery's next launch attempt is no earlier than Nov. 30 at 4:02 a.m. EST. For more information on STS-133, visit www.nasa.gov/mission_pages/shuttle/shuttlemissions/sts133/. Photo credit: NASA/Troy Cryder
Method of providing a lunar habitat from an external tank
NASA Technical Reports Server (NTRS)
King, Charles B. (Inventor); Hypes, Warren D. (Inventor); Simonsen, Lisa C. (Inventor); Butterfield, Ansel J. (Inventor); Nealy, John E. (Inventor); Hall, Jr., John B. (Inventor)
1992-01-01
A lunar habitat is provided by placing an external tank of an orbiter in a low Earth orbit where the hydrogen tank is separated from the intertank and oxygen tank which form a base structure. The base structure is then outfitted with an air lock, living quarters, a thermal control system, an environmental control and life support system, and a propulsion system. After the mounting of an outer sheath about the base structure to act as a micrometeoroid shield, the base structure is propelled to a soft landing on the moon. The sheath is mounted at a distance from the base structure to provide a space therebetween which is filled with regolith after landing. Conveniently, a space station is used to outfit the base structure. Various elements of the oxygen tank and intertank are used in outfitting.
2010-12-22
CAPE CANAVERAL, Fla. -- Preparations are under way in the Vehicle Assembly Building at NASA's Kennedy Space Center in Florida to examine space shuttle Discovery's external fuel tank. Shown here, is the inside of the tank's intertank region. Technicians will begin to remove thermal sensors that will give engineers data about the changes the tank went through during the loading and draining of super-cold propellants during a tanking test on Dec. 17. Engineers also will examine 21-foot-long support beams, called stringers, on the outside of the tank's intertank region. Also on the agenda, is to re-apply foam to the outside of the tank. Discovery's next launch opportunity to the International Space Station on the STS-133 mission is no earlier than Feb. 3, 2011. For more information on STS-133, visit www.nasa.gov/mission_pages/shuttle/shuttlemissions/sts133/. Photo credit: NASA/Dimitri Gerondidakis
Lunar habitat concept employing the space shuttle external tank.
King, C B; Butterfield, A J; Hypes, W D; Nealy, J E; Simonsen, L C
1990-01-01
The space shuttle external tank, which consists of a liquid oxygen tank, an intertank structure, and a liquid hydrogen tank, is an expendable structure used for approximately 8.5 min during each launch. A concept for outfitting the liquid oxygen tank-intertank unit for a 12-person lunar habitat is described. The concept utilizes existing structures and openings for both man and equipment access without compromising the structural integrity of the tank. Living quarters, instrumentation, environmental control and life support, thermal control, and propulsion systems are installed at Space Station Freedom. The unmanned habitat is then transported to low lunar orbit and autonomously soft landed on the lunar surface. Design studies indicate that this concept is feasible by the year 2000 with concurrent development of a space transfer vehicle and manned cargo lander for crew changeover and resupply.
Photogrammetry Measurements During a Tanking Test on the Space Shuttle External Tank, ET-137
NASA Technical Reports Server (NTRS)
Littell, Justin D.; Schmidt, Tim; Tyson, John; Oliver, Stanley T.; Melis, Matthew E.; Ruggeri, Charles
2012-01-01
On November 5, 2010, a significant foam liberation threat was observed as the Space Shuttle STS-133 launch effort was scrubbed because of a hydrogen leak at the ground umbilical carrier plate. Further investigation revealed the presence of multiple cracks at the tops of stringers in the intertank region of the Space Shuttle External Tank. As part of an instrumented tanking test conducted on December 17, 2010, a three dimensional digital image correlation photogrammetry system was used to measure radial deflections and overall deformations of a section of the intertank region. This paper will describe the experimental challenges that were overcome in order to implement the photogrammetry measurements for the tanking test in support of STS-133. The technique consisted of configuring and installing two pairs of custom stereo camera bars containing calibrated cameras on the 215-ft level of the fixed service structure of Launch Pad 39-A. The cameras were remotely operated from the Launch Control Center 3.5 miles away during the 8 hour duration test, which began before sunrise and lasted through sunset. The complete deformation time history was successfully computed from the acquired images and would prove to play a crucial role in the computer modeling validation efforts supporting the successful completion of the root cause analysis of the cracked stringer problem by the Space Shuttle Program. The resulting data generated included full field fringe plots, data extraction time history analysis, section line spatial analyses and differential stringer peak ]valley motion. Some of the sample results are included with discussion. The resulting data showed that new stringer crack formation did not occur for the panel examined, and that large amounts of displacement in the external tank occurred because of the loads derived from its filling. The measurements acquired were also used to validate computer modeling efforts completed by NASA Marshall Space Flight Center (MSFC).
2010-12-09
CAPE CANAVERAL, Fla. -- On Launch Pad 39A at NASA's Kennedy Space Center in Florida, technicians removed a few items from space shuttle Discovery's middeck payload, including food, prior to a tanking test planned for no earlier than Dec. 15. During the test, engineers will monitor what happens to the external fuel tank's newly replaced ground umbilical carrier plate (GUCP) and the intertank's stringers, which are 21-foot long, U-shaped aluminum brackets located on the intertank, during loading of cryogenic propellants. Technicians already installed environmental enclosures on the tank, removed foam and prepared the tank's skin for approximately 89 strain gauges and thermocouples. Discovery's first launch attempt for STS-133 was scrubbed in early November due to a hydrogen gas leak at GUCP. The next launch opportunity is no earlier than Feb. 3, 2011. For more information on STS-133, visit www.nasa.gov/mission_pages/shuttle/shuttlemissions/sts133/. Photo credit: NASA/Ben Smegelsky
2010-12-09
CAPE CANAVERAL, Fla. -- On Launch Pad 39A at NASA's Kennedy Space Center in Florida, technicians remove a few items from space shuttle Discovery's middeck payload, including food, prior to a tanking test planned for no earlier than Dec. 15. During the test, engineers will monitor what happens to the external fuel tank's newly replaced ground umbilical carrier plate (GUCP) and the intertank's stringers, which are 21-foot long, U-shaped aluminum brackets located on the intertank, during loading of cryogenic propellants. Technicians already installed environmental enclosures on the tank, removed foam and prepared the tank's skin for approximately 89 strain gauges and thermocouples. Discovery's first launch attempt for STS-133 was scrubbed in early November due to a hydrogen gas leak at GUCP. The next launch opportunity is no earlier than Feb. 3, 2011. For more information on STS-133, visit www.nasa.gov/mission_pages/shuttle/shuttlemissions/sts133/. Photo credit: NASA/Ben Smegelsky
2010-12-09
CAPE CANAVERAL, Fla. -- On Launch Pad 39A at NASA's Kennedy Space Center in Florida, technicians remove a few items from space shuttle Discovery's middeck payload, including food, prior to a tanking test planned for no earlier than Dec. 15. During the test, engineers will monitor what happens to the external fuel tank's newly replaced ground umbilical carrier plate (GUCP) and the intertank's stringers, which are 21-foot long, U-shaped aluminum brackets located on the intertank, during loading of cryogenic propellants. Technicians already installed environmental enclosures on the tank, removed foam and prepared the tank's skin for approximately 89 strain gauges and thermocouples. Discovery's first launch attempt for STS-133 was scrubbed in early November due to a hydrogen gas leak at GUCP. The next launch opportunity is no earlier than Feb. 3, 2011. For more information on STS-133, visit www.nasa.gov/mission_pages/shuttle/shuttlemissions/sts133/. Photo credit: NASA/Ben Smegelsky
2010-12-09
CAPE CANAVERAL, Fla. -- On Launch Pad 39A at NASA's Kennedy Space Center in Florida, technicians remove a few items from space shuttle Discovery's middeck payload, including food, prior to a tanking test planned for no earlier than Dec. 15. During the test, engineers will monitor what happens to the external fuel tank's newly replaced ground umbilical carrier plate (GUCP) and the intertank's stringers, which are 21-foot long, U-shaped aluminum brackets located on the intertank, during loading of cryogenic propellants. Technicians already installed environmental enclosures on the tank, removed foam and prepared the tank's skin for approximately 89 strain gauges and thermocouples. Discovery's first launch attempt for STS-133 was scrubbed in early November due to a hydrogen gas leak at GUCP. The next launch opportunity is no earlier than Feb. 3, 2011. For more information on STS-133, visit www.nasa.gov/mission_pages/shuttle/shuttlemissions/sts133/. Photo credit: NASA/Ben Smegelsky
2010-12-09
CAPE CANAVERAL, Fla. -- On Launch Pad 39A at NASA's Kennedy Space Center in Florida, technicians remove a few items from space shuttle Discovery's middeck payload, including food, prior to a tanking test planned for no earlier than Dec. 15. During the test, engineers will monitor what happens to the external fuel tank's newly replaced ground umbilical carrier plate (GUCP) and the intertank's stringers, which are 21-foot long, U-shaped aluminum brackets located on the intertank, during loading of cryogenic propellants. Technicians already installed environmental enclosures on the tank, removed foam and prepared the tank's skin for approximately 89 strain gauges and thermocouples. Discovery's first launch attempt for STS-133 was scrubbed in early November due to a hydrogen gas leak at GUCP. The next launch opportunity is no earlier than Feb. 3, 2011. For more information on STS-133, visit www.nasa.gov/mission_pages/shuttle/shuttlemissions/sts133/. Photo credit: NASA/Ben Smegelsky
2010-12-09
CAPE CANAVERAL, Fla. -- On Launch Pad 39A at NASA's Kennedy Space Center in Florida, technicians remove a few items from space shuttle Discovery's middeck payload, including food, prior to a tanking test planned for no earlier than Dec. 15. During the test, engineers will monitor what happens to the external fuel tank's newly replaced ground umbilical carrier plate (GUCP) and the intertank's stringers, which are 21-foot long, U-shaped aluminum brackets located on the intertank, during loading of cryogenic propellants. Technicians already installed environmental enclosures on the tank, removed foam and prepared the tank's skin for approximately 89 strain gauges and thermocouples. Discovery's first launch attempt for STS-133 was scrubbed in early November due to a hydrogen gas leak at GUCP. The next launch opportunity is no earlier than Feb. 3, 2011. For more information on STS-133, visit www.nasa.gov/mission_pages/shuttle/shuttlemissions/sts133/. Photo credit: NASA/Ben Smegelsky
2010-12-09
CAPE CANAVERAL, Fla. -- On Launch Pad 39A at NASA's Kennedy Space Center in Florida, technicians remove a few items from space shuttle Discovery's middeck payload, including food, prior to a tanking test planned for no earlier than Dec. 15. During the test, engineers will monitor what happens to the external fuel tank's newly replaced ground umbilical carrier plate (GUCP) and the intertank's stringers, which are 21-foot long, U-shaped aluminum brackets located on the intertank, during loading of cryogenic propellants. Technicians already installed environmental enclosures on the tank, removed foam and prepared the tank's skin for approximately 89 strain gauges and thermocouples. Discovery's first launch attempt for STS-133 was scrubbed in early November due to a hydrogen gas leak at GUCP. The next launch opportunity is no earlier than Feb. 3, 2011. For more information on STS-133, visit www.nasa.gov/mission_pages/shuttle/shuttlemissions/sts133/. Photo credit: NASA/Ben Smegelsky
2010-12-09
CAPE CANAVERAL, Fla. -- On Launch Pad 39A at NASA's Kennedy Space Center in Florida, technicians remove a few items from space shuttle Discovery's middeck payload, including food, prior to a tanking test planned for no earlier than Dec. 15. During the test, engineers will monitor what happens to the external fuel tank's newly replaced ground umbilical carrier plate (GUCP) and the intertank's stringers, which are 21-foot long, U-shaped aluminum brackets located on the intertank, during loading of cryogenic propellants. Technicians already installed environmental enclosures on the tank, removed foam and prepared the tank's skin for approximately 89 strain gauges and thermocouples. Discovery's first launch attempt for STS-133 was scrubbed in early November due to a hydrogen gas leak at GUCP. The next launch opportunity is no earlier than Feb. 3, 2011. For more information on STS-133, visit www.nasa.gov/mission_pages/shuttle/shuttlemissions/sts133/. Photo credit: NASA/Ben Smegelsky
NASA Technical Reports Server (NTRS)
Knight, Norman F., Jr.; Song, Kyongchan; Elliott, Kenny B.; Raju, Ivatury S.; Warren, Jerry E.
2012-01-01
Elastic-plastic, large-deflection nonlinear stress analyses are performed for the external hat-shaped stringers (or stiffeners) on the intertank portion of the Space Shuttle s external tank. These stringers are subjected to assembly strains when the stringers are initially installed on an intertank panel. Four different stringer-feet configurations including the baseline flat-feet, the heels-up, the diving-board, and the toes-up configurations are considered. The assembly procedure is analytically simulated for each of these stringer configurations. The location, size, and amplitude of the strain field associated with the stringer assembly are sensitive to the assumed geometry and assembly procedure. The von Mises stress distributions from these simulations indicate that localized plasticity will develop around the first eight fasteners for each stringer-feet configuration examined. However, only the toes-up configuration resulted in high assembly hoop strains.
Aerogel Insulation Applications for Liquid Hydrogen Launch Vehicle Tanks
NASA Technical Reports Server (NTRS)
Fesmire, J. E.; Sass, J.
2007-01-01
Aerogel based insulation systems for ambient pressure environments were developed for liquid hydrogen (LH2) tank applications. Solutions to thermal insulation problems were demonstrated for the Space Shuttle External Tank (ET) through extensive testing at the Cryogenics Test Laboratory. Demonstration testing was performed using a 1/10th scale ET LH2 intertank unit and liquid helium as the coolant to provide the 20 K cold boundary temperature. Cryopumping tests in the range of 20K were performed using both constant mass and constant pressure methods. Long-duration tests (up to 10 hours) showed that the nitrogen mass taken up inside the intertank is reduced by a factor of nearly three for the aerogel insulated case as compared to the un-insulated (bare metal flight configuration) case. Test results including thermal stabilization, heat transfer effectiveness, and cryopumping confirm that the aerogel system eliminates free liquid nitrogen within the intertank. Physisorption (or adsorption) of liquid nitrogen within the fine pore structure of aerogel materials was also investigated. Results of a mass uptake method show that the sorption ratio (liquid nitrogen to aerogel beads) is about 62 percent by volume. A novel liquid nitrogen production method of testing the liquid nitrogen physical adsorption capacity of aerogel beads was also performed to more closely approximate the actual launch vehicle cooldown and thermal stabilization effects within the aerogel material. The extraordinary insulating effectiveness of the aerogel material shows that cryopumping is not an open-cell mass transport issue but is strictly driven by thermal communication between warm and cold surfaces. The new aerogel insulation technology is useful to solve heat transfer problem areas and to augment existing thermal protection systems on launch vehicles. Examples are given and potential benefits for producing launch systems that are more reliable, robust, reusable, and efficient are outlined.
2010-11-10
CAPE CANAVERAL, Fla. -- During the removal of external fuel tank foam insulation on Launch Pad 39A at NASA's Kennedy Space Center in Florida, technicians identified two cracks, each about 9 inches long, on a section of the tank’s metal exterior. The foam cracked during initial loading operations for space shuttle Discovery’s launch attempt on Nov. 5. The cracks are on one of the stringers, which are the composite aluminum ribs located vertically on the tank’s intertank area. Engineers will review images of the cracks to determine the best possible repair method, which would be done at the pad. Discovery's next launch attempt is no earlier than Nov. 30 at 4:02 a.m. EST. For more information on STS-133, visit www.nasa.gov/mission_pages/shuttle/shuttlemissions/sts133/. Photo credit: NASA
1965-03-01
The S-IC-T stage was hoisted into the S-IC static test stand at the Marshall Space Flight Center. The S-IC-T stage was a static test vehicle not intended for flight. It was ground tested repeatedly over a period of many months to prove the vehicle's propulsion system. The 280,000-pound stage, 138 feet long and 33 feet in diameter, housed the fuel and liquid oxygen tanks that held a total of 4,400,000 pounds of liquid oxygen and kerosene. The two tanks are cornected by a 26-foot-long intertank section. Other parts of the booster included the forward skirt and the thrust structure, on which the engines were to be mounted. Five F-1 engines, each weighing 10 tons, gave the booster a total thrust of 7,500,000 pounds, roughly equivalent to 160 million horsepower.
1965-03-01
The S-IC-T stage is hoisted into the S-IC static test stand at the Marshall Space Flight Center. The S-IC-T stage is a static test vehicle not intended for flight. It was ground tested repeatedly over a period of many months proving the vehicle's propulsion system. The 280,000-pound stage, 138 feet long and 33 feet in diameter, houses the fuel and liquid oxygen tanks that hold a total of 4,400,000 pounds of liquid oxygen and kerosene. The two tanks are cornected by a 26-foot-long intertank section. Other parts of the booster included the forward skirt and the thrust structure, on which the engines were to be mounted. Five F-1 engines, each weighing 10 tons, gave the booster a total thrust of 7,500,000 pounds, roughly equivalent to 160 million horsepower.
1965-03-01
The S-IC-T stage was hoisted into the S-IC Static Test Stand at the Marshall Space Flight Center. The S-IC-T stage was a static test vehicle, not intended for flight. It was ground tested repeatedly over a period of many months to prove the vehicle's propulsion system. The 280,000-pound stage, 138 feet long and 33 feet in diameter, housed the fuel and liquid oxygen tanks that held a total of 4,400,000 pounds of liquid oxygen and kerosene. The two tanks were cornected by a 26-foot intertank section. Other parts of the booster included the forward skirt and the thrust structure, on which the engines were to be mounted. Five F-1 engines, each weighing 10 tons, gave the booster a total thrust of 7,500,000 pounds, roughly equivalent to 160 million horsepower.
Automatic Fastening Large Structures: a New Approach
NASA Technical Reports Server (NTRS)
Lumley, D. F.
1985-01-01
The external tank (ET) intertank structure for the space shuttle, a 27.5 ft diameter 22.5 ft long externally stiffened mechanically fastened skin-stringer-frame structure, was a labor intensitive manual structure built on a modified Saturn tooling position. A new approach was developed based on half-section subassemblies. The heart of this manufacturing approach will be 33 ft high vertical automatic riveting system with a 28 ft rotary positioner coming on-line in mid 1985. The Automatic Riveting System incorporates many of the latest automatic riveting technologies. Key features include: vertical columns with two sets of independently operating CNC drill-riveting heads; capability of drill, insert and upset any one piece fastener up to 3/8 inch diameter including slugs without displacing the workpiece offset bucking ram with programmable rotation and deep retraction; vision system for automatic parts program re-synchronization and part edge margin control; and an automatic rivet selection/handling system.
Closeup view of the External Tank and Solid Rocket Boosters ...
Close-up view of the External Tank and Solid Rocket Boosters at the Launch Pad at Kennedy Space Center. Note the Hydrogen Vent Arm extending out from the Fixed Service Structure at attached to the Intertank segment of the External Tank. - Space Transportation System, Orbiter Discovery (OV-103), Lyndon B. Johnson Space Center, 2101 NASA Parkway, Houston, Harris County, TX
NASA Technical Reports Server (NTRS)
1989-01-01
Pressure effects on the pump-fed Liquid Rocket Booster (LRB) of the Space Transportation System are examined. Results from the buckling tests; bending moments tests; barrel, propellant tanks, frame XB1513, nose cone, and intertank tests; and finite element examination of forward and aft skirts are presented.
Photographic Analysis Technique for Assessing External Tank Foam Loss Events
NASA Technical Reports Server (NTRS)
Rieckhoff, T. J.; Covan, M.; OFarrell, J. M.
2001-01-01
A video camera and recorder were placed inside the solid rocket booster forward skirt in order to view foam loss events over an area on the external tank (ET) intertank surface. In this Technical Memorandum, a method of processing video images to allow rapid detection of permanent changes indicative of foam loss events on the ET surface was defined and applied to accurately count, categorize, and locate such events.
Preparing America for Deep Space Exploration Episode 16: Exploration On The Move
2018-02-22
Preparing America for Deep Space Exploration Episode 16: Exploration On The Move NASA is pressing full steam ahead toward sending humans farther than ever before. Take a look at the work being done by teams across the nation for NASA’s Deep Space Exploration System, including the Space Launch System, Orion, and Exploration Ground Systems programs, as they continue to propel human spaceflight into the next generation. Highlights from the fourth quarter of 2017 included Orion parachute drop tests at the Yuma Proving Ground in Arizona; the EM-1 Crew Module move from Cleanroom to Workstation at Kennedy Space Center; Crew Training, Launch Pad Evacuation Scenario, and Crew Module Vibration and Legibility Testing at NASA’s Johnson Space Center; RS-25 Rocket Engine Testing at Stennis Space Center; Core Stage Engine Section arrival, Core Stage Pathfinder; LH2 Qualification Tank; Core Stage Intertank Umbilical lift at Mobile Launcher; Crew Access Arm move to Mobile Launcher; Water Flow Test at Launch Complex 39-B.
Single launch lunar habitat derived from an NSTS external tank
NASA Technical Reports Server (NTRS)
King, Charles B.; Butterfield, Ansel J.; Hypes, Warren D.; Nealy, John E.; Simonsen, Lisa C.
1990-01-01
A concept for using the spent external tank from a National Space Transportation System (NSTS) to derive a lunar habitat is described. The external tank is carried into low Earth orbit where the oxygen tank-intertank subassembly is separated from the hydrogen tank, berthed to Space Station Freedom and the subassembly outfitted as a 12-person lunar habitat using extravehicular activity (EVA) and intravehicular activity (IVA). A single launch of the NSTS orbiter can place the external tank in LEO, provide orbiter astronauts for disassembly of the external tank, and transport the required subsystem hardware for outfitting the lunar habitat. An estimate of the astronauts' EVA and IVA is provided. The liquid oxygen intertank modifications utilize existing structures and openings for man access without compromising the structural integrity of the tank. The modifications include installation of living quarters, instrumentation, and an airlock. Feasibility studies of the following additional systems include micrometeoroid and radiation protection, thermal control, environmental control and life support, and propulsion. The converted lunar habitat is designed for unmanned transport and autonomous soft landing on the lunar surface without need for site preparation. Lunar regolith is used to fill the micrometeoroid shield volume for radiation protection using a conveyer. The lunar habitat concept is considered to be feasible by the year 2000 with the concurrent development of a space transfer vehicle and a lunar lander for crew changeover and resupply.
Miller, Andrew W; Rodriguez, Derrick R; Honeyman, Bruce D
2013-05-01
Upscaling from bench scale systems to field scale systems incorporates physical and chemical heterogeneities from atomistic up to field scales. Heterogeneities of intermediate scale (~10(-1) m) are impossible to incorporate in a bench scale experiment. To transcend these scale discrepancies, this second in a pair of papers presents results from an intermediate scale, 3-D tank experiment completed using five different particle sizes of uranium contaminated sediment from a former uranium mill field site. The external dimensions of the tank were 2.44 m×0.61 m×0.61 m (L×H×W). The five particle sizes were packed in a heterogeneous manner using roughly 11 cm cubes. Small groundwater wells were installed for spatial characterization of chemical gradients and flow parameters. An approximately six month long bromide tracer test was used for flow field characterization. Within the flow domain, local uranium breakthrough curves exhibited a wide range of behaviors. However, the global effluent breakthrough curve was smooth, and not unlike breakthrough curves observed in column scale experiments. This paper concludes with an inter-tank comparison of all three experimental systems presented in this pair of papers. Although there is a wide range of chemical and physical variability between the three tanks, major chemical constituent behaviors are often quite similar or even identical. Copyright © 2013 Elsevier B.V. All rights reserved.
Radar transponder antenna pattern analysis for the space shuttle
NASA Technical Reports Server (NTRS)
Radcliff, Roger
1989-01-01
In order to improve tracking capability, radar transponder antennas will soon be mounted on the Shuttle solid rocket boosters (SRB). These four antennas, each being identical cavity-backed helices operating at 5.765 GHz, will be mounted near the top of the SRB's, adjacent to the intertank portion of the external tank. The purpose is to calculate the roll-plane pattern (the plane perpendicular to the SRB axes and containing the antennas) in the presence of this complex electromagnetic environment. The large electrical size of this problem mandates an optical (asymptotic) approach. Development of a specific code for this application is beyond the scope of a summer fellowship; thus a general purpose code, the Numerical Electromagnetics Code - Basic Scattering Code, was chosen as the computational tool. This code is based on the modern Geometrical Theory of Diffraction, and allows computation of scattering of bodies composed of canonical problems such as plates and elliptic cylinders. Apertures mounted on a curved surface (the SRB) cannot be accomplished by the code, so an antenna model consisting of wires excited by a method of moments current input was devised that approximated the actual performance of the antennas. The improvised antenna model matched well with measurements taken at the MSFC range. The SRB's, the external tank, and the shuttle nose were modeled as circular cylinders, and the code was able to produce what is thought to be a reasonable roll-plane pattern.
A single launch lunar habitat derived from an NSTS external tank
NASA Technical Reports Server (NTRS)
King, Charles B.; Butterfield, Ansel J.; Hypes, Warren D.; Nealy, John E.; Simonsen, Lisa C.
1990-01-01
A concept for using a spent External Tank from the National Space Transportation System (Shuttle) to derive a Lunar habitat is described. The concept is that the External Tank is carried into Low-Earth Orbit (LEO) where the oxygen tank-intertank subassembly is separated from the hydrogen tank, berthed to Space Station Freedom and the subassembly outfitted as a 12-person Lunar habitat using extravehicular activity (EVA) and intravehicular activity (IVA). A single launch of the NSTS Orbiter can place the External Tank in LEO, provide orbiter astronauts for disassembly of the External Tank, and transport the required subsystem hardware for outfitting the Lunar habitat. An estimate of the astronauts' EVA and IVA is provided. The liquid oxygen tank-intertank modifications utilize existing structures and openings for human access without compromising the structural integrity of the tank. The modification includes installation of living quarters, instrumentation, and an air lock. Feasibility studies of the following additional systems include micrometeoroid and radiation protection, thermal-control, environmental-control and life-support, and propulsion. The converted Lunar habitat is designed for unmanned transport and autonomous soft landing on the Lunar surface without need for site preparation. Lunar regolith is used to fill the micrometeoroid shield volume for radiation protection using a conveyor. The Lunar habitat concept is considered to be feasible by the year 2000 with the concurrent development of a space transfer vehicle and a Lunar lander for crew changeover and resupply.
In-flight Video Captured by External Tank Camera System
NASA Technical Reports Server (NTRS)
2005-01-01
In this July 26, 2005 video, Earth slowly fades into the background as the STS-114 Space Shuttle Discovery climbs into space until the External Tank (ET) separates from the orbiter. An External Tank ET Camera System featuring a Sony XC-999 model camera provided never before seen footage of the launch and tank separation. The camera was installed in the ET LO2 Feedline Fairing. From this position, the camera had a 40% field of view with a 3.5 mm lens. The field of view showed some of the Bipod area, a portion of the LH2 tank and Intertank flange area, and some of the bottom of the shuttle orbiter. Contained in an electronic box, the battery pack and transmitter were mounted on top of the Solid Rocker Booster (SRB) crossbeam inside the ET. The battery pack included 20 Nickel-Metal Hydride batteries (similar to cordless phone battery packs) totaling 28 volts DC and could supply about 70 minutes of video. Located 95 degrees apart on the exterior of the Intertank opposite orbiter side, there were 2 blade S-Band antennas about 2 1/2 inches long that transmitted a 10 watt signal to the ground stations. The camera turned on approximately 10 minutes prior to launch and operated for 15 minutes following liftoff. The complete camera system weighs about 32 pounds. Marshall Space Flight Center (MSFC), Johnson Space Center (JSC), Goddard Space Flight Center (GSFC), and Kennedy Space Center (KSC) participated in the design, development, and testing of the ET camera system.
Non-scaling fixed field alternating gradient permanent magnet cancer therapy accelerator
Trbojevic, Dejan
2017-05-23
A non-scaling fixed field alternating gradient accelerator includes a racetrack shape including a first straight section connected to a first arc section, the first arc section connected to a second straight section, the second straight section connected to a second arc section, and the second arc section connected to the first straight section; an matching cells configured to match particle orbits between the first straight section, the first arc section, the second straight section, and the second arc section. The accelerator includes the matching cells and an associated matching procedure enabling the particle orbits at varying energies between an arc section and a straight section in the racetrack shape.
NASA Astrophysics Data System (ADS)
1995-03-01
This volume is the third of a 3 volume set that addresses the structural trade study plan that will identify the most suitable structural configuration for an SSTO winged vehicle capable of delivering 25,000 lbs to a 220 nm circular orbit at 51.6 deg inclination. The most suitable Reusable Hydrogen Composite Tank System (RHCTS), and Graphite Composite Tank System (GCPS) composite materials for intertank, wing and thrust structures are identified. Vehicle resizing charts, selection criteria and back-up charts, parametric costing approach and the finite element method analysis are discussed.
2011-01-18
CAPE CANAVERAL, Fla. -- Repair work to space shuttle Discovery's external fuel tank continues in the Vehicle Assembly Building at NASA's Kennedy Space Center in Florida. Technicians are modifying 94 support beams, called stringers, on the tank's intertank region by fitting pieces of metal, called radius blocks, over the stringers' edges. After the modifications of the stringers are complete, foam insulation will be re-applied to the tank. Discovery's next launch opportunity to the International Space Station on the STS-133 mission is targeted for Feb. 24, 2011. For more information on STS-133, visit www.nasa.gov/mission_pages/shuttle/shuttlemissions/sts133/. Photo credit: NASA/Kim Shiflett
2011-01-18
CAPE CANAVERAL, Fla. -- Repair work to space shuttle Discovery's external fuel tank continues in the Vehicle Assembly Building at NASA's Kennedy Space Center in Florida. Technicians are modifying 94 support beams, called stringers, on the tank's intertank region by fitting pieces of metal, called radius blocks, over the stringers' edges. After modifications to the stringers are complete, foam insulation will be re-applied to the tank. Discovery's next launch opportunity to the International Space Station on the STS-133 mission is targeted for Feb. 24. For more information on STS-133, visit www.nasa.gov/mission_pages/shuttle/shuttlemissions/sts133/. Photo credit: NASA/Frank Michaux
2011-01-18
CAPE CANAVERAL, Fla. -- Repair work to space shuttle Discovery's external fuel tank continues in the Vehicle Assembly Building at NASA's Kennedy Space Center in Florida. Technicians are modifying 94 support beams, called stringers, on the tank's intertank region by fitting pieces of metal, called radius blocks, over the stringers' edges. After the modifications of the stringers are complete, foam insulation will be re-applied to the tank. Discovery's next launch opportunity to the International Space Station on the STS-133 mission is targeted for Feb. 24, 2011. For more information on STS-133, visit www.nasa.gov/mission_pages/shuttle/shuttlemissions/sts133/. Photo credit: NASA/Kim Shiflett
2011-01-18
CAPE CANAVERAL, Fla. -- Repair work to space shuttle Discovery's external fuel tank continues in the Vehicle Assembly Building at NASA's Kennedy Space Center in Florida. Technicians are modifying 94 support beams, called stringers, on the tank's intertank region by fitting pieces of metal, called radius blocks, over the stringers' edges. After the modifications of the stringers are complete, foam insulation will be re-applied to the tank. Discovery's next launch opportunity to the International Space Station on the STS-133 mission is targeted for Feb. 24, 2011. For more information on STS-133, visit www.nasa.gov/mission_pages/shuttle/shuttlemissions/sts133/. Photo credit: NASA/Kim Shiflett
2011-01-18
CAPE CANAVERAL, Fla. -- Repair work to space shuttle Discovery's external fuel tank continues in the Vehicle Assembly Building at NASA's Kennedy Space Center in Florida. Technicians are modifying 94 support beams, called stringers, on the tank's intertank region by fitting pieces of metal, called radius blocks, over the stringers' edges. After the modifications of the stringers are complete, foam insulation will be re-applied to the tank. Discovery's next launch opportunity to the International Space Station on the STS-133 mission is targeted for Feb. 24, 2011. For more information on STS-133, visit www.nasa.gov/mission_pages/shuttle/shuttlemissions/sts133/. Photo credit: NASA/Kim Shiflett
NASA Technical Reports Server (NTRS)
1995-01-01
This volume is the third of a 3 volume set that addresses the structural trade study plan that will identify the most suitable structural configuration for an SSTO winged vehicle capable of delivering 25,000 lbs to a 220 nm circular orbit at 51.6 deg inclination. The most suitable Reusable Hydrogen Composite Tank System (RHCTS), and Graphite Composite Tank System (GCPS) composite materials for intertank, wing and thrust structures are identified. Vehicle resizing charts, selection criteria and back-up charts, parametric costing approach and the finite element method analysis are discussed.
Source-to-accelerator quadrupole matching section for a compact linear accelerator
NASA Astrophysics Data System (ADS)
Seidl, P. A.; Persaud, A.; Ghiorso, W.; Ji, Q.; Waldron, W. L.; Lal, A.; Vinayakumar, K. B.; Schenkel, T.
2018-05-01
Recently, we presented a new approach for a compact radio-frequency (RF) accelerator structure and demonstrated the functionality of the individual components: acceleration units and focusing elements. In this paper, we combine these units to form a working accelerator structure: a matching section between the ion source extraction grids and the RF-acceleration unit and electrostatic focusing quadrupoles between successive acceleration units. The matching section consists of six electrostatic quadrupoles (ESQs) fabricated using 3D-printing techniques. The matching section enables us to capture more beam current and to match the beam envelope to conditions for stable transport in an acceleration lattice. We present data from an integrated accelerator consisting of the source, matching section, and an ESQ doublet sandwiched between two RF-acceleration units.
NASA Astrophysics Data System (ADS)
1995-03-01
This volume is the first of a three volume set that discusses the structural arrangement trade study plan that will identify the most suitable configuration for an SSTO winged vehicle capable of delivering 25,000 lbs to a 220 nm circular orbit at 51.6 deg inclination. The Reusable Hydrogen Composite Tank System (RHCTS), and Graphite Composite Primary Structures most suitable for intertank, wing and thrust structures are identified. This executive summary presents the trade study process, the selection process, requirements used, analysis performed and data generated. Conclusions and recommendations are also presented.
Video Intertank for the Core Stage for the first SLS Flight
2017-06-29
This video shows the Space Launch System interank, which recently completed assembly at NASA's Michoud Assembly Facility in New Orleans. This tank was bolted together with more than 7,000 bolts. It is the only part of the SLS core stage assembly with bolts rather than by welding. The rocket's interank is located between the core stage liquid oxygen and liquid hydrogen fuel tanks. It has to be strong because the two SLS solid rocket boosters attache to the sides of it. This flight article will be connected to four other parts to form the core stage for the first integrated flight of SLS and Orion.
NASA Technical Reports Server (NTRS)
1995-01-01
This volume is the first of a three volume set that discusses the structural arrangement trade study plan that will identify the most suitable configuration for an SSTO winged vehicle capable of delivering 25,000 lbs to a 220 nm circular orbit at 51.6 deg inclination. The Reusable Hydrogen Composite Tank System (RHCTS), and Graphite Composite Primary Structures most suitable for intertank, wing and thrust structures are identified. This executive summary presents the trade study process, the selection process, requirements used, analysis performed and data generated. Conclusions and recommendations are also presented.
Cycle 0(CY1991) NLS trade studies and analyses report. Book 1: Structures and core vehicle
NASA Technical Reports Server (NTRS)
1992-01-01
This report (SR-1: Structures, Trades, and Analysis), documents the Core Tankage Trades and analyses performed in support of the National Launch System (NLS) Cycle 0 preliminary design activities. The report covers trades that were conducted on the Vehicle Assembly, Fwd Skirt, LO2 Tank, Intertank, LH2 Tank, and Aft Skirt of the NLS Core Tankage. For each trade study, a two page executive summary and the detail trade study are provided. The trade studies contain study results, recommended changes to the Cycle 0 Baselines, and suggested follow on tasks to be performed during Cycle 1.
2009-03-11
CAPE CANAVERAL, Fla. – Seen in the photo is the hydrogen vent line attached to the Ground Umbilical Carrier Plate on space shuttle Discovery's external fuel tank. The shuttle is on Launch Pad 39A at NASA's Kennedy Space Center in Florida. A leak of hydrogen at the location during tanking caused the STS-119 mission to be scrubbed at 2:36 p.m. March 11. The vent line is at the intertank and is the overboard vent to the pad and the flare stack where the vented hydrogen is burned off. Mission management teams believe they have sufficient understanding of the repair plan to continue toward a March 15 launch at 7:43 p.m. EDT. Photo courtesy of United Space Alliance
2010-11-30
CAPE CANAVERAL, Fla. -- On Launch Pad 39A at NASA's Kennedy Space Center in Florida, the cracks on space shuttle Discovery's external fuel tank have been repaired. The foam cracked during initial loading operations for Discovery’s STS-133 mission to the International Space Station on Nov. 5. The cracks were on two of the 108 stringers, which are the composite aluminum ribs located vertically on the intertank area. Discovery's next launch attempt is no earlier than Dec. 17 at 8:51 p.m. EST. Until then, engineers will continue to analyze data from the GUCP and stringer crack repairs. For more information on STS-133, visit www.nasa.gov/mission_pages/shuttle/shuttlemissions/sts133/. Photo credit: NASA/Cory Huston
2010-11-30
CAPE CANAVERAL, Fla. -- On Launch Pad 39A at NASA's Kennedy Space Center in Florida, the cracks on space shuttle Discovery's external fuel tank have been repaired. The foam cracked during initial loading operations for Discovery’s STS-133 mission to the International Space Station on Nov. 5. The cracks were on two of the 108 stringers, which are the composite aluminum ribs located vertically on the intertank area. Discovery's next launch attempt is no earlier than Dec. 17 at 8:51 p.m. EST. Until then, engineers will continue to analyze data from the GUCP and stringer crack repairs. For more information on STS-133, visit www.nasa.gov/mission_pages/shuttle/shuttlemissions/sts133/. Photo credit: NASA/Cory Huston
Space Shuttle external tank: Today - DDT & E: Tomorrow - Production
NASA Technical Reports Server (NTRS)
Norton, A. M.; Tanner, E. J.
1979-01-01
The External Tank (ET) is the structural backbone of the Space Shuttle. The ET is discussed relative to its role; its design as a highly efficient Shuttle element; the liquid oxygen tank - a thin shelled monocoque; the intertank - the forward structural connection; the liquid hydrogen tank structure - the connection with the Orbiter; the ET structural verification; the propulsion system - a variety of functions; the electrical subsystem; electrical subsystem qualification; the thermal protection system; and other related problems. To date the qualification programs have been extremely successful and are almost complete, and the first flight tank has been delivered. Tomorrow's objectives will concentrate on establishing the facilities, tools and processes to achieve a production rate of 24 ETs/year.
Trade study plan for Graphite Composite Primary Structure (GCPS)
NASA Technical Reports Server (NTRS)
Greenberg, H. S.
1994-01-01
This TA 2 document (with support from TA 1) describes the trade study plan that will identify the most suitable structural configuration for an SSTO winged vehicle capable of delivering 25,000 lbs to a 220 nm circular orbit at 51.6 degree inclination For this most suitable configuration the structural attachment of the wing, and the most suitable GCPS composite materials for intertank, wing, tail and thrust structure are identified. This trade study analysis uses extensive information derived in the TA 1 trade study plan and is identified within the study plan. In view of this, for convenience, the TA 1 study plan is included as an appendix to this document.
2010-12-22
CAPE CANAVERAL, Fla. -- Technicians in the Vehicle Assembly Building at NASA's Kennedy Space Center in Florida will begin to remove thermal sensors that will give engineers data about the changes space shuttle Discovery's external fuel tank went through during the loading and draining of super-cold propellants during a tanking test on Dec. 17. Engineers also will examine 21-foot-long support beams, called stringers, on the outside of the tank's intertank region. Also on the agenda, is to re-apply foam to the outside of the tank. Discovery's next launch opportunity to the International Space Station on the STS-133 mission is no earlier than Feb. 3, 2011. For more information on STS-133, visit www.nasa.gov/mission_pages/shuttle/shuttlemissions/sts133/. Photo credit: NASA/Dimitri Gerondidakis
2010-12-22
CAPE CANAVERAL, Fla. -- Preparations are under way in the Vehicle Assembly Building at NASA's Kennedy Space Center in Florida to examine space shuttle Discovery's external fuel tank. Technicians will begin to remove thermal sensors that will give engineers data about the changes the tank went through during the loading and draining of super-cold propellants. Engineers also will examine 21-foot-long support beams, called stringers, on the outside of the tank's intertank region. Also on the agenda, is to re-apply foam to the outside of the tank. Discovery's next launch opportunity to the International Space Station on the STS-133 mission is no earlier than Feb. 3, 2011. For more information on STS-133, visit www.nasa.gov/mission_pages/shuttle/shuttlemissions/sts133/. Photo credit: NASA/Dimitri Gerondidakis
2009-03-11
CAPE CANAVERAL, Fla. – A closeup of the 7-inch quick disconnect that will be replaced on the hydrogen vent line to the Ground Umbilical Carrier Plate of space shuttle Discovery's external fuel tank. The replacement will be made on Launch Pad 39A at NASA's Kennedy Space Center in Florida. A leak of hydrogen at the site during fueling caused the STS-119 mission to be scrubbed at 2:36 p.m. March 11. The vent line is at the intertank and is the overboard vent to the pad and the flare stack where the vented hydrogen is burned off. Mission management teams believe they have sufficient understanding of the repair plan to continue toward a March 15 launch at 7:43 p.m. EDT. Photo courtesy of United Space Alliance
Cryogenic Moisture Analysis of Spray-On Foam Insulation (SOFI)
NASA Technical Reports Server (NTRS)
2008-01-01
The NASA Cryogenics Test Laboratory at Kennedy Space Center conducted long-term testing of SOFI materials under actual-use cryogenic conditions. The lab tested NCFI 24-124 (acreage foam), BX-265 (close-out foam, including intertank flange and bipod areas), and a potential alternate material, NCFI 27-68 (acreage foam with the flame retardant removed). Specimens of all three materials were placed at a site that simulated aging (the Vehicle Assembly Building [VAB]) and a site that simulated weathering (Atmospheric Exposure Test Site [beach site]). After aging/ weathering intervals of 3, 6, and 12 months, the samples were retrieved and tested for their ability to absorb moisture under conditions similar to those experienced by the Space Shuttle External Tank (ET) during the loading of cryogenic propellants.
Space Launch System Resource Reel 2017
2017-12-01
NASA's new heavy-lift rocket, the Space Launch System, will be the most powerful rocket every built, launching astronauts in NASA's Orion spacecraft on missions into deep space. Two solid rocket boosters and four RS-25 engines will power the massive rocket, providing 8 million pounds of thrust during launch. Production and testing are underway for much of the rocket's critical hardware. With major welding complete on core stage hardware for the first integrated flight of SLS and Orion, the liquid hydrogen tank, intertank and liquid oxygen tank are ready for further outfitting. NASA's barge Pegasus has transported test hardware the first SLS hardware, the engine section to NASA's Marshall Space Flight Center in Huntsville, Alabama, for testing. In preparation for testing and handling operations, engineers have built the core stage pathfinder, to practice transport without the risk of damaging flight hardware. Integrated structural testing is complete on the top part of the rocket, including the Orion stage adapter, launch vehicle stage adapter and interim cryogenic propulsion stage. The Orion Stage Adapter for SLS's first flight, which will carry 13 CubeSats as secondary payloads, is ready to be outfitted with wiring and brackets. Once structural testing and flight hardware production are complete, the core stage will undergo "green run" testing in the B-2 test stand at NASA's Stennis Space Center in Bay St. Louis, Mississippi. For more information about SLS, visit nasa.gov/sls.
45 CFR 264.80 - If a Territory receives Matching Grant funds, what funds must it expend?
Code of Federal Regulations, 2010 CFR
2010-10-01
... funds must it expend? 264.80 Section 264.80 Public Welfare Regulations Relating to Public Welfare OFFICE... Levels of the Territories? § 264.80 If a Territory receives Matching Grant funds, what funds must it expend? (a) If a Territory receives Matching Grant funds under section 1108(b) of the Act, it must: (1...
Three-dimensional object surface identification
NASA Astrophysics Data System (ADS)
Celenk, Mehmet
1995-03-01
This paper describes a computationally efficient matching method for inspecting 3D objects using their serial cross sections. Object regions of interest in cross-sectional binary images of successive slices are aligned with those of the models. Cross-sectional differences between the object and the models are measured in the direction of the gradient of the cross section boundary. This is repeated in all the cross-sectional images. The model with minimum average cross-sectional difference is selected as the best match to the given object (i.e., no defect). The method is tested using various computer generated surfaces and matching results are presented. It is also demonstrated using Symult S-2010 16-node system that the method is suitable for parallel implementation in massage passing processors with the maximum attainable speedup (close to 16 for S-2010).
26 CFR 1.401(m)-1 - Employee contributions and matching contributions.
Code of Federal Regulations, 2011 CFR
2011-04-01
... contributions. 1.401(m)-1 Section 1.401(m)-1 Internal Revenue INTERNAL REVENUE SERVICE, DEPARTMENT OF THE... Plans, Etc. § 1.401(m)-1 Employee contributions and matching contributions. (a) General... contributions satisfies the nondiscrimination test of section 401(m) under paragraph (b) of this section and the...
7 CFR 272.12 - Computer matching requirements.
Code of Federal Regulations, 2014 CFR
2014-01-01
... 7 Agriculture 4 2014-01-01 2014-01-01 false Computer matching requirements. 272.12 Section 272.12... Computer matching requirements. (a) General purpose. The Computer Matching and Privacy Protection Act (CMA) of 1988, as amended, addresses the use of information from computer matching programs that involve a...
7 CFR 272.12 - Computer matching requirements.
Code of Federal Regulations, 2013 CFR
2013-01-01
... 7 Agriculture 4 2013-01-01 2013-01-01 false Computer matching requirements. 272.12 Section 272.12... Computer matching requirements. (a) General purpose. The Computer Matching and Privacy Protection Act (CMA) of 1988, as amended, addresses the use of information from computer matching programs that involve a...
26 CFR 31.3406(j)-1 - Taxpayer Identification Number (TIN) matching program.
Code of Federal Regulations, 2013 CFR
2013-04-01
... 26 Internal Revenue 15 2013-04-01 2013-04-01 false Taxpayer Identification Number (TIN) matching... Number (TIN) matching program. (a) The matching program. Under section 3406(i), the Commissioner has the authority to establish Taxpayer Identification Number (TIN) matching programs. The Commissioner may...
26 CFR 31.3406(j)-1 - Taxpayer Identification Number (TIN) matching program.
Code of Federal Regulations, 2011 CFR
2011-04-01
... 26 Internal Revenue 15 2011-04-01 2011-04-01 false Taxpayer Identification Number (TIN) matching... Number (TIN) matching program. (a) The matching program. Under section 3406(i), the Commissioner has the authority to establish Taxpayer Identification Number (TIN) matching programs. The Commissioner may...
26 CFR 31.3406(j)-1 - Taxpayer Identification Number (TIN) matching program.
Code of Federal Regulations, 2012 CFR
2012-04-01
... 26 Internal Revenue 15 2012-04-01 2012-04-01 false Taxpayer Identification Number (TIN) matching... Number (TIN) matching program. (a) The matching program. Under section 3406(i), the Commissioner has the authority to establish Taxpayer Identification Number (TIN) matching programs. The Commissioner may...
26 CFR 31.3406(j)-1 - Taxpayer Identification Number (TIN) matching program.
Code of Federal Regulations, 2014 CFR
2014-04-01
... 26 Internal Revenue 15 2014-04-01 2014-04-01 false Taxpayer Identification Number (TIN) matching... Number (TIN) matching program. (a) The matching program. Under section 3406(i), the Commissioner has the authority to establish Taxpayer Identification Number (TIN) matching programs. The Commissioner may...
26 CFR 31.3406(j)-1 - Taxpayer Identification Number (TIN) matching program.
Code of Federal Regulations, 2010 CFR
2010-04-01
... 26 Internal Revenue 15 2010-04-01 2010-04-01 false Taxpayer Identification Number (TIN) matching... Number (TIN) matching program. (a) The matching program. Under section 3406(i), the Commissioner has the authority to establish Taxpayer Identification Number (TIN) matching programs. The Commissioner may...
32 CFR 806b.50 - Computer matching.
Code of Federal Regulations, 2013 CFR
2013-07-01
... 32 National Defense 6 2013-07-01 2013-07-01 false Computer matching. 806b.50 Section 806b.50... PROGRAM Disclosing Records to Third Parties § 806b.50 Computer matching. Computer matching programs... on forms used in applying for benefits. Coordinate computer matching statements on forms with Air...
41 CFR 105-64.110 - When may GSA establish computer matching programs?
Code of Federal Regulations, 2013 CFR
2013-07-01
... computer matching programs? 105-64.110 Section 105-64.110 Public Contracts and Property Management Federal... GSA establish computer matching programs? (a) System managers will establish computer matching... direction of the GSA Data Integrity Board that will be established when and if computer matching programs...
41 CFR 105-64.110 - When may GSA establish computer matching programs?
Code of Federal Regulations, 2012 CFR
2012-01-01
... computer matching programs? 105-64.110 Section 105-64.110 Public Contracts and Property Management Federal... GSA establish computer matching programs? (a) System managers will establish computer matching... direction of the GSA Data Integrity Board that will be established when and if computer matching programs...
32 CFR 806b.50 - Computer matching.
Code of Federal Regulations, 2014 CFR
2014-07-01
... 32 National Defense 6 2014-07-01 2014-07-01 false Computer matching. 806b.50 Section 806b.50... PROGRAM Disclosing Records to Third Parties § 806b.50 Computer matching. Computer matching programs... on forms used in applying for benefits. Coordinate computer matching statements on forms with Air...
41 CFR 105-64.110 - When may GSA establish computer matching programs?
Code of Federal Regulations, 2014 CFR
2014-01-01
... computer matching programs? 105-64.110 Section 105-64.110 Public Contracts and Property Management Federal... GSA establish computer matching programs? (a) System managers will establish computer matching... direction of the GSA Data Integrity Board that will be established when and if computer matching programs...
32 CFR 806b.50 - Computer matching.
Code of Federal Regulations, 2012 CFR
2012-07-01
... 32 National Defense 6 2012-07-01 2012-07-01 false Computer matching. 806b.50 Section 806b.50... PROGRAM Disclosing Records to Third Parties § 806b.50 Computer matching. Computer matching programs... on forms used in applying for benefits. Coordinate computer matching statements on forms with Air...
32 CFR 806b.50 - Computer matching.
Code of Federal Regulations, 2010 CFR
2010-07-01
... 32 National Defense 6 2010-07-01 2010-07-01 false Computer matching. 806b.50 Section 806b.50... PROGRAM Disclosing Records to Third Parties § 806b.50 Computer matching. Computer matching programs... on forms used in applying for benefits. Coordinate computer matching statements on forms with Air...
41 CFR 105-64.110 - When may GSA establish computer matching programs?
Code of Federal Regulations, 2010 CFR
2010-07-01
... computer matching programs? 105-64.110 Section 105-64.110 Public Contracts and Property Management Federal... GSA establish computer matching programs? (a) System managers will establish computer matching... direction of the GSA Data Integrity Board that will be established when and if computer matching programs...
32 CFR 806b.50 - Computer matching.
Code of Federal Regulations, 2011 CFR
2011-07-01
... 32 National Defense 6 2011-07-01 2011-07-01 false Computer matching. 806b.50 Section 806b.50... PROGRAM Disclosing Records to Third Parties § 806b.50 Computer matching. Computer matching programs... on forms used in applying for benefits. Coordinate computer matching statements on forms with Air...
41 CFR 105-64.110 - When may GSA establish computer matching programs?
Code of Federal Regulations, 2011 CFR
2011-01-01
... computer matching programs? 105-64.110 Section 105-64.110 Public Contracts and Property Management Federal... GSA establish computer matching programs? (a) System managers will establish computer matching... direction of the GSA Data Integrity Board that will be established when and if computer matching programs...
2010-09-20
NEW ORLEANS -- To commemorate the history of the Space Shuttle Program's last external fuel tank, its intertank door is emblazoned with an ET-122 insignia. The external tank will travel 900 miles by sea from NASA's Michoud Assembly Facility in New Orleans to NASA's Kennedy Space Center in Florida secured aboard the Pegasus Barge, offloaded and moved to Kennedy's Vehicle Assembly Building where it will be integrated to space shuttle Endeavour for the STS-134 mission to the International Space Station. The tank, which is the largest element of the space shuttle stack, was damaged during Hurricane Katrina in August 2005 and restored to flight configuration by Lockheed Martin Space Systems Company employees. STS-134, targeted to launch Feb. 2011, currently is scheduled to be the last mission in the Space Shuttle Program. Photo credit: NASA/Kim Shiflett
2010-12-22
CAPE CANAVERAL, Fla. -- Preparations are under way in the Vehicle Assembly Building at NASA's Kennedy Space Center in Florida to examine space shuttle Discovery's external fuel tank. Technicians will begin to remove thermal sensors that will give engineers data about the changes the tank went through during the loading and draining of super-cold propellants during a tanking test on Dec. 17. Engineers also will examine 21-foot-long support beams, called stringers, on the outside of the tank's intertank region. Also on the agenda, is to re-apply foam to the outside of the tank. Discovery's next launch opportunity to the International Space Station on the STS-133 mission is no earlier than Feb. 3, 2011. For more information on STS-133, visit www.nasa.gov/mission_pages/shuttle/shuttlemissions/sts133/. Photo credit: NASA/Dimitri Gerondidakis
2010-12-22
CAPE CANAVERAL, Fla. -- Preparations are under way in the Vehicle Assembly Building at NASA's Kennedy Space Center in Florida to examine space shuttle Discovery's external fuel tank. Technicians will begin to remove thermal sensors that will give engineers data about the changes the tank went through during the loading and draining of super-cold propellants during a tanking test on Dec. 17. Engineers also will examine 21-foot-long support beams, called stringers, on the outside of the tank's intertank region. Also on the agenda, is to re-apply foam to the outside of the tank. Discovery's next launch opportunity to the International Space Station on the STS-133 mission is no earlier than Feb. 3, 2011. For more information on STS-133, visit www.nasa.gov/mission_pages/shuttle/shuttlemissions/sts133/. Photo credit: NASA/Dimitri Gerondidakis
2010-12-22
CAPE CANAVERAL, Fla. -- Preparations are under way in the Vehicle Assembly Building at NASA's Kennedy Space Center in Florida to examine space shuttle Discovery's external fuel tank. Technicians will begin to remove thermal sensors that will give engineers data about the changes the tank went through during the loading and draining of super-cold propellants during a tanking test on Dec. 17. Engineers also will examine 21-foot-long support beams, called stringers, on the outside of the tank's intertank region. Also on the agenda, is to re-apply foam to the outside of the tank. Discovery's next launch opportunity to the International Space Station on the STS-133 mission is no earlier than Feb. 3, 2011. For more information on STS-133, visit www.nasa.gov/mission_pages/shuttle/shuttlemissions/sts133/. Photo credit: NASA/Dimitri Gerondidakis
2010-12-22
CAPE CANAVERAL, Fla. -- Preparations are under way in the Vehicle Assembly Building at NASA's Kennedy Space Center in Florida to examine space shuttle Discovery's external fuel tank. Technicians will begin to remove thermal sensors that will give engineers data about the changes the tank went through during the loading and draining of super-cold propellants during a tanking test on Dec. 17. Engineers also will examine 21-foot-long support beams, called stringers, on the outside of the tank's intertank region. Also on the agenda, is to re-apply foam to the outside of the tank. Discovery's next launch opportunity to the International Space Station on the STS-133 mission is no earlier than Feb. 3, 2011. For more information on STS-133, visit www.nasa.gov/mission_pages/shuttle/shuttlemissions/sts133/. Photo credit: NASA/Dimitri Gerondidakis
2010-12-14
CAPE CANAVERAL, Fla. -- Space shuttle Discovery's external fuel tank is outfitted with approximately 89 strain gauges, thermocouples and wiring in preparation for a tanking test no earlier than Dec. 17 on Launch Pad 39A at NASA's Kennedy Space Center in Florida. During the test, engineers will monitor what happens to 21-foot long, U-shaped aluminum brackets, called stringers, located at the external tank's intertank area, as well as the newly replaced ground umbilical carrier plate (GUCP), during the loading of cryogenic propellants. Discovery's first launch attempt for STS-133 was scrubbed in early November due to a hydrogen gas leak at GUCP. The next launch opportunity is no earlier than Feb. 3, 2011. For more information on STS-133, visit www.nasa.gov/mission_pages/shuttle/shuttlemissions/sts133/. Photo credit: NASA/Jim Grossmann
2010-12-14
CAPE CANAVERAL, Fla. -- Space shuttle Discovery's external fuel tank is outfitted with approximately 89 strain gauges, thermocouples and wiring in preparation for a tanking test no earlier than Dec. 17 on Launch Pad 39A at NASA's Kennedy Space Center in Florida. During the test, engineers will monitor what happens to 21-foot long, U-shaped aluminum brackets, called stringers, located at the external tank's intertank area, as well as the newly replaced ground umbilical carrier plate (GUCP), during the loading of cryogenic propellants. Discovery's first launch attempt for STS-133 was scrubbed in early November due to a hydrogen gas leak at GUCP. The next launch opportunity is no earlier than Feb. 3, 2011. For more information on STS-133, visit www.nasa.gov/mission_pages/shuttle/shuttlemissions/sts133/. Photo credit: NASA/Jim Grossmann
2010-12-14
CAPE CANAVERAL, Fla. -- Technicians outfit space shuttle Discovery's external fuel tank with approximately 89 strain gauges, thermocouples and wiring in preparation for a tanking test no earlier than Dec. 17 on Launch Pad 39A at NASA's Kennedy Space Center in Florida. During the test, engineers will monitor what happens to 21-foot long, U-shaped aluminum brackets, called stringers, located at the external tank's intertank area, as well as the newly replaced ground umbilical carrier plate (GUCP), during the loading of cryogenic propellants. Discovery's first launch attempt for STS-133 was scrubbed in early November due to a hydrogen gas leak at GUCP. The next launch opportunity is no earlier than Feb. 3, 2011. For more information on STS-133, visit www.nasa.gov/mission_pages/shuttle/shuttlemissions/sts133/. Photo credit: NASA/Jim Grossmann
2010-12-14
CAPE CANAVERAL, Fla. -- Technicians outfit space shuttle Discovery's external fuel tank with approximately 89 strain gauges, thermocouples and wiring in preparation for a tanking test no earlier than Dec. 17 on Launch Pad 39A at NASA's Kennedy Space Center in Florida. During the test, engineers will monitor what happens to 21-foot long, U-shaped aluminum brackets, called stringers, located at the external tank's intertank area, as well as the newly replaced ground umbilical carrier plate (GUCP), during the loading of cryogenic propellants. Discovery's first launch attempt for STS-133 was scrubbed in early November due to a hydrogen gas leak at GUCP. The next launch opportunity is no earlier than Feb. 3, 2011. For more information on STS-133, visit www.nasa.gov/mission_pages/shuttle/shuttlemissions/sts133/. Photo credit: NASA/Jim Grossmann
2010-12-14
CAPE CANAVERAL, Fla. -- Technicians outfit space shuttle Discovery's external fuel tank with approximately 89 strain gauges, thermocouples and wiring in preparation for a tanking test no earlier than Dec. 17 on Launch Pad 39A at NASA's Kennedy Space Center in Florida. During the test, engineers will monitor what happens to 21-foot long, U-shaped aluminum brackets, called stringers, located at the external tank's intertank area, as well as the newly replaced ground umbilical carrier plate (GUCP), during the loading of cryogenic propellants. Discovery's first launch attempt for STS-133 was scrubbed in early November due to a hydrogen gas leak at GUCP. The next launch opportunity is no earlier than Feb. 3, 2011. For more information on STS-133, visit www.nasa.gov/mission_pages/shuttle/shuttlemissions/sts133/. Photo credit: NASA/Jim Grossmann
2010-12-14
CAPE CANAVERAL, Fla. -- Technicians outfit space shuttle Discovery's external fuel tank with approximately 89 strain gauges, thermocouples and wiring in preparation for a tanking test no earlier than Dec. 17 on Launch Pad 39A at NASA's Kennedy Space Center in Florida. During the test, engineers will monitor what happens to 21-foot long, U-shaped aluminum brackets, called stringers, located at the external tank's intertank area, as well as the newly replaced ground umbilical carrier plate (GUCP), during the loading of cryogenic propellants. Discovery's first launch attempt for STS-133 was scrubbed in early November due to a hydrogen gas leak at GUCP. The next launch opportunity is no earlier than Feb. 3, 2011. For more information on STS-133, visit www.nasa.gov/mission_pages/shuttle/shuttlemissions/sts133/. Photo credit: NASA/Jim Grossmann
2010-12-14
CAPE CANAVERAL, Fla. -- Space shuttle Discovery's external fuel tank is outfitted with approximately 89 strain gauges, thermocouples and wiring in preparation for a tanking test no earlier than Dec. 17 on Launch Pad 39A at NASA's Kennedy Space Center in Florida. During the test, engineers will monitor what happens to 21-foot long, U-shaped aluminum brackets, called stringers, located at the external tank's intertank area, as well as the newly replaced ground umbilical carrier plate (GUCP), during the loading of cryogenic propellants. Discovery's first launch attempt for STS-133 was scrubbed in early November due to a hydrogen gas leak at GUCP. The next launch opportunity is no earlier than Feb. 3, 2011. For more information on STS-133, visit www.nasa.gov/mission_pages/shuttle/shuttlemissions/sts133/. Photo credit: NASA/Jim Grossmann
2010-12-14
CAPE CANAVERAL, Fla. -- Technicians outfit space shuttle Discovery's external fuel tank with approximately 89 strain gauges, thermocouples and wiring in preparation for a tanking test no earlier than Dec. 17 on Launch Pad 39A at NASA's Kennedy Space Center in Florida. During the test, engineers will monitor what happens to 21-foot long, U-shaped aluminum brackets, called stringers, located at the external tank's intertank area, as well as the newly replaced ground umbilical carrier plate (GUCP), during the loading of cryogenic propellants. Discovery's first launch attempt for STS-133 was scrubbed in early November due to a hydrogen gas leak at GUCP. The next launch opportunity is no earlier than Feb. 3, 2011. For more information on STS-133, visit www.nasa.gov/mission_pages/shuttle/shuttlemissions/sts133/. Photo credit: NASA/Jim Grossmann
2011-01-25
CAPE CANAVERAL, Fla. -- Repair work to space shuttle Discovery's external fuel tank begins to wrap up in the Vehicle Assembly Building at NASA's Kennedy Space Center in Florida. Technicians modified 94 support beams, called stringers, on the tank's intertank region by fitting pieces of metal, called radius blocks, over the stringers' edges. They also were re-applying foam to the modified areas of the tank. Attached to its fuel tank and two solid rocket boosters, Discovery is scheduled to roll out to Launch Pad 39A atop a giant crawler-transporter on Jan. 31. Discovery's next launch opportunity to the International Space Station on the STS-133 mission is targeted for Feb. 24. For more information on STS-133, visit www.nasa.gov/mission_pages/shuttle/shuttlemissions/sts133/. Photo credit: NASA/Kim Shiflett
2011-01-05
CAPE CANAVERAL, Fla. -- Repair work to space shuttle Discovery's external fuel tank begins in the Vehicle Assembly Building at NASA's Kennedy Space Center in Florida. Technicians will modify 32 support beams, called stringers, on the tank's intertank region by fitting pieces of metal, called radius blocks, over the stringers' edges where they attach to the thrust panel area. The thrust panel is where the tank meets the two solid rocket boosters and sees the most stress during the flight into orbit. After the modifications and additional scans of the stringers are complete, foam insulation will be re-applied. Discovery's next launch opportunity to the International Space Station on the STS-133 mission is no earlier than Feb. 3, 2011. For more information on STS-133, visit www.nasa.gov/mission_pages/shuttle/shuttlemissions/sts133/. Photo credit: NASA/Jack Pfaller
2011-01-05
CAPE CANAVERAL, Fla. -- Repair work to space shuttle Discovery's external fuel tank begins in the Vehicle Assembly Building at NASA's Kennedy Space Center in Florida. Technicians will modify 32 support beams, called stringers, on the tank's intertank region by fitting pieces of metal, called radius blocks, over the stringers' edges where they attach to the thrust panel area. The thrust panel is where the tank meets the two solid rocket boosters and sees the most stress during the flight into orbit. After the modifications and additional scans of the stringers are complete, foam insulation will be re-applied. Discovery's next launch opportunity to the International Space Station on the STS-133 mission is no earlier than Feb. 3, 2011. For more information on STS-133, visit www.nasa.gov/mission_pages/shuttle/shuttlemissions/sts133/. Photo credit: NASA/Jack Pfaller
2011-01-25
CAPE CANAVERAL, Fla. -- Repair work to space shuttle Discovery's external fuel tank begins to wrap up in the Vehicle Assembly Building at NASA's Kennedy Space Center in Florida. Technicians modified 94 support beams, called stringers, on the tank's intertank region by fitting pieces of metal, called radius blocks, over the stringers' edges. They also were re-applying foam to the modified areas of the tank. Attached to its fuel tank and two solid rocket boosters, Discovery is scheduled to roll out to Launch Pad 39A atop a giant crawler-transporter on Jan. 31. Discovery's next launch opportunity to the International Space Station on the STS-133 mission is targeted for Feb. 24. For more information on STS-133, visit www.nasa.gov/mission_pages/shuttle/shuttlemissions/sts133/. Photo credit: NASA/Kim Shiflett
2011-01-05
CAPE CANAVERAL, Fla. -- Repair work to space shuttle Discovery's external fuel tank begins in the Vehicle Assembly Building at NASA's Kennedy Space Center in Florida. Technicians will modify 32 support beams, called stringers, on the tank's intertank region by fitting pieces of metal, called radius blocks, over the stringers' edges where they attach to the thrust panel area. The thrust panel is where the tank meets the two solid rocket boosters and sees the most stress during the flight into orbit. After the modifications and additional scans of the stringers are complete, foam insulation will be re-applied. Discovery's next launch opportunity to the International Space Station on the STS-133 mission is no earlier than Feb. 3, 2011. For more information on STS-133, visit www.nasa.gov/mission_pages/shuttle/shuttlemissions/sts133/. Photo credit: NASA/Jack Pfaller
2011-01-05
CAPE CANAVERAL, Fla. -- Repair work to space shuttle Discovery's external fuel tank begins in the Vehicle Assembly Building at NASA's Kennedy Space Center in Florida. Technicians will modify 32 support beams, called stringers, on the tank's intertank region by fitting pieces of metal, called radius blocks, over the stringers' edges where they attach to the thrust panel area. The thrust panel is where the tank meets the two solid rocket boosters and sees the most stress during the flight into orbit. After the modifications and additional scans of the stringers are complete, foam insulation will be re-applied. Discovery's next launch opportunity to the International Space Station on the STS-133 mission is no earlier than Feb. 3, 2011. For more information on STS-133, visit www.nasa.gov/mission_pages/shuttle/shuttlemissions/sts133/. Photo credit: NASA/Jack Pfaller
2011-01-05
CAPE CANAVERAL, Fla. -- Repair work to space shuttle Discovery's external fuel tank begins in the Vehicle Assembly Building at NASA's Kennedy Space Center in Florida. Technicians will modify 32 support beams, called stringers, on the tank's intertank region by fitting pieces of metal, called radius blocks, over the stringers' edges where they attach to the thrust panel area. The thrust panel is where the tank meets the two solid rocket boosters and sees the most stress during the flight into orbit. After the modifications and additional scans of the stringers are complete, foam insulation will be re-applied. Discovery's next launch opportunity to the International Space Station on the STS-133 mission is no earlier than Feb. 3, 2011. For more information on STS-133, visit www.nasa.gov/mission_pages/shuttle/shuttlemissions/sts133/. Photo credit: NASA/Jack Pfaller
2011-01-05
CAPE CANAVERAL, Fla. -- Repair work to space shuttle Discovery's external fuel tank begins in the Vehicle Assembly Building at NASA's Kennedy Space Center in Florida. Technicians will modify 32 support beams, called stringers, on the tank's intertank region by fitting pieces of metal, called radius blocks, over the stringers' edges where they attach to the thrust panel area. The thrust panel is where the tank meets the two solid rocket boosters and sees the most stress during the flight into orbit. After the modifications and additional scans of the stringers are complete, foam insulation will be re-applied. Discovery's next launch opportunity to the International Space Station on the STS-133 mission is no earlier than Feb. 3, 2011. For more information on STS-133, visit www.nasa.gov/mission_pages/shuttle/shuttlemissions/sts133/. Photo credit: NASA/Jack Pfaller
2011-01-05
CAPE CANAVERAL, Fla. -- Repair work to space shuttle Discovery's external fuel tank begins in the Vehicle Assembly Building at NASA's Kennedy Space Center in Florida. Technicians will modify 32 support beams, called stringers, on the tank's intertank region by fitting pieces of metal, called radius blocks, over the stringers' edges where they attach to the thrust panel area. The thrust panel is where the tank meets the two solid rocket boosters and sees the most stress during the flight into orbit. After the modifications and additional scans of the stringers are complete, foam insulation will be re-applied. Discovery's next launch opportunity to the International Space Station on the STS-133 mission is no earlier than Feb. 3, 2011. For more information on STS-133, visit www.nasa.gov/mission_pages/shuttle/shuttlemissions/sts133/. Photo credit: NASA/Jack Pfaller
2011-01-25
CAPE CANAVERAL, Fla. -- Repair work to space shuttle Discovery's external fuel tank begins to wrap up in the Vehicle Assembly Building at NASA's Kennedy Space Center in Florida. Technicians modified 94 support beams, called stringers, on the tank's intertank region by fitting pieces of metal, called radius blocks, over the stringers' edges. They also were re-applying foam to the modified areas of the tank. Attached to its fuel tank and two solid rocket boosters, Discovery is scheduled to roll out to Launch Pad 39A atop a giant crawler-transporter on Jan. 31. Discovery's next launch opportunity to the International Space Station on the STS-133 mission is targeted for Feb. 24. For more information on STS-133, visit www.nasa.gov/mission_pages/shuttle/shuttlemissions/sts133/. Photo credit: NASA/Kim Shiflett
NASA Technical Reports Server (NTRS)
2008-01-01
The NASA Cryogenics Test Laboratory at Kennedy Space Center conducted long-term testing of SOFI materials under actual-use cryogenic conditions with Cryostat-4. The materials included in the testing were NCFI 24-124 (acreage foam), BX-265 (close-out foam, including intertank flange and bipod areas), and a potential alternate material, NCFI 27-68, (acreage foam with the flame retardant removed). Specimens of these materials were placed at two locations: a site that simulated aging (the Vehicle Assembly Building [VAB]) and a site that simulated weathering (the Atmospheric Exposure Test Site [beach site]). After aging/weathering intervals of 3, 6, and 12 months, the samples were retrieved and tested for their thermal performance under cryogenic vacuum conditions with test apparatus Cryostat-4.
2010-12-02
CAPE CANAVERAL, Fla. -- A backscatter device is being used to examine space shuttle Discovery's external fuel tank on Launch Pad 39A at NASA's Kennedy Space Center in Florida. The device bounces radiation off the tank, allowing technicians to see under the tank's foam insulation. The foam cracked during initial loading operations for Discovery’s STS-133 launch attempt on Nov. 5, and technicians later identified two cracked stringers, which are the composite aluminum ribs located vertically on the tank’s intertank area. Those two stringers have been replaced and reinforced with doublers, which are shaped metal pieces twice as thick as the original stringers. Launch is no earlier than Dec. 17 at 8:51 p.m. EST. For more information on STS-133, visit www.nasa.gov/mission_pages/shuttle/shuttlemissions/sts133/. Photo credit: NASA/Frank Michaux
2010-12-02
CAPE CANAVERAL, Fla. -- An engineer uses a backscatter device to examine space shuttle Discovery's external fuel tank on Launch Pad 39A at NASA's Kennedy Space Center in Florida. The device bounces radiation off the tank, allowing technicians to see under the tank's foam insulation. The foam cracked during initial loading operations for Discovery’s STS-133 launch attempt on Nov. 5, and technicians later identified two cracked stringers, which are the composite aluminum ribs located vertically on the tank’s intertank area. Those two stringers have been replaced and reinforced with doublers, which are shaped metal pieces twice as thick as the original stringers. Launch is no earlier than Dec. 17 at 8:51 p.m. EST. For more information on STS-133, visit www.nasa.gov/mission_pages/shuttle/shuttlemissions/sts133/. Photo credit: NASA/Frank Michaux
2010-12-02
CAPE CANAVERAL, Fla. -- A backscatter device is being used to examine space shuttle Discovery's external fuel tank on Launch Pad 39A at NASA's Kennedy Space Center in Florida. The device bounces radiation off the tank, allowing technicians to see under the tank's foam insulation. The foam cracked during initial loading operations for Discovery’s STS-133 launch attempt on Nov. 5, and technicians later identified two cracked stringers, which are the composite aluminum ribs located vertically on the tank’s intertank area. Those two stringers have been replaced and reinforced with doublers, which are shaped metal pieces twice as thick as the original stringers. Launch is no earlier than Dec. 17 at 8:51 p.m. EST. For more information on STS-133, visit www.nasa.gov/mission_pages/shuttle/shuttlemissions/sts133/. Photo credit: NASA/Frank Michaux
2010-12-02
CAPE CANAVERAL, Fla. -- A backscatter device is being used to examine space shuttle Discovery's external fuel tank on Launch Pad 39A at NASA's Kennedy Space Center in Florida. The device bounces radiation off the tank, allowing technicians to see under the tank's foam insulation. The foam cracked during initial loading operations for Discovery’s STS-133 launch attempt on Nov. 5, and technicians later identified two cracked stringers, which are the composite aluminum ribs located vertically on the tank’s intertank area. Those two stringers have been replaced and reinforced with doublers, which are shaped metal pieces twice as thick as the original stringers. Launch is no earlier than Dec. 17 at 8:51 p.m. EST. For more information on STS-133, visit www.nasa.gov/mission_pages/shuttle/shuttlemissions/sts133/. Photo credit: NASA/Frank Michaux
2010-12-02
CAPE CANAVERAL, Fla. -- Engineers will use a backscatter device to examine space shuttle Discovery's external fuel tank on Launch Pad 39A at NASA's Kennedy Space Center in Florida. The device bounces radiation off the tank, allowing technicians to see under the tank's foam insulation. The foam cracked during initial loading operations for Discovery’s STS-133 launch attempt on Nov. 5, and technicians later identified two cracked stringers, which are the composite aluminum ribs located vertically on the tank’s intertank area. Those two stringers have been replaced and reinforced with doublers, which are shaped metal pieces twice as thick as the original stringers. Launch is no earlier than Dec. 17 at 8:51 p.m. EST. For more information on STS-133, visit www.nasa.gov/mission_pages/shuttle/shuttlemissions/sts133/. Photo credit: NASA/Frank Michaux
2010-12-02
CAPE CANAVERAL, Fla. -- An engineer uses a backscatter device to examine space shuttle Discovery's external fuel tank on Launch Pad 39A at NASA's Kennedy Space Center in Florida. The device bounces radiation off the tank, allowing technicians to see under the tank's foam insulation. The foam cracked during initial loading operations for Discovery’s STS-133 launch attempt on Nov. 5, and technicians later identified two cracked stringers, which are the composite aluminum ribs located vertically on the tank’s intertank area. Those two stringers have been replaced and reinforced with doublers, which are shaped metal pieces twice as thick as the original stringers. Launch is no earlier than Dec. 17 at 8:51 p.m. EST. For more information on STS-133, visit www.nasa.gov/mission_pages/shuttle/shuttlemissions/sts133/. Photo credit: NASA/Frank Michaux
2010-12-02
CAPE CANAVERAL, Fla. -- An engineer uses a backscatter device to examine space shuttle Discovery's external fuel tank on Launch Pad 39A at NASA's Kennedy Space Center in Florida. The device bounces radiation off the tank, allowing technicians to see under the tank's foam insulation. The foam cracked during initial loading operations for Discovery’s STS-133 launch attempt on Nov. 5, and technicians later identified two cracked stringers, which are the composite aluminum ribs located vertically on the tank’s intertank area. Those two stringers have been replaced and reinforced with doublers, which are shaped metal pieces twice as thick as the original stringers. Launch is no earlier than Dec. 17 at 8:51 p.m. EST. For more information on STS-133, visit www.nasa.gov/mission_pages/shuttle/shuttlemissions/sts133/. Photo credit: NASA/Frank Michaux
2010-12-02
CAPE CANAVERAL, Fla. -- An engineer uses a backscatter device to examine space shuttle Discovery's external fuel tank on Launch Pad 39A at NASA's Kennedy Space Center in Florida. The device bounces radiation off the tank, allowing technicians to see under the tank's foam insulation. The foam cracked during initial loading operations for Discovery’s STS-133 launch attempt on Nov. 5, and technicians later identified two cracked stringers, which are the composite aluminum ribs located vertically on the tank’s intertank area. Those two stringers have been replaced and reinforced with doublers, which are shaped metal pieces twice as thick as the original stringers. Launch is no earlier than Dec. 17 at 8:51 p.m. EST. For more information on STS-133, visit www.nasa.gov/mission_pages/shuttle/shuttlemissions/sts133/. Photo credit: NASA/Frank Michaux
2010-12-02
CAPE CANAVERAL, Fla. -- An engineer uses a backscatter device to examine space shuttle Discovery's external fuel tank on Launch Pad 39A at NASA's Kennedy Space Center in Florida. The device bounces radiation off the tank, allowing technicians to see under the tank's foam insulation. The foam cracked during initial loading operations for Discovery’s STS-133 launch attempt on Nov. 5, and technicians later identified two cracked stringers, which are the composite aluminum ribs located vertically on the tank’s intertank area. Those two stringers have been replaced and reinforced with doublers, which are shaped metal pieces twice as thick as the original stringers. Launch is no earlier than Dec. 17 at 8:51 p.m. EST. For more information on STS-133, visit www.nasa.gov/mission_pages/shuttle/shuttlemissions/sts133/. Photo credit: NASA/Frank Michaux
DOE Office of Scientific and Technical Information (OSTI.GOV)
McGrath, Deirdre M., E-mail: d.mcgrath@sheffield.ac.uk; Lee, Jenny; Foltz, Warren D.
Purpose: Validation of MRI-guided tumor boundary delineation for targeted prostate cancer therapy is achieved via correlation with gold-standard histopathology of radical prostatectomy specimens. Challenges to accurate correlation include matching the pathology sectioning plane with the in vivo imaging slice plane and correction for the deformation that occurs between in vivo imaging and histology. A methodology is presented for matching of the histological sectioning angle and position to the in vivo imaging slices. Methods: Patients (n = 4) with biochemical failure following external beam radiotherapy underwent diagnostic MRI to confirm localized recurrence of prostate cancer, followed by salvage radical prostatectomy. High-resolutionmore » 3-D MRI of the ex vivo specimens was acquired to determine the pathology sectioning angle that best matched the in vivo imaging slice plane, using matching anatomical features and implanted fiducials. A novel sectioning device was developed to guide sectioning at the correct angle, and to assist the insertion of reference dye marks to aid in histopathology reconstruction. Results: The percentage difference in the positioning of the urethra in the ex vivo pathology sections compared to the positioning in in vivo images was reduced from 34% to 7% through slicing at the best match angle. Reference dye marks were generated, which were visible in ex vivo imaging, in the tissue sections before and after processing, and in histology sections. Conclusions: The method achieved an almost fivefold reduction in the slice-matching error and is readily implementable in combination with standard MRI technology. The technique will be employed to generate datasets for correlation of whole-specimen prostate histopathology with in vivo diagnostic MRI using 3-D deformable registration, allowing assessment of the sensitivity and specificity of MRI parameters for prostate cancer. Although developed specifically for prostate, the method is readily adaptable to other types of whole tissue specimen, such as mastectomy or liver resection.« less
Majidi-Ahy, Gholamreza; Bloom, David M.
1991-01-01
A millimeter-wave active probe for use in injecting signals with frequencies above 50GHz to millimeter-wave and ultrafast devices and integrated circuits including a substrate upon which a frequency multiplier consisting of filter sections and impedance matching sections are fabricated in uniplanar transmission line format. A coaxial input and uniplanar 50 ohm transmission line couple an approximately 20 GHz input signal to a low pass filter which rolls off at approximately 25 GHz. An input impedance matching section couples the energy from the low pass filter to a pair of matched, antiparallel beam lead diodes. These diodes generate odd-numberd harmonics which are coupled out of the diodes by an output impedance matching network and bandpass filter which suppresses the fundamental and third harmonics and selects the fifth harmonic for presentation at an output.
12 CFR 1805.500 - Matching funds-general.
Code of Federal Regulations, 2010 CFR
2010-01-01
... 12 Banks and Banking 7 2010-01-01 2010-01-01 false Matching funds-general. 1805.500 Section 1805.500 Banks and Banking COMMUNITY DEVELOPMENT FINANCIAL INSTITUTIONS FUND, DEPARTMENT OF THE TREASURY COMMUNITY DEVELOPMENT FINANCIAL INSTITUTIONS PROGRAM Matching Funds Requirements § 1805.500 Matching funds...
7 CFR 1740.5 - Matching funds.
Code of Federal Regulations, 2011 CFR
2011-01-01
... 7 Agriculture 11 2011-01-01 2011-01-01 false Matching funds. 1740.5 Section 1740.5 Agriculture Regulations of the Department of Agriculture (Continued) RURAL UTILITIES SERVICE, DEPARTMENT OF AGRICULTURE... Grant Program § 1740.5 Matching funds. No matching funds are required in this program. ...
32 CFR 701.125 - Computer matching program.
Code of Federal Regulations, 2012 CFR
2012-07-01
... 32 National Defense 5 2012-07-01 2012-07-01 false Computer matching program. 701.125 Section 701... OF THE NAVY DOCUMENTS AFFECTING THE PUBLIC DON Privacy Program § 701.125 Computer matching program. The DPO has responsibility for coordinating the approval of DOD's participation in Computer Matching...
32 CFR 701.125 - Computer matching program.
Code of Federal Regulations, 2014 CFR
2014-07-01
... 32 National Defense 5 2014-07-01 2014-07-01 false Computer matching program. 701.125 Section 701... OF THE NAVY DOCUMENTS AFFECTING THE PUBLIC DON Privacy Program § 701.125 Computer matching program. The DPO has responsibility for coordinating the approval of DOD's participation in Computer Matching...
32 CFR 701.125 - Computer matching program.
Code of Federal Regulations, 2013 CFR
2013-07-01
... 32 National Defense 5 2013-07-01 2013-07-01 false Computer matching program. 701.125 Section 701... OF THE NAVY DOCUMENTS AFFECTING THE PUBLIC DON Privacy Program § 701.125 Computer matching program. The DPO has responsibility for coordinating the approval of DOD's participation in Computer Matching...
32 CFR 701.125 - Computer matching program.
Code of Federal Regulations, 2010 CFR
2010-07-01
... 32 National Defense 5 2010-07-01 2010-07-01 false Computer matching program. 701.125 Section 701... OF THE NAVY DOCUMENTS AFFECTING THE PUBLIC DON Privacy Program § 701.125 Computer matching program. The DPO has responsibility for coordinating the approval of DOD's participation in Computer Matching...
32 CFR 701.125 - Computer matching program.
Code of Federal Regulations, 2011 CFR
2011-07-01
... 32 National Defense 5 2011-07-01 2011-07-01 false Computer matching program. 701.125 Section 701... OF THE NAVY DOCUMENTS AFFECTING THE PUBLIC DON Privacy Program § 701.125 Computer matching program. The DPO has responsibility for coordinating the approval of DOD's participation in Computer Matching...
NASA Technical Reports Server (NTRS)
Osipov, Viatcheslav; Muratov, Cyrill; Hafiychuk, Halyna; Ponizovskya-Devine, Ekaterina; Smelyanskiy, Vadim; Mathias, Donovan; Lawrence, Scott; Werkheiser, Mary
2011-01-01
We analyze the data of purposeful rupture experiments with LOx and LH2 tanks, the Hydrogen-Oxygen Vertical Impact (HOVI) tests that were performed to clarify the ignition mechanisms, the explosive power of cryogenic H2/Ox mixtures under different conditions, and to elucidate the puzzling source of the initial formation of flames near the intertank section during the Challenger disaster. We carry out a physics-based analysis of general explosions scenarios for cryogenic gaseous H2/Ox mixtures and determine their realizability conditions, using the well-established simplified models from the detonation and deflagration theory. We study the features of aerosol H2/Ox mixture combustion and show, in particular, that aerosols intensify the deflagration flames and can induce detonation for any ignition mechanism. We propose a cavitation-induced mechanism of self-ignition of cryogenic H2/Ox mixtures that may be realized when gaseous H2 and Ox flows are mixed with a liquid Ox turbulent stream, as occurred in all HOVI tests. We present an overview of the HOVI tests to make conclusion on the risk of strong explosions in possible liquid rocket incidents and provide a semi-quantitative interpretation of the HOVI data based on aerosol combustion. We uncover the most dangerous situations and discuss the foreseeable risks which can arise in space missions and lead to tragic outcomes. Our analysis relates to only unconfined mixtures that are likely to arise as a result of liquid propellant space vehicle incidents.
26 CFR 1.401(m)-1 - Employee contributions and matching contributions.
Code of Federal Regulations, 2010 CFR
2010-04-01
... 26 Internal Revenue 5 2010-04-01 2010-04-01 false Employee contributions and matching.... § 1.401(m)-1 Employee contributions and matching contributions. (a) General nondiscrimination rules—(1... not satisfy section 401(a) for a plan year unless the amount of employee contributions and matching...
12 CFR 1805.503 - Time frame for raising match.
Code of Federal Regulations, 2010 CFR
2010-01-01
... 12 Banks and Banking 7 2010-01-01 2010-01-01 false Time frame for raising match. 1805.503 Section 1805.503 Banks and Banking COMMUNITY DEVELOPMENT FINANCIAL INSTITUTIONS FUND, DEPARTMENT OF THE... frame for raising match. Applicants shall satisfy matching funds requirements within the period set...
44 CFR 361.4 - Matching contributions.
Code of Federal Regulations, 2010 CFR
2010-10-01
... 44 Emergency Management and Assistance 1 2010-10-01 2010-10-01 false Matching contributions. 361.4 Section 361.4 Emergency Management and Assistance FEDERAL EMERGENCY MANAGEMENT AGENCY, DEPARTMENT OF... to match the Federal funds on a 50 percent cash match basis. (b) States which did not receive a grant...
11 CFR 9033.4 - Matching payment eligibility threshold requirements.
Code of Federal Regulations, 2013 CFR
2013-01-01
... 11 Federal Elections 1 2013-01-01 2012-01-01 true Matching payment eligibility threshold requirements. 9033.4 Section 9033.4 Federal Elections FEDERAL ELECTION COMMISSION PRESIDENTIAL ELECTION CAMPAIGN FUND: PRESIDENTIAL PRIMARY MATCHING FUND ELIGIBILITY FOR PAYMENTS § 9033.4 Matching payment eligibility threshold requirements. (a) The Commissio...
11 CFR 9033.4 - Matching payment eligibility threshold requirements.
Code of Federal Regulations, 2014 CFR
2014-01-01
... 11 Federal Elections 1 2014-01-01 2014-01-01 false Matching payment eligibility threshold requirements. 9033.4 Section 9033.4 Federal Elections FEDERAL ELECTION COMMISSION PRESIDENTIAL ELECTION CAMPAIGN FUND: PRESIDENTIAL PRIMARY MATCHING FUND ELIGIBILITY FOR PAYMENTS § 9033.4 Matching payment eligibility threshold requirements. (a) The...
11 CFR 9033.4 - Matching payment eligibility threshold requirements.
Code of Federal Regulations, 2010 CFR
2010-01-01
... 11 Federal Elections 1 2010-01-01 2010-01-01 false Matching payment eligibility threshold requirements. 9033.4 Section 9033.4 Federal Elections FEDERAL ELECTION COMMISSION PRESIDENTIAL ELECTION CAMPAIGN FUND: PRESIDENTIAL PRIMARY MATCHING FUND ELIGIBILITY FOR PAYMENTS § 9033.4 Matching payment eligibility threshold requirements. (a) The...
11 CFR 9033.4 - Matching payment eligibility threshold requirements.
Code of Federal Regulations, 2011 CFR
2011-01-01
... 11 Federal Elections 1 2011-01-01 2011-01-01 false Matching payment eligibility threshold requirements. 9033.4 Section 9033.4 Federal Elections FEDERAL ELECTION COMMISSION PRESIDENTIAL ELECTION CAMPAIGN FUND: PRESIDENTIAL PRIMARY MATCHING FUND ELIGIBILITY FOR PAYMENTS § 9033.4 Matching payment eligibility threshold requirements. (a) The...
11 CFR 9033.4 - Matching payment eligibility threshold requirements.
Code of Federal Regulations, 2012 CFR
2012-01-01
... 11 Federal Elections 1 2012-01-01 2012-01-01 false Matching payment eligibility threshold requirements. 9033.4 Section 9033.4 Federal Elections FEDERAL ELECTION COMMISSION PRESIDENTIAL ELECTION CAMPAIGN FUND: PRESIDENTIAL PRIMARY MATCHING FUND ELIGIBILITY FOR PAYMENTS § 9033.4 Matching payment eligibility threshold requirements. (a) The...
50 CFR 85.47 - Program crediting.
Code of Federal Regulations, 2014 CFR
2014-10-01
... this section, print the logo in any 100 percent solid dark color on a contrasting light background. [62...) Logo colors. Option 1 in paragraph (e)(1) of this section describes the preferred logo colors. Use... attempt to match these Pantone Matching Systems (PMS) colors with combinations of screened process colors...
2010-12-02
CAPE CANAVERAL, Fla. -- An engineer examines images of space shuttle Discovery's external fuel tank taken from a backscatter device on Launch Pad 39A at NASA's Kennedy Space Center in Florida. The device bounces radiation off the tank, allowing technicians to see under the tank's foam insulation. The foam cracked during initial loading operations for Discovery’s STS-133 launch attempt on Nov. 5, and technicians later identified two cracked stringers, which are the composite aluminum ribs located vertically on the tank’s intertank area. Those two stringers have been replaced and reinforced with doublers, which are shaped metal pieces twice as thick as the original stringers. Launch is no earlier than Dec. 17 at 8:51 p.m. EST. For more information on STS-133, visit www.nasa.gov/mission_pages/shuttle/shuttlemissions/sts133/. Photo credit: NASA/Frank Michaux
2010-12-02
CAPE CANAVERAL, Fla. -- An engineer examines images of space shuttle Discovery's external fuel tank taken from a backscatter device on Launch Pad 39A at NASA's Kennedy Space Center in Florida. The device bounces radiation off the tank, allowing technicians to see under the tank's foam insulation. The foam cracked during initial loading operations for Discovery’s STS-133 launch attempt on Nov. 5, and technicians later identified two cracked stringers, which are the composite aluminum ribs located vertically on the tank’s intertank area. Those two stringers have been replaced and reinforced with doublers, which are shaped metal pieces twice as thick as the original stringers. Launch is no earlier than Dec. 17 at 8:51 p.m. EST. For more information on STS-133, visit www.nasa.gov/mission_pages/shuttle/shuttlemissions/sts133/. Photo credit: NASA/Frank Michaux
2010-12-02
CAPE CANAVERAL, Fla. -- An engineer examines images of space shuttle Discovery's external fuel tank taken from a backscatter device on Launch Pad 39A at NASA's Kennedy Space Center in Florida. The device bounces radiation off the tank, allowing technicians to see under the tank's foam insulation. The foam cracked during initial loading operations for Discovery’s STS-133 launch attempt on Nov. 5, and technicians later identified two cracked stringers, which are the composite aluminum ribs located vertically on the tank’s intertank area. Those two stringers have been replaced and reinforced with doublers, which are shaped metal pieces twice as thick as the original stringers. Launch is no earlier than Dec. 17 at 8:51 p.m. EST. For more information on STS-133, visit www.nasa.gov/mission_pages/shuttle/shuttlemissions/sts133/. Photo credit: NASA/Frank Michaux
2010-12-10
CAPE CANAVERAL, Fla. -- Technicians prepare space shuttle Discovery's external fuel tank for a tanking test no earlier than Dec. 15 on Launch Pad 39A at NASA's Kennedy Space Center in Florida. During the test, engineers will monitor what happens to 21-foot long, U-shaped aluminum brackets, called stringers, located at the intertank, as well as the newly replaced ground umbilical carrier plate (GUCP), during the loading of cryogenic propellants. Teams already have installed environmental enclosures on the tank, removed foam and prepared the tank's skin for approximately 89 strain gauges and thermocouples. Discovery's first launch attempt for STS-133 was scrubbed in early November due to a hydrogen gas leak at GUCP. The next launch opportunity is no earlier than Feb. 3, 2011. For more information on STS-133, visit www.nasa.gov/mission_pages/shuttle/shuttlemissions/sts133/. Photo credit: NASA/Frank Michaux
2010-12-10
CAPE CANAVERAL, Fla. -- Technicians prepare space shuttle Discovery's external fuel tank for a tanking test no earlier than Dec. 15 on Launch Pad 39A at NASA's Kennedy Space Center in Florida. During the test, engineers will monitor what happens to 21-foot long, U-shaped aluminum brackets, called stringers, located at the intertank, as well as the newly replaced ground umbilical carrier plate (GUCP), during the loading of cryogenic propellants. Teams already have installed environmental enclosures on the tank, removed foam and prepared the tank's skin for approximately 89 strain gauges and thermocouples. Discovery's first launch attempt for STS-133 was scrubbed in early November due to a hydrogen gas leak at GUCP. The next launch opportunity is no earlier than Feb. 3, 2011. For more information on STS-133, visit www.nasa.gov/mission_pages/shuttle/shuttlemissions/sts133/. Photo credit: NASA/Frank Michaux
2010-12-09
CAPE CANAVERAL, Fla. -- Technicians prepare space shuttle Discovery's external fuel tank for a tanking test no earlier than Dec. 15 on Launch Pad 39A at NASA's Kennedy Space Center in Florida. During the test, engineers will monitor what happens to 21-foot long, U-shaped aluminum brackets, called stringers, located at the intertank, as well as the newly replaced ground umbilical carrier plate (GUCP), during the loading of cryogenic propellants. Teams already have installed environmental enclosures on the tank, removed foam and prepared the tank's skin for approximately 89 strain gauges and thermocouples. Discovery's first launch attempt for STS-133 was scrubbed in early November due to a hydrogen gas leak at GUCP. The next launch opportunity is no earlier than Feb. 3, 2011. For more information on STS-133, visit www.nasa.gov/mission_pages/shuttle/shuttlemissions/sts133/. Photo credit: NASA/Ben Smegelsky
2010-12-10
CAPE CANAVERAL, Fla. -- Technicians prepare space shuttle Discovery's external fuel tank for a tanking test no earlier than Dec. 15 on Launch Pad 39A at NASA's Kennedy Space Center in Florida. During the test, engineers will monitor what happens to 21-foot long, U-shaped aluminum brackets, called stringers, located at the intertank, as well as the newly replaced ground umbilical carrier plate (GUCP), during the loading of cryogenic propellants. Teams already have installed environmental enclosures on the tank, removed foam and prepared the tank's skin for approximately 89 strain gauges and thermocouples. Discovery's first launch attempt for STS-133 was scrubbed in early November due to a hydrogen gas leak at GUCP. The next launch opportunity is no earlier than Feb. 3, 2011. For more information on STS-133, visit www.nasa.gov/mission_pages/shuttle/shuttlemissions/sts133/. Photo credit: NASA/Frank Michaux
2010-12-09
CAPE CANAVERAL, Fla. -- Technicians prepare space shuttle Discovery's external fuel tank for a tanking test no earlier than Dec. 15 on Launch Pad 39A at NASA's Kennedy Space Center in Florida. During the test, engineers will monitor what happens to 21-foot long, U-shaped aluminum brackets, called stringers, located at the intertank, as well as the newly replaced ground umbilical carrier plate (GUCP), during the loading of cryogenic propellants. Teams already have installed environmental enclosures on the tank, removed foam and prepared the tank's skin for approximately 89 strain gauges and thermocouples. Discovery's first launch attempt for STS-133 was scrubbed in early November due to a hydrogen gas leak at GUCP. The next launch opportunity is no earlier than Feb. 3, 2011. For more information on STS-133, visit www.nasa.gov/mission_pages/shuttle/shuttlemissions/sts133/. Photo credit: NASA/Ben Smegelsky
2010-12-10
CAPE CANAVERAL, Fla. -- Technicians prepare space shuttle Discovery's external fuel tank for a tanking test no earlier than Dec. 15 on Launch Pad 39A at NASA's Kennedy Space Center in Florida. During the test, engineers will monitor what happens to 21-foot long, U-shaped aluminum brackets, called stringers, located at the intertank, as well as the newly replaced ground umbilical carrier plate (GUCP), during the loading of cryogenic propellants. Teams already have installed environmental enclosures on the tank, removed foam and prepared the tank's skin for approximately 89 strain gauges and thermocouples. Discovery's first launch attempt for STS-133 was scrubbed in early November due to a hydrogen gas leak at GUCP. The next launch opportunity is no earlier than Feb. 3, 2011. For more information on STS-133, visit www.nasa.gov/mission_pages/shuttle/shuttlemissions/sts133/. Photo credit: NASA/Frank Michaux
13 CFR 102.40 - Computer matching.
Code of Federal Regulations, 2013 CFR
2013-01-01
... Protection of Privacy and Access to Individual Records Under the Privacy Act of 1974 § 102.40 Computer...) Matching agreements. SBA will comply with the Computer Matching and Privacy Protection Act of 1988 (5 U.S.C... 13 Business Credit and Assistance 1 2013-01-01 2013-01-01 false Computer matching. 102.40 Section...
13 CFR 102.40 - Computer matching.
Code of Federal Regulations, 2014 CFR
2014-01-01
... Protection of Privacy and Access to Individual Records Under the Privacy Act of 1974 § 102.40 Computer...) Matching agreements. SBA will comply with the Computer Matching and Privacy Protection Act of 1988 (5 U.S.C... 13 Business Credit and Assistance 1 2014-01-01 2014-01-01 false Computer matching. 102.40 Section...
13 CFR 102.40 - Computer matching.
Code of Federal Regulations, 2010 CFR
2010-01-01
... Protection of Privacy and Access to Individual Records Under the Privacy Act of 1974 § 102.40 Computer...) Matching agreements. SBA will comply with the Computer Matching and Privacy Protection Act of 1988 (5 U.S.C... 13 Business Credit and Assistance 1 2010-01-01 2010-01-01 false Computer matching. 102.40 Section...
13 CFR 102.40 - Computer matching.
Code of Federal Regulations, 2011 CFR
2011-01-01
... Protection of Privacy and Access to Individual Records Under the Privacy Act of 1974 § 102.40 Computer...) Matching agreements. SBA will comply with the Computer Matching and Privacy Protection Act of 1988 (5 U.S.C... 13 Business Credit and Assistance 1 2011-01-01 2011-01-01 false Computer matching. 102.40 Section...
13 CFR 102.40 - Computer matching.
Code of Federal Regulations, 2012 CFR
2012-01-01
... Protection of Privacy and Access to Individual Records Under the Privacy Act of 1974 § 102.40 Computer...) Matching agreements. SBA will comply with the Computer Matching and Privacy Protection Act of 1988 (5 U.S.C... 13 Business Credit and Assistance 1 2012-01-01 2012-01-01 false Computer matching. 102.40 Section...
50 CFR 401.11 - Property as matching funds.
Code of Federal Regulations, 2011 CFR
2011-10-01
... 50 Wildlife and Fisheries 9 2011-10-01 2011-10-01 false Property as matching funds. 401.11 Section... FISHERIES CONSERVATION, DEVELOPMENT AND ENHANCEMENT § 401.11 Property as matching funds. The non-Federal... used by grantees in placing the value on real or personal property for matching funds are set forth in...
75 FR 10018 - Proposed Collection; Comment Request for Notice 98-1 and REG-108639-99
Federal Register 2010, 2011, 2012, 2013, 2014
2010-03-04
... (TD 1969), Retirement Plans; Cash or Deferred Arrangements Under Section 401(k) and Matching... Plans; Cash or Deferred Arrangements Under Section 401(k) and Matching Contributions or Employee...) estimates of capital or start-up costs and costs of operation, maintenance, and purchase of services to...
7 CFR 1703.122 - Matching contributions.
Code of Federal Regulations, 2010 CFR
2010-01-01
... 7 Agriculture 11 2010-01-01 2010-01-01 false Matching contributions. 1703.122 Section 1703.122 Agriculture Regulations of the Department of Agriculture (Continued) RURAL UTILITIES SERVICE, DEPARTMENT OF AGRICULTURE RURAL DEVELOPMENT Distance Learning and Telemedicine Grant Program § 1703.122 Matching...
7 CFR 1703.122 - Matching contributions.
Code of Federal Regulations, 2014 CFR
2014-01-01
... 7 Agriculture 11 2014-01-01 2014-01-01 false Matching contributions. 1703.122 Section 1703.122 Agriculture Regulations of the Department of Agriculture (Continued) RURAL UTILITIES SERVICE, DEPARTMENT OF AGRICULTURE RURAL DEVELOPMENT Distance Learning and Telemedicine Grant Program § 1703.122 Matching...
7 CFR 1703.122 - Matching contributions.
Code of Federal Regulations, 2013 CFR
2013-01-01
... 7 Agriculture 11 2013-01-01 2013-01-01 false Matching contributions. 1703.122 Section 1703.122 Agriculture Regulations of the Department of Agriculture (Continued) RURAL UTILITIES SERVICE, DEPARTMENT OF AGRICULTURE RURAL DEVELOPMENT Distance Learning and Telemedicine Grant Program § 1703.122 Matching...
7 CFR 1703.122 - Matching contributions.
Code of Federal Regulations, 2012 CFR
2012-01-01
... 7 Agriculture 11 2012-01-01 2012-01-01 false Matching contributions. 1703.122 Section 1703.122 Agriculture Regulations of the Department of Agriculture (Continued) RURAL UTILITIES SERVICE, DEPARTMENT OF AGRICULTURE RURAL DEVELOPMENT Distance Learning and Telemedicine Grant Program § 1703.122 Matching...
24 CFR 92.219 - Recognition of matching contribution.
Code of Federal Regulations, 2010 CFR
2010-04-01
... 24 Housing and Urban Development 1 2010-04-01 2010-04-01 false Recognition of matching contribution. 92.219 Section 92.219 Housing and Urban Development Office of the Secretary, Department of Housing and Urban Development HOME INVESTMENT PARTNERSHIPS PROGRAM Program Requirements Matching...
7 CFR 3419.2 - Matching funds.
Code of Federal Regulations, 2010 CFR
2010-01-01
... 7 Agriculture 15 2010-01-01 2010-01-01 false Matching funds. 3419.2 Section 3419.2 Agriculture... SERVICE, DEPARTMENT OF AGRICULTURE MATCHING FUNDS REQUIREMENT FOR AGRICULTURAL RESEARCH AND EXTENSION FORMULA FUNDS AT 1890 LAND-GRANT INSTITUTIONS, INCLUDING TUSKEGEE UNIVERSITY, AND AT 1862 LAND-GRANT...
NASA's Space Launch System: Progress Report
NASA Technical Reports Server (NTRS)
Cook, Jerry; Lyles, Garry
2017-01-01
NASA and its commercial industry team achieved significant progress in 2016 in manufacturing and testing of the Block 1 vehicle for the first launch of the Space Launch System (SLS). Test and flight article hardware for the liquid hydrogen fuel tank as well as the engine section for the core stage were completed at Michoud Assembly Facility (MAF) in New Orleans. Test stands neared completion at Marshall Space Flight Center for the propellant tanks, engine section, intertank and payload section. Stennis Space Center completed major structural renovations on the B2 test stand, where the core stage "green run" test program will be conducted. The SLS team completed a hotfire test series at Stennis to successfully demonstrate the ability of the RS-25 engine to operate under SLS environments and performance conditions. The team also test fired the second qualification five-segment solid rocket motor and cast the first six motor segments for the first SLS mission. The Interim Cryogenic Propulsion Stage (ICPS) test article was delivered to Marshall for structural tests, and work is nearly finished on the flight stage. Flight software testing completed at Marshall included power quality and command and data handling. In 2017, that work continues. SLS completed Preliminary Design Review (PDR) on the Exploration Upper Stage (EUS), a powerful, human-rated spacecraft that will propel explorers to cis-lunar space. In 2017, hardware will continue to be integrated at MAF for core stage structural test articles and the first two operational flights. RS-25 hotfire testing will continue to explore engine performance, as well as test flight-like software and four new Engine Controller Units (ECUs) for the first mission. Production of development components for a more affordable RS-25 design is underway. Core stage structural test articles have begun arriving at Marshall. While engineering challenges typical of a new development are possible, SLS is working toward launch readiness in late 2018. This paper will discuss these and other technical and programmatic successes and challenges over the past year and provide a preview of work ahead before first flight
22 CFR 1101.4 - Reports on new systems of records; computer matching programs.
Code of Federal Regulations, 2010 CFR
2010-04-01
... 22 Foreign Relations 2 2010-04-01 2010-04-01 true Reports on new systems of records; computer matching programs. 1101.4 Section 1101.4 Foreign Relations INTERNATIONAL BOUNDARY AND WATER COMMISSION, UNITED STATES AND MEXICO, UNITED STATES SECTION PRIVACY ACT OF 1974 § 1101.4 Reports on new systems of...
7 CFR 3405.5 - Matching funds.
Code of Federal Regulations, 2012 CFR
2012-01-01
... 7 Agriculture 15 2012-01-01 2012-01-01 false Matching funds. 3405.5 Section 3405.5 Agriculture Regulations of the Department of Agriculture (Continued) NATIONAL INSTITUTE OF FOOD AND AGRICULTURE HIGHER EDUCATION CHALLENGE GRANTS PROGRAM Program Description § 3405.5 Matching funds. Each application must...
7 CFR 3405.5 - Matching funds.
Code of Federal Regulations, 2011 CFR
2011-01-01
... 7 Agriculture 15 2011-01-01 2011-01-01 false Matching funds. 3405.5 Section 3405.5 Agriculture Regulations of the Department of Agriculture (Continued) NATIONAL INSTITUTE OF FOOD AND AGRICULTURE HIGHER EDUCATION CHALLENGE GRANTS PROGRAM Program Description § 3405.5 Matching funds. Each application must...
7 CFR 3405.5 - Matching funds.
Code of Federal Regulations, 2013 CFR
2013-01-01
... 7 Agriculture 15 2013-01-01 2013-01-01 false Matching funds. 3405.5 Section 3405.5 Agriculture Regulations of the Department of Agriculture (Continued) NATIONAL INSTITUTE OF FOOD AND AGRICULTURE HIGHER EDUCATION CHALLENGE GRANTS PROGRAM Program Description § 3405.5 Matching funds. Each application must...
7 CFR 3405.5 - Matching funds.
Code of Federal Regulations, 2014 CFR
2014-01-01
... 7 Agriculture 15 2014-01-01 2014-01-01 false Matching funds. 3405.5 Section 3405.5 Agriculture Regulations of the Department of Agriculture (Continued) NATIONAL INSTITUTE OF FOOD AND AGRICULTURE HIGHER EDUCATION CHALLENGE GRANTS PROGRAM Program Description § 3405.5 Matching funds. Each application must...
Code of Federal Regulations, 2010 CFR
2010-04-01
... 20 Employees' Benefits 3 2010-04-01 2010-04-01 false What actions are to be taken if a State fails to make the required matching expenditures? 645.315 Section 645.315 Employees' Benefits EMPLOYMENT... State fails to make the required matching expenditures? (a) If State match expenditures do not satisfy...
Code of Federal Regulations, 2011 CFR
2011-04-01
... 20 Employees' Benefits 3 2011-04-01 2011-04-01 false What actions are to be taken if a State fails to make the required matching expenditures? 645.315 Section 645.315 Employees' Benefits EMPLOYMENT... State fails to make the required matching expenditures? (a) If State match expenditures do not satisfy...
Code of Federal Regulations, 2013 CFR
2013-04-01
... 20 Employees' Benefits 3 2013-04-01 2013-04-01 false What actions are to be taken if a State fails to make the required matching expenditures? 645.315 Section 645.315 Employees' Benefits EMPLOYMENT... State fails to make the required matching expenditures? (a) If State match expenditures do not satisfy...
Code of Federal Regulations, 2014 CFR
2014-04-01
... 20 Employees' Benefits 3 2014-04-01 2014-04-01 false What actions are to be taken if a State fails to make the required matching expenditures? 645.315 Section 645.315 Employees' Benefits EMPLOYMENT... State fails to make the required matching expenditures? (a) If State match expenditures do not satisfy...
41 CFR 105-56.017 - Centralized salary offset computer match.
Code of Federal Regulations, 2013 CFR
2013-07-01
... offset computer match. 105-56.017 Section 105-56.017 Public Contracts and Property Management Federal... computer match. (a) Delinquent debt records will be compared with Federal employee records maintained by... a delegation of authority from the Secretary, has waived certain requirements of the Computer...
41 CFR 105-56.017 - Centralized salary offset computer match.
Code of Federal Regulations, 2012 CFR
2012-01-01
... offset computer match. 105-56.017 Section 105-56.017 Public Contracts and Property Management Federal... computer match. (a) Delinquent debt records will be compared with Federal employee records maintained by... a delegation of authority from the Secretary, has waived certain requirements of the Computer...
41 CFR 105-56.027 - Centralized salary offset computer match.
Code of Federal Regulations, 2014 CFR
2014-01-01
... offset computer match. 105-56.027 Section 105-56.027 Public Contracts and Property Management Federal... computer match. (a) Delinquent debt records will be compared with Federal employee records maintained by... a delegation of authority from the Secretary, has waived certain requirements of the Computer...
41 CFR 105-56.017 - Centralized salary offset computer match.
Code of Federal Regulations, 2014 CFR
2014-01-01
... offset computer match. 105-56.017 Section 105-56.017 Public Contracts and Property Management Federal... computer match. (a) Delinquent debt records will be compared with Federal employee records maintained by... a delegation of authority from the Secretary, has waived certain requirements of the Computer...
41 CFR 105-56.027 - Centralized salary offset computer match.
Code of Federal Regulations, 2012 CFR
2012-01-01
... offset computer match. 105-56.027 Section 105-56.027 Public Contracts and Property Management Federal... computer match. (a) Delinquent debt records will be compared with Federal employee records maintained by... a delegation of authority from the Secretary, has waived certain requirements of the Computer...
41 CFR 105-56.027 - Centralized salary offset computer match.
Code of Federal Regulations, 2013 CFR
2013-07-01
... offset computer match. 105-56.027 Section 105-56.027 Public Contracts and Property Management Federal... computer match. (a) Delinquent debt records will be compared with Federal employee records maintained by... a delegation of authority from the Secretary, has waived certain requirements of the Computer...
45 CFR 2517.700 - Are matching funds required?
Code of Federal Regulations, 2010 CFR
2010-10-01
... 45 Public Welfare 4 2010-10-01 2010-10-01 false Are matching funds required? 2517.700 Section 2517.700 Public Welfare Regulations Relating to Public Welfare (Continued) CORPORATION FOR NATIONAL AND COMMUNITY SERVICE COMMUNITY-BASED SERVICE-LEARNING PROGRAMS Funding Requirements § 2517.700 Are matching...
45 CFR 2517.700 - Are matching funds required?
Code of Federal Regulations, 2011 CFR
2011-10-01
... 45 Public Welfare 4 2011-10-01 2011-10-01 false Are matching funds required? 2517.700 Section 2517.700 Public Welfare Regulations Relating to Public Welfare (Continued) CORPORATION FOR NATIONAL AND COMMUNITY SERVICE COMMUNITY-BASED SERVICE-LEARNING PROGRAMS Funding Requirements § 2517.700 Are matching...
7 CFR 3419.2 - Matching funds.
Code of Federal Regulations, 2011 CFR
2011-01-01
... 7 Agriculture 15 2011-01-01 2011-01-01 false Matching funds. 3419.2 Section 3419.2 Agriculture... FUNDS REQUIREMENT FOR AGRICULTURAL RESEARCH AND EXTENSION FORMULA FUNDS AT 1890 LAND-GRANT INSTITUTIONS, INCLUDING TUSKEGEE UNIVERSITY, AND AT 1862 LAND-GRANT INSTITUTIONS IN INSULAR AREAS § 3419.2 Matching funds...
41 CFR 105-56.027 - Centralized salary offset computer match.
Code of Federal Regulations, 2011 CFR
2011-01-01
... offset computer match. 105-56.027 Section 105-56.027 Public Contracts and Property Management Federal... computer match. (a) Delinquent debt records will be compared with Federal employee records maintained by... a delegation of authority from the Secretary, has waived certain requirements of the Computer...
41 CFR 105-56.027 - Centralized salary offset computer match.
Code of Federal Regulations, 2010 CFR
2010-07-01
... offset computer match. 105-56.027 Section 105-56.027 Public Contracts and Property Management Federal... computer match. (a) Delinquent debt records will be compared with Federal employee records maintained by... a delegation of authority from the Secretary, has waived certain requirements of the Computer...
41 CFR 105-56.017 - Centralized salary offset computer match.
Code of Federal Regulations, 2010 CFR
2010-07-01
... offset computer match. 105-56.017 Section 105-56.017 Public Contracts and Property Management Federal... computer match. (a) Delinquent debt records will be compared with Federal employee records maintained by... a delegation of authority from the Secretary, has waived certain requirements of the Computer...
41 CFR 105-56.017 - Centralized salary offset computer match.
Code of Federal Regulations, 2011 CFR
2011-01-01
... offset computer match. 105-56.017 Section 105-56.017 Public Contracts and Property Management Federal... computer match. (a) Delinquent debt records will be compared with Federal employee records maintained by... a delegation of authority from the Secretary, has waived certain requirements of the Computer...
2010-09-28
CAPE CANAVERAL, Fla. -- To commemorate the history of the Space Shuttle Program's last external fuel tank, its intertank door is emblazoned with an ET-122 insignia. The tank is in the Vehicle Assembly Building at NASA's Kennedy Space Center in Florida after traveling 900 miles by sea from NASA's Michoud Assembly Facility in New Orleans aboard the Pegasus Barge. It eventually will be attached to space shuttle Endeavour for the STS-134 mission to the International Space Station. STS-134, targeted to launch in Feb. 2011, currently is scheduled to be the last mission in the shuttle program. The tank, which is the largest element of the space shuttle stack, was completed in 2002, modified during Return to Flight operations in 2003 and 2004, damaged during Hurricane Katrina in 2005, and then restored to flight configuration by Lockheed Martin Space Systems Company employees in 2008 at NASA's Marshall Space Flight Center in Alabama. Photo credit: NASA/Jack Pfaller
2010-09-28
CAPE CANAVERAL, Fla. -- To commemorate the history of the Space Shuttle Program's last external fuel tank, its intertank door is emblazoned with an ET-122 insignia. The tank is in the Vehicle Assembly Building at NASA's Kennedy Space Center in Florida after traveling 900 miles by sea from NASA's Michoud Assembly Facility in New Orleans aboard the Pegasus Barge. It eventually will be attached to space shuttle Endeavour for the STS-134 mission to the International Space Station. STS-134, targeted to launch in Feb. 2011, currently is scheduled to be the last mission in the shuttle program. The tank, which is the largest element of the space shuttle stack, was completed in 2002, modified during Return to Flight operations in 2003 and 2004, damaged during Hurricane Katrina in 2005, and then restored to flight configuration by Lockheed Martin Space Systems Company employees in 2008 at NASA's Marshall Space Flight Center in Alabama. Photo credit: NASA/Jack Pfaller
2010-12-22
CAPE CANAVERAL, Fla. -- Preparations are under way in the Vehicle Assembly Building at NASA's Kennedy Space Center in Florida to examine space shuttle Discovery's external fuel tank. Shown here, is one of two solid rocket boosters, which are still attached to the external tank and shuttle. Technicians will begin to remove thermal sensors that will give engineers data about the changes the tank went through during the loading and draining of super-cold propellants during a tanking test on Dec. 17. Engineers also will examine 21-foot-long support beams, called stringers, on the outside of the tank's intertank region. Also on the agenda, is to re-apply foam to the outside of the tank. Discovery's next launch opportunity to the International Space Station on the STS-133 mission is no earlier than Feb. 3, 2011. For more information on STS-133, visit www.nasa.gov/mission_pages/shuttle/shuttlemissions/sts133/. Photo credit: NASA/Dimitri Gerondidakis
2010-12-22
CAPE CANAVERAL, Fla. -- Preparations are under way in the Vehicle Assembly Building at NASA's Kennedy Space Center in Florida to examine space shuttle Discovery's external fuel tank. Shown here is the nose of the shuttle, which still is attached to the external tank and solid rocket boosters. Technicians will begin to remove thermal sensors that will give engineers data about the changes the tank went through during the loading and draining of super-cold propellants during a tanking test on Dec. 17. Engineers also will examine 21-foot-long support beams, called stringers, on the outside of the tank's intertank region. Also on the agenda, is to re-apply foam to the outside of the tank. Discovery's next launch opportunity to the International Space Station on the STS-133 mission is no earlier than Feb. 3, 2011. For more information on STS-133, visit www.nasa.gov/mission_pages/shuttle/shuttlemissions/sts133/. Photo credit: NASA/Dimitri Gerondidakis
2011-01-05
CAPE CANAVERAL, Fla. – As part of the repair work to space shuttle Discovery's external fuel tank, a technician measures a fitted piece of metal, called a radius block, which will be attached to an intertank support beam, called a stringer. Technicians in the Vehicle Assembly Building at NASA’s Kennedy Space Center in Florida are modifying 32 stringers with the radius blocks near the intertank’s thrust panel area. The thrust panel is where the tank meets the two solid rocket boosters and sees the most stress during the flight into orbit. After the modifications and additional scans of the stringers are complete, foam insulation will be re-applied. Discovery's next launch opportunity to the International Space Station on the STS-133 mission is no earlier than Feb. 3, 2011. For more information on STS-133, visit www.nasa.gov/mission_pages/shuttle/shuttlemissions/sts133/. Photo credit: NASA/Jack Pfaller
2010-11-30
CAPE CANAVERAL, Fla. -- On Launch Pad 39A at NASA's Kennedy Space Center in Florida, the ground umbilical carrier plate (GUCP) and cracks on space shuttle Discovery's external fuel have been repaired. A hydrogen gas leak at the GUCP during tanking for Discovery's STS-133 mission to the International Space Station caused the launch attempt to be scrubbed Nov. 5. The GUCP is the overboard vent to the pad and the flame stack where the excess hydrogen is burned off. Also during initial loading operations, the foam cracked on two of the tank's 108 stringers, which are the composite aluminum ribs located vertically on the intertank area. Discovery's next launch attempt is no earlier than Dec. 17 at 8:51 p.m. EST. Until then, engineers will continue to analyze data from the GUCP and stringer crack repairs. For more information on STS-133, visit www.nasa.gov/mission_pages/shuttle/shuttlemissions/sts133/. Photo credit: NASA/Cory Huston
2010-12-17
CAPE CANAVERAL, Fla. -- Team members stationed at consoles in the Launch Control Center at NASA's Kennedy Space Center in Florida monitor space shuttle Discovery's external fuel tank as it is loaded with more than 535,000 gallons of cryogenic propellants. During today's tanking test, the team is paying particular attention to the external tank's ribbed intertank region. Beginning tomorrow, engineers will evaluate data on 21-foot-long, U-shaped aluminum brackets, called stringers, and the newly replaced ground umbilical carrier plate (GUCP). Discovery's first launch attempt for STS-133 was scrubbed in early November due to a hydrogen gas leak at the GUCP. In order to perform additional analysis on the tank, Discovery will be rolled back to the Vehicle Assembly Building, a move that is planned for next week. The next launch opportunity is no earlier than Feb. 3, 2011. For more information on STS-133, visit www.nasa.gov/mission_pages/shuttle/shuttlemissions/sts133/. Photo credit: NASA/Cory Huston
Matching factorization theorems with an inverse-error weighting
NASA Astrophysics Data System (ADS)
Echevarria, Miguel G.; Kasemets, Tomas; Lansberg, Jean-Philippe; Pisano, Cristian; Signori, Andrea
2018-06-01
We propose a new fast method to match factorization theorems applicable in different kinematical regions, such as the transverse-momentum-dependent and the collinear factorization theorems in Quantum Chromodynamics. At variance with well-known approaches relying on their simple addition and subsequent subtraction of double-counted contributions, ours simply builds on their weighting using the theory uncertainties deduced from the factorization theorems themselves. This allows us to estimate the unknown complete matched cross section from an inverse-error-weighted average. The method is simple and provides an evaluation of the theoretical uncertainty of the matched cross section associated with the uncertainties from the power corrections to the factorization theorems (additional uncertainties, such as the nonperturbative ones, should be added for a proper comparison with experimental data). Its usage is illustrated with several basic examples, such as Z boson, W boson, H0 boson and Drell-Yan lepton-pair production in hadronic collisions, and compared to the state-of-the-art Collins-Soper-Sterman subtraction scheme. It is also not limited to the transverse-momentum spectrum, and can straightforwardly be extended to match any (un)polarized cross section differential in other variables, including multi-differential measurements.
Matching factorization theorems with an inverse-error weighting
Echevarria, Miguel G.; Kasemets, Tomas; Lansberg, Jean-Philippe; ...
2018-04-03
We propose a new fast method to match factorization theorems applicable in different kinematical regions, such as the transverse-momentum-dependent and the collinear factorization theorems in Quantum Chromodynamics. At variance with well-known approaches relying on their simple addition and subsequent subtraction of double-counted contributions, ours simply builds on their weighting using the theory uncertainties deduced from the factorization theorems themselves. This allows us to estimate the unknown complete matched cross section from an inverse-error-weighted average. The method is simple and provides an evaluation of the theoretical uncertainty of the matched cross section associated with the uncertainties from the power corrections tomore » the factorization theorems (additional uncertainties, such as the nonperturbative ones, should be added for a proper comparison with experimental data). Its usage is illustrated with several basic examples, such as Z boson, W boson, H 0 boson and Drell–Yan lepton-pair production in hadronic collisions, and compared to the state-of-the-art Collins–Soper–Sterman subtraction scheme. In conclusion, it is also not limited to the transverse-momentum spectrum, and can straightforwardly be extended to match any (un)polarized cross section differential in other variables, including multi-differential measurements.« less
Matching factorization theorems with an inverse-error weighting
DOE Office of Scientific and Technical Information (OSTI.GOV)
Echevarria, Miguel G.; Kasemets, Tomas; Lansberg, Jean-Philippe
We propose a new fast method to match factorization theorems applicable in different kinematical regions, such as the transverse-momentum-dependent and the collinear factorization theorems in Quantum Chromodynamics. At variance with well-known approaches relying on their simple addition and subsequent subtraction of double-counted contributions, ours simply builds on their weighting using the theory uncertainties deduced from the factorization theorems themselves. This allows us to estimate the unknown complete matched cross section from an inverse-error-weighted average. The method is simple and provides an evaluation of the theoretical uncertainty of the matched cross section associated with the uncertainties from the power corrections tomore » the factorization theorems (additional uncertainties, such as the nonperturbative ones, should be added for a proper comparison with experimental data). Its usage is illustrated with several basic examples, such as Z boson, W boson, H 0 boson and Drell–Yan lepton-pair production in hadronic collisions, and compared to the state-of-the-art Collins–Soper–Sterman subtraction scheme. In conclusion, it is also not limited to the transverse-momentum spectrum, and can straightforwardly be extended to match any (un)polarized cross section differential in other variables, including multi-differential measurements.« less
32 CFR 505.13 - Computer Matching Agreement Program.
Code of Federal Regulations, 2010 CFR
2010-07-01
... 32 National Defense 3 2010-07-01 2010-07-01 true Computer Matching Agreement Program. 505.13 Section 505.13 National Defense Department of Defense (Continued) DEPARTMENT OF THE ARMY AID OF CIVIL AUTHORITIES AND PUBLIC RELATIONS ARMY PRIVACY ACT PROGRAM § 505.13 Computer Matching Agreement Program. (a...
7 CFR 210.17 - Matching Federal funds.
Code of Federal Regulations, 2010 CFR
2010-01-01
... AGRICULTURE CHILD NUTRITION PROGRAMS NATIONAL SCHOOL LUNCH PROGRAM Requirements for State Agency Participation § 210.17 Matching Federal funds. (a) State revenue matching. For each school year, the amount of State... percent of the funds received by such State under section 4 of the National School Lunch Act during the...
10 CFR 420.34 - Matching contributions or cost-sharing.
Code of Federal Regulations, 2013 CFR
2013-01-01
... 10 Energy 3 2013-01-01 2013-01-01 false Matching contributions or cost-sharing. 420.34 Section 420.34 Energy DEPARTMENT OF ENERGY ENERGY CONSERVATION STATE ENERGY PROGRAM Implementation of Special Projects Financial Assistance § 420.34 Matching contributions or cost-sharing. DOE may require (as set...
10 CFR 420.34 - Matching contributions or cost-sharing.
Code of Federal Regulations, 2011 CFR
2011-01-01
... 10 Energy 3 2011-01-01 2011-01-01 false Matching contributions or cost-sharing. 420.34 Section 420.34 Energy DEPARTMENT OF ENERGY ENERGY CONSERVATION STATE ENERGY PROGRAM Implementation of Special Projects Financial Assistance § 420.34 Matching contributions or cost-sharing. DOE may require (as set...
10 CFR 420.34 - Matching contributions or cost-sharing.
Code of Federal Regulations, 2012 CFR
2012-01-01
... 10 Energy 3 2012-01-01 2012-01-01 false Matching contributions or cost-sharing. 420.34 Section 420.34 Energy DEPARTMENT OF ENERGY ENERGY CONSERVATION STATE ENERGY PROGRAM Implementation of Special Projects Financial Assistance § 420.34 Matching contributions or cost-sharing. DOE may require (as set...
10 CFR 420.34 - Matching contributions or cost-sharing.
Code of Federal Regulations, 2014 CFR
2014-01-01
... 10 Energy 3 2014-01-01 2014-01-01 false Matching contributions or cost-sharing. 420.34 Section 420.34 Energy DEPARTMENT OF ENERGY ENERGY CONSERVATION STATE ENERGY PROGRAM Implementation of Special Projects Financial Assistance § 420.34 Matching contributions or cost-sharing. DOE may require (as set...
10 CFR 420.34 - Matching contributions or cost-sharing.
Code of Federal Regulations, 2010 CFR
2010-01-01
... 10 Energy 3 2010-01-01 2010-01-01 false Matching contributions or cost-sharing. 420.34 Section 420.34 Energy DEPARTMENT OF ENERGY ENERGY CONSERVATION STATE ENERGY PROGRAM Implementation of Special Projects Financial Assistance § 420.34 Matching contributions or cost-sharing. DOE may require (as set...
45 CFR 2516.700 - What matching funds are required?
Code of Federal Regulations, 2010 CFR
2010-10-01
... 45 Public Welfare 4 2010-10-01 2010-10-01 false What matching funds are required? 2516.700 Section 2516.700 Public Welfare Regulations Relating to Public Welfare (Continued) CORPORATION FOR NATIONAL AND COMMUNITY SERVICE SCHOOL-BASED SERVICE-LEARNING PROGRAMS Funding Requirements § 2516.700 What matching funds...
13 CFR 119.8 - Are there matching requirements for grantees?
Code of Federal Regulations, 2010 CFR
2010-01-01
... statements and letters of rejection from previous funders and potential new funding sources; (2) Evidence of... for grantees? Applicants and grantees must match SBA funding as follows: (a) Except as provided in paragraph (c) of this section, applicants and grantees must match Federal assistance with funds from sources...
45 CFR 2516.700 - What matching funds are required?
Code of Federal Regulations, 2011 CFR
2011-10-01
... 45 Public Welfare 4 2011-10-01 2011-10-01 false What matching funds are required? 2516.700 Section 2516.700 Public Welfare Regulations Relating to Public Welfare (Continued) CORPORATION FOR NATIONAL AND COMMUNITY SERVICE SCHOOL-BASED SERVICE-LEARNING PROGRAMS Funding Requirements § 2516.700 What matching funds...
Boujenah, J; Fleury, C; Bonneau, C; Pharisien, I; Tigaizin, A; Carbillon, L
2017-12-01
To assess the mode of delivery and Caesarean Section (CS) rate after successful External Cephalic Version (ECV). A matched case-control study. Data were gathered from a tertiary care university hospital register from 1996-2015. All pregnant women who delivered after successful External Cephalic Version (ECV). Among 643 women who attempted ECV, we identified 198 with successful ECVs and compared them with the next two women who presented for labor management with spontaneous cephalic presentation, matching for delivery date, maternal age, parity, body mass index, and delivery history using univariate and stepwise logistic regression. The main outcome measure was the risk of caesarean. The caesarean section rate was higher after successful ECV (respectively 20.7% versus 7.07%, P<0.05). Caesarean section for abnormal fetal head position (forehead, bregma, face) was higher after successful ECV (28.6% versus 0%). After adjustment for matching and confounding variables (variation of the caesarean section rate over the study period, gestational maternal complications, antepartum fetal complications, term of delivery, induction of labor, oxytocin use for dystocia, neonatal cephalic perimeter), a successful ECV increased the risk of caesarean section (adjusted OR 3.17, 95% CI 1.86-5.46). By stratifying on week, a trend for increased risk for caesarean section was observed at the week after ECV and at post term (28.6% before 37+6, 14.8% at 38+0-38+6, 13.8% at 39+0-39+6, 14.2% at 40+0-40+6 and 33.3% beyond 41+0 weeks' gestation, P=0.06). Women who have a successful ECV are at increased risk of caesarean section compared with women who experience spontaneous cephalic presentation. Copyright © 2017 Elsevier Masson SAS. All rights reserved.
22 CFR 1101.4 - Reports on new systems of records; computer matching programs.
Code of Federal Regulations, 2012 CFR
2012-04-01
... 22 Foreign Relations 2 2012-04-01 2009-04-01 true Reports on new systems of records; computer matching programs. 1101.4 Section 1101.4 Foreign Relations INTERNATIONAL BOUNDARY AND WATER COMMISSION... records; computer matching programs. (a) Before establishing any new systems of records, or making any...
22 CFR 1101.4 - Reports on new systems of records; computer matching programs.
Code of Federal Regulations, 2014 CFR
2014-04-01
... 22 Foreign Relations 2 2014-04-01 2014-04-01 false Reports on new systems of records; computer matching programs. 1101.4 Section 1101.4 Foreign Relations INTERNATIONAL BOUNDARY AND WATER COMMISSION... records; computer matching programs. (a) Before establishing any new systems of records, or making any...
22 CFR 1101.4 - Reports on new systems of records; computer matching programs.
Code of Federal Regulations, 2013 CFR
2013-04-01
... 22 Foreign Relations 2 2013-04-01 2009-04-01 true Reports on new systems of records; computer matching programs. 1101.4 Section 1101.4 Foreign Relations INTERNATIONAL BOUNDARY AND WATER COMMISSION... records; computer matching programs. (a) Before establishing any new systems of records, or making any...
45 CFR 98.63 - Allotments from the Matching Fund.
Code of Federal Regulations, 2013 CFR
2013-10-01
... 45 Public Welfare 1 2013-10-01 2013-10-01 false Allotments from the Matching Fund. 98.63 Section 98.63 Public Welfare DEPARTMENT OF HEALTH AND HUMAN SERVICES GENERAL ADMINISTRATION CHILD CARE AND DEVELOPMENT FUND Financial Management § 98.63 Allotments from the Matching Fund. (a) To each of the 50 States...
45 CFR 98.63 - Allotments from the Matching Fund.
Code of Federal Regulations, 2012 CFR
2012-10-01
... 45 Public Welfare 1 2012-10-01 2012-10-01 false Allotments from the Matching Fund. 98.63 Section 98.63 Public Welfare DEPARTMENT OF HEALTH AND HUMAN SERVICES GENERAL ADMINISTRATION CHILD CARE AND DEVELOPMENT FUND Financial Management § 98.63 Allotments from the Matching Fund. (a) To each of the 50 States...
45 CFR 98.63 - Allotments from the Matching Fund.
Code of Federal Regulations, 2010 CFR
2010-10-01
... 45 Public Welfare 1 2010-10-01 2010-10-01 false Allotments from the Matching Fund. 98.63 Section 98.63 Public Welfare DEPARTMENT OF HEALTH AND HUMAN SERVICES GENERAL ADMINISTRATION CHILD CARE AND DEVELOPMENT FUND Financial Management § 98.63 Allotments from the Matching Fund. (a) To each of the 50 States...
34 CFR 389.40 - What are the matching requirements?
Code of Federal Regulations, 2011 CFR
2011-07-01
... 34 Education 2 2011-07-01 2010-07-01 true What are the matching requirements? 389.40 Section 389.40 Education Regulations of the Offices of the Department of Education (Continued) OFFICE OF SPECIAL... What Conditions Must Be Met by a Grantee? § 389.40 What are the matching requirements? A grantee must...
34 CFR 389.40 - What are the matching requirements?
Code of Federal Regulations, 2010 CFR
2010-07-01
... 34 Education 2 2010-07-01 2010-07-01 false What are the matching requirements? 389.40 Section 389.40 Education Regulations of the Offices of the Department of Education (Continued) OFFICE OF SPECIAL... What Conditions Must Be Met by a Grantee? § 389.40 What are the matching requirements? A grantee must...
22 CFR 1101.4 - Reports on new systems of records; computer matching programs.
Code of Federal Regulations, 2011 CFR
2011-04-01
... 22 Foreign Relations 2 2011-04-01 2009-04-01 true Reports on new systems of records; computer matching programs. 1101.4 Section 1101.4 Foreign Relations INTERNATIONAL BOUNDARY AND WATER COMMISSION... records; computer matching programs. (a) Before establishing any new systems of records, or making any...
34 CFR 367.40 - What matching requirements apply?
Code of Federal Regulations, 2014 CFR
2014-07-01
... 34 Education 2 2014-07-01 2013-07-01 true What matching requirements apply? 367.40 Section 367.40 Education Regulations of the Offices of the Department of Education (Continued) OFFICE OF SPECIAL EDUCATION... WHO ARE BLIND What Conditions Must Be Met After an Award? § 367.40 What matching requirements apply...
34 CFR 367.40 - What matching requirements apply?
Code of Federal Regulations, 2012 CFR
2012-07-01
... 34 Education 2 2012-07-01 2012-07-01 false What matching requirements apply? 367.40 Section 367.40 Education Regulations of the Offices of the Department of Education (Continued) OFFICE OF SPECIAL EDUCATION... WHO ARE BLIND What Conditions Must Be Met After an Award? § 367.40 What matching requirements apply...
34 CFR 367.40 - What matching requirements apply?
Code of Federal Regulations, 2013 CFR
2013-07-01
... 34 Education 2 2013-07-01 2013-07-01 false What matching requirements apply? 367.40 Section 367.40 Education Regulations of the Offices of the Department of Education (Continued) OFFICE OF SPECIAL EDUCATION... WHO ARE BLIND What Conditions Must Be Met After an Award? § 367.40 What matching requirements apply...
NASA Technical Reports Server (NTRS)
Aggarwal, Pravin
2007-01-01
In January 2004, President Bush gave the National Aeronautics and Space Administration (NASA) a vision for Space Exploration by setting our sight on a bold new path to go back to the Moon, then to Mars and beyond. In response to this vision, NASA started the Constellation Program, which is a new exploration launch vehicle program. The primary mission for the Constellation Program is to carry out a series of human expeditions ranging from Low Earth Orbit to the surface of Mars and beyond for the purposes of conducting human exploration of space, as specified by the Vision for Space Exploration (VSE). The intent is that the information and technology developed by this program will provide the foundation for broader exploration activities as our operational experience grows. The ARES I Crew Launch Vehicle (CLV) has been designated as the launch vehicle that will be developed as a "first step" to facilitate the aforementioned human expeditions. The CLV Project is broken into four major elements: First Stage, Upper Stage Engine, Upper Stage (US), and the Crew Exploration Vehicle (CEV). NASA's Marshall Space Flight Center (MSFC) is responsible for the design of the CLV and has the prime responsibility to design the upper stage of the vehicle. The US is the second propulsive stage of the CLV and provides CEV insertion into low Earth orbit (LEO) after separation from the First Stage of the Crew Launch Vehicle. The fully integrated Upper Stage is a mix of modified existing heritage hardware (J-2X Engine) and new development (primary structure, subsystems, and avionics). The Upper Stage assembly is a structurally stabilized cylindrical structure, which is powered by a single J-2X engine which is developed as a separate Element of the CLV. The primary structure includes the load bearing liquid hydrogen (LH2) and liquid oxygen (LOX) propellant tanks, a Forward Skirt, the Intertank structure, the Aft Skirt and the Thrust Structure. A Systems Tunnel, which carries fluid and electrical power functions to other Elements of the CLV, is included as secondary structure. The MSFC has an overall responsibility for the integrated US element as well as structural design an thermal control of the fuel tanks, intertank, interstage, avionics, main propulsion system, Reaction Control System (RCS) for both the Upper Stage and the First Stage. MSFC's Spacecraft and Vehicle Department, Structural and Analysis Design Division is developing a set of predicted mass of these elements. This paper details the methodology, criterion and tools used for the preliminary mass predictions of the upper stage structural assembly components. In general, weight of the cylindrical barrel sections are estimated using the commercial code Hypersizer, whereas, weight of the domes are developed using classical solutions. HyperSizer is software that performs automated structural analysis and sizing optimization based on aerospace methods for strength, stability, and stiffness. Analysis methods range from closed form, traditional hand calculations repeated every day in industry to more advanced panel buckling algorithms. Margin-of-safety reporting for every potential failure provides the engineer with a powerful insight into the structural problem. Optimization capabilities include finding minimum weight panel or beam concepts, material selections, cross sectional dimensions, thicknesses, and lay-ups from a library of 40 different stiffened and sandwich designs and a database of composite, metallic, honeycomb, and foam materials. Multiple different concepts (orthogrid, isogrid, and skin stiffener) were run for multiple loading combinations of ascent design load with and with out tank pressure as well as proof pressure condition. Subsequently, selected optimized concept obtained from Hypersizer runs was translated into a computer aid design (CAD) model to account for the wall thickness tolerance, weld land etc for developing the most probable weight of the components. The flow diram summarizes the analysis steps used in developing these predicted mass.
Arpino, Bruno; Cannas, Massimo
2016-05-30
This article focuses on the implementation of propensity score matching for clustered data. Different approaches to reduce bias due to cluster-level confounders are considered and compared using Monte Carlo simulations. We investigated methods that exploit the clustered structure of the data in two ways: in the estimation of the propensity score model (through the inclusion of fixed or random effects) or in the implementation of the matching algorithm. In addition to a pure within-cluster matching, we also assessed the performance of a new approach, 'preferential' within-cluster matching. This approach first searches for control units to be matched to treated units within the same cluster. If matching is not possible within-cluster, then the algorithm searches in other clusters. All considered approaches successfully reduced the bias due to the omission of a cluster-level confounder. The preferential within-cluster matching approach, combining the advantages of within-cluster and between-cluster matching, showed a relatively good performance both in the presence of big and small clusters, and it was often the best method. An important advantage of this approach is that it reduces the number of unmatched units as compared with a pure within-cluster matching. We applied these methods to the estimation of the effect of caesarean section on the Apgar score using birth register data. Copyright © 2016 John Wiley & Sons, Ltd. Copyright © 2016 John Wiley & Sons, Ltd.
HOPI: on-line injection optimization program
DOE Office of Scientific and Technical Information (OSTI.GOV)
LeMaire, J L
1977-10-26
A method of matching the beam from the 200 MeV linac to the AGS without the necessity of making emittance measurements is presented. An on-line computer program written on the PDP10 computer performs the matching by modifying independently the horizontal and vertical emittance. Experimental results show success with this method, which can be applied to any matching section.
Extracting Exact Answers to Questions Based on Structural Links
2002-01-01
type of asking point and answer point (e.g. NePerson asking point matches NePerson and its sub-types NeMan and NeWoman; ‘how’ matches manner-modifier...NePerson V-S win [John Smith]/ NeMan Some sample results are given in section 4 to illustrate how answer-points are identified based on matching binary
46 CFR 35.30-5 - Fires, matches, and smoking-TB/ALL.
Code of Federal Regulations, 2013 CFR
2013-10-01
... 46 Shipping 1 2013-10-01 2013-10-01 false Fires, matches, and smoking-TB/ALL. 35.30-5 Section 35... Rules § 35.30-5 Fires, matches, and smoking—TB/ALL. (a) General. In making the determinations required... reasonable safety during the loading operation. (c) Smoking. Smoking is prohibited on the weather decks of...
46 CFR 35.30-5 - Fires, matches, and smoking-TB/ALL.
Code of Federal Regulations, 2014 CFR
2014-10-01
... 46 Shipping 1 2014-10-01 2014-10-01 false Fires, matches, and smoking-TB/ALL. 35.30-5 Section 35... Rules § 35.30-5 Fires, matches, and smoking—TB/ALL. (a) General. In making the determinations required... reasonable safety during the loading operation. (c) Smoking. Smoking is prohibited on the weather decks of...
46 CFR 35.30-5 - Fires, matches, and smoking-TB/ALL.
Code of Federal Regulations, 2012 CFR
2012-10-01
... 46 Shipping 1 2012-10-01 2012-10-01 false Fires, matches, and smoking-TB/ALL. 35.30-5 Section 35... Rules § 35.30-5 Fires, matches, and smoking—TB/ALL. (a) General. In making the determinations required... reasonable safety during the loading operation. (c) Smoking. Smoking is prohibited on the weather decks of...
46 CFR 35.30-5 - Fires, matches, and smoking-TB/ALL.
Code of Federal Regulations, 2010 CFR
2010-10-01
... 46 Shipping 1 2010-10-01 2010-10-01 false Fires, matches, and smoking-TB/ALL. 35.30-5 Section 35... Rules § 35.30-5 Fires, matches, and smoking—TB/ALL. (a) General. In making the determinations required... reasonable safety during the loading operation. (c) Smoking. Smoking is prohibited on the weather decks of...
46 CFR 35.30-5 - Fires, matches, and smoking-TB/ALL.
Code of Federal Regulations, 2011 CFR
2011-10-01
... 46 Shipping 1 2011-10-01 2011-10-01 false Fires, matches, and smoking-TB/ALL. 35.30-5 Section 35... Rules § 35.30-5 Fires, matches, and smoking—TB/ALL. (a) General. In making the determinations required... reasonable safety during the loading operation. (c) Smoking. Smoking is prohibited on the weather decks of...
Code of Federal Regulations, 2010 CFR
2010-04-01
... 20 Employees' Benefits 3 2010-04-01 2010-04-01 false What assurance must a State provide that it will make the required matching expenditures? 645.310 Section 645.310 Employees' Benefits EMPLOYMENT... provide that it will make the required matching expenditures? In its State plan, a State must provide a...
7 CFR 3401.4 - Matching funds requirement.
Code of Federal Regulations, 2010 CFR
2010-01-01
... Agriculture Regulations of the Department of Agriculture (Continued) COOPERATIVE STATE RESEARCH, EDUCATION, AND EXTENSION SERVICE, DEPARTMENT OF AGRICULTURE RANGELAND RESEARCH GRANTS PROGRAM General § 3401.4 Matching funds requirement. In accordance with section 1480 of the National Agricultural Research...
7 CFR 3430.206 - Matching requirements.
Code of Federal Regulations, 2011 CFR
2011-01-01
... 7 Agriculture 15 2011-01-01 2011-01-01 false Matching requirements. 3430.206 Section 3430.206 Agriculture Regulations of the Department of Agriculture (Continued) NATIONAL INSTITUTE OF FOOD AND AGRICULTURE COMPETITIVE AND NONCOMPETITIVE NON-FORMULA FEDERAL ASSISTANCE PROGRAMS-GENERAL AWARD...
7 CFR 3430.906 - Matching requirements.
Code of Federal Regulations, 2010 CFR
2010-01-01
... 7 Agriculture 15 2010-01-01 2010-01-01 false Matching requirements. 3430.906 Section 3430.906 Agriculture Regulations of the Department of Agriculture (Continued) COOPERATIVE STATE RESEARCH, EDUCATION, AND EXTENSION SERVICE, DEPARTMENT OF AGRICULTURE COMPETITIVE AND NONCOMPETITIVE NON-FORMULA FEDERAL...
7 CFR 1740.5 - Matching funds.
Code of Federal Regulations, 2010 CFR
2010-01-01
... 7 Agriculture 11 2010-01-01 2010-01-01 false Matching funds. 1740.5 Section 1740.5 Agriculture Regulations of the Department of Agriculture (Continued) RURAL UTILITIES SERVICE, DEPARTMENT OF AGRICULTURE PUBLIC TELEVISION STATION DIGITAL TRANSITION GRANT PROGRAM Public Television Station Digital Transition...
STS-133/ET-137 Tanking Test Photogrammetry Assessment
NASA Technical Reports Server (NTRS)
Oliver, Stanley T.
2012-01-01
Following the launch scrub of Space Shuttle mission STS-133 on November 5, 2010, an anomalous condition of cracked and raised thermal protection system (TPS) foam was observed on the External Tank (ET). Subsequent dissection of the affected TPS region revealed cracks in the feet of two Intertank (IT) metallic stringers. An extensive investigation into the cause(s) and corrective action(s) for the cracked stringers was initiated, involving a wide array of material and structural tests and nondestructive evaluations, with the intent to culminate into the development of flight rational. One such structural test was the instrumented tanking test performed on December 17, 2010. The tanking test incorporated two three-dimensional optical displacement measurement systems to measure full-field outer surface displacements of the TPS surrounding the affected region that contained the stringer cracks. The results showed that the radial displacement and rotation of the liquid oxygen (LO2) tank flange changed significantly as the fluid level of the LO2 approached and passed the LO2 tank flange.
2010-12-22
CAPE CANAVERAL, Fla. -- Work platforms inside the Vehicle Assembly Building at NASA's Kennedy Space Center in Florida begin to surround space shuttle Discovery, its solid rocket boosters and external fuel tank at dawn. The shuttle rolled back from Launch Pad 39A so technicians can examine the external tank and re-apply foam where 89 sensors were installed on the tank's aluminum skin for an instrumented tanking test on Dec. 17. The sensors were used to measure changes in the tank as super-cold propellants were pumped in and drained out. Data and analysis from the test will be used to determine what caused the tops of two, 21-foot-long support beams, called stringers, on the outside of the intertank to crack during fueling on Nov. 5. Discovery's next launch opportunity to the International Space Station on the STS-133 mission is no earlier than Feb. 3, 2011. For more information on STS-133, visit www.nasa.gov/mission_pages/shuttle/shuttlemissions/sts133/. Photo credit: NASA/Frank Michaux
Design and fabrication of a boron reinforced intertank skirt
NASA Technical Reports Server (NTRS)
Henshaw, J.; Roy, P. A.; Pylypetz, P.
1974-01-01
Analytical and experimental studies were performed to evaluate the structural efficiency of a boron reinforced shell, where the medium of reinforcement consists of hollow aluminum extrusions infiltrated with boron epoxy. Studies were completed for the design of a one-half scale minimum weight shell using boron reinforced stringers and boron reinforced rings. Parametric and iterative studies were completed for the design of minimum weight stringers, rings, shells without rings and shells with rings. Computer studies were completed for the final evaluation of a minimum weight shell using highly buckled minimum gage skin. The detail design is described of a practical minimum weight test shell which demonstrates a weight savings of 30% as compared to an all aluminum longitudinal stiffened shell. Sub-element tests were conducted on representative segments of the compression surface at maximum stress and also on segments of the load transfer joint. A 10 foot long, 77 inch diameter shell was fabricated from the design and delivered for further testing.
2010-12-21
CAPE CANAVERAL, Fla. -- Space shuttle Discovery awaits its move, called rollback, from Launch Pad 39A to the Vehicle Assembly Building (VAB) at NASA's Kennedy Space Center in Florida. Rollback was scheduled for 12:30 a.m., but was postponed until 10 p.m. so technicians could resolve an issue with a leveling system on the crawler-transporter. Once inside the VAB, Discovery's external fuel tank will be examined and foam reapplied where 89 sensors were installed on the tank's aluminum skin for an instrumented tanking test on Dec. 17. The sensors were used to measure changes in the tank as super-cold propellants were pumped in and drained out. Data and analysis from the test will be used to determine what caused the tops of two, 21-foot-long support beams, called stringers, on the outside of the intertank to crack during fueling on Nov. 5. Discovery's next launch opportunity is no earlier than Feb. 3, 2011. For more information on STS-133, visit www.nasa.gov/mission_pages/shuttle/shuttlemissions/sts133/. Photo credit: NASA/Kim Shiflett
2010-12-22
CAPE CANAVERAL, Fla. -- Space shuttle Discovery enters the Vehicle Assembly Building at NASA's Kennedy Space Center in Florida. The 3.4-mile trek, called rollback, from Launch Pad 39A began at 10:48 p.m. yesterday and took about eight hours. Next, Discovery's external fuel tank will be examined and foam reapplied where 89 sensors were installed on the tank's aluminum skin for an instrumented tanking test on Dec. 17. The sensors were used to measure changes in the tank as super-cold propellants were pumped in and drained out. Data and analysis from the test will be used to determine what caused the tops of two, 21-foot-long support beams, called stringers, on the outside of the intertank to crack during fueling on Nov. 5. Discovery's next launch opportunity to the International Space Station on the STS-133 mission is no earlier than Feb. 3, 2011. For more information on STS-133, visit www.nasa.gov/mission_pages/shuttle/shuttlemissions/sts133/. Photo credit: NASA/Frank Michaux
2010-12-21
CAPE CANAVERAL, Fla. -- Space shuttle Discovery, secured to a crawler-transporter, begins its 3.4-mile trek, known as rollback, from Launch Pad 39A to the Vehicle Assembly Building at NASA's Kennedy Space Center in Florida. Rollback began at 10:48 p.m. and took about eight hours. Next, Discovery's external fuel tank will be examined and foam reapplied where 89 sensors were installed on the tank's aluminum skin for an instrumented tanking test on Dec. 17. The sensors were used to measure changes in the tank as super-cold propellants were pumped in and drained out. Data and analysis from the test will be used to determine what caused the tops of two, 21-foot-long support beams, called stringers, on the outside of the intertank to crack during fueling on Nov. 5. Discovery's next launch opportunity to the International Space Station on the STS-133 mission is no earlier than Feb. 3, 2011. For more information on STS-133, visit www.nasa.gov/mission_pages/shuttle/shuttlemissions/sts133/. Photo credit: NASA/Frank Michaux
2010-12-22
CAPE CANAVERAL, Fla. -- The bright lights inside the Vehicle Assembly Building at NASA's Kennedy Space Center in Florida invite space shuttle Discovery inside. The 3.4-mile trek, called rollback, from Launch Pad 39A began at 10:48 p.m. yesterday and took about eight hours. Next, Discovery's external fuel tank will be examined and foam reapplied where 89 sensors were installed on the tank's aluminum skin for an instrumented tanking test on Dec. 17. The sensors were used to measure changes in the tank as super-cold propellants were pumped in and drained out. Data and analysis from the test will be used to determine what caused the tops of two, 21-foot-long support beams, called stringers, on the outside of the intertank to crack during fueling on Nov. 5. Discovery's next launch opportunity to the International Space Station on the STS-133 mission is no earlier than Feb. 3, 2011. For more information on STS-133, visit www.nasa.gov/mission_pages/shuttle/shuttlemissions/sts133/. Photo credit: NASA/Frank Michaux
2010-12-21
CAPE CANAVERAL, Fla. -- Space shuttle Discovery, secured to a crawler-transporter, slowly moves away from Launch Pad 39A at NASA's Kennedy Space Center in Florida. The 3.4-mile trek, called rollback, to the Vehicle Assembly Building began at 10:48 p.m. and took about eight hours. Next, Discovery's external fuel tank will be examined and foam reapplied where 89 sensors were installed on the tank's aluminum skin for an instrumented tanking test on Dec. 17. The sensors were used to measure changes in the tank as super-cold propellants were pumped in and drained out. Data and analysis from the test will be used to determine what caused the tops of two, 21-foot-long support beams, called stringers, on the outside of the intertank to crack during fueling on Nov. 5. Discovery's next launch opportunity to the International Space Station on the STS-133 mission is no earlier than Feb. 3, 2011. For more information on STS-133, visit www.nasa.gov/mission_pages/shuttle/shuttlemissions/sts133/. Photo credit: NASA/Frank Michaux
2010-12-21
CAPE CANAVERAL, Fla. -- Space shuttle Discovery, secured to a crawler-transporter, slowly moves away from Launch Pad 39A at NASA's Kennedy Space Center in Florida. The 3.4-mile trek, called rollback, to the Vehicle Assembly Building began at 10:48 p.m. and took about eight hours. Next, Discovery's external fuel tank will be examined and foam reapplied where 89 sensors were installed on the tank's aluminum skin for an instrumented tanking test on Dec. 17. The sensors were used to measure changes in the tank as super-cold propellants were pumped in and drained out. Data and analysis from the test will be used to determine what caused the tops of two, 21-foot-long support beams, called stringers, on the outside of the intertank to crack during fueling on Nov. 5. Discovery's next launch opportunity to the International Space Station on the STS-133 mission is no earlier than Feb. 3, 2011. For more information on STS-133, visit www.nasa.gov/mission_pages/shuttle/shuttlemissions/sts133/. Photo credit: NASA/Frank Michaux
2010-12-21
CAPE CANAVERAL, Fla. -- Space shuttle Discovery, secured to a crawler-transporter, begins its 3.4-mile trek, known as rollback, from Launch Pad 39A to the Vehicle Assembly Building at NASA's Kennedy Space Center in Florida. Rollback began at 10:48 p.m. and took about eight hours. Next, Discovery's external fuel tank will be examined and foam reapplied where 89 sensors were installed on the tank's aluminum skin for an instrumented tanking test on Dec. 17. The sensors were used to measure changes in the tank as super-cold propellants were pumped in and drained out. Data and analysis from the test will be used to determine what caused the tops of two, 21-foot-long support beams, called stringers, on the outside of the intertank to crack during fueling on Nov. 5. Discovery's next launch opportunity to the International Space Station on the STS-133 mission is no earlier than Feb. 3, 2011. For more information on STS-133, visit www.nasa.gov/mission_pages/shuttle/shuttlemissions/sts133/. Photo credit: NASA/Frank Michaux
2010-12-21
CAPE CANAVERAL, Fla. -- Space shuttle Discovery awaits its move, called rollback, from Launch Pad 39A to the Vehicle Assembly Building (VAB) at NASA's Kennedy Space Center in Florida. Rollback was scheduled for 12:30 a.m., but was postponed until 10 p.m. so technicians could resolve an issue with a leveling system on the crawler-transporter. Once inside the VAB, Discovery's external fuel tank will be examined and foam reapplied where 89 sensors were installed on the tank's aluminum skin for an instrumented tanking test on Dec. 17. The sensors were used to measure changes in the tank as super-cold propellants were pumped in and drained out. Data and analysis from the test will be used to determine what caused the tops of two, 21-foot-long support beams, called stringers, on the outside of the intertank to crack during fueling on Nov. 5. Discovery's next launch opportunity is no earlier than Feb. 3, 2011. For more information on STS-133, visit www.nasa.gov/mission_pages/shuttle/shuttlemissions/sts133/. Photo credit: NASA/Kim Shiflett
2010-12-22
CAPE CANAVERAL, Fla. -- Space shuttle Discovery slowly moves down the crawlerway at NASA's Kennedy Space Center in Florida. The 3.4-mile trek, called rollback, from Launch Pad 39A to the Vehicle Assembly Building began at 10:48 p.m. yesterday and took about eight hours. Next, Discovery's external fuel tank will be examined and foam reapplied where 89 sensors were installed on the tank's aluminum skin for an instrumented tanking test on Dec. 17. The sensors were used to measure changes in the tank as super-cold propellants were pumped in and drained out. Data and analysis from the test will be used to determine what caused the tops of two, 21-foot-long support beams, called stringers, on the outside of the intertank to crack during fueling on Nov. 5. Discovery's next launch opportunity to the International Space Station on the STS-133 mission is no earlier than Feb. 3, 2011. For more information on STS-133, visit www.nasa.gov/mission_pages/shuttle/shuttlemissions/sts133/. Photo credit: NASA/Frank Michaux
2010-12-21
CAPE CANAVERAL, Fla. -- Space shuttle Discovery, secured to a crawler-transporter, slowly moves away from Launch Pad 39A at NASA's Kennedy Space Center in Florida. The 3.4-mile trek, called rollback, to the Vehicle Assembly Building began at 10:48 p.m. and took about eight hours. Next, Discovery's external fuel tank will be examined and foam reapplied where 89 sensors were installed on the tank's aluminum skin for an instrumented tanking test on Dec. 17. The sensors were used to measure changes in the tank as super-cold propellants were pumped in and drained out. Data and analysis from the test will be used to determine what caused the tops of two, 21-foot-long support beams, called stringers, on the outside of the intertank to crack during fueling on Nov. 5. Discovery's next launch opportunity to the International Space Station on the STS-133 mission is no earlier than Feb. 3, 2011. For more information on STS-133, visit www.nasa.gov/mission_pages/shuttle/shuttlemissions/sts133/. Photo credit: NASA/Frank Michaux
2010-12-22
CAPE CANAVERAL, Fla. -- Space shuttle Discovery slowly moves down the crawlerway at NASA's Kennedy Space Center in Florida. The 3.4-mile trek, called rollback, from Launch Pad 39A to the Vehicle Assembly Building began at 10:48 p.m. yesterday and took about eight hours. Next, Discovery's external fuel tank will be examined and foam reapplied where 89 sensors were installed on the tank's aluminum skin for an instrumented tanking test on Dec. 17. The sensors were used to measure changes in the tank as super-cold propellants were pumped in and drained out. Data and analysis from the test will be used to determine what caused the tops of two, 21-foot-long support beams, called stringers, on the outside of the intertank to crack during fueling on Nov. 5. Discovery's next launch opportunity to the International Space Station on the STS-133 mission is no earlier than Feb. 3, 2011. For more information on STS-133, visit www.nasa.gov/mission_pages/shuttle/shuttlemissions/sts133/. Photo credit: NASA/Frank Michaux
2011-02-20
CAPE CANAVERAL, Fla. -- Space shuttle Discovery's STS-133 crew arrived on the Shuttle Landing Facility runway at NASA's Kennedy Space Center in Florida aboard four T-38 jets. In the days leading up to their launch to the International Space Station, the crew members will check the fit of their launch-and-entry suits, review launch-day procedures, receive weather briefings and remain medically quarantined to prevent sickness. This will be the second launch attempt for Discovery's crew, following a scrub in November 2010 due to a hydrogen gas leak at the ground umbilical carrier plate (GUCP) as well as modifications to the external fuel tank's intertank support beams, called stringers. Scheduled to lift off Feb. 24 at 4:50 p.m. EST, Discovery and its crew will deliver the Permanent Multipurpose Module, packed with supplies and critical spare parts, as well as Robonaut 2, the dexterous humanoid astronaut helper, to the orbiting outpost. For more information on the STS-133 mission, visit www.nasa.gov/mission_pages/shuttle/shuttlemissions/sts133/. Photo credit: NASAFrank Michaux
2010-12-22
CAPE CANAVERAL, Fla. -- Space shuttle Discovery approached the Vehicle Assembly Building at NASA's Kennedy Space Center in Florida. The 3.4-mile trek, called rollback, from Launch Pad 39A began at 10:48 p.m. yesterday and took about eight hours. Next, Discovery's external fuel tank will be examined and foam reapplied where 89 sensors were installed on the tank's aluminum skin for an instrumented tanking test on Dec. 17. The sensors were used to measure changes in the tank as super-cold propellants were pumped in and drained out. Data and analysis from the test will be used to determine what caused the tops of two, 21-foot-long support beams, called stringers, on the outside of the intertank to crack during fueling on Nov. 5. Discovery's next launch opportunity to the International Space Station on the STS-133 mission is no earlier than Feb. 3, 2011. For more information on STS-133, visit www.nasa.gov/mission_pages/shuttle/shuttlemissions/sts133/. Photo credit: NASA/Frank Michaux
2010-12-21
CAPE CANAVERAL, Fla. -- Space shuttle Discovery, secured to a crawler-transporter, slowly moves away from Launch Pad 39A at NASA's Kennedy Space Center in Florida. The 3.4-mile trek, called rollback, to the Vehicle Assembly Building began at 10:48 p.m. and took about eight hours. Next, Discovery's external fuel tank will be examined and foam reapplied where 89 sensors were installed on the tank's aluminum skin for an instrumented tanking test on Dec. 17. The sensors were used to measure changes in the tank as super-cold propellants were pumped in and drained out. Data and analysis from the test will be used to determine what caused the tops of two, 21-foot-long support beams, called stringers, on the outside of the intertank to crack during fueling on Nov. 5. Discovery's next launch opportunity to the International Space Station on the STS-133 mission is no earlier than Feb. 3, 2011. For more information on STS-133, visit www.nasa.gov/mission_pages/shuttle/shuttlemissions/sts133/. Photo credit: NASA/Frank Michaux
2010-12-22
CAPE CANAVERAL, Fla. -- Space shuttle Discovery begins to enter the Vehicle Assembly Building at NASA's Kennedy Space Center in Florida. The 3.4-mile trek, called rollback, from Launch Pad 39A began at 10:48 p.m. yesterday and took about eight hours. Next, Discovery's external fuel tank will be examined and foam reapplied where 89 sensors were installed on the tank's aluminum skin for an instrumented tanking test on Dec. 17. The sensors were used to measure changes in the tank as super-cold propellants were pumped in and drained out. Data and analysis from the test will be used to determine what caused the tops of two, 21-foot-long support beams, called stringers, on the outside of the intertank to crack during fueling on Nov. 5. Discovery's next launch opportunity to the International Space Station on the STS-133 mission is no earlier than Feb. 3, 2011. For more information on STS-133, visit www.nasa.gov/mission_pages/shuttle/shuttlemissions/sts133/. Photo credit: NASA/Frank Michaux
2010-12-22
CAPE CANAVERAL, Fla. -- Work platforms inside the Vehicle Assembly Building at NASA's Kennedy Space Center in Florida begin to surround space shuttle Discovery, its solid rocket boosters and external fuel tank. The shuttle rolled back from Launch Pad 39A so technicians can examine the external tank and re-apply foam where 89 sensors were installed on the tank's aluminum skin for an instrumented tanking test on Dec. 17. The sensors were used to measure changes in the tank as super-cold propellants were pumped in and drained out. Data and analysis from the test will be used to determine what caused the tops of two, 21-foot-long support beams, called stringers, on the outside of the intertank to crack during fueling on Nov. 5. Discovery's next launch opportunity to the International Space Station on the STS-133 mission is no earlier than Feb. 3, 2011. For more information on STS-133, visit www.nasa.gov/mission_pages/shuttle/shuttlemissions/sts133/. Photo credit: NASA/Frank Michaux
2010-12-17
CAPE CANAVERAL, Fla. -- Shuttle Launch Director Mike Leinbach monitors space shuttle Discovery's external fuel tank as it is loaded with more than 535,000 gallons of cryogenic propellants from his console in the Launch Control Center at NASA's Kennedy Space Center in Florida. During today's tanking test, the team is paying particular attention to the external tank's ribbed intertank region. Beginning tomorrow, engineers will evaluate data on 21-foot-long, U-shaped aluminum brackets, called stringers, and the newly replaced ground umbilical carrier plate (GUCP). Discovery's first launch attempt for STS-133 was scrubbed in early November due to a hydrogen gas leak at the GUCP. In order to perform additional analysis on the tank, Discovery will be rolled back to the Vehicle Assembly Building, a move that is planned for next week. The next launch opportunity is no earlier than Feb. 3, 2011. For more information on STS-133, visit www.nasa.gov/mission_pages/shuttle/shuttlemissions/sts133/. Photo credit: NASA/Cory Huston
2010-12-21
CAPE CANAVERAL, Fla. -- Space shuttle Discovery, secured to a crawler-transporter, slowly moves away from Launch Pad 39A at NASA's Kennedy Space Center in Florida. The 3.4-mile trek, called rollback, to the Vehicle Assembly Building began at 10:48 p.m. and took about eight hours. Next, Discovery's external fuel tank will be examined and foam reapplied where 89 sensors were installed on the tank's aluminum skin for an instrumented tanking test on Dec. 17. The sensors were used to measure changes in the tank as super-cold propellants were pumped in and drained out. Data and analysis from the test will be used to determine what caused the tops of two, 21-foot-long support beams, called stringers, on the outside of the intertank to crack during fueling on Nov. 5. Discovery's next launch opportunity to the International Space Station on the STS-133 mission is no earlier than Feb. 3, 2011. For more information on STS-133, visit www.nasa.gov/mission_pages/shuttle/shuttlemissions/sts133/. Photo credit: NASA/Frank Michaux
2010-12-17
CAPE CANAVERAL, Fla. -- Space shuttle Discovery's external fuel tank is being filled with more than 535,000 gallons of super-cold liquid hydrogen and liquid oxygen during a tanking test on Launch Pad 39A at NASA's Kennedy Space Center in Florida. Engineers are closely monitoring what happens to 21-foot long, U-shaped aluminum brackets, called stringers, located at the tank's intertank region, as well as the newly replaced ground umbilical carrier plate (GUCP). Data from 89 sensors will be evaluated after the tank returns to ambient temperature. In order to perform additional analysis on the tank, Discovery will be rolled back to the Vehicle Assembly Building, a move that is planned for next week. Discovery's first launch attempt for STS-133 was scrubbed in early November due to a hydrogen gas leak at GUCP. The next launch opportunity is no earlier than Feb. 3, 2011. For more information on STS-133, visit www.nasa.gov/mission_pages/shuttle/shuttlemissions/sts133/. Photo credit: NASA/Frank Michaux
2010-12-17
CAPE CANAVERAL, Fla. -- Space shuttle Discovery's external fuel tank is being filled with more than 535,000 gallons of super-cold liquid hydrogen and liquid oxygen during a tanking test on Launch Pad 39A at NASA's Kennedy Space Center in Florida. Engineers are closely monitoring what happens to 21-foot long, U-shaped aluminum brackets, called stringers, located at the tank's intertank region, as well as the newly replaced ground umbilical carrier plate (GUCP). Data from 89 sensors will be evaluated after the tank returns to ambient temperature. In order to perform additional analysis on the tank, Discovery will be rolled back to the Vehicle Assembly Building, a move that is planned for next week. Discovery's first launch attempt for STS-133 was scrubbed in early November due to a hydrogen gas leak at GUCP. The next launch opportunity is no earlier than Feb. 3, 2011. For more information on STS-133, visit www.nasa.gov/mission_pages/shuttle/shuttlemissions/sts133/. Photo credit: NASA/Frank Michaux
2010-12-17
CAPE CANAVERAL, Fla. -- Space shuttle Discovery's external fuel tank is being filled with more than 535,000 gallons of super-cold liquid hydrogen and liquid oxygen during a tanking test on Launch Pad 39A at NASA's Kennedy Space Center in Florida. Engineers are closely monitoring what happens to 21-foot long, U-shaped aluminum brackets, called stringers, located at the tank's intertank region, as well as the newly replaced ground umbilical carrier plate (GUCP). Data from 89 sensors will be evaluated after the tank returns to ambient temperature. In order to perform additional analysis on the tank, Discovery will be rolled back to the Vehicle Assembly Building, a move that is planned for next week. Discovery's first launch attempt for STS-133 was scrubbed in early November due to a hydrogen gas leak at GUCP. The next launch opportunity is no earlier than Feb. 3, 2011. For more information on STS-133, visit www.nasa.gov/mission_pages/shuttle/shuttlemissions/sts133/. Photo credit: NASA/Frank Michaux
2011-02-18
CAPE CANAVERAL, Fla. -- At NASA's Kennedy Space Center in Florida, NASA Public Affairs Officer Michael Curie, left, Associate Administrator for Space Operations Bill Gerstenmaier, Space Shuttle Program Launch Integration Manager Mike Moses and Shuttle Launch Director Mike Leinbach talk to media following a Flight Readiness Review that gave a unanimous "go" to launch space shuttle Discovery on the STS-133 mission to the International Space Station. This will be the second launch attempt for Discovery, following a scrub in November 2010 due to a hydrogen gas leak at the ground umbilical carrier plate (GUCP) as well as modifications to the external fuel tank's intertank support beams, called stringers. Scheduled to lift off Feb. 24 at 4:50 p.m. EST, Discovery and its six-member crew will deliver the Permanent Multipurpose Module, packed with supplies and critical spare parts, as well as Robonaut 2, the dexterous humanoid astronaut helper, to the orbiting outpost. For more information on the STS-133 mission, visit www.nasa.gov/mission_pages/shuttle/shuttlemissions/sts133/. Photo credit: NASA/Kim Shiflett
7 CFR 3430.52 - Cost sharing and matching.
Code of Federal Regulations, 2011 CFR
2011-01-01
... 7 Agriculture 15 2011-01-01 2011-01-01 false Cost sharing and matching. 3430.52 Section 3430.52 Agriculture Regulations of the Department of Agriculture (Continued) NATIONAL INSTITUTE OF FOOD AND AGRICULTURE COMPETITIVE AND NONCOMPETITIVE NON-FORMULA FEDERAL ASSISTANCE PROGRAMS-GENERAL AWARD...
7 CFR 3419.6 - Use of matching funds.
Code of Federal Regulations, 2010 CFR
2010-01-01
..., AND EXTENSION SERVICE, DEPARTMENT OF AGRICULTURE MATCHING FUNDS REQUIREMENT FOR AGRICULTURAL RESEARCH AND EXTENSION FORMULA FUNDS AT 1890 LAND-GRANT INSTITUTIONS, INCLUDING TUSKEGEE UNIVERSITY, AND AT...) of the National Agricultural Research, Extension, and Teaching Policy Act of 1977, section 7 of the...
7 CFR 3405.5 - Matching funds.
Code of Federal Regulations, 2010 CFR
2010-01-01
... 7 Agriculture 15 2010-01-01 2010-01-01 false Matching funds. 3405.5 Section 3405.5 Agriculture Regulations of the Department of Agriculture (Continued) COOPERATIVE STATE RESEARCH, EDUCATION, AND EXTENSION SERVICE, DEPARTMENT OF AGRICULTURE HIGHER EDUCATION CHALLENGE GRANTS PROGRAM Program Description § 3405.5...
Swager, A; Boerwinkel, D F; de Bruin, D M; Weusten, B L; Faber, D J; Meijer, S L; van Leeuwen, T G; Curvers, W L; Bergman, J J
2016-08-01
Volumetric laser endomicroscopy (VLE) is a novel balloon-based optical coherence tomography (OCT) imaging technique that may improve detection of early neoplasia in Barrett's esophagus (BE). Most OCT studies lack a direct correlation between histology and OCT images. The aim is to investigate the optimal approach for achieving one-to-one correlation of ex-vivo VLE images of endoscopic resection (ER) specimens with histology. BE patients with and without early neoplasia underwent ER after delineating areas with electrocoagulation markers (ECM). After ER, specimens underwent additional ex-vivo marking with several different markers (ink, pin, Gold Probe) followed by ex-vivo VLE scanning. ER specimens were carefully sectioned into tissue blocks guided by the markers. Histology and VLE slides were considered a match if ≥ 2 markers were visible on both modalities and mucosal patterns aside from these markers matched on both histology and VLE. From 16 ER specimens 120 tissue blocks were sectioned of which 23 contained multiple markers. Fourteen histology-VLE matches were identified. ECMs and ink markers proved to be the most effective combination for matching. The last 6/16 ER specimens yielded 9/14 matches, demonstrating a learning curve due to methodological improvements in marker placement and tissue block sectioning. One-to-one correlation of VLE and histology is complex but feasible. The groundwork laid in this study will provide high-quality histology-VLE correlations that will allow further research on VLE features of early neoplasia in BE. © 2015 International Society for Diseases of the Esophagus.
45 CFR 1301.20 - Matching requirements.
Code of Federal Regulations, 2013 CFR
2013-10-01
... 45 Public Welfare 4 2013-10-01 2013-10-01 false Matching requirements. 1301.20 Section 1301.20 Public Welfare Regulations Relating to Public Welfare (Continued) OFFICE OF HUMAN DEVELOPMENT SERVICES, DEPARTMENT OF HEALTH AND HUMAN SERVICES THE ADMINISTRATION FOR CHILDREN, YOUTH AND FAMILIES, HEAD START...
45 CFR 1301.20 - Matching requirements.
Code of Federal Regulations, 2014 CFR
2014-10-01
... 45 Public Welfare 4 2014-10-01 2014-10-01 false Matching requirements. 1301.20 Section 1301.20 Public Welfare Regulations Relating to Public Welfare (Continued) OFFICE OF HUMAN DEVELOPMENT SERVICES, DEPARTMENT OF HEALTH AND HUMAN SERVICES THE ADMINISTRATION FOR CHILDREN, YOUTH AND FAMILIES, HEAD START...
45 CFR 1301.20 - Matching requirements.
Code of Federal Regulations, 2012 CFR
2012-10-01
... 45 Public Welfare 4 2012-10-01 2012-10-01 false Matching requirements. 1301.20 Section 1301.20 Public Welfare Regulations Relating to Public Welfare (Continued) OFFICE OF HUMAN DEVELOPMENT SERVICES, DEPARTMENT OF HEALTH AND HUMAN SERVICES THE ADMINISTRATION FOR CHILDREN, YOUTH AND FAMILIES, HEAD START...
34 CFR 609.40 - What are the matching requirements?
Code of Federal Regulations, 2011 CFR
2011-07-01
... 34 Education 3 2011-07-01 2011-07-01 false What are the matching requirements? 609.40 Section 609.40 Education Regulations of the Offices of the Department of Education (Continued) OFFICE OF POSTSECONDARY EDUCATION, DEPARTMENT OF EDUCATION STRENGTHENING HISTORICALLY BLACK GRADUATE INSTITUTIONS PROGRAM...
34 CFR 609.40 - What are the matching requirements?
Code of Federal Regulations, 2010 CFR
2010-07-01
... 34 Education 3 2010-07-01 2010-07-01 false What are the matching requirements? 609.40 Section 609.40 Education Regulations of the Offices of the Department of Education (Continued) OFFICE OF POSTSECONDARY EDUCATION, DEPARTMENT OF EDUCATION STRENGTHENING HISTORICALLY BLACK GRADUATE INSTITUTIONS PROGRAM...
34 CFR 609.40 - What are the matching requirements?
Code of Federal Regulations, 2012 CFR
2012-07-01
... 34 Education 3 2012-07-01 2012-07-01 false What are the matching requirements? 609.40 Section 609.40 Education Regulations of the Offices of the Department of Education (Continued) OFFICE OF POSTSECONDARY EDUCATION, DEPARTMENT OF EDUCATION STRENGTHENING HISTORICALLY BLACK GRADUATE INSTITUTIONS PROGRAM...
28 CFR 90.55 - Matching requirements.
Code of Federal Regulations, 2010 CFR
2010-07-01
... 28 Judicial Administration 2 2010-07-01 2010-07-01 false Matching requirements. 90.55 Section 90.55 Judicial Administration DEPARTMENT OF JUSTICE (CONTINUED) VIOLENCE AGAINST WOMEN Indian Tribal... the same uses as the Violence Against Women Program funds and must be expended within the grant period...
50 CFR 401.11 - Property as matching funds.
Code of Federal Regulations, 2010 CFR
2010-10-01
... ADMINISTRATION, DEPARTMENT OF COMMERCE); ENDANGERED SPECIES COMMITTEE REGULATIONS SUBCHAPTER A ANADROMOUS... 50 Wildlife and Fisheries 7 2010-10-01 2010-10-01 false Property as matching funds. 401.11 Section 401.11 Wildlife and Fisheries JOINT REGULATIONS (UNITED STATES FISH AND WILDLIFE SERVICE, DEPARTMENT...
34 CFR 609.40 - What are the matching requirements?
Code of Federal Regulations, 2013 CFR
2013-07-01
... 34 Education 3 2013-07-01 2013-07-01 false What are the matching requirements? 609.40 Section 609.40 Education Regulations of the Offices of the Department of Education (Continued) OFFICE OF POSTSECONDARY EDUCATION, DEPARTMENT OF EDUCATION STRENGTHENING HISTORICALLY BLACK GRADUATE INSTITUTIONS PROGRAM...
34 CFR 609.40 - What are the matching requirements?
Code of Federal Regulations, 2014 CFR
2014-07-01
... 34 Education 3 2014-07-01 2014-07-01 false What are the matching requirements? 609.40 Section 609.40 Education Regulations of the Offices of the Department of Education (Continued) OFFICE OF POSTSECONDARY EDUCATION, DEPARTMENT OF EDUCATION STRENGTHENING HISTORICALLY BLACK GRADUATE INSTITUTIONS PROGRAM...
Code of Federal Regulations, 2010 CFR
2010-04-01
... considered an affordable housing activity? 1000.122 Section 1000.122 Housing and Urban Development... Housing Activities § 1000.122 May NAHASDA grant funds be used as matching funds to obtain and leverage...
45 CFR 1301.20 - Matching requirements.
Code of Federal Regulations, 2011 CFR
2011-10-01
... 45 Public Welfare 4 2011-10-01 2011-10-01 false Matching requirements. 1301.20 Section 1301.20 Public Welfare Regulations Relating to Public Welfare (Continued) OFFICE OF HUMAN DEVELOPMENT SERVICES, DEPARTMENT OF HEALTH AND HUMAN SERVICES THE ADMINISTRATION FOR CHILDREN, YOUTH AND FAMILIES, HEAD START...
45 CFR 1301.20 - Matching requirements.
Code of Federal Regulations, 2010 CFR
2010-10-01
... 45 Public Welfare 4 2010-10-01 2010-10-01 false Matching requirements. 1301.20 Section 1301.20 Public Welfare Regulations Relating to Public Welfare (Continued) OFFICE OF HUMAN DEVELOPMENT SERVICES, DEPARTMENT OF HEALTH AND HUMAN SERVICES THE ADMINISTRATION FOR CHILDREN, YOUTH AND FAMILIES, HEAD START...
Robot-Assisted Versus Open Liver Resection in the Right Posterior Section
Cipriani, Federica; Ratti, Francesca; Bartoli, Alberto; Ceccarelli, Graziano; Casciola, Luciano; Aldrighetti, Luca
2014-01-01
Background: Open liver resection is the current standard of care for lesions in the right posterior liver section. The objective of this study was to determine the safety of robot-assisted liver resection for lesions located in segments 6 and 7 in comparison with open surgery. Methods: Demographics, comorbidities, clinicopathologic characteristics, surgical treatments, and outcomes from patients who underwent open and robot-assisted liver resection at 2 centers for lesions in the right posterior section between January 2007 and June 2012 were reviewed. A 1:3 matched analysis was performed by individually matching patients in the robotic cohort to patients in the open cohort on the basis of demographics, comorbidities, performance status, tumor stage, and location. Results: Matched patients undergoing robotic and open liver resections displayed no significant differences in postoperative outcomes as measured by blood loss, transfusion rate, hospital stay, overall complication rate (15.8% vs 13%), R0 negative margin rate, and mortality. Patients undergoing robotic liver surgery had significantly longer operative time (mean, 303 vs 233 minutes) and inflow occlusion time (mean, 75 vs 29 minutes) compared with their open counterparts. Conclusions: Robotic and open liver resections in the right posterior section display similar safety and feasibility. PMID:25516700
NASA Technical Reports Server (NTRS)
Ishihara, A.; Ohira, Y.; Roy, R. R.; Nagaoka, S.; Sekiguchi, C.; Hinds, W. E.; Edgerton, V. R.
1997-01-01
The cross-sectional areas and succinate dehydrogenase activities of L5 dorsal root ganglion neurons in rats were determined after 14 days of spaceflight and after nine days of recovery. The mean and distribution of the cross-sectional areas were similar to age-matched, ground-based controls for both the spaceflight and for the spaceflight plus recovery groups. The mean succinate dehydrogenase activity was significantly lower in spaceflight compared to aged-matched control rats, whereas the mean succinate dehydrogenase activity was similar in age-matched control and spaceflight plus recovery rats. The mean succinate dehydrogenase activity of neurons with cross-sectional areas between 1000 and 2000 microns2 was lower (between 7 and 10%) in both the spaceflight and the spaceflight plus recovery groups compared to the appropriate control groups. The reduction in the oxidative capacity of a subpopulation of sensory neurons having relatively large cross-sectional areas immediately following spaceflight and the sustained depression for nine days after returning to 1 g suggest that the 0 g environment induced significant alterations in proprioceptive function.
20 CFR 437.24 - Matching or cost sharing.
Code of Federal Regulations, 2010 CFR
2010-04-01
... 20 Employees' Benefits 2 2010-04-01 2010-04-01 false Matching or cost sharing. 437.24 Section 437.24 Employees' Benefits SOCIAL SECURITY ADMINISTRATION UNIFORM ADMINISTRATIVE REQUIREMENTS FOR GRANTS... grant or subgrant, as follows: (1) Awards for capital expenditures. If the purpose of the grant or...
34 CFR 367.40 - What matching requirements apply?
Code of Federal Regulations, 2011 CFR
2011-07-01
... 34 Education 2 2011-07-01 2010-07-01 true What matching requirements apply? 367.40 Section 367.40 Education Regulations of the Offices of the Department of Education (Continued) OFFICE OF SPECIAL EDUCATION AND REHABILITATIVE SERVICES, DEPARTMENT OF EDUCATION INDEPENDENT LIVING SERVICES FOR OLDER INDIVIDUALS...
34 CFR 367.40 - What matching requirements apply?
Code of Federal Regulations, 2010 CFR
2010-07-01
... 34 Education 2 2010-07-01 2010-07-01 false What matching requirements apply? 367.40 Section 367.40 Education Regulations of the Offices of the Department of Education (Continued) OFFICE OF SPECIAL EDUCATION AND REHABILITATIVE SERVICES, DEPARTMENT OF EDUCATION INDEPENDENT LIVING SERVICES FOR OLDER INDIVIDUALS...
34 CFR 387.40 - What are the matching requirements?
Code of Federal Regulations, 2014 CFR
2014-07-01
... 34 Education 2 2014-07-01 2013-07-01 true What are the matching requirements? 387.40 Section 387.40 Education Regulations of the Offices of the Department of Education (Continued) OFFICE OF SPECIAL EDUCATION AND REHABILITATIVE SERVICES, DEPARTMENT OF EDUCATION EXPERIMENTAL AND INNOVATIVE TRAINING What...
34 CFR 387.40 - What are the matching requirements?
Code of Federal Regulations, 2011 CFR
2011-07-01
... 34 Education 2 2011-07-01 2010-07-01 true What are the matching requirements? 387.40 Section 387.40 Education Regulations of the Offices of the Department of Education (Continued) OFFICE OF SPECIAL EDUCATION AND REHABILITATIVE SERVICES, DEPARTMENT OF EDUCATION EXPERIMENTAL AND INNOVATIVE TRAINING What...
34 CFR 661.40 - What are the matching requirements?
Code of Federal Regulations, 2011 CFR
2011-07-01
... 34 Education 3 2011-07-01 2011-07-01 false What are the matching requirements? 661.40 Section 661.40 Education Regulations of the Offices of the Department of Education (Continued) OFFICE OF POSTSECONDARY EDUCATION, DEPARTMENT OF EDUCATION BUSINESS AND INTERNATIONAL EDUCATION PROGRAM What Conditions...
34 CFR 376.40 - What are the matching requirements?
Code of Federal Regulations, 2010 CFR
2010-07-01
... 34 Education 2 2010-07-01 2010-07-01 false What are the matching requirements? 376.40 Section 376.40 Education Regulations of the Offices of the Department of Education (Continued) OFFICE OF SPECIAL EDUCATION AND REHABILITATIVE SERVICES, DEPARTMENT OF EDUCATION SPECIAL PROJECTS AND DEMONSTRATIONS FOR...
34 CFR 373.20 - What are the matching requirements?
Code of Federal Regulations, 2010 CFR
2010-07-01
... 34 Education 2 2010-07-01 2010-07-01 false What are the matching requirements? 373.20 Section 373.20 Education Regulations of the Offices of the Department of Education (Continued) OFFICE OF SPECIAL EDUCATION AND REHABILITATIVE SERVICES, DEPARTMENT OF EDUCATION SPECIAL DEMONSTRATION PROGRAMS What...
34 CFR 661.40 - What are the matching requirements?
Code of Federal Regulations, 2010 CFR
2010-07-01
... 34 Education 3 2010-07-01 2010-07-01 false What are the matching requirements? 661.40 Section 661.40 Education Regulations of the Offices of the Department of Education (Continued) OFFICE OF POSTSECONDARY EDUCATION, DEPARTMENT OF EDUCATION BUSINESS AND INTERNATIONAL EDUCATION PROGRAM What Conditions...
45 CFR 2519.700 - Are matching funds required?
Code of Federal Regulations, 2010 CFR
2010-10-01
... 45 Public Welfare 4 2010-10-01 2010-10-01 false Are matching funds required? 2519.700 Section 2519.700 Public Welfare Regulations Relating to Public Welfare (Continued) CORPORATION FOR NATIONAL AND COMMUNITY SERVICE HIGHER EDUCATION INNOVATIVE PROGRAMS FOR COMMUNITY SERVICE Funding Requirements § 2519.700...
Standard model anatomy of WIMP dark matter direct detection. I. Weak-scale matching
NASA Astrophysics Data System (ADS)
Hill, Richard J.; Solon, Mikhail P.
2015-02-01
We present formalism necessary to determine weak-scale matching coefficients in the computation of scattering cross sections for putative dark matter candidates interacting with the Standard Model. We pay particular attention to the heavy-particle limit. A consistent renormalization scheme in the presence of nontrivial residual masses is implemented. Two-loop diagrams appearing in the matching to gluon operators are evaluated. Details are given for the computation of matching coefficients in the universal limit of WIMP-nucleon scattering for pure states of arbitrary quantum numbers, and for singlet-doublet and doublet-triplet mixed states.
34 CFR 614.5 - What are the matching requirements for the consortia?
Code of Federal Regulations, 2010 CFR
2010-07-01
... 34 Education 3 2010-07-01 2010-07-01 false What are the matching requirements for the consortia? 614.5 Section 614.5 Education Regulations of the Offices of the Department of Education (Continued) OFFICE OF POSTSECONDARY EDUCATION, DEPARTMENT OF EDUCATION PREPARING TOMORROW'S TEACHERS TO USE...
50 CFR 86.43 - May someone else supply the match?
Code of Federal Regulations, 2010 CFR
2010-10-01
... 50 Wildlife and Fisheries 6 2010-10-01 2010-10-01 false May someone else supply the match? 86.43 Section 86.43 Wildlife and Fisheries UNITED STATES FISH AND WILDLIFE SERVICE, DEPARTMENT OF THE INTERIOR (CONTINUED) FINANCIAL ASSISTANCE-WILDLIFE SPORT FISH RESTORATION PROGRAM BOATING INFRASTRUCTURE GRANT (BIG...
50 CFR 86.42 - What are the match requirements?
Code of Federal Regulations, 2010 CFR
2010-10-01
... 50 Wildlife and Fisheries 6 2010-10-01 2010-10-01 false What are the match requirements? 86.42 Section 86.42 Wildlife and Fisheries UNITED STATES FISH AND WILDLIFE SERVICE, DEPARTMENT OF THE INTERIOR (CONTINUED) FINANCIAL ASSISTANCE-WILDLIFE SPORT FISH RESTORATION PROGRAM BOATING INFRASTRUCTURE GRANT (BIG...
Medicaid Certified School Match Program: Nursing Services. Technical Assistance Paper.
ERIC Educational Resources Information Center
Florida State Dept. of Education, Tallahassee. Bureau of Instructional Support and Community Services.
This paper addresses issues related to Medicaid-reimbursable nursing services covered under the Florida Medicaid Certified School Match Program and the federal Medicare Catastrophic Coverage Act in coordination with the Individuals with Disabilities Education Act. Following a brief section providing background information, 23 questions and answers…
13 CFR 108.2030 - Matching requirements.
Code of Federal Regulations, 2010 CFR
2010-01-01
... Section 108.2030 Business Credit and Assistance SMALL BUSINESS ADMINISTRATION NEW MARKETS VENTURE CAPITAL... resources raised by the NMVC Company or SSBIC. (b) Allowable sources. (1) Any source other than SBA is an... this part. (3) A portion of Private Capital may be designated as matching resources if the designated...
32 CFR 32.23 - Cost sharing or matching.
Code of Federal Regulations, 2014 CFR
2014-07-01
... 32 National Defense 1 2014-07-01 2014-07-01 false Cost sharing or matching. 32.23 Section 32.23 National Defense Department of Defense OFFICE OF THE SECRETARY OF DEFENSE DoD GRANT AND AGREEMENT... efficient accomplishment of project or program objectives. (4) Are allowable under the applicable cost...
32 CFR 32.23 - Cost sharing or matching.
Code of Federal Regulations, 2010 CFR
2010-07-01
... 32 National Defense 1 2010-07-01 2010-07-01 false Cost sharing or matching. 32.23 Section 32.23 National Defense Department of Defense OFFICE OF THE SECRETARY OF DEFENSE DoD GRANT AND AGREEMENT... efficient accomplishment of project or program objectives. (4) Are allowable under the applicable cost...
32 CFR 32.23 - Cost sharing or matching.
Code of Federal Regulations, 2011 CFR
2011-07-01
... 32 National Defense 1 2011-07-01 2011-07-01 false Cost sharing or matching. 32.23 Section 32.23 National Defense Department of Defense OFFICE OF THE SECRETARY OF DEFENSE DoD GRANT AND AGREEMENT... efficient accomplishment of project or program objectives. (4) Are allowable under the applicable cost...
32 CFR 32.23 - Cost sharing or matching.
Code of Federal Regulations, 2012 CFR
2012-07-01
... 32 National Defense 1 2012-07-01 2012-07-01 false Cost sharing or matching. 32.23 Section 32.23 National Defense Department of Defense OFFICE OF THE SECRETARY OF DEFENSE DoD GRANT AND AGREEMENT... efficient accomplishment of project or program objectives. (4) Are allowable under the applicable cost...
32 CFR 32.23 - Cost sharing or matching.
Code of Federal Regulations, 2013 CFR
2013-07-01
... 32 National Defense 1 2013-07-01 2013-07-01 false Cost sharing or matching. 32.23 Section 32.23 National Defense Department of Defense OFFICE OF THE SECRETARY OF DEFENSE DoD GRANT AND AGREEMENT... efficient accomplishment of project or program objectives. (4) Are allowable under the applicable cost...
15 CFR 24.24 - Matching or cost sharing.
Code of Federal Regulations, 2010 CFR
2010-01-01
... 15 Commerce and Foreign Trade 1 2010-01-01 2010-01-01 false Matching or cost sharing. 24.24 Section 24.24 Commerce and Foreign Trade Office of the Secretary of Commerce UNIFORM ADMINISTRATIVE... other employers for similar work in the same labor market. In either case, a reasonable amount for...
34 CFR 611.62 - What are a grantee's matching requirements?
Code of Federal Regulations, 2010 CFR
2010-07-01
... 34 Education 3 2010-07-01 2010-07-01 false What are a grantee's matching requirements? 611.62 Section 611.62 Education Regulations of the Offices of the Department of Education (Continued) OFFICE OF POSTSECONDARY EDUCATION, DEPARTMENT OF EDUCATION TEACHER QUALITY ENHANCEMENT GRANTS PROGRAM Other Grant...
11 CFR 9036.1 - Threshold submission.
Code of Federal Regulations, 2013 CFR
2013-01-01
... 11 Federal Elections 1 2013-01-01 2012-01-01 true Threshold submission. 9036.1 Section 9036.1 Federal Elections FEDERAL ELECTION COMMISSION PRESIDENTIAL ELECTION CAMPAIGN FUND: PRESIDENTIAL PRIMARY MATCHING FUND REVIEW OF MATCHING FUND SUBMISSIONS AND CERTIFICATION OF PAYMENTS BY COMMISSION § 9036.1 Threshold submission. (a) Time for submission...
11 CFR 9036.1 - Threshold submission.
Code of Federal Regulations, 2010 CFR
2010-01-01
... 11 Federal Elections 1 2010-01-01 2010-01-01 false Threshold submission. 9036.1 Section 9036.1 Federal Elections FEDERAL ELECTION COMMISSION PRESIDENTIAL ELECTION CAMPAIGN FUND: PRESIDENTIAL PRIMARY MATCHING FUND REVIEW OF MATCHING FUND SUBMISSIONS AND CERTIFICATION OF PAYMENTS BY COMMISSION § 9036.1 Threshold submission. (a) Time for submission...
11 CFR 9036.1 - Threshold submission.
Code of Federal Regulations, 2012 CFR
2012-01-01
... 11 Federal Elections 1 2012-01-01 2012-01-01 false Threshold submission. 9036.1 Section 9036.1 Federal Elections FEDERAL ELECTION COMMISSION PRESIDENTIAL ELECTION CAMPAIGN FUND: PRESIDENTIAL PRIMARY MATCHING FUND REVIEW OF MATCHING FUND SUBMISSIONS AND CERTIFICATION OF PAYMENTS BY COMMISSION § 9036.1 Threshold submission. (a) Time for submission...
11 CFR 9036.1 - Threshold submission.
Code of Federal Regulations, 2014 CFR
2014-01-01
... 11 Federal Elections 1 2014-01-01 2014-01-01 false Threshold submission. 9036.1 Section 9036.1 Federal Elections FEDERAL ELECTION COMMISSION PRESIDENTIAL ELECTION CAMPAIGN FUND: PRESIDENTIAL PRIMARY MATCHING FUND REVIEW OF MATCHING FUND SUBMISSIONS AND CERTIFICATION OF PAYMENTS BY COMMISSION § 9036.1 Threshold submission. (a) Time for submission...
11 CFR 9036.1 - Threshold submission.
Code of Federal Regulations, 2011 CFR
2011-01-01
... 11 Federal Elections 1 2011-01-01 2011-01-01 false Threshold submission. 9036.1 Section 9036.1 Federal Elections FEDERAL ELECTION COMMISSION PRESIDENTIAL ELECTION CAMPAIGN FUND: PRESIDENTIAL PRIMARY MATCHING FUND REVIEW OF MATCHING FUND SUBMISSIONS AND CERTIFICATION OF PAYMENTS BY COMMISSION § 9036.1 Threshold submission. (a) Time for submission...
Correlation among ultrasound, cross-sectional anatomy, and histology of the sciatic nerve: a review.
Moayeri, Nizar; van Geffen, Geert J; Bruhn, Jörgen; Chan, Vincent W; Groen, Gerbrand J
2010-01-01
Efficient identification of the sciatic nerve (SN) requires a thorough knowledge of its topography in relation to the surrounding structures. Anatomic cross sections in similar oblique planes as observed during SN ultrasonography are lacking. A survey of sonoanatomy matched with ultrasound views of the major SN block sites will be helpful in pattern recognition, especially when combined with images that show the internal architecture of the nerve. From 1 cadaver, consecutive parts of the upper leg corresponding to the 4 major blocks sites were sectioned and deeply frozen. Using cryomicrotomy, consecutive transverse sections were acquired and photographed at 78-microm intervals, along with histologic sections at 5-mm intervals. Multiplanar reformatting was done to reconstruct the optimal planes for an accurate comparison of ultrasonography and gross anatomy. The anatomic and histologic images were matched with ultrasound images that were obtained from 2 healthy volunteers. By simulating the exact position and angulation as in the ultrasonographic images, detailed anatomic overviews of SN and adjacent structures were reconstructed in the gluteal, subgluteal, midfemoral, and popliteal regions. Throughout its trajectory, SN contains numerous fascicles with connective and adipose tissues. In this study, we provide an optimal matching between histology, anatomic cross sections, and short-axis ultrasound images of SN. Reconstructing ultrasonographic planes with this high-resolution digitized anatomy not only enables an overview but also shows detailed views of the architecture of internal SN. The undulating course of the nerve fascicles within SN may explain its varying echogenic appearance during probe manipulation.
Automated Stitching of Microtubule Centerlines across Serial Electron Tomograms
Weber, Britta; Tranfield, Erin M.; Höög, Johanna L.; Baum, Daniel; Antony, Claude; Hyman, Tony; Verbavatz, Jean-Marc; Prohaska, Steffen
2014-01-01
Tracing microtubule centerlines in serial section electron tomography requires microtubules to be stitched across sections, that is lines from different sections need to be aligned, endpoints need to be matched at section boundaries to establish a correspondence between neighboring sections, and corresponding lines need to be connected across multiple sections. We present computational methods for these tasks: 1) An initial alignment is computed using a distance compatibility graph. 2) A fine alignment is then computed with a probabilistic variant of the iterative closest points algorithm, which we extended to handle the orientation of lines by introducing a periodic random variable to the probabilistic formulation. 3) Endpoint correspondence is established by formulating a matching problem in terms of a Markov random field and computing the best matching with belief propagation. Belief propagation is not generally guaranteed to converge to a minimum. We show how convergence can be achieved, nonetheless, with minimal manual input. In addition to stitching microtubule centerlines, the correspondence is also applied to transform and merge the electron tomograms. We applied the proposed methods to samples from the mitotic spindle in C. elegans, the meiotic spindle in X. laevis, and sub-pellicular microtubule arrays in T. brucei. The methods were able to stitch microtubules across section boundaries in good agreement with experts' opinions for the spindle samples. Results, however, were not satisfactory for the microtubule arrays. For certain experiments, such as an analysis of the spindle, the proposed methods can replace manual expert tracing and thus enable the analysis of microtubules over long distances with reasonable manual effort. PMID:25438148
Automated stitching of microtubule centerlines across serial electron tomograms.
Weber, Britta; Tranfield, Erin M; Höög, Johanna L; Baum, Daniel; Antony, Claude; Hyman, Tony; Verbavatz, Jean-Marc; Prohaska, Steffen
2014-01-01
Tracing microtubule centerlines in serial section electron tomography requires microtubules to be stitched across sections, that is lines from different sections need to be aligned, endpoints need to be matched at section boundaries to establish a correspondence between neighboring sections, and corresponding lines need to be connected across multiple sections. We present computational methods for these tasks: 1) An initial alignment is computed using a distance compatibility graph. 2) A fine alignment is then computed with a probabilistic variant of the iterative closest points algorithm, which we extended to handle the orientation of lines by introducing a periodic random variable to the probabilistic formulation. 3) Endpoint correspondence is established by formulating a matching problem in terms of a Markov random field and computing the best matching with belief propagation. Belief propagation is not generally guaranteed to converge to a minimum. We show how convergence can be achieved, nonetheless, with minimal manual input. In addition to stitching microtubule centerlines, the correspondence is also applied to transform and merge the electron tomograms. We applied the proposed methods to samples from the mitotic spindle in C. elegans, the meiotic spindle in X. laevis, and sub-pellicular microtubule arrays in T. brucei. The methods were able to stitch microtubules across section boundaries in good agreement with experts' opinions for the spindle samples. Results, however, were not satisfactory for the microtubule arrays. For certain experiments, such as an analysis of the spindle, the proposed methods can replace manual expert tracing and thus enable the analysis of microtubules over long distances with reasonable manual effort.
A study on the interplay between perturbative QCD and CSS/TMD formalism in SIDIS processes
DOE Office of Scientific and Technical Information (OSTI.GOV)
Boglione, M.; Gonzalez Hernandez, J. O.; Melis, S.
We study the Semi-Inclusive Deep Inelastic Scattering (SIDIS) cross section as a function of the transverse momentum, qT. In order to describe it over a wide region of qT, soft gluon resummation has to be performed. Here we will use the original Collins-Soper-Sterman (CSS) formalism; however, the same procedure would hold within the improved Transverse Momentum Dependent (TMD) framework. We study the matching between the region where fixed order perturbative QCD can successfully be applied and the region where soft gluon resummation is necessary. We find that the commonly used prescription of matching through the so-called Y-factor cannot be appliedmore » in the SIDIS kinematical configurations we examine. In particular, the non-perturbative component of the resummed cross section turns out to play a crucial role and should not be overlooked even at relatively high energies. As a result, the perturbative expansion of the resummed cross section in the matching region is not as reliable as it is usually believed and its treatment requires special attention.« less
A study on the interplay between perturbative QCD and CSS/TMD formalism in SIDIS processes
NASA Astrophysics Data System (ADS)
Boglione, M.; Gonzalez Hernandez, J. O.; Melis, S.; Prokudin, A.
2015-02-01
We study the Semi-Inclusive Deep Inelastic Scattering (SIDIS) cross section as a function of the transverse momentum, q T . In order to describe it over a wide region of q T , soft gluon resummation has to be performed. Here we will use the original Collins-Soper-Sterman (CSS) formalism; however, the same procedure would hold within the improved Transverse Momentum Dependent (TMD) framework. We study the matching between the region where fixed order perturbative QCD can successfully be applied and the region where soft gluon resummation is necessary. We find that the commonly used prescription of matching through the so-called Y-factor cannot be applied in the SIDIS kinematical configurations we examine. In particular, the non-perturbative component of the resummed cross section turns out to play a crucial role and should not be overlooked even at relatively high energies. Moreover, the perturbative expansion of the resummed cross section in the matching region is not as reliable as it is usually believed and its treatment requires special attention.
26 CFR 1.401(m)-1 - Employee contributions and matching contributions.
Code of Federal Regulations, 2013 CFR
2013-04-01
... contributions—(i) In general. For purposes of section 401(m), this section and §§ 1.401(m)-2 through 1.401(m)-5...) Employee contributions—(i) In general. For purposes of section 401(m), this section and §§ 1.401(m)-2... requirements of section 401(m) will be met. Thus, the plan must provide for satisfaction of one of the specific...
34 CFR 648.7 - What is the institutional matching contribution?
Code of Federal Regulations, 2010 CFR
2010-07-01
... 34 Education 3 2010-07-01 2010-07-01 false What is the institutional matching contribution? 648.7 Section 648.7 Education Regulations of the Offices of the Department of Education (Continued) OFFICE OF POSTSECONDARY EDUCATION, DEPARTMENT OF EDUCATION GRADUATE ASSISTANCE IN AREAS OF NATIONAL NEED General § 648.7...
34 CFR 648.7 - What is the institutional matching contribution?
Code of Federal Regulations, 2011 CFR
2011-07-01
... 34 Education 3 2011-07-01 2011-07-01 false What is the institutional matching contribution? 648.7 Section 648.7 Education Regulations of the Offices of the Department of Education (Continued) OFFICE OF POSTSECONDARY EDUCATION, DEPARTMENT OF EDUCATION GRADUATE ASSISTANCE IN AREAS OF NATIONAL NEED General § 648.7...
34 CFR 648.7 - What is the institutional matching contribution?
Code of Federal Regulations, 2014 CFR
2014-07-01
... 34 Education 3 2014-07-01 2014-07-01 false What is the institutional matching contribution? 648.7 Section 648.7 Education Regulations of the Offices of the Department of Education (Continued) OFFICE OF POSTSECONDARY EDUCATION, DEPARTMENT OF EDUCATION GRADUATE ASSISTANCE IN AREAS OF NATIONAL NEED General § 648.7...
34 CFR 648.7 - What is the institutional matching contribution?
Code of Federal Regulations, 2013 CFR
2013-07-01
... 34 Education 3 2013-07-01 2013-07-01 false What is the institutional matching contribution? 648.7 Section 648.7 Education Regulations of the Offices of the Department of Education (Continued) OFFICE OF POSTSECONDARY EDUCATION, DEPARTMENT OF EDUCATION GRADUATE ASSISTANCE IN AREAS OF NATIONAL NEED General § 648.7...
34 CFR 648.7 - What is the institutional matching contribution?
Code of Federal Regulations, 2012 CFR
2012-07-01
... 34 Education 3 2012-07-01 2012-07-01 false What is the institutional matching contribution? 648.7 Section 648.7 Education Regulations of the Offices of the Department of Education (Continued) OFFICE OF POSTSECONDARY EDUCATION, DEPARTMENT OF EDUCATION GRADUATE ASSISTANCE IN AREAS OF NATIONAL NEED General § 648.7...
Code of Federal Regulations, 2010 CFR
2010-04-01
... 24 Housing and Urban Development 1 2010-04-01 2010-04-01 false Match credit. 92.221 Section 92.221 Housing and Urban Development Office of the Secretary, Department of Housing and Urban Development HOME... grant equivalent of a below-market interest rate loan is credited at the time of the loan closing. (3...
32 CFR 34.13 - Cost sharing or matching.
Code of Federal Regulations, 2013 CFR
2013-07-01
... 32 National Defense 1 2013-07-01 2013-07-01 false Cost sharing or matching. 34.13 Section 34.13 National Defense Department of Defense OFFICE OF THE SECRETARY OF DEFENSE DoD GRANT AND AGREEMENT... proper and efficient accomplishment of project or program objectives. (4) They are allowable under § 34...
32 CFR 34.13 - Cost sharing or matching.
Code of Federal Regulations, 2014 CFR
2014-07-01
... 32 National Defense 1 2014-07-01 2014-07-01 false Cost sharing or matching. 34.13 Section 34.13 National Defense Department of Defense OFFICE OF THE SECRETARY OF DEFENSE DoD GRANT AND AGREEMENT... proper and efficient accomplishment of project or program objectives. (4) They are allowable under § 34...
32 CFR 34.13 - Cost sharing or matching.
Code of Federal Regulations, 2012 CFR
2012-07-01
... 32 National Defense 1 2012-07-01 2012-07-01 false Cost sharing or matching. 34.13 Section 34.13 National Defense Department of Defense OFFICE OF THE SECRETARY OF DEFENSE DoD GRANT AND AGREEMENT... proper and efficient accomplishment of project or program objectives. (4) They are allowable under § 34...
32 CFR 34.13 - Cost sharing or matching.
Code of Federal Regulations, 2011 CFR
2011-07-01
... 32 National Defense 1 2011-07-01 2011-07-01 false Cost sharing or matching. 34.13 Section 34.13 National Defense Department of Defense OFFICE OF THE SECRETARY OF DEFENSE DoD GRANT AND AGREEMENT... proper and efficient accomplishment of project or program objectives. (4) They are allowable under § 34...
32 CFR 34.13 - Cost sharing or matching.
Code of Federal Regulations, 2010 CFR
2010-07-01
... 32 National Defense 1 2010-07-01 2010-07-01 false Cost sharing or matching. 34.13 Section 34.13 National Defense Department of Defense OFFICE OF THE SECRETARY OF DEFENSE DoD GRANT AND AGREEMENT... proper and efficient accomplishment of project or program objectives. (4) They are allowable under § 34...
Code of Federal Regulations, 2013 CFR
2013-01-01
... eligibility under 11 CFR 9033.8. (4) Taxes. Federal income taxes paid by the committee on non-exempt function...; examples of qualified campaign expenses and non-qualified campaign expenses. 9034.4 Section 9034.4 Federal Elections FEDERAL ELECTION COMMISSION PRESIDENTIAL ELECTION CAMPAIGN FUND: PRESIDENTIAL PRIMARY MATCHING...
Code of Federal Regulations, 2011 CFR
2011-01-01
... eligibility under 11 CFR 9033.8. (4) Taxes. Federal income taxes paid by the committee on non-exempt function...; examples of qualified campaign expenses and non-qualified campaign expenses. 9034.4 Section 9034.4 Federal Elections FEDERAL ELECTION COMMISSION PRESIDENTIAL ELECTION CAMPAIGN FUND: PRESIDENTIAL PRIMARY MATCHING...
Code of Federal Regulations, 2012 CFR
2012-01-01
... eligibility under 11 CFR 9033.8. (4) Taxes. Federal income taxes paid by the committee on non-exempt function...; examples of qualified campaign expenses and non-qualified campaign expenses. 9034.4 Section 9034.4 Federal Elections FEDERAL ELECTION COMMISSION PRESIDENTIAL ELECTION CAMPAIGN FUND: PRESIDENTIAL PRIMARY MATCHING...
Code of Federal Regulations, 2014 CFR
2014-01-01
... eligibility under 11 CFR 9033.8. (4) Taxes. Federal income taxes paid by the committee on non-exempt function...; examples of qualified campaign expenses and non-qualified campaign expenses. 9034.4 Section 9034.4 Federal Elections FEDERAL ELECTION COMMISSION PRESIDENTIAL ELECTION CAMPAIGN FUND: PRESIDENTIAL PRIMARY MATCHING...
Code of Federal Regulations, 2010 CFR
2010-01-01
... eligibility under 11 CFR 9033.8. (4) Taxes. Federal income taxes paid by the committee on non-exempt function...; examples of qualified campaign expenses and non-qualified campaign expenses. 9034.4 Section 9034.4 Federal Elections FEDERAL ELECTION COMMISSION PRESIDENTIAL ELECTION CAMPAIGN FUND: PRESIDENTIAL PRIMARY MATCHING...
34 CFR 694.7 - What are the matching requirements for a GEAR UP Partnership?
Code of Federal Regulations, 2010 CFR
2010-07-01
... 34 Education 3 2010-07-01 2010-07-01 false What are the matching requirements for a GEAR UP Partnership? 694.7 Section 694.7 Education Regulations of the Offices of the Department of Education (Continued) OFFICE OF POSTSECONDARY EDUCATION, DEPARTMENT OF EDUCATION GAINING EARLY AWARENESS AND READINESS...
Bok, Doo Hee; Kim, Jihye; Kim, Tae-Hwan
2017-02-01
To compare MRI-defined back muscle volume between AS patients and age, and spinopelvic alignment matched control patients with chronic back pain. 51 male patients with AS were enrolled. Age and spinopelvic alignment matched controls (male) were found among non-AS patients with chronic back pain. After matching procedure, fully matched controls were found in 31 of 51 AS patients (60.8%), who represent AS patients without deformity. However, matched controls were not found in 20 of 51 AS patients (39.2%), who represent AS patients with deformity. MRI parameters of back muscle (paraspinal muscle and psoas muscle) at L4/5 disc level including cross-sectional area (CSA) and fat-free cross-sectional area (FCSA) were compared between AS patients and matched controls. Covariates, including BMI, self-reported physical activity, and the presence of chronic disease, which can influence back muscle volume, were also investigated. There were no statistical differences in age, body mass index, score of back pain (NRS), and spinopelvic alignment, and physical activity between matched AS patients and control patients except for duration of back pain. All MRI parameters for paraspinal muscle volume in matched AS patients (without deformity) were significantly less than those of control patients, and significantly larger than those of non-matched AS patients (with deformity). Body size adjusted MRI parameters (relative CSA and relative FCSA) of paraspinal muscle showed strong correlations with lumbar lordosis and sacral slope. Such relationship between paraspinal muscle and spinopelvic parameters remained significant even after multivariate adjustment. AS patients without deformity already have decreased paraspinal muscle volume compared with age and spinopelvic alignment matched non-AS patients with chronic back pain. Such decrease in paraspinal muscle volume was significantly associated with kyphotic deformity of AS patients even after multivariate adjustment. Although the result of our study supports the causal relationship between muscle degeneration and kyphotic deformity in AS patients, further study is required to prove the causality.
24-Way Radial Power Combiner/Divider for 31 to 36 GHz
NASA Technical Reports Server (NTRS)
Epp, Larry; Hoppe, Daniel; Khan, Abdur; Kelley, Daniel
2008-01-01
The figure shows a prototype radial power-combining waveguide structure, capable of operation at frequencies from 31 to 36 GHz, that features an unusually large number (N = 24) of combining (input) ports. The combination of wide-band operation and large N is achieved by incorporating several enhancements over a basic radial power-combiner design. In addition, the structure can be operated as a power divider by reversing the roles of the input and output ports. In this structure, full-height waveguides at the combining ports are matched in impedance to reduced-height radial waveguides inside the combiner base. This match is effected by impedance-transforming stepped waveguide sections. This matching scheme is essential to achievement of large N because N is limited by the height of the waveguides in the base. Power is coupled from the 24 reduced- height radial waveguides into the TE01 mode of a circular waveguide in the base with the help of a matching post at the bottom of the base. ( TE signifies transverse electric, the first subscript is the azimuthal mode number, and the second subscript is the radial mode number.) More specifically, the matching post matches the reflections from the walls of the 24 reduced-height waveguides and enables the base design to exceed the bandwidth requirement. After propagating along the circular waveguide, the combined power is coupled, via a mode transducer, to a rectangular waveguide output port. The mode transducer is divided into three sections, each sized and shaped as part of an overall design to satisfy the mode-conversion and output-coupling requirements while enabling the circular waveguide to be wide enough for combining the 24 inputs over the frequency range of 31 to 36 GHz. During the design process, it was found that two different rectangular waveguide outputs could be accommodated through modification of only the first section of the mode converter, thereby enabling operation in multiple frequency ranges.
Jones, Kelly W; Lewis, David J
2015-01-01
Deforestation and conversion of native habitats continues to be the leading driver of biodiversity and ecosystem service loss. A number of conservation policies and programs are implemented--from protected areas to payments for ecosystem services (PES)--to deter these losses. Currently, empirical evidence on whether these approaches stop or slow land cover change is lacking, but there is increasing interest in conducting rigorous, counterfactual impact evaluations, especially for many new conservation approaches, such as PES and REDD, which emphasize additionality. In addition, several new, globally available and free high-resolution remote sensing datasets have increased the ease of carrying out an impact evaluation on land cover change outcomes. While the number of conservation evaluations utilizing 'matching' to construct a valid control group is increasing, the majority of these studies use simple differences in means or linear cross-sectional regression to estimate the impact of the conservation program using this matched sample, with relatively few utilizing fixed effects panel methods--an alternative estimation method that relies on temporal variation in the data. In this paper we compare the advantages and limitations of (1) matching to construct the control group combined with differences in means and cross-sectional regression, which control for observable forms of bias in program evaluation, to (2) fixed effects panel methods, which control for observable and time-invariant unobservable forms of bias, with and without matching to create the control group. We then use these four approaches to estimate forest cover outcomes for two conservation programs: a PES program in Northeastern Ecuador and strict protected areas in European Russia. In the Russia case we find statistically significant differences across estimators--due to the presence of unobservable bias--that lead to differences in conclusions about effectiveness. The Ecuador case illustrates that if time-invariant unobservables are not present, matching combined with differences in means or cross-sectional regression leads to similar estimates of program effectiveness as matching combined with fixed effects panel regression. These results highlight the importance of considering observable and unobservable forms of bias and the methodological assumptions across estimators when designing an impact evaluation of conservation programs.
ERIC Educational Resources Information Center
Lewis, Wanda B.; Stamm, Michael J.
An eighth grade social studies unit on Maryland state and local governments contains three sections. In the first section, a two-column chart matches grade level objectives related to Maryland governments to specific activities discussed in the next section. A content outline is divided into sections on introductory materials, including vocabulary…
Xiao, Fanrong; Yang, Canchao; Shi, Haitao; Wang, Jichao; Sun, Liang; Lin, Liu
2016-10-01
Background matching is an important way to camouflage and is widespread among animals. In the field, however, few studies have addressed background matching, and there has been no reported camouflage efficiency in freshwater turtles. Background matching and camouflage efficiency of the four-eyed turtle, Sacalia quadriocellata, among three microhabitat sections of Hezonggou stream were investigated by measuring carapace components of CIE L*a*b* (International Commission on Illumination; lightness, red/green and yellow/blue) color space, and scoring camouflage efficiency through the use of humans as predators. The results showed that the color difference (ΔE), lightness difference (ΔL(*)), and chroma difference (Δa(*)b(*)) between carapace and the substrate background in midstream were significantly lower than that upstream and downstream, indicating that the four-eyed turtle carapace color most closely matched the substrate of midstream. In line with these findings, the camouflage efficiency was the best for the turtles that inhabit midstream. These results suggest that the four-eyed turtles may enhance camouflage efficiency by selecting microhabitat that best match their carapace color. This finding may explain the high population density of the four-eyed turtle in the midstream section of Hezonggou stream. To the best of our knowledge, this study is among the first to quantify camouflage of freshwater turtles in the wild, laying the groundwork to further study the function and mechanisms of turtle camouflage. Copyright © 2016. Published by Elsevier B.V.
Federal Register 2010, 2011, 2012, 2013, 2014
2013-06-05
... Amending NYSE MKT Rule 980NY, To Remove Provisions Governing How the Complex Matching Engine Handles Electronic Complex Orders That Contain a Stock Leg May 30, 2013. Pursuant to Section 19(b)(1)\\1\\ of the... governing how the Complex Matching Engine (``CME'') handles Electronic Complex Orders that contain a stock...
NASA Technical Reports Server (NTRS)
Wingate, Robert J.
2012-01-01
After the launch scrub of Space Shuttle mission STS-133 on November 5, 2010, large cracks were discovered in two of the External Tank intertank stringers. The NASA Marshall Space Flight Center, as managing center for the External Tank Project, coordinated the ensuing failure investigation and repair activities with several organizations, including the manufacturer, Lockheed Martin. To support the investigation, the Marshall Space Flight Center formed an ad-hoc stress analysis team to complement the efforts of Lockheed Martin. The team undertook six major efforts to analyze or test the structural behavior of the stringers. Extensive finite element modeling was performed to characterize the local stresses in the stringers near the region of failure. Data from a full-scale tanking test and from several subcomponent static load tests were used to confirm the analytical conclusions. The analysis and test activities of the team are summarized. The root cause of the stringer failures and the flight readiness rationale for the repairs that were implemented are discussed.
Space Transportation System (STS)-117 External Tank (ET)-124 Hail Damage Repair Assessment
NASA Technical Reports Server (NTRS)
Wilson, Timmy R.; Gentz, Steven J.; Barth, Timothy S.; Minute, Stephen A.; Flowers, Cody P.; Hamilton, David A.; Null, Cynthia H.; Schafer, Charles F.
2009-01-01
Severe thunderstorms with associated hail and high winds struck the STS-117 stack on February 26, 2007. Peak winds were recorded at 62 knots with hail sizes ranging from 0.3 inch to 0.8 inch in diameter. As a result of the storm, the North Carolina Foam Institute (NCFI) type 24-124 Thermal Protection System (TPS) foam on the liquid oxygen (LO2) ogive acreage incurred significant impact damage. The NCFI on the ET intertank and the liquid hydrogen (LH2) acreage sustained hail damage. The Polymer Development Laboratory (PDL)-1034 foam of the LO2 ice frost ramps (IFRs) and the Super-Lightweight Ablator (SLA) of the LO2 cable tray also suffered minor damage. NASA Engineering and Safety Center (NESC) was asked to assess the technical feasibility of repairing the ET TPS, the reasonableness of conducting those repairs with the vehicle in a vertical, integrated configuration at the Kennedy Space Center (KSC) Vehicle Assemble Building (VAB), and to address attendant human factors considerations including worker fatigue and the potential for error. The outcome of the assessment is recorded in this document.
2010-12-21
CAPE CANAVERAL, Fla. -- The moon shines brightly over space shuttle Discovery following a total lunar eclipse as the spacecraft waits to roll back from Launch Pad 39A to the Vehicle Assembly Building (VAB) at NASA's Kennedy Space Center in Florida. The move was scheduled for 12:30 a.m., but was postponed until 10 p.m. so technicians could resolve an issue with a leveling system on the crawler-transporter. Once inside the VAB, Discovery's external fuel tank will be examined and foam reapplied where 89 sensors were installed on the tank's aluminum skin for an instrumented tanking test on Dec. 17. The sensors were used to measure changes in the tank as super-cold propellants were pumped in and drained out. Data and analysis from the test will be used to determine what caused the tops of two, 21-foot-long support beams, called stringers, on the outside of the intertank to crack during fueling on Nov. 5. Discovery's next launch opportunity is no earlier than Feb. 3, 2011. For more information on STS-133, visit www.nasa.gov/mission_pages/shuttle/shuttlemissions/sts133/. Photo credit: NASA/Kim Shiflett
2010-12-21
CAPE CANAVERAL, Fla. -- Space shuttle Discovery awaits its move, called rollback, from Launch Pad 39A to the Vehicle Assembly Building (VAB) at NASA's Kennedy Space Center in Florida. Rollback was scheduled for 12:30 a.m., but was postponed until 10 p.m. so technicians could resolve an issue with a leveling system on the crawler-transporter, which is in front of the shuttle. Once inside the VAB, Discovery's external fuel tank will be examined and foam reapplied where 89 sensors were installed on the tank's aluminum skin for an instrumented tanking test on Dec. 17. The sensors were used to measure changes in the tank as super-cold propellants were pumped in and drained out. Data and analysis from the test will be used to determine what caused the tops of two, 21-foot-long support beams, called stringers, on the outside of the intertank to crack during fueling on Nov. 5. Discovery's next launch opportunity to the International Space Station on the STS-133 mission is no earlier than Feb. 3, 2011. For more information on STS-133, visit www.nasa.gov/mission_pages/shuttle/shuttlemissions/sts133/. Photo credit: NASA/Frank Michaux
2010-12-21
CAPE CANAVERAL, Fla. -- Space shuttle Discovery awaits its move, called rollback, from Launch Pad 39A to the Vehicle Assembly Building (VAB) at NASA's Kennedy Space Center in Florida. Rollback was scheduled for 12:30 a.m., but was postponed until 10 p.m. so technicians could resolve an issue with a leveling system on the crawler-transporter, which is in front of the shuttle. Once inside the VAB, Discovery's external fuel tank will be examined and foam reapplied where 89 sensors were installed on the tank's aluminum skin for an instrumented tanking test on Dec. 17. The sensors were used to measure changes in the tank as super-cold propellants were pumped in and drained out. Data and analysis from the test will be used to determine what caused the tops of two, 21-foot-long support beams, called stringers, on the outside of the intertank to crack during fueling on Nov. 5. Discovery's next launch opportunity to the International Space Station on the STS-133 mission is no earlier than Feb. 3, 2011. For more information on STS-133, visit www.nasa.gov/mission_pages/shuttle/shuttlemissions/sts133/. Photo credit: NASA/Frank Michaux
2010-12-21
CAPE CANAVERAL, Fla. -- Space shuttle Discovery awaits its move, called rollback, from Launch Pad 39A to the Vehicle Assembly Building (VAB) at NASA's Kennedy Space Center in Florida. Rollback was scheduled for 12:30 a.m., but was postponed until 10 p.m. so technicians could resolve an issue with a leveling system on the crawler-transporter. Once inside the VAB, Discovery's external fuel tank will be examined and foam reapplied where 89 sensors were installed on the tank's aluminum skin for an instrumented tanking test on Dec. 17. The sensors were used to measure changes in the tank as super-cold propellants were pumped in and drained out. Data and analysis from the test will be used to determine what caused the tops of two, 21-foot-long support beams, called stringers, on the outside of the intertank to crack during fueling on Nov. 5. Discovery's next launch opportunity to the International Space Station on the STS-133 mission is no earlier than Feb. 3, 2011. For more information on STS-133, visit www.nasa.gov/mission_pages/shuttle/shuttlemissions/sts133/. Photo credit: NASA/Frank Michaux
2010-12-21
CAPE CANAVERAL, Fla. -- The beginning of a total lunar eclipse hovers over the top of space shuttle Discovery as the spacecraft waits to roll back from Launch Pad 39A to the Vehicle Assembly Building (VAB) at NASA's Kennedy Space Center in Florida. The move was scheduled for 12:30 a.m., but was postponed until 10 p.m. so technicians could resolve an issue with a leveling system on the crawler-transporter. Once inside the VAB, Discovery's external fuel tank will be examined and foam reapplied where 89 sensors were installed on the tank's aluminum skin for an instrumented tanking test on Dec. 17. The sensors were used to measure changes in the tank as super-cold propellants were pumped in and drained out. Data and analysis from the test will be used to determine what caused the tops of two, 21-foot-long support beams, called stringers, on the outside of the intertank to crack during fueling on Nov. 5. Discovery's next launch opportunity is no earlier than Feb. 3, 2011. For more information on STS-133, visit www.nasa.gov/mission_pages/shuttle/shuttlemissions/sts133/. Photo credit: NASA/Kim Shiflett
2010-12-21
CAPE CANAVERAL, Fla. -- Space shuttle Discovery awaits its move, called rollback, from Launch Pad 39A to the Vehicle Assembly Building (VAB) at NASA's Kennedy Space Center in Florida. Rollback was scheduled for 12:30 a.m., but was postponed until 10 p.m. so technicians could resolve an issue with a leveling system on the crawler-transporter, which is in front of the shuttle. Once inside the VAB, Discovery's external fuel tank will be examined and foam reapplied where 89 sensors were installed on the tank's aluminum skin for an instrumented tanking test on Dec. 17. The sensors were used to measure changes in the tank as super-cold propellants were pumped in and drained out. Data and analysis from the test will be used to determine what caused the tops of two, 21-foot-long support beams, called stringers, on the outside of the intertank to crack during fueling on Nov. 5. Discovery's next launch opportunity to the International Space Station on the STS-133 mission is no earlier than Feb. 3, 2011. For more information on STS-133, visit www.nasa.gov/mission_pages/shuttle/shuttlemissions/sts133/. Photo credit: NASA/Frank Michaux
2010-12-21
CAPE CANAVERAL, Fla. -- The moon shines brightly over space shuttle Discovery following a total lunar eclipse as the spacecraft waits to roll back from Launch Pad 39A to the Vehicle Assembly Building (VAB) at NASA's Kennedy Space Center in Florida. The move was scheduled for 12:30 a.m., but was postponed until 10 p.m. so technicians could resolve an issue with a leveling system on the crawler-transporter. Once inside the VAB, Discovery's external fuel tank will be examined and foam reapplied where 89 sensors were installed on the tank's aluminum skin for an instrumented tanking test on Dec. 17. The sensors were used to measure changes in the tank as super-cold propellants were pumped in and drained out. Data and analysis from the test will be used to determine what caused the tops of two, 21-foot-long support beams, called stringers, on the outside of the intertank to crack during fueling on Nov. 5. Discovery's next launch opportunity is no earlier than Feb. 3, 2011. For more information on STS-133, visit www.nasa.gov/mission_pages/shuttle/shuttlemissions/sts133/. Photo credit: NASA/Kim Shiflett
2010-12-21
CAPE CANAVERAL, Fla. -- Space shuttle Discovery shares the stage with the moon following a total lunar eclipse as the spacecraft waits to roll back from Launch Pad 39A to the Vehicle Assembly Building (VAB) at NASA's Kennedy Space Center in Florida. The move was scheduled for 12:30 a.m., but was postponed until 10 p.m. so technicians could resolve an issue with a leveling system on the crawler-transporter. Once inside the VAB, Discovery's external fuel tank will be examined and foam reapplied where 89 sensors were installed on the tank's aluminum skin for an instrumented tanking test on Dec. 17. The sensors were used to measure changes in the tank as super-cold propellants were pumped in and drained out. Data and analysis from the test will be used to determine what caused the tops of two, 21-foot-long support beams, called stringers, on the outside of the intertank to crack during fueling on Nov. 5. Discovery's next launch opportunity is no earlier than Feb. 3, 2011. For more information on STS-133, visit www.nasa.gov/mission_pages/shuttle/shuttlemissions/sts133/. Photo credit: NASA/Kim Shiflett
2011-02-20
CAPE CANAVERAL, Fla. -- At NASA's Kennedy Space Center in Florida, space shuttle Discovery's STS-133 Commander Steve Lindsey arrives on the Shuttle Landing Facility runway aboard a T-38 jet. In the days leading up to their launch to the International Space Station, Lindsey and his crew members will check the fit of their launch-and-entry suits, review launch-day procedures, receive weather briefings and remain medically quarantined to prevent sickness. This will be the second launch attempt for Discovery's crew, following a scrub in November 2010 due to a hydrogen gas leak at the ground umbilical carrier plate (GUCP) as well as modifications to the external fuel tank's intertank support beams, called stringers. Scheduled to lift off Feb. 24 at 4:50 p.m. EST, Discovery and its crew will deliver the Permanent Multipurpose Module, packed with supplies and critical spare parts, as well as Robonaut 2, the dexterous humanoid astronaut helper, to the orbiting outpost. For more information on the STS-133 mission, visit www.nasa.gov/mission_pages/shuttle/shuttlemissions/sts133/. Photo credit: NASA/Kim Shiflett
2011-02-20
CAPE CANAVERAL, Fla. -- At NASA's Kennedy Space Center in Florida, space shuttle Discovery's STS-133 Pilot Eric Boe arrives on the Shuttle Landing Facility runway aboard a T-38 jet. In the days leading up to their launch to the International Space Station, Boe and his crew members will check the fit of their launch-and-entry suits, review launch-day procedures, receive weather briefings and remain medically quarantined to prevent sickness. This will be the second launch attempt for Discovery's crew, following a scrub in November 2010 due to a hydrogen gas leak at the ground umbilical carrier plate (GUCP) as well as modifications to the external fuel tank's intertank support beams, called stringers. Scheduled to lift off Feb. 24 at 4:50 p.m. EST, Discovery and its crew will deliver the Permanent Multipurpose Module, packed with supplies and critical spare parts, as well as Robonaut 2, the dexterous humanoid astronaut helper, to the orbiting outpost. For more information on the STS-133 mission, visit www.nasa.gov/mission_pages/shuttle/shuttlemissions/sts133/. Photo credit: NASA/Kim Shiflett
2011-02-20
CAPE CANAVERAL, Fla. -- At NASA's Kennedy Space Center in Florida, space shuttle Discovery's STS-133 Mission Specialist Michael Barratt arrives on the Shuttle Landing Facility runway aboard a T-38 jet. In the days leading up to their launch to the International Space Station, Barratt and his crew members will check the fit of their launch-and-entry suits, review launch-day procedures, receive weather briefings and remain medically quarantined to prevent sickness. This will be the second launch attempt for Discovery's crew, following a scrub in November 2010 due to a hydrogen gas leak at the ground umbilical carrier plate (GUCP) as well as modifications to the external fuel tank's intertank support beams, called stringers. Scheduled to lift off Feb. 24 at 4:50 p.m. EST, Discovery and its crew will deliver the Permanent Multipurpose Module, packed with supplies and critical spare parts, as well as Robonaut 2, the dexterous humanoid astronaut helper, to the orbiting outpost. For more information on the STS-133 mission, visit www.nasa.gov/mission_pages/shuttle/shuttlemissions/sts133/. Photo credit: NASA/Kim Shiflett
2011-02-20
CAPE CANAVERAL, Fla. -- At NASA's Kennedy Space Center in Florida, space shuttle Discovery's STS-133 Mission Specialist Nicole Stott arrives on the Shuttle Landing Facility runway aboard a T-38 jet. In the days leading up to their launch to the International Space Station, Stott and her crew members will check the fit of their launch-and-entry suits, review launch-day procedures, receive weather briefings and remain medically quarantined to prevent sickness. This will be the second launch attempt for Discovery's crew, following a scrub in November 2010 due to a hydrogen gas leak at the ground umbilical carrier plate (GUCP) as well as modifications to the external fuel tank's intertank support beams, called stringers. Scheduled to lift off Feb. 24 at 4:50 p.m. EST, Discovery and its crew will deliver the Permanent Multipurpose Module, packed with supplies and critical spare parts, as well as Robonaut 2, the dexterous humanoid astronaut helper, to the orbiting outpost. For more information on the STS-133 mission, visit www.nasa.gov/mission_pages/shuttle/shuttlemissions/sts133/. Photo credit: NASA/Kim Shiflett
2011-02-20
CAPE CANAVERAL, Fla. -- At NASA's Kennedy Space Center in Florida, space shuttle Discovery's STS-133 Mission Specialist Michael Barratt greets NASA Administrator Charlie Bolden, left, and Kennedy Center Director Bob Cabana on the Shuttle Landing Facility runway after arriving aboard a T-38 jet. In the days leading up to their launch to the International Space Station, Barratt and his crew members will check the fit of their launch-and-entry suits, review launch-day procedures, receive weather briefings and remain medically quarantined to prevent sickness. This will be the second launch attempt for Discovery's crew, following a scrub in November 2010 due to a hydrogen gas leak at the ground umbilical carrier plate (GUCP) as well as modifications to the external fuel tank's intertank support beams, called stringers. Scheduled to lift off Feb. 24 at 4:50 p.m. EST, Discovery and its crew will deliver the Permanent Multipurpose Module, packed with supplies and critical spare parts, as well as Robonaut 2, the dexterous humanoid astronaut helper, to the orbiting outpost. For more information on the STS-133 mission, visit www.nasa.gov/mission_pages/shuttle/shuttlemissions/sts133/. Photo credit: NASA/Kim Shiflett
2011-02-20
CAPE CANAVERAL, Fla. -- At NASA's Kennedy Space Center in Florida, space shuttle Discovery's STS-133 Commander Steve Lindsey talks with NASA Administrator Charlie Bolden and Kennedy Center Director Bob Cabana on the Shuttle Landing Facility runway after arriving aboard a T-38 jet. In the days leading up to their launch to the International Space Station, Lindsey and his crew members will check the fit of their launch-and-entry suits, review launch-day procedures, receive weather briefings and remain medically quarantined to prevent sickness. This will be the second launch attempt for Discovery's crew, following a scrub in November 2010 due to a hydrogen gas leak at the ground umbilical carrier plate (GUCP) as well as modifications to the external fuel tank's intertank support beams, called stringers. Scheduled to lift off Feb. 24 at 4:50 p.m. EST, Discovery and its crew will deliver the Permanent Multipurpose Module, packed with supplies and critical spare parts, as well as Robonaut 2, the dexterous humanoid astronaut helper, to the orbiting outpost. For more information on the STS-133 mission, visit www.nasa.gov/mission_pages/shuttle/shuttlemissions/sts133/. Photo credit: NASA/Kim Shiflett
2011-02-20
CAPE CANAVERAL, Fla. -- At NASA's Kennedy Space Center in Florida, space shuttle Discovery's STS-133 Pilot Eric Boe chats with NASA Administrator Charlie Bolden on the Shuttle Landing Facility runway after arriving aboard a T-38 jet. In the days leading up to their launch to the International Space Station, Boe and his crew members will check the fit of their launch-and-entry suits, review launch-day procedures, receive weather briefings and remain medically quarantined to prevent sickness. This will be the second launch attempt for Discovery's crew, following a scrub in November 2010 due to a hydrogen gas leak at the ground umbilical carrier plate (GUCP) as well as modifications to the external fuel tank's intertank support beams, called stringers. Scheduled to lift off Feb. 24 at 4:50 p.m. EST, Discovery and its crew will deliver the Permanent Multipurpose Module, packed with supplies and critical spare parts, as well as Robonaut 2, the dexterous humanoid astronaut helper, to the orbiting outpost. For more information on the STS-133 mission, visit www.nasa.gov/mission_pages/shuttle/shuttlemissions/sts133/. Photo credit: NASA/Kim Shiflett
2011-02-20
CAPE CANAVERAL, Fla. -- At NASA's Kennedy Space Center in Florida, space shuttle Discovery's STS-133 Pilot Eric Boe talks with Kennedy Center Director Bob Cabana on the Shuttle Landing Facility runway after arriving aboard a T-38 jet. In the days leading up to their launch to the International Space Station, Boe and his crew members will check the fit of their launch-and-entry suits, review launch-day procedures, receive weather briefings and remain medically quarantined to prevent sickness. This will be the second launch attempt for Discovery's crew, following a scrub in November 2010 due to a hydrogen gas leak at the ground umbilical carrier plate (GUCP) as well as modifications to the external fuel tank's intertank support beams, called stringers. Scheduled to lift off Feb. 24 at 4:50 p.m. EST, Discovery and its crew will deliver the Permanent Multipurpose Module, packed with supplies and critical spare parts, as well as Robonaut 2, the dexterous humanoid astronaut helper, to the orbiting outpost. For more information on the STS-133 mission, visit www.nasa.gov/mission_pages/shuttle/shuttlemissions/sts133/. Photo credit: NASA/Kim Shiflett
2011-02-20
CAPE CANAVERAL, Fla. -- At NASA's Kennedy Space Center in Florida, space shuttle Discovery's STS-133 Mission Specialist Alvin Drew greets Kennedy Center Director Bob Cabana on the Shuttle Landing Facility runway after arriving aboard a T-38 jet. In the days leading up to their launch to the International Space Station, Drew and his crew members will check the fit of their launch-and-entry suits, review launch-day procedures, receive weather briefings and remain medically quarantined to prevent sickness. This will be the second launch attempt for Discovery's crew, following a scrub in November 2010 due to a hydrogen gas leak at the ground umbilical carrier plate (GUCP) as well as modifications to the external fuel tank's intertank support beams, called stringers. Scheduled to lift off Feb. 24 at 4:50 p.m. EST, Discovery and its crew will deliver the Permanent Multipurpose Module, packed with supplies and critical spare parts, as well as Robonaut 2, the dexterous humanoid astronaut helper, to the orbiting outpost. For more information on the STS-133 mission, visit www.nasa.gov/mission_pages/shuttle/shuttlemissions/sts133/. Photo credit: NASA/Kim Shiflett
2011-02-20
CAPE CANAVERAL, Fla. -- At NASA's Kennedy Space Center in Florida, space shuttle Discovery's STS-133 Mission Specialist Alvin Drew arrives on the Shuttle Landing Facility runway aboard a T-38 jet. In the days leading up to their launch to the International Space Station, Drew and his crew members will check the fit of their launch-and-entry suits, review launch-day procedures, receive weather briefings and remain medically quarantined to prevent sickness. This will be the second launch attempt for Discovery's crew, following a scrub in November 2010 due to a hydrogen gas leak at the ground umbilical carrier plate (GUCP) as well as modifications to the external fuel tank's intertank support beams, called stringers. Scheduled to lift off Feb. 24 at 4:50 p.m. EST, Discovery and its crew will deliver the Permanent Multipurpose Module, packed with supplies and critical spare parts, as well as Robonaut 2, the dexterous humanoid astronaut helper, to the orbiting outpost. For more information on the STS-133 mission, visit www.nasa.gov/mission_pages/shuttle/shuttlemissions/sts133/. Photo credit: NASA/Kim Shiflett
NASA Technical Reports Server (NTRS)
Piascik, Robert S.
2011-01-01
Several cracks were detected in stringers located beneath the foam on the External Tank (ET) following the launch scrub of Space Transportation System (STS)-133 on November 5, 2010. The stringer material was aluminum-lithium (AL-Li) 2090-T83 fabricated from sheets that were nominally 0.064 inches thick. The mechanical properties of the stringer material were known to vary between different material lots, with the stringers from ET-137 (predominately lots 620853 and 620854) having the highest yield and ultimate stresses. Subsequent testing determined that these same lots also had the lowest fracture toughness properties. The NASA Engineering and Safety Center (NESC) supported the Space Shuttle Program (SSP)-led investigation. The objective of this investigation was to develop a database of test results to provide validation for structural analysis models, independently confirm test results obtained from other investigators, and determine the proximate cause of the anomalous low fracture toughness observed in stringer lots 620853 and 620854. This document contains the outcome of the investigation.
2010-12-17
CAPE CANAVERAL, Fla. -- Team members stationed at consoles in the Launch Control Center at NASA's Kennedy Space Center in Florida monitor space shuttle Discovery's external fuel tank as it is loaded with more than 535,000 gallons of cryogenic propellants. From left, are NASA Commentator Allard Beutel, Discovery's NASA Vehicle Manager Jennifer Nufer and Lead NASA Test Director Charlie Blackwell-Thompson. During today's tanking test, the team is paying particular attention to the external tank's ribbed intertank region. Beginning tomorrow, engineers will evaluate data on 21-foot-long, U-shaped aluminum brackets, called stringers, and the newly replaced ground umbilical carrier plate (GUCP). Discovery's first launch attempt for STS-133 was scrubbed in early November due to a hydrogen gas leak at the GUCP. In order to perform additional analysis on the tank, Discovery will be rolled back to the Vehicle Assembly Building, a move that is planned for next week. The next launch opportunity is no earlier than Feb. 3, 2011. For more information on STS-133, visit www.nasa.gov/mission_pages/shuttle/shuttlemissions/sts133/. Photo credit: NASA/Cory Huston
2010-12-17
CAPE CANAVERAL, Fla. -- Team members stationed at consoles in the Launch Control Center at NASA's Kennedy Space Center in Florida monitor space shuttle Discovery's external fuel tank as it is loaded with more than 535,000 gallons of cryogenic propellants. From back, are STS-133 Assistant NASA Test Director Jeff Spaulding, STS-133 NASA Test Director Steve Payne and Launch Orbiter Test Conductor John Kracsun. During today's tanking test, the team is paying particular attention to the external tank's ribbed intertank region. Beginning tomorrow, engineers will evaluate data on 21-foot-long, U-shaped aluminum brackets, called stringers, and the newly replaced ground umbilical carrier plate (GUCP). Discovery's first launch attempt for STS-133 was scrubbed in early November due to a hydrogen gas leak at the GUCP. In order to perform additional analysis on the tank, Discovery will be rolled back to the Vehicle Assembly Building, a move that is planned for next week. The next launch opportunity is no earlier than Feb. 3, 2011. For more information on STS-133, visit www.nasa.gov/mission_pages/shuttle/shuttlemissions/sts133/. Photo credit: NASA/Cory Huston
2010-12-17
CAPE CANAVERAL, Fla. -- The Final Inspection Team, also known as the Ice Team, gathers before heading out to Launch Pad 39A at NASA's Kennedy Space Center in Florida to inspect space shuttle Discovery's external fuel tank during the loading of more than 535,000 gallons of cryogenic propellants. During today's tanking test, the team members will pay particular attention to the external tank's ribbed intertank region and report their findings to engineers located in the Launch Control Center. Beginning tomorrow, engineers will evaluate data on 21-foot-long, U-shaped aluminum brackets, called stringers, and the newly replaced ground umbilical carrier plate (GUCP). Discovery's first launch attempt for STS-133 was scrubbed in early November due to a hydrogen gas leak at the GUCP. In order to perform additional analysis on the tank, Discovery will be rolled back to the Vehicle Assembly Building, a move that is planned for next week. The next launch opportunity is no earlier than Feb. 3, 2011. For more information on STS-133, visit www.nasa.gov/mission_pages/shuttle/shuttlemissions/sts133/. Photo credit: NASA/Cory Huston
2010-12-21
CAPE CANAVERAL, Fla. -- Space shuttle Discovery awaits its move, called rollback, from Launch Pad 39A to the Vehicle Assembly Building (VAB) at NASA's Kennedy Space Center in Florida. Rollback was scheduled for 12:30 a.m., but was postponed until 10 p.m. so technicians could resolve an issue with a leveling system on the crawler-transporter. Once inside the VAB, Discovery's external fuel tank will be examined and foam reapplied where 89 sensors were installed on the tank's aluminum skin for an instrumented tanking test on Dec. 17. The sensors were used to measure changes in the tank as super-cold propellants were pumped in and drained out. Data and analysis from the test will be used to determine what caused the tops of two, 21-foot-long support beams, called stringers, on the outside of the intertank to crack during fueling on Nov. 5. Discovery's next launch opportunity to the International Space Station on the STS-133 mission is no earlier than Feb. 3, 2011. For more information on STS-133, visit www.nasa.gov/mission_pages/shuttle/shuttlemissions/sts133/. Photo credit: NASA/Frank Michaux
2010-12-17
CAPE CANAVERAL, Fla. -- Team members stationed at consoles in the Launch Control Center at NASA's Kennedy Space Center in Florida monitor space shuttle Discovery's external fuel tank as it is loaded with more than 535,000 gallons of cryogenic propellants. From back, are STS-133 Assistant NASA Test Director Jeff Spaulding, STS-133 NASA Test Director Steve Payne, Launch Orbiter Test Conductor John Kracsun and Assistant Launch Orbiter Test Conductor Mark Taffet. During today's tanking test, the team is paying particular attention to the external tank's ribbed intertank region. Beginning tomorrow, engineers will evaluate data on 21-foot-long, U-shaped aluminum brackets, called stringers, and the newly replaced ground umbilical carrier plate (GUCP). Discovery's first launch attempt for STS-133 was scrubbed in early November due to a hydrogen gas leak at the GUCP. In order to perform additional analysis on the tank, Discovery will be rolled back to the Vehicle Assembly Building, a move that is planned for next week. The next launch opportunity is no earlier than Feb. 3, 2011. For more information on STS-133, visit www.nasa.gov/mission_pages/shuttle/shuttlemissions/sts133/. Photo credit: NASA/Cory Huston
2010-12-17
CAPE CANAVERAL, Fla. -- The Final Inspection Team, also known as the Ice Team, gathers before heading out to Launch Pad 39A at NASA's Kennedy Space Center in Florida to inspect space shuttle Discovery's external fuel tank during the loading of more than 535,000 gallons of cryogenic propellants. During today's tanking test, the team members will pay particular attention to the external tank's ribbed intertank region and report their findings to engineers located in the Launch Control Center. Beginning tomorrow, engineers will evaluate data on 21-foot-long, U-shaped aluminum brackets, called stringers, and the newly replaced ground umbilical carrier plate (GUCP). Discovery's first launch attempt for STS-133 was scrubbed in early November due to a hydrogen gas leak at the GUCP. In order to perform additional analysis on the tank, Discovery will be rolled back to the Vehicle Assembly Building, a move that is planned for next week. The next launch opportunity is no earlier than Feb. 3, 2011. For more information on STS-133, visit www.nasa.gov/mission_pages/shuttle/shuttlemissions/sts133/. Photo credit: NASA/Cory Huston
2010-12-21
CAPE CANAVERAL, Fla. -- Space shuttle Discovery awaits its move, called rollback, from Launch Pad 39A to the Vehicle Assembly Building (VAB) at NASA's Kennedy Space Center in Florida. Rollback was scheduled for 12:30 a.m., but was postponed until 10 p.m. so technicians could resolve an issue with a leveling system on the crawler-transporter. Once inside the VAB, Discovery's external fuel tank will be examined and foam reapplied where 89 sensors were installed on the tank's aluminum skin for an instrumented tanking test on Dec. 17. The sensors were used to measure changes in the tank as super-cold propellants were pumped in and drained out. Data and analysis from the test will be used to determine what caused the tops of two, 21-foot-long support beams, called stringers, on the outside of the intertank to crack during fueling on Nov. 5. Discovery's next launch opportunity to the International Space Station on the STS-133 mission is no earlier than Feb. 3, 2011. For more information on STS-133, visit www.nasa.gov/mission_pages/shuttle/shuttlemissions/sts133/. Photo credit: NASA/Frank Michaux
2010-12-21
CAPE CANAVERAL, Fla. -- Space shuttle Discovery awaits its move, called rollback, from Launch Pad 39A to the Vehicle Assembly Building (VAB) at NASA's Kennedy Space Center in Florida. Rollback was scheduled for 12:30 a.m., but was postponed until 10 p.m. so technicians could resolve an issue with a leveling system on the crawler-transporter, which is in front of the shuttle. Once inside the VAB, Discovery's external fuel tank will be examined and foam reapplied where 89 sensors were installed on the tank's aluminum skin for an instrumented tanking test on Dec. 17. The sensors were used to measure changes in the tank as super-cold propellants were pumped in and drained out. Data and analysis from the test will be used to determine what caused the tops of two, 21-foot-long support beams, called stringers, on the outside of the intertank to crack during fueling on Nov. 5. Discovery's next launch opportunity to the International Space Station on the STS-133 mission is no earlier than Feb. 3, 2011. For more information on STS-133, visit www.nasa.gov/mission_pages/shuttle/shuttlemissions/sts133/. Photo credit: NASA/Frank Michaux
2010-12-21
CAPE CANAVERAL, Fla. -- Space shuttle Discovery awaits its move, called rollback, from Launch Pad 39A to the Vehicle Assembly Building (VAB) at NASA's Kennedy Space Center in Florida. Rollback was scheduled for 12:30 a.m., but was postponed until 10 p.m. so technicians could resolve an issue with a leveling system on the crawler-transporter. Once inside the VAB, Discovery's external fuel tank will be examined and foam reapplied where 89 sensors were installed on the tank's aluminum skin for an instrumented tanking test on Dec. 17. The sensors were used to measure changes in the tank as super-cold propellants were pumped in and drained out. Data and analysis from the test will be used to determine what caused the tops of two, 21-foot-long support beams, called stringers, on the outside of the intertank to crack during fueling on Nov. 5. Discovery's next launch opportunity to the International Space Station on the STS-133 mission is no earlier than Feb. 3, 2011. For more information on STS-133, visit www.nasa.gov/mission_pages/shuttle/shuttlemissions/sts133/. Photo credit: NASA/Frank Michaux
2010-12-21
CAPE CANAVERAL, Fla. -- Space shuttle Discovery awaits its move, called rollback, from Launch Pad 39A to the Vehicle Assembly Building (VAB) at NASA's Kennedy Space Center in Florida. Rollback was scheduled for 12:30 a.m., but was postponed until 10 p.m. so technicians could resolve an issue with a leveling system on the crawler-transporter, which is in front of the shuttle. Once inside the VAB, Discovery's external fuel tank will be examined and foam reapplied where 89 sensors were installed on the tank's aluminum skin for an instrumented tanking test on Dec. 17. The sensors were used to measure changes in the tank as super-cold propellants were pumped in and drained out. Data and analysis from the test will be used to determine what caused the tops of two, 21-foot-long support beams, called stringers, on the outside of the intertank to crack during fueling on Nov. 5. Discovery's next launch opportunity to the International Space Station on the STS-133 mission is no earlier than Feb. 3, 2011. For more information on STS-133, visit www.nasa.gov/mission_pages/shuttle/shuttlemissions/sts133/. Photo credit: NASA/Frank Michaux
2010-12-21
CAPE CANAVERAL, Fla. -- Space shuttle Discovery awaits its move, called rollback, from Launch Pad 39A to the Vehicle Assembly Building (VAB) at NASA's Kennedy Space Center in Florida. Rollback was scheduled for 12:30 a.m., but was postponed until 10 p.m. so technicians could resolve an issue with a leveling system on the crawler-transporter. Once inside the VAB, Discovery's external fuel tank will be examined and foam reapplied where 89 sensors were installed on the tank's aluminum skin for an instrumented tanking test on Dec. 17. The sensors were used to measure changes in the tank as super-cold propellants were pumped in and drained out. Data and analysis from the test will be used to determine what caused the tops of two, 21-foot-long support beams, called stringers, on the outside of the intertank to crack during fueling on Nov. 5. Discovery's next launch opportunity to the International Space Station on the STS-133 mission is no earlier than Feb. 3, 2011. For more information on STS-133, visit www.nasa.gov/mission_pages/shuttle/shuttlemissions/sts133/. Photo credit: NASA/Frank Michaux
2010-12-21
CAPE CANAVERAL, Fla. -- The beginning of a total lunar eclipse illuminates the top of space shuttle Discovery as the spacecraft waits to roll back from Launch Pad 39A to the Vehicle Assembly Building (VAB) at NASA's Kennedy Space Center in Florida. The move was scheduled for 12:30 a.m., but was postponed until 10 p.m. so technicians could resolve an issue with a leveling system on the crawler-transporter. Once inside the VAB, Discovery's external fuel tank will be examined and foam reapplied where 89 sensors were installed on the tank's aluminum skin for an instrumented tanking test on Dec. 17. The sensors were used to measure changes in the tank as super-cold propellants were pumped in and drained out. Data and analysis from the test will be used to determine what caused the tops of two, 21-foot-long support beams, called stringers, on the outside of the intertank to crack during fueling on Nov. 5. Discovery's next launch opportunity is no earlier than Feb. 3, 2011. For more information on STS-133, visit www.nasa.gov/mission_pages/shuttle/shuttlemissions/sts133/. Photo credit: NASA/Kim Shiflett
2010-12-17
CAPE CANAVERAL, Fla. -- Team members stationed at consoles in the Launch Control Center at NASA's Kennedy Space Center in Florida monitor space shuttle Discovery's external fuel tank as it is loaded with more than 535,000 gallons of cryogenic propellants. From left, are STS-133 Assistant NASA Test Director Jeff Spaulding, NASA Test Director Jeremy Graeber and STS-133 NASA Test Director Steve Payne. During today's tanking test, the team is paying particular attention to the external tank's ribbed intertank region. Beginning tomorrow, engineers will evaluate data on 21-foot-long, U-shaped aluminum brackets, called stringers, and the newly replaced ground umbilical carrier plate (GUCP). Discovery's first launch attempt for STS-133 was scrubbed in early November due to a hydrogen gas leak at the GUCP. In order to perform additional analysis on the tank, Discovery will be rolled back to the Vehicle Assembly Building, a move that is planned for next week. The next launch opportunity is no earlier than Feb. 3, 2011. For more information on STS-133, visit www.nasa.gov/mission_pages/shuttle/shuttlemissions/sts133/. Photo credit: NASA/Cory Huston
2010-12-21
CAPE CANAVERAL, Fla. -- Space shuttle Discovery awaits its move, called rollback, from Launch Pad 39A to the Vehicle Assembly Building (VAB) at NASA's Kennedy Space Center in Florida. Rollback was scheduled for 12:30 a.m., but was postponed until 10 p.m. so technicians could resolve an issue with a leveling system on the crawler-transporter, which is in front of the shuttle. Once inside the VAB, Discovery's external fuel tank will be examined and foam reapplied where 89 sensors were installed on the tank's aluminum skin for an instrumented tanking test on Dec. 17. The sensors were used to measure changes in the tank as super-cold propellants were pumped in and drained out. Data and analysis from the test will be used to determine what caused the tops of two, 21-foot-long support beams, called stringers, on the outside of the intertank to crack during fueling on Nov. 5. Discovery's next launch opportunity to the International Space Station on the STS-133 mission is no earlier than Feb. 3, 2011. For more information on STS-133, visit www.nasa.gov/mission_pages/shuttle/shuttlemissions/sts133/. Photo credit: NASA/Frank Michaux
2010-12-21
CAPE CANAVERAL, Fla. -- The moon shines brightly over space shuttle Discovery following a total lunar eclipse as the spacecraft waits to roll back from Launch Pad 39A to the Vehicle Assembly Building (VAB) at NASA's Kennedy Space Center in Florida. The move was scheduled for 12:30 a.m., but was postponed until 10 p.m. so technicians could resolve an issue with a leveling system on the crawler-transporter. Once inside the VAB, Discovery's external fuel tank will be examined and foam reapplied where 89 sensors were installed on the tank's aluminum skin for an instrumented tanking test on Dec. 17. The sensors were used to measure changes in the tank as super-cold propellants were pumped in and drained out. Data and analysis from the test will be used to determine what caused the tops of two, 21-foot-long support beams, called stringers, on the outside of the intertank to crack during fueling on Nov. 5. Discovery's next launch opportunity is no earlier than Feb. 3, 2011. For more information on STS-133, visit www.nasa.gov/mission_pages/shuttle/shuttlemissions/sts133/. Photo credit: NASA/Kim Shiflett
2010-12-21
CAPE CANAVERAL, Fla. -- Space shuttle Discovery awaits its move, called rollback, from Launch Pad 39A to the Vehicle Assembly Building (VAB) at NASA's Kennedy Space Center in Florida. Rollback was scheduled for 12:30 a.m., but was postponed until 10 p.m. so technicians could resolve an issue with a leveling system on the crawler-transporter, which is in front of the shuttle. Once inside the VAB, Discovery's external fuel tank will be examined and foam reapplied where 89 sensors were installed on the tank's aluminum skin for an instrumented tanking test on Dec. 17. The sensors were used to measure changes in the tank as super-cold propellants were pumped in and drained out. Data and analysis from the test will be used to determine what caused the tops of two, 21-foot-long support beams, called stringers, on the outside of the intertank to crack during fueling on Nov. 5. Discovery's next launch opportunity to the International Space Station on the STS-133 mission is no earlier than Feb. 3, 2011. For more information on STS-133, visit www.nasa.gov/mission_pages/shuttle/shuttlemissions/sts133/. Photo credit: NASA/Frank Michaux
Hard matching for boosted tops at two loops
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hoang, Andre H.; Pathak, Aditya; Pietrulewicz, Piotr
2015-12-10
Here, cross sections for top quarks provide very interesting physics opportunities, being both sensitive to new physics and also perturbatively tractable due to the large top quark mass. Rigorous factorization theorems for top cross sections can be derived in several kinematic scenarios, including the boosted regime in the peak region that we consider here. In the context of the corresponding factorization theorem for e +e – collisions we extract the last missing ingredient that is needed to evaluate the cross section differential in the jet-mass at two-loop order, namely the matching coefficient at the scale μ≃m t. Our extraction alsomore » yields the final ingredients needed to carry out logarithmic re-summation at next-to-next-to-leading logarithmic order (or N 3LL if we ignore the missing 4-loop cusp anomalous dimension). This coefficient exhibits an amplitude level rapidity logarithm starting at O(α 2 s) due to virtual top quark loops, which we treat using rapidity renormalization group (RG) evolution. Interestingly, this rapidity RG evolution appears in the matching coefficient between two effective theories around the heavy quark mass scale μ ≃ m t.« less
ERIC Educational Resources Information Center
Eskow, Karen Goldrich; Chasson, Gregory S.; Summers, Jean Ann
2015-01-01
State-specific 1915(c) Medicaid Home and Community-Based Services waiver programs have become central in the provision of services specifically tailored to children with autism spectrum disorders (ASD). Using propensity score matching, 130 families receiving waiver services for a child with ASD were matched with and compared to 130 families…
Software Design Document SAF Simulation Host CSCI (8). Volume 1, Sections 1.0 - 2.7
1991-06-01
list for the patch, testing edges matching grid-loc-woni for intervisibility blocks. Calls Function IWhere Described Icheck edges Sec. 2.6.7.1.8 Table...edges matching grid-loc-word for intervisibility blocks. Calls Function Where Described check box Sec. 2.6.7.1.31 treelines Sec. 2.6.7.1.16 Icheck edges
NASA Astrophysics Data System (ADS)
Amini, Noushin; Hassan, Yassin A.
2012-12-01
Optical distortions caused by non-uniformities of the refractive index within the measurement volume is a major impediment for all laser diagnostic imaging techniques applied in experimental fluid dynamic studies. Matching the refractive indices of the working fluid and the test section walls and interfaces provides an effective solution to this problem. The experimental set-ups designed to be used along with laser imaging techniques are typically constructed of transparent solid materials. In this investigation, different types of aqueous salt solutions and various organic fluids are studied for refractive index matching with acrylic and fused quartz, which are commonly used in construction of the test sections. One aqueous CaCl2·2H2O solution (63 % by weight) and two organic fluids, Dibutyl Phthalate and P-Cymene, are suggested for refractive index matching with fused quartz and acrylic, respectively. Moreover, the temperature dependence of the refractive indices of these fluids is investigated, and the Thermooptic Constant is calculated for each fluid. Finally, the fluid viscosity for different shear rates is measured as a function of temperature and is applied to characterize the physical behavior of the proposed fluids.
Peng, Shu-Hui; Hsu, Shiun-Yuan; Kuo, Pao-Jen; Rau, Cheng-Shyuan; Cheng, Ya-Ai; Hsieh, Ching-Hua
2016-01-01
Objectives This study was designed to investigate the effect of alcohol intoxication on clinical presentation of hospitalised adult trauma patients at a Level I trauma centre using propensity score matching. Design Cross-sectional study. Setting Taiwan. Participants Detailed data of 929 hospitalised adult trauma patients with alcohol intoxication, aged 20–65 years, and 10 104 corresponding patients without alcohol intoxication were retrieved from the Trauma Registry System between 1 January 2009 and 31 December 2014. Alcohol intoxication was defined as a blood alcohol concentration (BAC) ≥50 mg/dL. Main outcome measures In-hospital mortality and expenditure. Results Patients with alcohol intoxication presented with significantly higher short-term mortality (OR: 3.0, 95% CI 2.0 to 4.4; p<0.001) than patients without alcohol intoxication. However, on comparison with propensity score-matched patients with respect to sex, age, comorbidity, Glasgow Coma Scale (GCS), injury region based on Abbreviated Injury Scale (AIS) and Injury Severity Score (ISS), alcohol intoxication did not significantly influence mortality (OR: 0.8, 95% CI 0.5 to 1.4; p=0.563). This implied that the higher mortality of alcohol-intoxicated patients was attributable to patient characteristics such as a higher injury severity rather than alcohol intoxication. Even on comparison with sex-matched, age-matched and comorbidity-matched patients without alcohol intoxication, patients with alcohol intoxication still had significantly higher total expenditure (17.4% higher), cost of operation (40.3% higher), cost of examination (52.8% higher) and cost of pharmaceuticals (38.3% higher). Conclusions The associated higher mortality of adult trauma patients with alcohol intoxication was completely attributable to other patient characteristics and associated injury severity rather than the effects of alcohol. However, patients with alcohol intoxication incurred significantly higher expenditure than patients without alcohol intoxication, even on comparison with sex-matched, age-matched and comorbidity-matched patients without alcohol intoxication. PMID:27803110
2014-01-01
Background This study aimed to examine whether a mismatch between a woman’s preferred and actual mode of delivery increases the risk of post-traumatic stress symptoms after childbirth. Methods The study sample consisted of 1,700 women scheduled to give birth between 2009 and 2010 at Akershus University Hospital, Norway. Questionnaire data from pregnancy weeks 17 and 32 and from 8 weeks postpartum were used along with data obtained from hospital birth records. Post-traumatic stress symptoms were measured with the Impact of Event Scale. Based on the women’s preferred and actual mode of delivery, four groups were established: Match 1 (no preference for cesarean section, no elective cesarean section, N = 1,493); Match 2 (preference for cesarean section, elective cesarean section, N = 53); Mismatch 1 (no preference for cesarean section, elective cesarean section, N = 42); and Mismatch 2 (preference for cesarean section, no elective cesarean section, N = 112). Analysis of variance (ANOVA) and analysis of covariance (ANCOVA) were conducted to examine whether the level of post-traumatic stress symptoms differed significantly among these four groups. Results Examining differences for all four groups, ANOVA yielded significant overall group differences (F = 11.96, p < 0.001). However, Bonferroni post-hoc tests found significantly higher levels of post-traumatic stress symptoms only in Mismatch 2 compared to Match 1. This difference could be partly explained by a number of risk factors, particularly psychological risk factors such as fear of childbirth, depression, and anxiety. Conclusions The results suggest increased post-traumatic stress symptoms in women who preferred delivery by cesarean section but delivered vaginally compared to women who both preferred vaginal delivery and delivered vaginally. In psychologically vulnerable women, such mismatch may threaten their physical integrity and, in turn, result in post-traumatic stress symptoms. These women, who often fear childbirth, may prefer a cesarean section even though vaginal delivery is usually the best option in the absence of medical indications. To avoid potential trauma, fear of childbirth and maternal requests for a cesarean section should be taken seriously and responded to adequately. PMID:24898436
Garthus-Niegel, Susan; von Soest, Tilmann; Knoph, Cecilie; Simonsen, Tone Breines; Torgersen, Leila; Eberhard-Gran, Malin
2014-06-05
This study aimed to examine whether a mismatch between a woman's preferred and actual mode of delivery increases the risk of post-traumatic stress symptoms after childbirth. The study sample consisted of 1,700 women scheduled to give birth between 2009 and 2010 at Akershus University Hospital, Norway. Questionnaire data from pregnancy weeks 17 and 32 and from 8 weeks postpartum were used along with data obtained from hospital birth records. Post-traumatic stress symptoms were measured with the Impact of Event Scale. Based on the women's preferred and actual mode of delivery, four groups were established: Match 1 (no preference for cesarean section, no elective cesarean section, N = 1,493); Match 2 (preference for cesarean section, elective cesarean section, N = 53); Mismatch 1 (no preference for cesarean section, elective cesarean section, N = 42); and Mismatch 2 (preference for cesarean section, no elective cesarean section, N = 112). Analysis of variance (ANOVA) and analysis of covariance (ANCOVA) were conducted to examine whether the level of post-traumatic stress symptoms differed significantly among these four groups. Examining differences for all four groups, ANOVA yielded significant overall group differences (F = 11.96, p < 0.001). However, Bonferroni post-hoc tests found significantly higher levels of post-traumatic stress symptoms only in Mismatch 2 compared to Match 1. This difference could be partly explained by a number of risk factors, particularly psychological risk factors such as fear of childbirth, depression, and anxiety. The results suggest increased post-traumatic stress symptoms in women who preferred delivery by cesarean section but delivered vaginally compared to women who both preferred vaginal delivery and delivered vaginally. In psychologically vulnerable women, such mismatch may threaten their physical integrity and, in turn, result in post-traumatic stress symptoms. These women, who often fear childbirth, may prefer a cesarean section even though vaginal delivery is usually the best option in the absence of medical indications. To avoid potential trauma, fear of childbirth and maternal requests for a cesarean section should be taken seriously and responded to adequately.
Heavy-Ion Injector for the High Current Experiment
NASA Astrophysics Data System (ADS)
Bieniosek, F. M.; Henestroza, E.; Kwan, J. W.; Prost, L.; Seidl, P.
2001-10-01
We report on progress in development of the Heavy-Ion Injector at LBNL, which is being prepared for use as an injector for the High Current Experiment (HCX). It is composed of a 10-cm-diameter surface ionization source, an extraction diode, and an electrostatic quadrupole (ESQ) accelerator, with a typical operating current of 0.6 A of potassium ions at 1.8 MeV, and a beam pulse length of 4.5 microsecs. We have improved the Injector equipment and diagnostics, and have characterized the source emission and radial beam profiles at the diode and ESQ regions. We find improved agreement with EGUN predictions, and improved compatibility with the downstream matching section. Plans are to attach the matching section and the initial ESQ transport section of HCX. Results will be presented and compared with EGUN and WARP simulations.
Method and apparatus for obtaining enhanced production rate of thermal chemical reactions
Tonkovich, Anna Lee Y [Pasco, WA; Wang, Yong [Richland, WA; Wegeng, Robert S [Richland, WA; Gao, Yufei [Kennewick, WA
2003-04-01
The present invention is a method and apparatus (vessel) for providing a heat transfer rate from a reaction chamber through a wall to a heat transfer chamber substantially matching a local heat transfer rate of a catalytic thermal chemical reaction. The key to the invention is a thermal distance defined on a cross sectional plane through the vessel inclusive of a heat transfer chamber, reaction chamber and a wall between the chambers. The cross sectional plane is perpendicular to a bulk flow direction of the reactant stream, and the thermal distance is a distance between a coolest position and a hottest position on the cross sectional plane. The thermal distance is of a length wherein the heat transfer rate from the reaction chamber to the heat transfer chamber substantially matches the local heat transfer rate.
Nano-fabricated plasmonic optical transformer
Choo, Hyuck; Cabrini, Stefano; Schuck, P. James; Liang, Xiaogan; Yablonovitch, Eli
2015-06-09
The present invention provides a plasmonic optical transformer to produce a highly focuses optical beam spot, where the transformer includes a first metal layer, a dielectric layer formed on the first metal layer, and a second metal layer formed on the dielectric layer, where the first metal layer, the dielectric layer, and the second layer are patterned to a shape including a first section having a first cross section, a second section following the first section having a cross-section tapering from the first section to a smaller cross-section, and a third section following the second section having a cross-section matching the tapered smaller cross-section of the second section.
Fillinger, Mark F; Racusin, Jessica; Baker, Robert K; Cronenwett, Jack L; Teutelink, Arno; Schermerhorn, Marc L; Zwolak, Robert M; Powell, Richard J; Walsh, Daniel B; Rzucidlo, Eva M
2004-06-01
The purpose of this study was to analyze anatomic characteristics of patients with ruptured abdominal aortic aneurysms (AAAs), with conventional two-dimensional computed tomography (CT), including comparison with control subjects matched for age, gender, and size. Records were reviewed to identify all CT scans obtained at Dartmouth-Hitchcock Medical Center or referring hospitals before emergency AAA repair performed because of rupture or acute severe pain (RUP group). CT scans obtained before elective AAA repair (ELEC group) were reviewed for age and gender match with patients in the RUP group. More than 40 variables were measured on each CT scan. Aneurysm diameter matching was achieved by consecutively deleting the largest RUP scan and the smallest ELEC scan to prevent bias. CT scans were analyzed for 259 patients with AAAs: 122 RUP and 137 ELEC. Patients were well matched for age, gender, and other demographic variables or risk factors. Maximum AAA diameter was significantly different in comparisons of all patients (RUP, 6.5 +/- 2 cm vs ELEC, 5.6 +/- 1 cm; P <.0001), and mean diameter of ruptured AAAs was 5 mm smaller in female patients (6.1 +/- 2 cm vs 6.6 +/- 2 cm; P =.007). Two hundred patients were matched for diameter, gender, and age (100 from each group; maximum AAA diameter, 6.0 +/- 1 cm vs 6.0 +/- 1 cm). Analysis of diameter-matched AAAs indicated that most variables were statistically similar in the two groups, including infrarenal neck length (17 +/- 1 mm vs 19 +/- 1 mm; P =.3), maximum thrombus thickness (25 +/- 1 mm vs 23 +/- 1 mm, P =.4), and indices of body habitus, such as [(maximum AAA diameter)/(normal suprarenal aorta diameter)] or [(maximum AAA diameter)/(L3 transverse diameter)]. Multivariate analysis controlling for gender indicated that the most significant variables for rupture were aortic tortuosity (odds ratio [OR] 3.3, indicating greater risk with no or mild tortuosity), diameter asymmetry (OR, 3.2 for a 1-cm difference in major-minor axis), and current smoking (OR, 2.7, with the greater risk in current smokers). When matched for age, gender, and diameter, ruptured AAAs tend to be less tortuous, yet have greater cross-sectional diameter asymmetry. On conventional two-dimensional CT axial sections, it appears that when diameter asymmetry is associated with low aortic tortuosity, the larger diameter on axial sections more accurately reflects rupture risk, and when diameter asymmetry is associated with moderate or severe aortic tortuosity, the smaller diameter on axial sections more accurately reflects rupture risk. Current smoking is significantly associated with rupture, even when controlling for gender and AAA anatomy.
Nuclear Matrix Proteins in Disparity of Prostate Cancer
2013-09-01
nuclear coactivator-3 (NCOA3). 5 Methods Patients and Prostate Cancer Specimens Fresh, flash -frozen specimens were obtained from age- (50 to...for reliable data interpretation. Gene Array Analysis Total RNA isolated from LCM-procured normal epithelium and tumor cells from flash -frozen...PCR Briefly, RNA was extracted from matched LCM procured normal epithelium and tumor cells of age-, tumor grade-matched flash -frozen sections (n=24
Code of Federal Regulations, 2012 CFR
2012-04-01
... Additional Formula Grant Administrative Standards and Procedures § 645.315 What actions are to be taken if a... reduced by two (2) dollars for each one (1) dollar shortfall in State matching funds) when the grant is... based on the FY formula grant award amount, as reduced under paragraph (a) of this section. ...
Federal Register 2010, 2011, 2012, 2013, 2014
2010-04-22
... the new fee schedule will continue to reward those who have been using the MatchPoint system for share... into the MatchPoint system. The proposed fee schedule, which will be effective upon filing, rewards all...Point\\SM\\ System April 15, 2010. Pursuant to Section 19(b)(1) \\1\\ of the Securities Exchange Act of 1934...
Jones, Kelly W.; Lewis, David J.
2015-01-01
Deforestation and conversion of native habitats continues to be the leading driver of biodiversity and ecosystem service loss. A number of conservation policies and programs are implemented—from protected areas to payments for ecosystem services (PES)—to deter these losses. Currently, empirical evidence on whether these approaches stop or slow land cover change is lacking, but there is increasing interest in conducting rigorous, counterfactual impact evaluations, especially for many new conservation approaches, such as PES and REDD, which emphasize additionality. In addition, several new, globally available and free high-resolution remote sensing datasets have increased the ease of carrying out an impact evaluation on land cover change outcomes. While the number of conservation evaluations utilizing ‘matching’ to construct a valid control group is increasing, the majority of these studies use simple differences in means or linear cross-sectional regression to estimate the impact of the conservation program using this matched sample, with relatively few utilizing fixed effects panel methods—an alternative estimation method that relies on temporal variation in the data. In this paper we compare the advantages and limitations of (1) matching to construct the control group combined with differences in means and cross-sectional regression, which control for observable forms of bias in program evaluation, to (2) fixed effects panel methods, which control for observable and time-invariant unobservable forms of bias, with and without matching to create the control group. We then use these four approaches to estimate forest cover outcomes for two conservation programs: a PES program in Northeastern Ecuador and strict protected areas in European Russia. In the Russia case we find statistically significant differences across estimators—due to the presence of unobservable bias—that lead to differences in conclusions about effectiveness. The Ecuador case illustrates that if time-invariant unobservables are not present, matching combined with differences in means or cross-sectional regression leads to similar estimates of program effectiveness as matching combined with fixed effects panel regression. These results highlight the importance of considering observable and unobservable forms of bias and the methodological assumptions across estimators when designing an impact evaluation of conservation programs. PMID:26501964
1990-09-21
As required by Section 6202 of the Omnibus Budget Reconciliation Act of 1989 (OBRA 1989), Public Law 101-239, the Department of Health and Human Services is providing public notice that the IRS and the SSA will disclose certain information regarding the taxpayer identification and filing status and the earned income of Medicare beneficiaries and their spouses for HCFA's use in identifying Medicare secondary payer (MSP) situations. This will enable HCFA to seek recovery of identified mistaken payments that were the liability of another primary insurer or other type of payer. The matching report set forth below is in compliance with the Computer Matching and Privacy Protection Act of 1988 (Pub. L. No. 100-503).
Narayan, Deepak
2013-01-01
Background: Plastic surgery is the most competitive specialty in medicine. We sought to identify factors associated with the successful match of generation Y applicants into integrated plastic surgery residency. Methods: We utilized the most recent data from the Charting Outcomes in the Match published by the National Resident Matching Program in 2011. We had data on US senior or independent applicant status, Alpha Omega Alpha (AOA) status, attendance of top 40 medical schools, advanced degree status, and number of contiguous ranks within plastic surgery. Our main outcome measure was match status. Results: A total of 81 out of 197 applicants (41.1%) successfully matched into integrated plastic surgery in the 2011 main match. US seniors matched at a significantly higher rate compared to independent applicants (44.0% vs 24.1%, P = 0.044). Matched US seniors were more likely to have AOA membership compared to unmatched US seniors (45.9% vs 27.7%, P = 0.014) and attend a top 40 medical school (52.7% vs 35.1%, P = 0.022). There were no differences in terms of advanced degrees between matched and unmatched US seniors. Unmatched US seniors were more likely to have 3 or fewer contiguous ranks of plastic surgery residency programs than matched US seniors (86.2% vs 68.9%, P = 0.007). Conclusions: US senior status, AOA membership, and attendance at a top 40 medical school are predictors of matching into integrated plastic surgery. Program directors need to be aware of the background of the millennial applicants to recruit and maintain top residents. PMID:25289227
49 CFR 1560.111 - Covered airport operators.
Code of Federal Regulations, 2014 CFR
2014-10-01
... 49 Transportation 9 2014-10-01 2014-10-01 false Covered airport operators. 1560.111 Section 1560... Transmission of Secure Flight Passenger Data for Watch List Matching § 1560.111 Covered airport operators. (a) Applicability. This section applies to a covered airport operator that has a program approved by TSA through...
49 CFR 1560.111 - Covered airport operators.
Code of Federal Regulations, 2011 CFR
2011-10-01
... 49 Transportation 9 2011-10-01 2011-10-01 false Covered airport operators. 1560.111 Section 1560... Transmission of Secure Flight Passenger Data for Watch List Matching § 1560.111 Covered airport operators. (a) Applicability. This section applies to a covered airport operator that has a program approved by TSA through...
49 CFR 1560.111 - Covered airport operators.
Code of Federal Regulations, 2013 CFR
2013-10-01
... 49 Transportation 9 2013-10-01 2013-10-01 false Covered airport operators. 1560.111 Section 1560... Transmission of Secure Flight Passenger Data for Watch List Matching § 1560.111 Covered airport operators. (a) Applicability. This section applies to a covered airport operator that has a program approved by TSA through...
49 CFR 1560.111 - Covered airport operators.
Code of Federal Regulations, 2010 CFR
2010-10-01
... 49 Transportation 9 2010-10-01 2010-10-01 false Covered airport operators. 1560.111 Section 1560... Transmission of Secure Flight Passenger Data for Watch List Matching § 1560.111 Covered airport operators. (a) Applicability. This section applies to a covered airport operator that has a program approved by TSA through...
49 CFR 1560.111 - Covered airport operators.
Code of Federal Regulations, 2012 CFR
2012-10-01
... 49 Transportation 9 2012-10-01 2012-10-01 false Covered airport operators. 1560.111 Section 1560... Transmission of Secure Flight Passenger Data for Watch List Matching § 1560.111 Covered airport operators. (a) Applicability. This section applies to a covered airport operator that has a program approved by TSA through...
Ophthalmology Residency Match outcomes for 2011.
Yousuf, Salman J; Jones, Leslie S
2012-03-01
To determine the match rate and predictors of matching into an ophthalmology residency. Population-based, cross-sectional study. All 746 candidates who submitted an application for the 2011 ophthalmology residency match. The Ophthalmology Residency Matching Program applicant database was reviewed to determine applicant characteristics and match outcomes. For US seniors, multivariate regression analysis was performed to determine predictors of matching. Match rate and predictors of US seniors matching. Rank lists were submitted by 622 applicants, among whom 458 (74%) matched. The match rate was higher for US seniors (83%) than for independent applicants (41%; P < 0.001). US seniors who matched were more likely to be Alpha Omega Alpha medical honor society members (odds ratio [OR], 2.94; 95% confidence interval [CI], 1.16-7.29), to attend medical schools ranked in the top 40 according to National Institutes of Health funding (OR, 2.25; CI, 1.14-4.43), and to have ranked more programs (OR, 1.44; CI, 1.29-1.60). Those ranking 6 to 10 programs had an 80% to 90% chance of matching, and those ranking more than 10 programs had a greater than 90% chance of matching. No clear benefit was observed by ranking additional programs once 11 had already been ranked. Average US Medical Licensing Examination Step 1 scores were 239 ± 14 and 223 ± 18 for applicants who were matched and unmatched, respectively; this difference was significant by univariate analysis (P < 0.001) but not by multivariate regression (P = 0.163). Ophthalmology ranks among the most competitive specialties in medicine. Those most likely to match were US seniors who maintained academic excellence beginning in their preclinical years. A finite relationship exists between ranking a greater number of programs and having a greater chance of matching. Copyright © 2012 American Academy of Ophthalmology. Published by Elsevier Inc. All rights reserved.
Global localization of 3D point clouds in building outline maps of urban outdoor environments.
Landsiedel, Christian; Wollherr, Dirk
2017-01-01
This paper presents a method to localize a robot in a global coordinate frame based on a sparse 2D map containing outlines of building and road network information and no location prior information. Its input is a single 3D laser scan of the surroundings of the robot. The approach extends the generic chamfer matching template matching technique from image processing by including visibility analysis in the cost function. Thus, the observed building planes are matched to the expected view of the corresponding map section instead of to the entire map, which makes a more accurate matching possible. Since this formulation operates on generic edge maps from visual sensors, the matching formulation can be expected to generalize to other input data, e.g., from monocular or stereo cameras. The method is evaluated on two large datasets collected in different real-world urban settings and compared to a baseline method from literature and to the standard chamfer matching approach, where it shows considerable performance benefits, as well as the feasibility of global localization based on sparse building outline data.
24 CFR 92.222 - Reduction of matching contribution requirement.
Code of Federal Regulations, 2011 CFR
2011-04-01
... period specified in paragraph (a)(4) of this section. (i) Poverty rate. The average poverty rate in the participating jurisdiction was equal to or greater than 125 percent of the average national poverty rate during... be reduced by 50 percent, for the period specified in paragraph (a)(4) of this section. (i) Poverty...
24 CFR 92.222 - Reduction of matching contribution requirement.
Code of Federal Regulations, 2014 CFR
2014-04-01
... period specified in paragraph (a)(4) of this section. (i) Poverty rate. The average poverty rate in the participating jurisdiction was equal to or greater than 125 percent of the average national poverty rate during... be reduced by 50 percent, for the period specified in paragraph (a)(4) of this section. (i) Poverty...
24 CFR 92.222 - Reduction of matching contribution requirement.
Code of Federal Regulations, 2013 CFR
2013-04-01
... period specified in paragraph (a)(4) of this section. (i) Poverty rate. The average poverty rate in the participating jurisdiction was equal to or greater than 125 percent of the average national poverty rate during... be reduced by 50 percent, for the period specified in paragraph (a)(4) of this section. (i) Poverty...
24 CFR 92.222 - Reduction of matching contribution requirement.
Code of Federal Regulations, 2012 CFR
2012-04-01
... period specified in paragraph (a)(4) of this section. (i) Poverty rate. The average poverty rate in the participating jurisdiction was equal to or greater than 125 percent of the average national poverty rate during... be reduced by 50 percent, for the period specified in paragraph (a)(4) of this section. (i) Poverty...
24 CFR 92.222 - Reduction of matching contribution requirement.
Code of Federal Regulations, 2010 CFR
2010-04-01
... period specified in paragraph (a)(4) of this section. (i) Poverty rate. The average poverty rate in the participating jurisdiction was equal to or greater than 125 percent of the average national poverty rate during... be reduced by 50 percent, for the period specified in paragraph (a)(4) of this section. (i) Poverty...
ERIC Educational Resources Information Center
Mwanza, Alnord L. D.; Moyo, George; Maphosa, Cosmas
2017-01-01
The popularity of assigned or forced same-gender and cross-gender matches between school mentors and student teachers has heightened concerns regarding the ethical and/or unethical behaviours of mentors. In this article the authors present the findings of a cross-sectional survey study on the prevalence of ethical and/or unethical behaviours of…
Outcomes in the Orthopaedic Sports Medicine Fellowship Match, 2010-2017.
Mulcahey, Mary K; Hayes, Meghan K; Smith, Christopher M; Kraeutler, Matthew J; Trojan, Jeffrey D; McCarty, Eric C
2018-05-01
Sports medicine is one of the most competitive fellowships in orthopaedic surgery. Despite its popularity, fellowship applicants have limited understanding of the orthopaedic sports medicine fellowship match process. To define key outcomes in the orthopaedic sports medicine fellowship match, including the overall match rate, number of programs filled, and number of applicants ranked by programs that filled between 2010 and 2017. Cross-sectional study. This study utilized data regarding the orthopaedic sports medicine fellowship match collected by the American Orthopaedic Society for Sports Medicine (AOSSM) from 2010 through 2017. Applicant data included number of applicants, number of matched and unmatched applicants, and percentage of applicants matching into their top choices. Fellowship program data included number of programs participating in the match and number of applicants ranked by filled and unfilled programs. Between 2010 and 2017, the mean number of orthopaedic sports medicine fellowship applicants was 244.8. On average, 92.0% of applicants matched into a fellowship program. The mean number of programs participating in the fellowship match was 92.9, with a mean of 219.9 accredited positions and 5.4 nonaccredited positions. Over the time period studied, a mean of 75.8% of programs matched all available positions. Programs that matched fully ranked 9.0 applicants per position, on average, compared with a mean of 6.5 applicants ranked per position among programs that did not fully match ( P = .0016). From 2010 to 2017, the number of applicants, positions available, overall match rate, and number of programs participating in the orthopaedic sports medicine fellowship match have remained consistent. The mean number of applicants per position ranked by fully matched fellowship programs was 9.0 compared with a mean of 6.5 applicants per position ranked by programs that did not fully match. These data may be helpful as we look to the future of orthopaedic sports medicine fellowship positions and the match process. In addition, this study reveals characteristics that divide sports medicine fellowship programs that fully match from those that do not. Applicants and/or fellowship program directors may utilize this information to modify their approach to the match process going forward.
Outcomes in the Orthopaedic Sports Medicine Fellowship Match, 2010-2017
Mulcahey, Mary K.; Hayes, Meghan K.; Smith, Christopher M.; Kraeutler, Matthew J.; Trojan, Jeffrey D.; McCarty, Eric C.
2018-01-01
Background: Sports medicine is one of the most competitive fellowships in orthopaedic surgery. Despite its popularity, fellowship applicants have limited understanding of the orthopaedic sports medicine fellowship match process. Purpose: To define key outcomes in the orthopaedic sports medicine fellowship match, including the overall match rate, number of programs filled, and number of applicants ranked by programs that filled between 2010 and 2017. Study Design: Cross-sectional study. Methods: This study utilized data regarding the orthopaedic sports medicine fellowship match collected by the American Orthopaedic Society for Sports Medicine (AOSSM) from 2010 through 2017. Applicant data included number of applicants, number of matched and unmatched applicants, and percentage of applicants matching into their top choices. Fellowship program data included number of programs participating in the match and number of applicants ranked by filled and unfilled programs. Results: Between 2010 and 2017, the mean number of orthopaedic sports medicine fellowship applicants was 244.8. On average, 92.0% of applicants matched into a fellowship program. The mean number of programs participating in the fellowship match was 92.9, with a mean of 219.9 accredited positions and 5.4 nonaccredited positions. Over the time period studied, a mean of 75.8% of programs matched all available positions. Programs that matched fully ranked 9.0 applicants per position, on average, compared with a mean of 6.5 applicants ranked per position among programs that did not fully match (P = .0016). Conclusion: From 2010 to 2017, the number of applicants, positions available, overall match rate, and number of programs participating in the orthopaedic sports medicine fellowship match have remained consistent. The mean number of applicants per position ranked by fully matched fellowship programs was 9.0 compared with a mean of 6.5 applicants per position ranked by programs that did not fully match. These data may be helpful as we look to the future of orthopaedic sports medicine fellowship positions and the match process. In addition, this study reveals characteristics that divide sports medicine fellowship programs that fully match from those that do not. Applicants and/or fellowship program directors may utilize this information to modify their approach to the match process going forward. PMID:29796398
Barret, Maialen; Gagnon, Nathalie; Topp, Edward; Masse, Lucie; Massé, Daniel I; Talbot, Guylaine
2013-02-01
Greenhouse gas emissions represent a major environmental problem associated with the management of manure from the livestock industry. Methane is the primary GHG emitted during manure outdoor storage. In this paper, the variability of two swine and two dairy manure storage tanks was surveyed, in terms of physico-chemical and microbiological parameters. The impact of the inter-tank and spatio-temporal variations of these parameters on the methanogenic activity of manure was ascertained. A Partial Least Square regression was carried out, which demonstrated that physico-chemical as well as microbiological parameters had a major influence on the methanogenic activity. Among the 19 parameters included in the regression, the concentrations of VFAs had the strongest negative influence on the methane emission rate of manure, resulting from their well-known inhibitory effect. The relative abundance of two amplicons in archaeal fingerprints was found to positively influence the methanogenic activity, suggesting that Methanoculleus spp. and possibly Methanosarcina spp. are major contributors to methanogenesis in storage tanks. This work gave insights into the mechanisms, which drive methanogenesis in swine and dairy manure storage tanks. Crown Copyright © 2012. Published by Elsevier Ltd. All rights reserved.
2010-12-21
CAPE CANAVERAL, Fla. -- Space shuttle Discovery awaits its move, called rollback, from Launch Pad 39A to the Vehicle Assembly Building (VAB) at NASA's Kennedy Space Center in Florida. Rollback was scheduled for 12:30 a.m., but was postponed until 10 p.m. so technicians could resolve an issue with a leveling system on the crawler-transporter, which is to the left of the shuttle. Once inside the VAB, Discovery's external fuel tank will be examined and foam reapplied where 89 sensors were installed on the tank's aluminum skin for an instrumented tanking test on Dec. 17. The sensors were used to measure changes in the tank as super-cold propellants were pumped in and drained out. Data and analysis from the test will be used to determine what caused the tops of two, 21-foot-long support beams, called stringers, on the outside of the intertank to crack during fueling on Nov. 5. Discovery's next launch opportunity to the International Space Station on the STS-133 mission is no earlier than Feb. 3, 2011. For more information on STS-133, visit www.nasa.gov/mission_pages/shuttle/shuttlemissions/sts133/. Photo credit: NASA/Frank Michaux
2010-12-21
CAPE CANAVERAL, Fla. -- Space shuttle Discovery awaits its move, called rollback, from Launch Pad 39A to the Vehicle Assembly Building (VAB) at NASA's Kennedy Space Center in Florida. Rollback was scheduled for 12:30 a.m., but was postponed until 10 p.m. so technicians could resolve an issue with a leveling system on the crawler-transporter, which is to the left of the shuttle. Once inside the VAB, Discovery's external fuel tank will be examined and foam reapplied where 89 sensors were installed on the tank's aluminum skin for an instrumented tanking test on Dec. 17. The sensors were used to measure changes in the tank as super-cold propellants were pumped in and drained out. Data and analysis from the test will be used to determine what caused the tops of two, 21-foot-long support beams, called stringers, on the outside of the intertank to crack during fueling on Nov. 5. Discovery's next launch opportunity to the International Space Station on the STS-133 mission is no earlier than Feb. 3, 2011. For more information on STS-133, visit www.nasa.gov/mission_pages/shuttle/shuttlemissions/sts133/. Photo credit: NASA/Frank Michaux
2011-02-20
CAPE CANAVERAL, Fla. -- At NASA's Kennedy Space Center in Florida, space shuttle Discovery's STS-133 pose for a photo on the Shuttle Landing Facility runway after arriving in T-38 jets. From left, are Mission Specialists Nicole Stott, Michael Barratt, Steve Bowen and Alvin Drew, Pilot Eric Boe, and Commander Steve Lindsey. In the days leading up to their launch to the International Space Station, the crew members will check the fit of their launch-and-entry suits, review launch-day procedures, receive weather briefings and remain medically quarantined to prevent sickness. This will be the second launch attempt for Discovery's crew, following a scrub in November 2010 due to a hydrogen gas leak at the ground umbilical carrier plate (GUCP) as well as modifications to the external fuel tank's intertank support beams, called stringers. Scheduled to lift off Feb. 24 at 4:50 p.m. EST, Discovery and its crew will deliver the Permanent Multipurpose Module, packed with supplies and critical spare parts, as well as Robonaut 2, the dexterous humanoid astronaut helper, to the orbiting outpost. For more information on the STS-133 mission, visit www.nasa.gov/mission_pages/shuttle/shuttlemissions/sts133/. Photo credit: NASA/Kim Shiflett
2011-02-20
CAPE CANAVERAL, Fla. -- At NASA's Kennedy Space Center in Florida, space shuttle Discovery's STS-133 Commander Steve Lindsey greets Kennedy Center Director Bob Cabana on the Shuttle Landing Facility runway after arriving aboard a T-38 jet. Also on hand to greet the crew were Jerry Ross, chief of the Vehicle Integration Test Office, left, and Mike Leinbach, shuttle launch director. In the days leading up to their launch to the International Space Station, Lindsey and his crew members will check the fit of their launch-and-entry suits, review launch-day procedures, receive weather briefings and remain medically quarantined to prevent sickness. This will be the second launch attempt for Discovery's crew, following a scrub in November 2010 due to a hydrogen gas leak at the ground umbilical carrier plate (GUCP) as well as modifications to the external fuel tank's intertank support beams, called stringers. Scheduled to lift off Feb. 24 at 4:50 p.m. EST, Discovery and its crew will deliver the Permanent Multipurpose Module, packed with supplies and critical spare parts, as well as Robonaut 2, the dexterous humanoid astronaut helper, to the orbiting outpost. For more information on the STS-133 mission, visit www.nasa.gov/mission_pages/shuttle/shuttlemissions/sts133/. Photo credit: NASA/Kim Shiflett
2011-02-20
CAPE CANAVERAL, Fla. -- At NASA's Kennedy Space Center in Florida, space shuttle Discovery's STS-133 astronauts prepare to give statements to the media on the Shuttle Landing Facility runway after arriving in T-38 jets. From left, are Mission Specialists Michael Barratt, Alvin Drew and Steve Bowen, Commander Steve Lindsey, Pilot Eric Boe, and Mission Specialist Nicole Stott. In the days leading up to their launch to the International Space Station, the crew members will check the fit of their launch-and-entry suits, review launch-day procedures, receive weather briefings and remain medically quarantined to prevent sickness. This will be the second launch attempt for Discovery's crew, following a scrub in November 2010 due to a hydrogen gas leak at the ground umbilical carrier plate (GUCP) as well as modifications to the external fuel tank's intertank support beams, called stringers. Scheduled to lift off Feb. 24 at 4:50 p.m. EST, Discovery and its crew will deliver the Permanent Multipurpose Module, packed with supplies and critical spare parts, as well as Robonaut 2, the dexterous humanoid astronaut helper, to the orbiting outpost. For more information on the STS-133 mission, visit www.nasa.gov/mission_pages/shuttle/shuttlemissions/sts133/. Photo credit: NASA/Kim Shiflett
2011-02-20
CAPE CANAVERAL, Fla. -- At NASA's Kennedy Space Center in Florida, space shuttle Discovery's STS-133 Mission Specialist Steve Bowen arrives on the Shuttle Landing Facility runway aboard a T-38 jet. In the days leading up to their launch to the International Space Station, Bowen and his crew members will check the fit of their launch-and-entry suits, review launch-day procedures, receive weather briefings and remain medically quarantined to prevent sickness. Bowen replaces astronaut Tim Kopra, who was injured in a bicycle accident in January 2011. This will be the second launch attempt for Discovery's crew, following a scrub in November 2010 due to a hydrogen gas leak at the ground umbilical carrier plate (GUCP) as well as modifications to the external fuel tank's intertank support beams, called stringers. Scheduled to lift off Feb. 24 at 4:50 p.m. EST, Discovery and its crew will deliver the Permanent Multipurpose Module, packed with supplies and critical spare parts, as well as Robonaut 2, the dexterous humanoid astronaut helper, to the orbiting outpost. For more information on the STS-133 mission, visit www.nasa.gov/mission_pages/shuttle/shuttlemissions/sts133/. Photo credit: NASA/Kim Shiflett
2010-12-17
CAPE CANAVERAL, Fla. -- Team members stationed at consoles in the Launch Control Center at NASA's Kennedy Space Center in Florida monitor space shuttle Discovery's external fuel tank as it is loaded with more than 535,000 gallons of cryogenic propellants. From back, are Assistant Launch Orbiter Test Conductor Mark Taffet, Launch Orbiter Test Conductor John Kracsun, STS-133 NASA Test Director Steve Payne, NASA Commentator Allard Beutel, NASA Test Director Jeremy Graeber and STS-133 Assistant NASA Test Director Jeff Spaulding. During today's tanking test, the team is paying particular attention to the external tank's ribbed intertank region. Beginning tomorrow, engineers will evaluate data on 21-foot-long, U-shaped aluminum brackets, called stringers, and the newly replaced ground umbilical carrier plate (GUCP). Discovery's first launch attempt for STS-133 was scrubbed in early November due to a hydrogen gas leak at the GUCP. In order to perform additional analysis on the tank, Discovery will be rolled back to the Vehicle Assembly Building, a move that is planned for next week. The next launch opportunity is no earlier than Feb. 3, 2011. For more information on STS-133, visit www.nasa.gov/mission_pages/shuttle/shuttlemissions/sts133/. Photo credit: NASA/Cory Huston
2010-12-21
CAPE CANAVERAL, Fla. -- Space shuttle Discovery awaits its move, called rollback, from Launch Pad 39A to the Vehicle Assembly Building (VAB) at NASA's Kennedy Space Center in Florida. Rollback was scheduled for 12:30 a.m., but was postponed until 10 p.m. so technicians could resolve an issue with a leveling system on the crawler-transporter, which is to the left of the shuttle. Once inside the VAB, Discovery's external fuel tank will be examined and foam reapplied where 89 sensors were installed on the tank's aluminum skin for an instrumented tanking test on Dec. 17. The sensors were used to measure changes in the tank as super-cold propellants were pumped in and drained out. Data and analysis from the test will be used to determine what caused the tops of two, 21-foot-long support beams, called stringers, on the outside of the intertank to crack during fueling on Nov. 5. Discovery's next launch opportunity to the International Space Station on the STS-133 mission is no earlier than Feb. 3, 2011. For more information on STS-133, visit www.nasa.gov/mission_pages/shuttle/shuttlemissions/sts133/. Photo credit: NASA/Frank Michaux
Design of the Core Stage Inter-Tank Umbilical {CSITU) Compliance Mechanism
NASA Technical Reports Server (NTRS)
Smith, Kurt R.
2013-01-01
Project Goals: a) Design the compliance mechanism for the CSITU system to a 30% level -3D models completed in Pro/Engineer -Relevant design analysis b) Must meet all system requirements and establish basis for proceeding with detailed design. Tasks to be completed: A design that meets requirements for the 30% design review, 01/16/2013. Umbilical arms provide commodities to the launch vehicle prior to T-0. Commodities can range anywhere from hydraulics, pneumatics, cryogenic, electrical, ECS, etc ... Umbilicals commonly employ truss structures to deliver commodities to vehicle. Common configurations include: -Tilt-up -Swing Arm -Hose Drape -Drop Arm Umbilical arms will be mounted to Mobile Launch Platform. SLS currently has 9 T-0 umbilical arms. The compliance refers to the ability of the umbilical to adjust to minor changes in vehicle location. The compliance mechanism refers to the mechanism on the ground support equipment {GSE) that compensates for these changes. For the CSITU, these minor changes, or vehicle excursions, can be up to +4 in. Excursions refer to movements of the vehicle caused by wind loads and thermal expansion. It is ideal to have significant vertical compliance so a passive secondary release mechanism may be implemented.
34 CFR 350.62 - What are the matching requirements?
Code of Federal Regulations, 2010 CFR
2010-07-01
... of vocational and other rehabilitation services, and research training and career development... Engineering Research Centers; and (ii) Specialized research or demonstration activities described in section...
Non-imaged based method for matching brains in a common anatomical space for cellular imagery.
Midroit, Maëllie; Thevenet, Marc; Fournel, Arnaud; Sacquet, Joelle; Bensafi, Moustafa; Breton, Marine; Chalençon, Laura; Cavelius, Matthias; Didier, Anne; Mandairon, Nathalie
2018-04-22
Cellular imagery using histology sections is one of the most common techniques used in Neuroscience. However, this inescapable technique has severe limitations due to the need to delineate regions of interest on each brain, which is time consuming and variable across experimenters. We developed algorithms based on a vectors field elastic registration allowing fast, automatic realignment of experimental brain sections and associated labeling in a brain atlas with high accuracy and in a streamlined way. Thereby, brain areas of interest can be finely identified without outlining them and different experimental groups can be easily analyzed using conventional tools. This method directly readjusts labeling in the brain atlas without any intermediate manipulation of images. We mapped the expression of cFos, in the mouse brain (C57Bl/6J) after olfactory stimulation or a non-stimulated control condition and found an increased density of cFos-positive cells in the primary olfactory cortex but not in non-olfactory areas of the odor-stimulated animals compared to the controls. Existing methods of matching are based on image registration which often requires expensive material (two-photon tomography mapping or imaging with iDISCO) or are less accurate since they are based on mutual information contained in the images. Our new method is non-imaged based and relies only on the positions of detected labeling and the external contours of sections. We thus provide a new method that permits automated matching of histology sections of experimental brains with a brain reference atlas. Copyright © 2018 Elsevier B.V. All rights reserved.
NASA Astrophysics Data System (ADS)
Saripalli, Ravi Kiran; Katturi, Naga Krishnakanth; Soma, Venugopal Rao; Bhat, H. L.; Elizabeth, Suja
2017-12-01
The linear, second order, and third order nonlinear optical properties of glucuronic acid γ-lactone single crystals were investigated. The optic axes and principal dielectric axes were identified through optical conoscopy and the principal refractive indices were obtained using the Brewster's angle method. Conic sections were observed which is perceived to be due to spontaneous non-collinear phase matching. The direction of collinear phase matching was determined and the deff evaluated in this direction was 0.71 pm/V. Open and closed aperture Z-scan measurements with femtosecond pulses revealed high third order nonlinearity in the form of self-defocusing, two-photon absorption, as well as saturable absorption.
Federal Register 2010, 2011, 2012, 2013, 2014
2011-03-04
... excluded from gross income in certain transactions involving stock transfers between members of a... section but that are not being promulgated as final regulations at this time. These regulations affect... that was created by reason of an intercompany transfer of the stock, and that would not otherwise be...
ERIC Educational Resources Information Center
McArthur, John A.
2015-01-01
This study examined the extent to which instructional proxemics--the physical space of the learning environment--impacts student behavioral, affective, and cognitive learning. Participants included 234 college students enrolled in 15 sections of public speaking. Each section was assigned to a study learning environment and an instructor, ensuring…
Bateman, Grant A; Lechner-Scott, Jeannette; Copping, Ross; Moeskops, Christopher; Yap, Swee Leong
2017-07-06
There is evidence that patients with multiple sclerosis (MS) and hydrocephalus share some common pathophysiological mechanisms. Alterations in CSF pressure are known to affect cerebral venous sinus geometry. To further explore these mechanisms, we measured the superior sagittal sinus (SSS) cross-sectional area 3 cm above the torcular using T2 images in 20 MS, 10 spontaneous intracranial hypotension (SIH), 21 hydrocephalus and 20 idiopathic intracranial hypertension (IIH) patients and compared with 20 matched controls. The SSS area was reduced by 25% in hydrocephalus (p = 0.0008), increased by 22% (p = 0.037) in SIH and unchanged in IIH compared to matched controls. In MS there was a 16% increase in SSS area (p = 0.01).The findings suggest that changes in SSS cross-sectional are common between MS and SIH patients, while in hydrocephalus and IIH these are different.
7 CFR 1450.102 - Eligible material owner.
Code of Federal Regulations, 2013 CFR
2013-01-01
... OF AGRICULTURE LOANS, PURCHASES, AND OTHER OPERATIONS BIOMASS CROP ASSISTANCE PROGRAM (BCAP) Matching... qualified biomass conversion facility that meets the requirements of paragraph (a) of this section may be...
7 CFR 1450.102 - Eligible material owner.
Code of Federal Regulations, 2014 CFR
2014-01-01
... OF AGRICULTURE LOANS, PURCHASES, AND OTHER OPERATIONS BIOMASS CROP ASSISTANCE PROGRAM (BCAP) Matching... qualified biomass conversion facility that meets the requirements of paragraph (a) of this section may be...
7 CFR 1450.102 - Eligible material owner.
Code of Federal Regulations, 2012 CFR
2012-01-01
... OF AGRICULTURE LOANS, PURCHASES, AND OTHER OPERATIONS BIOMASS CROP ASSISTANCE PROGRAM (BCAP) Matching... qualified biomass conversion facility that meets the requirements of paragraph (a) of this section may be...
Applicant Characteristics Associated with Successful Matching into Otolaryngology
Hauser, Leah J.; Gebhard, Grant M.; Blumhagen, Rachel; Carlson, Nichole E.; Cabrera-Muffly, Cristina
2016-01-01
Objective To identify resident applicant characteristics that increase the odds of matching to Otolaryngology residency. Study Design Cross-sectional analysis. Methods Residency applications to our institution from 2009 through 2013 were reviewed. The available data represented 81.1% of applicants to Otolaryngology programs nationwide. Online public records were searched to determine whether an applicant matched to an Otolaryngology residency position. Factors that were significantly associated with the odds of matching were determined using logistic regression. Results A total of 1,479 unique applications were analyzed. On univariate analysis, 27 demographic, academic, personal, medical school, prior training, and application-specific factors were associated with the odds of matching into Otolaryngology. On multivariate analysis, indicators of academic achievement, including AOA status, whether applicant received awards, and publications were significantly associated with the odds of matching (OR 2.03, 1.39, 1.66, respectively). The odds of matching increased with increasing Step 1 scores (p<0.001). Attending a medical school ranked by the US News & World Report and being a US citizen born in the US significantly increased odds of matching (OR 1.55 and 2.04, respectively), while being a non-US Senior significantly decreased the odds of matching (OR 0.33). Conclusion Multiple factors are associated with successfully matching into an Otolaryngology residency. While this information allows medical students to determine the strength of their application, these criteria have not been correlated with resident success. We urge selection committees to begin identifying applicant selection methods that reflect the values we want to cultivate in our future colleagues. PMID:27767217
Resonant vibrations of a submerged beam
NASA Astrophysics Data System (ADS)
Achenbach, J. D.; Qu, J.
1986-03-01
Forced vibration of a simply supported submerged beam of circular cross section is investigated by the use of two mathematical methods. In the first approach the problem formulation is reduced to a singular integro-differential equation for the transverse deflection. In the second approach the method of matched asymptotic expansions is employed. The integro-differential equation is solved numerically, to yield an exact solution for the frequency response. Subsequent use of a representation integral yields the radiated far field acoustic pressure. The exact results for the beam deflection are compared with approximate results that are available in the literature. Next, a matched asymptotic expansion is worked out by constructing "inner" and "outer" expansions for frequencies near and not near resonance frequencies, respectively. The two expansions are matched in an appropriate manner to yield a uniformly valid solution. The leading term of the matched asymptotic solution is compared with exact numerical results.
Virtual Tool Mark Generation for Efficient Striation Analysis
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ekstrand, Laura; Zhang, Song; Grieve, Taylor
2014-02-16
This study introduces a tool mark analysis approach based upon 3D scans of screwdriver tip and marked plate surfaces at the micrometer scale from an optical microscope. An open-source 3D graphics software package is utilized to simulate the marking process as the projection of the tip's geometry in the direction of tool travel. The edge of this projection becomes a virtual tool mark that is compared to cross-sections of the marked plate geometry using the statistical likelihood algorithm introduced by Chumbley et al. In a study with both sides of six screwdriver tips and 34 corresponding marks, the method distinguishedmore » known matches from known nonmatches with zero false-positive matches and two false-negative matches. For matches, it could predict the correct marking angle within ±5–10°. Individual comparisons could be made in seconds on a desktop computer, suggesting that the method could save time for examiners.« less
Printed circuit board impedance matching step for microwave (millimeter wave) devices
Pao, Hsueh-Yuan; Aguirre, Jerardo; Sargis, Paul
2013-10-01
An impedance matching ground plane step, in conjunction with a quarter wave transformer section, in a printed circuit board provides a broadband microwave matching transition from board connectors or other elements that require thin substrates to thick substrate (>quarter wavelength) broadband microwave (millimeter wave) devices. A method of constructing microwave and other high frequency electrical circuits on a substrate of uniform thickness, where the circuit is formed of a plurality of interconnected elements of different impedances that individually require substrates of different thicknesses, by providing a substrate of uniform thickness that is a composite or multilayered substrate; and forming a pattern of intermediate ground planes or impedance matching steps interconnected by vias located under various parts of the circuit where components of different impedances are located so that each part of the circuit has a ground plane substrate thickness that is optimum while the entire circuit is formed on a substrate of uniform thickness.
Design and Simulation of a Matching System into the Helical Cooling Channel
DOE Office of Scientific and Technical Information (OSTI.GOV)
Yoshikawa, C.; Ankenbrandt, C.; Johnson, R. P.
2014-07-01
Muon colliders could provide the most sensitive measurement of the Higgs mass and return the US back to the Energy Frontier. Central to the capabilities of muon colliders are the cooling channels that provide the extraordinary reduction in emittance required for the precise Higgs mass measurement and increased luminosity for enhanced discovery potential of an Energy Frontier Machine. The Helical Cooling Channel (HCC) is able to achieve such emittance reduction and matching sections within the HCC have been successfully designed in the past with lossless transmission and no emittance growth. However, matching into the HCC from a straight solenoid posesmore » a challenge, since a large emittance beam must cross transition. We elucidate on the challenge and present evaluations of two solutions, along with concepts to integrate the operations of a Charge Separator and match into the HCC.« less
Planning, scheduling, and control for automatic telescopes
NASA Technical Reports Server (NTRS)
Drummond, Mark; Swanson, Keith; Philips, Andy; Levinson, Rich; Bresina, John
1992-01-01
This paper presents an argument for the appropriateness of Entropy Reduction Engine (ERE) technology to the planning, scheduling, and control components of Automatic Photoelectric Telescope (APT) management. The paper is organized as follows. In the next section, we give a brief summary of the planning and scheduling requirements for APTs. Following this, in section 3, we give an ERE project precis, couched primarily in terms of project objectives. Section 4 gives a sketch of the match-up between problem and technology, and section 5 outlines where we want to go with this work.
Matching into the Helical Bunch Coalescing Channel for a High Luminosity Muon Collider
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sy, Amy; Ankenbrandt, Charles; Derbenev, Yaroslav
2015-09-01
For high luminosity in a muon collider, muon bunches that have been cooled in the six-dimensional helical cooling channel (HCC) must be merged into a single bunch and further cooled in preparation for acceleration and transport to the collider ring. The helical bunch coalescing channel has been previously simulated and provides the most natural match from helical upstream and downstream subsystems. This work focuses on the matching from the exit of the multiple bunch HCC into the start of the helical bunch coalescing channel. The simulated helical matching section simultaneously matches the helical spatial period lambda in addition to providingmore » the necessary acceleration for efficient bunch coalescing. Previous studies assumed that the acceleration of muon bunches from p=209.15 MeV/c to 286.816 MeV/c and matching of lambda from 0.5 m to 1.0 m could be accomplished with zero particle losses and zero emittance growth in the individual bunches. This study demonstrates nonzero values for both particle loss and emittance growth, and provides considerations for reducing these adverse effects to best preserve high luminosity.« less
Internal-external flow integration for a thin ejector-flapped wing section
NASA Technical Reports Server (NTRS)
Woolard, H. W.
1979-01-01
Thin airfoil theories of an ejector flapped wing section are reviewed. The global matching of the external airfoil flow with the ejector internal flow and the overall ejector flapped wing section aerodynamic performance are examined. Mathematical models of the external and internal flows are presented. The delineation of the suction flow coefficient characteristics are discussed. The idealized lift performance of an ejector flapped wing relative to a jet augmented flapped wing are compared.
1991-06-01
steps at the Rugby Football Union Ground in Twickenham, England. The deteriorated steps were cut away from the existing steel support beams. Reinforcing...provided in each vol- ume as a guide for users of this -bibliography. 6 SECTION C MAINTENANCE AND--REPAIR MATERIALS and a matching of these needs to a...calculations were correct). 73 Several types- of repair mediums are available. The medium should match -the quality of the-6riginal concrete but with-greater
Durbeej, Natalie; Elgán, Tobias H; Jalling, Camilla; Gripenberg, Johanna
2017-01-01
Alcohol use and alcohol-related problems, including accidents, vandalism and violence, at sporting events are of increased concern in Sweden and other countries. The relationship between alcohol use and violence has been established and can be explained by the level of intoxication. Given the occurrence of alcohol use and alcohol-related problems at sporting events, research has assessed intoxication levels measured through biological sampling among spectators. This cross-sectional study aimed to assess the level of alcohol intoxication among spectators at football matches in the Swedish Premier Football League. Spectators were randomly selected and invited to participate in the study. Alcohol intoxication was measured with a breath analyser for Blood Alcohol Concentration levels, and data on gender, age, and recent alcohol use were gathered through a face-to-face interview. Blood Alcohol Concentration samples from 4420 spectators were collected. Almost half (46.8%) had a positive Blood Alcohol Concentration level, with a mean value of 0.063%, while 8.9% had a Blood Alcohol Concentration level ≥ 0.1%, with a mean value of 0.135%. Factors that predicted a higher Blood Alcohol Concentration level included male gender (p = 0.005), lower age (p < 0.001), attending a local derby (p < 0.001), alcohol use prior to having entered the arena (p < 0.001), attending a weekend match (p < 0.001), and being a spectator at supporter sections (p < 0.001). About half of all spectators at football matches in the Swedish Premier Football League drink alcohol in conjunction with the match. Approximately one tenth have a high level of alcohol intoxication.
de Jonge, Jan; Le Blanc, Pascale M; Peeters, Maria C W; Noordam, Hanneke
2008-10-01
Research on emotional labour in health care work has not yet revealed under what conditions emotional job demands have an impact on employee health and well-being. There is a need for more theory to unveil the black box of emotional labour processes. To test the moderating role of matching (i.e. emotional) and non-matching (i.e. cognitive) job resources in the relation between emotional job demands and employee health/well-being (i.e. emotional exhaustion, employee creativity, and work motivation). A cross-sectional survey with anonymous questionnaires was conducted. A large organization for residential elderly care with eight locations in an urban area in the Netherlands. Questionnaires were distributed to 1259 health care workers, of which 826 people returned the questionnaire (66% response rate). In addition to descriptive statistics, multivariate multiple regression analysis (LISREL 8.54) with cross-validation was conducted. Findings showed that emotional job resources moderated the relation between emotional job demands and health/well-being outcomes. Firstly, emotional job resources were able to moderate the relation between emotional job demands and emotional exhaustion. Secondly, both emotional job resources and, to a lesser extent, cognitive job resources were able to moderate the relation between emotional job demands and positive well-being outcomes (i.e. employee creativity and work motivation). Finally, cross-validation showed that parameter estimates did not vary across subsamples. Job resources could compensate for resources lost through meeting the requirements of emotional job demands, thereby reducing stress-reactions and increasing well-being. Providing health care workers with more, preferably matching, job resources could make emotional job demands less stressful, and even stimulating and challenging. Future longitudinal studies should investigate the interplay of emotional job demands and (matching) job resources more profoundly.
3D temporal subtraction on multislice CT images using nonlinear warping technique
NASA Astrophysics Data System (ADS)
Ishida, Takayuki; Katsuragawa, Shigehiko; Kawashita, Ikuo; Kim, Hyounseop; Itai, Yoshinori; Awai, Kazuo; Li, Qiang; Doi, Kunio
2007-03-01
The detection of very subtle lesions and/or lesions overlapped with vessels on CT images is a time consuming and difficult task for radiologists. In this study, we have developed a 3D temporal subtraction method to enhance interval changes between previous and current multislice CT images based on a nonlinear image warping technique. Our method provides a subtraction CT image which is obtained by subtraction of a previous CT image from a current CT image. Reduction of misregistration artifacts is important in the temporal subtraction method. Therefore, our computerized method includes global and local image matching techniques for accurate registration of current and previous CT images. For global image matching, we selected the corresponding previous section image for each current section image by using 2D cross-correlation between a blurred low-resolution current CT image and a blurred previous CT image. For local image matching, we applied the 3D template matching technique with translation and rotation of volumes of interests (VOIs) which were selected in the current and the previous CT images. The local shift vector for each VOI pair was determined when the cross-correlation value became the maximum in the 3D template matching. The local shift vectors at all voxels were determined by interpolation of shift vectors of VOIs, and then the previous CT image was nonlinearly warped according to the shift vector for each voxel. Finally, the warped previous CT image was subtracted from the current CT image. The 3D temporal subtraction method was applied to 19 clinical cases. The normal background structures such as vessels, ribs, and heart were removed without large misregistration artifacts. Thus, interval changes due to lung diseases were clearly enhanced as white shadows on subtraction CT images.
ERIC Educational Resources Information Center
Council of the Great City Schools, 2007
2007-01-01
The Mayor Adrian Fenty's achievement plan for the District of Columbia Public Schools (DCPS) is divided into four major parts. The first section outlines the philosophical foundation undergirding the plan. The second section outlines the plan's goals and strategies. In preparing this commentary, the Council of the Great City Schools assessed how…
Quantitative Analysis of Immunohistochemistry in Melanoma Tumors
Lilyquist, Jenna; White, Kirsten Anne Meyer; Lee, Rebecca J.; Philips, Genevieve K.; Hughes, Christopher R.; Torres, Salina M.
2017-01-01
Abstract Identification of positive staining is often qualitative and subjective. This is particularly troublesome in pigmented melanoma lesions, because melanin is difficult to distinguish from the brown stain resulting from immunohistochemistry (IHC) using horse radish peroxidase developed with 3,3′-Diaminobenzidine (HRP-DAB). We sought to identify and quantify positive staining, particularly in melanoma lesions. We visualized G-protein coupled estrogen receptor (GPER) expression developed with HRP-DAB and counterstained with Azure B (stains melanin) in melanoma tissue sections (n = 3). Matched sections (n = 3), along with 22 unmatched sections, were stained only with Azure B as a control. Breast tissue (n = 1) was used as a positive HRP-DAB control. Images of the stained tissues were generated using a Nuance Spectral Imaging Camera. Analysis of the images was performed using the Nuance Spectral Imaging software and SlideBook. Data was analyzed using a Kruskal–Wallis one way analysis of variance (ANOVA). We showed that a pigmented melanoma tissue doubly stained with anti-GPER HRP-DAB and Azure B can be unmixed using spectra derived from a matched, Azure B-only section, and an anti-GPER HRP-DAB control. We unmixed each of the melanoma lesions using each of the Azure B spectra, evaluated the mean intensity of positive staining, and examined the distribution of the mean intensities (P = .73; Kruskal–Wallis). These results suggest that this method does not require a matched Azure B-only stained control tissue for every melanoma lesion, allowing precious tissues to be conserved for other studies. Importantly, this quantification method reduces the subjectivity of protein expression analysis, and provides a valuable tool for accurate evaluation, particularly for pigmented tissues. PMID:28403073
Lavoie-Tremblay, Melanie; Trépanier, Sarah-Geneviève; Fernet, Claude; Bonneville-Roussy, Arielle
2014-02-01
The Triple Match Principle offers insight into the interactive interplay between job demands and job resources in the prediction of work-related strain. The aim of this article was to examine the interplay among job demands, job resources and strain in the nursing profession (the Triple Match Principle) and to gain insight into potential generational differences by investigating generation as a moderator of that interplay. No research has been done to evaluate generational differences in the Triple Match Principle. In a context of nursing shortages, it seems important to examine the relevance of the Triple Match Principle with respect to different generations of nurses. Cross-sectional study. A total of 1254 public healthcare sector nurses in Quebec, Canada, completed a questionnaire in the autumn of 2010. The questionnaire was used to assess cognitive, emotional and physical job demands and resources; psychological distress; psychosomatic complaints; and turnover intention. The results supported the Triple Match Principle and showed that job resources were more likely to buffer the effect of job demands on strain as the degree of match in qualitative dimension among demands, resources and strain increased (33·3% of triple-match interactions, 22·22% of double-match interactions and 16·67% non-match interactions were significant). Moreover, generation played a key role in this interplay, as it increased the number of significant qualitative interactions among job demands, job resources and strain. The results underscore the necessity of providing adequate job resources tailored to the specific job demands nurses face, to counteract the negative effects of those demands. © 2013 John Wiley & Sons Ltd.
A new approach to spherically symmetric junction surfaces and the matching of FLRW regions
NASA Astrophysics Data System (ADS)
Kirchner, U.
2004-08-01
We investigate timelike junctions (with surface layer) between spherically symmetric solutions of the Einstein-field equation. In contrast to previous investigations, this is done in a coordinate system in which the junction surface motion is absorbed in the metric, while all coordinates are continuous at the junction surface. The evolution equations for all relevant quantities are derived. We discuss the no-surface layer case (boundary surface) and study the behaviour for small surface energies. It is shown that one should expect cases in which the speed of light is reached within a finite proper time. We carefully discuss necessary and sufficient conditions for a possible matching of spherically symmetric sections. For timelike junctions between spherically symmetric spacetime sections we show explicitly that the time component of the Lanczos equation always reduces to an identity (independent of the surface equation of state). The results are applied to the matching of Friedmann Lemaître Robertson Walker (FLRW) models. We discuss 'vacuum bubbles' and closed open junctions in detail. As illustrations several numerical integration results are presented, some of them indicate that (observers comoving with) the junction surface can reach the speed of light within a finite time.
Behavioral and Temporal Pattern Detection Within Financial Data With Hidden Information
2012-02-01
probabilistic pattern detector to monitor the pattern. 15. SUBJECT TERMS Runtime verification, Hidden data, Hidden Markov models, Formal specifications...sequences in many other fields besides financial systems [L, TV, LC, LZ ]. Rather, the technique suggested in this paper is positioned as a hybrid...operation of the pattern detector . Section 7 describes the operation of the probabilistic pattern-matching monitor, and section 8 describes three
ERIC Educational Resources Information Center
Cosgrove, Heather E.; Nickerson, Amanda B.
2017-01-01
In this cross-sectional study, we examined a matched sample of 924 educators' perceptions of severity of bullying and harassment and school climate prior to (Wave 1 n = 435) and following (Wave 2 n = 489) the implementation of New York's anti-bullying and harassment legislation, the Dignity for All Students Act (DASA). Alignment with DASA mandates…
Federal Register 2010, 2011, 2012, 2013, 2014
2011-03-31
... for part 1 continues to read in part as follows: Authority: 26 U.S.C. 7805. * * * 0 Par. 2. Section 1.1502-13 is amended by revising paragraphs (c)(6)(ii)(C)(2) and (c)(6)(ii)(D)(1) to read as follows: Sec. 1.1502-13 Intercompany transactions. * * * * * (c) * * * (6) * * * (ii) * * * (C) * * * (2) Effect...
Resummation of jet veto logarithms at N 3 LL a + NNLO for W + W ? production at the LHC
DOE Office of Scientific and Technical Information (OSTI.GOV)
Dawson, S.; Jaiswal, P.; Li, Ye
We compute the resummed on-shell W+W- production cross section under a jet veto at the LHC to partial N3LL order matched to the fixed-order NNLO result. Differential NNLO cross sections are obtained from an implementation of qT subtraction in Sherpa. The two-loop virtual corrections to the qq¯→W+W- amplitude, used in both fixed-order and resummation predictions, are extracted from the public code qqvvamp. We perform resummation using soft collinear effective theory, with approximate beam functions where only the logarithmic terms are included at two-loop. In addition to scale uncertainties from the hard matching scale and the factorization scale, rapidity scale variationsmore » are obtained within the analytic regulator approach. Our resummation results show a decrease in the jet veto cross section compared to NNLO fixed-order predictions, with reduced scale uncertainties compared to NNLL+NLO resummed predictions. We include the loop-induced gg contribution with jet veto resummation to NLL+LO. The prediction shows good agreement with recent LHC measurements.« less
Resummation of jet veto logarithms at N 3 LL a + NNLO for W + W ? production at the LHC
Dawson, S.; Jaiswal, P.; Li, Ye; ...
2016-12-01
We compute the resummed on-shell W+W- production cross section under a jet veto at the LHC to partial N3LL order matched to the fixed-order NNLO result. Differential NNLO cross sections are obtained from an implementation of qT subtraction in Sherpa. The two-loop virtual corrections to the qq¯→W+W- amplitude, used in both fixed-order and resummation predictions, are extracted from the public code qqvvamp. We perform resummation using soft collinear effective theory, with approximate beam functions where only the logarithmic terms are included at two-loop. In addition to scale uncertainties from the hard matching scale and the factorization scale, rapidity scale variationsmore » are obtained within the analytic regulator approach. Our resummation results show a decrease in the jet veto cross section compared to NNLO fixed-order predictions, with reduced scale uncertainties compared to NNLL+NLO resummed predictions. We include the loop-induced gg contribution with jet veto resummation to NLL+LO. The prediction shows good agreement with recent LHC measurements.« less
Nuclear reactor fuel assembly duct-tube-to-handling-socket attachment system
Christiansen, David W.; Smith, Bob G.
1982-01-01
A reusable system for removably attaching the upper end 10of a nuclear reactor duct tube to the lower end 30 of a nuclear reactor fuel assembly handling socket. A transition ring 20, fixed to the duct tube's upper end 10, has an interior-threaded section 22 with a first locking hole segment 24. An adaptor ring 40, fixed to the handling socket's lower end 30 has an outside-threaded section 42 with a second locking hole segment 44. The inside 22 and outside 42 threaded sections match and can be joined so that the first 24 and second 44 locking hole segments can be aligned to form a locking hole. A locking ring 50, with a locking pin 52, slides over the adaptor ring 40 so that the locking pin 52 fits in the locking hole. A swage lock 60 or a cantilever finger lock 70 is formed from the locking cup collar 26 to fit in a matching groove 54 or 56 in the locking ring 50 to prevent the locking ring's locking pin 52 from backing out of the locking hole.
2011-02-20
CAPE CANAVERAL, Fla. -- At NASA's Kennedy Space Center in Florida, space shuttle Discovery's STS-133 Commander Steve Lindsey greets NASA Administrator Charlie Bolden on the Shuttle Landing Facility runway after arriving aboard a T-38 jet. Also on hand to greet the crew were Jerry Ross, chief of the Vehicle Integration Test Office, Mike Leinbach, shuttle launch director, center, and Kennedy Center Director Bob Cabana. In the days leading up to their launch to the International Space Station, Lindsey and his crew members will check the fit of their launch-and-entry suits, review launch-day procedures, receive weather briefings and remain medically quarantined to prevent sickness. This will be the second launch attempt for Discovery's crew, following a scrub in November 2010 due to a hydrogen gas leak at the ground umbilical carrier plate (GUCP) as well as modifications to the external fuel tank's intertank support beams, called stringers. Scheduled to lift off Feb. 24 at 4:50 p.m. EST, Discovery and its crew will deliver the Permanent Multipurpose Module, packed with supplies and critical spare parts, as well as Robonaut 2, the dexterous humanoid astronaut helper, to the orbiting outpost. For more information on the STS-133 mission, visit www.nasa.gov/mission_pages/shuttle/shuttlemissions/sts133/. Photo credit: NASA/Kim Shiflett
Design of Fiber Reinforced Foam Sandwich Panels for Large Ares V Structural Applications
NASA Technical Reports Server (NTRS)
Bednarcyk, Brett A.; Arnold, Steven M.; Hopkins, Dale A.
2010-01-01
The preliminary design of three major structural components within NASA's Ares V heavy lift vehicle using a novel fiber reinforced foam composite sandwich panel concept is presented. The Ares V payload shroud, interstage, and core intertank are designed for minimum mass using this panel concept, which consists of integral composite webs separated by structural foam between two composite facesheets. The HyperSizer structural sizing software, in conjunction with NASTRAN finite element analyses, is used. However, since HyperSizer does not currently include a panel concept for fiber reinforced foam, the sizing was performed using two separate approaches. In the first, the panel core is treated as an effective (homogenized) material, whose properties are provided by the vendor. In the second approach, the panel is treated as a blade stiffened sandwich panel, with the mass of the foam added after completion of the panel sizing. Details of the sizing for each of the three Ares V components are given, and it is demonstrated that the two panel sizing approaches are in reasonable agreement for thinner panel designs, but as the panel thickness increases, the blade stiffened sandwich panel approach yields heavier panel designs. This is due to the effects of local buckling, which are not considered in the effective core property approach.
NESC Peer-Review of the Flight Rationale for Expected Debris Report. Version 1.0
NASA Technical Reports Server (NTRS)
Harris, Charles E.; Raju, Ivatury S.; Stadler, John H.; Piascik, Robert S.; Kramer-White, Julie A.; Labbe, Steve G.; Ungar, Eugene K.; Rotter, Hank A.; Rogers, James H.; Null, Cynthia H.
2005-01-01
Since the loss of Columbia on February 1, 2003, the Space Shuttle Program (SSP) has significantly improved the understanding of launch and ascent debris, implemented hardware modifications to reduce debris, and conducted tests and analyses to understand the risks associated with expected debris. The STS-114 flight rationale for expected debris relies on a combination of all three of these factors. A number of design improvements have been implemented to reduce debris at the source. The External Tank (ET) thermal protection system (TPS) foam has been redesigned and/or process improvements have been implemented in the following locations: the bipod closeout, the first ten feet of the liquid hydrogen (LH2) tank protuberance air load (PAL) ramp, and the LH2 tank-to-intertank flange closeout. In addition, the forward bipod ramp has been eliminated and heaters have been installed on the bipod fittings and the liquid oxygen (LO2) feedline forward bellows to prevent ice formation. The Solid Rocket Booster (SRB) bolt catcher has been redesigned. The Orbiter reaction control system (RCS) thruster cover "butcher paper" has been replaced with a material that sheds at a low velocity. Finally, the pad area has been cleaned to reduce debris during lift-off.
Do, Mai P; Kincaid, D Lawrence
2006-01-01
Shabuj Chaya is a weekly television drama broadcast during a 13-week period in Bangladesh in 2000. It used an entertainment-education format to increase health knowledge and to promote visits to health clinic and modern contraceptive use. The purpose of this article is to demonstrate how a relatively new statistical technique, propensity score matching in conjunction with structural equation modeling, can be used to obtain an unbiased estimate of changes in health outcomes that can be attributed to exposure to the drama. The analysis is conducted with data from an after-only, cross-sectional survey of 4,492 men and women from the intended audience. The results from propensity score matching approximate what would be expected from a randomized control group design.
Lee, B; Oh, H J; Chon, B S
2018-01-01
To examine the effectiveness of a television campaign for preventing tuberculosis (TB) executed in South Korea in 2015. We used a genetic matching method to accurately test the effect of the campaign on changing people's knowledge and behaviour in a nationwide sample of 1000 adults; information was collected using face-to-face interviews. After matching individuals in treatment and controlled conditions using 11 covariates, we found that the campaign significantly improved people's knowledge about TB, and enhanced people's intention to undertake a TB test when they recognised the signs of TB. These data highlight the potential usefulness of genetic matching for enhancing statistical rigour when evaluating the effectiveness of a health campaign using a cross-sectional observational study.
24 CFR 92.220 - Form of matching contribution.
Code of Federal Regulations, 2011 CFR
2011-04-01
... sweat equity (see § 92.354(c)) provided to a homeownership project, under an established component of a... (a)(8) of this section or to persons contributing sweat equity in accordance with paragraph (a)(9) of...
24 CFR 92.220 - Form of matching contribution.
Code of Federal Regulations, 2014 CFR
2014-04-01
... sweat equity (see § 92.354(c)) provided to a homeownership project, under an established component of a... (a)(8) of this section or to persons contributing sweat equity in accordance with paragraph (a)(9) of...
24 CFR 92.220 - Form of matching contribution.
Code of Federal Regulations, 2013 CFR
2013-04-01
... sweat equity (see § 92.354(c)) provided to a homeownership project, under an established component of a... (a)(8) of this section or to persons contributing sweat equity in accordance with paragraph (a)(9) of...
24 CFR 92.220 - Form of matching contribution.
Code of Federal Regulations, 2012 CFR
2012-04-01
... sweat equity (see § 92.354(c)) provided to a homeownership project, under an established component of a... (a)(8) of this section or to persons contributing sweat equity in accordance with paragraph (a)(9) of...
24 CFR 92.220 - Form of matching contribution.
Code of Federal Regulations, 2010 CFR
2010-04-01
... sweat equity (see § 92.354(c)) provided to a homeownership project, under an established component of a... (a)(8) of this section or to persons contributing sweat equity in accordance with paragraph (a)(9) of...
NASA's Space Launch Transitions: From Design to Production
NASA Technical Reports Server (NTRS)
Askins, Bruce; Robinson, Kimberly
2016-01-01
NASA's Space Launch System (SLS) successfully completed its Critical Design Review (CDR) in 2015, a major milestone on the journey to an unprecedented era of exploration for humanity. CDR formally marked the program's transition from design to production phase just four years after the program's inception and the first such milestone for a human launch vehicle in 40 years. While challenges typical of a complex development program lie ahead, CDR evaluators concluded that the design is technically and programmatically sound and ready to press forward to Design Certification Review (DCR) and readiness for launch of Exploration Mission 1 (EM-1) in the 2018 timeframe. SLS is prudently based on existing propulsion systems, infrastructure and knowledge with a clear, evolutionary path as required by mission needs. In its initial configuration, designated Block I, SLS will a minimum of 70 metric tons (t) of payload to low Earth orbit (LEO). It can evolve to a 130 t payload capacity by upgrading its engines, boosters, and upper stage, dramatically increasing the mass and volume of human and robotic exploration while decreasing mission risk, increasing safety, and simplifying ground and mission operations. CDR was the central programmatic accomplishment among many technical accomplishments that will be described in this paper. The government/industry SLS team successfully test fired a flight-like five-segment solid rocket motor, as well as seven hotfire development tests of the RS-25 core stage engine. The majority of the major test article and flight barrels, rings, and domes for the core stage liquid oxygen, liquid hydrogen, engine section, intertank, and forward skirt were manufactured at NASA's Michoud Assembly Facility. Renovations to the B-2 test stand for stage green run testing were completed at NASA Stennis Space Center. Core stage test stands are rising at NASA Marshall Space Flight Center. The modified Pegasus barge for core stage transportation from manufacturing to testing and launch sites was delivered. The Interim Cryogenic Propulsion System test article was also completed. This paper will discuss these and other technical and programmatic successes and challenges over the past year and provide a preview of work ahead before the first flight of this new capability.
Nonparabolic solar concentrators matching the parabola.
Cooper, Thomas; Schmitz, Max; Good, Philipp; Ambrosetti, Gianluca; Pedretti, Andrea; Steinfeld, Aldo
2014-08-01
We consider the limit of geometric concentration for a focusing concave mirror, e.g., a parabolic trough or dish, designed to collect all radiation within a finite acceptance angle and direct it to a receiver with a flat or circular cross-section. While a concentrator with a parabolic cross-section indeed achieves this limit, it is not the only geometry capable of doing so. We demonstrate that there are infinitely many solutions. The significance of this finding is that geometries which can be more easily constructed than the parabola can be utilized without loss of concentration, thus presenting new avenues for reducing the cost of solar collectors. In particular, we investigate a low-cost trough mirror profile which can be constructed by inflating a stack of thin polymer membranes and show how it can always be designed to match the geometric concentration of a parabola of similar form.
NASA Technical Reports Server (NTRS)
Chen, J. C.
1995-01-01
A disk-on-rod inside a corrugated horn is one of the horn configurations for dual-frequency or wide-band operation. A mode-matching analysis method is described. A disk-on-rod inside a corrugated horn is represented as a series of coaxial waveguide sections and circular waveguide sections connected to each other. Three kinds of junctions need to be considered: coaxial-to-coaxial, coaxial-to-circular, and circular-to-circular. A computer program was developed to calculate the scattering matrix and the radiation pattern of a disk-on-rod inside a corrugated horn. The software as verified by experiment, and good agreement between calculation and measurement was obtained. The disk-on-rod inside a corrugated horn design gives an option to the Deep Space Network dual-frequency operation system, which currently is a two-horn/one-dichroic plate system.
Occult spinal canal stenosis due to C-1 hypoplasia in children with Down syndrome.
Matsunaga, Shunji; Imakiire, Takanori; Koga, Hiroaki; Ishidou, Yasuhiro; Sasaki, Hiromi; Taketomi, Eiji; Higo, Masaru; Tanaka, Hiroshi; Komiya, Setsuro
2007-12-01
Little has been published about subclinical spinal canal stenosis due to C-1 hypoplasia in patients with Down syndrome. In this paper the authors performed a matched comparison study with cross-sectional survey to investigate occult spinal canal stenosis due to C-1 hypoplasia in children with Down syndrome. A total of 102 children with Down syndrome ranging in age from 10 to 15 years were matched according to age and physique with 176 normal children. In all participants, the anteroposterior (AP) diameter of C-1 and the atlas-dens interval (ADI) were measured on plain lateral x-ray images of the cervical spine. The cross-sectional area of the atlas was also measured from a cross-sectional computed tomography image of C-1. Eight children (6.7%) with Down syndrome developed atlantoaxial subluxation associated with myelopathy. The difference in the ADI between the patients and controls was not statistically significant. The average AP diameter of the atlas and the spinal canal area along the cross-section of the atlas were significantly smaller in children with Down syndrome than those in the control group. Atlantoaxial instability and occult spinal canal stenosis due to C-1 hypoplasia in patients with Down syndrome may significantly increase the risk of myelopathy.
Methods of producing strain in a semiconductor waveguide and related devices
Cox, Johathan Albert; Rakich, Peter Thomas
2016-02-16
Quasi-phase matched (QPM), semiconductor photonic waveguides include periodically-poled alternating first and second sections. The first sections exhibit a high degree of optical coupling (abbreviated "X.sup.2"), while the second sections have a low X.sup.2. The alternating first and second sections may comprise high-strain and low-strain sections made of different material states (such as crystalline and amorphous material states) that exhibit high and low X.sup.2 properties when formed on a particular substrate, and/or strained corrugated sections of different widths. The QPM semiconductor waveguides may be implemented as silicon-on-insulator (SOI), or germanium-on-silicon structures compatible with standard CMOS processes, or as silicon-on-sapphire (SOS) structures.
Fabrication of graphite/polyimide composite structures.
NASA Technical Reports Server (NTRS)
Varlas, M.
1972-01-01
Selection of graphite/polyimide composite as a prime candidate for high-temperature structural applications involving long-duration temperature environments of 400 to 600 F. A variety of complex graphite/polyimide components has been fabricated, using a match-metal die approach developed for making fiber-reinforced resin composites. Parts produced include sections of a missile adapter skin flange, skin frame section, and I-beam and hat-section stringers, as well as unidirectional (0 deg) and plus or minus 45 deg oriented graphite/polyimide tubes in one-, two-, and six-inch diameters.
Moro, Francesca; De Simone, Clara; Morciano, Andrea; Tropea, Anna; Sagnella, Francesca; Palla, Carola; Scarinci, Elisa; Teti, Angela; Caldarola, Giacomo; D'Agostino, Magda; Mancuso, Salvatore; Lanzone, Antonio; Apa, Rosanna
2013-03-01
To define the prevalence and the features of polycystic ovary syndrome (PCOS) in patients with psoriasis. To our knowledge, the association between PCOS and psoriasis has not been explored in previous studies. Psoriasis is linked with metabolic syndrome, insulin resistance, and non-alcoholic fatty liver disease, which are features often associated with PCOS. A cross-sectional analysis was performed between January 2010 and April 2012. Unit of human reproductive pathophysiology, Catholic University Hospital. We prospectively analyzed 51 patients with psoriasis and 102 healthy age- and body mass index (BMI)-matched controls. None. The prevalence and characteristics of PCOS women of reproductive age with chronic plaque psoriasis. The prevalence of PCOS was greater in patients with psoriasis than in matched control subjects (47.05% and 11.76%, respectively; odds ratio, 6.66; 95% confidence interval 2.95-15.07). Among the women with psoriasis, the prevalence of Psoriasis Area and Severity Index ≥10 was higher in patients with PCOS than in subjects without PCOS (odds ratio, 3.5; 95% confidence interval 1.04-11.72). The prevalence of PCOS in women with psoriasis is remarkably greater than in age- and BMI-matched control women. Copyright © 2013 American Society for Reproductive Medicine. Published by Elsevier Inc. All rights reserved.
Development and Evaluation of a Clinical Note Section Header Terminology
Denny, Joshua C.; Miller, Randolph A.; Johnson, Kevin B.; Spickard, Anderson
2008-01-01
Clinical documentation is often expressed in natural language text, yet providers often use common organizations that segment these notes in sections, such as “history of present illness” or “physical examination.” We developed a hierarchical section header terminology, supporting mappings to LOINC and other vocabularies; it contained 1109 concepts and 4332 synonyms. Physicians evaluated it compared to LOINC and the Evaluation and Management billing schema using a randomly selected corpus of history and physical notes. Evaluated documents contained a median of 54 sections and 27 “major sections.” There were 16,196 total sections in the evaluation note corpus. The terminology contained 99.9% of the clinical sections; LOINC matched 77% of section header concepts and 20% of section header strings in those documents. The section terminology may enable better clinical note understanding and interoperability. Future development and integration into natural language processing systems is needed. PMID:18999303
Pin diode calibration - beam overlap monitoring for low energy cooling
DOE Office of Scientific and Technical Information (OSTI.GOV)
Drees, A.; Montag, C.; Thieberger, P.
2015-09-30
We were trying to address the question whether or not the Pin Diodes, currently installed approximately 1 meter downstream of the RHIC primary collimators, are suitable to monitor a recombination signal from the future RHIC low energy cooling section. A maximized recombination signal, with the Au+78 ions being lost on the collimator, will indicate optimal Au-electron beam overlap as well as velocity matching of the electron beam in the cooling section.
TREC2001 Question-Answer, Web and Cross Language Experiments Using PIRCS
2006-01-01
stemming. 3) Synonyms: matching based on a manually created dictionary of common synonyms. Its size has increased to 420 terms from 300. It also... dictionary without success. However, the website for English to Arabic translation (http://tarjin.ajeeb.com) seems useful and good. We had the given...submitted four runs two for monolingual Arabic: pirXAtdn and pirXAtd using all sections, and title with description section respectively. The
Chatrchyan, Serguei
2015-05-19
Table 4 was incorrectly captioned in the originally published version. The correct caption is ‘Normalised differential tt - production cross section as a function of the number of additional jets with p T > 30 GeV in the lepton+jets channel. Furthermore, the statistical, systematic, and total uncertainties are also shown. Finally, the main experimental and model systematic uncertainties are displayed: JES and the combination of renormalisation and factorisation scales, jet-parton matching threshold, and hadronisation (in the table “Q 2/Match./Had.”)’.
Sua, Yong Meng; Chen, Jia-Yang; Huang, Yu-Ping
2018-06-15
We report a wideband optical parametric amplification (OPA) over 14 THz covering telecom S, C, and L bands with observed maximum parametric gain of 38.3 dB. The OPA is realized through cascaded second-harmonic generation and difference-frequency generation (cSHG-DFG) in a 2 cm periodically poled LiNbO 3 (PPLN) waveguide. With tailored cross section geometry, the waveguide is optimally mode matched for efficient cascaded nonlinear wave mixing. We also identify and study the effect of competing nonlinear processes in this cSHG-DFG configuration.
The effect of rugby match outcome on spectator aggression and intention to drink alcohol.
Moore, Simon C; Shepherd, Jonathan P; Eden, Sam; Sivarajasingam, Vaseekaran
2007-01-01
Alcohol, aggression and assault injury are strongly associated with popular sporting events, but mediating factors are not clear. To explore aggression, happiness and plans to consume alcohol among spectators before and spectators after sports matches. Cross-sectional surveys of male rugby football fans at an international stadium generated four groups: a pre-match group of 111 men, and three post-match groups of supporters, 17 whose team had won, 23 whose team had lost and 46 whose team had drawn. Consenting participants were assessed using the assault sub-scale of the Buss-Durkee Hostility Inventory, on a self-rating of happiness (Likert scale), for planned alcohol consumption and demographic variables. Pre- and post-match group mean responses were compared. Analyses were performed on 197 male spectators (mean age 42 years). Spectators in 'win' (z = 2.63, p < 0.01) and 'draw' (z = 2.76, p < 0.01) groups rated themselves as more aggressive than those in the pre-game group, but those in the losing group did not (z = -0.03, p > 0.05). No differences, however, were observed between pre-match, 'win', 'draw' or 'lose' groups on the decision to drink after the match. Winning did not increase happiness (t = 0.25, p > 0.05), but losing (t = 2.09, p < 0.05) or drawing (t = 7.64, p < 0.001) decreased it. This study suggests that team success but not failure may increase aggression among supporters, and that aggression, not celebration, drives post-match alcohol consumption. Losing and drawing decreased happiness but winning did not increase it. Better understanding of pathways to violence in these circumstances will pave the way for more effective prevention and management strategies.
Evaluation of emergency medical text processor, a system for cleaning chief complaint text data.
Travers, Debbie A; Haas, Stephanie W
2004-11-01
Emergency Medical Text Processor (EMT-P) version 1, a natural language processing system that cleans emergency department text (e.g., chst pn, chest pai), was developed to maximize extraction of standard terms (e.g., chest pain). The authors compared the number of standard terms extracted from raw chief complaint (CC) data with that for CC data cleaned with EMT-P and evaluated the accuracy of EMT-P. This cross-sectional observation study included CC text entries for all emergency department visits to three tertiary care centers in 2001. Terms were extracted from CC entries before and after cleaning with EMT-P. Descriptive statistics included number and percentage of all entries (tokens) and all unique entries (types) that matched a standard term from the Unified Medical Language System (UMLS). An expert panel rated the accuracy of the CC-UMLS term matches; inter-rater reliability was measured with kappa. The authors collected 203,509 CC entry tokens, of which 63,946 were unique entry types. For the raw data, 89,337 tokens (44%) and 5,081 types (8%) matched a standard term. After EMT-P cleaning, 168,050 tokens (83%) and 44,430 types (69%) matched a standard term. The expert panel reached consensus on 201 of the 222 CC-UMLS term matches reviewed (kappa=0.69-0.72). Ninety-six percent of the 201 matches were rated equivalent or related. Thirty-eight percent of the nonmatches were found to match UMLS concepts. EMT-P version 1 is relatively accurate, and cleaning with EMT-P improved the CC-UMLS term match rate over raw data. The authors identified areas for improvement in future EMT-P versions and issues to be resolved in developing a standard CC terminology.
A subleading operator basis and matching for gg → H
DOE Office of Scientific and Technical Information (OSTI.GOV)
Moult, Ian; Stewart, Iain W.; Vita, Gherardo
The Soft Collinear Effective Theory (SCET) is a powerful framework for studying factorization of amplitudes and cross sections in QCD. While factorization at leading power has been well studied, much less is known at subleading powers in the λ << 1 expansion. In SCET subleading soft and collinear corrections to a hard scattering process are described by power suppressed operators, which must be fixed case by case, and by well established power suppressed Lagrangians, which correct the leading power dynamics of soft and collinear radiation. Here we present a complete basis of power suppressed operators for gg → H, classifyingmore » all operators which contribute to the cross section at O(λ 2), and showing how helicity selection rules significantly simplify the construction of the operator basis. We perform matching calculations to determine the tree level Wilson coefficients of our operators. These results are useful for studies of power corrections in both resummed and fixed order perturbation theory, and for understanding the factorization properties of gauge theory amplitudes and cross sections at subleading power. As one example, our basis of operators can be used to analytically compute power corrections for N -jettiness subtractions for gg induced color singlet production at the LHC.« less
A subleading operator basis and matching for gg → H
Moult, Ian; Stewart, Iain W.; Vita, Gherardo
2017-07-01
The Soft Collinear Effective Theory (SCET) is a powerful framework for studying factorization of amplitudes and cross sections in QCD. While factorization at leading power has been well studied, much less is known at subleading powers in the λ << 1 expansion. In SCET subleading soft and collinear corrections to a hard scattering process are described by power suppressed operators, which must be fixed case by case, and by well established power suppressed Lagrangians, which correct the leading power dynamics of soft and collinear radiation. Here we present a complete basis of power suppressed operators for gg → H, classifyingmore » all operators which contribute to the cross section at O(λ 2), and showing how helicity selection rules significantly simplify the construction of the operator basis. We perform matching calculations to determine the tree level Wilson coefficients of our operators. These results are useful for studies of power corrections in both resummed and fixed order perturbation theory, and for understanding the factorization properties of gauge theory amplitudes and cross sections at subleading power. As one example, our basis of operators can be used to analytically compute power corrections for N -jettiness subtractions for gg induced color singlet production at the LHC.« less
Classification of longitudinal welds in an aluminum bridge deck.
DOT National Transportation Integrated Search
2000-01-01
An aluminum bridge deck (called ALUMADECK) has been developed by Reynolds Metal Company and is made of extruded aluminum sections welded together at the sides to form a bridge deck. The longitudinal welds used to connect the extrusions do not match a...
Code of Federal Regulations, 2011 CFR
2011-04-01
... 19 Customs Duties 1 2011-04-01 2011-04-01 false [Reserved] 12.35 Section 12.35 Customs Duties U.S. CUSTOMS AND BORDER PROTECTION, DEPARTMENT OF HOMELAND SECURITY; DEPARTMENT OF THE TREASURY SPECIAL CLASSES OF MERCHANDISE White Phosphorus Matches § 12.35 [Reserved] Narcotic Drugs ...
Code of Federal Regulations, 2010 CFR
2010-04-01
... 19 Customs Duties 1 2010-04-01 2010-04-01 false [Reserved] 12.35 Section 12.35 Customs Duties U.S. CUSTOMS AND BORDER PROTECTION, DEPARTMENT OF HOMELAND SECURITY; DEPARTMENT OF THE TREASURY SPECIAL CLASSES OF MERCHANDISE White Phosphorus Matches § 12.35 [Reserved] Narcotic Drugs ...
Code of Federal Regulations, 2010 CFR
2010-01-01
... 11 Federal Elections 1 2010-01-01 2010-01-01 false State. 9032.11 Section 9032.11 Federal Elections FEDERAL ELECTION COMMISSION PRESIDENTIAL ELECTION CAMPAIGN FUND: PRESIDENTIAL PRIMARY MATCHING FUND DEFINITIONS § 9032.11 State. State means each State of the United States, Puerto Rico, American...
Code of Federal Regulations, 2013 CFR
2013-01-01
... 11 Federal Elections 1 2013-01-01 2012-01-01 true Secretary. 9032.10 Section 9032.10 Federal Elections FEDERAL ELECTION COMMISSION PRESIDENTIAL ELECTION CAMPAIGN FUND: PRESIDENTIAL PRIMARY MATCHING FUND DEFINITIONS § 9032.10 Secretary. For purposes of this subchapter, Secretary means the Secretary of...
Code of Federal Regulations, 2014 CFR
2014-01-01
... 11 Federal Elections 1 2014-01-01 2014-01-01 false Secretary. 9032.10 Section 9032.10 Federal Elections FEDERAL ELECTION COMMISSION PRESIDENTIAL ELECTION CAMPAIGN FUND: PRESIDENTIAL PRIMARY MATCHING FUND DEFINITIONS § 9032.10 Secretary. For purposes of this subchapter, Secretary means the Secretary of...
Code of Federal Regulations, 2012 CFR
2012-01-01
... 11 Federal Elections 1 2012-01-01 2012-01-01 false Secretary. 9032.10 Section 9032.10 Federal Elections FEDERAL ELECTION COMMISSION PRESIDENTIAL ELECTION CAMPAIGN FUND: PRESIDENTIAL PRIMARY MATCHING FUND DEFINITIONS § 9032.10 Secretary. For purposes of this subchapter, Secretary means the Secretary of...
Code of Federal Regulations, 2011 CFR
2011-01-01
... 11 Federal Elections 1 2011-01-01 2011-01-01 false Secretary. 9032.10 Section 9032.10 Federal Elections FEDERAL ELECTION COMMISSION PRESIDENTIAL ELECTION CAMPAIGN FUND: PRESIDENTIAL PRIMARY MATCHING FUND DEFINITIONS § 9032.10 Secretary. For purposes of this subchapter, Secretary means the Secretary of...
Code of Federal Regulations, 2010 CFR
2010-01-01
... 11 Federal Elections 1 2010-01-01 2010-01-01 false Secretary. 9032.10 Section 9032.10 Federal Elections FEDERAL ELECTION COMMISSION PRESIDENTIAL ELECTION CAMPAIGN FUND: PRESIDENTIAL PRIMARY MATCHING FUND DEFINITIONS § 9032.10 Secretary. For purposes of this subchapter, Secretary means the Secretary of...
Code of Federal Regulations, 2010 CFR
2010-01-01
... Commercial Practices CONSUMER PRODUCT SAFETY COMMISSION CONSUMER PRODUCT SAFETY ACT REGULATIONS SAFETY... addition to the definitions given in section 3 of the Consumer Product Safety Act (15 U.S.C. 2052), the..., ground plane elements, matching networks, element-connecting hardware, mounting hardware, feed cable, and...
7 CFR 1450.105 - Obligations of participant.
Code of Federal Regulations, 2013 CFR
2013-01-01
... 7 Agriculture 10 2013-01-01 2013-01-01 false Obligations of participant. 1450.105 Section 1450.105 Agriculture Regulations of the Department of Agriculture (Continued) COMMODITY CREDIT CORPORATION, DEPARTMENT OF AGRICULTURE LOANS, PURCHASES, AND OTHER OPERATIONS BIOMASS CROP ASSISTANCE PROGRAM (BCAP) Matching...
7 CFR 1450.105 - Obligations of participant.
Code of Federal Regulations, 2011 CFR
2011-01-01
... 7 Agriculture 10 2011-01-01 2011-01-01 false Obligations of participant. 1450.105 Section 1450.105 Agriculture Regulations of the Department of Agriculture (Continued) COMMODITY CREDIT CORPORATION, DEPARTMENT OF AGRICULTURE LOANS, PURCHASES, AND OTHER OPERATIONS BIOMASS CROP ASSISTANCE PROGRAM (BCAP) Matching...
7 CFR 1450.105 - Obligations of participant.
Code of Federal Regulations, 2012 CFR
2012-01-01
... 7 Agriculture 10 2012-01-01 2012-01-01 false Obligations of participant. 1450.105 Section 1450.105 Agriculture Regulations of the Department of Agriculture (Continued) COMMODITY CREDIT CORPORATION, DEPARTMENT OF AGRICULTURE LOANS, PURCHASES, AND OTHER OPERATIONS BIOMASS CROP ASSISTANCE PROGRAM (BCAP) Matching...
7 CFR 1450.105 - Obligations of participant.
Code of Federal Regulations, 2014 CFR
2014-01-01
... 7 Agriculture 10 2014-01-01 2014-01-01 false Obligations of participant. 1450.105 Section 1450.105 Agriculture Regulations of the Department of Agriculture (Continued) COMMODITY CREDIT CORPORATION, DEPARTMENT OF AGRICULTURE LOANS, PURCHASES, AND OTHER OPERATIONS BIOMASS CROP ASSISTANCE PROGRAM (BCAP) Matching...
14 CFR 1212.203 - Disclosures.
Code of Federal Regulations, 2011 CFR
2011-01-01
... 14 Aeronautics and Space 5 2011-01-01 2010-01-01 true Disclosures. 1212.203 Section 1212.203 Aeronautics and Space NATIONAL AERONAUTICS AND SPACE ADMINISTRATION PRIVACY ACT-NASA REGULATIONS Access to... computer matching programs (See NASA Management Instruction (NMI) 1382.18). (b) Disclosure accountings are...